Sample records for inclement weather conditions

  1. Modeling Inclement Weather Impacts on Traffic Stream Behavior

    Directory of Open Access Journals (Sweden)

    Hesham Rakha, PhD., P.Eng.


    Full Text Available The research identifies the steady-state car-following model parameters within state-of-the-practice traffic simulation software that require calibration to reflect inclement weather and roadway conditions. The research then develops procedures for calibrating non-steady state car-following models to capture inclement weather impacts and applies the procedures to the INTEGRATION software on a sample network. The results demonstrate that the introduction of rain precipitation results in a 5% reduction in light-duty vehicle speeds and a 3% reduction in heavy-duty vehicle speeds. An increase in the rain intensity further reduces light-duty vehicle and heavy-duty truck speeds resulting in a maximum reduction of 9.5% and 5.5% at the maximum rain intensity of 1.5 cm/h, respectively. The results also demonstrate that the impact of rain on traffic stream speed increases with the level of congestion and is more significant than speed differences attributed to various traffic operational improvements and thus should be accounted for in the analysis of alternatives. In the case of snow precipitation, the speed reductions are much more significant (in the range of 55%. Furthermore, the speed reductions are minimally impacted by the snow precipitation intensity. The study further demonstrates that precipitation intensity has no impact on the relative merit of various scenarios (i.e. the ranking of the scenario results are consistent across the various rain intensity levels. This finding is important given that it demonstrates that a recommendation on the optimal scenario is not impacted by the weather conditions that are considered in the analysis.

  2. The effect of inclement weather on trauma orthopaedic workload.

    LENUS (Irish Health Repository)

    Cashman, J P


    BACKGROUND: Climate change models predict increasing frequency of extreme weather. One of the challenges hospitals face is how to make sure they have adequate staffing at various times of the year. AIMS: The aim of this study was to examine the effect of this severe inclement weather on hospital admissions, operative workload and cost in the Irish setting. We hypothesised that there is a direct relationship between cold weather and workload in a regional orthopaedic trauma unit. METHODS: Trauma orthopaedic workload in a regional trauma unit was examined over 2 months between December 2009 and January 2010. This corresponded with a period of severe inclement weather. RESULTS: We identified a direct correlation between the drop in temperature and increase in workload, with a corresponding increase in demand on resources. CONCLUSIONS: Significant cost savings could be made if these injuries were prevented. While the information contained in this study is important in the context of resource planning and staffing of hospital trauma units, it also highlights the vulnerability of the Irish population to wintery weather.

  3. The effect of inclement weather on ankle fracture management in an Irish trauma unit.

    LENUS (Irish Health Repository)

    O'Neill, B J


    Ireland is unfamiliar with extreme weather conditions. Such conditions occurred in winter 2009-2010 and 2010-2011, with much of the country being affected by snow and ice. We reviewed the effect that these conditions had on the treatment of ankle fractures in our trauma unit.

  4. Weather conditions and daily television use in the Netherlands, 1996-2005

    NARCIS (Netherlands)

    Eisinga, R.; Franses, Ph.-H.; Vergeer, M.


    This study examines the impact of daily atmospheric weather conditions on daily television use in the Netherlands for the period 1996–2005. The effects of the weather parameters are considered in the context of mood and mood management theory. It is proposed that inclement and uncomfortable weather

  5. Roadway weather information system and automatic vehicle location (AVL) coordination. (United States)


    Roadway Weather Information System and Automatic Vehicle Location Coordination involves the : development of an Inclement Weather Console that provides a new capability for the state of Oklahoma : to monitor weather-related roadway conditions. The go...

  6. Weather conditions and daily television use in the Netherlands, 1996-2005 (United States)

    Eisinga, Rob; Franses, Philip Hans; Vergeer, Maurice


    This study examines the impact of daily atmospheric weather conditions on daily television use in the Netherlands for the period 1996-2005. The effects of the weather parameters are considered in the context of mood and mood management theory. It is proposed that inclement and uncomfortable weather conditions are associated with lower human mood, and that watching entertainment and avoiding informational programs may serve to repair such mood. We consequently hypothesize that people spend more time watching television if inclement and uncomfortable weather conditions (low temperatures, little sunshine, much precipitation, high wind velocity, less daylight) coincide with more airtime for entertainment programs, but that they view less if the same weather conditions coincide with more airtime devoted to information fare. We put this interaction thesis to a test using a time series analysis of daily television viewing data of the Dutch audience obtained from telemeters ( T = 3,653), merged with meteorological weather station statistics and program broadcast figures, whilst controlling for a wide array of recurrent and one-time societal events. The results provide substantial support for the proposed interaction of program airtime and the weather parameters temperature and sunshine on aggregate television viewing time. Implications of the findings are discussed.

  7. Inclement Weather Crater Repair Tool Kit (United States)


    public good. Find out more at To search for other technical reports published by ERDC, visit the ERDC online library at...dry Shop -Vac vacuum and accessories. ........................................................................ 23 Figure 25. Vinyl tarps...from the backfill surface immediately prior to capping the repairs. The wet/dry Shop -Vac vacuum (Item 10) shown in Figure 24 can also be used for

  8. Synoptic weather conditions during BOBMEX

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    sions when the strong wind field appeared spread over the peninsula and central India. This was also seen both in OLR and in vertical velocity fields prepared by National Centre for Medium. Range Weather Forecasting (NCMRWF). A band of low OLR (150–160watts/sqm) could be seen in the south and adjoining central ...


    NARCIS (Netherlands)



    Patients with musculoskeletal disorders, including fibromyalgia syndrome (FS), often state that weather conditions modulate their complaints. There have been a few studies concerning this issue, but the results appear to be contradictory. We tried to relate the subjective symptoms of pain,

  10. Weather conditions and sudden sensorineural hearing loss

    Directory of Open Access Journals (Sweden)

    Kateri Maria


    Full Text Available Abstract Background Climatic or meteorological condition changes have been implicated in the pathogenesis of Idiopathic Sudden Sensorineural Hearing Loss (ISSHL. We investigated the seasonal distribution of ISSHL and evaluated the influence of meteorological parameters (such as temperature, humidity, and atmospheric pressure, their variation and covariation on the incidence of the disease. Methods A total of 82 cases of ISSHL, admitted to our department over a five-year period, were enrolled in the study. Seasonal distribution of the disease was investigated by dividing the year in four seasons. Meteorological data included daily values of 13 distinct parameters recorded at the meteorological station of the University of Ioannina during this period. A relationship between each meteorological variable and the incidence of ISSHL was investigated by applying (χ2 test on data from 13 contingency tables as well as by using logistic regression and t-test approaches. In addition, the influence of different weather types on the incidence of ISSHL was investigated using Cluster Analysis in order to create eight clusters (weather types characteristic for the prefecture of Ioannina. Results The results of the study could not indicate any seasonal distribution of the disease. The incidence of ISSHL could not be significantly correlated either to any distinct meteorological parameter or to any specific weather type. Conclusions Meteorological conditions, such as those dominating in the Northwestern Greece, and/or their changes, have no proven effect on the incidence of ISSHL.

  11. Present weather and climate: evolving conditions (United States)

    Hoerling, Martin P; Dettinger, Michael; Wolter, Klaus; Lukas, Jeff; Eischeid, Jon K.; Nemani, Rama; Liebmann, Brant; Kunkel, Kenneth E.


    This chapter assesses weather and climate variability and trends in the Southwest, using observed climate and paleoclimate records. It analyzes the last 100 years of climate variability in comparison to the last 1,000 years, and links the important features of evolving climate conditions to river flow variability in four of the region’s major drainage basins. The chapter closes with an assessment of the monitoring and scientific research needed to increase confidence in understanding when climate episodes, events, and phenomena are attributable to human-caused climate change.


    Directory of Open Access Journals (Sweden)

    TSOUTSEOS Athanasios


    Full Text Available Despite the leaps in technology in warfare and modern weaponry, the human soldier remains the most important aspect of a competitive army. Military textile materials are an essential, yet often neglected, factor that protect the soldier and enable his or her actions in varying fields around the globe. The participation of most countries in larger military or peacekeeping organisations like the NATO and the UN involves the extension of the geographical areas of activity in environments varying greatly from the soldiers’ country of origin. Protection from the varying weather conditions and comfort are important factors for the optimal operational ability of a person in humanitarian actions or at combat field. Research in performance textiles has given rise to various forms of multilayered clothing and functional membranes with several commercial tradenames. These performance textiles aim at specialized sports and recreational activities as mountain climbing, hiking and cycling, among others. Additional advancements involve even more specialized function like the incorporation of microelectronics monitoring of vital signals of the human body or for the control of equipment. The incorporation of such technological advancements is a current challenge for the national and international military forces that inherit a set of strict procedures. These procedures involve standardization, detailed technical descriptions, cost and of course customs particular to each force. On the other hand, the advancements cannot be neglected and the numbers of soldiers involved are significant to enable the need for change. Current paper is concentrated on the clothing and fabric developments relating to the protection of the soldiers from extreme weather conditions.

  13. Personal warning system for vessels under bad weather conditions

    NARCIS (Netherlands)

    Scholte, K.; Rothkrantz, L.J.M.


    Many services provide weather forecasts, including severe weather alerts for the marine. It proves that many ships neglect the warnings because they expect to be able to handle the bad weather conditions. In order to identify possible unsafe situations the Coast Guard needs to observe marine vessel

  14. Weather conditions: a neglected factor in human salivary cortisol research? (United States)

    Milas, Goran; Šupe-Domić, Daniela; Drmić-Hofman, Irena; Rumora, Lada; Klarić, Irena Martinović


    There is ample evidence that environmental stressors such as extreme weather conditions affect animal behavior and that this process is in part mediated through the elevated activity of the hypothalamic pituitary adrenal axis which results in an increase in cortisol secretion. This relationship has not been extensively researched in humans, and weather conditions have not been analyzed as a potential confounder in human studies of stress. Consequently, the goal of this paper was to assess the relationship between salivary cortisol and weather conditions in the course of everyday life and to test a possible moderating effect of two weather-related variables, the climate region and timing of exposure to outdoors conditions. The sample consisted of 903 secondary school students aged 18 to 21 years from Mediterranean and Continental regions. Cortisol from saliva was sampled in naturalistic settings at three time points over the course of a single day. We found that weather conditions are related to salivary cortisol concentration and that this relationship may be moderated by both the specific climate and the anticipation of immediate exposure to outdoors conditions. Unpleasant weather conditions are predictive for the level of salivary cortisol, but only among individuals who anticipate being exposed to it in the immediate future (e.g., in students attending school in the morning shift). We also demonstrated that isolated weather conditions or their patterns may be relevant in one climate area (e.g., Continental) while less relevant in the other (e.g., Mediterranean). Results of this study draw attention to the importance of controlling weather conditions in human salivary cortisol research.

  15. Mechanism and kinetics of mineral weathering under acid conditions

    NARCIS (Netherlands)

    Anbeek, C.


    This study deals with the relationships between crystal structure, grain diameter, surface morphology and dissolution kinetics for feldspar and quartz under acid conditions.

    Intensively ground samples from large, naturally weathered mineral fragments are frequently used in

  16. Empirical analysis of extreme weather conditions and aviation safety ...

    African Journals Online (AJOL)

    0.05) which shows that weather condition has significant influence on aviation safety. Baseline studies on flight operation, government intervention in aviation industry, maintenance culture were recommended. Keywords: Fog, Thunderstorm ...

  17. Vulnerability Assessment of Electric Power Supply under Extreme Weather Conditions


    Barben, Raphaël


    This thesis analyses and models the vulnerability of the electricity power supply under extreme weather conditions. The system under study is the electric supply system that includes major power plants to main load centers. Extreme weather conditions can cause common mode contingencies (CMCs) of overhead power lines, which endanger the security of electricity supply. Planning and operation of transmission systems are subject to N-1 criterion, which re...

