WorldWideScience

Sample records for inclined elliptical orbit

  1. 47 CFR 25.280 - Inclined orbit operations.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Inclined orbit operations. 25.280 Section 25.280 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES SATELLITE COMMUNICATIONS Technical Operations § 25.280 Inclined orbit operations. (a) Satellite operators may commence...

  2. Energy and the Elliptical Orbit

    Science.gov (United States)

    Nettles, Bill

    2009-03-01

    In the January 2007 issue of The Physics Teacher, Prentis, Fulton, Hesse, and Mazzino describe a laboratory exercise in which students use a geometrical analysis inspired by Newton to show that an elliptical orbit and an inverse-square law force go hand in hand. The historical, geometrical, and teamwork aspects of the exercise are useful and important. This paper presents an exercise which uses an energy/angular momentum conservation model for elliptical orbits. This exercise can be done easily by an individual student and on regular notebook-sized paper.

  3. The orbital inclination of Cygnus XR-1 measured polarimetrically

    International Nuclear Information System (INIS)

    Dolan, J.F.; Tapia, S.

    1989-01-01

    The X-ray binary Cyg XR-1/HDE 226868 was observed polarimetrically over one orbit at three different optical wavelengths. The standard theory of Brown, et al. (1978) is used to derive an orbital inclination i = 62 deg (+5 deg, -37 deg), where the error is the 90-percent-confidence interval derived by the method of Simmons, et al. (1980). The value of the orbital inclination is significantly lower than values based on polarimetric observations. The difference is a result of the observational protocols used. A bias toward larger values of the inclination caused by the tidal distortion of the primary is still found in the present result. The inclination derived corresponds to a mass of the compact component of 6.3 solar masses, above the maximum mass of any degenerate configuration consistent with general relativity except a black hole. 37 refs

  4. Effect of an elliptical orbit on SPECT resolution and image uniformity

    International Nuclear Information System (INIS)

    Gottschalk, S.; Salem, D.

    1982-01-01

    This paper studies the impact of elliptical motion on SPECT resolution and detector flood correction as implemented in a Technicare Omega 500. Bringing the detector closer to the object improves detector resolution in each view, which results in improved resolution in the reconstructed image. In the Omega 500 the elliptical orbit is realized by a succession of translational and rotational motions of the detector head. This introduces motion of the detector center relative to the object center. Statistical fluctuations in the flood correction matrix due to the finite acquisition time result in ring artifacts for the circular orbit. The relative center motion of an elliptical orbit results in an averaging of the flood correction noise and a significant reduction in artifacts. These two aspects of SPECT spatial resolution and flood correction response improvement in elliptical orbit have been analyzed through computer simulations for point sources and a uniform activity 20 x 30 cm ellipse. Results compared a 35 cm diameter circular orbit to a 35 x 25 cm elliptical orbit

  5. Elliptical Orbit [arrow right] 1/r[superscript 2] Force

    Science.gov (United States)

    Prentis, Jeffrey; Fulton, Bryan; Hesse, Carol; Mazzino, Laura

    2007-01-01

    Newton's proof of the connection between elliptical orbits and inverse-square forces ranks among the "top ten" calculations in the history of science. This time-honored calculation is a highlight in an upper-level mechanics course. It would be worthwhile if students in introductory physics could prove the relation "elliptical orbit" [arrow right]…

  6. The orbital inclination of A0620 - 00 measured polarimetrically

    International Nuclear Information System (INIS)

    Dolan, J.F.; Tapia, S.

    1989-01-01

    The mass of the degenerate primary in A0620 - 00 is inferred from its spectroscopic mass function to be not less than 3.2 solar masses, making it an excellent candidate for a black hole. The exact value of the mass depends on the orbital inclination. The inclination of a binary system can be determined from the shape of its Stokes parameter light curves if the linear polarization of the system varies as a function of orbital phase. A0620 - 00 over one 8-hour binary period was observed with the 4.5-m equivalent MMT. Its polarization in the visible is variable with orbital phase. The standard theory of Brown et al. (1978) was used to derive an orbital inclination of i = 57 deg (+20 deg, -50 deg), where the error is the 90-percent confidence interval. An inclination of i = 57 deg corresponds to a mass of the compact primary of 6.6 solar masses, but the large uncertainty in the measured value of the inclination allows the derived mass of A0620 - 00 to be as low as 3.8 solar masses. If this is taken to be the maximum mass of any degenerate configuration consistent with general relativity except a black hole, then the mass of A0620 - 00 is still not well enough determined to conclude that it must be a black hole. 21 refs

  7. The Carter constant for inclined orbits about a massive Kerr black hole: I. Circular orbits

    Energy Technology Data Exchange (ETDEWEB)

    Komorowski, P G; Valluri, S R; Houde, M, E-mail: pkomorow@uwo.c, E-mail: valluri@uwo.c, E-mail: mhoude2@uwo.c [Department of Physics and Astronomy, University of Western Ontario, London, Ontario (Canada)

    2010-11-21

    In an extreme binary black hole system, an orbit will increase its angle of inclination ({iota}) as it evolves in Kerr spacetime. We focus our attention on the behaviour of the Carter constant (Q) for near-polar orbits, and develop an analysis that is independent of and complements radiation-reaction models. For a Schwarzschild black hole, the polar orbits represent the abutment between the prograde and retrograde orbits at which Q is at its maximum value for given values of the latus rectum ({tilde l}) and the eccentricity (e). The introduction of spin ({tilde S}={vert_bar}J{vert_bar}/M{sup 2}) to the massive black hole causes this boundary, or abutment, to be moved towards greater orbital inclination; thus, it no longer cleanly separates prograde and retrograde orbits. To characterize the abutment of a Kerr black hole (KBH), we first investigated the last stable orbit (LSO) of a test-particle about a KBH, and then extended this work to general orbits. To develop a better understanding of the evolution of Q we developed analytical formulae for Q in terms of {tilde l}, e and {tilde S} to describe elliptical orbits at the abutment, polar orbits and LSOs. By knowing the analytical form of {partial_derivative}Q/{partial_derivative}{tilde l} at the abutment, we were able to test a 2PN flux equation for Q. We also used these formulae to numerically calculate the {partial_derivative}{iota}/{partial_derivative}{tilde l} of hypothetical circular orbits that evolve along the abutment. From these values we have determined that {partial_derivative}{iota}/{partial_derivative}{tilde l} = -(122.7{tilde S} - 36{tilde S}{sup 3}){tilde l}{sup -11/2} - (63/2 {tilde S} + 35/4 {tilde S}{sup 3}){tilde l}{sup -9/2} - 15/2 {tilde S}{tilde l}{sup -7/2} - 9/2 {tilde S}{tilde l}{sup -5/2}. By taking the limit of this equation for {tilde l} {yields} {infinity}, and comparing it with the published result for the weak-field radiation reaction, we found the upper limit on

  8. Space Station Freedom assembly and operation at a 51.6 degree inclination orbit

    Science.gov (United States)

    Troutman, Patrick A.; Brewer, Laura M.; Heck, Michael L.; Kumar, Renjith R.

    1993-01-01

    This study examines the implications of assembling and operating Space Station Freedom at a 51.6 degree inclination orbit utilizing an enhanced lift Space Shuttle. Freedom assembly is currently baselined at a 220 nautical mile high, 28.5 degree inclination orbit. Some of the reasons for increasing the orbital inclination are (1) increased ground coverage for Earth observations, (2) greater accessibility from Russian and other international launch sites, and (3) increased number of Assured Crew Return Vehicle (ACRV) landing sites. Previous studies have looked at assembling Freedom at a higher inclination using both medium and heavy lift expendable launch vehicles (such as Shuttle-C and Energia). The study assumes that the shuttle is used exclusively for delivering the station to orbit and that it can gain additional payload capability from design changes such as a lighter external tank that somewhat offsets the performance decrease that occurs when the shuttle is launched to a 51.6 degree inclination orbit.

  9. Electric sail elliptic displaced orbits with advanced thrust model

    Science.gov (United States)

    Niccolai, Lorenzo; Quarta, Alessandro A.; Mengali, Giovanni

    2017-09-01

    This paper analyzes the performance of an Electric Solar Wind Sail for generating and maintaining an elliptic, heliocentric, displaced non-Keplerian orbit. In this sense, this paper extends and completes recent studies regarding the performances of an Electric Solar Wind Sail that covers a circular, heliocentric, displaced orbit of given characteristics. The paper presents the general equations that describe the elliptic orbit maintenance in terms of both spacecraft attitude and performance requirements, when a refined thrust model (recently proposed for the preliminary mission design) is taken into account. In particular, the paper also discusses some practical applications on particular mission scenarios in which an analytic solution of the governing equations has been found.

  10. Geosynchronous inclined orbits for high-latitude communications

    Science.gov (United States)

    Fantino, E.; Flores, R. M.; Di Carlo, M.; Di Salvo, A.; Cabot, E.

    2017-11-01

    We present and discuss a solution to the growing demand for satellite telecommunication coverage in the high-latitude geographical regions (beyond 55°N), where the signal from geostationary satellites is limited or unavailable. We focus on the dynamical issues associated to the design, the coverage, the maintenance and the disposal of a set of orbits selected for the purpose. Specifically, we identify a group of highly inclined, moderately eccentric geosynchronous orbits derived from the Tundra orbit (geosynchronous, eccentric and critically inclined). Continuous coverage can be guaranteed by a constellation of three satellites in equally spaced planes and suitably phased. By means of a high-precision model of the terrestrial gravity field and the relevant environmental perturbations, we study the evolution of these orbits. The effects of the different perturbations on the ground track (which is more important for coverage than the orbital elements themselves) are isolated and analyzed. The physical model and the numerical setup are optimized with respect to computing time and accuracy. We show that, in order to maintain the ground track unchanged, the key parameters are the orbital period and the argument of perigee. Furthermore, corrections to the right ascension of the ascending node are needed in order to preserve the relative orientation of the orbital planes. A station-keeping strategy that minimizes propellant consumption is then devised, and comparisons are made between the cost of a solution based on impulsive maneuvers and one with continuous thrust. Finally, the issue of end-of-life disposal is discussed.

  11. The shortage of long-period comets in elliptical orbits

    International Nuclear Information System (INIS)

    Everhart, E.

    1979-01-01

    Based on the number of 'new' comets seen on near-parabolic orbits, one can predict the number of comets that should be found on definitely elliptical orbits on their subsequent returns. The author shows that about three out of four of these returning comets are not observed. (Auth.)

  12. Interrogation of orbital structure by elliptically polarized intense femtosecond laser pulses

    International Nuclear Information System (INIS)

    Abu-samha, M.; Madsen, L. B.

    2011-01-01

    We solve the three-dimensional time-dependent Schroedinger equation and present investigations of the imprint of the orbital angular node in photoelectron momentum distributions of an aligned atomic p-type orbital following ionization by an intense elliptically polarized laser pulse of femtosecond duration. We investigate the role of light ellipticity and the alignment angle of the major polarization axis of the external field relative to the probed orbital by studying radial and angular momentum distributions, the latter at a fixed narrow interval of final momenta close to the peak of the photoelectron momentum distribution. In general only the angular distributions carry a clear signature of the orbital symmetry. Our study shows that circular polarization gives the most clear imprints of orbital nodes. These findings are insensitive to pulse duration.

  13. Stability of orbits around planetary satellites considering a disturbing body in an elliptical orbit: Applications to Europa and Ganymede

    Science.gov (United States)

    Cardoso dos Santos, Josué; Carvalho, Jean Paulo; Vilhena de Moraes, Rodolpho

    Europa and Ganymede are two of the four Jupiter’s moons which compose the Galilean satellite. These ones are planetary satellites of greater interest at the present moment among the scientific community. There are some missions being planned to visit them and and the Jovian system. One of them is the cooperation between NASA and ESA for the Europa Jupiter System Mission (EJSM). In this mission are planned the insertion of the spacecrafts JEO (Jupiter Europa Orbiter) and JGO (Jupiter Ganymede Orbiter) into Europa and Ganymede’s orbit. Thus, there is a great necessity for having a better comprehension of the dynamics of the orbits around this planetary satellite. This comprehension is essential for the success of this type of mission. In this context, this work aims to perform a search for low-altitude orbits around these planetary satellites. An emphasis is given in polar orbits. These orbits can be useful in the planning of aerospace activities to be conducted around this planetary satellite, with respect to the stability of orbits of artificial satellites. The study considers orbits of an artificial satellite around Europa and Ganymede under the influence of the third-body perturbation (the gravitational attraction of Jupiter) and the polygenic perturbations. These last ones occur due to forces such as the non-uniform distribution of mass (J2 and J3) of the main (central) body. A simplified dynamic model for polygenic perturbations is used. A new model for the third-body disturbance is presented considering it in an elliptical orbit. The Lagrange planetary equations, which compose a system of nonlinear differential equations, are used to describe the orbital motion of the artificial satellite around Ganymede. The equations showed here are developed in closed form to avoid expansions in inclination and eccentricity.

  14. LONG-LIVED CHAOTIC ORBITAL EVOLUTION OF EXOPLANETS IN MEAN MOTION RESONANCES WITH MUTUAL INCLINATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Barnes, Rory; Deitrick, Russell; Quinn, Thomas R. [Astronomy Department, University of Washington, Box 951580, Seattle, WA 98195 (United States); Greenberg, Richard [Lunar and Planetary Laboratory, University of Arizona, 1629 E. University Boulevard, Tucson, AZ 86716 (United States); Raymond, Sean N., E-mail: rory@astro.washington.edu [NASA Astrobiology Institute-Virtual Planetary Laboratory Lead Team (United States)

    2015-03-10

    We present N-body simulations of resonant planets with inclined orbits that show chaotically evolving eccentricities and inclinations that can persist for at least 10 Gyr. A wide range of behavior is possible, from fast, low amplitude variations to systems in which eccentricities reach 0.9999 and inclinations 179.°9. While the orbital elements evolve chaotically, at least one resonant argument always librates. We show that the HD 73526, HD 45364, and HD 60532 systems may be in chaotically evolving resonances. Chaotic evolution is apparent in the 2:1, 3:1, and 3:2 resonances, and for planetary masses from lunar- to Jupiter-mass. In some cases, orbital disruption occurs after several gigayears, implying the mechanism is not rigorously stable, just long-lived relative to the main sequence lifetimes of solar-type stars. Planet-planet scattering appears to yield planets in inclined resonances that evolve chaotically in about 0.5% of cases. These results suggest that (1) approximate methods for identifying unstable orbital architectures may have limited applicability, (2) the observed close-in exoplanets may be produced during epochs of high eccentricit induced by inclined resonances, (3) those exoplanets' orbital planes may be misaligned with the host star's spin axis, (4) systems with resonances may be systematically younger than those without, (5) the distribution of period ratios of adjacent planets detected via transit may be skewed due to inclined resonances, and (6) potentially habitable planets may have dramatically different climatic evolution than Earth. The Gaia spacecraft is capable of discovering giant planets in these types of orbits.

  15. LONG-LIVED CHAOTIC ORBITAL EVOLUTION OF EXOPLANETS IN MEAN MOTION RESONANCES WITH MUTUAL INCLINATIONS

    International Nuclear Information System (INIS)

    Barnes, Rory; Deitrick, Russell; Quinn, Thomas R.; Greenberg, Richard; Raymond, Sean N.

    2015-01-01

    We present N-body simulations of resonant planets with inclined orbits that show chaotically evolving eccentricities and inclinations that can persist for at least 10 Gyr. A wide range of behavior is possible, from fast, low amplitude variations to systems in which eccentricities reach 0.9999 and inclinations 179.°9. While the orbital elements evolve chaotically, at least one resonant argument always librates. We show that the HD 73526, HD 45364, and HD 60532 systems may be in chaotically evolving resonances. Chaotic evolution is apparent in the 2:1, 3:1, and 3:2 resonances, and for planetary masses from lunar- to Jupiter-mass. In some cases, orbital disruption occurs after several gigayears, implying the mechanism is not rigorously stable, just long-lived relative to the main sequence lifetimes of solar-type stars. Planet-planet scattering appears to yield planets in inclined resonances that evolve chaotically in about 0.5% of cases. These results suggest that (1) approximate methods for identifying unstable orbital architectures may have limited applicability, (2) the observed close-in exoplanets may be produced during epochs of high eccentricit induced by inclined resonances, (3) those exoplanets' orbital planes may be misaligned with the host star's spin axis, (4) systems with resonances may be systematically younger than those without, (5) the distribution of period ratios of adjacent planets detected via transit may be skewed due to inclined resonances, and (6) potentially habitable planets may have dramatically different climatic evolution than Earth. The Gaia spacecraft is capable of discovering giant planets in these types of orbits

  16. Interrogation of orbital structure by elliptically polarized intense femtosecond laser pulses

    DEFF Research Database (Denmark)

    Abu-Samha, Mahmoud; Madsen, Lars Bojer

    2011-01-01

    We solve the three-dimensional time-dependent Schrödinger equation and present investigations of the imprint of the orbital angular node in photoelectron momentum distributions of an aligned atomic p-type orbital following ionization by an intense elliptically polarized laser pulse of femtosecond...

  17. Optimal Rendezvous and Docking Simulator for Elliptical Orbits, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — It is proposed to develop and implement a simulation of spacecraft rendezvous and docking guidance, navigation, and control in elliptical orbit. The foundation of...

  18. The Effects of Moon’s Uneven Mass Distribution on the Critical Inclinations of a Lunar Orbiter

    Directory of Open Access Journals (Sweden)

    Walid A. Rahoma

    2014-12-01

    Full Text Available The uneven mass distribution of the Moon highly perturbs the lunar spacecrafts. This uneven mass distribution leads to peculiar dynamical features of the lunar orbiters. The critical inclination is the value of inclination which keeps the deviation of the argument of pericentre from the initial values to be zero. Considerable investigations have been performed for critical inclination when the gravity field is assumed to be symmetric around the equator, namely for oblate gravity field to which Earth’s satellites are most likely to be subjected. But in the case of a lunar orbiter, the gravity field of mass distribution is rather asymmetric, that is, sectorial, and tesseral, harmonic coefficients are big enough so they can’t be neglected. In the present work, the effects of the first sectorial and tesseral harmonic coefficients in addition to the first zonal harmonic coefficients on the critical inclination of a lunar artificial satellite are investigated. The study is carried out using the Hamiltonian framework. The Hamiltonian of the problem is cconstructed and the short periodic terms are eliminated using Delaunay canonical variables. Considering the above perturbations, numerical simulations for a hypothetical lunar orbiter are presented. Finally, this study reveals that the critical inclination is quite different from the critical inclination of traditional sense and/or even has multiple solutions. Consequently, different families of critical inclination are obtained and analyzed.

  19. PLANETESIMAL ACCRETION IN BINARY SYSTEMS: ROLE OF THE COMPANION'S ORBITAL INCLINATION

    International Nuclear Information System (INIS)

    Xie Jiwei; Zhou Jilin

    2009-01-01

    Recent observations show that planets can reside in close binary systems with stellar separation of only ∼20 AU. However, planet formation in such close binary systems is a challenge to current theory. One of the major theoretical problems occurs in the intermediate stage-planetesimals accretion into planetary embryos-during which the companion's perturbations can stir up the relative velocities (utriV) of planetesimals and thus slow down or even cease their growth. Recent studies have shown that conditions could be even worse for accretion if the gas-disk evolution was included. However, all previous studies assumed a two-dimensional disk and a coplanar binary orbit. Extending previous studies by including a three-dimensional gas disk and an inclined binary orbit with small relative inclination of i B = 0. 0 1-5 0 , we numerically investigate the conditions for planetesimal accretion at 1-2 AU, an extension of the habitable zone (∼1-1.3 AU), around α Centauri A in this paper. Inclusion of the binary inclination leads to the following: (1) differential orbital phasing is realized in the three-dimensional space, and thus different-sized bodies are separated from each other, (2) total impact rate is lower, and impacts mainly occur between similar-sized bodies, (3) accretion is more favored, but the balance between accretion and erosion remains uncertain, and the 'possible accretion region' extends up to 2 AU when assuming an optimistic Q* (critical specific energy that leads to catastrophic fragmentation), and (4) impact velocities (utriV) are significantly reduced but still much larger than their escape velocities, which infers that planetesimals grow by means of type II runaway mode. As a conclusion, the inclusion of a small binary inclination is a promising mechanism that favors accretion, opening a possibility that planet formation in close binary systems can go through the difficult stage of planetesimals accretion into planetary embryos.

  20. Planet Formation in Disks with Inclined Binary Companions: Can Primordial Spin-Orbit Misalignment be Produced?

    Science.gov (United States)

    Zanazzi, J. J.; Lai, Dong

    2018-04-01

    Many hot Jupiter (HJ) systems have been observed to have their stellar spin axis misaligned with the planet's orbital angular momentum axis. The origin of this spin-orbit misalignment and the formation mechanism of HJs remain poorly understood. A number of recent works have suggested that gravitational interactions between host stars, protoplanetary disks, and inclined binary companions may tilt the stellar spin axis with respect to the disk's angular angular momentum axis, producing planetary systems with misaligned orbits. These previous works considered idealized disk evolution models and neglected the gravitational influence of newly formed planets. In this paper, we explore how disk photoevaporation and planet formation and migration affect the inclination evolution of planet-star-disk-binary systems. We take into account planet-disk interactions and the gravitational spin-orbit coupling between the host star and the planet. We find that the rapid depletion of the inner disk via photoevaporation reduces the excitation of stellar obliquities. Depending on the formation and migration history of HJs, the spin-orbit coupling between the star and the planet may reduces and even completely suppress the excitation of stellar obliquities. Our work constrains the formation/migration history of HJs. On the other hand, planetary systems with "cold" Jupiters or close-in super-earths may experience excitation of stellar obliquities in the presence of distant inclined companions.

  1. Attractive manifold-based adaptive solar attitude control of satellites in elliptic orbits

    Science.gov (United States)

    Lee, Keum W.; Singh, Sahjendra N.

    2011-01-01

    The paper presents a novel noncertainty-equivalent adaptive (NCEA) control system for the pitch attitude control of satellites in elliptic orbits using solar radiation pressure (SRP). The satellite is equipped with two identical solar flaps to produce control moments. The adaptive law is based on the attractive manifold design using filtered signals for synthesis, which is a modification of the immersion and invariance (I&I) method. The control system has a modular controller-estimator structure and has separate tunable gains. A special feature of this NCEA law is that the trajectories of the satellite converge to a manifold in an extended state space, and the adaptive law recovers the performance of a deterministic controller. This recovery of performance cannot be obtained with certainty-equivalent adaptive (CEA) laws. Simulation results are presented which show that the NCEA law accomplishes precise attitude control of the satellite in an elliptic orbit, despite large parameter uncertainties.

  2. Long-term evaluation of orbital dynamics in the Sun-planet system considering axial-tilt

    Science.gov (United States)

    Bakhtiari, Majid; Daneshjou, Kamran

    2018-05-01

    In this paper, the axial-tilt (obliquity) effect of planets on the motion of planets’ orbiter in prolonged space missions has been investigated in the presence of the Sun gravity. The proposed model is based on non-simplified perturbed dynamic equations of planetary orbiter motion. From a new point of view, in this work, the dynamic equations regarding a disturbing body in elliptic inclined three-dimensional orbit are derived. The accuracy of this non-simplified method is validated with dual-averaged method employed on a generalized Earth-Moon system. It is shown that the neglected short-time oscillations in dual-averaged technique can accumulate and propel to remarkable errors in the prolonged evolution. After validation, the effects of the planet’s axial-tilt on eccentricity, inclination and right ascension of the ascending node of the orbiter are investigated. Moreover, a generalized model is provided to study the effects of third-body inclination and eccentricity on orbit characteristics. It is shown that the planet’s axial-tilt is the key to facilitating some significant changes in orbital elements in long-term mission and short-time oscillations must be considered in accurate prolonged evaluation.

  3. A Study of Single- and Double-Averaged Second-Order Models to Evaluate Third-Body Perturbation Considering Elliptic Orbits for the Perturbing Body

    Directory of Open Access Journals (Sweden)

    R. C. Domingos

    2013-01-01

    Full Text Available The equations for the variations of the Keplerian elements of the orbit of a spacecraft perturbed by a third body are developed using a single average over the motion of the spacecraft, considering an elliptic orbit for the disturbing body. A comparison is made between this approach and the more used double averaged technique, as well as with the full elliptic restricted three-body problem. The disturbing function is expanded in Legendre polynomials up to the second order in both cases. The equations of motion are obtained from the planetary equations, and several numerical simulations are made to show the evolution of the orbit of the spacecraft. Some characteristics known from the circular perturbing body are studied: circular, elliptic equatorial, and frozen orbits. Different initial eccentricities for the perturbed body are considered, since the effect of this variable is one of the goals of the present study. The results show the impact of this parameter as well as the differences between both models compared to the full elliptic restricted three-body problem. Regions below, near, and above the critical angle of the third-body perturbation are considered, as well as different altitudes for the orbit of the spacecraft.

  4. Dynamical evolution of space debris on high-elliptical orbits near high-order resonance zones

    Science.gov (United States)

    Kuznetsov, Eduard; Zakharova, Polina

    Orbital evolution of objects on Molniya-type orbits is considered near high-order resonance zones. Initial conditions correspond to high-elliptical orbits with the critical inclination 63.4 degrees. High-order resonances are analyzed. Resonance orders are more than 5 and less than 50. Frequencies of perturbations caused by the effect of sectorial and tesseral harmonics of the Earth's gravitational potential are linear combinations of the mean motion of a satellite, angular velocities of motion of the pericenter and node of its orbit, and the angular velocity of the Earth. Frequencies of perturbations were calculated by taking into account secular perturbations from the Earth oblateness, the Moon, the Sun, and a solar radiation pressure. Resonance splitting effect leads to three sub-resonances. The study of dynamical evolution on long time intervals was performed on the basis of the results of numerical simulation. We used "A Numerical Model of the Motion of Artificial Earth's Satellites", developed by the Research Institute of Applied Mathematics and Mechanics of the Tomsk State University. The model of disturbing forces taken into account the main perturbing factors: the gravitational field of the Earth, the attraction of the Moon and the Sun, the tides in the Earth’s body, the solar radiation pressure, taking into account the shadow of the Earth, the Poynting-Robertson effect, and the atmospheric drag. Area-to-mass ratio varied from small values corresponding to satellites to big ones corresponding to space debris. The locations and sizes of resonance zones were refined from numerical simulation. The Poynting-Robertson effect results in a secular decrease in the semi-major axis of a spherically symmetrical satellite. In resonance regions the effect weakens slightly. Reliable estimates of secular perturbations of the semi-major axis were obtained from the numerical simulation. Under the Poynting-Robertson effect objects pass through the regions of high

  5. Model predictive control for spacecraft rendezvous in elliptical orbit

    Science.gov (United States)

    Li, Peng; Zhu, Zheng H.

    2018-05-01

    This paper studies the control of spacecraft rendezvous with attitude stable or spinning targets in an elliptical orbit. The linearized Tschauner-Hempel equation is used to describe the motion of spacecraft and the problem is formulated by model predictive control. The control objective is to maximize control accuracy and smoothness simultaneously to avoid unexpected change or overshoot of trajectory for safe rendezvous. It is achieved by minimizing the weighted summations of control errors and increments. The effects of two sets of horizons (control and predictive horizons) in the model predictive control are examined in terms of fuel consumption, rendezvous time and computational effort. The numerical results show the proposed control strategy is effective.

  6. The ELLIPSO (tm) system: Elliptical low orbits for mobile communications and other optimum system elements

    Science.gov (United States)

    Castiel, David

    1991-09-01

    On 5 Nov. 1990, Ellipsat filed with the FCC the first application to provide voice communication services via low earth orbiting (LEO) satellites. The proposed system, ELLIPSO, aims at achieving end-user costs comparable to those in the cellular industry. On 3 Jun. 1991 Ellipsat filed for the second complement of its system. Ellipsat was also the first company to propose combined position determination and mobile voice services via low-earth orbiting satellites. Ellipsat is still the only proponent of elliptical orbits for any commercial system in the United States. ELLIPSO uses a spectrum efficient combination of FDMA and CDMA techniques. Ellipsat's strategy is to tailor required capacity to user demand, reduce initial system costs and investment risks, and allow the provision of services at affordable end-user prices. ELLIPSO offers optimum features in all the components of its system, elliptical orbits, small satellites, integrated protocol and signalling system, integrated end-user electronics, novel marketing approach based on the cooperation with the tenets of mobile communications, end-user costs that are affordable, and a low risk approach as deployment is tailored to the growth of its customer base. The efficient design of the ELLIPSO constellation and system allows estimated end-user costs in the $.50 per minute range, five to six times less than any other system of comparable capability.

  7. The ELLIPSO (tm) system: Elliptical low orbits for mobile communications and other optimum system elements

    Science.gov (United States)

    Castiel, David

    1991-01-01

    On 5 Nov. 1990, Ellipsat filed with the FCC the first application to provide voice communication services via low earth orbiting (LEO) satellites. The proposed system, ELLIPSO, aims at achieving end-user costs comparable to those in the cellular industry. On 3 Jun. 1991 Ellipsat filed for the second complement of its system. Ellipsat was also the first company to propose combined position determination and mobile voice services via low-earth orbiting satellites. Ellipsat is still the only proponent of elliptical orbits for any commercial system in the United States. ELLIPSO uses a spectrum efficient combination of FDMA and CDMA techniques. Ellipsat's strategy is to tailor required capacity to user demand, reduce initial system costs and investment risks, and allow the provision of services at affordable end-user prices. ELLIPSO offers optimum features in all the components of its system, elliptical orbits, small satellites, integrated protocol and signalling system, integrated end-user electronics, novel marketing approach based on the cooperation with the tenets of mobile communications, end-user costs that are affordable, and a low risk approach as deployment is tailored to the growth of its customer base. The efficient design of the ELLIPSO constellation and system allows estimated end-user costs in the $.50 per minute range, five to six times less than any other system of comparable capability.

  8. A retrograde object near Jupiter's orbit

    Science.gov (United States)

    Connors, M.; Wiegert, P.

    2018-02-01

    Asteroid 2007 VW266 is among the rare objects with a heliocentric retrograde orbit, and its semimajor axis is within a Hill sphere radius of that of Jupiter. This raised the interesting possibility that it could be in co-orbital retrograde resonance with Jupiter, a second "counter-orbital" object in addition to recently discovered 2015 BZ509. We find instead that the object is in 13/14 retrograde mean motion resonance (also referred to as 13/-14). The object is shown to have entered its present orbit about 1700 years ago, and it will leave it in about 8000 years, both through close approach to Jupiter. Entry and exit states both avoid 1:1 retrograde resonance, but the retrograde nature is preserved. The temporary stable state is due to an elliptic orbit with high inclination keeping nodal passages far from the associated planet. We discuss the motion of this unusual object based on modeling and theory, and its observational prospects.

  9. Control by damping Injection of Electrodynamic Tether System in an Inclined Orbit

    DEFF Research Database (Denmark)

    Larsen, Martin Birkelund; Blanke, Mogens

    2009-01-01

    dynamical system. Based on this model, a nonlinear controller is designed that will make the system asymptotically stable around its open-loop equilibrium. The control scheme handles the time-varying nature of the system in a suitable manner resulting in a large operational region. The performance...... of the closed loop system is treated using Floquet theory, investigating the closed loop properties for their dependency of the controller gain and orbit inclination.......Control of a satellite system with an electrodynamic tether as actuator is a time-periodic and underactuated control problem. This paper considers the tethered satellite in a Hamiltonian framework and determines a port-controlled Hamiltonian formulation that adequately describes the nonlinear...

  10. Rashba and Dresselhaus spin-orbit interactions effects on electronic features of a two dimensional elliptic quantum dot

    Science.gov (United States)

    Mokhtari, P.; Rezaei, G.; Zamani, A.

    2017-06-01

    In this paper, electronic structure of a two dimensional elliptic quantum dot under the influence of external electric and magnetic fields are studied in the presence of Rashba and Dresselhaus spin-orbit interactions. This investigation is done computationally and to do this, at first, the effective Hamiltonian of the system by considering the spin-orbit coupling is demonstrated in the presence of applied electric and magnetic fields and afterwards the Schrödinger equation is solved using the finite difference approach. Utilizing finite element method, eigenvalues and eigenstates of the system are calculated and the effect of the external fields, the size of the dot as well as the strength of Rashba spin-orbit interaction are studied. Our results indicate that, Spin-orbit interactions, external fields and the dot size have a great influence on the electronic structure of the system.

  11. Short-Term Comparison of Several Solutinos of Elliptic Relative Motion

    Directory of Open Access Journals (Sweden)

    Jung Hyun Jo

    2007-12-01

    Full Text Available Recently introduced, several explicit solutions of relative motion between neighboring elliptic satellite orbits are reviewed. The performance of these solutions is compared with an analytic solution of the general linearized equation of motion. The inversion solution by the Hill-Clohessy-Wiltshire equations is used to produce the initial condition of numerical results. Despite the difference of the reference orbit, the relative motion with the relatively small eccentricity shows the similar results on elliptic case and circular case. In case of the 'chief' satellite with the relatively large eccentricity, HCW equation with the circular reference orbit has relatively larger error than other elliptic equation of motion does.

  12. On the inclination and habitability of the HD 10180 system

    Energy Technology Data Exchange (ETDEWEB)

    Kane, Stephen R. [Department of Physics and Astronomy, San Francisco State University, 1600 Holloway Avenue, San Francisco, CA 94132 (United States); Gelino, Dawn M., E-mail: skane@sfsu.edu [NASA Exoplanet Science Institute, Caltech, MS 100-22, 770 South Wilson Avenue, Pasadena, CA 91125 (United States)

    2014-09-10

    There are numerous multi-planet systems that have now been detected via a variety of techniques. These systems exhibit a range of both planetary properties and orbital configurations. For those systems without detected planetary transits, a significant unknown factor is the orbital inclination. This produces an uncertainty in the mass of the planets and their related properties, such as atmospheric scale height. Here we investigate the HD 10180 system, which was discovered using the radial velocity technique. We provide a new orbital solution for the system which allows for eccentric orbits for all planets. We show how the inclination of the system affects the mass/radius properties of the planets and how the detection of phase signatures may resolve the inclination ambiguity. We finally evaluate the Habitable Zone properties of the system and show that the g planet spends 100% of an eccentric orbit within the Habitable Zone.

  13. Clinical Implications of Changing Parameters on an Elliptical Trainer.

    Science.gov (United States)

    Kaplan, Yonatan; Nyska, Meir; Palmanovich, Ezequiel; Shanker, Rebecca

    2014-06-01

    Specific weightbearing instructions continue to be a part of routine orthopaedic clinical practice on an injured or postoperative extremity. Researchers and clinicians have struggled to define the best weightbearing strategies to maximize clinical outcomes. To investigate the average percentage body weight (APBW) values, weightbearing distribution percentages (WBDP), and cadence values on the entire foot, hindfoot, and forefoot during changing resistance and incline on an elliptical trainer, as well as to suggest clinical implications. Descriptive laboratory study. An original research study was performed consisting of 30 asymptomatic subjects (mean age, 29.54 ± 12.64 years; range, 21-69 years). The protocol included 3 consecutive tests of changing resistance and incline within a speed range of 70 to 95 steps/min. The SmartStep weightbearing gait analysis system was utilized to measure the values. The APBW values for the entire foot ranged between 70% and 81%, the hindfoot values were between 27% and 57%, and the forefoot values between 42% and 70%. With regard to WBDP, the forefoot remained planted on the pedal (stance phase) 2 to 3 times more as compared with the hindfoot raise in the swing phase. The study findings highlight the fact that elliptical training significantly reduces weightbearing in the hindfoot, forefoot, and entire foot even at higher levels of resistance and incline. Weightbearing on the hindfoot consistently displayed the lowest weightbearing values. Orthopaedic surgeons, now equipped with accurate weightbearing data, may recommend using the elliptical trainer as a weightbearing exercise early on following certain bony or soft tissue pathologies and lower limb surgical procedures.

  14. Analysis of Hansen's Inferior and Superior Partial Anomalies and the Division of the Elliptic Orbit into Two Segments

    Science.gov (United States)

    Sharaf, M. A.; Saad, A. S.

    2017-10-01

    In this paper, a novel analysis was established to prove how Hansen's inferior and superior partial anomalies k and k_1 can divide the elliptic orbit into two segments. The analysis depends on the departures of r (for k) and 1/r (for k1) from their minima. By these departures, we can find: (i) Transformations relating the eccentric anomaly to k and the true anomaly to k1. (ii) Expressions for k and k_1 in terms of the orbital elements. (iii) The interpretation and the intervals of definition of two moduli (X, S) related to k and k_1. (iv) The extreme values of r and the elliptic equations in terms of k and k1. (v) For r' and r'', the modulus X as a measure of the asymmetry of r' (or r'') from r'' (or r'), and the modulus S12 as a measure of the asymmetry of r' and r'' from the minimum value of r. (vi) A description of the segments represented by k and k1. (vii) The relative position of the radius vector at k0° and k1=180°.

  15. Instability timescale for the inclination instability in the solar system

    Science.gov (United States)

    Zderic, Alexander; Madigan, Ann-Marie; Fleisig, Jacob

    2018-04-01

    The gravitational influence of small bodies is often neglected in the study of solar system dynamics. However, this is not always an appropriate assumption. For example, mutual secular torques between low mass particles on eccentric orbits can result in a self-gravity instability (`inclination instability'; Madigan & McCourt 2016). During the instability, inclinations increase exponentially, eccentricities decrease (detachment), and orbits cluster in argument of perihelion. In the solar system, the orbits of the most distant objects show all three of these characteristics (high inclination: Volk & Malhotra (2017), detachment: Delsanti & Jewitt (2006), and argument of perihelion clustering: Trujillo & Sheppard (2014)). The inclination instability is a natural explanation for these phenomena.Unfortunately, full N-body simulations of the solar system are unfeasible (N ≈ O(1012)), and the behavior of the instability depends on N, prohibiting the direct application of lower N simulations. Here we present the instability timescale's functional dependence on N, allowing us to extrapolate our simulation results to that appropriate for the solar system. We show that ~5 MEarth of small icy bodies in the Sedna region is sufficient for the inclination instability to occur in the outer solar system.

  16. Evolution of the Orbital Elements for Geosynchronous Orbit of Communications Satellite, II

    Directory of Open Access Journals (Sweden)

    Kyu-Hong Choi

    1987-06-01

    Full Text Available For a geostationary satellite north-south station keeping maneuver must control the inclination elements. The effects on the orbit plane of maneuvers and natural perturbations may be represented by a plane plot of Wc versus Ws, since these inclination elements represent the projection of the unit orbit normal onto the equatorial plane. The evolution of the semi-major axis and the inclination elements are obtained.

  17. Orbits in general relativity: the Jacobian elliptic function

    Energy Technology Data Exchange (ETDEWEB)

    Miro Rodriguez, C

    1987-03-11

    The Jacobian elliptic functions are applied to the motion of nonzero-rest-mass particles in the Schwarzschild geometry. The bound and unbound trajectories are analysed together with their classical and special-relativity limits.

  18. The dynamical fingerprint of core scouring in massive elliptical galaxies

    International Nuclear Information System (INIS)

    Thomas, J.; Saglia, R. P.; Bender, R.; Erwin, P.; Fabricius, M.

    2014-01-01

    The most massive elliptical galaxies have low-density centers or cores that differ dramatically from the high-density centers of less massive ellipticals and bulges of disk galaxies. These cores have been interpreted as the result of mergers of supermassive black hole binaries, which depopulate galaxy centers by gravitationally slingshotting central stars toward large radii. Such binaries naturally form in mergers of luminous galaxies. Here, we analyze the population of central stellar orbits in 11 massive elliptical galaxies that we observed with the integral field spectrograph SINFONI at the European Southern Observatory Very Large Telescope. Our dynamical analysis is orbit-based and includes the effects of a central black hole, the mass distribution of the stars, and a dark matter halo. We show that the use of integral field kinematics and the inclusion of dark matter is important to conclude on the distribution of stellar orbits in galaxy centers. Six of our galaxies are core galaxies. In these six galaxies, but not in the galaxies without cores, we detect a coherent lack of stars on radial orbits in the core region and a uniform excess of radial orbits outside of it: when scaled by the core radius r b , the radial profiles of the classical anisotropy parameter β(r) are nearly identical in core galaxies. Moreover, they quantitatively match the predictions of black hole binary simulations, providing the first convincing dynamical evidence for core scouring in the most massive elliptical galaxies.

  19. Metrics in Keplerian orbits quotient spaces

    Science.gov (United States)

    Milanov, Danila V.

    2018-03-01

    Quotient spaces of Keplerian orbits are important instruments for the modelling of orbit samples of celestial bodies on a large time span. We suppose that variations of the orbital eccentricities, inclinations and semi-major axes remain sufficiently small, while arbitrary perturbations are allowed for the arguments of pericentres or longitudes of the nodes, or both. The distance between orbits or their images in quotient spaces serves as a numerical criterion for such problems of Celestial Mechanics as search for common origin of meteoroid streams, comets, and asteroids, asteroid families identification, and others. In this paper, we consider quotient sets of the non-rectilinear Keplerian orbits space H. Their elements are identified irrespective of the values of pericentre arguments or node longitudes. We prove that distance functions on the quotient sets, introduced in Kholshevnikov et al. (Mon Not R Astron Soc 462:2275-2283, 2016), satisfy metric space axioms and discuss theoretical and practical importance of this result. Isometric embeddings of the quotient spaces into R^n, and a space of compact subsets of H with Hausdorff metric are constructed. The Euclidean representations of the orbits spaces find its applications in a problem of orbit averaging and computational algorithms specific to Euclidean space. We also explore completions of H and its quotient spaces with respect to corresponding metrics and establish a relation between elements of the extended spaces and rectilinear trajectories. Distance between an orbit and subsets of elliptic and hyperbolic orbits is calculated. This quantity provides an upper bound for the metric value in a problem of close orbits identification. Finally the invariance of the equivalence relations in H under coordinates change is discussed.

  20. Chaos and its control in the pitch motion of an asymmetric magnetic spacecraft in polar elliptic orbit

    Energy Technology Data Exchange (ETDEWEB)

    Inarrea, Manuel [Universidad de La Rioja, Area de Fisica Aplicada, 26006 Logrono (Spain)], E-mail: manuel.inarrea@unirioja.es

    2009-05-30

    We study the pitch attitude dynamics of an asymmetric magnetic spacecraft in a polar almost circular orbit under the influence of a gravity gradient torque. The spacecraft is perturbed by the small eccentricity of the elliptic orbit and by a small magnetic torque generated by the interaction between the Earth's magnetic field and the magnetic moment of the spacecraft. Under both perturbations, we show that the pitch motion exhibits heteroclinic chaotic behavior by means of the Melnikov method. Numerical methods applied to simulations of the pitch motion also confirm the chaotic character of the spacecraft attitude dynamics. Finally, a linear time-delay feedback method for controlling chaos is applied to the governing equations of the spacecraft pitch motion in order to remove the chaotic character of initially irregular attitude motions and transform them into periodic ones.

  1. Chaos and its control in the pitch motion of an asymmetric magnetic spacecraft in polar elliptic orbit

    International Nuclear Information System (INIS)

    Inarrea, Manuel

    2009-01-01

    We study the pitch attitude dynamics of an asymmetric magnetic spacecraft in a polar almost circular orbit under the influence of a gravity gradient torque. The spacecraft is perturbed by the small eccentricity of the elliptic orbit and by a small magnetic torque generated by the interaction between the Earth's magnetic field and the magnetic moment of the spacecraft. Under both perturbations, we show that the pitch motion exhibits heteroclinic chaotic behavior by means of the Melnikov method. Numerical methods applied to simulations of the pitch motion also confirm the chaotic character of the spacecraft attitude dynamics. Finally, a linear time-delay feedback method for controlling chaos is applied to the governing equations of the spacecraft pitch motion in order to remove the chaotic character of initially irregular attitude motions and transform them into periodic ones.

  2. Charged particles radiation measurements with Liulin-MO dosimeter of FREND instrument aboard ExoMars Trace Gas Orbiter during the transit and in high elliptic Mars orbit

    Science.gov (United States)

    Semkova, Jordanka; Koleva, Rositza; Benghin, Victor; Dachev, Tsvetan; Matviichuk, Yuri; Tomov, Borislav; Krastev, Krasimir; Maltchev, Stephan; Dimitrov, Plamen; Mitrofanov, Igor; Malahov, Alexey; Golovin, Dmitry; Mokrousov, Maxim; Sanin, Anton; Litvak, Maxim; Kozyrev, Andrey; Tretyakov, Vladislav; Nikiforov, Sergey; Vostrukhin, Andrey; Fedosov, Fedor; Grebennikova, Natalia; Zelenyi, Lev; Shurshakov, Vyacheslav; Drobishev, Sergey

    2018-03-01

    ExoMars is a joint ESA-Rosscosmos program for investigating Mars. Two missions are foreseen within this program: one consisting of the Trace Gas Orbiter (TGO), that carries scientific instruments for the detection of trace gases in the Martian atmosphere and for the location of their source regions, plus an Entry, Descent and landing demonstrator Module (EDM), launched on March 14, 2016; and the other, featuring a rover and a surface platform, with a launch date of 2020. On October 19, 2016 TGO was inserted into high elliptic Mars' orbit. The dosimetric telescope Liulin-MO for measuring the radiation environment onboard the ExoMars 2016 TGO is a module of the Fine Resolution Epithermal Neutron Detector (FREND). Here we present first results from measurements of the charged particle fluxes, dose rates, Linear Energy Transfer (LET) spectra and estimation of dose equivalent rates in the interplanetary space during the cruise of TGO to Mars and first results from dosimetric measurements in high elliptic Mars' orbit. A comparison is made with the dose rates obtained by RAD instrument onboard Mars Science Laboratory during the cruise to Mars in 2011-2012 and with the Galactic Cosmic Rays (GCR) count rates provided by other particle detectors currently in space. The average measured dose rate in Si from GCR during the transit to Mars for the period April 22-September 15, 2016 is 372 ± 37 μGy d-1 and 390 ± 39 μGy d-1 in two perpendicular directions. The dose equivalent rate from GCR for the same time period is about 2 ± 0.3 mSv d-1. This is in good agreement with RAD results for radiation dose rate in Si from GCR in the interplanetary space, taking into account the different solar activity during the measurements of both instruments. About 10% increase of the dose rate, and 15% increase of the dose equivalent rate for 10.5 months flight is observed. It is due to the increase of Liulin-MO particle fluxes for that period and corresponds to the overall GCR intensity

  3. Mean Orbital Elements for Geosynchronous Orbit - II - Orbital inclination, longitude of ascending node, mean longitude

    Directory of Open Access Journals (Sweden)

    Kyu-Hong Choi

    1990-06-01

    Full Text Available The osculating orbital elements include the mean, secular, long period, and short period terms. The iterative algorithm used for conversion of osculating orbital elements to mean orbital elements is described. The mean orbital elements of Wc, Ws, and L are obtained.

  4. Revealing strong bias in common measures of galaxy properties using new inclination-independent structures

    Science.gov (United States)

    Devour, Brian M.; Bell, Eric F.

    2017-06-01

    Accurate measurement of galaxy structures is a prerequisite for quantitative investigation of galaxy properties or evolution. Yet, the impact of galaxy inclination and dust on commonly used metrics of galaxy structure is poorly quantified. We use infrared data sets to select inclination-independent samples of disc and flattened elliptical galaxies. These samples show strong variation in Sérsic index, concentration and half-light radii with inclination. We develop novel inclination-independent galaxy structures by collapsing the light distribution in the near-infrared on to the major axis, yielding inclination-independent 'linear' measures of size and concentration. With these new metrics we select a sample of Milky Way analogue galaxies with similar stellar masses, star formation rates, sizes and concentrations. Optical luminosities, light distributions and spectral properties are all found to vary strongly with inclination: When inclining to edge-on, r-band luminosities dim by >1 magnitude, sizes decrease by a factor of 2, 'dust-corrected' estimates of star formation rate drop threefold, metallicities decrease by 0.1 dex and edge-on galaxies are half as likely to be classified as star forming. These systematic effects should be accounted for in analyses of galaxy properties.

  5. Formation Design Strategy for SCOPE High-Elliptic Formation Flying Mission

    Science.gov (United States)

    Tsuda, Yuichi

    2007-01-01

    The new formation design strategy using simulated annealing (SA) optimization is presented. The SA algorithm is useful to survey a whole solution space of optimum formation, taking into account realistic constraints composed of continuous and discrete functions. It is revealed that this method is not only applicable for circular orbit, but also for high-elliptic orbit formation flying. The developed algorithm is first tested with a simple cart-wheel motion example, and then applied to the formation design for SCOPE. SCOPE is the next generation geomagnetotail observation mission planned in JAXA, utilizing a formation flying techonology in a high elliptic orbit. A distinctive and useful heuristics is found by investigating SA results, showing the effectiveness of the proposed design process.

  6. S-TYPE AND P-TYPE HABITABILITY IN STELLAR BINARY SYSTEMS: A COMPREHENSIVE APPROACH. II. ELLIPTICAL ORBITS

    International Nuclear Information System (INIS)

    Cuntz, M.

    2015-01-01

    In the first paper of this series, a comprehensive approach has been provided for the study of S-type and P-type habitable regions in stellar binary systems, which was, however, restricted to circular orbits of the stellar components. Fortunately, a modest modification of the method also allows for the consideration of elliptical orbits, which of course entails a much broader range of applicability. This augmented method is presented here, and numerous applications are conveyed. In alignment with Paper I, the selected approach considers a variety of aspects, which comprise the consideration of a joint constraint including orbital stability and a habitable region for a possible system planet through the stellar radiative energy fluxes ( r adiative habitable zone ; RHZ). The devised method is based on a combined formalism for the assessment of both S-type and P-type habitability; in particular, mathematical criteria are deduced for which kinds of systems S-type and P-type habitable zones are realized. If the RHZs are truncated by the additional constraint of orbital stability, the notation of ST-type and PT-type habitability applies. In comparison to the circular case, it is found that in systems of higher eccentricity, the range of the RHZs is significantly reduced. Moreover, for a considerable number of models, the orbital stability constraint also reduces the range of S-type and P-type habitability. Nonetheless, S-, P-, ST-, and PT-type habitability is identified for a considerable set of system parameters. The method as presented is utilized for BinHab, an online code available at The University of Texas at Arlington

  7. S-TYPE AND P-TYPE HABITABILITY IN STELLAR BINARY SYSTEMS: A COMPREHENSIVE APPROACH. II. ELLIPTICAL ORBITS

    Energy Technology Data Exchange (ETDEWEB)

    Cuntz, M., E-mail: cuntz@uta.edu [Department of Physics, University of Texas at Arlington, Arlington, TX 76019-0059 (United States)

    2015-01-10

    In the first paper of this series, a comprehensive approach has been provided for the study of S-type and P-type habitable regions in stellar binary systems, which was, however, restricted to circular orbits of the stellar components. Fortunately, a modest modification of the method also allows for the consideration of elliptical orbits, which of course entails a much broader range of applicability. This augmented method is presented here, and numerous applications are conveyed. In alignment with Paper I, the selected approach considers a variety of aspects, which comprise the consideration of a joint constraint including orbital stability and a habitable region for a possible system planet through the stellar radiative energy fluxes ({sup r}adiative habitable zone{sup ;} RHZ). The devised method is based on a combined formalism for the assessment of both S-type and P-type habitability; in particular, mathematical criteria are deduced for which kinds of systems S-type and P-type habitable zones are realized. If the RHZs are truncated by the additional constraint of orbital stability, the notation of ST-type and PT-type habitability applies. In comparison to the circular case, it is found that in systems of higher eccentricity, the range of the RHZs is significantly reduced. Moreover, for a considerable number of models, the orbital stability constraint also reduces the range of S-type and P-type habitability. Nonetheless, S-, P-, ST-, and PT-type habitability is identified for a considerable set of system parameters. The method as presented is utilized for BinHab, an online code available at The University of Texas at Arlington.

  8. Effects of the Eccentricity of a Perturbing Third Body on the Orbital Correction Maneuvers of a Spacecraft

    Directory of Open Access Journals (Sweden)

    R. C. Domingos

    2014-01-01

    Full Text Available The fuel consumption required by the orbital maneuvers when correcting perturbations on the orbit of a spacecraft due to a perturbing body was estimated. The main goals are the measurement of the influence of the eccentricity of the perturbing body on the fuel consumption required by the station keeping maneuvers and the validation of the averaged methods when applied to the problem of predicting orbital maneuvers. To study the evolution of the orbits, the restricted elliptic three-body problem and the single- and double-averaged models are used. Maneuvers are made by using impulsive and low thrust maneuvers. The results indicated that the averaged models are good to make predictions for the orbital maneuvers when the spacecraft is in a high inclined orbit. The eccentricity of the perturbing body plays an important role in increasing the effects of the perturbation and the fuel consumption required for the station keeping maneuvers. It is shown that the use of more frequent maneuvers decreases the annual cost of the station keeping to correct the orbit of a spacecraft. An example of an eccentric planetary system of importance to apply the present study is the dwarf planet Haumea and its moons, one of them in an eccentric orbit.

  9. Collisionless encounters and the origin of the lunar inclination.

    Science.gov (United States)

    Pahlevan, Kaveh; Morbidelli, Alessandro

    2015-11-26

    The Moon is generally thought to have formed from the debris ejected by the impact of a planet-sized object with the proto-Earth towards the end of planetary accretion. Models of the impact process predict that the lunar material was disaggregated into a circumplanetary disk and that lunar accretion subsequently placed the Moon in a near-equatorial orbit. Forward integration of the lunar orbit from this initial state predicts a modern inclination at least an order of magnitude smaller than the lunar value--a long-standing discrepancy known as the lunar inclination problem. Here we show that the modern lunar orbit provides a sensitive record of gravitational interactions with Earth-crossing planetesimals that were not yet accreted at the time of the Moon-forming event. The currently observed lunar orbit can naturally be reproduced via interaction with a small quantity of mass (corresponding to 0.0075-0.015 Earth masses eventually accreted to the Earth) carried by a few bodies, consistent with the constraints and models of late accretion. Although the encounter process has a stochastic element, the observed value of the lunar inclination is among the most likely outcomes for a wide range of parameters. The excitation of the lunar orbit is most readily reproduced via collisionless encounters of planetesimals with the Earth-Moon system with strong dissipation of tidal energy on the early Earth. This mechanism obviates the need for previously proposed (but idealized) excitation mechanisms, places the Moon-forming event in the context of the formation of Earth, and constrains the pristineness of the dynamical state of the Earth-Moon system.

  10. Formation of Close-in Super-Earths by Giant Impacts: Effects of Initial Eccentricities and Inclinations of Protoplanets

    Energy Technology Data Exchange (ETDEWEB)

    Matsumoto, Yuji [Planetary Exploration Research Center, Chiba Institute of Technology, Narashino, Chiba, 275-0016 (Japan); Kokubo, Eiichiro, E-mail: ymatsumoto@cfca.nao.ac.jp [Center for Computational Astrophysics, National Astronomical Observatory of Japan, Osawa, Mitaka, Tokyo, 181-8588 (Japan)

    2017-07-01

    Recent observations have revealed the eccentricity and inclination distributions of close-in super-Earths. These distributions have the potential to constrain their formation processes. In the in situ formation scenario, the eccentricities and inclinations of planets are determined by gravitational scattering and collisions between protoplanets on the giant impact stage. We investigate the effect of the initial eccentricities and inclinations of protoplanets on the formation of close-in super-Earths. We perform N -body simulations of protoplanets in gas-free disks, changing the initial eccentricities and inclinations systematically. We find that while the eccentricities of protoplanets are well relaxed through their evolution, the inclinations are not. When the initial inclinations are small, they are not generally pumped up since scattering is less effective and collisions occur immediately after orbital crossing. On the other hand, when the initial inclinations are large, they tend to be kept large since collisional damping is less effective. Not only the resultant inclinations of planets, but also their number, eccentricities, angular momentum deficit, and orbital separations are affected by the initial inclinations of protoplanets.

  11. ERS orbit control

    Science.gov (United States)

    Rosengren, Mats

    1991-12-01

    The European remote sensing mission orbit control is addressed. For the commissioning phase, the orbit is defined by the following requirements: Sun synchronous, local time of descending node 10:30; three days repeat cycle with 43 orbital revolutions; overhead Venice tower (12.508206 deg east, 45.314222 deg north). The launch, maneuvers for the initial acquisition of the operational orbit, orbit maintenance maneuvers, evaluation of the orbit control, and the drift of the inclination are summarized.

  12. Introducing Earth's Orbital Eccentricity

    Science.gov (United States)

    Oostra, Benjamin

    2015-01-01

    Most students know that planetary orbits, including Earth's, are elliptical; that is Kepler's first law, and it is found in many science textbooks. But quite a few are mistaken about the details, thinking that the orbit is very eccentric, or that this effect is somehow responsible for the seasons. In fact, the Earth's orbital eccentricity is…

  13. Energy Analysis in the Elliptic Restricted Three-body Problem

    Science.gov (United States)

    Qi, Yi; de Ruiter, Anton

    2018-05-01

    The gravity assist or flyby is investigated by analyzing the inertial energy of a test particle in the elliptic restricted three-body problem (ERTBP), where two primary bodies are moving in elliptic orbits. Firstly, the expression of the derivation of energy is obtained and discussed. Then, the approximate expressions of energy change in a circular neighborhood of the smaller primary are derived. Numerical computation indicates that the obtained expressions can be applied to study the flyby problem of the nine planets and the Moon in the solar system. Parameters related to the flyby are discussed analytically and numerically. The optimal conditions, including the position and time of the periapsis, for a flyby orbit are found to make a maximum energy gain or loss. Finally, the mechanical process of a flyby orbit is uncovered by an approximate expression in the ERTBP. Numerical computations testify that our analytical results well approximate the mechanical process of flyby orbits obtained by the numerical simulation in the ERTBP. Compared with the previous research established in the patched-conic method and numerical calculation, our analytical investigations based on a more elaborate derivation get more original results.

  14. Dynamics of elliptic breathers in saturable nonlinear media with linear anisotropy

    International Nuclear Information System (INIS)

    Liang, Guo; Guo, Qi; Shou, Qian; Ren, Zhanmei

    2014-01-01

    We have introduced a class of dynamic elliptic breathers in saturable nonlinear media with linear anisotropy. Two kinds of evolution behavior for the dynamic breathers, rotations and molecule-like librations, are both predicted by the variational approach, and confirmed in numerical simulations. The dynamic elliptic breathers can rotate even though they have no initial orbital angular momentum (OAM). As the media are linear anisotropic, OAM is no longer conserved, and hence the angular velocity is not constant but a periodic function of the propagation distance. When the linear anisotropy is large enough, the dynamic elliptic breathers librate like molecules. The dynamic elliptic breathers are present in media with not only saturable nonlinearity but also nonlocal nonlinearity; indeed, they are universal in nonlinear media with linear anisotropy. (paper)

  15. Changing inclination of earth satellites using the gravity of the moon

    Directory of Open Access Journals (Sweden)

    Karla de Souza Torres

    2006-01-01

    Full Text Available We analyze the problem of the orbital control of an Earth's satellite using the gravity of the Moon. The main objective is to study a technique to decrease the fuel consumption of a plane change maneuver to be performed in a satellite that is in orbit around the Earth. The main idea of this approach is to send the satellite to the Moon using a single-impulsive maneuver, use the gravity field of the Moon to make the desired plane change of the trajectory, and then return the satellite to its nominal semimajor axis and eccentricity using a bi-impulsive Hohmann-type maneuver. The satellite is assumed to start in a Keplerian orbit in the plane of the lunar orbit around the Earth and the goal is to put it in a similar orbit that differs from the initial orbit only by the inclination. A description of the close-approach maneuver is made in the three-dimensional space. Analytical equations based on the patched conics approach are used to calculate the variation in velocity, angular momentum, energy, and inclination of the satellite. Then, several simulations are made to evaluate the savings involved. The time required by those transfers is also calculated and shown.

  16. Transient thermal stress analysis of a near-edge elliptical defect in a semi-infinite plate subjected to a moving heat source

    International Nuclear Information System (INIS)

    Mingjong Wang; Weichung Wang

    1994-01-01

    In this paper, the maximum transient thermal stresses on the boundary of a near-edge elliptical defect in a semi-infinite thin plate were determined by the digital photoelastic technique, when the plate edge experiences a moving heat source. The relationships between the maximum transient thermal stresses and the size and inclination of the elliptical defect, the minimum distance from the elliptical defect to the plate edge as well as the speed of the moving heat source were also studied. Finally, by using a statistical analysis package, the variations of the maximum transient thermal stresses were then correlated with the time, the minimum distance between the edge and the elliptical defect, temperature difference, and speed of the moving heat source. (author)

  17. Determination of the optimal conditions for inclination maneuvers using a Swing-by

    Science.gov (United States)

    Moura, O.; Celestino, C. C.; Prado, A. F. B. A.

    2018-05-01

    The search for methods to reduce the fuel consumption in orbital transfers is something relevant and always current in astrodynamics. Therefore, the maneuvers assisted by the gravity, also called Swing-by maneuvers, can be an advantageous option to save fuel. The proposal of the present research is to explore the influence of some parameters in a Swing-by of an artificial satellite orbiting a planet with one of the moons of this mother planet, with the goal of changing the inclination of the artificial satellite around the main body of the system. The fuel consumption of this maneuver is compared with the required consumption to perform the same change of inclination using the classical approach of impulsive maneuvers.

  18. Ellipticities of Elliptical Galaxies in Different Environments

    Science.gov (United States)

    Chen, Cheng-Yu; Hwang, Chorng-Yuan; Ko, Chung-Ming

    2016-10-01

    We studied the ellipticity distributions of elliptical galaxies in different environments. From the ninth data release of the Sloan Digital Sky Survey, we selected galaxies with absolute {r}\\prime -band magnitudes between -21 and -22. We used the volume number densities of galaxies as the criterion for selecting the environments of the galaxies. Our samples were divided into three groups with different volume number densities. The ellipticity distributions of the elliptical galaxies differed considerably in these three groups of different density regions. We deprojected the observed 2D ellipticity distributions into intrinsic 3D shape distributions, and the result showed that the shapes of the elliptical galaxies were relatively spherically symmetric in the high density region (HDR) and that relatively more flat galaxies were present in the low density region (LDR). This suggests that the ellipticals in the HDRs and LDRs have different origins or that different mechanisms might be involved. The elliptical galaxies in the LDR are likely to have evolved from mergers in relatively anisotropic structures, such as filaments and webs, and might contain information on the anisotropic spatial distribution of their parent mergers. By contrast, elliptical galaxies in the HDR might be formed in more isotropic structures, such as galaxy clusters, or they might encounter more torqueing effects compared with galaxies in LDRs, thereby becoming rounder.

  19. A Dynamical Systems Approach to the Design of the Science Orbit Around Europa

    Science.gov (United States)

    Gomez, Gerard; Lara, Martin; Russell, Ryan P.

    2006-01-01

    The science orbit for a future mission to Europa requires low eccentricity, low altitude, and high inclination. However, high inclination orbits around planetary satellites are unstable due to third-body perturbations. Without control, the orbiter impacts Europa after few weeks. To minimize control, a tour over the stable-unstable, averaged manifolds of unstable frozen orbits has been suggested. We proceed with the unaveraged equations and study the manifolds of unstable orbits that are periodic in a rotating frame attached to Europa. Massive numerical computation helps in understanding the unstable dynamics close to Europa, and, thus, in selecting long lifetime high inclination orbits. A final test of a selected set of initial conditions on a high fidelity, ephemeris model, validate the results.

  20. PLANET FORMATION IN HIGHLY INCLINED BINARY SYSTEMS. I. PLANETESIMALS JUMP INWARD AND PILE UP

    International Nuclear Information System (INIS)

    Xie Jiwei; Zhou Jilin; Payne, Matthew J.; Ge Jian; Thebault, Philippe

    2011-01-01

    Most detected planet-bearing binaries are in wide orbits, for which a high inclination, i B , between the binary orbital plane and the plane of the planetary disk around the primary is likely to be common. In this paper, we investigate the intermediate stages-from planetesimals to planetary embryos/cores-of planet formation in such highly inclined cases. Our focus is on the effects of gas drag on the planetesimals' orbital evolution, in particular on the evolution of the planetesimals' semimajor axis distribution and their mutual relative velocities. We first demonstrate that a non-evolving axisymmetric disk model is a good approximation for studying the effects of gas drag on a planetesimal in the highly inclined case (30 deg. B B . For both regimes, a robust outcome over a wide range of parameters is that planetesimals migrate/jump inward and pile up, leading to a severely truncated and dense planetesimal disk around the primary. In this compact and dense disk, collision rates are high but relative velocities are low, providing conditions that are favorable for planetesimal growth and potentially allow for the subsequent formation of planets.

  1. Exterior Companions to Hot Jupiters Orbiting Cool Stars Are Coplanar

    Science.gov (United States)

    Becker, Juliette C.; Vanderburg, Andrew; Adams, Fred C.; Khain, Tali; Bryan, Marta

    2017-12-01

    The existence of hot Jupiters has challenged theories of planetary formation since the first extrasolar planets were detected. Giant planets are generally believed to form far from their host stars, where volatile materials like water exist in their solid phase, making it easier for giant planet cores to accumulate. Several mechanisms have been proposed to explain how giant planets can migrate inward from their birth sites to short-period orbits. One such mechanism, called Kozai-Lidov migration, requires the presence of distant companions in orbits inclined by more than ˜40° with respect to the plane of the hot Jupiter’s orbit. The high occurrence rate of wide companions in hot-Jupiter systems lends support to this theory for migration. However, the exact orbital inclinations of these detected planetary and stellar companions is not known, so it is not clear whether the mutual inclination of these companions is large enough for the Kozai-Lidov process to operate. This paper shows that in systems orbiting cool stars with convective outer layers, the orbits of most wide planetary companions to hot Jupiters must be well aligned with the orbits of the hot Jupiters and the spins of the host stars. For a variety of possible distributions for the inclination of the companion, the width of the distribution must be less than ˜20° to recreate the observations with good fidelity. As a result, the companion orbits are likely well aligned with those of the hot Jupiters, and the Kozai-Lidov mechanism does not enforce migration in these systems.

  2. Rolling and slipping down Galileo close-quote s inclined plane: Rhythms of the spheres

    International Nuclear Information System (INIS)

    Crawford, F.S.

