Gravity-darkening in the Algol system
International Nuclear Information System (INIS)
Kopal, Z.
1979-01-01
Infrared observations of the secondary minimum of the eclipsing system of Algol, secured recently by Nadeau et al. (1978) with the 200 in and 60 in reflectors of Mount Wilson and Palomar Observatories at the effective wavelength of 10 μm, show its light curve to be distinctly dish-shaped i.e. the light diminishes relatively fast in the early stages of the eclipse, and its rate of decline slows down in advanced partial phases. This fact indicates convincingly that the light distribution over the apparent disc of Algol's late-type (contact) component is akin to that produced by the phenomenon of 'gravity-darkening' to a very pronounced degree. An analysis of Algol's infrared light curve during the secondary minimum (when its contact component undergoes eclipse by its nearly spherical mate) observed at an effective wavelength of 10μm, discloses now that the (monochromatic) coefficient of the linear law of gravity-darkening, characterizing the distribution of brightness over the apparent disc of the contact star, comes out again at least twice as large as one which would correspond to a purely radiative energy transfer of total light in the far interior of this star. No physical theory can be advanced to explain this fact - except, possibly, a hypothesis that the observed enhancement of the monochromatic coefficient tau of gravity-darkening over that appropriate for total radiation may be caused by a very wide departure of the outer layer of the respective stars from thermodynamic equilibrium. (Auth.)
GRAVITY-DARKENED SEASONS: INSOLATION AROUND RAPID ROTATORS
Energy Technology Data Exchange (ETDEWEB)
Ahlers, John P. [Physics Department, University of Idaho, Moscow, ID 83844 (United States)
2016-11-20
I model the effect of rapid stellar rotation on a planet’s insolation. Fast-rotating stars have induced pole-to-equator temperature gradients (known as gravity darkening) of up to several thousand Kelvin that affect the star’s luminosity and peak emission wavelength as a function of latitude. When orbiting such a star, a planet’s annual insolation can strongly vary depending on its orbital inclination. Specifically, inclined orbits result in temporary exposure to the star’s hotter poles. I find that gravity darkening can drive changes in a planet’s equilibrium temperature of up to ∼15% due to increased irradiance near the stellar poles. This effect can also vary a planet’s exposure to UV radiation by up to ∼80% throughout its orbit as it is exposed to an irradiance spectrum corresponding to different stellar effective temperatures over time.
Gravity darkening in stars with surface differential rotation
Zorec, J.; Rieutord, M.; Espinosa Lara, F.; Frémat, Y.; Domiciano de Souza, A.; Royer, F.
2017-10-01
Context. The interpretation of stellar apparent fundamental parameters (viewing-angle dependent) requires that they be treated consistently with the characteristics of their surface rotation law. Aims: We aim to develop a model to determine the distribution of the effective temperature and gravity, which explicitly depend on the surface differential rotation law and on the concomitant stellar external geometry. Methods: The basic assumptions in this model are: a) the external stellar layers are in radiative equilibrium; b) the emergent bolometric flux is anti-parallel with the effective gravity; c) the angular velocity in the surface obeys relations like Ω(θ) = Ωo [ 1 + αΥ(θ,k) ] where Υ(θ,k) = coskθ or sinkθ, and where (α,k) are free parameters. Results: The effective temperature varies with co-latitude θ, with amplitudes that depend on the differential-rotation law through the surface effective gravity and the gravity-darkening function (GDF). Although the derived expressions can be treated numerically, for some low integer values of k, analytical forms of the integral of characteristic curves, on which the determination of the GDF relies, are obtained. The effects of the quantities (η,α,k) (η = ratio between centrifugal and gravitational accelerations at the equator) on the determination of the Vsini parameter and on the gravity-darkening exponent are studied. Depending on the values of (η,α,k) the velocity V in the derived Vsini may strongly deviate from the equatorial rotational velocity. It is shown that the von Zeipel's-like gravity-darkening exponent β1 depends on all parameters (η,α,k) and that its value also depends on the viewing-angle I. Hence, there no unique interpretation of this exponent determined empirically in terms of (I,α). Conclusions: We stress that the data on rotating stars should be analyzed by taking into account the rotational effects through the GDF, by assuming k = 2 as a first approximation. Instead of the classic
Gravity darkening in late-type stars. I. The Coriolis effect
Raynaud, R.; Rieutord, M.; Petitdemange, L.; Gastine, T.; Putigny, B.
2018-02-01
Context. Recent interferometric data have been used to constrain the brightness distribution at the surface of nearby stars, in particular the so-called gravity darkening that makes fast rotating stars brighter at their poles than at their equator. However, good models of gravity darkening are missing for stars that posses a convective envelope. Aim. In order to better understand how rotation affects the heat transfer in stellar convective envelopes, we focus on the heat flux distribution in latitude at the outer surface of numerical models. Methods: We carry out a systematic parameter study of three-dimensional, direct numerical simulations of anelastic convection in rotating spherical shells. As a first step, we neglect the centrifugal acceleration and retain only the Coriolis force. The fluid instability is driven by a fixed entropy drop between the inner and outer boundaries where stress-free boundary conditions are applied for the velocity field. Restricting our investigations to hydrodynamical models with a thermal Prandtl number fixed to unity, we consider both thick and thin (solar-like) shells, and vary the stratification over three orders of magnitude. We measure the heat transfer efficiency in terms of the Nusselt number, defined as the output luminosity normalised by the conductive state luminosity. Results: We report diverse Nusselt number profiles in latitude, ranging from brighter (usually at the onset of convection) to darker equator and uniform profiles. We find that the variations of the surface brightness are mainly controlled by the surface value of the local Rossby number: when the Coriolis force dominates the dynamics, the heat flux is weakened in the equatorial region by the zonal wind and enhanced at the poles by convective motions inside the tangent cylinder. In the presence of a strong background density stratification however, as expected in real stars, the increase of the local Rossby number in the outer layers leads to uniformisation of
Meridional flow and differential rotation by gravity darkening in fast rotating solar-type stars
Rüdiger, G.; Küker, M.
2002-04-01
An explanation is presented for the rather strong total surface differential rotation of the observed very young solar-type stars like AB Dor and PZ Tel. Due to its rapid rotation, a non-uniform energy flux leaves the stellar core so that the outer convection zone is non-uniformly heated from below. Due to this ``gravity darkening'' of the equator, a meridional flow is created flowing equatorwards at the surface and thus accelerating the equatorial rotation. The effect linearly grows with the normalized pole-equator difference, epsilon , of the heat-flux at the bottom of the convection zone. A rotation rate of about 9 h leads to epsilon =0.1 for a solar-type star. In this case the resulting equator-pole differences of the angular velocity at the stellar surface, delta Omega , varies from unobservable 0.005 day-1 to the (desired) value of 0.03 day-1 when the dimensionless diffusivity factors cnu and cchi vary between 1 and 0.1 (standard value cnu =~ cchi =~ 0.3, see Table \\ref{tab1}). In all cases the related temperature differences between pole and equator at the surface are unobservably small. The (clockwise) meridional circulation which we obtain flows opposite to the (counterclockwise) circulation appearing as a byproduct in the Lambda -theory of the non-uniform rotation in outer convection zones. The consequences of this situation for those dynamo theories of stellar activity are discussed that work with the meridional circulation as the dominant magnetic-advection effect in latitude to produce the solar-like form of the butterfly diagram.
International Nuclear Information System (INIS)
Yamai, Hideki; Konishi, Satoshi; Yamanishi, Toshihiko; Okuno, Kenji
1994-01-01
Liquid phase catalytic exchange (LPCE) is effective method for enrichment and removal of tritium from tritiated water. Capacity coefficients of operating LPCE column that are essential to evaluate column performance were measured. Experiments were performed with short catalyst packed columns and effect of inclination was studied. Method for evaluation of capacity coefficients was established from measurement of isotope concentration of liquid, vapor, gas phases at the two ends of the column. The capacity coefficients were measured under various superficial gas velocities. Feasibility study of helical columns with roughened inner surface was performed with short inclined columns. The column performance was not strongly affected by the inclination. The result indicates technological feasibility of helical LPCE column, that is expected to have operation stability and reduced height
Valuation of coefficient of rolling friction by the inclined plane method
Ciornei, F. C.; Alaci, S.; Ciogole, V. I.; Ciornei, M. C.
2017-05-01
A major objective of tribological researches is characterisation of rolling friction, due to various cases encountered in classical engineering applications, like gear transmissions and cam mechanisms or more recent examples met in bioengineering and biomedical devices. A characteristic of these examples consists in reduced dimensions of the contact zones, theoretically zero, the relative motion occurring between the contact points being either sliding or rolling. A characteristic parameter for the rolling motion is the coefficient of rolling friction. The paper proposes a method for estimation of coefficient of rolling friction by studying the motion of a body of revolution on an inclined plane. Assuming the hypothesis that moment of rolling friction is proportional to the normal reaction force, the law of motion for the body on the inclined plane is found under the premise of pure rolling. It is reached the conclusion that there is an uniformly accelerated motion, and thus for a known plane slope, it is sufficient to find the time during which the body runs a certain distance, starting from motionless situation. To obtain accurate results assumes finding precisely the time of motion. The coefficient of rolling friction was estimated for several slopes of the inclined plane and it is concluded that with increased slope, the values of coefficient of rolling friction increase, fact that suggest that the proportionality between the rolling torque and normal load is valid only for domains of limited variations of normal load.
Heat transfer coefficient in pool boiling for an electrically heated tube at various inclinations
International Nuclear Information System (INIS)
Fahmy, A.S.A.; Mariy, A.H.; Mahmoud, S.I.; Ibrahim, N.A.
1987-01-01
An experimental investigation is carried out study the behaviour of heat transfer in pool boiling from a vertical and inclined heated tube at atmospheric pressure. An imperial correlation joining the different parameters affecting the heat transfer coefficient in pool boiling for an electrically heated tube at various inclinations is developed. Two test sections (zircaloy-4 and stainless steel) of 16 n n outer diameter and 120 nm length are investigated. Four levels of heat flux are used for heating the two lest sections (e.g. 381, 518, 721 and 929 k.watt/n 2). The maximum surface temperature achieved is 146.5 degree c for both materials, and the maximum bulk temperature is 95 degree C. It is found that the average heat transfer coefficient is inversely proportional with heated length l, where it reaches a constant value in the horizontal position. The heat transfer coefficient curves at various inclinations with respect to the heated tube length pass around one point which is defined as limit length
Effect of inclined ribs on heat transfer coefficient in stationary square channel
Directory of Open Access Journals (Sweden)
Natthaporn Kaewchoothong
2017-11-01
Full Text Available The main objective of this research is to study the effect of rib arrangement on the distributions of the local heat transfer coefficient in a stationary channel. In this study, the ribs with square cross section were used to place on two side walls for study. The rib height-to-hydraulic diameter ratio (e/D h and the rib pitch-to-height (p/e ratio were fixed at 0.133 and 10, respectively. Three different types of rib arrangement for inclined ribs, V-shaped ribs and inverted V-shaped ribs were investigated. The rib angle of attack (α was varied from 30° to 90° for inclined ribs and 45° and 60° for both V-shaped and inverted V-shaped ribs, and compared at constant Reynolds number Re =30000. Thermal Liquid Crystal sheet was applied for evaluating the heat transfer distributions. The results showed that the average Nusselt number on surface with rib inclined angle at 60°, 45°, and 60° V-shaped ribs was improved up to about 20%, 25% and 30% higher than case of angle 90° and the rib inclined angle at 60° V-shaped ribs provided the highest Nusselt number covering largest area when compared to the other cases.
Directory of Open Access Journals (Sweden)
B. Stojanovic
2009-06-01
Full Text Available The paper presents experimental research of thermal conductivity coefficients of the siliceous sand bed fluidized by air and an experimental investigation of the particle size influence on the heat transfer coefficient between fluidized bed and inclined exchange surfaces. The measurements were performed for the specific fluidization velocity and sand particle diameters d p=0.3, 0.5, 0.9 mm. The industrial use of fluidized beds has been increasing rapidly in the past 20 years owing to their useful characteristics. One of the outstanding characteristics of a fluidized bed is that it tends to maintain a uniform temperature even with nonuniform heat release. On the basis of experimental research, the influence of the process's operational parameters on the obtained values of the bed's thermal conductivity has been analyzed. The results show direct dependence of thermal conductivity on the intensity of mixing, the degree of fluidization, and the size of particles. In the axial direction, the coefficients that have been treated have values a whole order higher than in the radial direction. Comparison of experimental research results with experimental results of other authors shows good agreement and the same tendency of thermal conductivity change. It is well known in the literature that the value of the heat transfer coefficient is the highest in the horizontal and the smallest in the vertical position of the heat exchange surface. Variation of heat transfer, depending on inclination angle is not examined in detail. The difference between the values of the relative heat transfer coefficient between vertical and horizontal heater position for all particle sizes reduces by approximately 15% with the increase of fluidization rate.
Variation of the Friction Coefficient for a Cylinder Rolling down an Inclined Board
Yan, Zixiang; Xia, Heming; Lan, Yueheng; Xiao, Jinghua
2018-01-01
A cylinder rolling down an inclined board is a commonly seen and interesting object to study and it is also easy to experiment with and model. Following what has become a popular practice, we use smartphones to measure the angular acceleration of a cylinder rolling down a plane of different inclining angles. The friction force deviates from the…
Aerodynamic coefficients of stationary dry inclined bridge cables in laminar flow
DEFF Research Database (Denmark)
Matteoni, Giulia; Georgakis, Christos; Ricciardelli, Francesco
2011-01-01
Stay cables are the most flexible elements of cable-stayed bridges. When exposed to wind loading, they often undergo large amplitude vibrations, thus motivating serious design concerns. In most cases, vibrations are observed in the presence of water rivulets or ice accretions, which lead...... to an effective change in the cable cross section, and its aerodynamic properties. On the other hand, divergent, self-excited vibrations have been observed in the field also for dry, inclined stay cables, in warm temperatures. The need for reliable design guidelines for inclined stay cables has motivated...
Rivera, Andrea
2016-01-01
From moving ramps to playground slides, inclined planes are at work all over in our world today. Learn all about them in five easy-to-read chapters. Vibrant, full-color photos, bolded glossary words, and a key stats section let readers zoom in even deeper. Aligned to Common Core Standards and correlated to state standards. Abdo Zoom is a division of ABDO.
Precession of a Spinning Ball Rolling down an Inclined Plane
Cross, Rod
2015-01-01
A routine problem in an introductory physics course considers a rectangular block at rest on a plane inclined at angle a to the horizontal. In order for the block not to slide down the incline, the coefficient of sliding friction, µ, must be at least tan a. The situation is similar for the case of a ball rolling down an inclined plane. In order…
Vehicle with inclinable caterpillars
International Nuclear Information System (INIS)
Carra, O.; Delevallee, A.
1991-01-01
Vehicle has a body with propulsion assemblies that drive caterpillar tracks. When a propulsion unit inclines about its articulation axis it is aided by an advance movement of the caterpillar track in the opposite direction of rotation [fr
Evaporation of inclined water droplets
Kim, Jin Young; Hwang, In Gyu; Weon, Byung Mook
2017-01-01
When a drop is placed on a flat substrate tilted at an inclined angle, it can be deformed by gravity and its initial contact angle divides into front and rear contact angles by inclination. Here we study on evaporation dynamics of a pure water droplet on a flat solid substrate by controlling substrate inclination and measuring mass and volume changes of an evaporating droplet with time. We find that complete evaporation time of an inclined droplet becomes longer as gravitational influence by inclination becomes stronger. The gravity itself does not change the evaporation dynamics directly, whereas the gravity-induced droplet deformation increases the difference between front and rear angles, which quickens the onset of depinning and consequently reduces the contact radius. This result makes the evaporation rate of an inclined droplet to be slow. This finding would be important to improve understanding on evaporation dynamics of inclined droplets. PMID:28205642
Bidispersive-inclined convection
Mulone, Giuseppe; Straughan, Brian
2016-01-01
A model is presented for thermal convection in an inclined layer of porous material when the medium has a bidispersive structure. Thus, there are the usual macropores which are full of a fluid, but there are also a system of micropores full of the same fluid. The model we employ is a modification of the one proposed by Nield & Kuznetsov (2006 Int. J. Heat Mass Transf. 49, 3068–3074. (doi:10.1016/j.ijheatmasstransfer.2006.02.008)), although we consider a single temperature field only. PMID:27616934
Simulation of Canopy Leaf Inclination Angle in Rice
Directory of Open Access Journals (Sweden)
Xiao-cui ZHANG
2013-11-01
Full Text Available A leaf inclination angle distribution model, which is applicable to simulate leaf inclination angle distribution in six heights of layered canopy at different growth stages, was established by component factors affecting plant type in rice. The accuracy of the simulation results was validated by measured values from a field experiment. The coefficient of determination (R2 and the root mean square error (RMSE between the simulated and measured values were 0.9472 and 3.93%, respectively. The simulation results showed that the distribution of leaf inclination angles differed among the three plant types. The leaf inclination angles were larger in the compact variety Liangyoupeijiu with erect leaves than in the loose variety Shanyou 63 with droopy leaves and the intermediate variety Liangyou Y06. The leaf inclination angles were distributed in the lower range in Shanyou 63, which matched up with field measurements. The distribution of leaf inclination angles in the same variety changed throughout the seven growth stages. The leaf inclination angles enlarged gradually from transplanting to booting. During the post-booting period, the leaf inclination angle increased in Shanyou 63 and Liangyou Y06, but changed little in Liangyoupeijiu. At every growth stage of each variety, canopy leaf inclination angle distribution on the six heights of canopy layers was variable. As canopy height increased, the layered leaf area index (LAI decreased in all the three plant types. However, while the leaf inclination angles showed little change in Liangyoupeijiu, they became larger in Shanyou 63 but smaller in Liangyou Y06. The simulation results used in the constructed model were very similar to the actual measurement values. The model provides a method for estimating canopy leaf inclination angle distribution in rice production.
Pool Boiling CHF in Inclined Narrow Annuli
International Nuclear Information System (INIS)
Kang, Myeong Gie
2010-01-01
by Kang to identify the combined effects of the surface orientation and a confined space on pool boiling heat transfer in annuli. The gap size was 15 mm and the annuli with both open and closed bottoms were considered. At a given heat flux, the heat transfer coefficient was increased with the inclination angle increase. However, no occurrence of the CHF was observed regardless of the flow inlet condition for the given gap size and heat fluxes tested. Summarizing the published results, it can be said that the narrow gap size, restriction of the bottom inlet flow into the confined space, and the inclination angle not only changes nucleate boiling heat transfer but also initiates the CHF. Therefore, the present study is aimed at the investigation of the effects of a narrow gap size (5 mm) on pool boiling heat transfer in inclined annuli to improve Kang's previous results
Strength Calculation of Inclined Sections of Reinforced Concrete Elements under Transverse Bending
Filatov, V. B.
2017-11-01
The authors propose a design model to determine the strength of inclined sections of bent reinforced concrete elements without shear reinforcement for the action of transverse force taking into account the aggregate interlock forces in the inclined crack. The calculated dependences to find out the components of forces acting in an inclined section are presented. The calculated dependences are obtained from the consideration of equilibrium conditions of the block over the inclined crack. A comparative analysis of the experimental values of the failure loads of the inclined section and the theoretical values obtained for the proposed dependencies and normative calculation methods is performed. It is shown that the proposed design model makes it possible to take into account the effect the longitudinal reinforcement percentage has on the inclined section strength, the element cross section height without the introduction of empirical coefficients which contributes to an increase in the structural safety of design solutions including the safety of high-strength concrete elements.
Friction and drag forces on spheres propagating down inclined planes
Tee, Yi Hui; Longmire, Ellen
2017-11-01
When a submerged sphere propagates along an inclined wall at terminal velocity, it experiences gravity, drag, lift, and friction forces. In the related equations of motion, the drag, lift and friction coefficients are unknown. Experiments are conducted to determine the friction and drag coefficients of the sphere over a range of Reynolds numbers. Through high speed imaging, translational and rotational velocities of spheres propagating along a glass plate are determined in liquids with several viscosities. The onset of sliding motion is identified by computing the dimensionless rotation rate of the sphere. Using drag and lift coefficients for Re friction coefficients are calculated for several materials. The friction coefficients are then employed to estimate the drag coefficient for 350 frictional force over this Re range. Supported by NSF (CBET-1510154).
Inada, Emi; Saitoh, Issei; Hayasaki, Haruaki; Iwase, Yoko; Kubota, Naoko; Takemoto, Yoshihiko; Yamasaki, Youichi
2012-01-01
The purpose of this study was to clarify the characteristics of permanent and primary tooth-crown inclinations. Landmark points from cephalograms and dental casts of two groups; 23 women (mean 20.3 +/- 3.3 years) and 11 girls (mean 5.2 +/- 0.1 years) were digitized, and the coordinates were integrated and transformed to a standardized plane. The 3-dimensional crown inclinations were projected on the sagittal plane, and the angles between the tooth vectors and the FH plane were calculated. An independent-group t-test was used to test for group differences of each tooth inclination, and correlation coefficients were generated for the inclination angles among the permanent and primary teeth. Most maxillary tooth-crown inclinations showed significant age-related differences, while only the second premolar and primary second molar differed significantly in the mandible. The maxillary molars were parallel to the corresponding mandibular molars and correlated with each other, but the primary molars were not. Significant correlations were found between inclinations of most permanent teeth, but not the primary teeth. Maxillary tooth-crown inclinations change during growth, but tooth-crown inclinations of the mandibular teeth do not.
[Reliability study in the measurement of the cusp inclination angle of a chairside digital model].
Xinggang, Liu; Xiaoxian, Chen
2018-02-01
This study aims to evaluate the reliability of the software Picpick in the measurement of the cusp inclination angle of a digital model. Twenty-one trimmed models were used as experimental objects. The chairside digital impression was then used for the acquisition of 3D digital models, and the software Picpick was employed for the measurement of the cusp inclination of these models. The measurements were repeated three times, and the results were compared with a gold standard, which was a manually measured experimental model cusp angle. The intraclass correlation coefficient (ICC) was calculated. The paired t test value of the two measurement methods was 0.91. The ICCs between the two measurement methods and three repeated measurements were greater than 0.9. The digital model achieved a smaller coefficient of variation (9.9%). The software Picpick is reliable in measuring the cusp inclination of a digital model.
Locomotor Behavior of Chickens Anticipating Incline Walking
Directory of Open Access Journals (Sweden)
Chantal LeBlanc
2018-01-01
Full Text Available Keel bone damage (KBD is prevalent in hens raised for egg production, and ramps between different tiers in aviaries have potential to reduce the frequency of falls resulting in KBD. Effective use of ramps requires modulation of locomotion in anticipation of the incline. Inadequate adaptive locomotion may be one explanation why domestic layer hens (Gallus gallus domesticus exhibit high rates of KBD. To improve understanding of the capacity of hens to modulate their locomotion in anticipation of climbing, we measured the effects of incline angle upon the mechanics of the preparatory step before ascending a ramp. Because the energetic challenge of climbing increases with slope, we predicted that as angle of incline increased, birds during foot contact with the ground before starting to climb would increase their peak force and duration of contact and reduce variation in center of pressure (COP under their foot. We tested 20 female domestic chickens on ramp inclines at slopes of +0°, +40°, and +70° when birds were 17, 21, 26, 31, and 36 weeks of age. There were significantly higher vertical peak ground reaction forces in preparation at the steepest slope, and ground contact time increased significantly with each increase in ramp angle. Effects upon variation in COP were not apparent; likewise, effects of limb length, age, body mass were not significant. Our results reveal that domestic chickens are capable of modulating their locomotion in response to incline angle.
International Nuclear Information System (INIS)
Bonamy, S.E.; Symons, J.G.
1974-08-01
Nucleate pool boiling of distilled water from an electrically heated surface at atmospheric pressure is studied for varying heating surface inclinations. The constants of the accepted boiling equation phi = K Tsup(B) and the Rohsenow Correlation Coefficient are found to be dependent on surface orientation. Convection cooling is observed to play a major role in pool boiling phenomena and causes large changes in the heat transfer rates for a given excess of temperature of the heated surface. Active nucleation site density is studied and found to be independent of surface inclination. Empirical relations are presented to provide an understanding of the effects of inclination on other boiling parameters. (author)
Inclined nanoimprinting lithography for 3D nanopatterning
International Nuclear Information System (INIS)
Liu Zhan; Bucknall, David G; Allen, Mark G
2011-01-01
We report a non-conventional shear-force-driven nanofabrication approach, inclined nanoimprint lithography (INIL), for producing 3D nanostructures of varying heights on planar substrates in a single imprinting step. Such 3D nanostructures are fabricated by exploiting polymer anisotropic dewetting where the degree of anisotropy can be controlled by the magnitude of the inclination angle. The feature size is reduced from micron scale of the template to a resultant nanoscale pattern. The underlying INIL mechanism is investigated both experimentally and theoretically. The results indicate that the shear force generated at a non-zero inclination angle induced by the INIL apparatus essentially leads to asymmetry in the polymer flow direction ultimately resulting in 3D nanopatterns with different heights. INIL removes the requirements in conventional nanolithography of either utilizing 3D templates or using multiple lithographic steps. This technique enables various 3D nanoscale devices including angle-resolved photonic and plasmonic crystals to be fabricated.
Breakwaters with Vertical and Inclined Concrete Walls
DEFF Research Database (Denmark)
Burcharth, Hans Falk
Following the PIANC PTC II working group on Analyses of Rubble Mound Breakwaters it was, in 1991, decided to form Working Group (WG) n° 28 on "Breakwaters with vertical and inclined concrete walls" The scope of the work was to achieve a better understanding of the overall safety aspects in the de......Following the PIANC PTC II working group on Analyses of Rubble Mound Breakwaters it was, in 1991, decided to form Working Group (WG) n° 28 on "Breakwaters with vertical and inclined concrete walls" The scope of the work was to achieve a better understanding of the overall safety aspects...
HEAT EXCHANGE AND AERODYNAMICS OF THE COMBINED TUBING BUNDLES WITH CROSS INCLINED FINS
Directory of Open Access Journals (Sweden)
Knyazyuk V. I
2013-04-01
Full Text Available The paper presents results of experimental research and analyses air-side thermal performance of combined tube bundles with cross inclined fins. The empirical correlations for heat transfer and flow friction of tubes with inclined fins at different orientation finned tubes relatively of air flow are presented. The errors of thermal and aerodynamic tests are 3-5% and 9.2%, respectively. The proposed correlations describe an experimental data with a coefficient of determination about 0.979-0.998. The impact of tubes arrangement in a bundle on energy performance of heat exchanger were analyzed using complete and local heat modeling methods at a stationary heat flux. Experimental research indicates that efficiency of inclined fins can be calculated by using the equation for cross rectangular fins with average deviation of ±5 %.
Aerodynamics of flapping insect wing in inclined stroke plane hovering with ground effect
Gowda v, Krishne; Vengadesan, S.
2014-11-01
This work presents the time-varying aerodynamic forces and the unsteady flow structures of flapping insect wing in inclined stroke plane hovering with ground effect. Two-dimensional dragonfly model wing is chosen and the incompressible Navier-Stokes equations are solved numerically by using immersed boundary method. The main objective of the present work is to analyze the ground effect on the unsteady forces and vortical structures for the inclined stroke plane motions. We also investigate the influences of kinematics parameters such as Reynolds number (Re), stroke amplitude, wing rotational timing, for various distances between the airfoil and the ground. The effects of aforementioned parameters together with ground effect, on the stroke averaged force coefficients and regimes of force behavior are similar in both normal (horizontal) and inclined stroke plane motions. However, the evolution of the vortex structures which produces the effects are entirely different.
Internally cooled V-shape inclined monochromator
Czech Academy of Sciences Publication Activity Database
Oberta, Peter; Áč, V.; Hrdý, Jaromír
2008-01-01
Roč. 15, - (2008), 8-11 ISSN 0909-0495 R&D Projects: GA AV ČR IAA100100716 Grant - others:VEGA(SK) 1/4134/07 Institutional research plan: CEZ:AV0Z10100522 Keywords : inclined monochromator * heat load * internal cooling Subject RIV: BH - Optics, Masers, Lasers Impact factor: 2.333, year: 2008
A matter of chance, environment and inclination
Indian Academy of Sciences (India)
Lawrence
Why did I opt for science subjects in school, and choose a career in science? Perhaps the best answer would be. 'Chance, Environment and Inclination'. Here I am, considered to be a professional woman scien- tist, working towards understanding the biology of the malaria parasite and the challenges put up by the same.
Inclined test of nacelle wind lidar
DEFF Research Database (Denmark)
Courtney, Michael
A nacelle wind lidar, placed at ground level, is tested by inclining the laser beams to bisect a measurement mast at a known distance and height. The horizontal wind speed reported by the lidar is compared to a reference cup anemometer mounted on the mast at the comparison height....
Vehicle with inclinable caterpillar propulsion units
International Nuclear Information System (INIS)
Clar, G.
1991-01-01
This vehicle usable in hostile environment such nuclear industry has four propulsion units with a caterpillar track and two integrated motors: one for advancing the caterpillar track and the other for inclining the propulsion unit when overcoming obstacles. Each propulsion unit is easily replaceable because there are no mechanical parts in the body of the vehicle [fr
Granular flow down a flexible inclined plane
Directory of Open Access Journals (Sweden)
Sonar Prasad
2017-01-01
Full Text Available Discrete and continuous systems are commonly studied individually, but seldom together. Indeed, granular flows are typically studied through flows over a rigid base. Here, we investigate the behaviour of granular flows over an inclined, flexible base. The flexible base is modeled as a rigid platform mounted on springs and has one degree of freedom. The base vibrations are introduced by the flow. We simulate such flows through a discrete element method and compare with experiments. We find that a flexible base increased the upper limit of the inclination up to which a steady flow is possible by at least 3 degrees. This stabilized zone may have important implications in applications such as conveyor belts and chutes.
Granular flow down a flexible inclined plane
Sonar, Prasad; Sharma, Ishan; Singh, Jayant
2017-06-01
Discrete and continuous systems are commonly studied individually, but seldom together. Indeed, granular flows are typically studied through flows over a rigid base. Here, we investigate the behaviour of granular flows over an inclined, flexible base. The flexible base is modeled as a rigid platform mounted on springs and has one degree of freedom. The base vibrations are introduced by the flow. We simulate such flows through a discrete element method and compare with experiments. We find that a flexible base increased the upper limit of the inclination up to which a steady flow is possible by at least 3 degrees. This stabilized zone may have important implications in applications such as conveyor belts and chutes.
Stress field of a dislocating inclined fault
Energy Technology Data Exchange (ETDEWEB)
Huang, F.; Wang, T.
1980-02-01
Analytical expressions are derived for the stress field caused by a rectangular dislocating fault of an arbitrary dip in a semi-infinite elastic medium for the case of unequal Lame constants. The results of computations for the stress fields on the ground surface of an inclined strike-slip and an inclined dip-slip fault are represented by contour maps. The effects of Poisson Ratio of the medium, the dip angle, upper and lower boundaries of the faults on the stress field at surface have been discussed. As an application, the contour maps for shear stress and hydrostatic stress of near fields of the Tonghai (1970), Haicheng (1975) and Tangshan (1976) earthquakes have been calculated and compared with the spatial distributions of strong aftershocks of these earthquakes. It is found that most of the strong aftershocks are distributed in the regions of tensional stress, where the hydrostatic stress is positive.
Stress field of a dislocating inclined fault
Energy Technology Data Exchange (ETDEWEB)
Huang, F.; Wang, T.
1980-02-01
In this paper, analytical expressions of the stress field given rise by a rectangular dislocating fault of an arbitrary dip in a semi-infinite elastic medium for the case of unequal Lame constants are derived. The results of computations for the stress fields on the ground surface of an inclined strike-slip and an inclined dip-slip fault are represented by contour maps. The effects of the Poisson Ratio of the medium, the dip angle, upper and lower boundaries of the faults on the stress field at the surface have been discussed. As an application, the contour maps for shear stress and hydrostatic stress of near fields of the Tonghai (1970), Haicheng, (1975) and Tangshan (1976) earthquakes have been calculated and compared with the spatial distributions of strong aftershocks of these earthquakes. It is found that most of the strong aftershocks are distributed in the regions of tensional stress where the hydrostatic stress is positive.
Bubble streams rising beneath an inclined surface
Bird, James; Brasz, Frederik; Kim, Dayoung; Menesses, Mark; Belden, Jesse
2017-11-01
Bubbles released beneath a submerged inclined surface can tumble along the wall as they rise, dragging the surrounding fluid with them. This effect has recently regained attention as a method to mitigate biofouling in marine environment, such as a ship hull. It appears that the efficacy of this approach may be related to the velocity of the rising bubbles and the extent that they spread laterally as they rise. Yet, it is unclear how bubble stream rise velocity and lateral migration depend on bubble size, flow rate, and inclination angle. Here we perform systematic experiments to quantify these relationships for both individual bubble trajectories and ensemble average statistics. Research supported by the Office of Naval Research under Grant Number award N00014-16-1-3000.
HIGH-INCLINATION ASTEROID FAMILIES V1.0
National Aeronautics and Space Administration — This data set contains the high-inclination asteroid families of Gil-Hutton (2006). A data set of 3652 high-inclination numbered asteroids was analyzed to search for...
Incisor inclination and perceived tooth colour changes.
Ciucchi, Philip; Kiliaridis, Stavros
2017-10-01
Social attractiveness is influenced by a variety of different smile-related factors. We evaluated whether the degree of upper central incisor proclination can result in tooth colour change. Forty young adult subjects (20-25 years) in good health with a complete sound dentition were selected. The subjects were seated in standardized light conditions with an above-directed light source. Their natural head position was stated as 0 degrees. To mimic the range of possible anterior torque movements they were asked to tilt their heads upward +15 degrees (upward tilting) and downward -15 degrees (downward tilting). Frontal macro photographs, parallel to the Frankfort plane of the patient's natural head position were taken at the three head angulations (+15, 0, and -15 degrees ). Photographs were analysed for colour differences at the centre of the incisor clinical crowns with a CIE L*a*b* colour model based software. A paired t-test was used to test for significance between each value for each inclination. Differences were found between the CIE L*a*b* colour values for: upward tilting, downward tilting, and -15 to +15 degrees (total tilting) except for b* values for downward tilting. As the inclination of the subject's head changed downward, the upper incisors were retroclined and the CIE L*a*b* values indicated a darker and less green but redder colour component. As the inclination of the subject's head changed upwards the upper incisors were proclined and the L*a*b* values indicated a lighter and less green and yellow but redder and bluer colour component. Proclination of upper incisors caused lighter tooth colour parameters compared to retroclined incisors and colour changes. Orthodontic change of upper incisor inclination may induce alterations on how tooth colour is perceived.
Tooth Wear Inclination in Great Ape Molars.
Knight-Sadler, Jordan; Fiorenza, Luca
2017-01-01
Primate dietary diversity is reflected in their dental morphology, with differences in size and shape of teeth. In particular, the tooth wear angle can provide insight into a species' ability to break down certain foods. To examine dietary and masticatory information, digitized polygon models of dental casts provide a basis for quantitative analysis of wear associated with tooth attrition. In this study, we analyze and compare the wear patterns of Pongo pygmaeus, Gorilla gorillagorilla and Pan troglodytes schweinfurthii lower molars, focusing on the degree of inclination of specific wear facets. The variation in wear angles appears to be indicative of jaw movements and the specific stresses imposed on food during mastication, reflecting thus the ecology of these species. Orangutans exhibit flatter wear angles, more typical of a diet consisting of hard and brittle foods, while gorillas show a wear pattern with a high degree of inclination, reflecting thus their more leafy diet. Chimpanzees, on the other hand, show intermediate inclinations, a pattern that could be related to their highly variable diet. This method is demonstrated to be a powerful tool for better understanding the relationship between food, mastication and tooth wear processes in living primates, and can be potentially used to reconstruct the diet of fossil species. © 2017 S. Karger AG, Basel.
A jumping cylinder in an incline
Gomez, Raul W.; Hernandez, Jorge; Marquina, Vivianne
2012-02-01
The problem of a cylinder of mass m and radius r, with its center of mass out of the cylinder axis, rolling in an incline that makes an angle α respect to the horizontal is analyzed. The equation of motion is solved to obtain the site where the cylinder loses contact with the incline (jumps). Several simplifications are made: the analyzed system consists of an homogeneous disc with a one dimensional straight line of mass parallel to the disc axis at a distance d Styrofoam cylinder of radius r = 10.0 ± 0.05 cm, high h = 5.55 ± 0.05 cm and a mass m1 = 24.45 ± 0.05 g, to which a 9.50 ± 0.01 mm diameter and 5.10 ± 0.001 cm long brass road of mass m2 = 30.75 ± 0.05 g was imbibed parallel to the disc axis at a distance of 5.40 ± 0.05 cm from it. Then the disc rolls on a 3.20 m long wooden ramp inclined at 30 and 45 respect to the horizontal. To determine the jumping site, the movements were recorded with a high-speed video camera (Casio EX ZR100) at 400 frames per second. The experimental results agree well with the theoretical predictions.
Soil-structure interaction on inclined soil layers
International Nuclear Information System (INIS)
Massa, G.; De Stefano, R.
1983-01-01
The case history presented deals with a Category I building having two-thirds of its base founded on a wedge of hard material. This wedge is underlain by an inclined layer of softer material, which also directly supports the remaining one-third of the foundation. The inclined layer is underlain by a third material, possessing large stiffness and extending to great depth. This case is analyzed with the methodology described below: - Determination of the static soil compliances by discretizing the foundation area into a number of strips and taking the soil profile as horizontally layered under each strip. Lumped parameter soil compliances for the whole foundation are obtained by weighting the contributions to stiffness in proportion to the area of each strip. - Definition of the degree of coupling between modes. The soil compliances defined in the previous step include coupling between the vertical and rocking modes and the horizontal and torsional modes through the positioning of the corresponding soil springs. The degree of coupling is checked through a static finite element analysis. - Frequency correction of the static soil compliances taking into account the inhomogeneity of the foundation conditions. The correction is based on obtaining dynamic stiffness coefficients for extreme configurations of the soil profile. - Assessment of the sliding potential of the structure under earthquake loading, considering eccentricities of the dynamic forces and non-uniform friction resistance over the foundation area, accounting for the frictional capacity of the different bearing materials. It is concluded that the simplified technique can provide accurate soil compliances, coupling and frequency corrections for soil-structure interaction on sloping layers, and an appropriate assessment of the sliding potential. (orig./HP)
Impact of slope inclination on salt accumulation
Nachshon, Uri
2017-04-01
Field measurements indicated on high variability in salt accumulation along natural and cultivated slopes, even for relatively homogeneous soil conditions. It was hypothesised that slope inclination has an impact on the location of salt accumulation along the slope. A set of laboratory experiments and numerical models were used to explore the impact of slope inclination on salt accumulation. It was shown, experimentally, that for conditions of saline water source at the lower boundary of the slope - salt accumulates in low concentrations and homogeneously along the entire slope, for moderate slopes. However, as inclination increases high salt concentrations were observed at the upper parts of the slope, leaving the lower parts of the slope relatively free of salt. The traditional flow and transport models did not predict the experimental observations as they indicated also for the moderate slopes on salt accumulation in the elevated parts of the slope, away of the saline water source. Consequently - a conceptual model was raised to explain the laboratory observations. It was suggested that the interactions between slope angle, evaporation rates, hydraulic conductivity of the medium and distribution of wetness along the slope affect the saline water flow path through the medium. This lead to preferential flow path close to the soil-atmosphere interface for the steep slopes, which leads to constant wash of the salts from the evaporation front upward towards the slope upper parts, whereas for the moderate slopes, flow path is below the soil-atmosphere interface, therefore salt that accumulates at the evaporation front is not being transported upward. Understanding of salt dynamics along slopes is important for agricultural and natural environments, as well as for civil engineering purposes. Better understanding of the salt transport processes along slopes will improve our ability to minimize and to cope with soil salinization processes. The laboratory experiments and
Inclined solar chimney for power production
Energy Technology Data Exchange (ETDEWEB)
Panse, S.V., E-mail: sudhirpanse@yahoo.com [Institute of Chemical Technology, Matunga, Mumbai 400 019 (India); Jadhav, A.S.; Gudekar, A.S. [Institute of Chemical Technology, Matunga, Mumbai 400 019 (India); Joshi, J.B. [Institute of Chemical Technology, Matunga, Mumbai 400 019 (India); Homi Bhabha National Institute, Trombay, Mumbai 400 094 (India)
2011-09-15
Highlights: {yields} Solar energy harnessing using inclined face of high mountains as solar chimney. {yields} Solar chimneys with structural stability, ease of construction and lower cost. {yields} Mathematical model developed, using complete (mechanical and thermal) energy balance. {yields} Can harness wind power also, as wind velocities at mountain top add to power output. {yields} Air temperature and velocity increase, as air rises in inclined chimney. - Abstract: The present concept of solar chimney is a tall vertical chimney constructed at the center of a large area, which is the collector. This creates questions about stability and economic viability of the chimney and also demands elaborate engineering techniques for constructing a tall chimney. We suggest geometry of 'Inclined Solar Chimney' (ISC), which is constructed along the face of a high rising mountain, on which maximum solar insolation is incident throughout the year. The chimney and the collector get merged here. This makes the structure stable, cost effective and easy for construction. A mathematical model has been developed considering the total energy balance. It predicts the temperature and velocity and kinetic power of the emerging air draft for some chosen values of other parameters. The model also shows the proportion in which absorbed solar energy is divided into different forms, and hence predicts the dependence of kinetic of emerging air draft upon dimensions of the chimney and properties of materials used. Further, it is shown that external winds enhance the kinetic power of the emerging air. Thus ISC can also harness the wind energy, available at the top of the mountain.
Using Plasticine (TM) to Measure the Rolling Friction Coefficient.
Castellvi, Francesc; And Others
1995-01-01
Presents an experiment that makes manifest the energy lost to friction of an iron ball moving along an inclined iron rail, which allows students to compute the rolling friction coefficient. Uses a method based on measurement of deformation produced in a piece of Plasticine by an inelastic collision with the ball and combines mechanical concepts…
EFFECT OF BRIDGE PIERS INCLINATION AND ROUGHNESS ON SCOUR PIT DIMENSIONS
Directory of Open Access Journals (Sweden)
Moaed S. Khalil
2013-05-01
Full Text Available In this paper a laboratory work was performed to study the effect of bridge piers inclination and surface roughness on scour pit dimensions. Fifty four experiments were conducted using three different sizes and inclinations Pier models fixed in a sandy bed channel. First, the axis of the pier was parallel to the flow, then it was inclined by 30° and finally by 45°. Each model was tested under three different flow discharges for a period not less than two hours and at the end of each experiment the dimensions of the scour pit were measured. The same experiments were repeated after roughening the surface of each pier by fine gravel of 2mm in diameter to increase its roughness.The results of the experiment showed a clear reduction in scour pit dimensions after increasing pier roughness, the percentage of decreases in scour depth was between 2 % and 61%, while the scour length decreased between 2.5% and 22%, and finally the width of scour decreases was between 3% and 19.7%. The results also showed that the inclination of pier's axis produced an increase in scour pit dimensions. Finally, the empirical relationships of the results showed that it's possible to explain the relation between the flow discharge and each of scour pit dimensions by a simple linear equation, where the determination coefficient were more than 0.94 for all relations.
Changes of occlusal plane inclination after orthodontic treatment in different dentoskeletal frames.
Li, Jin-le; Kau, Chung; Wang, Min
2014-06-25
The inclination of the occlusal plane (OP) is related to facial types and experiences physiological growth-related changes. The aims of this research were to determine if there were any differences in the inclination of OP in subjects with three types of skeletal malocclusion and to investigate the characteristics and differences of functional occlusal plane (FOP) compared to bisected occlusal plane (BOP). A sample of 90 Caucasians patients was skeletal-classified into three (n = 30), and pre- and post-treatment cephalograms were digitized. Six linear and 8 angular cephalometric measurements were selected. The changes of OP inclination within each group and the differences among the three groups pre- and post-treatment were compared with paired t test and ANOVA test, respectively. The comparison and correlation between BOP and FOP were analyzed with paired t test and coefficient of correlation, respectively. The BOP angle increased in all of the three groups but only had statistically significant differences in skeletal class II patients in a mean of 1.51° (p stability (p > 0.05) in all three groups. The inclination of FOP was closely related to that of BOP (p stability in orthodontically treated patients with all three skeletal patterns.
Directory of Open Access Journals (Sweden)
Justyna Orwat
2017-01-01
Full Text Available The results of marking average courses of subsidence measured on the points of measuring line no. 1 of the “Budryk” Hard Coal Mine, set approximately perpendicularly to a face run of four consecutively mined longwalls in coal bed 338/2 have been presented in the article. Smooth splines were used to approximate the average course of measured subsidence after subsequent exploitation stages. The minimising of the sum of the squared differences between the average and forecasted subsidence, using J. Bialek's formula, was used as a selection criterion of parameter values of smoothing an approximating function. The parameter values of this formula have been chosen in order to match forecasted subsidence with measured ones. The average values of inclinations have been calculated on the basis of approximated values of observed subsidence. It has been shown that by doing this the average values of extreme measured inclinations can be obtained in almost the same way as extreme observed inclinations. It is not necessary to divide the whole profile of a subsidence basin into parts. The obtained values of variability coefficients of a random scattering for subsidence and inclinations are smaller than their values which occur in the literature.
Park, Ill-Woo; Kim, Jung-Yup
2014-10-01
This article describes a novel method to generate a biomimetic walking trajectory for a biped humanoid robot on an inclined surface. We assume that the configuration of the inclined surface is known, and we solve the human-like walking trajectory generation problem by obtaining the solution from the desired zero moment point (ZMP) trajectory to the center of gravity (CoG) trajectory. We present an analytic solution for the walking trajectory generation by using Fourier series. From the given ZMP trajectory biomimetically represented by the Fourier series, we focus on how to find the CoG trajectory in an analytical way. A time-segmentation based approach is adopted for generating the trajectories. The trajectory functions need to be continuous between the segments; thus, the solution is found by calculating the coefficients under these connectivity conditions. We derive a general form of the ZMP equation using a simple inverted pendulum model (SIPM), which includes the ZMP and the CoG trajectories in the horizontal and vertical directions to quantify the walking parameters on the inclined surface. The performance of the proposed approach is verified by conducting walking simulations using a full-body dynamic simulator on three different inclined surfaces and comparing them to the authors' previous approach.
Dense, layered, inclined flows of spheres
Jenkins, James T.; Larcher, Michele
2017-12-01
We consider dense, inclined flows of spheres in which the particles translate in layers, whose existence may be promoted by the presence of a rigid base and/or sidewalls. We imagine that in such flows a sphere of a layer is forced up the back of a sphere of the layer below, lifting a column of spheres above it, and then falls down the front of the lower sphere, until it bumps against the preceding sphere of the lower layer. We calculate the forces and rate of momentum transfer associated with this process of rub, lift, fall, and bump and determine a relation between the ratio of shear stress to normal stress and the rate of strain that may be integrated to obtain the velocity profile. The fall of a sphere and that of the column above it results in a linear increase in the magnitude of the velocity fluctuations with distance from the base of the flow. We compare the predictions of the model with measured profiles of velocity and granular temperature in several different dense, inclined flows.
Measurement of the buccolingual inclination of teeth: manual technique vs 3-dimensional software.
Nouri, Mahtab; Abdi, Amir Hossein; Farzan, Arash; Mokhtarpour, Faraneh; Baghban, AliReza Akbarzadeh
2014-10-01
In this study, we aimed to measure the inclination of teeth on dental casts by a manual technique with the tooth inclination protractor (TIP; MBI, Newport, United Kingdom) and a newly designed 3-dimensional (3D) software program. The correlation of the 2 techniques was evaluated, and the reliability of each technique was assessed separately. This study was conducted on 36 dental casts of normal, well-aligned Class I occlusions; we assessed 432 teeth. All casts had a normal Class I occlusion. After determining the facial axis of the clinical crown and the facial axis points on the dental casts, we measured the inclinations of the incisors and posterior teeth up to the first molars in each dental arch relative to Andrews' occlusal plane and the posterior occlusal plane using the TIP. Moreover, the casts were scanned by a structured-light 3D scanner. The inclination of teeth relative to the occlusal plane was determined using the new software. To assess the reliability, measurements of all teeth from 15 casts were repeated twice by the 2 methods. Intraclass correlation coefficient and Dahlberg's formula were used for calculation of correlation and reliability. Overall, the 2 techniques were not significantly different in the measurements of the inclinations of the teeth in both jaws. The ranges of Dahlberg's formula were 3.1° to 5.8° for the maxilla and 3.3° to 5.9° for the mandible. The overall correlation of the 2 techniques according to the intraclass correlation coefficient was 0.91. For calculation of reliability, the intraclass correlation coefficients for the TIP and the 3D method were 0.73 and 0.82, respectively. The TIP and the 3D software showed a high correlation for measurement of the inclinations of maxillary and mandibular teeth relative to the occlusal plane. Also, the reproducibility of the measurements in each method was high. Copyright © 2014 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.
Gong, Yinchun; Ai, Zhijiu; Sun, Xu; Fu, Biwei
2016-01-01
Analytical buckling models are important for down-hole operations to ensure the structural integrity of the drill string. A literature survey shows that most published analytical buckling models do not address the effects of inclination angle, boundary conditions or friction. The objective of this paper is to study the effects of boundary conditions, friction and angular inclination on the helical buckling of coiled tubing in an inclined wellbore. In this paper, a new theoretical model is established to describe the buckling behavior of coiled tubing. The buckling equations are derived by applying the principles of virtual work and minimum potential energy. The proper solution for the post-buckling configuration is determined based on geometric and natural boundary conditions. The effects of angular inclination and boundary conditions on the helical buckling of coiled tubing are considered. Many significant conclusions are obtained from this study. When the dimensionless length of the coiled tubing is greater than 40, the effects of the boundary conditions can be ignored. The critical load required for helical buckling increases as the angle of inclination and the friction coefficient increase. The post-buckling behavior of coiled tubing in different configurations and for different axial loads is determined using the proposed analytical method. Practical examples are provided that illustrate the influence of the angular inclination on the axial force. The rate of change of the axial force decreases with increasing angular inclination. Moreover, the total axial friction also decreases with an increasing inclination angle. These results will help researchers to better understand helical buckling in coiled tubing. Using this knowledge, measures can be taken to prevent buckling in coiled tubing during down-hole operations.
Directory of Open Access Journals (Sweden)
Yinchun Gong
Full Text Available Analytical buckling models are important for down-hole operations to ensure the structural integrity of the drill string. A literature survey shows that most published analytical buckling models do not address the effects of inclination angle, boundary conditions or friction. The objective of this paper is to study the effects of boundary conditions, friction and angular inclination on the helical buckling of coiled tubing in an inclined wellbore. In this paper, a new theoretical model is established to describe the buckling behavior of coiled tubing. The buckling equations are derived by applying the principles of virtual work and minimum potential energy. The proper solution for the post-buckling configuration is determined based on geometric and natural boundary conditions. The effects of angular inclination and boundary conditions on the helical buckling of coiled tubing are considered. Many significant conclusions are obtained from this study. When the dimensionless length of the coiled tubing is greater than 40, the effects of the boundary conditions can be ignored. The critical load required for helical buckling increases as the angle of inclination and the friction coefficient increase. The post-buckling behavior of coiled tubing in different configurations and for different axial loads is determined using the proposed analytical method. Practical examples are provided that illustrate the influence of the angular inclination on the axial force. The rate of change of the axial force decreases with increasing angular inclination. Moreover, the total axial friction also decreases with an increasing inclination angle. These results will help researchers to better understand helical buckling in coiled tubing. Using this knowledge, measures can be taken to prevent buckling in coiled tubing during down-hole operations.
On liquid films on an inclined plate
BENILOV, E. S.
2010-08-18
This paper examines two related problems from liquid-film theory. Firstly, a steady-state flow of a liquid film down a pre-wetted plate is considered, in which there is a precursor film in front of the main film. Assuming the former to be thin, a full asymptotic description of the problem is developed and simple analytical estimates for the extent and depth of the precursor film\\'s influence on the main film are provided. Secondly, the so-called drag-out problem is considered, where an inclined plate is withdrawn from a pool of liquid. Using a combination of numerical and asymptotic means, the parameter range where the classical Landau-Levich-Wilson solution is not unique is determined. © 2010 Cambridge University Press.
Granular flow over inclined channels with constrictions
Tunuguntla, Deepak; Weinhart, Thomas; Thornton, Anthony; Bokhove, Onno
2013-04-01
Study of granular flows down inclined channels is essential in understanding the dynamics of natural grain flows like landslides and snow avalanches. As a stepping stone, dry granular flow over an inclined channel with a localised constriction is investigated using both continuum methods and particle simulations. Initially, depth-averaged equations of motion (Savage & Hutter 1989) containing an unknown friction law are considered. The shallow-layer model for granular flows is closed with a friction law obtained from particle simulations of steady flows (Weinhart et al. 2012) undertaken in the open source package Mercury DPM (Mercury 2010). The closed two-dimensional (2D) shallow-layer model is then width-averaged to obtain a novel one-dimensional (1D) model which is an extension of the one for water flows through contraction (Akers & Bokhove 2008). Different flow states are predicted by this novel one-dimensional theory. Flow regimes with distinct flow states are determined as a function of upstream channel Froude number, F, and channel width ratio, Bc. The latter being the ratio of the channel exit width and upstream channel width. Existence of multiple steady states is predicted in a certain regime of F - Bc parameter plane which is in agreement with experiments previously undertaken by (Akers & Bokhove 2008) and for granular flows (Vreman et al. 2007). Furthermore, the 1D model is verified by solving the 2D shallow granular equations using an open source discontinuous Galerkin finite element package hpGEM (Pesch et al. 2007). For supercritical flows i.e. F > 1 the 1D asymptotics holds although the two-dimensional oblique granular jumps largely vary across the converging channel. This computationally efficient closed 1D model is validated by comparing it to the computationally more expensiveaa three-dimensional particle simulations. Finally, we aim to present a quasi-steady particle simulation of inclined flow through two rectangular blocks separated by a gap
Inclined Buildings – Some Reasons and Solutions
Kijanka, Małgorzata; Kowalska, Magdalena
2017-10-01
To straighten a leaning building is never easy. There are no standard solutions. On the other hand, there are several, usually historical, leaning structures which have not been rectified, mostly because in the current shape they are a touristic attraction - the best example being the famous Leaning Tower of Pisa. This does not mean however that inclination of load bearing walls can be ignored. Even though in some cases the problem can be treated in terms of serviceability limit states (the deformation is only decreasing the comfort of ‘normal use’ of the building), in the other – it may be a signal of the forthcoming structural failure. The situation must always be treated individually – if the problem concerns a residential building, then cracks on the walls, not-opening doors or tilted ceilings, which often coincide with the leaning of the external walls, are always the reason of worry and such a building needs to be straightened. The reasons of the problem lie usually in uneven settlement of the ground, which in turn, may be caused by various problems, such as the presence of too soft, too weak, unconsolidated or expansive soils under the building, varying groundwater table, mining activity etc. Solving of the problem by just straightening the building is often not enough. To prevent further deformations a detailed analysis of the possible causes is necessary. Sometimes it may be helpful to review similar cases. The paper contains a general overview of selected inclined buildings: starting with the well-known historical examples and ending with individual houses from the Region of Silesia. Since the problem of instability mostly affects structures with critical height to width ratio, tall and narrow structures (towers) are dominating in the work. The aim of the study was to describe the reasons of the problems and present solutions that have been successfully applied and can be also useful to engineers and designers to prevent similar situations.
Impinging Water Droplets on Inclined Glass Surfaces
Energy Technology Data Exchange (ETDEWEB)
Armijo, Kenneth Miguel [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Lance, Blake [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Ho, Clifford K. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2017-09-01
Multiphase computational models and tests of falling water droplets on inclined glass surfaces were developed to investigate the physics of impingement and potential of these droplets to self-clean glass surfaces for photovoltaic modules and heliostats. A multiphase volume-of-fluid model was developed in ANSYS Fluent to simulate the impinging droplets. The simulations considered different droplet sizes (1 mm and 3 mm), tilt angles (0°, 10°, and 45°), droplet velocities (1 m/s and 3 m/s), and wetting characteristics (wetting=47° contact angle and non-wetting = 93° contact angle). Results showed that the spread factor (maximum droplet diameter during impact divided by the initial droplet diameter) decreased with increasing inclination angle due to the reduced normal force on the surface. The hydrophilic surface yielded greater spread factors than the hydrophobic surface in all cases. With regard to impact forces, the greater surface tilt angles yielded lower normal forces, but higher shear forces. Experiments showed that the experimentally observed spread factor (maximum droplet diameter during impact divided by the initial droplet diameter) was significantly larger than the simulated spread factor. Observed spread factors were on the order of 5 - 6 for droplet velocities of ~3 m/s, whereas the simulated spread factors were on the order of 2. Droplets were observed to be mobile following impact only for the cases with 45° tilt angle, which matched the simulations. An interesting phenomenon that was observed was that shortly after being released from the nozzle, the water droplet oscillated (like a trampoline) due to the "snapback" caused by the surface tension of the water droplet being released from the nozzle. This oscillation impacted the velocity immediately after the release. Future work should evaluate the impact of parameters such as tilt angle and surface wettability on the impact of particle/soiling uptake and removal to investigate ways that
Psychosocial Determinants of Romantic Inclination Among Indian Youth
Directory of Open Access Journals (Sweden)
D. Barani Ganth
2017-10-01
Full Text Available The present study was conducted with the aim of understanding the psychosocial determinants of romantic inclination among youth in India. We involved 779 student participants from a large central university in south India in the age range of 18-24 years. The participants filled measures on romantic inclination, personality, attachment style, interpersonal attraction, and social influence on romantic relationship in addition to a questionnaire on demographic information and relationship history. Analysis of the data revealed that males showed higher level of romantic inclination than females. Those who had current/past involvement in a romantic relationship (Lovers showed higher levels of romantic inclination than those who had never involved in a romantic relationship (Non-lovers. Parents’ type of marriage (Love/arranged, close fiends’ involvement in romantic relationship too had a discriminatory role in romantic inclination. Romantic inclination was significantly related to personality factors, attachment style, media and peer influences on romantic relationships and interpersonal attraction. Extraversion, openness to experience, agreeableness, media influence, peer influence, secure attachment and physical attraction emerged as significant predictors of romantic inclination in a regression model. Structural Equations Modeling (SEM indicated that personality, attachment style and interpersonal attraction had a significant influence on romantic inclination mediated by both media and peer influences. Romantic inclination in turn significantly predicted romantic relationship status.
Impact of flow inclination on downwind turbine loads and power
Kress, C.; Chokani, N.; Abhari, R. S.; Hashimoto, T.; Watanabe, M.; Sano, T.; Saeki, M.
2016-09-01
Wind turbines frequently operate under situations of pronounced flow inclinations, such as in complex terrain. In the present work the performance and rotor thrust of downwind and upwind turbines in upward and downward flow inclinations are experimentally investigated. In an upward flow inclination of +13°, downwind turbines are shown to have a 29% larger power output than a corresponding upwind turbine, whereas the relative increase in rotor thrust is only 9%. Furthermore, it is also shown that the performance of downwind turbines is less sensitive to changes in the flow inclination, as the upstream nacelle on downwind turbines beneficially redirects and accelerates the flow around the nacelle into the rotor plane.
The Gothic arch (needle point) tracing and condylar inclination.
el-Gheriani, A S; Winstanley, R B
1987-11-01
The records of 11 patients referred for treatment of TMJ disorders were used to compare condylar inclination found by drawing a tangent and by using a mathematic technique. Needle point tracing angles were also measured for the same patients and were compared with the condylar inclination. It can be concluded that (1) the mathematic technique outlined records a more accurate condylar angulation, and (2) there is a great variation in condylar inclination values between patients and between left and right sides of the same patient, and (3) there is no direct relationship between condylar inclination and the needle point tracing angle.