  18. Impacts of Snowy Weather Conditions on Expressway Traffic Flow Characteristics

    Directory of Open Access Journals (Sweden)

    Jiancheng Weng


    Full Text Available Snowy weather will significantly degrade expressway operations, reduce service levels, and increase driving difficulty. Furthermore, the impact of snow varies in different types of roads, diverse cities, and snow densities due to different driving behavior. Traffic flow parameters are essential to decide what should be appropriate for weather-related traffic management and control strategies. This paper takes Beijing as a case study and analyzes traffic flow data collected by detectors in expressways. By comparing the performance of traffic flow under normal and snowy weather conditions, this paper quantitatively describes the impact of adverse weather on expressway volume and average speeds. Results indicate that average speeds on the Beijing expressway under heavy snow conditions decrease by 10–20 km/h when compared to those under normal weather conditions, the vehicle headway generally increases by 2–4 seconds, and the road capacity drops by about 33%. This paper also develops a specific expressway traffic parameter reduction model which proposes reduction coefficients of expressway volumes and speeds under various snow density conditions in Beijing. The conclusions paper provide effective foundational parameters for urban expressway controls and traffic management under snow conditions.

  19. VNIR hyperspectral background characterization methods in adverse weather conditions (United States)

    Romano, João M.; Rosario, Dalton; Roth, Luz


    Hyperspectral technology is currently being used by the military to detect regions of interest where potential targets may be located. Weather variability, however, may affect the ability for an algorithm to discriminate possible targets from background clutter. Nonetheless, different background characterization approaches may facilitate the ability for an algorithm to discriminate potential targets over a variety of weather conditions. In a previous paper, we introduced a new autonomous target size invariant background characterization process, the Autonomous Background Characterization (ABC) or also known as the Parallel Random Sampling (PRS) method, features a random sampling stage, a parallel process to mitigate the inclusion by chance of target samples into clutter background classes during random sampling; and a fusion of results at the end. In this paper, we will demonstrate how different background characterization approaches are able to improve performance of algorithms over a variety of challenging weather conditions. By using the Mahalanobis distance as the standard algorithm for this study, we compare the performance of different characterization methods such as: the global information, 2 stage global information, and our proposed method, ABC, using data that was collected under a variety of adverse weather conditions. For this study, we used ARDEC's Hyperspectral VNIR Adverse Weather data collection comprised of heavy, light, and transitional fog, light and heavy rain, and low light conditions.

  20. Robust vehicle detection in different weather conditions: Using MIPM. (United States)

    Yaghoobi Ershadi, Nastaran; Menéndez, José Manuel; Jiménez, David


    Intelligent Transportation Systems (ITS) allow us to have high quality traffic information to reduce the risk of potentially critical situations. Conventional image-based traffic detection methods have difficulties acquiring good images due to perspective and background noise, poor lighting and weather conditions. In this paper, we propose a new method to accurately segment and track vehicles. After removing perspective using Modified Inverse Perspective Mapping (MIPM), Hough transform is applied to extract road lines and lanes. Then, Gaussian Mixture Models (GMM) are used to segment moving objects and to tackle car shadow effects, we apply a chromacity-based strategy. Finally, performance is evaluated through three different video benchmarks: own recorded videos in Madrid and Tehran (with different weather conditions at urban and interurban areas); and two well-known public datasets (KITTI and DETRAC). Our results indicate that the proposed algorithms are robust, and more accurate compared to others, especially when facing occlusions, lighting variations and weather conditions.

  1. Ocean-atmosphere interaction and synoptic weather conditions in ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    Ocean-atmosphere interaction and synoptic weather conditions in association with the two contrasting phases of monsoon during BOBMEX-1999. S P Ghanekar, V R Mujumdar, P Seetaramayya and U V Bhide. Indian Institute of Tropical Meteorology, Dr. Homi Bhabha Road, Pashan, Pune 411 008. Surface meteorological ...

  2. Observational Simulation of Icing in Extreme Weather Conditions (United States)

    Gultepe, Ismail; Heymsfield, Andrew; Agelin-Chaab, Martin; Komar, John; Elfstrom, Garry; Baumgardner, Darrel


    Observations and prediction of icing in extreme weather conditions are important for aviation, transportation, and shipping applications, and icing adversely affects the economy. Icing environments can be studied either in the outdoor atmosphere or in the laboratory. There have been several aircraft based in-situ studies related to weather conditions affecting aviation operations, transportation, and marine shipping that includes icing, wind, and turbulence. However, studying severe weather conditions from aircraft observations are limited due to safety and sampling issues, instrumental uncertainties, and even the possibility of aircraft producing its own physical and dynamical effects. Remote sensing based techniques (e.g. retrieval techniques) for studying severe weather conditions represent usually a volume that cannot characterize the important scales and also represents indirect observations. Therefore, laboratory simulations of atmospheric processes can help us better understand the interactions among microphysical and dynamical processes. The Climatic Wind Tunnel (CWT) in ACE at the University of Ontario Institute of Technology (UOIT) has a large semi-open jet test chamber with flow area 7-13 m2 that can precisely control temperatures down to -40°C, and up to 250 km hr-1 wind speeds, for heavy or dry snow conditions with low visibility, similar to ones observed in the Arctic and cold climate regions, or at high altitude aeronautical conditions. In this study, the ACE CWT employed a spray nozzle array suspended in its settling chamber and fed by pressurized water, creating various particle sizes from a few microns up to mm size range. This array, together with cold temperature and high wind speed, enabled simulation of severe weather conditions, including icing, visibility, strong wind and turbulence, ice fog and frost, freezing fog, heavy snow and blizzard conditions. In this study, the test results will be summarized, and their application to aircraft

  3. Information on weather and sea conditions onboard polar cruise ships

    Directory of Open Access Journals (Sweden)



    Full Text Available The arctic and Antarctic regions are difficult to navigate because of their severe maritime conditions. Weather forecast, forecast of the sea ice and icebergs dynamics are extremely important when planning ships routes and tourism activities including embarkation/disembarkation from boats or landing operations. New meteorological services have been created in the arctic region for broadcast purposes. The information provided by these services and received onboard ships is presented in this paper. A risk assessment should be considered for Polar Water operations such as maneuvering in ice covered waters, anchoring, shore landings etc.

  4. Modelling Wind Turbine Failures based on Weather Conditions (United States)

    Reder, Maik; Melero, Julio J.


    A large proportion of the overall costs of a wind farm is directly related to operation and maintenance (O&M) tasks. By applying predictive O&M strategies rather than corrective approaches these costs can be decreased significantly. Here, especially wind turbine (WT) failure models can help to understand the components’ degradation processes and enable the operators to anticipate upcoming failures. Usually, these models are based on the age of the systems or components. However, latest research shows that the on-site weather conditions also affect the turbine failure behaviour significantly. This study presents a novel approach to model WT failures based on the environmental conditions to which they are exposed to. The results focus on general WT failures, as well as on four main components: gearbox, generator, pitch and yaw system. A penalised likelihood estimation is used in order to avoid problems due to for example highly correlated input covariates. The relative importance of the model covariates is assessed in order to analyse the effect of each weather parameter on the model output.

  5. Pyrite oxidation under simulated acid rain weathering conditions. (United States)

    Zheng, Kai; Li, Heping; Wang, Luying; Wen, Xiaoying; Liu, Qingyou


    We investigated the electrochemical corrosion behavior of pyrite in simulated acid rain with different acidities and at different temperatures. The cyclic voltammetry, polarization curve, and electrochemical impedance spectroscopy results showed that pyrite has the same electrochemical interaction mechanism under different simulated acid rain conditions, regardless of acidity or environmental temperature. Either stronger acid rain acidity or higher environmental temperature can accelerate pyrite corrosion. Compared with acid rain having a pH of 5.6 at 25 °C, the prompt efficiency of pyrite weathering reached 104.29% as the acid rain pH decreased to 3.6, and it reached 125.31% as environmental temperature increased to 45 °C. Increasing acidity dramatically decreases the charge transfer resistance, and increasing temperature dramatically decreases the passivation film resistance, when other conditions are held constant. Acid rain always causes lower acidity mine drainage, and stronger acidity or high environmental temperatures cause serious acid drainage. The natural parameters of latitude, elevation, and season have considerable influence on pyrite weathering, because temperature is an important influencing factor. These experimental results are of direct significance for the assessment and management of sulfide mineral acid drainage in regions receiving acid rain.

  6. Weather Features Associated with Aircraft Icing Conditions: A Case Study

    Directory of Open Access Journals (Sweden)

    Sergio Fernández-González


    Full Text Available In the context of aviation weather hazards, the study of aircraft icing is very important because of several accidents attributed to it over recent decades. On February 1, 2012, an unusual meteorological situation caused severe icing of a C-212-200, an aircraft used during winter 2011-2012 to study winter cloud systems in the Guadarrama Mountains of the central Iberian Peninsula. Observations in this case were from a MP-3000A microwave radiometric profiler, which acquired atmospheric temperature and humidity profiles continuously every 2.5 minutes. A Cloud Aerosol and Precipitation Spectrometer (CAPS was also used to study cloud hydrometeors. Finally, ice nuclei concentration was measured in an isothermal cloud chamber, with the goal of calculating concentrations in the study area. Synoptic and mesoscale meteorological conditions were analysed using the Weather Research and Forecasting (WRF model. It was demonstrated that topography influenced generation of a mesolow and gravity waves on the lee side of the orographic barrier, in the region where the aircraft experienced icing. Other factors such as moisture, wind direction, temperature, atmospheric stability, and wind shear were decisive in the appearance of icing. This study indicates that icing conditions may arise locally, even when the synoptic situation does not indicate any risk.

  7. Deoxynivalenol occurrence in Serbian maize under different weather conditions

    Directory of Open Access Journals (Sweden)

    Jajić Igor M.


    Full Text Available The aim of this paper was to investigate deoxynivalenol (DON occurrence in maize samples originating from two harvest seasons in Serbia. The key differences between harvest seasons were weather conditions, specifically the humidity. The samples were analyzed using high performance liquid chromatography with DAD detection, after clean-up on SPE columns. In samples from 2014, DON was found in 82 (100.0% samples with the average content of 2.517 mg/kg (ranged from 0.368 to 11.343 mg/kg. Two samples exceeded maximum level permitted by EU regulations. However, analyzing larger number of samples (163 from 2015 harvest season, DON was present in 51 (31.3% samples in significantly lower concentrations (average of 0.662 mg/kg, ranged from 0.106 to 2.628 mg/kg. None of the samples from 2015 exceeded maximum level permitted by EU regulations. The data on DON presence in Serbian maize were in relation to the different weather conditions that prevailed during the two harvest seasons. [Project of the Serbian Ministry of Education, Science and Technological Development, Grant no. 172042

  8. Wyoming Department of Transportation (WYDOT) road condition reporting application for weather responsive traffic management. (United States)


    FHWAs Road Weather Management Program partnered : with WYDOT to develop a new software application to : improve the way maintenance personnel report road and : weather conditions to their statewide Transportation : Management Center (TMC), recomme...


    Directory of Open Access Journals (Sweden)



    Full Text Available Sap flow response of cherry trees to weather condition. Themain goal of our study is to measure water-demand of cherry trees budded ontodifferent rootstocks by sapflow equipment and to study the sap flow response to themeteorological factors. The investigations are carried out in Soroksár in Hungary at‘Rita’ sweet cherry orchard. The pattern of sapflow was analyzed in relation ofsolar radiation, vapour pressure deficit and air temperature. Between solar radiationand sap flow was found a parabolic relation, daily pattern of sapflow is in closerelation (cubic also to vapour pressure deficit. No significant relationship existedbetween sapflow and air temperature. The sapflow performance of sweet cherrytrees on different rootstocks showed typical daily characters.