    1996-01-01

    In ''Two New Sciences'' (TNS) Galileo presents a number of theorems and propositions for smooth solid spheres released from rest and rolling a distance d in time t down an incline of height H and length L. We collect and summarize his results in a single grand proportionality P: d 1 /d 2 =(t 2 1 /t 2 2 )(H/L) 1 /(H/L) 2 . (P) From TNS it is clear that what we call P is assumed by Galileo to hold for all inclinations including vertical free fall with H/L=1. But in TNS he describes only experiments with gentle inclinations H/L 1 while rolling down a gentle incline is deflected so as to be launched horizontally with speed v 1 into a free fall orbit discovered by Galileo to be a parabola. The measured horizontal distance X 2 traveled in this parabolic orbit (for a given vertical distance fallen to the floor) was smaller than he expected, by a factor 0.84. But that is exactly what we (moderns) expect, since we know that Galileo did not appreciate the difference between rolling without slipping, and slipping on a frictionless surface

  3. Invariant Solar Sail Formations in Elliptical Sun-Synchronous Orbits

    Science.gov (United States)

    Parsay, Khashayar

    Current and past missions that study the Earth's geomagnetic tail require multiple spacecraft to fly in formation about a highly eccentric Keplerian reference orbit that has its apogee inside a predefined science region of interest. Because the geomagnetic tail is directed along the Sun-Earth line and therefore rotates annually, inertially fixed Keplerian orbits are only aligned with the geomagnetic tail once per year. This limitation reduces the duration of the science phase to less than a few months annually. Solar sails are capable of creating non-Keplerian, Sun-synchronous orbits that rotate with the geomagnetic tail. A solar sail flying in a Sun-synchronous orbit will have a continuous presence in the geomagnetic tail throughout the entire year, which significantly improves the in situ observations of the magnetosphere. To achieve a Sun-synchronous orbit, a solar sail is required to maintain a Sun-pointing attitude, which leads to the artificial precession of the orbit apse line in a Sun-synchronous manner, leaving the orbit apogee inside the science region of interest throughout entire the year. To study the spatial and temporal variations of plasma in the highly dynamic environment of the magnetosphere, multiple spacecraft must fly in a formation. The objective for this dissertation is to investigate the feasibility of solar sail formation flying in the Earth-centered, Sun-synchronous orbit regime. The focus of this effort is to enable formation flying for a group of solar sails that maintain a nominally fixed Sun-pointing attitude during formation flight, solely for the purpose of precessing their orbit apse lines Sun-synchronously. A fixed-attitude solar sail formation is motivated by the difficulties in the simultaneous control of orbit and attitude in flying solar sails. First, the secular rates of the orbital elements resulting from the effects of solar radiation pressure (SRP) are determined using averaging theory for a Sun-pointing attitude sail

  4. Spin flip in single quantum ring with Rashba spin–orbit interation

    Science.gov (United States)

    Liu, Duan-Yang; Xia, Jian-Bai

    2018-03-01

    We theoretically investigate spin transport in the elliptical ring and the circular ring with Rashba spin–orbit interaction. It is shown that when Rashba spin–orbit interaction is relatively weak, a single circular ring can not realize spin flip, however an elliptical ring may work as a spin-inverter at this time, and the influence of the defect of the geometry is not obvious. Howerver if a giant Rashba spin–orbit interaction strength has been obtained, a circular ring can work as a spin-inverter with a high stability. Project supported by the National Natural Science Foundation of China (Grant No. 11504016).

  5. THEORY OF SECULAR CHAOS AND MERCURY'S ORBIT

    International Nuclear Information System (INIS)

    Lithwick, Yoram; Wu Yanqin

    2011-01-01

    We study the chaotic orbital evolution of planetary systems, focusing on secular (i.e., orbit-averaged) interactions, which dominate on long timescales. We first focus on the evolution of a test particle that is forced by multiple planets. To linear order in eccentricity and inclination, its orbit precesses with constant frequencies. But nonlinearities modify the frequencies, and can shift them into and out of resonance with either the planets' eigenfrequencies (forming eccentricity or inclination secular resonances), or with linear combinations of those frequencies (forming mixed high-order secular resonances). The overlap of these nonlinear secular resonances drives secular chaos. We calculate the locations and widths of nonlinear secular resonances, display them together on a newly developed map (the 'map of the mean momenta'), and find good agreement between analytical and numerical results. This map also graphically demonstrates how chaos emerges from overlapping secular resonances. We then apply this newfound understanding to Mercury to elucidate the origin of its orbital chaos. We find that since Mercury's two free precession frequencies (in eccentricity and inclination) lie within ∼25% of two other eigenfrequencies in the solar system (those of the Jupiter-dominated eccentricity mode and the Venus-dominated inclination mode), secular resonances involving these four modes overlap and cause Mercury's chaos. We confirm this with N-body integrations by showing that a slew of these resonant angles alternately librate and circulate. Our new analytical understanding allows us to calculate the criterion for Mercury to become chaotic: Jupiter and Venus must have eccentricity and inclination of a few percent. The timescale for Mercury's chaotic diffusion depends sensitively on the forcing. As it is, Mercury appears to be perched on the threshold for chaos, with an instability timescale comparable to the lifetime of the solar system.

  6. Loners, Groupies, and Long-term Eccentricity (and Inclination) Behavior: Insights from Secular Theory

    Science.gov (United States)

    Van Laerhoven, Christa L.

    2015-05-01

    Considering the secular dynamics of multi-planet systems provides substantial insight into the interactions between planets in those systems. Secular interactions are those that don't involve knowing where a planet is along its orbit, and they dominate when planets are not involved in mean motion resonances. These interactions exchange angular momentum among the planets, evolving their eccentricities and inclinations. To second order in the planets' eccentricities and inclinations, the eccentricity and inclination perturbations are decoupled. Given the right variable choice, the relevant differential equations are linear and thus the eccentricity and inclination behaviors can be described as a sum of eigenmodes. Since the underlying structure of the secular eigenmodes can be calculated using only the planets' masses and semi-major axes, one can elucidate the eccentricity and inclination behavior of planets in exoplanet systems even without knowing the planets' current eccentricities and inclinations. I have calculated both the eccentricity and inclination secular eigenmodes for the population of known multi-planet systems whose planets have well determined masses and periods. Using this catalog of secular character, I will discuss the prevalence of dynamically grouped planets ('groupies') versus dynamically uncoupled planets ('loners') and how this relates to the exoplanets' long-term eccentricity and inclination behavior. I will also touch on the distribution of the secular eigenfreqiencies.

  7. Elliptical optical solitary waves in a finite nematic liquid crystal cell

    Science.gov (United States)

    Minzoni, Antonmaria A.; Sciberras, Luke W.; Smyth, Noel F.; Worthy, Annette L.

    2015-05-01

    The addition of orbital angular momentum has been previously shown to stabilise beams of elliptic cross-section. In this article the evolution of such elliptical beams is explored through the use of an approximate methodology based on modulation theory. An approximate method is used as the equations that govern the optical system have no known exact solitary wave solution. This study brings to light two distinct phases in the evolution of a beam carrying orbital angular momentum. The two phases are determined by the shedding of radiation in the form of mass loss and angular momentum loss. The first phase is dominated by the shedding of angular momentum loss through spiral waves. The second phase is dominated by diffractive radiation loss which drives the elliptical solitary wave to a steady state. In addition to modulation theory, the "chirp" variational method is also used to study this evolution. Due to the significant role radiation loss plays in the evolution of an elliptical solitary wave, an attempt is made to couple radiation loss to the chirp variational method. This attempt furthers understanding as to why radiation loss cannot be coupled to the chirp method. The basic reason for this is that there is no consistent manner to match the chirp trial function to the generated radiating waves which is uniformly valid in time. Finally, full numerical solutions of the governing equations are compared with solutions obtained using the various variational approximations, with the best agreement achieved with modulation theory due to its ability to include both mass and angular momentum losses to shed diffractive radiation.

  8. An interstellar origin for Jupiter's retrograde co-orbital asteroid

    Science.gov (United States)

    Namouni, F.; Morais, M. H. M.

    2018-06-01

    Asteroid (514107) 2015 BZ509 was discovered recently in Jupiter's co-orbital region with a retrograde motion around the Sun. The known chaotic dynamics of the outer Solar system have so far precluded the identification of its origin. Here, we perform a high-resolution statistical search for stable orbits and show that asteroid (514107) 2015 BZ509 has been in its current orbital state since the formation of the Solar system. This result indicates that (514107) 2015 BZ509 was captured from the interstellar medium 4.5 billion years in the past as planet formation models cannot produce such a primordial large-inclination orbit with the planets on nearly coplanar orbits interacting with a coplanar debris disc that must produce the low-inclination small-body reservoirs of the Solar system such as the asteroid and Kuiper belts. This result also implies that more extrasolar asteroids are currently present in the Solar system on nearly polar orbits.

  9. Ground Target Overflight and Orbital Maneuvering via Atmospheric Maneuvers

    Science.gov (United States)

    2014-03-27

    Total deceleration m ∙ s−2 Gravitational acceleration m ∙ s−2 ℎ Altitude m Inclination angle rad Vehicle mass kg Geocentric ...total atmospheric inclination change approached the limit of approximately 36.2° as the number of atmospheric passes increased. This inclination...determine the longitude. By expanding and simplifying Eqs. (3.1) and (3.5) for a circular orbit, the position can be written in the Geocentric Equatorial

  10. The TWA 3 Young Triple System: Orbits, Disks, Evolution

    Energy Technology Data Exchange (ETDEWEB)

    Kellogg, Kendra [Department of Physics and Astronomy, The University of Western Ontario, London, ON N6A 3K7 (Canada); Prato, L.; Avilez, I.; Wasserman, L. H.; Levine, S. E.; Bosh, A. S. [Lowell Observatory, 1400 West Mars Hill Road, Flagstaff, AZ 86001 (United States); Torres, Guillermo [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States); Schaefer, G. H. [The CHARA Array of Georgia State University, Mount Wilson Observatory, Mount Wilson, CA 91023 (United States); Ruíz-Rodríguez, D. [Research School of Astronomy and Astrophysics, Australian National University, Canberra, ACT 2611 (Australia); Bonanos, Alceste Z. [IAASARS, National Observatory of Athens, 15236 Penteli (Greece); Guenther, E. W. [Thüringer Landessternwarte Tautenburg, D-07778 Tautenburg (Germany); Neuhäuser, R. [Astrophysikalisches Institut und Universitäts-Sternwarte, FSU Jena, Schillergäßchen 2-3, D-07745 Jena (Germany); Morzinski, Katie M.; Close, Laird; Hinz, Phil; Males, Jared R. [Steward Observatory, University of Arizona, 933 N. Cherry Ave, Tucson, AZ 85721 (United States); Bailey, Vanessa, E-mail: kkellogg@uwo.ca, E-mail: lprato@lowell.edu [Kavli Institute for Particle Astrophysics and Cosmology, Department of Physics, Stanford University, Stanford, CA, 94305 (United States)

    2017-08-01

    We have characterized the spectroscopic orbit of the TWA 3A binary and provide preliminary families of probable solutions for the TWA 3A visual orbit, as well as for the wide TWA 3A–B orbit. TWA 3 is a hierarchical triple located at 34 pc in the ∼10 Myr old TW Hya association. The wide component separation is 1.″55; the close pair was first identified as a possible binary almost 20 years ago. We initially identified the 35-day period orbital solution using high-resolution infrared spectroscopy that angularly resolved the A and B components. We then refined the preliminary orbit by combining the infrared data with a reanalysis of our high-resolution optical spectroscopy. The orbital period from the combined spectroscopic solution is ∼35 days, the eccentricity is ∼0.63, and the mass ratio is ∼0.84; although this high mass ratio would suggest that optical spectroscopy alone should be sufficient to identify the orbital solution, the presence of the tertiary B component likely introduced confusion in the blended optical spectra. Using millimeter imaging from the literature, we also estimate the inclinations of the stellar orbital planes with respect to the TWA 3A circumbinary disk inclination and find that all three planes are likely misaligned by at least ∼30°. The TWA 3A spectroscopic binary components have spectral types of M4.0 and M4.5; TWA 3B is an M3. We speculate that the system formed as a triple, is bound, and that its properties were shaped by dynamical interactions between the inclined orbits and disk.

  11. Contraction of high eccentricity satellite orbits using uniformly regular KS canonical elements with oblate diurnally varying atmosphere.

    Science.gov (United States)

    Raj, Xavier James

    2016-07-01

    orbits with oblate diurnally varying atmosphere in terms of the uniformly regular KS canonical elements. The analytical solutions are generated up to fourth-order terms using a new independent variable and c (a small parameter dependent on the flattening of the atmosphere). Due to symmetry, only two of the nine equations need to be solved analytically to compute the state vector and change in energy at the end of each revolution. The theory is developed on the assumption that density is constant on the surfaces of spheroids of fixed ellipticity ɛ (equal to the Earth's ellipticity, 0.00335) whose axes coincide with the Earth's axis. Numerical experimentation with the analytical solution for a wide range of perigee height, eccentricity, and orbital inclination has been carried out up to 100 revolutions. Comparisons are made with numerically integrated values and found that they match quite well. Effectiveness of the present analytical solutions will be demonstrated by comparing the results with other analytical solutions in the literature.

  12. Detecting a Subsurface Ocean From Periodic Orbits at Enceladus

    Science.gov (United States)

    Casotto, S.; Padovan, S.; Russell, R. P.; Lara, M.

    2008-12-01

    Enceladus is a small icy satellite of Saturn which has been observed by the Cassini orbiter to eject plumes mainly consisting of water vapor from the "tiger stripes" located near its South pole. While tidal heating has been ruled out as an inadequate energy source to drive these eruptions, tidally induced shear stress both along and across the stripes appears to be sufficiently powerful. The internal constitution of Enceladus that fits this model is likely to entail a thin crust and a subcrustal water layer above an undifferentiated interior. Apart from the lack of a core/mantle boundary, the situation is similar to the current hypothetical models of Europa's interior. The determination of the existence of a subsurface fluid layer can therefore be pursued with similar methods, including the study of the gravitational perturbations of tidal origin on an Enceladus orbiter, and the use of altimeter measurements to the tidally deformed surface. The dynamical environment of an Enceladus orbiter is made very unstable by the overwhelming presence of nearby Saturn. The Enceladus sphere of influence is roughly twice its radius. This makes it considerably more difficult to orbit than Europa, whose sphere of influence is ~six times its radius. While low-altitude, near-polar Enceladus orbits suffer extreme instability, recent works have extended the inclination envelope for long-term stable orbits at Enceladus. Several independent methods suggest that ~65 degrees inclination is the maximum attainable for stable, perturbed Keplerian motion. These orbits are non-circular and exist with altitude variations from ~200 to ~300 km. We propose a nominal reference orbit that enjoys long term stability and is favorable for long-term mapping and other scientific experiments. A brief excursion to a lower altitude, slightly higher inclined, yet highly unstable orbit is proposed to improve gravity signatures and enable high resolution, nadir-pointing experiments on the geysers emanating

  13. On the N=1{sup ∗} gauge theory on a circle and elliptic integrable systems

    Energy Technology Data Exchange (ETDEWEB)

    Bourget, Antoine; Troost, Jan [Laboratoire de Physique Théorique, Ecole Normale Supérieure,24 rue Lhomond, 75005 Paris (France)

    2016-01-18

    We continue our study of the N=1{sup ∗} supersymmetric gauge theory on ℝ{sup 2,1}×S{sup 1} and its relation to elliptic integrable systems. Upon compactification on a circle, we show that the semi-classical analysis of the massless and massive vacua depends on the classification of nilpotent orbits, as well as on the conjugacy classes of the component group of their centralizer. We demonstrate that semi-classically massless vacua can be lifted by Wilson lines in unbroken discrete gauge groups. The pseudo-Levi subalgebras that play a classifying role in the nilpotent orbit theory are also key in defining generalized Inozemtsev limits of (twisted) elliptic integrable systems. We illustrate our analysis in the N=1{sup ∗} theories with gauge algebras su(3), su(4), so(5) and for the exceptional gauge algebra G{sub 2}. We map out modular duality diagrams of the massive and massless vacua. Moreover, we provide an analytic description of the branches of massless vacua in the case of the su(3) and the so(5) theory. The description of these branches in terms of the complexified Wilson lines on the circle invokes the Eichler-Zagier technique for inverting the elliptic Weierstrass function. After fine-tuning the coupling to elliptic points of order three, we identify the Argyres-Douglas singularities of the su(3)N=1{sup ∗} theory.

  14. Can mergers make slowly rotating elliptical galaxies

    International Nuclear Information System (INIS)

    White, S.D.M.

    1979-01-01

    The results of numerical experiments are used to guide an analytic discussion of hyperbolic mergers among an uncorrelated galaxy population. The expected merger rate is derived as a function of progenitor mass and relative angular momentum, and is used to predict the distribution of the parameter V/sub c//sigma 0 for merger products where V/sub c/ is the maximum observed rotation velocity in a galaxy and sigma 0 is its central velocity dispersion. The median value of this parameter for mergers between comparable galaxies is estimated to be 0.65 and is higher than the observed value in any of the 14 galaxies for which data are available. It seems unlikely that most elliptical galaxies are the result of single or multiple mergers between initially unbound stellar systems; further observational and theoretical work is suggested which should lead to a conclusive test of this picture. The present arguments cannot, however, exclude formation from low angular momentum elliptical orbits

  15. Modeling groundwater flow to elliptical lakes and through multi-aquifer elliptical inhomogeneities

    Science.gov (United States)

    Bakker, Mark

    2004-05-01

    Two new analytic element solutions are presented for steady flow problems with elliptical boundaries. The first solution concerns groundwater flow to shallow elliptical lakes with leaky lake beds in a single-aquifer. The second solution concerns groundwater flow through elliptical cylinder inhomogeneities in a multi-aquifer system. Both the transmissivity of each aquifer and the resistance of each leaky layer may differ between the inside and the outside of an inhomogeneity. The elliptical inhomogeneity may be bounded on top by a shallow elliptical lake with a leaky lake bed. Analytic element solutions are obtained for both problems through separation of variables of the Laplace and modified-Helmholtz differential equations in elliptical coordinates. The resulting equations for the discharge potential consist of infinite sums of products of exponentials, trigonometric functions, and modified-Mathieu functions. The series are truncated but still fulfill the differential equation exactly; boundary conditions are met approximately, but up to machine accuracy provided enough terms are used. The head and flow may be computed analytically at any point in the aquifer. Examples are given of uniform flow through an elliptical lake, a well pumping near two elliptical lakes, and uniform flow through three elliptical inhomogeneities in a multi-aquifer system. Mathieu functions may be applied in a similar fashion to solve other groundwater flow problems in semi-confined aquifers and leaky aquifer systems with elliptical internal or external boundaries.

  16. Fast computation of complete elliptic integrals and Jacobian elliptic functions

    Science.gov (United States)

    Fukushima, Toshio

    2009-12-01

    As a preparation step to compute Jacobian elliptic functions efficiently, we created a fast method to calculate the complete elliptic integral of the first and second kinds, K( m) and E( m), for the standard domain of the elliptic parameter, 0 procedure to compute simultaneously three Jacobian elliptic functions, sn( u| m), cn( u| m), and dn( u| m), by repeated usage of the double argument formulae starting from the Maclaurin series expansions with respect to the elliptic argument, u, after its domain is reduced to the standard range, 0 ≤ u procedure is 25-70% faster than the methods based on the Gauss transformation such as Bulirsch’s algorithm, sncndn, quoted in the Numerical Recipes even if the acceleration of computation of K( m) is not taken into account.

  17. Drift-free solar sail formations in elliptical Sun-synchronous orbits

    Science.gov (United States)

    Parsay, Khashayar; Schaub, Hanspeter

    2017-10-01

    To study the spatial and temporal variations of plasma in the highly dynamic environment of the magnetosphere, multiple spacecraft must fly in a formation. The objective for this study is to investigate the feasibility of solar sail formation flying in the Earth-centered, Sun-synchronous orbit regime. The focus of this effort is to enable formation flying for a group of solar sails that maintain a nominally fixed Sun-pointing attitude during formation flight, solely for the purpose of precessing their orbit apse lines Sun-synchronously. A fixed-attitude solar sail formation is motivated by the difficulties in the simultaneous control of orbit and attitude in flying solar sails. First, the secular rates of the orbital elements resulting from the effects of solar radiation pressure (SRP) are determined using averaging theory for a Sun-pointing attitude sail. These averaged rates are used to analytically derive the first-order necessary conditions for a drift-free solar sail formation in Sun-synchronous orbits, assuming a fixed Sun-pointing orientation for each sail in formation. The validity of the first-order necessary conditions are illustrated by designing quasi-periodic relative motions. Next, nonlinear programming is applied to design truly drift-free two-craft solar sail formations. Lastly, analytic expressions are derived to determine the long-term dynamics and sensitivity of the formation with respect to constant attitude errors, uncertainty in orbital elements, and uncertainty in a sail's characteristic acceleration.

  18. Wireless OAM transmission system based on elliptical microstrip patch antenna.

    Science.gov (United States)

    Chen, Jia Jia; Lu, Qian Nan; Dong, Fei Fei; Yang, Jing Jing; Huang, Ming

    2016-05-30

    The multiplexing transmission has always been a focus of attention for communication technology. In this paper, the radiation characteristics of circular microstrip patch antenna was firstly analyzed based on cavity model theory, and then spiral beams carrying orbital angular momentum (OAM) were generated, using elliptical microstrip patch antenna, with a single feed probe instead of a standard circular patch with two feedpoints. Moreover, by combining the proposed elliptic microstrip patch antenna with Universal Software Radio Peripheral (USRP), a wireless OAM transmission system was established and the real-time transmission of text, image and video in a real channel environment was realized. Since the wireless OAM transmission has the advantage of good safety and high spectrum utilization efficiency, this work has theoretical significance and potential application.

  19. Planar elliptic growth

    Energy Technology Data Exchange (ETDEWEB)

    Mineev, Mark [Los Alamos National Laboratory

    2008-01-01

    The planar elliptic extension of the Laplacian growth is, after a proper parametrization, given in a form of a solution to the equation for areapreserving diffeomorphisms. The infinite set of conservation laws associated with such elliptic growth is interpreted in terms of potential theory, and the relations between two major forms of the elliptic growth are analyzed. The constants of integration for closed form solutions are identified as the singularities of the Schwarz function, which are located both inside and outside the moving contour. Well-posedness of the recovery of the elliptic operator governing the process from the continuum of interfaces parametrized by time is addressed and two examples of exact solutions of elliptic growth are presented.

  20. Tangent Orbital Rendezvous Using Linear Relative Motion with J2 Perturbations

    Directory of Open Access Journals (Sweden)

    Gang Zhang

    2013-01-01

    Full Text Available The tangent-impulse coplanar orbit rendezvous problem is studied based on the linear relative motion for J2-perturbed elliptic orbits. There are three cases: (1 only the first impulse is tangent; (2 only the second impulse is tangent; (3 both impulses are tangent. For a given initial impulse point, the first two problems can be transformed into finding all roots of a single variable function about the transfer time, which can be done by the secant method. The bitangent rendezvous problem requires the same solution for the first two problems. By considering the initial coasting time, the bitangent rendezvous solution is obtained with a difference function. A numerical example for two coplanar elliptic orbits with J2 perturbations is given to verify the efficiency of these proposed techniques.

  1. On the lunar node resonance of the orbital plane evolution of the Earth's satellite orbits

    Science.gov (United States)

    Zhu, Ting-Lei

    2018-06-01

    This paper aims to investigate the effects of lunar node resonance on the circular medium Earth orbits (MEO). The dynamical model is established in classical Hamiltonian systems with the application of Lie transform to remove the non-resonant terms. Resonant condition, stability and phase structures are studied. The lunar node resonance occurs when the secular changing rates of the orbital node (with respect to the equator) and the lunar node (with respect to the ecliptic) form a simple integer ratio. The resonant conditions are satisfied for both inclined and equatorial orbits. The orbital plane would have long period (with typical timescales of several centuries) fluctuation due to the resonance.

  2. Reliability of stellar inclination estimated from asteroseismology: analytical criteria, mock simulations and Kepler data analysis

    Science.gov (United States)

    Kamiaka, Shoya; Benomar, Othman; Suto, Yasushi

    2018-05-01

    Advances in asteroseismology of solar-like stars, now provide a unique method to estimate the stellar inclination i⋆. This enables to evaluate the spin-orbit angle of transiting planetary systems, in a complementary fashion to the Rossiter-McLaughlineffect, a well-established method to estimate the projected spin-orbit angle λ. Although the asteroseismic method has been broadly applied to the Kepler data, its reliability has yet to be assessed intensively. In this work, we evaluate the accuracy of i⋆ from asteroseismology of solar-like stars using 3000 simulated power spectra. We find that the low signal-to-noise ratio of the power spectra induces a systematic under-estimate (over-estimate) bias for stars with high (low) inclinations. We derive analytical criteria for the reliable asteroseismic estimate, which indicates that reliable measurements are possible in the range of 20° ≲ i⋆ ≲ 80° only for stars with high signal-to-noise ratio. We also analyse and measure the stellar inclination of 94 Kepler main-sequence solar-like stars, among which 33 are planetary hosts. According to our reliability criteria, a third of them (9 with planets, 22 without) have accurate stellar inclination. Comparison of our asteroseismic estimate of vsin i⋆ against spectroscopic measurements indicates that the latter suffers from a large uncertainty possibly due to the modeling of macro-turbulence, especially for stars with projected rotation speed vsin i⋆ ≲ 5km/s. This reinforces earlier claims, and the stellar inclination estimated from the combination of measurements from spectroscopy and photometric variation for slowly rotating stars needs to be interpreted with caution.

  3. The formation of retrograde planetary orbits by close stellar encounters

    Directory of Open Access Journals (Sweden)

    Ford E. B.

    2011-02-01

    Full Text Available We consider the growing number of observations of the RossiterMcLaughlin effect in transiting planets, which seem to suggest that ~30% of transiting planets are in highly inclined or retrograde orbits. We consider the dense cluster environment in which stars are born and investigate whether perturbations from passing stars can drive planetary systems into retrograde configurations. We find that fly-bys can result in significantly more inclination excitation than might naively be expected from impulse approximations, leading to several percent of stellar systems possessing planets in retrograde orbits.

  4. Orbital Dynamics and Habitability of Exoplanets

    Science.gov (United States)

    Deitrick, Russell J.

    With the discoveries of thousands of extra-solar planets, a handful of which are terrestrial in size and located within the "habitable zone" of their host stars, the discovery of another instance of life in the universe seems increasingly within our grasp. Yet, a number of difficulties remain--with current and developing technologies, the full characterization of a terrestrial atmosphere and, hence, the detection of biosignatures will be extraordinarily difficult and expensive. Furthermore, observations will be ambiguous, as recent developments have shown that there is no "smoking gun" for the presence of life. Ultimately, the interpretation of observations will depend heavily upon our understanding of life's fundamental properties and the physical context of a planet's observed properties. This thesis is devoted to a development of the latter quantity, physical context, focusing on a topic oft-neglected in theoretical works of habitability: orbital dynamics. I show a number of ways in which orbital dynamics can affect the habitability of exoplanets. This work highlights the crucial role of stability, mutual inclinations, and resonances, demonstrating how these properties influence atmospheric states. Studies of exoplanetary systems tend to assume that the planets are coplanar, however, the large mutual inclination of the planets orbiting upsilon Andromedae suggests that coplanarity is not always a valid assumption. In my study of this system, I show that the large inclination between planets c and d and their large eccentricities lead to dramatic orbital variations. Though there is almost certainly no habitable planet orbiting upsilon And, the existence of this system demonstrates that we should expect other such dynamically "hot" planetary systems, some of which may contain potentially habitable planets. Minute variations in a planet's orbit can lead to changes in the global temperature, and indeed, these variations seem to be intimately connected to Earth

  5. Arbitrarily elliptical-cylindrical invisible cloaking

    International Nuclear Information System (INIS)

    Jiang Weixiang; Cui Tiejun; Yu Guanxia; Lin Xianqi; Cheng Qiang; Chin, J Y

    2008-01-01

    Based on the idea of coordinate transformation (Pendry, Schurig and Smith 2006 Science 312 1780), arbitrarily elliptical-cylindrical cloaks are proposed and designed. The elliptical cloak, which is composed of inhomogeneous anisotropic metamaterials in an elliptical-shell region, will deflect incoming electromagnetic (EM) waves and guide them to propagate around the inner elliptical region. Such EM waves will return to their original propagation directions without distorting the waves outside the elliptical cloak. General formulations of the inhomogeneous and anisotropic permittivity and permeability tensors are derived for arbitrarily elliptical axis ratio k, which can also be used for the circular cloak when k = 1. Hence the elliptical cloaks can make a large range of objects invisible, from round objects (when k approaches 1) to long and thin objects (when k is either very large or very small). We also show that the material parameters in elliptical cloaking are singular at only two points, instead of on the whole inner circle for circular cloaking, which are much easier to be realized in actual applications. Full-wave simulations are given to validate the arbitrarily elliptical cloaking

  6. Discrete restricted four-body problem: Existence of proof of equilibria and reproducibility of periodic orbits

    Energy Technology Data Exchange (ETDEWEB)

    Minesaki, Yukitaka [Tokushima Bunri University, Nishihama, Yamashiro-cho, Tokushima 770-8514 (Japan)

    2015-01-01

    We propose the discrete-time restricted four-body problem (d-R4BP), which approximates the orbits of the restricted four-body problem (R4BP). The d-R4BP is given as a special case of the discrete-time chain regularization of the general N-body problem published in Minesaki. Moreover, we analytically prove that the d-R4BP yields the correct orbits corresponding to the elliptic relative equilibrium solutions of the R4BP when the three primaries form an equilateral triangle at any time. Such orbits include the orbit of a relative equilibrium solution already discovered by Baltagiannis and Papadakis. Until the proof in this work, there has been no discrete analog that preserves the orbits of elliptic relative equilibrium solutions in the R4BP. For a long time interval, the d-R4BP can precisely compute some stable periodic orbits in the Sun–Jupiter–Trojan asteroid–spacecraft system that cannot necessarily be reproduced by other generic integrators.

  7. New inclination changing eclipsing binaries in the Magellanic Clouds

    Science.gov (United States)

    Juryšek, J.; Zasche, P.; Wolf, M.; Vraštil, J.; Vokrouhlický, D.; Skarka, M.; Liška, J.; Janík, J.; Zejda, M.; Kurfürst, P.; Paunzen, E.

    2018-01-01

    Context. Multiple stellar systems are unique laboratories for astrophysics. Analysis of their orbital dynamics, if well characterized from their observations, may reveal invaluable information about the physical properties of the participating stars. Unfortunately, there are only a few known and well described multiple systems, this is even more so for systems located outside the Milky Way galaxy. A particularly interesting situation occurs when the inner binary in a compact triple system is eclipsing. This is because the stellar interaction, typically resulting in precession of orbital planes, may be observable as a variation of depth of the eclipses on a long timescale. Aims: We aim to present a novel method to determine compact triples using publicly available photometric data from large surveys. Here we apply it to eclipsing binaries (EBs) in Magellanic Clouds from OGLE III database. Our tool consists of identifying the cases where the orbital plane of EB evolves in accord with expectations from the interaction with a third star. Methods: We analyzed light curves (LCs) of 26121 LMC and 6138 SMC EBs with the goal to identify those for which the orbital inclination varies in time. Archival LCs of the selected systems, when complemented by our own observations with Danish 1.54-m telescope, were thoroughly analyzed using the PHOEBE program. This provided physical parameters of components of each system. Time dependence of the EB's inclination was described using the theory of orbital-plane precession. By observing the parameter-dependence of the precession rate, we were able to constrain the third companion mass and its orbital period around EB. Results: We identified 58 candidates of new compact triples in Magellanic Clouds. This is the largest published sample of such systems so far. Eight of them were analyzed thoroughly and physical parameters of inner binary were determined together with an estimation of basic characteristics of the third star. Prior to our

  8. Orbit and geometry constraints on the design and operation of a long-life SIRTF mission. [Shuttle Infrared Telescope Facility

    Science.gov (United States)

    Jackson, R. W.

    1984-01-01

    For a long-life SIRTF mission, the ability of the telescope to observe targets everywhere in the sky is an important requirement. For low-inclination orbits, a telescope aperture shade must be designed for Sun and Earth Limb avoidance angles of 50 deg to 60 deg to prevent unwanted radiation from entering the telescope. The minimum orbit inclination depends on the Earth Limb avoidance angle. About 30 percent of the sky will be prohibited for observations during any day in orbit, with about 100 days in orbit required to observe the entire sky.

  9. The Eccentric Behavior of Nearly Frozen Orbits

    Science.gov (United States)

    Sweetser, Theodore H.; Vincent, Mark A.

    2013-01-01

    Frozen orbits are orbits which have only short-period changes in their mean eccentricity and argument of periapse, so that they basically keep a fixed orientation within their plane of motion. Nearly frozen orbits are those whose eccentricity and argument of periapse have values close to those of a frozen orbit. We call them "nearly" frozen because their eccentricity vector (a vector whose polar coordinates are eccentricity and argument of periapse) will stay within a bounded distance from the frozen orbit eccentricity vector, circulating around it over time. For highly inclined orbits around the Earth, this distance is effectively constant over time. Furthermore, frozen orbit eccentricity values are low enough that these orbits are essentially eccentric (i.e., off center) circles, so that nearly frozen orbits around Earth are bounded above and below by frozen orbits.

  10. Radio-loudness in black hole transients: evidence for an inclination effect

    Science.gov (United States)

    Motta, S. E.; Casella, P.; Fender, R.

    2018-06-01

    Accreting stellar-mass black holes appear to populate two branches in a radio:X-ray luminosity plane. We have investigated the X-ray variability properties of a large number of black hole low-mass X-ray binaries, with the aim of unveiling the physical reasons underlying the radio-loud/radio-quiet nature of these sources, in the context of the known accretion-ejection connection. A reconsideration of the available radio and X-ray data from a sample of black hole X-ray binaries confirms that being radio-quiet is the more normal mode of behaviour for black hole binaries. In the light of this we chose to test, once more, the hypothesis that radio loudness could be a consequence of the inclination of the X-ray binary. We compared the slope of the `hard-line' (an approximately linear correlation between X-ray count rate and rms variability, visible in the hard states of active black holes), the orbital inclination, and the radio-nature of the sources of our sample. We found that high-inclination objects show steeper hard-lines than low-inclination objects, and tend to display a radio-quiet nature (with the only exception of V404 Cyg), as opposed to low-inclination objects, which appear to be radio-loud(er). While in need of further confirmation, our results suggest that - contrary to what has been believed for years - the radio-loud/quiet nature of black-hole low mass X-ray binaries might be an inclination effect, rather than an intrinsic source property. This would solve an important issue in the context of the inflow-outflow connection, thus providing significant constraints to the models for the launch of hard-state compact jets.

  11. Project Freebird: An orbital transfer vehicle

    Science.gov (United States)

    Aneses, Carlos A.; Blanchette, Ryan L.; Brann, David M.; Campos, Mario J.; Cohen, Lisa E.; Corcoran, Daniel J., III; Cox, James F.; Curtis, Trevor J.; Douglass, Deborah A.; Downard, Catherine L.

    1994-08-01

    Freebird is a space-based orbital transfer vehicle designed to repair and deorbit orbital assets. Freebird is based at International Space Station Alpha (ISSA) at an inclination of 51.6 deg and is capable of three types of missions: crewed and teleoperated LEO missions, and extended robotic missions. In a crewed local configuration, the vehicle can visit inclinations between 30.8 deg and 72.4 deg at altitudes close to 390 km. Adding extra fuel tanks extends this range of inclination up to 84.9 deg and down to 18.3 deg. Furthermore, removing the crew module, using the vehicle in a teleoperated manner, and operating with extra fuel tanks allows missions to polar and geosynchronous orbits. To allow for mission flexibility, the vehicle was designed in a semimodular configuration. The major system components include a crew module, a 'smart box' (which contains command, communications, guidance, and navigation equipment), a propulsion pack, extra fuel tanks, and a vehicle storage facility (VSF) for storage purposes. To minimize risk as well as development time and cost, the vehicle was designed using only proven technology or technology which is expected to be flight-qualified in time for the intended launch date of 2002. And, because Freebird carries crew and operates near the space station, it must meet or exceed the NASA reliability standard of 0.994, as well as other standard requirements for such vehicles. The Freebird program was conceived and designed as a way to provide important and currently unavailable satellite repair and replacement services of a value equal to or exceeding operational costs.

  12. Inclined asymmetric librations in exterior resonances

    Science.gov (United States)

    Voyatzis, G.; Tsiganis, K.; Antoniadou, K. I.

    2018-04-01

    Librational motion in Celestial Mechanics is generally associated with the existence of stable resonant configurations and signified by the existence of stable periodic solutions and oscillation of critical (resonant) angles. When such an oscillation takes place around a value different than 0 or π , the libration is called asymmetric. In the context of the planar circular restricted three-body problem, asymmetric librations have been identified for the exterior mean motion resonances (MMRs) 1:2, 1:3, etc., as well as for co-orbital motion (1:1). In exterior MMRs the massless body is the outer one. In this paper, we study asymmetric librations in the three-dimensional space. We employ the computational approach of Markellos (Mon Not R Astron Soc 184:273-281, https://doi.org/10.1093/mnras/184.2.273, 1978) and compute families of asymmetric periodic orbits and their stability. Stable asymmetric periodic orbits are surrounded in phase space by domains of initial conditions which correspond to stable evolution and librating resonant angles. Our computations were focused on the spatial circular restricted three-body model of the Sun-Neptune-TNO system (TNO = trans-Neptunian object). We compare our results with numerical integrations of observed TNOs, which reveal that some of them perform 1:2 resonant, inclined asymmetric librations. For the stable 1:2 TNO librators, we find that their libration seems to be related to the vertically stable planar asymmetric orbits of our model, rather than the three-dimensional ones found in the present study.

  13. Harmonically excited orbital variations

    International Nuclear Information System (INIS)

    Morgan, T.

    1985-01-01

    Rephrasing the equations of motion for orbital maneuvers in terms of Lagrangian generalized coordinates instead of Newtonian rectangular cartesian coordinates can make certain harmonic terms in the orbital angular momentum vector more readily apparent. In this formulation the equations of motion adopt the form of a damped harmonic oscillator when torques are applied to the orbit in a variationally prescribed manner. The frequencies of the oscillator equation are in some ways unexpected but can nonetheless be exploited through resonant forcing functions to achieve large secular variations in the orbital elements. Two cases are discussed using a circular orbit as the control case: (1) large changes in orbital inclination achieved by harmonic excitation rather than one impulsive velocity change, and (2) periodic and secular changes to the longitude of the ascending node using both stable and unstable excitation strategies. The implications of these equations are also discussed for both artificial satellites and natural satellites. For the former, two utilitarian orbits are suggested, each exploiting a form of harmonic excitation. 5 refs

  14. Large-size space debris flyby in low earth orbits

    Science.gov (United States)

    Baranov, A. A.; Grishko, D. A.; Razoumny, Y. N.

    2017-09-01

    the analysis of NORAD catalogue of space objects executed with respect to the overall sizes of upper-stages and last stages of carrier rockets allows the classification of 5 groups of large-size space debris (LSSD). These groups are defined according to the proximity of orbital inclinations of the involved objects. The orbits within a group have various values of deviations in the Right Ascension of the Ascending Node (RAAN). It is proposed to use the RAANs deviations' evolution portrait to clarify the orbital planes' relative spatial distribution in a group so that the RAAN deviations should be calculated with respect to the concrete precessing orbital plane of the concrete object. In case of the first three groups (inclinations i = 71°, i = 74°, i = 81°) the straight lines of the RAAN relative deviations almost do not intersect each other. So the simple, successive flyby of group's elements is effective, but the significant value of total Δ V is required to form drift orbits. In case of the fifth group (Sun-synchronous orbits) these straight lines chaotically intersect each other for many times due to the noticeable differences in values of semi-major axes and orbital inclinations. The intersections' existence makes it possible to create such a flyby sequence for LSSD group when the orbit of one LSSD object simultaneously serves as the drift orbit to attain another LSSD object. This flyby scheme requiring less Δ V was called "diagonal." The RAANs deviations' evolution portrait built for the fourth group (to be studied in the paper) contains both types of lines, so the simultaneous combination of diagonal and successive flyby schemes is possible. The value of total Δ V and temporal costs were calculated to cover all the elements of the 4th group. The article is also enriched by the results obtained for the flyby problem solution in case of all the five mentioned LSSD groups. The general recommendations are given concerned with the required reserve of total

  15. FROM ORDER TO CHAOS IN EARTH SATELLITE ORBITS

    Energy Technology Data Exchange (ETDEWEB)

    Gkolias, Ioannis; Gachet, Fabien [Department of Mathematics, University of Rome Tor Vergata, I-00133 Rome (Italy); Daquin, Jérôme [IMCCE/Observatoire de Paris, Université Lille1, F-59000 Lille (France); Rosengren, Aaron J., E-mail: gkolias@mat.uniroma2.it [IFAC-CNR, 50019 Sesto Fiorentino, Florence (Italy)

    2016-11-01

    We consider Earth satellite orbits in the range of semimajor axes where the perturbing effects of Earth’s oblateness and lunisolar gravity are of comparable order. This range covers the medium-Earth orbits (MEO) of the Global Navigation Satellite Systems and the geosynchronous orbits (GEO) of the communication satellites. We recall a secular and quadrupolar model, based on the Milankovitch vector formulation of perturbation theory, which governs the long-term orbital evolution subject to the predominant gravitational interactions. We study the global dynamics of this two-and-a-half degrees-of-freedom Hamiltonian system by means of the fast Lyapunov indicator (FLI), used in a statistical sense. Specifically, we characterize the degree of chaoticity of the action space using angle-averaged normalized FLI maps, thereby overcoming the angle dependencies of the conventional stability maps. Emphasis is placed upon the phase-space structures near secular resonances, which are of primary importance to the space debris community. We confirm and quantify the transition from order to chaos in MEO, stemming from the critical inclinations and find that highly inclined GEO orbits are particularly unstable. Despite their reputed normality, Earth satellite orbits can possess an extraordinarily rich spectrum of dynamical behaviors and, from a mathematical perspective, have all the complications that make them very interesting candidates for testing the modern tools of chaos theory.

  16. Elliptic net and its cryptographic application

    Science.gov (United States)

    Muslim, Norliana; Said, Mohamad Rushdan Md

    2017-11-01

    Elliptic net is a generalization of elliptic divisibility sequence and in cryptography field, most cryptographic pairings that are based on elliptic curve such as Tate pairing can be improved by applying elliptic nets algorithm. The elliptic net is constructed by using n dimensional array of values in rational number satisfying nonlinear recurrence relations that arise from elliptic divisibility sequences. The two main properties hold in the recurrence relations are for all positive integers m>n, hm +nhm -n=hm +1hm -1hn2-hn +1hn -1hm2 and hn divides hm whenever n divides m. In this research, we discuss elliptic divisibility sequence associated with elliptic nets based on cryptographic perspective and its possible research direction.

  17. Evaporation of inclined water droplets

    Science.gov (United States)

    Kim, Jin Young; Hwang, In Gyu; Weon, Byung Mook

    2017-01-01

    When a drop is placed on a flat substrate tilted at an inclined angle, it can be deformed by gravity and its initial contact angle divides into front and rear contact angles by inclination. Here we study on evaporation dynamics of a pure water droplet on a flat solid substrate by controlling substrate inclination and measuring mass and volume changes of an evaporating droplet with time. We find that complete evaporation time of an inclined droplet becomes longer as gravitational influence by inclination becomes stronger. The gravity itself does not change the evaporation dynamics directly, whereas the gravity-induced droplet deformation increases the difference between front and rear angles, which quickens the onset of depinning and consequently reduces the contact radius. This result makes the evaporation rate of an inclined droplet to be slow. This finding would be important to improve understanding on evaporation dynamics of inclined droplets. PMID:28205642

  18. Cryogenic implications of orbit selection of the Space Infrared Telescope Facility (SIRTF)

    International Nuclear Information System (INIS)

    Lee, J.H.; Brooke, W.F.; Maa, S.

    1986-01-01

    The Infrared Astronomical Satellite (IRAS) which completed the first all sky survey in the infrared demonstrated the tremendous advantage of space-based infrared astronomy. The ability to cool the telescope optics and focal plane to liquid helium temperatures and the absence of atmospheric disturbances which cause ''seeing'' effects resulted in the discovery of 250,000 IR sources and many interesting phenomena including dust clouds around Vega and the infrared ''cirrus'' at 100 μm. To realize the true benefit of space infrared astronomy, NASA is now studying the Space Infrared Telescope Facility, a long-life space-based observatory, to follow up on the survey results of IRAS. The choice of orbits is a critical program decision. The objective of this paper is to compare the performance of an all superfluid helium SIRTF system in the two possible orbit inclinations, polar orbit (99 0 ) and the low inclination orbit (28.5 0 )

  19. Mercury Orbiter: Report of the Science Working Team

    Science.gov (United States)

    Belcher, John W.; Slavin, James A.; Armstrong, Thomas P.; Farquhar, Robert W.; Akasofu, Syun I.; Baker, Daniel N.; Cattell, Cynthia A.; Cheng, Andrew F.; Chupp, Edward L.; Clark, Pamela E.

    1991-01-01

    The results are presented of the Mercury Orbiter Science Working Team which held three workshops in 1988 to 1989 under the auspices of the Space Physics and Planetary Exploration Divisions of NASA Headquarters. Spacecraft engineering and mission design studies at the Jet Propulsion Lab were conducted in parallel with this effort and are detailed elsewhere. The findings of the engineering study, summarized herein, indicate that spin stabilized spacecraft carrying comprehensive particles and fields experiments and key planetology instruments in high elliptical orbits can survive and function in Mercury orbit without costly sun shields and active cooling systems.

  20. Orbital alignment of circumbinary planets that form in misaligned circumbinary discs: the case of Kepler-413b

    Science.gov (United States)

    Pierens, A.; Nelson, R. P.

    2018-06-01

    Although most of the circumbinary planets detected by the Kepler spacecraft are on orbits that are closely aligned with the binary orbital plane, the systems Kepler-413 and Kepler-453 exhibit small misalignments of ˜2.5°. One possibility is that these planets formed in a circumbinary disc whose midplane was inclined relative to the binary orbital plane. Such a configuration is expected to lead to a warped and twisted disc, and our aim is to examine the inclination evolution of planets embedded in these discs. We employed 3D hydrodynamical simulations that examine the disc response to the presence of a modestly inclined binary with parameters that match the Kepler-413 system, as a function of disc parameters and binary inclinations. The discs all develop slowly varying warps, and generally display very small amounts of twist. Very slow solid body precession occurs because a large outer disc radius is adopted. Simulations of planets embedded in these discs resulted in the planet aligning with the binary orbit plane for disc masses close to the minimum mass solar nebular, such that nodal precession of the planet was controlled by the binary. For higher disc masses, the planet maintains near coplanarity with the local disc midplane. Our results suggest that circumbinary planets born in tilted circumbinary discs should align with the binary orbit plane as the disc ages and loses mass, even if the circumbinary disc remains misaligned from the binary orbit. This result has important implications for understanding the origins of the known circumbinary planets.

  1. Triaxiality in elliptical galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Benacchio, L; Galletta, G [Padua Univ. (Italy). Ist. di Astronomia

    1980-12-01

    The existence of a triaxial shape for elliptical galaxies has been considered in recent years to explain the new kinematical and geometrical findings, i.e. (a) the low rotation/velocity dispersion ratio found also in some flat systems, (b) the presence of twisting in the isophotes, (c) the recently found correlation between maximum twisting and maximum flattening, (d) the presence of rotation along the minor axis. A simple geometrical model of elliptical galaxies having shells with different axial ratios c/a, b/a has been produced to interpret three fundamental key-features of elliptical galaxies: (i) the distribution of the maximum flattening observed; (ii) the percentage of ellipticals showing twisting; and (iii) the correlation between maximum twisting and maximum flattening. The model has been compared with observational data for 348 elliptical systems as given by Strom and Strom. It is found that a triaxial ellipsoid with coaxial shells having axial ratios c/a and b/a mutually dependent in a linear way can satisfy the observations.

  2. Inclination Mixing in the Classical Kuiper Belt

    Science.gov (United States)

    Volk, Kathryn; Malhotra, Renu

    2011-07-01

    We investigate the long-term evolution of the inclinations of the known classical and resonant Kuiper Belt objects (KBOs). This is partially motivated by the observed bimodal inclination distribution and by the putative physical differences between the low- and high-inclination populations. We find that some classical KBOs undergo large changes in inclination over gigayear timescales, which means that a current member of the low-inclination population may have been in the high-inclination population in the past, and vice versa. The dynamical mechanisms responsible for the time variability of inclinations are predominantly distant encounters with Neptune and chaotic diffusion near the boundaries of mean motion resonances. We reassess the correlations between inclination and physical properties including inclination time variability. We find that the size-inclination and color-inclination correlations are less statistically significant than previously reported (mostly due to the increased size of the data set since previous works with some contribution from inclination variability). The time variability of inclinations does not change the previous finding that binary classical KBOs have lower inclinations than non-binary objects. Our study of resonant objects in the classical Kuiper Belt region includes objects in the 3:2, 7:4, 2:1, and eight higher-order mean motion resonances. We find that these objects (some of which were previously classified as non-resonant) undergo larger changes in inclination compared to the non-resonant population, indicating that their current inclinations are not generally representative of their original inclinations. They are also less stable on gigayear timescales.

  3. Quasi-Rayleigh waves in transversely isotropic half-space with inclined axis of symmetry

    International Nuclear Information System (INIS)

    Yanovskaya, T.B.; Savina, L.S.

    2003-09-01

    A method for determination of characteristics of quasi-Rayleigh (qR) wave in a transversely isotropic homogeneous half-space with inclined axis of symmetry is outlined. The solution is obtained as a superposition of qP, qSV and qSH waves, and surface wave velocity is determined from the boundary conditions at the free surface and at infinity, as in the case of Rayleigh wave in isotropic half-space. Though the theory is simple enough, a numerical procedure for the calculation of surface wave velocity presents some difficulties. The difficulty is conditioned by necessity to calculate complex roots of a non-linear equation, which in turn contains functions determined as roots of nonlinear equations with complex coefficients. Numerical analysis shows that roots of the equation corresponding to the boundary conditions do not exist in the whole domain of azimuths and inclinations of the symmetry axis. The domain of existence of qR wave depends on the ratio of the elastic parameters: for some strongly anisotropic models the wave cannot exist at all. For some angles of inclination qR wave velocities deviate from those calculated on the basis of the perturbation method valid for weak anisotropy, though they have the same tendency of variation with azimuth. The phase of qR wave varies with depth unlike Rayleigh wave in isotropic half-space. Unlike Rayleigh wave in isotropic half-space, qR wave has three components - vertical, radial and transverse. Particle motion in horizontal plane is elliptic. Direction of the major axis of the ellipsis coincide with the direction of propagation only in azimuths 0 deg. (180 deg.) and 90 deg. (270 deg.). (author)

  4. High degree gravitational sensitivity from Mars orbiters for the GMM-1 gravity model

    Science.gov (United States)

    Lerch, F. J.; Smith, D. E.; Chan, J. C.; Patel, G. B.; Chinn, D. S.

    1994-01-01

    Orbital sensitivity of the gravity field for high degree terms (greater than 30) is analyzed on satellites employed in a Goddard Mars Model GMM-1, complete in spherical harmonics through degree and order 50. The model is obtained from S-band Doppler data on Mariner 9 (M9), Viking Orbiter 1 (VO1), and Viking Orbiter 2 (VO2) spacecraft, which were tracked by the NASA Deep Space Network on seven different highly eccentric orbits. The main sensitivity of the high degree terms is obtained from the VO1 and VO2 low orbits (300 km periapsis altitude), where significant spectral sensitivity is seen for all degrees out through degree 50. The velocity perturbations show a dominant effect at periapsis and significant effects out beyond the semi-latus rectum covering over 180 degrees of the orbital groundtrack for the low altitude orbits. Because of the wideband of periapsis motion covering nearly 180 degrees in w and +39 degrees in latitude coverage, the VO1 300 km periapsis altitude orbit with inclination of 39 degrees gave the dominant sensitivity in the GMM-1 solution for the high degree terms. Although the VO2 low periapsis orbit has a smaller band of periapsis mapping coverage, it strongly complements the VO1 orbit sensitivity for the GMM-1 solution with Doppler tracking coverage over a different inclination of 80 degrees.

  5. PRECISE TULLY-FISHER RELATIONS WITHOUT GALAXY INCLINATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Obreschkow, D.; Meyer, M. [International Centre for Radio Astronomy Research (ICRAR), M468, University of Western Australia, 35 Stirling Hwy, Crawley, WA 6009 (Australia)

    2013-11-10

    Power-law relations between tracers of baryonic mass and rotational velocities of disk galaxies, so-called Tully-Fisher relations (TFRs), offer a wealth of applications in galaxy evolution and cosmology. However, measurements of rotational velocities require galaxy inclinations, which are difficult to measure, thus limiting the range of TFR studies. This work introduces a maximum likelihood estimation (MLE) method for recovering the TFR in galaxy samples with limited or no information on inclinations. The robustness and accuracy of this method is demonstrated using virtual and real galaxy samples. Intriguingly, the MLE reliably recovers the TFR of all test samples, even without using any inclination measurements—that is, assuming a random sin i-distribution for galaxy inclinations. Explicitly, this 'inclination-free MLE' recovers the three TFR parameters (zero-point, slope, scatter) with statistical errors only about 1.5 times larger than the best estimates based on perfectly known galaxy inclinations with zero uncertainty. Thus, given realistic uncertainties, the inclination-free MLE is highly competitive. If inclination measurements have mean errors larger than 10°, it is better not to use any inclinations than to consider the inclination measurements to be exact. The inclination-free MLE opens interesting perspectives for future H I surveys by the Square Kilometer Array and its pathfinders.

  6. THE GRAVITATIONAL INTERACTION BETWEEN PLANETS ON INCLINED ORBITS AND PROTOPLANETARY DISKS AS THE ORIGIN OF PRIMORDIAL SPIN–ORBIT MISALIGNMENTS

    Energy Technology Data Exchange (ETDEWEB)

    Matsakos, Titos; Königl, Arieh [Department of Astronomy and Astrophysics and The Enrico Fermi Institute, The University of Chicago, Chicago, IL 60637 (United States)

    2017-02-01

    Many of the observed spin–orbit alignment properties of exoplanets can be explained in the context of the primordial disk misalignment model, in which an initially aligned protoplanetary disk is torqued by a distant stellar companion on a misaligned orbit, resulting in a precessional motion that can lead to large-amplitude oscillations of the spin–orbit angle. We consider a variant of this model in which the companion is a giant planet with an orbital radius of a few astronomical units. Guided by the results of published numerical simulations, we model the dynamical evolution of this system by dividing the disk into inner and outer parts—separated at the location of the planet—that behave as distinct, rigid disks. We show that the planet misaligns the inner disk even as the orientation of the outer disk remains unchanged. In addition to the oscillations induced by the precessional motion, whose amplitude is larger the smaller the initial inner-disk-to-planet mass ratio, the spin–orbit angle also exhibits a secular growth in this case—driven by ongoing mass depletion from the disk—that becomes significant when the inner disk’s angular momentum drops below that of the planet. Altogether, these two effects can produce significant misalignment angles for the inner disk, including retrograde configurations. We discuss these results within the framework of the Stranded Hot Jupiter scenario and consider their implications, including the interpretation of the alignment properties of debris disks.

  7. Lectures on Selected Topics in Mathematical Physics: Elliptic Functions and Elliptic Integrals

    Science.gov (United States)

    Schwalm, William A.

    2015-12-01

    This volume is a basic introduction to certain aspects of elliptic functions and elliptic integrals. Primarily, the elliptic functions stand out as closed solutions to a class of physical and geometrical problems giving rise to nonlinear differential equations. While these nonlinear equations may not be the types of greatest interest currently, the fact that they are solvable exactly in terms of functions about which much is known makes up for this. The elliptic functions of Jacobi, or equivalently the Weierstrass elliptic functions, inhabit the literature on current problems in condensed matter and statistical physics, on solitons and conformal representations, and all sorts of famous problems in classical mechanics. The lectures on elliptic functions have evolved as part of the first semester of a course on theoretical and mathematical methods given to first- and second-year graduate students in physics and chemistry at the University of North Dakota. They are for graduate students or for researchers who want an elementary introduction to the subject that nevertheless leaves them with enough of the details to address real problems. The style is supposed to be informal. The intention is to introduce the subject as a moderate extension of ordinary trigonometry in which the reference circle is replaced by an ellipse. This entre depends upon fewer tools and has seemed less intimidating that other typical introductions to the subject that depend on some knowledge of complex variables. The first three lectures assume only calculus, including the chain rule and elementary knowledge of differential equations. In the later lectures, the complex analytic properties are introduced naturally so that a more complete study becomes possible.

  8. Elliptic-symmetry vector optical fields.

    Science.gov (United States)

    Pan, Yue; Li, Yongnan; Li, Si-Min; Ren, Zhi-Cheng; Kong, Ling-Jun; Tu, Chenghou; Wang, Hui-Tian

    2014-08-11

    We present in principle and demonstrate experimentally a new kind of vector fields: elliptic-symmetry vector optical fields. This is a significant development in vector fields, as this breaks the cylindrical symmetry and enriches the family of vector fields. Due to the presence of an additional degrees of freedom, which is the interval between the foci in the elliptic coordinate system, the elliptic-symmetry vector fields are more flexible than the cylindrical vector fields for controlling the spatial structure of polarization and for engineering the focusing fields. The elliptic-symmetry vector fields can find many specific applications from optical trapping to optical machining and so on.

  9. Ellipticity dependence of the near-threshold harmonics of H2 in an elliptical strong laser field.

    Science.gov (United States)

    Yang, Hua; Liu, Peng; Li, Ruxin; Xu, Zhizhan

    2013-11-18

    We study the ellipticity dependence of the near-threshold (NT) harmonics of pre-aligned H2 molecules using the time-dependent density functional theory. The anomalous maximum appearing at a non-zero ellipticity for the generated NT harmonics can be attributed to multiphoton effects of the orthogonally polarized component of the elliptical driving laser field. Our calculation also shows that the structure of the bound-state, such as molecular alignment and bond length, can be sensitively reflected on the ellipticity dependence of the near-threshold harmonics.

  10. Addressing the statistical mechanics of planet orbits in the solar system

    Science.gov (United States)

    Mogavero, Federico

    2017-10-01

    The chaotic nature of planet dynamics in the solar system suggests the relevance of a statistical approach to planetary orbits. In such a statistical description, the time-dependent position and velocity of the planets are replaced by the probability density function (PDF) of their orbital elements. It is natural to set up this kind of approach in the framework of statistical mechanics. In the present paper, I focus on the collisionless excitation of eccentricities and inclinations via gravitational interactions in a planetary system. The future planet trajectories in the solar system constitute the prototype of this kind of dynamics. I thus address the statistical mechanics of the solar system planet orbits and try to reproduce the PDFs numerically constructed by Laskar (2008, Icarus, 196, 1). I show that the microcanonical ensemble of the Laplace-Lagrange theory accurately reproduces the statistics of the giant planet orbits. To model the inner planets I then investigate the ansatz of equiprobability in the phase space constrained by the secular integrals of motion. The eccentricity and inclination PDFs of Earth and Venus are reproduced with no free parameters. Within the limitations of a stationary model, the predictions also show a reasonable agreement with Mars PDFs and that of Mercury inclination. The eccentricity of Mercury demands in contrast a deeper analysis. I finally revisit the random walk approach of Laskar to the time dependence of the inner planet PDFs. Such a statistical theory could be combined with direct numerical simulations of planet trajectories in the context of planet formation, which is likely to be a chaotic process.

  11. Elliptic Flow, Initial Eccentricity and Elliptic Flow Fluctuations in Heavy Ion Collisions at RHIC

    Science.gov (United States)

    Nouicer, Rachid; Alver, B.; Back, B. B.; Baker, M. D.; Ballintijn, M.; Barton, D. S.; Betts, R. R.; Bickley, A. A.; Bindel, R.; Busza, W.; Carroll, A.; Chai, Z.; Decowski, M. P.; García, E.; Gburek, T.; George, N.; Gulbrandsen, K.; Halliwell, C.; Hamblen, J.; Hauer, M.; Henderson, C.; Hofman, D. J.; Hollis, R. S.; Holzman, B.; Iordanova, A.; Kane, J. L.; Khan, N.; Kulinich, P.; Kuo, C. M.; Li, W.; Lin, W. T.; Loizides, C.; Manly, S.; Mignerey, A. C.; Nouicer, R.; Olszewski, A.; Pak, R.; Reed, C.; Roland, C.; Roland, G.; Sagerer, J.; Seals, H.; Sedykh, I.; Smith, C. E.; Stankiewicz, M. A.; Steinberg, P.; Stephans, G. S. F.; Sukhanov, A.; Tonjes, M. B.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Vaurynovich, S. S.; Verdier, R.; Veres, G. I.; Walters, P.; Wenger, E.; Wolfs, F. L. H.; Wosiek, B.; Woźniak, K.; Wysłouch, B.

    2008-12-01

    We present measurements of elliptic flow and event-by-event fluctuations established by the PHOBOS experiment. Elliptic flow scaled by participant eccentricity is found to be similar for both systems when collisions with the same number of participants or the same particle area density are compared. The agreement of elliptic flow between Au+Au and Cu+Cu collisions provides evidence that the matter is created in the initial stage of relativistic heavy ion collisions with transverse granularity similar to that of the participant nucleons. The event-by-event fluctuation results reveal that the initial collision geometry is translated into the final state azimuthal particle distribution, leading to an event-by-event proportionality between the observed elliptic flow and initial eccentricity.

  12. Elliptic Determinantal Processes and Elliptic Dyson Models

    Science.gov (United States)

    Katori, Makoto

    2017-10-01

    We introduce seven families of stochastic systems of interacting particles in one-dimension corresponding to the seven families of irreducible reduced affine root systems. We prove that they are determinantal in the sense that all spatio-temporal correlation functions are given by determinants controlled by a single function called the spatio-temporal correlation kernel. For the four families {A}_{N-1}, {B}_N, {C}_N and {D}_N, we identify the systems of stochastic differential equations solved by these determinantal processes, which will be regarded as the elliptic extensions of the Dyson model. Here we use the notion of martingales in probability theory and the elliptic determinant evaluations of the Macdonald denominators of irreducible reduced affine root systems given by Rosengren and Schlosser.

  13. Satellite orbits in Levi-Civita space

    Science.gov (United States)

    Humi, Mayer

    2018-03-01

    In this paper we consider satellite orbits in central force field with quadratic drag using two formalisms. The first using polar coordinates in which the satellite angular momentum plays a dominant role. The second is in Levi-Civita coordinates in which the energy plays a central role. We then merge these two formalisms by introducing polar coordinates in Levi-Civita space and derive a new equation for satellite orbits which unifies these two paradigms. In this equation energy and angular momentum appear on equal footing and thus characterize the orbit by its two invariants. Using this formalism we show that equatorial orbits around oblate spheroids can be expressed analytically in terms of Elliptic functions. In the second part of the paper we derive in Levi-Civita coordinates a linearized equation for the relative motion of two spacecrafts whose trajectories are in the same plane. We carry out also a numerical verification of these equations.

  14. Elliptical concentrators.

    Science.gov (United States)

    Garcia-Botella, Angel; Fernandez-Balbuena, Antonio Alvarez; Bernabeu, Eusebio

    2006-10-10

    Nonimaging optics is a field devoted to the design of optical components for applications such as solar concentration or illumination. In this field, many different techniques have been used to produce optical devices, including the use of reflective and refractive components or inverse engineering techniques. However, many of these optical components are based on translational symmetries, rotational symmetries, or free-form surfaces. We study a new family of nonimaging concentrators called elliptical concentrators. This new family of concentrators provides new capabilities and can have different configurations, either homofocal or nonhomofocal. Translational and rotational concentrators can be considered as particular cases of elliptical concentrators.

  15. Intrinsic shapes of discy and boxy ellipticals

    International Nuclear Information System (INIS)

    Fasano, Giovanni

    1991-01-01

    Statistical tests for intrinsic shapes of elliptical galaxies have given so far inconclusive and sometimes contradictory results. These failures have been often charged to the fact that classical tests consider only the two axisymmetric shapes (oblate versus prolate), while ellipticals are truly triaxial bodies. On the other hand, recent analyses indicate that the class of elliptical galaxies could be a mixture of (at least) two families having different morphology and dynamical behaviour: (i) a family of fast-rotating, disc-like ellipticals (discy); (ii) a family of slow-rotating, box-shaped ellipticals (boxy). In this paper we review the tests for instrinsic shapes of elliptical galaxies using data of better quality (CCD) with respect to previous applications. (author)

  16. Stable low-altitude orbits around Ganymede considering a disturbing body in a circular orbit

    Science.gov (United States)

    Cardoso dos Santos, J.; Carvalho, J. P. S.; Vilhena de Moraes, R.

    2014-10-01

    Some missions are being planned to visit Ganymede like the Europa Jupiter System Mission that is a cooperation between NASA and ESA to insert the spacecraft JGO (Jupiter Ganymede Orbiter) into Ganymedes orbit. This comprehension of the dynamics of these orbits around this planetary satellite is essential for the success of this type of mission. Thus, this work aims to perform a search for low-altitude orbits around Ganymede. An emphasis is given in polar orbits and it can be useful in the planning of space missions to be conducted around, with respect to the stability of orbits of artificial satellites. The study considers orbits of artificial satellites around Ganymede under the influence of the third-body (Jupiter's gravitational attraction) and the polygenic perturbations like those due to non-uniform distribution of mass (J_2 and J_3) of the main body. A simplified dynamic model for these perturbations is used. The Lagrange planetary equations are used to describe the orbital motion of the artificial satellite. The equations of motion are developed in closed form to avoid expansions in eccentricity and inclination. The results show the argument of pericenter circulating. However, low-altitude (100 and 150 km) polar orbits are stable. Another orbital elements behaved variating with small amplitudes. Thus, such orbits are convenient to be applied to future space missions to Ganymede. Acknowledgments: FAPESP (processes n° 2011/05671-5, 2012/12539-9 and 2012/21023-6).

  17. The properties of radio ellipticals

    International Nuclear Information System (INIS)

    Sparks, W.B.; Disney, M.J.; Rodgers, A.W.