Directory of Open Access Journals (Sweden)
Imad Khan
Full Text Available Current work highlights the computational aspects of MHD Carreau nanofluid flow over an inclined stretching cylinder with convective boundary conditions and Joule heating. The mathematical modeling of physical problem yields nonlinear set of partial differential equations. A suitable scaling group of variables is employed on modeled equations to convert them into non-dimensional form. The integration scheme Runge-Kutta-Fehlberg on the behalf of shooting technique is utilized to solve attained set of equations. The interesting aspects of physical problem (linear momentum, energy and nanoparticles concentration are elaborated under the different parametric conditions through graphical and tabular manners. Additionally, the quantities (local skin friction coefficient, local Nusselt number and local Sherwood number which are responsible to dig out the physical phenomena in the vicinity of stretched surface are computed and delineated by varying controlling flow parameters. Keywords: MHD, Carreau nanofluid, Inclined stretching cylinder, Joule heating, Shooting technique
Effect of magnetic field on Blasius and Sakiadis flow of nanofluids past an inclined plate
Directory of Open Access Journals (Sweden)
S.P. Anjali Devi
2017-11-01
Full Text Available A theoretical study on the effect of magnetic field on the classical Blasius and Sakiadis flow of nanofluids over an inclined plate is presented in this paper. The governing partial differential equations are converted into ordinary differential equations using suitable similarity transformations. The transformed boundary layer equations are solved numerically using MATLAB (bvp4c. Two types of nanoparticles are chosen namely copper and alumina in the base fluid of water with the Prandtl number (Pr = 6.2. The effects of the governing physical parameters over the velocity, temperature, skin friction coefficient and reduced Nusselt number for both the Blasius and Sakiadis flows are displayed graphically. The characteristics of physical and engineering interest are discussed in detail. Keywords: Nanofluid, Blasius flow, Sakiadis flow, MHD, Inclined plate, Mixed convection
Directory of Open Access Journals (Sweden)
Nishita Gandhi
2017-08-01
Full Text Available Background: A pronated foot can produce changes in the lower limb kinetic chain. This can affect the gait and increase energy expenditure. However, the relationship between pronated foot and other static alignment factors remains poorly understood. Hence, the objective was to correlate pronated foot with pelvic inclination, femoral anteversion, Q-angle and tibial torsion. Method: An observational study was performed on 60 subjects in the age group of 18-30 years with a BMI of not more than 30. Foot Posture Index was performed on the subjects, and people with a score of +6 or more were selected. Pelvic inclination, femoral anteversion, Q-angle and tibial torsion were measured. Correlation between the Foot Posture Index score and the above four static alignment factors was done using Graph Pad Prism 7 (Pearson’s correlation coefficient and Spearman’s correlation coefficient. Results: There was no significant correlation between Pronated foot and Pelvic inclination (r-value = 0.03309, p-value = 0.8018, Pronated foot and Femoral anteversion (r-value = 0.2185, p-value = 0.0934 Pronated foot and Q-angle (r-value = 0.1801, p-value = 0.1685, Pronated foot and Tibial torsion (r- value = -0.1285, p-value = 0.3277. Conclusion: There is no significant correlation between foot pronation and pelvic inclination, femoral anteversion, Q-angle and tibial torsion. However, the correlation between these factors cannot be completely ignored, and thus, further studies and literature are required to prove the same.
Directory of Open Access Journals (Sweden)
Mair Khan
2018-03-01
Full Text Available The present analysis is devoted to explore the computational solution of the problem addressing the variable viscosity and inclined Lorentz force effects on Williamson nanofluid over a stretching sheet. Variable viscosity is assumed to vary as a linear function of temperature. The basic mathematical modelled problem i.e. system of PDE’s is converted nonlinear into ODE’s via applying suitable transformations. Computational solutions of the problem is also achieved via efficient numerical technique shooting. Characteristics of controlling parameters i.e. stretching index, inclined angle, Hartmann number, Weissenberg number, variable viscosity parameter, mixed convention parameter, Brownian motion parameter, Prandtl number, Lewis number, thermophoresis parameter and chemical reactive species on concentration, temperature and velocity gradient. Additionally, friction factor coefficient, Nusselt number and Sherwood number are describe with the help of graphics as well as tables verses flow controlling parameters. Keywords: Williamson nanofluid, Temperature depended viscosity, Inclined magnetic field, Mixed convection, Chemical reactive species, Variable viscosity, Shooting method
Entrepreneurial inclinations of women from rural areas
Directory of Open Access Journals (Sweden)
Marković-Savić Olivera S.
2014-01-01
Full Text Available Entrepreneurial inclinations of women from rural areas are shaped by the lack of business ideas and economic capital, which, in addition to financial resources, includes cultural capital in the form of knowledge and skills. The paper presents a part of a broader study on the social position of women from the rural areas of northern Kosovo and Metohija, conducted in 2013. The research was predominantly focused on entrepreneurial inclinations of rural women, and the findings suggest that private enterprise in the studied population is undeveloped as a result of two dominant reasons. The first reason is the situation which is unfavorable in terms of politics and security, and therefore, not conducive to investment security, together with the specificity in the form of complex administrative business conditions requiring compliance to parallel and mutually incompatible standards (of the Republic of Serbia and of the UNMIK administration. The second important reason for the lack of entrepreneurial initiatives is the lack of ownership of property and the means of production, since banks do not give loans without guarantees in the form of ownership of the mortgage, while other forms of financial incentives are unavailable. The respondents attended programs for acquiring new knowledge and skills only in a small number of cases, while showing the greatest susceptibility to education in traditional skills, such as training in agriculture and handicrafts, which are not the skills in line with the needs of the labor market. As the most important reasons that -prevent them from having their own business, the respondents -mentioned: the lack of ideas and the lack of financial resources. In this regard, they would find incentives in the form of grants most helpful to start their own business. The absence of funds and gender inequality form the basis for the lack of ownership of property and means of production. In addition to the shortage of financial
Self-filtering extremely inclined x-ray crystal monochromator
Czech Academy of Sciences Publication Activity Database
Hrdá, Jaromíra; Hrdý, Jaromír
2011-01-01
Roč. 44, č. 6 (2011), 1169-1172 ISSN 0021-8898 R&D Projects: GA MPO FR-TI1/412 Institutional research plan: CEZ:AV0Z10100522 Keywords : synchrotron radiation monochromator * x-ray crystal monochromator * inclined monochromator * inclined diffraction Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 5.152, year: 2011
Shallow bias in Mediterranean paleomagnetic directions caused by inclination error
Krijgsman, W.; Tauxe, Lisa
2004-01-01
A variety of paleomagnetic data from the Mediterranean region show a strong bias toward shallow inclinations. This pattern of shallow inclinations has been interpreted to be the result of (1) major northward terrane displacement, (2) large nondipole components in the Earth’s magnetic field, and
Analysis of deformation due to inclined load in generalized ...
African Journals Online (AJOL)
The present investigation deals with study of deformation in homogeneous, isotropic thermodiffusion elastic half-space as a result of inclined load. The inclined load is assumed to be a linear combination of normal load and tangential load. The integral transform technique is used to solve the problem. As an application of ...
46 CFR 58.01-40 - Machinery, angles of inclination.
2010-10-01
... 46 Shipping 2 2010-10-01 2010-10-01 false Machinery, angles of inclination. 58.01-40 Section 58.01-40 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING MAIN AND AUXILIARY MACHINERY AND RELATED SYSTEMS General Requirements § 58.01-40 Machinery, angles of inclination. (a) Propulsion machinery and all auxiliary...
A jig for measuring incisor inclination.
Shah, N; Spary, D J; Rock, W P
2005-06-01
The aim of this study was to design and construct a jig for measuring the inclination of the upper incisors to the maxillary plane and of the lower incisors to the mandibular plane. After several prototypes had been tested, the required properties for a successful jig were identified and a simple inexpensive device was produced. Measurements obtained when using the jig on 51 subjects were compared with cephalometric values by means of regression analysis. This revealed that measurements obtained using the jig against the upper and then the lower incisor crowns could be converted to cephalometric incisor angulations with 96 per cent accuracy to 10 degrees, by adding 23 and 3 degrees, respectively. The jig was accurate to 5 degrees on 69 per cent of occasions for the upper teeth. The 5 degrees accuracy with the lower incisors was only 27 per cent, although over a 6 degree range it improved to 78 per cent. For upper and lower tooth measurements combined, the jig was accurate to within 6 degrees on 75 per cent of occasions.
Khan, Imad; Fatima, Sumreen; Malik, M. Y.; Salahuddin, T.
2018-03-01
This paper explores the theoretical study of the steady incompressible two dimensional MHD boundary layer flow of Eyring-Powell nanofluid over an inclined surface. The fluid is considered to be electrically conducting and the viscosity of the fluid is assumed to be varying exponentially. The governing partial differential equations (PDE's) are reduced into ordinary differential equations (ODE's) by applying similarity approach. The resulting ordinary differential equations are solved successfully by using Homotopy analysis method. The impact of pertinent parameters on velocity, concentration and temperature profiles are examined through graphs and tables. Also coefficient of skin friction, Sherwood and Nusselt numbers are illustrated in tabular and graphical form.
Li, Kai Way; Chen, Chih-Yong; Chen, Ching Chung; Liu, Liwen
2012-01-01
Slip and fall incidences are common in our daily lives. They are not only important environmental safety issues but also important occupational safety and health problems. The purpose of this study was to use the Brungraber Mark II to measure the friction so as to investigate the effects of the shoe sole, surface condition and the inclined angle of the floor and their interactions on friction coefficient. The results of the study showed the effects of all the main factors and their interactions were significant (p<0.001). Engineering designs & ergonomic interventions in slip & fall prevention should take these factors in full consideration.
Rolling and sliding motion of spheres propagating down inclined planes in still water
Tee, Yi Hui; Longmire, Ellen
2016-11-01
In modelling the motion of spheres submerged in liquid, gravity, drag, lift, and added mass forces have to be taken into account. For spheres contacting bounding surfaces, friction coefficients due to rolling and sliding increase the complexity of the model. In this study, experiments are conducted to investigate the effects of particle density and diameter on the rolling and sliding motion of spheres. Spherical particles with marked surfaces are released from rest on an inclined glass plate in still water at various inclination angles and allowed to accelerate. A 45° mirror mounted beneath the plate allows simultaneous capture of both longitudinal and spanwise motions of the sphere. Based on sequences obtained by high speed imaging, the translational and rotational velocities are determined. Particle Reynolds numbers at terminal velocity range from 400 to 2500 corresponding with Galileo numbers of 800 to 2800. By comparing the translational and rotational velocities, the occurrence of sliding motion can be identified. The onset of sliding motion is then determined as a function of inclination angle and Galileo number for multiple particle materials. The experimental results are also compared against the existing models from the literature. Supported by NSF (CBET-1510154).
Inclined asymmetric librations in exterior resonances
Voyatzis, G.; Tsiganis, K.; Antoniadou, K. I.
2018-04-01
Librational motion in Celestial Mechanics is generally associated with the existence of stable resonant configurations and signified by the existence of stable periodic solutions and oscillation of critical (resonant) angles. When such an oscillation takes place around a value different than 0 or π , the libration is called asymmetric. In the context of the planar circular restricted three-body problem, asymmetric librations have been identified for the exterior mean motion resonances (MMRs) 1:2, 1:3, etc., as well as for co-orbital motion (1:1). In exterior MMRs the massless body is the outer one. In this paper, we study asymmetric librations in the three-dimensional space. We employ the computational approach of Markellos (Mon Not R Astron Soc 184:273-281, https://doi.org/10.1093/mnras/184.2.273, 1978) and compute families of asymmetric periodic orbits and their stability. Stable asymmetric periodic orbits are surrounded in phase space by domains of initial conditions which correspond to stable evolution and librating resonant angles. Our computations were focused on the spatial circular restricted three-body model of the Sun-Neptune-TNO system (TNO = trans-Neptunian object). We compare our results with numerical integrations of observed TNOs, which reveal that some of them perform 1:2 resonant, inclined asymmetric librations. For the stable 1:2 TNO librators, we find that their libration seems to be related to the vertically stable planar asymmetric orbits of our model, rather than the three-dimensional ones found in the present study.
Development of locomotion over inclined surfaces in laying hens.
LeBlanc, C; Tobalske, B; Bowley, S; Harlander-Matauschek, A
2018-03-01
The purpose of the present study was to evaluate locomotor strategies during development in domestic chickens (Gallus gallus domesticus); we were motivated, in part, by current efforts to improve the design of housing systems for laying hens which aim to reduce injury and over-exertion. Using four strains of laying hens (Lohmann Brown, Lohmann LSL lite, Dekalb White and Hyline Brown) throughout this longitudinal study, we investigated their locomotor style and climbing capacity in relation to the degree (0 to 70°) of incline, age (2 to 36 weeks) and the surface substrate (sandpaper or wire grid). Chicks and adult fowl performed only walking behavior to climb inclines ⩽40° and performed a combination of wing-assisted incline running (WAIR) or aerial ascent on steeper inclines. Fewer birds used their wings to aid their hind limbs when climbing 50° inclines on wire grid surface compared with sandpaper. The steepness of angle achieved during WAIR and the tendency to fly instead of using WAIR increased with increasing age and experience. White-feathered strains performed more wing-associated locomotor behavior compared with brown-feathered strains. A subset of birds was never able to climb incline angles >40° even when using WAIR. Therefore, we suggest that inclines of up to 40° should be provided for hens in three-dimensional housing systems, which are easily negotiated (without wing use) by chicks and adult fowl.
Natural Circulation Characteristics of a Symmetric Loop under Inclined Conditions
Directory of Open Access Journals (Sweden)
Xingtuan Yang
2014-01-01
Full Text Available Natural circulation is an important process for primary loops of some marine integrated reactors. The reactor works under inclined conditions when severe accidents happen to the ship. In this paper, to investigate the characteristics of natural circulation, experiments were conducted in a symmetric loop under the inclined angle of 0~45°. A CFD model was also set up to predict the behaviors of the loop beyond the experimental scope. Total circulation flow rate decreases with the increase of inclined angle. Meanwhile one circulation is depressed while the other is enhanced, and accordingly the disparity between the branch circulations arises and increases with the increase of inclined angle. Circulation only takes place in one branch circuit at large inclined angle. Also based on the CFD model, the influences of flow resistance distribution and loop configuration on natural circulation are predicted. The numerical results show that to design the loop with the configuration of big altitude difference and small width, it is favorable to reduce the influence of inclination; however too small loop width will cause severe reduction of circulation ability at large angle inclination.
Fetisova, A. M.; Veselovskiy, R. V.; Scholze, F.; Balabanov, Yu. P.
2018-01-01
The results of detailed paleomagnetic studies in seven Upper Permian and Lower Triassic reference sections of East Europe (Middle Volga and Orenburg region) and Central Germany are presented. For each section, the coefficient of inclination shallowing f (King, 1955) is estimated by the Elongation-Inclination (E-I) method (Tauxe and Kent, 2004) and is found to vary from 0.4 to 0.9. The paleomagnetic directions, corrected for the inclination shallowing, are used to calculate the new Late Permian-Early Triassic paleomagnetic pole for the East European Platform (N = 7, PLat = 52.1°, PLong = 155.8°, A95 = 6.6°). Based on this pole, the geocentric axial dipole hypothesis close to the Paleozoic/Mesozoic boundary is tested by the single plate method. The absence of the statistically significant distinction between the obtained pole and the average Permian-Triassic (P-Tr) paleomagnetic pole of the Siberian Platform and the coeval pole of the North American Platform corrected for the opening of the Atlantic (Shatsillo et al., 2006) is interpreted by us as evidence that 250 Ma the configuration of the magnetic field of the Earth was predominantly dipolar; i.e., the contribution of nondipole components was at most 10% of the main magnetic field. In our opinion, the hypothesis of the nondipolity of the geomagnetic field at the P-Tr boundary, which has been repeatedly discussed in recent decades (Van der Voo and Torsvik, 2001; Bazhenov and Shatsillo, 2010; Veselovskiy and Pavlov, 2006), resulted from disregarding the effect of inclination shallowing in the paleomagnetic determinations from sedimentary rocks of "stable" Europe (the East European platform and West European plate).
Aqua/Aura Spring 2017 Inclination Adjust Maneuver Series
Noyes, Thomas; Stezelberger, Shane
2017-01-01
This will be presented at the International Earth Science Constellation Mission Operations Working Group meeting June 13-15, 2017 to discuss the AquaAura Spring 2017 Inclination Adjust Maneuver series.
Brilliance and flux reduction in imperfect inclined crystals
International Nuclear Information System (INIS)
Lee, W.K.; Blasdell, R.C.; Fernandez, P.B.; Macrander, A.T.; Mills, D.M.
1996-01-01
The inclined crystal geometry has been suggested as a method of reducing the surface absorbed power density of high-heat-load monochromators for third-generation synchrotron radiation sources. Computer simulations have shown that if the crystals are perfectly aligned and have no strains then the diffraction properties of a pair of inclined crystals are very similar to a pair of conventional flat crystals with only subtle effects differentiating the two configurations. However, if the crystals are strained, these subtle differences in the behavior of inclined crystals can result in large beam divergences causing brilliance and flux losses. This manuscript elaborates on these issues and estimates potential brilliance and flux losses from strained inclined crystals at the APS
Systems of pillarless working of adjacent, sloped and inclined seams
Energy Technology Data Exchange (ETDEWEB)
Batmanov, Yu.K.; Bakhtin, A.F.; Bulavka, E.I.
1979-01-01
An analysis is made (advantages and disadvantages) of existing and recommended (pillarless) systems of working adjacent, sloped, and inclined seams. The economic benefits, area and extent of those systems are indicated. 8 references, 4 figures.
Psychosocial Determinants of Romantic Inclination Among Indian Youth
D. Barani Ganth; S. Kadhiravan
2017-01-01
The present study was conducted with the aim of understanding the psychosocial determinants of romantic inclination among youth in India. We involved 779 student participants from a large central university in south India in the age range of 18-24 years. The participants filled measures on romantic inclination, personality, attachment style, interpersonal attraction, and social influence on romantic relationship in addition to a questionnaire on demographic information and relationship histor...
Uplift Capacity of Inclined Underreamed Piles Subjected to Vertical Load
Rahman, Md. Akilur; Sengupta, Siddhartha
2017-12-01
Many offshore structures are subjected to overturning moments due to wind load, wave pressure, and ship impacts. Inclined (batter) piles are used to support such structures, and to carry the horizontal and vertical loads resulted from the overturning moments. Though studies have been done with inclined piles having no underream bulb, little information is available in the literature about estimating the uplift capacity of inclined underreamed piles. In the present study laboratory experiments have been done with vertically loaded model piles having no underream as well as with one and two underreams. The piles were positioned at angle of inclination of θ = 0°, 10°, 20°, 30° (with vertical); and placed in locally available sand under vertical uplift load. Three different pile stem diameters (D = 20, 25, and 35 mm) were used. The corresponding pile length to stem diameter (l/D) ratio were 18, 14, and 10 respectively. Experiments had been conducted with two relative different densities (45 and 70%) of sand. The failure uplift loads were obtained in each case. It had been found that for inclined piles increase in number of underream bulbs from 0 to 2 was quite effective in resisting uplift loads corresponding to piles having l/D equals to 10. The percentage decreases in uplift capacity corresponding to increase in inclination angle were more pronounced for piles with double underreams.
Trunk muscle activity with different sitting postures and pelvic inclination.
Watanabe, Masahiro; Kaneoka, Koji; Wada, Yusuke; Matsui, Yasushi; Miyakawa, Shumpei
2014-01-01
Sitting posture may often place large burden on trunk muscles, while trunk muscle activities in the sitting posture have not been well clarified. In this study, a difference in trunk muscle activity between two kinds of sitting postures was evaluated, focusing on low back pain induced by posture holding. An experiment was conducted on the subjects sitting on a stable-seat and on an unstable-seat, with the pelvis inclined forward, backward, rightward, and leftward. With the pelvis inclined forward, rightward and leftward, muscle activities were significantly increased in a stable-seat sitting posture. In contrast, no significant increase in muscle activity was observed with the pelvis inclined in every direction in an unstable-seat sitting posture. With the pelvis inclined in the stable-seat sitting posture, muscle activities were imbalanced, while with the pelvis inclined in the unstable-seat sitting posture, muscle activities were not imbalanced. Thus, it is suggested that with the pelvis inclined to the maximum extent in the stable-seat sitting posture, low back pain may be induced by imbalanced muscle activities.
Inclination evolution of protoplanetary discs around eccentric binaries
Zanazzi, J. J.; Lai, Dong
2018-01-01
It is usually thought that viscous torque works to align a circumbinary disc with the binary's orbital plane. However, recent numerical simulations suggest that the disc may evolve to a configuration perpendicular to the binary orbit ('polar alignment) if the binary is eccentric and the initial disc-binary inclination is sufficiently large. We carry out a theoretical study on the long-term evolution of inclined discs around eccentric binaries, calculating the disc warp profile and dissipative torque acting on the disc. For discs with aspect ratio H/r larger than the viscosity parameter α, bending wave propagation effectively makes the disc precess as a quasi-rigid body, while viscosity acts on the disc warp and twist to drive secular evolution of the disc-binary inclination. We derive a simple analytic criterion (in terms of the binary eccentricity and initial disc orientation) for the disc to evolve towards polar alignment with the eccentric binary. When the disc has a non-negligible angular momentum compared to the binary, the final 'polar alignment' inclination angle is reduced from 90°. For typical protoplanetary disc parameters, the time-scale of the inclination evolution is shorter than the disc lifetime, suggesting that highly inclined discs and planets may exist orbiting eccentric binaries.
Thermo-economic performance of inclined solar water distillation systems
Directory of Open Access Journals (Sweden)
Agboola Phillips O.
2015-01-01
Full Text Available This study investigates the thermo-economic performance of different configurations of inclined solar water desalination for parameters such as daily production, efficiency, system cost and distilled water production cost. The four different configurations considered for this study are as follows; 1. Inclined solar water distillation with bare absorber plate (IISWD with daily production of 5.46 kg/m2 day and daily efficiency of 48.3%. 2. Inclined solar water distillation with wick on absorber plate (IISWDW with daily production of 6.41kg/m2 day and daily efficiency 50.3%. 3. Inclined solar water distillation with wire mesh on absorber plate (IISWDWM with daily production n of 3.03 kg/m2 day and daily efficiency 32.6%. 4. Inclined solar water distillation with bare absorber plate (ISWD. (Control System with daily production of 3.25 kg/m2 day and daily efficiency of 40.1%. The systems potable water cost price ranges from 0.03 $/L for IISWDW to 0.06$/L for IISWDWM System. All the systems are economically and technically feasible as a solar distillation system for potable water in Northern Cyprus. The price of potable water from water vendors/hawkers ranges from 0.11-0.16 $/L. It is more economically viable to have the rooftop inclined solar water desalination system than procuring potable water from vendors.`
TRANSIT TIMING VARIATIONS FOR INCLINED AND RETROGRADE EXOPLANETARY SYSTEMS
International Nuclear Information System (INIS)
Payne, Matthew J.; Ford, Eric B.; Veras, Dimitri
2010-01-01
We perform numerical calculations of the expected transit timing variations (TTVs) induced on a hot-Jupiter by an Earth-mass perturber. Motivated by the recent discoveries of retrograde transiting planets, we concentrate on an investigation of the effect of varying relative planetary inclinations, up to and including completely retrograde systems. We find that planets in low-order (e.g., 2:1) mean-motion resonances (MMRs) retain approximately constant TTV amplitudes for 0 deg. 170 deg. Systems in higher order MMRs (e.g., 5:1) increase in TTV amplitude as inclinations increase toward 45 deg., becoming approximately constant for 45 deg. 135 deg. Planets away from resonance slowly decrease in TTV amplitude as inclinations increase from 0 deg. to 180 deg., whereas planets adjacent to resonances can exhibit a huge range of variability in TTV amplitude as a function of both eccentricity and inclination. For highly retrograde systems (135 deg. < i ≤ 180 deg.), TTV signals will be undetectable across almost the entirety of parameter space, with the exceptions occurring when the perturber has high eccentricity or is very close to an MMR. This high inclination decrease in TTV amplitude (on and away from resonance) is important for the analysis of the known retrograde and multi-planet transiting systems, as inclination effects need to be considered if TTVs are to be used to exclude the presence of any putative planetary companions: absence of evidence is not evidence of absence.
Apparao, Siddangouda; Biradar, Trimbak Vaijanath; Naduvinamani, Neminath Bhujappa
2014-01-01
Theoretical study of non-Newtonian effects of second-order fluids on the performance characteristics of inclined slider bearings is presented. An approximate method is used for the solution of the highly nonlinear momentum equations for the second-order fluids. The closed form expressions for the fluid film pressure, load carrying capacity, frictional force, coefficient of friction, and centre of pressure are obtained. The non-Newtonian second order fluid model increases the film pressure, load carrying capacity, and frictional force whereas the center of pressure slightly shifts towards exit region. Further, the frictional coefficient decreases with an increase in the bearing velocity as expected for an ideal fluid.
Orwat, J.
2018-01-01
In this paper was presented an obtainment way of the average values of terrain inclinations caused by an exploitation of the 338/2 coal bed, conducted at medium depth by four longwalls. The inclinations were measured at sections of measuring line established over the excavations, perpendicularly to their runways, after the termination of subsequent exploitation stages. The average courses of measured inclinations were calculated on the basis of average values of measured subsidence obtained as a result of an average-square approximation done by the use of smooth splines, in reference to their theoretical values calculated via the S. Knothe’s and J. Bialek’s formulas. The typical values of parameters of these formulas were used. Thus it was obtained for two average courses after the ending of each exploitation period. The values of standard deviations between average and measured inclinations σI and variability coefficients of random scattering of inclinations MI were calculated. Then they were compared with the values appearing in the literature and based on this the possibility evaluation of use smooth splines to determination of average course of observed inclinations of mining area was conducted.
Evaluation of performance of veterinary in-clinic hematology analyzers.
Rishniw, Mark; Pion, Paul D
2016-12-01
A previous study provided information regarding the quality of in-clinic veterinary biochemistry testing. However, no similar studies for in-clinic veterinary hematology testing have been conducted. The objective of this study was to assess the quality of hematology testing in veterinary in-clinic laboratories using results obtained from testing 3 levels of canine EDTA blood samples. Clinicians prepared blood samples to achieve measurand concentrations within, below, and above their RIs and evaluated the samples in triplicate using their in-clinic analyzers. Quality was assessed by comparison of calculated total error with quality requirements, determination of sigma metrics, use of a quality goal index, and agreement between in-clinic and reference laboratory instruments. Suitability for statistical quality control was determined using adaptations from the computerized program, EZRules3. Evaluation of 10 veterinary in-clinic hematology analyzers showed that these instruments often fail to meet quality requirements. At least 60% of analyzers reasonably determined RBC, WBC, HCT, and HGB, when assessed by most quality goal criteria; platelets were less reliably measured, with 80% deemed suitable for low platelet counts, but only 30% for high platelet counts, and automated differential leukocyte counts were generally considered unsuitable for clinical use with fewer than 40% of analyzers meeting the least stringent quality goal requirements. Fewer than 50% of analyzers were able to meet requirements for statistical quality control for any measurand. These findings reflect the current status of in-clinic hematology analyzer performance and provide a basis for future evaluations of the quality of veterinary laboratory testing. © 2016 American Society for Veterinary Clinical Pathology.
Structural equation modeling for alteration of occlusal plane inclination.
Shigeta, Yuko; Ogawa, Takumi; Nakamura, Yoshiharu; Ando, Eriko; Hirabayashi, Rio; Ikawa, Tomoko
2015-07-01
Occlusal plane inclination is important to maintain a normal opening closing/biting function. However, there can be several causes that lead to alterations of the occlusal plane. The purpose of this study was to observe variations of occlusal plane inclination in adult patients, and to uncover the factors affecting changes in occlusal plane inclination with aging. Subjects were 143 patients. A cephalometric image was taken of these patients. In this study, our inquiry points were age, 3 variables on intra-oral findings, and 7 variables on cephalometric analysis. To evaluate the possible causes that affect occlusal plane inclination, factor analysis was carried out, and each component was treated as factors, which were then statistically applied to a structural equation model. Statistical analysis was carried out through the SPSS 20.0 (SPSS Inc., Chicago, USA). In all patients, Camper-occlusal plane angle (COA) ranged from -25.7 to -4.9° (Mean±SD: -6.4±5.36). In the 60 patients who had no missing teeth, COA ranged from -11.6 to -4.9° (Mean±SD: -3.3±3.31). From the results of the structural analysis, it was suggested that the occlusal plane changes to counter-clockwise (on the right lateral cephalograms) with aging. In this study, variations of occlusal plane inclination in adult patients were observed, and the factors affecting changes in occlusal plane inclination with aging were investigated via factor analysis. From our results, it was suggested that the mandibular morphology change and loss of teeth with aging influence occlusal plane inclination. Copyright © 2015 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.
Instability timescale for the inclination instability in the solar system
Zderic, Alexander; Madigan, Ann-Marie; Fleisig, Jacob
2018-04-01
The gravitational influence of small bodies is often neglected in the study of solar system dynamics. However, this is not always an appropriate assumption. For example, mutual secular torques between low mass particles on eccentric orbits can result in a self-gravity instability (`inclination instability'; Madigan & McCourt 2016). During the instability, inclinations increase exponentially, eccentricities decrease (detachment), and orbits cluster in argument of perihelion. In the solar system, the orbits of the most distant objects show all three of these characteristics (high inclination: Volk & Malhotra (2017), detachment: Delsanti & Jewitt (2006), and argument of perihelion clustering: Trujillo & Sheppard (2014)). The inclination instability is a natural explanation for these phenomena.Unfortunately, full N-body simulations of the solar system are unfeasible (N ≈ O(1012)), and the behavior of the instability depends on N, prohibiting the direct application of lower N simulations. Here we present the instability timescale's functional dependence on N, allowing us to extrapolate our simulation results to that appropriate for the solar system. We show that ~5 MEarth of small icy bodies in the Sedna region is sufficient for the inclination instability to occur in the outer solar system.
Influence of occlusal plane inclination and mandibular deviation on esthetics.
Corte, Cristiane Cherobini Dalla; Silveira, Bruno Lopes da; Marquezan, Mariana
2015-10-01
The aim of this study was to assess the degree of perception of occlusal plane inclination and mandibular deviation in facial esthetics, assessed by laypeople, dentists and orthodontists. A woman with 5.88° of inclination and 5.54 mm of mandibular deviation was selected and, based on her original photograph, four new images were created correcting the deviations and creating more symmetric faces and smiles. Examiners assessed the images by means of a questionnaire. Their opinions were compared by qualitative and quantitative analyses. A total of 45 laypeople, 27 dentists and 31 orthodontists filled out the questionnaires. All groups were able to perceive the asymmetry; however, orthodontists were more sensitive, identifying asymmetries as from 4.32° of occlusal plane inclination and 4.155 mm of mandibular deviation (pocclusal plane inclination and 5.54 mm of mandibular deviation (pOcclusal plane inclination and mandibular deviation were perceived by all groups, but orthodontists presented higher perception of deviations.
Transport Coefficients of Fluids
Eu, Byung Chan
2006-01-01
Until recently the formal statistical mechanical approach offered no practicable method for computing the transport coefficients of liquids, and so most practitioners had to resort to empirical fitting formulas. This has now changed, as demonstrated in this innovative monograph. The author presents and applies new methods based on statistical mechanics for calculating the transport coefficients of simple and complex liquids over wide ranges of density and temperature. These molecular theories enable the transport coefficients to be calculated in terms of equilibrium thermodynamic properties, and the results are shown to account satisfactorily for experimental observations, including even the non-Newtonian behavior of fluids far from equilibrium.
Energy Technology Data Exchange (ETDEWEB)
Abdul Hakeem, A.K., E-mail: abdulhakeem6@gmail.com [Department of Mathematics, Sri Ramakrishna Mission Vidyalaya, College of Arts and Science, Coimbatore 641 020 (India); Renuka, P. [Department of Mathematics, Erode Sengunthar Engineering college, Erode 638 057 (India); Vishnu Ganesh, N.; Kalaivanan, R. [Department of Mathematics, Sri Ramakrishna Mission Vidyalaya, College of Arts and Science, Coimbatore 641 020 (India); Ganga, B. [Department of Mathematics, Providence College for Women, Coonoor 643 104 (India)
2016-03-01
The inclined magnetic field effect on the boundary layer flow of a Casson model non-Newtonian fluid over a stretching sheet in the existence of thermal radiation and velocity slip boundary condition is investigated for both prescribed surface temperature and power law of surface heat flux cases. It is assumed that the magnetic field is applied with an aligned angle which varied from 0° to 90°. Both analytical and numerical solutions are obtained for the transformed non-dimensional ODE's using confluent hypergeometric function and fourth order Runge–Kutta method with shooting technique respectively. The combined effects of inclined magnetic field with other pertinent parameters such as Casson parameter, velocity slip parameter, radiation parameter and Prandtl number on velocity profile, temperature profile, local skin friction coefficient, local Nusselt number and non-dimensional wall temperature are discussed through graphs. It is found that the aligned angle plays a vital role in controlling the magnetic field strength on the Casson fluid flow region and the increasing values of aligned angle of the magnetic field lead to decrease the skin friction coefficient and the Nusselt number and increase the non-dimensional wall temperature. - Highlights: • Casson fluid flow in the presence of inclined magnetic field is investigated for the first time. • Aligned angle controls the magnetic field strength on the boundary layer flow region. • The direction of Lorentz force changes according to aligned angle. • An excellent agreement is observed between present analytical and numerical results.
Droplet Depinning on Inclined Surfaces at High Reynolds Numbers
White, Edward; Singh, Natasha; Lee, Sungyon
2017-11-01
Contact angle hysteresis enables a sessile liquid drop to adhere to a solid surface when the surface is inclined, the drop is exposed to gas-phase flow, or the drop is exposed to both forcing modalities. Previous work by Schmucker and White (2012.DFD.M4.6) identified critical depinning Weber numbers for water drops subject to gravity- and wind-dominated forcing. This work extends the Schmucker and White data and finds the critical depinning Weber number obeys a two-slope linear model. Under pure wind forcing at Reynolds numbers above 1500 and with zero surface inclination, Wecrit = 8.0 . For non-zero inclinations, α, Wecrit decreases proportionally to A Bo sinα where A is the drop aspect ratio and Bo is its Bond number. The same relationship holds for α behavior. Supported by the National Science Foundation through Grant CBET-1605947.
Natural Frequencies and Mode Shapes of Statically Deformed Inclined Risers
Alfosail, Feras
2016-10-15
We investigate numerically the linear vibrations of inclined risers using the Galerkin approach. The riser is modeled as an Euler-Bernoulli beam accounting for the nonlinear mid-plane stretching and self-weight. After solving for the initial deflection of the riser due to self-weight, we use a Galerkin expansion employing 15 axially loaded beam mode shapes to solve the eigenvalue problem of the riser around the static equilibrium configuration. This yields the riser natural frequencies and corresponding exact mode shapes for various values of inclination angles and tension. The obtained results are validated against a boundary-layer analytical solution and are found to be in good agreement. This constitutes a basis to study the nonlinear forced vibrations of inclined risers.
Psychopathic Inclination Among Incarcerated Youth of Hazara Division Pakistan
Directory of Open Access Journals (Sweden)
Sher Dil
2016-09-01
Full Text Available Present study aimed at evaluating the psychopathic inclination among youth and finding the gender differences in psychopathy. An indigenously developed Psychopathy scale (Urdu has been used in this study. Alpha reliability of the scale was .90. The study was conducted on 100 males (50 criminals and 50 non-criminals and 100 females (26 criminals and 74 non-criminals using a convenient sampling technique from three districts of Hazara division: Haripur, Abbottabad, and Mansehra. Results confirmed that there is significant difference in psychopathic inclination of males and females; criminals differed significantly from the non-criminals. The study also paves way for further investigation in the field in Pakistan.
Entrepreneurial Inclination Among Business Students: A Malaysian Study
Directory of Open Access Journals (Sweden)
Yet-Mee Lim
2012-10-01
Full Text Available Entrepreneurship has been the fundamental topics of discussion among the politicians, economists, and academics. Business creation is especially critical in developing countries to stimulate economic growth. The present study attempts to examine entrepreneurial inclination among students who are a potential source of entrepreneurs. The fi ndings of the present research study indicate that majority of our business students are not entrepreneurial-inclined. They do not seem to possess strong entrepreneurial characteristics and entrepreneurial skills, and they are not keen in starting a new business. The roles of higher institutes of education and the government in promoting entrepreneurship are discussed.
Fluorescence intensity dependence on the propagation plane inclination
International Nuclear Information System (INIS)
Fernandez, J.E.; Rubio, Marcelo; Sanchez, H.J.
1987-01-01
A Monte Carlo simulation of the primary and secondary X-ray fluorescent emission from an homogeneous and infinite thickness sample, irradiated under different inclination of the propagation plane, is carried out. An agreement with the predictions based on Sherman equations depending on the inclination angle α was found. The invariance of the primary fluorescence with respect to α and the decrease until evanescence of the secondary fluorescence for a α → π/2 are confirmed. A discussion about the physical basis of this dependence is carried out. Similar results are expected for tertiary fluorescence. (Author) [es
Quasi-Rayleigh waves in transversely isotropic half-space with inclined axis of symmetry
International Nuclear Information System (INIS)
Yanovskaya, T.B.; Savina, L.S.
2003-09-01
A method for determination of characteristics of quasi-Rayleigh (qR) wave in a transversely isotropic homogeneous half-space with inclined axis of symmetry is outlined. The solution is obtained as a superposition of qP, qSV and qSH waves, and surface wave velocity is determined from the boundary conditions at the free surface and at infinity, as in the case of Rayleigh wave in isotropic half-space. Though the theory is simple enough, a numerical procedure for the calculation of surface wave velocity presents some difficulties. The difficulty is conditioned by necessity to calculate complex roots of a non-linear equation, which in turn contains functions determined as roots of nonlinear equations with complex coefficients. Numerical analysis shows that roots of the equation corresponding to the boundary conditions do not exist in the whole domain of azimuths and inclinations of the symmetry axis. The domain of existence of qR wave depends on the ratio of the elastic parameters: for some strongly anisotropic models the wave cannot exist at all. For some angles of inclination qR wave velocities deviate from those calculated on the basis of the perturbation method valid for weak anisotropy, though they have the same tendency of variation with azimuth. The phase of qR wave varies with depth unlike Rayleigh wave in isotropic half-space. Unlike Rayleigh wave in isotropic half-space, qR wave has three components - vertical, radial and transverse. Particle motion in horizontal plane is elliptic. Direction of the major axis of the ellipsis coincide with the direction of propagation only in azimuths 0 deg. (180 deg.) and 90 deg. (270 deg.). (author)
Khan, Mair; Malik, M. Y.; Salahuddin, T.; Hussian, Arif.
2018-03-01
The present analysis is devoted to explore the computational solution of the problem addressing the variable viscosity and inclined Lorentz force effects on Williamson nanofluid over a stretching sheet. Variable viscosity is assumed to vary as a linear function of temperature. The basic mathematical modelled problem i.e. system of PDE's is converted nonlinear into ODE's via applying suitable transformations. Computational solutions of the problem is also achieved via efficient numerical technique shooting. Characteristics of controlling parameters i.e. stretching index, inclined angle, Hartmann number, Weissenberg number, variable viscosity parameter, mixed convention parameter, Brownian motion parameter, Prandtl number, Lewis number, thermophoresis parameter and chemical reactive species on concentration, temperature and velocity gradient. Additionally, friction factor coefficient, Nusselt number and Sherwood number are describe with the help of graphics as well as tables verses flow controlling parameters.
Aqua/Aura Inclination Adjust Maneuver Series Spring 2018 Planning
Trenholme, Elena; Boone, Spencer
2017-01-01
This will be presented at the International Earth Science Constellation Mission Operations Working Group meeting on December 6-8, 2017 to discuss the Aqua/Aura Spring 2018 Inclination Adjust Maneuver series planning. Presentation has been reviewed and approved by Eric Moyer, ESMO (Earth Science Mission Operations) Deputy Project Manager.
MEASUREMENTS OF DUST EXTINCTION IN HIGHLY INCLINED SPIRAL GALAXIES
JANSEN, RA; KNAPEN, JH; BECKMAN, JE; PELETIER, RF; HES, R
1994-01-01
We study the extinction properties of dust in the well-defined dust lanes of four highly inclined galaxies, using U-, B-, V-, R- and I-band CCD and J- and K'-band near-infrared array images. For three of these galaxies, we could use the symmetry of the underlying light profile to obtain absolute
Motion on an Inclined Plane and the Nature of Science
Pendrill, Ann-Marie; Ekström, Peter; Hansson, Lena; Mars, Patrik; Ouattara, Lassana; Ryan, Ulrika
2014-01-01
Friction is an important phenomenon in everyday life. All children are familiar with playground slides, which may thus be a good starting point for investigating friction. Motion on an inclined plane is a standard physics example. This paper presents an investigation of friction by a group of 11-year olds. How did they plan their investigations?…
Evidences of inclined transpression at the contact between ...
Indian Academy of Sciences (India)
Home; Journals; Journal of Earth System Science; Volume 125; Issue 5. Evidences of inclined ... a right lateral strike-slip component. As a whole, it is suggested that Udayagiri group is thrusted over Vinjamuru group along a westerly dipping thrust plane with a right lateral strike-slip motion and simultaneous E–W contraction.
Inclined Planes and Motion Detectors: A Study of Acceleration.
Tracy, Dyanne M.
2001-01-01
Presents an activity in which students work in cooperative groups and roll balls down inclined planes, collect data with the help of an electronic motion detector, and represent data with a graphing calculator to explore concepts such as mass, gravity, velocity, and acceleration. (Contains 12 references.) (Author/ASK)
The effect of circular bridge piers with different inclination angles ...
Indian Academy of Sciences (India)
c Indian Academy of Sciences. The effect of circular bridge piers with different inclination angles toward downstream on scour. MOHAMMAD VAGHEFI1,∗, MASOUD GHODSIAN2 and. SAEID SALIMI3. 1Department of Civil Engineering, Persian Gulf University, Shahid Mahini Street, P.O. Box: 75169-13817,. Bushehr, Iran.
The inter-relationships between angle of inclination, height and ...
African Journals Online (AJOL)
Experiments were conducted to investigate the dependence of number of sprouted teak (Tectona grandis Linn. F) stumps on the height above root collar and angle of inclination of planted teak stumps. The studies were aim-ed at developing suitable methods of converting teak seedlings into stumps and planting practices to ...
Reconstruction of Galileo Galilei's Experiment: The Inclined Plane
Straulino, S.
2008-01-01
In the "Third Day" of the "Discourses and Mathematical Demonstrations Concerning Two New Sciences" Galileo Galilei describes the famous experiment of the inclined plane and uses it to bring an experimental confirmation to the laws of uniformly accelerated motion. We describe a reconstruction of the experiment and how the results can be used for…
Optimization of PV array inclination in India using ANN estimator ...
Indian Academy of Sciences (India)
Home; Journals; Sadhana; Volume 40; Issue 5. Optimization of PV array inclination in India using ANN estimator: Method comparison study ... Although different non-linear, empirical models have been proposed by different researchers in India, they have too many constraints and needs complex and rigorous computational ...
A layered model for inclined pipe flow of settling slurry
Czech Academy of Sciences Publication Activity Database
Matoušek, Václav; Krupička, Jan; Kesely, Mikoláš
2018-01-01
Roč. 333, June (2018), s. 317-326 ISSN 0032-5910 R&D Projects: GA ČR GA17-14271S Institutional support: RVO:67985874 Keywords : inclined pipe * settling slurry * pressure drop * flow stratification * laboratory loop Impact factor: 2.942, year: 2016
Evidences of inclined transpression at the contact between ...
Indian Academy of Sciences (India)
zone may show different structures or dominance of certain type of structures, depending on whether that part is dominated by strike-slip, dip slip or compression. The present study finds evidences of inclined transpression at the contact between. Udayagiri and Vinjamuru group of NSB, which is the main focus of this paper.
DEFF Research Database (Denmark)
Zhou, Qiang; Nielsen, Søren R.K.; Qu, Weilian
2010-01-01
Considering the coupling between the in-plane and out-of-plane vibration, the stochastic response of an inclined shallow cable with linear viscous dampers subjected to Gaussian white noise excitation is investigated in this paper. Selecting the static deflection shape due to a concentrated force...... at the dampers location and the first sine term as shape functions, a reduced four-degree-of-freedom system of nonlinear stochastic ordinary differential equations are derived to describe dynamic response of the cable. Since only polynomial-type terms are contained, the fourth-order cumulant-neglect closure...... and viscous coefficient of the damper are fixed. Moreover, the peak frequency and half-band width of the spectra of both the in-plane and the out-of-plane displacements are increasing with excitation level when the damper size is constant. It is also observed that, even though the actual optimal damper size...
Diagnosing Model Errors in Simulations of Solar Radiation on Inclined Surfaces: Preprint
Energy Technology Data Exchange (ETDEWEB)
Xie, Yu; Sengupta, Manajit
2016-06-01
Transposition models have been widely used in the solar energy industry to simulate solar radiation on inclined PV panels. Following numerous studies comparing the performance of transposition models, this paper aims to understand the quantitative uncertainty in the state-of-the-art transposition models and the sources leading to the uncertainty. Our results suggest that an isotropic transposition model developed by Badescu substantially underestimates diffuse plane-of-array (POA) irradiances when diffuse radiation is perfectly isotropic. In the empirical transposition models, the selection of empirical coefficients and land surface albedo can both result in uncertainty in the output. This study can be used as a guide for future development of physics-based transposition models.
DEFF Research Database (Denmark)
Zhou, Qiang; Nielsen, Søren R.K.; Qu, Weilian
2010-01-01
of several factors, which include excitation level and direction as well as damper size, on the dynamic response of the cable is extensively investigated. It is found that the sum of mean square in-plane and out-of-plane displacement is primarily independent of the load direction when the excitation level...... and viscous coefficient of the damper are fixed. Moreover, the peak frequency and half-band width of the spectra of both the in-plane and the out-of-plane displacements are increasing with excitation level when the damper size is constant. It is also observed that, even though the actual optimal damper size......Considering the coupling between the in-plane and out-of-plane vibration, the stochastic response of an inclined shallow cable with linear viscous dampers subjected to Gaussian white noise excitation is investigated in this paper. Selecting the static deflection shape due to a concentrated force...
Awasarmol, Umesh Vandeorao; Pise, Ashok T.
2018-02-01
The main objective of this experimental work is to investigate and compare heat transfer enhancement of alternate dwarf fin array at different angles of inclination. In this study, the steady state heat transfer from the full length fin arrays and alternate dwarf fin arrays are measured in natural convection and radiation environment. Largest increase in the Nusselt number was achieved with alternate dwarf fin at angle of orientation 90°, which shows about 28% enhanced heat transfer coefficient as opposed to the full-length fin array with 25% saving in material. In case of non-black FAB, contribution of radiation heat transfer is found to be very small nearly within 1% of the heater input. After coating lamp black contribution of radiation heat transfer is found to increase to about 3-4% of the heater input in the range of temperatures considered in this study.
Energy Technology Data Exchange (ETDEWEB)
Xie, Yu; Sengupta, Manajit
2016-06-01
Transposition models are widely used in the solar energy industry to simulate solar radiation on inclined photovoltaic (PV) panels. These transposition models have been developed using various assumptions about the distribution of the diffuse radiation, and most of the parameterizations in these models have been developed using hourly ground data sets. Numerous studies have compared the performance of transposition models, but this paper aims to understand the quantitative uncertainty in the state-of-the-art transposition models and the sources leading to the uncertainty using high-resolution ground measurements in the plane of array. Our results suggest that the amount of aerosol optical depth can affect the accuracy of isotropic models. The choice of empirical coefficients and the use of decomposition models can both result in uncertainty in the output from the transposition models. It is expected that the results of this study will ultimately lead to improvements of the parameterizations as well as the development of improved physical models.
Conway, Paul; Gawronski, Bertram
2013-02-01
Dual-process theories of moral judgment suggest that responses to moral dilemmas are guided by two moral principles: the principle of deontology states that the morality of an action depends on the intrinsic nature of the action (e.g., harming others is wrong regardless of its consequences); the principle of utilitarianism implies that the morality of an action is determined by its consequences (e.g., harming others is acceptable if it increases the well-being of a greater number of people). Despite the proposed independence of the moral inclinations reflecting these principles, previous work has relied on operationalizations in which stronger inclinations of one kind imply weaker inclinations of the other kind. The current research applied Jacoby's (1991) process dissociation procedure to independently quantify the strength of deontological and utilitarian inclinations within individuals. Study 1 confirmed the usefulness of process dissociation for capturing individual differences in deontological and utilitarian inclinations, revealing positive correlations of both inclinations to moral identity. Moreover, deontological inclinations were uniquely related to empathic concern, perspective-taking, and religiosity, whereas utilitarian inclinations were uniquely related to need for cognition. Study 2 demonstrated that cognitive load selectively reduced utilitarian inclinations, with deontological inclinations being unaffected. In Study 3, a manipulation designed to enhance empathy increased deontological inclinations, with utilitarian inclinations being unaffected. These findings provide evidence for the independent contributions of deontological and utilitarian inclinations to moral judgments, resolving many theoretical ambiguities implied by previous research. (c) 2013 APA, all rights reserved.
Domiciano de Souza, A.; Kervella, P.; Moser Faes, D.; Dalla Vedova, G.; Mérand, A.; Le Bouquin, J.-B.; Espinosa Lara, F.; Rieutord, M.; Bendjoya, P.; Carciofi, A. C.; Hadjara, M.; Millour, F.; Vakili, F.
2014-09-01
Context. Rotation significantly impacts on the structure and life of stars. In phases of high rotation velocity (close to critical), the photospheric structure can be highly modified, and present in particular geometrical deformation (rotation flattening) and latitudinal-dependent flux (gravity darkening). The fastest known rotators among the nondegenerate stars close to the main sequence, Be stars, are key targets for studying the effects of fast rotation on stellar photospheres. Aims: We seek to determine the purely photospheric parameters of Achernar based on observations recorded during an emission-free phase (normal B phase). Methods: Several recent works proved that optical/IR long-baseline interferometry is the only technique able to sufficiently spatially resolve and measure photospheric parameters of fast rotating stars. We thus analyzed ESO-VLTI (PIONIER and AMBER) interferometric observations of Achernar to measure its photospheric parameters by fitting our physical model CHARRON using a Markov chain Monte Carlo method. This analysis was also complemented by spectroscopic, polarimetric, and photometric observations to investigate the status of the circumstellar environment of Achernar during the VLTI observations and to cross-check our model-fitting results. Results: Based on VLTI observations that partially resolve Achernar, we simultaneously measured five photospheric parameters of a Be star for the first time: equatorial radius (equatorial angular diameter), equatorial rotation velocity, polar inclination, position angle of the rotation axis projected on the sky, and the gravity darkening β coefficient (effective temperature distribution). The close circumstellar environment of Achernar was also investigated based on contemporaneous polarimetry, spectroscopy, and interferometry, including image reconstruction. This analysis did not reveal any important circumstellar contribution, so that Achernar was essentially in a normal B phase at least from mid
Prestarlike functions with negative coefficients
Directory of Open Access Journals (Sweden)
H. Silverman
1979-01-01
Full Text Available The extreme points for prestarlike functions having negative coefficients are determined. Coefficient, distortion and radii of univalence, starlikeness, and convexity theorems are also obtained.
Spectrum of 100-kyr glacial cycle: orbital inclination, not eccentricity.
Muller, R A; MacDonald, G J
1997-08-05
Spectral analysis of climate data shows a strong narrow peak with period approximately 100 kyr, attributed by the Milankovitch theory to changes in the eccentricity of the earth's orbit. The narrowness of the peak does suggest an astronomical origin; however the shape of the peak is incompatible with both linear and nonlinear models that attribute the cycle to eccentricity or (equivalently) to the envelope of the precession. In contrast, the orbital inclination parameter gives a good match to both the spectrum and bispectrum of the climate data. Extraterrestrial accretion from meteoroids or interplanetary dust is proposed as a mechanism that could link inclination to climate, and experimental tests are described that could prove or disprove this hypothesis.
Entrepreneurial Inclination Among Business Students: A Malaysian Study
Directory of Open Access Journals (Sweden)
Yet-Mee Lim
2012-11-01
Full Text Available Normal 0 false false false IN X-NONE AR-SA MicrosoftInternetExplorer4 Entrepreneurship has been the fundamental topics of discussion among the politicians, economists, and academics. Business creation is especially critical in developing countries to stimulate economic growth. The present study attempts to examine entrepreneurial inclination among students who are a potential source of entrepreneurs. The fi ndings of the present research study indicate that majority of our business students are not entrepreneurial-inclined. They do not seem to possess strong entrepreneurial characteristics and entrepreneurial skills, and they are not keen in starting a new business. The roles of higher institutes of education and the government in promoting entrepreneurship are discussed.
Aqua/Aura Updated Inclination Adjust Maneuver Performance Prediction Model
Boone, Spencer
2017-01-01
This presentation will discuss the updated Inclination Adjust Maneuver (IAM) performance prediction model that was developed for Aqua and Aura following the 2017 IAM series. This updated model uses statistical regression methods to identify potential long-term trends in maneuver parameters, yielding improved predictions when re-planning past maneuvers. The presentation has been reviewed and approved by Eric Moyer, ESMO Deputy Project Manager.
Graphs and matroids weighted in a bounded incline algebra.
Lu, Ling-Xia; Zhang, Bei
2014-01-01
Firstly, for a graph weighted in a bounded incline algebra (or called a dioid), a longest path problem (LPP, for short) is presented, which can be considered the uniform approach to the famous shortest path problem, the widest path problem, and the most reliable path problem. The solutions for LPP and related algorithms are given. Secondly, for a matroid weighted in a linear matroid, the maximum independent set problem is studied.
Drop impact and rebound dynamics on an inclined superhydrophobic surface.
Yeong, Yong Han; Burton, James; Loth, Eric; Bayer, Ilker S
2014-10-14
Due to its potential in water-repelling applications, the impact and rebound dynamics of a water drop impinging perpendicular to a horizontal superhydrophobic surface have undergone extensive study. However, drops tend to strike a surface at an angle in applications. In such cases, the physics governing the effects of oblique impact are not well studied or understood. Therefore, the objective of this study was to conduct an experiment to investigate the impact and rebound dynamics of a drop at various liquid viscosities, in an isothermal environment, and on a nanocomposite superhydrophobic surface at normal and oblique impact conditions (tilted at 15°, 30°, 45°, and 60°). This study considered drops falling from various heights to create normal impact Weber numbers ranging from 6 to 110. In addition, drop viscosity was varied by decreasing the temperature for water drops and by utilizing water-glycerol mixtures, which have similar surface tension to water but higher viscosities. Results revealed that oblique and normal drop impact behaved similarly (in terms of maximum drop spread as well as rebound dynamics) at low normal Weber numbers. However, at higher Weber numbers, normal and oblique impact results diverged in terms of maximum spread, which could be related to asymmetry and more complex outcomes. These asymmetry effects became more pronounced as the inclination angle increased, to the point where they dominated the drop impact and rebound characteristics when the surface was inclined at 60°. The drop rebound characteristics on inclined surfaces could be classified into eight different outcomes driven primarily by normal Weber number and drop Ohnesorge numbers. However, it was found that these outcomes were also a function of the receding contact angle, whereby reduced receding angles yielded tail-like structures. Nevertheless, the contact times of the drops with the coating were found to be generally independent of surface inclination.
Two Mechanisms of Sensorimotor Set Adaptation to Inclined Stance
Directory of Open Access Journals (Sweden)
Kyoung-Hyun Lee
2017-10-01
Full Text Available Orientation of posture relative to the environment depends on the contributions from the somatosensory, vestibular, and visual systems mixed in varying proportions to produce a sensorimotor set. Here, we probed the sensorimotor set composition using a postural adaptation task in which healthy adults stood on an inclined surface for 3 min. Upon returning to a horizontal surface, participants displayed a range of postural orientations – from an aftereffect that consisted of a large forward postural lean to an upright stance with little or no aftereffect. It has been hypothesized that the post-incline postural change depends on each individual’s sensorimotor set: whether the set was dominated by the somatosensory or vestibular system: Somatosensory dominance would cause the lean aftereffect whereas vestibular dominance should steer stance posture toward upright orientation. We investigated the individuals who displayed somatosensory dominance by manipulating their attention to spatial orientation. We introduced a distraction condition in which subjects concurrently performed a difficult arithmetic subtraction task. This manipulation altered the time course of their post-incline aftereffect. When not distracted, participants returned to upright stance within the 3-min period. However, they continued leaning forward when distracted. These results suggest that the mechanism of sensorimotor set adaptation to inclined stance comprises at least two components. The first component reflects the dominant contribution from the somatosensory system. Since the postural lean was observed among these subjects even when they were not distracted, it suggests that the aftereffect is difficult to overcome. The second component includes a covert attentional component which manifests as the dissipation of the aftereffect and the return of posture to upright orientation.
Determination of angle of inclination for optimum power production ...
African Journals Online (AJOL)
This study evaluates the performance of the photovoltaic modules at different tilt angle (angle of inclination) from 5º to 90º. The solar panel of 45 Watts capacity was placed on the manual tracker between the hours of 7:00am and 6:15pm on the geographical location of latitude of 40 55' 58” North and longitude of 60 59' 55” ...
Sagittal x-ray beam deviation at asymmetric inclined diffractors
Czech Academy of Sciences Publication Activity Database
Korytár, D.; Hrdý, Jaromír; Artemiev, Nikolai; Ferrari, C.; Freund, A.
2001-01-01
Roč. 8, - (2001), s. 1136-1139 ISSN 0909-0495 R&D Projects: GA MŠk OK 305; GA MPO PZ-CH/22 Institutional research plan: CEZ:AV0Z1010914 Keywords : x-ray optics * Si(111) W/grooved crystals * inclined diffraction * out-of-diffraction-plane beams * sagittal focusing Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.519, year: 2001
The influence of incline walking on joint mechanics.
Haggerty, Mason; Dickin, D Clark; Popp, Jennifer; Wang, Henry
2014-04-01
Walking is a popular form of exercise and is associated with many health benefits; however, frontal-plane knee joint loading brought about by a large internal knee-abduction moment and cyclic loading could lead to cartilage degeneration over time. Therefore, knee joint mechanics during an alternative walking exercise needs to be analyzed. The purpose of this study was to examine the lower-extremity joint mechanics in the frontal and sagittal planes during incline walking. Fifteen healthy males walked on a treadmill at five gradients (0%, 5%, 10%, 15%, and 20%) at 1.34m/s, and lower-extremity joint mechanics in the frontal and sagittal planes were quantified. The peak internal knee-abduction moment significantly decreased from the level walking condition at all gradients except 5%. Also, a negative relationship between the internal knee-abduction moment and the treadmill gradient was found to exist in 10% increments (0-10%, 5-15%, and 10-20%). The decrease in the internal knee-abduction moment during incline walking could have positive effects on knee joint health such as potentially reducing cartilage degeneration of the knee joint, reducing pain, and decreasing the rate of development of medial tibiofemoral osteoarthritis. This would be beneficial for a knee surgery patient, obese persons, and older adults who are using incline walking for rehabilitation and exercise protocols. Findings from the current study can provide guidance for the development of rehabilitation and exercise prescriptions incorporating incline walking. Copyright © 2014 Elsevier B.V. All rights reserved.
Three-dimensional volumetric display by inclined-plane scanning
Miyazaki, Daisuke; Eto, Takuma; Nishimura, Yasuhiro; Matsushita, Kenji
2003-05-01
A volumetric display system based on three-dimensional (3-D) scanning that uses an inclined two-dimensional (2-D) image is described. In the volumetric display system a 2-D display unit is placed obliquely in an imaging system into which a rotating mirror is inserted. When the mirror is rotated, the inclined 2-D image is moved laterally. A locus of the moving image can be observed by persistence of vision as a result of the high-speed rotation of the mirror. Inclined cross-sectional images of an object are displayed on the display unit in accordance with the position of the image plane to observe a 3-D image of the object by persistence of vision. Three-dimensional images formed by this display system satisfy all the criteria for stereoscopic vision. We constructed the volumetric display systems using a galvanometer mirror and a vector-scan display unit. In addition, we constructed a real-time 3-D measurement system based on a light section method. Measured 3-D images can be reconstructed in the 3-D display system in real time.
Inclined Fiber Pullout from a Cementitious Matrix: A Numerical Study
Directory of Open Access Journals (Sweden)
Hui Zhang
2016-09-01
Full Text Available It is well known that fibers improve the performance of cementitious composites by acting as bridging ligaments in cracks. Such bridging behavior is often studied through fiber pullout tests. The relation between the pullout force vs. slip end displacement is characteristic of the fiber-matrix interface. However, such a relation varies significantly with the fiber inclination angle. In the current work, we establish a numerical model to simulate the entire pullout process by explicitly representing the fiber, matrix and the interface for arbitrary fiber orientations. Cohesive elements endorsed with mixed-mode fracture capacities are implemented to represent the bond-slip behavior at the interface. Contact elements with Coulomb’s friction are placed at the interface to simulate frictional contact. The bond-slip behavior is first calibrated through pull-out curves for fibers aligned with the loading direction, then validated against experimental results for steel fibers oriented at 30 ∘ and 60 ∘ . Parametric studies are then performed to explore the influences of both material properties (fiber yield strength, matrix tensile strength, interfacial bond and geometric factors (fiber diameter, embedment length and inclination angle on the overall pullout behavior, in particular on the maximum pullout load. The proposed methodology provides the necessary pull-out curves for a fiber oriented at a given angle for multi-scale models to study fracture in fiber-reinforced cementitious materials. The novelty lies in its capacity to capture the entire pullout process for a fiber with an arbitrary inclination angle.