  10. Sustainable resilience in property maintenance: encountering changing weather conditions

    DEFF Research Database (Denmark)

    Cox, Rimante Andrasiunaite; Nielsen, Susanne Balslev


    Purpose: The purpose of the study is to develop a methodological approach for project management to integrate sustainability and resilience planning in property maintenance as an incremental strategy for upgrading existing properties to meet new standards for sustainable and climate resilient...... buildings. Background: Current maintenance practice is focused on the technical standard of buildings, with little consideration of sustainability and resilience. There is a need to develop tools for incorporating sustainable resilience into maintenance planning. Approach: The study is primarily theoretical......, developing the concept of sustainable resilience for changing weather conditions Results: The paper suggests a decision support methodology that quantifies sustainable resilience for the analytical stages of property maintenance planning. Practical Implications: The methodology is generic and expected users...

  11. Weather conditions influence the number of psychiatric emergency room patients (United States)

    Brandl, Eva Janina; Lett, Tristram A.; Bakanidze, George; Heinz, Andreas; Bermpohl, Felix; Schouler-Ocak, Meryam


    The specific impact of weather factors on psychiatric disorders has been investigated only in few studies with inconsistent results. We hypothesized that meteorological conditions influence the number of cases presenting in a psychiatric emergency room as a measure of mental health conditions. We analyzed the number of patients consulting the emergency room (ER) of a psychiatric hospital in Berlin, Germany, between January 1, 2008, and December 31, 2014. A total of N = 22,672 cases were treated in the ER over the study period. Meteorological data were obtained from a publicly available data base. Due to collinearity among the meteorological variables, we performed a principal component (PC) analysis. Association of PCs with the daily number of patients was analyzed with autoregressive integrated moving average model. Delayed effects were investigated using Granger causal modeling. Daily number of patients in the ER was significantly higher in spring and summer compared to fall and winter (p < 0.001). Three PCs explained 76.8% percent of the variance with PC1 loading mostly on temperature, PC2 on cloudiness and low pressure, and PC3 on windiness. PC1 and PC2 showed strong association with number of patients in the emergency room (p < 0.010) indicating higher patient numbers on warmer and on cloudy days. Further, PC1, PC2, and PC3 predicted the number of patients presenting in the emergency room for up to 7 days (p < 0.050). A secondary analysis revealed that the effect of temperature on number of patients was mostly due to lower patient numbers on cold days. Although replication of our findings is required, our results suggest that weather influences the number of psychiatric patients consulting the emergency room. In particular, our data indicate lower patient numbers during very cold temperatures.

  12. Net-zero emission residential building in temperate weather condition

    Directory of Open Access Journals (Sweden)

    Arif Mohammad T.


    Full Text Available Residential load consumes a significant amount of grid energy for electrical and heating or cooling application. Greenhouse gas (GHG emission or equivalent CO2 emission is the direct or indirect effect from either form of these energy uses. Energy demand is increasing with the addition of various new home appliances and energy price is also going up. Various initiatives can be taken to reduce energy demand. However the best way is by improving energy efficiency and that eventually reduces the emission. Using renewable energy (RE to support local load demand is another approach to reduce CO2 emission. However effective use of RE depends on the climatic condition and synchronization of load-demand and local generation. Although unmatched energy from local RE generation can be sold back to the grid, the same amount of energy has to be purchased from the grid at higher cost. When the overall total amount of GHG emission in a year can be balanced by improving energy efficiency and by increasing local RE generation the condition of the house can be termed as zero emission house. This paper investigates the possibility of net-zero emission house in temperate weather condition in Geelong, Australia considering the cost of all relevant components. It was found that net-zero emission building can be implemented and can effectively reduce a total of 44 Mt of CO2 emission in a year from all 9 million residential buildings in Australia.

  13. Oil spill cleanup in severe weather and open ocean conditions

    International Nuclear Information System (INIS)

    Kowalski, T.


    Most serious oil spills occur in open water under severe weather conditions. At first the oil stays on the surface, where it is spread by winds and water currents. The action of the waves then mixes the oil into the water column. With time the light elements of crude oil evaporate. The remaining residue is of very low commercial value, but of significant environmental impact. The oil spill can move either out to sea or inshore, where it ends up on the beaches. Normal procedures are to let outbound oil disperse by evaporation and mixing into the water column, and to let the inbound oil collect on the beaches, where the cleanup operations are concentrated. The reason for this is that there is no capability to clean the surface of the water in wave conditions-present-day oil skimmers are ineffective in waves approaching 4 ft in height. It would be simpler, more effective and environmentally more beneficial to skim the oil right at the spill location. This paper describes a method to do this. In the case of an oil spill in open water and high wave conditions, it is proposed to reduce the height of the ocean waves by the use of floating breakwaters to provide a relatively calm area. In such protected areas existing oil skimmers can be used to recover valuable oil and clean up the spill long before it hits the beaches. A floating breakwater developed at the University of Rhode Island by the author can be of great benefit in oil spill cleanup for open ocean conditions. This breakwater is constructed from scrap automobile tires. It is built in units of 20 tires each, which are easily transportable and can be connected together at the spill site to form any desired configuration

  14. Wireless sensor network for monitoring soil moisture and weather conditions (United States)

    A wireless sensor network (WSN) was developed and deployed in three fields to monitor soil water status and collect weather data for irrigation scheduling. The WSN consists of soil-water sensors, weather sensors, wireless data loggers, and a wireless modem. Soil-water sensors were installed at three...

  15. Poor weather conditions and flight operations: Implications for air ...

    African Journals Online (AJOL)

    The growth of aviation industry in Nigeria and the increased adoption of air transportation as one of the best means of transport have been obstructed by various weather hazards. There is a greater need for aviation weather forecasters to deliver quality forecasts. It is therefore necessary to identify the most dangerous and ...

  16. Influence of weather conditions on the distribution of persistent contrails

    Energy Technology Data Exchange (ETDEWEB)

    Kaestner, M.; Meyer, R.; Wendling, P.


    An automated contrail detection algorithm has been applied to AVHRR data to obtain the position of contrails. Nearly simultaneous data from the Europe model of the Deutscher Wetterdienst have been used to find typical weather conditions associated with 742 persistent contrails. Further, a flow pattern analysis identifies in typical regions where the occurrence of contrails was above average. These regions are in the upper atmosphere: (a) ahead of a surface warm front either in moist warm layers before the cirrus clouds arrive or more likely with the cirrus in a warm conveyor belt and (b) ahead of a surface cold front in rapidly moving cold air in the turbulent regions near a band of strong wind (though the speed is not necessarily as high as in a jet). Usually, the atmosphere is baroclinic in the contrail region. Most of the detected contrails occur in divergent flow patterns in the upper troposphere in slowly rising warm or locally turbulent cold air masses. (orig.) 23 refs.

  17. Microbiological composition of untreated water during different weather conditions

    Directory of Open Access Journals (Sweden)

    Adna Bešić


    Full Text Available Introduction: Water can support the growth of different microorganisms which may result in contamination. Therefore, the microbiological examination is required for testing the hygienic probity of water. In the study of microbial composition of untreated, natural spring and mineral water differences in the presence and number of bacteria during the two periods, winter and summer, are detectable.Methods: In our study, we analyzed and compared the following parameters, specified in the Rulebook: total bacteria and total aerobic bacteria (ml/22 and 37°C, total Coliform bacteria and Coliforms of fecalorigin (MPN/100ml, fecal streptococci as Streptococcus faecalis  (MPN/100ml, Proteus spp (MPN/100ml, and Pseudomonas aeruginosa (MPN/100 ml Sulphoreducing Clostridia (cfu / ml. The paper is a retrospective study in which we processed data related to the period of 2005-2009 year. While working, we used the descriptive-analytical comparative statistical treatment.Results: The obtained results show statistically significant differences in the microbial composition of untreated water in the two observed periods,Conclusions: Findings were consequence of different weather conditions in these periods, which imply a number of other variable factors.

  18. The association between weather conditions and stroke admissions in Turkey (United States)

    Çevik, Yunsur; Doğan, Nurettin Özgür; Daş, Murat; Ahmedali, Asliddin; Kul, Seval; Bayram, Hasan


    Although several factors such as cigarette smoking, blood pressure, diabetes, obesity, hypercholesterolemia, physical inactivity and dietary factors have been well documented to increase the risk for stroke, there are conflicting data about the role of meteorological variables in the etiology of stroke. We conducted a retrospective study to investigate the association between weather patterns, including daily temperature, humidity, wind speed, and air pressure, and stroke admissions to the Emergency Department of Atatürk Training and Research Hospital in Ankara, Turkey, between January 2009 and April 2010. Generalized additive models with logistic link function were used to investigate the relationship between predictors and days with and without stroke admission at lags 0-4. A total of 373 stroke patients were admitted to the emergency department (ED) between January 2009 and April 2010. Of patients, 297 had ischemic stroke (IS), 34 hemorrhagic stroke (HS), and 42 subarachnoidal hemorrhage (SAH). Although we did not find any association between overall admissions due to stroke and meteorological parameters, univariable analysis indicated that there were significantly more SAH cases on days with lower daily mean temperatures of 8.79 ± 8.75 °C as compared to relatively mild days with higher temperatures (mean temperature = 11.89 ± 7.94 °C, p = 0.021). The multivariable analysis demonstrated that admissions due to SAH increased on days with lower daily mean temperatures for the same day (lag 0; odds ratio (OR) [95 % confidence interval (95 % CI)] = 0.93 [0.89-0.98], p = 0.004) and lag 1 (OR [95 % CI] =0.76 [0.67-0.86], p = 0.001). Furthermore, the wind speed at both lag 1 (OR [95 % CI] = 1.63 [1.27-2.09], p = 0.001) and lag 3 (OR [95 % CI] = 1.43 [1.12-1.81], p = 0.004) increased admissions due to HS, respectively. In conclusion, our study demonstrated that there was an association between ED admissions due to SAH and HS and weather conditions suggesting that

  19. Effects of weather conditions, light conditions, and road lighting on vehicle speed. (United States)

    Jägerbrand, Annika K; Sjöbergh, Jonas


    Light conditions are known to affect the number of vehicle accidents and fatalities but the relationship between light conditions and vehicle speed is not fully understood. This study examined whether vehicle speed on roads is higher in daylight and under road lighting than in darkness, and determined the combined effects of light conditions, posted speed limit and weather conditions on driving speed. The vehicle speed of passenger cars in different light conditions (daylight, twilight, darkness, artificial light) and different weather conditions (clear weather, rain, snow) was determined using traffic and weather data collected on an hourly basis for approximately 2 years (1 September 2012-31 May 2014) at 25 locations in Sweden (17 with road lighting and eight without). In total, the data included almost 60 million vehicle passes. The data were cleaned by removing June, July, and August, which have different traffic patterns than the rest of the year. Only data from the periods 10:00 A.M.-04:00 P.M. and 06:00 P.M.-10:00 P.M. were used, to remove traffic during rush hour and at night. Multivariate adaptive regression splines was used to evaluate the overall influence of independent variables on vehicle speed and nonparametric statistical testing was applied to test for speed differences between dark-daylight, dark-twilight, and twilight-daylight, on roads with and without road lighting. The results show that vehicle speed in general depends on several independent variables. Analyses of vehicle speed and speed differences between daylight, twilight and darkness, with and without road lighting, did not reveal any differences attributable to light conditions. However, vehicle speed decreased due to rain or snow and the decrease was higher on roads without road lighting than on roads with lighting. These results suggest that the strong association between traffic accidents and darkness or low light conditions could be explained by drivers failing to adjust their

  20. Improving growth performance in calves under hot weather conditions

    International Nuclear Information System (INIS)

    Emara, S.S.M.