    1984-01-01

    Optical and additional radio data are presented for the bright galaxies of the Disney and Wall survey (1977 Mon. Not. R. Astron. Soc. 179, 235). These data form the basis of a statistical comparison of the properties of radio elliptical galaxies to radio-quiet ellipticals. The correlations may be explained by the depth of the gravitational potential well in which the galaxy resides governing the circumstances under which an elliptical galaxy rids itself of internally produced gas. (author)

  18. Excursion Processes Associated with Elliptic Combinatorics

    Science.gov (United States)

    Baba, Hiroya; Katori, Makoto

    2018-06-01

    Researching elliptic analogues for equalities and formulas is a new trend in enumerative combinatorics which has followed the previous trend of studying q-analogues. Recently Schlosser proposed a lattice path model in the square lattice with a family of totally elliptic weight-functions including several complex parameters and discussed an elliptic extension of the binomial theorem. In the present paper, we introduce a family of discrete-time excursion processes on Z starting from the origin and returning to the origin in a given time duration 2 T associated with Schlosser's elliptic combinatorics. The processes are inhomogeneous both in space and time and hence expected to provide new models in non-equilibrium statistical mechanics. By numerical calculation we show that the maximum likelihood trajectories on the spatio-temporal plane of the elliptic excursion processes and of their reduced trigonometric versions are not straight lines in general but are nontrivially curved depending on parameters. We analyze asymptotic probability laws in the long-term limit T → ∞ for a simplified trigonometric version of excursion process. Emergence of nontrivial curves of trajectories in a large scale of space and time from the elementary elliptic weight-functions exhibits a new aspect of elliptic combinatorics.

  19. The elliptic genus and Hidden symmetry

    International Nuclear Information System (INIS)

    Jaffe, A.

    2001-01-01

    We study the elliptic genus (a partition function) in certain interacting, twist quantum field theories. Without twists, these theories have N=2 supersymmetry. The twists provide a regularization, and also partially break the supersymmetry. In spite of the regularization, one can establish a homotopy of the elliptic genus in a coupling parameter. Our construction relies on a priori estimates and other methods from constructive quantum field theory; this mathematical underpinning allows us to justify evaluating the elliptic genus at one endpoint of the homotopy. We obtain a version of Witten's proposed formula for the elliptic genus in terms of classical theta functions. As a consequence, the elliptic genus has a hidden SL(2,Z) symmetry characteristic of conformal theory, even though the underlying theory is not conformal. (orig.)

  20. Multicolor surface photometry of 17 ellipticals

    International Nuclear Information System (INIS)

    Franx, M.; Illingworth, G.; Heckman, T.

    1989-01-01

    Multicolor two-dimensional surface photometry was used to obtain radial profiles for surface brightness, color, ellipticity, position angle, and the residuals from the fitted ellipses described by the cos(n phi) and sin(n phi) terms (where n = 3 and 4) for 17 elliptical galaxies. It is found that at radii as large as five times the seeing FWHM, seeing can affect the ellipticity at the 10 percent level and introduce uncertainty in the position angles of several degrees, particularly for very round ellipticals. The present profiles are found to agree well with previous data, with rms differences of 0.02 in ellipticity and 2 deg in position angle. The observed color gradients are consistent with a decrease in the metallicity by a factor of about 2 per decade in radius. 61 refs

  1. Secular Orbit and Spin Variations of Asteroid (16) Psyche

    Science.gov (United States)

    Bills, B. G.; Park, R. S.; Scott, B.

    2016-12-01

    The obliquity, or angular separation between spin and orbit poles, of asteroid (16) Psyche is currently 95 degrees. We are interested in knowing how much that angular separation varies, on time scales of 104 to 106 years. To answer that question, we have done several related analyses. On short time scales, the orbital element variations of Psyche are dominated by perturbations from Jupiter. Jupiter's dominance has two basic causes: first is the large mass and relatively close position of Jupiter, and second is a 19:8 mean motion resonance. Jupiter completes 8 orbits in 94.9009 years, while Psyche takes 94.9107 years to complete 19 orbits. As a result of this, all of the orbital elements of Psyche exhibit significant periodic variations, with a 94.9 year period dominating. There are also significant variations at the synodic period, which is 8.628 years, or 1/11 of the resonant period. Over a 1000 year time span, centered on the present, the eccentricity varies from 0.133 to 0.140, and the inclination varies from 2.961 to 3.229 degrees. On longer time scales, the orbital elements of Psyche vary considerably more than that, due to secular perturbations from the planets. The secular variations are modeled as the response of interacting mass rings, rather than point masses. Again, Jupiter is the main perturbing influence on Psyche. The eccentricity and inclination both oscillate, with dominant periods of 18.667 kyr. The range of values seen over a million year time span, is 0.057 to 0.147 for eccentricity, and 0.384 to 4.777 degrees for inclination. Using a recent shape model, and assumption of uniform density, to constrain relevant moments of inertia, we estimate the spin pole precession rate parameter to be 8.53 arcsec/year. The current spin pole is at ecliptic {lon, lat} = { 32, -7} deg, whereas the orbit pole is at {lon, lat} = {60.47, 86.91} deg. The current obliquity is thus 94.3 degree. Using nominal values of the input parameters, the recovered spin pole

  2. Elliptical shape of the coma cluster

    International Nuclear Information System (INIS)

    Schipper, L.; King, I.R.

    1978-01-01

    The elliptical shape of the Coma cluster is examined quantitatively. The degree of ellipticity is high and depends to some extent on the radial distance of the sample from the Coma center as well as on the brightness of the sample. The elliptical shape does not appear to be caused by rotation; other possible causes are briefly discussed

  3. Stable orbits for lunar landing assistance

    Science.gov (United States)

    Condoleo, Ennio; Cinelli, Marco; Ortore, Emiliano; Circi, Christian

    2017-10-01

    To improve lunar landing performances in terms of mission costs, trajectory determination and visibility the use of a single probe located over an assistance orbit around the Moon has been taken into consideration. To this end, the properties of two quasi-circular orbits characterised by a stable behaviour of semi-major axis, eccentricity and inclination have been investigated. The analysis has demonstrated the possibility of using an assistance probe, located over one of these orbits, as a relay satellite between lander and Earth, even in the case of landings on the far side of the Moon. A comparison about the accuracy in retrieving the lander's state with respect to the use of a probe located in the Lagrangian point L2 of the Earth-Moon system has also been carried out.

  4. Violent Relaxation, Dynamical Instabilities and the Formation of Elliptical Galaxies

    Science.gov (United States)

    Aguilar, L. A.

    1990-11-01

    RESUMEN: El problema de la formaci6n de galaxias elfpticas por medjo de colapso gravitacional sin disipaci6n de energfa es estudiado usando un gran numero de simulaciones numericas. Se muestra que este tipo de colapsos, partiendo de condiciones iniciales frfas donde la energfa cinetica inicial representa s6lo un 5%, 0 , de a potencial inicial, produce sistemas relajados de forma triaxial muy similares a las galaxias elfpticas reales en sus formas y perfiles de densidad en proyecci6i . La forina triaxial resulta de la acci6n de una inestabilidad dinamica que aparece en sistemas 'inicos dominados por movimientos radiales, mientras que el perfil de densidad final Cs debido al llamado relajamiento violento que tiende a producir una distribuci6n en espacio fase unica. Estos dos fen6menos tienden a borrar los detalles particulares sobre las condiciones iniciales y dan lugar a una evoluci6n convergente hacia sistemas realistas, esto innecesario el uso de condiciones iniciales especiales (excepto por Ia condici6i de que estas deben ser frfas). Las condiciones iniciales frfas producen los movimientos radiales y fluctuaciones de la energfa potencial requeridos por ambos fen6menos. ABSTRACT: The problem of formation of elliptical galaxies via dissipationless collapse is studied using a large set of numerical simulations. It is shown that dissipationless collapses from cold initial conditions, where the total initial kinetic energy is less than 5% ofthe initial potential energy, lead to relaxed triaxial systems ery similar to real elliptical galaxies ii projected shape and density profiles. The triaxial shape is due to the of a dynamical instability that appears on systems dominated by radial orbits, while final density profile is due to violent relaxation that tends to produce a unique distribution iii space. These two phenomena erase memory of the initial prodtice a convergent evolution toward realistic systems, thus making unnecessary use o[special initial conditions (other

  5. Interstellar matter in Shapley-Ames elliptical galaxies. IV. A diffusely distributed component of dust and its effect on colour gradients.

    Science.gov (United States)

    Goudfrooij, P.; de Jong, T.

    1995-06-01

    We have investigated IRAS far-infrared observations of a complete, blue magnitude limited sample of 56 elliptical galaxies selected from the Revised Shapley-Ames Catalog. Data from a homogeneous optical CCD imaging survey as well as published X-ray data from the EINSTEIN satellite are used to constrain the infrared data. Dust masses as determined from the IRAS flux densities are found to be roughly an order of magnitude higher than those determined from optical extinction values of dust lanes and patches, in strong contrast with the situation in spiral galaxies. This "mass discrepancy" is found to be independent of the (apparent) inclination of the dust lanes. To resolve this dilemma we postulate that the majority of the dust in elliptical galaxies exists as a diffusely distributed component of dust which is undetectable at optical wavelengths. Using observed radial optical surface brightness profiles, we have systematically investigated possible heating mechanisms for the dust within elliptical galaxies. We find that heating of the dust in elliptical galaxies by the interstellar radiation field is generally sufficient to account for the dust temperatures as indicated by the IRAS flux densities. Collisions of dust grains with hot electrons in elliptical galaxies which are embedded in a hot, X-ray-emitting gas is found to be another effective heating mechanism for the dust. Employing model calculations which involve the transfer of stellar radiation in a spherical distribution of stars mixed with a diffuse distribution of dust, we show that the observed infrared luminosities imply total dust optical depths of the postulated diffusely distributed dust component in the range 0.1<~τ_V_<~0.7 and radial colour gradients 0.03<~{DELTA}(B-I)/{DELTA}log r<~0.25. The observed IRAS flux densities can be reproduced within the 1σ uncertainties in virtually all ellipticals in this sample by this newly postulated dust component, diffusely distributed over the inner few kpc of

  6. Comparison of soft-tissue orbital morphometry in attractive and normal Italian subjects.

    Science.gov (United States)

    Sforza, Chiarella; Dolci, Claudia; Grandi, Gaia; Tartaglia, Gianluca M; Laino, Alberto; Ferrario, Virgilio F

    2015-01-01

    To identify esthetic characteristics of the orbital soft tissues of attractive Italian adult women and men. Three-dimensional computerized digitizers were used to collect the coordinates of facial landmarks in 199 healthy, normal subjects aged 18 to 30 years (71 women, 128 men; mean age, 22 years) and in 126 coetaneous attractive subjects (92 women, 34 men; mean age, 20 years) selected during beauty competitions. From the landmarks, six linear distances, two ratios, six angles, and two areas were calculated. Attractive subjects were compared with normal ones by computing z-scores. Intercanthal width was reduced while eye fissure lengths were increased in both genders. Orbital heights (os-or) were increased only in attractive women, with a significant gender-related difference. The inclinations of the eye fissure were increased in attractive subjects, while the inclinations of the orbit were reduced. For several of the analyzed measurements, similar patterns of z-scores were observed for attractive men and women (r  =  .883). Attractive women and men had several specific esthetic characteristics in their orbital soft tissues; esthetic reference values can be used to determine optimal goals in surgical treatment.

  7. SEE in-flight measurement on the MIR orbital station

    International Nuclear Information System (INIS)

    Falguere, D.; Duzellier, S.; Ecoffet, R.

    1994-01-01

    SEE spaceflight measurements are presented on HM65756 SRAM from Matra-MHS, Seeq 28C256 and Motorola MC68020 microprocessor (bulk version) in the MIR station orbit (350 km altitude, 51.6 degree inclination). Accelerator testing (heavy ion and proton) of flight spares permits the prediction of the event rates using standard model such as CREME and SPACERAD as well as characterizations of the flight components allowing the comparison of in-orbit observations. Event rate prediction and ground-testing data are compared

  8. Satellite orbits perturbed by direct solar radiation pressure: general expansion of the disturbing function

    International Nuclear Information System (INIS)

    Hughes, S.

    1977-01-01

    An expression is derived for the solar radiation pressure disturbing function on an Earth satellite orbit which takes into account the variation of the solar radiation flux with distance from the Sun's centre and the absorption of radiation by the satellite. This expression is then expanded in terms of the Keplerian elements of the satellite and solar orbits using Kaula's method (Astr. J.; 67:300 (1962)). The Kaula inclination functions are replaced by an equivalent set of modified Allan (Proc. R. Soc. A.; 288:60 (1965)) inclination functions. The resulting expression reduces to the form commonly used in solar radiation pressure perturbation studies (e.g. Aksnes, Cel. Mech.; 13:89 (1976)), when certain terms are neglected. If, as happens quite often in practice, a satellite's orbit is in near-resonance with certain of these neglected terms, these near-resonant terms can cause changes in the satellite's orbital elements comparable to those produced by the largest term in Aksnes's expression. A new expression for the solar radiation pressure disturbing function expansion is suggested for use in future studies of satellite orbits perturbed by solar radiation pressure. (author)

  9. Overdetermined elliptic problems in topological disks

    Science.gov (United States)

    Mira, Pablo

    2018-06-01

    We introduce a method, based on the Poincaré-Hopf index theorem, to classify solutions to overdetermined problems for fully nonlinear elliptic equations in domains diffeomorphic to a closed disk. Applications to some well-known nonlinear elliptic PDEs are provided. Our result can be seen as the analogue of Hopf's uniqueness theorem for constant mean curvature spheres, but for the general analytic context of overdetermined elliptic problems.

  10. Elliptic polylogarithms and iterated integrals on elliptic curves. II. An application to the sunrise integral

    Science.gov (United States)

    Broedel, Johannes; Duhr, Claude; Dulat, Falko; Tancredi, Lorenzo

    2018-06-01

    We introduce a class of iterated integrals that generalize multiple polylogarithms to elliptic curves. These elliptic multiple polylogarithms are closely related to similar functions defined in pure mathematics and string theory. We then focus on the equal-mass and non-equal-mass sunrise integrals, and we develop a formalism that enables us to compute these Feynman integrals in terms of our iterated integrals on elliptic curves. The key idea is to use integration-by-parts identities to identify a set of integral kernels, whose precise form is determined by the branch points of the integral in question. These kernels allow us to express all iterated integrals on an elliptic curve in terms of them. The flexibility of our approach leads us to expect that it will be applicable to a large variety of integrals in high-energy physics.

  11. Wireless Orbiter Hang-Angle Inclinometer System

    Science.gov (United States)

    Lucena, Angel; Perotti, Jose; Green, Eric; Byon, Jonathan; Burns, Bradley; Mata, Carlos; Randazzo, John; Blalock, Norman

    2011-01-01

    A document describes a system to reliably gather the hang-angle inclination of the orbiter. The system comprises a wireless handheld master station (which contains the main station software) and a wireless remote station (which contains the inclinometer sensors, the RF transceivers, and the remote station software). The remote station is designed to provide redundancy to the system. It includes two RF transceivers, two power-management boards, and four inclinometer sensors.

  12. Development of an Architecture of Sun-Synchronous Orbital Slots to Minimize Conjunctions

    Science.gov (United States)

    Weeden, B.

    Sun-synchronous orbit (SSO) satellites serve many important functions, primarily in the areas of Earth reconnaissance and weather. The orbital parameters of altitude, inclination and right ascension which allow for the unique utility of Sun-sync orbit limit these satellites to a very specific region of space. The popularity of these satellite missions combined with the use of similar engineering solutions has resulted in the majority of current Sun-sync satellites within this region having very similar inclinations and altitudes while also spaced around the Equator in right ascension, creating the opportunity for conjunctions at the polar crossing points and a serious safety issue that could endanger long-term sustainability of SSO. This paper outlines the development of a new architecture of SSO zoning to create specific slots separating SSO satellites in altitude, right ascension and time at all orbital intersections while minimizing the limitations on utility. A methodical approach for the development of the system is presented along with the work-to-date and a software tool for calculating repeating ground track orbits. The slot system is intended to allow for continued utility of and safe operation within SSO while greatly decreasing the chance of collisions at orbital intersections. This architecture is put forward as one possible element of a new Space Traffic Management (STM) system with the overall goal of maintaining the safe and continued used of space by all actors.

  13. Aesthetic evaluation of profile incisor inclination.

    Science.gov (United States)

    Ghaleb, Nathalie; Bouserhal, Joseph; Bassil-Nassif, Nayla

    2011-06-01

    The objectives of this study were to evaluate (1) the impact of maxillary incisor inclination on the aesthetics of the profile view of a smile, (2) to determine the most aesthetic inclination in the profile view of a smile and correlate it with facial features, and (3) to determine if dentists, orthodontists, and laypeople appreciate differently incisor inclination in smile aesthetics. A smiling profile photograph of a female subject (22 years of age) who fulfilled the criteria of soft tissue normative values and a balanced smile was obtained. The photograph was manipulated to simulate six lingual and labial inclinations at 5 degree increments to a maximum of 15 degrees. The seven photographs were randomly distributed in a binder to three groups of raters (30 dentists, 30 orthodontists, and 30 laypeople) who scored the attractiveness of the photographic variations using a visual analogue scale. Comparison of the mean scores was carried out by repeated analysis of variance, univariate tests, and multiple Bonferroni comparisons. The results showed a statistically significant interaction between the rater's profession and the aesthetic preference of incisor inclination (P = 0.013). The profile smile corresponding to an increase of 5 degrees in a labial direction had the highest score among all professions and among male and female raters. Orthodontists preferred labial crown torque; dentists and laypeople did not appreciate excessive incisor inclination in either the lingual or the labial directions. The most preferred smile matched with a maxillary incisor inclined 93 degrees to the horizontal line and +7 degrees to the lower facial third.

  14. Diffeomorphisms of elliptic 3-manifolds

    CERN Document Server

    Hong, Sungbok; McCullough, Darryl; Rubinstein, J Hyam

    2012-01-01

    This work concerns the diffeomorphism groups of 3-manifolds, in particular of elliptic 3-manifolds. These are the closed 3-manifolds that admit a Riemannian metric of constant positive curvature, now known to be exactly the closed 3-manifolds that have a finite fundamental group. The (Generalized) Smale Conjecture asserts that for any elliptic 3-manifold M, the inclusion from the isometry group of M to its diffeomorphism group is a homotopy equivalence. The original Smale Conjecture, for the 3-sphere, was proven by J. Cerf and A. Hatcher, and N. Ivanov proved the generalized conjecture for many of the elliptic 3-manifolds that contain a geometrically incompressible Klein bottle. The main results establish the Smale Conjecture for all elliptic 3-manifolds containing geometrically incompressible Klein bottles, and for all lens spaces L(m,q) with m at least 3. Additional results imply that for a Haken Seifert-fibered 3 manifold V, the space of Seifert fiberings has contractible components, and apart from a small...

  15. Elliptic genera from multi-centers

    Energy Technology Data Exchange (ETDEWEB)

    Gaddam, Nava [Institute for Theoretical Physics and Center for Extreme Matter and Emergent Phenomena,Utrecht University, 3508 TD Utrecht (Netherlands)

    2016-05-13

    I show how elliptic genera for various Calabi-Yau threefolds may be understood from supergravity localization using the quantization of the phase space of certain multi-center configurations. I present a simple procedure that allows for the enumeration of all multi-center configurations contributing to the polar sector of the elliptic genera — explicitly verifying this in the cases of the quintic in ℙ{sup 4}, the sextic in Wℙ{sub (2,1,1,1,1)}, the octic in Wℙ{sub (4,1,1,1,1)} and the dectic in Wℙ{sub (5,2,1,1,1)}. With an input of the corresponding ‘single-center’ indices (Donaldson-Thomas invariants), the polar terms have been known to determine the elliptic genera completely. I argue that this multi-center approach to the low-lying spectrum of the elliptic genera is a stepping stone towards an understanding of the exact microscopic states that contribute to supersymmetric single center black hole entropy in N=2 supergravity.

  16. Elliptic genus of singular algebraic varieties and quotients

    Science.gov (United States)

    Libgober, Anatoly

    2018-02-01

    This paper discusses the basic properties of various versions of the two-variable elliptic genus with special attention to the equivariant elliptic genus. The main applications are to the elliptic genera attached to non-compact GITs, including the theories regarding the elliptic genera of phases on N  =  2 introduced in Witten (1993 Nucl. Phys. B 403 159-222).

  17. Resonant Orbital Dynamics in LEO Region: Space Debris in Focus

    Directory of Open Access Journals (Sweden)

    J. C. Sampaio

    2014-01-01

    Full Text Available The increasing number of objects orbiting the earth justifies the great attention and interest in the observation, spacecraft protection, and collision avoidance. These studies involve different disturbances and resonances in the orbital motions of these objects distributed by the distinct altitudes. In this work, objects in resonant orbital motions are studied in low earth orbits. Using the two-line elements (TLE of the NORAD, resonant angles and resonant periods associated with real motions are described, providing more accurate information to develop an analytical model that describes a certain resonance. The time behaviors of the semimajor axis, eccentricity, and inclination of some space debris are studied. Possible irregular motions are observed by the frequency analysis and by the presence of different resonant angles describing the orbital dynamics of these objects.

  18. Elliptic curves for applications (Tutorial)

    NARCIS (Netherlands)

    Lange, T.; Bernstein, D.J.; Chatterjee, S.

    2011-01-01

    More than 25 years ago, elliptic curves over finite fields were suggested as a group in which the Discrete Logarithm Problem (DLP) can be hard. Since then many researchers have scrutinized the security of the DLP on elliptic curves with the result that for suitably chosen curves only exponential

  19. Mars Molniya Orbit Atmospheric Resource Mining

    Science.gov (United States)

    Mueller, Robert P.; Braun, Robert D.; Sibille, Laurent; Sforzo, Brandon; Gonyea, Keir; Ali, Hisham

    2016-01-01

    This NIAC (NASA Advanced Innovative Concepts) work will focus on Mars and will build on previous efforts at analyzing atmospheric mining at Earth and the outer solar system. Spacecraft systems concepts will be evaluated and traded, to assess feasibility. However the study will primarily examine the architecture and associated missions to explore the closure, constraints and critical parameters through sensitivity studies. The Mars atmosphere consists of 95.5 percent CO2 gas which can be converted to methane fuel (CH4) and Oxidizer (O2) for chemical rocket propulsion, if hydrogen is transported from electrolyzed water on the Mars surface or from Earth. By using a highly elliptical Mars Molniya style orbit, the CO2 atmosphere can be scooped, ram-compressed and stored while the spacecraft dips into the Mars atmosphere at periapsis. Successive orbits result in additional scooping of CO2 gas, which also serves to aerobrake the spacecraft, resulting in a decaying Molniya orbit.

  20. Partial differential operators of elliptic type

    CERN Document Server

    Shimakura, Norio

    1992-01-01

    This book, which originally appeared in Japanese, was written for use in an undergraduate course or first year graduate course in partial differential equations and is likely to be of interest to researchers as well. This book presents a comprehensive study of the theory of elliptic partial differential operators. Beginning with the definitions of ellipticity for higher order operators, Shimakura discusses the Laplacian in Euclidean spaces, elementary solutions, smoothness of solutions, Vishik-Sobolev problems, the Schauder theory, and degenerate elliptic operators. The appendix covers such preliminaries as ordinary differential equations, Sobolev spaces, and maximum principles. Because elliptic operators arise in many areas, readers will appreciate this book for the way it brings together a variety of techniques that have arisen in different branches of mathematics.

  1. Radiography method mprising determination of corrected absorption values for members of sets of mutually inclined beam paths

    International Nuclear Information System (INIS)

    McLeMay, C.A.G.

    1978-01-01

    An x-ray apparatus is described for examining a body including a source of a fan of radiation and detectors of the radiation along beams in the fan are transversed in a plane to provide data for a number of sets of parallel beams in the plane. An orbital motion is provided to give data for further sets at different inclinations in the plane. The data can be processed by arrangements using such parallel sets. The orbital motion is continuous but the extent of angular change in one lateral scan is kept small so that lack of parallelism in the parallel sets does not give excessive errors

  2. Developing a composite based elliptic spring for automotive applications

    International Nuclear Information System (INIS)

    Talib, Abdul Rahim Abu; Ali, Aidy; Goudah, G.; Lah, Nur Azida Che; Golestaneh, A.F.

    2010-01-01

    An automotive suspension system is designed to provide both safety and comfort for the vehicle occupants. In this study, finite element models were developed to optimize the material and geometry of the composite elliptical spring based on the spring rate, log life and shear stress parameters. The influence of the ellipticity ratio on the performance of woven roving-wrapped composite elliptical springs was investigated both experimentally and numerically. The study demonstrated that composite elliptical springs can be used for light and heavy trucks with substantial weight reduction. The results showed that the ellipticity ratio significantly influenced the design parameters. Composite elliptic springs with ellipticity ratios of a/b = 2 had the optimum spring parameters.

  3. The 2-D lattice theory of Flower Constellations

    Science.gov (United States)

    Avendaño, Martín E.; Davis, Jeremy J.; Mortari, Daniele

    2013-08-01

    The 2-D lattice theory of Flower Constellations, generalizing Harmonic Flower Constellations (the symmetric subset of Flower Constellations) as well as the Walker/ Mozhaev constellations, is presented here. This theory is a new general framework to design symmetric constellations using a 2× 2 lattice matrix of integers or by its minimal representation, the Hermite normal form. From a geometrical point of view, the phasing of satellites is represented by a regular pattern (lattice) on a two-Dimensional torus. The 2-D lattice theory of Flower Constellations does not require any compatibility condition and uses a minimum set of integer parameters whose meaning are explored throughout the paper. This general minimum-parametrization framework allows us to obtain all symmetric distribution of satellites. Due to the J_2 effect this design framework is meant for circular orbits and for elliptical orbits at critical inclination, or to design elliptical constellations for the unperturbed Keplerian case.

  4. Coercive properties of elliptic-parabolic operator

    International Nuclear Information System (INIS)

    Duong Min Duc.

    1987-06-01

    Using a generalized Poincare inequality, we study the coercive properties of a class of elliptic-parabolic partial differential equations, which contains many degenerate elliptic equations considered by the other authors. (author). 16 refs

  5. A class of strongly degenerate elliptic operators

    International Nuclear Information System (INIS)

    Duong Minh Duc.

    1988-04-01

    Using a weighted Poincare inequality, we study (ω 1 ,...,ω n )-elliptic operators. This method is applicable to solve singular elliptic equations with conditions in W 1,2 on the boundary. We also get a result about the regularity of solutions of singular elliptic equations. An application to (ω 1 ,...ω n )-parabolic equations is given. (author). 33 refs

  6. Long-Term Prediction of Satellite Orbit Using Analytical Method

    Directory of Open Access Journals (Sweden)

    Jae-Cheol Yoon

    1997-12-01

    Full Text Available A long-term prediction algorithm of geostationary orbit was developed using the analytical method. The perturbation force models include geopotential upto fifth order and degree and luni-solar gravitation, and solar radiation pressure. All of the perturbation effects were analyzed by secular variations, short-period variations, and long-period variations for equinoctial elements such as the semi-major axis, eccentricity vector, inclination vector, and mean longitude of the satellite. Result of the analytical orbit propagator was compared with that of the cowell orbit propagator for the KOREASAT. The comparison indicated that the analytical solution could predict the semi-major axis with an accuarcy of better than ~35meters over a period of 3 month.

  7. POST-CAPTURE EVOLUTION OF POTENTIALLY HABITABLE EXOMOONS

    International Nuclear Information System (INIS)

    Porter, Simon B.; Grundy, William M.

    2011-01-01

    The satellites of extrasolar planets (exomoons) have been recently proposed as astrobiological targets. Since giant planets in the habitable zone are thought to have migrated there, it is possible that they may have captured a former terrestrial planet or planetesimal. We therefore attempt to model the dynamical evolution of a terrestrial planet captured into orbit around a giant planet in the habitable zone of a star. We find that approximately half of loose elliptical orbits result in stable circular orbits over timescales of less than a few million years. We also find that those orbits are mostly at low inclination, but have no prograde/retrograde preference. In addition, we calculate the transit timing and duration variations for the resulting systems, and find that potentially habitable Earth-mass exomoons should be detectable.

  8. Psychosocial Determinants of Romantic Inclination Among Indian Youth

    Directory of Open Access Journals (Sweden)

    D. Barani Ganth

    2017-10-01

    Full Text Available The present study was conducted with the aim of understanding the psychosocial determinants of romantic inclination among youth in India. We involved 779 student participants from a large central university in south India in the age range of 18-24 years. The participants filled measures on romantic inclination, personality, attachment style, interpersonal attraction, and social influence on romantic relationship in addition to a questionnaire on demographic information and relationship history. Analysis of the data revealed that males showed higher level of romantic inclination than females. Those who had current/past involvement in a romantic relationship (Lovers showed higher levels of romantic inclination than those who had never involved in a romantic relationship (Non-lovers. Parents’ type of marriage (Love/arranged, close fiends’ involvement in romantic relationship too had a discriminatory role in romantic inclination. Romantic inclination was significantly related to personality factors, attachment style, media and peer influences on romantic relationships and interpersonal attraction. Extraversion, openness to experience, agreeableness, media influence, peer influence, secure attachment and physical attraction emerged as significant predictors of romantic inclination in a regression model. Structural Equations Modeling (SEM indicated that personality, attachment style and interpersonal attraction had a significant influence on romantic inclination mediated by both media and peer influences. Romantic inclination in turn significantly predicted romantic relationship status.

  9. Applicability of meteor radiant determination methods depending on orbit type. I. High-eccentric orbits

    Science.gov (United States)

    Svoren, J.; Neslusan, L.; Porubcan, V.

    1993-07-01

    It is evident that there is no uniform method of calculating meteor radiants which would yield reliable results for all types of cometary orbits. In the present paper an analysis of this problem is presented, together with recommended methods for various types of orbits. Some additional methods resulting from mathematical modelling are presented and discussed together with Porter's, Steel-Baggaley's and Hasegawa's methods. In order to be able to compare how suitable the application of the individual radiant determination methods is, it is necessary to determine the accuracy with which they approximate real meteor orbits. To verify the accuracy with which the orbit of a meteoroid with at least one node at 1 AU fits the original orbit of the parent body, we applied the Southworth-Hawkins D-criterion (Southworth, R.B., Hawkins, G.S.: 1963, Smithson. Contr. Astrophys 7, 261). D0.2 the fit is rather poor and the change of orbit unrealistic. The optimal methods with the smallest values of D for given types of orbits are shown in two series of six plots. The new method of rotation around the line of apsides we propose is very appropriate in the region of small inclinations. There is no doubt that Hasegawa's omega-adjustment method (Hasegawa, I.: 1990, Publ. Astron. Soc. Japan 42, 175) has the widest application. A comparison of the theoretical radiants with the observed radiants of seven known meteor showers is also presented.

  10. Elliptical excisions: variations and the eccentric parallelogram.

    Science.gov (United States)

    Goldberg, Leonard H; Alam, Murad

    2004-02-01

    The elliptical (fusiform) excision is a basic tool of cutaneous surgery. To assess the design, functionality, ease of construction, and aesthetic outcomes of the ellipse. A systematic review of elliptical designs and their site-specific benefits and limitations. In particular, we consider the (1). context of prevailing relaxed skin tension lines and tissue laxity; and (2). removal of the smallest possible amount of tissue around the lesion and in the "dog-ears." Attention is focused on intuitive methods that can be reproducibly planned and executed. Elliptical variations are easily designed and can be adapted to many situations. The eccentric parallelogram excision is offered as a new technique that minimizes notching and focal tension in the center of an elliptical closure. Conclusion The elliptical (fusiform) excision is an efficient, elegant, and versatile technique that will remain a mainstay of the cutaneous surgical armamentarium.

  11. Light equation in eclipsing binary CV Boo: third body candidate in elliptical orbit

    Science.gov (United States)

    Bogomazov, A. I.; Kozyreva, V. S.; Satovskii, B. L.; Krushevska, V. N.; Kuznyetsova, Y. G.; Ehgamberdiev, S. A.; Karimov, R. G.; Khalikova, A. V.; Ibrahimov, M. A.; Irsmambetova, T. R.; Tutukov, A. V.

    2016-12-01

    A short period eclipsing binary star CV Boo is tested for the possible existence of additional bodies in the system with a help of the light equation method. We use data on the moments of minima from the literature as well as from our observations during 2014 May-July. A variation of the CV Boo's orbital period is found with a period of {≈}75 d. This variation can be explained by the influence of a third star with a mass of {≈}0.4 M_{⊙} in an eccentric orbit with e≈0.9. A possibility that the orbital period changes on long time scales is discussed. The suggested tertiary companion is near the chaotic zone around the central binary, so CV Boo represents an interesting example to test its dynamical evolution. A list of 14 minima moments of the binary obtained from our observations is presented.

  12. Application of Semi-analytical Satellite Theory orbit propagator to orbit determination for space object catalog maintenance

    Science.gov (United States)

    Setty, Srinivas J.; Cefola, Paul J.; Montenbruck, Oliver; Fiedler, Hauke

    2016-05-01

    Catalog maintenance for Space Situational Awareness (SSA) demands an accurate and computationally lean orbit propagation and orbit determination technique to cope with the ever increasing number of observed space objects. As an alternative to established numerical and analytical methods, we investigate the accuracy and computational load of the Draper Semi-analytical Satellite Theory (DSST). The standalone version of the DSST was enhanced with additional perturbation models to improve its recovery of short periodic motion. The accuracy of DSST is, for the first time, compared to a numerical propagator with fidelity force models for a comprehensive grid of low, medium, and high altitude orbits with varying eccentricity and different inclinations. Furthermore, the run-time of both propagators is compared as a function of propagation arc, output step size and gravity field order to assess its performance for a full range of relevant use cases. For use in orbit determination, a robust performance of DSST is demonstrated even in the case of sparse observations, which is most sensitive to mismodeled short periodic perturbations. Overall, DSST is shown to exhibit adequate accuracy at favorable computational speed for the full set of orbits that need to be considered in space surveillance. Along with the inherent benefits of a semi-analytical orbit representation, DSST provides an attractive alternative to the more common numerical orbit propagation techniques.

  13. Thermal simulations of the STIX instrument for ESA Solar Orbiter mission

    Science.gov (United States)

    Białek, Agata; Severyn, Karol; Grassmann, Kamil; Orleańskii, Piotr; Skup, Konrad R.; Arnold, Nicolas; Gröbelbauer, Hans-Peter; Hurford, Gordon J.; Krucker, Samuel; Bauer, Svend-Marian; Mann, Gottfied; Önel, Hakan; Bernet, Adeline; Blecha, Luc; Grimm, Oliver; Limousin, Olivier; Martignac, Jerome; Meuris, Aline

    2013-07-01

    The ESA Solar Orbiter mission, planned to be launched in 2017, is going to study the Sun with ten different instruments including the Spectrometer/Telescope for Imaging X-rays - STIX. The thermal environment on the elliptical orbit around the Sun - 0.28 AU at perihelion and 0.952 AU at aphelion - is extreme, where at one point of the orbit is very hot, while on another very cold. That makes the requirements for the heat fluxes exchanged between each instrument and the spacecraft, as well as between the instrument - subsystems, very restrictive. Here the authors discuss the thermal design with respect to the defined requirements and present the results of the thermal analyses performed with ESATAN TMS software.

  14. Effects of solar radiation on the orbits of small particles

    Science.gov (United States)

    Lyttleton, R. A.

    1976-01-01

    A modification of the Robertson (1937) equations of particle motion in the presence of solar radiation is developed which allows for partial reflection of sunlight as a result of rapid and varying particle rotations caused by interaction with the solar wind. The coefficients and forces in earlier forms of the equations are compared with those in the present equations, and secular rates of change of particle orbital elements are determined. Orbital dimensions are calculated in terms of time, probable sizes and densities of meteoric and cometary particles are estimated, and times of infall to the sun are computed for a particle moving in an almost circular orbit and a particle moving in an elliptical orbit of high eccentricity. Changes in orbital elements are also determined for particles from a long-period sun-grazing comet. The results show that the time of infall to the sun from a highly eccentric orbit is substantially shorter than from a circular orbit with a radius equal to the mean distance in the eccentric orbit. The possibility is considered that the free orbital kinetic energy of particles drawn into the sun may be the energy source for the solar corona.

  15. Doppler Velocity Signatures of Idealized Elliptical Vortices

    Directory of Open Access Journals (Sweden)

    Wen-Chau Lee

    2006-01-01

    Full Text Available Doppler radar observations have revealed a class of atmospheric vortices (tropical cyclones, tornadoes, dust devils that possess elliptical radar reflectivity signatures. One famous example is Typhoon Herb (1996 that maintained its elliptical reflectivity structure over a 40-hour period. Theoretical work and dual-Doppler analyses of observed tropical cyclones have suggested two physical mechanisms that can explain the formation of two types of elliptical vortices observed in nature, namely, the combination of a circular vortex with either a wavenumber two vortex Rossby wave or a deformation field. The characteristics of these two types of elliptical vortices and their corresponding Doppler velocity signatures have not been previously examined.

  16. Superior glenoid inclination and rotator cuff tears.

    Science.gov (United States)

    Chalmers, Peter N; Beck, Lindsay; Granger, Erin; Henninger, Heath; Tashjian, Robert Z

    2018-03-23

    The objectives of this study were to determine whether glenoid inclination (1) could be measured accurately on magnetic resonance imaging (MRI) using computed tomography (CT) as a gold standard, (2) could be measured reliably on MRI, and (3) whether it differed between patients with rotator cuff tears and age-matched controls without evidence of rotator cuff tears or glenohumeral osteoarthritis. In this comparative retrospective radiographic study, we measured glenoid inclination on T1 coronal MRI corrected into the plane of the scapula. We determined accuracy by comparison with CT and inter-rater reliability. We compared glenoid inclination between patients with full-thickness rotator cuff tears and patients aged >50 years without evidence of a rotator cuff tear or glenohumeral arthritis. An a priori power analysis determined adequate power to detect a 2° difference in glenoid inclination. (1) In a validation cohort of 37 patients with MRI and CT, the intraclass correlation coefficient was 0.877, with a mean difference of 0° (95% confidence interval, -1° to 1°). (2) For MRI inclination, the inter-rater intraclass correlation coefficient was 0.911. (3) Superior glenoid inclination was 2° higher (range, 1°-4°, P rotator cuff tear group of 192 patients than in the control cohort of 107 patients. Glenoid inclination can be accurately and reliably measured on MRI. Although superior glenoid inclination is statistically greater in those with rotator cuff tears than in patients of similar age without rotator cuff tears or glenohumeral arthritis, the difference is likely below clinical significance. Copyright © 2018 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  17. Elliptic hypergeometric functions associated with root systems

    OpenAIRE

    Rosengren, Hjalmar; Warnaar, S. Ole

    2017-01-01

    We give a survey of elliptic hypergeometric functions associated with root systems, comprised of three main parts. The first two form in essence an annotated table of the main evaluation and transformation formulas for elliptic hypergeometric integeral and series on root systems. The third and final part gives an introduction to Rains' elliptic Macdonald-Koornwinder theory (in part also developed by Coskun and Gustafson).

  18. Flattening and radio emission among elliptical galaxies

    International Nuclear Information System (INIS)

    Disney, M.J.; Sparks, W.B.; Wall, J.V.

    1984-01-01

    In a sample of 132 bright elliptical galaxies it is shown that there is a strong correlation between radio activity and flattening in the sense that radio ellipticals are both apparently and inherently rounder than the average elliptical. Both extended and compact sources are subject to the same correlation. No galaxies with axial ratios below 0.65 are found to be radio emitters. (author)

  19. Two impulse trajectory optimization for the RAE-B orbit trim problem

    Science.gov (United States)

    Payne, M. H.; Pines, S.; Horsewood, J. L.

    1972-01-01

    The results are reported of work on an appropriate approach to the solution of the optimum two-impulse transfer problem between orbits of specified inclination. The task included a literature search to identify the current state of the art and a definition of the suggested approach for the specific application of a lunar orbit trim. The applications of the results to the problem are included. The formulation for a computer program developed under this task following a more conventional approach is also included.

  20. Anisotropic elliptic optical fibers

    Science.gov (United States)

    Kang, Soon Ahm

    1991-05-01

    The exact characteristic equation for an anisotropic elliptic optical fiber is obtained for odd and even hybrid modes in terms of infinite determinants utilizing Mathieu and modified Mathieu functions. A simplified characteristic equation is obtained by applying the weakly guiding approximation such that the difference in the refractive indices of the core and the cladding is small. The simplified characteristic equation is used to compute the normalized guide wavelength for an elliptical fiber. When the anisotropic parameter is equal to unity, the results are compared with the previous research and they are in close agreement. For a fixed value normalized cross-section area or major axis, the normalized guide wavelength lambda/lambda(sub 0) for an anisotropic elliptic fiber is small for the larger value of anisotropy. This condition indicates that more energy is carried inside of the fiber. However, the geometry and anisotropy of the fiber have a smaller effect when the normalized cross-section area is very small or very large.

  1. Slipping and rolling on an inclined plane

    International Nuclear Information System (INIS)

    Aghamohammadi, Cina; Aghamohammadi, Amir

    2011-01-01

    In the first part of the paper, using a direct calculation two-dimensional motion of a particle sliding on an inclined plane is investigated for general values of friction coefficient (μ). A parametric equation for the trajectory of the particle is also obtained. In the second part of the paper, the motion of a sphere on the inclined plane is studied. It is shown that the evolution equation for the contact point of a sliding sphere is similar to that of a point particle sliding on an inclined plane whose friction coefficient is 7/2 μ. If μ > 2/7 tan θ, for any arbitrary initial velocity and angular velocity, the sphere will roll on the inclined plane after some finite time. In other cases, it will slip on the inclined plane. In the case of rolling, the centre of the sphere moves on a parabola. Finally the velocity and angular velocity of the sphere are exactly computed.

  2. Excavating wide inclines in weak strata

    Energy Technology Data Exchange (ETDEWEB)

    Kuznetsov, N N [Ukrspetsstroiproekt (USSR)

    1990-09-01

    Discusses schemes for excavation of transport inclines in surface mines under conditions of weak, unstable rocks characterized by a high water content. The schemes are aimed at maximum reduction of excavation operations without infringing the safety of personnel. Use of walking draglines (the EhSh-20/90, EhSh-100/100 and EhSh-10/70) is evaluated. Optimum schemes for incline excavation and determining optimum slope inclination are described on the example of the Berezovsk brown coal surface mine in the USSR. Efficiency of optimum schemes is analyzed: range of excavation, safety degree, landslide hazards, water influx rate, accident rate, etc.

  3. Linear and nonlinear stability of periodic orbits in annular billiards

    Science.gov (United States)

    Dettmann, Carl P.; Fain, Vitaly

    2017-04-01

    An annular billiard is a dynamical system in which a particle moves freely in a disk except for elastic collisions with the boundary and also a circular scatterer in the interior of the disk. We investigate the stability properties of some periodic orbits in annular billiards in which the scatterer is touching or close to the boundary. We analytically show that there exist linearly stable periodic orbits of an arbitrary period for scatterers with decreasing radii that are located near the boundary of the disk. As the position of the scatterer moves away from a symmetry line of a periodic orbit, the stability of periodic orbits changes from elliptic to hyperbolic, corresponding to a saddle-center bifurcation. When the scatterer is tangent to the boundary, the periodic orbit is parabolic. We prove that slightly changing the reflection angle of the orbit in the tangential situation leads to the existence of Kolmogorov-Arnold-Moser islands. Thus, we show that there exists a decreasing to zero sequence of open intervals of scatterer radii, along which the billiard table is not ergodic.

  4. Optimization of high-inclination orbits using planetary flybys for a zodiacal light-imaging mission

    Science.gov (United States)

    Soto, Gabriel; Lloyd, James; Savransky, Dmitry; Grogan, Keith; Sinha, Amlan

    2017-09-01

    The zodiacal light caused by interplanetary dust grains is the second-most luminous source in the solar system. The dust grains coalesce into structures reminiscent of early solar system formation; their composition has been predicted through simulations and some edge-on observations but better data is required to validate them. Scattered light from these dust grains presents challenges to exoplanet imaging missions: resolution of their stellar environment is hindered by exozodiacal emissions and therefore sets the size and scope of these imaging missions. Understanding the composition of this interplanetary dust in our solar system requires an imaging mission from a vantage point above the ecliptic plane. The high surface brightness of the zodiacal light requires only a small aperture with moderate sensitivity; therefore a 3cm camera is enough to meet the science goals of the mission at an orbital height of 0.1AU above the ecliptic. A 6U CubeSat is the target mass for this mission which will be a secondary payload detaching from an existing interplanetary mission. Planetary flybys are utilized to produce most of the plane change Δv deep space corrective maneuvers are implemented to optimize each planetary flyby. We developed an algorithm which determines the minimum Δv required to place the CubeSat on a transfer orbit to a planet's sphere of influence and maximizes the resultant orbital height with respect to the ecliptic plane. The satellite could reach an orbital height of 0.22 AU with an Earth gravity assist in late 2024 by boarding the Europa Clipper mission.

  5. Dynamics of Orbits near 3:1 Resonance in the Earth-Moon System

    Science.gov (United States)

    Dichmann, Donald J.; Lebois, Ryan; Carrico, John P., Jr.

    2013-01-01

    The Interstellar Boundary Explorer (IBEX) spacecraft is currently in a highly elliptical orbit around Earth with a period near 3:1 resonance with the Moon. Its orbit is oriented so that apogee does not approach the Moon. Simulations show this orbit to be remarkably stable over the next twenty years. This article examines the dynamics of such orbits in the Circular Restricted 3-Body Problem (CR3BP). We look at three types of periodic orbits, each exhibiting a type of symmetry of the CR3BP. For each of the orbit types, we assess the local stability using Floquet analysis. Although not all of the periodic solutions are stable in the mathematical sense, any divergence is so slow as to produce practical stability over several decades. We use Poincare maps with twenty-year propagations to assess the nonlinear stability of the orbits, where the perturbation magnitudes are related to the orbit uncertainty for the IBEX mission. Finally we show that these orbits belong to a family of orbits connected in a bifurcation diagram that exhibits exchange of stability. The analysis of these families of period orbits provides a valuable starting point for a mission orbit trade study.

  6. Precipitation regions on the Earth of high energy electrons, injected by a point source moving along a circular Earth orbit

    Science.gov (United States)

    Kolesnikov, E. K.; Klyushnikov, G. N.

    2018-05-01

    In the paper we continue the study of precipitation regions of high-energy charged particles, carried out by the authors since 2002. In contrast to previous papers, where a stationary source of electrons was considered, it is assumed that the source moves along a low circular near-earth orbit with a constant velocity. The orbit position is set by the inclination angle of the orbital plane to the equatorial plane and the longitude of the ascending node. The total number of injected electrons is determined by the source strength and the number of complete revolutions that the source makes along the circumference. Construction of precipitation regions is produced using the computational algorithm based on solving of the system of ordinary differential equations. The features of the precipitation regions structure for the dipole approximation of the geomagnetic field and the symmetrical arrangement of the orbit relative to the equator are noted. The dependencies of the precipitation regions on different orbital parametres such as the incline angle, the ascending node position and kinetic energy of injected particles have been considered.

  7. Handbook of satellite orbits from Kepler to GPS

    CERN Document Server

    Capderou, Michel

    2014-01-01

    Fifty years after Sputnik, artificial satellites have become indispensable monitors in many areas, such as economics, meteorology, telecommunications, navigation and remote sensing. The specific orbits are important for the proper functioning of the satellites. This book discusses the great variety of satellite orbits, both in shape (circular to highly elliptical) and properties (geostationary, Sun-synchronous, etc.). This volume starts with an introduction into geodesy. This is followed by a presentation of the fundamental equations of mechanics to explain and demonstrate the properties for all types of orbits. Numerous examples are included, obtained through IXION software developed by the author. The book also includes an exposition of the historical background that is necessary to help the reader understand the main stages of scientific thought from Kepler to GPS. This book is intended for researchers, teachers and students working in the field of satellite technology. Engineers, geographers and all those...

  8. Formation flying for electric sails in displaced orbits. Part I: Geometrical analysis

    Science.gov (United States)

    Wang, Wei; Mengali, Giovanni; Quarta, Alessandro A.; Yuan, Jianping

    2017-09-01

    We present a geometrical methodology for analyzing the formation flying of electric solar wind sail based spacecraft that operate in heliocentric, elliptic, displaced orbits. The spacecraft orbit is maintained by adjusting its propulsive acceleration modulus, whose value is estimated using a thrust model that takes into account a variation of the propulsive performance with the sail attitude. The properties of the relative motion of the spacecraft are studied in detail and a geometrical solution is obtained in terms of relative displaced orbital elements, assumed to be small quantities. In particular, for the small eccentricity case (i.e. for a near-circular displaced orbit), the bounds characterized by the extreme values of relative distances are analytically calculated, thus providing an useful mathematical tool for preliminary design of the spacecraft formation structure.

  9. EG Andromedae: A New Orbit and Additional Evidence for a Photoionized Wind

    Science.gov (United States)

    Kenyon, Scott J.; Garcia, Michael R.

    2016-07-01

    We analyze a roughly 20 yr set of spectroscopic observations for the symbiotic binary EG And. Radial velocities derived from echelle spectra are best fit with a circular orbit having an orbital period of P = 483.3 ± 1.6 days and semi-amplitude K = 7.34 ± 0.07 km s-1. Combined with previous data, these observations rule out an elliptical orbit at the 10σ level. Equivalent widths of H I Balmer emission lines and various absorption features vary in phase with the orbital period. Relative to the radius of the red giant primary, the apparent size of the H II region is consistent with a model where a hot secondary star with effective temperature T h ≈ 75,000 K ionizes the wind from the red giant.

  10. The divine clockwork: Bohr's correspondence principle and Nelson's stochastic mechanics for the atomic elliptic state

    International Nuclear Information System (INIS)

    Durran, Richard; Neate, Andrew; Truman, Aubrey

    2008-01-01

    We consider the Bohr correspondence limit of the Schroedinger wave function for an atomic elliptic state. We analyze this limit in the context of Nelson's stochastic mechanics, exposing an underlying deterministic dynamical system in which trajectories converge to Keplerian motion on an ellipse. This solves the long standing problem of obtaining Kepler's laws of planetary motion in a quantum mechanical setting. In this quantum mechanical setting, local mild instabilities occur in the Keplerian orbit for eccentricities greater than (1/√(2)) which do not occur classically

  11. Systematics of elliptic flow in heavy-ion collisions

    Indian Academy of Sciences (India)

    We analyze elliptic flow from SIS to RHIC energies systematically in a realistic dynamical cascade model. We compare our results with the recent data from STAR and PHOBOS collaborations on elliptic flow of charged particles at midrapidity in Au + Au collisions at RHIC. In the analysis of elliptic flow at RHIC energy, we find ...

  12. Ring formation on an inclined surface

    Science.gov (United States)

    Deegan, Robert; Du, Xiyu

    2015-11-01

    A drop dried on a solid surface will typically leave a narrow band of solute deposited along the contact line. We examined variations of this deposit due to the inclination of the substrate using numerical simulations of a two-dimensional drop, equivalent to a strip-like drop. An asymptotic analysis of the contact line region predicts that the upslope deposit will grow faster at early times, but the growth of this deposit ends sooner because the upper contact line depins first. From our simulations we find that the deposit can be larger at either the upper or lower contact line depending on the initial drop volume and substrate inclination. For larger drops and steeper inclinations, the early lead in deposited mass at the upper contact line is wiped out by the earlier depinning of the upper contact line and subsequent continued growth at the lower contact line. Conversely, for smaller drops and shallower inclinations, the early lead of the upper contact line is insurmountable despite its earlier termination in growth. Our results show that it is difficult to reconstruct a postiorithe inclination of the substrate based solely on the shape of the deposit. The authors thank the James S. McDonnell Foundation for support through a 21st Century Science Initiative in Studying Complex Systems Research Award, and the National Science Foundation for support under Grant No. 0932600.

  13. UNBIASED INCLINATION DISTRIBUTIONS FOR OBJECTS IN THE KUIPER BELT

    International Nuclear Information System (INIS)

    Gulbis, A. A. S.; Elliot, J. L.; Adams, E. R.; Benecchi, S. D.; Buie, M. W.; Trilling, D. E.; Wasserman, L. H.

    2010-01-01

    Using data from the Deep Ecliptic Survey (DES), we investigate the inclination distributions of objects in the Kuiper Belt. We present a derivation for observational bias removal and use this procedure to generate unbiased inclination distributions for Kuiper Belt objects (KBOs) of different DES dynamical classes, with respect to the Kuiper Belt plane. Consistent with previous results, we find that the inclination distribution for all DES KBOs is well fit by the sum of two Gaussians, or a Gaussian plus a generalized Lorentzian, multiplied by sin i. Approximately 80% of KBOs are in the high-inclination grouping. We find that Classical object inclinations are well fit by sin i multiplied by the sum of two Gaussians, with roughly even distribution between Gaussians of widths 2.0 +0.6 -0.5 0 and 8.1 +2.6 -2.1 0 . Objects in different resonances exhibit different inclination distributions. The inclinations of Scattered objects are best matched by sin i multiplied by a single Gaussian that is centered at 19.1 +3.9 -3.6 0 with a width of 6.9 +4.1 -2.7 0 . Centaur inclinations peak just below 20 0 , with one exceptionally high-inclination object near 80 0 . The currently observed inclination distribution of the Centaurs is not dissimilar to that of the Scattered Extended KBOs and Jupiter-family comets, but is significantly different from the Classical and Resonant KBOs. While the sample sizes of some dynamical classes are still small, these results should begin to serve as a critical diagnostic for models of solar system evolution.

  14. Tidal excitation of elliptical instability in the Martian core: Possible mechanism for generating the core dynamo

    Science.gov (United States)

    Arkani-Hamed, J.; Seyed-Mahmoud, B.; Aldridge, K. D.; Baker, R. E.

    2008-06-01

    We propose a causal relationship between the creation of the giant impact basins on Mars by a large asteroid, ruptured when it entered the Roche limit, and the excitation of the Martian core dynamo. Our laboratory experiments indicate that the elliptical instability of the Martian core can be excited if the asteroid continually exerts tidal forces on Mars for ~20,000 years. Our numerical experiments suggest that the growth-time of the instability was 5,000-15,000 years when the asteroid was at a distance of 50,000-75,000 km. We demonstrate the stability of the orbital motion of an asteroid captured by Mars at a distance of 100,000 km in the presence of the Sun and Jupiter. We also present our results for the tidal interaction of the asteroid with Mars. An asteroid captured by Mars in prograde fashion can survive and excite the elliptical instability of the core for only a few million years, whereas a captured retrograde asteroid can excite the elliptical instability for hundreds of millions of years before colliding with Mars. The rate at which tidal energy dissipates in Mars during this period is over two orders of magnitude greater than the rate at which magnetic energy dissipates. If only 1% of the tidal energy dissipation is partitioned to the core, sufficient energy would be available to maintain the core dynamo. Accordingly, a retrograde asteroid is quite capable of exciting an elliptical instability in the Martian core, thus providing a candidate process to drive a core dynamo.

  15. Two-dimensional steady unsaturated flow through embedded elliptical layers

    Science.gov (United States)

    Bakker, Mark; Nieber, John L.

    2004-12-01

    New analytic element solutions are presented for unsaturated, two-dimensional steady flow in vertical planes that include nonoverlapping impermeable elliptical layers and elliptical inhomogeneities. The hydraulic conductivity, which is represented by an exponential function of the pressure head, differs between the inside and outside of an elliptical inhomogeneity; both the saturated hydraulic conductivity and water retention parameters are allowed to differ between the inside and outside. The Richards equation is transformed, through the Kirchhoff transformation and a second standard transformation, into the modified Helmholtz equation. Analytic element solutions are obtained through separation of variables in elliptical coordinates. The resulting equations for the Kirchhoff potential consist of infinite sums of products of exponentials and modified Mathieu functions. In practical applications the series are truncated but still fulfill the differential equation exactly; boundary conditions are met approximately but up to machine accuracy, provided that enough terms are used. The pressure head, saturation, and flow may be computed analytically at any point in the vadose zone. Examples are given of the shadowing effect of an impermeable elliptical layer in a uniform flow field and funnel-type flow between two elliptical inhomogeneities. The presented solutions may be applied to study transport processes in vadose zones containing many impermeable elliptical layers or elliptical inhomogeneities.

  16. Drinfeld currents of dynamical elliptic algebra

    International Nuclear Information System (INIS)

    Hou Boyu; Fan Heng; Yang Wenli; Cao Junpeng

    2000-01-01

    From the generalized Yang-Baxter relations RLL=LLR*, where R and R* are the dynamical R-matrix of A n-1 (1) type face model with the elliptic module shifted by the center of the algebra, using the Ding-Frenkel correspondence, the authors obtain the Drinfeld currents of dynamical elliptic algebra

  17. Heterodyne detector for measuring the characteristic of elliptically polarized microwaves

    DEFF Research Database (Denmark)

    Leipold, Frank; Nielsen, Stefan Kragh; Michelsen, Susanne

    2008-01-01

    In the present paper, a device is introduced, which is capable of determining the three characteristic parameters of elliptically polarized light (ellipticity, angle of ellipticity, and direction of rotation) for microwave radiation at a frequency of 110 GHz. The device consists of two perpendicu......In the present paper, a device is introduced, which is capable of determining the three characteristic parameters of elliptically polarized light (ellipticity, angle of ellipticity, and direction of rotation) for microwave radiation at a frequency of 110 GHz. The device consists of two...... be calculated. Results from measured and calculated wave characteristics of an elliptically polarized 110 GHz microwave beam for plasma heating launched into the TEXTOR-tokamak experiment are presented. Measurement and calculation are in good agreement. ©2008 American Institute of Physics...

  18. CLASSIFICATION OF STELLAR ORBITS IN AXISYMMETRIC GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Li, Baile; Holley-Bockelmann, Kelly [Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37235 (United States); Khan, Fazeel Mahmood, E-mail: baile.li@vanderbilt.edu, E-mail: k.holley@vanderbilt.edu, E-mail: khanfazeel.ist@gmail.com [Department of Space Science, Institute of Space Technology, P.O. Box 2750 Islamabad (Pakistan)

    2015-09-20

    It is known that two supermassive black holes (SMBHs) cannot merge in a spherical galaxy within a Hubble time; an emerging picture is that galaxy geometry, rotation, and large potential perturbations may usher the SMBH binary through the critical three-body scattering phase and ultimately drive the SMBH to coalesce. We explore the orbital content within an N-body model of a mildly flattened, non-rotating, SMBH-embedded elliptical galaxy. When used as the foundation for a study on the SMBH binary coalescence, the black holes bypassed the binary stalling often seen within spherical galaxies and merged on gigayear timescales. Using both frequency-mapping and angular momentum criteria, we identify a wealth of resonant orbits in the axisymmetric model, including saucers, that are absent from an otherwise identical spherical system and that can potentially interact with the binary. We quantified the set of orbits that could be scattered by the SMBH binary, and found that the axisymmetric model contained nearly six times the number of these potential loss cone orbits compared to our equivalent spherical model. In this flattened model, the mass of these orbits is more than three times that of the SMBH, which is consistent with what the SMBH binary needs to scatter to transition into the gravitational wave regime.

  19. Convex bodies with many elliptic sections

    OpenAIRE

    Arelio, Isaac; Montejano, Luis

    2014-01-01

    {We show in this paper that two normal elliptic sections through every point of the boundary of a smooth convex body essentially characterize an ellipsoid and furthermore, that four different pairwise non-tangent elliptic sections through every point of the $C^2$-differentiable boundary of a convex body also essentially characterize an ellipsoid.

  20. Stability of hierarchical triples - I. Dependence on inner eccentricity and inclination

    Science.gov (United States)

    Mylläri, A.; Valtonen, M.; Pasechnik, A.; Mikkola, S.

    2018-05-01

    In simulations it is often important to decide if a given hierarchical triple star system is stable over an extended period of time. We introduce a stability criterion, modified from earlier work, where we use the closest approach ratio Q of the third star to the inner binary centre of mass in their initial osculating orbits. We study by numerical integration the orbits of over 1000 000 triple systems of the fixed masses and outer eccentricities eout, but varying inner eccentricities ein and inclinations i. 12 primary combinations of masses have been tried, representing the range encountered in stellar systems. The definition of the instability is either the escape of one of the bodies, or the exchange of the members between the inner and outer systems. An analytical approximation is derived using the energy change in a single close encounter between the inner and outer systems, assuming that the orbital phases in subsequent encounters occur randomly. The theory provides a fairly good description of the typical Qst, the smallest Q value that allows the system to be stable over N = 10 000 revolutions of the initial outer orbit. The final stability limit formula is Qst = 101/3A[( f g)2/(1 - eout)]1/6, where the coefficient A ˜ 1 should be used in N-body experiments, and A = 2.4 when the absolute long-term stability is required. The functions f (ein, cos i) and g(m1, m2, m3) are derived in the paper. At the limit of ein = i = m3 = 0, f g = 1.

  1. Performances study of UWB monopole antennas using half-elliptic radiator conformed on elliptical surface

    Energy Technology Data Exchange (ETDEWEB)

    Djidel, S.; Bouamar, M.; Khedrouche, D., E-mail: dkhedrouche@yahoo.com [LASS (Laboratoired’Analyse des Signaux et Systèmes), Department of Electronics, University of M’sila BP.166, Route Ichebilia, M’sila, 28000 Algeria (Algeria)

    2016-04-21

    This paper presents a performances study of UWB monopole antenna using half-elliptic radiator conformed on elliptical surface. The proposed antenna, simulated using microwave studio computer CST and High frequency simulator structure HFSS, is designed to operate in frequency interval over 3.1 to 40 GHz. Good return loss and radiation pattern characteristics are obtained in the frequency band of interest. The proposed antenna structure is suitable for ultra-wideband applications, which is, required for many wearable electronics applications.

  2. Validation of Galileo orbits using SLR with a focus on satellites launched into incorrect orbital planes

    Science.gov (United States)

    Sośnica, Krzysztof; Prange, Lars; Kaźmierski, Kamil; Bury, Grzegorz; Drożdżewski, Mateusz; Zajdel, Radosław; Hadas, Tomasz

    2018-02-01

    The space segment of the European Global Navigation Satellite System (GNSS) Galileo consists of In-Orbit Validation (IOV) and Full Operational Capability (FOC) spacecraft. The first pair of FOC satellites was launched into an incorrect, highly eccentric orbital plane with a lower than nominal inclination angle. All Galileo satellites are equipped with satellite laser ranging (SLR) retroreflectors which allow, for example, for the assessment of the orbit quality or for the SLR-GNSS co-location in space. The number of SLR observations to Galileo satellites has been continuously increasing thanks to a series of intensive campaigns devoted to SLR tracking of GNSS satellites initiated by the International Laser Ranging Service. This paper assesses systematic effects and quality of Galileo orbits using SLR data with a main focus on Galileo satellites launched into incorrect orbits. We compare the SLR observations with respect to microwave-based Galileo orbits generated by the Center for Orbit Determination in Europe (CODE) in the framework of the International GNSS Service Multi-GNSS Experiment for the period 2014.0-2016.5. We analyze the SLR signature effect, which is characterized by the dependency of SLR residuals with respect to various incidence angles of laser beams for stations equipped with single-photon and multi-photon detectors. Surprisingly, the CODE orbit quality of satellites in the incorrect orbital planes is not worse than that of nominal FOC and IOV orbits. The RMS of SLR residuals is even lower by 5.0 and 1.5 mm for satellites in the incorrect orbital planes than for FOC and IOV satellites, respectively. The mean SLR offsets equal -44.9, -35.0, and -22.4 mm for IOV, FOC, and satellites in the incorrect orbital plane. Finally, we found that the empirical orbit models, which were originally designed for precise orbit determination of GNSS satellites in circular orbits, provide fully appropriate results also for highly eccentric orbits with variable linear

  3. Ellipticity of near-threshold harmonics from stretched molecules.

    Science.gov (United States)

    Li, Weiyan; Dong, Fulong; Yu, Shujuan; Wang, Shang; Yang, Shiping; Chen, Yanjun

    2015-11-30

    We study the ellipticity of near-threshold harmonics (NTH) from aligned molecules with large internuclear distances numerically and analytically. The calculated harmonic spectra show a broad plateau for NTH which is several orders of magnitude higher than that for high-order harmonics. In particular, the NTH plateau shows high ellipticity at small and intermediate orientation angles. Our analyses reveal that the main contributions to the NTH plateau come from the transition of the electron from continuum states to these two lowest bound states of the system, which are strongly coupled together by the laser field. Besides continuum states, higher excited states also play a role in the NTH plateau, resulting in a large phase difference between parallel and perpendicular harmonics and accordingly high ellipticity of the NTH plateau. The NTH plateau with high intensity and large ellipticity provides a promising manner for generating strong elliptically-polarized extreme-ultraviolet (EUV) pulses.

  4. Angular ellipticity correlations in a composite alignment model for elliptical and spiral galaxies and inference from weak lensing

    Science.gov (United States)

    Tugendhat, Tim M.; Schäfer, Björn Malte

    2018-05-01

    We investigate a physical, composite alignment model for both spiral and elliptical galaxies and its impact on cosmological parameter estimation from weak lensing for a tomographic survey. Ellipticity correlation functions and angular ellipticity spectra for spiral and elliptical galaxies are derived on the basis of tidal interactions with the cosmic large-scale structure and compared to the tomographic weak-lensing signal. We find that elliptical galaxies cause a contribution to the weak-lensing dominated ellipticity correlation on intermediate angular scales between ℓ ≃ 40 and ℓ ≃ 400 before that of spiral galaxies dominates on higher multipoles. The predominant term on intermediate scales is the negative cross-correlation between intrinsic alignments and weak gravitational lensing (GI-alignment). We simulate parameter inference from weak gravitational lensing with intrinsic alignments unaccounted; the bias induced by ignoring intrinsic alignments in a survey like Euclid is shown to be several times larger than the statistical error and can lead to faulty conclusions when comparing to other observations. The biases generally point into different directions in parameter space, such that in some cases one can observe a partial cancellation effect. Furthermore, it is shown that the biases increase with the number of tomographic bins used for the parameter estimation process. We quantify this parameter estimation bias in units of the statistical error and compute the loss of Bayesian evidence for a model due to the presence of systematic errors as well as the Kullback-Leibler divergence to quantify the distance between the true model and the wrongly inferred one.