Veselovskiy, R. V.; Fetisova, A. M.; Balabanov, Y.
2017-12-01
One of the key challenges which are traditionally encountered in studying the paleomagnetism of terrigenous sedimentary strata is the necessity to allow for the effect of shallowing of paleomagnetic inclinations which takes place under the compaction of the sediment at the early stages of diagenesis and most clearly manifests itself in the case of midlatitude sedimentation. Traditionally, estimating the coefficient of inclination flattening (f) implies routine re-deposition experiments and studying their magnetic anisotropy (Kodama, 2012), which is not possible in every standard paleomagnetic laboratory. The Elongation-Inclination (E/I) statistical method for estimating the coefficient of inclination shallowing, which was recently suggested in (Tauxe and Kent, 2004), does not require the investigation of the rock material in a specially equipped laboratory but toughens the requirements on the paleomagnetic data and, primarily, regarding the volume of the data, which significantly restricts the possibilities of the post factum estimation and correction for inclination shallowing. We present the results of the paleomagnetic reinvestigation of the some key sections of the Upper Permian and Lower Triassic rocks located on the East European Platform. The obtained paleomagnetic data allowed us to estimate the coefficient of inclination shallowing by the E/I method and calculate a new P-Tr paleomagnetic pole for Europe. The absence of a statistically significant difference between the mean Siberian, European and North American Permian-Triassic paleomagnetic poles allow us to conclude that 252 Ma the configuration of the Earth's magnetic field was predominantly dipole. We believe that the assumption of the non-dipolarity of the geomagnetic field at the Permian-Triassic boundary, which has been repeatedly discussed in recent decades (Van der Voo and Torsvik, 2001; Bazhenov and Shatsillo, 2010; Veselovskiy and Pavlov, 2006), arose due to the failure to take into account the
International Nuclear Information System (INIS)
Dorman, L.I.; Khamirzov, Kh.M.
1977-01-01
A significant broadening if proposed of the scope of the spectrographical method studying space radiation variations on the basis of using oblique muon telescopes and differential communications ratios. The latter are estimated on the basis of scale invariance. It is shown that, in combination with neutron supermonitors, it is possible to produce an adequate number of spectrographic equations
Patil, Harshal Bhauso; Dingare, Sunil Vishnu
2018-03-01
Heat exchange upgrade is a vital territory of research area. Utilization of reasonable systems can bring about noteworthy specialized points of interest coming about reserve funds of cost. Rectangular plates are viewed as best balance arrangement utilized for heat exchange improvement. This gives an enlargement strategy to heat exchange with beginning of limit layer and vortex development. To assess and look at the rate of heat exchange enhancement by rectangular plate fins with differing inclinations (0°-30°-60°), shifting Re and heat supply under forced convection are the principle destinations of this study. The study is done by fluctuating introductions of fins with various inclinations, input heat supply and Re under forced convection. The coefficient of heat transfer increments observed with the expansion in air speed for all the examined designs. The coefficient of the heat transfer is discovered higher at the edge of introduction of fins at 30° for inline arrangement and 0° for staggered arrangement. Looking at both the arrangements, it is discovered that the heat transfer coefficient in 0° fin staggered arrangement is about 17% higher than 30° inline arrangement and 76% higher than the vertical plate fin. For plate fin heat sink, boundary layer formation and growth results in decrease of the coefficient of heat transfer in forced convection. This issue is overcome by accommodating some rectangular fins on the plate fin. It brings about increment of heat transfer coefficient of the RPFHS under the states of trial factors. As indicated by past research, it is discovered that examination of the plate fin heat sink with various sorts of fins for horizontal orientation is done yet but this investigation expects to discover the upgrade of transfer coefficient of plate fin heat sink for its vertical position with rectangular plates at different inclinations under the shifting scopes of heat input supply, fin arrangements and Reynolds number (Re).
Directory of Open Access Journals (Sweden)
Tobias Hacker
2012-04-01
Full Text Available The integral boundary layer system (IBL with spatially periodic coefficients arises as a long wave approximation for the flow of a viscous incompressible fluid down a wavy inclined plane. The Nusselt-like stationary solution of the IBL is linearly at best marginally stable; i.e., it has essential spectrum at least up to the imaginary axis. Nevertheless, in this stable case we show that localized perturbations of the ground state decay in a self-similar way. The proof uses the renormalization group method in Bloch variables and the fact that in the stable case the Burgers equation is the amplitude equation for long waves of small amplitude in the IBL. It is the first time that such a proof is given for a quasilinear PDE with spatially periodic coefficients.
Directory of Open Access Journals (Sweden)
P. Bala Anki Reddy
2016-06-01
Full Text Available This article investigates the theoretical study of the steady two-dimensional MHD convective boundary layer flow of a Casson fluid over an exponentially inclined permeable stretching surface in the presence of thermal radiation and chemical reaction. The stretching velocity, wall temperature and wall concentration are assumed to vary according to specific exponential form. Velocity slip, thermal slip, solutal slip, thermal radiation, chemical reaction and suction/blowing are taken into account. The proposed model considers both assisting and opposing buoyant flows. The non-linear partial differential equations of the governing flow are converted into a system of coupled non-linear ordinary differential equations by using the similarity transformations, which are then solved numerically by shooting method with fourth order Runge–Kutta scheme. The numerical solutions for pertinent parameters on the dimensionless velocity, temperature, concentration, skin friction coefficient, the heat transfer coefficient and the Sherwood number are illustrated in tabular form and are discussed graphically.
Mishra, A.; Sharma, B. K.
2017-11-01
A numerical study of an oscillatory unsteady MHD flow and heat and mass transfer in a vertical rotating channel with an inclined uniform magnetic field and the Hall effect is carried out. The conservation equations of momentum, energy, and species are formulated in a rotating frame of reference with inclusion of the buoyancy effects and Lorentz forces. The Lorentz forces are determined by using the generalized Ohm law with the Hall parameter taken into account. The obtained coupled partial differential equations are nondimensionalized and solved numerically by using the explicit finite difference method. The effects of various model parameters, like the Hall parameter, Hartmann number, wall suction/injection parameter, rotation parameter, angle of magnetic field inclination, Prandtl number, Schmidt number, etc., on the channel velocities, skin friction coefficients, Nusselt number, and the Sherwood number are examined. It is found that the influence of the Hartmann number and Hall parameter on the channel velocities and skin friction coefficients is dependent on the value of the wall suction/injection parameter.
Coefficient estimates of negative powers and inverse coefficients for ...
Indian Academy of Sciences (India)
λ. Using this we shall determine the ... Univalent; starlike; meromorphic functions; subordination; coefficient bounds; inverse ...... [6] FitzGerald C H, Quadratic inequalities and coefficient estimates for Schlicht functions, Arch. Ration. Mech. Anal.
Sex Differences in Incline-Walking among Humans.
Wall-Scheffler, Cara M
2015-12-01
Previous research has shown that people tend to walk around the speed that minimizes energy consumption when traveling a given distance. It has further been shown that men and women have different speeds that minimize energy and that women will choose slower speeds when the activity itself is a high-rate activity (e.g. carrying a load). Here we investigate what men and women will do when given a high rate walking activity, namely walking on an inclined surface. Fourteen people (nine men and five women) walked at four speeds on a level treadmill and four speeds on an inclined treadmill while their metabolic rate, kinematics and core temperature were monitored. Following the data collection, participants were asked to identify their ‘preferred’ walking speed at each of the conditions. Cost of transport (CoT) curves were calculated for each individual, and the delta between the preferred and the ‘optimal’ speeds were calculated. People chose to walk at slightly slower speeds on the level; there was minimal change in the cost to walk at these slower speeds. Women walked at absolutely slower speeds on the incline than men (P=0.06) and had significantly larger speed deltas (P=0.02), thus choosing to walk at slower rate speeds. Women also showed a significant relationship between the rate of activity and core temperature, whereas men did not. This is consistent with other research showing that women choose behavioral strategies to minimize body temperature changes. © The Author 2015. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.
Flame spread over inclined electrical wires with AC electric fields
Lim, Seung J.
2017-07-21
Flame spread over polyethylene-insulated electrical wires was studied experimentally with applied alternating current (AC) by varying the inclination angle (θ), applied voltage (VAC), and frequency (fAC). For the baseline case with no electric field applied, the flame spread rate and the flame width of downwardly spreading flames (DSFs) decreased from the horizontal case for −20° ≤ θ < 0° and maintained near constant values for −90° ≤ θ < −20°, while the flame spread rate increased appreciably as the inclination angle of upwardly spreading flames (USFs) increased. When an AC electric field was applied, the behavior of flame spread rate in DSFs (USFs) could be classified into two (three) sub-regimes characterized by various functional dependences on VAC, fAC, and θ. In nearly all cases of DSFs, a globular molten polyethylene formed ahead of the spreading flame edge, occasionally dripping onto the ground. In these cases, an effective flame spread rate was defined to represent the burning rate by measuring the mass loss due to dripping. This effective spread rate was independent of AC frequency, while it decreased linearly with voltage and was independent of the inclination angle. In DSFs, when excessively high voltage and frequency were applied, the dripping led to flame extinction during propagation and the extinction frequency correlated well with applied voltage. In USFs, when high voltage and frequency were applied, multiple globular molten PEs formed at several locations, leading to ejections of multiple small flame segments from the main flame, thereby reducing the flame spread rate, which could be attributed to the electrospray phenomenon.
Articulator-related registration and analysis of sagittal condylar inclination
Čimić, Samir; Kraljević Šimunković, Sonja; Simonić Kocijan, Sunčana; Matijević, Jurica; Dulčić, Nikša; Ćatić, Amir
2015-01-01
The purpose of this investigation was to study sagittal condylar inclination values within a uniform sample (Angle class I occlusion) using ‘articulator-related registration’ and Camper’s plane as a reference plane. The study was performed on a sample of 58 Angle class I subjects (mean age 25.1, SD 3.1). Measurements were performed with an ultrasonic jaw tracking device with six degrees of freedom. After a paraocclusal tray was fixed in the mouth, each subject had to make three protrusive ...
Mining adjacent inclined coal seams of varying thickness
Energy Technology Data Exchange (ETDEWEB)
Batmanov, Yu.K.; Bakhtin, A.F.; Bulavka, E.I.
1980-01-01
In the Donbass coal basin a large number of thin coal seams located near other thicker coal seams are left. It is suggested that coal output from the Donbass could be increased by 100% and cost of mining could be lowered by 0.4-1.1 roubles per 1 ton of coal if thinner coal seams were also mined. Mining methods in the Donbass are analyzed from the point of view of reducing the cost of mining and increasing coal production. Recommendations on methods of mining thin inclined coal seams are given. (6 refs.) (In Russian)
Rughoobur, Girish; DeMiguel-Ramos, Mario; Escolano, José-Miguel; Iborra, Enrique; Flewitt, Andrew John
2017-05-02
Shear mode solidly mounted resonators (SMRs) are fabricated using an inclined c-axis ZnO grown on a rough Al electrode. The roughness of the Al surface is controlled by changing the substrate temperature during the deposition process to promote the growth of inclined ZnO microcrystals. The optimum substrate temperature to obtain homogeneously inclined c-axis grains in ZnO films is achieved by depositing Al at 100 °C with a surface roughness ~9.2 nm, which caused an inclination angle of ~25° of the ZnO c-axis with respect to the surface normal. Shear mode devices with quality-factors at resonance, Q r and effective electromechanical coupling factors, [Formula: see text], as high as 180 and 3.4% are respectively measured. Mass sensitivities, S m of (4.9 ± 0.1) kHz · cm 2 /ng and temperature coefficient of frequency (TCF) of ~-67 ppm/K are obtained using this shear mode. The performance of the devices as viscosity sensors and biosensors is demonstrated by determining the frequency shifts of water-ethanol mixtures and detection of Rabbit immunoglobin G (IgG) whole molecule (H&L) respectively.
Finite element analysis of inclined nozzle-plate junctions
International Nuclear Information System (INIS)
Dixit, K.B.; Seth, V.K.; Krishnan, A.; Ramamurthy, T.S.; Dattaguru, B.; Rao, A.K.
1979-01-01
Estimation of stress concentration at nozzle to plate or shell junctions is a significant problem in the stress analysis of nuclear reactors. The topic is a subject matter of extensive investigations and earlier considerable success has been reported on analysis for the cases when the nozzle is perpendicular to the plate or is radial to the shell. Analytical methods for the estimation of stress concentrations for the practical situations when the intersecting nozzle is inclined to the plate or is non-radial to the shell is rather scanty. Specific complications arise in dealing with the junction region when the nozzle with circular cross-section meets the non-circular cut-out on the plate or shell. In this paper a finite element analysis is developed for inclined nozzles and results are presented for nozzle-plate junctions. A method of analysis is developed with a view to achieving simultaneously accuracy of results and simplicity in the choice of elements and their connectivity. The circular nozzle is treated by axisymmetric conical shell elements. The nozzle portion in the region around the junction and the flat plate is dealt with by triangular flat shell elements. Special transition elements are developed for joining the flat shell elements with the axisymmetric elements under non-axisymmetric loading. A substructure method of analysis is adopted which achieves considerable economy in handling the structure and also conveniently combines the different types of elements in the structure. (orig.)
An Experimental Investigation on Inclined Negatively Buoyant Jets
Directory of Open Access Journals (Sweden)
Raed Bashitialshaaer
2012-09-01
Full Text Available An experimental study was performed to investigate the behavior of inclined negatively buoyant jets. Such jets arise when brine is discharged from desalination plants. A turbulent jet with a specific salinity was discharged through a circular nozzle at an angle to the horizontal into a tank with fresh water and the spatial evolution of the jet was recorded. Four different initial jet parameters were changed, namely the nozzle diameter, the initial jet inclination, the jet density and the flow rate. Five geometric quantities describing the jet trajectory that are useful in the design of brine discharge systems were determined. Dimensional analysis demonstrated that the geometric jet quantities studied, if normalized with the jet exit diameter, could be related to the densimetric Froude number. Analysis of the collected data showed that this was the case for a Froude number less than 100, whereas for larger values of the Froude number the scatter in the data increased significantly. As has been observed in some previous investigations, the slope of the best-fit straight line through the data points was a function of the initial jet angle (θ, where the slope increased with θ for the maximum levels (Y_{m} studied, but had a more complex behavior for horizontal distances.
Simplification of rat intubation on inclined metal plate.
Kastl, Sigrid; Kotschenreuther, U; Hille, B; Schmidt, J; Gepp, H; Hohenberger, W
2004-12-01
Small-animal intubation is often necessary during inhalation anesthesia to allow steady-state conditions for large operations and in vivo experiments in all fields of experimental surgery. In rats, placing an orotracheal tube is technically difficult primarily because of the small size of the subject and the lack of equipment specifically designed for this task. We describe a simple rat intubation technique in which the animal is suspended in dorsal recumbency on an inclined metal plate. The animal, anesthetized with ether, is fixed to a 70 degrees-inclined metal plate in a dorsal position by means of a Mersilene ribbon hooked around the upper incisors. This method of positioning the animal is the most important step in the intubation process and further facilitates the technique already described by other authors. A human otoscope was used as a laryngoscope, intubation was performed using the Seldinger technique, and a 14-gauge intravenous catheter served as an endotracheal tube. This inexpensive technique is quickly learned and can be used in any laboratory. Safe and reliable airway management can thus be achieved, permitting in vivo examinations and operations.
Geosynchronous inclined orbits for high-latitude communications
Fantino, E.; Flores, R. M.; Di Carlo, M.; Di Salvo, A.; Cabot, E.
2017-11-01
We present and discuss a solution to the growing demand for satellite telecommunication coverage in the high-latitude geographical regions (beyond 55°N), where the signal from geostationary satellites is limited or unavailable. We focus on the dynamical issues associated to the design, the coverage, the maintenance and the disposal of a set of orbits selected for the purpose. Specifically, we identify a group of highly inclined, moderately eccentric geosynchronous orbits derived from the Tundra orbit (geosynchronous, eccentric and critically inclined). Continuous coverage can be guaranteed by a constellation of three satellites in equally spaced planes and suitably phased. By means of a high-precision model of the terrestrial gravity field and the relevant environmental perturbations, we study the evolution of these orbits. The effects of the different perturbations on the ground track (which is more important for coverage than the orbital elements themselves) are isolated and analyzed. The physical model and the numerical setup are optimized with respect to computing time and accuracy. We show that, in order to maintain the ground track unchanged, the key parameters are the orbital period and the argument of perigee. Furthermore, corrections to the right ascension of the ascending node are needed in order to preserve the relative orientation of the orbital planes. A station-keeping strategy that minimizes propellant consumption is then devised, and comparisons are made between the cost of a solution based on impulsive maneuvers and one with continuous thrust. Finally, the issue of end-of-life disposal is discussed.
Non-dispersive traveling waves in inclined shallow water channels
International Nuclear Information System (INIS)
Didenkulova, Ira; Pelinovsky, Efim
2009-01-01
Existence of traveling waves propagating without internal reflection in inclined water channels of arbitrary slope is demonstrated. It is shown that traveling non-monochromatic waves exist in both linear and nonlinear shallow water theories in the case of a uniformly inclined channel with a parabolic cross-section. The properties of these waves are studied. It is shown that linear traveling waves should have a sign-variable shape. The amplitude of linear traveling waves in a channel satisfies the same Green's law, which is usually derived from the energy flux conservation for smoothly inhomogeneous media. Amplitudes of nonlinear traveling waves deviate from the linear Green's law, and the behavior of positive and negative amplitudes are different. Negative amplitude grows faster than positive amplitude in shallow water. The phase of nonlinear waves (travel time) is described well by the linear WKB approach. It is shown that nonlinear traveling waves of any amplitude always break near the shoreline if the boundary condition of the full absorption is applied.
Dissipative descent: rocking and rolling down an incline
Balmforth, N. J.; Bush, J. W. M.; Vener, D.; Young, W. R.
We consider the dynamics of a hollow cylindrical shell that is filled with viscous fluid and another, nested solid cylinder, and allowed to roll down an inclined plane. A mathematical model is compared to simple experiments. Two types of behaviour are observed experimentally: on steeper slopes, the device accelerates; on shallower inclines, the cylinders rock and roll unsteadily downhill, with a speed that is constant on average. The theory also predicts runaway and unsteady rolling motions. For the rolling solutions, however, the inner cylinder cannot be suspended in the fluid by the motion of the outer cylinder, and instead falls inexorably toward the outer cylinder. Whilst only occurs after an infinite time, the system slows progressively as the gap between the cylinders narrows, owing to heightened viscous dissipation. Such a deceleration is not observed in the experiments, suggesting that some mechanism limits the approach to contact. Coating the surface of the inner cylinder with sandpaper of different grades changes the rolling speed, consistent with the notion that surface roughness is responsible for limiting the acceleration.
Breakdown of air pockets in downwardly inclined sewerage pressure mains.
Lubbers, C L; Clemens, F H L R
2006-01-01
In the Netherlands, wastewater is collected in municipal areas and transported to centralised WWTPs by an extensive system of pressure mains. Over the last decades these pressure mains did not receive much attention in terms of monitoring of performance or maintenance. A recent inventory showed that half of the pressure mains show an increased pressure loss for no directly obvious reason. One of the many causes that account for the reduction of the flow capacity is the occurrence of free gas in the pipeline. During dry weather periods with low flow velocities, gas may accumulate at high points in the system. Once the velocity increases during storm weather flow, the air pockets may be broken down and transported to the end of the system. A research study is started focussing on the description of the gas-water phenomena in wastewater pressure mains with respect to transportation of gas. An experimental facility is constructed for the study of multi-phase flow. This paper describes the preliminary results of experiments on breakdown rates of gas pockets as a function of inclination angle and water flow rate. The results show an increasing breakdown rate with increasing inclination angle.
Improvement in greenhouse solar drying using inclined north wall reflection
Energy Technology Data Exchange (ETDEWEB)
Sethi, V.P. [Department of Mechanical Engineering, Punjab Agricultural University, Ludhiana 141004, Punjab (India); Arora, Sadhna [Department of Processing and Food Engineering, Punjab Agricultural University, Ludhiana 141004, Punjab (India)
2009-09-15
A conventional greenhouse solar dryer of 6 m{sup 2} x 4 m{sup 2} floor area (east-west orientation) was improved for faster drying using inclined north wall reflection (INWR) under natural as well as forced convection mode. To increase the solar radiation availability onto the product (to be dried) during extreme summer months, a temporary inclined wall covered with aluminized reflector sheet (of 50 {mu}m thickness and reflectance 0.93) was raised inside the greenhouse just in front of the vertical transparent north wall. By doing so, product fully received the reflected beam radiation (which otherwise leaves through the north wall) in addition to the direct total solar radiation available on the horizontal surface during different hours of drying. The increment in total solar radiation input enhanced the drying rate of the product by increasing the inside air and crop temperature of the dryer. Inclination angle of the reflective north wall with vertical ({beta}) was optimized for various selective widths of the tray W (1.5, 2, 2.5 and 3 m) and for different realistic heights of existing vertical north wall (h) at 25 N, 30 N and 35 N latitudes (hot climatic zones). Experimental performance of the improved dryer was tested during the month of May 2008 at Ludhiana (30.56 N) climatic conditions, India by drying bitter gourd (Momordica charantia Linn) slices. Results showed that by using INWR under natural convection mode of drying, greenhouse air and crop temperature increased by 1-6.7 C and 1-4 C, respectively, during different drying hours as compared to, when INWR was not used and saved 13.13% of the total drying time. By using INWR under forced convection mode of drying, greenhouse air and crop temperature increased by 1-4.5 C and 1-3 C, respectively, during different drying hours as compared to, when INWR was not used and saved 16.67% of the total drying time. (author)
Hydraulic shock waves in an inclined chute contraction
Jan, C.-D.; Chang, C.-J.
2009-04-01
A chute contraction is a common structure used in hydraulic engineering for typical reasons such as increase of bottom slope, transition from side channel intakes to tunnel spillways, reduction of chute width due to bridges, transition structures in flood diversion works, among others. One of the significant chute contractions in Taiwan is that used in the Yuanshantzu Flood Diversion Project of Keelung River. The diversion project is designed to divert flood water from upper Keelung River into East Sea with a capasity of 1,310 cubic meters per second for mitigating the flood damage of lower part of Keelung River basin in Northern Taiwan. An inclined chute contraction is used to connect Keelung River and a diversion turnel. The inlet and outlet works of the diversion project is located at Ruifang in the Taipei County of north Taiwan. The diameter of diversion tunnel is 12 meters and the total length of tunnel is 2,484 meters. The diversion project has been completed and successfully executed many times since 2004 to lower the water level of Keelung River in typhoon seasons for avioding flooding problems in the lower part of Keelung River basin. Flow in a chute contraction has complicated flow pattern due to the existence of shock waves in it. A simple and useful calculation procedure for the maximum height and its position of shock waves is essentially needed for the preliminary design stage of a chute contraction. Hydraulic shock waves in an inclined chute contraction were experimentally and numerically investigated in this study with the consideration of the effects of sidewall deflection angle, bottom inclination angle and Froude number of approaching flow. The flow pattern of hydraulic shock waves in a chute contraction was observed. The main issue of designing chute contraction is to estimate the height and position of maximum shock wave for the consideration of freeboards. Achieving this aim, the experimental data are adopted and analyzed for the shock angle
Unique operations for a highly inclined, elliptical, geosynchronous satellite
Anglin, Patrick T.; Briskman, Robert D.
2004-08-01
The first space segment devoted to a Digital Audio Radio Service (DARS) for the Continental United States (CONUS) was established when the last satellite of a three satellite constellation (Flight Models FM-1, FM-2 and FM-3) was launched in November 2000. Each satellite is in a highly inclined, elliptical, geosynchronous orbit that is separated by 120° in Right Angle of the Ascending Node (RAAN) from the other two satellites' orbits. This results in an 8 h phasing in ground track between each satellite. These distinct orbits provide superior look angles and signal availability to mobile receivers in the northern third of the United States when compared to geostationary satellites. However, this unique orbital constellation results in some particular performance and operational differences from geostationary orbit satellites. Some of these are: Earth Sensor noise, maneuver implementation and power management. Descriptions and performance improvements of these orbit specific operations are detailed herein.
Simulation of Solar Radiation Incident on Horizontal and Inclined Surfaces
Directory of Open Access Journals (Sweden)
MA Basunia
2012-12-01
Full Text Available A computer model was developed to simulate the hourly, daily and monthly average of daily solar radiation on horizontal and inclined surfaces. The measured hourly and daily solar radiation was compared with simulated radiation, and favourable agreement was observed for the measured and predicted values on clear days. The measured and simulated monthly averages of total (diffuse and beam daily solar radiation were compared and a reasonable agreement was observed for a number of stations in Japan. The simulation showed that during the rice harvesting season, September to October, there is a daily average of 14.7 MJ/m2 of solar irradiation on a horizontal surface in Matsuyama, Japan. There is a similar amount of solar radiation on a horizontal surface during the major rice harvesting season, November to December, in Bangladesh. This radiation can be effectively utilized for drying rough rice and other farm crops.
Inclined nanoimprinting lithography-based 3D nanofabrication
Liu, Zhan; Bucknall, David G.; Allen, Mark G.
2011-06-01
We report a 'top-down' 3D nanofabrication approach combining non-conventional inclined nanoimprint lithography (INIL) with reactive ion etching (RIE), contact molding and 3D metal nanotransfer printing (nTP). This integration of processes enables the production and conformal transfer of 3D polymer nanostructures of varying heights to a variety of other materials including a silicon-based substrate, a silicone stamp and a metal gold (Au) thin film. The process demonstrates the potential of reduced fabrication cost and complexity compared to existing methods. Various 3D nanostructures in technologically useful materials have been fabricated, including symmetric and asymmetric nanolines, nanocircles and nanosquares. Such 3D nanostructures have potential applications such as angle-resolved photonic crystals, plasmonic crystals and biomimicking anisotropic surfaces. This integrated INIL-based strategy shows great promise for 3D nanofabrication in the fields of photonics, plasmonics and surface tribology.
Segregation in inclined flows of binary mixtures of spheres
Directory of Open Access Journals (Sweden)
Larcher Michele
2017-01-01
Full Text Available We outline the equations that govern the evolution of segregation of a binary mixture of spheres in flows down inclines. These equations result from the mass and momentum balances of a kinetic theory for dense flows of inelastic spheres that interact through collisions. The theory employed for segregation is appropriate for particles with relatively small differences in size and mass. The flow of the mixture is assumed to reach a fully developed state much more rapidly than does the concentrations of the two species. We illustrate the predictions of the theory for a mixture of spheres of the same diameter but different masses and for spheres of different diameters but nearly the same mass. We show the evolution of the profiles of the concentration fractions of the two types of spheres and the profiles in the final, steady state. The latter compare favourably with those obtained in discrete-element numerical simulations.
Method and apparatus for logging inclined earth boreholes
International Nuclear Information System (INIS)
Youmans, A.H.
1981-01-01
An improved technique is provided for comparing the velocity of an elongated well logging instrument traversing an inclined earth borehole with the playout velocity of the well logging cable at the earth's surface to control both the cable hoist drum rotation and the rate of movement of the subsurface instrument and thus insure cable playout is in equilibrium with the logging instrument movement. Method and apparatus are described for detecting any reduction in movement of the logging instrument through the borehole and for reducing the velocity of the logging cable playout in response thereto by reducing drum rotation. Further, when the velocity of cable playout slows to a preselected value, a monitoring circuit generates control signals which actuate a means of power attached to or integral with the logging instrument which, upon initiation, apply a force to move the logging instrument upward or downward within the borehole
Deformation Analysis of Fixed Bearing Inclined Plane Thrust Bearing
Directory of Open Access Journals (Sweden)
LI Yong--hai
2017-02-01
Full Text Available According to the theory of lubrication，Numerical simulation of the deformation of the thrust bearing of the fixed inclined plane was carried out，by finite element numerical analysis method and using the ANSYS software. The mathematical model of the oil film shape control equations about of the deformation and bearing is established. Analytical result showed that the force caused the tile surface generating concave deformation，and convex deformation increased with the height and the size of the load and bearing;Tile surface temperature generated convex deformation and increased with the height and the size of the temperature of bearing bush;The actual deformation of the tile surface is the superposition of the force and the thermal deformation. This conclusion can provide reference for the design and the application of thrust bearing，to reduce the tile surface，which is not conducive to the carrying capacity of the concave deformation.
Transient flow and heat transfer phenomena in inclined wavy films
Energy Technology Data Exchange (ETDEWEB)
Serifi, Katerina; Bontozoglou, Vasilis [Department of Mechanical and Industrial Engineering, University of Thessaly, 38334, Volos (Greece); Malamataris, Nikolaos A. [Department of Mechanical Engineering, Technological Educational Institution of Western Macedonia, 50100, Kila Kozani (Greece)
2004-08-01
A finite-element numerical scheme is used to study rigorously the flow of an inclined liquid film and the heat transfer from the constant-temperature wall. Regular inlet disturbances are predicted to evolve into periodic or solitary waves depending on the frequency of the forcing. At very low disturbance frequencies parasitic crests appear and the regularity of the wave-train is lost. The effect of a solitary wave-train on heat transfer from the wall is studied, and it is predicted that a stationary temperature distribution develops with periodic flux variation that follows the waves. The thinning of the substrate between successive humps combines with the effect of convection at the crest and tail of the solitary humps to produce heat transfer enhancement significantly above the conduction limit. (authors)
Inclined transpression in the Neka Valley, eastern Alborz, Iran
Nabavi, Seyed Tohid; Díaz-Azpiroz, Manuel; Talbot, Christopher J.
2017-07-01
Three major nappes in the Neka Valley in the eastern Alborz Mountains of Iran allow the Cimmerian to present convergence following the oblique collision between Iran and the southern margin of Eurasia. This work reports the identification of an inclined transpression zone recognized by field investigations and strain analyses of the geometries of formations and detailed mesoscopic structural analyses of multiple faults, folds and a cleavage. The main structures encountered include refolded recumbent asymmetric fold nappes, highly curved fold hinges, in a transpression zone that dips 37° to the NW between boundaries thrusts striking from N050° to N060°. The β angle (the angle between the zone boundary and direction of horizontal far-field shortening) is about 80°. The north-west and south-east boundaries of this zone coincide with the Haji-abad thrust and the Shah-Kuh thrust, respectively. Fold axes generally trend NE-SW and step to both right and left as a result of strike-slip components of fault displacements. Strain analyses using Fry's method on macroscopic ooids and fusulina deformed into oblate ellipsoids indicate that the natural strain varies between 2.1 and 3.14. The estimated angle between the maximum instantaneous strain axis (ISAmax) and the transpression zone boundary ( θ') is between 6° and 20°. The estimated oblique convergence angle ( α), therefore, ranges between 31° and 43°. The average kinematic vorticity number ( W k ) is 0.6, in a zone of sinistral pure shear-dominated inclined triclinic transpression. These results support the applicability of kinematic models of triclinic transpression to natural brittle-ductile shear zones.
Petaros, Anja; Garvin, Heather M; Sholts, Sabrina B; Schlager, Stefan; Wärmländer, Sebastian K T S
2017-11-01
The frontal bone is one of the most sexually dimorphic elements of the human skull, due to features such as the glabella, frontal eminences, and frontal inclination. While glabella is frequently evaluated in procedures to estimate sex in unknown human skeletal remains, frontal inclination has received less attention. In this study we present a straightforward, quick, and reproducible method for measuring frontal inclination angles from glabella and supraglabella. Using a sample of 413 human crania from four different populations (U.S. Whites, U.S. Blacks, Portuguese, and Chinese), we test the usefulness of the inclination angles for sex estimation and compare their performance to traditional methods of frontal inclination assessment. Accuracy rates in the range 75-81% were achieved for the U.S. White, U.S. Black, and Portuguese groups. For Chinese the overall accuracy was lower, i.e. 66%. Although some regional variation was observed, a cut-off value of 78.2° for glabellar inclination angles separates female and male crania from all studied populations with good accuracy. As inclination angles measured from glabella captures two sexually dimorphic features (i.e. glabellar prominence and frontal inclination) in a single measure, the observed clear male/female difference is not unexpected. Being continuous variables, inclination angles are suitable for use in statistical methods for sex estimations. Copyright © 2017 Elsevier B.V. All rights reserved.
Directory of Open Access Journals (Sweden)
T. Hayat
Full Text Available This article is intended to investigate the influence of Hall current on peristaltic transport of conducting EyringâPowell fluid in an inclined symmetric channel. Energy equation is modeled by taking Joule heating effect into consideration. Velocity and thermal slip conditions are imposed. Lubrication approximation is considered for the analysis. Fundamental equations are non-linear due to fluid parameter A. Regular perturbation technique is employed to find the solution of systems of equations. The key roles of different embedded parameters on velocity, temperature and heat transfer coefficient in the problem are discussed graphically. Trapping phenomenon is analyzed carefully. Keywords: Peristalsis, Hall effects, Slip conditions, Joule heating, EyringâPowell fluid and inclined channel
Zimmer, Bernd; Sino, Hiba
2018-03-19
To analyze common values of bracket torque (Andrews, Roth, MBT, Ricketts) for their validity in achieving incisor inclinations that are considered normal by different cephalometric standards. Using the equations developed in part 1 (eU1 (BOP) = 90° - BT (U1) - TCA (U1) + α 1 - α 2 and eL1 (BOP) = 90° - BT (L1) - TCA (L1) + β 1 - β 2 ) (abbreviations see part 1) and the mean values (± SD) obtained as statistical measures in parts 1 and 2 of the study (α 1 and β 1 [1.7° ± 0.7°], α 2 [3.6° ± 0.3°], β 2 [3.2° ± 0.4°], TCA (U1) [24.6° ± 3.6°] and TCA (L1) [22.9° ± 4.3°]) expected (= theoretically anticipated) values were calculated for upper and lower incisors (U1 and L1) and compared to targeted (= cephalometric norm) values. For U1, there was no overlapping between the ranges of expected and targeted values, as the lowest targeted value of (58.3°; Ricketts) was higher than the highest expected value (56.5°; Andrews) relative to the bisected occlusal plane (BOP). Thus all of these torque systems will aim for flatter inclinations than prescribed by any of the norm values. Depending on target values, the various bracket systems fell short by 1.8-5.5° (Andrews), 6.8-10.5° (Roth), 11.8-15.5° (MBT), or 16.8-20.5° (Ricketts). For L1, there was good agreement of the MBT system with the Ricketts and Björk target values (Δ0.1° and Δ-0.8°, respectively), and both the Roth and Ricketts systems came close to the Bergen target value (both Δ2.3°). Depending on target values, the ranges of deviation for L1 were 6.3-13.2° for Andrews (Class II prescription), 2.3°-9.2° for Roth, -3.7 to -3.2° for MBT, and 2.3-9.2° for Ricketts. Common values of upper incisor bracket torque do not have acceptable validity in achieving normal incisor inclinations. A careful selection of lower bracket torque may provide satisfactory matching with some of the targeted norm values.
Directory of Open Access Journals (Sweden)
Irina Ivanovna Patsakula
2017-11-01
Full Text Available Purpose. The article is dedicated to the urgent subject: formation of healthy, actively creating and socially adapted person in the environment of social and economic changes, and also to the increasing demand in victimology prevention and correction. The authors aim to study the link between a person’s victim behaviour and a young generation’s view of the identity of a safe type. Method and methodology of the work. The research is based on the methods of psychosemantics (association experiment, specialised semantic differential [2], research methodology of inclination to victim behaviour by O.O. Andronikova [1], math statistics: coefficient of range correlation by R.S. Spirman. Results. The article presents the results of investigating a person’s victim behaviour in the connection with the idea of the identity of a safe type. The research of the representatives of a young generation was made, which proved that the teenagers having and the teenagers not having in their behaviour victim characteristics differ in their views of a safe-type person by the emotional component, by the extent of different characteristics and by the contents of associations. The sphere of applying the results. The results can by used in pedagogics, psychology, and law in the context o victimology prevention.
Quadrature formulas for Fourier coefficients
Bojanov, Borislav
2009-09-01
We consider quadrature formulas of high degree of precision for the computation of the Fourier coefficients in expansions of functions with respect to a system of orthogonal polynomials. In particular, we show the uniqueness of a multiple node formula for the Fourier-Tchebycheff coefficients given by Micchelli and Sharma and construct new Gaussian formulas for the Fourier coefficients of a function, based on the values of the function and its derivatives. © 2009 Elsevier B.V. All rights reserved.
Measuring of heat transfer coefficient
DEFF Research Database (Denmark)
Henningsen, Poul; Lindegren, Maria
Subtask 3.4 Measuring of heat transfer coefficient Subtask 3.4.1 Design and setting up of tests to measure heat transfer coefficient Objective: Complementary testing methods together with the relevant experimental equipment are to be designed by the two partners involved in order to measure...... the heat transfer coefficient for a wide range of interface conditions in hot and warm forging processes. Subtask 3.4.2 Measurement of heat transfer coefficient The objective of subtask 3.4.2 is to determine heat transfer values for different interface conditions reflecting those typically operating in hot...
Directory of Open Access Journals (Sweden)
A.M. Rashad
2017-04-01
Full Text Available The present study explores the impact of anistropic slip on transient three dimensional MHD flow of Cobalt-kerosene ferrofluid over an inclined radiate stretching surface. The governing partial differential equations for this study are solved by the Thomas algorithm with finite-difference type. The impacts of several significant parameters on flow and heat transfer characteristics are exhibited graphically. The conclusion is revealed that the local Nusselt number is significantly promoted due to influence of thermal radiation whereas diminished with elevating the solid volume fraction, magnet parameter and slip factors. Further, the skin friction coefficients visualizes a considerable enhancement with boosting the magnet and radiation parameters, but a prominent reduction is recorded by elevating the solid volume fraction and slip factors.
Energy Technology Data Exchange (ETDEWEB)
Forero, N.L. [Licenciatura en Fisica, Universidad Distrital, Bogota (Colombia); Caicedo, L.M.; Gordillo, G. [Departamento de Fisica, Universidad Nacional de Colombia, Bogota (Colombia)
2007-12-15
An empirical expression developed to estimate global solar radiation in clear days, on inclined surfaces located at any geographical position, is presented. This expression allows determining the global solar radiation in a specific day of the year, considering the attenuation of radiation in the atmosphere, the air mass factor, astronomic geometric and geographic parameters, and in particular, the altitude. Data calculated with this expression were correlated with those obtained experimentally in Bogota, Colombia (74 4'W, 4 35'N and 2580 m altitude). The correlation of the calculated with the experimental data yielded a coefficient of 0.9980, which indicates the reliability of the former and that the developed expression facilitates the construction of data bases with information on solar radiation potential in ample regions characterized by their locations at different altitudes above sea level. These data bases will supply preliminary information on sites adequate for the installation of photovoltaic systems. (author)
New inclination changing eclipsing binaries in the Magellanic Clouds
Juryšek, J.; Zasche, P.; Wolf, M.; Vraštil, J.; Vokrouhlický, D.; Skarka, M.; Liška, J.; Janík, J.; Zejda, M.; Kurfürst, P.; Paunzen, E.
2018-01-01
Context. Multiple stellar systems are unique laboratories for astrophysics. Analysis of their orbital dynamics, if well characterized from their observations, may reveal invaluable information about the physical properties of the participating stars. Unfortunately, there are only a few known and well described multiple systems, this is even more so for systems located outside the Milky Way galaxy. A particularly interesting situation occurs when the inner binary in a compact triple system is eclipsing. This is because the stellar interaction, typically resulting in precession of orbital planes, may be observable as a variation of depth of the eclipses on a long timescale. Aims: We aim to present a novel method to determine compact triples using publicly available photometric data from large surveys. Here we apply it to eclipsing binaries (EBs) in Magellanic Clouds from OGLE III database. Our tool consists of identifying the cases where the orbital plane of EB evolves in accord with expectations from the interaction with a third star. Methods: We analyzed light curves (LCs) of 26121 LMC and 6138 SMC EBs with the goal to identify those for which the orbital inclination varies in time. Archival LCs of the selected systems, when complemented by our own observations with Danish 1.54-m telescope, were thoroughly analyzed using the PHOEBE program. This provided physical parameters of components of each system. Time dependence of the EB's inclination was described using the theory of orbital-plane precession. By observing the parameter-dependence of the precession rate, we were able to constrain the third companion mass and its orbital period around EB. Results: We identified 58 candidates of new compact triples in Magellanic Clouds. This is the largest published sample of such systems so far. Eight of them were analyzed thoroughly and physical parameters of inner binary were determined together with an estimation of basic characteristics of the third star. Prior to our
Aerodynamics of wing-assisted incline running in birds.
Tobalske, Bret W; Dial, Kenneth P
2007-05-01
Wing-assisted incline running (WAIR) is a form of locomotion in which a bird flaps its wings to aid its hindlimbs in climbing a slope. WAIR is used for escape in ground birds, and the ontogeny of this behavior in precocial birds has been suggested to represent a model analogous to transitional adaptive states during the evolution of powered avian flight. To begin to reveal the aerodynamics of flap-running, we used digital particle image velocimetry (DPIV) and measured air velocity, vorticity, circulation and added mass in the wake of chukar partridge Alectoris chukar as they engaged in WAIR (incline 65-85 degrees; N=7 birds) and ascending flight (85 degrees, N=2). To estimate lift and impulse, we coupled our DPIV data with three-dimensional wing kinematics from a companion study. The ontogeny of lift production was evaluated using three age classes: baby birds incapable of flight [6-8 days post hatching (d.p.h.)] and volant juveniles (25-28 days) and adults (45+ days). All three age classes of birds, including baby birds with partially emerged, symmetrical wing feathers, generated circulation with their wings and exhibited a wake structure that consisted of discrete vortex rings shed once per downstroke. Impulse of the vortex rings during WAIR was directed 45+/-5 degrees relative to horizontal and 21+/-4 degrees relative to the substrate. Absolute values of circulation in vortex cores and induced velocity increased with increasing age. Normalized circulation was similar among all ages in WAIR but 67% greater in adults during flight compared with flap-running. Estimated lift during WAIR was 6.6% of body weight in babies and between 63 and 86% of body weight in juveniles and adults. During flight, average lift was 110% of body weight. Our results reveal for the first time that lift from the wings, rather than wing inertia or profile drag, is primarily responsible for accelerating the body toward the substrate during WAIR, and that partially developed wings, not yet
Percentiles relative to maxillary permanent canine inclination by age: a radiologic study.
Alessandri Bonetti, Giulio; Zanarini, Matteo; Danesi, Margherita; Parenti, Serena Incerti; Gatto, Maria Rosaria
2009-10-01
Few studies have investigated developmental norms for maxillary permanent canine eruption. In this observational cross-sectional study, we aimed to provide an age-related description of the percentiles relative to canine inclination in a large sample of nonorthodontic patients. Associations between inclination and sector were also analyzed. Canine inclination and sector location were measured on 1020 panoramic radiographs obtained from subjects of white ancestry aged between 8 and 11 years not seeking orthodontic treatment. The total sample comprised 2037 canines. Canine inclination increases between 8 and 9 years and decreases between 9 and 11 years. The greatest value for each percentile is at 9 years. A linear model should be hypothesized for differences in canine inclination between 2 successive ages in correspondence to each percentile. The proportion of sector 2 canines decreases and that of sector 1 increases with age. In the same age group, the inclination generally decreases as the sector decreases. Percentiles by age show the average canine inclination in a certain population. Further studies are required to verify whether percentiles can be a diagnostic aid for determining normal canine inclination at a given age and for quantifying the risk of canine impaction or adjacent root resorption.
How do the substrate reaction forces acting on a gecko's limbs respond to inclines?
Wang, Zhouyi; Dai, Zhendong; Li, Wei; Ji, Aihong; Wang, Wenbao
2015-02-01
Locomotion is an essential character of animals, and excellent moving ability results from the delicate sensing of the substrate reaction forces (SRF) acting on body and modulating the behavior to adapt the motion requirement. The inclined substrates present in habitats pose a number of functional challenges to locomotion. In order to effectively overcome these challenges, climbing geckos execute complex and accurate movements that involve both the front and hind limbs. Few studies have examined gecko's SRF on steeper inclines of greater than 90°. To reveal how the SRFs acting on the front and hind limbs respond to angle incline changes, we obtained detailed measurements of the three-dimensional SRFs acting on the individual limbs of the tokay gecko while it climbed on an inclined angle of 0-180°. The fore-aft forces acting on the front and hind limbs show opposite trends on inverted inclines of greater than 120°, indicating propulsion mechanism changes in response to inclines. When the incline angles change, the forces exerted in the normal and fore-aft directions by gecko's front and hind limbs are reassigned to take full advantage of limbs' different roles in overcoming resistance and in propelling locomotion. This also ensures that weight acts in the angle range between the forces generated by the front and hind limbs. The change in the distribution of SRF with a change in the incline angle is directly linked to the favorable trade-off between locomotive maneuverability and stability.
The effect of surfactants on upward air-water pipe flow at various inclinations
van Nimwegen, A.T.; Portela, L.; Henkes, R.A.W.M.
2016-01-01
In this work, we extend our previous efforts on the effect of surfactants on air-water flow in a vertical pipe by also considering pipe inclinations between 20° (with respect to horizontal) and vertical. For air-water flow, independent of the inclination, there is a regular annular flow at large
Space Station Freedom assembly and operation at a 51.6 degree inclination orbit
Troutman, Patrick A.; Brewer, Laura M.; Heck, Michael L.; Kumar, Renjith R.
1993-01-01
This study examines the implications of assembling and operating Space Station Freedom at a 51.6 degree inclination orbit utilizing an enhanced lift Space Shuttle. Freedom assembly is currently baselined at a 220 nautical mile high, 28.5 degree inclination orbit. Some of the reasons for increasing the orbital inclination are (1) increased ground coverage for Earth observations, (2) greater accessibility from Russian and other international launch sites, and (3) increased number of Assured Crew Return Vehicle (ACRV) landing sites. Previous studies have looked at assembling Freedom at a higher inclination using both medium and heavy lift expendable launch vehicles (such as Shuttle-C and Energia). The study assumes that the shuttle is used exclusively for delivering the station to orbit and that it can gain additional payload capability from design changes such as a lighter external tank that somewhat offsets the performance decrease that occurs when the shuttle is launched to a 51.6 degree inclination orbit.
Efficient light trapping in silicon inclined nanohole arrays for photovoltaic applications
Deng, Can; Tan, Xinyu; Jiang, Lihua; Tu, Yiteng; Ye, Mao; Yi, Yasha
2018-01-01
Structural design with high light absorption is the key challenge for thin film solar cells because of its poor absorption. In this paper, the light-trapping performance of silicon inclined nanohole arrays is systematically studied. The finite difference time domain method is used to calculate the optical absorption of different inclination angles in different periods and diameters. The results indicate that the inclined nanoholes with inclination angles between 5° and 45° demonstrate greater light-trapping ability than their counterparts of the vertical nanoholes, and they also show that by choosing the optimal parameters for the inclined nanoholes, a 31.2 mA/cm2 short circuit photocurrent density could be achieved, which is 10.25% higher than the best vertical nanohole system and 105.26% higher than bare silicon with a thickness of 2330 nm. The design principle proposed in this work gives a guideline for choosing reasonable parameters in the application of solar cells.
Experimental Study of Natural Convection Cooling of Vertical Cylinders with Inclined Plate Fins
Directory of Open Access Journals (Sweden)
Jong Bum Lee
2016-05-01
Full Text Available In this paper, natural convection from vertical cylinders with inclined plate fins is investigated experimentally for use in cooling electronic equipment. Extensive experimental investigations are performed for various inclination angles, fin numbers, and base temperatures. From the experimental data, a correlation for estimating the Nusselt number is proposed. The correlation is applicable when the Rayleigh number, inclination angle, and fin number are in the ranges 100,000–600,000, 30°–90°, and 9–36, respectively. Using the correlation, a contour map depicting the thermal resistance as a function of the fin number and fin thickness is presented. Finally, the optimal thermal resistances of cylinders with inclined plate fins and conventional radial plate fins are compared. It is found that that the optimal thermal resistance of the cylinder with inclined fins is 30% lower than that of the cylinder with radial plate fins.
Numerical Analysis of Aerodynamic Characteristics of the Finned Surfaces with Cross-inclined Fins
Directory of Open Access Journals (Sweden)
Lagutin A. E.
2016-12-01
Full Text Available This paper presents results of numerical research and analyses air-side hydraulic performance of tube bundles with cross inclined fins. The numerical simulation of the fin-tube heat exchanger was performed using the Comsol Femlab software. The results of modeling show the influence of fin inclination angle and tube pitch on hydraulic characteristics of finned surfaces. A series of numerical tests were carried out for tube bundles with different inclination angles (γ =900, 850, 650, 60, the fin pitch u=4 mm. The results indicate that tube bundles with cross inclined fins can significantly enhance the average integral value of the air flow rate in channel between fins in comparison with conventional straight fins. Aerodynamic processes on both sides of modificated channel between inclined fins were analyzed. The verification procedures for received results of numerical modeling with experimental data were performed.
Sabine absorption coefficients to random incidence absorption coefficients
DEFF Research Database (Denmark)
Jeong, Cheol-Ho
2014-01-01
into random incidence absorption coefficients for porous absorbers are investigated. Two optimization-based conversion methods are suggested: the surface impedance estimation for locally reacting absorbers and the flow resistivity estimation for extendedly reacting absorbers. The suggested conversion methods...
Stability of film boiling on inclined plates and spheres
Aursand, Eskil; Hammer, Morten; Munkejord, Svend Tollak; Müller, Bernhard; Ytrehus, Tor
2017-11-01
In film boiling, a continuous sub-millimeter vapor film forms between a liquid and a heated surface, insulating the two from each other. While quite accurate steady state solutions are readily obtained, the intermediate Reynolds numbers can make transient analysis challenging. The present work is a theoretical study of film boiling instabilities. We study the formation of travelling waves that are a combination of Kelvin-Helmholtz and the Rayleigh-Taylor instabilities. In particular, we study how the nature of this process depends on the Reynolds number, the Bond number, and the inclination of the submerged heated plate. In addition we extend the analysis to the case of a submerged heated sphere. Modelling of the transient dynamics of such films is important for answering practical questions such as how instabilities affect the overall heat transfer, and whether they can lead to complete film boiling collapse (Leidenfrost point). This work has been financed under the MAROFF program. We acknowledge the Research Council of Norway (244076/O80) and The Gas Technology Centre NTNU-SINTEF (GTS) for support.
Articular Eminence Inclination in Medieval and Contemporary Croatian Population
Kranjčić, Josip; Šlaus, Mario; Vodanović, Marin; Peršić, Sanja; Vojvodić, Denis
2016-12-01
Articular eminence inclination (AEI) of the temporomandibular joint leads the mandible in its movements. Therefore, the aim of the present study was to determine AEI values in medieval (MP) and recent (RP) Croatian population. The study was carried out on two groups of specimens: first group with 30 MP human dry skulls, while the other, serving as control group consisted of 137 dry skulls. The AEI was measured on lateral digital skull images as the angle between the best fi t line drawn along the posterior wall of the articular eminence and the Frankfurt horizontal plane. No statistically significant (p>0.05) differences between the left and right side AEI were found between MP skulls and RP skulls. The mean value of MP AEI was 45.5˚, with a range of 20.9˚-64˚. The mean RP AEI value was steeper (61.99˚), with a range of 30˚-94˚. Difference between the mean MP and RP AEI values was statistically significant (pmedieval time, and consequently different masticatory loads and forces.
Evaluation of primary stability of inclined orthodontic mini-implants.
Inaba, Mizuki
2009-09-01
The aim of this study was to investigate the initial stability of mini-implants when placed slanting or perpendicular to the bone surface, and to examine the effects of differences in tractional direction. Titanium mini-implants were inserted into rabbit nasal bones, slanting (60 degrees , 120 degrees ) or perpendicular (90 degrees ) to the bone surface. These implants were then loaded with a force of approximately 2 N, using a NiTi coil spring. The mobilities on the traction and non-traction sides were assessed using the Periotest device immediately after placement and after traction for two weeks. Then, the tissues with the mini-implants were resected, and the contact between the bone and the implant was examined by electron microscopy. There was a tendency for the mobilities of the mini-implants at 60 degrees and 120 degrees to be smaller than those at 90 degrees when measured before and after traction. The bone-implant contact lengths at 60 degrees were significantly longer than those at 90 degrees . There was no significant difference in the bone-implant contact ratio among the different angles. Correlations were evident between implant mobility and contact length or contact ratio. It is concluded that in clinical practice, implants inclined to the bone surface tend to have better primary stability.
Fluorescence intensity dependence on the propagation plane inclination
International Nuclear Information System (INIS)
Fernandez, J.E.; Rubio, Marcelo; Sanchez, H. J.
1987-01-01
An experimental confirmation of the fluorescence intensity behaviour with the inclination of the propagation plane (α angle) was carried out. A special angular sample-holder was developed and set up on our X-ray spectrometer. This sample-holder allows different positions of irradiation of the sample modifying the α angle until the maximum angle (α Μ ) is reached in the limit situation. In this work, this maximum angle was 86 deg and the incidence and take off angles were both 45 deg. The sample-holder and the collimation system were carefully lined up. The fluorescent spectra of three National Bureau of Standards (NBS) standard samples were taken for sixteen different α angle positions. The theoretical scheme for both enhanced fluorescent lines and nonenhanced fluorescent lines was confirmed, i.e. the invariance of the primary intensity with the α angle and the decline of the enhanced fluorescence intensities under the same conditions. This experimental confirmation agrees with theoretical prediction: the vanishing of the secondary fluorescence in the extreme case α = π/2. (Author) [es
Kuznetsov equation with variable coefficients
Indian Academy of Sciences (India)
like solutions of the PDE in (2+1) dimension with variable coefficients. ... Shivamoggi [12] gives only four polynomial conservation laws of the ZK equation ..... [3] P J Olver, Application of Lie group to differential equation (Springer, New York,.
Fuel Temperature Coefficient of Reactivity
Energy Technology Data Exchange (ETDEWEB)
Loewe, W.E.
2001-07-31
A method for measuring the fuel temperature coefficient of reactivity in a heterogeneous nuclear reactor is presented. The method, which is used during normal operation, requires that calibrated control rods be oscillated in a special way at a high reactor power level. The value of the fuel temperature coefficient of reactivity is found from the measured flux responses to these oscillations. Application of the method in a Savannah River reactor charged with natural uranium is discussed.
Devour, Brian M.; Bell, Eric F.
2017-06-01
Accurate measurement of galaxy structures is a prerequisite for quantitative investigation of galaxy properties or evolution. Yet, the impact of galaxy inclination and dust on commonly used metrics of galaxy structure is poorly quantified. We use infrared data sets to select inclination-independent samples of disc and flattened elliptical galaxies. These samples show strong variation in Sérsic index, concentration and half-light radii with inclination. We develop novel inclination-independent galaxy structures by collapsing the light distribution in the near-infrared on to the major axis, yielding inclination-independent 'linear' measures of size and concentration. With these new metrics we select a sample of Milky Way analogue galaxies with similar stellar masses, star formation rates, sizes and concentrations. Optical luminosities, light distributions and spectral properties are all found to vary strongly with inclination: When inclining to edge-on, r-band luminosities dim by >1 magnitude, sizes decrease by a factor of 2, 'dust-corrected' estimates of star formation rate drop threefold, metallicities decrease by 0.1 dex and edge-on galaxies are half as likely to be classified as star forming. These systematic effects should be accounted for in analyses of galaxy properties.
Influence of Cusp Inclination and Type of Retention on Fracture Load of Implant-Supported Crowns.
Rocha, Cibele Oliveira de Melo; Longhini, Diogo; Pereira, Rodrigo de Paula; Arioli, João Neudenir
2017-01-01
There are few informations about the influence of cusp inclination on the fracture strength of implant-supported crowns. The study aimed to evaluate the influence of cusp inclination and retention type on fracture load in implant-supported metal-ceramic single crowns. Sixty crowns were made, classified as cemented and screw-retained with screw access hole (SAH) sealed or not. Standard (33°) and reduced (20°) cusp inclinations were tested for each group (n=10). To support crowns of a mandibular second molar, analogs of external hexagon implants 5.0 were used. The fracture load was measured in a universal testing machine EMIC DL2000 (10 kN load cell; 0.5 mm/min). Two-way ANOVA (retention and cusp inclination) followed by post hoc Tukey's honest significant difference test was used for the statistical analyses (a=0.05). Crowns with reduced cusp inclination exhibited significantly higher fracture load (pcrowns with standard cusp inclination. Cemented crowns showed significantly higher fracture load (pcrowns. The interaction among these factors was not significant (p>0.05) for the fracture load. The sealing of SAH did not influence the fracture load of screw-retained crowns (p>0.05). In conclusion, fracture load of implant-supported metal-ceramic crowns was influenced by retention and cusp inclination, and there was no influence of the sealing of SAH.
Influence of dental chair backrest inclination on the registration of the mandibular position.
Coelho, Mariana Freire; Cavalcanti, Bruno das Neves; Claro Neves, Ana Christina; Jóias, Renata Pilli; Rode, Sigmar de Mello
2015-11-01
Varying the inclination of the dental chair backrest might alter the distribution of occlusal contact points. The purpose of this study was to identify the influence of backrest inclination on the registration of the mandibular position. Ten participants aged between 18 and 30 years with a complete permanent dentition, uncompromised motor function, no tooth mobility, and no temporomandibular disorders were selected. To register interocclusal contacts, an autopolymerizing methylmethacrylate device was adapted to the maxillary anterior teeth and a composite resin increment was added to the mandibular central incisors. Contacts were registered with the following variations in the inclination of the dental chair backrest: 90 degrees, 120 degrees, and 180 degrees. A standardized digital photograph was made of each mark in each backrest position, and the images were superimposed to measure the distances in registration from 90 to 120 and from 90 to 180 degrees. Data were analyzed with the Student paired t test (α=.05). When the chair was inclined from the 90-degree to the 120-degree position, the mandible was repositioned posteriorly by a mean of 0.67 mm, but the difference was not statistically significant. When the chair was inclined from the 90-degree to the 180-degree position, however, the mandible was repositioned posteriorly by a statistically significant mean of 1.41 mm. Mandibular position is influenced by increasing inclination, and this influence was statistically significant at a 180-degree incline. Copyright © 2015 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
Treating domestic sewage by Integrated Inclined-Plate-Membrane bio-reactor
Song, Li Ming; Wang, Zi; Chen, Lei; Zhong, Min; Dong, Zhan Feng
2017-12-01
Membrane fouling shorten the service life of the membrane and increases aeration rate for membrane surface cleaning. Two membrane bio-reactors, one for working and another for comparing, were set up to evaluate the feasibility of alleviating membrane fouling and improving wastewater treatment efficiency by integrating inclined-plate precipitation and membrane separation. The result show that: (1) Inclined-plate in reactor had a good effect on pollutant removal of membrane bioreactor. The main role of inclined-plate is dividing reactor space and accelerating precipitation. (2) Working reactor have better performance in COD, TN and TP removal, which can attribute to that working reactor (integrated inclined-plate-Membrane bioreactor) takes both advantages of membrane separation and biological treatment. When influent COD, TP and TN concentration is 163-248 mg/L, 2.08-2.81 mg/L and 24.38-30.49 mg/L in working reactor, effluent concentration is 27-35 mg/L, 0.53-0.59 mg/L and 11.28-11.56 mg/L, respectively. (3) Membrane fouling was well alleviated in integrated inclined-plate-Membrane bioreactor, and membrane normal service time is significantly longer than that in comparing reactor, which can attribute to accelerating precipitation of inclined-plate. In summary, integrated inclined-plate-Membrane bioreactor is a promising technology to alleviating membrane fouling and improving wastewater treatment efficiency, having good performance and bright future in application.
Xiang-Gruess, M.; Kroupa, P.
2017-10-01
We study the three-dimensional (3D) evolution of a viscous protoplanetary disc that accretes gas material from a second protoplanetary disc during a close encounter in an embedded star cluster. The aim is to investigate the capability of the mass accretion scenario to generate strongly inclined gaseous discs that could later form misaligned planets. We use smoothed particle hydrodynamics to study mass transfer and disc inclination for passing stars and circumstellar discs with different masses. We explore different orbital configurations to find the parameter space that allows significant disc inclination generation. Thies et al. suggested that significant disc inclination and disc or planetary system shrinkage can generally be produced by the accretion of external gas material with a different angular momentum. We found that this condition can be fulfilled for a large range of gas mass and angular momentum. For all encounters, mass accretion from the secondary disc increases with decreasing mass of the secondary proto-star. Thus, higher disc inclinations can be attained for lower secondary stellar masses. Variations of the secondary disc's orientation relative to the orbital plane can alter the disc evolution significantly. The results taken together show that mass accretion can change the 3D disc orientation significantly resulting in strongly inclined discs. In combination with the gravitational interaction between the two star-disc systems, this scenario is relevant for explaining the formation of highly inclined discs that could later form misaligned planets.