    The main objectives of the present study were to evaluate the effect of some supplement such as dried live yeast DLY (Saccharomyces cerevisiae), DLY + vitamin E and / or dried whey milk (DWM) on blood constituents and thyroid activity in relation to some immune indices and growth performance of calves under hot weather conditions. The ambient temperature and relative humidity averaged 36.9±4 degree C and 43-58 % during day and 29±4 degree C and 60-68 % during night, respectively, which were equivalent to temperature humidity index of 86-89 during day and 78-80 during night . The present study included three experiments as follows. Experiment 1 : Six female bovine Baladi calves of 8-10 months old and 100 kg initial body weight (IBW) were used during two periods. In the first period, the calves were offered the basal diet for one month and considered as a control period. In the second period, the same calves were fed the same basal diet which supplemented with 15 g / calf/ day DLY for one month and considered as treated period. The obtained results indicated that supplementation of DLY reduced significantly the respiration rate (RR) and rectal temperature (RT) as well as serum lipids profile including total cholesterol, low density lipoprotein (LDL- cholesterol) very low density lipoprotein (VLDL-cholesterol) triglycerides and phospholipids.The second and third experiments were carried out for improving growth performance of heat-stressed bovine baladi calves by adding DLY and vitamine E (alpha-tocopherol) to their diet in experiment 2 and dried whey milk (DWM) in experiment 3.

  1. Weather conditions drive dynamic habitat selection in a generalist predator.

    Directory of Open Access Journals (Sweden)

    Peter Sunde

    Full Text Available Despite the dynamic nature of habitat selection, temporal variation as arising from factors such as weather are rarely quantified in species-habitat relationships. We analysed habitat use and selection (use/availability of foraging, radio-tagged little owls (Athene noctua, a nocturnal, year-round resident generalist predator, to see how this varied as a function of weather, season and availability. Use of the two most frequently used land cover types, gardens/buildings and cultivated fields varied more than 3-fold as a simple function of season and weather through linear effects of wind and quadratic effects of temperature. Even when controlling for the temporal context, both land cover types were used more evenly than predicted from variation in availability (functional response in habitat selection. Use of two other land cover categories (pastures and moist areas increased linearly with temperature and was proportional to their availability. The study shows that habitat selection by generalist foragers may be highly dependent on temporal variables such as weather, probably because such foragers switch between weather dependent feeding opportunities offered by different land cover types. An opportunistic foraging strategy in a landscape with erratically appearing feeding opportunities in different land cover types, may possibly also explain decreasing selection of the two most frequently used land cover types with increasing availability.

  2. Travel in adverse winter weather conditions by blind pedestrians. (United States)


    Winter weather creates many orientation and mobility (O&M) challenges for people who are visually impaired. Getting the cane tip stuck is one of the noticeable challenges when traveling in snow, particularly when the walking surface is covered in dee...

  3. Thermal advantage of tracking solar collectors under Danish weather conditions

    DEFF Research Database (Denmark)

    Andersen, Elsa; Dragsted, Janne; Furbo, Simon


    . The investigations are based on calculations with a newly developed program. Measured weather data from a solar radiation measurement station at Technical University of Denmark in Kgs. Lyngby Denmark in the period 1990 to 2002 and the Danish Design Reference Year, DRY data file are used in the investigations...

  4. Weather Conditions Drive Dynamic Habitat Selection in a Generalist Predator

    DEFF Research Database (Denmark)

    Sunde, Peter; Thorup, Kasper; Jacobsen, Lars Bo


    Despite the dynamic nature of habitat selection, temporal variation as arising from factors such as weather are rarely quantified in species-habitat relationships. We analysed habitat use and selection (use/availability) of foraging, radio-tagged little owls (Athene noctua), a nocturnal, year-rou...

  5. Influence factor analysis of atmospheric electric field monitoring near ground under different weather conditions

    International Nuclear Information System (INIS)

    Wan, Haojiang; Wei, Guanghui; Cui, Yaozhong; Chen, Yazhou


    Monitoring of atmospheric electric field near ground plays a critical role in atmospheric environment detecting and lightning warning. Different environmental conditions (e.g. buildings, plants, weather, etc.) have different influences on the data's coherence in an atmospheric electric field detection network. In order to study the main influence factors of atmospheric electric field monitoring under different weather conditions, with the combination of theoretical analysis and experiments, the electric field monitoring data on the ground and on the top of a building are compared in fair weather and thunderstorm weather respectively in this paper. The results show that: In fair weather, the field distortion due to the buildings is the main influence factor on the electric field monitoring. In thunderstorm weather, the corona ions produced from the ground, besides the field distortion due to the buildings, can also influence the electric field monitoring results.

  6. Influence of Met-Ocean Condition Forecasting Uncertainties on Weather Window Predictions for Offshore Operations

    DEFF Research Database (Denmark)

    Gintautas, Tomas; Sørensen, John Dalsgaard


    The article briefly presents a novel methodology of weather window estimation for offshore operations and mainly focuses on effects of met-ocean condition forecasting uncertainties on weather window predictions when using the proposed methodology. It is demonstrated that the proposed methodology...... to include stochastic variables, representing met-ocean forecasting uncertainties and the results of such modification are given in terms of predicted weather windows for a selected test case....



    Svetlana Vlady; Ekrem Tufan; Bahattin Hamarat


    This study investigates causality of weather and its impact on the The S&P/ASX All Australian 200 Index has been selected as a proxy for the Australian capital market. The index consists exclusively of Australian domiciled companies. Following previous research in behaviour finance in the area of environmental psychology, the data set covers temperature, quality temperature, wet bulb temperature, quality wet bulb temperature, humidity, pressure and vapour pressure variables. The data set is a...

  8. The Conditions of Creation and Prospects of Weather Derivatives Development on the Domestic Market

    Directory of Open Access Journals (Sweden)

    Piotr Binkowski


    Full Text Available Analysing the possibility of creations and prospects of weather derivatives development on the domestic market the first of all should be identify the business areas that are strongly exposed for weather risk, which are: energy, agricultural, building and transportation. The specificity of the Polish climate is the high volatility of the major weather factors like temperature or precipitations. Similar to other European countries where weather derivatives markets already exist (e.g.: Germany, France, and United Kingdom. Having in mind dynamic grow of companies with regards to management processes, used technologies and marketing strategies, the exposure for weather risk is getting higher. Therefore, there is a strong pressure for creation of mechanisms and instruments that will allow reducing that kind of risks. Currently in Poland there are no conditions for development of weather derivatives market due to lack of demand. That situation is caused by low level of awareness regarding to possibilities of reducing weather risks. Within a few years the demand for such the instruments will appear ñ together with growing awareness. Once the demand for weather derivative will appear, the existing infrastructure of financial sector is ready for its implementation. Of course it is hard to say what will be the direction of whether derivatives grow on the domestic financial market but taking into consideration its dynamic grow and strong correlations with global markets, there is a small probability that weather derivatives will not appear on the Polish market ñ it is only the matter of time.

  9. Phytoplankton diversity in relation to different weather conditions in two urban made lakes

    Directory of Open Access Journals (Sweden)

    Munay Abdulqadir Omar


    Full Text Available Many scientists have reported that global warming have significant impact on phytoplankton community, however, the impact of global warming on phytoplankton communities in suburban made lake is less understood. Therefor the objective of this study are to observe the effect of variable weather conditions on the diversity and succession of phytoplankton in mesotrophic lake (Seri Serdang and oligotrophic lake (Engineering Faculty Lake. Samples were collected from surface water and species diversity (Shannon Weaver Diversity Index was calculated. Daily weather and rain fall were recorded. A total of 65 species from five divisions (Chlorophyta, Euglenophyta, Cyanophyta, Bacillariophyta and Dinophyta and 52 species belonging to six divisions (Chlorophyta, Cyanophyta, Bacillariophyta, Euglenophyta, Cryptophyta & Charophyta were recorded from Engineering Faculty Lake and Seri Serdang Lake respectively. Division of Chlorophyta was found most dominant in both lakes during all the weeks (67%. The most dominant species in Faculty Engineering Lake was Microcystis aeruginosa during all weather conditions. Whereas, the most dominant species in Seri Serdang Lake during all weather conditions were Chlamydomonas reinhardtii, Planktothrix agardhii. The phytoplankton density was low during dry weather conditions for both lakes. The present finding suggested noticeable correlation between weather changes to the alteration of population density of phytoplankton.

  10. Atmospheric propagation of high power laser radiation at different weather conditions


    Pargmann, Carsten; Hall, Thomas; Duschek, Frank; Handke, Jürgen


    Applications based on the propagation of high power laser radiation through the atmosphere are limited in range and effect, due to weather dependent beam wandering, beam deterioration, and scattering processes. Security and defense related application examples are countermeasures against hostile projectiles and the powering of satellites and aircrafts. For an examination of the correlations between weather condition and laser beam characteristics DLR operates at Lampoldshausen a 130 m long fr...

  11. Lincoln Laboratory demonstrates highly accurate vehicle localization under adverse weather conditions (United States)


    roads whose lane markings were hidden by the snow. The sport utility vehicle used in the demonstration was equipped with a system that employs fair weather conditions. The use of a subsurface map reduces the need for continual modifications to high-resolution road maps. Fusing GPS , lidar...working to further explore all weather, GPS -denied, and mapping capabilities. LGPR maps may be useful in helping federal, state, and local

  12. Methane emissions from landfill: influence of vegetation and weather conditions. (United States)

    Bian, Rongxing; Xin, Danhui; Chai, Xiaoli


    Vegetation plays an important role in CH 4 transport and oxidation in landfill cover soil. This study investigated CH 4 emission fluxes in two landfills with different surface coverage conditions and it found that the CH 4 emission fluxes presented spatial and temporal disparities. A significant discrepancy in CH 4 emission flux between day and night in areas covered with Kochia sieversiana indicated that enhanced diffusion induced by rising temperature was the main mechanism for CH 4 transport during daytime. A significant increase of CH 4 emission flux after the K. sieversiana and Suaeda glauca plants were cut indicated that these plants provide greater contributions to CH 4 oxidation than to CH 4 transport. Diel CH 4 emission flux was found closely correlated with the climatic conditions. Diffusion was determined as the main mechanism for CH 4 transport at daytime in bare area, mediated by solar radiation and air temperature. Diffusion and plant-mediated transport by convection was established as the main transport mechanism in areas covered with K. sieversiana. Our results further the understanding of both the CH 4 emission mechanism and the impact of vegetation on CH 4 oxidation, transport, and emission, which will benefit the development of a reliable model for landfill CH 4 emissions.

  13. Offshore Variability in Critical Weather Conditions in Large-Scale Wind Based Danish Power System

    DEFF Research Database (Denmark)

    Cutululis, Nicolaos Antonio; Litong-Palima, Marisciel; Sørensen, Poul Ejnar


    , the chances of losing several GW of wind power due to critical weather conditions in a very short time period could potentially jeopardize the whole system’s reliability and stability. Forecasting such events is not trivial and the results so far are not encouraging. When assessing the impact......Offshore wind power has a significant development potential, especially in North Europe. The geographical concentration of offshore wind power leads to increased variability and in the case of critical weather conditions it may lead to sudden and considerable loss of production. In this context...

  14. Offshore Variability in Critical Weather Conditions in Large-Scale Wind Based Danish Power System

    DEFF Research Database (Denmark)

    Cutululis, Nicolaos Antonio; Litong-Palima, Marisciel; Sørensen, Poul Ejnar


    Offshore wind power has a significant development potential, especially in North Europe. The geographical concentration of offshore wind power leads to increased variability and in the case of critical weather conditions it may lead to sudden and considerable loss of production. In this context......, the chances of losing several GW of wind power due to critical weather conditions in a very short time period could potentially jeopardize the whole system’s reliability and stability. Forecasting such events is not trivial and the results so far are not encouraging. When assessing the impact...

  15. Inferring atmospheric weather conditions in volcanic environments using infrasound (United States)

    Ortiz, H. D.; Johnson, J. B.; Ruiz, M. C.