  5. Elliptic genus derivation of 4d holomorphic blocks

    Science.gov (United States)

    Poggi, Matteo

    2018-03-01

    We study elliptic vortices on ℂ × T 2 by considering the 2d quiver gauge theory describing their moduli spaces. The elliptic genus of these moduli spaces is the elliptic version of vortex partition function of the 4d theory. We focus on two examples: the first is a N = 1, U( N ) gauge theory with fundamental and anti-fundamental matter; the second is a N = 2, U( N ) gauge theory with matter in the fundamental representation. The results are instances of 4d "holomorphic blocks" into which partition functions on more complicated surfaces factorize. They can also be interpreted as free-field representations of elliptic Virasoro algebrae.

  6. Quasilinear infiltration from an elliptical cavity

    Science.gov (United States)

    Kuhlman, Kristopher L.; Warrick, Arthur W.

    2008-08-01

    We develop analytic solutions to the linearized steady-state Richards equation for head and total flowrate due to an elliptic cylinder cavity with a specified pressure head boundary condition. They are generalizations of the circular cylinder cavity solutions of Philip [Philip JR. Steady infiltration from circular cylindrical cavities. Soil Sci Soc Am J 1984;48:270-8]. The circular and strip sources are limiting cases of the elliptical cylinder solution, derived for both horizontally- and vertically-aligned ellipses. We give approximate rational polynomial expressions for total flowrate from an elliptical cylinder over a range of sizes and shapes. The exact elliptical solution is in terms of Mathieu functions, which themselves are generalizations of and computed from trigonometric and Bessel functions. The required Mathieu functions are computed from a matrix eigenvector problem, a modern approach that is straightforward to implement using available linear algebra libraries. Although less efficient and potentially less accurate than the iterative continued fraction approach, the matrix approach is simpler to understand and implement and is valid over a wider parameter range.

  7. Orbital parameters of extrasolar planets derived from polarimetry

    Science.gov (United States)

    Fluri, D. M.; Berdyugina, S. V.

    2010-03-01

    Context. Polarimetry of extrasolar planets becomes a new tool for their investigation, which requires the development of diagnostic techniques and parameter case studies. Aims: Our goal is to develop a theoretical model which can be applied to interpret polarimetric observations of extrasolar planets. Here we present a theoretical parameter study that shows the influence of the various involved parameters on the polarization curves. Furthermore, we investigate the robustness of the fitting procedure. We focus on the diagnostics of orbital parameters and the estimation of the scattering radius of the planet. Methods: We employ the physics of Rayleigh scattering to obtain polarization curves of an unresolved extrasolar planet. Calculations are made for two cases: (i) assuming an angular distribution for the intensity of the scattered light as from a Lambert sphere and for polarization as from a Rayleigh-type scatterer; and (ii) assuming that both the intensity and polarization of the scattered light are distributed according to the Rayleigh law. We show that the difference between these two cases is negligible for the shapes of the polarization curves. In addition, we take the size of the host star into account, which is relevant for hot Jupiters orbiting giant stars. Results: We discuss the influence of the inclination of the planetary orbit, the position angle of the ascending node, and the eccentricity on the linearly polarized light curves both in Stokes Q/I and U/I. We also analyze errors that arise from the assumption of a point-like star in numerical modeling of polarization as compared to consistent calculations accounting for the finite size of the host star. We find that errors due to the point-like star approximation are reduced with the size of the orbit, but still amount to about 5% for known hot Jupiters. Recovering orbital parameters from simulated data is shown to be very robust even for very noisy data because the polarization curves react

  8. Active Thrust on an Inclined Retaining Wall with Inclined Cohesionless Backfill due to Surcharge Effect

    OpenAIRE

    Dewaikar, D. M.; Pandey, S. R.; Dixit, Jagabandhu

    2012-01-01

    A method based on the application of Kötter’s equation is proposed for the complete analysis of active thrust on an inclined wall with inclined cohesionless backfill under surcharge effect. Coulomb’s failure mechanism is considered in the analysis. The point of application of active thrust is determined from the condition of moment equilibrium. The coefficient of active pressure and the point of application of the active thrust are computed and presented in nondimensional form. One distinguis...

  9. The BANANA Survey: Spin-Orbit Alignment in Binary Stars

    Science.gov (United States)

    Albrecht, Simon; Winn, J. N.; Fabrycky, D. C.; Torres, G.; Setiawan, J.

    2012-04-01

    Binaries are not always neatly aligned. Previous observations of the DI Herculis system showed that the spin axes of both stars are highly inclined with respect to one another and the orbital axis. Here, we report on our ongoing survey to measure relative orientations of spin-axes in a number of eclipsing binary systems. These observations will hopefully lead to new insights into star and planet formation, as different formation scenarios predict different degrees of alignment and different dependencies on the system parameters. Measurements of spin-orbit angles in close binary systems will also create a basis for comparison for similar measurements involving close-in planets.

  10. International Workshop on Elliptic and Parabolic Equations

    CERN Document Server

    Schrohe, Elmar; Seiler, Jörg; Walker, Christoph

    2015-01-01

    This volume covers the latest research on elliptic and parabolic equations and originates from the international Workshop on Elliptic and Parabolic Equations, held September 10-12, 2013 at the Leibniz Universität Hannover. It represents a collection of refereed research papers and survey articles written by eminent scientist on advances in different fields of elliptic and parabolic partial differential equations, including singular Riemannian manifolds, spectral analysis on manifolds, nonlinear dispersive equations, Brownian motion and kernel estimates, Euler equations, porous medium type equations, pseudodifferential calculus, free boundary problems, and bifurcation analysis.

  11. EG ANDROMEDAE: A NEW ORBIT AND ADDITIONAL EVIDENCE FOR A PHOTOIONIZED WIND

    International Nuclear Information System (INIS)

    Kenyon, Scott J.; Garcia, Michael R.

    2016-01-01

    We analyze a roughly 20 yr set of spectroscopic observations for the symbiotic binary EG And. Radial velocities derived from echelle spectra are best fit with a circular orbit having an orbital period of P = 483.3 ± 1.6 days and semi-amplitude K = 7.34 ± 0.07 km s −1 . Combined with previous data, these observations rule out an elliptical orbit at the 10 σ level. Equivalent widths of H i Balmer emission lines and various absorption features vary in phase with the orbital period. Relative to the radius of the red giant primary, the apparent size of the H ii region is consistent with a model where a hot secondary star with effective temperature T h ≈ 75,000 K ionizes the wind from the red giant.

  12. EG ANDROMEDAE: A NEW ORBIT AND ADDITIONAL EVIDENCE FOR A PHOTOIONIZED WIND

    Energy Technology Data Exchange (ETDEWEB)

    Kenyon, Scott J. [Smithsonian Astrophysical Observatory, 60 Garden Street, Cambridge, MA 02138 (United States); Garcia, Michael R., E-mail: skenyon@cfa.harvard.edu, E-mail: michael.r.garcia@nasa.gov [NASA Headquarters, Mail Suite 3Y28, 300 E Street SW, Washington, DC 20546-0001 (United States)

    2016-07-01

    We analyze a roughly 20 yr set of spectroscopic observations for the symbiotic binary EG And. Radial velocities derived from echelle spectra are best fit with a circular orbit having an orbital period of P = 483.3 ± 1.6 days and semi-amplitude K = 7.34 ± 0.07 km s{sup −1}. Combined with previous data, these observations rule out an elliptical orbit at the 10 σ level. Equivalent widths of H i Balmer emission lines and various absorption features vary in phase with the orbital period. Relative to the radius of the red giant primary, the apparent size of the H ii region is consistent with a model where a hot secondary star with effective temperature T{sub h} ≈ 75,000 K ionizes the wind from the red giant.

  13. Analysis of the influence of orbital disturbances applied to an artificial lunar satellite

    International Nuclear Information System (INIS)

    Gonçalves, L D; Rocco, E M; De Moraes, R V

    2015-01-01

    This paper analyzes the influence of the orbital disturbance forces in the trajectory of lunar satellites. The following gravitational and non-gravitational orbital disturbances are considered: the non-homogeneity of the lunar gravitational field; the gravitational attraction due to the third body, considering the Earth and the Sun; the lunar albedo; the solar radiation pressure. Numerical models were developed and implemented in an orbital trajectory simulator aiming to understand the dynamics of the orbital motion of an artificial satellite in lunar orbit when considering the simultaneous effect of all disturbances. Different orbits were simulated in order to characterize the major and the minor influence of each disturbing force as function of the inclination and the right ascension of the ascending node. This study can be very useful in the space mission analysis and in the selection of orbits less affected by environmental disturbances. (paper)

  14. On the Existence of Regular and Irregular Outer Moons Orbiting the Pluto–Charon System

    Energy Technology Data Exchange (ETDEWEB)

    Michaely, Erez; Perets, Hagai B.; Grishin, Evgeni [Physics Department, Technion—Israel Institute of Technology, Haifa 3200004 (Israel)

    2017-02-10

    The dwarf planet Pluto is known to host an extended system of five co-planar satellites. Previous studies have explored the formation and evolution of the system in isolation, neglecting perturbative effects by the Sun. Here we show that secular evolution due to the Sun can strongly affect the evolution of outer satellites and rings in the system, if such exist. Although precession due to extended gravitational potential from the inner Pluto–Charon binary quench such secular evolution up to a {sub crit} ∼ 0.0035 au (∼0.09 R {sub Hill} the Hill radius; including all of the currently known satellites), outer orbits can be significantly altered. In particular, we find that co-planar rings and satellites should not exist beyond a {sub crit}; rather, satellites and dust particles in these regions secularly evolve on timescales ranging between 10{sup 4} and 10{sup 6} years, and quasi-periodically change their inclinations and eccentricities through secular evolution (Lidov–Kozai oscillations). Such oscillations can lead to high inclinations and eccentricities, constraining the range where such satellites (and dust particles) can exist without crossing the orbits of the inner satellites or crossing the outer Hill stability range. Outer satellites, if such exist are therefore likely to be irregular satellites, with orbits limited to be non-circular and/or highly inclined. Current observations, including the recent data from the New-Horizons mission explored only inner regions (<0.0012 au) and excluded the existence of additional satellites; however, the irregular satellites discussed here should reside farther, in the yet uncharted regions around Pluto.

  15. On the Existence of Regular and Irregular Outer Moons Orbiting the Pluto–Charon System

    International Nuclear Information System (INIS)

    Michaely, Erez; Perets, Hagai B.; Grishin, Evgeni

    2017-01-01

    The dwarf planet Pluto is known to host an extended system of five co-planar satellites. Previous studies have explored the formation and evolution of the system in isolation, neglecting perturbative effects by the Sun. Here we show that secular evolution due to the Sun can strongly affect the evolution of outer satellites and rings in the system, if such exist. Although precession due to extended gravitational potential from the inner Pluto–Charon binary quench such secular evolution up to a crit ∼ 0.0035 au (∼0.09 R Hill the Hill radius; including all of the currently known satellites), outer orbits can be significantly altered. In particular, we find that co-planar rings and satellites should not exist beyond a crit ; rather, satellites and dust particles in these regions secularly evolve on timescales ranging between 10 4 and 10 6 years, and quasi-periodically change their inclinations and eccentricities through secular evolution (Lidov–Kozai oscillations). Such oscillations can lead to high inclinations and eccentricities, constraining the range where such satellites (and dust particles) can exist without crossing the orbits of the inner satellites or crossing the outer Hill stability range. Outer satellites, if such exist are therefore likely to be irregular satellites, with orbits limited to be non-circular and/or highly inclined. Current observations, including the recent data from the New-Horizons mission explored only inner regions (<0.0012 au) and excluded the existence of additional satellites; however, the irregular satellites discussed here should reside farther, in the yet uncharted regions around Pluto.

  16. Advanced topics in the arithmetic of elliptic curves

    CERN Document Server

    Silverman, Joseph H

    1994-01-01

    In the introduction to the first volume of The Arithmetic of Elliptic Curves (Springer-Verlag, 1986), I observed that "the theory of elliptic curves is rich, varied, and amazingly vast," and as a consequence, "many important topics had to be omitted." I included a brief introduction to ten additional topics as an appendix to the first volume, with the tacit understanding that eventually there might be a second volume containing the details. You are now holding that second volume. it turned out that even those ten topics would not fit Unfortunately, into a single book, so I was forced to make some choices. The following material is covered in this book: I. Elliptic and modular functions for the full modular group. II. Elliptic curves with complex multiplication. III. Elliptic surfaces and specialization theorems. IV. Neron models, Kodaira-Neron classification of special fibers, Tate's algorithm, and Ogg's conductor-discriminant formula. V. Tate's theory of q-curves over p-adic fields. VI. Neron's theory of can...

  17. On the Behavior of Eisenstein Series Through Elliptic Degeneration

    Science.gov (United States)

    Garbin, D.; Pippich, A.-M. V.

    2009-12-01

    Let Γ be a Fuchsian group of the first kind acting on the hyperbolic upper half plane {mathbb{H}}, and let {M = Γbackslash mathbb{H}} be the associated finite volume hyperbolic Riemann surface. If γ is a primitive parabolic, hyperbolic, resp. elliptic element of Γ, there is an associated parabolic, hyperbolic, resp. elliptic Eisenstein series. In this article, we study the limiting behavior of these Eisenstein series on an elliptically degenerating family of finite volume hyperbolic Riemann surfaces. In particular, we prove the following result. The elliptic Eisenstein series associated to a degenerating elliptic element converges up to a factor to the parabolic Eisenstein series associated to the parabolic element which fixes the newly developed cusp on the limit surface.

  18. On mod 2 and higher elliptic genera

    International Nuclear Information System (INIS)

    Liu Kefeng

    1992-01-01

    In the first part of this paper, we construct mod 2 elliptic genera on manifolds of dimensions 8k+1, 8k+2 by mod 2 index formulas of Dirac operators. They are given by mod 2 modular forms or mod 2 automorphic functions. We also obtain an integral formula for the mod 2 index of the Dirac operator. As a by-product we find topological obstructions to group actions. In the second part, we construct higher elliptic genera and prove some of their rigidity properties under group actions. In the third part we write down characteristic series for all Witten genera by Jacobi theta-functions. The modular property and transformation formulas of elliptic genera then follow easily. We shall also prove that Krichever's genera, which come from integrable systems, can be written as indices of twisted Dirac operators for SU-manifolds. Some general discussions about elliptic genera are given. (orig.)

  19. Constructing elliptic curves from Galois representations

    OpenAIRE

    Snowden, Andrew; Tsimerman, Jacob

    2017-01-01

    Given a non-isotrivial elliptic curve over an arithmetic surface, one obtains a lisse $\\ell$-adic sheaf of rank two over the surface. This lisse sheaf has a number of straightforward properties: cyclotomic determinant, finite ramification, rational traces of Frobenius, and somewhere not potentially good reduction. We prove that any lisse sheaf of rank two possessing these properties comes from an elliptic curve.

  20. Rotational synkineses of occiput and atlas on lateral inclination

    Energy Technology Data Exchange (ETDEWEB)

    Jirout, J.

    1981-02-01

    An X-ray analysis was performed with regard to the question of synkinetic rotational movements of occiput and atlas on lateral inclination of the head and neck. It was found that the frequent synkinetic rotation of the head from the side of inclination can be taken for a stereotype that is ten times more frequent than the rotation towards the side of inclination. However, it does not represent an essential or indispensable feature of the synkinetic reaction. The associated rotation of the atlas from the side of inclination cannot be looked upon as a normal and constant element of the synkinetic response on lateral inclination, as it does not occur in nearly one-half of cases. Moreover, these studies have shown that the rotational movement between occiput and atlas is possible not only in the final stage of maximum forced rotation of the head, but that it belongs to normal dynamic features of the synkinetic response on lateral inclination of the head and neck.

  1. Rotational synkineses of occiput and atlas on lateral inclination

    International Nuclear Information System (INIS)

    Jirout, J.

    1981-01-01

    An X-ray analysis was performed with regard to the question of synkinetic rotational movements of occiput and atlas on lateral inclination of the head and neck. It was found that the frequent synkinetic rotation of the head from the side of inclination can be taken for a stereotype that is ten times more frequent than the rotation towards the side of inclination. However, it does not represent an essential or indispensable feature of the synkinetic reaction. The associated rotation of the atlas from the side of inclination cannot be looked upon as a normal and constant element of the synkinetic response on lateral inclination, as it does not occur in nearly one-half of cases. Moreover, these studies have shown that the rotational movement between occiput and atlas is possible not only in the final stage of maximum forced rotation of the head, but that it belongs to normal dynamic features of the synkinetic response on lateral inclination of the head and neck. (orig.)

  2. Note on twisted elliptic genus of K3 surface

    International Nuclear Information System (INIS)

    Eguchi, Tohru; Hikami, Kazuhiro

    2011-01-01

    We discuss the possibility of Mathieu group M 24 acting as symmetry group on the K3 elliptic genus as proposed recently by Ooguri, Tachikawa and one of the present authors. One way of testing this proposal is to derive the twisted elliptic genera for all conjugacy classes of M 24 so that we can determine the unique decomposition of expansion coefficients of K3 elliptic genus into irreducible representations of M 24 . In this Letter we obtain all the hitherto unknown twisted elliptic genera and find a strong evidence of Mathieu moonshine.

  3. Brilliance and flux reduction in imperfect inclined crystals

    International Nuclear Information System (INIS)

    Lee, W.K.; Blasdell, R.C.; Fernandez, P.B.; Macrander, A.T.; Mills, D.M.

    1996-01-01

    The inclined crystal geometry has been suggested as a method of reducing the surface absorbed power density of high-heat-load monochromators for third-generation synchrotron radiation sources. Computer simulations have shown that if the crystals are perfectly aligned and have no strains then the diffraction properties of a pair of inclined crystals are very similar to a pair of conventional flat crystals with only subtle effects differentiating the two configurations. However, if the crystals are strained, these subtle differences in the behavior of inclined crystals can result in large beam divergences causing brilliance and flux losses. This manuscript elaborates on these issues and estimates potential brilliance and flux losses from strained inclined crystals at the APS

  4. Rational points on elliptic curves

    CERN Document Server

    Silverman, Joseph H

    2015-01-01

    The theory of elliptic curves involves a pleasing blend of algebra, geometry, analysis, and number theory. This book stresses this interplay as it develops the basic theory, thereby providing an opportunity for advanced undergraduates to appreciate the unity of modern mathematics. At the same time, every effort has been made to use only methods and results commonly included in the undergraduate curriculum. This accessibility, the informal writing style, and a wealth of exercises make Rational Points on Elliptic Curves an ideal introduction for students at all levels who are interested in learning about Diophantine equations and arithmetic geometry. Most concretely, an elliptic curve is the set of zeroes of a cubic polynomial in two variables. If the polynomial has rational coefficients, then one can ask for a description of those zeroes whose coordinates are either integers or rational numbers. It is this number theoretic question that is the main subject of this book. Topics covered include the geometry and ...

  5. Kinematically Decoupled Cores in Dwarf (Elliptical) Galaxies

    NARCIS (Netherlands)

    Toloba, E.; Peletier, R. F.; Guhathakurta, P.; van de Ven, G.; Boissier, S.; Boselli, A.; Brok, M. d.; Falcón-Barroso, J.; Hensler, G.; Janz, J.; Laurikainen, E.; Lisker, T.; Paudel, S.; Ryś, A.; Salo, H.

    An overview is given of what we know about the frequency of kinematically decoupled cores in dwarf elliptical galaxies. New observations show that kinematically decoupled cores happen just as often in dwarf elliptical as in ordinary early-type galaxies. This has important consequences for the

  6. Elliptic hypergeometric functions and the representation theory

    International Nuclear Information System (INIS)

    Spiridonov, V.P.

    2011-01-01

    Full text: (author)Elliptic hypergeometric functions were discovered around ten years ago. They represent the top level known generalization of the Euler beta integral and Euler-Gauss 2 F 1 hypergeometric function. In general form they are defined by contour integrals involving elliptic gamma functions. We outline the structure of the simplest examples of such functions and discuss their relations to the representation theory of the classical Lie groups and their various deformations. In one of the constructions elliptic hypergeometric integrals describe purely group-theoretical objects having the physical meaning of superconformal indices of four-dimensional supersymmetric gauge field theories

  7. The statistical study of Chorus waves using the Double star TC1 data

    Science.gov (United States)

    Yearby, K.; Aryan, H.; Balikhin, M. A.; Krasnoselskikh, V.; Agapitov, O. V.

    2013-12-01

    The Double star satellite was launched on 29 December 2003 into an equatorial elliptical orbit with a perigee of 570km and an apogee of 78970km and an inclination of 28.5°. The satellite operated until 14 October 2007. The Double star TC1 data provides extensive coverage of the inner magnetosphere regions in the range of L shells >1.1L*, and a wide range of latitudes. This study presents a detailed statistical study of the Chorus waves during 4 years of the Double star operation.

  8. Low earth orbit radiation dose distribution in a phantom head

    International Nuclear Information System (INIS)

    Konradi, A.; Badhwar, G.D.; Cash, B.L.; Hardy, K.A.

    1992-01-01

    In order to compare analytical methods with data obtained during exposure to space radiation, a phantom head instrumented with a large number of radiation detectors was flown on the Space Shuttle on three occasions: 8 August 1989 (STS-28), 28 February 1990 (STS-36), and 24 April 1990 (STS-31). The objective of this experiment was to obtain a measurement of the inhomogeneity in the dose distribution within a phantom head volume. The orbits of these missions were complementary-STS-28 and STS-36 had high inclination and low altitude, while STS-31 had a low inclination and high altitude. In the cases of STS-28 and STS-36, the main contribution to the radiation dose comes from galactic cosmic rays (GCR) with a minor to negligible part supplied by the inner belt through the South Atlantic Anomaly (SAA), and for STS-28 an even smaller one from a proton enhancement during a solar flare-associated proton event. For STS-31, the inner belt protons dominate and the GCR contribution is almost negligible. The internal dose distribution is consistent with the mass distribution of the orbiter and the self-shielding and physical location of the phantom head. (author)

  9. Picone-type inequalities for nonlinear elliptic equations and their applications

    Directory of Open Access Journals (Sweden)

    Takaŝi Kusano

    2001-01-01

    Full Text Available Picone-type inequalities are derived for nonlinear elliptic equations, and Sturmian comparison theorems are established as applications. Oscillation theorems for forced super-linear elliptic equations and superlinear-sublinear elliptic equations are also obtained.

  10. Elliptic and parabolic equations for measures

    Energy Technology Data Exchange (ETDEWEB)

    Bogachev, Vladimir I [M. V. Lomonosov Moscow State University, Moscow (Russian Federation); Krylov, Nikolai V [University of Minnesota, Minneapolis, MN (United States); Roeckner, Michael [Universitat Bielefeld, Bielefeld (Germany)

    2009-12-31

    This article gives a detailed account of recent investigations of weak elliptic and parabolic equations for measures with unbounded and possibly singular coefficients. The existence and differentiability of densities are studied, and lower and upper bounds for them are discussed. Semigroups associated with second-order elliptic operators acting in L{sup p}-spaces with respect to infinitesimally invariant measures are investigated. Bibliography: 181 titles.

  11. The two-loop sunrise integral and elliptic polylogarithms

    Energy Technology Data Exchange (ETDEWEB)

    Adams, Luise; Weinzierl, Stefan [Institut fuer Physik, Johannes Gutenberg-Universitaet Mainz (Germany); Bogner, Christian [Institut fuer Physik, Humboldt-Universitaet zu Berlin (Germany)

    2016-07-01

    In this talk, we present a solution for the two-loop sunrise integral with arbitrary masses around two and four space-time dimensions in terms of a generalised elliptic version of the multiple polylogarithms. Furthermore we investigate the elliptic polylogarithms appearing in higher orders in the dimensional regularisation ε of the two-dimensional equal mass solution. Around two space-time dimensions the solution consists of a sum of three elliptic dilogarithms where the arguments have a nice geometric interpretation as intersection points of the integration region and an elliptic curve associated to the sunrise integral. Around four space-time dimensions the sunrise integral can be expressed with the ε{sup 0}- and ε{sup 1}-solution around two dimensions, mass derivatives thereof and simpler terms. Considering higher orders of the two-dimensional equal mass solution we find certain generalisations of the elliptic polylogarithms appearing in the ε{sup 0}- and ε{sup 1}-solutions around two and four space-time dimensions. We show that these higher order-solutions can be found by iterative integration within this class of functions.

  12. Thermal convection of liquid sodium in inclined cylinders

    Science.gov (United States)

    Khalilov, Ruslan; Kolesnichenko, Ilya; Pavlinov, Alexander; Mamykin, Andrey; Shestakov, Alexander; Frick, Peter

    2018-04-01

    The effect of inclination on the low Prandtl number turbulent convection in a cylinder of unit aspect ratio was studied experimentally. The working fluid was sodium (Prandtl number Pr =0.0094 ), the measurements were performed for a fixed Rayleigh number Ra =(1.47 ±0.03 ) ×107 , and the inclination angle varied from β =0∘ (the Rayleigh-Bénard convection, the temperature gradient is vertical) up to β =90∘ (the applied temperature gradient is horizontal) with a step Δ β =10∘ . The effective axial heat flux characterized by the Nusselt number is minimal at β =0∘ and demonstrates a smooth growth with the increase of the cylinder inclination, reaching a maximum at angle β ≈70∘ and decreasing with a further increase of β . The maximal value of the normalized Nusselt number Nu (β )/Nu (0 ) was 1.21. In general, the dependence of Nu (β ) in a cylinder with unit aspect ratio is similar to what was observed in sodium convection in inclined long cylinders but is much weaker. The structure of the flow undergoes a significant transformation with inclination. Under moderate inclination (β ≲30∘ ), the fluctuations are strong and are provided by regular oscillations of large-scale circulation (LSC) and by turbulence. Under large inclination (β >60∘ ), the LSC is regular and the turbulence is weak, while in transient regimes (30∘border of transient and large inclinations. We find the first evidence of strong LSC fluctuations in low Prandtl number convective flow under moderate inclination. The rms azimuthal fluctuations of LSC, about 27∘ at β =0∘ , decrease almost linearly up to β =30∘ , where they are about 9∘. The angular fluctuations in the vicinity of the end faces are much stronger (about 37∘ at β =0∘ ) and weakly decrease up to β =20∘ . The strong anticorrelation of the fluctuations in two halves of the cylinder indicates the torsional character of LSC fluctuations. At β =30∘ , the intensity of the oscillations at the

  13. Note on twisted elliptic genus of K3 surface

    Energy Technology Data Exchange (ETDEWEB)

    Eguchi, Tohru, E-mail: eguchi@yukawa.kyoto-u.ac.j [Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502 (Japan); Hikami, Kazuhiro, E-mail: KHikami@gmail.co [Department of Mathematics, Naruto University of Education, Tokushima 772-8502 (Japan)

    2011-01-03

    We discuss the possibility of Mathieu group M{sub 24} acting as symmetry group on the K3 elliptic genus as proposed recently by Ooguri, Tachikawa and one of the present authors. One way of testing this proposal is to derive the twisted elliptic genera for all conjugacy classes of M{sub 24} so that we can determine the unique decomposition of expansion coefficients of K3 elliptic genus into irreducible representations of M{sub 24}. In this Letter we obtain all the hitherto unknown twisted elliptic genera and find a strong evidence of Mathieu moonshine.

  14. Movements of a Sphere Moving Over Smooth and Rough Inclines

    Science.gov (United States)

    Jan, Chyan-Deng

    1992-01-01

    The steady movements of a sphere over a rough incline in air, and over smooth and rough inclines in a liquid were studied theoretically and experimentally. The principle of energy conservation was used to analyze the translation velocities, rolling resistances, and drag coefficients of a sphere moving over the inclines. The rolling resistance to the movement of a sphere from the rough incline was presumed to be caused by collisions and frictional slidings. A varnished wooden board was placed on the bottom of an experimental tilting flume to form a smooth incline and a layer of spheres identical to the sphere moving over them was placed on the smooth wooden board to form a rough incline. Spheres used in the experiments were glass spheres, steel spheres, and golf balls. Experiments show that a sphere moving over a rough incline with negligible fluid drag in air can reach a constant translation velocity. This constant velocity was found to be proportional to the bed inclination (between 11 ^circ and 21^circ) and the square root of the sphere's diameter, but seemingly independent of the sphere's specific gravity. Two empirical coefficients in the theoretical expression of the sphere's translation velocity were determined by experiments. The collision and friction parts of the shear stress exerted on the interface between the moving sphere and rough incline were determined. The ratio of collision to friction parts appears to increase with increase in the bed inclination. These two parts seem to be of the same order of magnitude. The rolling resistances and the relations between the drag coefficient and Reynolds number for a sphere moving over smooth and rough inclines in a liquid, such as water or salad oil, were determined by a regression analysis based on experimental data. It was found that the drag coefficient for a sphere over the rough incline is larger than that for a sphere over the smooth incline, and both of which are much larger than that for a sphere in free

  15. Near-infrared photometry of bright elliptical galaxies

    NARCIS (Netherlands)

    Peletier, R. F.; Valentijn, E. A.; Jameson, R. F.

    High-quality visual-infrared color profiles have been determined for elliptical galaxies for the first time. Surface photometry in J and K is presented for 12 bright elliptical galaxies, and the results have been combined with CCD data in visual passbands. It is shown that the galaxies become bluer

  16. Type-2 fuzzy elliptic membership functions for modeling uncertainty

    DEFF Research Database (Denmark)

    Kayacan, Erdal; Sarabakha, Andriy; Coupland, Simon

    2018-01-01

    Whereas type-1 and type-2 membership functions (MFs) are the core of any fuzzy logic system, there are no performance criteria available to evaluate the goodness or correctness of the fuzzy MFs. In this paper, we make extensive analysis in terms of the capability of type-2 elliptic fuzzy MFs...... in modeling uncertainty. Having decoupled parameters for its support and width, elliptic MFs are unique amongst existing type-2 fuzzy MFs. In this investigation, the uncertainty distribution along the elliptic MF support is studied, and a detailed analysis is given to compare and contrast its performance...... advantages mentioned above, elliptic MFs have comparable prediction results when compared to Gaussian and triangular MFs. Finally, in order to test the performance of fuzzy logic controller with elliptic interval type-2 MFs, extensive real-time experiments are conducted for the 3D trajectory tracking problem...

  17. Hydrodynamic simulation of elliptic flow

    CERN Document Server

    Kolb, P F; Ruuskanen, P V; Heinz, Ulrich W

    1999-01-01

    We use a hydrodynamic model to study the space-time evolution transverse to the beam direction in ultrarelativistic heavy-ion collisions with nonzero impact parameters. We focus on the influence of early pressure on the development of radial and elliptic flow. We show that at high energies elliptic flow is generated only during the initial stages of the expansion while radial flow continues to grow until freeze-out. Quantitative comparisons with SPS data from semiperipheral Pb+Pb collisions suggest the applicability of hydrodynamical concepts already $\\approx$ 1 fm/c after impact.

  18. The Gothic arch (needle point) tracing and condylar inclination.

    Science.gov (United States)

    el-Gheriani, A S; Winstanley, R B

    1987-11-01

    The records of 11 patients referred for treatment of TMJ disorders were used to compare condylar inclination found by drawing a tangent and by using a mathematic technique. Needle point tracing angles were also measured for the same patients and were compared with the condylar inclination. It can be concluded that (1) the mathematic technique outlined records a more accurate condylar angulation, and (2) there is a great variation in condylar inclination values between patients and between left and right sides of the same patient, and (3) there is no direct relationship between condylar inclination and the needle point tracing angle.

  19. On the choice of orbits for an altimetric satellite to study ocean circulation and tides

    Science.gov (United States)

    Parke, Michael E.; Stewart, Robert H.; Farless, David L.; Cartwright, David E.

    1987-01-01

    The choice of an orbit for satellite altimetric studies of the ocean's circulation and tides requires an understanding of the orbital characteristics that influence the accuracy of the satellite's measurements of sea level and the temporal and spatial distribution of the measurements. The orbital characteristics that influence accurate calculations of the satellite's position as a function of time are examined, and the pattern of ground tracks laid down on the ocean's surface as a function of the satellite's altitude and inclination is studied. The results are used to examine the aliases in the measurements of surface geostrophic currents and tides. Finally, these considerations are used to specify possible orbits that may be useful for the upcoming Topex/Poseidon mission.

  20. Possible relation between pulsar rotation and evolution of magnetic inclination

    Science.gov (United States)

    Tian, Jun

    2018-05-01

    The pulsar timing is observed to be different from predicted by a simple magnetic dipole radiation. We choose eight pulsars whose braking index was reliably determined. Assuming the smaller values of braking index are dominated by the secular evolution of the magnetic inclination, we calculate the increasing rate of the magnetic inclination for each pulsar. We find a possible relation between the rotation frequency of each pulsar and the inferred evolution of the magnetic inclination. Due to the model-dependent fit of the magnetic inclination and other effects, more observational indicators for the change rate of magnetic inclination are needed to test the relation.

  1. Effective Elliptic Models for Efficient Wavefield Extrapolation in Anisotropic Media

    KAUST Repository

    Waheed, Umair bin

    2014-05-01

    Wavefield extrapolation operator for elliptically anisotropic media offers significant cost reduction compared to that of transversely isotropic media (TI), especially when the medium exhibits tilt in the symmetry axis (TTI). However, elliptical anisotropy does not provide accurate focusing for TI media. Therefore, we develop effective elliptically anisotropic models that correctly capture the kinematic behavior of the TTI wavefield. Specifically, we use an iterative elliptically anisotropic eikonal solver that provides the accurate traveltimes for a TI model. The resultant coefficients of the elliptical eikonal provide the effective models. These effective models allow us to use the cheaper wavefield extrapolation operator for elliptic media to obtain approximate wavefield solutions for TTI media. Despite the fact that the effective elliptic models are obtained by kinematic matching using high-frequency asymptotic, the resulting wavefield contains most of the critical wavefield components, including the frequency dependency and caustics, if present, with reasonable accuracy. The methodology developed here offers a much better cost versus accuracy tradeoff for wavefield computations in TTI media, considering the cost prohibitive nature of the problem. We demonstrate the applicability of the proposed approach on the BP TTI model.

  2. Effective Elliptic Models for Efficient Wavefield Extrapolation in Anisotropic Media

    KAUST Repository

    Waheed, Umair bin; Alkhalifah, Tariq Ali

    2014-01-01

    Wavefield extrapolation operator for elliptically anisotropic media offers significant cost reduction compared to that of transversely isotropic media (TI), especially when the medium exhibits tilt in the symmetry axis (TTI). However, elliptical anisotropy does not provide accurate focusing for TI media. Therefore, we develop effective elliptically anisotropic models that correctly capture the kinematic behavior of the TTI wavefield. Specifically, we use an iterative elliptically anisotropic eikonal solver that provides the accurate traveltimes for a TI model. The resultant coefficients of the elliptical eikonal provide the effective models. These effective models allow us to use the cheaper wavefield extrapolation operator for elliptic media to obtain approximate wavefield solutions for TTI media. Despite the fact that the effective elliptic models are obtained by kinematic matching using high-frequency asymptotic, the resulting wavefield contains most of the critical wavefield components, including the frequency dependency and caustics, if present, with reasonable accuracy. The methodology developed here offers a much better cost versus accuracy tradeoff for wavefield computations in TTI media, considering the cost prohibitive nature of the problem. We demonstrate the applicability of the proposed approach on the BP TTI model.

  3. Mergers in galaxy groups. I. Structure and properties of elliptical remnants

    International Nuclear Information System (INIS)

    Taranu, Dan S.; Dubinski, John; Yee, H. K. C.

    2013-01-01

    We present collisionless simulations of dry mergers in groups of 3 to 25 galaxies to test the hypothesis that elliptical galaxies form at the centers of such groups. Mock observations of the central remnants confirm their similarity to ellipticals, despite having no dissipational component. We vary the profile of the original spiral's bulge and find that ellipticals formed from spirals with exponential bulges have too low Sersic indices. Mergers of spirals with de Vaucouleurs (classical) bulges produce remnants with larger Sersic indices correlated with luminosity, as with Sloan Digital Sky Survey ellipticals. Exponential bulge mergers are better fits to faint ellipticals, whereas classical bulge mergers better match luminous ellipticals. Similarly, luminous ellipticals are better reproduced by remnants undergoing many (>5) mergers, and fainter ellipticals by those with fewer mergers. The remnants follow tight size-luminosity and velocity dispersion-luminosity (Faber-Jackson) relations (<0.12 dex scatter), demonstrating that stochastic merging can produce tight scaling relations if the merging galaxies also follow tight scaling relations. The slopes of the size-luminosity and Faber-Jackson relations are close to observations but slightly shallower in the former case. Both relations' intercepts are offset—remnants are too large but have too low dispersions at fixed luminosity. Some remnants show substantial (v/σ > 0.1) rotational support, although most are slow rotators and few are very fast rotators (v/σ > 0.5). These findings contrast with previous studies concluding that dissipation is necessary to produce ellipticals from binary mergers of spirals. Multiple, mostly minor and dry mergers can produce bright ellipticals, whereas significant dissipation could be required to produce faint, rapidly rotating ellipticals.

  4. Indirect evidences for a gas/dust torus along the Phobos orbit

    International Nuclear Information System (INIS)

    Dubinin, E.M.; Lundin, R.; Pissarenko, N.F.; Barabash, S.V.; Zakharov, A.V.; Koskinen, H.; Schwingenshuh, K.; Yeroshenko, Ye.G.

    1990-01-01

    Observations from the PHOBOS-2 space-craft of plasma and magnetic field effects in the solar wind near Mars suggest that a neutral gas (dust?)torus/ring resides along the orbit of the Martian satellite Phobos. Magnetic cavities (strong decreases of the magnetic field strength) coincident with strong plasma density increases (up to a factor of ten) are observed during the first elliptic transition orbits when the spacecraft approached the Phobos orbits. The characteristic transverse dimension of the structures along the spacecraft orbit is in the range 100-1,000 km. Torus effects also have characteristics similar to the formation of a bow shock with increases of plasma density and ion temperature, and a characteristic deflection of the ion flow. This suggests a rather strong interaction between the solar wind plasma and plasma near Phobos orbit. The interaction appears quite similar to that of the solar wind with a comet. The outgassing of matter from Phobos (and Deimos) is also suggested by plasma observations in the wake/tail of the Martian satellites. Altogether, the authors observations imply that a neutral gas cloud - possibly also associated with a faint dust ring - exists along the Phobos orbit

  5. Plasma balance equations based on orbit theory

    International Nuclear Information System (INIS)

    Lehnert, B.

    1982-01-01

    A set of plasma balance equations is proposed which is based on orbit theory and the particle distribution function, to provide means for theoretical analysis of a number of finite Larmor radius (FLR) phenomena without use of the Vlasov equation. Several important FLR effects originate from the inhomogeneity of an electric field in the plasma. The exact solution of a simple case shows that this inhomogeneity introduces fundamental changes in the physics of the particle motion. Thus, the periodic Larmor motion (gyration) is shifted in frequency and becomes elliptically polarized. Further, the non-periodic guiding-centre drift obtains additional components, part of which are accelerated such as to make the drift orbits intersect the equipotential surfaces of a static electric field. An attempt is finally made to classify the FLR effects, also with the purpose of identifying phenomena which have so far not been investigated. (author)

  6. Generation of an elliptic hollow beam using Mathieu and Bessel functions.

    Science.gov (United States)

    Chakraborty, Rijuparna; Ghosh, Ajay

    2006-09-01

    A new (to our knowledge) technique for the generation of a propagation-invariant elliptic hollow beam is reported. It avoids the use of the radial Mathieu function and hence is mathematically simpler. Bessel functions with their arguments having elliptic locus are used to generate the mask, which is then recorded using holographic technique. To generate such an elliptic beam, both the angular Mathieu function, i.e., elliptic vortex term, and the expression for the circular vortex are used separately. The resultant mask is illuminated with a plane beam, and the proper filtering of its Fourier transform generates the expected elliptic beam. Results with both vortex terms are satisfactory. It has been observed that even for higher ellipticity the vortices do not separate.

  7. Deontological and utilitarian inclinations in moral decision making: a process dissociation approach.

    Science.gov (United States)

    Conway, Paul; Gawronski, Bertram

    2013-02-01

    Dual-process theories of moral judgment suggest that responses to moral dilemmas are guided by two moral principles: the principle of deontology states that the morality of an action depends on the intrinsic nature of the action (e.g., harming others is wrong regardless of its consequences); the principle of utilitarianism implies that the morality of an action is determined by its consequences (e.g., harming others is acceptable if it increases the well-being of a greater number of people). Despite the proposed independence of the moral inclinations reflecting these principles, previous work has relied on operationalizations in which stronger inclinations of one kind imply weaker inclinations of the other kind. The current research applied Jacoby's (1991) process dissociation procedure to independently quantify the strength of deontological and utilitarian inclinations within individuals. Study 1 confirmed the usefulness of process dissociation for capturing individual differences in deontological and utilitarian inclinations, revealing positive correlations of both inclinations to moral identity. Moreover, deontological inclinations were uniquely related to empathic concern, perspective-taking, and religiosity, whereas utilitarian inclinations were uniquely related to need for cognition. Study 2 demonstrated that cognitive load selectively reduced utilitarian inclinations, with deontological inclinations being unaffected. In Study 3, a manipulation designed to enhance empathy increased deontological inclinations, with utilitarian inclinations being unaffected. These findings provide evidence for the independent contributions of deontological and utilitarian inclinations to moral judgments, resolving many theoretical ambiguities implied by previous research. (c) 2013 APA, all rights reserved.

  8. Analytic model for the long-term evolution of circular Earth satellite orbits including lunar node regression

    Science.gov (United States)

    Zhu, Ting-Lei; Zhao, Chang-Yin; Zhang, Ming-Jiang

    2017-04-01

    This paper aims to obtain an analytic approximation to the evolution of circular orbits governed by the Earth's J2 and the luni-solar gravitational perturbations. Assuming that the lunar orbital plane coincides with the ecliptic plane, Allan and Cook (Proc. R. Soc. A, Math. Phys. Eng. Sci. 280(1380):97, 1964) derived an analytic solution to the orbital plane evolution of circular orbits. Using their result as an intermediate solution, we establish an approximate analytic model with lunar orbital inclination and its node regression be taken into account. Finally, an approximate analytic expression is derived, which is accurate compared to the numerical results except for the resonant cases when the period of the reference orbit approximately equals the integer multiples (especially 1 or 2 times) of lunar node regression period.

  9. Random source generating far field with elliptical flat-topped beam profile

    International Nuclear Information System (INIS)

    Zhang, Yongtao; Cai, Yangjian

    2014-01-01

    Circular and rectangular multi-Gaussian Schell-model (MGSM) sources which generate far fields with circular and rectangular flat-topped beam profiles were introduced just recently (Sahin and Korotkova 2012 Opt. Lett. 37 2970; Korotkova 2014 Opt. Lett. 39 64). In this paper, a random source named an elliptical MGSM source is introduced. An analytical expression for the propagation factor of an elliptical MGSM beam is derived. Furthermore, an analytical propagation formula for an elliptical MGSM beam passing through a stigmatic ABCD optical system is derived, and its propagation properties in free space are studied. It is interesting to find that an elliptical MGSM source generates a far field with an elliptical flat-topped beam profile, being qualitatively different from that of circular and rectangular MGSM sources. The ellipticity and the flatness of the elliptical flat-topped beam profile in the far field are determined by the initial coherence widths and the beam index, respectively. (paper)

  10. Quasat - European status report

    International Nuclear Information System (INIS)

    Schilizzi, R.T.

    1987-01-01

    The scientific goals, design, and current development status of Quasat are reviewed. Quasat is a proposed 15-m orbiting radio telescope intended to serve as the space leg of an astronomical VLBI network comprising the existing large arrays in Europe, the U.S., the USSR, and Australia. The planned 63-deg-inclination 5700 x 12,500-km elliptical orbit is optimized for high-resolution imaging of quasar and radio-galaxy nuclei at cm wavelengths with the U.S. and European ground arrays. A drawing of the ESA inflatable-antenna concept, a diagram of the space/ground system, and tables listing additional observing targets and the predicted angular and spatial resolutions of a Quasat-based array at different wavelengths are included

  11. Spin Relaxation and Manipulation in Spin-orbit Qubits

    Science.gov (United States)

    Borhani, Massoud; Hu, Xuedong

    2012-02-01

    We derive a generalized form of the Electric Dipole Spin Resonance (EDSR) Hamiltonian in the presence of the spin-orbit interaction for single spins in an elliptic quantum dot (QD) subject to an arbitrary (in both direction and magnitude) applied magnetic field. We predict a nonlinear behavior of the Rabi frequency as a function of the magnetic field for sufficiently large Zeeman energies, and present a microscopic expression for the anisotropic electron g-tensor. Similarly, an EDSR Hamiltonian is devised for two spins confined in a double quantum dot (DQD). Finally, we calculate two-electron-spin relaxation rates due to phonon emission, for both in-plane and perpendicular magnetic fields. Our results have immediate applications to current EDSR experiments on nanowire QDs, g-factor optimization of confined carriers, and spin decay measurements in DQD spin-orbit qubits.

  12. Superconducting elliptical cavities

    CERN Document Server

    Sekutowicz, J K

    2011-01-01

    We give a brief overview of the history, state of the art, and future for elliptical superconducting cavities. Principles of the cell shape optimization, criteria for multi-cell structures design, HOM damping schemes and other features are discussed along with examples of superconducting structures for various applications.

  13. Interstellar matter within elliptical galaxies

    Science.gov (United States)

    Jura, Michael

    1988-01-01

    Multiwavelength observations of elliptical galaxies are reviewed, with an emphasis on their implications for theoretical models proposed to explain the origin and evolution of the interstellar matter. Particular attention is given to interstellar matter at T less than 100 K (atomic and molecular gas and dust), gas at T = about 10,000 K, and gas at T = 10 to the 6th K or greater. The data are shown to confirm the occurrence of mass loss from evolved stars, significant accretion from companion galaxies, and cooling inflows; no evidence is found for large mass outflow from elliptical galaxies.

  14. Natural Circulation Characteristics of a Symmetric Loop under Inclined Conditions

    Directory of Open Access Journals (Sweden)

    Xingtuan Yang

    2014-01-01

    Full Text Available Natural circulation is an important process for primary loops of some marine integrated reactors. The reactor works under inclined conditions when severe accidents happen to the ship. In this paper, to investigate the characteristics of natural circulation, experiments were conducted in a symmetric loop under the inclined angle of 0~45°. A CFD model was also set up to predict the behaviors of the loop beyond the experimental scope. Total circulation flow rate decreases with the increase of inclined angle. Meanwhile one circulation is depressed while the other is enhanced, and accordingly the disparity between the branch circulations arises and increases with the increase of inclined angle. Circulation only takes place in one branch circuit at large inclined angle. Also based on the CFD model, the influences of flow resistance distribution and loop configuration on natural circulation are predicted. The numerical results show that to design the loop with the configuration of big altitude difference and small width, it is favorable to reduce the influence of inclination; however too small loop width will cause severe reduction of circulation ability at large angle inclination.

  15. Locomotor Behavior of Chickens Anticipating Incline Walking

    Directory of Open Access Journals (Sweden)

    Chantal LeBlanc

    2018-01-01

    Full Text Available Keel bone damage (KBD is prevalent in hens raised for egg production, and ramps between different tiers in aviaries have potential to reduce the frequency of falls resulting in KBD. Effective use of ramps requires modulation of locomotion in anticipation of the incline. Inadequate adaptive locomotion may be one explanation why domestic layer hens (Gallus gallus domesticus exhibit high rates of KBD. To improve understanding of the capacity of hens to modulate their locomotion in anticipation of climbing, we measured the effects of incline angle upon the mechanics of the preparatory step before ascending a ramp. Because the energetic challenge of climbing increases with slope, we predicted that as angle of incline increased, birds during foot contact with the ground before starting to climb would increase their peak force and duration of contact and reduce variation in center of pressure (COP under their foot. We tested 20 female domestic chickens on ramp inclines at slopes of +0°, +40°, and +70° when birds were 17, 21, 26, 31, and 36 weeks of age. There were significantly higher vertical peak ground reaction forces in preparation at the steepest slope, and ground contact time increased significantly with each increase in ramp angle. Effects upon variation in COP were not apparent; likewise, effects of limb length, age, body mass were not significant. Our results reveal that domestic chickens are capable of modulating their locomotion in response to incline angle.

  16. A low earth orbit dynamic model for the proton anisotropy validation

    Science.gov (United States)

    Badavi, Francis F.

    2011-11-01

    Ionizing radiation measurements at low earth orbit (LEO) form the ideal tool for the experimental validation of radiation environmental models, nuclear transport code algorithms and nuclear reaction cross sections. Indeed, prior measurements on the space transportation system (STS; shuttle) have provided vital information impacting both the environmental models and the nuclear transport code development by requiring dynamic models of the LEO environment. Previous studies using computer aided design (CAD) models of the international space station (ISS) have demonstrated that the dosimetric prediction for a spacecraft at LEO requires the description of an environmental model with accurate anisotropic as well as dynamic behavior. This paper describes such a model for the trapped proton. The described model is a component of a suite of codes collectively named GEORAD (GEOmagnetic RADiation) which computes cutoff rigidity, trapped proton and trapped electron environments. The web version of GEORAD is named OLTARIS (On-line Tool for the Assessment of Radiation in Space). GEORAD suite is applicable to radiation environment prediction at LEO, medium earth orbit (MEO) and geosynchronous earth orbit (GEO) at quiet solar periods. GEORAD interest is in the study of long term effect of the trapped environment and therefore it does not account for any short term external field contribution due to solar activity. With the concentration of the paper on the LEO protons only, the paper presents the validation of the trapped proton model within GEORAD with reported measurements from the compact environment anomaly sensor (CEASE) science instrument package, flown onboard the tri-service experiment-5 (TSX-5) satellite during the period of June 2000 to July 2006. The spin stabilized satellite was flown in a 410 × 1710 km, 69° inclination elliptical orbit, allowing it to be exposed to a broad range of the LEO regime. The paper puts particular emphasize on the validation of the

  17. Ultraluminous Infrared Mergers: Elliptical Galaxies in Formation?

    Science.gov (United States)

    Genzel, R.; Tacconi, L. J.; Rigopoulou, D.; Lutz, D.; Tecza, M.

    2001-12-01

    We report high-quality near-IR spectroscopy of 12 ultraluminous infrared galaxy mergers (ULIRGs). Our new VLT and Keck data provide ~0.5" resolution, stellar and gas kinematics of these galaxies, most of which are compact systems in the last merger stages. We confirm that ULIRG mergers are ``ellipticals in formation.'' Random motions dominate their stellar dynamics, but significant rotation is common. Gasdynamics and stellar dynamics are decoupled in most systems. ULIRGs fall on or near the fundamental plane of hot stellar systems, and especially on its less evolution-sensitive, reff-σ projection. The ULIRG velocity dispersion distribution, their location in the fundamental plane, and their distribution of vrotsini/σ closely resemble those of intermediate-mass (~L*), elliptical galaxies with moderate rotation. As a group ULIRGs do not resemble giant ellipticals with large cores and little rotation. Our results are in good agreement with other recent studies indicating that disky ellipticals with compact cores or cusps can form through dissipative mergers of gas-rich disk galaxies while giant ellipticals with large cores have a different formation history. Based on observations at the European Southern Observatory, Chile (ESO 65.N-0266, 65.N-0289), and on observations at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, The University of California, and the National Aeronautics and Space Administration. The Keck Observatory was made possible by the general financial support by the W. M. Keck Foundation.

  18. Effective stability around the Cassini state in the spin-orbit problem

    Science.gov (United States)

    Sansottera, Marco; Lhotka, Christoph; Lemaître, Anne

    2014-05-01

    We investigate the long-time stability in the neighborhood of the Cassini state in the conservative spin-orbit problem. Starting with an expansion of the Hamiltonian in the canonical Andoyer-Delaunay variables, we construct a high-order Birkhoff normal form and give an estimate of the effective stability time in the Nekhoroshev sense. By extensively using algebraic manipulations on a computer, we explicitly apply our method to the rotation of Titan. We obtain physical bounds of Titan's latitudinal and longitudinal librations, finding a stability time greatly exceeding the estimated age of the Universe. In addition, we study the dependence of the effective stability time on three relevant physical parameters: the orbital inclination, , the mean precession of the ascending node of Titan orbit, , and the polar moment of inertia,.

  19. Newton flows for elliptic functions: A pilot study

    NARCIS (Netherlands)

    Twilt, F.; Helminck, G.F.; Snuverink, M.; van den Brug, L.

    2008-01-01

    Elliptic Newton flows are generated by a continuous, desingularized Newton method for doubly periodic meromorphic functions on the complex plane. In the special case, where the functions underlying these elliptic Newton flows are of second-order, we introduce various, closely related, concepts of

  20. Slipping and Rolling on an Inclined Plane

    Science.gov (United States)

    Aghamohammadi, Cina; Aghamohammadi, Amir

    2011-01-01

    In the first part of the paper, using a direct calculation two-dimensional motion of a particle sliding on an inclined plane is investigated for general values of friction coefficient ([mu]). A parametric equation for the trajectory of the particle is also obtained. In the second part of the paper, the motion of a sphere on the inclined plane is…

  1. Centrality dependence of directed and elliptic flow at the SPS

    International Nuclear Information System (INIS)

    Poskanzer, A.M.; Voloshin, S.A.; Baechler, J.; Barna, D.; Barnby, L.S.; Bartke, J.; Barton, R.A.; Betev, L.; Bialkowska, H.; Billmeier, A.; Blume, C.; Blyth, C.O.; Boimska, B.; Bracinik, J.; Brady, F.P.; Brockmann, R.; Brun, R.; Buncic, P.; Carr, L.; Cebra, D.; Cooper, G.E.; Cramer, J.G.; Csato, P.; Eckardt, V.; Eckhardt, F.; Ferenc, D.; Fischer, H.G.; Fodor, Z.; Foka, P.; Freund, P.; Friese, V.; Ftacnik, J.; Gal, J.; Ganz, R.; Gazdzicki, M.; Gladysz, E.; Grebieszkow, J.; Harris, J.W.; Hegyi, S.; Hlinka, V.; Hoehne, C.; Igo, G.; Ivanov, M.; Jacobs, P.; Janik, R.; Jones, P.G.; Kadija, K.; Kolesnikov, V.I.; Kowalski, M.; Lasiuk, B.; Levai, P.; Malakhov, A.I.; Margetis, S.; Markert, C.; Mayes, B.W.; Melkumov, G.L.; Molnar, J.; Nelson, J.M.; Odyniec, G.; Oldenburg, M.D.; Palla, G.; Panagiotou, A.D.; Petridis, A.; Pikna, M.; Pinsky, L.; Poskanzer, A.M.; Prindle, D.J.; Puehlhofer, F.; Reid, J.G.; Renfordt, R.; Retyk, W.; Ritter, H.G.; Roehrich, D.; Roland, C.; Roland, G.; Rybicki, A.; Sammer, T.; Sandoval, A.; Sann, H.; Semenov, A.Yu.; Schaefer, E.; Schmitz, N.; Seyboth, P.; Sikler, F.; Sitar, B.; Skrzypczak, E.; Snellings, R.; Squier, G.T.A.; Stock, R.; Strmen, P.; Stroebele, H.; Susa, T.; Szarka, I.; Szentpetery, I.; Sziklai, J.; Toy, M.; Trainor, T.A.; Trentalange, S.; Ullrich, T.; Varga, D.; Vassiliou, M.; Veres, G.I.; Vesztergombi, G.; Voloshin, S.; Vranic, D.; Wang, F.; Weerasundara, D.D.; Wenig, S.; Whitten, C.; Xu, N.; Yates, T.A.; Yoo, I.K.; Zimanyi, J.

    1999-01-01

    New data with a minimum bias trigger for 158 GeV/nucleon Pb + Pb have been analyzed. Directed and elliptic flow as a function of rapidity of the particles and centrality of the collision are presented. The centrality dependence of the ratio of elliptic flow to the initial space elliptic anisotropy is compared to models

  2. Vehicle with inclinable caterpillars

    International Nuclear Information System (INIS)

    Carra, O.; Delevallee, A.

    1991-01-01

    Vehicle has a body with propulsion assemblies that drive caterpillar tracks. When a propulsion unit inclines about its articulation axis it is aided by an advance movement of the caterpillar track in the opposite direction of rotation [fr

  3. Thickness shear mode quartz crystal resonators with optimized elliptical electrodes

    International Nuclear Information System (INIS)

    Ma Ting-Feng; Feng Guan-Ping; Zhang Chao; Jiang Xiao-Ning

    2011-01-01

    Quartz crystal resonators (QCRs) with circular electrodes have been widely used for various liquid and gas sensing applications. In this work, quartz crystal resonators with elliptical electrodes were studied and tested for liquid property measurement. Mindlin's theory was used to optimize the dimension and geometry of the electrodes and a 5-MHz QCR with minimum series resistance and without any spurious modes was obtained. A series of AT-cut QCRs with elliptical electrodes of different sizes were fabricated and their sensing performances were compared to devices with circular electrodes. The experimental result shows that the device with elliptical electrodes can obtain lower resonance impedance and a higher Q factor, which results in a better loading capability. Even though the sensitivities of devices with elliptical and circular electrodes are found to be similar, the sensor with elliptical electrodes has much higher resolution due to a better frequency stability. The study indicates that the performance of QCRs with elliptical electrodes is superior to that of traditional QCRs with circular electrodes. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  4. Elliptical cross section fuel rod study II

    International Nuclear Information System (INIS)

    Taboada, H.; Marajofsky, A.

    1996-01-01

    In this paper it is continued the behavior analysis and comparison between cylindrical fuel rods of circular and elliptical cross sections. Taking into account the accepted models in the literature, the fission gas swelling and release were studied. An analytical comparison between both kinds of rod reveals a sensible gas release reduction in the elliptical case, a 50% swelling reduction due to intragranular bubble coalescence mechanism and an important swelling increase due to migration bubble mechanism. From the safety operation point of view, for the same linear power, an elliptical cross section rod is favored by lower central temperatures, lower gas release rates, greater gas store in ceramic matrix and lower stored energy rates. (author). 6 refs., 8 figs., 1 tab

  5. ExoMars Trace Gas Orbiter provides atmospheric data during Aerobraking into its final orbit

    Science.gov (United States)

    Svedhem, Hakan; Vago, Jorge L.; Bruinsma, Sean; Müller-Wodarg, Ingo; ExoMars 2016 Team

    2017-10-01

    After the arrival of the Trace Gas Orbiter (TGO) at Mars on 19 October 2016 a number of initial orbit change manoeuvres were executed and the spacecraft was put in an orbit with a 24 hour period and 74 degrees inclination. The spacecraft and its four instruments were thoroughly checked out after arrival and a few measurements and images were taken in November 2016 and in Feb-March 2017. The solar occultation observations have however not yet been possible due to lack of the proper geometry.On 15 March a long period of aerobraking to reach the final 400km semi-circular frozen orbit (370x430km, with a fixed pericentre latitude). This orbit is optimised for the payload observations and for the communication relay with the ExoMars Rover, due to arrive in 2021.The aerobraking is proceeding well and the final orbit is expected to be reached in April 2018. A large data set is being acquired for the upper atmosphere of Mars, from the limit of the sensitivity of the accelerometer, down to lowest altitude of the aerobraking at about 105km. Initial analysis has shown a highly variable atmosphere with a slightly lower density then predicted by existing models. Until the time of the abstract writing no dust storms have been observed.The ExoMars programme is a joint activity by the European Space Agency(ESA) and ROSCOSMOS, Russia. ESA is providing the TGO spacecraft and Schiaparelli (EDM) and two of the TGO instruments and ROSCOSMOS is providing the Proton launcher and the other two TGO instruments. After the arrival of the ExoMars 2020 mission, consisting of a Rover and a Surface platform also launched by a Proton rocket, the TGO will handle the communication between the Earth and the Rover and Surface Platform through its (NASA provided) UHF communication system.

  6. Index profile measurement of asymmetrical elliptical preforms or fibers

    NARCIS (Netherlands)

    Blitterswijk, van W.; Smit, M.K.

    1987-01-01

    An extension of the beam-deflection method to the case of elliptical preforms with eccentric core (asymmetrical elliptical preforms) is presented, which can be easily implemented on automatic measurement equipment

  7. Electron energy spectrum in core-shell elliptic quantum wire

    Directory of Open Access Journals (Sweden)

    V.Holovatsky

    2007-01-01

    Full Text Available The electron energy spectrum in core-shell elliptic quantum wire and elliptic semiconductor nanotubes are investigated within the effective mass approximation. The solution of Schrodinger equation based on the Mathieu functions is obtained in elliptic coordinates. The dependencies of the electron size quantization spectrum on the size and shape of the core-shell nanowire and nanotube are calculated. It is shown that the ellipticity of a quantum wire leads to break of degeneration of quasiparticle energy spectrum. The dependences of the energy of odd and even electron states on the ratio between semiaxes are of a nonmonotonous character. The anticrosing effects are observed at the dependencies of electron energy spectrum on the transversal size of the core-shell nanowire.

  8. Evaluation of performance of veterinary in-clinic hematology analyzers.

    Science.gov (United States)

    Rishniw, Mark; Pion, Paul D

    2016-12-01

    A previous study provided information regarding the quality of in-clinic veterinary biochemistry testing. However, no similar studies for in-clinic veterinary hematology testing have been conducted. The objective of this study was to assess the quality of hematology testing in veterinary in-clinic laboratories using results obtained from testing 3 levels of canine EDTA blood samples. Clinicians prepared blood samples to achieve measurand concentrations within, below, and above their RIs and evaluated the samples in triplicate using their in-clinic analyzers. Quality was assessed by comparison of calculated total error with quality requirements, determination of sigma metrics, use of a quality goal index, and agreement between in-clinic and reference laboratory instruments. Suitability for statistical quality control was determined using adaptations from the computerized program, EZRules3. Evaluation of 10 veterinary in-clinic hematology analyzers showed that these instruments often fail to meet quality requirements. At least 60% of analyzers reasonably determined RBC, WBC, HCT, and HGB, when assessed by most quality goal criteria; platelets were less reliably measured, with 80% deemed suitable for low platelet counts, but only 30% for high platelet counts, and automated differential leukocyte counts were generally considered unsuitable for clinical use with fewer than 40% of analyzers meeting the least stringent quality goal requirements. Fewer than 50% of analyzers were able to meet requirements for statistical quality control for any measurand. These findings reflect the current status of in-clinic hematology analyzer performance and provide a basis for future evaluations of the quality of veterinary laboratory testing. © 2016 American Society for Veterinary Clinical Pathology.

  9. Upper canine inclination influences the aesthetics of a smile.

    Science.gov (United States)

    Bothung, C; Fischer, K; Schiffer, H; Springer, I; Wolfart, S

    2015-02-01

    This current study investigated which angle of canine inclination (angle between canine tooth axis (CA-line) and the line between the lateral canthus and the ipsilateral labial angle (EM-line)) is perceived to be most attractive in a smile. The second objective was to determine whether laymen and dental experts share the same opinion. A Q-sort assessment was performed with 48 posed smile photographs to obtain two models of neutral facial attractiveness. Two sets of images (1 male model set, 1 female model set), each containing seven images with incrementally altered canine and posterior teeth inclinations, were generated. The images were ranked for attractiveness by three groups (61 laymen, 59 orthodontists, 60 dentists). The images with 0° inclination, that is CA-line (maxillary canine axis) parallel to EM-line (the line formed by the lateral canthus and the ipsilateral corner of the mouth) (male model set: 54·4%; female model set: 38·9%), or -5° (inward) inclination (male model set: 20%; female model set: 29·4%) were perceived to be most attractive within each set. Images showing inward canine inclinations were regarded to be more attractive than those with outward inclinations. Dental experts and laymen were in accordance with the aesthetics. Smiles were perceived to be most attractive when the upper canine tooth axis was parallel to the EM-line. In reconstructive or orthodontic therapy, it is thus important to incline canines more inwardly than outwardly. © 2014 John Wiley & Sons Ltd.

  10. Weierstrass Elliptic Function Solutions to Nonlinear Evolution Equations

    International Nuclear Information System (INIS)

    Yu Jianping; Sun Yongli

    2008-01-01

    This paper is based on the relations between projection Riccati equations and Weierstrass elliptic equation, combined with the Groebner bases in the symbolic computation. Then the novel method for constructing the Weierstrass elliptic solutions to the nonlinear evolution equations is given by using the above relations

  11. Hot interstellar matter in elliptical galaxies

    CERN Document Server

    Kim, Dong-Woo

    2012-01-01

    Based on a number of new discoveries resulting from 10 years of Chandra and XMM-Newton observations and corresponding theoretical works, this is the first book to address significant progress in the research of the Hot Interstellar Matter in Elliptical Galaxies. A fundamental understanding of the physical properties of the hot ISM in elliptical galaxies is critical, because they are directly related to the formation and evolution of elliptical galaxies via star formation episodes, environmental effects such as stripping, infall, and mergers, and the growth of super-massive black holes. Thanks to the outstanding spatial resolution of Chandra and the large collecting area of XMM-Newton, various fine structures of the hot gas have been imaged in detail and key physical quantities have been accurately measured, allowing theoretical interpretations/predictions to be compared and tested against observational results. This book will bring all readers up-to-date on this essential field of research.

  12. On the observed excess of retrograde orbits among long-period comets

    International Nuclear Information System (INIS)

    Fernandez, J.A.

    1981-01-01

    The distribution of orbital inclinations of the observed long-period comets is analysed. An excess of retrograde orbits is found which increases with the perihelion distance, except for the range 1.1 10 3 A U) has the same behaviour as the total sample. It is thus suggested that the excess of retrograde orbits among long-period comets is related to an already existent excess among the incoming new comets (i.e. comets driven into the planetary region by stellar perturbations). Using theoretical considerations and a numerical model it is proposed that an important fraction of the so-called new comets are actually repeating passages through the planetary region. Nearly a half of the new comets with q > 2 A U may be repeating passages. An important consequence of the presence of comets repeating passages among the new ones is the production of an excess of retrograde orbits in the whole sample. (author)

  13. Stellar populations as a function of radius in giant elliptical galaxies

    NARCIS (Netherlands)

    Peletier, Reynier F.; Valentijn, Edwin A.