The effect of an inclined landing surface on biomechanical variables during a jumping task.
Hagins, Marshall; Pappas, Evangelos; Kremenic, Ian; Orishimo, Karl F; Rundle, Andrew
2007-11-01
Professional dancers sustain a high number of injuries. Epidemiological studies have suggested that performing on inclined "raked" stages increases the likelihood of injury. However, no studies have examined if biomechanical differences exist between inclined and flat surfaces during functional tasks, such as landing from a jump. Such differences may provide a biomechanical rationale for differences in injury risk for raked stages. Eight professional dancers performed drop jumps from a 40cm platform on flat and inclined surfaces while forces, lower extremity kinematics, and electromyographic activity were collected in a controlled laboratory environment. Dancers landed on the laterally inclined surface with significantly higher knee valgus (4 degrees ), peak knee flexion (9 degrees ), and medial-lateral ground reaction force (GRF) (13.4% body weight) compared to the flat condition. The posterior GRF was higher in the anterior inclined condition compared to the flat condition. In the anterior inclined condition, subjects landed with 1.4 degrees higher knee valgus, 4 degrees more plantarflexion at initial contact, and 3 degrees less dorsiflexion at the end of landing. Biomechanical variables that have been suggested to contribute to injury in previous studies are increased in the inclined floor conditions. These findings provide a preliminary biomechanical rationale for differences in injury rates found in observational studies of raked stages.
Clustering Coefficients for Correlation Networks
Directory of Open Access Journals (Sweden)
Naoki Masuda
2018-03-01
Full Text Available Graph theory is a useful tool for deciphering structural and functional networks of the brain on various spatial and temporal scales. The clustering coefficient quantifies the abundance of connected triangles in a network and is a major descriptive statistics of networks. For example, it finds an application in the assessment of small-worldness of brain networks, which is affected by attentional and cognitive conditions, age, psychiatric disorders and so forth. However, it remains unclear how the clustering coefficient should be measured in a correlation-based network, which is among major representations of brain networks. In the present article, we propose clustering coefficients tailored to correlation matrices. The key idea is to use three-way partial correlation or partial mutual information to measure the strength of the association between the two neighboring nodes of a focal node relative to the amount of pseudo-correlation expected from indirect paths between the nodes. Our method avoids the difficulties of previous applications of clustering coefficient (and other measures in defining correlational networks, i.e., thresholding on the correlation value, discarding of negative correlation values, the pseudo-correlation problem and full partial correlation matrices whose estimation is computationally difficult. For proof of concept, we apply the proposed clustering coefficient measures to functional magnetic resonance imaging data obtained from healthy participants of various ages and compare them with conventional clustering coefficients. We show that the clustering coefficients decline with the age. The proposed clustering coefficients are more strongly correlated with age than the conventional ones are. We also show that the local variants of the proposed clustering coefficients (i.e., abundance of triangles around a focal node are useful in characterizing individual nodes. In contrast, the conventional local clustering coefficients
Ferraro, Richard A; Pinto-Zipp, Genevieve; Simpkins, Susan; Clark, MaryAnn
2013-01-01
To date, few studies have investigated how walking patterns on inclines change in healthy older adults. The purpose of the study was to examine the effects of an inclined walking surface and balance abilities on various spatiotemporal gait parameters of healthy older adults. Seventy-eight self-reported independent community ambulators (mean age, 77.8 years; SD, 4.8) participated in this study. After completing the Berg Balance Scale and Dynamic Gait Index (DGI), all participants were asked to walk on the GaitRite on level and inclined surfaces (10° slope). Dependent t tests were used to determine statistical significance between level and inclined surfaces for cadence, step length, velocity, and gait stability ratio (GSR). GSR is a measure of the degree of adaptation an individual makes to increase stability during gait derived from a ratio of cadence/velocity. A 2 2 analysis of variance was performed to determine differences in means among the higher-risk participants (as determined by the Berg Balance Scale and Dynamic Gait Index) comparing their level and incline walking patterns. The level of significance was set at P 0.05. During incline walking a significant decrease occurred in mean step length, 63.1(8.8) cm, P 0.001, mean cadence, 111.6 (8.9) step/min, P 0.01 and mean normalized velocity, 1.4 (0.23), P 0.001. However, mean GSR increased on inclines, 1.62 (0.22) steps/m, P 0.004. Main effects were evident for both walking surface and fall risk for all gait parameters tested. Healthy older adults adopt a more stable gait pattern on inclines decreasing velocity and spending more time in the double support despite the increased physiological demands to perform this task. Clear changes were evident between level and incline surfaces regardless of fall risk as defined by 2 different objective balance measures [corrected].
Comparison of the buccolingual inclination in alveolar bone and tooth using dental CBCT
International Nuclear Information System (INIS)
Kim, Sung Eun; Kim, Jin Soo; Kim, Jae Duk
2008-01-01
It is important to determine the bucco-lingual inclination of implants on radiographs before the implant surgery. The purpose of this study was to compare the buccolingual inclination in alveolar bone and the tooth with dental cone beam CT and to prepare the standard for the buccolingual inclination of implant. Axial, panoramic, and buccolingually sectioned images of 80 implant cases with stent including straight marker using CB Mercuray TM (Hitachi, Japan) were evaluated. The comparison of the buccolingual inclination of remained alveolar bone with the tooth and the marker on buccolingually sectioned views was performed statistically. The average buccolingual inclination of remained alveolar bone and tooth was 82.8 ± 4.6 .deg. C and 85.8 ± 4.7 .deg. C (p 0.05, r=0.12) at the 2nd premolar area in upper jaw. The average buccolingual inclination of remained alveolar bone and tooth was 81.3 ± 8.3 .deg. C and 87.5 ± 6.3 .deg. C (p>0.05, r=0.85) at the lower 2nd premolar area and 94.3 ± 6.6 .deg. C and 93.3 ± 7.2 .deg. C respectively (p>0.05, r=0.91) at the 1st molar area in lower jaw. The inclinations of markers were very different from those of remained bone at the most of areas except the upper 2nd premolar area (r=0.79). We recommend dental CBCT analysis for determining the buccolingual inclination of dental implant, because of significant difference, in average, between the buccolingual inclination of remained alveolar bone and tooth.
Stability of hierarchical triples - I. Dependence on inner eccentricity and inclination
Mylläri, A.; Valtonen, M.; Pasechnik, A.; Mikkola, S.
2018-05-01
In simulations it is often important to decide if a given hierarchical triple star system is stable over an extended period of time. We introduce a stability criterion, modified from earlier work, where we use the closest approach ratio Q of the third star to the inner binary centre of mass in their initial osculating orbits. We study by numerical integration the orbits of over 1000 000 triple systems of the fixed masses and outer eccentricities eout, but varying inner eccentricities ein and inclinations i. 12 primary combinations of masses have been tried, representing the range encountered in stellar systems. The definition of the instability is either the escape of one of the bodies, or the exchange of the members between the inner and outer systems. An analytical approximation is derived using the energy change in a single close encounter between the inner and outer systems, assuming that the orbital phases in subsequent encounters occur randomly. The theory provides a fairly good description of the typical Qst, the smallest Q value that allows the system to be stable over N = 10 000 revolutions of the initial outer orbit. The final stability limit formula is Qst = 101/3A[( f g)2/(1 - eout)]1/6, where the coefficient A ˜ 1 should be used in N-body experiments, and A = 2.4 when the absolute long-term stability is required. The functions f (ein, cos i) and g(m1, m2, m3) are derived in the paper. At the limit of ein = i = m3 = 0, f g = 1.
Natural Convection in an Inclined Porous Cavity with Spatial Sidewall Temperature Variations
Directory of Open Access Journals (Sweden)
M. S. Selamat
2012-01-01
Full Text Available The natural convection in an inclined porous square cavity is investigated numerically. The left wall is assumed to have spatial sinusoidal temperature variations about a constant mean value, while the right wall is cooled. The horizontal walls are considered adiabatic. A finite difference method is used to solve numerically the nondimensional governing equations. The effects of the inclination angle of the cavity, the amplitude and wave numbers of the heated sidewall temperature variation on the natural convection in the cavity are studied. The maximum average Nusselt number occurs at different wave number. It also found that the inclination could influence the Nusselt number.
Effect of wall inclination on natural convection in a porous trapezoidal cavity
Cheong, H. T.; Sivasankaran, S.; Siri, Z.
2014-07-01
The present study investigates numerically the effect of wall inclination of a trapezoidal cavity on natural convective flow and heat transfer. The cavity is filled with porous medium. Sinusoidal temperature is applied on the inclined wall and the opposite wall is maintained at a constant temperature. The top and bottom walls are adiabatic. The Darcy model is adopted for porous medium. The governing equations are solved using the finite difference method with various values of wall inclination and Rayleigh number. The heat transfer of the square cavity is found to be higher than that of trapezoidal and triangular cavities.
The metabolic cost of walking on an incline in the Peacock (Pavo cristatus)
Wilkinson, Holly; Thavarajah, Nathan; Codd, Jonathan
2015-01-01
Altering speed and moving on a gradient can affect an animal’s posture and gait, which in turn can change the energetic requirements of terrestrial locomotion. Here, the energetic and kinematic effects of locomoting on an incline were investigated in the Indian peacock, Pavo cristatus. The mass-specific metabolic rate of the Indian peacock was elevated on an incline, but this change was not dependent on the angle ascended and the cost of lifting remained similar between the two inclines (+5 a...
Non-constant retardation coefficient
International Nuclear Information System (INIS)
Wang Zhiming; Gu Zhijie; Yang Yue'e; Li Shushen
2004-12-01
Retardation coefficient is one of the important parameters used in transport models describing radionuclide migration in geological media and usually regarded as a constant in the models. The objectives of the work are to understand: (1) Whether the retardation coefficient, R d , is a constant? (2) How much effect is R d on calculated consequence if R d is not constant? (3) Is the retardation coefficient derived from distribution coefficient, k d , according to conventional equation suitable for safety assessment? The objectives are achieved through test and analysis of the test results on radionuclide migration in unsaturated loess. It can be seen from the results that retardation coefficient, R d , of 85 Sr is not constant and increases with water content, θ, under unsaturated condition. R d , of 85 Sr derived from k d according to conventional equation can not be used for safety assessment. R d , used for safety assessment should be directly measured, rather than derived from k d . It is shown from calculation that the effect of R d on calculated consequence is very considerable. (authors)
Huang, W.; Dupont-Nivet, G.; Lippert, P.C.; Hinsbergen, D.J.J. van; Hallot, E.
2013-01-01
A systematic bias towards low palaeomagnetic inclination recorded in clastic sediments, that is, inclination shallowing, has been recognized and studied for decades. Identification, understanding and correction of this inclination shallowing are critical for palaeogeographic
Coefficient estimates of negative powers and inverse coefficients for ...
Indian Academy of Sciences (India)
1 an(−λ, f )zn for z ∈ D. (1.4). One of the well-known extremal problems in the theory of univalent functions is to esti- mate the modulus of the Taylor coefficients an(−λ, f ) given by (1.4). This problem has been extensively studied in the literature ...
Harmonic functions with varying coefficients
Directory of Open Access Journals (Sweden)
Jacek Dziok
2016-05-01
Full Text Available Abstract Complex-valued harmonic functions that are univalent and sense preserving in the open unit disk can be written in the form f = h + g ‾ $f=h+\\overline{g}$ , where h and g are analytic. In this paper we investigate some classes of univalent harmonic functions with varying coefficients related to Janowski functions. By using the extreme points theory we obtain necessary and sufficient convolution conditions, coefficients estimates, distortion theorems, and integral mean inequalities for these classes of functions. The radii of starlikeness and convexity for these classes are also determined.
Beam Shear Design According to Eurocode 2 - Limitations for the Concrete Strut Inclinations
DEFF Research Database (Denmark)
Hagsten, Lars German; Hestbech, Lars; Fisker, Jakob
2011-01-01
and are presented. These beams are all designed to fail in shear and the shear reinforcement is designed for different values of the concrete strut inclinations (cot θ varies from 1.5 to 3.4). These tests indicate a clear connection between the values of the concrete strut inclinations and crack width in the SLS......The beam shear design method adopted in Eurocode 2 is based on a lower bound plastic solution. This method is combined with limitations on the concrete strut inclination, θ. These limitations are introduced to ensure acceptable crack width in the SLS. 7 full scale beams have been tested....... In cases where larger crack widths (w > 0.4 mm) can be accepted, larger values of the concrete strut inclinations can be chosen. This will lead to less shear reinforcements. The results are also compared with analytical analysis based on energy methods. At the SLS the beams are expected to be cracked...
Muscular activity of lower limb muscles associated with working on inclined surfaces.
Lu, Ming-Lun; Kincl, Laurel; Lowe, Brian; Succop, Paul; Bhattacharya, Amit
2015-01-01
This study investigated the effects of visual cues, muscular fatigue, task performance and experience of working on inclined surfaces on activity of postural muscles in the lower limbs associated with maintaining balance on three inclined surfaces - 0°, 14° and 26°. Normalised electromyographic (NEMG) data were collected in 44 professional roofers bilaterally from the rectus femoris, biceps femoris, tibialii anterior and gastrocnemii medial muscle groups. The 50th and 95th percentile NEMG amplitudes were used as EMG variables. Results showed that inclination angle and task performance caused a significant increase in the NEMG amplitudes of all postural muscles. Visual cues were significantly associated with a decrease in the 95th percentile EMG amplitude for the right gastrocnemius medial and tibialis anterior. Fatigue was related to a significant decrease in the NEMG amplitude for the rectus femoris. Experience of working on inclined surfaces did not have a significant effect on the NEMG amplitude.
Incisor inclination determined by the light reflection zone on the tooth's surface.
Brezniak, Naphtali; Turgeman, Ronit; Redlich, Meir
2010-01-01
Maxillary incisors are the most prominent teeth, and their inclination plays an important role in esthetics. In orthodontics, the inclination of central incisors is usually determined by cephalometric analysis. This publication suggests an adjunctive clinical measure to determine this inclination. The objective of the study was to examine the correlation between the inclinations of maxillary incisors measured on a cephalometric lateral headfilm and the light reflection zone appearing on the buccal surface of the teeth on anterior intraoral photographs. Maxillary incisor inclination, divided into three levels-proclination, normal inclination, and retroclination-of 65 patients was determined by means of cephalometric analysis, using three angular measurements (maxillary incisor to sella-nasion, maxillary incisor to Frankfort horizontal, and maxillary incisor to nasion-point A). The anterior intraoral photographs of the 65 patients were divided into 3 groups according to the reflection zone on the maxillary central incisors as determined from the photographs: incisal, middle, and gingival. The correlation and agreement between the two parameters were evaluated by chi-square and kappa statistics. The light reflection zone on the tooth surface as it appears on intraoral photographs-incisal, middle, or gingival-correlated with statistical significance to the angular inclination of the teeth-proclination, normal inclination, and retroclination, respectively-as determined by means of cephalometric analysis (P light reflection zone viewed on the buccal surface of intraoral photographs. This method might be used as a new screening tool and further as an additional clinical tool for assessing treatment plans in orthodontics and other fields of dentistry.
Natural Convection in an Inclined Porous Cavity with Spatial Sidewall Temperature Variations
Selamat, M. S.; Roslan, R.; Hashim, I.
2012-01-01
The natural convection in an inclined porous square cavity is investigated numerically. The left wall is assumed to have spatial sinusoidal temperature variations about a constant mean value, while the right wall is cooled. The horizontal walls are considered adiabatic. A finite difference method is used to solve numerically the nondimensional governing equations. The effects of the inclination angle of the cavity, the amplitude and wave numbers of the heated sidewall temperature variation o...
The effect of speleothem surface slope on the remanent magnetic inclination
Ponte, J. M.; Font, E.; Veiga-Pires, C.; Hillaire-Marcel, C.; Ghaleb, B.
2017-06-01
Speleothems are of interest for high-resolution reconstruction of the Earth's magnetic field. However, little is known about the influence of speleothem morphologies on their natural remanent magnetization (NRM) record. Here we report on a high-resolution paleomagnetic study of a dome-shaped speleothem of middle Holocene age from southern Portugal, with special attention to the anisotropy of magnetic susceptibility (AMS) and anisotropy of anhysteretic remanent magnetization (AARM). To assess the potential influence of the slope of the speleothem surface on the recorded remanent magnetization, we compare magnetic directions and AMS and AARM fabrics from subhorizontal to gradually subvertical calcite growth layers collected in a transversal cross section of the speleothem. A linear correlation is observed between magnetic inclinations, calcite laminae slope, and AARM k1 inclination. The AMS fabric is mostly controlled by calcite crystals, with direction of the minimum axes (k3) perpendicular to laminae growth. Magnetic inclinations recorded in inclined and vertical calcite growth layers are underestimated when compared to a global paleosecular variation (PSV) model. After extrapolating magnetic inclinations to the horizontal, the corrected data better fit the PSV model but are still lower than the predicted magnetic inclinations, suggesting that inclination shallowing affects the entire speleothem. We suggest that speleothem morphology exerts a critical role on the magnetic inclination recording, which is controlled by the Earth's magnetic field but also influenced by particle rolling along the sloping surfaces. These observations open new avenues for reconstructing high-resolution paleomagnetic secular variation records from speleothems and provide new insights into their NRM acquisition mechanisms.
Integer Solutions of Binomial Coefficients
Gilbertson, Nicholas J.
2016-01-01
A good formula is like a good story, rich in description, powerful in communication, and eye-opening to readers. The formula presented in this article for determining the coefficients of the binomial expansion of (x + y)n is one such "good read." The beauty of this formula is in its simplicity--both describing a quantitative situation…
Effective Viscosity Coefficient of Nanosuspensions
Rudyak, V. Ya.; Belkin, A. A.; Egorov, V. V.
2008-12-01
Systematic calculations of the effective viscosity coefficient of nanosuspensions have been performed using the molecular dynamics method. It is established that the viscosity of a nanosuspension depends not only on the volume concentration of the nanoparticles but also on their mass and diameter. Differences from Einstein's relation are found even for nanosuspensions with a low particle concentration.
Irrational "Coefficients" in Renaissance Algebra.
Oaks, Jeffrey A
2017-06-01
Argument From the time of al-Khwārizmī in the ninth century to the beginning of the sixteenth century algebraists did not allow irrational numbers to serve as coefficients. To multiply by x, for instance, the result was expressed as the rhetorical equivalent of . The reason for this practice has to do with the premodern concept of a monomial. The coefficient, or "number," of a term was thought of as how many of that term are present, and not as the scalar multiple that we work with today. Then, in sixteenth-century Europe, a few algebraists began to allow for irrational coefficients in their notation. Christoff Rudolff (1525) was the first to admit them in special cases, and subsequently they appear more liberally in Cardano (1539), Scheubel (1550), Bombelli (1572), and others, though most algebraists continued to ban them. We survey this development by examining the texts that show irrational coefficients and those that argue against them. We show that the debate took place entirely in the conceptual context of premodern, "cossic" algebra, and persisted in the sixteenth century independent of the development of the new algebra of Viète, Decartes, and Fermat. This was a formal innovation violating prevailing concepts that we propose could only be introduced because of the growing autonomy of notation from rhetorical text.
Laser-Guided Autonomous Landing of a Quadrotor UAV on an Inclined Surface
Dougherty, John A.
This thesis presents measurement, estimation, and control schemes to aid a quadrotor unmanned aerial vehicle (UAV) in landing on a flat, inclined surface without prior knowledge of the surface's inclination. The system uses a single CMOS camera and several inexpensive laser modules for onboard sensing to measure the distance to and orientation of a landing surface. A nonlinear least squares estimation scheme yields the altitude of the quadrotor and the normal vector defining the ground plane. This information is used to design a hybrid landing trajectory composed of a position tracking phase and an attitude tracking phase. A geometric nonlinear control system is used during each phase and ensures that the quadrotor's attitude is aligned to the inclination of the ground surface at touchdown. A quadrotor is developed from the ground up to test the in-flight measurement process and to execute landing trajectories on an inclined surface. Experimental results demonstrate the quadrotor's ability to accurately estimate altitude and ground plane orientation during flight, and numerical simulations of landing trajectories for various surface inclinations are validated by experimental results up to a maximum inclination of thirty degrees.
Development of an Inclined Plate Extractor-Separator for Immiscible Liquids
Directory of Open Access Journals (Sweden)
Syed Zahoor ul Hassan Rizvi
2009-10-01
Full Text Available A new inclined plates extractor-separator is developed for operation with immiscible liquids in which extraction and separation is achieved in one unit contrary to mixer settlers. The inclined plates extractor-separator combines turbulent jets for contacting, and an inclined plate for separation of the two phases. The inclined plates extractor-separator does not have any moving part inside the vessel. This feature makes it free from the mechanical problems associated with conventional apparatus. The proposed inclined plates extractor-separator was operated in batch mode under various operating conditions to evaluate its performance on the basis of extraction efficiency. Water (light phase was used as solvent to extract ethyl acetate from a heavy phase pool of tetrachloroethylene and ethyl acetate. The ethyl acetate content was analysed using chromatography. A hydrodynamic study was carried out using high speed photography to understand the mechanisms occurring during mass transfer across the two phases. Furthermore, it was found that the proposed inclined plate extractor-separator reduces the overall operating time by 67% and consumes only 13% of the power in comparison to a mixer-settler. A hydraulic power consumption comparison with a mixer settler and a gullwing extractor-separator is also presented.
Chang, Ming-Wen; Young, Ming-Shing; Lin, Mao-Tsun
2008-02-15
This study describes a high-accuracy inclined plane test system for quantitative measurement of the limb motor function of laboratory rats. The system is built around a microcontroller and uses a stepping motor to drive a ball screw, which changes the angle of the inclined plane. Any of the seven inclination speeds can be selected by the user. Two infrared (IR) LED/detector pairs function as interrupt sensors for objective determination of the moment that the rat loses its grip on the textured flooring of the starting area and slips down the plane. Inclination angle at the moment of IR interrupt (i.e. rat slip) is recorded. A liquid crystal display module shows the inclination speed and the inclination angle. The system can function as a stand alone device but a RS232 port allows connection to a personal computer (PC), so data can be sent directly to hard disk for storage and analysis. Experiments can be controlled by a local keypad or by the connected PC. Advantages of the presented system include easy operation, high accuracy, non-dependence on human observation for determination of slip angle, stand-alone capability, low cost and easy modification of the controlling software for different types of experiments. A fully functional prototype of the system is described. The prototype was used experimentally by a hospital group testing traumatic brain injury experiments, and some of their results are presented for system verification. It is found that the system is stable, accurate and easily used by investigators.
Interfacial friction factors for air-water co-current stratified flow in inclined channels
Energy Technology Data Exchange (ETDEWEB)
Choi, Ki Yong; No, Hee Cheon [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)
1997-12-31
The interfacial shear stress is experimentally investigated for co-current air-water stratified flow in inclined rectangular channels having a length of 1854mm, width of 120 mm and height of 40mm at almost atmospheric pressure. Experiments are carried out in several inclinations from 0 deg up to 10 deg. The local film thickness and the wave height are measured at three locations, i.e., L/H = 8,23, and 40. According to the inclination angle, the experimental data are categorized into two groups; nearly horizontal data group (0 deg {<=} {theta} {<=} 0.7 deg), and inclined channel data group (0.7 deg {<=} {theta} {<=} 10 deg ). Experimental observations for nearly horizontal data group show that the flow is not fully developed due to the water level gradient and the hydraulic jump within the channel. For the inclined channel data group, a dimensionless wave height, {Delta}h/h, is empirically correlated in terms of Re{sub G} and h/H. A modified root-mean-square wave height is proposed to consider the effects of the interfacial and wave propagation velocities. It is found that an equivalent roughness has a linear relationship with the modified root-mean-square wave height and its relationship is independent of the inclination. 10 refs., 6 figs., 1 tab. (Author)
A secular model for efficient exploration of mutually-inclined planetary systems
Deitrick, Russell; Barnes, Rory
2015-01-01
Dynamical studies of exoplanets largely assume coplanarity because of the lack of inclination information in many cases. However, the multiplanet system Upsilon Andromedae has orbital planes inclined by 30 degrees, models of planet-planet scattering predict large mutual inclinations, and astrometry missions such as Gaia have the power to reveal the 3 dimensional architecture of planetary systems. As the dynamics of systems with non-planar orbits will be key to understanding origins, and ultimately habitability where applicable, we present a computationally efficient model for the orbital evolution of planetary systems with modest inclinations and eccentricities which are not in a mean motion resonance. Specifically, our model is based on the disturbing function and extends to 4th order in eccentricity and inclination. We present comparisons to N-body models for known systems, such as the Solar System and Upsilon Andromedae, and hypothetical systems with a range of orbital configurations. We describe the eccentricity and inclination conditions under which the model is valid. We further calculate the rotational evolution of planets based on the orbital evolution and the stellar torque and find a wide range of obliquity evolution is possible. As obliquity is a key driver of planetary climate, Earth-like planets in non-planar systems may have climates dominated by their orbital evolution.
Grünheid, Thorsten; Gaalaas, Sara; Hamdan, Hani; Larson, Brent E
2016-01-01
To compare the changes in buccolinugal inclination of mandibular canines and intercanine distance in patients treated with clear aligners to those treated with preadjusted edgewise appliances. The buccolingual inclination of mandibular canines and the intercanine distance were measured on pre- and posttreatment cone-beam computed tomograms of 30 patients who had been treated with clear aligners and 30 patients who had been treated with fixed preadjusted edgewise appliances. Differences between the aligner and fixed appliance groups and between pre- and posttreatment measurements were tested for statistical significance. In both groups, most of the mandibular canines had positive buccolingual inclinations (ie, their crowns were positioned lateral to their roots) both before and after treatment. While there was no difference between the groups pretreatment, the posttreatment buccolingual inclination was significantly greater in the aligner group. In the fixed appliance group, the canines became more upright with treatment, while the buccolingual inclination did not change significantly in the clear aligner group. The intercanine distance did not differ between the groups either before or after treatment. However, it increased significantly over the course of treatment in the aligner group, whereas it did not change significantly in the fixed appliance group. Orthodontic treatment with clear aligners tends to increase the mandibular intercanine distance with little change in inclination in contrast to treatment with fixed appliances, which leaves the intercanine distance unchanged but leads to more upright mandibular canines.
Effects of occlusal inclination and loading on mandibular bone remodeling: a finite element study.
Rungsiyakull, Chaiy; Rungsiyakull, Pimdeun; Li, Qing; Li, Wei; Swain, Michael
2011-01-01
To provide a preliminary understanding of the biomechanics with respect to the effect of cusp inclination and occlusal loading on the mandibular bone remodeling. Three different cusp inclinations (0, 10, and 30 degrees) of a ceramic crown and different occlusal loading locations (central fossa and 1- and 2-mm offsets horizontally) were taken into account to explore the stresses and strains transferred from the crown to the surrounding dental bone through the implant. A strain energy density obtained from two-dimensional plane-strain finite element analysis was used as the mechanical stimulus to drive cancellous and cortical bone remodeling in a buccolingual mandibular section. Different ceramic cusp inclinations had a significant effect on bone remodeling responses in terms of the change in the average peri-implant bone density and overall stability. The remodeling rate was relatively high in the first few months of loading and gradually decreased until reaching its equilibrium. A larger cusp inclination and horizontal offset (eg, 30 degrees and 2-mm offset) led to a higher bone remodeling rate and greater interfacial stress. The dental implant superstructure design (in terms of cusp inclination and loading location) determines the load transmission pattern and thus largely affects bone remodeling activities. Although the design with a lower cusp inclination recommended in previous studies may reduce damage and fracture failure, it could, to a certain extent, compromise bone engagement and long-term stability.
The metabolic cost of walking on an incline in the Peacock (Pavo cristatus
Directory of Open Access Journals (Sweden)
Holly Wilkinson
2015-06-01
Full Text Available Altering speed and moving on a gradient can affect an animal’s posture and gait, which in turn can change the energetic requirements of terrestrial locomotion. Here, the energetic and kinematic effects of locomoting on an incline were investigated in the Indian peacock, Pavo cristatus. The mass-specific metabolic rate of the Indian peacock was elevated on an incline, but this change was not dependent on the angle ascended and the cost of lifting remained similar between the two inclines (+5 and +7°. Interestingly, the Indian peacock had the highest efficiency when compared to any other previously studied avian biped, despite the presence of a large train. Duty factors were higher for birds moving on an incline, but there was no difference between +5 and +7°. Our results highlight the importance of investigating kinematic responses during energetic studies, as these may enable explanation of what is driving the underlying metabolic differences when moving on inclines. Further investigations are required to elucidate the underlying mechanical processes occurring during incline movement.
The metabolic cost of walking on an incline in the Peacock (Pavo cristatus).
Wilkinson, Holly; Thavarajah, Nathan; Codd, Jonathan
2015-01-01
Altering speed and moving on a gradient can affect an animal's posture and gait, which in turn can change the energetic requirements of terrestrial locomotion. Here, the energetic and kinematic effects of locomoting on an incline were investigated in the Indian peacock, Pavo cristatus. The mass-specific metabolic rate of the Indian peacock was elevated on an incline, but this change was not dependent on the angle ascended and the cost of lifting remained similar between the two inclines (+5 and +7°). Interestingly, the Indian peacock had the highest efficiency when compared to any other previously studied avian biped, despite the presence of a large train. Duty factors were higher for birds moving on an incline, but there was no difference between +5 and +7°. Our results highlight the importance of investigating kinematic responses during energetic studies, as these may enable explanation of what is driving the underlying metabolic differences when moving on inclines. Further investigations are required to elucidate the underlying mechanical processes occurring during incline movement.
Lafage, Virginie; Schwab, Frank; Patel, Ashish; Hawkinson, Nicola; Farcy, Jean-Pierre
2009-08-01
Prospective radiographic and clinical analysis. Investigate the relationship between spino-pelvic parameters and patient self reported outcomes on adult subjects with spinal deformities. It is becoming increasingly recognized that the study of spinal alignment should include pelvic position. While pelvic incidence determines lumbar lordosis, pelvic tilt (PT) is a positional parameter reflecting compensation to spinal deformity. Correlation between plumbline offset (sagittal vertical axis [SVA]) and Health Related Quality of Life (HRQOL) measures has been demonstrated, but such a study is lacking for PT. This prospective study was carried out on 125 adult patients suffering from spinal deformity (mean age: 57 years). Full-length free-standing radiographs including the spine and pelvis were available for all patients. HRQOL instruments included: Oswestry Disability Index, Short Form-12, Scoliosis Research Society. Correlation analysis between radiographic spinopelvic parameters and HRQOL measures was pursued. Correlation analysis revealed no significance pertaining to coronal plane parameters. Significant sagittal plane correlations were identified. SVA and truncal inclination measured by T1 spinopelvic inclination (T1-SPI) (angle between T1-hip axis and vertical) correlated with: Scoliosis Research Society (appearance, activity, total score), Oswestry Disability Index, and Short Form-12 (physical component score). Correlation coefficients ranged from 0.42 < r < 0.55 (P < 0.0001). T1-SPI revealed greater correlation with HRQOL compared to SVA. PT showed correlation with HRQOL (0.28 < r < 0.42) and with SVA (r = 0.64, P < 0.0001). This study confirms that pelvic position measured via PT correlates with HRQOL in the setting of adult deformity. High values of PT express compensatory pelvic retroversion for sagittal spinal malalignment. This study also demonstrates significant T1-SPI correlation with HRQOL measures and outperforms SVA. This parameter carries the
International Nuclear Information System (INIS)
Illés, Balázs; Géczy, Attila
2016-01-01
Highlights: • Investigating the effect of inclination on heat transfer uniformity and intensity during VPS. • Even moderate inclination has high impact on the condensate layer and on the heat transfer. • Inclination under 1° has negative effect on temperature distribution of the soldered board. • Inclination from 1° to 10° improves heat transfer uniformity of vapour phase soldering. • Inclination can help to reduce soldering failures during vapour phase soldering. - Abstract: In this paper, heat transfer and condensate layer formation was investigated by numerical simulations on the top side of inclined printed circuit boards during vapour phase soldering. The phase change on the inclined surface and the transfer mechanisms in the condensate layer were embedded in a three-dimensional model. Steady-state and saturated vapour conditions were applied as boundary conditions in order to study the pure effect of the inclination. Due to the electronic component and circuit board structures during soldering only moderate inclination angles were studied between 0° and 10°. It was found that a moderate inclination of the printed circuit board has considerable effects on the formation of condensate layer and consequently on heat transfer. Compared to the default horizontal orientation of the board, the thickness differences of the condensate layer can be decreased with an optimised inclination of the printed circuit board. This effect homogenizes heat transfer during the process, enabling improved solder joint quality, with reduced overall soldering failure count.
International Nuclear Information System (INIS)
Kim, Kyung Su; Seo, Suk-Jin; Lee, Jaegi; Kim, Eunji; Choi, Noorie; Seok, Jin-Yong; Hong, Joo Wan; Chung, Jin-Beom; Eom, Keun-Yong; Kim, Jae-Sung; Kim, In Ah
2016-01-01
Hippocampal-sparing whole brain radiotherapy (HS-WBRT) aims to preserve neurocognitive functions in patients undergoing brain radiotherapy (RT). Volumetric modulated arc therapy (VMAT) involves intensity-modulated RT using a coplanar arc. An inclined head position might improve dose distribution during HS-WBRT using VMAT. This study analyzed 8 patients receiving brain RT with inclined head positioning. A comparable set of CT images simulating a non-inclined head position was obtained by rotating the original CT set. HS-WBRT plans of coplanar VMAT for each CT set were generated with a prescribed dose of 30 Gy in 10 fractions. Maximum dose to the hippocampi was limited to 16 Gy; to the optic nerve, optic chiasm, and eyeballs this was confined to less than 37.5 Gy; for the lenses to 8 Gy. Dosimetric parameters of the two different plans of 8 patients were compared with paired t-test. Mean inclined head angle was 11.09 ± 0.73 . The homogeneity (HI) and conformity (CI) indexes demonstrated improved results, with an average 8.4 ± 10.0 % (p = 0.041) and 5.3 ± 3.9 % (p = 0.005) reduction, respectively, in the inclined vs. non-inclined position. The inclined head position had lower hippocampi D min (10.45 ± 0.36 Gy), D max (13.70 ± 0.25 Gy), and D mean (12.01 ± 0.38 Gy) values vs. the non-inclined head position (D min = 12.07 ± 1.07 Gy; D max = 15.70 ± 1.25 Gy; D mean = 13.91 ± 1.01 Gy), with 12.8 ± 8.9 % (p = 0.007), 12.2 ± 6.8 % (p = 0.003), and 13.2 ± 7.2 % (p = 0.002) reductions, respectively. Mean D max for the lenses was 6.34 ± 0.72 Gy and 7.60 ± 0.46 Gy, respectively, with a 16.3 ± 10.8 % reduction in the inclined position (p = 0.004). D max for the optic nerve and D mean for the eyeballs also decreased by 7.0 ± 5.9 % (p = 0.015) and 8.4 ± 7.2 % (p = 0.015), respectively. Inclining the head position to approximately 11 during HS-WBRT using VMAT improved dose distribution in the planning target volume and allowed lower doses to the hippocampi and
Extinction Coefficient of Gold Nanostars
de Puig, Helena; Tam, Justina O.; Yen, Chun-Wan; Gehrke, Lee; Hamad-Schifferli, Kimberly
2015-01-01
Gold nanostars (NStars) are highly attractive for biological applications due to their surface chemistry, facile synthesis and optical properties. Here, we synthesize NStars in HEPES buffer at different HEPES/Au ratios, producing NStars of different sizes and shapes, and therefore varying optical properties. We measure the extinction coefficient of the synthesized NStars at their maximum surface plasmon resonances (SPR), which range from 5.7 × 108 to 26.8 × 108 M−1cm−1. Measured values correl...
Johnson, Philip K; Ferguson, Michael A; Zachariah, Justin P
2016-07-01
Since younger patients have low pretest probability of hypertension and are susceptible to reactive and masked hypertension, ambulatory blood pressure monitoring (ABPM) can be useful. To better target use in referred patients, we sought to define in-clinic systolic blood pressure (SBP) measures that predicted normal ABPM and target end organ damage. Data were collected on consecutive patients referred for high BP undergoing an ambulatory BP monitor from 2010 to 2013 (n = 248, 33.9% female, mean age 15.5 ± 3.6 years). Candidate in-clinic predictors were systolic maximum, minimum, or average BPs obtained by auscultative, oscillometric, or both. Multivariable logistic regression models were used to determine the prediction of normal ABPM by in-clinic BP predictors. Separate models considered predicting left ventricular hypertrophy (LVH) by in-clinic SBP vs. ABPM-defined hypertension. Identified predictor utility was tested with receiver operator characteristic curves. Maximum (OR 0.97 [95% CI 0.94-0.99]; P = .047), minimum (0.96 [0.94-0.99]; P = .002), and average (0.97 [0.95-1.00]; P = .04) in-clinic auscultative SBP predicted normal ABPM. Each had a c-statistic of 0.58. LVH was associated with in-clinic auscultative minimum SBP treated continuously (1.05, [1.01-1.10], P = .01) or dichotomized at the 90th percentile (8.23, [1.48-45.80], P = .02), as well as ABPM-defined hypertension (3.31, [1.23-8.91], P = .02). Both predictors had poor sensitivity and specificity. In youth, normal auscultative in-clinic systolic blood pressure indices weakly predicted normal ambulatory blood pressure and target end organ damage. © 2016 Wiley Periodicals, Inc.
International Nuclear Information System (INIS)
Krishnani, Mayur; Basu, Dipankar N.
2017-01-01
Highlights: • Computational model developed for single-phase rectangular natural circulation loop. • Role of loop inclination to vertical on thermalhydraulic stability is explored. • Inclination has strong stabilizing effect due to lower effective gravitation force. • Increase in tilt angle reduces settling time and highest amplitude of oscillation. • An angle of 15° is suggested for the selected loop geometry. - Abstract: Controlling stability behavior of single-phase natural circulation loops, without significantly affecting its steady-state characteristics, is a topic of wide research interest. Present study explores the role of loop inclination on a particular loop geometry. Accordingly a 3D computational model of a rectangular loop is developed and transient conservation equations are solved to obtain the temporal variation in flow parameters. Starting from the quiescent state, simulations are performed for selected sets of operating conditions and also with a few selected inclination angles. System experiences instability at higher heater powers and also with higher sink temperatures. Inclination is found to have a strong stabilizing influence owing to the reduction in the effective gravitational acceleration and subsequent decline in local buoyancy effects. The settling time and highest amplitude of oscillations substantially reduces for a stable system with a small inclination. Typically-unstable systems can also suppress the oscillations, when subjected to tilting, within a reasonable period of time. It is possible to stabilize the loop within shorter time span by increasing the tilt angle, but at the expense of reduction in steady-state flow rate. Overall a tilt angle of 15° is suggested for the selected geometry. Results from the 3D model is compared with the predictions from an indigenous 1D code. While similar qualitative influence of inclination is observed, the 1D model predicts early appearance of the stability threshold and hence hints
Directory of Open Access Journals (Sweden)
V. M. Bohomaz
2016-12-01
Full Text Available Purpose.One of the main elements of the inclined belt bucket elevators is their drive. To determine the drive power, it is necessary to carry out calculations according to standard methods, which are described in the modern literature. The basic design parameters are the productivity, lifting height, type and properties of the transported material, the angle of inclination. It is necessary to build a parametric dependence of the driving power of the elevator on its design parameters, which takes into account the standard sizes and types of buckets and belts. Methodology. Using the methodology of traction calculation of inclined belt bucket elevator there were built parametric dependences of efforts in specific points of the route of the elevator, as well as the parametric dependences of the drive power of high-speed elevators with deep and shallow buckets on their design parameters and characteristics. Findings. On the basis of constructed parametric dependencies, it was found that the function of changing the value of the elevator’s power from design capacity (at fixed lifting height, type of cargo, belt speed is piecewise constant and monotonically increasing. It was built a graphical representation of elevator drive power on the angle of its inclination within acceptable limits of change. The resulting relationship is non-linear and monotonically decreasing. In general terms the intervals of project performance values, which provide a constant value of drive power of inclined elevator were defined. As an example of the obtained results it was observed the process of dependence construction of the drive power on design capacity and inclination angle of the elevator for transporting the fine coal. Originality. For the first time there were constructed the parametric dependences of drive power of inclined bucket elevator on its design parameters that take into account the standard sizes and types of buckets and belts. Practical value. Using
Directory of Open Access Journals (Sweden)
Rehana Bashir
2018-01-01
Full Text Available Introduction: An important objective of orthodontic treatment is to obtain the correct angulation and inclination for all the teeth. Very few studies have been conducted so far comparing the expression of angulation and inclination in conventional and self-ligating brackets (SLBs. The present study was designed to evaluate and compare the inclination and angulation in conventional brackets and active and passive SLBs. Materials and Methods: Totally 21 patients who required four 1st premolar extractions were selected and were randomly allotted to three groups: Group 1: Conventional Brackets (3M Unitek MBT (mean age 19.14 ± 2.12 years, Group 2: Passive Brackets (Smart Clip Brackets-3M Unitek MBT (mean age 19.71 ± 1.80 years, Group 3: Active Brackets (Empower Brackets-American Orthodontics MBT (mean age 18.29 ± 2.29 years computed tomographic records were collected before the start of treatment, after leveling and aligning and at 6 months into retraction. Results: The data were evaluated using SPSS version 16.0 using one-way ANOVA and post hoc Bonferroni tests. There was no statistically significant difference in the expression of angulation and inclination in conventional, active, and passive SLB systems. Conclusion: Self-ligating brackets seem to be no better than conventional brackets when it comes to the expression of angulation and inclination.
International Nuclear Information System (INIS)
Liu Zhenhua; Yang Ronghua
2005-01-01
An experimental study was carried out to improve and expand understanding of boiling phenomena and the critical heat flux (CHF) during natural convective boiling in uniformly heated inclined tubes submerged in a pool of saturated liquids under atmospheric pressure. The test conditions were as follows: inter diameters of the test tubes ranged from 0.9 to 8.0 mm; heated lengths ranged from 100 to 400 mm, and inclination angles varied from 30 o to vertical position. The test fluids were water and R-11. The experimental results showed that the CHF decreases with the increasing ratio of the tube length to the tube diameter, and with the reducing of the inclination angle. A semi-theoretical correlation, which originally used for the CHF during natural convective boiling in vertical tubes, was modified to predict the CHF occurs in the inclined tubes. The modified correlation agreed reasonably well with the present experimental data and other CHF data for narrow inclined annular tubes
A Liquid-Surface-Based Three-Axis Inclination Sensor for Measurement of Stage Tilt Motions.
Shimizu, Yuki; Kataoka, Satoshi; Ishikawa, Tatsuya; Chen, Yuan-Liu; Chen, Xiuguo; Matsukuma, Hiraku; Gao, Wei
2018-01-30
In this paper a new concept of a liquid-surface-based three-axis inclination sensor for evaluation of angular error motion of a precision linear slide, which is often used in the field of precision engineering such as ultra-precision machine tools, coordinate measuring machines (CMMs) and so on, is proposed. In the liquid-surface-based three-axis inclination sensor, a reference float mounting a line scale grating having periodic line grating structures is made to float over a liquid surface, while its three-axis angular motion is measured by using an optical sensor head based on the three-axis laser autocollimation capable of measuring three-axis angular motion of the scale grating. As the first step of research, in this paper, theoretical analysis on the angular motion of the reference float about each axis has been carried out based on simplified kinematic models to evaluate the possibility of realizing the proposed concept of a three-axis inclination sensor. In addition, based on the theoretical analyses results, a prototype three-axis inclination sensor has been designed and developed. Through some basic experiments with the prototype, the possibility of simultaneous three-axis inclination measurement by the proposed concept has been verified.
Directory of Open Access Journals (Sweden)
Elgiz Baskaya
2017-07-01
Full Text Available Dispersion of super-paramagnetic nanoparticles in nonmagnetic carrier fluids, known as ferrofluids, offers the advantages of tunable thermo-physical properties and eliminate the need for moving parts to induce flow. This study investigates ferrofluid flow characteristics in an inclined channel under inclined magnetic field and constant pressure gradient. The ferrofluid considered in this work is comprised of Cu particles as the nanoparticles and water as the base fluid. The governing differential equations including viscous dissipation are non-dimensionalised and discretized with Generalized Differential Quadrature Method. The resulting algebraic set of equations are solved via Newton-Raphson Method. The work done here contributes to the literature by searching the effects of magnetic field angle and channel inclination separately on the entropy generation of the ferrofluid filled inclined channel system in order to achieve best design parameter values so called entropy generation minimization is implemented. Furthermore, the effect of magnetic field, inclination angle of the channel and volume fraction of nanoparticles on velocity and temperature profiles are examined and represented by figures to give a thorough understanding of the system behavior.
Study on natural circulation characteristics of an IPWR under inclined and rolling condition
Energy Technology Data Exchange (ETDEWEB)
He, Lihui [College of Computer Science and Information Technology, Harbin Normal University, Harbin (China); Wang, Bing [Fundamental Science on Nuclear Safety and Simulation Technology Laboratory, Harbin Engineering University, Harbin (China); Xia, Genglei, E-mail: xiagenglei@163.com [Fundamental Science on Nuclear Safety and Simulation Technology Laboratory, Harbin Engineering University, Harbin (China); Peng, Minjun [Fundamental Science on Nuclear Safety and Simulation Technology Laboratory, Harbin Engineering University, Harbin (China)
2017-06-15
Highlights: • An ocean-based thermal-hydraulic analysis code was developed based on RELAP5 codes. • The inclination condition can reduce the mass flow rate of reactor core. • The system parameters asymmetry increases with the increasing inclination angle. • Flow oscillation of different loops cancel each other due to the symmetrical arrangement of the reactor. • The off-center roll axis location can break the symmetry and enlarge fluctuation amplitude of the core flow rate. - Abstract: An ocean-based thermal-hydraulic system analysis code was developed based on RELAP5/MOD3 code by adding additional force model of ocean condition and control volume coordinate solver model. The natural circulation operation characteristics of integrated pressurized water reactor (IPWR) under ocean conditions were studied and the effects of inclination and rolling motions were analyzed. The results conclude that, the inclination condition can reduce the mass flow rate of reactor core and lead to inconsistent coolant flow rates of the left and right loops, furthermore, it affects the heat transfer of once-through steam generators (OTSGs). In the case of rolling motion, the additional pressure drop of the loop is dominated by tangential force, and flow oscillation of different loops cancel each other due to the symmetrical arrangement of the reactor. The off-center roll axis location, the combination of the inclination and rolling motion, both can break the thermal-hydraulic symmetry among different loops and enlarge fluctuation amplitude of the core flow rate.
Elsyad, Moustafa A; Eltowery, Salem M; Gebreel, Ashraf A
2017-12-27
This study aimed to evaluate the peri-implant strain around mesially inclined implants used to retain mandibular overdentures with Locator resilient attachments. Four mandibular edentulous acrylic resin models received two implants in the canine areas with 0°, 5°, 10°, and 20° mesial inclinations. Overdentures were connected to the implants using Locator attachments. Pink nylon inserts (light retention) were used for all implant inclinations, and red inserts were used for 20° inclination (20°red). Four strain gages were bonded on the mesial (M), distal (D), buccal (B), and lingual (L) surfaces of each implant. Peri-implant strains were measured during bilateral and unilateral loading. The 20° inclination showed the highest strain, followed by 10° and 5°, and both 0° and 20°red presented with the lowest strain. Site D was associated with the highest strain, followed by M, B, and L, which showed the lowest strain values. Unilateral loading and the loading side presented with significantly higher strain values than bilateral loading and the nonloading side, respectively. Hence, in this study, strains around the two-implant-retained overdentures with Locator attachments increased with increases in mesial implant angulation, except when red male inserts were used.
Walking on inclines: how do desert ants monitor slope and step length
Directory of Open Access Journals (Sweden)
Seidl Tobias
2008-06-01
Full Text Available Abstract Background During long-distance foraging in almost featureless habitats desert ants of the genus Cataglyphis employ path-integrating mechanisms (vector navigation. This navigational strategy requires an egocentric monitoring of the foraging path by incrementally integrating direction, distance, and inclination of the path. Monitoring the latter two parameters involves idiothetic cues and hence is tightly coupled to the ant's locomotor behavior. Results In a kinematic study of desert ant locomotion performed on differently inclined surfaces we aimed at pinpointing the relevant mechanisms of estimating step length and inclination. In a behavioral experiment with ants foraging on slippery surfaces we broke the otherwise tightly coupled relationship between stepping frequency and step length and examined the animals' ability to monitor distances covered even under those adverse conditions. We show that the ants' locomotor system is not influenced by inclined paths. After removing the effect of speed, slope had only marginal influence on kinematic parameters. Conclusion From the obtained data we infer that the previously proposed monitoring of angles of the thorax-coxa joint is not involved in inclinometry. Due to the tiny variations in cycle period, we also argue that an efference copy of the central pattern generator coding the step length in its output frequency will most likely not suffice for estimating step length and complementing the pedometer. Finally we propose that sensing forces acting on the ant's legs could provide the desired neuronal correlate employed in monitoring inclination and step length.
Experimental studies on the flow characteristics in an inclined bend-free OWC device
Directory of Open Access Journals (Sweden)
Krishnil Ravinesh Ram
2016-01-01
Full Text Available A bend-free rectangular cross-section OWC device was designed and constructed for studying the effect of inclination on the flow characteristics inside the device. The inclination is meant to reduce reflection of waves and induce higher velocities in the turbine section. Experimental measurements were made in a wave channel where the OWC device was tested. An S-type Pitot tube was used to measure dynamic pressure of air in the turbine section at several inclinations. Particle Image Velocimetry (PIV was also done to study the flow of both air and water in the OWC device. In order to focus solely on primary energy capture, no turbine was installed in the OWC device. The dynamic pressure readings were analysed for suction and compression stages. Water volume fluctuations inside the capture chamber were also recorded and compared for different inclinations. The result was an increase in the velocity of air flowing in the capture chamber and hence a rise in the kinetic energy available to the turbine. It was found from experimental studies that as the angle of inclination reduced, the velocity of air in the turbine section increased. The lower angles also caused higher run-up and larger volume of water into the capture chamber.
Study of transport coefficients of nanodiamond nanofluids
Pryazhnikov, M. I.; Minakov, A. V.; Guzei, D. V.
2017-09-01
Experimental data on the thermal conductivity coefficient and viscosity coefficient of nanodiamond nanofluids are presented. Distilled water and ethylene glycol were used as the base fluid. Dependences of transport coefficients on concentration are obtained. It was shown that the thermal conductivity coefficient increases with increasing nanodiamonds concentration. It was shown that base fluids properties and nanodiamonds concentration affect on the rheology of nanofluids.
The effect of chalk on the finger-hold friction coefficient in rock climbing.
Amca, Arif Mithat; Vigouroux, Laurent; Aritan, Serdar; Berton, Eric
2012-11-01
The main purpose of this study was to examine the effect of chalk on the friction coefficient between climber's fingers and two different rock types (sandstone and limestone). The secondary purpose was to investigate the effects of humidity and temperature on the friction coefficient and on the influence of chalk. Eleven experienced climbers took part in this study and 42 test sessions were performed. Participants hung from holds which were fixed on a specially designed hang board. The inclination of the hang board was progressively increased until the climber's hand slipped from the holds. The angle of the hang board was simultaneously recorded by using a gyroscopic sensor and the friction coefficient was calculated at the moment of slip. The results showed that there was a significant positive effect of chalk on the coefficient of friction (+18.7% on limestone and +21.6% on sandstone). Moreover sandstone had a higher coefficient of friction than limestone (+15.6% without chalk, +18.4% with chalk). These results confirmed climbers' belief that chalk enhances friction. However, no correlation with humidity/temperature and friction coefficient was noted which suggested that additional parameters should be considered in order to understand the effects of climate on finger friction in rock climbing.
Measurements of thermal accommodation coefficients.
Energy Technology Data Exchange (ETDEWEB)
Rader, Daniel John; Castaneda, Jaime N.; Torczynski, John Robert; Grasser, Thomas W.; Trott, Wayne Merle
2005-10-01
A previously-developed experimental facility has been used to determine gas-surface thermal accommodation coefficients from the pressure dependence of the heat flux between parallel plates of similar material but different surface finish. Heat flux between the plates is inferred from measurements of temperature drop between the plate surface and an adjacent temperature-controlled water bath. Thermal accommodation measurements were determined from the pressure dependence of the heat flux for a fixed plate separation. Measurements of argon and nitrogen in contact with standard machined (lathed) or polished 304 stainless steel plates are indistinguishable within experimental uncertainty. Thus, the accommodation coefficient of 304 stainless steel with nitrogen and argon is estimated to be 0.80 {+-} 0.02 and 0.87 {+-} 0.02, respectively, independent of the surface roughness within the range likely to be encountered in engineering practice. Measurements of the accommodation of helium showed a slight variation with 304 stainless steel surface roughness: 0.36 {+-} 0.02 for a standard machine finish and 0.40 {+-} 0.02 for a polished finish. Planned tests with carbon-nanotube-coated plates will be performed when 304 stainless-steel blanks have been successfully coated.
Motion of a carrier with a mobile load along a rough inclined plane
Bilchenko, G. G.
2018-03-01
The mechanical system consisting of a carrier and a load is considered. The load can move respectively the carrier according to the preset given motion law. The carrier motion from rest caused the load motion is investigated. The carrier can move translationally along rectilinear trajectory along rough inclined plane. The trajectory is the line of the greatest descent. The axis of rectilinear channel along which the load moves is situated in vertical plane containing the carrier trajectory. The Coulomb model is taken to describe the friction forces on sloped plane. Differential equations of motion of carrier with load are obtained. The sufficient condition of the carrier motion without detachment from inclined plane is given. For two special cases of the channel installation angle and the plane inclination angle combination the motion types are described. The computation experiments results are presented: the carrier motions in the special cases are illustrated, the phase portraits for some types of motions are constructed.
Numerical study of heat and mass transfer optimization in a 3D inclined solar distiller
Directory of Open Access Journals (Sweden)
Ghachem Kaouther
2017-01-01
Full Text Available A numerical study of the 3-D double-diffusive natural convection in an inclined solar distiller was established. The flow is considered laminar and caused by the interaction of thermal energy and the chemical species diffusions. The governing equations of the problem, are formulated using vector potential-vorticity formalism in its 3-D form, then solved by the finite volumes method. The Rayleigh number is fixed at Ra = 105 and effects of the buoyancy ratio and inclination are studied for opposed temperature and concentration gradients. The main purpose of the study is to find the optimum inclination angle of the distiller which promotes the maximum mass and heat transfer.
Flow behaviour and local concentration of coarse particles-water mixture in inclined pipes
Directory of Open Access Journals (Sweden)
Vlasak Pavel
2017-06-01
Full Text Available Narrow particle size distribution basalt pebbles of mean particle size 11.5 mm conveyed by water in the pipe sections of different inclination were investigated on an experimental pipe loop, consisting of smooth stainless steel pipes of inner diameter D = 100 mm. Mixture flow-behaviour and particles motion along the pipe invert were studied in a pipe viewing section, the concentration distribution in pipe cross-section was studied with the application of a gamma-ray densitometer. The study refers to the effect of mixture velocity, overall concentration, and angle of pipe inclination on chord-averaged concentration profiles and local concentration maps, and flow behaviour of the coarse particle-water mixtures. The study revealed that the coarse particle-water mixtures in the inclined pipe sections were significantly stratified, the solid particles moved principally close to the pipe invert, and for higher and moderate flow velocities particle saltation becomes the dominant mode of particle conveying.
Experimental investigation of coarse particles-water mixture flow in horizontal and inclined pipes
Directory of Open Access Journals (Sweden)
Vlasák Pavel
2014-09-01
Full Text Available The effect of solid concentration and mixture velocity on the flow behaviour, pressure drops, and concentration distribution of coarse particle-water mixtures in horizontal, vertical, and inclined smooth stainless steel pipes of inner diameter D = 100 mm was experimentally investigated. Graded basalt pebbles were used as solid particles. The study revealed that the coarse-grained particle-water mixtures in the horizontal and inclined pipes were significantly stratified. The solid particles moved principally in a layer close to the pipe invert; however for higher and moderate flow velocities, particle saltation became the dominant mode of particle conveyance. Frictional pressure drops in the horizontal pipe were found to be markedly higher than in the vertical pipe, while the frictional pressure drops in the ascending pipe increased with inclination angle up to about 30°.
Experimental investigation of turbulent flow in a channel with the backward-facing inclined step
Directory of Open Access Journals (Sweden)
Uruba Václav
2012-04-01
Full Text Available The work deals with the experimental investigation of turbulent flow in a closed channel with the backward-facing inclined step. Experiments were carried by means of the PIV optical measuring method in the channel of the rectangular cross-section in the inlet part and with inclined steps of the constant height H mm and various inclination angles for a wide range of the Reynolds number. The attention was paid especially to the separation region behind the step and to the relaxation of the shear layer after the reattachment in the outlet part of the channel. The dependence of the length of the separation region on the Reynolds number was obtained for various step angles. Optical measurements were completed by the measurement of static pressure distribution in the inlet and outlet part of the channel to estimate energy losses.
A waveless two-dimensional flow in a channel against an inclined wall with surface tension effect
International Nuclear Information System (INIS)
Merzougui, Abdelkrim; Mekias, Hocine; Guechi, Fairouz
2007-01-01
Surface tension effect on a two-dimensional channel flow against an inclined wall is considered. The flow is assumed to be steady, irrotational, inviscid and incompressible. The effect of surface tension is taken into account and the effect of gravity is neglected. Numerical solutions are obtained via series truncation procedure. The problem is solved numerically for various values of the Weber number α and for various values of the inclination angle β between the horizontal bottom and the inclined wall
Jeong, Da-Eun; Lee, Su-Kyoung; Kim, Kyoung
2014-01-01
[Purpose] The purpose of this study was to compare the muscle activity of the gluteus medius according to treadmill inclination during gait with a vertical load on a treadmill. [Methods] Sixteen healthy subjects were recruited for this study. The subjects walked on a treadmill at inclination angles of 0, 5, and 10 degrees. [Results] Muscle activity of the gluteus medius increased at 5° compared to 0° treadmill inclination, though the difference was not significant. On the other hand, gluteus ...
Detecting and correcting for paleomagnetic inclination shallowing of sedimentary rocks: A review
Directory of Open Access Journals (Sweden)
Yong-Xiang eLi
2016-02-01
Full Text Available Magnetic anisotropy and the elongation/inclination (E-I approaches have been increasingly employed as two important means for detecting and correcting the paleomagnetic inclination shallowing in sedimentary rocks that was first recognized sixty years ago. Both approaches are based on certain assumptions, and thus have advantages and intrinsic limitations in investigating shallow inclinations in sedimentary rocks. The E-I approach is relatively easy to use, but it needs a large dataset to adequately sample paleomagnetic directions due to paleosecular variation of the geomagnetic field. Also, slow sediment accumulation rates and local tectonics could lead to under- or over-corrections using the E-I approach. For the magnetic anisotropy technique, labor-intensive, sophisticated laboratory rock magnetic experiments are required in order to accurately determine both bulk magnetic anisotropy of remanence-carrying grains and magnetic anisotropy of an individual particle, i.e., a factor, of samples. Our review shows that, despite the intensive laboratory work necessary for applying anisotropy-based inclination corrections, it is worth investing the effort. In addition, the joint use of magnetic susceptibility and remanence anisotropy measurements as well as detailed rock magnetic measurements for determining the particle anisotropy a factor have the advantage of retrieving direct evidence of inclination shallowing and correcting for it with high confidence. We caution against use of either of the two approaches without full appreciation of the underlying assumptions and intrinsic limitations of each technique. The use and comparison of both techniques could provide the most robust inclination shallowing correction for sedimentary rocks.
Detecting and correcting for paleomagnetic inclination shallowing of sedimentary rocks: A review
Li, Yong-Xiang; Kodama, Kenneth
2016-02-01
Magnetic anisotropy and the elongation/inclination (E-I) approaches have been increasingly employed as two important means for detecting and correcting the paleomagnetic inclination shallowing in sedimentary rocks that was first recognized sixty years ago. Both approaches are based on certain assumptions, and thus have advantages and intrinsic limitations in investigating shallow inclinations in sedimentary rocks. The E-I approach is relatively easy to use, but it needs a large dataset to adequately sample paleomagnetic directions due to paleosecular variation of the geomagnetic field. Also, slow sediment accumulation rates and local tectonics could lead to under- or over-corrections using the E-I approach. For the magnetic anisotropy technique, labor-intensive, sophisticated laboratory rock magnetic experiments are required in order to accurately determine both bulk magnetic anisotropy of remanence-carrying grains and magnetic anisotropy of an individual particle, i.e., "a" factor, of samples. Our review shows that, despite the intensive laboratory work necessary for applying anisotropy-based inclination corrections, it is worth investing the effort. In addition, the joint use of magnetic susceptibility and remanence anisotropy measurements as well as detailed rock magnetic measurements for determining the particle anisotropy "a" factor have the advantage of retrieving direct evidence of inclination shallowing and correcting for it with high confidence. We caution against use of either of the two approaches without full appreciation of the underlying assumptions and intrinsic limitations of each technique. The use and comparison of both techniques could provide the most robust inclination shallowing correction for sedimentary rocks.