    We use infrasound produced by Tungurahua Volcano (Ecuador) to infer local time-varying atmospheric conditions, which can be used to improve gas flux measurements and tephra dispersal modeling. Physical properties of the atmosphere, including wind and temperature (which controls adiabatic sound speed), can be quantified by studying the travel times of acoustic waves produced during volcanic activity. The travel times between Tungurahua's vent and five infrasound stations located in a network configuration over an area of 90 km2 were used in this study. We are able to quantify the arrival time differences of acoustic waves for ten unique station pairs and use this information to model the average speed of sound between source and receiver. To identify what parameters best fit the observed arrival times, we perform a grid search for a homogeneous two-dimensional wind velocity as well as for air temperature. Due to travel time dependence on the specific path taken by waves, we account for topography using a 5 meter resolution digital elevation model of Tungurahua. To investigate the time-varying atmospheric structure we use data recorded at Tungurahua volcano, during a strombolian eruptive phase in August 2012, however the methodology can be applied to continuous network infrasound data collected since July 2006 as part of the Japanese-Ecuadorian Cooperation Project: "Enhancement of the Volcano Monitoring Capacity in Ecuador". We propose that the computation of wind velocities will help to improve gas flux measurements that are based on remote sensing techniques like Differential Optical Absorption Spectroscopy (DOAS), resulting in better estimates of sulfur fluxes that can then be related to magma fluxing into the volcanic system. Further, wind field quantification close to the volcano can improve numerical models that are used to forecast tephra deposits, thereby helping to mitigate their effect on inhabitants, infrastructure, livestock, and crops.

  16. Effects of Weather and Heliophysical Conditions on Emergency Ambulance Calls for Elevated Arterial Blood Pressure

    Directory of Open Access Journals (Sweden)

    Jone Vencloviene


    Full Text Available We hypothesized that weather and space weather conditions were associated with the exacerbation of essential hypertension. The study was conducted during 2009–2010 in the city of Kaunas, Lithuania. We analyzed 13,475 cards from emergency ambulance calls (EACs, in which the conditions for the emergency calls were made coded I.10–I.15. The Kaunas Weather Station provided daily records of air temperature (T, wind speed (WS, relative humidity, and barometric pressure (BP. We evaluated the associations between daily weather variables and daily number of EACs by applying a multivariate Poisson regression. Unfavorable heliophysical conditions (two days after the active-stormy geomagnetic field or the days with solar WS > 600 km/s increased the daily number of elevated arterial blood pressure (EABP by 12% (RR = 1.12; 95% confidence interval (CI 1.04–1.21; and WS ≥ 3.5 knots during days of T < 1.5 °C and T ≥ 12.5 °C by 8% (RR = 1.08; CI 1.04–1.12. An increase of T by 10 °C and an elevation of BP two days after by 10 hPa were associated with a decrease in RR by 3%. An additional effect of T was detected during days of T ≥ 17.5 °C only in females. Women and patients with grade III arterial hypertension at the time of the ambulance call were more sensitive to weather conditions. These results may help in the understanding of the population’s sensitivity to different weather conditions.

  17. Future sea ice conditions and weather forecasts in the Arctic: Implications for Arctic shipping. (United States)

    Gascard, Jean-Claude; Riemann-Campe, Kathrin; Gerdes, Rüdiger; Schyberg, Harald; Randriamampianina, Roger; Karcher, Michael; Zhang, Jinlun; Rafizadeh, Mehrad


    The ability to forecast sea ice (both extent and thickness) and weather conditions are the major factors when it comes to safe marine transportation in the Arctic Ocean. This paper presents findings focusing on sea ice and weather prediction in the Arctic Ocean for navigation purposes, in particular along the Northeast Passage. Based on comparison with the observed sea ice concentrations for validation, the best performing Earth system models from the Intergovernmental Panel on Climate Change (IPCC) program (CMIP5-Coupled Model Intercomparison Project phase 5) were selected to provide ranges of potential future sea ice conditions. Our results showed that, despite a general tendency toward less sea ice cover in summer, internal variability will still be large and shipping along the Northeast Passage might still be hampered by sea ice blocking narrow passages. This will make sea ice forecasts on shorter time and space scales and Arctic weather prediction even more important.

  18. Influence of Met-Ocean Condition Forecasting Uncertainties on Weather Window Predictions for Offshore Operations

    DEFF Research Database (Denmark)

    Gintautas, Tomas; Sørensen, John Dalsgaard


    The article briefly presents a novel methodology of weather window estimation for offshore operations and mainly focuses on effects of met-ocean condition forecasting uncertainties on weather window predictions when using the proposed methodology. It is demonstrated that the proposed methodology...... to include stochastic variables, representing met-ocean forecasting uncertainties and the results of such modification are given in terms of predicted weather windows for a selected test case....... has the capacity to retain the uncertainties of met-ocean condition forecasting and transfer them into uncertainties of probability of operation failure. In addition to that, improvements to the failure function, used to define operation failure are presented. The failure function is modified...

  19. Weather conditions may worsen symptoms in rheumatoid arthritis patients: the possible effect of temperature. (United States)

    Abasolo, Lydia; Tobías, Aurelio; Leon, Leticia; Carmona, Loreto; Fernandez-Rueda, Jose Luis; Rodriguez, Ana Belen; Fernandez-Gutierrez, Benjamin; Jover, Juan Angel


    Patients with rheumatoid arthritis (RA) complain that weather conditions aggravate their symptoms. We investigated the short-term effects of weather conditions on worsening of RA and determined possible seasonal fluctuations. We conducted a case-crossover study in Madrid, Spain. Daily cases of RA flares were collected from the emergency room of a tertiary level hospital between 2004 and 2007. 245 RA patients who visited the emergency room 306 times due to RA related complaints as the main diagnostic reason were included in the study. Patients from 50 to 65 years old were 16% more likely to present a flare with lower mean temperatures. Our results support the belief that weather influences rheumatic pain in middle aged patients. Copyright © 2012 Elsevier España, S.L. All rights reserved.

  20. Analysis of Highly Wind Power Integrated Power System model performance during Critical Weather conditions

    DEFF Research Database (Denmark)

    Basit, Abdul; Hansen, Anca Daniela; Sørensen, Poul Ejnar


    Secure power system operation of a highly wind power integrated power system is always at risk during critical weather conditions, e.g. in extreme high winds. The risk is even higher when 50% of the total electricity consumption has to be supplied by wind power, as the case for the future Danish...

  1. Role of Winter Weather Conditions and Slipperiness on Tourists’ Accidents in Finland

    Directory of Open Access Journals (Sweden)

    Élise Lépy


    Full Text Available (1 Background: In Finland, slippery snowy or icy ground surface conditions can be quite hazardous to human health during wintertime. We focused on the impacts of the variability in weather conditions on tourists’ health via documented accidents during the winter season in the Sotkamo area. We attempted to estimate the slipping hazard in a specific context of space and time focusing on the weather and other possible parameters, responsible for fluctuations in the numbers of injuries/accidents; (2 Methods: We used statistical distributions with graphical illustrations to examine the distribution of visits to Kainuu Hospital by non-local patients and their characteristics/causes; graphs to illustrate the distribution of the different characteristics of weather conditions; questionnaires and interviews conducted among health care and safety personnel in Sotkamo and Kuusamo; (3 Results: There was a clear seasonal distribution in the numbers and types of extremity injuries of non-local patients. While the risk of slipping is emphasized, other factors leading to injuries are evaluated; and (4 Conclusions: The study highlighted the clear role of wintery weather conditions as a cause of extremity injuries even though other aspects must also be considered. Future scenarios, challenges and adaptive strategies are also discussed from the viewpoint of climate change.

  2. Dynamic fertilizer management triggered by real-time simulations and weather conditions

    NARCIS (Netherlands)

    Stoorvogel, J.J.; Sonneveld, M.P.W.; Serrano, E.


    Typically, the guiding principle for fertilizer management is a rather fixed cropping calendar in which applications are given at fixed moments in time or at specific crop development stages. The recommendation is based on average weather and crop development. However, in most conditions the average

  3. Geographic heterogeneity in cycling under various weather conditions: Evidence from Greater Rotterdam

    NARCIS (Netherlands)

    Helbich, M.; Böcker, L.; Dijst, M.J.


    With its sustainability, health and accessibility benefits, cycling has nowadays been established on research and policy agendas. Notwithstanding the decision to cycle is closely related to local weather conditions and interwoven with the geographical context, research dealing with both aspects is

  4. Urban fine-scale forecasting reveals weather conditions with unprecedented detail

    NARCIS (Netherlands)

    Ronda, R.J.; Steeneveld, G.J.; Heusinkveld, B.G.; Attema, Jisk; Holtslag, A.A.M.


    Feasibility of Numerical Weather Prediction at urban neighborhood and street scales demonstrated for summer conditions in the Amsterdam metropolitan region (Netherlands). As the number of urban dwellers increases from an estimated 4 billion in 2014 to an expected 6.5 billion by 2050 (UN 2014),

  5. Paper birch decline in the Niobrara River Valley, Nebraska: Weather, microclimate, and birch stand conditions (United States)

    Stroh, Esther D.; Miller, Joel P.


    The Niobrara River Valley in north-central Nebraska supports scattered stands of paper birch (Betula papyrifera Marsh), a species more typical of boreal forests. These birch stands are considered to be relictual populations that have persisted since the end of the Wisconsin glaciation, when regional flora was more boreal in nature (Wright 1970, Kaul and others, 1988). Dieback of canopy-sized birch has been observed throughout the Niobrara Valley in recent years, although no onset dates are documented. The current dieback event probably started around or after the early 1980’s. The study objectives were to understand microclimatic conditions in birch stands relative to nearby weather stations and historic weather conditions, and to assess current health conditions of individual birch trees. Temperature was measured every half-hour from June 2005 through October 2007 in 12 birch stands and individual birch tree health was measured as expressed by percent living canopy in these and 13 additional stands in spring 2006 and 2007. Birch site microclimate was compared to data from a National Weather Service station in Valentine, Nebraska, and to an automated weather station at The Nature Conservancy Niobrara Valley Preserve 24 kilometers north of Johnstown, Nebraska. Historic weather data from the Valentine station and another National Weather Service Station at Ainsworth, Nebraska, were used to reconstruct minimum and maximum temperature at The Nature Conservancy and one microclimate monitoring station using Kalman filtering and smoothing algorithms. Birch stand microclimate differed from local weather stations as well as among stands. Birch health was associated with annual minimum temperature regimes; those stands whose annual daily minimum temperature regimes were most like The Nature Conservancy station contained smaller proportions of living trees. Frequency of freeze/thaw conditions capable of inducing rootlet injury and subsequent crown dieback significantly have

  6. Availability assessment of oil and gas processing plants operating under dynamic Arctic weather conditions


    Naseri, Masoud; Baraldi, Piero; Compare, Michele; Zio, Enrico


    We consider the assessment of the availability of oil and gas processing facilities operating under Arctic conditions. The novelty of the work lies in modelling the time-dependent effects of environmental conditions on the components failure and repair rates. This is done by introducing weather-dependent multiplicative factors, which can be estimated by expert judgements given the scarce data available from Arctic offshore operations. System availability is assessed considering the equivalent...

  7. Agricultural pests under future climate conditions: downscaling of regional climate scenarios with a stochastic weather generator (United States)

    Hirschi, M.; Stöckli, S.; Dubrovsky, M.; Spirig, C.; Rotach, M. W.; Calanca, P.; Samietz, J.