    Accurate surface photometry has been obtained in J and K for 12 giant elliptical galaxies. Ellipses have been fitted, to obtain luminosity, ellipticity, and major axis position angle profiles. The results have been combined with visual profiles from CCD observations. It is found that elliptical

  14. Proper Motion and Secular Variations of Keplerian Orbital Elements

    Directory of Open Access Journals (Sweden)

    Alexey G. Butkevich

    2018-05-01

    Full Text Available High-precision observations require accurate modeling of secular changes in the orbital elements in order to extrapolate measurements over long time intervals, and to detect deviation from pure Keplerian motion caused, for example, by other bodies or relativistic effects. We consider the evolution of the Keplerian elements resulting from the gradual change of the apparent orbit orientation due to proper motion. We present rigorous formulae for the transformation of the orbit inclination, longitude of the ascending node and argument of the pericenter from one epoch to another, assuming uniform stellar motion and taking radial velocity into account. An approximate treatment, accurate to the second-order terms in time, is also given. The proper motion effects may be significant for long-period transiting planets. These theoretical results are applicable to the modeling of planetary transits and precise Doppler measurements as well as analysis of pulsar and eclipsing binary timing observations.

  15. Enhanced photovoltaic performance of an inclined nanowire array solar cell.

    Science.gov (United States)

    Wu, Yao; Yan, Xin; Zhang, Xia; Ren, Xiaomin

    2015-11-30

    An innovative solar cell based on inclined p-i-n nanowire array is designed and analyzed. The results show that the inclined geometry can sufficiently increase the conversion efficiency of solar cells by enhancing the absorption of light in the active region. By tuning the nanowire array density, nanowire diameter, nanowire length, as well as the proportion of intrinsic region of the inclined nanowire solar cell, a remarkable efficiency in excess of 16% can be obtained in GaAs. Similar results have been obtained in InP and Si nanowire solar cells, demonstrating the universality of the performance enhancement of inclined nanowire arrays.

  16. Thermo-economic performance of inclined solar water distillation systems

    Directory of Open Access Journals (Sweden)

    Agboola Phillips O.

    2015-01-01

    Full Text Available This study investigates the thermo-economic performance of different configurations of inclined solar water desalination for parameters such as daily production, efficiency, system cost and distilled water production cost. The four different configurations considered for this study are as follows; 1. Inclined solar water distillation with bare absorber plate (IISWD with daily production of 5.46 kg/m2 day and daily efficiency of 48.3%. 2. Inclined solar water distillation with wick on absorber plate (IISWDW with daily production of 6.41kg/m2 day and daily efficiency 50.3%. 3. Inclined solar water distillation with wire mesh on absorber plate (IISWDWM with daily production n of 3.03 kg/m2 day and daily efficiency 32.6%. 4. Inclined solar water distillation with bare absorber plate (ISWD. (Control System with daily production of 3.25 kg/m2 day and daily efficiency of 40.1%. The systems potable water cost price ranges from 0.03 $/L for IISWDW to 0.06$/L for IISWDWM System. All the systems are economically and technically feasible as a solar distillation system for potable water in Northern Cyprus. The price of potable water from water vendors/hawkers ranges from 0.11-0.16 $/L. It is more economically viable to have the rooftop inclined solar water desalination system than procuring potable water from vendors.`

  17. Investigation on computation of elliptical microwave plasma cavity

    Science.gov (United States)

    Liao, Xiaoli; Liu, Hua; Zhang, Kai

    2008-12-01

    In recent years, the advance of the elliptical resonant cavity and focus cavity is known by many people. There are homogeneous and multipatternal virtues in the focus dimensional microwave field of the elliptical resonant cavity. It is very suitable for applying the low power microwave biological effect equipment. However, when designing the elliptical resonant cavity may meet the problems of complex and huge computation need to be solved. This paper proposed the simple way of approximate processing the Mathieu function. It can greatly simplify the difficulty and decrease the scale of computation. This method can satisfy the requirements of research and development within project permitted precision.

  18. Treating domestic sewage by Integrated Inclined-Plate-Membrane bio-reactor

    Science.gov (United States)

    Song, Li Ming; Wang, Zi; Chen, Lei; Zhong, Min; Dong, Zhan Feng

    2017-12-01

    Membrane fouling shorten the service life of the membrane and increases aeration rate for membrane surface cleaning. Two membrane bio-reactors, one for working and another for comparing, were set up to evaluate the feasibility of alleviating membrane fouling and improving wastewater treatment efficiency by integrating inclined-plate precipitation and membrane separation. The result show that: (1) Inclined-plate in reactor had a good effect on pollutant removal of membrane bioreactor. The main role of inclined-plate is dividing reactor space and accelerating precipitation. (2) Working reactor have better performance in COD, TN and TP removal, which can attribute to that working reactor (integrated inclined-plate-Membrane bioreactor) takes both advantages of membrane separation and biological treatment. When influent COD, TP and TN concentration is 163-248 mg/L, 2.08-2.81 mg/L and 24.38-30.49 mg/L in working reactor, effluent concentration is 27-35 mg/L, 0.53-0.59 mg/L and 11.28-11.56 mg/L, respectively. (3) Membrane fouling was well alleviated in integrated inclined-plate-Membrane bioreactor, and membrane normal service time is significantly longer than that in comparing reactor, which can attribute to accelerating precipitation of inclined-plate. In summary, integrated inclined-plate-Membrane bioreactor is a promising technology to alleviating membrane fouling and improving wastewater treatment efficiency, having good performance and bright future in application.

  19. Genealogy and stability of periodic orbit families around uniformly rotating asteroids

    Science.gov (United States)

    Hou, Xiyun; Xin, Xiaosheng; Feng, Jinglang

    2018-03-01

    Resonance orbits around a uniformly rotating asteroid are studied from the approach of periodic orbits in this work. Three periodic families (denoted as I, II, and III in the paper) are fundamental in organizing the resonance families. For the planar case: (1) Genealogy and stability of Families I, II and the prograde resonance families are studied. For extremely irregular asteroids, family genealogy close to the asteroid is greatly distorted from that of the two body-problem (2BP), indicating that it is inappropriate to treat the orbital motions as perturbed Keplerian orbits. (2) Genealogy and stability of Family III are also studied. Stability of this family may be destroyed by the secular resonance between the orbital ascending node's precession and the asteroid's rotation. For the spatial case: (1) Genealogy of the near circular three-dimensional periodic families are studied. The genealogy may be broken apart by families of eccentric frozen orbits whose argument of perigee is ;frozen; in space. (2) The joint effects between the secular resonance and the orbital resonances may cause instability to three-dimensional orbital motion with orbit inclinations close to the critical values. Applying the general methodology to a case study - the asteroid Eros and also considering higher order non-spherical terms, some extraordinary orbits are found, such as the ones with orbital plane co-rotating with the asteroid, and the stable frozen orbits with argument of perigee librating around values different from 0°, 90°, 180°, 270°.

  20. Lunar Prospector Orbit Determination Uncertainties Using the High Resolution Lunar Gravity Models

    Science.gov (United States)

    Carranza, Eric; Konopliv, Alex; Ryne, Mark

    1999-01-01

    The Lunar Prospector (LP) mission began on January 6, 1998, when the LP spacecraft was launched from Cape Canaveral, Florida. The objectives of the mission were to determine whether water ice exists at the lunar poles, generate a global compositional map of the lunar surface, detect lunar outgassing, and improve knowledge of the lunar magnetic and gravity fields. Orbit determination of LP performed at the Jet Propulsion Laboratory (JPL) is conducted as part of the principal science investigation of the lunar gravity field. This paper will describe the JPL effort in support of the LP Gravity Investigation. This support includes high precision orbit determination, gravity model validation, and data editing. A description of the mission and its trajectory will be provided first, followed by a discussion of the orbit determination estimation procedure and models. Accuracies will be examined in terms of orbit-to-orbit solution differences, as a function of oblateness model truncation, and inclination in the plane-of-sky. Long term predictions for several gravity fields will be compared to the reconstructed orbits to demonstrate the accuracy of the orbit determination and oblateness fields developed by the Principal Gravity Investigator.

  1. Structure and Formation of Elliptical and Spheroidal Galaxies

    Science.gov (United States)

    Kormendy, John; Fisher, David B.; Cornell, Mark E.; Bender, Ralf

    2009-05-01

    New surface photometry of all known elliptical galaxies in the Virgo cluster is combined with published data to derive composite profiles of brightness, ellipticity, position angle, isophote shape, and color over large radius ranges. These provide enough leverage to show that Sérsic log I vprop r 1/n functions fit the brightness profiles I(r) of nearly all ellipticals remarkably well over large dynamic ranges. Therefore, we can confidently identify departures from these profiles that are diagnostic of galaxy formation. Two kinds of departures are seen at small radii. All 10 of our ellipticals with total absolute magnitudes MVT 4 uncorrelated with MVT . They also are α-element enhanced, implying short star-formation timescales. And their stellar populations have a variety of ages but mostly are very old. Extra light ellipticals generally rotate rapidly, are more isotropic than core Es, and have disky isophotes. We show that they have n sime 3 ± 1 almost uncorrelated with MVT and younger and less α-enhanced stellar populations. These are new clues to galaxy formation. We suggest that extra light ellipticals got their low Sérsic indices by forming in relatively few binary mergers, whereas giant ellipticals have n > 4 because they formed in larger numbers of mergers of more galaxies at once plus later heating during hierarchical clustering. We confirm that core Es contain X-ray-emitting gas whereas extra light Es generally do not. This leads us to suggest why the E-E dichotomy arose. If energy feedback from active galactic nuclei (AGNs) requires a "working surface" of hot gas, then this is present in core galaxies but absent in extra light galaxies. We suggest that AGN energy feedback is a strong function of galaxy mass: it is weak enough in small Es not to prevent merger starbursts but strong enough in giant Es and their progenitors to make dry mergers dry and to protect old stellar populations from late star formation. Finally, we verify that there is a strong

  2. Electromagnetic Invisibility of Elliptic Cylinder Cloaks

    International Nuclear Information System (INIS)

    Kan, Yao; Chao, Li; Fang, Li

    2008-01-01

    Structures with unique electromagnetic properties are designed based on the approach of spatial coordinate transformations of Maxwell's equations. This approach is applied to scheme out invisible elliptic cylinder cloaks, which provide more feasibility for cloaking arbitrarily shaped objects. The transformation expressions for the anisotropic material parameters and the field distribution are derived. The cloaking performances of ideal and lossy elliptic cylinder cloaks are investigated by finite element simulations. It is found that the cloaking performance will degrade in the forward direction with increasing loss. (fundamental areas of phenomenology (including applications))

  3. Quantum W-algebras and elliptic algebras

    International Nuclear Information System (INIS)

    Feigin, B.; Kyoto Univ.; Frenkel, E.

    1996-01-01

    We define a quantum W-algebra associated to sl N as an associative algebra depending on two parameters. For special values of the parameters, this algebra becomes the ordinary W-algebra of sl N , or the q-deformed classical W-algebra of sl N . We construct free field realizations of the quantum W-algebras and the screening currents. We also point out some interesting elliptic structures arising in these algebras. In particular, we show that the screening currents satisfy elliptic analogues of the Drinfeld relations in U q (n). (orig.)

  4. Shape of the orbital opening: individual characterization and analysis of variability in modern humans, Gorilla gorilla, and Pan troglodytes.

    Science.gov (United States)

    Schmittbuhl, M; Le Minor, J M; Allenbach, B; Schaaf, A

    1999-05-01

    The description of the human orbital shape is principally qualitative in the classical literature, and characterised by adjectives such as circular, rectangular or quadrangular. In order to provide a precise quantification and interpretation of this shape, a study based on automatic image analysis and Fourier analysis was carried out on 45 human skulls (30 males, 15 females), and for comparison on 61 skulls of Gorilla gorilla (40 males, 21 females), and 34 skulls of Pan troglodytes (20 males, 14 females). Sexual dimorphism in the shape of the orbital opening was not demonstrated. Its dominant morphological features could be characterized by Fourier analysis; elliptical elongation and quadrangularity were dominant morphological features of the shape of the orbital opening in the three species. Elliptical elongation was more marked in humans and Pan, whereas quadrangularity was particularly emphasized in Gorilla. An intraspecific variability of the shape of the orbital opening existed in humans, Gorilla and Pan, and seemed close in the three species. Interspecific partition between humans, Gorilla and Pan was demonstrated despite the variability observed in the three species studied. Interspecific differences between Gorilla and the Pan-humans group were principally explained by the differences in quadrangularity, and by differences in orientation of triangularity and pentagonality. Differences in the shape of the orbital opening between humans and Pan were principally explained by differences in hexagonality, and by differences in orientation of quadrangularity. A closeness of shape between some humans and some individuals in Pan and, to a lesser degree, with some individuals in Gorilla was observed, demonstrating the existence of a morphological continuum of the shape of the orbital opening in hominoids.

  5. Vortex precession in thin elliptical ferromagnetic nanodisks

    Energy Technology Data Exchange (ETDEWEB)

    Zaspel, C.E., E-mail: craig.zaspel@umwestern.edu

    2017-07-01

    Highlights: • A general form for the magnetostatic energy is calculated for the vortex state in a ferromagnetic ellipse. • The ellipse magnetostatic energy is minimized by conformal mapping the circular disk onto the ellipse. • The gyrotropic precession frequency is obtained in general for a range of ellipticities. - Abstract: The magnetostatic energy is calculated for a magnetic vortex in a noncircular elliptical nanodisk. It is well-known that the energy of a vortex in the circular disk is minimized though an ansatz that eliminates the magnetostatic charge at the disk edge. Beginning with this ansatz for the circular disk, a conformal mapping of a circle interior onto the interior of an ellipse results in the magnetization of the elliptical disk. This magnetization in the interior of an ellipse also has no magnetostatic charge at the disk edge also minimizing the magnetostatic energy. As expected the energy has a quadratic dependence on the displacement of the vortex core from the ellipse center, but reflecting the lower symmetry of the ellipse. Through numerical integration of the magnetostatic integral a general expression for the energy is obtained for ellipticity values from 1.0 to about 0.3. Finally a general expression for the gyrotropic frequency as described by the Thiele equation is obtained.

  6. Influences of magma chamber ellipticity on ring fracturing and eruption at collapse calderas

    International Nuclear Information System (INIS)

    Holohan, Eoghan P; Walsh, John J; Vries, Benjamin van Wyk de; Troll, Valentin R; Walter, Thomas R

    2008-01-01

    Plan-view ellipticity of a pre-caldera magma reservoir, and its influence on the development of caldera ring fracturing and eruptive behaviour, have not previously been subjected to dedicated evaluation. We experimentally simulated caldera collapse into elliptical magma chambers and found that collapse into highly-elliptical chambers produced a characteristic pattern of ring-fault localization and lateral propagation. Although results are preliminary, the general deformation pattern for elliptical resurgence shows strong similarities to elliptical collapse. Ring faults accommodating uplift again initiate around the chamberos short axis and are reverse, but dip inward. Field and geophysical observations at several elliptical calderas of varying scale (e.g. Long Valley, Katmai, and Rabaul calderas) are consistent with a control from elliptical magma chamber geometry on ring fracturing and eruption, as predicted from our experiments.

  7. Influences of magma chamber ellipticity on ring fracturing and eruption at collapse calderas

    Energy Technology Data Exchange (ETDEWEB)

    Holohan, Eoghan P; Walsh, John J [Fault Analysis Group, School of Geological Sciences, University College Dublin, Belfield, Dublin 4 (Ireland); Vries, Benjamin van Wyk de [Laboratoire Magmas et Volcans, 5 rue Kessler, 63038 Clermont-Ferrand (France); Troll, Valentin R [Department of Earth Sciences, Uppsala University, SE-752 36, Uppsala (Sweden); Walter, Thomas R [GFZ Potsdam, Telegrafenberg, Potsdam, D-14473 (Germany)], E-mail: Eoghan.Holohan@ucd.ie

    2008-10-01

    Plan-view ellipticity of a pre-caldera magma reservoir, and its influence on the development of caldera ring fracturing and eruptive behaviour, have not previously been subjected to dedicated evaluation. We experimentally simulated caldera collapse into elliptical magma chambers and found that collapse into highly-elliptical chambers produced a characteristic pattern of ring-fault localization and lateral propagation. Although results are preliminary, the general deformation pattern for elliptical resurgence shows strong similarities to elliptical collapse. Ring faults accommodating uplift again initiate around the chamberos short axis and are reverse, but dip inward. Field and geophysical observations at several elliptical calderas of varying scale (e.g. Long Valley, Katmai, and Rabaul calderas) are consistent with a control from elliptical magma chamber geometry on ring fracturing and eruption, as predicted from our experiments.

  8. Precession of a Spinning Ball Rolling down an Inclined Plane

    Science.gov (United States)

    Cross, Rod

    2015-01-01

    A routine problem in an introductory physics course considers a rectangular block at rest on a plane inclined at angle a to the horizontal. In order for the block not to slide down the incline, the coefficient of sliding friction, µ, must be at least tan a. The situation is similar for the case of a ball rolling down an inclined plane. In order…

  9. Polarization characteristics of double-clad elliptical fibers.

    Science.gov (United States)

    Zhang, F; Lit, J W

    1990-12-20

    A scalar variational analysis based on a Gaussian approximation of the fundamental mode of a double-clad elliptical fiber with a depressed inner cladding is studied. The polarization properties and graphic results are presented; they are given in terms of three parameters: the ratio of the major axis to the minor axis of the core, the ratio of the inner cladding major axis to the core major axis, and the difference between the core index and the inner cladding index. The variations of both the spot size and the field intensity with core ellipticity are examined. It is shown that high birefringence and dispersion-free orthogonal polarization modes can be obtained within the single-mode region and that the field intensity distribution may be more confined to the fiber center than in a single-clad elliptical fiber.

  10. TRANSIT TIMING VARIATIONS FOR INCLINED AND RETROGRADE EXOPLANETARY SYSTEMS

    International Nuclear Information System (INIS)

    Payne, Matthew J.; Ford, Eric B.; Veras, Dimitri

    2010-01-01

    We perform numerical calculations of the expected transit timing variations (TTVs) induced on a hot-Jupiter by an Earth-mass perturber. Motivated by the recent discoveries of retrograde transiting planets, we concentrate on an investigation of the effect of varying relative planetary inclinations, up to and including completely retrograde systems. We find that planets in low-order (e.g., 2:1) mean-motion resonances (MMRs) retain approximately constant TTV amplitudes for 0 deg. 170 deg. Systems in higher order MMRs (e.g., 5:1) increase in TTV amplitude as inclinations increase toward 45 deg., becoming approximately constant for 45 deg. 135 deg. Planets away from resonance slowly decrease in TTV amplitude as inclinations increase from 0 deg. to 180 deg., whereas planets adjacent to resonances can exhibit a huge range of variability in TTV amplitude as a function of both eccentricity and inclination. For highly retrograde systems (135 deg. < i ≤ 180 deg.), TTV signals will be undetectable across almost the entirety of parameter space, with the exceptions occurring when the perturber has high eccentricity or is very close to an MMR. This high inclination decrease in TTV amplitude (on and away from resonance) is important for the analysis of the known retrograde and multi-planet transiting systems, as inclination effects need to be considered if TTVs are to be used to exclude the presence of any putative planetary companions: absence of evidence is not evidence of absence.

  11. Elliptic Diophantine equations a concrete approach via the elliptic logarithm

    CERN Document Server

    Tzanakis, Nikos

    2013-01-01

    This book presents in a unified way the beautiful and deep mathematics, both theoretical and computational, on which the explicit solution of an elliptic Diophantine equation is based. It collects numerous results and methods that are scattered in literature. Some results are even hidden behind a number of routines in software packages, like Magma. This book is suitable for students in mathematics, as well as professional mathematicians.

  12. The elliptic model for communication fluxes

    International Nuclear Information System (INIS)

    Herrera-Yagüe, C; Schneider, C M; González, M C; Smoreda, Z; Couronné, T; Zufiria, P J

    2014-01-01

    In this paper, a model (called the elliptic model) is proposed to estimate the number of social ties between two locations using population data in a similar manner to how transportation research deals with trips. To overcome the asymmetry of transportation models, the new model considers that the number of relationships between two locations is inversely proportional to the population in the ellipse whose foci are in these two locations. The elliptic model is evaluated by considering the anonymous communications patterns of 25 million users from three different countries, where a location has been assigned to each user based on their most used phone tower or billing zip code. With this information, spatial social networks are built at three levels of resolution: tower, city and region for each of the three countries. The elliptic model achieves a similar performance when predicting communication fluxes as transportation models do when predicting trips. This shows that human relationships are influenced at least as much by geography as is human mobility. (paper)

  13. Elliptical Galaxies: Rotationally Distorted, After All

    Directory of Open Access Journals (Sweden)

    Caimmi, R.

    2009-12-01

    Full Text Available On the basis of earlier investigations onhomeoidally striated Mac Laurin spheroids and Jacobi ellipsoids (Caimmi and Marmo2005, Caimmi 2006a, 2007, different sequences of configurations are defined and represented in the ellipticity-rotation plane, $({sf O}hat{e}chi_v^2$. The rotation parameter, $chi_v^2$, is defined as the ratio, $E_mathrm{rot}/E_mathrm{res}$, of kinetic energy related to the mean tangential equatorial velocity component, $M(overline{v_phi}^2/2$, to kineticenergy related to tangential equatorial component velocity dispersion, $Msigma_{phiphi}^2/2$, andresidual motions, $M(sigma_{ww}^2+sigma_{33}^2/2$.Without loss of generality (above a thresholdin ellipticity values, the analysis is restricted to systems with isotropic stress tensor, whichmay be considered as adjoint configurationsto any assigned homeoidally striated density profile with anisotropic stress tensor, different angular momentum, and equal remaining parameters.The description of configurations in the$({sf O}hat{e}chi_v^2$ plane is extendedin two respects, namely (a from equilibriumto nonequilibrium figures, where the virialequations hold with additional kinetic energy,and (b from real to imaginary rotation, wherethe effect is elongating instead of flattening,with respect to the rotation axis.An application is made toa subsample $(N=16$ of elliptical galaxies extracted from richer samples $(N=25,~N=48$of early type galaxies investigated within theSAURON project (Cappellari et al. 2006, 2007.Sample objects are idealized as homeoidallystriated MacLaurinspheroids and Jacobi ellipsoids, and theirposition in the $({sf O}hat{e}chi_v^2$plane is inferred from observations followinga procedure outlined in an earlier paper(Caimmi 2009b. The position of related adjoint configurations with isotropic stresstensor is also determined. With a singleexception (NGC 3379, slow rotators arecharacterized by low ellipticities $(0lehat{e}<0.2$, low anisotropy parameters$(0ledelta<0

  14. Inclined Bodies of Various Cross Sections at Supersonic Speeds

    Science.gov (United States)

    Jorgensen, Leland H.

    1958-01-01

    To aid in assessing effects of cross-sectional shape on body aerodynamics, the forces and moments have been measured for bodies with circular, elliptic, square, and triangular cross sections at Mach numbers 1.98 and 3.88. Results for bodies with noncircular cross sections have been compared with results for bodies of revolution having the same axial distribution of cross-sectional area (and, thus, the same equivalent fineness ratio). Comparisons have been made for bodies of fineness ratios 6 and 10 at angles of attack from 0 deg to about 20 deg and for Reynolds numbers, based on body length, of 4.0 x 10(exp 6) and 6.7 x 10(exp 6). The results of this investigation show that distinct aerodynamic advantages can be obtained by using bodies with noncircular cross sections. At certain angles of bank, bodies with elliptic, square, and triangular cross sections develop considerably greater lift and lift-drag ratios than equivalent bodies of revolution. For bodies with elliptic cross sections, lift and pitching-moment coefficients can be correlated with corresponding coefficients for equivalent circular bodies. It has been found that the ratios of lift and pitching-moment coefficients for an elliptic body to those for an equivalent circular body are practically constant with change in both angle of attack and Mach number. These lift and moment ratios are given very accurately by slender-body theory. As a result of this agreement, the method of NACA Rep. 1048 for computing forces and moments for bodies of revolution has been simply extended to bodies with elliptic cross sections. For the cases considered (elliptic bodies of fineness ratios 6 and 10 having cross-sectional axis ratios of 1.5 and 2), agreement of theory with experiment is very good. As a supplement to the force and moment results, visual studies of the flow over bodies have been made by use of the vapor-screen, sublimation, and white-lead techniques. Photographs from these studies are included in the report.

  15. Vortex dynamics in the wake of a pivoted cylinder undergoing vortex-induced vibrations with elliptic trajectories

    Science.gov (United States)

    Marble, Erik; Morton, Christopher; Yarusevych, Serhiy

    2018-05-01

    Vortex-induced vibrations of a pivoted cylinder are investigated experimentally at a fixed Reynolds number of 3100, a mass ratio of 10.8, and a range of reduced velocities, 4.42 ≤ U^* ≤ 9.05. For these conditions, the cylinder traces elliptic trajectories, with the experimental conditions producing three out of four possible combinations of orbiting direction and primary axis alignment relative to the incoming flow. The study focuses on the quantitative analysis of wake topology and its relation to this type of structural response. Velocity fields were measured using time-resolved, two-component particle image velocimetry (TR-PIV). These results show that phase-averaged wake topology generally agrees with the Morse and Williamson (J Fluids Struct 25(4):697-712, 2009) shedding map for one-degree-of-freedom vortex-induced vibrations, with 2S, 2{P}o, and 2P shedding patterns observed within the range of reduced velocities studied here. Vortex tracking and vortex strength quantification are used to analyze the vortex shedding process and how it relates to cylinder response. In the case of 2S vortex shedding, vortices are shed when the cylinder is approaching the maximum transverse displacement and reaches the streamwise equilibrium. 2P vortices are shed approximately half a period earlier in the cylinder's elliptic trajectory. Leading vortices shed immediately after the peak in transverse oscillation and trailing vortices shed near the equilibrium of transverse oscillation. The orientation and direction of the cylinder's elliptic trajectory are shown to influence the timing of vortex shedding, inducing changes in the 2P wake topology.

  16. A planet in a polar orbit of 1.4 solar-mass star

    Directory of Open Access Journals (Sweden)

    Guenther E.W.

    2015-01-01

    Full Text Available Although more than a thousand transiting extrasolar planets have been discovered, only very few of them orbit stars that are more massive than the Sun. The discovery of such planets is interesting, because they have formed in disks that are more massive but had a shorter life time than those of solar-like stars. Studies of planets more massive than the Sun thus tell us how the properties of the proto-planetary disks effect the formation of planets. Another aspect that makes these planets interesting is that they have kept their original orbital inclinations. By studying them we can thus find out whether the orbital axes planets are initially aligned to the stars rotational axes, or not. Here we report on the discovery of a planet of a 1.4 solar-mass star with a period of 5.6 days in a polar orbit made by CoRoT. This new planet thus is one of the few known close-in planets orbiting a star that is substantially more massive than the Sun.

  17. C1,1 regularity for degenerate elliptic obstacle problems

    Science.gov (United States)

    Daskalopoulos, Panagiota; Feehan, Paul M. N.

    2016-03-01

    The Heston stochastic volatility process is a degenerate diffusion process where the degeneracy in the diffusion coefficient is proportional to the square root of the distance to the boundary of the half-plane. The generator of this process with killing, called the elliptic Heston operator, is a second-order, degenerate-elliptic partial differential operator, where the degeneracy in the operator symbol is proportional to the distance to the boundary of the half-plane. In mathematical finance, solutions to the obstacle problem for the elliptic Heston operator correspond to value functions for perpetual American-style options on the underlying asset. With the aid of weighted Sobolev spaces and weighted Hölder spaces, we establish the optimal C 1 , 1 regularity (up to the boundary of the half-plane) for solutions to obstacle problems for the elliptic Heston operator when the obstacle functions are sufficiently smooth.

  18. Development of an Inclined Plate Extractor-Separator for Immiscible Liquids

    Directory of Open Access Journals (Sweden)

    Syed Zahoor ul Hassan Rizvi

    2009-10-01

    Full Text Available A new inclined plates extractor-separator is developed for operation with immiscible liquids in which extraction and separation is achieved in one unit contrary to mixer settlers. The inclined plates extractor-separator combines turbulent jets for contacting, and an inclined plate for separation of the two phases. The inclined plates extractor-separator does not have any moving part inside the vessel. This feature makes it free from the mechanical problems associated with conventional apparatus. The proposed inclined plates extractor-separator was operated in batch mode under various operating conditions to evaluate its performance on the basis of extraction efficiency. Water (light phase was used as solvent to extract ethyl acetate from a heavy phase pool of tetrachloroethylene and ethyl acetate. The ethyl acetate content was analysed using chromatography. A hydrodynamic study was carried out using high speed photography to understand the mechanisms occurring during mass transfer across the two phases. Furthermore, it was found that the proposed inclined plate extractor-separator reduces the overall operating time by 67% and consumes only 13% of the power in comparison to a mixer-settler. A hydraulic power consumption comparison with a mixer settler and a gullwing extractor-separator is also presented.

  19. Abundance ratios in dwarf elliptical galaxies

    Science.gov (United States)

    Şen, Ş.; Peletier, R. F.; Boselli, A.; den Brok, M.; Falcón-Barroso, J.; Hensler, G.; Janz, J.; Laurikainen, E.; Lisker, T.; Mentz, J. J.; Paudel, S.; Salo, H.; Sybilska, A.; Toloba, E.; van de Ven, G.; Vazdekis, A.; Yesilyaprak, C.

    2018-04-01

    We determine abundance ratios of 37 dwarf ellipticals (dEs) in the nearby Virgo cluster. This sample is representative of the early-type population of galaxies in the absolute magnitude range -19.0 originate from late-type dwarfs or small spirals. Na-yields appear to be very metal-dependent, in agreement with studies of giant ellipticals, probably due to the large dependence on the neutron-excess in stars. We conclude that dEs have undergone a considerable amount of chemical evolution, they are therefore not uniformly old, but have extended SFH, similar to many of the Local Group galaxies.

  20. Elliptic fibrations of maximal rank on a supersingular K3 surface

    International Nuclear Information System (INIS)

    Shioda, Tetsuji

    2013-01-01

    We study a class of elliptic K3 surfaces defined by an explicit Weierstrass equation to find elliptic fibrations of maximal rank on K3 surface in positive characteristic. In particular, we show that the supersingular K3 surface of Artin invariant 1 (unique by Ogus) admits at least one elliptic fibration with maximal rank 20 in every characteristic p>7, p≠13, and further that the number, say N(p), of such elliptic fibrations (up to isomorphisms), is unbounded as p → ∞; in fact, we prove that lim p→∞ N(p)/p 2 ≥(1/12) 2 .

  1. Co-current descending two-phase flows in inclined packed beds : experiments versus simulations

    Energy Technology Data Exchange (ETDEWEB)

    Atta, A.; Nigam, K.D.P.; Roy, S. [Inst. of Technology, New Delhi (India). Dept. of Chemical Engineering; Schubert, M.; Larachi, F. [Laval Univ., Quebec City, PQ (Canada). Dept. of Chemical Engineering

    2010-10-15

    This paper presented a numerical simulation for an inclined packed bed configuration for two-phase co-current downward flow. A two-phase Eulerian computational fluid dynamics (CFD) model was used to predict the hydrodynamic behaviour. Two different modelling strategies were compared, notably a straight tube with an artificially inclined gravity, and an inclined geometry with straight gravity. The effect of inclination angle of a packed bed on its gas-liquid flow segregation and liquid saturation spatial distribution was measured for varying inclinations and fluid velocities. The CFD model was adapted from a trickle-bed vertical configuration and based on the porous media concept. The predicted pressure drops for the inclined gravity were found to be insensitive to inclination. Therefore, simulations to study the parameters that influence the reduced liquid saturation were performed only with the inclined geometry case. Experimental data obtained using electrical capacitance tomography was used to validate the model predictions. The study showed that a trickle bed CFD model for vertically straight reactors can be effectively implemented in inclined reactor geometries. However, additional research is needed to formulate appropriate drag force closures which should be incorporated in the CFD model for improved quantitative estimation of inclined bed hydrodynamics. 22 refs., 10 figs.

  2. Sound Attenuation in Elliptic Mufflers Using a Regular Perturbation Method

    OpenAIRE

    Banerjee, Subhabrata; Jacobi, Anthony M.

    2012-01-01

    The study of sound attenuation in an elliptical chamber involves the solution of the Helmholtz equation in elliptic coordinate systems. The Eigen solutions for such problems involve the Mathieu and the modified Mathieu functions. The computation of such functions poses considerable challenge. An alternative method to solve such problems had been proposed in this paper. The elliptical cross-section of the muffler has been treated as a perturbed circle, enabling the use of a regular perturbatio...

  3. Spin manipulation and relaxation in spin-orbit qubits

    Science.gov (United States)

    Borhani, Massoud; Hu, Xuedong

    2012-03-01

    We derive a generalized form of the electric dipole spin resonance (EDSR) Hamiltonian in the presence of the spin-orbit interaction for single spins in an elliptic quantum dot (QD) subject to an arbitrary (in both direction and magnitude) applied magnetic field. We predict a nonlinear behavior of the Rabi frequency as a function of the magnetic field for sufficiently large Zeeman energies, and present a microscopic expression for the anisotropic electron g tensor. Similarly, an EDSR Hamiltonian is devised for two spins confined in a double quantum dot (DQD), where coherent Rabi oscillations between the singlet and triplet states are induced by jittering the inter-dot distance at the resonance frequency. Finally, we calculate two-electron-spin relaxation rates due to phonon emission, for both in-plane and perpendicular magnetic fields. Our results have immediate applications to current EDSR experiments on nanowire QDs, g-factor optimization of confined carriers, and spin decay measurements in DQD spin-orbit qubits.

  4. Orbital and Collisional Evolution of the Irregular Satellites

    Science.gov (United States)

    Nesvorný, David; Alvarellos, Jose L. A.; Dones, Luke; Levison, Harold F.

    2003-07-01

    The irregular moons of the Jovian planets are a puzzling part of the solar system inventory. Unlike regular satellites, the irregular moons revolve around planets at large distances in tilted and eccentric orbits. Their origin, which is intimately linked with the origin of the planets themselves, is yet to be explained. Here we report a study of the orbital and collisional evolution of the irregular satellites from times after their formation to the present epoch. The purpose of this study is to find out the features of the observed irregular moons that can be attributed to this evolution and separate them from signatures of the formation process. We numerically integrated ~60,000 test satellite orbits to map orbital locations that are stable on long time intervals. We found that the orbits highly inclined to the ecliptic are unstable due to the effect of the Kozai resonance, which radially stretches them so that satellites either escape from the Hill sphere, collide with massive inner moons, or impact the parent planet. We also found that prograde satellite orbits with large semimajor axes are unstable due to the effect of the evection resonance, which locks the orbit's apocenter to the apparent motion of the Sun around the parent planet. In such a resonance, the effect of solar tides on a resonant moon accumulates at each apocenter passage of the moon, which causes a radially outward drift of its orbital apocenter; once close to the Hill sphere, the moon escapes. By contrast, retrograde moons with large orbital semimajor axes are long-lived. We have developed an analytic model of the distant satellite orbits and used it to explain the results of our numerical experiments. In particular, we analytically studied the effect of the Kozai resonance. We numerically integrated the orbits of the 50 irregular moons (known by 2002 August 16) for 108 yr. All orbits were stable on this time interval and did not show any macroscopic variations that would indicate

  5. Uncertainty Requirement Analysis for the Orbit, Attitude, and Burn Performance of the 1st Lunar Orbit Insertion Maneuver

    Directory of Open Access Journals (Sweden)

    Young-Joo Song

    2016-12-01

    Full Text Available In this study, the uncertainty requirements for orbit, attitude, and burn performance were estimated and analyzed for the execution of the 1st lunar orbit insertion (LOI maneuver of the Korea Pathfinder Lunar Orbiter (KPLO mission. During the early design phase of the system, associate analysis is an essential design factor as the 1st LOI maneuver is the largest burn that utilizes the onboard propulsion system; the success of the lunar capture is directly affected by the performance achieved. For the analysis, the spacecraft is assumed to have already approached the periselene with a hyperbolic arrival trajectory around the moon. In addition, diverse arrival conditions and mission constraints were considered, such as varying periselene approach velocity, altitude, and orbital period of the capture orbit after execution of the 1st LOI maneuver. The current analysis assumed an impulsive LOI maneuver, and two-body equations of motion were adapted to simplify the problem for a preliminary analysis. Monte Carlo simulations were performed for the statistical analysis to analyze diverse uncertainties that might arise at the moment when the maneuver is executed. As a result, three major requirements were analyzed and estimated for the early design phase. First, the minimum requirements were estimated for the burn performance to be captured around the moon. Second, the requirements for orbit, attitude, and maneuver burn performances were simultaneously estimated and analyzed to maintain the 1st elliptical orbit achieved around the moon within the specified orbital period. Finally, the dispersion requirements on the B-plane aiming at target points to meet the target insertion goal were analyzed and can be utilized as reference target guidelines for a mid-course correction (MCC maneuver during the transfer. More detailed system requirements for the KPLO mission, particularly for the spacecraft bus itself and for the flight dynamics subsystem at the ground

  6. ELLIPT2D: A Flexible Finite Element Code Written Python

    International Nuclear Information System (INIS)

    Pletzer, A.; Mollis, J.C.

    2001-01-01

    The use of the Python scripting language for scientific applications and in particular to solve partial differential equations is explored. It is shown that Python's rich data structure and object-oriented features can be exploited to write programs that are not only significantly more concise than their counter parts written in Fortran, C or C++, but are also numerically efficient. To illustrate this, a two-dimensional finite element code (ELLIPT2D) has been written. ELLIPT2D provides a flexible and easy-to-use framework for solving a large class of second-order elliptic problems. The program allows for structured or unstructured meshes. All functions defining the elliptic operator are user supplied and so are the boundary conditions, which can be of Dirichlet, Neumann or Robbins type. ELLIPT2D makes extensive use of dictionaries (hash tables) as a way to represent sparse matrices.Other key features of the Python language that have been widely used include: operator over loading, error handling, array slicing, and the Tkinter module for building graphical use interfaces. As an example of the utility of ELLIPT2D, a nonlinear solution of the Grad-Shafranov equation is computed using a Newton iterative scheme. A second application focuses on a solution of the toroidal Laplace equation coupled to a magnetohydrodynamic stability code, a problem arising in the context of magnetic fusion research

  7. Electromagnetic fields and Green functions in elliptical vacuum chambers

    CERN Document Server

    AUTHOR|(CDS)2084216; Biancacci, Nicolo; Migliorati, Mauro; Palumbo, Luigi; Vaccaro, Vittorio; CERN. Geneva. ATS Department

    2017-01-01

    In this paper, we discuss the electromagnetic interaction between a point charge travelling inside a waveguide of elliptical cross section, and the waveguide itself. By using a convenient expansion of the Mathieu functions, useful in particular for treating a variety of problems in applied mathematics and physics with elliptic geometry, we first obtain the longitudinal electromagnetic field of a point charge (Green function) in free space in terms of elliptical coordinates. This expression allows, then, to calculate the scattered field due to the boundary conditions in our geometry. By summing the contribution of the direct or primary field and the indirect field scattered by the boundary, after a careful choice of some expansion expressions, we derive a novel formula of the longitudinal electric field, in any transverse position of the elliptical cross section, generated by the charge moving along the longitudinal axis of the waveguide. The obtained expression is represented in a closed form, it can be diffe...

  8. Inclined nanoimprinting lithography for 3D nanopatterning

    International Nuclear Information System (INIS)

    Liu Zhan; Bucknall, David G; Allen, Mark G

    2011-01-01

    We report a non-conventional shear-force-driven nanofabrication approach, inclined nanoimprint lithography (INIL), for producing 3D nanostructures of varying heights on planar substrates in a single imprinting step. Such 3D nanostructures are fabricated by exploiting polymer anisotropic dewetting where the degree of anisotropy can be controlled by the magnitude of the inclination angle. The feature size is reduced from micron scale of the template to a resultant nanoscale pattern. The underlying INIL mechanism is investigated both experimentally and theoretically. The results indicate that the shear force generated at a non-zero inclination angle induced by the INIL apparatus essentially leads to asymmetry in the polymer flow direction ultimately resulting in 3D nanopatterns with different heights. INIL removes the requirements in conventional nanolithography of either utilizing 3D templates or using multiple lithographic steps. This technique enables various 3D nanoscale devices including angle-resolved photonic and plasmonic crystals to be fabricated.

  9. Families Among High-Inclination Asteroids

    Science.gov (United States)

    Novakovic, B.; Cellino, A.; Knezevic, Z.

    2012-05-01

    We review briefly the most important results of the classification of high-inclination asteroids into families performed by Novakovic et al.(Icarus, 2011,216) and present some new results about a very interesting (5438) Lorre cluster.

  10. Holomorphic bundles over elliptic manifolds

    International Nuclear Information System (INIS)

    Morgan, J.W.

    2000-01-01

    In this lecture we shall examine holomorphic bundles over compact elliptically fibered manifolds. We shall examine constructions of such bundles as well as (duality) relations between such bundles and other geometric objects, namely K3-surfaces and del Pezzo surfaces. We shall be dealing throughout with holomorphic principal bundles with structure group GC where G is a compact, simple (usually simply connected) Lie group and GC is the associated complex simple algebraic group. Of course, in the special case G = SU(n) and hence GC = SLn(C), we are considering holomorphic vector bundles with trivial determinant. In the other cases of classical groups, G SO(n) or G = Sympl(2n) we are considering holomorphic vector bundles with trivial determinant equipped with a non-degenerate symmetric, or skew symmetric pairing. In addition to these classical cases there are the finite number of exceptional groups. Amazingly enough, motivated by questions in physics, much interest centres around the group E8 and its subgroups. For these applications it does not suffice to consider only the classical groups. Thus, while often first doing the case of SU(n) or more generally of the classical groups, we shall extend our discussions to the general semi-simple group. Also, we shall spend a good deal of time considering elliptically fibered manifolds of the simplest type, namely, elliptic curves

  11. Sensitivity of Rayleigh wave ellipticity and implications for surface wave inversion

    Science.gov (United States)

    Cercato, Michele

    2018-04-01

    The use of Rayleigh wave ellipticity has gained increasing popularity in recent years for investigating earth structures, especially for near-surface soil characterization. In spite of its widespread application, the sensitivity of the ellipticity function to the soil structure has been rarely explored in a comprehensive and systematic manner. To this end, a new analytical method is presented for computing the sensitivity of Rayleigh wave ellipticity with respect to the structural parameters of a layered elastic half-space. This method takes advantage of the minor decomposition of the surface wave eigenproblem and is numerically stable at high frequency. This numerical procedure allowed to retrieve the sensitivity for typical near surface and crustal geological scenarios, pointing out the key parameters for ellipticity interpretation under different circumstances. On this basis, a thorough analysis is performed to assess how ellipticity data can efficiently complement surface wave dispersion information in a joint inversion algorithm. The results of synthetic and real-world examples are illustrated to analyse quantitatively the diagnostic potential of the ellipticity data with respect to the soil structure, focusing on the possible sources of misinterpretation in data inversion.

  12. Pool Boiling CHF in Inclined Narrow Annuli

    International Nuclear Information System (INIS)

    Kang, Myeong Gie

    2010-01-01

    Pool boiling heat transfer has been studied extensively since it is frequently encountered in various heat transfer equipment. Recently, it has been widely investigated in nuclear power plants for application to the advanced light water reactors designs. Through the review on the published results it can be concluded that knowledge on the combined effects of the surface orientation and a confined space on pool boiling heat transfer is of great practical importance and also of great academic interest. Fujita et al. investigated pool boiling heat transfer, from boiling inception to the critical heat flux (CHF, q' CHF ), in a confined narrow space between heated and unheated parallel rectangular plates. They identified that both the confined space and the surface orientation changed heat transfer much. Kim and Suh changed the surface orientation angles of a downward heating rectangular channel having a narrow gap from the downward-facing position (180 .deg.) to the vertical position (90 .deg.). They observed that the CHF generally decreased as the inclination angle (θ ) increased. Yao and Chang studied pool boiling heat transfer in a confined heat transfer for vertical narrow annuli with closed bottoms. They observed that when the gap size ( s ) of the annulus was decreased the effect of space confinement to boiling heat transfer increased. The CHF was occurred at much lower value for the confined space comparing to the unconfined pool boiling. Pool boiling heat transfer in narrow horizontal annular crevices was studied by Hung and Yao. They concluded that the CHF decreased with decreasing gap size of the annuli and described the importance of the thin film evaporation to explain the lower CHF of narrow crevices. The effect of the inclination angle on the CHF on countercurrent boiling in an inclined uniformly heated tube with closed bottoms was also studied by Liu et al. They concluded that the CHF reduced with the inclination angle decrease. A study was carried out

  13. Improving wellbore position accuracy of horizontal wells by using a continuous inclination measurement from a near bit inclination MWD sensor

    Energy Technology Data Exchange (ETDEWEB)

    Berger, P. E.; Sele, R. [Baker Hughes INTEQ (United States)

    1998-12-31

    Wellbore position calculations are typically performed by measuring azimuth and inclination at 10 to 30 meter intervals and using interpolation techniques to determine the borehole position between survey stations. The input parameters are measured depth (MD), azimuth and inclination, where the two parameters are measured with an MWD tool. Output parameters are the geometric coordinates; true value depth (TVD), north and east. By improving the accuracy of the inclination measurement reduces the uncertainty of the calculated TVD value, resulting in increased confidence in wellbore position. Significant improvements in quality control can be achieved by using multiple sensors. This paper describes a set of quality control parameters that can be used to verify individual sensor performance and a method for calculating TVD uncertainty in horizontal wells, using a single sensor or a combination of sensors. 6 refs., 5 figs.

  14. Towards adiabatic waveforms for inspiral into Kerr black holes. II. Dynamical sources and generic orbits

    International Nuclear Information System (INIS)

    Sundararajan, Pranesh A.; Hughes, Scott A.; Khanna, Gaurav; Drasco, Steve

    2008-01-01

    This is the second in a series of papers whose aim is to generate adiabatic gravitational waveforms from the inspiral of stellar-mass compact objects into massive black holes. In earlier work, we presented an accurate (2+1)D finite-difference time-domain code to solve the Teukolsky equation, which evolves curvature perturbations near rotating (Kerr) black holes. The key new ingredient there was a simple but accurate model of the singular source term based on a discrete representation of the Dirac-delta function and its derivatives. Our earlier work was intended as a proof of concept, using simple circular, equatorial geodesic orbits as a test bed. Such a source is effectively static, in that the smaller body remains at the same coordinate radius and orbital inclination over an orbit. (It of course moves through axial angle, but we separate that degree of freedom from the problem. Our numerical grid has only radial, polar, and time coordinates.) We now extend the time-domain code so that it can accommodate dynamic sources that move on a variety of physically interesting world lines. We validate the code with extensive comparison to frequency-domain waveforms for cases in which the source moves along generic (inclined and eccentric) bound geodesic orbits. We also demonstrate the ability of the time-domain code to accommodate sources moving on interesting nongeodesic worldlines. We do this by computing the waveform produced by a test mass following a kludged inspiral trajectory, made of bound geodesic segments driven toward merger by an approximate radiation loss formula.

  15. Nonlinear elliptic equations of the second order

    CERN Document Server

    Han, Qing

    2016-01-01

    Nonlinear elliptic differential equations are a diverse subject with important applications to the physical and social sciences and engineering. They also arise naturally in geometry. In particular, much of the progress in the area in the twentieth century was driven by geometric applications, from the Bernstein problem to the existence of Kähler-Einstein metrics. This book, designed as a textbook, provides a detailed discussion of the Dirichlet problems for quasilinear and fully nonlinear elliptic differential equations of the second order with an emphasis on mean curvature equations and on Monge-Ampère equations. It gives a user-friendly introduction to the theory of nonlinear elliptic equations with special attention given to basic results and the most important techniques. Rather than presenting the topics in their full generality, the book aims at providing self-contained, clear, and "elementary" proofs for results in important special cases. This book will serve as a valuable resource for graduate stu...

  16. Radial, sideward and elliptic flow at AGS energies

    Indian Academy of Sciences (India)

    the sideward flow, the elliptic flow and the radial transverse mass distribution of protons data at. AGS energies. In order to ... data on both sideward and elliptic flow, NL3 model is better at 2 A¡GeV, while NL23 model is at 4–8. A¡GeV. ... port approach RBUU which is based on a coupled set of covariant transport equations for.

  17. Can elliptical galaxies be equilibrium systems

    Energy Technology Data Exchange (ETDEWEB)

    Caimmi, R [Padua Univ. (Italy). Ist. di Astronomia

    1980-08-01

    This paper deals with the question of whether elliptical galaxies can be considered as equilibrium systems (i.e., the gravitational + centrifugal potential is constant on the external surface). We find that equilibrium models such as Emden-Chandrasekhar polytropes and Roche polytropes with n = 0 can account for the main part of observations relative to the ratio of maximum rotational velocity to central velocity dispersion in elliptical systems. More complex models involving, for example, massive halos could lead to a more complete agreement. Models that are a good fit to the observed data are characterized by an inner component (where most of the mass is concentrated) and a low-density outer component. A comparison is performed between some theoretical density distributions and the density distribution observed by Young et al. (1978) in NGC 4473, but a number of limitations must be adopted. Alternative models, such as triaxial oblate non-equilibrium configurations with coaxial shells, involve a number of problems which are briefly discussed. We conclude that spheroidal oblate models describing elliptical galaxies cannot be ruled out until new analyses relative to more refined theoretical equilibrium models (involving, for example, massive halos) and more detailed observations are performed.

  18. Stratified flow model for convective condensation in an inclined tube

    International Nuclear Information System (INIS)

    Lips, Stéphane; Meyer, Josua P.

    2012-01-01

    Highlights: ► Convective condensation in an inclined tube is modelled. ► The heat transfer coefficient is the highest for about 20° below the horizontal. ► Capillary forces have a strong effect on the liquid–vapour interface shape. ► A good agreement between the model and the experimental results was observed. - Abstract: Experimental data are reported for condensation of R134a in an 8.38 mm inner diameter smooth tube in inclined orientations with a mass flux of 200 kg/m 2 s. Under these conditions, the flow is stratified and there is an optimum inclination angle, which leads to the highest heat transfer coefficient. There is a need for a model to better understand and predict the flow behaviour. In this paper, the state of the art of existing models of stratified two-phase flows in inclined tubes is presented, whereafter a new mechanistic model is proposed. The liquid–vapour distribution in the tube is determined by taking into account the gravitational and the capillary forces. The comparison between the experimental data and the model prediction showed a good agreement in terms of heat transfer coefficients and pressure drops. The effect of the interface curvature on the heat transfer coefficient has been quantified and has been found to be significant. The optimum inclination angle is due to a balance between an increase of the void fraction and an increase in the falling liquid film thickness when the tube is inclined downwards. The effect of the mass flux and the vapour quality on the optimum inclination angle has also been studied.

  19. Multilevel quadrature of elliptic PDEs with log-normal diffusion

    KAUST Repository

    Harbrecht, Helmut

    2015-01-07

    We apply multilevel quadrature methods for the moment computation of the solution of elliptic PDEs with lognormally distributed diffusion coefficients. The computation of the moments is a difficult task since they appear as high dimensional Bochner integrals over an unbounded domain. Each function evaluation corresponds to a deterministic elliptic boundary value problem which can be solved by finite elements on an appropriate level of refinement. The complexity is thus given by the number of quadrature points times the complexity for a single elliptic PDE solve. The multilevel idea is to reduce this complexity by combining quadrature methods with different accuracies with several spatial discretization levels in a sparse grid like fashion.

  20. Type A Jacobi Elliptic One-Monopole

    International Nuclear Information System (INIS)

    Teh, Rosy; Wong, Khai-Ming

    2010-01-01

    We present new classical generalized one-monopole solution of the SU(2) Yang-Mills-Higgs theory with the Higgs field in the adjoint representation. We show that this generalized solution with Θ-winding number m = 1 and φ-winding number n = 1 is an axially symmetric Jacobi elliptic generalization of the 't Hooft-Polyakov one-monopole. We construct this axially symmetric one-monopole solution by generalizing the large distance asymptotic solution of the 't Hooft-Polyakov one-monopole to the Jacobi elliptic functions and solving the second order equations of motion numerically when the Higgs potential is vanishing. This solution is a regular non-BPS finite energy solution.

  1. Natural circulation of integrated-type marine reactor at inclined attitude

    International Nuclear Information System (INIS)

    Iyori, Isao; Aya, Izuo; Murata, Hiroyuki; Kobayashi, Michiyuki; Nariai, Hideki

    1987-01-01

    A steady-state single-phase natural circulation test was performed to clarify the effect of inclination by using a model of an integrated-type marine reactor. It was found that several types of flow pattern occur in the natural circulation loop corresponding to the range of inclination angle. Stable flow rates are sustained up to near 90 0 because of the occurrence of a driving force arising from those sections of the facility which were horizontal before the inclination. It was found that the temperature distribution in the steam generator at inclined attitude depends essentially only on the elevation z. The applicability of a one-dimensional analytical model was examined. It was clarified that employment of detailed U-turn flow paths, their correlation, and temperature-distribution function of core is essential for improvement. (orig.)

  2. Psychosocial Determinants of Romantic Inclination Among Indian Youth

    OpenAIRE

    D. Barani Ganth; S. Kadhiravan

    2017-01-01

    The present study was conducted with the aim of understanding the psychosocial determinants of romantic inclination among youth in India. We involved 779 student participants from a large central university in south India in the age range of 18-24 years. The participants filled measures on romantic inclination, personality, attachment style, interpersonal attraction, and social influence on romantic relationship in addition to a questionnaire on demographic information and relationship histor...

  3. Kerr ellipticity effect in a birefringent optical fiber

    International Nuclear Information System (INIS)

    Ishiekwene, G.C.; Mensah, S.Y.; Brown, C.S.

    2004-09-01

    An intensity-dependent change in the ellipticity of an input light beam leads to a characteristic shift in polarization instability. Dichroism gives rise to a self-induced ellipticity effect in the polarization state of an intense input light oriented along the fast axis of a birefringent optical fiber. The critical power at which the fiber effective beat length becomes infinite is reduced considerably in the presence of dichroism. (author)

  4. Beam energy dependence of elliptic flow in heavy-ion collision

    International Nuclear Information System (INIS)

    Otuka, Naohiko; Isse, Masatsugu; Ohnishi, Akira; Pradip Kumar Sahu; Nara, Yasushi

    2002-01-01

    We study radial flow and elliptic flow in relativistic heavy-ion collisions at energies from GSI-SIS to BNL-RHIC energies using hadronic cascade model JAM. The excitation function of radial flow shows the softening of hadronic matter from BNL-AGS to CERN-SPS energies. JAM model reproduces transverse mass spectra at BNL-AGS, CERN-SPS at BNL-RHIC energies as well as elliptic flow upto CERN-SPS. For elliptic flow at BNL-RHIC energy (√s=130 GeV), while JAM gives the enough flow at fragment region, it fails at mid rapidity. (author)

  5. Convergence criteria for systems of nonlinear elliptic partial differential equations

    International Nuclear Information System (INIS)

    Sharma, R.K.

    1986-01-01

    This thesis deals with convergence criteria for a special system of nonlinear elliptic partial differential equations. A fixed-point algorithm is used, which iteratively solves one linearized elliptic partial differential equation at a time. Conditions are established that help foresee the convergence of the algorithm. Under reasonable hypotheses it is proved that the algorithm converges for such nonlinear elliptic systems. Extensive experimental results are reported and they show the algorithm converges in a wide variety of cases and the convergence is well correlated with the theoretical conditions introduced in this thesis

  6. Strength Calculation of Inclined Sections of Reinforced Concrete Elements under Transverse Bending

    Science.gov (United States)

    Filatov, V. B.

    2017-11-01

    The authors propose a design model to determine the strength of inclined sections of bent reinforced concrete elements without shear reinforcement for the action of transverse force taking into account the aggregate interlock forces in the inclined crack. The calculated dependences to find out the components of forces acting in an inclined section are presented. The calculated dependences are obtained from the consideration of equilibrium conditions of the block over the inclined crack. A comparative analysis of the experimental values of the failure loads of the inclined section and the theoretical values obtained for the proposed dependencies and normative calculation methods is performed. It is shown that the proposed design model makes it possible to take into account the effect the longitudinal reinforcement percentage has on the inclined section strength, the element cross section height without the introduction of empirical coefficients which contributes to an increase in the structural safety of design solutions including the safety of high-strength concrete elements.

  7. Verifying black hole orbits with gravitational spectroscopy

    International Nuclear Information System (INIS)

    Drasco, Steve

    2009-01-01

    Gravitational waves from test masses bound to geodesic orbits of rotating black holes are simulated, using Teukolsky's black hole perturbation formalism, for about ten thousand generic orbital configurations. Each binary radiates power exclusively in modes with frequencies that are integer-linear combinations of the orbit's three fundamental frequencies. General spectral properties are found with a survey of orbits about a black hole taken to be rotating at 80% of the maximal spin. The orbital eccentricity is varied from 0.1 to 0.9. Inclination ranges from 20 deg. to 160 deg. and comes to within 20 deg. of polar. Semilatus rectum is varied from 1.2 to 3 times the value at the innermost stable circular orbits. The following general spectral properties are found: (i) 99% of the radiated power is typically carried by a few hundred modes, and at most by about a thousand modes, (ii) the dominant frequencies can be grouped into a small number of families defined by fixing two of the three integer frequency multipliers, and (iii) the specifics of these trends can be qualitatively inferred from the geometry of the orbit under consideration. Detections using triperiodic analytic templates modeled on these general properties would constitute a verification of radiation from an adiabatic sequence of black hole orbits and would recover the evolution of the fundamental orbital frequencies. In an analogy with ordinary spectroscopy, this would compare to observing the Bohr model's atomic hydrogen spectrum without being able to rule out alternative atomic theories or nuclei. The suitability of such a detection technique is demonstrated using snapshots computed at 12-hour intervals throughout the last three years before merger of a kludged inspiral. The system chosen is typical of those thought to occur in galactic nuclei and to be observable with space-based gravitational wave detectors like LISA. Because of circularization, the number of excited modes decreases as the binary

  8. Flower elliptical constellation of millimeter-wave radiometers for precipitating cloud monitoring at geostationary scale

    Science.gov (United States)

    Marzano, F. S.; Cimini, D.; Montopoli, M.; Rossi, T.; Mortari, D.; di Michele, S.; Bauer, P.

    2009-04-01

    Millimeter-wave observation of the atmospheric parameters is becoming an appealing goal within satellite radiometry applications. The major technological advantage of millimeter-wave (MMW) radiometers is the reduced size of the overall system, for given performances, with respect to microwave sensor. On the other hand, millimeter-wave sounding can exploit window frequencies and various gaseous absorption bands at 50/60 GHz, 118 GHz and 183 GHz. These bands can be used to estimate tropospheric temperature profiles, integrated water vapor and cloud liquid content and, using a differentia spectral mode, light rainfall and snowfall. Millimeter-wave radiometers, for given observation conditions, can also exhibit relatively small field-of-views (FOVs), of the order of some kilometers for low-Earth-orbit (LEO) satellites. However, the temporal resolution of LEO millimeter-wave system observations remains a major drawback with respect to the geostationary-Earth-orbit (GEO) satellites. An overpass every about 12 hours for a single LEO platform (conditioned to a sufficiently large swath of the scanning MMW radiometer) is usually too much when compared with the typical temporal scale variation of atmospheric fields. This feature cannot be improved by resorting to GEO platforms due to their high orbit altitude and consequent degradation of the MMW-sensor FOVs. A way to tackle this impasse is to draw our attention at the regional scale and to focus non-circular orbits over the area of interest, exploiting the concept of micro-satellite flower constellations. The Flower Constellations (FCs) is a general class of elliptical orbits which can be optimized, through genetic algorithms, in order to maximize the revisiting time and the orbital height, ensuring also a repeating ground-track. The constellation concept nicely matches the choice of mini-satellites as a baseline choice, due to their small size, weight (less than 500 kilograms) and relatively low cost (essential when

  9. EXTINCTION IN STAR-FORMING DISK GALAXIES FROM INCLINATION-DEPENDENT COMPOSITE SPECTRA

    International Nuclear Information System (INIS)

    Yip, Ching-Wa; Szalay, Alex S.; Wyse, Rosemary F. G.; Budavari, Tamas; Dobos, Laszlo; Csabai, Istvan

    2010-01-01

    Extinction in galaxies affects their observed properties. In scenarios describing the distribution of dust and stars in individual disk galaxies, the amplitude of the extinction can be modulated by the inclination of the galaxies. In this work, we investigate the inclination dependency in composite spectra of star-forming disk galaxies from the Sloan Digital Sky Survey Data Release 5. In a volume-limited sample within a redshift range 0.065-0.075 and a r-band Petrosian absolute magnitude range -19.5 to -22 mag which exhibits a flat distribution of inclination, the inclined relative to face-on extinction in the stellar continuum is found empirically to increase with inclination in the g, r, and i bands. Within the central 0.5 intrinsic half-light radius of the galaxies, the g-band relative extinction in the stellar continuum for the highly inclined objects (axis ratio b/a = 0.1) is 1.2 mag, agreeing with previous studies. The extinction curve of the disk galaxies is given in the rest-frame wavelengths 3700-8000 A, identified with major optical emission and absorption lines in diagnostics. The Balmer decrement, Hα/Hβ, remains constant with inclination, suggesting a different kind of dust configuration and/or reddening mechanism in the H II region from that in the stellar continuum. One factor is shown to be the presence of spatially non-uniform interstellar extinction, presumably caused by clumped dust in the vicinity of the H II region.

  10. Multiple solutions for a quasilinear (p,q-elliptic system

    Directory of Open Access Journals (Sweden)

    Seyyed Mohsen Khalkhali

    2013-06-01

    Full Text Available In this article we show the existence of three weak solutions of a Dirichlet quasilinear elliptic system of differential equations which involves a general (p,q-elliptic operator in divergence, with $1

  11. Elliptic Tales Curves, Counting, and Number Theory

    CERN Document Server

    Ash, Avner

    2012-01-01

    Elliptic Tales describes the latest developments in number theory by looking at one of the most exciting unsolved problems in contemporary mathematics--the Birch and Swinnerton-Dyer Conjecture. The Clay Mathematics Institute is offering a prize of 1 million to anyone who can discover a general solution to the problem. In this book, Avner Ash and Robert Gross guide readers through the mathematics they need to understand this captivating problem. The key to the conjecture lies in elliptic curves, which are cubic equations in two variables. These equations may appear simple, yet they arise from

  12. Nonlinear elliptic partial differential equations an introduction

    CERN Document Server

    Le Dret, Hervé

    2018-01-01

    This textbook presents the essential parts of the modern theory of nonlinear partial differential equations, including the calculus of variations. After a short review of results in real and functional analysis, the author introduces the main mathematical techniques for solving both semilinear and quasilinear elliptic PDEs, and the associated boundary value problems. Key topics include infinite dimensional fixed point methods, the Galerkin method, the maximum principle, elliptic regularity, and the calculus of variations. Aimed at graduate students and researchers, this textbook contains numerous examples and exercises and provides several comments and suggestions for further study.

  13. Structure and stellar content of dwarf elliptical galaxies

    International Nuclear Information System (INIS)

    Caldwell, N.

    1983-01-01

    A small number of low-luminosity elliptical galaxies in the Virgo cluster and around other prominent galaxies have been studied using photoelectric and photographic techniques. The color-magnitude relation for ellipticals now extends from M/sub v/ = -23 to -15, and is linear over that range with a slope of 0.10 in U-V per visual magnitude. Galaxies which are known to contain a large number of young stars (''extreme cases'') are from 0.10 to 0.20 mag bluer in U-V than the lower envelope of the dwarf elliptical color-magnitude relation. This difference can be accounted for if the dwarf elliptical galaxies are young, but do not contain the massive blue stars that probably exist in the young populations of the extreme cases. Surface brightness profiles of the dwarfs have revealed some interesting distinctions between themselves and the brighter E's. In general, their intensity profiles are shallower than those of the bright E's, meaning they are of lower mean density. These mean densities are also a function of the total luminosity. Unlike the bright E's, the surface brightnesses near the centers are also a strong function of the total luminosity. The presence of a nucleation, which can be as much as 2 mag brighter than what the outer envelope would predict, does not appear to depend on any other measurable property of the galaxies. The variation in surface brightness profiles at the same total luminosity is suggestive that the low-luminosity dwarfs formed in more than one way. The flattening distribution of the dwarfs is like that of the bright ellipticals, and is also similar to the flattening distribution of field irregular galaxies

  14. Optimization of elliptic neutron guides for triple-axis spectroscopy

    International Nuclear Information System (INIS)

    Janoschek, M.; Boeni, P.; Braden, M.

    2010-01-01

    In the last decade the performance of neutron guides for the transport of neutrons has been significantly increased. The most recent developments have shown that elliptic guide systems can be used to focus neutron beams while simultaneously reducing the number of neutron reflections, hence, leading to considerable gains in neutron flux. We have carried out Monte-Carlo simulations for a new triple-axis spectrometer that will be built at the end position of the conventional cold guide NL-1 in the neutron guide hall of the research reactor FRM-II in Munich, Germany. Our results demonstrate that an elliptic guide section at the end of a conventional guide can be used to at least maintain the total neutron flux onto the sample, while significantly improving the energy resolution of the spectrometer. The simulation further allows detailed insight how the defining parameters of an elliptic guide have to be chosen to obtain optimum results. Finally, we show that the elliptic guide limits losses in the neutron flux that generally arise at the gaps, where the monochromator system of the upstream instrument is situated.

  15. Comparison of technologies for deorbiting spacecraft from low-earth-orbit at end of mission

    Science.gov (United States)

    Sánchez-Arriaga, G.; Sanmartín, J. R.; Lorenzini, E. C.