Directory of Open Access Journals (Sweden)
I-Ju Ho
2010-03-01
Full Text Available The aim of this study was to examine the effect of changes in speed and incline slope on plantar pressure distribution of the foot during treadmill jogging. Plantar pressure parameters were measured with the Pedar-X system in twenty healthy girls (mean age of 20.7 years, mean height of 1.60m, and a mean weight of 53.35kg. Because variations in walking speed or slope can significantly change the magnitude of plantar pressure, comparisons of plantar pressure distribution between the two independent protocols during treadmill jogging were considered in this study. First, the subjects ran at the same speed of 2 m·s-1 with different incline slopes of 0%, 5%, 10%, and 15%. Second, they ran on the same slope of 0% with different speeds of 1.5 m·s-1, 2.0 m·s-1, and 2.5 m·s-1. The peak pressure of the eight plantar surface areas, apart from the medial forefoot and the hallux, significantly increased (p < 0.05 with an increase of 33% of peak pressure from 1.5 m·s-1 to 2.5 m·s-1 (speed at heel region. In contrast, the peak pressures at the heel, medial fore-foot, toe and hallux decreased significantly (p < 0. 05 with increasing incline slope. At the heel, peak pressure reduced by 27% from 0% to 15% incline, however, pressure at the lateral midfoot region increased as following. Different speeds and incline slopes during jogging were associated with changes in plantar pressures. By systematic investigation of foot kinematics and plantar pressure during jogging with varying incline slope and speed, the results of this study provided further insight into foot biomechanics during jogging
Energy Technology Data Exchange (ETDEWEB)
Barnes, Rory; Deitrick, Russell; Quinn, Thomas R. [Astronomy Department, University of Washington, Box 951580, Seattle, WA 98195 (United States); Greenberg, Richard [Lunar and Planetary Laboratory, University of Arizona, 1629 E. University Boulevard, Tucson, AZ 86716 (United States); Raymond, Sean N., E-mail: rory@astro.washington.edu [NASA Astrobiology Institute-Virtual Planetary Laboratory Lead Team (United States)
2015-03-10
We present N-body simulations of resonant planets with inclined orbits that show chaotically evolving eccentricities and inclinations that can persist for at least 10 Gyr. A wide range of behavior is possible, from fast, low amplitude variations to systems in which eccentricities reach 0.9999 and inclinations 179.°9. While the orbital elements evolve chaotically, at least one resonant argument always librates. We show that the HD 73526, HD 45364, and HD 60532 systems may be in chaotically evolving resonances. Chaotic evolution is apparent in the 2:1, 3:1, and 3:2 resonances, and for planetary masses from lunar- to Jupiter-mass. In some cases, orbital disruption occurs after several gigayears, implying the mechanism is not rigorously stable, just long-lived relative to the main sequence lifetimes of solar-type stars. Planet-planet scattering appears to yield planets in inclined resonances that evolve chaotically in about 0.5% of cases. These results suggest that (1) approximate methods for identifying unstable orbital architectures may have limited applicability, (2) the observed close-in exoplanets may be produced during epochs of high eccentricit induced by inclined resonances, (3) those exoplanets' orbital planes may be misaligned with the host star's spin axis, (4) systems with resonances may be systematically younger than those without, (5) the distribution of period ratios of adjacent planets detected via transit may be skewed due to inclined resonances, and (6) potentially habitable planets may have dramatically different climatic evolution than Earth. The Gaia spacecraft is capable of discovering giant planets in these types of orbits.
Revealing the inclined circumstellar disk in the UX Ori system KK Ophiuchi
Kreplin, A.; Weigelt, G.; Kraus, S.; Grinin, V.; Hofmann, K.-H.; Kishimoto, M.; Schertl, D.; Tambovtseva, L.; Clausse, J.-M.; Massi, F.; Perraut, K.; Stee, Ph.
2013-07-01
We study the inner sub-AU region of the circumstellar environment of the UX Ori type star KK Oph with near-infrared VLTI/AMBER interferometry. We are particularly interested in the inclination of the star-disk system, and we will use this information to test the current standard picture for UX Ori stars. We recorded spectrally dispersed (R˜35) interferograms in the near-infrared H and K bands with the VLTI/AMBER instrument. The derived visibilities, closure phases and the SED of KK Oph were compared with two-dimensional geometric and radiative transfer models (RADMC). We obtained visibilities at four different position angles. Using two-dimensional geometric models, we derive an axis ratio ˜3.0 corresponding to an inclination of ˜70 degree. A fitted inclined ring model leads to a ring radius of 2.8 ± 0.2 mas, corresponding to 0.44 ± 0.03 AU at a distance of 160 pc, which is larger than the dust sublimation radius of ˜0.1 AU predicted for a dust sublimation temperature of 1500 K. Our derived two-dimensional RADMC model consists of a circumstellar disk with an inclination angle of ˜70 degree and an additional dust envelope. The finding of an ˜70 degree inclined disk around KK Oph is consistent with the prediction that UX Ori objects are seen under large inclination angles, and orbiting clouds in the line of sight cause the observed variability. Furthermore, our results suggest that the orbit of the companion KK Oph B and the disk plane are coplanar.
Revealing the inclined circumstellar disk in the UX Orionis system KK Ophiuchi
Kreplin, A.; Weigelt, G.; Kraus, S.; Grinin, V.; Hofmann, K.-H.; Kishimoto, M.; Schertl, D.; Tambovtseva, L.; Clausse, J.-M.; Massi, F.; Perraut, K.; Stee, Ph.
2013-03-01
Aims: We study the inner sub-AU region of the circumstellar environment of the UX Ori-type star KK Oph with near-infrared VLTI/AMBER interferometry. We are particularly interested in the inclination of the star-disk system, and we use this information to test the current standard picture for UX Ori stars. Methods: We recorded spectrally dispersed (R ~ 35) interferograms in the near-infrared H and K bands with the VLTI/AMBER instrument. The derived visibilities, closure phases, and the spectral energy distribution of KK Oph were compared with two-dimensional geometric and radiative transfer models (RADMC). Results: We obtained visibilities at four different position angles. Using two-dimensional geometric models, we derive an axis ratio ~3.0 corresponding to an inclination of ~70°. A fitted inclined ring model leads to a ring radius of 2.8 ± 0.2 mas, corresponding to 0.44 ± 0.03 AU at a distance of 160 pc, which is larger than the dust sublimation radius of ~0.1 AU predicted for a dust sublimation temperature of 1500 K. Our derived two-dimensional RADMC model consists of a circumstellar disk with an inclination angle of ~70° and an additional dust envelope. Conclusions: The finding of an ~70° inclined disk around KK Oph is consistent with the prediction that UX Ori objects are seen under large inclination angles, and orbiting clouds in the line of sight cause the observed variability. Furthermore, our results suggest that the orbit of the companion KK Oph B and the disk plane are coplanar. Based on observations made with ESO telescopes at Paranal Observatory under program ID: 083.D-0224(C) and 088.C-0575(A).
Analysis of three-dimensional interference patterns of an inclined capillary.
Zhang, Yiding; Xu, Mingfeng; Tian, Wenjing; Xu, Qiwei; Xiao, Jinghua
2016-08-01
We study the interference patterns from an inclined capillary tube filled with liquid by using the ray tracing method and interference theory. A beautiful elliptical pattern is found on the screen, with refined fringes embedded in it. Particularly, the fringes on top of the pattern are continuously swallowed to the center with the angle of incidence increasing. In addition, a method is demonstrated to determine the refractive index of the liquid and the wavelength of the incident light by measuring the capillary tilt of every 10-fringe being swallowed, which looks like fringe crossover, with respect to the change of the inclined angle of the capillary.
Model and experimental vizualisation of a bubble interacting with an inclined wall
Podvin, Berengere; Khoja, Suleman; Attinger, Daniel; Moraga, Francisco
2006-11-01
We describe the motion of an air bubble rising through water as it interacts with a wall of variable inclination. The bubble diameter varies about O(1) mm. We use lubrication theory to determine the modification of the bubble interface and compute the hydrodynamic force exerted by the wall. The present work is an extension of Moraga et al's model [Computers and Fluids 2006], which was devised for a horizontal wall. The predictions of the model are checked against experimental visualizations. The influence of the Weber number, Reynolds number and wall inclination is examined
Directory of Open Access Journals (Sweden)
V. M. Bohomaz
2017-02-01
Full Text Available Purpose.One of the main elements of band conveyors is a drive. To analyze the effect of design parameters on the drive power it is necessary to carry out the calculations according to standard procedures outlined in the current technical literature. The main design parameters of the band conveyor are: the type of cargo, project performance, the geometric dimensions of sections and track configuration as a whole. The feature of band conveyor calculation as compared to the elevators is the dependence of the band width on its performance, the inclination angle and the type of cargo. In the article for the account of this fact during calculations it is necessary to construct the dependence of the band width on the generalized parameter, which takes into account change in the design parameters. To determine the general pattern of changing the value of band conveyor drive power when varying its design parameters in the article it is necessary to construct the corresponding graphic dependences taking into account the standard sizes and bands parameters. Methodology. We consider the band conveyor with two sections: the inclined and horizontal one. It is conducted a detailed analysis of dependence of the conveyor band width and its drive power on the type of cargo, project performance, geometric dimensions and configuration of the conveyor track, using the appropriate parameter dependences constructed by the authors in previous papers. Findings. For band conveyors of this type there were constructed the graphics dependences of the band width on the parameter characterizing the project performance and the inclination angle of the track section, and on the performance at a fixed angle of inclination. Taking into account the changes in the band width with an increase in the value of project performance the graph dependences of drive power on the productivity and the inclination angle of the inclined section were built. Originality. For the first time there
A Numerical Study on a Vertical-Axis Wind Turbine with Inclined Arms
Agostino De Marco; Domenico P. Coiro; Domenico Cucco; Fabrizio Nicolosi
2014-01-01
This work focuses on a particular type of vertical-axis wind turbine, in which a number of inclined arms with airfoil-shaped cross-sections are mounted to connect the principal blades to their hub. While the majority of the known studies on vertical-axis turbines is devoted to the role of principal blades, in most of the cases without taking into account other parts of the wind turbine, the objective of this work is to investigate the effect of uncommon arm geometries, such as the inclined ar...
Cyclotron resonance in InAs/GaSb heterostructure in inclined magnetic field
Greshnov, A A; Vasilev, Yu B; Suchalkin, S D; Meltser, B Y; Ivanov, S V; Kopev, P S
2002-01-01
The mechanism of splitting the cyclotron resonance line in the InAs/GaSb heterostructure in the inclined magnetic field is experimentally and theoretically studied. It is shown that the electrons and holes mixing in leads to the anticrossing Landau levels and consequently to the cyclotron resonance line splitting. Splitting in the case of the inclined magnetic field was not observed which is explained by damping the electrons and holes states mixing in on the account of originating the additional barrier for the electrons and holes by availability of the magnetic field longitudinal constituent
International Nuclear Information System (INIS)
Nazarov, A.A.; Kamenev, Yu.B.; Kuusk, L.V.; Kormin, E.G.; Vasil'ev, A.N.; Sumbaeva, T.E.
1986-01-01
Methods of automated control of 18-10-type steel inclination to IGC are developed and a corresponding automated testing complex (ATS) is created. 08Kh18N10T steel samples had two variants of thermal treatment: 1) 1200 deg (5 h), 600 deg (50 h); 2) 1200 deg (5 h). Methods of non-destructive automated control of 18-10-type steel inclination to IGC are developed on the basis of potentiodynamic reactivation (PR) principle. Automated testing complex is developed, which has undergone experimental running and demonstrated a high confidence of results, reliability and easy operation
An analytical model for force prediction in ball nose micro milling of inclined surfaces
DEFF Research Database (Denmark)
Bissacco, Giuliano; Hansen, Hans Nørgaard; De Chiffre, Leonardo
2010-01-01
Ball nose micro milling is a key process for the generation of free form surfaces and inclined surfaces often present in mould inserts for micro replication. This paper presents a new cutting force model for ball nose micro milling that is capable of taking into account the effect of the edge rad...... radius and the effect of the surface topography due to the previous milling passes. The model is completely analytical can be applied to ball end micro milling of slanted surfaces for any value of the surface inclination angle relative to the tool axis....
Energy Technology Data Exchange (ETDEWEB)
Matsumoto, Yuji [Planetary Exploration Research Center, Chiba Institute of Technology, Narashino, Chiba, 275-0016 (Japan); Kokubo, Eiichiro, E-mail: ymatsumoto@cfca.nao.ac.jp [Center for Computational Astrophysics, National Astronomical Observatory of Japan, Osawa, Mitaka, Tokyo, 181-8588 (Japan)
2017-07-01
Recent observations have revealed the eccentricity and inclination distributions of close-in super-Earths. These distributions have the potential to constrain their formation processes. In the in situ formation scenario, the eccentricities and inclinations of planets are determined by gravitational scattering and collisions between protoplanets on the giant impact stage. We investigate the effect of the initial eccentricities and inclinations of protoplanets on the formation of close-in super-Earths. We perform N -body simulations of protoplanets in gas-free disks, changing the initial eccentricities and inclinations systematically. We find that while the eccentricities of protoplanets are well relaxed through their evolution, the inclinations are not. When the initial inclinations are small, they are not generally pumped up since scattering is less effective and collisions occur immediately after orbital crossing. On the other hand, when the initial inclinations are large, they tend to be kept large since collisional damping is less effective. Not only the resultant inclinations of planets, but also their number, eccentricities, angular momentum deficit, and orbital separations are affected by the initial inclinations of protoplanets.
Svirzhevskaya, A. K.; Svirzhevsky, N. S.; Stozhkov, Yu. I.
2001-08-01
The large and fast step-like variations in the GCR intensity are examined during both the descending and recovery phases of the 20-23 solar cycles. The cosmic ray intensity data sets obtained in the stratospheric measurements in Murmansk, Mirny (Antarctica) and Moscow are used. At present the global merged interaction regions (GMIRs) are considered as a natural explanation of step-like intensity decreases. But the GMIRs are not suitable to explain the rapid intensity recovery that was as fast as the step-like decreases, for example in 1962, 1971, and 1991. According to the ULYSSES measurements, the IMF was much more disturbed within the sector zones. It means that the diffusion coefficient is smaller within the sector zone (just as inside the GMIR) than one beyond the sector zones. The changes of the heliospheric current sheet inclination cause the changes in the angular sizes of sector zones and due to that the fast decreases or increases of the GCR intensity. It is also shown that the intensity changes immediately after the step-decreases depend upon the IMF polarity. The cosmic ray intensity after the step-decrease tends to recover at 0>A and continues to decrease slowly at 0
Improvement of mass transfer characteristics and productivities of inclined tubular photobioreactors by installation of internal static mixers.
Ugwu, C U; Ogbonna, J C; Tanaka, H
2002-04-01
The feasibility of improving mass transfer characteristics of inclined tubular photobioreactors by installation of static mixers was investigated. The mass transfer characteristics of the tubular photobioreactor varied depending on the type (shape) and the number of static mixers. The volumetric oxygen transfer coefficient ( k(L)a) and gas hold up of the photobioreactor with internal static mixers were significantly higher than those of the photobioreactor without static mixers. The k(L)a and gas hold up increased with the number of static mixers but the mixing time became longer due to restricted liquid flow through the static mixers. By installing the static mixers, the liquid flow changed from plug flow to turbulent mixing so that cells were moved between the surface and bottom of the photobioreactor. In outdoor culture of Chlorella sorokiniana, the photobioreactor with static mixers gave higher biomass productivities irrespective of the standing biomass concentration and solar radiation. The effectiveness of the static mixers (average percentage increase in the productivities of the photobioreactor with static mixers over the productivities obtained without static mixers) was higher at higher standing biomass concentrations and on cloudy days (solar radiation below 6 MJ m(-2) day(-1)).
Energy Technology Data Exchange (ETDEWEB)
Abo-Eldahab, Emad M.; Azzam, Gamal El-Din A. [Helwan University, Department of Mathematics, Cairo (Egypt)
2005-10-01
MHD mixed free-forced heat and mass convective steady incompressible laminar boundary layer flow of a gray optically thick electrically conducting viscous fluid past a semi-infinite inclined plate for high temperature and concentration differences is studied. A uniform magnetic field is applied perpendicular to the plate. The density of the fluid is assumed to reduce exponentially with temperature and concentration. The usual Boussinesq approximation is neglected due to the high temperature and concentration differences between the plate and the ambient fluid. The Rosseland approximation is used to describe the radiative heat flux in the energy equation. The boundary layer equations governing the flow are reduced to ordinary differential equations, which are numerically solved by applying an efficient technique. The effects of the density/temperature parameter n, the density/concentration parameter m, the local magnetic parameter M{sub x} and the radiation parameter R are examined on the velocity, temperature and concentration distributions as well as the coefficients of skin-friction, heat flux and mass flux. (orig.)
Extinction Coefficient of Gold Nanostars.
de Puig, Helena; Tam, Justina O; Yen, Chun-Wan; Gehrke, Lee; Hamad-Schifferli, Kimberly
2015-07-30
Gold nanostars (NStars) are highly attractive for biological applications due to their surface chemistry, facile synthesis and optical properties. Here, we synthesize NStars in HEPES buffer at different HEPES/Au ratios, producing NStars of different sizes and shapes, and therefore varying optical properties. We measure the extinction coefficient of the synthesized NStars at their maximum surface plasmon resonances (SPR), which range from 5.7 × 10 8 to 26.8 × 10 8 M -1 cm -1 . Measured values correlate with those obtained from theoretical models of the NStars using the discrete dipole approximation (DDA), which we use to simulate the extinction spectra of the nanostars. Finally, because NStars are typically used in biological applications, we conjugate DNA and antibodies to the NStars and calculate the footprint of the bound biomolecules.
Kerr scattering coefficients via isomonodromy
Energy Technology Data Exchange (ETDEWEB)
Cunha, Bruno Carneiro da [Departamento de Física, Universidade Federal de Pernambuco,50670-901, Recife, Pernambuco (Brazil); Novaes, Fábio [International Institute of Physics, Federal University of Rio Grande do Norte,Av. Odilon Gomes de Lima 1722, Capim Macio, Natal-RN 59078-400 (Brazil)
2015-11-23
We study the scattering of a massless scalar field in a generic Kerr background. Using a particular gauge choice based on the current conservation of the radial equation, we give a generic formula for the scattering coefficient in terms of the composite monodromy parameter σ between the inner and the outer horizons. Using the isomonodromy flow, we calculate σ exactly in terms of the Painlevé V τ-function. We also show that the eigenvalue problem for the angular equation (spheroidal harmonics) can be calculated using the same techniques. We use recent developments relating the Painlevé V τ-function to Liouville irregular conformal blocks to claim that this scattering problem is solved in the combinatorial sense, with known expressions for the τ-function near the critical points.
Chamkha, Ali J.; Al-Mudhaf, Ali
2008-04-01
Laminar double-diffusive natural convective flow of a binary fluid mixture in inclined square and rectangular cavities filled with a uniform porous medium in the presence of temperature-difference dependent heat generation (source) or absorption (sink) is considered. Transverse gradients of heat and mass are applied on two opposing walls of the cavity while the other two walls are kept adiabatic and impermeable to mass transfer. The problem is put in terms of the stream function-vorticity formulation. A numerical solution based on the finite-difference methodology is obtained for relatively high Lewis numbers. Representative results illustrating the effects of the inclination angle of the cavity, buoyancy ratio, Darcy number, heat generation or absorption coefficient and the cavity aspect ratio on the contour maps of the streamline, temperature, and concentration as well as the profiles of velocity, temperature and concentration at mid-section of the cavity are reported. In addition, numerical results for the average Nusselt and Sherwood numbers are presented for various parametric conditions and discussed.
Friction coefficient of an intact free liquid jet moving in air
Comiskey, P. M.; Yarin, A. L.
2018-04-01
Here, we propose a novel method of determining the friction coefficient of intact free liquid jets moving in quiescent air. The middle-size jets of this kind are relevant for such applications as decorative fountains, fiber-forming, fire suppression, agriculture, and forensics. The present method is based on measurements of trajectories created using a straightforward experimental apparatus emulating such jets at a variety of initial inclination angles. Then, the trajectories are described theoretically, accounting for the longitudinal traction imposed on such jets by the surrounding air. The comparison of the experimental data with the theoretical predictions shows that the results can be perfectly superimposed with the friction coefficient {C_{{fd}}}=5R{e_d}^{{ - 1/2 ± 0.05}}, in the 621 ≤ R{e_d} ≤ 1289 range, with Red being the Reynolds number based on the local cross-sectional diameter of the jet. The results also show that the farthest distance such jets can reach corresponds to the initial inclination angle α =35° which is in agreement with already published data.
The Relationship between Mg ii Broad Emission and Quasar Inclination Angle
Energy Technology Data Exchange (ETDEWEB)
Wildy, Conor; Czerny, Bozena, E-mail: wildy@cft.edu.pl [Center for Theoretical Physics, Polish Academy of Sciences, Warsaw (Poland)
2017-11-14
Several observed spectral properties of quasars are believed to be influenced by quasar orientation. In this investigation we examine the effect of orientation on the Mg ii line located at 2,798 Å in a sample of 36 radio-loud quasars, with orientation angles having been obtained in a previous study using radio observations. We find no significant relationship between orientation angle and either Mg ii line full-width at half-maximum or equivalent width. The lack of correlation with inclination angle contradicts previous studies which also use radio data as a proxy for inclination angle and suggests the Mg ii emission region does not occupy a disk-like geometry. The lack of correlation with Mg ii equivalent width, however, is reported in at least one previous study. Although the significance is not very strong (86%), there is a possible negative relationship between inclination angle and Fe ii strength which, if true, could explain the Fe ii anti-correlation with [O iii] strength associated with Eigenvector 1. Interestingly, there are objects having almost edge-on inclinations while still exhibiting broad lines. This could be explained by a torus which is either clumpy (allowing sight lines to the central engine) or mis-aligned with the accretion disk.
Complex network analysis in inclined oil–water two-phase flow
International Nuclear Information System (INIS)
Zhong-Ke, Gao; Ning-De, Jin
2009-01-01
Complex networks have established themselves in recent years as being particularly suitable and flexible for representing and modelling many complex natural and artificial systems. Oil–water two-phase flow is one of the most complex systems. In this paper, we use complex networks to study the inclined oil–water two-phase flow. Two different complex network construction methods are proposed to build two types of networks, i.e. the flow pattern complex network (FPCN) and fluid dynamic complex network (FDCN). Through detecting the community structure of FPCN by the community-detection algorithm based on K-means clustering, useful and interesting results are found which can be used for identifying three inclined oil–water flow patterns. To investigate the dynamic characteristics of the inclined oil–water two-phase flow, we construct 48 FDCNs under different flow conditions, and find that the power-law exponent and the network information entropy, which are sensitive to the flow pattern transition, can both characterize the nonlinear dynamics of the inclined oil–water two-phase flow. In this paper, from a new perspective, we not only introduce a complex network theory into the study of the oil–water two-phase flow but also indicate that the complex network may be a powerful tool for exploring nonlinear time series in practice. (general)
On the influence of gravity on the static state of an inclined tensioned string
Van Horssen, W.T.
2004-01-01
In this paper the static state of an inclined stretched string due to gravity is considered. The string is stretched between two fixed supports which are situated at two different levels. It is assumed that the tension in the string is suffiently large such that the sag of the string due to gravity
The Relationship between Mg ii Broad Emission and Quasar Inclination Angle
Directory of Open Access Journals (Sweden)
Conor Wildy
2017-11-01
Full Text Available Several observed spectral properties of quasars are believed to be influenced by quasar orientation. In this investigation we examine the effect of orientation on the Mg ii line located at 2,798 Å in a sample of 36 radio-loud quasars, with orientation angles having been obtained in a previous study using radio observations. We find no significant relationship between orientation angle and either Mg ii line full-width at half-maximum or equivalent width. The lack of correlation with inclination angle contradicts previous studies which also use radio data as a proxy for inclination angle and suggests the Mg ii emission region does not occupy a disk-like geometry. The lack of correlation with Mg ii equivalent width, however, is reported in at least one previous study. Although the significance is not very strong (86%, there is a possible negative relationship between inclination angle and Fe ii strength which, if true, could explain the Fe ii anti-correlation with [O iii] strength associated with Eigenvector 1. Interestingly, there are objects having almost edge-on inclinations while still exhibiting broad lines. This could be explained by a torus which is either clumpy (allowing sight lines to the central engine or mis-aligned with the accretion disk.
Chaudhary, Richa
2017-01-01
Purpose: The purpose of this paper is to investigate the influence of demographic, social and personal dispositional factors on determining the entrepreneurial inclination. Specifically, the author examined the role of gender, age, stream of study, family business background and six psychological traits of locus of control, tolerance for…
Constraining the Relative Inclinations of the Planets B and C of the ...
Indian Academy of Sciences (India)
2016-01-27
Jan 27, 2016 ... We investigate on the relative inclination of the planets B and C orbiting the pulsar PSR B1257+12. First, we show that the third Kepler's law does represent an adequate model for the orbital periods of the planets, because other Newtonian and Einsteinian corrections are orders of magnitude smaller than ...
Hadders-Algra, Mijna; van der Heide, Jolanda C.; Fock, Johanna M.; Stremmelaar, Elisabeth; van Eykern, Leo A.; Otten, Bert
Background and Purpose Because it is debatable whether seat surface inclination improves motor function in children with cerebral palsy (CP), the effect of seat surface tilting on postural control and quality of reaching was studied. Subjects The subjects were 58 children with CP aged 2 to 11 years
The effects of porosity and angle of inclination on the deflection of ...
African Journals Online (AJOL)
The effects of porosity and angle of inclination on the deflection of fluid flow in porous media. ... a helpful Frequently Asked Questions about PDFs. Alternatively, you can download the PDF file directly to your computer, from where it can be opened using a PDF reader. To download the PDF, click the Download link above.
Deformation of two welded elastic half-spaces due to a long inclined ...
Indian Academy of Sciences (India)
2Department of Mathematics, University of Delhi South Campus, New Delhi 110 021, India. ∗e-mail: ... Airy stress function for a tensile line source in two welded half-spaces are first obtained. These expressions ... computing the displacement and stress fields around a long inclined tensile fault near an internal boundary. 1.
Reconstruction of inclined air showers detected with the Pierre Auger Observatory
Pierre Auger Collaboration, [No Value; Aab, A.; Abreu, P.; Aglietta, M.; Ahlers, M.; Ahn, E. J.; Samarai, I. Al; Albuquerque, I. F. M.; Allekotte, I.; Allen, J.; Allison, P.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muñiz, J.; Alves Batista, R.; Ambrosio, M.; Aminaei, A.; Anchordoqui, L.; Andringa, S.; Aramo, C.; Arqueros, F.; Asorey, H.; Assis, P.; Aublin, J.; Ave, M.; Avenier, M.; Avila, G.; Badescu, A. M.; Barber, K. B.; Bäuml, J.; Baus, C.; Beatty, J. J.; Becker, K. H.; Bellido, J. A.; Berat, C.; Bertou, X.; Biermann, P. L.; Billoir, P.; Blanco, F.; Blanco, M.; Bleve, C.; Blümer, H.; Boháčová, M.; Boncioli, D.; Bonifazi, C.; Bonino, R.; Borodai, N.; Brack, J.; Brancus, I.; Brogueira, P.; Brown, W. C.; Buchholz, P.; Bueno, A.; Buscemi, M.; Caballero-Mora, K. S.; Caccianiga, B.; Caccianiga, L.; Candusso, M.; Caramete, L.; Caruso, R.; Castellina, A.; Cataldi, G.; Cazon, L.; Cester, R.; Chavez, A. G.; Cheng, S. H.; Chiavassa, A.; Chinellato, J. A.; Chudoba, J.; Cilmo, M.; Clay, R. W.; Cocciolo, G.; Colalillo, R.; Collica, L.; Coluccia, M. R.; Conceição, R.; Contreras, F.; Cooper, M. J.; Coutu, S.; Covault, C. E.; Criss, A.; Cronin, J.; Curutiu, A.; Dallier, R.; Daniel, B.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; De Domenico, M.; de Jong, S. J.; de Mello Neto, J. R. T.; De Mitri, I.; de Oliveira, J.; de Souza, V.; del Peral, L.; Deligny, O.; Dembinski, H.; Dhital, N.; Di Giulio, C.; Di Matteo, A.; Diaz, J. C.; D\\'\\iaz Castro, M. L.; Diep, P. N.; Diogo, F.; Dobrigkeit, C.; Docters, W.; D'Olivo, J. C.; Dong, P. N.; Dorofeev, A.; Dorosti Hasankiadeh, Q.; Dova, M. T.; Ebr, J.; Engel, R.; Erdmann, M.; Erfani, M.; Escobar, C. O.; Espadanal, J.; Etchegoyen, A.; Facal San Luis, P.; Falcke, H.; Fang, K.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Ferguson, A. P.; Fernandes, M.; Fick, B.; Figueira, J. M.; Filevich, A.; Filipčič, A.; Fox, B. D.; Fratu, O.; Fröhlich, U.; Fuchs, B.; Fuji, T.; Gaior, R.; Garc\\'\\ia, B.; Garcia Roca, S. T.; Garcia-Gamez, D.; Garcia-Pinto, D.; Garilli, G.; Gascon Bravo, A.; Gate, F.; Gemmeke, H.; Ghia, P. L.; Giaccari, U.; Giammarchi, M.; Giller, M.; Glaser, C.; Glass, H.; Gomez Albarracin, F.; Gómez Berisso, M.; Gómez Vitale, P. F.; Gonçalves, P.; Gonzalez, J. G.; Gookin, B.; Gorgi, A.; Gorham, P.; Gouffon, P.; Grebe, S.; Griffith, N.; Grillo, A. F.; Grubb, T. D.; Guardincerri, Y.; Guarino, F.; Guedes, G. P.; Hansen, P.; Harari, D.; Harrison, T. A.; Harton, J. L.; Haungs, A.; Hebbeker, T.; Heck, D.; Heimann, P.; Herve, A. E.; Hill, G. C.; Hojvat, C.; Hollon, N.; Holt, E.; Homola, P.; Hörandel, J. R.; Horvath, P.; Hrabovský, M.; Huber, D.; Huege, T.; Insolia, A.; Isar, P. G.; Islo, K.; Jandt, I.; Jansen, S.; Jarne, C.; Josebachuili, M.; Kääpä, A.; Kambeitz, O.; Kampert, K. H.; Kasper, P.; Katkov, I.; Kégl, B.; Keilhauer, B.; Keivani, A.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Krause, R.; Krohm, N.; Krömer, O.; Kruppke-Hansen, D.; Kuempel, D.; Kunka, N.; La Rosa, G.; LaHurd, D.; Latronico, L.; Lauer, R.; Lauscher, M.; Lautridou, P.; Le Coz, S.; Leão, M. S. A. B.; Lebrun, D.; Lebrun, P.; Leigui de Oliveira, M. A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; López, R.; Lopez Agëra, A.; Louedec, K.; Lozano Bahilo, J.; Lu, L.; Lucero, A.; Ludwig, M.; Lyberis, H.; Maccarone, M. C.; Malacari, M.; Maldera, S.; Maller, J.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Marin, V.; Mariş, I. C.; Marsella, G.; Martello, D.; Martin, L.; Martinez, H.; Mart\\'\\inez Bravo, O.; Martraire, D.; Mas\\'\\ias Meza, J. J.; Mathes, H. J.; Mathys, S.; Matthews, A. J.; Matthews, J.; Matthiae, G.; Maurel, D.; Maurizio, D.; Mayotte, E.; Mazur, P. O.; Medina, C.; Medina-Tanco, G.; Melissas, M.; Melo, D.; Menichetti, E.; Menshikov, A.; Messina, S.; Meyhandan, R.; Mićanović, S.; Micheletti, M. I.; Middendorf, L.; Minaya, I. A.; Miramonti, L.; Mitrica, B.; Molina-Bueno, L.; Mollerach, S.; Monasor, M.; Monnier Ragaigne, D.; Montanet, F.; Morello, C.; Moreno, J. C.; Mostafá, M.; Moura, C. A.; Muller, M. A.; Müller, G.; Münchmeyer, M.; Mussa, R.; Navarra, G.; Navas, S.; Necesal, P.; Nellen, L.; Nelles, A.; Neuser, J.; Newton, D.; Niechciol, M.; Niemietz, L.; Niggemann, T.; Nitz, D.; Nosek, D.; Novotny, V.; Nožka, L.; Ochilo, L.; Olinto, A.; Oliveira, M.; Olmos-Gilbaja, V. M.; Ortiz, M.; Pacheco, N.; Pakk Selmi-Dei, D.; Palatka, M.; Pallotta, J.; Palmieri, N.; Papenbreer, P.; Parente, G.; Parra, A.; Pastor, S.; Paul, T.; Pech, M.; Pȩkala, J.; Pelayo, R.; Pepe, I. M.; Perrone, L.; Pesce, R.; Petermann, E.; Peters, C.; Petrera, S.; Petrolini, A.; Petrov, Y.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.; Platino, M.; Plum, M.; Porcelli, A.; Porowski, C.; Privitera, P.; Prouza, M.; Purrello, V.; Quel, E. J.; Querchfeld, S.; Quinn, S.; Rautenberg, J.; Ravel, O.; Ravignani, D.; Revenu, B.; Ridky, J.; Riggi, S.; Risse, M.; Ristori, P.; Rizi, V.; Roberts, J.; Rodrigues de Carvalho, W.; Rodriguez Cabo, I.; Rodriguez Fernandez, G.; Rodriguez Rojo, J.; Rodr\\'\\iguez-Fr\\'\\ias, M. D.; Ros, G.; Rosado, J.; Rossler, T.; Roth, M.; Roulet, E.; Rovero, A. C.; Rühle, C.; Saffi, S. J.; Saftoiu, A.; Salamida, F.; Salazar, H.; Salesa Greus, F.; Salina, G.; Sánchez, F.; Sanchez-Lucas, P.; Santo, C. E.; Santos, E.; Santos, E. M.; Sarazin, F.; Sarkar, B.; Sarmento, R.; Sato, R.; Scharf, N.; Scherini, V.; Schieler, H.; Schiffer, P.; Schmidt, A.; Scholten, O.; Schoorlemmer, H.; Schovánek, P.; Schulz, A.; Schulz, J.; Sciutto, S. J.; Segreto, A.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sidelnik, I.; Sigl, G.; Sima, O.; Śmiał kowski, A.; Šm\\'\\ida, R.; Snow, G. R.; Sommers, P.; Sorokin, J.; Squartini, R.; Srivastava, Y. N.; Stanič, S.; Stapleton, J.; Stasielak, J.; Stephan, M.; Stutz, A.; Suarez, F.; Suomijärvi, T.; Supanitsky, A. D.; Sutherland, M. S.; Swain, J.; Szadkowski, Z.; Szuba, M.; Taborda, O. A.; Tapia, A.; Tartare, M.; Thao, N. T.; Theodoro, V. M.; Tiffenberg, J.; Timmermans, C.; Todero Peixoto, C. J.; Toma, G.; Tomankova, L.; Tomé, B.; Tonachini, A.; Torralba Elipe, G.; Torres Machado, D.; Travnicek, P.; Trovato, E.; Tueros, M.; Ulrich, R.; Unger, M.; Urban, M.; Valdés Galicia, J. F.; Valiño, I.; Valore, L.; van Aar, G.; van den Berg, A. M.; van Velzen, S.; van Vliet, A.; Varela, E.; Vargas Cárdenas, B.; Varner, G.; Vázquez, J. R.; Vázquez, R. A.; Veberič, D.; Verzi, V.; Vicha, J.; Videla, M.; Villaseñor, L.; Vlcek, B.; Vorobiov, S.; Wahlberg, H.; Wainberg, O.; Walz, D.; Watson, A. A.; Weber, M.; Weidenhaupt, K.; Weindl, A.; Werner, F.; Whelan, B. J.; Widom, A.; Wiencke, L.; Wilczyńska, B.; Wilczyński, H.; Will, M.; Williams, C.; Winchen, T.; Wittkowski, D.; Wundheiler, B.; Wykes, S.; Yamamoto, T.; Yapici, T.; Younk, P.; Yuan, G.; Yushkov, A.; Zamorano, B.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zaw, I.; Zepeda, A.; Zhou, J.; Zhu, Y.; Zimbres Silva, M.; Ziolkowski, M.
2014-01-01
We describe the method devised to reconstruct inclined cosmic-ray air showers with zenith angles greater than 60° detected with the surface array of the Pierre Auger Observatory. The measured signals at the ground level are fitted to muon density distributions predicted with atmospheric cascade
Madehkhaksar, F.; Egges, J.
Stair gait is a common daily activity with great potential risk for falls. Stairs have varying inclinations and people may perform other tasks concurrently with stair gait. This study investigated dual-task interference in the context of complex gait tasks, such as stair gait at different
First Measurements of the Inclined Boron Layer Thermal-Neutron Detector for Reflectometry
Energy Technology Data Exchange (ETDEWEB)
Clonts, Lloyd G [ORNL; Crow, Lowell [ORNL; Van Vuure, Thorwald L [ORNL; Robertson, Lee [ORNL; Riedel, Richard A [ORNL; Richards, John D [ORNL; Cooper, Ronald G [ORNL; Remec, Igor [ORNL; Ankner, John Francis [ORNL; Browning, Jim [ORNL
2010-01-01
A prototype detector based on the inclined boron layer principle is introduced. For typical measurement conditions at the Liquids Reflectometer at the Spallation Neutron Source, its count rate capability is shown to be superior to that of the current detector by nearly two orders of magnitude.
The Racing-Game Effect : Why Do Video Racing Games Increase Risk-Taking Inclinations?
Fischer, Peter; Greitemeyer, Tobias; Morton, Thomas; Kastenmueller, Andreas; Postmes, Tom; Frey, Dieter; Kubitzki, Joerg; Odenwaelder, Joerg; Kastenmüller, A.; Odenwälder, J.
2009-01-01
The present studies investigated why video racing games increase players' risk-taking inclinations. Four studies reveal that playing video racing games increases risk taking in a subsequent simulated road traffic situation, as well as risk-promoting cognitions and emotions, blood pressure, sensation
A Study of Static Performance of Fixed Inclined Slider Bearings – A ...
African Journals Online (AJOL)
In this paper, the performance of a fixed inclined slider bearing whose surfaces are lubricated by a non Newtonian power law lubricant is investigated numerically. Based on the power law model, the modified Reynolds equation is derived and solved using the finite element method. The effect of flow index on pressure ...
The effects of porosity and angle of inclination on the deflection of ...
African Journals Online (AJOL)
-section of soils in deflecting contaminated fluid from septic tank to different directions from the source of water within the same small portion of land. It was observed that angle of inclination does not have a significant effect on the deflection of ...
Constraining the Relative Inclinations of the Planets B and C of the ...
Indian Academy of Sciences (India)
of the orbital inclinations iB and iC independently of the pulsar's mass M. It turns out that coplanarity of the orbits of B and C would imply a violation of the equivalence principle. Adopting a pulsar mass range 1 ≲ M ≲ 3, in solar masses (supported by present-day theoretical and observational bounds for pulsar's masses), ...
Second law analysis of a solar air heater having 60° inclined ...
African Journals Online (AJOL)
Artificially roughened solar air heaters perform better than the smooth ones under the same operating conditions. However, artificial roughness leads to even more fluid pressure thereby increasing the pumping power. The entropy generation in the duct of solar air heater having 60° inclined discrete rib roughness on one ...
A Numerical Study on a Vertical-Axis Wind Turbine with Inclined Arms
Directory of Open Access Journals (Sweden)
Agostino De Marco
2014-01-01
Full Text Available This work focuses on a particular type of vertical-axis wind turbine, in which a number of inclined arms with airfoil-shaped cross-sections are mounted to connect the principal blades to their hub. While the majority of the known studies on vertical-axis turbines is devoted to the role of principal blades, in most of the cases without taking into account other parts of the wind turbine, the objective of this work is to investigate the effect of uncommon arm geometries, such as the inclined arms. The inclined arms are known to have a potentially beneficial role in the power extraction from the wind current but, due to the complexity of the phenomena, the investigation on aerodynamics of this type of turbine is often impossible through analytical models, such as blade-element momentum theory. It turns out that adequate studies can only be carried out by wind tunnel experiments or CFD simulations. This work presents a methodical CFD study on how inclined arms can be used on a selected wind turbine configuration to harvest additional power from the wind. The turbine configuration, geometry, and some fundamental definitions are introduced first. Then an in-depth CFD analysis is presented and discussed.
Exact solution of cilia induced flow of a Jeffrey fluid in an inclined tube.
Maqbool, K; Shaheen, S; Mann, A B
2016-01-01
The present study investigated the cilia induced flow of MHD Jeffrey fluid through an inclined tube. This study is carried out under the assumptions of long wavelength and low Reynolds number approximations. Exact solutions for the velocity profile, pressure rise, pressure gradient, volume flow rate and stream function are obtained. Effects of pertinent physical parameters on the computational results are presented graphically.
Mitigation of Traffic-Induced Ground Vibration by Inclined Wave Barriers
DEFF Research Database (Denmark)
Andersen, Lars; Augustesen, Anders Hust
2009-01-01
Double sheet pile walls can be used as wave barriers in order to mitigate ground vibrations from railways. The present analysis concerns the efficiency of such barriers, especially with regard to the influence of the barrier inclination and the backfill between the walls. Thus, the screening...
The Effect of Multi-inclined Holes on the Creep Properties of Nickel-Based Superalloy
Li, Dongfan; Wen, Zhixun; Wang, Shaofei; Liu, Chenyu; Yue, Zhufeng
2017-07-01
The creep properties of GH3536 nickel-based superalloy plate specimens without/with multi-inclined holes were studied under applied stress 80/90/100 MPa at 850 °, respectively. Interesting finding is focused on the inflection point, that is, both the fraction elongation and creep strain achieve the maximum value under 90 MPa. Further study is carried out by two methods: the finite element analysis (FEA) calculation and scanning electron microscope (SEM). The FEA results show that the dangerous areas appear in the regions near the end of ellipse axis along the inclined angle orientation, which is similar to the actual fracture appearances. What is more, the tiny holes and dimples are the main characters of creep fracture for multi-inclined hole specimens, whereas the creep fracture of specimens without holes is the result of growth and coalescence of voids. In addition, based on creep performance, laser drilling is better than that of the electric spark drilling, which provides a proof that the creep performance of specimens with multi-inclined holes will be better with the improvement of the drilling process.
Paknahad, Maryam; Shahidi, Shoaleh; Akhlaghian, Marzieh; Abolvardi, Masoud
2016-06-01
Finding a significant relationship between temporomandibular joint (TMJ) morphology and the incidence of temporomandibular dysfunction (TMD) may help early prediction and prevention of these problems. The purpose of the present study was to determine the morphology of mandibular fossa and the articular eminence inclination in patients with TMD and in control group using cone beam computed tomography (CBCT). The CBCT data of bilateral TMJs of 40 patients with TMD and 23 symptom-free cases were evaluated. The articular eminence inclination, as well as the glenoid fossa depth and width of the mandibular fossa were measured. The paired t-test was used to compare these values between two groups. The articular eminence inclination and glenoid fossa width and depth were significantly higher in patients with TMD than in the control group (p < 0.05). The articular eminence inclination was steeper in patients with TMD than in the control group. Glenoid fossa width and depth were higher in patients with TMD than that in the control group. This information may shed light on the relationship between TMJ morphology and the incidence of TMD.
Hairpin packet structure of a turbulent boundary layer in inclined wall-normal/spanwise planes
Lee, Jae Hwa; Sung, Hyung Jin
2009-11-01
Turbulent coherent structures associated with hairpin packet motions have been scrutinized using the instantaneous flow fields obtained from the direct numerical simulation (DNS) of a turbulent boundary layer (TBL). The Reynolds number based on the momentum thickness was varied in the range Reθ=890˜2560. This study focused on the hairpin packet motions in inclined wall-normal/spanwise planes. The hairpin vortex signature associated with the hairpin leg components in the vertical inclined plane consists of a counter-rotating vortex pair, upward and downward motions and a stagnation point induced by the Q2 and Q4 events. These hairpin signatures were observed in the instantaneous flow field, in the two-point correlations and in the conditionally averaged flow fields, respectively. We considered three inclined planes (45^o, 90^o, and 135^o) to investigate the spatial characteristics of the hairpin packet motions in the log and wake regions. The statistical flow fields showed that significantly different flow patterns are induced by the intersections of the three inclined planes with the hairpin packet motions.
Nugroho, Widyanto Dwi; Nakaba, Satoshi; Yamagishi, Yusuke; Begum, Shahanara; Marsoem, Sri Nugroho; Ko, Jae-Heung; Jin, Hyun-O; Funada, Ryo
2013-11-01
Gibberellin stimulates negative gravitropism and the formation of tension wood in tilted Acacia mangium seedlings, while inhibitors of gibberellin synthesis strongly inhibit the return to vertical growth and suppress the formation of tension wood. To characterize the role of gibberellin in tension wood formation and gravitropism, this study investigated the role of gibberellin in the development of gelatinous fibres and in the changes in anatomical characteristics of woody elements in Acacia mangium seedlings exposed to a gravitational stimulus. Gibberellin, paclobutrazol and uniconazole-P were applied to the soil in which seedlings were growing, using distilled water as the control. Three days after the start of treatment, seedlings were inclined at 45 ° to the vertical and samples were harvested 2 months later. The effects of the treatments on wood fibres, vessel elements and ray parenchyma cells were analysed in tension wood in the upper part of inclined stems and in the opposite wood on the lower side of inclined stems. Application of paclobutrazol or uniconazole-P inhibited the increase in the thickness of gelatinous layers and prevented the elongation of gelatinous fibres in the tension wood of inclined stems. By contrast, gibberellin stimulated the elongation of these fibres. Application of gibberellin and inhibitors of gibberellin biosynthesis had only minor effects on the anatomical characteristics of vessel and ray parenchyma cells. The results suggest that gibberellin is important for the development of gelatinous fibres in the tension wood of A. mangium seedlings and therefore in gravitropism.
A Study of Static Performance of Fixed Inclined Slider Bearings – A ...
African Journals Online (AJOL)
Michael Horsfall
and friction. He compared numerical solutions for the bearing performance metrics with analytical solution using a range of bearing aspect ratios and power law indices. In this paper, we present the effect of power law fluids on the static performance characteristics of inclined slider bearings. Based on the power law model ...
Experimental studies on circular and AR4 elliptic vortex-ring impingement upon inclined surfaces
Shi, Shengxian; New, Tze How; Chen, Jian
2014-11-01
PLIF flow visualisation and TR-PIV measurements were performed on the impingement of circular and AR4 elliptic vortex-rings upon flat surface with different inclination angles at Re = 4000. This is aimed to investigate the effects of nozzle geometry, surface inclination angle and exit-surface separation distance on the vortex-ring impingement behaviour. Separation distance between nozzle exit and flat surface were adjusted for the elliptic vortex-ring so as to examine the flow structures for impingement prior, at and posterior the axis-switching point. Current results on circular vortex-ring show that at low inclination angle, vortex-ring underwent severe stretching during the impingement and vortex-ring core closer to the flat surface was observed to induce secondary vortex-ring and pair with it before its pinch-off. Meanwhile, vortex-ring core further away from the flat surface produced secondary and tertiary vortex-rings before transit into turbulence. At high inclination angles, vortex-ring core closer to the flat surface was quickly entrained by the primary vortex-ring after the impingement. Experiments on elliptic vortex-ring are undergoing at the moment, more findings will be presented in the conference.
Effects of turbulence and flow inclination on the performance of cup anemometers in the field
DEFF Research Database (Denmark)
Papadopoulos, K.H.; Stefantos, N.C.; Schmidt Paulsen, U.
2001-01-01
Four commercial and one research cup anemometers were comparatively tested in a complex terrain site to quantify the effects of turbulence and flow inclination on the wind speed measurements. The difference of the mean wind speed reading between the anemometers was as much as 2% for wind directio...
Economic Investigation of Different Configurations of Inclined Solar Water Desalination Systems
Directory of Open Access Journals (Sweden)
O. Phillips Agboola
2014-02-01
Full Text Available This study empirically investigated the performance of four configurations of inclined solar water desalination (ISWD system for parameters such as daily production, efficiency, system cost, and distilled water production cost. The empirical findings show that in terms of daily productivity improved inclined solar water desalination (IISWD performed best with 6.41 kg/m2/day while improved inclined solar water desalination with wire mesh (IISWDWM produced the least with 3.0 kg/m2/day. In terms of cost price of the systems, the control system inclined solar water desalination (ISWD is the cheapest while IISWDWM is the most expensive system. Distilled water cost price ranges from 0.059 TL/kg, for IISWDW, to 0.134 TL/kg, for IISWDWM system. All the systems are economically and technically feasible as a solar desalination system for potable water in northern Cyprus. Potable water from vendors/hawkers ranges from 0.2 to 0.3 TL/kg.
Experimental investigation of coarse particles-water mixture flow in horizontal and inclined pipes
Czech Academy of Sciences Publication Activity Database
Vlasák, Pavel; Chára, Zdeněk; Krupička, Jan; Konfršt, Jiří
2014-01-01
Roč. 62, č. 3 (2014), s. 241-247 ISSN 0042-790X R&D Projects: GA ČR GAP105/10/1574 Institutional support: RVO:67985874 Keywords : hydraulic pipelining * coarse-grained slurry * pressure drops * pipe inclination * concentration distribution Subject RIV: BK - Fluid Dynamics Impact factor: 1.486, year: 2014
Articular Eminence Inclination, Height, and Condyle Morphology on Cone Beam Computed Tomography
Directory of Open Access Journals (Sweden)
Dilhan İlgüy
2014-01-01
Full Text Available Aim. The aim of the present study was to examine the relationship between articular eminence inclination, height, and thickness of the roof of the glenoid fossa (RGF according to age and gender and to assess condyle morphology including incidental findings of osseous characteristics associated with osteoarthritis (OA of the temporomandibular joint (TMJ using cone beam computed tomography (CBCT. Materials and Methods. CBCT images of 105 patients were evaluated retrospectively. For articular eminence inclination and height, axial views on which the condylar processes were seen with their widest mediolateral extent being used as a reference view for secondary reconstruction. Condyle morphology was categorized both in the sagittal and coronal plane. Results. The mean values of eminence inclination and height of males were higher than those of females (P<0.05. There were significant differences in the RGF thickness in relation to sagittal condyle morphology. Among the group of OA, the mean value of the RGF thickness for “OA-osteophyte” group was the highest (1.59 mm, whereas the lowest RGF values were seen in the “OA-flattening.” Conclusion. The sagittal osteoarthritic changes may have an effect on RGF thickness by mechanical stimulation and changed stress distribution. Gender has a significant effect on eminence height (Eh and inclination.
Freitas, Elisangela P.; Rahal, Sheila C.; Teixeira, Carlos R.; Silva, Jorge V.L.; Noritomi, Pedro Y.; Villela, Carlos H.S.; Yamashita, Seizo
2010-01-01
An approximately 9-month-old fox (Pseudalopex vetulus) was presented with malocclusion and deviation of the lower jaw to the right side. Orthodontic treatment was performed using the inclined plane technique. Virtual 3D models and prototypes of the head were based on computed tomography (CT) image data to assist in diagnosis and treatment. PMID:20514249
Xie, Nina; Wang, Penglai; Wu, Cui; Song, Wenting; Wang, Wen; Liu, Zongxiang
2017-12-01
We explored the impact of cusp inclinations on dental fractures in cracked tooth syndrome model and formulated corresponding risk scale. Forty maxillary premolars were randomized into four groups for cusp inclination measurements by digital radiovisiography (RVG). For cracked tooth models, buccal and palatal cusp inclinations were achieved by grinding in groups I (59°-50°), II (64°-55°) and III (69°-60°), with group IV as blank control. All groups underwent compression loading test, with fracture levels recorded for statistical analysis. The fracture modes included a majority of crown root fractures and a minority of crown fractures in groups I and II, exclusive crown root fractures in group III, and exclusive crown fractures in group IV. Overall, palatal fractures were predominant versus buccal fractures, with exclusive palatal fractures in group IV, and oblique fractures were overwhelming versus the scanty vertical fractures. Fracture risk classification: grade III was prevalent in groups I and II, grade IV in group III, and grades I and II in group IV only. The fracture risk scores in groups III and IV had significant statistical differences versus groups I and II (P0.05). Cracked teeth are more vulnerable to complex fractures, with increment of cusp inclinations contributable to complex fracture modes, involving deep roots and high risk scores.
Zeng, Fanxue; Huang, Jianke; Meng, Chen; Zhu, Fachao; Chen, Jianpei; Li, Yuanguang
2016-01-01
The open raceway ponds are nowadays the most used large-scale reactors for microalgae culture. To avoid the stacking of microalgae, the paddle wheels are the most widely used to circulate and mix the culture medium. In this paper, a numerical simulation using computational fluid dynamics (CFD) was used to investigate the hydrodynamic characteristics of open raceway ponds with different types of paddle wheels (the traditional paddle wheels and the novel paddle wheels with specially inclined angle of the blades). The particle image velocimetry (PIV) was used to validate the reliability of the CFD model. The CFD simulation results showed that the novel raceway pond with 15° inclined angle of the blades had the best mixing efficiency under the same power consumption. Lastly, the results of microalgae culture experiments showed that the growth rates of Chlorella pyrenoidosa in the novel raceway pond with 15° inclined angle of the blades were higher than those in the traditional reactor. The results of the culture experiments and CFD simulations were identical with each other. Therefore, a novel paddle wheel with 15° inclined angle of the blades was obtained for better microalgae cultivation.
Factorization of Transport Coefficients in Macroporous Media
DEFF Research Database (Denmark)
Shapiro, Alexander; Stenby, Erling Halfdan
2000-01-01
We prove the fundamental theorem about factorization of the phenomenological coefficients for transport in macroporous media. By factorization we mean the representation of the transport coefficients as products of geometric parameters of the porous medium and the parameters characteristic...
Energy Technology Data Exchange (ETDEWEB)
Kim, Hyungdae [Nuclear Engineering Department, Kyung Hee University, Yongin (Korea, Republic of); Kwon, Tae-Soon [Korea Atomic Energy Research Institute, Daedeok-daero 989-111, Yuseong-gu, Daejeon 305-353 (Korea, Republic of); Kim, Dong Eok, E-mail: dekim@knu.ac.kr [Department of Precision Mechanical Engineering, Kyungpook National University, Sangju (Korea, Republic of)
2016-11-15
Highlights: • Air-cooled condensation experiments in an inclined Pyrex glass tube were performed. • High-resolution wall temperature data and flow regime formations could be obtained. • The local heat flux was strongly dependent on the air-side heat transfer. • A CFD analysis was conducted for calculating the local heat flux distribution. - Abstract: This study presents the results of an investigation of the air-cooled water condensation heat transfer characteristics inside a slightly inclined circular tube made of transparent Pyrex glass. The high-resolution wall temperature data and stratified film formations could be obtained with the assistance of an infrared (IR) thermometry technique and side-view visualization using a CCD camera. In all experimental cases, the condensation flow patterns were in the fully-stratified flow region. In addition, the experimentally measured void fraction corresponded well with the logarithmic mean void fraction model. The local temperature differences in the cooling air flow across the condenser tube and high-resolution temperature profiles on the tube’s outer wall were obtained in the experimental measurements. Under the experimental conditions of this study, the local heat flux distributions in the longitudinal direction of the test tube were strongly dependent on the cooling air velocity. And, with the help of IR thermometry, the tube outer wall temperature data at 45 local points could be measured. From the data, the asymmetry distribution of the local wall temperatures and the accurate location of the transition from two-phase mixture to single phase liquid inside the tube could be obtained. Also, the analysis of the thermal resistances by condensation, wall conduction and air convection showed that the air convective heat transfer behavior can play a dominant role to the local heat transfer characteristics. Finally, in order to obtain the local heat flux distribution along the tube’s outer wall, a two
Symmetry chains and adaptation coefficients
International Nuclear Information System (INIS)
Fritzer, H.P.; Gruber, B.
1985-01-01
Given a symmetry chain of physical significance it becomes necessary to obtain states which transform properly with respect to the symmetries of the chain. In this article we describe a method which permits us to calculate symmetry-adapted quantum states with relative ease. The coefficients for the symmetry-adapted linear combinations are obtained, in numerical form, in terms of the original states of the system and can thus be represented in the form of numerical tables. In addition, one also obtains automatically the matrix elements for the operators of the symmetry groups which are involved, and thus for any physical operator which can be expressed either as an element of the algebra or of the enveloping algebra. The method is well suited for computers once the physically relevant symmetry chain, or chains, have been defined. While the method to be described is generally applicable to any physical system for which semisimple Lie algebras play a role we choose here a familiar example in order to illustrate the method and to illuminate its simplicity. We choose the nuclear shell model for the case of two nucleons with orbital angular momentum l = 1. While the states of the entire shell transform like the smallest spin representation of SO(25) we restrict our attention to its subgroup SU(6) x SU(2)/sub T/. We determine the symmetry chains which lead to total angular momentum SU(2)/sub J/ and obtain the symmetry-adapted states for these chains
Directory of Open Access Journals (Sweden)
Ahmed Majeed Ali
2016-08-01
Full Text Available In real conditions of structures, foundations like retaining walls, industrial machines and platforms in offshore areas are commonly subjected to eccentrically inclined loads. This type of loading significantly affects the overall stability of shallow foundations due to exposing the foundation into two components of loads (horizontal and vertical and consequently reduces the bearing capacity Based on a numerical analysis performed using finite element software (Plaxis 3D Foundation, the behavior of model strip foundation rested on dry sand under the effect of eccentric inclined loads with different embedment ratios (D/B ranging from (0-1 has been explored. The results display that, the bearing capacity of strip foundation is noticeably decreased with the increase of inclination angle (α and eccentricity ratio (e/B. As well as, a reduction factor (RF expression was appointed to measure the degree of decreasing in the bearing capacity when the model footing is subjected to eccentric inclined load. It was observed that, the (RF decreases as the embedment ratio increases. Moreover, the test results also exhibit that, the model footing bearing capacity is reduced by about (69% when the load inclination is varied from (0° to 20° and the model footing is on the surface. While, the rate of decreasing in the bearing capacity was found to be (58%, for both cases of footing when they are at embedment ratios of (0.5 and 1.0. Also, a comparative study was carried out between the present results and previous experimental test results under the same conditions (soil properties and boundary condition. A good agreement was obtained between the predicted bearing capacities for the two related studies.
Influence of thread shape and inclination on the biomechanical behaviour of plateau implant systems.
Calì, Michele; Zanetti, Elisabetta Maria; Oliveri, Salvatore Massimo; Asero, Riccardo; Ciaramella, Stefano; Martorelli, Massimo; Bignardi, Cristina
2018-03-01
To assess the influence of implant thread shape and inclination on the mechanical behaviour of bone-implant systems. The study assesses which factors influence the initial and full osseointegration stages. Point clouds of the original implant were created using a non-contact reverse engineering technique. A 3D tessellated surface was created using Geomagic Studio ® software. From cross-section curves, generated by intersecting the tessellated model and cutting-planes, a 3D parametric CAD model was created using SolidWorks ® 2017. By the permutation of three thread shapes (rectangular, 30° trapezoidal, 45° trapezoidal) and three thread inclinations (0°, 3° or 6°), nine geometric configurations were obtained. Two different osseointegration stages were analysed: the initial osseointegration and a full osseointegration. In total, 18 different FE models were analysed and two load conditions were applied to each model. The mechanical behaviour of the models was analysed by Finite Element (FE) Analysis using ANSYS ® v. 17.0. Static linear analyses were also carried out. ANOVA was used to assess the influence of each factor. Models with a rectangular thread and 6° inclination provided the best results and reduced displacement in the initial osseointegration stages up to 4.58%. This configuration also reduced equivalent VM stress peaks up to 54%. The same effect was confirmed for the full osseointegration stage, where 6° inclination reduced stress peaks by up to 62%. The FE analysis confirmed the beneficial effect of thread inclination, reducing the displacement in immediate post-operative conditions and equivalent VM stress peaks. Thread shape does not significantly influence the mechanical behaviour of bone-implant systems but contributes to reducing stress peaks in the trabecular bone in both the initial and full osseointegration stages. Copyright © 2018 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Effects of inclined star-disk encounter on protoplanetary disk size
Bhandare, Asmita; Breslau, Andreas; Pfalzner, Susanne
2016-10-01
Most, if not all, young stars are initially surrounded by protoplanetary disks. Owing to the preferential formation of stars in stellar clusters, the protoplanetary disks around these stars may potentially be affected by the cluster environment. Various works have investigated the influence of stellar fly-bys on disks, although many of them consider only the effects due to parabolic, coplanar encounters often for equal-mass stars, which is only a very special case. We perform numerical simulations to study the fate of protoplanetary disks after the impact of parabolic star-disk encounter for the less investigated case of inclined up to coplanar, retrograde encounters, which is a much more common case. Here, we concentrate on the disk size after such encounters because this limits the size of the potentially forming planetary systems. In addition, with the possibilities that ALMA offers, now a direct comparison to observations is possible. Covering a wide range of periastron distances and mass ratios between the mass of the perturber and central star, we find that despite the prograde, coplanar encounters having the strongest effect on the disk size, inclined and even the least destructive retrograde encounters mostly also have a considerable effect, especially for close periastron passages. Interestingly, we find a nearly linear dependence of the disk size on the orbital inclination for the prograde encounters, but not for the retrograde case. We also determine the final orbital parameters of the particles in the disk such as eccentricities, inclinations, and semi-major axes. Using this information the presented study can be used to describe the fate of disks and also that of planetary systems after inclined encounters.