    As a consequence of current and projected climate change in temperate regions of Europe, agricultural pests and diseases are expected to occur more frequently and possibly to extend to previously unaffected regions. Given their economic and ecological relevance, detailed forecasting tools for various pests have been developed, which model the infestation depending on actual weather conditions. Assessing the future risk of pest-related damages therefore requires future weather data at high temporal and spatial resolution. In particular, pest forecast models are often not based on screen temperature and precipitation alone (i.e., the most generally projected climate variables), but might require input variables such as soil temperature, in-canopy net radiation or leaf wetness. Here, we use a stochastic weather and a re-sampling procedure for producing site-specific hourly weather data from regional climate change scenarios for 2050 in Switzerland. The climate change scenarios were derived from multi-model projections and provide probabilistic information on future regional changes in temperature and precipitation. Hourly temperature, precipitation and radiation data were produced by first generating daily weather data for these climate scenarios and then using a nearest neighbor re-sampling approach for creating realistic diurnal cycles. These hourly weather time series were then used for modeling important phases in the lifecycle of codling moth, the major insect pest in apple orchards worldwide. First results indicate a shift in the occurrence and duration of phases relevant for pest disease control for projected as compared to current climate (e.g. the flight of the codling moth starts about ten days earlier in future climate), continuing an already observed trend towards more favorable conditions for this insect during the last 20 years.

  8. Weathering of Olivine during Interaction of Sulfate Aerosols with Mars Soil under Current Climate Conditions (United States)

    Niles, P. B.; Golden, D. C.; Michalski, J. R.; Ming, D. W.


    Sulfur concentrations in the Mars soils are elevated above 1 wt% in nearly every location visited by landed spacecraft. This observation was first made by the Viking landers, and has been confirmed by subsequent missions. The wide distribution of sulfur in martian soils has been attributed to volcanic degassing, formation of sulfate aerosols, and later incorporation into martian soils during gravitational sedimentation. However, later discoveries of more concentrated sulfur bearing sediments by the Opportunity rover has led some to believe that sulfates may instead be a product of evaporation and aeolian redistribution. One question that has not been addressed is whether the modern surface conditions are too cold for weathering of volcanic materials by sulfate aerosols. We suggest here that mixtures of atmospheric aerosols, ice, and dust have the potential for creating small films of cryo-concentrated acidic solutions that may represent an important unexamined environment for understanding weathering processes on Mars. Laboratory experiments were conducted to simulate weathering of olivine under Mars-like conditions. The weathering rates measured in this study suggest that fine grained olivine on Mars would weather into sulfate minerals in short time periods if they are exposed to H2SO4 aerosols at temperatures at or above -40°C. In this system, the strength of the acidic solution is maximized through eutectic freezing in an environment where the silicate minerals are extremely fine grained and have high surface areas. This provides an ideal environment for olivine weathering despite the very low temperatures. The likelihood of substantial sulfur-rich volcanism on Mars and creation of abundant sulfate aerosols suggests that this process would have been important during formation of martian soils and sediments. Future work modeling sulfur release rates during volcanic eruptions and aerosol distribution over the surface will help understand how well this process

  9. A conditional stochastic weather generator for seasonal to multi-decadal simulations (United States)

    Verdin, Andrew; Rajagopalan, Balaji; Kleiber, William; Podestá, Guillermo; Bert, Federico


    We present the application of a parametric stochastic weather generator within a nonstationary context, enabling simulations of weather sequences conditioned on interannual and multi-decadal trends. The generalized linear model framework of the weather generator allows any number of covariates to be included, such as large-scale climate indices, local climate information, seasonal precipitation and temperature, among others. Here we focus on the Salado A basin of the Argentine Pampas as a case study, but the methodology is portable to any region. We include domain-averaged (e.g., areal) seasonal total precipitation and mean maximum and minimum temperatures as covariates for conditional simulation. Areal covariates are motivated by a principal component analysis that indicates the seasonal spatial average is the dominant mode of variability across the domain. We find this modification to be effective in capturing the nonstationarity prevalent in interseasonal precipitation and temperature data. We further illustrate the ability of this weather generator to act as a spatiotemporal downscaler of seasonal forecasts and multidecadal projections, both of which are generally of coarse resolution.

  10. Deterioration modeling for condition assessment of flexible pavements considering extreme weather events (United States)

    Hashemi Tari, Yasamin; Shahini Shamsabadi, Salar; Birken, Ralf; Wang, Ming


    Accurate pavement management systems are essential for states' Department Of Transportation and roadway agencies to plan for cost-effective maintenance and repair (M and R) strategies. Pavement deterioration model is an imperative component of any pavement management system since the future budget and M and R plans would be developed based on the predicted pavement performance measures. It is crucial for the pavement deterioration models to consider the factors that significantly aggravate the pavement condition. While many studies have highlighted the impact of different environmental, load, and pavement's structure on the life cycle of the pavement, effect of extreme weather events such as Floods and Snow Storms have often been overlooked. In this study, a pavement deterioration model is proposed which would consider the effect of traffic loads, climate conditions, and extreme weather events. Climate, load and performance data has been compiled for over twenty years and for eight states using the Long Term Pavement Performance (LTPP) and National Oceanic and Atmospheric Administration (NOAA) databases. A stepwise regression approach is undertaken to quantify the effect of the extreme weather events, along with other influential factors on pavement performance in terms of International Roughness Index (IRI). Final results rendered more than 90% correlation with the quantified impact values of extreme weather events.

  11. The influence of weather conditions on road safety : an assessment of the effect of precipitation and temperature.

    NARCIS (Netherlands)

    Bijleveld, F.D. & Churchill, T.


    The influence of changes in extreme weather conditions is often identified as a cause of fluctuations in road safety and the resulting numbers of crashes and casualties. This report focuses on an analysis of the aggregate, accumulated effect of weather conditions (precipitation and temperature) on

  12. Water Age Responses to Weather Conditions in a Hyper-Eutrophic Channel Reservoir in Southern China

    Directory of Open Access Journals (Sweden)

    Wei Du


    Full Text Available Channel reservoirs have the characteristics of both rivers and lakes, in which hydrodynamic conditions and the factors affecting the eutrophication process are complex and highly affected by weather conditions. Water age at any location in the reservoir is used as an indicator for describing the spatial and temporal variations of water exchange and nutrient transport. The hyper-eutrophic Changtan Reservoir (CTR in Southern China was investigated. Three weather conditions including wet, normal, and dry years were considered for assessing the response of water age by using the coupled watershed model Soil Water Assessment Tool (SWAT and the three-dimensional hydrodynamic model Environmental Fluid Hydrodynamic Code (EFDC. The results showed that the water age in CTR varied tremendously under different weather conditions. The averaged water ages at the downstream of CTR were 3 d, 60 d, and 110 d, respectively in the three typical wet, normal, and dry years. The highest water ages at the main tributary were >70 d, >100 d, and >200 d, respectively. The spatial distribution of water ages in the tributaries and the reservoir were mainly affected by precipitation. This paper provides useful information on water exchange and transport pathways in channel reservoir, which will be helpful in understanding nutrient dynamics for controlling algal blooms.

  13. Forest ecosystem as a source of CO2 during growing season: relation to weather conditions

    Czech Academy of Sciences Publication Activity Database

    Taufarová, Klára; Havránková, Kateřina; Dvorská, Alice; Pavelka, Marian; Urbaniak, M.; Janouš, Dalibor


    Roč. 28, č. 2 (2014), s. 239-249 ISSN 0236-8722 R&D Projects: GA MŠk(CZ) ED1.1.00/02.0073; GA MŠk(CZ) EE2.4.31.0056; GA MŠk(CZ) LM2010007 Institutional support: RVO:67179843 Keywords : net ecosystem production * CO2 source days * eddy covariance * weather conditions * Norway spruce Subject RIV: EH - Ecology, Behaviour Impact factor: 1.117, year: 2014

  14. The Effects of Various Weather Conditions as a Potential Ischemic Stroke Trigger in Dogs. (United States)

    Meadows, Kristy L; Silver, Gena M


    Stroke is the fifth leading cause of death in the United States, and is the leading cause of serious, long-term disability worldwide. There are at least 795,000 new or recurrent strokes each year, and approximately 85% of all stroke occurrences are ischemic. Unfortunately, companion animals are also at risk for ischemic stroke. Although the exact incidence of ischemic stroke in companion animals is unknown, some studies, and the veterinary information network (VIN), report that approximately 3% of neurological case referrals are due to a stroke. There is a long list of predisposing factors associated with the risk of ischemic stroke in both humans and canines; however, these factors do not explain why a stroke happens at a particular time on a particular day. Our understanding of these potential stroke "triggers" is limited, and the effect of transient environmental exposures may be one such "trigger". The present study investigated the extent to which the natural occurrence of canine ischemic stroke was related to the weather conditions in the time-period immediately preceding the onset of stroke. The results of the present study demonstrated that the change in weather conditions could be a potential stroke trigger, with the strokes evaluated occurring after periods of rapid, large fluctuations in weather conditions. There are currently no epidemiological data on the seasonal variability of ischemic stroke in dogs, and determining whether canine stroke parallels human stroke would further validate the use of companion dogs as an appropriate naturally occurring model.

  15. Weather conditions and Bell's palsy: five-year study and review of the literature

    Directory of Open Access Journals (Sweden)

    Milionis Haralampos J


    Full Text Available Abstract Background Climatic or meteorological condition changes have been implicated in the pathogenesis of Bell's palsy (BP. We evaluate the influence of meteorological parameters, such as temperature, humidity, and atmospheric pressure, and their variation and covariation on the incidence of BP and present a review of the literature on the effect of meteorological conditions on facial nerve function. Methods A total of 171 cases of BP admitted to our Department over a five-year period were studied. The meteorological database included daily values of 13 distinct parameters recorded at the meteorological station of the University of Ioannina during this period. A relationship between each meteorological variable and the incidence of BP was investigated by applying (Χ2 test on data from 13 contingency tables. In addition, the influence of different weather types on the incidence of BP was also investigated. For this purpose Cluster Analysis was used to create eight clusters (weather types for the Ioannina prefecture and (Χ2 test was applied on the contingency tables consisting of the days of BP cases for each cluster. Results No significant correlation was found either between BP and each distinct meteorological parameter or between BP and any specific weather. Conclusions Meteorological conditions, such as those dominating in the Northwestern Greece, and/or their changes have little effect on the incidence of BP. Multicenter studies taking into account atmospheric pollution, and climatic differences between countries, are necessary to scrutinize the environmental effects on facial nerve function.

  16. Evaluating Weather Research and Forecasting Model Sensitivity to Land and Soil Conditions Representative of Karst Landscapes (United States)

    Johnson, Christopher M.; Fan, Xingang; Mahmood, Rezaul; Groves, Chris; Polk, Jason S.; Yan, Jun


    Due to their particular physiographic, geomorphic, soil cover, and complex surface-subsurface hydrologic conditions, karst regions produce distinct land-atmosphere interactions. It has been found that floods and droughts over karst regions can be more pronounced than those in non-karst regions following a given rainfall event. Five convective weather events are simulated using the Weather Research and Forecasting model to explore the potential impacts of land-surface conditions on weather simulations over karst regions. Since no existing weather or climate model has the ability to represent karst landscapes, simulation experiments in this exploratory study consist of a control (default land-cover/soil types) and three land-surface conditions, including barren ground, forest, and sandy soils over the karst areas, which mimic certain karst characteristics. Results from sensitivity experiments are compared with the control simulation, as well as with the National Centers for Environmental Prediction multi-sensor precipitation analysis Stage-IV data, and near-surface atmospheric observations. Mesoscale features of surface energy partition, surface water and energy exchange, the resulting surface-air temperature and humidity, and low-level instability and convective energy are analyzed to investigate the potential land-surface impact on weather over karst regions. We conclude that: (1) barren ground used over karst regions has a pronounced effect on the overall simulation of precipitation. Barren ground provides the overall lowest root-mean-square errors and bias scores in precipitation over the peak-rain periods. Contingency table-based equitable threat and frequency bias scores suggest that the barren and forest experiments are more successful in simulating light to moderate rainfall. Variables dependent on local surface conditions show stronger contrasts between karst and non-karst regions than variables dominated by large-scale synoptic systems; (2) significant

  17. Evaluating Weather Research and Forecasting Model Sensitivity to Land and Soil Conditions Representative of Karst Landscapes (United States)