    2017-09-01

    An analytical comparison of four technologies for deorbiting spacecraft from Low-Earth-Orbit at end of mission is presented. Basic formulas based on simple physical models of key figures of merit for each device are found. Active devices - rockets and electrical thrusters - and passive technologies - drag augmentation devices and electrodynamic tethers - are considered. A basic figure of merit is the deorbit device-to-spacecraft mass ratio, which is, in general, a function of environmental variables, technology development parameters and deorbit time. For typical state-of-the-art values, equal deorbit time, middle inclination and initial altitude of 850 km, the analysis indicates that tethers are about one and two orders of magnitude lighter than active technologies and drag augmentation devices, respectively; a tether needs a few percent mass-ratio for a deorbit time of a couple of weeks. For high inclination, the performance drop of the tether system is moderate: mass ratio and deorbit time increase by factors of 2 and 4, respectively. Besides collision risk with other spacecraft and system mass considerations, such as main driving factors for deorbit space technologies, the analysis addresses other important constraints, like deorbit time, system scalability, manoeuver capability, reliability, simplicity, attitude control requirement, and re-entry and multi-mission capability (deorbit and re-boost) issues. The requirements and constraints are used to make a critical assessment of the four technologies as functions of spacecraft mass and initial orbit (altitude and inclination). Emphasis is placed on electrodynamic tethers, including the latest advances attained in the FP7/Space project BETs. The superiority of tape tethers as compared to round and multi-line tethers in terms of deorbit mission performance is highlighted, as well as the importance of an optimal geometry selection, i.e. tape length, width, and thickness, as function of spacecraft mass and initial

  16. Efficient light trapping in silicon inclined nanohole arrays for photovoltaic applications

    Science.gov (United States)

    Deng, Can; Tan, Xinyu; Jiang, Lihua; Tu, Yiteng; Ye, Mao; Yi, Yasha

    2018-01-01

    Structural design with high light absorption is the key challenge for thin film solar cells because of its poor absorption. In this paper, the light-trapping performance of silicon inclined nanohole arrays is systematically studied. The finite difference time domain method is used to calculate the optical absorption of different inclination angles in different periods and diameters. The results indicate that the inclined nanoholes with inclination angles between 5° and 45° demonstrate greater light-trapping ability than their counterparts of the vertical nanoholes, and they also show that by choosing the optimal parameters for the inclined nanoholes, a 31.2 mA/cm2 short circuit photocurrent density could be achieved, which is 10.25% higher than the best vertical nanohole system and 105.26% higher than bare silicon with a thickness of 2330 nm. The design principle proposed in this work gives a guideline for choosing reasonable parameters in the application of solar cells.

  17. Experimental study on flow pattern transitions for inclined two-phase flow

    Energy Technology Data Exchange (ETDEWEB)

    Kwak, Nam Yee; Lee, Jae Young [Handong Univ., Pohang (Korea, Republic of); Kim, Man Woong [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2007-07-01

    In this paper, experimental data on flow pattern transition of inclination angles from 0-90 are presented. A test section is constructed 2 mm long and I.D 1inch using transparent material. The test section is supported by aluminum frame that can be placed with any arbitrary inclined angles. The air-water two-phase flow is observed at room temperature and atmospheric condition using both high speed camera and void impedance meter. The signal is sampled with sampling rate 1kHz and is analyzed under fully-developed condition. Based on experimental data, flow pattern maps are made for various inclination angles. As increasing the inclination angels from 0 to 90, the flow pattern transitions on the plane jg-jf are changed, such as stratified flow to plug flow or slug flow or plug flow to bubbly flow. The transition lines between pattern regimes are moved or sometimes disappeared due to its inclined angle.

  18. Elliptic flow based on a relativistic hydrodynamic model

    Energy Technology Data Exchange (ETDEWEB)

    Hirano, Tetsufumi [Department of Physics, Waseda Univ., Tokyo (Japan)

    1999-08-01

    Based on the (3+1)-dimensional hydrodynamic model, the space-time evolution of hot and dense nuclear matter produced in non-central relativistic heavy-ion collisions is discussed. The elliptic flow parameter v{sub 2} is obtained by Fourier analysis of the azimuthal distribution of pions and protons which are emitted from the freeze-out hypersurface. As a function of rapidity, the pion and proton elliptic flow parameters both have a peak at midrapidity. (author)

  19. The Halo Dynamics of NGC 3379: A Normal Elliptical Galaxy with No Dark Matter

    Science.gov (United States)

    Ciardullo, R.; Jacoby, G. H.

    1993-05-01

    We present the results of a radial velocity survey of planetary nebulae in the normal, non-interacting, elliptical galaxy NGC 3379. In two half-nights with the Kitt Peak 4-m telescope and the NESSIE multifiber spectrograph, we measured the velocities of 29 PNe with projected galactocentric distances between 0.4 and 3.8 effective radii (1 kpc < R < 10 kpc). These data, which have an observational uncertainty of ~ 7 km s(-1) , extend 3 times further into the halo than any previous absorption line study, and allow us for the first time, to examine the kinematics of halo stars in a normal E0 galaxy. The observed velocity dispersion and photometric profile of NGC 3379 agrees extremely well with that expected from a constant mass-to-light, isotropic orbit Jaffe model with a mass-to-light ratio M/L_B ~ 7. A simple c = 2.33 King model with M/L_B ~ 7 also fits the data reasonably well, but models with purely radial or circular orbits are ruled out. The data strongly suggest that NGC 3379 is a galaxy with little or no dark matter within 3.5 effective radii of its nucleus.

  20. Vertical elliptic operator for efficient wave propagation in TTI media

    KAUST Repository

    Waheed, Umair bin; Alkhalifah, Tariq Ali

    2015-01-01

    Elliptic wave extrapolation operators require significantly less computational cost than the ones for transversely isotropic (TI) media. However, it does not provide accurate wavefield representation or imaging for the prevalent TI media. We propose a new vertical elliptically anisotropic (VEA) wave equation by decomposing the acoustic TI pseudo-differential wave equation. The decomposition results in a vertical elliptic differential equation and a scalar operator. The new VEA-like wave equation shares the same dispersion relation as that of the original acoustic TI wave equation. Therefore, the kinematic contents are correctly matched to the original equation. Moreover, the proposed decomposition yields better amplitude properties than the isotropic decomposition without increasing the computational load. Therefore, it exhibits better cost versus accuracy tradeoff compared to the isotropic or the tilted elliptic decompositions. We demonstrate with numerical examples that the proposed methodology is numerically stable for complex models and is free from shear-wave artifacts.

  1. Vertical elliptic operator for efficient wave propagation in TTI media

    KAUST Repository

    Waheed, Umair bin

    2015-08-19

    Elliptic wave extrapolation operators require significantly less computational cost than the ones for transversely isotropic (TI) media. However, it does not provide accurate wavefield representation or imaging for the prevalent TI media. We propose a new vertical elliptically anisotropic (VEA) wave equation by decomposing the acoustic TI pseudo-differential wave equation. The decomposition results in a vertical elliptic differential equation and a scalar operator. The new VEA-like wave equation shares the same dispersion relation as that of the original acoustic TI wave equation. Therefore, the kinematic contents are correctly matched to the original equation. Moreover, the proposed decomposition yields better amplitude properties than the isotropic decomposition without increasing the computational load. Therefore, it exhibits better cost versus accuracy tradeoff compared to the isotropic or the tilted elliptic decompositions. We demonstrate with numerical examples that the proposed methodology is numerically stable for complex models and is free from shear-wave artifacts.

  2. Ellipticity and twisting of the isophotes of some bright galaxies in Virgo

    International Nuclear Information System (INIS)

    Barbon, R.; Benacchio, L.; Capaccioli, M.

    1980-01-01

    Ellipticity and twisting of the isophotes of four lenticular and seven elliptical galaxies in the Virgo cluster are presented as a sample of a more complete photometric investigation. This work has been motivated by the increasing importance of this kind of information for the understanding of the spatial structure of E galaxies. The calibrated plate material from the Loiano 1.52 meter and Tautenburg Schmidt telescopes has been digitized with a PDS microdensitometer and analysed by means of the Interactive Numerical Mapping Package (INMP). Ellipticity and orientation profiles are presented in a graphical form together with a preliminary discussion. A correlation has been found between ellipticity and twisting in barred lenticulars which might help in the understanding of some E galaxies such as NGC 4406 and NGC 4374. Twisting has been detected in all of the seven ellipticals of the sample

  3. The Global Precipitation Measurement (GPM) Spacecraft Power System Design and Orbital Performance

    Science.gov (United States)

    Dakermanji, George; Burns, Michael; Lee, Leonine; Lyons, John; Kim, David; Spitzer, Thomas; Kercheval, Bradford

    2016-01-01

    The Global Precipitation Measurement (GPM) spacecraft was jointly developed by National Aeronautics and Space Administration (NASA) and Japan Aerospace Exploration Agency (JAXA). It is a Low Earth Orbit (LEO) spacecraft launched on February 27, 2014. The spacecraft is in a circular 400 Km altitude, 65 degrees inclination nadir pointing orbit with a three year basic mission life. The solar array consists of two sun tracking wings with cable wraps. The panels are populated with triple junction cells of nominal 29.5% efficiency. One axis is canted by 52 degrees to provide power to the spacecraft at high beta angles. The power system is a Direct Energy Transfer (DET) system designed to support 1950 Watts orbit average power. The batteries use SONY 18650HC cells and consist of three 8s x 84p batteries operated in parallel as a single battery. The paper describes the power system design details, its performance to date and the lithium ion battery model that was developed for use in the energy balance analysis and is being used to predict the on-orbit health of the battery.

  4. New Boundary Constraints for Elliptic Systems used in Grid Generation Problems

    Science.gov (United States)

    Kaul, Upender K.; Clancy, Daniel (Technical Monitor)

    2002-01-01

    This paper discusses new boundary constraints for elliptic partial differential equations as used in grid generation problems in generalized curvilinear coordinate systems. These constraints, based on the principle of local conservation of thermal energy in the vicinity of the boundaries, are derived using the Green's Theorem. They uniquely determine the so called decay parameters in the source terms of these elliptic systems. These constraints' are designed for boundary clustered grids where large gradients in physical quantities need to be resolved adequately. It is observed that the present formulation also works satisfactorily for mild clustering. Therefore, a closure for the decay parameter specification for elliptic grid generation problems has been provided resulting in a fully automated elliptic grid generation technique. Thus, there is no need for a parametric study of these decay parameters since the new constraints fix them uniquely. It is also shown that for Neumann type boundary conditions, these boundary constraints uniquely determine the solution to the internal elliptic problem thus eliminating the non-uniqueness of the solution of an internal Neumann boundary value grid generation problem.

  5. Breakwaters with Vertical and Inclined Concrete Walls

    DEFF Research Database (Denmark)

    Burcharth, Hans Falk

    Following the PIANC PTC II working group on Analyses of Rubble Mound Breakwaters it was, in 1991, decided to form Working Group (WG) n° 28 on "Breakwaters with vertical and inclined concrete walls" The scope of the work was to achieve a better understanding of the overall safety aspects in the de......Following the PIANC PTC II working group on Analyses of Rubble Mound Breakwaters it was, in 1991, decided to form Working Group (WG) n° 28 on "Breakwaters with vertical and inclined concrete walls" The scope of the work was to achieve a better understanding of the overall safety aspects...

  6. Determination of the orientation of the white dwarf's magnetic axis from X-ray orbital light curves

    International Nuclear Information System (INIS)

    Andronov, I.L.

    1986-01-01

    The directional pattern of soft X-ray radiation produced in a ''polar cap'' on the white dwarf's surface is calculated taking into account the absorption in the axially symmetrical accretion column, homogeneous along its height. An algorithm for the determination of orientation of the magnetic axis of a compact star from orbital curves of soft X-ray flux, is suggested. The values of the orbital inclination i (51 deg <=i<64 deg) and the angle between the rotational and magnetic axes σ (30 deg <=σ<=34 deg) were calculated for the polar AM Herculis for different values of model parameters

  7. A transmission line model for propagation in elliptical core optical fibers

    Science.gov (United States)

    Georgantzos, E.; Papageorgiou, C.; Boucouvalas, A. C.

    2015-12-01

    The calculation of mode propagation constants of elliptical core fibers has been the purpose of extended research leading to many notable methods, with the classic step index solution based on Mathieu functions. This paper seeks to derive a new innovative method for the determination of mode propagation constants in single mode fibers with elliptic core by modeling the elliptical fiber as a series of connected coupled transmission line elements. We develop a matrix formulation of the transmission line and the resonance of the circuits is used to calculate the mode propagation constants. The technique, used with success in the case of cylindrical fibers, is now being extended for the case of fibers with elliptical cross section. The advantage of this approach is that it is very well suited to be able to calculate the mode dispersion of arbitrary refractive index profile elliptical waveguides. The analysis begins with the deployment Maxwell's equations adjusted for elliptical coordinates. Further algebraic analysis leads to a set of equations where we are faced with the appearance of harmonics. Taking into consideration predefined fixed number of harmonics simplifies the problem and enables the use of the resonant circuits approach. According to each case, programs have been created in Matlab, providing with a series of results (mode propagation constants) that are further compared with corresponding results from the ready known Mathieu functions method.

  8. A transmission line model for propagation in elliptical core optical fibers

    International Nuclear Information System (INIS)

    Georgantzos, E.; Boucouvalas, A. C.; Papageorgiou, C.

    2015-01-01

    The calculation of mode propagation constants of elliptical core fibers has been the purpose of extended research leading to many notable methods, with the classic step index solution based on Mathieu functions. This paper seeks to derive a new innovative method for the determination of mode propagation constants in single mode fibers with elliptic core by modeling the elliptical fiber as a series of connected coupled transmission line elements. We develop a matrix formulation of the transmission line and the resonance of the circuits is used to calculate the mode propagation constants. The technique, used with success in the case of cylindrical fibers, is now being extended for the case of fibers with elliptical cross section. The advantage of this approach is that it is very well suited to be able to calculate the mode dispersion of arbitrary refractive index profile elliptical waveguides. The analysis begins with the deployment Maxwell’s equations adjusted for elliptical coordinates. Further algebraic analysis leads to a set of equations where we are faced with the appearance of harmonics. Taking into consideration predefined fixed number of harmonics simplifies the problem and enables the use of the resonant circuits approach. According to each case, programs have been created in Matlab, providing with a series of results (mode propagation constants) that are further compared with corresponding results from the ready known Mathieu functions method

  9. three solutions for a semilinear elliptic boundary value problem

    Indian Academy of Sciences (India)

    69

    Keywords: The Laplacian operator, elliptic problem, Nehari man- ifold, three critical points, weak solution. 1. Introduction. Let Ω be a smooth bounded domain in RN , N ≥ 3 . In this work, we show the existence of at least three solutions for the semilinear elliptic boundary- value problem: (Pλ).. −∆u = f(x)|u(x)|p−2u(x) + ...

  10. Generation of Elliptically Polarized Terahertz Waves from Antiferromagnetic Sandwiched Structure.

    Science.gov (United States)

    Zhou, Sheng; Zhang, Qiang; Fu, Shu-Fang; Wang, Xuan-Zhang; Song, Yu-Ling; Wang, Xiang-Guang; Qu, Xiu-Rong

    2018-04-01

    The generation of elliptically polarized electromagnetic wave of an antiferromagnetic (AF)/dielectric sandwiched structure in the terahertz range is studied. The frequency and external magnetic field can change the AF optical response, resulting in the generation of elliptical polarization. An especially useful geometry with high levels of the generation of elliptical polarization is found in the case where an incident electromagnetic wave perpendicularly illuminates the sandwiched structure, the AF anisotropy axis is vertical to the wave-vector and the external magnetic field is pointed along the wave-vector. In numerical calculations, the AF layer is FeF2 and the dielectric layers are ZnF2. Although the effect originates from the AF layer, it can be also influenced by the sandwiched structure. We found that the ZnF2/FeF2/ZnF2 structure possesses optimal rotation of the principal axis and ellipticity, which can reach up to about thrice that of a single FeF2 layer.

  11. Hörmander spaces, interpolation, and elliptic problems

    CERN Document Server

    Mikhailets, Vladimir A; Malyshev, Peter V

    2014-01-01

    The monograph gives a detailed exposition of the theory of general elliptic operators (scalar and matrix) and elliptic boundary value problems in Hilbert scales of Hörmander function spaces. This theory was constructed by the authors in a number of papers published in 2005-2009. It is distinguished by a systematic use of the method of interpolation with a functional parameter of abstract Hilbert spaces and Sobolev inner product spaces. This method, the theory and their applications are expounded for the first time in the monographic literature. The monograph is written in detail and in a

  12. Dynamics of classical particles in oval or elliptic billiards with a dispersing mechanism

    International Nuclear Information System (INIS)

    Costa, Diogo Ricardo da; Dettmann, Carl P.; Oliveira, Juliano A. de; Leonel, Edson D.

    2015-01-01

    Some dynamical properties for an oval billiard with a scatterer in its interior are studied. The dynamics consists of a classical particle colliding between an inner circle and an external boundary given by an oval, elliptical, or circle shapes, exploring for the first time some natural generalizations. The billiard is indeed a generalization of the annular billiard, which is of strong interest for understanding marginally unstable periodic orbits and their role in the boundary between regular and chaotic regions in both classical and quantum (including experimental) systems. For the oval billiard, which has a mixed phase space, the presence of an obstacle is an interesting addition. We demonstrate, with details, how to obtain the equations of the mapping, and the changes in the phase space are discussed. We study the linear stability of some fixed points and show both analytically and numerically the occurrence of direct and inverse parabolic bifurcations. Lyapunov exponents and generalized bifurcation diagrams are obtained. Moreover, histograms of the number of successive iterations for orbits that stay in a cusp are studied. These histograms are shown to be scaling invariant when changing the radius of the scatterer, and they have a power law slope around −3. The results here can be generalized to other kinds of external boundaries

  13. A VERY CLOSE BINARY BLACK HOLE IN A GIANT ELLIPTICAL GALAXY 3C 66B AND ITS BLACK HOLE MERGER

    International Nuclear Information System (INIS)

    Iguchi, Satoru; Okuda, Takeshi; Sudou, Hiroshi

    2010-01-01

    Recent observational results provide possible evidence that binary black holes (BBHs) exist in the center of giant galaxies and may merge to form a supermassive black hole in the process of their evolution. We first detected a periodic flux variation on a cycle of 93 ± 1 days from the 3 mm monitor observations of a giant elliptical galaxy 3C 66B for which an orbital motion with a period of 1.05 ± 0.03 yr had been already observed. The detected signal period being shorter than the orbital period can be explained by taking into consideration the Doppler-shifted modulation due to the orbital motion of a BBH. Assuming that the BBH has a circular orbit and that the jet axis is parallel to the binary angular momentum, our observational results demonstrate the presence of a very close BBH that has a binary orbit with an orbital period of 1.05 ± 0.03 yr, an orbital radius of (3.9 ± 1.0) x 10 -3 pc, an orbital separation of (6.1 +1.0 -0.9 ) x 10 -3 pc, a larger black hole mass of (1.2 +0.5 -0.2 ) x 10 9 M sun , and a smaller black hole mass of (7.0 +4.7 -6.4 ) x 10 8 M sun . The BBH decay time of (5.1 +60.5 -2.5 ) x 10 2 yr provides evidence for the occurrence of black hole mergers. This Letter will demonstrate the interesting possibility of black hole collisions to form a supermassive black hole in the process of evolution, one of the most spectacular natural phenomena in the universe.

  14. Performance evaluation of a continuous flow inclined solar still desalination system

    International Nuclear Information System (INIS)

    El-Agouz, S.A.; El-Samadony, Y.A.F.; Kabeel, A.E.

    2015-01-01

    Highlights: • A mathematical model was presented to analyze the performance of inclined still. • The effect of air speed, water masses, film thickness and velocity was studied. • Productivity for the Model 3 was higher than conventional still by 57.2%. • The performance was strongly affected by water film thickness and velocity. • Model 3 gave the highest performance while Model 1 gave the lowest performance. - Abstract: In the present work, theoretical study of the performance evaluation of a continuous water flow inclined solar still desalination system is performed. Three models are studied for inclined solar still desalination system with and without water close loop. The effects of the water mass, water film thickness, water film velocity and air wind velocity on the performance of the three models are studied. The results show that the inclined solar still with a makeup water is superior in productivity (57.2% improvement) compared with a conventional basin-type solar still. Also, the application of inclined solar still with open water loop is recommended when combined with other still desalination system due to high water temperature output. The inclined solar still with a makeup (Model 3) gives the highest performance while Model 1 gives the lowest performance. Finally, the water film thickness, and velocity as well as wind velocity plays important roles in improving the still productivity and efficiency

  15. Jacobi Elliptic Solutions for Nonlinear Differential Difference Equations in Mathematical Physics

    Directory of Open Access Journals (Sweden)

    Khaled A. Gepreel

    2012-01-01

    Full Text Available We put a direct new method to construct the rational Jacobi elliptic solutions for nonlinear differential difference equations which may be called the rational Jacobi elliptic functions method. We use the rational Jacobi elliptic function method to construct many new exact solutions for some nonlinear differential difference equations in mathematical physics via the lattice equation and the discrete nonlinear Schrodinger equation with a saturable nonlinearity. The proposed method is more effective and powerful to obtain the exact solutions for nonlinear differential difference equations.

  16. The quality of veterinary in-clinic and reference laboratory biochemical testing.

    Science.gov (United States)

    Rishniw, Mark; Pion, Paul D; Maher, Tammy

    2012-03-01

    Although evaluation of biochemical analytes in blood is common in veterinary practice, studies assessing the global quality of veterinary in-clinic and reference laboratory testing have not been reported. The aim of this study was to assess the quality of biochemical testing in veterinary laboratories using results obtained from analyses of 3 levels of assayed quality control materials over 5 days. Quality was assessed by comparison of calculated total error with quality requirements, determination of sigma metrics, use of a quality goal index to determine factors contributing to poor performance, and agreement between in-clinic and reference laboratory mean results. The suitability of in-clinic and reference laboratory instruments for statistical quality control was determined using adaptations from the computerized program, EZRules3. Reference laboratories were able to achieve desirable quality requirements more frequently than in-clinic laboratories. Across all 3 materials, > 50% of in-clinic analyzers achieved a sigma metric ≥ 6.0 for measurement of 2 analytes, whereas > 50% of reference laboratory analyzers achieved a sigma metric ≥ 6.0 for measurement of 6 analytes. Expanded uncertainty of measurement and ± total allowable error resulted in the highest mean percentages of analytes demonstrating agreement between in-clinic and reference laboratories. Owing to marked variation in bias and coefficient of variation between analyzers of the same and different types, the percentages of analytes suitable for statistical quality control varied widely. These findings reflect the current state-of-the-art with regard to in-clinic and reference laboratory analyzer performance and provide a baseline for future evaluations of the quality of veterinary laboratory testing. © 2012 American Society for Veterinary Clinical Pathology.

  17. A simple method to design non-collision relative orbits for close spacecraft formation flying

    Science.gov (United States)

    Jiang, Wei; Li, JunFeng; Jiang, FangHua; Bernelli-Zazzera, Franco

    2018-05-01

    A set of linearized relative motion equations of spacecraft flying on unperturbed elliptical orbits are specialized for particular cases, where the leader orbit is circular or equatorial. Based on these extended equations, we are able to analyze the relative motion regulation between a pair of spacecraft flying on arbitrary unperturbed orbits with the same semi-major axis in close formation. Given the initial orbital elements of the leader, this paper presents a simple way to design initial relative orbital elements of close spacecraft with the same semi-major axis, thus preventing collision under non-perturbed conditions. Considering the mean influence of J 2 perturbation, namely secular J 2 perturbation, we derive the mean derivatives of orbital element differences, and then expand them to first order. Thus the first order expansion of orbital element differences can be added to the relative motion equations for further analysis. For a pair of spacecraft that will never collide under non-perturbed situations, we present a simple method to determine whether a collision will occur when J 2 perturbation is considered. Examples are given to prove the validity of the extended relative motion equations and to illustrate how the methods presented can be used. The simple method for designing initial relative orbital elements proposed here could be helpful to the preliminary design of the relative orbital elements between spacecraft in a close formation, when collision avoidance is necessary.

  18. An exact solution for orbit view-periods from a station on a tri-axial ellipsoidal planet

    Science.gov (United States)

    Tang, C. C. H.

    1986-01-01

    This paper presents the concise exact solution for predicting view-periods to be observed from a masked or unmasked tracking station on a tri-axial ellipsoidal surface. The new exact approach expresses the azimuth and elevation angles of a spacecraft in terms of the station-centered geodetic topocentric coordinates in an elegantly concise manner. A simple and efficient algorithm is developed to avoid costly repetitive computations in searching for neighborhoods near the rise and set times of each satellite orbit for each station. Only one search for each orbit is necessary for each station. Sample results indicate that the use of an assumed spherical earth instead of an 'actual' tri-axial ellipsoidal earth could introduce an error up to a few minutes in a view-period prediction for circular orbits of low or medium altitude. For an elliptical orbit of high eccentricity and long period, the maximum error could be even larger. The analytic treatment and the efficient algorithm are designed for geocentric orbits, but they should be applicable to interplanetary trajectories by an appropriate coordinates transformation at each view-period calculation. This analysis can be accomplished only by not using the classical orbital elements.

  19. An exact solution for orbit view-periods from a station on a tri-axial ellipsoidal planet

    Science.gov (United States)

    Tang, C. C. H.

    1986-08-01

    This paper presents the concise exact solution for predicting view-periods to be observed from a masked or unmasked tracking station on a tri-axial ellipsoidal surface. The new exact approach expresses the azimuth and elevation angles of a spacecraft in terms of the station-centered geodetic topocentric coordinates in an elegantly concise manner. A simple and efficient algorithm is developed to avoid costly repetitive computations in searching for neighborhoods near the rise and set times of each satellite orbit for each station. Only one search for each orbit is necessary for each station. Sample results indicate that the use of an assumed spherical earth instead of an 'actual' tri-axial ellipsoidal earth could introduce an error up to a few minutes in a view-period prediction for circular orbits of low or medium altitude. For an elliptical orbit of high eccentricity and long period, the maximum error could be even larger. The analytic treatment and the efficient algorithm are designed for geocentric orbits, but they should be applicable to interplanetary trajectories by an appropriate coordinates transformation at each view-period calculation. This analysis can be accomplished only by not using the classical orbital elements.

  20. Invisible anti-cloak with elliptic cross section using phase complement

    International Nuclear Information System (INIS)

    Yang Yu-Qi; Zhang Min; Yue Jian-Xiang

    2011-01-01

    Based on the theory of phase complement, an anti-cloak with circular cross section can be made invisible to an object outside its domain. As the cloak with elliptic cross section is more effective to make objects invisible than that with circular cross section, a scaled coordinate system is proposed to design equivalent materials of invisible anti-cloak with elliptic cross section using phase complement. The cloaks with conventional dielectric and double negative parameters are both simulated with the geometrical transformations. The results show that the cloak with elliptic cross section through phase complement can effectively hide the outside objects. (classical areas of phenomenology)

  1. Dusty Feedback from Massive Black Holes in Two Elliptical Galaxies

    Science.gov (United States)

    Temi, P.; Brighenti, F.; Mathews, W. G.; Amblard, A.; Riguccini, L.

    2013-01-01

    Far-infrared dust emission from elliptical galaxies informs us about galaxy mergers, feedback energy outbursts from supermassive black holes and the age of galactic stars. We report on the role of AGN feedback observationally by looking for its signatures in elliptical galaxies at recent epochs in the nearby universe. We present Herschel observations of two elliptical galaxies with strong and spatially extended FIR emission from colder grains 5-10 kpc distant from the galaxy cores. Extended excess cold dust emission is interpreted as evidence of recent feedback-generated AGN energy outbursts in these galaxies, visible only in the FIR, from buoyant gaseous outflows from the galaxy cores.

  2. Efficient method for finding square roots for elliptic curves over OEF

    CSIR Research Space (South Africa)

    Abu-Mahfouz, Adnan M

    2009-01-01

    Full Text Available Elliptic curve cryptosystems like others public key encryption schemes, require computing a square roots modulo a prime number. The arithmetic operations in elliptic curve schemes over Optimal Extension Fields (OEF) can be efficiently computed...

  3. Nuclear reactor power for an electrically powered orbital transfer vehicle

    Science.gov (United States)

    Jaffe, L.; Beatty, R.; Bhandari, P.; Chow, E.; Deininger, W.; Ewell, R.; Fujita, T.; Grossman, M.; Kia, T.; Nesmith, B.

    1987-01-01

    To help determine the systems requirements for a 300-kWe space nuclear reactor power system, a mission and spacecraft have been examined which utilize electric propulsion and this nuclear reactor power for multiple transfers of cargo between low earth orbit (LEO) and geosynchronous earth orbit (GEO). A propulsion system employing ion thrusters and xenon propellant was selected. Propellant and thrusters are replaced after each sortie to GEO. The mass of the Orbital Transfer Vehicle (OTV), empty and dry, is 11,000 kg; nominal propellant load is 5000 kg. The OTV operates between a circular orbit at 925 km altitude, 28.5 deg inclination, and GEO. Cargo is brought to the OTV by Shuttle and an Orbital Maneuvering Vehicle (OMV); the OTV then takes it to GEO. The OTV can also bring cargo back from GEO, for transfer by OMV to the Shuttle. OTV propellant is resupplied and the ion thrusters are replaced by the OMV before each trip to GEO. At the end of mission life, the OTV's electric propulsion is used to place it in a heliocentric orbit so that the reactor will not return to earth. The nominal cargo capability to GEO is 6000 kg with a transit time of 120 days; 1350 kg can be transferred in 90 days, and 14,300 kg in 240 days. These capabilities can be considerably increased by using separate Shuttle launches to bring up propellant and cargo, or by changing to mercury propellant.

  4. Nuclear reactor power for an electrically powered orbital transfer vehicle

    International Nuclear Information System (INIS)

    Jaffe, L.; Beatty, R.; Bhandari, P.

    1987-01-01

    To help determine the systems requirements for a 300-kWe space nuclear reactor power system, a mission and spacecraft have been examined which utilize electric propulsion and this nuclear reactor power for multiple transfers of cargo between low Earth orbit (LEO) and geosynchronous Earth orbit (GEO). A propulsion system employing ion thrusters and xenon propellant was selected. Propellant and thrusters are replaced after each sortie to GEO. The mass of the Orbital Transfer Vehicle (OTV), empty and dry, is 11,000 kg; nominal propellant load is 5000 kg. The OTV operates between a circular orbit at 925 km altitude, 28.5 deg inclination, and GEO. Cargo is brought to the OTV by Shuttle and an Orbital Maneuvering Vehicle (OMV); the OTV then takes it to GEO. The OTV can also bring cargo back from GEO, for transfer by OMV to the Shuttle. OTV propellant is resupplied and the ion thrusters are replaced by the OMV before each trip to GEO. At the end of mission life, the OTV's electric propulsion is used to place it in a heliocentric orbit so that the reactor will not return to Earth. The nominal cargo capability to GEO is 6000 kg with a transit time of 120 days; 1350 kg can be transferred in 90 days, and 14,300 kg in 240 days. These capabilities can be considerably increased by using separate Shuttle launches to bring up propellant and cargo, or by changing to mercury propellant

  5. Single inclusive spectra, Hanburg–Brown–Twiss and elliptic flow: A ...

    Indian Academy of Sciences (India)

    The constraints due to the measurements of the single particle inclusive spectra, the ... flow and HBT vs. the reaction plane with a hydro-motivated blast wave model. .... different mass particles allows the extraction of the elliptic component of the transverse ... Moreover, the details of the dependence of elliptic flow on particle.

  6. The auxiliary elliptic-like equation and the exp-function method

    Indian Academy of Sciences (India)

    exact solutions of the nonlinear evolution equations are derived with the aid of auxiliary elliptic-like equation. ... (NEE) have been paid attention by many researchers, especially the investigations of exact solutions for ... elliptic-like equation with the aid of the travelling wave reduction are introduced. The exact solutions of ...

  7. Hyper-and-elliptic-curve cryptography

    NARCIS (Netherlands)

    Bernstein, D.J.; Lange, T.

    2014-01-01

    This paper introduces ‘hyper-and-elliptic-curve cryptography’, in which a single high-security group supports fast genus-2-hyperelliptic-curve formulas for variable-base-point single-scalar multiplication (for example, Diffie–Hellman shared-secret computation) and at the same time supports fast

  8. Bidispersive-inclined convection

    Science.gov (United States)

    Mulone, Giuseppe; Straughan, Brian

    2016-01-01

    A model is presented for thermal convection in an inclined layer of porous material when the medium has a bidispersive structure. Thus, there are the usual macropores which are full of a fluid, but there are also a system of micropores full of the same fluid. The model we employ is a modification of the one proposed by Nield & Kuznetsov (2006 Int. J. Heat Mass Transf. 49, 3068–3074. (doi:10.1016/j.ijheatmasstransfer.2006.02.008)), although we consider a single temperature field only. PMID:27616934

  9. Iron abundance evolution in spiral and elliptical galaxies

    International Nuclear Information System (INIS)

    Matteucci, F.

    1987-01-01

    Chemical evolution models for the Galaxy and ellipticals, which take into account the most recent developments on theories of nucleosynthesis and supernova progenitors, are presented. The evolution of the abundance of iron in these systems, under the assumption that this element is mainly produced by type I SNe, originating from white dwarfs in binary systems, has been computed and the results have been compared with the observations. Overabundances of O, Si, Ne and Mg with respect to iron have been predicted for halo stars in their Galaxy. The existence of an Fe - total mass relation with a slope steeper than the corresponding relations for Mg and O has been predicted for ellipticals. The masses of Fe ejected by ellipticals of various masses into the intergalactic medium have also been computed in detail. The general agreement obtained between these theoretical models and the observations for galaxies of different morphological type supports the assumptions made about the origin of iron

  10. Dirac Particles Emission from An Elliptical Black Hole

    Directory of Open Access Journals (Sweden)

    Yuant Tiandho

    2017-03-01

    Full Text Available According to the general theory of relativiy, a black hole is defined as a region of spacetime with super-strong gravitational effects and there is nothing can escape from it. So in the classical theory of relativity, it is safe to say that black hole is a "dead" thermodynamical object. However, by using quantum mechanics theory, Hawking has shown that a black hole may emit particles. In this paper, calculation of temperature of an elliptical black hole when emitting the Dirac particles was presented. By using the complexpath method, radiation can be described as emission process in the tunneling pictures. According to relationship between probability of outgoing particle with the spectrum of black body radiation for fermion particles, temperature of the elliptical black hole can be obtained and it depend on the azimuthal angle. This result also showed that condition on the surface of elliptical black hole is not in thermal equilibrium.

  11. Modern cryptography and elliptic curves a beginner's guide

    CERN Document Server

    Shemanske, Thomas R

    2017-01-01

    This book offers the beginning undergraduate student some of the vista of modern mathematics by developing and presenting the tools needed to gain an understanding of the arithmetic of elliptic curves over finite fields and their applications to modern cryptography. This gradual introduction also makes a significant effort to teach students how to produce or discover a proof by presenting mathematics as an exploration, and at the same time, it provides the necessary mathematical underpinnings to investigate the practical and implementation side of elliptic curve cryptography (ECC). Elements of abstract algebra, number theory, and affine and projective geometry are introduced and developed, and their interplay is exploited. Algebra and geometry combine to characterize congruent numbers via rational points on the unit circle, and group law for the set of points on an elliptic curve arises from geometric intuition provided by Bézout's theorem as well as the construction of projective space. The structure of the...

  12. Comparison of elliptical and spherical mirrors for the grasshopper monochromators at SSRL

    International Nuclear Information System (INIS)

    Waldhauer, A.P.

    1989-01-01

    A comparison of the performance of a spherical and elliptical mirror in the grasshopper monochromator is presented. The problem was studied by ray tracing and then tested using visible (λ=633 nm) laser light. Calculations using ideal optics yield an improvement in flux by a factor of up to 2.7, while tests with visible light show an increase by a factor of 5 because the old spherical mirror is compared to a new, perfect elliptical one. The FWHM of the measured focus is 90 μm with a spherical mirror, and 25 μm with an elliptical one. Elliptical mirrors have been acquired and are now being installed in the two grasshoppers at SSRL

  13. Flow of Dense Granular Suspensions on an Inclined Plane

    Science.gov (United States)

    Bonnoit, C.; Lanuza, J.; Lindner, A.; Clément, E.

    2008-07-01

    We investigate the flow behavior of dense granular suspensions, by the use of an inclined plane. The suspensions are prepared at high packing fractions and consist of spherical non-Brownian particles density matched with the suspending fluid. On the inclined plane, we perform a systematic study of the surface velocity as a function of the layer thickness for various flow rates and tilt angles. We perform measurements on a classical rheometer (parallel-plate rheometer) that is shown to be in good agreement with existing models, up to a volume fraction of 50%. Comparing these results, we show that the flow on an inclined plane can, up to a volume fraction of 50%, indeed be described by a purely viscous model in agreement with the results from classical rheometry.

  14. Schmidt-Kalman Filter with Polynomial Chaos Expansion for Orbit Determination of Space Objects

    Science.gov (United States)

    Yang, Y.; Cai, H.; Zhang, K.

    2016-09-01

    Parameter errors in orbital models can result in poor orbit determination (OD) using a traditional Kalman filter. One approach to account for these errors is to consider them in the so-called Schmidt-Kalman filter (SKF), by augmenting the state covariance matrix (CM) with additional parameter covariance rather than additively estimating these so-called "consider" parameters. This paper introduces a new SKF algorithm with polynomial chaos expansion (PCE-SKF). The PCE approach has been proved to be more efficient than Monte Carlo method for propagating the input uncertainties onto the system response without experiencing any constraints of linear dynamics, or Gaussian distributions of the uncertainty sources. The state and covariance needed in the orbit prediction step are propagated using PCE. An inclined geosynchronous orbit scenario is set up to test the proposed PCE-SKF based OD algorithm. The satellite orbit is propagated based on numerical integration, with the uncertain coefficient of solar radiation pressure considered. The PCE-SKF solutions are compared with extended Kalman filter (EKF), SKF and PCE-EKF (EKF with PCE) solutions. It is implied that the covariance propagation using PCE leads to more precise OD solutions in comparison with those based on linear propagation of covariance.

  15. The O/OREOS Mission - Astrobiology in Low Earth Orbit. [Astrobiology in Low Earth Orbit

    Science.gov (United States)

    Ehrenfreund, P.; Ricco, A. J.; Squires, D.; Kitts, C.; Agasid, E.; Bramall, N.; Bryson, K.; Chittenden, J.; Conley, C.; Cook, A.; hide

    2014-01-01

    The O/OREOS (Organism/Organic Exposure to Orbital Stresses) nanosatellite is the first science demonstration spacecraft and flight mission of the NASA Astrobiology Small- Payloads Program (ASP). O/OREOS was launched successfully on November 19, 2010, to a high-inclination (72 deg), 650-km Earth orbit aboard a US Air Force Minotaur IV rocket from Kodiak, Alaska. O/OREOS consists of 3 conjoined cubesat (each 1000 cu cm) modules: (i) a control bus; (ii) the Space Environment Survivability of Living Organisms (SESLO) experiment; and (iii) the Space Environment Viability of Organics (SEVO) experiment. Among the innovative aspects of the O/OREOS mission are a real-time analysis of the photostability of organics and biomarkers and the collection of data on the survival and metabolic activity for microorganisms at 3 times during the 6-month mission. We report on the spacecraft characteristics, payload capabilities, and present operational phase and flight data from the O/OREOS mission. The science and technology rationale of O/OREOS supports NASA0s scientific exploration program by investigating the local space environment as well as space biology relevant to Moon and Mars missions. It also serves as a precursor for experiments on small satellites, the International Space Station (ISS), future free-flyers and lunar surface exposure facilities.

  16. Centrality dependence of multiplicity, transverse energy, and elliptic flow from hydrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Kolb, Peter F.; Heinz, Ulrich; Huovinen, Pasi; Eskola, Kari J.; Tuominen, Kimmo

    2001-03-21

    The centrality dependence of the charged multiplicity, transverse energy, and elliptic flow coefficient is studied in a hydrodynamic model, using a variety of different initializations which model the initial energy or entropy production process as a hard or soft process, respectively. While the charged multiplicity depends strongly on the chosen initialization, the p{sub T}-integrated elliptic flow for charged particles as a function of charged particle multiplicity and the p{sub T}-differential elliptic flow for charged particles in minimum bias events turn out to be almost independent of the initialization.

  17. Jacobian elliptic wave solutions for the Wadati-Segur-Ablowitz equation

    International Nuclear Information System (INIS)

    Teh, C.G.R.; Koo, W.K.; Lee, B.S.

    1996-07-01

    Jacobian elliptic travelling wave solutions for a new Hamiltonian amplitude equation determining some instabilities of modulated wave train are obtained. By a mere variation of the Jacobian elliptic parameter k 2 from zero to one, these solutions are transformed from a trivial one to the known solitary wave solutions. (author). 9 refs

  18. Experimental study on the precise orbit determination of the BeiDou navigation satellite system.

    Science.gov (United States)

    He, Lina; Ge, Maorong; Wang, Jiexian; Wickert, Jens; Schuh, Harald

    2013-03-01

    The regional service of the Chinese BeiDou satellite navigation system is now in operation with a constellation including five Geostationary Earth Orbit satellites (GEO), five Inclined Geosynchronous Orbit (IGSO) satellites and four Medium Earth Orbit (MEO) satellites. Besides the standard positioning service with positioning accuracy of about 10 m, both precise relative positioning and precise point positioning are already demonstrated. As is well known, precise orbit and clock determination is essential in enhancing precise positioning services. To improve the satellite orbits of the BeiDou regional system, we concentrate on the impact of the tracking geometry and the involvement of MEOs, and on the effect of integer ambiguity resolution as well. About seven weeks of data collected at the BeiDou Experimental Test Service (BETS) network is employed in this experimental study. Several tracking scenarios are defined, various processing schemata are designed and carried out; and then, the estimates are compared and analyzed in detail. The results show that GEO orbits, especially the along-track component, can be significantly improved by extending the tracking network in China along longitude direction, whereas IGSOs gain more improvement if the tracking network extends in latitude. The involvement of MEOs and ambiguity-fixing also make the orbits better.

  19. ORBITS AND MASSES OF THE SATELLITES OF THE DWARF PLANET HAUMEA (2003 EL61)

    International Nuclear Information System (INIS)

    Ragozzine, D.; Brown, M. E.

    2009-01-01

    Using precise relative astrometry from the Hubble Space Telescope and the W. M. Keck Telescope, we have determined the orbits and masses of the two dynamically interacting satellites of the dwarf planet (136108) Haumea, formerly 2003 EL61. The orbital parameters of Hi'iaka, the outer, brighter satellite, match well the previously derived orbit. On timescales longer than a few weeks, no Keplerian orbit is sufficient to describe the motion of the inner, fainter satellite Namaka. Using a fully interacting three-point-mass model, we have recovered the orbital parameters of both orbits and the mass of Haumea and Hi'iaka; Namaka's mass is marginally detected. The data are not sufficient to uniquely determine the gravitational quadrupole of the nonspherical primary (described by J 2 ). The nearly coplanar nature of the satellites, as well as an inferred density similar to water ice, strengthen the hypothesis that Haumea experienced a giant collision billions of years ago. The excited eccentricities and mutual inclination point to an intriguing tidal history of significant semimajor axis evolution through satellite mean-motion resonances. The orbital solution indicates that Namaka and Haumea are currently undergoing mutual events and that the mutual event season will last for next several years.

  20. Elliptic interpretation of black holes and quantum mechanics

    International Nuclear Information System (INIS)

    Gibbons, G.W.

    1987-01-01

    The lectures as delivered contained an elementary introduction to the classical theory of black holes together with an account of Hawking's original derivation of the thermal emission from black holes in the quantum theory. Also described here is what is here called the elliptic interpretation partly because of its possible relevance to the lectures of Professor 't Hooft. A rather more detailed account of the elliptic interpretation is given and the reader is referred to the original literature for the elementary material. 22 references

  1. Elliptic flow in Au+Au collisions at RHIC

    Science.gov (United States)

    Vale, Carla M.; PHOBOS Collaboration; Back, B. B.; Baker, M. D.; Ballintijn, M.; Barton, D. S.; Betts, R. R.; Bickley, A. A.; Bindel, R.; Budzanowski, A.; Busza, W.; Carroll, A.; Decowski, M. P.; García, E.; George, N.; Gulbrandsen, K.; Gushue, S.; Halliwell, C.; Hamblen, J.; Heintzelman, G. A.; Henderson, C.; Hofman, D. J.; Hollis, R. S.; Holynski, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J. L.; Katzy, J.; Khan, N.; Kucewicz, W.; Kulinich, P.; Kuo, C. M.; Lin, W. T.; Manly, S.; McLeod, D.; Mignerey, A. C.; Ngyuen, M.; Nouicer, R.; Olszewski, A.; Pak, R.; Park, I. C.; Pernegger, H.; Reed, C.; Remsberg, L. P.; Reuter, M.; Roland, C.; Roland, G.; Rosenberg, L.; Sagerer, J.; Sarin, P.; Sawicki, P.; Skulski, W.; Steinberg, P.; Stephans, G. S. F.; Sukhanov, A.; Tang, J.-L.; Tonjes, M. B.; Trzupek, A.; van Nieuwenhuizen, G. J.; Verdier, R.; Veres, G.; Wolfs, F. L. H.; Wosiek, B.; Wozniak, K.; Wuosmaa, A. H.; Wyslouch, B.

    2005-04-01

    Elliptic flow is an interesting probe of the dynamical evolution of the dense system formed in the ultrarelativistic heavy ion collisions at the relativistic heavy ion collider (RHIC). The elliptic flow dependences on transverse momentum, centrality and pseudorapidity were measured using data collected by the PHOBOS detector, which offers a unique opportunity to study the azimuthal anisotropies of charged particles over a wide range of pseudorapidity. These measurements are presented, together with an overview of the analysis methods and a discussion of the results.

  2. Comparison of the buccolingual inclination in alveolar bone and tooth using dental CBCT

    International Nuclear Information System (INIS)

    Kim, Sung Eun; Kim, Jin Soo; Kim, Jae Duk

    2008-01-01

    It is important to determine the bucco-lingual inclination of implants on radiographs before the implant surgery. The purpose of this study was to compare the buccolingual inclination in alveolar bone and the tooth with dental cone beam CT and to prepare the standard for the buccolingual inclination of implant. Axial, panoramic, and buccolingually sectioned images of 80 implant cases with stent including straight marker using CB Mercuray TM (Hitachi, Japan) were evaluated. The comparison of the buccolingual inclination of remained alveolar bone with the tooth and the marker on buccolingually sectioned views was performed statistically. The average buccolingual inclination of remained alveolar bone and tooth was 82.8 ± 4.6 .deg. C and 85.8 ± 4.7 .deg. C (p 0.05, r=0.12) at the 2nd premolar area in upper jaw. The average buccolingual inclination of remained alveolar bone and tooth was 81.3 ± 8.3 .deg. C and 87.5 ± 6.3 .deg. C (p>0.05, r=0.85) at the lower 2nd premolar area and 94.3 ± 6.6 .deg. C and 93.3 ± 7.2 .deg. C respectively (p>0.05, r=0.91) at the 1st molar area in lower jaw. The inclinations of markers were very different from those of remained bone at the most of areas except the upper 2nd premolar area (r=0.79). We recommend dental CBCT analysis for determining the buccolingual inclination of dental implant, because of significant difference, in average, between the buccolingual inclination of remained alveolar bone and tooth.

  3. Newton flows for elliptic functions

    NARCIS (Netherlands)

    Helminck, G.F.; Twilt, F.

    2015-01-01

    Newton flows are dynamical systems generated by a continuous, desingularized Newton method for mappings from a Euclidean space to itself. We focus on the special case of meromorphic functions on the complex plane. Inspired by the analogy between the rational (complex) and the elliptic (i.e., doubly

  4. Second order degenerate elliptic equations

    International Nuclear Information System (INIS)

    Duong Minh Duc.

    1988-08-01

    Using an improved Sobolev inequality we study a class of elliptic operators which is degenerate inside the domain and strongly degenerate near the boundary of the domain. Our results are applicable to the L 2 -boundary value problem and the mixed boundary problem. (author). 18 refs

  5. The influence of incline walking on joint mechanics.

    Science.gov (United States)

    Haggerty, Mason; Dickin, D Clark; Popp, Jennifer; Wang, Henry

    2014-04-01

    Walking is a popular form of exercise and is associated with many health benefits; however, frontal-plane knee joint loading brought about by a large internal knee-abduction moment and cyclic loading could lead to cartilage degeneration over time. Therefore, knee joint mechanics during an alternative walking exercise needs to be analyzed. The purpose of this study was to examine the lower-extremity joint mechanics in the frontal and sagittal planes during incline walking. Fifteen healthy males walked on a treadmill at five gradients (0%, 5%, 10%, 15%, and 20%) at 1.34m/s, and lower-extremity joint mechanics in the frontal and sagittal planes were quantified. The peak internal knee-abduction moment significantly decreased from the level walking condition at all gradients except 5%. Also, a negative relationship between the internal knee-abduction moment and the treadmill gradient was found to exist in 10% increments (0-10%, 5-15%, and 10-20%). The decrease in the internal knee-abduction moment during incline walking could have positive effects on knee joint health such as potentially reducing cartilage degeneration of the knee joint, reducing pain, and decreasing the rate of development of medial tibiofemoral osteoarthritis. This would be beneficial for a knee surgery patient, obese persons, and older adults who are using incline walking for rehabilitation and exercise protocols. Findings from the current study can provide guidance for the development of rehabilitation and exercise prescriptions incorporating incline walking. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. AN ORBIT FIT FOR THE GRILLMAIR DIONATOS COLD STELLAR STREAM

    International Nuclear Information System (INIS)

    Willett, Benjamin A.; Newberg, Heidi Jo; Zhang Haotong; Yanny, Brian; Beers, Timothy C.

    2009-01-01

    We use velocity and metallicity information from Sloan Digital Sky Survey and Sloan Extension for Galactic Understanding and Exploration stellar spectroscopy to fit an orbit to the narrow 63 deg. stellar stream of Grillmair and Dionatos. The stars in the stream have a retrograde orbit with eccentricity e = 0.33 (perigalacticon of 14.4 kpc and apogalacticon of 28.7 kpc) and inclination approximately i ∼ 35 deg. In the region of the orbit which is detected, it has a distance of about 7-11 kpc from the Sun. Assuming a standard disk plus bulge and logarithmic halo potential for the Milky Way stars plus dark matter, the stream stars are moving with a large space velocity of approximately 276 km s -1 at perigalacticon. Using this stream alone, we are unable to determine if the dark matter halo is oblate or prolate. The metallicity of the stream is [Fe/H] = -2.1 ± 0.1. Observed proper motions for individual stream members above the main sequence turnoff are consistent with the derived orbit. None of the known globular clusters in the Milky Way have positions, radial velocities, and metallicities that are consistent with being the progenitor of the GD-1 stream.

  7. An Orbit Fit for the Grillmair Dionatos Cold Stellar Stream

    Energy Technology Data Exchange (ETDEWEB)

    Willett, Benjamin A.; Newberg, Heidi Jo; Zhang, Haotong; Yanny, Brian; Beers, Timothy C.

    2009-01-01

    We use velocity and metallicity information from Sloan Digital Sky Survey and Sloan Extension for Galactic Understanding and Exploration stellar spectroscopy to fit an orbit to the narrow 63{sup o} stellar stream of Grillmair and Dionatos. The stars in the stream have a retrograde orbit with eccentricity e = 0.33 (perigalacticon of 14.4 kpc and apogalacticon of 28.7 kpc) and inclination approximately i {approx} 35{sup o}. In the region of the orbit which is detected, it has a distance of about 7-11 kpc from the Sun. Assuming a standard disk plus bulge and logarithmic halo potential for the Milky Way stars plus dark matter, the stream stars are moving with a large space velocity of approximately 276 km s{sup -1} at perigalacticon. Using this stream alone, we are unable to determine if the dark matter halo is oblate or prolate. The metallicity of the stream is [Fe/H] = -2.1 {+-} 0.1. Observed proper motions for individual stream members above the main sequence turnoff are consistent with the derived orbit. None of the known globular clusters in the Milky Way have positions, radial velocities, and metallicities that are consistent with being the progenitor of the GD-1 stream.

  8. Applications of elliptic Carleman inequalities to Cauchy and inverse problems

    CERN Document Server

    Choulli, Mourad

    2016-01-01

    This book presents a unified approach to studying the stability of both elliptic Cauchy problems and selected inverse problems. Based on elementary Carleman inequalities, it establishes three-ball inequalities, which are the key to deriving logarithmic stability estimates for elliptic Cauchy problems and are also useful in proving stability estimates for certain elliptic inverse problems. The book presents three inverse problems, the first of which consists in determining the surface impedance of an obstacle from the far field pattern. The second problem investigates the detection of corrosion by electric measurement, while the third concerns the determination of an attenuation coefficient from internal data, which is motivated by a problem encountered in biomedical imaging.

  9. Design of an elliptical solenoid magnet for transverse beam matching to the spiral inflector

    International Nuclear Information System (INIS)

    Goswami, A.; Sing Babu, P.; Pandit, V.S.

    2013-01-01

    In this work, we present the design study of an elliptical solenoid magnet to be used for transverse beam matching at the input of a spiral inflector for efficient transmission. We have studied the dependence of axial field and gradients in the transverse directions of the elliptical solenoid magnet with ellipticity of the aperture. Using the beam envelope equations we have studied the feasibility of using an elliptical solenoid for transverse beam matching to the acceptance of a spiral inflector. (author)

  10. Solitons and separable elliptic solutions of the sine-Gordon equation

    International Nuclear Information System (INIS)

    Bryan, A.C.; Haines, C.R.; Stuart, A.E.G.

    1979-01-01

    It is pointed out that the two-soliton (antisoliton) solutions of the sine-Gordon equation may be obtained as limiting cases of a separable, two-parameter family of elliptic solutions. The solitons are found on the boundary of the parameter space for the elliptic solutions when the latter are considered over their usual complex domain. (Auth.)

  11. Rotational magnetization of anisotropic media: Lag angle, ellipticity and accommodation

    International Nuclear Information System (INIS)

    Kahler, G.R.; Della Torre, E.

    2006-01-01

    This paper discusses the change in the ellipticity of two-dimensional magnetization trajectories as the applied field rotates from the easy axis to the hard axis of a material. Furthermore, the impact that the reversible magnetization has on the ellipticity is discussed, including the relationship between the magnetization squareness and the reversible component of the magnetization

  12. COMPUTER-AIDED DESIGN, MANUFACTURE AND EXPERIMENTAL ANALYSIS OF A PAIR OF ELLIPTICAL SPUR GEARS

    Directory of Open Access Journals (Sweden)

    Mehmet YAZAR

    2016-12-01

    Full Text Available ABSTRACT In this study, geometrical equations of elliptical spur gears, which are too difficult to manufacture by traditional methods and which require specific machines equipped with special techniques, are developed using the methods in the literature. Using these equations, a LISP program on AutoLISP is created to model elliptical spur gears on AutoCAD with desired tooth number and modules. Elliptical spur gears are manufactured with 5 different modules by Wire EDM through the above-mentioned package program. The variations in the center distances of elliptical spur gears, the most important parameter for workability of gears, are experimentally determined by a simple test unit designed and manufactured within the context this study. In addition, the surface roughness and hardness of elliptical spur gears are obtained and hydraulic pump and noise analysis results are discussed. The experimental and computer-aided results show that the elliptical spur gears may widely be used in many industrial and mechanical applications in the future.

  13. UV Visibility of Moderate-Redshift Giant Elliptical Galaxies

    Directory of Open Access Journals (Sweden)

    Myung-Hyun Rhee

    1998-06-01

    Full Text Available We show quantitatively whether giant elliptical galaxies would be visible at far UV wavelengths if they were placed at moderate redshift of 0.4-0.5. On the basis of simple cosmological tests, we conclude that giant elliptical galaxies can be detectable upto the redshift of 0.4-0.5 in the proposed GALEX (Galaxy Evolution Explorer Deep Imaging Survey. We also show that obtaining UV color index such as m_1550 - V from upcoming GALEX and SDSS (Sloan Digital Sky Survey observations should be feasible.

  14. An electrostatic elliptical mirror for neutral polar molecules.

    Science.gov (United States)

    González Flórez, A Isabel; Meek, Samuel A; Haak, Henrik; Conrad, Horst; Santambrogio, Gabriele; Meijer, Gerard

    2011-11-14

    Focusing optics for neutral molecules finds application in shaping and steering molecular beams. Here we present an electrostatic elliptical mirror for polar molecules consisting of an array of microstructured gold electrodes deposited on a glass substrate. Alternating positive and negative voltages applied to the electrodes create a repulsive potential for molecules in low-field-seeking states. The equipotential lines are parallel to the substrate surface, which is bent in an elliptical shape. The mirror is characterized by focusing a beam of metastable CO molecules and the results are compared to the outcome of trajectory simulations.

  15. Event-by-Event Elliptic Flow Fluctuations from PHOBOS

    Science.gov (United States)

    Wosiek, B.; Alver, B.; Back, B. B.; Baker, M. D.; Ballintijn, M.; Barton, D. S.; Betts, R. R.; Bickley, A. A.; Bindel, R.; Busza, W.; Carroll, A.; Chai, Z.; Chetluru, V.; Decowski, M. P.; García, E.; Gburek, T.; George, N.; Gulbrandsen, K.; Halliwell, C.; Hamblen, J.; Harnarine, I.; Hauer, M.; Henderson, C.; Hofman, D. J.; Hollis, R. S.; Hołyński, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J. L.; Khan, N.; Kulinich, P.; Kuo, C. M.; Li, W.; Lin, W. T.; Loizides, C.; Manly, S.; Mignerey, A. C.; Nouicer, R.; Olszewski, A.; Pak, R.; Reed, C.; Richardson, E.; Roland, C.; Roland, G.; Sagerer, J.; Seals, H.; Sedykh, I.; Smith, C. E.; Stankiewicz, M. A.; Steinberg, P.; Stephans, G. S. F.; Sukhanov, A.; Szostak, A.; Tonjes, M. B.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Vaurynovich, S. S.; Verdier, R.; Veres, G. I.; Walters, P.; Wenger, E.; Willhelm, D.; Wolfs, F. L. H.; Woźniak, K.; Wyngaardt, S.; Wysłouch, B.

    2009-04-01

    Recently PHOBOS has focused on the study of fluctuations and correlations in particle production in heavy-ion collisions at the highest energies delivered by the Relativistic Heavy Ion Collider (RHIC). In this report, we present results on event-by-event elliptic flow fluctuations in (Au+Au) collisions at sqrt {sNN}=200 GeV. A data-driven method was used to estimate the dominant contribution from non-flow correlations. Over the broad range of collision centralities, the observed large elliptic flow fluctuations are in agreement with the fluctuations in the initial source eccentricity.

  16. Interplay between geometry and temperature for inclined Casimir plates

    International Nuclear Information System (INIS)

    Weber, Alexej; Gies, Holger

    2009-01-01

    We provide further evidence for the nontrivial interplay between geometry and temperature in the Casimir effect. We investigate the temperature dependence of the Casimir force between an inclined semi-infinite plate above an infinite plate in D dimensions using the worldline formalism. Whereas the high-temperature behavior is always found to be linear in T in accordance with dimensional-reduction arguments, different power-law behaviors at small temperatures emerge. Unlike the case of infinite parallel plates, which shows the well-known T D behavior of the force, we find a T D-1 behavior for inclined plates, and a ∼T D-0.3 behavior for the edge effect in the limit where the plates become parallel. The strongest temperature dependence ∼T D-2 occurs for the Casimir torque of inclined plates. Numerical as well as analytical worldline results are presented.

  17. Analysis of Periodic Orbits about the Triangular Solutions of the Restricted Sum-Jupiter and Earth-Moon Problem

    Directory of Open Access Journals (Sweden)

    Sang-Young Park

    1988-12-01

    Full Text Available Using the numerical solution in the plane restricted problem of three bodies, about 490 periodic orbits are computed numerically around the L5 of Sun-Jupiter and about 1600 periodic orbits also be done around the L5 of Earth-Moon system. As period increase, the energy and the shape of periodic orbits increase around the L5 of Sun-Jupiter system. But, in Earth-Moon system, the complex shapes and dents appear around the L5 and periodic orbits intersect one another in the place where dents are shown. And there is a region that three different periodic orbits exist with the same period in this region. The regions can exist around the L5 of Sun-Jupiter system where periodic orbit can be unstable by perturbation of other force besides the gravitational force of Jupiter. These regions which is close to L5 are a ~5.12 AU and a ~5.29 AU. The Trojan asteroids that have a small eccentricity and inclination can not exist in this region.

  18. Granular flow down a flexible inclined plane

    Directory of Open Access Journals (Sweden)

    Sonar Prasad

    2017-01-01

    Full Text Available Discrete and continuous systems are commonly studied individually, but seldom together. Indeed, granular flows are typically studied through flows over a rigid base. Here, we investigate the behaviour of granular flows over an inclined, flexible base. The flexible base is modeled as a rigid platform mounted on springs and has one degree of freedom. The base vibrations are introduced by the flow. We simulate such flows through a discrete element method and compare with experiments. We find that a flexible base increased the upper limit of the inclination up to which a steady flow is possible by at least 3 degrees. This stabilized zone may have important implications in applications such as conveyor belts and chutes.

  19. ON ELLIPTICALLY POLARIZED ANTENNAS IN THE PRESENCE OF GROUND

    Science.gov (United States)

    The effect of ground reflections upon the far field of an elliptically polarized antenna of ar itrary orientation with r spect to ground is...investigated. The equation of the polarization ellipse produced by an elliptically polarized antenna in the presence of ground is derived, AND SEVERAL...EXAMPLES ILLUSTRATE THE VARIATION IN THE AXIS RATIO OF THE POLARIZATION ELLIPSE AS A FUNCTION OF THE GEOMETRY OF THE MEASURING SETUP. A method is presented

  20. The metabolic cost of walking on an incline in the Peacock (Pavo cristatus).

    Science.gov (United States)

    Wilkinson, Holly; Thavarajah, Nathan; Codd, Jonathan

    2015-01-01

    Altering speed and moving on a gradient can affect an animal's posture and gait, which in turn can change the energetic requirements of terrestrial locomotion. Here, the energetic and kinematic effects of locomoting on an incline were investigated in the Indian peacock, Pavo cristatus. The mass-specific metabolic rate of the Indian peacock was elevated on an incline, but this change was not dependent on the angle ascended and the cost of lifting remained similar between the two inclines (+5 and +7°). Interestingly, the Indian peacock had the highest efficiency when compared to any other previously studied avian biped, despite the presence of a large train. Duty factors were higher for birds moving on an incline, but there was no difference between +5 and +7°. Our results highlight the importance of investigating kinematic responses during energetic studies, as these may enable explanation of what is driving the underlying metabolic differences when moving on inclines. Further investigations are required to elucidate the underlying mechanical processes occurring during incline movement.

  1. The metabolic cost of walking on an incline in the Peacock (Pavo cristatus

    Directory of Open Access Journals (Sweden)

    Holly Wilkinson

    2015-06-01

    Full Text Available Altering speed and moving on a gradient can affect an animal’s posture and gait, which in turn can change the energetic requirements of terrestrial locomotion. Here, the energetic and kinematic effects of locomoting on an incline were investigated in the Indian peacock, Pavo cristatus. The mass-specific metabolic rate of the Indian peacock was elevated on an incline, but this change was not dependent on the angle ascended and the cost of lifting remained similar between the two inclines (+5 and +7°. Interestingly, the Indian peacock had the highest efficiency when compared to any other previously studied avian biped, despite the presence of a large train. Duty factors were higher for birds moving on an incline, but there was no difference between +5 and +7°. Our results highlight the importance of investigating kinematic responses during energetic studies, as these may enable explanation of what is driving the underlying metabolic differences when moving on inclines. Further investigations are required to elucidate the underlying mechanical processes occurring during incline movement.

  2. Ellipticity and the offset angle of high harmonics generated by homonuclear diatomic molecules

    International Nuclear Information System (INIS)

    Odzak, S; Milosevic, D B

    2011-01-01

    In our recent paper (2010 Phys. Rev. A 82 023412) we introduced a theory of high-order harmonic generation by diatomic molecules exposed to an elliptically polarized laser field and have shown that the nth harmonic emission rate has contributions of the components of the T-matrix element in the direction of the laser-field polarization and in the direction perpendicular to it. Using both components of the T-matrix element we now develop a theoretical approach for calculating ellipticity and the offset angle of high harmonics. We show that the emitted harmonics generated by aligned molecules are elliptically polarized even if the applied field is linearly polarized. Using examples of N 2 , O 2 and Ar 2 molecules we show the existence of extrema and sudden changes of the harmonic ellipticity and the offset angle for particular molecular alignment and explain them by the destructive two-centre interference. Taking into account that the aligned molecules are an anisotropic medium for high harmonic generation, we introduce elliptic dichroism as a measure of this anisotropy, for both components of the T-matrix element. We propose that the measurement of the elliptic dichroism may reveal further information about the molecular structure.

  3. Risk assessment and late effects of radiation in low-earth orbits

    International Nuclear Information System (INIS)

    Fry, R.J.M.

    1989-01-01

    The radiation dose rates in low-earth orbits are dependent on the altitude and orbital inclination. The doses to which the crews of space vehicles are exposed is governed by the duration of the mission and the shielding, and in low-earth orbit missions protons are the dominant particles encountered. The risk of concern with the low dose rates and the relatively low total doses of radiation that will be incurred on the space station is excess cancer. The National Council on Radiation Protection and Measurements has recently recommended career dose-equivalent limits that take into account sex and age. The new recommendations for career limits range from 1.0 Sv to 4 Sv, depending on sex and on the age at the time of their first space mission, compared to a single career limit of 4.0 Sv previously used by NASA. Risk estimates for radiated-induced cancer are evolving and changes in the current guidance may be required in the next few years. 10 refs., 1 fig., 3 tabs

  4. Tooth Wear Inclination in Great Ape Molars.

    Science.gov (United States)

    Knight-Sadler, Jordan; Fiorenza, Luca

    2017-01-01

    Primate dietary diversity is reflected in their dental morphology, with differences in size and shape of teeth. In particular, the tooth wear angle can provide insight into a species' ability to break down certain foods. To examine dietary and masticatory information, digitized polygon models of dental casts provide a basis for quantitative analysis of wear associated with tooth attrition. In this study, we analyze and compare the wear patterns of Pongo pygmaeus, Gorilla gorillagorilla and Pan troglodytes schweinfurthii lower molars, focusing on the degree of inclination of specific wear facets. The variation in wear angles appears to be indicative of jaw movements and the specific stresses imposed on food during mastication, reflecting thus the ecology of these species. Orangutans exhibit flatter wear angles, more typical of a diet consisting of hard and brittle foods, while gorillas show a wear pattern with a high degree of inclination, reflecting thus their more leafy diet. Chimpanzees, on the other hand, show intermediate inclinations, a pattern that could be related to their highly variable diet. This method is demonstrated to be a powerful tool for better understanding the relationship between food, mastication and tooth wear processes in living primates, and can be potentially used to reconstruct the diet of fossil species. © 2017 S. Karger AG, Basel.