Compact Planetary Systems Perturbed by an Inclined Companion. II. Stellar Spin-Orbit Evolution
Boué, Gwenaël; Fabrycky, Daniel C.
2014-07-01
The stellar spin orientation relative to the orbital planes of multiplanet systems is becoming accessible to observations. Here, we analyze and classify different types of spin-orbit evolution in compact multiplanet systems perturbed by an inclined outer companion. Our study is based on classical secular theory, using a vectorial approach developed in a separate paper. When planet-planet perturbations are truncated at the second order in eccentricity and mutual inclination, and the planet-companion perturbations are developed at the quadrupole order, the problem becomes integrable. The motion is composed of a uniform precession of the whole system around the total angular momentum, and in the rotating frame, the evolution is periodic. Here, we focus on the relative motion associated with the oscillations of the inclination between the planet system and the outer orbit and of the obliquities of the star with respect to the two orbital planes. The solution is obtained using a powerful geometric method. With this technique, we identify four different regimes characterized by the nutation amplitude of the stellar spin axis relative to the orbital plane of the planets. In particular, the obliquity of the star reaches its maximum when the system is in the Cassini regime where planets have more angular momentum than the star and where the precession rate of the star is similar to that of the planets induced by the companion. In that case, spin-orbit oscillations exceed twice the inclination between the planets and the companion. Even if the mutual inclination is only ~= 20°, this resonant case can cause the spin-orbit angle to oscillate between perfectly aligned and retrograde values.
International Nuclear Information System (INIS)
Chakraborty, Tanmoy; Das, Kalidas; Kundu, Prabir Kumar
2017-01-01
The heat absorber uses in solar power plants have generally low energy adaptation owing to large emissive losses at high temperature. Recently, nanofluid based solar energy absorber have acknowledged immense scientific curiosity to competent share and store the thermal energy. Here we examine theoretically the natural convective flow of an Ag nanoparticle based nanofluid flow along an inclined flat sheet embedded in a Darcy-Forchheimer permeable medium coexistence of solar radiation. By use of similarity transformations, the fundamental partial differential system and boundary conditions are tackled numerically using Runge-Kutta Gill based shooting procedure. The impacts of governing parameters upon the flow, temperature, Nusselt number and skin friction coefficient are represented tabular as well as in graphical form.
Hayat, Tasawar; Asad, Sadia; Mustafa, Meraj; Alsaedi, Ahmed
2014-01-01
This study investigates the unsteady flow of Powell-Eyring fluid past an inclined stretching sheet. Unsteadiness in the flow is due to the time-dependence of the stretching velocity and wall temperature. Mathematical analysis is performed in the presence of thermal radiation and non-uniform heat source/sink. The relevant boundary layer equations are reduced into self-similar forms by suitable transformations. The analytic solutions are constructed in a series form by homotopy analysis method (HAM). The convergence interval of the auxiliary parameter is obtained. Graphical results displaying the influence of interesting parameters are given. Numerical values of skin friction coefficient and local Nusselt number are computed and analyzed.
Directory of Open Access Journals (Sweden)
Tasawar Hayat
Full Text Available This study investigates the unsteady flow of Powell-Eyring fluid past an inclined stretching sheet. Unsteadiness in the flow is due to the time-dependence of the stretching velocity and wall temperature. Mathematical analysis is performed in the presence of thermal radiation and non-uniform heat source/sink. The relevant boundary layer equations are reduced into self-similar forms by suitable transformations. The analytic solutions are constructed in a series form by homotopy analysis method (HAM. The convergence interval of the auxiliary parameter is obtained. Graphical results displaying the influence of interesting parameters are given. Numerical values of skin friction coefficient and local Nusselt number are computed and analyzed.
Energy Technology Data Exchange (ETDEWEB)
Chakraborty, Tanmoy [Techno India College of Technology, Kolkata (India); Das, Kalidas [A.B.N.Seal College, Cooch Behar (India); Kundu, Prabir Kumar [Jadavpur University, Kolkata (India)
2017-05-15
The heat absorber uses in solar power plants have generally low energy adaptation owing to large emissive losses at high temperature. Recently, nanofluid based solar energy absorber have acknowledged immense scientific curiosity to competent share and store the thermal energy. Here we examine theoretically the natural convective flow of an Ag nanoparticle based nanofluid flow along an inclined flat sheet embedded in a Darcy-Forchheimer permeable medium coexistence of solar radiation. By use of similarity transformations, the fundamental partial differential system and boundary conditions are tackled numerically using Runge-Kutta Gill based shooting procedure. The impacts of governing parameters upon the flow, temperature, Nusselt number and skin friction coefficient are represented tabular as well as in graphical form.
Standards for Standardized Logistic Regression Coefficients
Menard, Scott
2011-01-01
Standardized coefficients in logistic regression analysis have the same utility as standardized coefficients in linear regression analysis. Although there has been no consensus on the best way to construct standardized logistic regression coefficients, there is now sufficient evidence to suggest a single best approach to the construction of a…
Anomalous Seebeck coefficient in boron carbides
International Nuclear Information System (INIS)
Aselage, T.L.; Emin, D.; Wood, C.; Mackinnon, I.D.R.; Howard, I.A.
1987-01-01
Boron carbides exhibit an anomalously large Seebeck coefficient with a temperature coefficient that is characteristic of polaronic hopping between inequivalent sites. The inequivalence in the sites is associated with disorder in the solid. The temperature dependence of the Seebeck coefficient for materials prepared by different techniques provides insight into the nature of the disorder
Coefficient rings of formal group laws
International Nuclear Information System (INIS)
Buchstaber, V M; Ustinov, A V
2015-01-01
We describe the coefficient rings of universal formal group laws which arise in algebraic geometry, algebraic topology and their application to mathematical physics. We also describe the homomorphisms of these coefficient rings coming from reductions of one formal group law to another. The proofs are based on the number-theoretic properties of binomial coefficients. Bibliography: 37 titles
Soccer Ball Lift Coefficients via Trajectory Analysis
Goff, John Eric; Carre, Matt J.
2010-01-01
We performed experiments in which a soccer ball was launched from a machine while two high-speed cameras recorded portions of the trajectory. Using the trajectory data and published drag coefficients, we extracted lift coefficients for a soccer ball. We determined lift coefficients for a wide range of spin parameters, including several spin…
Diffusion coefficient in photon diffusion theory
Graaff, R; Ten Bosch, JJ
2000-01-01
The choice of the diffusion coefficient to be used in photon diffusion theory has been a subject of discussion in recent publications on tissue optics. We compared several diffusion coefficients with the apparent diffusion coefficient from the more fundamental transport theory, D-app. Application to
Kapucu, Serkan
2017-01-01
This study investigates how the acceleration and speed of a light-emitting object on an inclined plane may be determined using a smartphone's light sensor. A light-emitting object was released from the top of an inclined plane and its illuminance values were detected by a smartphone's light sensor during its subsequent motion down the plane. Using…
Energy Technology Data Exchange (ETDEWEB)
Cho, Jin Min; Kim, Min Soo [School of Mechanical and Aerospace Engineering, Seoul National University, Seoul 151-744 (Korea); Kim, Yong Jin [School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332 (United States)
2010-08-15
Heat transfer characteristics show different tendency according to the tube orientations such as horizontal, vertical, and inclined positions. In this study, evaporative heat transfer characteristics and pressure drop of CO{sub 2} and CO{sub 2}/propane mixtures flowing upward are investigated in inclined smooth and micro-fin tubes. Smooth and micro-fin tubes with outer diameter of 5 mm and length of 1.44 m with inclination angle of 45 were chosen as test tubes. Average inner diameters of test tubes are 4.0 mm (smooth tube) and 4.13 mm (micro-fin tube). The tests were conducted at mass fluxes from 212 to 656 kg/m{sup 2} s, saturation temperatures from -10 to 30 C and heat fluxes from 15 to 60 kW/m{sup 2} for CO{sub 2}. In addition, for CO{sub 2}/propane mixtures, the test was carried out at inlet temperatures from -10 to 30 C for several compositions (75/25, 50/50, 25/75 wt%) with the same mass fluxes, heat fluxes applied for CO{sub 2}. Heat transfer coefficients in inclined tube are approximately 1.8-3 times higher than those in horizontal tube and the average pressure drop of inclined tube exists between that of horizontal and vertical tubes. (author)
Energy coefficients for a propeller series
DEFF Research Database (Denmark)
Olsen, Anders Smærup
2004-01-01
The efficiency for a propeller is calculated by energy coefficients. These coefficients are related to four types of losses, i.e. the axial, the rotational, the frictional, and the finite blade number loss, and one gain, i.e. the axial gain. The energy coefficients are derived by use...... of the potential theory with the propeller modelled as an actuator disk. The efficiency based on the energy coefficients is calculated for a propeller series. The results show a good agreement between the efficiency based on the energy coefficients and the efficiency obtained by a vortex-lattice method....
Index-free heat kernel coefficients
van de Ven, Anton E. M.
1998-08-01
Using index-free notation, we present the diagonal values 0264-9381/15/8/014/img1 of the first five heat kernel coefficients 0264-9381/15/8/014/img2 associated with a general Laplace-type operator on a compact Riemannian space without boundary. The fifth coefficient 0264-9381/15/8/014/img3 appears here for the first time. For the special case of a flat space, but with a gauge connection, the sixth coefficient is given too. Also provided are the leading terms for any coefficient, both in ascending and descending powers of the Yang-Mills and Riemann curvatures, to the same order as required for the fourth coefficient. These results are obtained by directly solving the relevant recursion relations, working in the Fock-Schwinger gauge and Riemann normal coordinates. Our procedure is thus non-covariant, but we show that for any coefficient the `gauged', respectively `curved', version is found from the corresponding `non-gauged', respectively `flat', coefficient by making some simple covariant substitutions. These substitutions being understood, the coefficients retain their `flat' form and size. In this sense the fifth and sixth coefficient have only 26 and 75 terms, respectively, allowing us to write them down. Using index-free notation also clarifies the general structure of the heat kernel coefficients. In particular, in flat space we find that from the fifth coefficient onward, certain scalars are absent. This may be relevant for the anomalies of quantum field theories in ten or more dimensions.
Testing correction for paleomagnetic inclination error in sedimentary rocks: a comparative approach
Tauxe, L.; Kodama, K. P.; Kent, D. V.
2008-05-01
Paleomagnetic inclinations in sedimentary formations are frequently suspected of being too shallow. Recognition and correction of shallow bias is therefore critical for paleogeographical reconstructions. The elongation/inclination (E/I) correction method of Tauxe and Kent (2004) relies on the twin assumptions that inclination flattening follows the empirical sedimentary flattening formula and that the distribution of paleomagnetic directions can be predicted from a paleosecular variation (PSV) model. We will test the reliability of the E/I correction method in several ways. First we consider the E/I trends predicted by various PSV models. The Giant Gaussian Process-type paleosecular variation models were all constrained by paleomagnetic data from lava flows of the last five million years. Therefore, to test whether the method can be used in more ancient times, we will compare model predictions of E/I trends with observations from four Large Igneous Provinces since the Jurassic (Yemen, Kerguelen, Faroe Islands, and Deccan basalts). All data are consistent at the 95% level of confidence with the elongation/inclination trends predicted by the paleosecular variation models. Then we will then discuss the geological implications of various applications of the E/I method. In general the E/I corrected data are more consistent with data from contemporaneous lavas, with predictions from the well constrained synthetic apparent polar wander paths, and other geological constraints. Finally, we will compare the E/I corrections with corrections from an entirely different method of inclination correction: the anisotropy of remanence method of Jackson et al. (1991) which relies on measurement of remanence and particle anisotropies of the sediments. In the two cases where a direct comparison can be made, the two methods give corrections that are consistent within error. In summary, it appears that the elongation/inclination method for recognizing and corrected the effects of
DEFF Research Database (Denmark)
Jeong, Cheol-Ho; Chang, Ji-ho
2015-01-01
Absorption coefficients measured in reverberation chambers, Sabine absorption coefficients, suffer from two major problems. Firstly, they sometimes exceed unity. Secondly, the reproducibility of the Sabine absorption coefficients is quite poor, meaning that the Sabine absorption coefficients vary...... resistivity optimization outperforms the surface impedance optimization in terms of the reproducibility....
Newman, Mark A.
2002-01-01
Describes the new Ford Building at Detroit's College for Creative Studies. The building's design is intended to "inspire future artisans" with its open setting incorporating flexible space and natural light. Includes photographs and information on suppliers. (EV)
Oblique Wave-Induced Responses of A VLFS Edged with A Pair of Inclined Perforated Plates
Cheng, Yong; Ji, Chun-yan; Zhai, Gang-jun; Oleg, Gaidai
2018-03-01
This paper is concerned with the hydroelastic responses of a mat-like, rectangular very large floating structure (VLFS) edged with a pair of horizontal/inclined perforated anti-motion plates in the context of the direct coupling method. The updated Lagrangian formulae are applied to establish the equilibrium equations of the VLFS and the total potential formula is employed for fluids in the numerical model including the viscous effect of the perforated plates through the Darcy's law. The hybrid finite element-boundary element (FE-BE) method is implemented to determine the response reduction of VLFS with attached perforated plates under various oblique incident waves. Also, the numerical solutions are validated against a series of experimental tests. The effectiveness of the attached perforated plates in reducing the deflections of the VLFS can be significantly improved by selecting the proper design parameters such as the porous parameter, submergence depth, plate width and inclination angle for the given sea conditions.
Gas-liquid flow splitting in T-junction with inclined lateral arm
Yang, Le-le; Liu, Shuo; Li, Hua; Zhang, Jian; Wu, Ying-xiang; Xu, Jing-yu
2018-02-01
This paper studies the gas-liquid flow splitting in T-junction with inclined lateral arm. The separation mechanism of the T-junction is related to the pressure distribution in the T-junction. It is shown that the separation efficiency strongly depends on the inclination angle, when the angle ranges from 0° to 30°, while not so strongly for angles in the range from 30° to 90° Increasing the number of connecting tubes is helpful for the gas-liquid separation, and under the present test conditions, with four connecting tubes, a good separation performance can be achieved. Accordingly, a multi-tube Y-junction separator with four connecting tubes is designed for the experimental investigation. A good agreement between the simulated and measured data shows that there is an optimal split ratio to achieve the best performance for the multi-tube Y-junction separator.
Role of edge inclination in an optical microdisk resonator for label-free sensing.
Gandolfi, Davide; Ramiro-Manzano, Fernando; Rebollo, Francisco Javier Aparicio; Ghulinyan, Mher; Pucker, Georg; Pavesi, Lorenzo
2015-02-26
In this paper, we report on the measurement and modeling of enhanced optical refractometric sensors based on whispering gallery modes. The devices under test are optical microresonators made of silicon nitride on silicon oxide, which differ in their sidewall inclination angle. In our approach, these microresonators are vertically coupled to a buried waveguide with the aim of creating integrated and cost-effective devices. Device modeling shows that the optimization of the device is a delicate balance of the resonance quality factor and evanescent field overlap with the surrounding environment to analyze. By numerical simulations, we show that the microdisk thickness is critical to yield a high figure of merit for the sensor and that edge inclination should be kept as high as possible. We also show that bulk-sensing figures of merit as high as 1600 RIU(-1) (refractive index unit) are feasible.
Reconstruction of inclined air showers detected with the Pierre Auger Observatory
Energy Technology Data Exchange (ETDEWEB)
collaboration, The Pierre Augur
2014-08-01
We describe the method devised to reconstruct inclined cosmic-ray air showers with zenith angles greater than 60° detected with the surface array of the Pierre Auger Observatory. The measured signals at the ground level are fitted to muon density distributions predicted with atmospheric cascade models to obtain the relative shower size as an overall normalization parameter. The method is evaluated using simulated showers to test its performance. The energy of the cosmic rays is calibrated using a sub-sample of events reconstructed with both the fluorescence and surface array techniques. The reconstruction method described here provides the basis of complementary analyses including an independent measurement of the energy spectrum of ultra-high energy cosmic rays using very inclined events collected by the Pierre Auger Observatory.
Impact of inclined magnetic field on micropolar Casson fluid using Keller box algorithm
Iqbal, Z.; Mehmood, R.; Azhar, Ehtsham; Mehmood, Zaffar
2017-04-01
The present study examines the influence of an inclined magnetic field on a micropolar Casson fluid flow over a stretching sheet. Viscous dissipation effects are also taken into consideration. The governing physical problem is presented using the traditional Navier-Stokes theory. By means of the scaling group of transformation, a consequential system of equations is transformed into a set of nonlinear ordinary differential equations which are then solved using the implicit finite-difference approximation (Keller box method). The working fluid is examined for several sundry parameters graphically and in tabular form. It is observed that with an increase in inclination angle, the velocity profile decreases while temperature enhances. The Eckert number enhances flow velocity and temperature, whereas it decreases shear stress at the wall and heat transfer rate. The rheological fluid parameter contributes to the decline of velocity and temperature for weak as well as strong concentrations of micro elements.
Spectrum of 100-kyr glacial cycle: Orbital inclination, not eccentricity
Muller, Richard A.; MacDonald, Gordon J.
1997-01-01
Spectral analysis of climate data shows a strong narrow peak with period ≈100 kyr, attributed by the Milankovitch theory to changes in the eccentricity of the earth’s orbit. The narrowness of the peak does suggest an astronomical origin; however the shape of the peak is incompatible with both linear and nonlinear models that attribute the cycle to eccentricity or (equivalently) to the envelope of the precession. In contrast, the orbital inclination parameter gives a good match to both the spectrum and bispectrum of the climate data. Extraterrestrial accretion from meteoroids or interplanetary dust is proposed as a mechanism that could link inclination to climate, and experimental tests are described that could prove or disprove this hypothesis. PMID:11607741
The Bearing Capacity of Strip Footings in Cohesionless Soil Subject to Eccentric and Inclined Loads
DEFF Research Database (Denmark)
Krabbenhøft, Sven; Damkilde, Lars; Krabbenhøft, Kristian
2014-01-01
the Mohr-Coulomb failure criterion. The results are reported as graphs showing the bearing capacity as a function of the friction angle, the eccentricity, inclination and the surcharge. The results have been compared with the Eurocode 7 and for smaller eccentricities, except in the case of no surcharge......Lower bound calculations based on the finite element method is used to determine the bearing capacity of a strip foundation subjected to an inclined, eccentric load on cohesionless soil with varying surcharges and with friction angles 25, 30 and 35°. The soil is assumed perfectly plastic following...... and especially for small friction angles and great surcharges the Eurocode values are considerably greater than the LB values....
Computation of coupled surface radiation and natural convection in an inclined form cavity
International Nuclear Information System (INIS)
Amraqui, Samir; Mezrhab, Ahmed; Abid, Cherifa
2011-01-01
The present paper is concerned with computation of the radiation-natural convection interactions in an inclined form cavity. The cavity contains two symmetrically identical isothermal blocks and is vented by two opening located in a vertical median axis at the top and the bottom parts of the cavity. Calculations are made by using a finite volume method and an efficient numerical procedure is introduced for calculating the view factors, with shadow effects included. Effects of Rayleigh number Ra and inclination angle φ are investigated for Pr = 0.71 in presence and in absence of the radiation exchange. Results are reported in terms of isotherms, streamlines, local and average Nusselt numbers and mass flow rate. In light of the obtained results, we can conclude that the heat transfer decreases with increasing φ. In addition, the increase of Ra and the taking into account of the radiation exchange produce a considerable increase in the heat transfer.
A comparative numerical study on natural convection in inclined wavy and flat-plate solar collectors
Energy Technology Data Exchange (ETDEWEB)
Varol, Yasin [Department of Mechanical Education, Firat University, 23119 Elazig (Turkey); Oztop, Hakan F. [Department of Mechanical Engineering, Firat University, 23119 Elazig (Turkey)
2008-09-15
The present study deals with the numerical analysis of natural convection heat transfer inside the inclined solar collectors. Two collectors are compared. In the first case, the collector has wavy absorber and in the second case, it has flat absorber. The solution was performed assuming the isothermal boundary conditions of absorbers and covers of collectors. CFDRC commercial software is used to simulate the laminar flow and thermal field. Governing parameters are taken as Rayleigh number (from 1 x 10{sup 6} to 5 x 10{sup 7}), inclination angle (from 20 to 60 ), wave length (from 1.33 to 4) and aspect ratio (from 0 to 4). Results are presented by streamlines, isotherms and local and mean Nusselt numbers. It is observed that flow and thermal fields are affected by the shape of enclosure and heat transfer rate increases in the case of wavy enclosure than that of flat enclosure. (author)
MHD boundary layer flow and heat transfer in an inclined porous square cavity filled with nanofluids
Directory of Open Access Journals (Sweden)
Chandra Shekar Balla
2017-06-01
Full Text Available The present paper deals with the magnetohydrodynamic boundary layer flow of a free convection heat transfer in an inclined square cavity filled with nanofluid-saturated porous medium. The effects of different nanoparticles Cu, Al2O3, TiO2 and SiO2 are considered. The top and bottom horizontal walls of cavity are considered adiabatic, while the vertical walls are kept at constant temperatures. The governing partial differential equations are solved by finite element method of Galerkin weighted residual scheme. Numerical results are obtained for different values of the Rayleigh number, angle of inclination, magnetic field and nanofluid volume fraction. The overall investigation of variation of streamlines, isotherms and Nusselt numbers is presented graphically. To examine the accuracy, the present results are compared with the available results.
MHD natural convection in an inclined square porous cavity with a heat conducting solid block
Sivaraj, C.; Sheremet, M. A.
2017-03-01
This paper deals with natural convection in an inclined porous cavity with a heat conducting solid body placed at its center under the influence of the applied magnetic field of different orientations. The left and right vertical walls of the cavity are maintained at different temperatures Th and Tc, respectively, while the horizontal walls are adiabatic. The governing coupled partial differential equations were solved using a finite volume method on a uniformly staggered grid system. The effects of the inclination angles of the magnetic field and cavity and the Hartmann number on the flow and thermal fields are investigated in detail. Numerical results are presented in terms of isotherms, streamlines and average Nusselt numbers. In general, the results indicate that the inclusion of the magnetic field reduces the convective heat transfer rate in the cavity. It is also found that an increase in the angle of the applied magnetic field produces a non-linear variation in the average Nusselt numbers.
Simulation on Natural Convection of a Nanofluid along an Isothermal Inclined Plate
Mitra, Asish
2017-08-01
A numerical algorithm is presented for studying laminar natural convection flow of a nanofluid along an isothermal inclined plate. By means of similarity transformation, the original nonlinear partial differential equations of flow are transformed to a set of nonlinear ordinary differential equations. Subsequently they are reduced to a first order system and integrated using Newton Raphson and adaptive Runge-Kutta methods. The computer codes are developed for this numerical analysis in Matlab environment. Dimensionless velocity, temperature profiles and nanoparticle concentration for various angles of inclination are illustrated graphically. The effects of Prandtl number, Brownian motion parameter and thermophoresis parameter on Nusselt number are also discussed. The results of the present simulation are then compared with previous one available in literature with good agreement.
Microscopic calculation of the sticking force for nanodrops on an inclined surface
Berim, Gersh O.; Ruckenstein, Eli
2008-09-01
A two-dimensional nanodrop on a vertical rough solid surface is examined using a nonlocal density functional theory in the presence of gravity. The roughness is modeled either as a chemical inhomogeneity of the solid or as a result of the decoration with pillars of a smooth homogeneous surface. From the obtained fluid density distribution, the sticking force, which opposes the drop motion along an inclined surface, and the contact angles on the lower and upper leading edges of the drop are calculated. On the basis of these results, it is shown that the macroscopically derived equation for a drop in equilibrium on an inclined surface is also applicable to nanodrops. The liquid-vapor surface tension involved in this equation was calculated for various specific cases, and the values obtained are of the same order of magnitude as those obtained in macroscopic experiments.
Reconstruction of inclined shower coordinates in electromagnetic calorimeters based on lead glass
International Nuclear Information System (INIS)
Vasil'ev, A.N.; Mochalov, V.V.; Solov'ev, L.F.
2007-01-01
A method for reconstructing the coordinates of inclined showers in lead glass electromagnetic calorimeters is described. Such showers are generated by photons with energies of 0.5-4.0 GeV that are incident on the detector at angles of as great as 30 deg. An analytical expression for the description of the actual photon coordinate in the calorimeter versus the coordinates of the shower center of gravity is proposed. Using this expression, it is possible to reconstruct the coordinates of inclined electromagnetic showers over wide ranges of angles and energies. The dependences of the spatial resolution on the photon energy and angle are determined. The longitudinal fluctuations of the shower length and their effect on the spatial resolution of the calorimeter are discussed [ru
Inclinations to Conformity as a Potential Social Limit of Giftedness Development
Directory of Open Access Journals (Sweden)
Ilona Kočvarová
2017-04-01
Full Text Available The article deals with the problem of gifted pupils´ conformity, which may form a social barrier to their development during school teaching. The aim of the research is to analyse the inclination to conformity of gifted pupils during the application of differentiated enriching curriculum. The research sample consists of 86 diagnosed gifted pupils from the level of education ISCED2. The research instrument is semantically differentially based on the principle of the tool ATER. The study results suggest non-conformal inclinations of gifted pupils, which are subjectively declared in relation to the five statements describing work on a task during the application of differentiated enriching curriculum in school lessons.
Robotic complex for the development of thick steeply-inclined coal seams and ore deposits
Nikitenko, M. S.; Malakhov, Yu V.; Neogi, Biswarup; Chakraborty, Pritam; Banerjee, Dipesu
2017-09-01
Proposal for the formulation of robotic complexes for steeply inclined coal seams as a basis of the supportive-enclosing walking module and power support with a controlled outlet for mining industry has been represented in this literature. In mining industry, the available resource base reserves and mineral deposits are concentrated deep down the earth crust leading towards a complicated geological condition i.e. abrupt ore bedding and steeply inclined strata with the high gas content and fire hazard of thick coal stratum, heading against an unfavorable and sometimes human labor life risk during subversive mining. Prevailing towards the development of effective robotic complexes based on the means of “unmanned technologies” for extraction of minerals from hard-to-reach deposits and make sure the safety of underground staff during sublevel mining technology.
Flow Over Backward Facing Step with Inclined Wall Solved by Finite Volume and Finite Element Method
Louda, Petr; Sváček, Petr; Kozel, Karel; Příhoda, Jaromír
2010-09-01
The work deals with numerical solution of 2D incompressible flow over backward facing step. The inclination angles of the upper wall of the channel were chosen as in measurements by Driver and Seegmiller [1]. Two numerical methods are considered. One is finite volume method, the other one is finite element method. Turbulence is modeled using two-equation turbulence models of k-ω type. The influence of outlet boundary condition is discussed and do-nothing-like condition found suitable also for finite volume method. The comparison of both methods is presented for laminar as well as turbulent cases, including experimental results. The differences of the results are studied using one turbulence model and both numerical methods or one method and more turbulence models. It is found that sensitivity of the computation to these circumstances increases for higher inclination angles (diffuser flow).
Studies from Cassini's high-inclination orbits: ion cyclotron wave belt
Leisner, J. S.; Russell, C. T.; Dougherty, M. K.; Persoon, A. M.; Blanco-Cano, X.; Strangeway, R. J.; Cowee, M. M.
2007-08-01
Surrounding Saturn is a cloud of neutral water-group molecules. When these particles are ionized and accelerated by Saturn's corotating magnetized plasma, they generate ion cyclotron waves. When the inclination of the Cassini spacecraft's orbits rose to about fifty-five degrees in late 2006, new insights into the behavior of these ion cyclotron waves were obtained as the spacecraft passed through the equatorial plane, revealing latitudinal structure of the wave belt. Centered at the magnetic equator the wave amplitude grows with height in either direction, reaching a maximum at +/- 0.2 Rs and then decreasing until they disappear by +/- 0.3 Rs. Doppler shifts caused by the motion of the spacecraft reveal that these waves propagate primarily away from the equatorial plane. Using these high-inclination orbits, we study the wave growth and damping regions and their propagation characteristics. These properties give insight into the structure and ionization of Saturn's water cloud.
Sagittal crystal focusing of undulator radiation with high heat load inclined crystals
International Nuclear Information System (INIS)
Ice, G.E.; Sparks, C.J.
1992-01-01
Sagittal focusing of undulator radiation is shown to be compatible with the proposed inclined double-crystal monochromator geometry for heat load reduction. The focusing aberrations are found to be negligible for typical undulator-beam divergences over a range of magnifications from 1:2 to 6:1 and energies from 3 to 40 keV. The inclined geometry reduces the required signal sagittal curvature of the focusing crystal compared to focusing with conventional symmetric crystals; hence, focusing is possible at higher X-ray energies and with less anticlastic bending. In addition, anticlastic stiffening ribs project a smaller footprint to the beam so that the achievable focal spot size is potentially better than with conventional symmetrically cut crystals. 16 refs
Discharge Coefficient Measurements for Flow Through Compound-Angle Conical Holes with Cross-Flow
Directory of Open Access Journals (Sweden)
M. E. Taslim
2004-01-01
Full Text Available Diffusion-shaped film holes with compound angles are currently being investigated for high temperature gas turbine airfoil film cooling. An accurate prediction of the coolant blowing rate through these film holes is essential in determining the film effectiveness. Therefore, the discharge coefficients associated with these film holes for a range of hole pressure ratios is essential in designing airfoil cooling circuits. Most of the available discharge coefficient data in open literature has been for cylindrical holes. The main objective of this experimental investigation was to measure the discharge coefficients for subsonic as well as supersonic pressure ratios through a single conical-diffusion hole. The conical hole has an exit-to-inlet area ratio of 4, a nominal flow length-to-inlet diameter ratio of 4, and an angle with respect to the exit plane (inclination angle of 0°, 30°, 45°, and 60°. Measurements were performed with and without a cross-flow. For the cases with a cross-flow, discharge coefficients were measured for each of the hole geometries and 5 angles between the projected conical hole axis and the cross-flow direction of 0°, 45°, 90°, 135°, and 180°. Results are compared with available data in open literature for cylindrical film holes as well as limited data for conical film holes.
Xia, Yongfang; Shi, Junrui; Xu, Youning; Ma, Rui
2018-03-01
Filtration combustion (FC) is one style of porous media combustion with inert matrix, in which the combustion wave front propagates, only downstream or reciprocally. In this paper, we investigate the FC flame front inclinational instability of lean methane/air mixtures flowing through a packed bed as a combustion wave front perturbation of the initial preheating temperature non-uniformity is assumed. The predicted results show that the growth rate of the flame front inclinational angle is proportional to the magnitude of the initial preheating temperature difference. Additionally, depending on gas inlet gas velocity and equivalence ratio, it is demonstrated that increase of gas inlet gas velocity accelerates the FC wave front deformation, and the inclinational instability evolves faster at lower equivalence ratio. The development of the flame front inclinational angle may be regarded as a two-staged evolution, which includes rapid increase, and approaching maximum value of inclinational angle due to the quasi-steady condition of the combustion system. The hydrodynamic and thermal mechanisms of the FC inclinational instability are analyzed. Consequently, the local propagation velocity of the FC wave front is non-uniform to result in the development of inclinational angle at the first stage of rapid increase.
International Nuclear Information System (INIS)
Makinde, O.D.
2005-10-01
In this paper, the first and second law of thermodynamics are employed in order to study the inherent irreversibility for a gravity driven non-Newtonian Ostwald-de Waele power law liquid film along an inclined isothermal plate. Based on some simplified assumptions, the governing equations are obtained and solved analytically. Expressions for fluid velocity, temperature, volumetric entropy generation numbers, irreversibility distribution ratio and the Bejan number are also determined. (author)
Role of Edge Inclination in an Optical Microdisk Resonator for Label-Free Sensing
Gandolfi, Davide; Ramiro-Manzano, Fernando; Rebollo, Francisco Javier Aparicio; Ghulinyan, Mher; Pucker, Georg; Pavesi, Lorenzo
2015-01-01
In this paper, we report on the measurement and modeling of enhanced optical refractometric sensors based on whispering gallery modes. The devices under test are optical microresonators made of silicon nitride on silicon oxide, which differ in their sidewall inclination angle. In our approach, these microresonators are vertically coupled to a buried waveguide with the aim of creating integrated and cost-effective devices. Device modeling shows that the optimization of the devic...
Ho, I-Ju; Hou, Yi-You; Yang, Chich-Haung; Wu, Wen-Lan; Chen, Sheng-Kai; Guo, Lan-Yuen
2010-01-01
The aim of this study was to examine the effect of changes in speed and incline slope on plantar pressure distribution of the foot during treadmill jogging. Plantar pressure parameters were measured with the Pedar-X system in twenty healthy girls (mean age of 20.7 years, mean height of 1.60m, and a mean weight of 53.35kg). Because variations in walking speed or slope can significantly change the magnitude of plantar pressure, comparisons of plantar pressure distribution between the two independent protocols during treadmill jogging were considered in this study. First, the subjects ran at the same speed of 2 m·s(-1) with different incline slopes of 0%, 5%, 10%, and 15%. Second, they ran on the same slope of 0% with different speeds of 1.5 m·s(-1), 2.0 m·s(-1), and 2.5 m·s(-1). The peak pressure of the eight plantar surface areas, apart from the medial forefoot and the hallux, significantly increased (p jogging were associated with changes in plantar pressures. By systematic investigation of foot kinematics and plantar pressure during jogging with varying incline slope and speed, the results of this study provided further insight into foot biomechanics during jogging. Key pointsThe study aimed to compare the plantar pressure distribution of the foot between different incline and speed during treadmill jogging by using plantar insole measurement system.With the increase of speed, apart from the hallux and medical forefoot, the peak pressure of all regions was raised significantly.As the slope increased, there was reduced peak pressure of the heel, medial forefoot, and hallux and toes.
Influence of Initial Inclined Surface Crack on Estimated Residual Fatigue Lifetime of Railway Axle
Czech Academy of Sciences Publication Activity Database
Náhlík, Luboš; Pokorný, Pavel; Ševčík, Martin; Hutař, Pavel
2016-01-01
Roč. 7, č. 4 (2016), č. článku 1640007. ISSN 1756-9737. [FDM 2016 - International Conference on Fracture and Damage Mechanics /15./. Alicante, 14.09.2016-16.09.2016] R&D Projects: GA MŠk LM2015069; GA MŠk(CZ) ED1.1.00/02.0068 Institutional support: RVO:68081723 Keywords : inclined crack * railway axle * residual fatigue lifetime * fatigue crack propagation Subject RIV: JL - Materials Fatigue, Friction Mechanics
MHD boundary layer flow and heat transfer in an inclined porous square cavity filled with nanofluids
Chandra Shekar Balla; Naikoti Kishan; Rama S.R. Gorla; B.J. Gireesha
2017-01-01
The present paper deals with the magnetohydrodynamic boundary layer flow of a free convection heat transfer in an inclined square cavity filled with nanofluid-saturated porous medium. The effects of different nanoparticles Cu, Al2O3, TiO2 and SiO2 are considered. The top and bottom horizontal walls of cavity are considered adiabatic, while the vertical walls are kept at constant temperatures. The governing partial differential equations are solved by finite element method of Galerkin weighted...
Minimum energy shapes of one-side-pinned static drops on inclined surfaces.
Thampi, Sumesh P; Govindarajan, Rama
2011-10-01
The shape that a liquid drop will assume when resting statically on a solid surface inclined to the horizontal is studied here in two dimensions. Earlier experimental and numerical studies yield multiple solutions primarily because of inherent differences in surface characteristics. On a solid surface capable of sustaining any amount of hysteresis, we obtain the global, and hence unique, minimum energy shape as a function of equilibrium contact angle, drop volume, and plate inclination. It is shown, in the energy minimization procedure, how the potential energy of this system is dependent on the basis chosen to measure it from, and two realistic bases, front-pinned and back-pinned, are chosen for consideration. This is at variance with previous numerical investigations where both ends of the contact line are pinned. It is found that the free end always assumes Young's equilibrium angle. Using this, simple equations that describe the angles and the maximum volume are then derived. The range of parameters where static drops are possible is presented. We introduce a detailed force balance for this problem and study the role of the wall in supporting the drop. We show that a portion of the wall reaction can oppose gravity while the other portion aids it. This determines the maximum drop volume that can be supported at a given plate inclination. This maximum volume is the least for a vertical wall, and is higher for all other wall inclinations. This study can be extended to three-dimensional drops in a straightforward manner and, even without this, lends itself to experimental verification of several of its predictions.
Inclined periodic homoclinic breather and rogue waves for the (1+1 ...
Indian Academy of Sciences (India)
[8], financial markets [9] and other related fields. The first-order .... where p1, p, α, β, b1 and b2 are real constants to be determined. Computing D2 .... β t. ) +γ = 0 with period 2π/p. So this solution is called the inclined periodic homoclinic breather solution. Using eq. (10) and taking b2 = 1, γ = ln(. √ b2) = 0 in u2. So, solution ...
Probing Disk Stratification by Combining X-ray and Disk Inclination Data for Taurus-Auriga
Arraki, Kenza S.; Daly, B.; Harding, M.; McCleary, J.; Cox, A. W.; Grady, C. A.; Woodgate, B. E.; Hamaguchi, K.; Wisniewski, J. P.; Brakken-Thal, S.; Hilton, G.; Bonfield, D.; Williger, G. M.
2010-01-01
Photoelectric neutral Hydrogen absorption, N(H), is a probe of the gas and dust column towards the star. Kastner et al. (2005) found a correlation between N(H) and proplyd aspect ratio in the Orion nebula cluster. We extend this study to Taurus-Auriga by combining publicly available N(H) data from the XMM-Newton Extended Survey of the Taurus molecular cloud (XEST), with published disk inclination data obtained from HST coronagraphic imagery and mm interferometry. Additional inclinations were derived from jet proper motion and radial velocity data obtained from archival HST imagery and the Apache Point Observatory 3.5m telescope's Goddard Fabry-Perot and DIS long-slit spectrograph. Both N(H) and extinction have linear relations with system inclination, where the extinction has a smaller slope than the N(H) trend. Correlations with system inclination demonstrate that the bulk of both N(H) and extinction arise in the disk rather than in remnant envelopes, nearby molecular cloud material, or foreground material. The deficit in extinction compared with predictions for ISM-like gas to dust ratios is consistent with grain growth and settling toward the disk midplane and stratification in disks occurring by 2 Myr. However, the disks remain gas-rich, indicating that giant planet formation is still feasible. We gratefully acknowledge the support of the NASA Motivating Undergraduates in Science and Technology (MUST) Project and of NASA's APRA program under WBS#399131.02.06.02.32. A grant of Director's Discretionary Time funded observing time at the Apache Point Observatory.
The Racing-Game Effect: Why Do Video Racing Games Increase Risk-Taking Inclinations?
Fischer, Peter; Greitemeyer, Tobias; Morton, Thomas; Kastenmüller, Andreas; Postmes, Tom; Frey, Dieter; Kubitzki, Jörg; Odenwälder, Jörg
2009-01-01
The present studies investigated why video racing games increase players’ risk-taking inclinations. Four studies reveal that playing video racing games increases risk taking in a subsequent simulated road traffic situation, as well as risk-promoting cognitions and emotions, blood pressure,sensation seeking, and attitudes toward reckless driving. Study 1 ruled out the role of experimental demand in creating such effects. Studies 2 and 3 showed that the effect of playing video racing games on r...
Flow behaviour and local concentration of coarse particles-water mixture in inclined pipes
Czech Academy of Sciences Publication Activity Database
Vlasák, Pavel; Chára, Zdeněk; Konfršt, Jiří
2017-01-01
Roč. 65, č. 2 (2017), s. 183-191 ISSN 0042-790X R&D Projects: GA ČR GAP105/10/1574 Institutional support: RVO:67985874 Keywords : coarse particle mixture * concentration distribution * effect of pipe inclination * gamma-ray radiometry * Hydraulic conveying * mixture flow behaviour Subject RIV: BK - Fluid Dynamics OBOR OECD: Fluids and plasma physics (including surface physics) Impact factor: 1.654, year: 2016
Variation of the mean and median inclinations in the numbered minor planet sample
Energy Technology Data Exchange (ETDEWEB)
Knezevic, Z. (Astronomical Observatory, Belgrade, Yugoslavia)
1982-01-01
Variations of the mean and median minor planet inclinations with the increase of the numbered minor planet sample size are investigated. An analysis is presented of the role of real features of the minor planet system and of the selectional effects connected with discoveries and inclusion in the list of numbered objects. Available data are discussed and prediction of the future behaviour of variations attempted.
Apparatus for measurement of coefficient of friction
Slifka, A. J.; Siegwarth, J. D.; Sparks, L. L.; Chaudhuri, Dilip K.
1990-01-01
An apparatus designed to measure the coefficient of friction in certain controlled atmospheres is described. The coefficient of friction observed during high-load tests was nearly constant, with an average value of 0.56. This value is in general agreement with that found in the literature and also with the initial friction coefficient value of 0.67 measured during self-mated friction of 440C steel in an oxygen environment.
Extended obstruction tensors and renormalized volume coefficients
Graham, C. Robin
2009-01-01
The behavior under conformal change of the renormalized volume coefficients associated to a pseudo-Riemannian metric is investigated. It is shown that they define second order fully nonlinear operators in the conformal factor whose algebraic structure is elucidated via the introduction of "extended obstruction tensors". These together with the Schouten tensor constitute building blocks for the coefficients in the ambient metric expansion. The renormalized volume coefficients have recently bee...
Effect of the inclination of support in cervical and upper limb development
Directory of Open Access Journals (Sweden)
Ailime Perito Feiber Heck
Full Text Available Introduction It is expected that a child will acquire control of posture (CP of the head and upper limbs in a gradual, sequential and organized way. However, there is still no consensus regarding the best position to achieve this; the evidence suggests that it is prone. Objective To investigate whether age and inclination of the supporting surface in the prone position influence the alignment of the head and upper limbs of children with typical motor development (TMD and atypical motor development (AMD. Methods The study included 29 children aged between one and three months divided according to the Alberta Infant Motor Scale (AIMS into groups with TMD (n = 18 and AMD (n = 11. The children were placed in the prone position with three angles of the support surface (0°, 25° and 45°. Kinematic analysis was conducted to evaluate the alignment angles of the head and upper limbs. Results Children with TMD had higher head alignment. There was no difference in the upper limbs’ alignment between the group with TMD and the group with AMD. In the third month of age compared with the first, increased head alignment and decreased upper limb alignment were found in both groups. The inclination of the supporting surface did not influence the alignment of the head and upper limbs. Conclusions Among the positions evaluated, the prone position without inclination of the supporting surface was more appropriate for weight discharge in the upper limbs, favoring the development of postural control of the child.
Heat removal capability of core-catcher with inclined cooling channels
International Nuclear Information System (INIS)
Suzuki, Y.; Tahara, M.; Kurita, T.; Hamazaki, R.; Morooka, S.
2009-01-01
A core-catcher is one of the mitigation systems that provide functions of molten corium cooling and stabilization during a severe accident. Toshiba has been developing a compact core-catcher to be placed at the lower drywell floor in the containment vessel for the next generation BWR as well as near term ABWR. This paper presents the evaluation of heat removal capability of the core-catcher with inclined cooling channels, our verification status and plan. The heat removal capability of the core-catcher is analyzed by using the newly developed two-phase flow analysis code which incorporates drift flux parameters for inclined channels and the CHF correlation obtained from SULTAN tests. Effects of geometrical parameters such as the inclination and the gap size of the cooling channel on the heat removal capability are also evaluated. These results show that the core-catcher has sufficient capability to cool the molten corium during a severe accident. Based on the analysis, it has been shown that the core-catcher has an efficient capability of heat removal to cool the molten corium. (author)
Students’ understanding of forces: Force diagrams on horizontal and inclined plane
Sirait, J.; Hamdani; Mursyid, S.
2018-03-01
This study aims to analyse students’ difficulties in understanding force diagrams on horizontal surfaces and inclined planes. Physics education students (pre-service physics teachers) of Tanjungpura University, who had completed a Basic Physics course, took a Force concept test which has six questions covering three concepts: an object at rest, an object moving at constant speed, and an object moving at constant acceleration both on a horizontal surface and on an inclined plane. The test is in a multiple-choice format. It examines the ability of students to select appropriate force diagrams depending on the context. The results show that 44% of students have difficulties in solving the test (these students only could solve one or two items out of six items). About 50% of students faced difficulties finding the correct diagram of an object when it has constant speed and acceleration in both contexts. In general, students could only correctly identify 48% of the force diagrams on the test. The most difficult task for the students in terms was identifying the force diagram representing forces exerted on an object on in an inclined plane.
Linear and Nonlinear Gait Features in Older Adults Walking on Inclined Surfaces at Different Speeds.
Vieira, Marcus Fraga; Rodrigues, Fábio Barbosa; de Sá E Souza, Gustavo Souto; Magnani, Rina Márcia; Lehnen, Georgia Cristina; Andrade, Adriano O
2017-06-01
This study evaluated linear and nonlinear gait features in healthy older adults walking on inclined surfaces at different speeds. Thirty-seven active older adults (experimental group) and fifty young adults (control group) walked on a treadmill at 100% and ±20% of their preferred walking speed for 4 min under horizontal (0%), upward (UP) (+8%), and downward (DOWN) (-8%) conditions. Linear gait variability was assessed using the average standard deviation of trunk acceleration between strides (VAR). Gait stability was assessed using the margin of stability (MoS). Nonlinear gait features were assessed by using the maximum Lyapunov exponent, as a measure of local dynamic stability (LDS), and sample entropy (SEn), as a measure of regularity. VAR increased for all conditions, but the interaction effects between treadmill inclination and age, and speed and age were higher for young adults. DOWN conditions showed the lowest stability in the medial-lateral MoS, but not in LDS. LDS was smaller in UP conditions. However, there were no effects of age for either MoS or LDS. The values of SEn decreased almost linearly from the DOWN to the UP conditions, with significant interaction effects of age for anterior-posterior SEn. The overall results supported the hypothesis that inclined surfaces modulate nonlinear gait features and alter linear gait variability, particularly in UP conditions, but there were no significant effects of age for active older adults.
Yang, Tsung-Chieh; Maeda, Yoshinobu; Gonda, Tomoya; Kotecha, Sunny
2011-11-01
To evaluate the retentive force and lateral force of an implant with various types of attachments for overdentures in relation to implant inclination. An implant (3.75 × 13 mm) was embedded into an acrylic resin block, simulating the edentulous ridge. Four different attachment systems were used, including: (1) Locator black and blue, (2) a ball attachment, (3) a flat-type magnetic attachment and (4) a self-adjusting magnetic attachment, which has vertical and rotational movement. All of the attachments were under a constant dislodging force with an angle of the implant at 0°, 15°, 30° and 45°, and the experiments were repeated 10 times using a universal testing machine to measure the retentive force. The lateral force to the implant was measured by strain gauges attached on the implant surface. Statistical analysis was performed by multiple comparisons with Bonferroni's correction. Pattachments. The Locator blue and ball attachment maintained the retentive force until a 30° inclination; however, the lateral force increased significantly, especially with the ball attachment. The retentive force of the magnetic attachment was significantly lower at 0°, as well as the lateral force in the self-adjusting magnetic attachment. Within the limitations of this study, we conclude that the retentive force decreases with an increase in implant inclination, whereas the lateral force increases, except for in magnetic attachments. © 2011 John Wiley & Sons A/S.
Modelling and Simulation of Free Floating Pig for Different Pipeline Inclination Angles
Directory of Open Access Journals (Sweden)
Woldemichael Dereje Engida
2016-01-01
Full Text Available This paper presents a modelling and simulation of free floating pig to determine the flow parameters to avoid pig stalling in pigging operation. A free floating spherical shaped pig was design and equipped with necessary sensors to detect leak along the pipeline. The free floating pig does not have internal or external power supply to navigate through the pipeline. Instead, it is being driven by the flowing medium. In order to avoid stalling of the pig, it is essential to conduct simulation to determine the necessary flow parameters for different inclination angles. Accordingly, a pipeline section with inclination of 0°, 15°, 30°, 45°, 60°, 75°, and 90° were modelled and simulated using ANSYS FLUENT 15.0 with water and oil as working medium. For each case, the minimum velocity required to propel the free floating pig through the inclination were determined. In addition, the trajectory of the free floating pig has been visualized in the simulation.
Directory of Open Access Journals (Sweden)
Ahmed Kadhim Hussein
2016-06-01
Full Text Available Numerical computation of unsteady laminar three-dimensional natural convection and entropy generation in an inclined cubical trapezoidal air-filled cavity is performed for the first time in this work. The vertical right and left sidewalls of the cavity are maintained at constant cold temperatures. The lower wall is subjected to a constant hot temperature, while the upper one is considered insulated. Computations are performed for Rayleigh numbers varied as 103 ⩽ Ra ⩽ 105, while the trapezoidal cavity inclination angle is varied as 0° ⩽ Φ ⩽ 180°. Prandtl number is considered constant at Pr = 0.71. Second law of thermodynamics is applied to obtain thermodynamic losses inside the cavity due to both heat transfer and fluid friction irreversibilities. The variation of local and average Nusselt numbers is presented and discussed, while, streamlines, isotherms and entropy contours are presented in both two and three-dimensional pattern. The results show that when the Rayleigh number increases, the flow patterns are changed especially in three-dimensional results and the flow circulation increases. Also, the inclination angle effect on the total entropy generation becomes insignificant when the Rayleigh number is low. Moreover, when the Rayleigh number increases the average Nusselt number increases.
Index-free Heat Kernel Coefficients
van de Ven, Anton E. M.
1997-01-01
Using index-free notation, we present the diagonal values of the first five heat kernel coefficients associated with a general Laplace-type operator on a compact Riemannian space without boundary. The fifth coefficient appears here for the first time. For a flat space with a gauge connection, the sixth coefficient is given too. Also provided are the leading terms for any coefficient, both in ascending and descending powers of the Yang-Mills and Riemann curvatures, to the same order as require...
Comparing linear probability model coefficients across groups
DEFF Research Database (Denmark)
Holm, Anders; Ejrnæs, Mette; Karlson, Kristian Bernt
2015-01-01
This article offers a formal identification analysis of the problem in comparing coefficients from linear probability models between groups. We show that differences in coefficients from these models can result not only from genuine differences in effects, but also from differences in one or more...... of the following three components: outcome truncation, scale parameters and distributional shape of the predictor variable. These results point to limitations in using linear probability model coefficients for group comparisons. We also provide Monte Carlo simulations and real examples to illustrate...... these limitations, and we suggest a restricted approach to using linear probability model coefficients in group comparisons....
Zhang, Lisong; Li, Zhongquan; Wu, Xiaoyuan; Zhang, Ziyuan
2017-01-01
Previous studies have demonstrated the key role of emotion in moral judgment, and explored the relationship between emotion regulation and moral judgment. The present study investigated the influence of individual differences in emotion regulation difficulties on moral judgment. Study 1 examined whether individuals with high emotion regulation difficulties made a more deontological judgment. Study 2 explored the underlying mechanism using a process-dissociation approach, examining whether deontological inclinations and utilitarian inclinations separately or jointly accounted for the association. The results indicated that individuals with high emotion regulation difficulties rated the utilitarian actions less morally appropriate, and one's deontological inclinations mediated the association between emotion regulation difficulties and moral judgment.
International Nuclear Information System (INIS)
Akinsete, V.A.; Bello-Ochende, F.L.
1981-01-01
Steady-state numerical results for the solution to the non-linear thermal problem of combined free and forced laminar convection in inclined rectangular channels with constant but unequal surface temperature are presented for an incompressible, viscous fluid whose Prandtl number, Pr = 0.73. Fluid properties are assumed constant, except for density variations with temperature. Maximum values exist for the mean friction factor, Nusselt and Stanton numbers when the inclination to the horizontal lies between 30 0 and 60 0 for a given Archimedes number, Ar. Also, for any given inclination a unique solution exists when Ar = 0,50. (Author) [pt
International Nuclear Information System (INIS)
Barthes, M.; Reynard, Ch.; Santini, R.; Tadrist, L.
2006-01-01
The influence of the inclination of the nucleation surface on heat and mass transfers and on the growth dynamics of a single steam bubble is experimentally studied. The bubble is created beneath a wall with an imposed heating flux. The evolution of geometrical bubble parameters and of the frequency of emission with respect to the inclination angle are presented. The total heat flux measurements are compared to the evaporation fluxes determined by image processing. Contrary to the evaporation flux, the total flux is conditioned by the inclination and thus is correlated to the frequency of bubbles emission. (J.S.)
Kumara, W.A.S.; Halvorsen, Britt; Melaaen, Morten Christian
2009-01-01
Oil-water flows in horizontal and slightly inclined pipes are investigated using Particle Image Velocimetry (PIV). PIV offers a powerful non-invasive tool to study such flow fields. The experiments are conducted in a 15 m long, 56 mm diameter, inclinable steel pipe using Exxsol D60 oil (viscosity 1.64 mPa s, density 790 kg/m3) and water (viscosity 1.0 mPa s, density 996 kg/m3) as test fluids. The test pipe inclination is changed in the range from 5° upward to 5° downward. The experiments are ...
Kinematic control of aerodynamic forces on an inclined flapping wing with asymmetric strokes
International Nuclear Information System (INIS)
Park, Hyungmin; Choi, Haecheon
2012-01-01
In the present study, we conduct an experiment using a one-paired dynamically scaled model of an insect wing, to investigate how asymmetric strokes with different wing kinematic parameters are used to control the aerodynamics of a dragonfly-like inclined flapping wing in still fluid. The kinematic parameters considered are the angles of attack during the mid-downstroke (α md ) and mid-upstroke (α mu ), and the duration (Δτ) and time of initiation (τ p ) of the pitching rotation. The present dragonfly-like inclined flapping wing has the aerodynamic mechanism of unsteady force generation similar to those of other insect wings in a horizontal stroke plane, but the detailed effect of the wing kinematics on the force control is different due to the asymmetric use of the angle of attack during the up- and downstrokes. For example, high α md and low α mu produces larger vertical force with less aerodynamic power, and low α md and high α mu is recommended for horizontal force (thrust) production. The pitching rotation also affects the aerodynamics of a flapping wing, but its dynamic rotational effect is much weaker than the effect from the kinematic change in the angle of attack caused by the pitching rotation. Thus, the influences of the duration and timing of pitching rotation for the present inclined flapping wing are found to be very different from those for a horizontal flapping wing. That is, for the inclined flapping motion, the advanced and delayed rotations produce smaller vertical forces than the symmetric one and the effect of pitching duration is very small. On the other hand, for a specific range of pitching rotation timing, delayed rotation requires less aerodynamic power than the symmetric rotation. As for the horizontal force, delayed rotation with low α md and high α mu is recommended for long-duration flight owing to its high efficiency, and advanced rotation should be employed for hovering flight for nearly zero horizontal force. The present
Kinematic control of aerodynamic forces on an inclined flapping wing with asymmetric strokes.
Park, Hyungmin; Choi, Haecheon
2012-03-01
In the present study, we conduct an experiment using a one-paired dynamically scaled model of an insect wing, to investigate how asymmetric strokes with different wing kinematic parameters are used to control the aerodynamics of a dragonfly-like inclined flapping wing in still fluid. The kinematic parameters considered are the angles of attack during the mid-downstroke (α(md)) and mid-upstroke (α(mu)), and the duration (Δτ) and time of initiation (τ(p)) of the pitching rotation. The present dragonfly-like inclined flapping wing has the aerodynamic mechanism of unsteady force generation similar to those of other insect wings in a horizontal stroke plane, but the detailed effect of the wing kinematics on the force control is different due to the asymmetric use of the angle of attack during the up- and downstrokes. For example, high α(md) and low α(mu) produces larger vertical force with less aerodynamic power, and low α(md) and high α(mu) is recommended for horizontal force (thrust) production. The pitching rotation also affects the aerodynamics of a flapping wing, but its dynamic rotational effect is much weaker than the effect from the kinematic change in the angle of attack caused by the pitching rotation. Thus, the influences of the duration and timing of pitching rotation for the present inclined flapping wing are found to be very different from those for a horizontal flapping wing. That is, for the inclined flapping motion, the advanced and delayed rotations produce smaller vertical forces than the symmetric one and the effect of pitching duration is very small. On the other hand, for a specific range of pitching rotation timing, delayed rotation requires less aerodynamic power than the symmetric rotation. As for the horizontal force, delayed rotation with low α(md) and high α(mu) is recommended for long-duration flight owing to its high efficiency, and advanced rotation should be employed for hovering flight for nearly zero horizontal force. The
Probability based calibration of pressure coefficients
DEFF Research Database (Denmark)
Hansen, Svend Ole; Pedersen, Marie Louise; Sørensen, John Dalsgaard
2015-01-01
.3, the Eurocode partial factor of 1.5 for variable actions agrees well with the inherent uncertainties of wind actions when the pressure coefficients are determined using wind tunnel test results. The increased bias and uncertainty when pressure coefficients mainly are based on structural codes lead to a larger...
Problems with Discontinuous Diffusion/Dispersion Coefficients
Directory of Open Access Journals (Sweden)
Stefano Ferraris
2012-01-01
accurate on smooth solutions and based on a special numerical treatment of the diffusion/dispersion coefficients that makes its application possible also when such coefficients are discontinuous. Numerical experiments confirm the convergence of the numerical approximation and show a good behavior on a set of benchmark problems in two space dimensions.
Parabolic by Shilov systems with variable coefficients
Directory of Open Access Journals (Sweden)
V. A. Litovchenko
2017-12-01
Full Text Available Because of the parabolic instability of the Shilov systems to change their coefficients, the definition parabolicity of Shilov for systems with time-dependent $t$ coefficients, unlike the definition parabolicity of Petrovsky, is formulated by imposing conditions on the matricant of corresponding dual by Fourier system. For parabolic systems by Petrovsky with time-dependent coefficients, these conditions are the property of a matricant, which follows directly from the definition of parabolicity. In connection with this, the question of the wealth of the class Shilov systems with time-dependent coefficients is important.A new class of linear parabolic systems with partial derivatives to the first order by the time $t$ with time-dependent coefficients is considered in this work. It covers the class by Petrovsky systems with time-dependent younger coefficients. A main part of differential expression of each such system is parabolic (by Shilov expression with constant coefficients. The fundamental solution of the Cauchy problem for systems of this class is constructed by the Fourier transform method. Also proved their parabolicity by Shilov. Only the structure of the system and the conditions on the eigenvalues of the matrix symbol were used. First of all, this class characterizes the wealth by Shilov class of systems with time-dependents coefficients.Also it is given a general method for investigating a fundamental solution of the Cauchy problem for Shilov parabolic systems with positive genus, which is the development of the well-known method of Y.I. Zhitomirskii.
A gain-coefficient switched Alexandrite laser
International Nuclear Information System (INIS)
Lee, Chris J; Van der Slot, Peter J M; Boller, Klaus-J
2013-01-01
We report on a gain-coefficient switched Alexandrite laser. An electro-optic modulator is used to switch between high and low gain states by making use of the polarization dependent gain of Alexandrite. In gain-coefficient switched mode, the laser produces 85 ns pulses with a pulse energy of 240 mJ at a repetition rate of 5 Hz.
Prediction of friction coefficients for gases
Taylor, M. F.
1969-01-01
Empirical relations are used for correlating laminar and turbulent friction coefficients for gases, with large variations in the physical properties, flowing through smooth tubes. These relations have been used to correlate friction coefficients for hydrogen, helium, nitrogen, carbon dioxide and air.