    Johnson, Christopher M.; Fan, Xingang; Mahmood, Rezaul; Groves, Chris; Polk, Jason S.; Yan, Jun


    Due to their particular physiographic, geomorphic, soil cover, and complex surface-subsurface hydrologic conditions, karst regions produce distinct land-atmosphere interactions. It has been found that floods and droughts over karst regions can be more pronounced than those in non-karst regions following a given rainfall event. Five convective weather events are simulated using the Weather Research and Forecasting model to explore the potential impacts of land-surface conditions on weather simulations over karst regions. Since no existing weather or climate model has the ability to represent karst landscapes, simulation experiments in this exploratory study consist of a control (default land-cover/soil types) and three land-surface conditions, including barren ground, forest, and sandy soils over the karst areas, which mimic certain karst characteristics. Results from sensitivity experiments are compared with the control simulation, as well as with the National Centers for Environmental Prediction multi-sensor precipitation analysis Stage-IV data, and near-surface atmospheric observations. Mesoscale features of surface energy partition, surface water and energy exchange, the resulting surface-air temperature and humidity, and low-level instability and convective energy are analyzed to investigate the potential land-surface impact on weather over karst regions. We conclude that: (1) barren ground used over karst regions has a pronounced effect on the overall simulation of precipitation. Barren ground provides the overall lowest root-mean-square errors and bias scores in precipitation over the peak-rain periods. Contingency table-based equitable threat and frequency bias scores suggest that the barren and forest experiments are more successful in simulating light to moderate rainfall. Variables dependent on local surface conditions show stronger contrasts between karst and non-karst regions than variables dominated by large-scale synoptic systems; (2) significant

  18. Prevalence of hot weather conditions related to sports participation guidelines: a South Australian investigation. (United States)

    Grimmer, K; King, E; Larsen, T; Farquharson, T; Potter, A; Sharpe, P; de Wit, H


    There is scant guidance in the literature on the most appropriate Australian measures of, and thresholds for, extreme heat regarding giving advice on safe sports participation in hot weather. The purpose of this paper is to present a process for investigating two common measures of heat (air temperature, wet bulb globe temperature (WGBT)) in one state in Australia (South Australia), regarding their usefulness in making decisions regarding sports participation in the heat. Commonly reported measures and thresholds of extreme heat were identified from a systematic review of guidelines regarding sports participation in hot weather. Dry air temperature (threshold of 35 degrees C), and WBGT index (threshold of 28 degrees C) were highlighted. Repeated daily measures of dry air temperature by the Bureau of Meteorology (BoM) and WBGT index from 12 meteorological recording sites in South Australia (SA) for four consecutive summer periods (2000-2004) were analysed using these thresholds to investigate the prevalence of extremely hot temperatures in SA during these periods. The extremely hot hours-per-day data were standardised using a denominator of per-day-month across the 12 SA recording regions. Across the four summer seasons of data in SA, there were similar standardised numbers of hours-per-day of extremely hot dry air temperature and WBGT index. There was a high correlation between these hours of hot weather measures, highlighting the congruence between hot air and humidity measures. Three distinct regional site groupings were identified, in which there was a different prevalence of extremely hot weather conditions. In SA, dry air temperature is an appropriate and robust measure of extreme heat related to sports participation, this measure providing as much information as WBGT in identifying extremely hot periods of weather. Dry air temperature can be readily measured by sports participants or officials irrespective of the geographical location in SA. Three SA regions

  19. Analysis of winter weather conditions and their potential impact on wind farm operations (United States)

    Novakovskaia, E.; Treinish, L. A.; Praino, A.


    Severe weather conditions have two primary impacts on wind farm operations. The first relates to understanding potential damage to the turbines themselves and what actions are required to mitigate the effects. The second is recognizing what conditions may lead to a full or partial shutdown of the wind farm with sufficient lead time to determine the likely inability to meet energy generation committments. Ideally, wind forecasting suitable for wind farm operations should be of sufficient fidelity to resolve features within the boundary layer that lead to either damaging conditions or useful power generation. Given the complexity of the site-specific factors that effect the boundary layer at the scale of typical land-based wind farm locations such as topography, vegetation, land use, soil conditions, etc., which may vary with turbine design and layout within the farm, enabling reliable forecasts of too little or too much wind is challenging. A potential solution should involve continuous updates of alert triggering criteria through analysis of local wind patterns and probabilistic risk assessment for each location. To evaluate this idea, we utilize our operational mesoscale prediction system, dubbed “Deep Thunder”, developed at the IBM Thomas J. Watson Research Center. In particular, we analyze winter-time near-surface winds in upstate New York, where four similar winds farms are located. Each of these farms were built at roughly the same time and utilize similar turbines. Given the relative uncertainty associated with numerical weather prediction at this scale, and the difference in risk assessment due to the two primary impacts of severe weather, probabilistic forecasts are a prerequisite. Hence, we have employed ensembles of weather scenarios, which are based on the NCAR WRF-ARW modelling system. The set of ensemble members was composed with variations in the choices of physics and parameterization schemes, and source of background fields for initial

  20. Do Wind Turbines Affect Weather Conditions?: A Case Study in Indiana

    Directory of Open Access Journals (Sweden)

    Meghan F. Henschen


    Full Text Available Wind turbines are becoming increasingly widespread in the United States as the world looks for cleaner sources of energy. Scientists, policymakers, and citizens have strong opinions regarding the positive and negative effects of wind energy projects, and there is a great deal of misinformation about wind energy circulating on the Web and other media sources. The purpose of this study is to gain a better understanding of how the rotation of hundreds of turbines can influence local weather conditions within a wind farm and in the surrounding areas. This experiment measures temperature, atmospheric pressure, wind speed, wind direction, relative humidity, and evaporation with five weather instruments at Meadow Lake Wind Farm located in White, Jasper, and Benton Counties, Indiana, from November 4 through November 18, 2010. The data show that as wind passes throughout the wind farm, the air warms during the overnight and early morning hours and cools during daytime hours. Observed lower humidity rates and higher evaporation rates downwind also demonstrate that the air dries out as it travels through the wind farm. Further research over multiple seasons is necessary to examine the effects of warmer nighttime temperatures and drier conditions progressively downwind of the installation. Nevertheless, wind turbines did not negatively affect local weather patterns in our small-scale research and may actually prevent frost, which could have important positive implications for farmers by potentially prolonging the growing season.

  1. Estimating Rice Yield under Changing Weather Conditions in Kenya Using CERES Rice Model

    Directory of Open Access Journals (Sweden)

    W. O. Nyang’au


    Full Text Available Effects of change in weather conditions on the yields of Basmati 370 and IR 2793-80-1 cultivated under System of Rice Intensification (SRI in Mwea and Western Kenya irrigation schemes were assessed through sensitivity analysis using the Ceres rice model v 4.5 of the DSSAT modeling system. Genetic coefficients were determined using 2010 experimental data. The model was validated using rice growth and development data during the 2011 cropping season. Two SRI farmers were selected randomly from each irrigation scheme and their farms were used as research fields. Daily maximum and minimum temperatures and precipitation were collected from the weather station in each of the irrigation schemes while daily solar radiation was generated using weatherman in the DSSAT shell. The study revealed that increase in both maximum and minimum temperatures affects Basmati 370 and IR 2793-80-1 grain yield under SRI. Increase in atmospheric CO2 concentration led to an increase in grain yield for both Basmati and IR 2793-80-1 under SRI and increase in solar radiation also had an increasing impact on both Basmati 370 and IR 2793-80-1 grain yield. The results of the study therefore show that weather conditions in Kenya affect rice yield under SRI and should be taken into consideration to improve food security.

  2. Atmospheric propagation of high power laser radiation at different weather conditions (United States)

    Pargmann, Carsten; Hall, Thomas; Duschek, Frank; Handke, Jürgen


    Applications based on the propagation of high power laser radiation through the atmosphere are limited in range and effect, due to weather dependent beam wandering, beam deterioration, and scattering processes. Security and defense related application examples are countermeasures against hostile projectiles and the powering of satellites and aircrafts. For an examination of the correlations between weather condition and laser beam characteristics DLR operates at Lampoldshausen a 130 m long free transmission laser test range. Sensors around this test range continuously monitor turbulence strength, visibility, precipitation, temperature, and wind speed. High power laser radiation is obtained by a TruDisk 6001 disk laser (Trumpf company) yielding a maximum output power of 6 kW at a wavelength of 1030 nm. The laser beam is expanded to 180 mm and focused along the beam path. Power and intensity distribution are measured before and after propagation, providing information about the atmospheric transmission and alterations of diameter and position of the laser beam. Backscattered laser light is acquired by a photo receiver. As a result, measurements performed at different weather conditions show a couple of correlations to the characteristics of the laser beam. The experimental results are compared to a numerical analysis. The calculations are based on the Maxwell wave equation in Fresnel approximation. The turbulence is considered by the introduction of phase screens and the "von Karman" spectrum.

  3. The sensitivity of the surface oil signature to subsurface dispersant injection and weather conditions. (United States)

    Daae, Ragnhild L; Skancke, Jørgen; Brandvik, Per Johan; Faksness, Liv-Guri


    Subsea blowouts have the potential to spread oil across large geographical areas, and subsea dispersant injection (SSDI) is a response option targeted at reducing the impact of a blowout, especially reducing persistent surface oil slicks. Modified Weber scaling was used to predict oil droplet sizes with the OSCAR oil spill model, and to evaluate the surface oil volume and area when using SSDI under different conditions. Generally, SSDI reduces the amount of oil on the surface, and creates wider and thinner surface oil slicks. It was found that the reduction of surface oil area and volume with SSDI was enhanced for higher wind speeds. Overall, given the effect of SSDI on oil volume and weathering, it may be suggested that tar ball formation, requiring thick and weathered oil, could possibly be reduced when SSDI is used. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Composition of in situ burn residue as a function of weathering conditions

    DEFF Research Database (Denmark)

    Fritt-Rasmussen, Janne; Ascanius, Birgit Elkjær; Brandvik, Per Johan


    Troll B crude oil was weathered under Arctic conditions with different ice coverage: open water, 50% ice and 90% ice. Samples (100. mL) were taken during the experiment and tested for ignitability in a burning cell. From each burning a residue sample was taken for analysis. The burning process...... removed the light compounds eluting before C13. No effect from the prior weathering time or the different ice coverage was seen in the burn residue composition. The content of selected Poly Aromatic Hydrocarbons (PAHs) was determined and it was noted that the concentration of PAHs with more than 4 rings...... were increased. The source origin of the PAHs was investigated by use of relative ratios of PAH isomers and indicated that some formation of PAHs was additionally taking place during burning. © 2012 Elsevier Ltd....

  5. Model Development for Risk Assessment of Driving on Freeway under Rainy Weather Conditions.

    Directory of Open Access Journals (Sweden)

    Xiaonan Cai

    Full Text Available Rainy weather conditions could result in significantly negative impacts on driving on freeways. However, due to lack of enough historical data and monitoring facilities, many regions are not able to establish reliable risk assessment models to identify such impacts. Given the situation, this paper provides an alternative solution where the procedure of risk assessment is developed based on drivers' subjective questionnaire and its performance is validated by using actual crash data. First, an ordered logit model was developed, based on questionnaire data collected from Freeway G15 in China, to estimate the relationship between drivers' perceived risk and factors, including vehicle type, rain intensity, traffic volume, and location. Then, weighted driving risk for different conditions was obtained by the model, and further divided into four levels of early warning (specified by colors using a rank order cluster analysis. After that, a risk matrix was established to determine which warning color should be disseminated to drivers, given a specific condition. Finally, to validate the proposed procedure, actual crash data from Freeway G15 were compared with the safety prediction based on the risk matrix. The results show that the risk matrix obtained in the study is able to predict driving risk consistent with actual safety implications, under rainy weather conditions.