  5. Elliptic Flow in Au+Au Collisions at √sNN = 130 GeV

    Science.gov (United States)

    Ackermann, K. H.; Adams, N.; Adler, C.; Ahammed, Z.; Ahmad, S.; Allgower, C.; Amsbaugh, J.; Anderson, M.; Anderssen, E.; Arnesen, H.; Arnold, L.; Averichev, G. S.; Baldwin, A.; Balewski, J.; Barannikova, O.; Barnby, L. S.; Baudot, J.; Beddo, M.; Bekele, S.; Belaga, V. V.; Bellwied, R.; Bennett, S.; Bercovitz, J.; Berger, J.; Betts, W.; Bichsel, H.; Bieser, F.; Bland, L. C.; Bloomer, M.; Blyth, C. O.; Boehm, J.; Bonner, B. E.; Bonnet, D.; Bossingham, R.; Botlo, M.; Boucham, A.; Bouillo, N.; Bouvier, S.; Bradley, K.; Brady, F. P.; Braithwaite, E. S.; Braithwaite, W.; Brandin, A.; Brown, R. L.; Brugalette, G.; Byrd, C.; Caines, H.; Calderón de La Barca Sánchez, M.; Cardenas, A.; Carr, L.; Carroll, J.; Castillo, J.; Caylor, B.; Cebra, D.; Chatopadhyay, S.; Chen, M. L.; Chen, W.; Chen, Y.; Chernenko, S. P.; Cherney, M.; Chikanian, A.; Choi, B.; Chrin, J.; Christie, W.; Coffin, J. P.; Conin, L.; Consiglio, C.; Cormier, T. M.; Cramer, J. G.; Crawford, H. J.; Danilov, V. I.; Dayton, D.; Demello, M.; Deng, W. S.; Derevschikov, A. A.; Dialinas, M.; Diaz, H.; Deyoung, P. A.; Didenko, L.; Dimassimo, D.; Dioguardi, J.; Dominik, W.; Drancourt, C.; Draper, J. E.; Dunin, V. B.; Dunlop, J. C.; Eckardt, V.; Edwards, W. R.; Efimov, L. G.; Eggert, T.; Emelianov, V.; Engelage, J.; Eppley, G.; Erazmus, B.; Etkin, A.; Fachini, P.; Feliciano, C.; Ferenc, D.; Ferguson, M. I.; Fessler, H.; Finch, E.; Fine, V.; Fisyak, Y.; Flierl, D.; Flores, I.; Foley, K. J.; Fritz, D.; Gagunashvili, N.; Gans, J.; Gazdzicki, M.; Germain, M.; Geurts, F.; Ghazikhanian, V.; Gojak, C.; Grabski, J.; Grachov, O.; Grau, M.; Greiner, D.; Greiner, L.; Grigoriev, V.; Grosnick, D.; Gross, J.; Guilloux, G.; Gushin, E.; Hall, J.; Hallman, T. J.; Hardtke, D.; Harper, G.; Harris, J. W.; He, P.; Heffner, M.; Heppelmann, S.; Herston, T.; Hill, D.; Hippolyte, B.; Hirsch, A.; Hjort, E.; Hoffmann, G. W.; Horsley, M.; Howe, M.; Huang, H. Z.; Humanic, T. J.; Hümmler, H.; Hunt, W.; Hunter, J.; Igo, G. J.; Ishihara, A.; Ivanshin, Yu. I.; Jacobs, P.; Jacobs, W. W.; Jacobson, S.; Jared, R.; Jensen, P.; Johnson, I.; Jones, P. G.; Judd, E.; Kaneta, M.; Kaplan, M.; Keane, D.; Kenney, V. P.; Khodinov, A.; Klay, J.; Klein, S. R.; Klyachko, A.; Koehler, G.; Konstantinov, A. S.; Kormilitsyne, V.; Kotchenda, L.; Kotov, I.; Kovalenko, A. D.; Kramer, M.; Kravtsov, P.; Krueger, K.; Krupien, T.; Kuczewski, P.; Kuhn, C.; Kunde, G. J.; Kunz, C. L.; Kutuev, R. Kh.; Kuznetsov, A. A.; Lakehal-Ayat, L.; Lamas-Valverde, J.; Lamont, M. A.; Landgraf, J. M.; Lange, S.; Lansdell, C. P.; Lasiuk, B.; Laue, F.; Lebedev, A.; Lecompte, T.; Leonhardt, W. J.; Leontiev, V. M.; Leszczynski, P.; Levine, M. J.; Li, Q.; Li, Q.; Li, Z.; Liaw, C.-J.; Lin, J.; Lindenbaum, S. J.; Lindenstruth, V.; Lindstrom, P. J.; Lisa, M. A.; Liu, H.; Ljubicic, T.; Llope, W. J.; Locurto, G.; Long, H.; Longacre, R. S.; Lopez-Noriega, M.; Lopiano, D.; Love, W. A.; Lutz, J. R.; Lynn, D.; Madansky, L.; Maier, R.; Majka, R.; Maliszewski, A.; Margetis, S.; Marks, K.; Marstaller, R.; Martin, L.; Marx, J.; Matis, H. S.; Matulenko, Yu. A.; Matyushevski, E. A.; McParland, C.; McShane, T. S.; Meier, J.; Melnick, Yu.; Meschanin, A.; Middlekamp, P.; Mikhalin, N.; Miller, B.; Milosevich, Z.; Minaev, N. G.; Minor, B.; Mitchell, J.; Mogavero, E.; Moiseenko, V. A.; Moltz, D.; Moore, C. F.; Morozov, V.; Morse, R.; de Moura, M. M.; Munhoz, M. G.; Mutchler, G. S.; Nelson, J. M.; Nevski, P.; Ngo, T.; Nguyen, M.; Nguyen, T.; Nikitin, V. A.; Nogach, L. V.; Noggle, T.; Norman, B.; Nurushev, S. B.; Nussbaum, T.; Nystrand, J.; Odyniec, G.; Ogawa, A.; Ogilvie, C. A.; Olchanski, K.; Oldenburg, M.; Olson, D.; Ososkov, G. A.; Ott, G.; Padrazo, D.; Paic, G.; Pandey, S. U.; Panebratsev, Y.; Panitkin, S. Y.; Pavlinov, A. I.; Pawlak, T.; Pentia, M.; Perevotchikov, V.; Peryt, W.; Petrov, V. A.; Pinganaud, W.; Pirogov, S.; Platner, E.; Pluta, J.; Polk, I.; Porile, N.; Porter, J.; Poskanzer, A. M.; Potrebenikova, E.; Prindle, D.; Pruneau, C.; Puskar-Pasewicz, J.; Rai, G.; Rasson, J.; Ravel, O.; Ray, R. L.; Razin, S. V.; Reichhold, D.; Reid, J.; Renfordt, R. E.; Retiere, F.; Ridiger, A.; Riso, J.; Ritter, H. G.; Roberts, J. B.; Roehrich, D.; Rogachevski, O. V.; Romero, J. L.; Roy, C.; Russ, D.; Rykov, V.; Sakrejda, I.; Sanchez, R.; Sandler, Z.; Sandweiss, J.; Sappenfield, P.; Saulys, A. C.; Savin, I.; Schambach, J.; Scharenberg, R. P.; Scheblien, J.; Scheetz, R.; Schlueter, R.; Schmitz, N.; Schroeder, L. S.; Schulz, M.; Schüttauf, A.; Sedlmeir, J.; Seger, J.; Seliverstov, D.; Seyboth, J.; Seyboth, P.; Seymour, R.; Shakaliev, E. I.; Shestermanov, K. E.; Shi, Y.; Shimanskii, S. S.; Shuman, D.; Shvetcov, V. S.; Skoro, G.; Smirnov, N.; Smykov, L. P.; Snellings, R.; Solberg, K.; Sowinski, J.; Spinka, H. M.; Srivastava, B.; Stephenson, E. J.; Stock, R.; Stolpovsky, A.; Stone, N.; Stone, R.; Strikhanov, M.; Stringfellow, B.; Stroebele, H.; Struck, C.; Suaide, A. A.; Sugarbaker, E.; Suire, C.; Symons, T. J.; Takahashi, J.; Tang, A. H.; Tarchini, A.; Tarzian, J.; Thomas, J. H.; Tikhomirov, V.; Szanto de Toledo, A.; Tonse, S.; Trainor, T.; Trentalange, S.; Tokarev, M.; Tonjes, M. B.; Trofimov, V.; Tsai, O.; Turner, K.; Ullrich, T.; Underwood, D. G.; Vakula, I.; van Buren, G.; Vandermolen, A. M.; Vanyashin, A.; Vasilevski, I. M.; Vasiliev, A. N.; Vigdor, S. E.; Visser, G.; Voloshin, S. A.; Vu, C.; Wang, F.; Ward, H.; Weerasundara, D.; Weidenbach, R.; Wells, R.; Wells, R.; Wenaus, T.; Westfall, G. D.; Whitfield, J. P.; Whitten, C.; Wieman, H.; Willson, R.; Wilson, K.; Wirth, J.; Wisdom, J.; Wissink, S. W.; Witt, R.; Wolf, J.; Wood, L.; Xu, N.; Xu, Z.; Yakutin, A. E.; Yamamoto, E.; Yang, J.; Yepes, P.; Yokosawa, A.; Yurevich, V. I.; Zanevski, Y. V.; Zhang, J.; Zhang, W. M.; Zhu, J.; Zimmerman, D.; Zoulkarneev, R.; Zubarev, A. N.

    2001-01-01

    Elliptic flow from nuclear collisions is a hadronic observable sensitive to the early stages of system evolution. We report first results on elliptic flow of charged particles at midrapidity in Au+Au collisions at sNN = 130 GeV using the STAR Time Projection Chamber at the Relativistic Heavy Ion Collider. The elliptic flow signal, v2, averaged over transverse momentum, reaches values of about 6% for relatively peripheral collisions and decreases for the more central collisions. This can be interpreted as the observation of a higher degree of thermalization than at lower collision energies. Pseudorapidity and transverse momentum dependence of elliptic flow are also presented.

  6. Testing the method of isolating fracture zones from tiltmeter data

    Energy Technology Data Exchange (ETDEWEB)

    Karmazina, T.S.; Bogdanov, A.P.; Ruban, V.A.

    1981-01-01

    In examples of West Ciscaucasian wells, the possibility is shown of determining the presence of fissures with a steep incline, measurement of the vertical length and azimuth of the fissure zones by determining the ellipticity of the well sections and measuring the azimuths of ellipticity.

  7. Three-dimensional volumetric display by inclined-plane scanning

    Science.gov (United States)

    Miyazaki, Daisuke; Eto, Takuma; Nishimura, Yasuhiro; Matsushita, Kenji

    2003-05-01

    A volumetric display system based on three-dimensional (3-D) scanning that uses an inclined two-dimensional (2-D) image is described. In the volumetric display system a 2-D display unit is placed obliquely in an imaging system into which a rotating mirror is inserted. When the mirror is rotated, the inclined 2-D image is moved laterally. A locus of the moving image can be observed by persistence of vision as a result of the high-speed rotation of the mirror. Inclined cross-sectional images of an object are displayed on the display unit in accordance with the position of the image plane to observe a 3-D image of the object by persistence of vision. Three-dimensional images formed by this display system satisfy all the criteria for stereoscopic vision. We constructed the volumetric display systems using a galvanometer mirror and a vector-scan display unit. In addition, we constructed a real-time 3-D measurement system based on a light section method. Measured 3-D images can be reconstructed in the 3-D display system in real time.

  8. The Arithmetic of Elliptic Fibrations in Gauge Theories on a Circle

    CERN Document Server

    Grimm, Thomas W.; Klevers, Denis

    2016-01-01

    The geometry of elliptic fibrations translates to the physics of gauge theories in F-theory. We systematically develop the dictionary between arithmetic structures on elliptic curves as well as desingularized elliptic fibrations and symmetries of gauge theories on a circle. We show that the Mordell-Weil group law matches integral large gauge transformations around the circle in Abelian gauge theories and explain the significance of Mordell-Weil torsion in this context. We also use Higgs transitions and circle large gauge transformations to introduce a group law for genus-one fibrations with multi-sections. Finally, we introduce a novel arithmetic structure on elliptic fibrations with non-Abelian gauge groups in F-theory. It is defined on the set of exceptional divisors resolving the singularities and divisor classes of sections of the fibration. This group structure can be matched with certain integral non-Abelian large gauge transformations around the circle when studying the theory on the lower-dimensional ...

  9. L∞-error estimate for a system of elliptic quasivariational inequalities

    Directory of Open Access Journals (Sweden)

    M. Boulbrachene

    2003-01-01

    Full Text Available We deal with the numerical analysis of a system of elliptic quasivariational inequalities (QVIs. Under W2,p(Ω-regularity of the continuous solution, a quasi-optimal L∞-convergence of a piecewise linear finite element method is established, involving a monotone algorithm of Bensoussan-Lions type and standard uniform error estimates known for elliptic variational inequalities (VIs.

  10. Positive solutions with single and multi-peak for semilinear elliptic ...

    Indian Academy of Sciences (India)

    LI WANG

    2018-04-24

    Apr 24, 2018 ... [2] Bahri A and Lions P, On the existence of a positive solution of semilinear elliptic equations in unbounded domains, Ann. Inst. H. Poincaré Anal. Non Linéaire 14(3) (1997) 365–413. [3] Cao D, and Noussair E, Multiplicity of positive and nodal solutions for nonlinear elliptic problems in RN , Ann. Inst. H.

  11. Major and minor axis kinematics of 22 ellipticals

    International Nuclear Information System (INIS)

    Franx, M.; Illingworth, G.; Heckman, T.

    1989-01-01

    Rotation curves and velocity dispersion profiles have been determined for the major and the minor axes of 22 elliptical galaxies. Rotation was detected in all but one galaxy, even though the sample was biased toward round ellipticals. Minor axis rotation larger than major axis rotation was measured in two galaxies, NGC 4406 and NGC 7507. Roughly 10 percent of ellipticals may show large minor axis velocities relative to those on the major axis. A simple model is used to derive a rotational axis from the observed minor and major axis velocities to a typical accuracy of 6 deg. The rotational and photometric minor axes aligned to better than 10 deg for 60 percent of the sample, implying that the direction of the angular momentum is related to the orientation of the figure of the galaxy. IC 1459 has a kinematically distinct core with its angular momentum opposite to the angular momentum of the outer parts, and NGC 4406 has a core with its angular momentum perpendicular to that of the outer parts. 46 refs

  12. System Size, Energy, Pseudorapidity, and Centrality Dependence of Elliptic Flow

    Science.gov (United States)

    Alver, B.; Back, B. B.; Baker, M. D.; Ballintijn, M.; Barton, D. S.; Betts, R. R.; Bickley, A. A.; Bindel, R.; Busza, W.; Carroll, A.; Chai, Z.; Chetluru, V.; Decowski, M. P.; García, E.; Gburek, T.; George, N.; Gulbrandsen, K.; Halliwell, C.; Hamblen, J.; Harnarine, I.; Hauer, M.; Henderson, C.; Hofman, D. J.; Hollis, R. S.; Hołyński, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J. L.; Khan, N.; Kulinich, P.; Kuo, C. M.; Li, W.; Lin, W. T.; Loizides, C.; Manly, S.; Mignerey, A. C.; Nouicer, R.; Olszewski, A.; Pak, R.; Reed, C.; Richardson, E.; Roland, C.; Roland, G.; Sagerer, J.; Seals, H.; Sedykh, I.; Smith, C. E.; Stankiewicz, M. A.; Steinberg, P.; Stephans, G. S. F.; Sukhanov, A.; Szostak, A.; Tonjes, M. B.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Vaurynovich, S. S.; Verdier, R.; Veres, G. I.; Walters, P.; Wenger, E.; Willhelm, D.; Wolfs, F. L. H.; Wosiek, B.; Woźniak, K.; Wyngaardt, S.; Wysłouch, B.

    2007-06-01

    This Letter presents measurements of the elliptic flow of charged particles as a function of pseudorapidity and centrality from Cu-Cu collisions at 62.4 and 200 GeV using the PHOBOS detector at the Relativistic Heavy Ion Collider. The elliptic flow in Cu-Cu collisions is found to be significant even for the most central events. For comparison with the Au-Au results, it is found that the detailed way in which the collision geometry (eccentricity) is estimated is of critical importance when scaling out system-size effects. A new form of eccentricity, called the participant eccentricity, is introduced which yields a scaled elliptic flow in the Cu-Cu system that has the same relative magnitude and qualitative features as that in the Au-Au system.

  13. Astrometric detectability of systems with unseen companions: effects of the Earth orbital motion

    Science.gov (United States)

    Butkevich, Alexey G.

    2018-06-01

    The astrometric detection of an unseen companion is based on an analysis of the apparent motion of its host star around the system's barycentre. Systems with an orbital period close to 1 yr may escape detection if the orbital motion of their host stars is observationally indistinguishable from the effects of parallax. Additionally, an astrometric solution may produce a biased parallax estimation for such systems. We examine the effects of the orbital motion of the Earth on astrometric detectability in terms of a correlation between the Earth's orbital position and the position of the star relative to its system barycentre. The χ2 statistic for parallax estimation is calculated analytically, leading to expressions that relate the decrease in detectability and accompanying parallax bias to the position correlation function. The impact of the Earth's motion critically depends on the exoplanet's orbital period, diminishing rapidly as the period deviates from 1 yr. Selection effects against 1-yr-period systems is, therefore, expected. Statistical estimation shows that the corresponding loss of sensitivity results in a typical 10 per cent increase in the detection threshold. Consideration of eccentric orbits shows that the Earth's motion has no effect on detectability for e≳ 0.5. The dependence of the detectability on other parameters, such as orbital phases and inclination of the orbital plane to the ecliptic, are smooth and monotonic because they are described by simple trigonometric functions.

  14. Central $L$-values of elliptic curves and local polynomials

    OpenAIRE

    Ehlen, Stephan; Guerzhoy, Pavel; Kane, Ben; Rolen, Larry

    2018-01-01

    Here we study the recently introduced notion of a locally harmonic Maass form and its applications to the theory of $L$-functions. In particular, we find finite formulas for certain twisted central $L$-values of a family of elliptic curves in terms of finite sums over canonical binary quadratic forms. This yields vastly simpler formulas related to work of Birch and Swinnerton-Dyer for such $L$-values, and extends beyond their framework to special non-CM elliptic curves.

  15. Fluorescence intensity dependence on the propagation plane inclination

    International Nuclear Information System (INIS)

    Fernandez, J.E.; Rubio, Marcelo; Sanchez, H.J.

    1987-01-01

    A Monte Carlo simulation of the primary and secondary X-ray fluorescent emission from an homogeneous and infinite thickness sample, irradiated under different inclination of the propagation plane, is carried out. An agreement with the predictions based on Sherman equations depending on the inclination angle α was found. The invariance of the primary fluorescence with respect to α and the decrease until evanescence of the secondary fluorescence for a α → π/2 are confirmed. A discussion about the physical basis of this dependence is carried out. Similar results are expected for tertiary fluorescence. (Author) [es

  16. Entrepreneurial Inclination Among Business Students: A Malaysian Study

    Directory of Open Access Journals (Sweden)

    Yet-Mee Lim

    2012-10-01

    Full Text Available Entrepreneurship has been the fundamental topics of discussion among the politicians, economists, and academics. Business creation is especially critical in developing countries to stimulate economic growth. The present study attempts to examine entrepreneurial inclination among students who are a potential source of entrepreneurs. The fi ndings of the present research study indicate that majority of our business students are not entrepreneurial-inclined. They do not seem to possess strong entrepreneurial characteristics and entrepreneurial skills, and they are not keen in starting a new business. The roles of higher institutes of education and the government in promoting entrepreneurship are discussed.

  17. Natural Frequencies and Mode Shapes of Statically Deformed Inclined Risers

    KAUST Repository

    Alfosail, Feras

    2016-10-15

    We investigate numerically the linear vibrations of inclined risers using the Galerkin approach. The riser is modeled as an Euler-Bernoulli beam accounting for the nonlinear mid-plane stretching and self-weight. After solving for the initial deflection of the riser due to self-weight, we use a Galerkin expansion employing 15 axially loaded beam mode shapes to solve the eigenvalue problem of the riser around the static equilibrium configuration. This yields the riser natural frequencies and corresponding exact mode shapes for various values of inclination angles and tension. The obtained results are validated against a boundary-layer analytical solution and are found to be in good agreement. This constitutes a basis to study the nonlinear forced vibrations of inclined risers.

  18. The demagnetizing energies of a uniformly magnetized cylinder with an elliptic cross-section

    International Nuclear Information System (INIS)

    Goode, D.A.; Rowlands, G.

    2003-01-01

    Analytic expressions for the demagnetizing energies are obtained in the form of partial series, for long elliptic cylinders and for squat ones where the ellipticity of the cross-section is unrestrained. This leaves just a small range where the demagnetizing energies are not well defined. It is found that by replacing the elliptic cylinders with rectangular blocks, a good approximation to the demagnetizing energy may be made in this small range

  19. Halo ellipticity of GAMA galaxy groups from KiDS weak lensing

    Science.gov (United States)

    van Uitert, Edo; Hoekstra, Henk; Joachimi, Benjamin; Schneider, Peter; Bland-Hawthorn, Joss; Choi, Ami; Erben, Thomas; Heymans, Catherine; Hildebrandt, Hendrik; Hopkins, Andrew M.; Klaes, Dominik; Kuijken, Konrad; Nakajima, Reiko; Napolitano, Nicola R.; Schrabback, Tim; Valentijn, Edwin; Viola, Massimo

    2017-06-01

    We constrain the average halo ellipticity of ˜2600 galaxy groups from the Galaxy And Mass Assembly (GAMA) survey, using the weak gravitational lensing signal measured from the overlapping Kilo Degree Survey (KiDS). To do so, we quantify the azimuthal dependence of the stacked lensing signal around seven different proxies for the orientation of the dark matter distribution, as it is a priori unknown which one traces the orientation best. On small scales, the major axis of the brightest group/cluster member (BCG) provides the best proxy, leading to a clear detection of an anisotropic signal. In order to relate that to a halo ellipticity, we have to adopt a model density profile. We derive new expressions for the quadrupole moments of the shear field given an elliptical model surface mass density profile. Modelling the signal with an elliptical Navarro-Frenk-White profile on scales R < 250 kpc, and assuming that the BCG is perfectly aligned with the dark matter, we find an average halo ellipticity of ɛh = 0.38 ± 0.12, in fair agreement with results from cold dark matter only simulations. On larger scales, the lensing signal around the BCGs becomes isotropic and the distribution of group satellites provides a better proxy for the halo's orientation instead, leading to a 3σ-4σ detection of a non-zero halo ellipticity at 250 < R < 750 kpc. Our results suggest that the distribution of stars enclosed within a certain radius forms a good proxy for the orientation of the dark matter within that radius, which has also been observed in hydrodynamical simulations.

  20. The Closest Point Method and Multigrid Solvers for Elliptic Equations on Surfaces

    KAUST Repository

    Chen, Yujia; Macdonald, Colin B.

    2015-01-01

    © 2015 Society for Industrial and Applied Mathematics. Elliptic partial differential equations are important from both application and analysis points of view. In this paper we apply the closest point method to solve elliptic equations on general

  1. Inclined solar chimney for power production

    International Nuclear Information System (INIS)

    Panse, S.V.; Jadhav, A.S.; Gudekar, A.S.; Joshi, J.B.

    2011-01-01

    Highlights: → Solar energy harnessing using inclined face of high mountains as solar chimney. → Solar chimneys with structural stability, ease of construction and lower cost. → Mathematical model developed, using complete (mechanical and thermal) energy balance. → Can harness wind power also, as wind velocities at mountain top add to power output. → Air temperature and velocity increase, as air rises in inclined chimney. - Abstract: The present concept of solar chimney is a tall vertical chimney constructed at the center of a large area, which is the collector. This creates questions about stability and economic viability of the chimney and also demands elaborate engineering techniques for constructing a tall chimney. We suggest geometry of 'Inclined Solar Chimney' (ISC), which is constructed along the face of a high rising mountain, on which maximum solar insolation is incident throughout the year. The chimney and the collector get merged here. This makes the structure stable, cost effective and easy for construction. A mathematical model has been developed considering the total energy balance. It predicts the temperature and velocity and kinetic power of the emerging air draft for some chosen values of other parameters. The model also shows the proportion in which absorbed solar energy is divided into different forms, and hence predicts the dependence of kinetic of emerging air draft upon dimensions of the chimney and properties of materials used. Further, it is shown that external winds enhance the kinetic power of the emerging air. Thus ISC can also harness the wind energy, available at the top of the mountain.

  2. ESA personal communications and digital audio broadcasting systems based on non-geostationary satellites

    Science.gov (United States)

    Logalbo, P.; Benedicto, J.; Viola, R.

    1993-01-01

    Personal Communications and Digital Audio Broadcasting are two new services that the European Space Agency (ESA) is investigating for future European and Global Mobile Satellite systems. ESA is active in promoting these services in their various mission options including non-geostationary and geostationary satellite systems. A Medium Altitude Global Satellite System (MAGSS) for global personal communications at L and S-band, and a Multiregional Highly inclined Elliptical Orbit (M-HEO) system for multiregional digital audio broadcasting at L-band are described. Both systems are being investigated by ESA in the context of future programs, such as Archimedes, which are intended to demonstrate the new services and to develop the technology for future non-geostationary mobile communication and broadcasting satellites.

  3. Economic Investigation of Different Configurations of Inclined Solar Water Desalination Systems

    Directory of Open Access Journals (Sweden)

    O. Phillips Agboola

    2014-02-01

    Full Text Available This study empirically investigated the performance of four configurations of inclined solar water desalination (ISWD system for parameters such as daily production, efficiency, system cost, and distilled water production cost. The empirical findings show that in terms of daily productivity improved inclined solar water desalination (IISWD performed best with 6.41 kg/m2/day while improved inclined solar water desalination with wire mesh (IISWDWM produced the least with 3.0 kg/m2/day. In terms of cost price of the systems, the control system inclined solar water desalination (ISWD is the cheapest while IISWDWM is the most expensive system. Distilled water cost price ranges from 0.059 TL/kg, for IISWDW, to 0.134 TL/kg, for IISWDWM system. All the systems are economically and technically feasible as a solar desalination system for potable water in northern Cyprus. Potable water from vendors/hawkers ranges from 0.2 to 0.3 TL/kg.

  4. Hydrodynamics of single- and two-phase flow in inclined rod arrays

    International Nuclear Information System (INIS)

    Ebeling-Koning, D.B.; Todreas, N.E.

    1983-09-01

    Required inputs for thermal-hydraulic codes are constitutive relations for fluid-solid flow resistance, in single-phase flow, and interfacial momentum exchange (relative phase motion), in two-phase flow. An inclined rod array air-water experiment was constructed to study the hydrodynamics of multidimensional porous medium flow in rod arrays. Velocities, pressures, and bubble distributions were measured in square rod arrays of P/d = 1.5, at 0, 30, 45, and 90 degree inclinations to the vertical flow direction. Constitutive models for single-phase flow resistance are reviewed, new comprehensive models developed, and an assessment with previously published and new data made. The principle of superimposing one-dimensional correlations proves successful for turbulent single-phase inclined flow. For bubbly two-phase incline flow a new flow separation phenomena was observed and modeled. A two-region liquid velocity model is developed to explain the experimentally observed phenomena. Fundamental data for bubbles rising in rod arrays were also taken

  5. Exact solution and thermodynamics of a spin chain with long-range elliptic interactions

    International Nuclear Information System (INIS)

    Finkel, Federico; González-López, Artemio

    2014-01-01

    We solve in closed form the simplest (su(1|1)) supersymmetric version of Inozemtsev's elliptic spin chain, as well as its infinite (hyperbolic) counterpart. The solution relies on the equivalence of these models to a system of free spinless fermions and on the exact computation of the Fourier transform of the resulting elliptic hopping amplitude. We also compute the thermodynamic functions of the finite (elliptic) chain and their low temperature limit and show that the energy levels become normally distributed in the thermodynamic limit. Our results indicate that at low temperatures the su(1|1) elliptic chain behaves as a critical XX model and deviates in an essential way from the Haldane–Shastry chain. (paper)

  6. OPTICAL-NEAR-INFRARED COLOR GRADIENTS AND MERGING HISTORY OF ELLIPTICAL GALAXIES

    International Nuclear Information System (INIS)

    Kim, Duho; Im, Myungshin

    2013-01-01

    It has been suggested that merging plays an important role in the formation and the evolution of elliptical galaxies. While gas dissipation by star formation is believed to steepen metallicity and color gradients of the merger products, mixing of stars through dissipation-less merging (dry merging) is believed to flatten them. In order to understand the past merging history of elliptical galaxies, we studied the optical-near-infrared (NIR) color gradients of 204 elliptical galaxies. These galaxies are selected from the overlap region of the Sloan Digital Sky Survey (SDSS) Stripe 82 and the UKIRT Infrared Deep Sky Survey (UKIDSS) Large Area Survey (LAS). The use of optical and NIR data (g, r, and K) provides large wavelength baselines, and breaks the age-metallicity degeneracy, allowing us to derive age and metallicity gradients. The use of the deep SDSS Stripe 82 images makes it possible for us to examine how the color/age/metallicity gradients are related to merging features. We find that the optical-NIR color and the age/metallicity gradients of elliptical galaxies with tidal features are consistent with those of relaxed ellipticals, suggesting that the two populations underwent a similar merging history on average and that mixing of stars was more or less completed before the tidal features disappeared. Elliptical galaxies with dust features have steeper color gradients than the other two types, even after masking out dust features during the analysis, which can be due to a process involving wet merging. More importantly, we find that the scatter in the color/age/metallicity gradients of the relaxed and merging feature types decreases as their luminosities (or masses) increase at M > 10 11.4 M ☉ but stays large at lower luminosities. Mean metallicity gradients appear nearly constant over the explored mass range, but a possible flattening is observed at the massive end. According to our toy model that predicts how the distribution of metallicity gradients

  7. Plasma blob generation due to cooperative elliptic instability.

    Science.gov (United States)

    Manz, P; Xu, M; Müller, S H; Fedorczak, N; Thakur, S C; Yu, J H; Tynan, G R

    2011-11-04

    Using fast-camera measurements the generation mechanism of plasma blobs is investigated in the linear device CSDX. During the ejection of plasma blobs the plasma is dominated by an m=1 mode, which is a counterrotating vortex pair. These flows are known to be subject to the cooperative elliptic instability, which is characterized by a cooperative disturbance of the vortex cores and results in a three-dimensional breakdown of two-dimensional flows. The first experimental evidence of a cooperative elliptic instability preceding the blob-ejection is provided in terms of the qualitative evolution of the vortex geometries and internal wave patterns.

  8. Numerical Analysis of Aerodynamic Characteristics of the Finned Surfaces with Cross-inclined Fins

    Directory of Open Access Journals (Sweden)

    Lagutin A. E.

    2016-12-01

    Full Text Available This paper presents results of numerical research and analyses air-side hydraulic performance of tube bundles with cross inclined fins. The numerical simulation of the fin-tube heat exchanger was performed using the Comsol Femlab software. The results of modeling show the influence of fin inclination angle and tube pitch on hydraulic characteristics of finned surfaces. A series of numerical tests were carried out for tube bundles with different inclination angles (γ =900, 850, 650, 60, the fin pitch u=4 mm. The results indicate that tube bundles with cross inclined fins can significantly enhance the average integral value of the air flow rate in channel between fins in comparison with conventional straight fins. Aerodynamic processes on both sides of modificated channel between inclined fins were analyzed. The verification procedures for received results of numerical modeling with experimental data were performed.

  9. Contribution of the maculo-ocular reflex to gaze stability in the rabbit.

    Science.gov (United States)

    Pettorossi, V E; Errico, P; Santarelli, R M

    1991-01-01

    The contribution of the maculo-ocular reflex to gaze stability was studied in 10 pigmented rabbits by rolling the animals at various angles of sagittal inclination of the rotation and/or longitudinal animal axes. At low frequencies (0.005-0.01 Hz) of sinusoidal stimulation the vestibulo-ocular reflex (VOR) was due to macular activation, while at intermediate and high frequencies it was mainly due to ampullar activation. The following results were obtained: 1) maculo-ocular reflex gain decreased as a function of the cosine of the angle between the rotation axis and the earth's horizontal plane. No change in gain was observed when longitudinal animal axis alone was inclined. 2) At 0 degrees of rotation axis and with the animal's longitudinal axis inclination also set at 0 degrees, the maculo-ocular reflex was oriented about 20 degrees forward and upward with respect to the earth's vertical axis. This orientation remained constant with sagittal inclinations of the rotation and/or longitudinal animal axes ranging from approximately 5 degrees upward to 30 degrees downward. When the longitudinal animal axis was inclined beyond these limits, the eye trajectory tended to follow the axis inclination. In the upside down position, the maculo-ocular reflex was anticompensatory, oblique and fixed with respect to orbital coordinates. 3) Ampullo-ocular reflex gain did not change with inclinations of the rotation and/or longitudinal animal axes. The ocular responses were consistently oriented to the stimulus plane. At intermediate frequencies the eye movement trajectory was elliptic because of directional differences between the ampullo- and maculo-ocular reflexes.(ABSTRACT TRUNCATED AT 250 WORDS)

  10. CryoSat/SIRAL Cal1 Calibration Orbits

    Science.gov (United States)

    Scagliola, Michele; Fornari, Marco; Bouffard, Jerome; Parrinello, Tommaso

    2017-04-01

    The main payload of CryoSat is a Ku band pulsewidth limited radar altimeter, called SIRAL (Synthetic interferometric radar altimeter), that transmits pulses at a high pulse repetition frequency thus making the received echoes phase coherent and suitable for SAR processing. This allows to reach an along track resolution that is significantly improved with respect to traditional pulse-width limited altimeters. Due to the fact that SIRAL is a phase coherent pulse-width limited radar altimeter, a proper calibration approach has been developed. In fact, not only corrections for transfer function, gain and instrument path delay have to be computed (as in previous altimeters), but also corrections for phase (SAR/SARIn) and phase difference between the two receiving chains (SARIN only). Recalling that the CryoSat's orbit has a high inclination of 92° and it is non-sun-synchronous, the temperature of the SIRAL changes continuously along the orbit with a period of about 480 days and it is also function of the ascending/descending passes. By analysis of the CAL1 calibration corrections, it has been verified that the internal path delay and the instrument gain variation measured on the SIRAL are affected by the thermal status of the instrument and as a consequence they are expected to vary along the orbit. In order to gain knowledge on the calibration corrections (i.e. the instrument behavior) as function of latitude and temperature, it has been planned to command a few number of orbits where only CAL1 calibration acquisitions are continuously performed. The analysis of the CAL1 calibration corrections produced along the Calibration orbits can be also useful to verify whether the current calibration plan is able to provide sufficiently accurate corrections for the instrument acquisitions at any latitude. In 2016, the CryoSat/SIRAL Cal1 Calibration Orbits have been commanded two times, a first time the 20th of July 2016 and a second time the 24th of November 2016, and they

  11. The Convergence Problems of Eigenfunction Expansions of Elliptic Differential Operators

    Science.gov (United States)

    Ahmedov, Anvarjon

    2018-03-01

    In the present research we investigate the problems concerning the almost everywhere convergence of multiple Fourier series summed over the elliptic levels in the classes of Liouville. The sufficient conditions for the almost everywhere convergence problems, which are most difficult problems in Harmonic analysis, are obtained. The methods of approximation by multiple Fourier series summed over elliptic curves are applied to obtain suitable estimations for the maximal operator of the spectral decompositions. Obtaining of such estimations involves very complicated calculations which depends on the functional structure of the classes of functions. The main idea on the proving the almost everywhere convergence of the eigenfunction expansions in the interpolation spaces is estimation of the maximal operator of the partial sums in the boundary classes and application of the interpolation Theorem of the family of linear operators. In the present work the maximal operator of the elliptic partial sums are estimated in the interpolation classes of Liouville and the almost everywhere convergence of the multiple Fourier series by elliptic summation methods are established. The considering multiple Fourier series as an eigenfunction expansions of the differential operators helps to translate the functional properties (for example smoothness) of the Liouville classes into Fourier coefficients of the functions which being expanded into such expansions. The sufficient conditions for convergence of the multiple Fourier series of functions from Liouville classes are obtained in terms of the smoothness and dimensions. Such results are highly effective in solving the boundary problems with periodic boundary conditions occurring in the spectral theory of differential operators. The investigations of multiple Fourier series in modern methods of harmonic analysis incorporates the wide use of methods from functional analysis, mathematical physics, modern operator theory and spectral

  12. FDM for Elliptic Equations with Bitsadze-Samarskii-Dirichlet Conditions

    Directory of Open Access Journals (Sweden)

    Allaberen Ashyralyev

    2012-01-01

    Full Text Available A numerical method is proposed for solving nonlocal boundary value problem for the multidimensional elliptic partial differential equation with the Bitsadze-Samarskii-Dirichlet condition. The first and second-orders of accuracy stable difference schemes for the approximate solution of this nonlocal boundary value problem are presented. The stability estimates, coercivity, and almost coercivity inequalities for solution of these schemes are established. The theoretical statements for the solutions of these nonlocal elliptic problems are supported by results of numerical examples.

  13. The Ising model: from elliptic curves to modular forms and Calabi-Yau equations

    International Nuclear Information System (INIS)

    Bostan, A; Boukraa, S; Hassani, S; Zenine, N; Van Hoeij, M; Maillard, J-M; Weil, J-A

    2011-01-01

    We show that almost all the linear differential operators factors obtained in the analysis of the n-particle contributions of the susceptibility of the Ising model for n ≤ 6 are linear differential operators associated with elliptic curves. Beyond the simplest differential operators factors which are homomorphic to symmetric powers of the second order operator associated with the complete elliptic integral E, the second and third order differential operators Z 2 , F 2 , F 3 , L-tilde 3 can actually be interpreted as modular forms of the elliptic curve of the Ising model. A last order-4 globally nilpotent linear differential operator is not reducible to this elliptic curve, modular form scheme. This operator is shown to actually correspond to a natural generalization of this elliptic curve, modular form scheme, with the emergence of a Calabi-Yau equation, corresponding to a selected 4 F 3 hypergeometric function. This hypergeometric function can also be seen as a Hadamard product of the complete elliptic integral K, with a remarkably simple algebraic pull-back (square root extension), the corresponding Calabi-Yau fourth order differential operator having a symplectic differential Galois group SP(4,C). The mirror maps and higher order Schwarzian ODEs, associated with this Calabi-Yau ODE, present all the nice physical and mathematical ingredients we had with elliptic curves and modular forms, in particular an exact (isogenies) representation of the generators of the renormalization group, extending the modular group SL(2,Z) to a GL(2,Z) symmetry group.

  14. Elliptic flow from Coulomb interaction and low density elastic scattering

    Science.gov (United States)

    Sun, Yuliang; Li, Qingfeng; Wang, Fuqiang

    2018-04-01

    In high energy heavy ion collisions and interacting cold atom systems, large elliptic flow anisotropies have been observed. For the large opacity (ρ σ L ˜103 ) of the latter hydrodynamics is a natural consequence, but for the small opacity (ρ σ L ˜1 ) of the former the hydrodynamic description is questionable. To shed light onto the situation, we simulate the expansion of a low density argon ion (or atom) system, initially trapped in an elliptical region, under the Coulomb interaction (or elastic scattering). Significant elliptic anisotropy is found in both cases, and the anisotropy depends on the initial spatial eccentricity and the density of the system. The results may provide insights into the physics of anisotropic flow in high energy heavy ion collisions and its role in the study of quantum chromodynamics.

  15. Spin transport in intermediate-energy heavy-ion collisions as a probe of in-medium spin–orbit interactions

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Yin [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Xu, Jun, E-mail: xujun@sinap.ac.cn [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); Li, Bao-An [Department of Physics and Astronomy, Texas A& M University-Commerce, Commerce, TX 75429-3011 (United States); Department of Applied Physics, Xi' an Jiao Tong University, Xi' an 710049 (China); Shen, Wen-Qing [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China)

    2016-11-15

    The spin up-down splitting of collective flows in intermediate-energy heavy-ion collisions as a result of the nuclear spin–orbit interaction is investigated within a spin- and isospin-dependent Boltzmann–Uehling–Uhlenbeck transport model SIBUU12. Using a Skyrme-type spin–orbit coupling quadratic in momentum, we found that the spin splittings of the directed flow and elliptic flow are largest in peripheral Au+Au collisions at beam energies of about 100–200 MeV/nucleon, and the effect is considerable even in smaller systems especially for nucleons with high transverse momenta. The collective flows of light clusters of different spin states are also investigated using an improved dynamical coalescence model with spin. Our study can be important in understanding the properties of in-medium nuclear spin–orbit interactions once the spin-dependent observables proposed in this work can be measured.

  16. How do the substrate reaction forces acting on a gecko's limbs respond to inclines?

    Science.gov (United States)

    Wang, Zhouyi; Dai, Zhendong; Li, Wei; Ji, Aihong; Wang, Wenbao

    2015-02-01

    Locomotion is an essential character of animals, and excellent moving ability results from the delicate sensing of the substrate reaction forces (SRF) acting on body and modulating the behavior to adapt the motion requirement. The inclined substrates present in habitats pose a number of functional challenges to locomotion. In order to effectively overcome these challenges, climbing geckos execute complex and accurate movements that involve both the front and hind limbs. Few studies have examined gecko's SRF on steeper inclines of greater than 90°. To reveal how the SRFs acting on the front and hind limbs respond to angle incline changes, we obtained detailed measurements of the three-dimensional SRFs acting on the individual limbs of the tokay gecko while it climbed on an inclined angle of 0-180°. The fore-aft forces acting on the front and hind limbs show opposite trends on inverted inclines of greater than 120°, indicating propulsion mechanism changes in response to inclines. When the incline angles change, the forces exerted in the normal and fore-aft directions by gecko's front and hind limbs are reassigned to take full advantage of limbs' different roles in overcoming resistance and in propelling locomotion. This also ensures that weight acts in the angle range between the forces generated by the front and hind limbs. The change in the distribution of SRF with a change in the incline angle is directly linked to the favorable trade-off between locomotive maneuverability and stability.

  17. Local identities involving Jacobi elliptic functions

    Indian Academy of Sciences (India)

    systematize the local identities by deriving four local 'master identities' analogous to the ... involving Jacobi elliptic functions can be explicitly evaluated and a number of .... most of these integrals do not seem to be known in the literature. In §6 ...

  18. Effects of elliptical burner geometry on partially premixed gas jet flames in quiescent surroundings

    Science.gov (United States)

    Baird, Benjamin

    This study is the investigation of the effect of elliptical nozzle burner geometry and partial premixing, both 'passive control' methods, on a hydrogen/hydrocarbon flame. Both laminar and turbulent flames for circular, 3:1, and 4:1 aspect ratio (AR) elliptical burners are considered. The amount of air mixed with the fuel is varied from fuel-lean premixed flames to fuel-rich partially premixed flames. The work includes measurements of flame stability, global pollutant emissions, flame radiation, and flame structure for the differing burner types and fuel conditions. Special emphasis is placed on the near-burner region. Experimentally, both conventional (IR absorption, chemiluminecent, and polarographic emission analysis,) and advanced (laser induced fluorescence, planar laser induced fluorescence, Laser Doppler Velocimetry (LDV), Rayleigh scattering) diagnostic techniques are used. Numerically, simulations of 3-dimensional laminar and turbulent reacting flow are conducted. These simulations are run with reduced chemical kinetics and with a Reynolds Stress Model (RSM) for the turbulence modeling. It was found that the laminar flames were similar in appearance and overall flame length for the 3:1 AR elliptical and the circular burner. The laminar 4:1 AR elliptical burner flame split into two sub-flames along the burner major axis. This splitting had the effect of greatly shortening the 4:1 AR elliptical burner flame to have an overall flame length about half of that of the circular and 3:1 AR elliptical burner flames. The length of all three burners flames increased with increasing burner exit equivalence ratio. The blowout velocity for the three burners increased with increase in hydrogen mass fraction of the hydrogen/propane fuel mixture. For the rich premixed flames, the circular burner was the most stable, the 3:1 AR elliptical burner, was the least stable, and the 4:1 AR elliptical burner was intermediate to the two other burners. This order of stability was due

  19. HAT-P-13b,c: A TRANSITING HOT JUPITER WITH A MASSIVE OUTER COMPANION ON AN ECCENTRIC ORBIT

    International Nuclear Information System (INIS)

    Bakos, G. A.; Noyes, R. W.; Hartman, J.; Torres, G.; Latham, D. W.; Sasselov, D. D.; Stefanik, R. P.; Sipocz, B.; Kovacs, Gabor; Esquerdo, G. A.; Pal, A.; Howard, A. W.; Marcy, G. W.; Kovacs, Geza; Fischer, D. A.; Johnson, J. A.; Lazar, J.; Papp, I.; Sari, P.

    2009-01-01

    We report on the discovery of a planetary system with a close-in transiting hot Jupiter on a near circular orbit and a massive outer planet on a highly eccentric orbit. The inner planet, HAT-P-13b, transits the bright V = 10.622 G4 dwarf star GSC 3416 - 00543 every P = 2.916260 ± 0.000010 days, with transit epoch T c = 2454779.92979 ± 0.00038 (BJD) and duration 0.1345 ± 0.0017 days. The outer planet HAT-P-13c orbits the star every P 2 = 428.5 ± 3.0 days with a nominal transit center (assuming zero impact parameter) of T 2c = 2454870.4 ± 1.8 (BJD) or time of periastron passage T 2,peri = 2454890.05 ± 0.48 (BJD). Transits of the outer planet have not been observed, and may not be present. The host star has a mass of 1.22 +0.05 -0.10 M sun , radius of 1.56 ± 0.08 R sun , effective temperature of 5653 ± 90 K, and is rather metal-rich with [Fe/H] = +0.41 ± 0.08. The inner planetary companion has a mass of 0.853 +0.029 -0.046 M J , and radius of 1.281 ± 0.079 R J , yielding a mean density of 0.498 +0.103 -0.069 g cm -3 . The outer companion has m 2 sin i 2 = 15.2 ± 1.0 M J , and orbits on a highly eccentric orbit of e 2 = 0.691 ± 0.018. While we have not detected significant transit timing variations of HAT-P-13b, due to gravitational and light-travel time effects, future observations will constrain the orbital inclination of HAT-P-13c, along with its mutual inclination to HAT-P-13b. The HAT-P-13 (b, c) double-planet system may prove extremely valuable for theoretical studies of the formation and dynamics of planetary systems.

  20. Cassini Attitude and Articulation Control Subsystem Fault Protection Challenges During Saturn Proximal Orbits

    Science.gov (United States)

    Bates, David M.

    2015-01-01

    NASA's Cassini Spacecraft, launched on October 15th, 1997 arrived at Saturn on June 30th, 2004, is the largest and most ambitious interplanetary spacecraft in history. As the first spacecraft to achieve orbit at Saturn, Cassini has collected science data throughout its four-year prime mission (2004-08), and has since been approved for a first and second extended mission through 2017. As part of the final extended mission, Cassini will begin an aggressive and exciting campaign of high inclination low altitude flybys within the inner most rings of Saturn, skimming Saturn's outer atmosphere, until the spacecraft is finally disposed of via planned impact with the planet. This final campaign, known as the proximal orbits, presents unique fault protection related challenges, the details of which are discussed in this paper.

  1. Elliptic curves and primality proving

    Science.gov (United States)

    Atkin, A. O. L.; Morain, F.

    1993-07-01

    The aim of this paper is to describe the theory and implementation of the Elliptic Curve Primality Proving algorithm. Problema, numeros primos a compositis dignoscendi, hosque in factores suos primos resolvendi, ad gravissima ac utilissima totius arithmeticae pertinere, et geometrarum tum veterum tum recentiorum industriam ac sagacitatem occupavisse, tam notum est, ut de hac re copiose loqui superfluum foret.

  2. Nonlinear elliptic equations and nonassociative algebras

    CERN Document Server

    Nadirashvili, Nikolai; Vlăduţ, Serge

    2014-01-01

    This book presents applications of noncommutative and nonassociative algebras to constructing unusual (nonclassical and singular) solutions to fully nonlinear elliptic partial differential equations of second order. The methods described in the book are used to solve a longstanding problem of the existence of truly weak, nonsmooth viscosity solutions. Moreover, the authors provide an almost complete description of homogeneous solutions to fully nonlinear elliptic equations. It is shown that even in the very restricted setting of "Hessian equations", depending only on the eigenvalues of the Hessian, these equations admit homogeneous solutions of all orders compatible with known regularity for viscosity solutions provided the space dimension is five or larger. To the contrary, in dimension four or less the situation is completely different, and our results suggest strongly that there are no nonclassical homogeneous solutions at all in dimensions three and four. Thus this book gives a complete list of dimensions...

  3. Evaluation of buccolingual inclination of posterior teeth in different facial patterns using computed tomography

    Directory of Open Access Journals (Sweden)

    Suomo Mitra

    2011-01-01

    Full Text Available Background and Objective: Buccolingual inclination of teeth is an essential factor in establishing good occlusion. The objective of this study was to evaluate the buccolingual inclination of molar teeth in different vertical skeletal patterns by using computed tomography scans. Materials and Methods: Coronal section of the jaws obtained from computed tomograms were used to measure the buccolingual inclination of the long axis of the molars relative to their skeletal base. Forty male adult individuals with class I dental occlusion were selected. They were classified as short (Group 1, average (Group II, and long faced (Group III as per their skeletal patterns measured by GoGn-SN, FH-MP, Y-axis and facial height index in cephalograms. Statistical Analysis: ANOVA and Tukey HSD tests were applied to calculate if there were any significant differences in the mean molar inclination between the groups. Pearson′s coefficients of correlation were calculated between the facial parameters and tooth inclination. Results: The differences in the mean molar inclination between the short, average, and long faced groups is significant for mandibular 1 st and 2 nd molars and maxillary 2 nd molars. Conclusion: Variations in mean molar inclination values are observed between short, average, and long faced groups.

  4. A high-fidelity N-body ephemeris generator for satellites in Earth orbit

    Science.gov (United States)

    Simmons, David R.

    1991-10-01

    A program is currently used for mission planning called the Analytic Satellite Ephemeris Program (ASEP), which produces projected data for orbits that remain fairly close to Earth. Lunar and solar perturbations are taken into account in another program called GRAVE. This project is a revision of GRAVE which incorporates more flexible means of input for initial data, provides additional kinds of output information, and makes use of structured programming techniques to make the program more understandable and reliable. The computer program ORBIT was tested against tracking data for the first 313 days of operation of the CRRES satellite. A sample graph is given comparing the semi-major axis calculated by the program with the values supplied by NORAD. When calculated for points at which CRRES passes through the ascending node, the argument of perigee, the right ascension of the ascending node, and the mean anomaly all stay within about a degree of the corresponding values from NORAD; the inclination of the orbital plane is much closer. The program value of the eccentricity is in error by no more than 0.0002.

  5. Analytic regularity and collocation approximation for elliptic PDEs with random domain deformations

    KAUST Repository

    Castrillon, Julio; Nobile, Fabio; Tempone, Raul

    2016-01-01

    In this work we consider the problem of approximating the statistics of a given Quantity of Interest (QoI) that depends on the solution of a linear elliptic PDE defined over a random domain parameterized by N random variables. The elliptic problem

  6. Landau-Ginzburg Orbifolds, Mirror Symmetry and the Elliptic Genus

    OpenAIRE

    Berglund, P.; Henningson, M.

    1994-01-01

    We compute the elliptic genus for arbitrary two dimensional $N=2$ Landau-Ginzburg orbifolds. This is used to search for possible mirror pairs of such models. We show that if two Landau-Ginzburg models are conjugate to each other in a certain sense, then to every orbifold of the first theory corresponds an orbifold of the second theory with the same elliptic genus (up to a sign) and with the roles of the chiral and anti-chiral rings interchanged. These orbifolds thus constitute a possible mirr...

  7. Inclination and anteversion of Collum femoris in hip dysplasia and coxarthritis

    Energy Technology Data Exchange (ETDEWEB)

    Madsen, J. S.; Svalastoga, E. [Kongelige Veterinaer- og Landbohoejskole, Copenhagen (Denmark)

    1994-07-01

    Femoral neck angles were measured radiographically in 41 dogs examined for hip dysplasia. Steep femoral neck inclination was found to be a phenomenon of hip dysplasia and coxofemoral joint laxity. The altered biomechanics of a steep femoral neck inclination may be a factor in the pathogenesis of hip dysplasia and secondary osteoarthritis.

  8. An analytic solution of the static problem of inclined risers conveying fluid

    KAUST Repository

    Alfosail, Feras; Nayfeh, Ali H.; Younis, Mohammad I.

    2016-01-01

    We use the method of matched asymptotic expansion to develop an analytic solution to the static problem of clamped–clamped inclined risers conveying fluid. The inclined riser is modeled as an Euler–Bernoulli beam taking into account its self

  9. Interfacial friction factors for air-water co-current stratified flow in inclined channels

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Ki Yong; No, Hee Cheon [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)

    1998-12-31

    The interfacial shear stress is experimentally investigated for co-current air-water stratified flow in inclined rectangular channels having a length of 1854mm, width of 120 mm and height of 40mm at almost atmospheric pressure. Experiments are carried out in several inclinations from 0 deg up to 10 deg. The local film thickness and the wave height are measured at three locations, i.e., L/H = 8,23, and 40. According to the inclination angle, the experimental data are categorized into two groups; nearly horizontal data group (0 deg {<=} {theta} {<=} 0.7 deg), and inclined channel data group (0.7 deg {<=} {theta} {<=} 10 deg ). Experimental observations for nearly horizontal data group show that the flow is not fully developed due to the water level gradient and the hydraulic jump within the channel. For the inclined channel data group, a dimensionless wave height, {Delta}h/h, is empirically correlated in terms of Re{sub G} and h/H. A modified root-mean-square wave height is proposed to consider the effects of the interfacial and wave propagation velocities. It is found that an equivalent roughness has a linear relationship with the modified root-mean-square wave height and its relationship is independent of the inclination. 10 refs., 6 figs., 1 tab. (Author)

  10. Interfacial friction factors for air-water co-current stratified flow in inclined channels

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Ki Yong; No, Hee Cheon [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)

    1997-12-31

    The interfacial shear stress is experimentally investigated for co-current air-water stratified flow in inclined rectangular channels having a length of 1854mm, width of 120 mm and height of 40mm at almost atmospheric pressure. Experiments are carried out in several inclinations from 0 deg up to 10 deg. The local film thickness and the wave height are measured at three locations, i.e., L/H = 8,23, and 40. According to the inclination angle, the experimental data are categorized into two groups; nearly horizontal data group (0 deg {<=} {theta} {<=} 0.7 deg), and inclined channel data group (0.7 deg {<=} {theta} {<=} 10 deg ). Experimental observations for nearly horizontal data group show that the flow is not fully developed due to the water level gradient and the hydraulic jump within the channel. For the inclined channel data group, a dimensionless wave height, {Delta}h/h, is empirically correlated in terms of Re{sub G} and h/H. A modified root-mean-square wave height is proposed to consider the effects of the interfacial and wave propagation velocities. It is found that an equivalent roughness has a linear relationship with the modified root-mean-square wave height and its relationship is independent of the inclination. 10 refs., 6 figs., 1 tab. (Author)

  11. Elliptic flow in Au+Au collisions at square root(S)NN = 130 GeV.

    Science.gov (United States)

    Ackermann, K H; Adams, N; Adler, C; Ahammed, Z; Ahmad, S; Allgower, C; Amsbaugh, J; Anderson, M; Anderssen, E; Arnesen, H; Arnold, L; Averichev, G S; Baldwin, A; Balewski, J; Barannikova, O; Barnby, L S; Baudot, J; Beddo, M; Bekele, S; Belaga, V V; Bellwied, R; Bennett, S; Bercovitz, J; Berger, J; Betts, W; Bichsel, H; Bieser, F; Bland, L C; Bloomer, M; Blyth, C O; Boehm, J; Bonner, B E; Bonnet, D; Bossingham, R; Botlo, M; Boucham, A; Bouillo, N; Bouvier, S; Bradley, K; Brady, F P; Braithwaite, E S; Braithwaite, W; Brandin, A; Brown, R L; Brugalette, G; Byrd, C; Caines, H; Calderón de la Barca Sánchez, M; Cardenas, A; Carr, L; Carroll, J; Castillo, J; Caylor, B; Cebra, D; Chatopadhyay, S; Chen, M L; Chen, W; Chen, Y; Chernenko, S P; Cherney, M; Chikanian, A; Choi, B; Chrin, J; Christie, W; Coffin, J P; Conin, L; Consiglio, C; Cormier, T M; Cramer, J G; Crawford, H J; Danilov, V I; Dayton, D; DeMello, M; Deng, W S; Derevschikov, A A; Dialinas, M; Diaz, H; DeYoung, P A; Didenko, L; Dimassimo, D; Dioguardi, J; Dominik, W; Drancourt, C; Draper, J E; Dunin, V B; Dunlop, J C; Eckardt, V; Edwards, W R; Efimov, L G; Eggert, T; Emelianov, V; Engelage, J; Eppley, G; Erazmus, B; Etkin, A; Fachini, P; Feliciano, C; Ferenc, D; Ferguson, M I; Fessler, H; Finch, E; Fine, V; Fisyak, Y; Flierl, D; Flores, I; Foley, K J; Fritz, D; Gagunashvili, N; Gans, J; Gazdzicki, M; Germain, M; Geurts, F; Ghazikhanian, V; Gojak, C; Grabski, J; Grachov, O; Grau, M; Greiner, D; Greiner, L; Grigoriev, V; Grosnick, D; Gross, J; Guilloux, G; Gushin, E; Hall, J; Hallman, T J; Hardtke, D; Harper, G; Harris, J W; He, P; Heffner, M; Heppelmann, S; Herston, T; Hill, D; Hippolyte, B; Hirsch, A; Hjort, E; Hoffmann, G W; Horsley, M; Howe, M; Huang, H Z; Humanic, T J; Hümmler, H; Hunt, W; Hunter, J; Igo, G J; Ishihara, A; Ivanshin, Y I; Jacobs, P; Jacobs, W W; Jacobson, S; Jared, R; Jensen, P; Johnson, I; Jones, P G; Judd, E; Kaneta, M; Kaplan, M; Keane, D; Kenney, V P; Khodinov, A; Klay, J; Klein, S R; Klyachko, A; Koehler, G; Konstantinov, A S; Kormilitsyne, V; Kotchenda, L; Kotov, I; Kovalenko, A D; Kramer, M; Kravtsov, P; Krueger, K; Krupien, T; Kuczewski, P; Kuhn, C; Kunde, G J; Kunz, C L; Kutuev, R K; Kuznetsov, A A; Lakehal-Ayat, L; Lamas-Valverde, J; Lamont, M A; Landgraf, J M; Lange, S; Lansdell, C P; Lasiuk, B; Laue, F; Lebedev, A; LeCompte, T; Leonhardt, W J; Leontiev, V M; Leszczynski, P; LeVine, M J; Li, Q; Li, Q; Li, Z; Liaw, C J; Lin, J; Lindenbaum, S J; Lindenstruth, V; Lindstrom, P J; Lisa, M A; Liu, H; Ljubicic, T; Llope, W J; LoCurto, G; Long, H; Longacre, R S; Lopez-Noriega, M; Lopiano, D; Love, W A; Lutz, J R; Lynn, D; Madansky, L; Maier, R; Majka, R; Maliszewski, A; Margetis, S; Marks, K; Marstaller, R; Martin, L; Marx, J; Matis, H S; Matulenko, Y A; Matyushevski, E A; McParland, C; McShane, T S; Meier, J; Melnick, Y; Meschanin, A; Middlekamp, P; Mikhalin, N; Miller, B; Milosevich, Z; Minaev, N G; Minor, B; Mitchell, J; Mogavero, E; Moiseenko, V A; Moltz, D; Moore, C F; Morozov, V; Morse, R; de Moura, M M; Munhoz, M G; Mutchler, G S; Nelson, J M; Nevski, P; Ngo, T; Nguyen, M; Nguyen, T; Nikitin, V A; Nogach, L V; Noggle, T; Norman, B; Nurushev, S B; Nussbaum, T; Nystrand, J; Odyniec, G; Ogawa, A; Ogilvie, C A; Olchanski, K; Oldenburg, M; Olson, D; Ososkov, G A; Ott, G; Padrazo, D; Paic, G; Pandey, S U; Panebratsev, Y; Panitkin, S Y; Pavlinov, A I; Pawlak, T; Pentia, M; Perevotchikov, V; Peryt, W; Petrov, V A; Pinganaud, W; Pirogov, S; Platner, E; Pluta, J; Polk, I; Porile, N; Porter, J; Poskanzer, A M; Potrebenikova, E; Prindle, D; Pruneau, C; Puskar-Pasewicz, J; Rai, G; Rasson, J; Ravel, O; Ray, R L; Razin, S V; Reichhold, D; Reid, J; Renfordt, R E; Retiere, F; Ridiger, A; Riso, J; Ritter, H G; Roberts, J B; Roehrich, D; Rogachevski, O V; Romero, J L; Roy, C; Russ, D; Rykov, V; Sakrejda, I; Sanchez, R; Sandler, Z; Sandweiss, J; Sappenfield, P; Saulys, A C; Savin, I; Schambach, J; Scharenberg, R P; Scheblien, J; Scheetz, R; Schlueter, R; Schmitz, N; Schroeder, L S; Schulz, M; Schüttauf, A; Sedlmeir, J; Seger, J; Seliverstov, D; Seyboth, J; Seyboth, P; Seymour, R; Shakaliev, E I; Shestermanov, K E; Shi, Y; Shimanskii, S S; Shuman, D; Shvetcov, V S; Skoro, G; Smirnov, N; Smykov, L P; Snellings, R; Solberg, K; Sowinski, J; Spinka, H M; Srivastava, B; Stephenson, E J; Stock, R; Stolpovsky, A; Stone, N; Stone, R; Strikhanov, M; Stringfellow, B; Stroebele, H; Struck, C; Suaide, A A; Sugarbaker, E; Suire, C; Symons, T J; Takahashi, J; Tang, A H; Tarchini, A; Tarzian, J; Thomas, J H; Tikhomirov, V; Szanto De Toledo, A; Tonse, S; Trainor, T; Trentalange, S; Tokarev, M; Tonjes, M B; Trofimov, V; Tsai, O; Turner, K; Ullrich, T; Underwood, D G; Vakula, I; Van Buren, G; VanderMolen, A M; Vanyashin, A; Vasilevski, I M; Vasiliev, A N; Vigdor, S E; Visser, G; Voloshin, S A; Vu, C; Wang, F; Ward, H; Weerasundara, D; Weidenbach, R; Wells, R; Wells, R; Wenaus, T; Westfall, G D; Whitfield, J P; Whitten, C; Wieman, H; Willson, R; Wilson, K; Wirth, J; Wisdom, J; Wissink, S W; Witt, R; Wolf, J; Wood, L; Xu, N; Xu, Z; Yakutin, A E; Yamamoto, E; Yang, J; Yepes, P; Yokosawa, A; Yurevich, V I; Zanevski, Y V; Zhang, J; Zhang, W M; Zhu, J; Zimmerman, D; Zoulkarneev, R; Zubarev, A N

    2001-01-15

    Elliptic flow from nuclear collisions is a hadronic observable sensitive to the early stages of system evolution. We report first results on elliptic flow of charged particles at midrapidity in Au+Au collisions at square root(S)NN = 130 GeV using the STAR Time Projection Chamber at the Relativistic Heavy Ion Collider. The elliptic flow signal, v2, averaged over transverse momentum, reaches values of about 6% for relatively peripheral collisions and decreases for the more central collisions. This can be interpreted as the observation of a higher degree of thermalization than at lower collision energies. Pseudorapidity and transverse momentum dependence of elliptic flow are also presented.

  12. The analytical solution of wake-fields in an elliptical pillbox cavity

    International Nuclear Information System (INIS)

    Yang, J.S.; Chen, K.W.

    1991-01-01

    The wake potential of a bunch of relativistic charged particles traversing an elliptical pillbox cavity is derived analytically in the limit of vanishing aperture. It is found that the resonant modes of an elliptical cavity can be expressed in terms of Mathieu functions. Calculation results are presented and compared with numerical ones. (author) 10 refs., 10 figs., 2 tabs

  13. Complex network analysis in inclined oil–water two-phase flow

    International Nuclear Information System (INIS)

    Zhong-Ke, Gao; Ning-De, Jin

    2009-01-01

    Complex networks have established themselves in recent years as being particularly suitable and flexible for representing and modelling many complex natural and artificial systems. Oil–water two-phase flow is one of the most complex systems. In this paper, we use complex networks to study the inclined oil–water two-phase flow. Two different complex network construction methods are proposed to build two types of networks, i.e. the flow pattern complex network (FPCN) and fluid dynamic complex network (FDCN). Through detecting the community structure of FPCN by the community-detection algorithm based on K-means clustering, useful and interesting results are found which can be used for identifying three inclined oil–water flow patterns. To investigate the dynamic characteristics of the inclined oil–water two-phase flow, we construct 48 FDCNs under different flow conditions, and find that the power-law exponent and the network information entropy, which are sensitive to the flow pattern transition, can both characterize the nonlinear dynamics of the inclined oil–water two-phase flow. In this paper, from a new perspective, we not only introduce a complex network theory into the study of the oil–water two-phase flow but also indicate that the complex network may be a powerful tool for exploring nonlinear time series in practice. (general)

  14. The Effects of Various Running Inclines on Three-Segment Foot Mechanics and Plantar Fascia Strain

    Directory of Open Access Journals (Sweden)

    Sinclair Jonathan

    2014-12-01

    Full Text Available Purpose. There has yet to be a combined analysis of three-dimensional multi-segment foot kinematics and plantar fascia strain in running gait at various degrees of inclination. The aim of the current study was therefore to investigate the above during treadmill running at different inclines (0°, 5°, 10° and 15°. Methods. Twelve male participants ran at 4.0 m · s-1 in the four different inclinations. Three-dimensional kinematics of the foot segments and plantar fascia strain were quantified for each incline and contrasted using one-way repeated measures ANOVA. Results and conclusions. The results showed that plantar fascia strain increased significantly as a function of running incline. Given the projected association between plantar fascia strain and the aetiology of injury, inclined running may be associated with a greater incidence of injury to the plantar fascia.