Coefficient Alpha Bootstrap Confidence Interval under Nonnormality
Padilla, Miguel A.; Divers, Jasmin; Newton, Matthew
2012-01-01
Three different bootstrap methods for estimating confidence intervals (CIs) for coefficient alpha were investigated. In addition, the bootstrap methods were compared with the most promising coefficient alpha CI estimation methods reported in the literature. The CI methods were assessed through a Monte Carlo simulation utilizing conditions…
Heat transfer coefficient for boiling carbon dioxide
DEFF Research Database (Denmark)
Knudsen, Hans Jørgen Høgaard; Jensen, Per Henrik
1998-01-01
Heat transfer coefficient and pressure drop for boiling carbon dioxide (R744) flowing in a horizontal pipe has been measured. The calculated heat transfer coeeficient has been compared with the Chart correlation of Shah. The Chart Correlation predits too low heat transfer coefficient but the ratio...
Estimating Runoff Coefficients Using Weather Radars
DEFF Research Database (Denmark)
Ahm, Malte; Thorndahl, Søren Liedtke; Rasmussen, Michael R.
2012-01-01
This paper presents a method for estimating runoff coefficients of urban drainage catchments based on a combination of high resolution weather radar data and insewer flow measurements. By utilising the spatial variability of the precipitation it is possible to estimate the runoff coefficients...
Regularity of the interband light absorption coefficient
Indian Academy of Sciences (India)
In experimental studies the absorption coefficient is a means to study the band gaps at ... to l2( ), where. ⊂ Zd is a finite set. (usually taken to be a lattice cube centred at the origin) and λ±,uλ± are eigenvalues and eigenfunctions of H. ±. ,ω . Then the interband light absorption coefficient A for such finite volume models can.
Helioseismic Solar Cycle Changes and Splitting Coefficients
Indian Academy of Sciences (India)
tribpo
Abstract. Using the GONG data for a period over four years, we have studied the variation of frequencies and splitting coefficients with solar cycle. Frequencies and even-order coefficients are found to change signi- ficantly with rising phase of the solar cycle. We also find temporal varia- tions in the rotation rate near the solar ...
Determination of the surface drag coefficient
DEFF Research Database (Denmark)
Mahrt, L.; Vickers, D.; Sun, J.L.
2001-01-01
This study examines the dependence of the surface drag coefficient on stability, wind speed, mesoscale modulation of the turbulent flux and method of calculation of the drag coefficient. Data sets over grassland, sparse grass, heather and two forest sites are analyzed. For significantly unstable ...
Implications of NGA for NEHRP site coefficients
Borcherdt, Roger D.
2012-01-01
Three proposals are provided to update tables 11.4-1 and 11.4-2 of Minimum Design Loads for Buildings and Other Structures (7-10), by the American Society of Civil Engineers (2010) (ASCE/SEI 7-10), with site coefficients implied directly by NGA (Next Generation Attenuation) ground motion prediction equations (GMPEs). Proposals include a recommendation to use straight-line interpolation to infer site coefficients at intermediate values of ̅vs (average shear velocity). Site coefficients are recommended to ensure consistency with ASCE/SEI 7-10 MCER (Maximum Considered Earthquake) seismic-design maps and simplified site-specific design spectra procedures requiring site classes with associated tabulated site coefficients and a reference site class with unity site coefficients. Recommended site coefficients are confirmed by independent observations of average site amplification coefficients inferred with respect to an average ground condition consistent with that used for the MCER maps. The NGA coefficients recommended for consideration are implied directly by the NGA GMPEs and do not require introduction of additional models.
Gini coefficient as a life table function
Directory of Open Access Journals (Sweden)
2003-06-01
Full Text Available This paper presents a toolkit for measuring and analyzing inter-individual inequality in length of life by Gini coefficient. Gini coefficient and four other inequality measures are defined on the length-of-life distribution. Properties of these measures and their empirical testing on mortality data suggest a possibility for different judgements about the direction of changes in the degree of inequality by using different measures. A new computational procedure for the estimation of Gini coefficient from life tables is developed and tested on about four hundred real life tables. The estimates of Gini coefficient are precise enough even for abridged life tables with the final age group of 85+. New formulae have been developed for the decomposition of differences between Gini coefficients by age and cause of death. A new method for decomposition of age-components into effects of mortality and composition of population by group is developed. Temporal changes in the effects of elimination of causes of death on Gini coefficient are analyzed. Numerous empirical examples show: Lorenz curves for Sweden, Russia and Bangladesh in 1995, proportional changes in Gini coefficient and four other measures of inequality for the USA in 1950-1995 and for Russia in 1959-2000. Further shown are errors of estimates of Gini coefficient when computed from various types of mortality data of France, Japan, Sweden and the USA in 1900-95, decompositions of the USA-UK difference in life expectancies and Gini coefficients by age and cause of death in 1997. As well, effects of elimination of major causes of death in the UK in 1951-96 on Gini coefficient, age-specific effects of mortality and educational composition of the Russian population on changes in life expectancy and Gini coefficient between 1979 and 1989. Illustrated as well are variations in life expectancy and Gini coefficient across 32 countries in 1996-1999 and associated changes in life expectancy and Gini
Experimental approach for measuring cylindrical flexoelectric coefficients
Zhang, Shuwen; Liu, Kaiyuan; Wu, Tonghui; Xu, Minglong; Shen, Shengping
2017-10-01
Flexoelectricity is a property of dielectric materials by which applied strain gradients induce electric polarizations within dielectric materials. Experimental research into the tensor components of the flexoelectric coefficient is essential. In this work, an experimental approach for measurement of the flexoelectric coefficient tensor components in cylindrical coordinates is developed. Two different experimental methods are designed to obtain the two related unknown flexoelectric coefficient tensor components. Theoretical and finite element analyses are developed and simplified for each experiment, and the related designs are then tested to obtain the coupled electric polarization charges. The two unknown flexoelectric coefficient tensor components of polyvinylidene fluoride are then decoupled. This work provides an experimental method that can be used to obtain multiple unknown flexoelectric coefficient tensor components in solid dielectric materials.
Zhao, C.; Zhang, J.; Nie, X.
2017-05-01
Plasma nitriding as a surface modification was applied on two substrate materials: cast iron D6510 and cast steel S0050A. After measurement of the friction coefficients of the treated samples using a pin-on-disc tribotester, an inclined impact-sliding wear tester was utilized to investigate their tribological behaviour under tilting contact with extremely high contact pressure. While numerous surface fatigue cracks, severe chipping, and peeling of the compound layer were observed for the treated cast steel sample, the treated cast iron sample had far fewer surface fatigue cracks without chipping or peeling of the compound at the same test condition. The governing mechanisms of the treated cast iron sample’s superior resistance to surface fatigue failure were revealed by studying the cross-sectional hardness and nitrogen concentration profile. Energy-dispersive X-ray spectroscopy (EDS) analysis indicated that the treated cast iron sample had a smaller nitrogen concentration gradient, which led to a smaller hardness gradient as measured. The results suggest that a smaller hardness gradient between the compound layer and the diffusion zone and a thicker hardened case was able to improve the wear resistance and surface fatigue cracking resistance against high contact loads. Moreover, the smaller friction coefficient of the treated cast iron sample could also be beneficial for improving the wear resistance.
Jeong, Da-Eun; Lee, Su-Kyoung; Kim, Kyoung
2014-02-01
[Purpose] The purpose of this study was to compare the muscle activity of the gluteus medius according to treadmill inclination during gait with a vertical load on a treadmill. [Methods] Sixteen healthy subjects were recruited for this study. The subjects walked on a treadmill at inclination angles of 0, 5, and 10 degrees. [Results] Muscle activity of the gluteus medius increased at 5° compared to 0° treadmill inclination, though the difference was not significant. On the other hand, gluteus medius muscle activity significantly decreased in treadmill walking at an inclination of 10° compared to 5°. [Conclusion] Selective strengthening exercises using a 5° treadmill angle could be useful for patients experiencing gluteus medius weakness.
Energy Technology Data Exchange (ETDEWEB)
Celata, Gian Piero; Mariani, Andrea; Zummo, Giuseppe [ENEA, Institute of Thermal-Fluid Dynamics, S. Maria di Galeria (Rome) (Italy); Cumo, Maurizio [Universita di Roma ' ' La Sapienza' ' , Rome (Italy)
2006-08-15
The behaviour of one drop impinging on a hot surface by varying the surface temperature, the drop velocity and the position of the surface (horizontal and a inclined 45 ) both at a temperature below and above the Leidenfrost temperature has been experimentally evaluated, estimating the temperature at which the drop rebounds. A large influence on the drop velocity has been evidenced. The inclination of the surface decreases the critical value of the temperature above which the surface is not rewetted. (orig.)
Qian, Yunzhu; Zhou, Xuefeng; Yang, Jianxin
2013-06-01
This paper explored the correlation between cuspal inclination and tooth cracked syndrome by measuring and reconstructing the cuspal inclinations of cracked maxillary first molars through three-dimensional (3D) finite element analysis (FEA). The cuspal inclinations of 11 maxillary left first molars with cracked tooth syndrome and 22 intact controls were measured by 3D reconstruction. The mean values of each group were used to construct two 3D finite element models of maxillary first molar for comparing stress distribution under the loads of 200N at 0°, 45°, and 90°, respectively, to the tooth axis. There was statistically significant difference in the cuspal inclination between the incompletely fractured group and the intact control group ( P < 0.001), which was 5.5-6.7 degrees steeper. The model from the mean cuspal inclinations of the incompletely fractured molars showed the maximum tensile stress of 5.83, 10.87, and 25.32 MPa, respectively, in comparison with 5.40, 8.49, and 22.76 MPa for the model of the control group. Besides, the tensile stress was mainly at the center groove and cervical region of the molar model. Steeper cuspal inclinations resulted in an increment in tensile stress that was mainly at the center groove and cervical region of the molar model under equivalent loads. Higher unfavorable tensile stress was generated with the increasing horizontal component load on the cuspal incline. This indicates an effective reduction of cuspal inclination to the compromised teeth for dentists. © 2012 John Wiley & Sons A/S.
Directory of Open Access Journals (Sweden)
Andrea eMcCall
2014-07-01
Full Text Available The ~ 201 Ma paleopole for North America at the Triassic-Jurassic boundary is observed in two widely different locations; one paleopole is determined from the Mesozoic rift basins in eastern North America and the other from the Colorado Plateau in the southwestern United States. A large discrepancy in paleopole positions from these two localities has been attributed to large amounts of clockwise vertical axis rotation of the Colorado Plateau (>10º combined with inclination shallowing of the paleomagnetism. The sedimentary inclinations of the eastern North American basins have been corrected for shallowing, but the Colorado Plateau inclinations have not. Simple vertical axis rotation of the Colorado Plateau is not enough to bring the two paleopoles into agreement. This study of the Moenave and Wingate Formations was conducted to correct Colorado Plateau inclinations using their high field isothermal remanent anisotropy. The Moenave Formation and laterally equivalent Wingate Sandstone, which span the Triassic-Jurassic boundary, were sampled in southern Utah and northern Arizona. Thermal demagnetization isolated a characteristic remanence carried by hematite from 20 sites. High field (5 T isothermal remanent anisotropy indicated shallowing of the characteristic remanence with an average flattening factor of f=0.69. An inclination-corrected paleopole for the Moenave and Wingate Formations is located at 62.5˚N 69.9˚E (α95=5.5˚ and is shifted northward by 2.9˚ with respect to the uncorrected paleopole. When the inclination corrected paleopole is rotated counterclockwise 9.7º about an Euler pole local to the Colorado Plateau, it is statistically indistinguishable from the inclination-corrected paleopole from the eastern North American rift basins. Rotation of the uncorrected paleopole does not bring it into statistical agreement with rift basin paleopole, therefore an inclination shallowing correction is necessary to support rotation of the
Directory of Open Access Journals (Sweden)
Reza Hidayatullah
2014-09-01
Full Text Available Alat penukar kalor sangat berpengaruh dalam industri terhadap keberhasilan keseluruhan rangkaian proses, karena kegagalan operasi alat ini baik akibat kegagalan mekanikal maupun opersional dapat menyebabkan berhentinya operasi unit. Penelitian terhadap desain heat exchanger masih terus dilakukan untuk mencari kinerja dari heat exchanger yang paling optimal, baik pada bagian baffle cut dan baffles inclination maupun susunan dari tube dengan menggunakan heat exchanger ukuran kecil sebagai model. Berdasarkan pada permasalahan di atas, maka dilakukan penelitian terhadap kinerja heat exchanger tipe U-tube dengan memvariasikan baffle inclination. Penelitian ini dilakukan secara numerik dengan variasi baffle inclination sebesar 0o, 10o, 20o dan variasi laju aliran massa sebesar 0,5 kg/s, 1kg/s, dan 2 kg/s. Tube yang digunakan adalah tipe U-tube yang disusun secara persegi. Model viskous yang digunakan adalah turbulensi model yaitu k-ε standar, dimana fluida yang digunakan adalah air pada boundary condition. Hasil analisa numerik menunjukkan adanya pengaruh baffle inclination pada alat penukar kalor tipe U – tube terhadap aliran fluida dan perpindahan panas. Peningkatan laju aliran massa dapat meningkatkan pressure drop secara cepat, alat penukar kalor shell and tube tipe U – tube dengan baffle inclination 20o memiliki unjuk kerja yang terbaik dibandingkan dengan baffle inclination 0o dan 10o.
Energy Technology Data Exchange (ETDEWEB)
Tsutsumi, K.; Nishitani, M. [Dai Ichi University, College of Technology, Kagoshima (Japan)
1997-11-25
Experiment/study were conducted on the influence of angle of inclination on output of solar modules. In the experiment, changing the angle of inclination of the photovoltaic module installed on the top of school building to 0, 30, 60 and 90 degC, the global radiation on an inclined surface was measured by pyranometer equipped with the module, and at the same time output characteristics were measured by I-V curve tracer. In the I-V curve tracer, voltage, current, and output capability diagram are illustrated automatically changing bias voltage to get the maximum output. The global radiation on an inclined surface and the maximum output indicated an almost proportional relation and were expressed in a recursion method. Moreover, measurement of the global radiation is usually conducted using the amount of global radiation on a horizontal surface, and the global radiation on an inclined surface is calculated as a sum of the direct solar radiation amount and the sky solar radiation amount after determining a penetration rate by the relational equation. By calculating the global radiation on an inclined surface, it becomes possible to calculate the maximum output of photovoltaic modules by this recursion method. 1 ref., 6 figs., 1 tab.
Energy Technology Data Exchange (ETDEWEB)
Takebe, Shinichi; Abe, Masayoshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment
2001-03-01
The distribution coefficient is very important parameter for environmental impact assessment on the disposal of radioactive waste arising from research institutes. The literature survey in the country was mainly carried out for the purpose of selecting the reasonable distribution coefficient value on the utilization of this value in the safety evaluation. This report was arranged much informations on the distribution coefficient for inputting to the database for each literature, and was summarized as a literature information data on the distribution coefficient. (author)
Variation in aerodynamic coefficients with altitude
Directory of Open Access Journals (Sweden)
Faiza Shahid
Full Text Available Precise aerodynamics performance prediction plays key role for a flying vehicle to get its mission completed within desired accuracy. Aerodynamic coefficients for same Mach number can be different at different altitude due to difference in Reynolds number. Prediction of these aerodynamics coefficients can be made through experiments, analytical solution or Computational Fluid Dynamics (CFD. Advancements in computational power have generated the concept of using CFD as a virtual Wind Tunnel (WT, hence aerodynamic performance prediction in present study is based upon CFD (numerical test rig. Simulations at different altitudes for a range of Mach numbers with zero angle of attack are performed to predict axial force coefficient behavior with altitude (Reynolds number. Similar simulations for a fixed Mach number â3â and a range of angle of attacks are also carried out to envisage the variation in normal force and pitching moment coefficients with altitude (Reynolds number. Results clearly depict that the axial force coefficient is a function of altitude (Reynolds number and increase as altitude increases, especially for subsonic region. Variation in axial force coefficient with altitude (Reynolds number slightly increases for larger values of angle of attacks. Normal force and pitching moment coefficients do not depend on altitude (Reynolds number at smaller values of angle of attacks but show slight decrease as altitude increases. Present study suggests that variation of normal force and pitching moment coefficients with altitude can be neglected but the variation of axial force coefficient with altitude should be considered for vehicle fly in dense atmosphere. It is recommended to continue this study to more complex configurations for various Mach numbers with side slip and real gas effects. Keywords: Mach number, Reynolds number, Blunt body, Altitude effect, Angle of attacks
Variation in aerodynamic coefficients with altitude
Shahid, Faiza; Hussain, Mukkarum; Baig, Mirza Mehmood; Haq, Ihtram ul
Precise aerodynamics performance prediction plays key role for a flying vehicle to get its mission completed within desired accuracy. Aerodynamic coefficients for same Mach number can be different at different altitude due to difference in Reynolds number. Prediction of these aerodynamics coefficients can be made through experiments, analytical solution or Computational Fluid Dynamics (CFD). Advancements in computational power have generated the concept of using CFD as a virtual Wind Tunnel (WT), hence aerodynamic performance prediction in present study is based upon CFD (numerical test rig). Simulations at different altitudes for a range of Mach numbers with zero angle of attack are performed to predict axial force coefficient behavior with altitude (Reynolds number). Similar simulations for a fixed Mach number '3' and a range of angle of attacks are also carried out to envisage the variation in normal force and pitching moment coefficients with altitude (Reynolds number). Results clearly depict that the axial force coefficient is a function of altitude (Reynolds number) and increase as altitude increases, especially for subsonic region. Variation in axial force coefficient with altitude (Reynolds number) slightly increases for larger values of angle of attacks. Normal force and pitching moment coefficients do not depend on altitude (Reynolds number) at smaller values of angle of attacks but show slight decrease as altitude increases. Present study suggests that variation of normal force and pitching moment coefficients with altitude can be neglected but the variation of axial force coefficient with altitude should be considered for vehicle fly in dense atmosphere. It is recommended to continue this study to more complex configurations for various Mach numbers with side slip and real gas effects.
Soccer ball lift coefficients via trajectory analysis
Energy Technology Data Exchange (ETDEWEB)
Goff, John Eric [Department of Physics, Lynchburg College, Lynchburg, VA 24501 (United States); Carre, Matt J, E-mail: goff@lynchburg.ed [Department of Mechanical Engineering, University of Sheffield, Sheffield S1 3JD (United Kingdom)
2010-07-15
We performed experiments in which a soccer ball was launched from a machine while two high-speed cameras recorded portions of the trajectory. Using the trajectory data and published drag coefficients, we extracted lift coefficients for a soccer ball. We determined lift coefficients for a wide range of spin parameters, including several spin parameters that have not been obtained by today's wind tunnels. Our trajectory analysis technique is not only a valuable tool for professional sports scientists, it is also accessible to students with a background in undergraduate-level classical mechanics.
Computational parametric study of a Richtmyer-Meshkov instability for an inclined interface.
McFarland, Jacob A; Greenough, Jeffrey A; Ranjan, Devesh
2011-08-01
A computational study of the Richtmyer-Meshkov instability for an inclined interface is presented. The study covers experiments to be performed in the Texas A&M University inclined shock tube facility. Incident shock wave Mach numbers from 1.2 to 2.5, inclination angles from 30° to 60°, and gas pair Atwood numbers of ∼0.67 and ∼0.95 are used in this parametric study containing 15 unique combinations of these parameters. Qualitative results are examined through a time series of density plots for multiple combinations of these parameters, and the qualitative effects of each of the parameters are discussed. Pressure, density, and vorticity fields are presented in animations available online to supplement the discussion of the qualitative results. These density plots show the evolution of two main regions in the flow field: a mixing region containing driver and test gas that is dominated by large vortical structures, and a more homogeneous region of unmixed fluid which can separate away from the mixing region in some cases. The interface mixing width is determined for various combinations of the parameters listed at the beginning of the Abstract. A scaling method for the mixing width is proposed using the interface geometry and wave velocities calculated using one-dimensional gas dynamic equations. This model uses the transmitted wave velocity for the characteristic velocity and an initial offset time based on the travel time of strong reflected waves. It is compared to an adapted Richtmyer impulsive model scaling and shown to scale the initial mixing width growth rate more effectively for fixed Atwood number.
Continuous inclination record of the geomagnetic field from a Brazilian stalagmite
Jaqueto, P.; Trindade, R. I.; Hartmann, G. A.; Feinberg, J. M.; Novello, V. F.; Cruz, F. W.
2013-12-01
It is known that South America contributes with less than ~3% of the global database and some of these data (obtained decades ago) do not obey minimum quality criteria, such as standard deviations and age controls. In this sense, continuous full-vector records (direction and intensity) provide important high-resolution data on the spatial and temporal behavior of Earth's magnetic field of utmost importance to describe the evolution of major field features, such as the South Atlantic Magnetic Anomaly (SAMA). Here, we present results of magnetic inclination determined from a stalagmite collected in Pau d'Alho cave located at 14.8° S, 56.4° W (Mato Grosso, Brazil), where no previous geomagnetic record was available. The sample is a 23-cm-long stalagmite which grew continuously during most of the last 1400 years. The chronology based on high-quality U-Th dating ranges from 500 AD to 1900 AD and reveals a nearly constant growth rate of ~150 μm/yr. Remanence measurements of the stalagmite were performed continuously using a SQUID magnetometer with a spatial resolution of 0.5 cm. Magnetic values for each measured point were deconvolved using the singular value decomposition (SVD) method. Hysteresis and low-temperature magnetization analyses indicate a very homogeneous magnetic mineralogy with the presence of tiny concentrations of pure magnetite in the SD-PSD state. After stepwise alternating field demagnetization, inclination data show maximum angular deviation (MAD) for most samples below 5° (with anomalous MAD of up to 15° for the 1660 AD to 1690 AD period). In general, our magnetic inclination data are consistent with those predicted by geomagnetic field models, and will provide a firm observational anchor for future modeling efforts. In this way, continuous magnetic measurements on speleothems can provide important, high-quality information about the short term behavior of the geomagnetic field.
MHD natural convection in open inclined square cavity with a heated circular cylinder
Hosain, Sheikh Anwar; Alim, M. A.; Saha, Satrajit Kumar
2017-06-01
MHD natural convection in open cavity becomes very important in many scientific and engineering problems, because of it's application in the design of electronic devices, solar thermal receivers, uncovered flat plate solar collectors having rows of vertical strips, geothermal reservoirs, etc. Several experiments and numerical investigations have been presented for describing the phenomenon of natural convection in open cavity for two decades. MHD natural convection and fluid flow in a two-dimensional open inclined square cavity with a heated circular cylinder was considered. The opposite wall to the opening side of the cavity was first kept to constant heat flux q, at the same time the surrounding fluid interacting with the aperture was maintained to an ambient temperature T∞. The top and bottom wall was kept to low and high temperature respectively. The fluid with different Prandtl numbers. The properties of the fluid are assumed to be constant. As a result a buoyancy force is created inside the cavity due to temperature difference and natural convection is formed inside the cavity. The Computational Fluid Dynamics (CFD) code are used to discretize the solution domain and represent the numerical result to graphical form.. Triangular meshes are used to obtain the solution of the problem. The streamlines and isotherms are produced, heat transfer parameter Nu are obtained. The results are presented in graphical as well as tabular form. The results show that heat flux decreases for increasing inclination of the cavity and the heat flux is a increasing function of Prandtl number Pr and decreasing function of Hartmann number Ha. It is observed that fluid moves counterclockwise around the cylinder in the cavity. Various recirculations are formed around the cylinder. The almost all isotherm lines are concentrated at the right lower corner of the cavity. The object of this work is to develop a Mathematical model regarding the effect of MHD natural convection flow around
Iron-mineral-based magnetoreceptor in birds: polarity or inclination compass?
DEFF Research Database (Denmark)
Solov'yov, Ilia; Greiner, Walter
2009-01-01
In the present paper we demonstrate that the iron-mineral-based magnetoreceptor model can provide birds with a magnetic compass in addition to the generally believed "magnetic map". We show that the iron-mineral-based magnetoreceptor system possesses all properties of a polarity compass, which...... is extremely important for avian navigation. We study how parameters of the magnetoreceptor system influence on the properties of the compass and show that at certain conditions it acquires features of an inclination compass. In the present paper we address the question of avian magnetoreception theoretically...
Testing corrections for paleomagnetic inclination error in sedimentary rocks: A comparative approach
Tauxe, Lisa; Kodama, Kenneth P.; Kent, Dennis V.
2008-08-01
Paleomagnetic inclinations in sedimentary formations are frequently suspected of being too shallow. Recognition and correction of shallow bias is therefore critical for paleogeographical reconstructions. This paper tests the reliability of the elongation/inclination ( E/ I) correction method in several ways. First we consider the E/ I trends predicted by various PSV models. We explored the role of sample size on the reliability of the E/ I estimates and found that for data sets smaller than ˜100-150, the results were less reliable. The Giant Gaussian Process-type paleosecular variation models were all constrained by paleomagnetic data from lava flows of the last five million years. Therefore, to test whether the method can be used in more ancient times, we compare model predictions of E/ I trends with observations from five Large Igneous Provinces since the early Cretaceous (Yemen, Kerguelen, Faroe Islands, Deccan and Paraná basalts). All data are consistent at the 95% level of confidence with the E/ I trends predicted by the paleosecular variation models. The Paraná data set also illustrated the effect of unrecognized tilting and combining data over a large latitudinal spread on the E/ I estimates underscoring the necessity of adhering to the two principle assumptions of the method. Then we discuss the geological implications of various applications of the E/ I method. In general the E/ I corrected data are more consistent with data from contemporaneous lavas, with predictions from the well constrained synthetic apparent polar wander paths, and other geological constraints. Finally, we compare the E/ I corrections with corrections from an entirely different method of inclination correction: the anisotropy of remanence method of Jackson et al. [Jackson, M.J., Banerjee, S.K., Marvin, J.A., Lu, R., Gruber, W., 1991. Detrital remanence, inclination errors and anhysteretic remanence anisotropy: quantitative model and experimental results. Geophys. J. Int. 104, 95
Croccolo, Fabrizio; Scheffold, Frank; Vailati, Alberto
2013-07-05
Convective motions in a fluid layer are affected by its orientation with respect to the gravitational field. We investigate the long-term stability of a thermally stressed layer of a binary liquid mixture and show that pattern formation is strongly affected by marginal inclinations as small as a few milliradians. At small Rayleigh numbers, the mass transfer is dominated by the induced large scale shear flow, while at larger Rayleigh numbers, it is dominated by solutal convection. At the transition, the balance between the solutal and shear flows gives rise to drifting columnar flows moving in opposite directions along parallel lanes in a superhighway configuration.
Simulation of the effect of incline incident angle in DMD Maskless Lithography
Liang, L. W.; Zhou, J. Y.; Xiang, L. L.; Wang, B.; Wen, K. H.; Lei, L.
2017-06-01
The aim of this study is to provide a simulation method for investigation of the intensity fluctuation caused by the inclined incident angle in DMD (digital micromirror device) maskless lithography. The simulation consists of eight main processes involving the simplification of the DMD aperture function and light propagation utilizing the non-parallel angular spectrum method. These processes provide a possibility of co-simulation in the spatial frequency domain, which combines the microlens array and DMD in the maskless lithography system. The simulation provided the spot shape and illumination distribution. These two parameters are crucial in determining the exposure dose in the existing maskless lithography system.
On the unsteady flow of two visco-elastic fluids between two inclined porous plates
Directory of Open Access Journals (Sweden)
P. R. Sengupta
1992-01-01
Full Text Available This study is concerned with both hydrodynamic and hydromagnetic unsteady slow flows of two immiscible visco-elastic fluids of Rivlin-Ericksen type between two porous parallel nonconducting plates inclined at a certain angle to the horizontal. The exact solutions for the velocity fields, skin frictions, and the interface velocity distributions are found for both fluid models. Numerical results are presented in graphs. A comparison is made between the hydrodynamic and hydromagnetic velocity profiles. It is shown that the velocity is diminished due to the presence of a transverse magnetic field.
Possible inclinations for psychostimulant, toxic agent and drug abuse among youths and students
Directory of Open Access Journals (Sweden)
V. G. Ginzburg
2012-03-01
Full Text Available Taking into account modern achievements in medicine, psychology and sociology, the attempt at complex research of possible inclinations for psychostimulant, toxic agent and drug abuse among youths and students was made with the subsequent determination of the possible alternates of primary prevention. It is analysed the basic and additional risk factors promoting smoking, drinking, psychostimulant abuse, toxicomania and narcomania among young people. The dynamics of possible influences of medical, psychological and social factors is studied. The attempt of short-term prognostication and ranking was made.
GAPS IN PROTOPLANETARY DISKS AS SIGNATURES OF PLANETS. II. INCLINED DISKS
Energy Technology Data Exchange (ETDEWEB)
Jang-Condell, Hannah [Department of Physics and Astronomy, University of Wyoming, Laramie, WY 82071 (United States); Turner, Neal J. [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States)
2013-07-20
We examine the observational appearance of partial gaps being opened by planets in protoplanetary disks, considering the effects of the inclination relative to the line of sight. We model the disks with static {alpha}-models with detailed radiative transfer, parameterizing the shape and size of the partially cleared gaps based on the results of hydrodynamic simulations. As in previous work, starlight falling across the gap leads to high surface brightness contrasts. The gap's trough is darkened by both shadowing and cooling, relative to the uninterrupted disk. The gap's outer wall is brightened by direct illumination and also by heating, which puffs it up so that it intercepts more starlight. In this paper, we examine the effects of inclination on resolved images of disks with and without gaps at a wide range of wavelengths. The scattering surface's offset from the disk midplane creates a brightness asymmetry along the axis of inclination, making the disk's near side appear brighter than the far side in scattered light. Finite disk thickness also causes the projected distances of equidistant points on the disk surface to be smaller on the near side of the disk as compared to the far side. Consequently, the gap shoulder on the near side of the disk should appear brighter and closer to the star than on the far side. However, if the angular resolution of the observation is coarser than the width of the brightened gap shoulder, then the gap shoulder on the far side may appear brighter because of its larger apparent size. We present a formula to recover the scale height and inclination angle of an imaged disk using simple geometric arguments and measuring disk asymmetries. Resolved images of circumstellar disks have revealed clearings and gaps, such as the transitional disk in LkCa 15. Models created using our synthetic imaging attempting to match the morphology of observed scattered light images of LkCa 15 indicate that the H-band flux deficit in
Sironi, Lorenzo
We investigate particle acceleration in relativistic magnetized collisionless pair shocks with two-dimensional particle-in-cell numerical simulations. For fixed upstream bulk Lorentz factor γ0 = 15 and magnetic to kinetic energy fraction σ = 0.1, we explore a range of inclination angles θ between the magnetic field and the shock normal. The inclination is measured in the downstream rest frame and the magnetic field lies in a plane perpendicular to the simulation plane. The downstream energy spectrum for subluminal shocks consists of a relativistic Maxwellian and a high-energy power-law tail modified by an exponential cutoff. For parallel shocks (θ = 0° ), the tail accounts for ˜ 1% of the downstream particle number and ˜ 5% of the energy, and its energy spectral index is -2.7 ± 0.1. Accelerated particles bounce between the upstream and the downstream, and the upstream scattering is provided by oblique filaments, which have both an electromagnetic and an electrostatic component. Such filaments propagate towards the shock and are generated by the accelerated particles that escape upstream. For larger inclination angles the acceleration efficiency increases, and particles are efficiently boosted by the motional upstream electric field when gyrating across the shock. Close to the superluminality threshold θ ≈ 30° , the number and energy fractions of downstream accelerated particles are ˜ 3% and ˜ 12% respectively; the spectral index of the corresponding power-law tail is -2.4 ± 0.1. When the shock becomes superluminal (θ 30° ), the acceleration efficiency abruptly drops. Our results show that the range of upstream-frame inclination angles suitable for efficient acceleration in relativistic magnetized pair shocks is indeed very small 30° /γ0 , as suggested by previous Monte-Carlo simulations. Self-generated shock turbulence is shown to be not large enough to overcome the kinematic constraints for superluminal shocks. These findings place constraints
Pemakaian Inclined Bite Plane untuk Koreksi Gigitan Terbalik Interior pada Anak
Directory of Open Access Journals (Sweden)
Debrania Santoso
2012-12-01
Full Text Available Latar Belakang. Anak dengan gigitan terbalik pada anterior pada umumnya mempunyai keluhan dalam hal estetik dan fungsi pengunyahan. Kondisi gigitan terbalik biasanya disebabkan oleh adanya kebiasaan buruk dan faktor keturunan yang semakin memperparah keadaan tersebut. Pada kasus ini ditampilkan dua anak dengan gigitan terbalik anterior yang disebabkan oleh adanya kebiasaan buruk bertopang dagu dan mendorong lidah ke gigi anterior bawah. Perawatan menggunakan inclined bite plane dapat mengkoreksi gigitan terbalik anterior. Tujuan. Laporan kasus ini adalah untuk melaporkan bahwa pemakaian alat inlined bite plane dapat mengkoreksi gigitan terbalik anterior pada anak. Kasus. Dua orang anak perempuan dengan kasus gigitan terbalik anterior dilakukan pemeriksaan di poli gigi anak RSGM. Dari anamnesa diketahui bahwa anak pertama memiliki kebiasaan buruk bertopang dagu dan anak kedua mendorong lidah ke gigi anterior bawah. Perawatan yang dipilih adalah menggunakan alat inlined bite plane yang harus digunakan setiap hari saat tidur kecuali waktu makan dan menggosok gigi. Perawatan lanjutan pasien pertama tetap menggunakan alat removable dan pasien kedua dengan fixed orthodonti. Kesimpulan. Pasien pertama setelah 7 minggu gigitan terbalik anterior terkoreksi dan kebiasaan buruk dapat dihentikan. Pada pasien kedua gigitan terbalik anterior terkoreksi setelah 5 minggu. Hubungan oklusi pada pasien kedua lebih baik dibandingkan pasien pertama. Background. Children with anterior crossbite generally complaint about aesthetic and masticatory function. Anterior crossbite is usually caused by bad habits and hereditary factors that exacerbated this situation. In this case was displayed two children with anterior crossbite caused by a bad habit pushing the chin with one hand and pushing the tongue to the lower anterior teeth. Treatment approach using inclined bite plane correct the anterior crossbite. Purpose. The purpose of this case report is to report the use
Directory of Open Access Journals (Sweden)
José Gabriel Vieira Neto
2016-04-01
Full Text Available ABSTRACT Widely disseminated in both national and international scenarios, greenhouses are agribusiness solutions which are designed to allow for greater efficiency and control of the cultivation of plants. Bearing this in mind, the construction of greenhouses should take into consideration the incidence of wind, and other such aspects of comfort and safety, and ensure they are factored into the design of structural elements. In this study, we evaluated the effects of pressure coefficients established by the European standard EN 13031-1 (2001 and the Brazilian standard ABNT (1988, which are applicable to the structures of greenhouses with flat roofs, taking into account the following variables: roof slope, external and internal pressure coefficients and height-span ratio of the structure. Using the ANSYSTM computer program, zones of columns and roof were discretized by the Beam44 finite element to identify the maximum and minimum stress portions connected to the aerodynamic coefficients. With this analysis, we found that, in the smallest roof slope (a equal to 20°, the frame stress was quite similar for standards adopted. On the other hand, for the greatest inclination (a equal to 26°, the stress was consistently lower under the Brazilian standard. In view of this, we came to the conclusion that the differences between stresses when applying both standards were more significant at the higher degrees of height-span ratio and roof slope.
Transport Coefficients from Large Deviation Functions
Directory of Open Access Journals (Sweden)
Chloe Ya Gao
2017-10-01
Full Text Available We describe a method for computing transport coefficients from the direct evaluation of large deviation functions. This method is general, relying on only equilibrium fluctuations, and is statistically efficient, employing trajectory based importance sampling. Equilibrium fluctuations of molecular currents are characterized by their large deviation functions, which are scaled cumulant generating functions analogous to the free energies. A diffusion Monte Carlo algorithm is used to evaluate the large deviation functions, from which arbitrary transport coefficients are derivable. We find significant statistical improvement over traditional Green–Kubo based calculations. The systematic and statistical errors of this method are analyzed in the context of specific transport coefficient calculations, including the shear viscosity, interfacial friction coefficient, and thermal conductivity.
Friction coefficient dependence on electrostatic tribocharging.
Burgo, Thiago A L; Silva, Cristiane A; Balestrin, Lia B S; Galembeck, Fernando
2013-01-01
Friction between dielectric surfaces produces patterns of fixed, stable electric charges that in turn contribute electrostatic components to surface interactions between the contacting solids. The literature presents a wealth of information on the electronic contributions to friction in metals and semiconductors but the effect of triboelectricity on friction coefficients of dielectrics is as yet poorly defined and understood. In this work, friction coefficients were measured on tribocharged polytetrafluoroethylene (PTFE), using three different techniques. As a result, friction coefficients at the macro- and nanoscales increase many-fold when PTFE surfaces are tribocharged, but this effect is eliminated by silanization of glass spheres rolling on PTFE. In conclusion, tribocharging may supersede all other contributions to macro- and nanoscale friction coefficients in PTFE and probably in other insulating polymers.
Roughness coefficients for stream channels in Arizona
Aldridge, B.N.; Garrett, J.M.
1973-01-01
When water flows in an open channel, energy is lost through friction along the banks and bed of the channel and through turbulence within the channel. The amount of energy lost is governed by channel roughness, which is expressed in terms of a roughness coefficient. An evaluation of the roughness coefficient is necessary in many hydraulic computations that involve flow in an open channel. Owing to the lack of satisfactory quantitative procedure, the ability of evaluate roughness coefficients can be developed only through experience; however, a basic knowledge of the methods used to assign the coefficients and the factors affecting them will be a great help. One of the most commonly used equations in open-channel hydraulics is that of Manning. The Manning equation is 1.486
Explicit formulas for Clebsch-Gordan coefficients
International Nuclear Information System (INIS)
Rudnicki-Bujnowski, G.
1975-01-01
The problem is to obtain explicit algebraic formulas of Clebsch-Gordan coefficients for high values of angular momentum. The method of solution is an algebraic method based on the Racah formula using the FORMAC programming language. (Auth.)
Second coefficient of viscosity in air
Ash, Robert L.; Zuckerwar, Allan J.; Zheng, Zhonquan
1991-01-01
Acoustic attenuation measurements in air were analyzed in order to estimate the second coefficient of viscosity. Data over a temperature range of 11 C to 50 C and at relative humidities between 6 percent and 91 percent were used. This analysis showed that the second coefficient of viscosity varied between 1900 and 20,000 times larger than the dynamic or first coefficient of viscosity over the temperature and humidity range of the data. In addition, the data showed that the molecular relaxation effects, which are responsible for the magnitude of the second coefficient of viscosity, place severe limits on the use of time-independent, thermodynamic equations of state. Compressible flows containing large streamwise velocity gradients, like shock waves, which cause significant changes in particle properties to occur during time intervals shorter than hundredths of seconds, must be modeled using dynamic equations of state. The dynamic model approach is described briefly.
Heat transfer coefficient of cryotop during freezing.
Li, W J; Zhou, X L; Wang, H S; Liu, B L; Dai, J J
2013-01-01
Cryotop is an efficient vitrification method for cryopreservation of oocytes. It has been widely used owing to its simple operation and high freezing rate. Recently, the heat transfer performance of cryotop was studied by numerical simulation in several studies. However, the range of heat transfer coefficient in the simulation is uncertain. In this study, the heat transfer coefficient for cryotop during freezing process was analyzed. The cooling rates of 40 percent ethylene glycol (EG) droplet in cryotop during freezing were measured by ultra-fast measurement system and calculated by numerical simulation at different value of heat transfer coefficient. Compared with the results obtained by two methods, the range of the heat transfer coefficient necessary for the numerical simulation of cryotop was determined, which is between 9000 W/(m(2)·K) and 10000 W/(m (2)·K).
Form coefficient of helical toroidal solenoids
International Nuclear Information System (INIS)
Amelin, V.Z.; Kunchenko, V.B.
1982-01-01
For toroidal solenoids with continuous spiral coil, winded according to the laws of equiinclined and simple cylindrical spirals with homogeneous, linearly increasing to the coil periphery and ''Bitter'' distribution of current density, the analytical expressions for the dependence between capacity consumed and generated magnetic field, expressions for coefficients of form similar to Fabry coefficient for cylindrical solenoids are obtained and dependence of the form coefficient and relative volume of solenoid conductor on the number of revolutions of screw line per one circumvention over the large torus radius is also investigated. Analytical expressions of form coefficients and graphical material permit to select the optimum geometry as to capacity consumed both for spiral (including ''force-free'') and conventional toroidal solenoids of magnetic systems in thermonulear installations
Modeling Ballasted Tracks for Runoff Coefficient C
2012-08-01
In this study, the Regional Transportation District (RTD)s light rail tracks were modeled to determine the Rational Method : runoff coefficient, C, values corresponding to ballasted tracks. To accomplish this, a laboratory study utilizing a : rain...
Estimation of Okun Coefficient for Algeria
KORI YAHIA, Abdellah
2018-01-01
The objective of this paper is to investigate the presence of Okun’s (1962) relationship for Algeria for the 1970- 2015 period. Two methodologies are employed to estimate the Okun coefficient: An Autoregressive Distributed Lag (ARDL) linear model and a Bayesian Normal Linear Regression model. The results indicate an Okun coefficient of about -0.2 which suggests some rigidity of the labour market in Algeria.
Measuring Resource Inequality: The Gini Coefficient
Directory of Open Access Journals (Sweden)
Michael T. Catalano
2009-07-01
Full Text Available This paper stems from work done by the authors at the Mathematics for Social Justice Workshop held in June of 2007 at Middlebury College. We provide a description of the Gini coefficient and some discussion of how it can be used to promote quantitative literacy skills in mathematics courses. The Gini Coefficient was introduced in 1921 by Italian statistician Corrado Gini as a measure of inequality. It is defined as twice the area between two curves. One, the Lorenz curve for a given population with respect to a given resource, represents the cumulative percentage of the resource as a function of the cumulative percentage of the population that shares that percentage of the resource. The second curve is the line y = x which is the Lorenz curve for a population which shares the resource equally. The Gini coefficient can be interpreted as the percentage of inequality represented in the population with respect to the given resource. We propose that the Gini coefficient can be used to enhance students’ understanding of calculus concepts and provide practice for students in using both calculus and quantitative literacy skills. Our examples are based mainly on distribution of energy resources using publicly available data from the Energy Information Agency of the United States Government. For energy resources within the United States, we find that by household, the Gini coefficient is 0.346, while using the 51 data points represented by the states and Washington D.C., the Gini coefficient is 0.158. When we consider the countries of the world as a population of 210, the Gini coefficient is 0.670. We close with ideas for questions which can be posed to students and discussion of the experiences two other mathematics instructors have had incorporating the Gini coefficient into pre-calculus-level mathematics classes.
Monitoring device for local power peaking coefficient
International Nuclear Information System (INIS)
Mitsuhashi, Ishi
1987-01-01
Purpose: To monitor the local power peaking coefficients obtained by the method not depending on the combination of fuel types. Method: A plurality of representative values for the local power distribution determined by the nuclear constant calculation for one fuel assembly are memorized regarding each of the burn-up degree and the void coefficient on every positions and fuel types in fuel rod assemblies. While on the other hand, the representative values for the local power distribution as described above are compensated by a compensation coefficient considering the effect of adjacent segments and a control rod compensation coefficient considering the effect due to the control rod insertion relative to the just-mentioned compensation coefficient. Then, the maximum value among them is selected to determine the local power peaking coefficient at each of the times and each of the segments, which is monitored. According to this system, the calculation and the working required for the fitting work depending on the combination of fuel types are no more required at all to facilitate the maintenance as well. (Horiuchi, T.)
Directory of Open Access Journals (Sweden)
Anaïs Khuong
Full Text Available The goal of this study is to describe accurately how the directional information given by support inclinations affects the ant Lasius niger motion in terms of a behavioral decision. To this end, we have tracked the spontaneous motion of 345 ants walking on a 0.5×0.5 m plane canvas, which was tilted with 5 various inclinations by [Formula: see text] rad ([Formula: see text] data points. At the population scale, support inclination favors dispersal along uphill and downhill directions. An ant's decision making process is modeled using a version of the Boltzmann Walker model, which describes an ant's random walk as a series of straight segments separated by reorientation events, and was extended to take directional influence into account. From the data segmented accordingly ([Formula: see text] segments, this extension allows us to test separately how average speed, segments lengths and reorientation decisions are affected by support inclination and current walking direction of the ant. We found that support inclination had a major effect on average speed, which appeared approximately three times slower on the [Formula: see text] incline. However, we found no effect of the walking direction on speed. Contrastingly, we found that ants tend to walk longer in the same direction when they move uphill or downhill, and also that they preferentially adopt new uphill or downhill headings at turning points. We conclude that ants continuously adapt their decision making about where to go, and how long to persist in the same direction, depending on how they are aligned with the line of maximum declivity gradient. Hence, their behavioral decision process appears to combine klinokinesis with geomenotaxis. The extended Boltzmann Walker model parameterized by these effects gives a fair account of the directional dispersal of ants on inclines.
Estimate of the magnetic anisotropy effect on the archaeomagnetic inclination of ancient bricks
Tema, Evdokia
2009-10-01
The magnetic fabric of 59 bricks coming from 5 ancient kilns has been studied by measuring the anisotropy of magnetic susceptibility (AMS) and the anisotropy of isothermal (AIRM), anhysteretic (AARM) and thermal (ATRM) remanent magnetization. The bricks are characterized by a well developed magnetic fabric that matches their flat shape. The shape of the anisotropy ellipsoids is in almost all cases oblate with the maximum and intermediate axes lying parallel to the large face of the brick and the minimum axis perpendicular to it. The directions of the principal axes are almost the same irrespectively of the type of anisotropy measured, whereas the degree of anisotropy of the AIRM, AARM and ATRM is much higher than the AMS. As the bricks lie horizontally within the kiln, the planar magnetic fabric results in an inclination shallowing of the archaeomagnetic direction with respect to that of the Earth's magnetic field at the time of their last cooling. Estimation of this effect on the grounds of ATRM measurements yields a shallowing that varies from 4° to 10° for individual samples. Such inclination difference may significantly bias archeomagnetic dating; for the case of the Canosa late-Roman kiln it leads to a dating error of more than two centuries.
Lower limb joint forces during walking on the level and slopes at different inclinations.
Alexander, Nathalie; Schwameder, Hermann
2016-03-01
Sloped walking is associated with an increase of lower extremity joint loading compared to level walking. Therefore, the aim of this study was to analyse lower limb joint compression forces as well as tibiofemoral joint shear forces during sloped walking at different inclinations. Eighteen healthy male participants (age: 27.0 ± 4.7 years, height: 1.80 ± 0.05 m, mass: 74.5 ± 8.2 kg) were asked to walk at a pre-set speed of 1.1m/s on a ramp (6 m × 1.5 m) at the slopes of -18°, -12°, -6°, 0°, 6°, 12° and 18°. Kinematic data were captured with a twelve-camera motion capture system (Vicon). Kinetic data were recorded with two force plates (AMTI) imbedded into a ramp. A musculoskeletal model (AnyBody) was used to compute lower limb joint forces. Results showed that downhill walking led to significantly increased hip, tibiofemoral and patellofemoral joint compression forces (pforces (pforces with increasing inclination (pforces did not increase with the gradient. Due to diverse tibiofemoral joint shear force patterns in the literature, results should be treated with caution in general. Finally, lower limb joint force analyses provided more insight in the structure loading conditions during sloped walking than joint moment analyses. Copyright © 2016 Elsevier B.V. All rights reserved.
DEM simulation of flow of dumbbells on a rough inclined plane
Mandal, Sandip; Khakhar, Devang
2015-11-01
The rheology of non-spherical granular materials such as food grains, sugar cubes, sand, pharmaceutical pills, among others, is not understood well. We study the flow of non-spherical dumbbells of different aspect ratios on a rough inclined plane by using soft sphere DEM simulations. The dumbbells are generated by fusing two spheres together and a linear spring dashpot model along with Coulombic friction is employed to calculate inter-particle forces. At steady state, a uni-directional shear flow is obtained which allows for a detailed study of the rheology. The effect of aspect ratio and inclination angle on mean velocity, volume fraction, shear rate, shear stress, pressure and viscosity profiles is examined. The effect of aspect ratio on probability distribution of angles, made by the major axes of the dumbbells with the flow direction, average angle and order parameter is analyzed. The dense flow rheology is well explained by Bagnold's law and the constitutive laws of JFP model. The dependencies of first and second normal stress differences on aspect ratio are studied. The probability distributions of translational and rotational velocity are analyzed.
An analytic solution of the static problem of inclined risers conveying fluid
Alfosail, Feras
2016-05-28
We use the method of matched asymptotic expansion to develop an analytic solution to the static problem of clamped–clamped inclined risers conveying fluid. The inclined riser is modeled as an Euler–Bernoulli beam taking into account its self-weight, mid-plane stretching, an applied axial tension, and the internal fluid velocity. The solution consists of three parts: an outer solution valid away from the two boundaries and two inner solutions valid near the two ends. The three solutions are then matched and combined into a so-called composite expansion. A Newton–Raphson method is used to determine the value of the mid-plane stretching corresponding to each applied tension and internal velocity. The analytic solution is in good agreement with those obtained with other solution methods for large values of applied tensions. Therefore, it can be used to replace other mathematical solution methods that suffer numerical limitations and high computational cost. © 2016 Springer Science+Business Media Dordrecht
Effect of incisor inclination changes on cephalometric points a and b
International Nuclear Information System (INIS)
Hassan, S.; Shaikh, A.; Fida, M.
2015-01-01
The position of cephalometric points A and B are liable to be affected by alveolar remodelling caused by orthodontic tooth movement during incisor retraction. This study was conducted to evaluate the change in positions of cephalometric points A and B in sagittal and vertical dimensions due to change in incisor inclinations. Methods: Total sample of 31 subjects were recruited into the study. The inclusion criteria were extraction of premolars in upper and lower arches, completion of growth and orthodontic treatment. The exclusion criteria were patients with craniofacial anomalies and history of orthodontic treatment. By superimposition of pre and post treatment tracings, various linear and angular parameters were measured. Various tests and multiple linear regression analysis were performed to determine changes in outcome variables. Statistically significant p-value was <0.05. Results:One-sample t-test showed that change in position of only point A was statistically significant which was 1.61mm (p<0.01) in sagittal direction and 1.49mm (p<0.01) in vertical direction. Multiple linear regression analysis showed that if we retrocline upper incisor by 100, the point A will move superiorly by 0.6mm. Conclusions: Total change in the position of point A is in a downward and forward direction. Total Change in upper incisors inclinations causes change in position of point A only in vertical direction. (author)
Slip resistance of winter footwear on snow and ice measured using maximum achievable incline.
Hsu, Jennifer; Shaw, Robert; Novak, Alison; Li, Yue; Ormerod, Marcus; Newton, Rita; Dutta, Tilak; Fernie, Geoff
2016-05-01
Protective footwear is necessary for preventing injurious slips and falls in winter conditions. Valid methods for assessing footwear slip resistance on winter surfaces are needed in order to evaluate footwear and outsole designs. The purpose of this study was to utilise a method of testing winter footwear that was ecologically valid in terms of involving actual human testers walking on realistic winter surfaces to produce objective measures of slip resistance. During the experiment, eight participants tested six styles of footwear on wet ice, on dry ice, and on dry ice after walking over soft snow. Slip resistance was measured by determining the maximum incline angles participants were able to walk up and down in each footwear-surface combination. The results indicated that testing on a variety of surfaces is necessary for establishing winter footwear performance and that standard mechanical bench tests for footwear slip resistance do not adequately reflect actual performance. Practitioner Summary: Existing standardised methods for measuring footwear slip resistance lack validation on winter surfaces. By determining the maximum inclines participants could walk up and down slopes of wet ice, dry ice, and ice with snow, in a range of footwear, an ecologically valid test for measuring winter footwear performance was established.
Laboratory experiments on the interaction between inclined negatively buoyant jets and regular waves
Directory of Open Access Journals (Sweden)
Ferrari Simone
2015-01-01
Full Text Available In this paper we present the results from a series of laboratory experiments on inclined negatively buoyant jets released in a receiving environment with waves. This simulates the case, typical of many practical applications, of the sea discharge of fluids denser than the receiving environment, as in the case of the brine from a desalination plant. The experiments were performed employing a Light Induced Fluorescence (LIF technique, in order to measure the concentration fields. Both the jet and the wave motion features were varied, in order to simulate a typical discharge into the Mediterranean Sea. Reference discharges in a stagnant environment were performed as well. The jet behaviour was analyzed from a statistical point of view, both considering the global phenomenon and its single phases. The influence of the wave motion on the inclined negatively buoyant jet geometry and dilution turns out to be a combined action of a split into two branches of the jet and a rotation. Their combined action decreases the jet maximum height and the impact distance, and is the main cause for the higher dilution reached in a wavy environment.
Electric field effects on the dynamics of bubble detachment from an inclined surface
International Nuclear Information System (INIS)
Di Marco, P; Morganti, N; Saccone, G
2015-01-01
An experimental apparatus to study bubble detachment from an inclined surface under the action of electric forces is described. It consists of a container filled with FC72 at room temperature and pressure where a train of gas bubbles is injected from an orifice. An electrostatic field can be imposed around the bubble, while the cell can be tilted from 0 to 90°. It is possible to study interface growth with the aid of high-speed cinematography. Since the interface is asymmetrical, a mirror system allowed to acquire, in the same frame, two images at 90° of the bubble. Different inclinations, injection rates and voltages were tested in order to couple the effects of shear gravity and electric field. Curvature and contact angles have been derived with appropriate interpolation methods of the profile. Force balances on the bubble were checked, finding an electric force, which, at first pulls the bubbles from the orifice, then pushes it against the surface. The motion of the center of gravity confirms this behaviour. A power balance has been developed to determine the energy contributions, revealing that surface growth incorporates both the effects of inlet power and electric field. (paper)
Vibration Analysis of Inclined Laminated Composite Beams under Moving Distributed Masses
Directory of Open Access Journals (Sweden)
E. Bahmyari
2014-01-01
Full Text Available The dynamic response of laminated composite beams subjected to distributed moving masses is investigated using the finite element method (FEM based on the both first-order shear deformation theory (FSDT and the classical beam theory (CLT. Six and ten degrees of freedom beam elements are used to discretize the CLT and FSDT equations of motion, respectively. The resulting spatially discretized beam governing equations including the effect of inertial, Coriolis, and centrifugal forces due to moving distributed mass are evaluated in time domain by applying Newmark’s scheme. The presented approach is first validated by studying its convergence behavior and comparing the results with those of existing solutions in the literature. Then, the effect of incline angle, mass, and velocity of moving body, layer orientation, load length, and inertial, Coriolis, and centrifugal forces due to the moving distributed mass and friction force between the beam and the moving distributed mass on the dynamic behavior of inclined laminated composite beams are investigated.
Dynamic Fracturing Behavior of Layered Rock with Different Inclination Angles in SHPB Tests
Directory of Open Access Journals (Sweden)
Jiadong Qiu
2017-01-01
Full Text Available The fracturing behavior of layered rocks is usually influenced by bedding planes. In this paper, five groups of bedded sandstones with different bedding inclination angles θ are used to carry out impact compression tests by split Hopkinson pressure bar. A high-speed camera is used to capture the fracturing process of specimens. Based on testing results, three failure patterns are identified and classified, including (A splitting along bedding planes; (B sliding failure along bedding planes; (C fracturing across bedding planes. The failure pattern (C can be further classified into three subcategories: (C1 fracturing oblique to loading direction; (C2 fracturing parallel to loading direction; (C3 mixed fracturing across bedding planes. Meanwhile, a numerical model of layered rock and SHPB system are established by particle flow code (PFC. The numerical results show that the shear stress is the main reason for inducing the damage along bedding plane at θ = 0°~75°. Both tensile stress and shear stress on bedding planes contribute to the splitting failure along bedding planes when the inclination angle is 90°. Besides, tensile stress is the main reason that leads to the damage in rock matrixes at θ = 0°~90°.
Investigation of very high energy cosmic rays by means of inclined muon bundles
Bogdanov, A. G.; Kokoulin, R. P.; Mannocchi, G.; Petrukhin, A. A.; Saavedra, O.; Shutenko, V. V.; Trinchero, G.; Yashin, I. I.
2018-03-01
In a typical approach to extensive air shower (EAS) investigations, horizontal arrays are used and near-vertical EAS are detected. In contrast, in this work vertically arranged muon detectors are used to study inclined EAS. At large zenith angles, EAS consisting solely of muon component are employed. The transverse dimensions of EAS rapidly increase when the zenith angle increases. Hence, EAS in a wide energy interval can be explored by means of a relatively small detector. Here we present results of the analysis of the data on inclined muon bundles accumulated from 2002 to 2016 in the DECOR experiment. For the first time, these results demonstrate with more than 3σ significance the existence of the second knee in the EAS muon component spectrum near 1017 eV primary energy. An excess of muon bundles at energies about 1 EeV found earlier in DECOR data has been confirmed and analyzed in detail. It is highly likely that the obtained outcomes indicate the appearance of new processes of muon generation.
A novel method of microneedle array fabrication using inclined deep x-ray exposure
International Nuclear Information System (INIS)
Moon, Sang Jun; Jin, Chun Yan; Lee, Seung S
2006-01-01
We report a novel fabrication method for the microneedle array with a 3-dimensional feature and its replication method; 'Hot-pressing' process with bio-compatible material, PLLA (Poly L-LActide). Using inclined deep X-ray exposure technique, we fabricate a band type microneedle array with a single body on the same material basement. Since the single body feature does not make adhesion problem with the microneedle shank and basement during peel-off step of a mold, the PMMA (Poly-Methyl-MethAcrylate) microneedle array mold insert can be used for mold process which is used with the soft material mold, PDMS (Poly-Di- Methyl-Siloxane). The side inclined deep X-ray exposure also makes complex 3-dimensional features by the regions which are not exposed during twice successive exposure steps. In addition, the successive exposure does not need an additional mask alignment after the first side exposure. The fabricated band type microneedle array mold inserts are assembled for large area patch type out-of-plane microneedle array. The bio-compatible microneedle array can be fabricated to the laboratory scale mass production by the single body PMMA mold insert and 'Hot-pressing' process
A novel method of microneedle array fabrication using inclined deep x-ray exposure
Energy Technology Data Exchange (ETDEWEB)
Moon, Sang Jun; Jin, Chun Yan; Lee, Seung S [Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 373-1, Guseong-dong, Yuseong-dong, Daejeon (Korea, Republic of)
2006-04-01
We report a novel fabrication method for the microneedle array with a 3-dimensional feature and its replication method; 'Hot-pressing' process with bio-compatible material, PLLA (Poly L-LActide). Using inclined deep X-ray exposure technique, we fabricate a band type microneedle array with a single body on the same material basement. Since the single body feature does not make adhesion problem with the microneedle shank and basement during peel-off step of a mold, the PMMA (Poly-Methyl-MethAcrylate) microneedle array mold insert can be used for mold process which is used with the soft material mold, PDMS (Poly-Di- Methyl-Siloxane). The side inclined deep X-ray exposure also makes complex 3-dimensional features by the regions which are not exposed during twice successive exposure steps. In addition, the successive exposure does not need an additional mask alignment after the first side exposure. The fabricated band type microneedle array mold inserts are assembled for large area patch type out-of-plane microneedle array. The bio-compatible microneedle array can be fabricated to the laboratory scale mass production by the single body PMMA mold insert and 'Hot-pressing' process.
Optical performance of inclined south-north single-axis tracked solar panels
International Nuclear Information System (INIS)
Li, Zhimin; Liu, Xinyue; Tang, Runsheng
2010-01-01
To investigate optical performance of the inclined south-north single-axis (ISN-axis, in short) tracked solar panels, a mathematical procedure to estimate the annual collectible radiation on fixed and tracked panels was suggested based on solar geometry and monthly horizontal radiation. For solar panels tracking about ISN-axis, the yearly optimal tilt-angle of ISN-axis for maximizing annual solar gain was about 3 o deviating from the site latitude in most of China except in areas with poor solar resources, and the maximum annual collectible radiation on ISN-axis tracked panels was about 97-98% of that on dual-axis tracked panels; whereas for ISN-axis tracked panels with the tilt-angle of ISN-axis being adjusted four times in a year at three fixed tilt-angles, the annual collectible radiation was almost close to that on dual-axis tracked panels, the optimum date of tilt-angle adjustment of ISN-axis was 23 days from the equinoxes, and the optimum tilt-angle adjustment value for each adjustment was about 22 o . Compared to fixed south-facing solar panels inclined at an optimal tilt-angle, the increase in the annual solar gain due to using ISN-axis sun tracking was above 30% in the areas with abundant solar resources and less than 20% in the areas with poor solar resources.