  15. Coexistence of a General Elliptic System in Population Dynamics

    DEFF Research Database (Denmark)

    Pedersen, Michael

    2004-01-01

    This paper is concerned with a strongly-coupled elliptic system representing a competitive interaction between two species. We give a sufficient condition for the existence of positive solutions. An example is also given to show that there is a coexistence of a steady state if the cross-diffusion......This paper is concerned with a strongly-coupled elliptic system representing a competitive interaction between two species. We give a sufficient condition for the existence of positive solutions. An example is also given to show that there is a coexistence of a steady state if the cross...

  16. Large N elliptic genus and AdS/CFT Correspondence

    International Nuclear Information System (INIS)

    Boer, Jan de

    1998-01-01

    According to one of Maldacena's dualities, type IIB string theory on AdS 3 x S 3 x K3 is equivalent to a certain N = (4, 4) superconformal field theory. In this note we compute the elliptic genus of the boundary theory in the supergravity approximation. A finite quantity is obtained once we introduce a particular exclusion principle. In the regime where the supergravity approximation is reliable, we find exact agreement with the elliptic genus of a sigma model with target space K3 N /S N

  17. Inflation of polymer melts into elliptic and circular cylinders

    DEFF Research Database (Denmark)

    Rasmussen, Henrik Koblitz; Christensen, Jens Horslund; Gøttsche, Søren

    2000-01-01

    A thin sheet (membrane) of the polymeric material is clamped between a Teflon-coated thermostated plate and a thermostated aluminium cylinder. By applying thermostated air through the plate, the polymer membrane deforms into an elliptic or a circular cylinder. The position of the top of the infla......A thin sheet (membrane) of the polymeric material is clamped between a Teflon-coated thermostated plate and a thermostated aluminium cylinder. By applying thermostated air through the plate, the polymer membrane deforms into an elliptic or a circular cylinder. The position of the top...

  18. Color gradients in elliptical galaxies

    International Nuclear Information System (INIS)

    Franx, M.; Illingworth, G.

    1990-01-01

    The relationship of the color gradients within ellipticals and the color differences between them are studied. It is found that the local color appears to be strongly related to the escape velocity. This suggests that the local escape velocity is the primary factor that determines the metallicity of the stellar population. Models with and without dark halos give comparable results. 27 refs

  19. Impedances in lossy elliptical vacuum chambers

    International Nuclear Information System (INIS)

    Piwinski, A.

    1994-04-01

    The wake fields of a bunched beam caused by the resistivity of the chamber walls are investigated for a vacuum chamber with elliptical cross section. The longitudinal and transverse impedances are calculated for arbitrary energies and for an arbitrary position of the beam in the chamber. (orig.)

  20. Equivalent operator preconditioning for elliptic problems

    Czech Academy of Sciences Publication Activity Database

    Axelsson, Owe; Karátson, J.

    2009-01-01

    Roč. 50, č. 3 (2009), s. 297-380 ISSN 1017-1398 Institutional research plan: CEZ:AV0Z30860518 Keywords : Elliptic problem * Conjugate gradient method * preconditioning * equivalent operators * compact operators Subject RIV: BA - General Mathematics Impact factor: 0.716, year: 2009 http://en.scientificcommons.org/42514649

  1. Convective heat transfer from a heated elliptic cylinder at uniform wall temperature

    Energy Technology Data Exchange (ETDEWEB)

    Kaprawi, S.; Santoso, Dyos [Mechanical Department of Sriwijaya University, Jl. Raya Palembang-Prabumulih Km. 32 Inderalaya 50062 Ogan Ilir (Indonesia)

    2013-07-01

    This study is carried out to analyse the convective heat transfer from a circular and an elliptic cylinders to air. Both circular and elliptic cylinders have the same cross section. The aspect ratio of cylinders range 0-1 are studied. The implicit scheme of the finite difference is applied to obtain the discretized equations of hydrodynamic and thermal problem. The Choleski method is used to solve the discretized hydrodynamic equation and the iteration method is applied to solve the discretized thermal equation. The circular cylinder has the aspect ratio equal to unity while the elliptical cylinder has the aspect ratio less than unity by reducing the minor axis and increasing the major axis to obtain the same cross section as circular cylinder. The results of the calculations show that the skin friction change significantly, but in contrast with the elliptical cylinders have greater convection heat transfer than that of circular cylinder. Some results of calculations are compared to the analytical solutions given by the previous authors.

  2. A FUNDAMENTAL LINE FOR ELLIPTICAL GALAXIES

    International Nuclear Information System (INIS)

    Nair, Preethi; Van den Bergh, Sidney; Abraham, Roberto G.

    2011-01-01

    Recent studies have shown that massive galaxies in the distant universe are surprisingly compact, with typical sizes about a factor of three smaller than equally massive galaxies in the nearby universe. It has been suggested that these massive galaxies grow into systems resembling nearby galaxies through a series of minor mergers. In this model the size growth of galaxies is an inherently stochastic process, and the resulting size-luminosity relationship is expected to have considerable environmentally dependent scatter. To test whether minor mergers can explain the size growth in massive galaxies, we have closely examined the scatter in the size-luminosity relation of nearby elliptical galaxies using a large new database of accurate visual galaxy classifications. We demonstrate that this scatter is much smaller than has been previously assumed, and may even be so small as to challenge the plausibility of the merger-driven hierarchical models for the formation of massive ellipticals.

  3. Elliptic differential equations theory and numerical treatment

    CERN Document Server

    Hackbusch, Wolfgang

    2017-01-01

    This book simultaneously presents the theory and the numerical treatment of elliptic boundary value problems, since an understanding of the theory is necessary for the numerical analysis of the discretisation. It first discusses the Laplace equation and its finite difference discretisation before addressing the general linear differential equation of second order. The variational formulation together with the necessary background from functional analysis provides the basis for the Galerkin and finite-element methods, which are explored in detail. A more advanced chapter leads the reader to the theory of regularity. Individual chapters are devoted to singularly perturbed as well as to elliptic eigenvalue problems. The book also presents the Stokes problem and its discretisation as an example of a saddle-point problem taking into account its relevance to applications in fluid dynamics.

  4. The Orbit of X Persei and Its Neutron Star Companion

    Science.gov (United States)

    Delgado-Martí, Hugo; Levine, Alan M.; Pfahl, Eric; Rappaport, Saul A.

    2001-01-01

    We have observed the Be/X-ray pulsar binary system X Per/4U 0352+30 on 61 occasions spanning an interval of 600 days with the PCA instrument on board the Rossi X-Ray Timing Explorer (RXTE). Pulse timing analyses of the 837 s pulsations yield strong evidence for the presence of orbital Doppler delays. We confirm the Doppler delays by using measurements made with the All Sky Monitor (ASM) on RXTE. We infer that the orbit is characterized by a period Porb=250 days, a projected semimajor axis of the neutron star axsini=454 lt-s, a mass function f(M)=1.61 Msolar, and a modest eccentricity e=0.11. The measured orbital parameters, together with the known properties of the classical Be star X Per, imply a semimajor axis a=1.8-2.2 AU and an orbital inclination i~26deg-33deg. We discuss the formation of the system in the context of the standard evolutionary scenario for Be/X-ray binaries. We find that the system most likely formed from a pair of massive progenitor stars and probably involved a quasi-stable and nearly conservative transfer of mass from the primary to the secondary. We find that the He star remnant of the primary most likely had a mass probability of a system like that of X Per forming with an orbital eccentricity e<~0.11. We speculate that there may be a substantial population of neutron stars formed with little or no kick. Finally, we discuss the connected topics of the wide orbit and accretion by the neutron star from a stellar wind.

  5. Cognitive self-affirmation inclination : An individual difference in dealing with self-threats

    NARCIS (Netherlands)

    Pietersma, Suzanne; Dijkstra, Arie

    The current research shows that people differ in their inclination to use positive self-images when their self is threatened (i.e., cognitive self-affirmation inclination, CSAI). Just as self-affirmation manipulations do, the use of positive self-images induces open mindedness towards threatening

  6. Optical asymmetric cryptography based on amplitude reconstruction of elliptically polarized light

    Science.gov (United States)

    Cai, Jianjun; Shen, Xueju; Lei, Ming

    2017-11-01

    We propose a novel optical asymmetric image encryption method based on amplitude reconstruction of elliptically polarized light, which is free from silhouette problem. The original image is analytically separated into two phase-only masks firstly, and then the two masks are encoded into amplitudes of the orthogonal polarization components of an elliptically polarized light. Finally, the elliptically polarized light propagates through a linear polarizer, and the output intensity distribution is recorded by a CCD camera to obtain the ciphertext. The whole encryption procedure could be implemented by using commonly used optical elements, and it combines diffusion process and confusion process. As a result, the proposed method achieves high robustness against iterative-algorithm-based attacks. Simulation results are presented to prove the validity of the proposed cryptography.

  7. Entrepreneurial Inclination Among Business Students: A Malaysian Study

    Directory of Open Access Journals (Sweden)

    Yet-Mee Lim

    2012-11-01

    Full Text Available Normal 0 false false false IN X-NONE AR-SA MicrosoftInternetExplorer4 Entrepreneurship has been the fundamental topics of discussion among the politicians, economists, and academics. Business creation is especially critical in developing countries to stimulate economic growth. The present study attempts to examine entrepreneurial inclination among students who are a potential source of entrepreneurs. The fi ndings of the present research study indicate that majority of our business students are not entrepreneurial-inclined. They do not seem to possess strong entrepreneurial characteristics and entrepreneurial skills, and they are not keen in starting a new business. The roles of higher institutes of education and the government in promoting entrepreneurship are discussed.

  8. Internally cooled V-shape inclined monochromator

    Czech Academy of Sciences Publication Activity Database

    Oberta, Peter; Áč, V.; Hrdý, Jaromír

    2008-01-01

    Roč. 15, - (2008), 8-11 ISSN 0909-0495 R&D Projects: GA AV ČR IAA100100716 Grant - others:VEGA(SK) 1/4134/07 Institutional research plan: CEZ:AV0Z10100522 Keywords : inclined monochromator * heat load * internal cooling Subject RIV: BH - Optics, Masers, Lasers Impact factor: 2.333, year: 2008

  9. Constraining the inclination of the Low-Mass X-ray Binary Cen X-4

    Science.gov (United States)

    Hammerstein, Erica K.; Cackett, Edward M.; Reynolds, Mark T.; Miller, Jon M.

    2018-05-01

    We present the results of ellipsoidal light curve modeling of the low mass X-ray binary Cen X-4 in order to constrain the inclination of the system and mass of the neutron star. Near-IR photometric monitoring was performed in May 2008 over a period of three nights at Magellan using PANIC. We obtain J, H and K lightcurves of Cen X-4 using differential photometry. An ellipsoidal modeling code was used to fit the phase folded light curves. The lightcurve fit which makes the least assumptions about the properties of the binary system yields an inclination of 34.9^{+4.9}_{-3.6} degrees (1σ), which is consistent with previous determinations of the system's inclination but with improved statistical uncertainties. When combined with the mass function and mass ratio, this inclination yields a neutron star mass of 1.51^{+0.40}_{-0.55} M⊙. This model allows accretion disk parameters to be free in the fitting process. Fits that do not allow for an accretion disk component in the near-IR flux gives a systematically lower inclination between approximately 33 and 34 degrees, leading to a higher mass neutron star between approximately 1.7 M⊙ and 1.8 M⊙. We discuss the implications of other assumptions made during the modeling process as well as numerous free parameters and their effects on the resulting inclination.

  10. Carleman estimates for some elliptic systems

    International Nuclear Information System (INIS)

    Eller, M

    2008-01-01

    A Carleman estimate for a certain first order elliptic system is proved. The proof is elementary and does not rely on pseudo-differential calculus. This estimate is used to prove Carleman estimates for the isotropic Lame system as well as for the isotropic Maxwell system with C 1 coefficients

  11. Magnetic inclination from Brazilian bricks and application to Archeomagnetic dating

    Science.gov (United States)

    Begnini, G. S.; Hartmann, G. A.; Trindade, R. I.

    2013-05-01

    The Earth's magnetic field (EMF) is recorded in archeological baked materials carrying a stable remanent magnetization. This magnetic record can be used for indirectly date the archeological material by comparison with "reference curves" of the EMF. In this work we present magnetic inclination data from two different sites in southeastern Brazil, an ancient and a modern one: (a) a sampling at the ancient sugarcane mill Engenho Central de Piracicaba (ECP, 1881-1974 AD), and (b) a controlled survey at the modern brickyard Olaria Schiavolin (OS). Both of them are located in the city of Piracicaba, São Paulo State, Brazil. Magnetic measurements included stepwise thermal and alternating field demagnetization, anisotropy of magnetic susceptibility (AMS) and low-field magnetic susceptibility vs. temperature. In OS, we collected 40 oriented bricks from 5 sampling points inside the brickyard oven in order to test the stability and reliability of their remanent magnetizations by comparing them with the local field (measured directly with a fluxgate magnetometer). We observed differences of +/- 3° between the local field and the IGRF. When magnetic inclinations are reported relative to the flat planes of the brick (the situation we face for real ancient bricks), the differences due to inclination of the burning plane and magnetic anomalies inside the oven never exceed 6°. These differences are averaged out by using a minimum of 6 bricks (~24 specimens) per sampling point to compute the inclination. In the ancient site ECP we collected 140 non-oriented bricks from 14 different walls; three of them were previously dated using historical records. Inclinations were defined using at least 6 bricks per wall, showing consistent average values within the same walls. When compared to the IGRF and GUFM1 models, the inclinations obtained for the dated walls agreed within the experimental error. We have then applied the same procedure to estimate the age of the remaining walls. Using

  12. Mechanism of unconventional aerodynamic characteristics of an elliptic airfoil

    Directory of Open Access Journals (Sweden)

    Sun Wei

    2015-06-01

    Full Text Available The aerodynamic characteristics of elliptic airfoil are quite different from the case of conventional airfoil for Reynolds number varying from about 104 to 106. In order to reveal the fundamental mechanism, the unsteady flow around a stationary two-dimensional elliptic airfoil with 16% relative thickness has been simulated using unsteady Reynolds-averaged Navier–Stokes equations and the γ-Reθt‾ transition turbulence model at different angles of attack for flow Reynolds number of 5 × 105. The aerodynamic coefficients and the pressure distribution obtained by computation are in good agreement with experimental data, which indicates that the numerical method works well. Through this study, the mechanism of the unconventional aerodynamic characteristics of airfoil is analyzed and discussed based on the computational predictions coupled with the wind tunnel results. It is considered that the boundary layer transition at the leading edge and the unsteady flow separation vortices at the trailing edge are the causes of the case. Furthermore, a valuable insight into the physics of how the flow behavior affects the elliptic airfoil’s aerodynamics is provided.

  13. Uniformization of elliptic curves

    OpenAIRE

    Ülkem, Özge; Ulkem, Ozge

    2015-01-01

    Every elliptic curve E defined over C is analytically isomorphic to C*=qZ for some q ∊ C*. Similarly, Tate has shown that if E is defined over a p-adic field K, then E is analytically isomorphic to K*=qZ for some q ∊ K . Further the isomorphism E(K) ≅ K*/qZ respects the action of the Galois group GK/K, where K is the algebraic closure of K. I will explain the construction of this isomorphism.

  14. Formation of S0s via disc accretion around high-redshift compact ellipticals

    Science.gov (United States)

    Diaz, Jonathan; Bekki, Kenji; Forbes, Duncan A.; Couch, Warrick J.; Drinkwater, Michael J.; Deeley, Simon

    2018-06-01

    We present hydrodynamical N-body models which demonstrate that elliptical galaxies can transform into S0s by acquiring a disc. In particular, we show that the merger with a massive gas-rich satellite can lead to the formation of a baryonic disc around an elliptical. We model the elliptical as a massive, compact galaxy which could be observed as a `red nugget' in the high-z universe. This scenario contrasts with existing S0 formation scenarios in the literature in two important ways. First, the progenitor is an elliptical galaxy whereas scenarios in the literature typically assume a spiral progenitor. Secondly, the physical conditions underlying our proposed scenario can exist in low-density environments such as the field, in contrast to scenarios in the literature which typically address dense environments like clusters and groups. As a consequence, S0s in the field may be the most likely candidates to have evolved from elliptical progenitors. Our scenario also naturally explains recent observations which indicate that field S0s may have older bulges than discs, contrary to cluster S0s which seem to have older discs than bulges.

  15. The metabolic cost of walking on an incline in the Peacock (Pavo cristatus)

    OpenAIRE

    Wilkinson, Holly; Thavarajah, Nathan; Codd, Jonathan

    2015-01-01

    Altering speed and moving on a gradient can affect an animal’s posture and gait, which in turn can change the energetic requirements of terrestrial locomotion. Here, the energetic and kinematic effects of locomoting on an incline were investigated in the Indian peacock, Pavo cristatus. The mass-specific metabolic rate of the Indian peacock was elevated on an incline, but this change was not dependent on the angle ascended and the cost of lifting remained similar between the two inclines (+5 a...

  16. The low earth orbit radiation environment and its evolution from measurements using the CREAM and CREDO experiments

    International Nuclear Information System (INIS)

    Dyer, C.S.; Sims, A.J.; Truscott, P.R.; Farren, J.; Underwood, C.

    1993-01-01

    Data obtained from Cosmic Radiation Environment Monitors carried on Shuttle missions during 1991/92, as well as on the polar orbiting microsatellite UOSAT-3 since April 1990, show the long term trends in the cosmic-ray and trapped proton environments responsible for single event phenomena. Cosmic-ray fluxes have increased by a factor of two since June 1991, while the solar flare event of Much 1991 created an additional region of trapped radiation which intersects high inclination Shuttle and polar orbits and, although decaying, was still present in December 1992. Deployment at a variety of shielding depths on Shuttle enables the influence of shielding to be explored and shows the influence of secondaries

  17. The arithmetic of elliptic fibrations in gauge theories on a circle

    Energy Technology Data Exchange (ETDEWEB)

    Grimm, Thomas W. [Max-Planck-Institut für Physik,Föhringer Ring 6, 80805 Munich (Germany); Institute for Theoretical Physics,Utrecht University, Leuvenlaan 4, 3584 CE Utrecht (Netherlands); Center for Extreme Matter and Emergent Phenomena,Utrecht University, Leuvenlaan 4, 3584 CE Utrecht (Netherlands); Kapfer, Andreas [Max-Planck-Institut für Physik,Föhringer Ring 6, 80805 Munich (Germany); Klevers, Denis [Theory Group, Physics Department, CERN,CH-1211, Geneva 23 (Switzerland)

    2016-06-20

    The geometry of elliptic fibrations translates to the physics of gauge theories in F-theory. We systematically develop the dictionary between arithmetic structures on elliptic curves as well as desingularized elliptic fibrations and symmetries of gauge theories on a circle. We show that the Mordell-Weil group law matches integral large gauge transformations around the circle in Abelian gauge theories and explain the significance of Mordell-Weil torsion in this context. We also use Higgs transitions and circle large gauge transformations to introduce a group law for genus-one fibrations with multi-sections. Finally, we introduce a novel arithmetic structure on elliptic fibrations with non-Abelian gauge groups in F-theory. It is defined on the set of exceptional divisors resolving the singularities and divisor classes of sections of the fibration. This group structure can be matched with certain integral non-Abelian large gauge transformations around the circle when studying the theory on the lower-dimensional Coulomb branch. Its existence is required by consistency with Higgs transitions from the non-Abelian theory to its Abelian phases in which it becomes the Mordell-Weil group. This hints towards the existence of a new underlying geometric symmetry.

  18. The arithmetic of elliptic fibrations in gauge theories on a circle

    Science.gov (United States)

    Grimm, Thomas W.; Kapfer, Andreas; Klevers, Denis

    2016-06-01

    The geometry of elliptic fibrations translates to the physics of gauge theories in F-theory. We systematically develop the dictionary between arithmetic structures on elliptic curves as well as desingularized elliptic fibrations and symmetries of gauge theories on a circle. We show that the Mordell-Weil group law matches integral large gauge transformations around the circle in Abelian gauge theories and explain the significance of Mordell-Weil torsion in this context. We also use Higgs transitions and circle large gauge transformations to introduce a group law for genus-one fibrations with multi-sections. Finally, we introduce a novel arithmetic structure on elliptic fibrations with non-Abelian gauge groups in F-theory. It is defined on the set of exceptional divisors resolving the singularities and divisor classes of sections of the fibration. This group structure can be matched with certain integral non-Abelian large gauge transformations around the circle when studying the theory on the lower-dimensional Coulomb branch. Its existence is required by consistency with Higgs transitions from the non-Abelian theory to its Abelian phases in which it becomes the Mordell-Weil group. This hints towards the existence of a new underlying geometric symmetry.

  19. The arithmetic of elliptic fibrations in gauge theories on a circle

    International Nuclear Information System (INIS)

    Grimm, Thomas W.; Kapfer, Andreas; Klevers, Denis

    2016-01-01

    The geometry of elliptic fibrations translates to the physics of gauge theories in F-theory. We systematically develop the dictionary between arithmetic structures on elliptic curves as well as desingularized elliptic fibrations and symmetries of gauge theories on a circle. We show that the Mordell-Weil group law matches integral large gauge transformations around the circle in Abelian gauge theories and explain the significance of Mordell-Weil torsion in this context. We also use Higgs transitions and circle large gauge transformations to introduce a group law for genus-one fibrations with multi-sections. Finally, we introduce a novel arithmetic structure on elliptic fibrations with non-Abelian gauge groups in F-theory. It is defined on the set of exceptional divisors resolving the singularities and divisor classes of sections of the fibration. This group structure can be matched with certain integral non-Abelian large gauge transformations around the circle when studying the theory on the lower-dimensional Coulomb branch. Its existence is required by consistency with Higgs transitions from the non-Abelian theory to its Abelian phases in which it becomes the Mordell-Weil group. This hints towards the existence of a new underlying geometric symmetry.

  20. Loading factor and inclination parameter of diagonal type MHD generators

    International Nuclear Information System (INIS)

    Ishikawa, Motoo

    1979-01-01

    Regarding diagonal type MHD generators is studied the relation between the loading factor and inclination parameter which is required for attaining the maximum power density with a given electrical efficiency on the assumption of infinitely segmented electrodes. The average current density on electrodes is calculated against the Hall parameter, loading factor, and inclination parameter. The diagonal type generator is compared with Faraday type generator regarding the average current density. Decreasing the loading factor from inlet to outlet is appropriate to small size generators but increasing to large size generators. The inclination parameter had better decrease in both generators, being smaller for small generators than for large ones. The average current density on electrodes of diagonal type generators varies less with the loading factor than the Faraday type. In large size generators its value can become smaller compared with that of the Faraday type. (author)

  1. Flow Boiling on a Downward-Facing Inclined Plane Wall of Core Catcher

    International Nuclear Information System (INIS)

    Kim, Hyoung Tak; Bang, Kwang Hyun; Suh, Jung Soo

    2013-01-01

    In order to investigate boiling behavior on downward-facing inclined heated wall prior to the CHF condition, an experiment was carried out with 1.2 m long rectangular channel, inclined by 10 .deg. from the horizontal plane. High speed video images showed that the bubbles were sliding along the heated wall, continuing to grow and combining with the bubbles growing at their nucleation sites in the downstream. These large bubbles continued to slide along the heated wall and formed elongated slug bubbles. Under this slug bubble thin liquid film layer on the heated wall was observed and this liquid film prevents the wall from dryout. The length, velocity and frequency of slug bubbles sliding on the heated wall were measured as a function of wall heat flux and these parameters were used to develop wall boiling model for inclined, downward-facing heated wall. One approach to achieve coolable state of molten core in a PWR-like reactor cavity during a severe accident is to retain the core melt on a so-called core catcher residing on the reactor cavity floor after its relocation from the reactor pressure vessel. The core melt retained in the core catcher is cooled by water coolant flowing in an inclined cooling channel underneath as well as the water pool overlaid on the melt layer. Two-phase flow boiling with downward-facing heated wall such as this core catcher cooling channel has drawn a special attention because this orientation of heated wall may reach boiling crisis at lower heat flux than that of a vertical or upward-facing heated wall. Nishikawa and Fujita, Howard and Mudawar, Qiu and Dhir have conducted experiments to study the effect of heater orientation on boiling heat transfer and CHF. SULTAN experiment was conducted to study inclined large-scale structure coolability by water in boiling natural convection. In this paper, high-speed visualization of boiling behavior on downward-facing heated wall inclined by 10 .deg. is presented and wall boiling model for the

  2. Computational stability appraisal of rectangular natural circulation loop: Effect of loop inclination

    International Nuclear Information System (INIS)

    Krishnani, Mayur; Basu, Dipankar N.

    2017-01-01

    Highlights: • Computational model developed for single-phase rectangular natural circulation loop. • Role of loop inclination to vertical on thermalhydraulic stability is explored. • Inclination has strong stabilizing effect due to lower effective gravitation force. • Increase in tilt angle reduces settling time and highest amplitude of oscillation. • An angle of 15° is suggested for the selected loop geometry. - Abstract: Controlling stability behavior of single-phase natural circulation loops, without significantly affecting its steady-state characteristics, is a topic of wide research interest. Present study explores the role of loop inclination on a particular loop geometry. Accordingly a 3D computational model of a rectangular loop is developed and transient conservation equations are solved to obtain the temporal variation in flow parameters. Starting from the quiescent state, simulations are performed for selected sets of operating conditions and also with a few selected inclination angles. System experiences instability at higher heater powers and also with higher sink temperatures. Inclination is found to have a strong stabilizing influence owing to the reduction in the effective gravitational acceleration and subsequent decline in local buoyancy effects. The settling time and highest amplitude of oscillations substantially reduces for a stable system with a small inclination. Typically-unstable systems can also suppress the oscillations, when subjected to tilting, within a reasonable period of time. It is possible to stabilize the loop within shorter time span by increasing the tilt angle, but at the expense of reduction in steady-state flow rate. Overall a tilt angle of 15° is suggested for the selected geometry. Results from the 3D model is compared with the predictions from an indigenous 1D code. While similar qualitative influence of inclination is observed, the 1D model predicts early appearance of the stability threshold and hence hints

  3. Characterization and improvement of highly inclined optical sheet microscopy

    Science.gov (United States)

    Vignolini, T.; Curcio, V.; Gardini, L.; Capitanio, M.; Pavone, F. S.

    2018-02-01

    Highly Inclined and Laminated Optical sheet (HILO) microscopy is an optical technique that employs a highly inclined laser beam to illuminate the sample with a thin sheet of light that can be scanned through the sample volume1 . HILO is an efficient illumination technique when applied to fluorescence imaging of thick samples owing to the confined illumination volume that allows high contrast imaging while retaining deep scanning capability in a wide-field configuration. The restricted illumination volume is crucial to limit background fluorescence originating from portions of the sample far from the focal plane, especially in applications such as single molecule localization and super-resolution imaging2-4. Despite its widespread use, current literature lacks comprehensive reports of the actual advantages of HILO in these kinds of microscopies. Here, we thoroughly characterize the propagation of a highly inclined beam through fluorescently labeled samples and implement appropriate beam shaping for optimal application to single molecule and super-resolution imaging. We demonstrate that, by reducing the beam size along the refracted axis only, the excitation volume is consequently reduced while maintaining a field of view suitable for single cell imaging. We quantify the enhancement in signal-tobackground ratio with respect to the standard HILO technique and apply our illumination method to dSTORM superresolution imaging of the actin and vimentin cytoskeleton. We define the conditions to achieve localization precisions comparable to state-of-the-art reports, obtain a significant improvement in the image contrast, and enhanced plane selectivity within the sample volume due to the further confinement of the inclined beam.

  4. Effects of mean-field and softening of equation of state on elliptic flow in Au+Au collisions at \\sqrt{{s}_{\\rm{NN}}}=5\\,{GeV} from the JAM model

    Science.gov (United States)

    Chen, Jiamin; Luo, Xiaofeng; Liu, Feng; Nara, Yasushi

    2018-01-01

    We perform a systematic study of elliptic flow (v 2) in Au+Au collisions at \\sqrt{{s}NN}}=5 {GeV} by using a microscopic transport model, JAM. The centrality, pseudorapidity, transverse momentum and beam energy dependence of v 2 for charged as well as identified hadrons are studied. We investigate the effects of both the hadronic mean-field and the softening of equation of state (EoS) on elliptic flow. The softening of the EoS is realized by imposing attractive orbits in two body scattering, which can reduce the pressure of the system. We found that the softening of the EoS leads to the enhancement of v 2, while the hadronic mean-field suppresses v 2 relative to the cascade mode. It indicates that elliptic flow at high baryon density regions is highly sensitive to the EoS and the enhancement of v 2 may probe the signature of a first-order phase transition in heavy-ion collisions at beam energies of a strong baryon stopping region. Supported by the MoST of China 973-Project (2015CB856901), NSFC (11575069, 11221504). Y. N. is supported by the Grants-in-Aid for Scientific Research from JSPS (15K05079, 15K05098)

  5. Cassini Operational Sun Sensor Risk Management During Proximal Orbit Saturn Ring Plane Crossings

    Science.gov (United States)

    Bates, David M.

    2016-01-01

    NASA's Cassini Spacecraft, launched on October 15th, 1997 which arrived at Saturn on June 30th, 2004, is the largest and most ambitious interplanetary spacecraft in history. As the first spacecraft to achieve orbit at Saturn, Cassini has collected science data throughout its four-year prime mission (2004–08), and has since been approved for a first and second extended mission through 2017. As part of the final extended missions, Cassini will begin an aggressive and exciting campaign of high inclination, low altitude flybys within the inner most rings of Saturn, skimming Saturn’s outer atmosphere, until the spacecraft is finally disposed of via planned impact with the planet. This final campaign, known as the proximal orbits, requires a strategy for managing the Sun Sensor Assembly (SSA) health, the details of which are presented in this paper.

  6. Stress concentration factors for pressurized elliptic crossbores in blocks

    International Nuclear Information System (INIS)

    Badr, Elie A.

    2006-01-01

    Intersecting bore geometries are used in a number of industrial applications including heavy-walled pressure vessels containing oil holes for lubrication, ports for valves and fluid ends of reciprocating pumps. The bore intersection location is a stress concentration point where the maximum hoop stress can be many times the fluid pressure in the bores. Intersecting circular holes in heavy-walled cylinders and rectangular blocks have been extensively investigated. Specifically, stress/pressure concentration curves for intersecting circular bores in rectangular blocks were presented by Sorem et al. [Sorem JR, Shadley JR, Tipton SM. Design curves for maximum stresses in blocks containing pressurized bore intersections. ASME J Mech Des 1990; 113: 427-31.]. However, stress/pressure concentrations due to intersecting elliptic bores have not been broadly investigated. With the availability of computer numerical control (CNC) machinery, bores with elliptic crosssection can be produced with relative ease. In this paper, hoop stress concentration ratios are developed for elliptic crossbores in rectangular blocks. Results indicate that introducing elliptic crossbores, rather than circular ones, significantly reduces the hoop stress concentration factor at the crossbore intersection. Also, the presence of intersecting crossbores has a major effect on the fatigue life of pressure vessels [Badr EA, Sorem JR, Jr Tipton SM. Evaluation of the autofrettage effect on fatigue lives of steel blocks with crossbores using a statistical and a strain-based method. ASTM J Test Eval 2000; 28: 181-8.] and the reduction of hoop stress concentration is expected to enhance the fatigue life of pressure vessels containing crossbores

  7. On protection of freedom's solar dynamic radiator from the orbital debris environment. Part 1

    International Nuclear Information System (INIS)

    Rhatigan, J.L.

    1992-01-01

    A great deal of experimentation and analysis has been performed to quantify penetration thresholds of components which will experience orbital debris impacts. Penetration has been found to depend upon mission-specific parameters such as orbital altitude, inclination, and orientation of the component; and upon component specific parameters such as material, density, and the geometry particular to its shielding. Experimental results are highly dependent upon shield configuration and cannot be extrapolated with confidence to alternate shield configurations. Also, current experimental capabilities are limited to velocities which only approach the lower limit of predicted orbital debris velocities. Therefore, prediction of the penetrating particle size for a particular component having a complex geometry remains highly uncertain. This paper describes the approach developed to assess on-orbit survivability, and include the type of particle and particle population expected to defeat the radiator bumpering (i.e., penetrate a fluid flow tube). Results of preliminary hypervelocity impact testing performed on radiator panel samples (in the 6 to 7 km/sec velocity range) are also presented. Plans for further analyses and testing are discussed. These efforts are expected to lead to a radiator design which will perform to Space Station Freedom requirements over the expected lifetime

  8. Analysis of two-phase flow and boiling heat transfer in inclined channel of core-catcher

    International Nuclear Information System (INIS)

    Tahara, M.; Suzuki, Y.; Abe, N.; Kurita, T.; Hamazaki, R.; Kojima, Y.

    2008-01-01

    Passive Corium Cooling System (CCS) provides a function of ex-vessel debris cooling and molten core stabilization during a severe accident. CCS features inclined cooling channels arranged axi-symmetrically below the core-catcher basin. In order to estimate the coolability of the inclined cooling channel, it is indispensable to identify the flow pattern of the two-phase flow in the cooling channel. Several former studies for the two-phase flow pattern in the inclined channel are referred. Taitel and Dukler (1976) developed a prediction method of the flow pattern transition in horizontal and near horizontal tubes. Barnea et al. (1980) showed the flow pattern map of upward flow with 10 degrees inclination. Sakaguti et al. (1996) observed the two-phase flow patterns in the horizontal pipe connected with slightly upward pipe, in which the flow pattern in the pipe with a bending part was expressed by the combination of a basic flow pattern and some auxiliary flow patterns. Then we investigated these studies In order to identify the flow patterns observed in the inclined cooling channel of CCS. Furthermore we experimentally observed the flow patterns in the inclined cooling channel with various inlet conditions. As a result of the investigation and observation, typical flow patterns in the inclined cooling channel were identified. Two typical flow patterns were observed depending on the steam flow rate, one of which is 'elongated bubble 'flow, and the other is 'churn with collapsing backward and upward slug 'flow The flow and heat transfer in the inclined channel of CCS is analyzed by using a two-phase analysis code employing two-fluid model in which the constitutive equations for the two-phase flow in inclined channels are incorporated. That is, drift flux parameter for each of the elongated bubble flow, and the churn with collapsing backward and upward slug flow are incorporated to the two-phase analysis code, which are based on the rising velocity of the long bubble in

  9. Abundance Ratios in Dwarf Elliptical Galaxies

    NARCIS (Netherlands)

    Sen, Seyda; Peletier, Reynier F.; Toloba, Elisa; Mentz, Jaco J.

    The aim of this study is to determine abundance ratios and star formation histories (SFH) of dwarf ellipticals in the nearby Virgo cluster. We perform a stellar population analysis of 39 dEs and study them using index-index and scaling relations. We find an unusual behaviour where [Na/Fe] is

  10. Spatial scan statistics using elliptic windows

    DEFF Research Database (Denmark)

    Christiansen, Lasse Engbo; Andersen, Jens Strodl; Wegener, Henrik Caspar

    2006-01-01

    The spatial scan statistic is widely used to search for clusters. This article shows that the usually applied elimination of secondary clusters as implemented in SatScan is sensitive to smooth changes in the shape of the clusters. We present an algorithm for generation of a set of confocal elliptic...

  11. Non-exclusive satellite power system

    Energy Technology Data Exchange (ETDEWEB)

    Drummond, J.E. (Power Conversion Technology, Inc., San Diego, Calif.); Cowhey, P.F. (California, University, La Jolla, Calif.)

    1980-09-01

    A modification of the satellite solar power system employing smaller satellites that are not stationary but move in circular or elliptical orbits of two or three hour periods is discussed. The orbits could be inclined at plus or minus 63.4 deg, 73.1 deg, or 14.3 deg to the equatorial plane. This Interregional or Isoinsolation Power System (IPS) greatly reduces the mass and cost of the antenna needed in the sky and the area required for the rectenna and safety region on the ground (the product of the areas of the antennas and rectennas of the IPS system being between 10 and 20 times lower than that required in the conventional SPS system). International control of IPS through a Solar Satellite Consortium (Solsat) is advocated, patterned after the successful Intelsat consortium, and it is stressed that the system must not be allowed to acquire a military capacity. It is emphasized that the smaller rectennas would not destabilize the ionosphere.

  12. COLORS OF ELLIPTICALS FROM GALEX TO SPITZER

    Energy Technology Data Exchange (ETDEWEB)

    Schombert, James M., E-mail: jschombe@uoregon.edu [Department of Physics, University of Oregon, Eugene, OR 97403 (United States)

    2016-12-01

    Multi-color photometry is presented for a large sample of local ellipticals selected by morphology and isolation. The sample uses data from the Galaxy Evolution Explorer ( GALEX ), Sloan Digital Sky Survey (SDSS), Two Micron All-Sky Survey (2MASS), and Spitzer to cover the filters NUV , ugri , JHK and 3.6 μ m. Various two-color diagrams, using the half-light aperture defined in the 2MASS J filter, are very coherent from color to color, meaning that galaxies defined to be red in one color are always red in other colors. Comparison to globular cluster colors demonstrates that ellipticals are not composed of a single age, single metallicity (e.g., [Fe/H]) stellar population, but require a multi-metallicity model using a chemical enrichment scenario. Such a model is sufficient to explain two-color diagrams and the color–magnitude relations for all colors using only metallicity as a variable on a solely 12 Gyr stellar population with no evidence of stars younger than 10 Gyr. The [Fe/H] values that match galaxy colors range from −0.5 to +0.4, much higher (and older) than population characteristics deduced from Lick/IDS line-strength system studies, indicating an inconsistency between galaxy colors and line indices values for reasons unknown. The NUV colors have unusual behavior, signaling the rise and fall of the UV upturn with elliptical luminosity. Models with blue horizontal branch tracks can reproduce this behavior, indicating the UV upturn is strictly a metallicity effect.

  13. COLORS OF ELLIPTICALS FROM GALEX TO SPITZER

    International Nuclear Information System (INIS)

    Schombert, James M.

    2016-01-01

    Multi-color photometry is presented for a large sample of local ellipticals selected by morphology and isolation. The sample uses data from the Galaxy Evolution Explorer ( GALEX ), Sloan Digital Sky Survey (SDSS), Two Micron All-Sky Survey (2MASS), and Spitzer to cover the filters NUV , ugri , JHK and 3.6 μ m. Various two-color diagrams, using the half-light aperture defined in the 2MASS J filter, are very coherent from color to color, meaning that galaxies defined to be red in one color are always red in other colors. Comparison to globular cluster colors demonstrates that ellipticals are not composed of a single age, single metallicity (e.g., [Fe/H]) stellar population, but require a multi-metallicity model using a chemical enrichment scenario. Such a model is sufficient to explain two-color diagrams and the color–magnitude relations for all colors using only metallicity as a variable on a solely 12 Gyr stellar population with no evidence of stars younger than 10 Gyr. The [Fe/H] values that match galaxy colors range from −0.5 to +0.4, much higher (and older) than population characteristics deduced from Lick/IDS line-strength system studies, indicating an inconsistency between galaxy colors and line indices values for reasons unknown. The NUV colors have unusual behavior, signaling the rise and fall of the UV upturn with elliptical luminosity. Models with blue horizontal branch tracks can reproduce this behavior, indicating the UV upturn is strictly a metallicity effect.

  14. Neural extrapolation of motion for a ball rolling down an inclined plane.

    Science.gov (United States)

    La Scaleia, Barbara; Lacquaniti, Francesco; Zago, Myrka

    2014-01-01

    It is known that humans tend to misjudge the kinematics of a target rolling down an inclined plane. Because visuomotor responses are often more accurate and less prone to perceptual illusions than cognitive judgments, we asked the question of how rolling motion is extrapolated for manual interception or drawing tasks. In three experiments a ball rolled down an incline with kinematics that differed as a function of the starting position (4 different positions) and slope (30°, 45° or 60°). In Experiment 1, participants had to punch the ball as it fell off the incline. In Experiment 2, the ball rolled down the incline but was stopped at the end; participants were asked to imagine that the ball kept moving and to punch it. In Experiment 3, the ball rolled down the incline and was stopped at the end; participants were asked to draw with the hand in air the trajectory that would be described by the ball if it kept moving. We found that performance was most accurate when motion of the ball was visible until interception and haptic feedback of hand-ball contact was available (Experiment 1). However, even when participants punched an imaginary moving ball (Experiment 2) or drew in air the imaginary trajectory (Experiment 3), they were able to extrapolate to some extent global aspects of the target motion, including its path, speed and arrival time. We argue that the path and kinematics of a ball rolling down an incline can be extrapolated surprisingly well by the brain using both visual information and internal models of target motion.

  15. Neural extrapolation of motion for a ball rolling down an inclined plane.

    Directory of Open Access Journals (Sweden)

    Barbara La Scaleia

    Full Text Available It is known that humans tend to misjudge the kinematics of a target rolling down an inclined plane. Because visuomotor responses are often more accurate and less prone to perceptual illusions than cognitive judgments, we asked the question of how rolling motion is extrapolated for manual interception or drawing tasks. In three experiments a ball rolled down an incline with kinematics that differed as a function of the starting position (4 different positions and slope (30°, 45° or 60°. In Experiment 1, participants had to punch the ball as it fell off the incline. In Experiment 2, the ball rolled down the incline but was stopped at the end; participants were asked to imagine that the ball kept moving and to punch it. In Experiment 3, the ball rolled down the incline and was stopped at the end; participants were asked to draw with the hand in air the trajectory that would be described by the ball if it kept moving. We found that performance was most accurate when motion of the ball was visible until interception and haptic feedback of hand-ball contact was available (Experiment 1. However, even when participants punched an imaginary moving ball (Experiment 2 or drew in air the imaginary trajectory (Experiment 3, they were able to extrapolate to some extent global aspects of the target motion, including its path, speed and arrival time. We argue that the path and kinematics of a ball rolling down an incline can be extrapolated surprisingly well by the brain using both visual information and internal models of target motion.

  16. In-line photonic microcells based on the elliptical microfibers for refractive index sensors applications

    Science.gov (United States)

    Jin, Wa; Liu, Xuejing; Jin, Wei

    2017-10-01

    We report the fabrication of in-line photonic microcells (PMCs) by encapsulating tapered elliptical microfibers (MFs) inside glass tubes. The encapsulation does not change the optical property of the MF but protects the elliptical MF from external disturbance and contamination and makes the micro-laboratory robust. Such micro-laboratory can be easily integrated into standard fiber-optic circuits with low loss, making the elliptical MF-based devices more practical for real-world applications. Evanescent field sensing is realized by fabricating micro-channel on the PMC for ingress/egress of sample liquids/gas. Based on the encapsulated elliptical MF PMCs, we demonstrated RI sensitivity of 2024 nm per refractive index unit (nm/RIU) in gaseous environment and 21231 nm/RIU in water.

  17. Improved model for solar cosmic ray exposure in manned Earth orbital flights

    International Nuclear Information System (INIS)

    Wilson, J.W.; Nealy, J.E.; Atwell, W.; Cucinotta, F.A.; Shinn, J.L.; Townsend, L.W.

    1990-06-01

    A calculational model is derived for use in estimating Solar cosmic ray exposure to critical body organs in low-Earth orbit at the center of a large spherical shield of fixed thickness. The effects of the Earth's geomagnetic field and the astronauts' self-shielding are evaluated explicitly. The geomagnetic field model is an approximate tilted eccentric dipole with geomagnetic storms represented as a uniform-impressed field. The storm field is related to the planetary geomagnetic index K(sub p). The code is applied to the Shuttle geometry using the Shuttle mass distribution surrounding two locations on the flight deck. The Shuttle is treated as pure aluminum and the astronaut as soft tissue. Short-term, average fluence over a single orbit is calculated as a function of the location of the lines of nodes or long-term averages over all lines of nodes for a fixed inclination

  18. Elliptic Genera of Symmetric Products and Second Quantized Strings

    CERN Document Server

    Dijkgraaf, R; Verlinde, Erik; Verlinde, Herman L

    1997-01-01

    In this note we prove an identity that equates the elliptic genus partition function of a supersymmetric sigma model on the $N$-fold symmetric product $M^N/S_N$ of a manifold $M$ to the partition function of a second quantized string theory on the space $M \\times S^1$. The generating function of these elliptic genera is shown to be (almost) an automorphic form for $O(3,2,\\Z)$. In the context of D-brane dynamics, this result gives a precise computation of the free energy of a gas of D-strings inside a higher-dimensional brane.

  19. Transfer coefficients for plate fin and elliptical tube heat exchangers

    International Nuclear Information System (INIS)

    Saboya, S.M.; Saboya, F.E.M.

    1981-01-01

    In order to determine transfer coefficients for plate fin and elliptical tube exchangers, mass transfer experiments have been performed using the naphthalene sublimation technique. By means of the heat-mass transfer analogy, the results can be converted to heat transfer results. The transfer coefficients were compared with those for circular tube exchangers and the comparison revealed no major differences. This is a positive outcome, since the use of elliptical tubes may reduce substantially the pressure drop, without affecting the transfer characteristics.(Author) [pt

  20. Waveguide elliptic polarizers for ECH at down-shifted frequencies on PLT

    International Nuclear Information System (INIS)

    Doane, J.L.

    1986-01-01

    ECH experiments on PLT with resonance frequencies of 80 to 90 GHz at the plasma center use 60 GHz extraordinary mode (X-mode) propagation at 30 0 from the toroidal field. Efficient excitation of this mode requires elliptic polarization of the incident wave at the plasma edge. On PLT the elliptic polarization is achieved outside the vacuum vessel in an elliptically deformed section of circular waveguide propagating TM11, a mode that is intermediate between TE01 and HE11 (which has an ideal radiation pattern). The squeeze and orientation of the TM11 polarizer are adjusted to compensate both for the birefringence of a corrugated bend propagating HE11 and for a flat mirror inside PLT that reverses the sense of rotation of the polarization. 11 refs., 8 figs

  1. Statistics about elliptic curves over finite prime fields

    OpenAIRE

    Gekeler, Ernst-Ulrich

    2006-01-01

    We derive formulas for the probabilities of various properties (cyclicity, squarefreeness, generation by random points) of the point groups of randomly chosen elliptic curves over random prime fields.

  2. Vehicle with inclinable caterpillar propulsion units

    International Nuclear Information System (INIS)

    Clar, G.

    1991-01-01

    This vehicle usable in hostile environment such nuclear industry has four propulsion units with a caterpillar track and two integrated motors: one for advancing the caterpillar track and the other for inclining the propulsion unit when overcoming obstacles. Each propulsion unit is easily replaceable because there are no mechanical parts in the body of the vehicle [fr

  3. Results from On-Orbit Testing of the Fram Memory Test Experiment on the Fastsat Micro-Satellite

    Science.gov (United States)

    MacLeod, Todd C.; Sims, W. Herb; Varnavas, Kosta A.; Ho, Fat D.

    2011-01-01

    NASA is planning on going beyond Low Earth orbit with manned exploration missions. The radiation environment for most Low Earth orbit missions is harsher than at the Earth's surface but much less harsh than deep space. Development of new electronics is needed to meet the requirements of high performance, radiation tolerance, and reliability. The need for both Volatile and Non-volatile memory has been identified. Emerging Non-volatile memory technologies (FRAM, C-RAM,M-RAM, R-RAM, Radiation Tolerant FLASH, SONOS, etc.) need to be investigated for use in Space missions. An opportunity arose to fly a small memory experiment on a high inclination satellite (FASTSAT). An off-the-shelf 512K Ramtron FRAM was chosen to be tested in the experiment.

  4. Experimental study on two-phase flow parameters of subcooled boiling in inclined annulus

    International Nuclear Information System (INIS)

    Lee, Tae Ho; Kim, Moon Oh; Park, Goon Cherl

    1999-01-01

    Local two-phase flow parameters of subcooled flow boiling in inclined annulus were measured to investigate the effect of inclination on the internal flow structure. Two-conductivity probe technique was applied to measured local gas phasic parameters, including void by fraction, vapor bubble frequency, chord length, vapor bubble velocity and interfacial area concentration. Local liquid velocity was measured by Pitot tube. Experiments were conducted for three angles of inclination: 0 o (vertical), 30 o , 60 o . The system pressure was maintained at atmospheric pressure. The range of average void fraction was up to 10 percent and the average liquid superficial velocities were less than 1.3 m/sec. The results of experiments showed that the distributions of two-phase flow parameters were influenced by the angle of channel inclination. Especially, the void fraction and chord length distributions were strongly affected by the increase of inclination angle, and flow pattern transition to slug flow was observed depending on the flow conditions. The profiles of vapor velocity, liquid velocity and interfacial area concentration were found to be affected by the non-symmetric bubble size distribution in inclined channel. Using the measured distributions of local phasic parameters, an analysis for predicting average void fraction was performed based on the drift flux model and flowing volumetric concentration. And it was demonstrated that the average void fraction can be more appropriately presented in terms of flowing volumetric concentration. (Author). 18 refs., 2 tabs., 18 figs

  5. The ellipticity of galaxy cluster haloes from satellite galaxies and weak lensing

    Science.gov (United States)

    Shin, Tae-hyeon; Clampitt, Joseph; Jain, Bhuvnesh; Bernstein, Gary; Neil, Andrew; Rozo, Eduardo; Rykoff, Eli

    2018-04-01

    We study the ellipticity of galaxy cluster haloes as characterized by the distribution of cluster galaxies and as measured with weak lensing. We use Monte Carlo simulations of elliptical cluster density profiles to estimate and correct for Poisson noise bias, edge bias and projection effects. We apply our methodology to 10 428 Sloan Digital Sky Survey clusters identified by the redMaPPer algorithm with richness above 20. We find a mean ellipticity =0.271 ± 0.002 (stat) ±0.031 (sys) corresponding to an axis ratio = 0.573 ± 0.002 (stat) ±0.039 (sys). We compare this ellipticity of the satellites to the halo shape, through a stacked lensing measurement using optimal estimators of the lensing quadrupole based on Clampitt and Jain (2016). We find a best-fitting axis ratio of 0.56 ± 0.09 (stat) ±0.03 (sys), consistent with the ellipticity of the satellite distribution. Thus, cluster galaxies trace the shape of the dark matter halo to within our estimated uncertainties. Finally, we restack the satellite and lensing ellipticity measurements along the major axis of the cluster central galaxy's light distribution. From the lensing measurements, we infer a misalignment angle with an root-mean-square of 30° ± 10° when stacking on the central galaxy. We discuss applications of halo shape measurements to test the effects of the baryonic gas and active galactic nucleus feedback, as well as dark matter and gravity. The major improvements in signal-to-noise ratio expected with the ongoing Dark Energy Survey and future surveys from Large Synoptic Survey Telescope, Euclid, and Wide Field Infrared Survey Telescope will make halo shapes a useful probe of these effects.

  6. Stress field of a dislocating inclined fault

    Energy Technology Data Exchange (ETDEWEB)

    Huang, F.; Wang, T.

    1980-02-01

    Analytical expressions are derived for the stress field caused by a rectangular dislocating fault of an arbitrary dip in a semi-infinite elastic medium for the case of unequal Lame constants. The results of computations for the stress fields on the ground surface of an inclined strike-slip and an inclined dip-slip fault are represented by contour maps. The effects of Poisson Ratio of the medium, the dip angle, upper and lower boundaries of the faults on the stress field at surface have been discussed. As an application, the contour maps for shear stress and hydrostatic stress of near fields of the Tonghai (1970), Haicheng (1975) and Tangshan (1976) earthquakes have been calculated and compared with the spatial distributions of strong aftershocks of these earthquakes. It is found that most of the strong aftershocks are distributed in the regions of tensional stress, where the hydrostatic stress is positive.

  7. Drift orbits in the TMX and MFTF-B tandem mirrors

    International Nuclear Information System (INIS)

    Byers, J.A.

    1982-01-01

    Drift orbits for the TMX and MFTF-B tandem-mirror designs are followed by using a long-thin expansion of the drift equations. Unexpected asymmetries in the field-line curvatures in the yin-yang end-mirror traps, caused by the transition coils between the solenoid and the yin-yang, result in an elliptical distortion of the drift surface with a/b=1.5 at most, a perhaps tolerable deviation from omnigenity. Yushmanov-trapped particles are no worse than the bulk hot particles. Finite-beta plasma fields, coupled to the asymmetric curvature, produce sizeable banana orbits with widths comparable to the plasma radius, but these orbits are possible for only a few of the particles. Details of the transition through resonance in the solenoid are shown, including the banana shapes of the drift surfaces and the disruption of the surface in the stochastic regime. The orbits in the original design for the A-cell of MFTF-B are the most extreme; in the vacuum fields they all have an extended peanut shape that finally closes only at about 3m. This shape is strongly non-omnigenous and suggests a hollow plasma-density profile. Finite-beta B vectorxnablaB drifts can help to minimize the radial extent of these orbits, but the strength of the vacuum curvatures makes omnigenity only marginally possible. Including B vectorxnablaphi drifts makes omnigenity even more unlikely for the ions, for which the B vectorxnablaB and B vectorxnablaphi drifts are of opposite sign, and conversely helps to omnigenize the drift surfaces of the ECRH 200-keV electrons. It is argued that not every class of particles can have good, i.e. near-omnigenous drifts, regardless of the ability of phi(r) to adjust to limit the radial extent of the orbits. This lack of omnigenity leaves one with no theoretical base for describing the MHD equilibrium in the original designs, but a new magnetic field design for MFTF-B A-cell has apparently completely restored omnigenous orbits. (author)

  8. Structure of stable degeneration of K3 surfaces into pairs of rational elliptic surfaces

    Science.gov (United States)

    Kimura, Yusuke

    2018-03-01

    F-theory/heterotic duality is formulated in the stable degeneration limit of a K3 fibration on the F-theory side. In this note, we analyze the structure of the stable degeneration limit. We discuss whether stable degeneration exists for pairs of rational elliptic surfaces. We demonstrate that, when two rational elliptic surfaces have an identical complex structure, stable degeneration always exists. We provide an equation that systematically describes the stable degeneration of a K3 surface into a pair of isomorphic rational elliptic surfaces. When two rational elliptic surfaces have different complex structures, whether their sum glued along a smooth fiber admits deformation to a K3 surface can be determined by studying the structure of the K3 lattice. We investigate the lattice theoretic condition to determine whether a deformation to a K3 surface exists for pairs of extremal rational elliptic surfaces. In addition, we discuss the configurations of singular fibers under stable degeneration. The sum of two isomorphic rational elliptic surfaces glued together admits a deformation to a K3 surface, the singular fibers of which are twice that of the rational elliptic surface. For special situations, singular fibers of the resulting K3 surface collide and they are enhanced to a fiber of another type. Some K3 surfaces become attractive in these situations. We determine the complex structures and the Weierstrass forms of these attractive K3 surfaces. We also deduce the gauge groups in F-theory compactifications on these attractive K3 surfaces times a K3. E 6, E 7, E 8, SU(5), and SO(10) gauge groups arise in these compactifications.

  9. M2 ocean tide parameters and the deceleration of the moon's mean longitude from satellite orbit data

    Science.gov (United States)

    Felsentreger, T. L.; Marsh, J. G.; Williamson, R. G.

    1979-01-01

    An estimation is made of the principal long-period spherical harmonic parameters in the representation of the M2 ocean tide from the orbital histories of the three satellites 1967-92A, Starlette, and GEOS 3. The data used are primarily the evolution of the orbital inclinations of the satellites in conjunction with the longitude of the ascending node from GEOS 3. Analysis procedure and analytic formulation, as well as ocean tidal parameter estimation and deceleration of the lunar mean longitude are outlined. The credibility of the M2 ocean tide solution is further enhanced by the close accord between the computed value for the deceleration of the lunar mean longitude and other recently reported estimates. It is evident from the results presented that studies of close earth satellite orbits are able to provide important information about the tidal forces acting on the earth.

  10. Elliptic flow in a hadron-string cascade model at 130 GeV energy

    Indian Academy of Sciences (India)

    vectors b. The elliptic flow v2 is the anisotropy of particle emission in- and out-of reaction plane. ... However, recent observation at SPS shows similar behaviour of the elliptic flow like RHIC as a ..... hadron gas [18]. Large spatial eccentricity ε is ...

  11. Medical Implications of Space Radiation Exposure Due to Low-Altitude Polar Orbits.

    Science.gov (United States)

    Chancellor, Jeffery C; Auñon-Chancellor, Serena M; Charles, John

    2018-01-01

    Space radiation research has progressed rapidly in recent years, but there remain large uncertainties in predicting and extrapolating biological responses to humans. Exposure to cosmic radiation and solar particle events (SPEs) may pose a critical health risk to future spaceflight crews and can have a serious impact on all biomedical aspects of space exploration. The relatively minimal shielding of the cancelled 1960s Manned Orbiting Laboratory (MOL) program's space vehicle and the high inclination polar orbits would have left the crew susceptible to high exposures of cosmic radiation and high dose-rate SPEs that are mostly unpredictable in frequency and intensity. In this study, we have modeled the nominal and off-nominal radiation environment that a MOL-like spacecraft vehicle would be exposed to during a 30-d mission using high performance, multicore computers. Projected doses from a historically large SPE (e.g., the August 1972 solar event) have been analyzed in the context of the MOL orbit profile, providing an opportunity to study its impact to crew health and subsequent contingencies. It is reasonable to presume that future commercial, government, and military spaceflight missions in low-Earth orbit (LEO) will have vehicles with similar shielding and orbital profiles. Studying the impact of cosmic radiation to the mission's operational integrity and the health of MOL crewmembers provides an excellent surrogate and case-study for future commercial and military spaceflight missions.Chancellor JC, Auñon-Chancellor SM, Charles J. Medical implications of space radiation exposure due to low-altitude polar orbits. Aerosp Med Hum Perform. 2018; 89(1):3-8.

  12. A physico-mathematical analysis of elliptical nerve and muscle fibres

    International Nuclear Information System (INIS)

    Bonsignori, F.

    1977-01-01

    In the framework of the tridimensional core conductor model, the current flow field of an elliptical nerve or muscle fibre in a volume conductor is studied. As the quasi-static conditions are valid, the Laplace equation applies. Expressions for the intracellular and extra cellular potential fields and the membrane current are exactly derived. As a limit the solutions for the circular case are recovered. Finally a sketch of an approximate method of calculation is outlined and the first elliptical correction to the usual membrane current is evaluated

  13. L-series of elliptic curves with CM by √-3

    International Nuclear Information System (INIS)

    Qiu Derong; Zhang Xianke

    2001-09-01

    Let E:y 2 =x 3 -2 4 3 3 D 2 be elliptic curves defined over the quadratic field Q(√-3). Hecke L-series attached to E are studied, formulae for the values of the L-series at s=1 are given, and the bound of 3-adic valuations of these values are obtained. These results are consistent with the predictions of the conjecture of Birch and Swinnerton-Dyer, and generalize results in recent literature about elliptic curves defined over rationals. (author)

  14. Further Evidence of a Brown Dwarf Orbiting the Post-Common Envelope Eclipsing Binary V470 Cam (HS 0705+6700

    Directory of Open Access Journals (Sweden)

    Bogensberger David

    2017-12-01

    Full Text Available Several post-common envelope binaries have slightly increasing, decreasing or oscillating orbital periods. One of several possible explanations is light travel-time changes, caused by the binary centre-of-mass being perturbed by the gravitational pull of a third body. Further studies are necessary because it is not clear how a third body could have survived subdwarf progenitor mass-loss at the tip of the Red Giant Branch, or formed subsequently. Thirty-nine primary eclipse times for V470 Cam were secured with the Philip Wetton Telescope during the period 2016 November 25th to 2017 January 27th. Available eclipse timings suggest a brown dwarf tertiary having a mass of at least 0.0236(40 M⊙, an elliptical orbit with an eccentricity of 0.376(98 and an orbital period of 11.77(67 years about the binary centreof- mass. The mass and orbit suggest a hybrid formation, in which some ejected material from the subdwarf progenitor was accreted on to a precursor tertiary component, although additional observations would be needed to confirm this interpretation and investigate other possible origins for the binary orbital period change.

  15. Two Mechanisms of Sensorimotor Set Adaptation to Inclined Stance

    Directory of Open Access Journals (Sweden)

    Kyoung-Hyun Lee

    2017-10-01

    Full Text Available Orientation of posture relative to the environment depends on the contributions from the somatosensory, vestibular, and visual systems mixed in varying proportions to produce a sensorimotor set. Here, we probed the sensorimotor set composition using a postural adaptation task in which healthy adults stood on an inclined surface for 3 min. Upon returning to a horizontal surface, participants displayed a range of postural orientations – from an aftereffect that consisted of a large forward postural lean to an upright stance with little or no aftereffect. It has been hypothesized that the post-incline postural change depends on each individual’s sensorimotor set: whether the set was dominated by the somatosensory or vestibular system: Somatosensory dominance would cause the lean aftereffect whereas vestibular dominance should steer stance posture toward upright orientation. We investigated the individuals who displayed somatosensory dominance by manipulating their attention to spatial orientation. We introduced a distraction condition in which subjects concurrently performed a difficult arithmetic subtraction task. This manipulation altered the time course of their post-incline aftereffect. When not distracted, participants returned to upright stance within the 3-min period. However, they continued leaning forward when distracted. These results suggest that the mechanism of sensorimotor set adaptation to inclined stance comprises at least two components. The first component reflects the dominant contribution from the somatosensory system. Since the postural lean was observed among these subjects even when they were not distracted, it suggests that the aftereffect is difficult to overcome. The second component includes a covert attentional component which manifests as the dissipation of the aftereffect and the return of posture to upright orientation.

  16. Seiberg-Witten curves and double-elliptic integrable systems

    International Nuclear Information System (INIS)

    Aminov, G.; Braden, H.W.; Mironov, A.; Morozov, A.; Zotov, A.

    2015-01-01

    An old conjecture claims that commuting Hamiltonians of the double-elliptic integrable system are constructed from the theta-functions associated with Riemann surfaces from the Seiberg-Witten family, with moduli treated as dynamical variables and the Seiberg-Witten differential providing the pre-symplectic structure. We describe a number of theta-constant equations needed to prove this conjecture for the N-particle system. These equations provide an alternative method to derive the Seiberg-Witten prepotential and we illustrate this by calculating the perturbative contribution. We provide evidence that the solutions to the commutativity equations are exhausted by the double-elliptic system and its degenerations (Calogero and Ruijsenaars systems). Further, the theta-function identities that lie behind the Poisson commutativity of the three-particle Hamiltonians are proven.

  17. Fully plastic solutions of semi-elliptical surface cracks

    International Nuclear Information System (INIS)

    Yagawa, Genki; Yoshimura, Shinobu; Kitajima, Yasumi; Ueda, Hiroyoshi.

    1990-01-01

    Nonlinear finite element analyses of semi-elliptical surface cracks are performed under the fully plastic condition. The power-law hardening materials and the deformation theory of plasticity are assumed. Either the penalty function method or the Uzawa's algorithm is utilized to treat the incompressibility of plastic strains. The local and global J-integral values are obtained using a virtual crack extension technique for plates and cylinders with semi-elliptical surface cracks subjected to uniform tensions. The fully plastic solutions for surface cracked plates are given in the form of polynominals with geometric parameters a/t, a/c and the strain hardening exponent (n). In addition, the effects of curvature on fully plastic solutions are discussed through the comparison between the results of plates and cylinders. (author)

  18. Relativistic and the first sectorial harmonics corrections in the critical inclination

    Science.gov (United States)

    Rahoma, W. A.; Khattab, E. H.; Abd El-Salam, F. A.

    2014-05-01

    The problem of the critical inclination is treated in the Hamiltonian framework taking into consideration post-Newtonian corrections as well as the main correction term of sectorial harmonics for an earth-like planet. The Hamiltonian is expressed in terms of Delaunay canonical variables. A canonical transformation is applied to eliminate short period terms. A modified critical inclination is obtained due to relativistic and the first sectorial harmonics corrections.

  19. Origin of a bottom-heavy stellar initial mass function in elliptical galaxies

    International Nuclear Information System (INIS)

    Bekki, Kenji

    2013-01-01

    We investigate the origin of a bottom-heavy stellar initial mass function (IMF) recently observed in elliptical galaxies by using chemical evolution models with a non-universal IMF. We adopt the variable Kroupa IMF with the three slopes (α 1 , α 2 , and α 3 ) dependent on metallicities ([Fe/H]) and densities (ρ g ) of star-forming gas clouds and thereby search for the best IMF model that can reproduce (1) the observed steep IMF slope (α 2 ∼ 3, i.e., bottom-heavy) for low stellar masses (m ≤ 1 M ☉ ) and (2) the correlation of α 2 with chemical properties of elliptical galaxies in a self-consistent manner. We find that if the IMF slope α 2 depends on both [Fe/H] and ρ g , then elliptical galaxies with higher [Mg/Fe] can have steeper α 2 (∼3) in our models. We also find that the observed positive correlation of stellar mass-to-light ratios (M/L) with [Mg/Fe] in elliptical galaxies can be quantitatively reproduced in our models with α 2 ∝β[Fe/H] + γlog ρ g , where β ∼ 0.5 and γ ∼ 2. We discuss whether the IMF slopes for low-mass (α 2 ) and high-mass stars (α 3 ) need to vary independently from each other to explain a number of IMF-related observational results self-consistently. We also briefly discuss why α 2 depends differently on [Fe/H] in dwarf and giant elliptical galaxies.

  20. Thermodynamics of Inozemtsev's elliptic spin chain

    International Nuclear Information System (INIS)

    Klabbers, Rob

    2016-01-01

    We study the thermodynamic behaviour of Inozemtsev's long-range elliptic spin chain using the Bethe ansatz equations describing the spectrum of the model in the infinite-length limit. We classify all solutions of these equations in that limit and argue which of these solutions determine the spectrum in the thermodynamic limit. Interestingly, some of the solutions are not selfconjugate, which puts the model in sharp contrast to one of the model's limiting cases, the Heisenberg XXX spin chain. Invoking the string hypothesis we derive the thermodynamic Bethe ansatz equations (TBA-equations) from which we determine the Helmholtz free energy in thermodynamic equilibrium and derive the associated Y-system. We corroborate our results by comparing numerical solutions of the TBA-equations to a direct computation of the free energy for the finite-length hamiltonian. In addition we confirm numerically the interesting conjecture put forward by Finkel and González-López that the original and supersymmetric versions of Inozemtsev's elliptic spin chain are equivalent in the thermodynamic limit.