International Nuclear Information System (INIS)
D'Orazio, A; Karimipour, A; Nezhad, A H; Shirani, E
2014-01-01
Laminar mixed convective heat transfer in two-dimensional rectangular inclined driven cavity is studied numerically by means of a double population thermal Lattice Boltzmann method. Through the top moving lid the heat flux enters the cavity whereas it leaves the system through the bottom wall; side walls are adiabatic. The counter-slip internal energy density boundary condition, able to simulate an imposed non zero heat flux at the wall, is applied, in order to demonstrate that it can be effectively used to simulate heat transfer phenomena also in case of moving walls. Results are analyzed over a range of the Richardson numbers and tilting angles of the enclosure, encompassing the dominating forced convection, mixed convection, and dominating natural convection flow regimes. As expected, heat transfer rate increases as increases the inclination angle, but this effect is significant for higher Richardson numbers, when buoyancy forces dominate the problem; for horizontal cavity, average Nusselt number decreases with the increase of Richardson number because of the stratified field configuration
Changing inclination of earth satellites using the gravity of the moon
Directory of Open Access Journals (Sweden)
Karla de Souza Torres
2006-01-01
Full Text Available We analyze the problem of the orbital control of an Earth's satellite using the gravity of the Moon. The main objective is to study a technique to decrease the fuel consumption of a plane change maneuver to be performed in a satellite that is in orbit around the Earth. The main idea of this approach is to send the satellite to the Moon using a single-impulsive maneuver, use the gravity field of the Moon to make the desired plane change of the trajectory, and then return the satellite to its nominal semimajor axis and eccentricity using a bi-impulsive Hohmann-type maneuver. The satellite is assumed to start in a Keplerian orbit in the plane of the lunar orbit around the Earth and the goal is to put it in a similar orbit that differs from the initial orbit only by the inclination. A description of the close-approach maneuver is made in the three-dimensional space. Analytical equations based on the patched conics approach are used to calculate the variation in velocity, angular momentum, energy, and inclination of the satellite. Then, several simulations are made to evaluate the savings involved. The time required by those transfers is also calculated and shown.
Directory of Open Access Journals (Sweden)
Asep Mohamad Ishaq Shiddiq
2017-07-01
Full Text Available In deviated and horizontal drilling, hole-cleaning issues are a common and complex problem. This study explored the effect of various parameters in drilling operations and how they affect the flow rate required for effective cutting transport. Three models, developed following an empirical approach, were employed: Rudi-Shindu’s model, Hopkins’, and Tobenna’s model. Rudi-Shindu’s model needs iteration in the calculation. Firstly, the three models were compared using a sensitivity analysis of drilling parameters affecting cutting transport. The result shows that the models have similar trends but different values for minimum flow velocity. Analysis was conducted to examine the feasibility of using Rudi-Shindu’s, Hopkins’, and Tobenna’s models. The result showed that Hopkins’ model is limited by cutting size and revolution per minute (RPM. The minimum flow rate from Tobenna’s model is affected only by well inclination, drilling fluid weight and drilling fluid rheological property. Meanwhile, Rudi-Shindu’s model is limited by inclinations above 45°. The study showed that the investigated models are not suitable for horizontal wells because they do not include the effect of lateral section.
Directory of Open Access Journals (Sweden)
Sahin Ahmed
2014-12-01
Full Text Available This study focuses analytically on the oscillatory hydromagnetic flow of a viscous, incompressible, electrically-conducting, non-Newtonian fluid in an inclined, rotating channel with non-conducting walls, incorporating couple stress effects. The model is then non-dimensionalized with appropriate variables and shown to be controlled by the inverse Ekman number (K2 = 1/Ek, the hydromagnetic body force parameter (M, channel inclination (α, Grashof number (Gr, Prandtl number (Pr, oscillation frequency (ω and time variable (ωT. Analytical solutions are derived using complex variables. Excellent agreement is obtained between both previous and present work. The influence of the governing parameters on the primary velocity, secondary velocity, temperature (θ, primary and secondary flow discharges per unit depth in the channel, and frictional shear stresses due to primary and secondary flow, is studied graphically and using tables. Applications of the study arise in the simulation of the manufacture of electrically-conducting polymeric liquids and hydromagnetic energy systems exploiting rheological working fluids.
Kovacs, Geza
2018-04-01
The distribution of the stellar rotation axes of 113 main sequence stars in the open cluster Praesepe are examined by using current photometric rotation periods, spectroscopic rotation velocities, and estimated stellar radii. Three different samples of stellar rotation data on spotted stars from the Galactic field and two independent samples of planetary hosts are used as control samples to support the consistency of the analysis. Considering the high completeness of the Praesepe sample and the behavior of the control samples, we find that the main sequence F - K stars in this cluster are susceptible to rotational axis alignment. Using a cone model, the most likely inclination angle is 76° ± 14° with a half opening angle of 47° ± 24°. Non-isotropic distribution of the inclination angles is preferred over the isotropic distribution, except if the rotation velocities used in this work are systematically overestimated. We found no indication of this being the case on the basis of the currently available data. Data are only available at the CDS, together with the other two compiled datasets used in this paper, via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/612/L2
Motion of phospholipidic vesicles along an inclined plane: sliding and rolling.
Abkarian, M; Lartigue, C; Viallat, A
2001-04-01
The migration of giant phospholipidic vesicles along an inclined plane in a quiescent fluid was observed as a function of the mass and the radius R of the vesicles, and as a function of the angle of inclination of the plane. Vesicles were swollen, and did not adhere to the substrate surface. It was observed from a side-view chamber that they have quasispherical shapes. The vesicles mainly slide along the plane, but also roll. The ratio omegaR/v of rotational to translational velocities is of the order of 0.15 for vesicles of radius ranging from 10 to 30 microm. Values of this ratio, and variations of v versus R, are well described by Goldman et al.'s model developed for the motion of rigid spheres close to a wall [Chem. Eng. Sci. 22, 637 (1967)]. In this framework, the thickness of the fluid film between the vesicle and the substrate derived from fitting experimental data was found to be equal to 48 nm.
The effect of anterior inclined plane treatment on the dentoskeletal of Class II division 1 patients
Directory of Open Access Journals (Sweden)
Emami Meibodi
2007-09-01
Full Text Available Most of Class II malocclusions are due to underdeveloped mandible with increased overjet and overbite. Lack of incisal contact results in the extrusion of the upper and lower anterior dentoalveolar complex, which helps to lock the mandible and prevent its normal growth and development, and this abnormality is exaggerated by soft tissue imbalance. The purpose of this study was to evaluate the skeletal and dental changes in patients treated with anterior inclined plane appliance in growing patients with moderate Class II Division 1 having deep overbite. In this study, 25 patients, including 15 girls and 10 boys, with a mean age of 9 ±1.2 years were selected; all of them presented with moderate Class II deep bite with increased overjet and normal or horizontal growth pattern. Pre- and post-treatment X-rays and photos for an average of 8 months were taken. The statistical assessment of the data suggested that there were no significant changes in the vertical skeletal parameters. The mandibular incisors were protruded, whereas the maxillary incisors were retruded. Overbite and overjet were also reduced. There was significant increase in the mandibular length. The results revealed that in mixed dentition patients, the inclined plane corrected Class II discrepancies mostly through dentoskeletal changes.
Differential Quadrature Method Based Study of Vibrational Behaviour of Inclined Edge Cracked Beams
Directory of Open Access Journals (Sweden)
Srivastava Shivani
2017-01-01
Full Text Available The study of vibration behaviour of cracked system is an important area of research. In the present work we present a mathematical model to study the effect of inclination, location and size of the crack on the vibrational behavior of beam with different boundary conditions. The model is based on the assumption that the equivalent flexible rigidity of the cracked beam can be written in terms of the flexible rigidity of the uncracked beam, based on the energy approach as proposed by earlier researchers. In the present work the Differential Quadrature Method (DQM is used to solve equation of motion derived by using Euler’s beam theory. The primary interest of the paper is to study the effect of inclined crack on natural frequency. We have also studied the beam vibration with and without vertical edge crack as a special case to validate the model. The DQM results for the natural frequencies of cracked beams agree well with other literature values and ANSYS solutions.
Bourguet, Remi; Triantafyllou, Michael
2016-11-01
Slender flexible cylinders immersed in flow are common in nature (e.g. plants and trees in wind) and in engineering applications, for example in the domain of offshore engineering, where risers and mooring lines are exposed to ocean currents. Vortex-induced vibrations (VIV) naturally develop when the cylinder is placed at normal incidence but they also appear when the body is inclined in the current, including at large angles. In a previous work concerning a flexible cylinder inclined at 80 degrees, we found that the occurrence of VIV is associated with a profound alteration of the flow dynamics: the wake exhibits a slanted vortex shedding pattern in the absence of vibration, while the vortices are shed parallel to the body once the large-amplitude VIV regime is reached. The present study aims at bridging the gap between these two extreme configurations. On the basis of direct numerical simulations, we explore the intermediate states of the flow-structure system. We identify two dominant components of the flow: a high-frequency component that relates to the stationary body wake and a low-frequency component synchronized with body motion. We show that the scenario of flow reconfiguration is driven by the opposite trends of these two component contributions.
An inclined wall jet: Mean flow characteristics and effects of acoustic excitation
Lai, J. C. S.; Lu, D.
2000-12-01
The mean velocity field of a 30° inclined wall jet has been investigated using both hot-wire and laser Doppler anemometry (LDA). Provided that the nozzle aspect ratio is greater than 30 and the inclined wall angle (β) is less than 50°, LDA measurements for various β show that the reattachment length is independent of the nozzle aspect ratio and the nozzle exit Reynolds number (in the range 6670-13,340). There is general agreement between the reattachment lengths determined by LDA and those determined using wall surface oil film visualisation technique. The role of coherent structures arising from initial instabilities of a 30° wall jet has been explored by hot-wire spectra measurements. Results indicate that the fundamental vortex roll-up frequency in both the inner and outer shear layer corresponds to a Strouhal number (based on nozzle exit momentum thickness and velocity) of 0.012. The spatial development of instabilities in the jet has been studied by introducing acoustic excitation at a frequency corresponding to the shear layer mode. The formation of the fundamental and its first subharmonic has been identified in the outer shear layer. However, the development of the first subharmonic in the inner shear layer has been severely suppressed. Distributions of mean velocities, turbulence intensities and Reynolds shear stress indicate that controlled acoustic excitation enhances the development of instabilities and promotes jet reattachment to the wall, resulting in a substantially reduced recirculation flow region.
Gralla, Samuel E.; Lupsasca, Alexandru; Philippov, Alexander
2017-12-01
In the canonical model of a pulsar, rotational energy is transmitted through the surrounding plasma via two electrical circuits, each connecting to the star over a small region known as a “polar cap.” For a dipole-magnetized star, the polar caps coincide with the magnetic poles (hence the name), but in general, they can occur at any place and take any shape. In light of their crucial importance to most models of pulsar emission (from radio to X-ray to wind), we develop a general technique for determining polar cap properties. We consider a perfectly conducting star surrounded by a force-free magnetosphere and include the effects of general relativity. Using a combined numerical-analytical technique that leverages the rotation rate as a small parameter, we derive a general analytic formula for the polar cap shape and charge-current distribution as a function of the stellar mass, radius, rotation rate, moment of inertia, and magnetic field. We present results for dipole and quadrudipole fields (superposed dipole and quadrupole) inclined relative to the axis of rotation. The inclined dipole polar cap results are the first to include general relativity, and they confirm its essential role in the pulsar problem. The quadrudipole pulsar illustrates the phenomenon of thin annular polar caps. More generally, our method lays a foundation for detailed modeling of pulsar emission with realistic magnetic fields.
International Nuclear Information System (INIS)
Yoon, Sang H.; Lee, Jong G.; Suh, Kune Y.
2006-01-01
Multidimensional thermal hydraulics in the APR1400 (Advanced Power Reactor 1400 MWe) downcomer during a large-break loss-of-coolant accident (LBLOCA) plays a pivotal role in determining the capability of the safety injection system. APR1400 adopts the direct vessel injection (DVI) method for more effective core penetration of the emergency core cooling (ECC) water than the cold leg injection (CLI) method in the OPR1000 (Optimized Power Reactor 1000 MWe). The DVI method turned out to be prone to occasionally lack in efficacious delivery of ECC to the reactor core during the reflood phase of a LBLOCA, however. This study intends to demonstrate a direct vessel inclined injection (DVII) method, one of various ideas with which to maximize the ECC core penetration and to minimize the direct bypass through the break during the reflood phase of a LBLOCA. The 1/7 scaled down THETA (Transient Hydrodynamics Engineering Test Apparatus) tests show that a vertical inclined nozzle angle of the DVII system increases the downward momentum of the injected ECC water by reducing the degree of impingement on the reactor downcomer, whereby lessening the extent of the direct bypass through the break. The proposed method may be combined with other innovative measures with which to ensure an enough thermal margin in the core during the course of a LBLOCA in APR1400
Ma, Lin
2017-11-01
This paper develops a method for precisely determining the tension of an inclined cable with unknown boundary conditions. First, the nonlinear motion equation of an inclined cable is derived, and a numerical model of the motion of the cable is proposed using the finite difference method. The proposed numerical model includes the sag-extensibility, flexural stiffness, inclination angle and rotational stiffness at two ends of the cable. Second, the influence of the dynamic parameters of the cable on its frequencies is discussed in detail, and a method for precisely determining the tension of an inclined cable is proposed based on the derivatives of the eigenvalues of the matrices. Finally, a multiparameter identification method is developed that can simultaneously identify multiple parameters, including the rotational stiffness at two ends. This scheme is applicable to inclined cables with varying sag, varying flexural stiffness and unknown boundary conditions. Numerical examples indicate that the method provides good precision. Because the parameters of cables other than tension (e.g., the flexural stiffness and rotational stiffness at the ends) are not accurately known in practical engineering, the multiparameter identification method could further improve the accuracy of cable tension measurements.
Aminfar, Ali; Ahmadi, Hamid; Aminfar, Mohammad Hossein
2016-06-01
Offshore jacket-type platforms are attached to the seabed by long batter piles. In this paper, results from a finite element analysis, verified against experimental data, are used to study the effect of the pile's inclination angle, and its interaction with the geometrical properties of the pile and the geotechnical characteristics of the surrounding soil on the behavior of the inclined piles supporting the jacket platforms. Results show that the inclination angle is one of the main parameters affecting the behavior of an offshore pile. We investigated the effect of the inclination angle on the maximum von Mises stress, maximum von Mises elastic strain, maximum displacement vector sum, maximum displacement in the horizontal direction, and maximum displacement in the vertical direction. The pile seems to have an operationally optimal degree of inclination of approximately 5°. By exceeding this value, the instability in the surrounding soil under applied loads grows extensively in all the geotechnical properties considered. Cohesive soils tend to display poorer results compared to grained soils.
Rosa, Rodrigo Gomes da; Gomeñuka, Natalia Andrea; Oliveira, Henrique Bianchi de; Peyré-Tartaruga, Leonardo Alexandre
2018-01-01
Although studied at level surface, the trunk kinematics and pelvis-shoulder coordination of incline walking are unknown. The aim of this study was to evaluate the speed effects on pelvis-shoulder coordination and trunk movement and the cost of transport (C) during unloaded and loaded (25% of body mass) 15% incline walking. We collected 3-dimensional kinematic and oxygen consumption data from 10 physically active young men. The movements were analyzed in the sagittal plane (inclination and range of trunk motion) and the transverse plane (range of shoulder and pelvic girdle motion and phase difference). The rotational amplitude of the shoulder girdle decreased with load at all speeds, and it was lower at the highest speeds. The rotational amplitude of the pelvic girdle did not change with the different speeds. The phase difference was greater at optimal speed (3 km.hr -1 , at the lowest C) in the loaded and the unloaded conditions. The trunk inclination was greater with load and increased with speed, whereas the range of trunk motion was lower in the loaded condition and decreased with increasing speed. In conclusion, the load decreased the range of girdles and trunk motion, and the pelvis-shoulder coordination seemed to be critical for the incline walking performance.
Sandbakk, Oyvind; Hegge, Ann Magdalen; Ettema, Gertjan
2013-01-01
The ability to efficiently utilize metabolic energy to produce work is a key factor for endurance performance. The present study investigated the effects of incline, performance level, and gender on the gross mechanical efficiency during roller ski skating. Thirty-one male and nineteen female elite cross-country skiers performed a 5-min submaximal session at approximately 75% of VO2peak on a 5% inclined treadmill using the G3 skating technique. Thereafter, a 5-min session on a 12% incline using the G2 skating technique was performed at a similar work rate. Gross efficiency was calculated as the external work rate against rolling friction and gravity divided by the metabolic rate using gas exchange. Performance level was determined by the amount of skating FIS points [the Federation of International Skiing (FIS) approved scoring system for ski racing] where fewer points indicate a higher performance level. Strong significant correlations between work rate and metabolic rate within both inclines and gender were revealed (r = -0.89 to 0.98 and P higher at the steeper incline, both for men (17.1 ± 0.4 vs. 15.8 ± 0.5%, P better ranked elite male and female skiers skied more efficiently.
Lattice cell diffusion coefficients. Definitions and comparisons
International Nuclear Information System (INIS)
Hughes, R.P.
1980-01-01
Definitions of equivalent diffusion coefficients for regular lattices of heterogeneous cells have been given by several authors. The paper begins by reviewing these different definitions and the unification of their derivation. This unification makes clear how accurately each definition (together with appropriate cross-section definitions to preserve the eigenvalue) represents the individual reaction rates within the cell. The approach can be extended to include asymmetric cells and whereas before, the buckling describing the macroscopic flux shape was real, here it is found to be complex. A neutron ''drift'' coefficient as well as a diffusion coefficient is necessary to produce the macroscopic flux shape. The numerical calculation of the various different diffusion coefficients requires the solutions of equations similar to the ordinary transport equation for an infinite lattice. Traditional reactor physics codes are not sufficiently flexible to solve these equations in general. However, calculations in certain simple cases are presented and the theoretical results quantified. In difficult geometries, Monte Carlo techniques can be used to calculate an effective diffusion coefficient. These methods relate to those already described provided that correlation effects between different generations of neutrons are included. Again, these effects are quantified in certain simple cases. (author)
Experimental methodology for obtaining sound absorption coefficients
Directory of Open Access Journals (Sweden)
Carlos A. Macía M
2011-07-01
Full Text Available Objective: the authors propose a new methodology for estimating sound absorption coefficients using genetic algorithms. Methodology: sound waves are generated and conducted along a rectangular silencer. The waves are then attenuated by the absorbing material covering the silencer’s walls. The attenuated sound pressure level is used in a genetic algorithm-based search to find the parameters of the proposed attenuation expressions that include geometric factors, the wavelength and the absorption coefficient. Results: a variety of adjusted mathematical models were found that make it possible to estimate the absorption coefficients based on the characteristics of a rectangular silencer used for measuring the attenuation of the noise that passes through it. Conclusions: this methodology makes it possible to obtain the absorption coefficients of new materials in a cheap and simple manner. Although these coefficients might be slightly different from those obtained through other methodologies, they provide solutions within the engineering accuracy ranges that are used for designing noise control systems.
Radon emanation coefficients in sandy soils
International Nuclear Information System (INIS)
Holy, K.; Polaskova, A.; Baranova, A.; Sykora, I.; Hola, O.
1998-01-01
In this contribution the results of the study of an influence of the water content on the emanation coefficient for two sandy soil samples are reported. These samples were chosen on the because of the long-term continual monitoring of the 222 Rn concentration just in such types of soils and this radon concentration showed the significant variations during a year. These variations are chiefly given in connection with the soil moisture. Therefore, the determination of the dependence of the emanation coefficient of radon on the water content can help to evaluate the influence of the soil moisture variations of radon concentrations in the soil air. The presented results show that the emanation coefficient reaches the constant value in the wide interval of the water content for both sandy soil samples. Therefore, in the common range of the soil moisture (5 - 20 %) it is impossible to expect the variations of the radon concentration in the soil air due to the change of the emanation coefficient. The expressive changes of the radon concentration in the soil air can be observed in case of the significant decrease of the emanation coefficient during the soil drying when the water content decreases under 5 % or during the complete filling of the soil pores by the water. (authors)
Computation of Clebsch-Gordan and Gaunt coefficients using binomial coefficients
International Nuclear Information System (INIS)
Guseinov, I.I.; Oezmen, A.; Atav, Ue
1995-01-01
Using binomial coefficients the Clebsch-Gordan and Gaunt coefficients were calculated for extremely large quantum numbers. The main advantage of this approach is directly calculating these coefficients, instead of using recursion relations. Accuracy of the results is quite high for quantum numbers l 1 , and l 2 up to 100. Despite direct calculation, the CPU times are found comparable with those given in the related literature. 11 refs., 1 fig., 2 tabs
Curvature of Indoor Sensor Network: Clustering Coefficient
Directory of Open Access Journals (Sweden)
2009-03-01
Full Text Available We investigate the geometric properties of the communication graph in realistic low-power wireless networks. In particular, we explore the concept of the curvature of a wireless network via the clustering coefficient. Clustering coefficient analysis is a computationally simplified, semilocal approach, which nevertheless captures such a large-scale feature as congestion in the underlying network. The clustering coefficient concept is applied to three cases of indoor sensor networks, under varying thresholds on the link packet reception rate (PRR. A transition from positive curvature (“meshed” network to negative curvature (“core concentric” network is observed by increasing the threshold. Even though this paper deals with network curvature per se, we nevertheless expand on the underlying congestion motivation, propose several new concepts (network inertia and centroid, and finally we argue that greedy routing on a virtual positively curved network achieves load balancing on the physical network.
Nozzle geometry variations on the discharge coefficient
Directory of Open Access Journals (Sweden)
M.M.A. Alam
2016-03-01
Full Text Available Numerical works have been conducted to investigate the effect of nozzle geometries on the discharge coefficient. Several contoured converging nozzles with finite radius of curvatures, conically converging nozzles and conical divergent orifices have been employed in this investigation. Each nozzle and orifice has a nominal exit diameter of 12.7×10−3 m. A 3rd order MUSCL finite volume method of ANSYS Fluent 13.0 was used to solve the Reynolds-averaged Navier–Stokes equations in simulating turbulent flows through various nozzle inlet geometries. The numerical model was validated through comparison between the numerical results and experimental data. The results obtained show that the nozzle geometry has pronounced effect on the sonic lines and discharge coefficients. The coefficient of discharge was found differ from unity due to the non-uniformity of flow parameters at the nozzle exit and the presence of boundary layer as well.
Control in the coefficients with variational crimes
DEFF Research Database (Denmark)
Evgrafov, Anton; Marhadi, Kun Saptohartyadi
2012-01-01
We study convergence of discontinuous Galerkin-type discretizations of the problems of control in the coefficients of uniformly elliptic partial differential equations (PDEs). As a model problem we use that of the optimal design of thin (Kirchhoff) plates, where the governing equations are of the......We study convergence of discontinuous Galerkin-type discretizations of the problems of control in the coefficients of uniformly elliptic partial differential equations (PDEs). As a model problem we use that of the optimal design of thin (Kirchhoff) plates, where the governing equations...... to “volumetric” Lebesgue norm, changes of the coefficients is generally speaking not continuous. We utilize the lifting formulation of the discontinuous Galerkin method to deal with this issue.Our main result is that limit points of sequences of designs verifying discrete versions of stationarity can also...
Optical distortion coefficients of laser windows
International Nuclear Information System (INIS)
Klein, C.A.
1989-01-01
This paper addresses the problem of describing and evaluating thermal lensing phenomena that occur as a result of the absorption of laser light in solid windows. The aberration-function expansion method is applied for deriving the two optical distortion coefficients χ + and χ - that characterize the degradation in light intensity at the Gaussian focus of an initially diffraction-limited laser beam passing through a weakly absorbing stress-birefringent window. In a pulsed mode of operation, the concept of an effective optical distortion coefficient. χ eff, which properly combines the coefficients χ + and χ - in terms of potential impact on focal irradiances, then leads to the definition of a figure of merit for distortion. The theory and the calculations presented in this papers provide simple analytical tools for predicting the optical performance of a window-material candidate in a specific system's environment
Vinson, Benjamin R.; Chiang, Eugene
2018-03-01
The behaviour of an interior test particle in the secular three-body problem has been studied extensively. A well-known feature is the Lidov-Kozai resonance in which the test particle's argument of periastron librates about ±90° and large oscillations in eccentricity and inclination are possible. Less explored is the inverse problem: the dynamics of an exterior test particle and an interior perturber. We survey numerically the inverse secular problem, expanding the potential to hexadecapolar order and correcting an error in the published expansion. Four secular resonances are uncovered that persist in full N-body treatments (in what follows, ϖ and Ω are the longitudes of periapse and of ascending node, ω is the argument of periapse, and subscripts 1 and 2 refer to the inner perturber and the outer test particle): (i) an orbit-flipping quadrupole resonance requiring a non-zero perturber eccentricity e1, in which Ω2 - ϖ1 librates about ±90°; (ii) a hexadecapolar resonance (the `inverse Kozai' resonance) for perturbers that are circular or nearly so and inclined by I ≃ 63°/117°, in which ω2 librates about ±90° and which can vary the particle eccentricity by Δe2 ≃ 0.2 and lead to orbit crossing; (iii) an octopole `apse-aligned' resonance at I ≃ 46°/107° wherein ϖ2 - ϖ1 librates about 0° and Δe2 grows with e1; and (iv) an octopole resonance at I ≃ 73°/134° wherein ϖ2 + ϖ1 - 2Ω2 librates about 0° and Δe2 can be as large as 0.3 for small but non-zero e1. Qualitatively, the more eccentric the perturber, the more the particle's eccentricity and inclination vary; also, more polar orbits are more chaotic. Our solutions to the inverse problem have potential application to the Kuiper belt and debris discs, circumbinary planets, and hierarchical stellar systems.
Criterions for fixing regulatory seismic acceleration coefficients
International Nuclear Information System (INIS)
Costes, D.
1988-03-01
Acceleration coeffficients to be taken into account in seismic areas for calculation of structures are defined in national seismic regulations. Joined to the described qualitative requirements, these coefficients represent a balance between precaution costs and avoided damages, both in terms of material repairing costs and damage to human life. Persons in charge of fixing these coefficients must be informed of corresponding quantitative aspects. Data on seismic motions occurrencies and consequences are gathered here and convoluted to mean damage evaluations. Indications on precaution costs are joined, which shows that currently recommended levels of seismic motions are high relatively to financial profitability, and represent in fact an aethical choice about human life value [fr
Dependence of sputtering coefficient on ion dose
International Nuclear Information System (INIS)
Colligon, J.S.; Patel, M.H.
1977-01-01
The sputtering coefficient of polycrystalline gold bombarded by 10-40 keV Ar + ions had been measured as a function of total ion dose and shown to exhibit oscillations in magnitude between 30 and 100%. Possible experimental errors which would give rise to such an oscillation have been considered, but it is apparent that these factors are unable to explain the measurements. It is proposed that a change in the Sublimation Energy associated with either bulk damage or formation of surface topographical features arising during ion bombardment may be responsible for the observed variations in sputtering coefficient. (author)
Absorption coefficient instrument for turbid natural waters
Friedman, E.; Cherdak, A.; Poole, L.; Houghton, W.
1980-01-01
The paper presents an instrument that directly measures multispectral absorption coefficient of turbid natural water. Attention is given to the design, which is shown to incorporate methods for the compensation of variation in the internal light source intensity, correction of the spectrally dependent nature of the optical elements, and correction for variation in the background light level. In addition, when used in conjunction with a spectrally matched total attenuation instrument, the spectrally dependent scattering coefficient can also be derived. Finally, it is reported that systematic errors associated with multiple scattering have been estimated using Monte Carlo techniques.
A drying coefficient for building materials
DEFF Research Database (Denmark)
Scheffler, Gregor Albrecht; Plagge, Rudolf
2009-01-01
, in many cases such a coefficient would be highly appreciated, e.g. in interaction of industry and research or for the distinction and selection of suitable building materials throughout design and practise. This article first highlights the importance of drying experiments for hygrothermal...... and defined as a new and independent material parameter. It contains information about the moisture transport properties throughout the wide range of moisture contents from hygroscopic up to saturation. With this new and valuable coefficient, it is now possible to distinguish and select building materials...
Shear viscosity coefficient of liquid lanthanides
Energy Technology Data Exchange (ETDEWEB)
Patel, H. P., E-mail: patel.harshal2@gmail.com; Thakor, P. B., E-mail: pbthakore@rediffmail.com; Prajapati, A. V., E-mail: anand0prajapati@gmail.com [Department of Physics, Veer Narmad South Gujarat University, Surat 395 007, Gujarat (India); Sonvane, Y. A., E-mail: yas@ashd.svnit.ac.in [Department of Applied Physics, S. V. National Institute of Technology, Surat 395 007, Gujarat (India)
2015-05-15
Present paper deals with the computation of shear viscosity coefficient (η) of liquid lanthanides. The effective pair potential v(r) is calculated through our newly constructed model potential. The Pair distribution function g(r) is calculated from PYHS reference system. To see the influence of local field correction function, Hartree (H), Tailor (T) and Sarkar et al (S) local field correction function are used. Present results are compared with available experimental as well as theoretical data. Lastly, we found that our newly constructed model potential successfully explains the shear viscosity coefficient (η) of liquid lanthanides.
Reaction rate calculations via transmission coefficients
International Nuclear Information System (INIS)
Feit, M.D.; Alder, B.J.
1985-01-01
The transmission coefficient of a wavepacket traversing a potential barrier can be determined by steady state calculations carried out in imaginary time instead of by real time dynamical calculations. The general argument is verified for the Eckart barrier potential by a comparison of transmission coefficients calculated from real and imaginary time solutions of the Schroedinger equation. The correspondence demonstrated here allows a formulation for the reaction rate that avoids difficulties due to both rare events and explicitly time dependent calculations. 5 refs., 2 figs
Chong, R; Berl, B; Cook, B; Turner, P; Walker, K
2017-06-01
The visual, somatosensory, and vestibular systems are critical for establishing a sensorimotor set for postural control and orientation. The goal of this study was to assess how individuals with a vestibular-related disorder keep their balance following prolonged stance on an inclined surface. We hypothesize that subjects will show greater reliance on the somatosensory system than age-matched controls as inferred by the presence of a forward postural lean aftereffect following the inclined stance (i.e., a positive response). The results revealed an underlying somatosensory-dominant strategy for postural control in the vestibular group: 100% of the subjects tested positive compared to 58% in the control group (P=.006). Individuals with a vestibular-related disorder use a somatosensory-dominant strategy for postural orientation following prolonged inclined stance. The implications for the management of this population are discussed. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Energy Technology Data Exchange (ETDEWEB)
Afsar Khan, A. [Department of Mathematics and Statistics, FBAS, IIUI, Islamabad (Pakistan); Ellahi, R., E-mail: rahmatellahi@yahoo.com [Department of Mathematics and Statistics, FBAS, IIUI, Islamabad (Pakistan); Department of Mechanical Engineering, Bourns Hall, University of California Riverside, CA 92521 (United States); Mudassar Gulzar, M. [National University of Sciences and Technology, College of Electrical and Mechanical Engineering Islamabad (Pakistan); Sheikholeslami, Mohsen [Department of Mechanical Engineering, Babol University of Technology, Babol (Iran, Islamic Republic of)
2014-12-15
In this study the peristaltic motion of Oldroyd fluid in an asymmetric channel is investigated. Mathematical analysis has been carried out in the presence of an inclined magnetic field. Heat transfer is also taken into account. The physical problem is first modeled and then the analytical solutions of coupled equations are developed by regular perturbation method. Assumptions of long wavelength approximation are used. Effects of inclined magnetic field on the axial velocity and temperature are presented. Physical features of pertinent parameters such as wave number δ, Reynolds number Re, Weissenberg number Wi, Prandtl number Pr and Hartmann number M are also discussed graphically at the end of the paper. - Highlights: • This paper analyses heat transfer and inclined magnetic effects in peristaltic motion of Oldroyd fluid. • An asymmetric channel under long wavelength approximation is considered. • Regular perturbation method is used to find analytical solutions. • Effects of sundry parameters are presented through graphs.
Directory of Open Access Journals (Sweden)
NR Yuliawati Zenab
2009-07-01
Full Text Available The purpose of this study was to find out whether there were changes in occlusal plane inclination after fixed orthodontic treatment of bimaxillary protrusion cases where extraction of four first premolars was needed using the standard Edgewise appliances. The sample was fourteen orthodontic patients, aged above sixteen years old, no sexual discrimination, treated with fixed appliances at Orthodontic Specialist Clinic Faculty of Dentistry Universitas Padjadjaran. The method was a pre-post design which compared occlusal plane inclination obtained from tracings of lateral cephalograms before and after orthodontic treatment. The results were calculated with the paired t-test analysis. The study revealed that there were no significant changes in occlusal plane inclination after the orthodontic treatment.
International Nuclear Information System (INIS)
Montavon, P.M.; Hohn, R.B.; Olmstead, M.L.; Rudy, R.L.
1985-01-01
The inclination and anteversion angles of the femoral head and neck in 30 mongrel dogs were determined using a radiographic biplanar technique. The angle of anteversion of the 30 necropsy specimens was measured directly and compared with the in vivo radiographic measurements. The average value for the angles of anteversion, inclination, and corrected real angles of inclination were 31.3°, 148.8°, and 144.7°, respectively. Graphs were established using existing trigonometric relations to facilitate the analysis. The method used was found to be simple, reliable, and accurate. The mean difference between the indirect radiographic biplanar technique and direct measurements on isolated bones was ° 1.5°. The difference between the mean values of anteversion angles determined after radiographic biplanar technique and direct bone measurements was not significant (p > 0.05)
Farrington, Timothy; Coward, Trevor; Onambele-Pearson, Gladys; Taylor, Rebecca L; Earl, Philip; Winwood, Keith
2016-06-01
Excessive material thinning has been observed in the production of custom-made mouthguards in a number of studies, due to production anomalies that may lead to such thinning. This study investigated thinning material patterns of custom-made mouthguards when the anterior angulation of dental model was increased during the thermoforming process. A total of 60 samples of mouthguard blanks were thermoformed on identical maxillary models under four anterior inclination conditions (n = 4 × 15): control 0, 15, 30 and 45°. Each mouthguard sample was measured, using an electronic calliper gauge at three anatomical points (anterior labial sulcus, posterior occlusion and posterior lingual). Mouthguards were then CT scanned to give a visual representation of the surface thickness. Data showed a significant difference (P < 0.005) in the anterior mouthguard thickness between the four levels of anterior inclination, with the 45° inclination producing the thickest mouthguards, increasing the mean anterior thickness by 75% (2.8 mm, SD: 0.16) from the model on a flat plane (1.6 mm, SD: 0.34). Anterior model inclination of 30 and 45° inclinations increased consistencies between the thickest and thinnest mouthguards in the anterior region of these sample groups. This study highlights the importance of standardizing the thermoforming process, as this has a significant effect on the quality and material distribution of the resultant product. In particular, greater model inclination is advised as this optimizes the thickness of the anterior sulcus of the mouthguard which may be more prominently at risk from sport-related impact. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Yun, Seong-Woo; Lee, Byung Kook; Jeung, Kyung Woon; Park, Sang Wook; Choi, Sung Soo; Lee, Chang-Hee; Ryu, So-Yeon
2014-08-01
A step stool is an ordinary device to improve the quality of chest compression (CC) during in-hospital cardiopulmonary resuscitation (CPR). We investigated the effect of an inclined step stool on the quality of CC during CPR on a hospital bed. We conducted a randomized crossover study of simulation using a manikin. Two different methods of CC were performed and compared: CC using a flat stool and CC using an inclined (20°) stool. Each session of CC was performed for 2 minutes using a metronome at a rate of 110 beats per minute. The primary outcome was the depth of CC. The adequate CC rate, duty cycle, rate of incomplete recoil, and the angle between the arm of the participants and the bed were also measured. The median value of the mean depth of CC was 50.5 mm (45.0-57.0 mm) in the flat stool group and 54.5 mm (47.0-58.3 mm) in the inclined stool group (P = .014). The adequate CC rate was significantly higher in the inclined stool group (84.2% [37.6%-99.1%] vs 57.0% [15.2%-95.0%]; P = .016). The duty cycle and the rate of incomplete recoil were comparable between the 2 groups. The angles between the arm of the participants and the bed were more vertical in the inclined stool group (84.0° ± 5.2° vs 81.0° ± 4.8°; P = .014). Using an inclined stool resulted in an improvement in the depth of CC and the adequate CC rate without increasing the rate of incomplete chest recoil. Copyright © 2014 Elsevier Inc. All rights reserved.
Nakamura, Shigeru; Matsuda, Kenta; Arai, Noriyuki; Kobayashi, Makoto; Wakimoto, Nobuhiro; Matsushita, Takashi
2006-05-01
To reduce variations of cup inclination after total hip arthroplasty using the mini-incision posterior approach, we introduced two techniques, one at a time. The first technique is measuring a pelvic tilt angle in the frontal plane in the initial lateral position in the operating room. The second technique is using a tilt-meter to adjust the direction of a cup holder. The purpose of this study was to evaluate the usefulness of these techniques. For 106 hips operated on, the cementless acetabular component was impacted using a cup holder targeting 45 degrees in inclination and 20 degrees in anteversion. These hips were divided into three consecutive groups. For the first group (30 hips), no radiograph in the lateral position was obtained, and the alignment frame of the cup holder was aligned parallel to the floor by eye measurement. For the second group (56 hips), we measured the pelvic tilt angle, and tilted the alignment frame by eye measurement. For the third group (20 hips), we measured the pelvic tilt angle and tilted the alignment frame using the tilt meter. Inclination and anteversion angles were measured on postoperative radiographs. The absolute value of the difference between the measured angle and the target angle was defined as the inclination error or anteversion error, respectively. The inclination error was more than 5 degrees for 33% in the first group, 20% in the second group, and 0% in the third group (P = 0.015, chi-squared test). There was a significant difference between the first group and the third group (P = 0.0039). For the anteversion error, there were no significant differences among the three groups. Adjustment using a tilt-meter after measuring a pelvic tilt angle is a useful method to reduce the rate of large inclination error.
Application of inclined elliptic orbits - A new dimension in satellite sound broadcasting
Galligan, K. P.; Robson, D.
1990-10-01
The communications link between a geostationary satellite and a mobile user operating in a high latitude region is subject to fading through a combination of shadowing and multipath effects. The properties of the link may be substantially improved by the use of satellites in highly inclined elliptic (HEO) orbits, with a resultant improvement in availability of the satellite service. Such systems have been under study in Europe for several years primarily in connection with voice communications. The application to a sound broadcasting satellite service is currently under investigation within the Archimedes program of the European Space Agency. The design principles of such systems are described and the performance parameters for both applications within the wider European context are indicated. Finally, an initial economic assessment of the HEO system in comparison with geostationary satellite and terrestrial based alternatives is provided.
An experimental investigation of stratified two-phase pipe flow at small inclinations
Energy Technology Data Exchange (ETDEWEB)
Espedal, Mikal
1998-12-31
The prediction of stratified flow is important for several industrial applications. Stratified flow experiments were carefully performed in order to investigate the performance of a typical model which uses wall friction factors based on single phase pipe flow as described above. The test facility has a 18.5 m long and 60 mm i.d. (L/D=300) acrylic test section which can be inclined between -10 {sup o} and +10 {sup o}. The liquid holdup was measured by using fast closing valves and the pressure gradients by using three differential pressure transducers. Interfacial waves were measured by thin wire conductance probes mounted in a plane perpendicular to the main flow. The experiments were performed using water and air at atmospheric pressure. The selected test section inclinations were between -3 {sup o} and +0.5 {sup o} to the horizontal plane. A large number of experiments were performed for different combinations of air and water flow rates and the rates were limited to avoid slug flow and stratified flow with liquid droplets. The pressure gradient and the liquid holdup were measured. In addition the wave probes were used to find the wave heights and the wave power spectra. The results show that the predicted pressure gradient using the standard models is approximately 30% lower than the measured value when large amplitude waves are present. When the flow is driven by the interfacial force the test section inclination has minor influence on the deviation between predicted and measured pressure gradients. Similar trends are apparent in data from the literature, although they seem to have gone unnoticed. For several data sets large spread in the predictions are observed when the model described above was used. Gas wall shear stress experiments indicate that the main cause of the deviation between measured and predicted pressure gradient and holdup resides in the modelling of the liquid wall friction term. Measurements of the liquid wall shear stress distribution
Control by damping Injection of Electrodynamic Tether System in an Inclined Orbit
DEFF Research Database (Denmark)
Larsen, Martin Birkelund; Blanke, Mogens
2009-01-01
dynamical system. Based on this model, a nonlinear controller is designed that will make the system asymptotically stable around its open-loop equilibrium. The control scheme handles the time-varying nature of the system in a suitable manner resulting in a large operational region. The performance...... of the closed loop system is treated using Floquet theory, investigating the closed loop properties for their dependency of the controller gain and orbit inclination.......Control of a satellite system with an electrodynamic tether as actuator is a time-periodic and underactuated control problem. This paper considers the tethered satellite in a Hamiltonian framework and determines a port-controlled Hamiltonian formulation that adequately describes the nonlinear...
The inclination to evil and the punishment of crime - from the bible to behavioral genetics.
Gold, Azgad; S Appelbaum, Paul
2014-01-01
The evolving field of behavioral genetics is gradually elucidating the complex interplay between genes and environment. Scientific data pertaining to the behavioral genetics of violent behavior provides a new context for an old dilemma regarding criminal responsibility and punishment: if the inclination to violent behavior is inherent in someone's nature, how should it affect punishment for crime? Should it be considered as a mitigating or an aggravating factor? Given psychiatrists' increasing involvement in providing testimony on behavioral genetics in the criminal justice system, this paper first provides the necessary background required for understanding how this question arises and reviews the relevant literature. Then, we address this question from the perspective of the Bible and its commentators, in the belief that their insights may enrich the contemporary discussion of this question.
Energy Technology Data Exchange (ETDEWEB)
Qasim, Muhammad [COMSATS Institute of Information Technology, Islamabad (Pakistan). Dept. of Mathematics; Hayat, Tasawar [Quaid-i-Azam Univ., Islamabad (Pakistan). Dept. of Mathematics; Obaidat, Saleem [King Saud Univ., Riyadh (Saudi Arabia). Dept. of Mathematics
2012-03-15
This study concentrates on the heat transfer analysis of the steady flow of viscoelastic fluid along an inclined stretching surface. Analysis has been carried out in the presence of thermal radiation and the Rosseland approximation is used to describe the radiative heat flux in the energy equation. The equations of continuity, momentum and energy are reduced into the system of governing differential equations and solved by homotopy analysis method (HAM). The velocity and temperature are illustrated through graphs. Exact and homotopy solutions are compared in a limiting sense. It is noticed that viscoelastic parameter decreases the velocity and boundary layer thickness. It is also observed that increasing values of viscoelastic parameter reduces the thickness of momentum boundary layer and increase the heat transfer rate. However, it is found that increasing the radiation parameter has the effect of decreasing the local Nusselt number. (orig.)
Noreen, S.; Hayat, T.; Alsaedi, A.; Qasim, M.
2013-09-01
A mathematical model is constructed to investigate the mixed convective heat and mass transfer effects on peristaltic flow of magnetohydrodynamic pseudoplastic fluid in a symmetric channel. An analysis has been carried out to examine the impact of an inclined magnetic field and chemical reaction in presence of heat sink/source. Mechanics of flow and heat/mass transfer described in terms of continuity, linear momentum, energy and concentration equations are predicted by using long wavelength and low Reynolds number. Expressions for stream function, temperature, concentration and pressure gradient are derived. Numerical simulation is performed for the rise in pressure per wave length. Effects of several physical parameters on the flow quantities are analyzed.
Flow distribution in a solar collector panel with horizontally inclined absorber strips
DEFF Research Database (Denmark)
Fan, Jianhua; Shah, Louise Jivan; Furbo, Simon
2007-01-01
The objective of this work is to theoretically and experimentally investigate the flow and temperature distribution in a solar collector panel with an absorber consisting of horizontally inclined strips. Fluid flow and heat transfer in the collector panel are studied by means of computational fluid...... dynamics (CFD) calculations. Further, experimental investigations of a 12.5 m(2) solar collector panel with 16 parallel connected horizontal fins are carried out. The flow distribution through the absorber is evaluated by means of temperature measurements on the backside of the absorber tubes. The measured...... rate, properties of solar collector fluid, solar collector fluid inlet temperature and collector tilt angle are shown. The flow distribution through the absorber fins is uniform if high flow rates are used. By decreased flow rate and decreased content of glycol in the glycol/water mixture used as solar...
Effects of inclination and eccentricity on optimal trajectories between earth and Venus
Gravier, J.-P.; Marchal, C.; Culp, R. D.
1973-01-01
The true optimal transfers, including the effects of the inclination and eccentricity of the planets' orbits, between earth and Venus are presented as functions of the corresponding idealized Hohmann transfers. The method of determining the optimal transfers using the calculus of variations is presented. For every possible Hohmann window, specified as a continuous function of the longitude of perihelion of the Hohmann trajectory, the corresponding numerically exact optimal two-impulse transfers are given in graphical form. The cases for which the optimal two-impulse transfer is the absolute optimal, and those for which a three-impulse transfer provides the absolute optimal transfer are indicated. This information furnishes everything necessary for quick and accurate orbit calculations for preliminary Venus mission analysis. This makes it possible to use the actual optimal transfers for advanced planning in place of the standard Hohmann transfers.
Theilmann, Florian
2017-01-01
The classical brachistochrone problem asks for the path on which a mobile point M just driven by its own gravity will travel in the shortest possible time between two given points A and B. The resulting curve, the cycloid, will also be the tautochrone curve, i.e. the travelling time of the mobile point will not depend on its starting position. We discuss three similar problems of increasing complexity that restrict the motion to inclined planes. Without using calculus we derive the respective optimal geometry and compare the theoretical values to measured travelling times. The observed discrepancies are quantitatively modelled by including angular motion and friction. We also investigate the correspondence between the original problem and our setups. The topic provides a conceptually simple yet non-trivial problem setting inviting for problem based learning and complex learning activities such as planing suitable experiments or modelling the relevant kinematics.
Exploring the Strategic Inclinations of Japanese Environmental NPOs in Post-Fukushima Japan
Directory of Open Access Journals (Sweden)
Mark Heuer
2018-03-01
Full Text Available Following Sine and David’s research on the potential of environmental jolts shifting the status quo in U.S. energy policy, we focus on the potential for environmental non-profit organizations in Japan to shift the status quo through institutional entrepreneurial efforts following the environmental jolt from the Fukushima nuclear power catastrophe. We evaluate the institutionalization of energy policy in Japan both pre- and post-Fukushima as the context for examining the potential for change in Japan’s energy policy. We utilize mixed qualitative and quantitative research methods to evaluate the attitudes and strategic inclinations of privately funded Japanese environmental non-profit organizations. Following Dreiling and Wolf’s model of material–organizational dependencies versus ideological motivations of non-profit organizations, we develop a typology to identify which, if any, segments of environmental Japanese non-profit organizations might pursue institutional entrepreneurial (Levy and Scully opportunities in support of renewable energy policy.
Solitary waves on inclined films: their characteristics and the effects on wall shear stress
Energy Technology Data Exchange (ETDEWEB)
Tihon, J. [Academy of Sciences of the Czech Republic, Institute of Chemical Process Fundamentals, Prague 6 (Czech Republic); Serifi, K.; Argyriadi, K.; Bontozoglou, V. [University of Thessaly, Department of Mechanical and Industrial Engineering, Volos (Greece)
2006-07-15
The properties of solitary waves, developing from inlet disturbances of controlled frequency along an inclined film flow, are systematically studied experimentally and computationally. Time-variations of film height and wall shear stress are measured, using respectively a capacitance probe and an electrodiffusion sensor. Computational data are provided from simulations performed by a Galerkin finite element scheme. The height and spacing of solitary humps, their phase velocity and the wavelength of the preceding capillary ripples are reported as functions of the Reynolds number (10
Aly, Nevin; Hamed, Ayman
2017-04-01
Al-Azhar considered one of the oldest mosques and the first theological college founded in Cairo. The main building material used in the mosque construction is dolomitic limestone and lime mortar. In many cases the wind affects the monumental structures and the direct action is related to the air flow by the rise of significant forces acting upon the surface of the structure. The inclination of the Mosque five minarets was monitored continuously in three dimensions X, Y &Z. Some oscillation sensors are installed on the top of the solid part of each minaret while the other sensors have been installed inside the minaret bulb to study the difference in dynamic behavior. From the recording data, it is obviously readable that all minarets are continuously oscillating in the three dimensions and such data is helpful for studying the dynamic behaviors of minarets which directly related to local wind forces.
Linearized transfer between inclined circular orbits using low-thrust blow down propulsion system
Kechichian, J. A.; White, L. K.
1983-01-01
Noncoplanar transfers between neighboring circular orbits are presented for spacecraft using their own low-thrust blow down propulsion system. It is assumed that the out-of-plane angle between the decaying thrust vector and the current orbit plane remains constant for each extended burn. Switching conditions are derived for the cutoff and relight of the propulsion system in order to carry out a given transfer with inclination change. Furthermore the location where the thrust acceleration is initially applied with respect to the line of nodes of the two orbits is uniquely determined. Finally an analytic derivation of the linearized coplanar motion for stationkeeping and terminal rendezvous studies is also presented and a scheme for deriving the second order correction shown.
Mine water pollution studies in Chapha Incline, Umaria Coalfield, Eastern Madhya Pradesh, India
Energy Technology Data Exchange (ETDEWEB)
Pathak, V.; Banerjee, A.K. [Hari Singh Gour University, Sagar (India). Dept. of Chemistry
1992-06-01
Mining effects physical and chemical changes in the mine environment resulting in water pollution. Based on the geological distribution the coal mines in the state of Madhya Pradesh, the Coalfield can be categorised into three basins Northern, Southern and Satpura. The Northern belt lies along the Sone Valley whilst the Southern one lies within Mahanadi Valley and the Satpura basin lies south of the alluvial tract. Mine water pollution study reported in this paper is concerned with Chapha Incline, Umaria Coalfield in Eastern Madhya Pradesh. The water analysis was carried out on representative samples obtained from the site on pre-Monsoon and post-monsoon seasons, and reference samples were obtained from the area in the vicinity of the site of investigation. The samples were analysed in the laboratory for determining water quality parameters including trace element detection and microbial analyses. The chemical analysis results of mine water are presented in the form of Durov diagrams. 10 refs., 3 figs., 4 tabs.
Entropy Generation in Magnetohydrodynamic Mixed Convection Flow over an Inclined Stretching Sheet
Directory of Open Access Journals (Sweden)
Muhammad Idrees Afridi
2016-12-01
Full Text Available This research focuses on entropy generation rate per unit volume in magneto-hydrodynamic (MHD mixed convection boundary layer flow of a viscous fluid over an inclined stretching sheet. Analysis has been performed in the presence of viscous dissipation and non-isothermal boundary conditions. The governing boundary layer equations are transformed into ordinary differential equations by an appropriate similarity transformation. The transformed coupled nonlinear ordinary differential equations are then solved numerically by a shooting technique along with the Runge-Kutta method. Expressions for entropy generation (Ns and Bejan number (Be in the form of dimensionless variables are also obtained. Impact of various physical parameters on the quantities of interest is seen.
International Nuclear Information System (INIS)
Parchevsky, K. V.; Kosovichev, A. G.
2009-01-01
Investigation of propagation, conversion, and scattering of MHD waves in the Sun is very important for understanding the mechanisms of observed oscillations and waves in sunspots and active regions. We have developed a three-dimensional linear MHD numerical model to investigate the influence of the magnetic field on excitation and properties of the MHD waves. The results show that surface gravity waves (f-modes) are affected by the background magnetic field more than acoustic-type waves (p-modes). Comparison of our simulations with the time-distance helioseismology results from Solar and Heliospheric Observatory/MDI shows that the amplitude of travel time variations with azimuth around sunspots caused by the inclined magnetic field does not exceed 25% of the observed amplitude even for strong fields of 1400-1900 G. This can be an indication that other effects (e.g., background flows and nonuniform distribution of the magnetic field) can contribute to the observed azimuthal travel time variations. The azimuthal travel time variations caused by the wave interaction with the magnetic field are similar for simulated and observed travel times for strong fields of 1400-1900 G if Doppler velocities are taken at the height of 300 km above the photosphere where the plasma parameter β << 1. For the photospheric level the travel times are systematically smaller by approximately 0.12 minutes than for the height of 300 km above the photosphere for all studied ranges of the magnetic field strength and inclination angles. Numerical MHD wave modeling and new data from the HMI instrument of the Solar Dynamics Observatory will substantially advance our knowledge of the wave interaction with strong magnetic fields on the Sun and improve the local helioseismology diagnostics.
Kandori, Takashi; Hayase, Toshiyuki; Inoue, Kousuke; Funamoto, Kenichi; Takeno, Takanori; Ohta, Makoto; Takeda, Motohiro; Shirai, Atsushi
2008-10-01
In recent years a diamond-like carbon (DLC) film and a 2-methacryloyloxyethyl phosphorylcholine (MPC) polymer have attracted attention as coating materials for implantable artificial organs or devices. When these materials are coated on vascular devices, compatibility to blood is an important problem. The present paper focuses on friction characteristics of erythrocytes to these coating materials in a medium. With an inclined centrifuge microscope developed by the authors, observation was made for erythrocytes moving on flat glass plates with and without coating in a medium of plasma or saline under the effect of inclined centrifugal force. Friction characteristics of erythrocytes with respect to these coating materials were then measured and compared to each other to characterize DLC and MPC as coating materials. The friction characteristics of erythrocytes in plasma using the DLC-coated and noncoated glass plates are similar, changing approximately proportional to the 0.5th power of the cell velocity. The cells stick to these plates in saline as well, implying the influence of plasma protein. The results using the MPC-coated plate in plasma are similar to those of the other plates for large cell velocities, but deviate from the other results with decreased cell velocity. The results change nearly proportional to the 0.75th power of the cell velocity in the range of small velocities. The results for the MPC-coated plate in saline are similar to that in plasma but somewhat smaller, implying that the friction characteristics for the MPC-coated plate are essentially independent of plasma protein.
Evaluation of different models to estimate the global solar radiation on inclined surface
Demain, C.; Journée, M.; Bertrand, C.
2012-04-01
Global and diffuse solar radiation intensities are, in general, measured on horizontal surfaces, whereas stationary solar conversion systems (both flat plate solar collector and solar photovoltaic) are mounted on inclined surface to maximize the amount of solar radiation incident on the collector surface. Consequently, the solar radiation incident measured on a tilted surface has to be determined by converting solar radiation from horizontal surface to tilted surface of interest. This study evaluates the performance of 14 models transposing 10 minutes, hourly and daily diffuse solar irradiation from horizontal to inclined surface. Solar radiation data from 8 months (April to November 2011) which include diverse atmospheric conditions and solar altitudes, measured on the roof of the radiation tower of the Royal Meteorological Institute of Belgium in Uccle (Longitude 4.35°, Latitude 50.79°) were used for validation purposes. The individual model performance is assessed by an inter-comparison between the calculated and measured solar global radiation on the south-oriented surface tilted at 50.79° using statistical methods. The relative performance of the different models under different sky conditions has been studied. Comparison of the statistical errors between the different radiation models in function of the clearness index shows that some models perform better under one type of sky condition. Putting together different models acting under different sky conditions can lead to a diminution of the statistical error between global measured solar radiation and global estimated solar radiation. As models described in this paper have been developed for hourly data inputs, statistical error indexes are minimum for hourly data and increase for 10 minutes and one day frequency data.
FEATURES OF DESIGN OF TIED-ARCH BRIDGES WITH FLEXIBLE INCLINED SUSPENSION HANGERS
Directory of Open Access Journals (Sweden)
V. O. Samosvat
2017-10-01
Full Text Available Purpose. Investigation and analysis of the hanger arrangement and the structural stability of a Network arch bridge – a tied-arch bridge with inclined hangers that cross each other at least twice. It is also necessary to make a comparative analysis with other types of hanger arrangements. Methodology. The authors in their research investigated a large number of parameters to determine their influence in the force distribution in the arch. Eventually they determined optimal values for all parameters. These optimal values allowed developing a design guide that leads to optimal arch design. When solving this problem, the authors used three-dimensional finite element models and the objective was to determine the most suitable solution for a road bridge, with a span of 100 meters, consisting of two inclined steel arches, located on a road with two traffic lanes, subjected to medium traffic. The virtual prototype of the model is performed by finite element simulator Midas Civil. Findings. In this study, for the bridge deck, a concrete tie appears to be the best solution considering the structural behavior of network arches, but economic advantages caused by easier erection may lead to steel or a composite bridge deck as better alternatives. Design requirements and local conditions of each particular bridge project will decide the most economic deck design.Originality. To ensure passenger comfort and the stability and continuity of the track, deformations of bridges are constricted. A network arch is a stiff structure with small deflections and therefore suitable to comply with such demands even for high speed railway traffic. A network arch bridge with a concrete tie usually saves more than half the steel required for tied arches with vertical hangers and concrete ties. Practical value. Following the study design advice given in this article leads to savings of about 60 % of structural steel compared with conventional tied arch bridges with
Directory of Open Access Journals (Sweden)
Saeed Dinarvand
2012-01-01
Full Text Available The steady three-dimensional flow of condensation or spraying on inclined spinning disk is studied analytically. The governing nonlinear equations and their associated boundary conditions are transformed into the system of nonlinear ordinary differential equations. The series solution of the problem is obtained by utilizing the homotopy perturbation method (HPM. The velocity and temperature profiles are shown and the influence of Prandtl number on the heat transfer and Nusselt number is discussed in detail. The validity of our solutions is verified by the numerical results. Unlike free surface flows on an incline, this through flow is highly affected by the spray rate and the rotation of the disk.
Energy Technology Data Exchange (ETDEWEB)
Asadi, A.; Shahriar, K.; Goshtasbi, K.; Najm, K. [Islam Azad University, Tehran (Iran). Dept. of Mining Engineering
2005-01-01
Subsidence phenomenon as an unwanted consequence of underground mining can cause problems for environment and surface structures in mine area. Surface subsidence prediction for inclined and steep seams has been given less attention than horizontal seams due to the difficulties involved in the extraction of such coal-seams. This paper introduces a new profile function method for prediction of surface subsidence due to inclined coal-seam mining. The results of calculation with the new function indicate that the predicted value has good agreement with the measured data.
Directory of Open Access Journals (Sweden)
Majdak Marek
2017-01-01
Full Text Available The objective of this paper was to determine the relationship between the efficiency of photovoltaic panels and the value of the angle of their inclination relative to the horizon. For the purpose of experimental research have been done tests on the photovoltaic modules made of monocrystalline, polycrystalline and amorphous silicon. The experiment consisted of measurement of the voltage and current generated by photovoltaic panels at a known value of solar radiation and a specified resistance value determined by using resistor with variable value of resistance and known value of the angle of their inclination relative to the horizon.
Vertical diffuse attenuation coefficient (Kd) based optical ...
Indian Academy of Sciences (India)
R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22
The optical classification of the different water types provides vital input for studies related to primary productivity, water clarity and determination of euphotic depth. Image data of the IRS-. P3 MOS-B, for Path 90 of 27th February, 1998 was used for deriving vertical diffuse attenuation coefficient (Kd) and an optical ...
Coefficient Omega Bootstrap Confidence Intervals: Nonnormal Distributions
Padilla, Miguel A.; Divers, Jasmin
2013-01-01
The performance of the normal theory bootstrap (NTB), the percentile bootstrap (PB), and the bias-corrected and accelerated (BCa) bootstrap confidence intervals (CIs) for coefficient omega was assessed through a Monte Carlo simulation under conditions not previously investigated. Of particular interests were nonnormal Likert-type and binary items.…
Tracking Time-Varying Coefficient-Functions
DEFF Research Database (Denmark)
Nielsen, Henrik Aalborg; Nielsen, Torben Skov; Joensen, Alfred K.
1999-01-01
A conditional parametric ARX-model is an ARX-model in which the parameters re replaced by smooth functions of an, possibly multivariate, externalinput signal. These functions are called coefficient functions is suggested. Essentially, in its most simple form, this method is a combination of recur...
Ideal related K-theory with coefficients
DEFF Research Database (Denmark)
Eilers, Soren; Restorff, Gunnar; Ruiz, Efren
2017-01-01
In this paper, we define an invariant, which we believe should be the substitute for total K-theory in the case when there is one distinguished ideal. Moreover, some diagrams relating the new groups to the ordinary K-groups with coefficients are constructed. These diagrams will in most cases help...
Regularity of the Interband Light Absorption Coefficient
Indian Academy of Sciences (India)
In this paper we consider the interband light absorption coefficient (ILAC), in a symmetric form, in the case of random operators on the -dimensional lattice. We show that the symmetrized version of ILAC is either continuous or has a component which has the same modulus of continuity as the density of states.
Prediction of longitudinal dispersion coefficient using multivariate ...
Indian Academy of Sciences (India)
Keywords. River water quality; artificial neural network; longitudinal dispersion coefficient; pollution transmission ... Error indices showed that MARS model has suitable performanceand is more accurate compared to multi-layer neural network model and empirical formulas. Results ofthe Gamma test and MARS model ...