  6. Performance evaluation of polycrystalline solar photovoltaic module in weather conditions of Maiduguri, Nigeria

    Directory of Open Access Journals (Sweden)

    I. Mustapha


    Full Text Available Many Solar PV modules exhibit significant loss in their expected performance due to variations in weather conditions such as ambient temperature and solar irradiance which result in inaccurate prediction of the module performance in the field. Obviously, the Standard Test Conditions (STC and the Nominal Operating Cell Temperatures (NOCT do not represent real operating conditions of PV module at the site of installation. This paper evaluates the performance of commercially used polycrystalline solar photovoltaic module KD 315 under Maiduguri-Nigeria weather conditions. The model of the PV module was implemented using a MATLAB program and the model parameters are evaluated using daily data of temperature and solar irradiance obtained from Maiduguri for a period of one year. Simulation results confirm that current generated is directly proportional to solar irradiance and is almost independent of temperature. The voltage of the module decreases by about 0.5% per degree centigrade temperature increase. It was found that the power produced by the panel is dependent on the solar irradiance and ambient temperature. The manufacturer’s maximum power of 315 W was achieved during the sunniest month. Thus the photovoltaic module exhibited good performance in the region under study.

  7. Capability of LOFT vital batteries to supply emergency power demands during severe cold weather conditions

    International Nuclear Information System (INIS)

    Yeates, J.A.


    This study evaluates the capability of the vital batteries (PPS) to provide electrical power via the vital DC-AC motor generator sets to the LOFT PPS loads during severe cold weather conditions. It is concluded that these batteries while at a temperature of 5 0 F will supply the necessary PPS electrical loads for a time in excess of the one hour permitted to start the diesel generators and are, therefore, adequate at this temperature. This Revision B of the LTR includes revised, more recent, and complete technical data relating to MG set efficiency, battery operating procedures and cold temperature derating. Revision B supersedes and replaces all previous issues

  8. Evaluation of video detection systems, volume 4 : effects of adverse weather conditions in the performance of video detection systems. (United States)


    The performance of three video detection systems (VDS): Iteris, Autoscope, and Peek, was evaluated : using a side-by-side installation at a signalized intersection under various adverse weather conditions including : rain and snow in both day and nig...

  9. Effects of Space Weathering on Thermal Infrared Emissivity Spectra of Bulk Lunar Soils Measured Under Simulated Lunar Conditions (United States)

    Donaldson Hanna, K. L.; Bowles, N. E.; Pieters, C. M.; Greenhagen, B. T.; Glotch, T. D.; Lucey, P. G.


    In this initial study, TIR emissivity spectral measurements are made under lunar-like conditions of two highland soil samples that are similar in composition, but differing maturities to understand the effects of space weathering on TIR spectra.

  10. Effects of UV-accelerated weathering and natural weathering conditions on anti-fungal efficacy of wood/PVC composites doped with propylene glycol-based HPQM

    Directory of Open Access Journals (Sweden)

    P. Srimalanon


    Full Text Available This work studied the mechanical, physical and weathering properties and anti-fungal efficacy of polyvinyl chloride(PVC and wood flour/polyvinyl chloride composites(WPVC. 2-hydroxypropyl-3-piperazinyl-quinoline carboxylic acid methacrylate (HPQM in propylene glycol was used as an anti-fungal agent. Propylene glycol-based HPQM was doped in neat PVC and in WPVC containing 50 and 100 pph wood (WPVC-50 and WPVC-100. The flexural properties of PVC decreased when propylene glycol-based HPQM was added. However, adding this component did not affect the flexural properties of WPVC. Fungal growth inhibition test and dry weight technique were used for evaluation of anti-fungal effectiveness. Aspergillus niger was used as a testing fungus. Adding propylene glycol-based HPQM to WPVC-100 led to the most effective anti-fungal performance. Wood flour acted as an anti-fungal promoter for the WPVC composites. The optimal dosages of propylene glycol-based HPQM in PVC, WPVC-50, and WPVC-100 were 50000, 15000, and 10000 ppm, respectively. UV-accelerated weathering aging and natural weathering conditions were found to affect the flexural properties of PVC and WPVC. The change in the anti-microbial performance of WPVC under natural weathering were slower than those under UV-accelerated weathering aging. The anti-microbial evaluation indicated that the samples doped with less than 20000 ppm propylene glycol-based HPQM had a more pronounced effect than the ones doped with higher dosages.

  11. Soybean response to implementation of agrotechnical measures under various weather conditions during the year

    Directory of Open Access Journals (Sweden)

    Л. І. Прус


    Full Text Available Purpose. To substantiate and develop breeding technologies of soybean cultivation under various weather conditions of the Western Forest-Steppe zone. Methods. Laboratory test, statistical and mathematical analysis. Results. Analysis of the data of yielding increase due to the use of seed inoculation, green manure and spraying of crops with microbial prepa­rations showed that their effect was much dependent on the weather conditions during the year. Based on the analysis of productivity of such early ripening varieties of soybean as ‘Lehenda’, ‘Anzhelika’ and ‘Ksenia’ during 2011–2015, it was found that the influence of agrometeorological conditions during the vegetation period accounted for 47.8%. The results of the analysis of five-year data of productivity of the late soybean variety ‘Heorhina’ indicated that the share of influence of agrometeorological conditions during the vege­tation period on the studied variety was 48.8%. The use of microbial strains of nodule bacteria Bradyrhizobium japonicum 634b, 614A and M-8 against two backgrounds (in case of green manure application and without it was compared, and microbial culture Hetomik application during the vege­tation period. Conclusion. All biological preparations and green manure considerably increased yield of soybean seeds in moderately humidified and elevated temperature conditions. For soybean growing, the application of green manure, seed inoculation with strains of M-8, 614A and Hetomik spraying of crops was effective. The use of these methods for gro­wing ‘Lehenda’ variety was the most effective. Such varieties as ‘Lehenda’ and ‘Anzhelika’ showed more stable results as compared to others in case of considerable variations of agrometeorological conditions.

  12. Relationships between Long-Term Demography and Weather in a Sub-Arctic Population of Common Eider.

    Directory of Open Access Journals (Sweden)

    Jón Einar Jónsson

    Full Text Available Effects of local weather on individuals and populations are key drivers of wildlife responses to climatic changes. However, studies often do not last long enough to identify weather conditions that influence demographic processes, or to capture rare but extreme weather events at appropriate scales. In Iceland, farmers collect nest down of wild common eider Somateria mollissima and many farmers count nests within colonies annually, which reflects annual variation in the number of breeding females. We collated these data for 17 colonies. Synchrony in breeding numbers was generally low between colonies. We evaluated 1 demographic relationships with weather in nesting colonies of common eider across Iceland during 1900-2007; and 2 impacts of episodic weather events (aberrantly cold seasons or years on subsequent breeding numbers. Except for episodic events, breeding numbers within a colony generally had no relationship to local weather conditions in the preceding year. However, common eider are sexually mature at 2-3 years of age and we found a 3-year time lag between summer weather and breeding numbers for three colonies, indicating a positive effect of higher pressure, drier summers for one colony, and a negative effect of warmer, calmer summers for two colonies. These findings may represent weather effects on duckling production and subsequent recruitment. Weather effects were mostly limited to a few aberrant years causing reductions in breeding numbers, i.e. declines in several colonies followed severe winters (1918 and some years with high NAO (1992, 1995. In terms of life history, adult survival generally is high and stable and probably only markedly affected by inclement weather or aberrantly bad years. Conversely, breeding propensity of adults and duckling production probably do respond more to annual weather variations; i.e. unfavorable winter conditions for adults increase probability of death or skipped breeding, whereas favorable summers

  13. Influence of forest cover changes on regional weather conditions: estimations using the mesoscale model COSMO (United States)

    Olchev, A. V.; Rozinkina, I. A.; Kuzmina, E. V.; Nikitin, M. A.; Rivin, G. S.


    This modeling study intends to estimate the possible influence of forest cover change on regional weather conditions using the non-hydrostatic model COSMO. The central part of the East European Plain was selected as the ‘model region’ for the study. The results of numerical experiments conducted for the warm period of 2010 for the modeling domain covering almost the whole East European Plain showed that deforestation and afforestation processes within the selected model region of the area about 105 km2 can lead to significant changes in regional weather conditions. The deforestation processes have resulted in an increase of the air temperature and a reduction in the amount of precipitation. The afforestation processes can produce the opposite effects, as manifested in decreased air temperature and increased precipitation. Whereas a change of the air temperature is observed mainly inside of the model region, the changes of the precipitation are evident within the entire East European Plain, even in regions situated far away from the external boundaries of the model region.

  14. Diurnal Thermal Behavior of Photovoltaic Panel with Phase Change Materials under Different Weather Conditions

    Directory of Open Access Journals (Sweden)

    Jae-Han Lim


    Full Text Available The electric power generation efficiency of photovoltaic (PV panels depends on the solar irradiation flux and the operating temperature of the solar cell. To increase the power generation efficiency of a PV system, this study evaluated the feasibility of phase change materials (PCMs to reduce the temperature rise of solar cells operating under the climate in Seoul, Korea. For this purpose, two PCMs with different phase change characteristics were prepared and the phase change temperatures and thermal conductivities were compared. The diurnal thermal behavior of PV panels with PCMs under the Seoul climate was evaluated using a 2-D transient thermal analysis program. This paper discusses the heat flow characteristics though the PV cell with PCMs and the effects of the PCM types and macro-packed PCM (MPPCM methods on the operating temperatures under different weather conditions. Selection of the PCM type was more important than the MMPCM methods when PCMs were used to enhance the performance of PV panels and the mean operating temperature of PV cell and total heat flux from the surface could be reduced by increasing the heat transfer rate through the honeycomb grid steel container for PCMs. Considering the mean operating temperature reduction of 4 °C by PCM in this study, an efficiency improvement of approximately 2% can be estimated under the weather conditions of Seoul.

  15. The effect of airborne particles and weather conditions on pediatric respiratory infections in Cordoba, Argentine

    International Nuclear Information System (INIS)

    Amarillo, Ana C.; Carreras, Hebe A.


    We studied the effect of estimated PM 10 on respiratory infections in children from Cordoba, Argentine as well as the influence of weather factors, socio-economic conditions and education. We analyzed upper and lower respiratory infections and applied a time-series analysis with a quasi-Poisson distribution link function. To control for seasonally varying factors we fitted cubic smoothing splines of date. We also examined community-specific parameters and differences in susceptibility by sex. We found a significant association between particles and respiratory infections. This relationship was affected by mean temperature, atmospheric pressure and wind speed. These effects were stronger in fall, winter and spring for upper respiratory infections while for lower respiratory infections the association was significant only during spring. Low socio-economic conditions and low education levels increased the risk of respiratory infections. These findings add useful information to understand the influence of airborne particles on children health in developing countries. - Highlights: ► Few information is available on children respiratory health from developing countries. ► We modeled the association between PM 10 and children's respiratory infections. ► We checked the influence of weather factors, socio-economic conditions, education and sex. ► Temperature, pressure and wind speed modified the effect of particles. ► Low socio-economic conditions and low education levels increased the risk of infections. - The concentration of airborne particles as well as low socio-economic conditions and low education levels are significant risk factors for upper and lower respiratory infections in children from Cordoba, Argentine.

  16. Effect of natural weathering conditions on the dynamic behavior of woven aramid composites (United States)

    Kaya, A. I.; Kısa, M.; Özen, M.


    In this study, aging of woven aramid/epoxy composites under different natural conditions were studied. Composite beams were manufactured by Vacuum Assisted Resin Infusion Method (VARIM). Composites were cut into specimen according to ASTM D3039 and vibration tests. Elastic moduli of reference composites were found according to ASTM D3039 standard. Validation of methodology was performed numerically in Ansys software before aging process. An algorithm, which is predicated on FFT (Fast Fourier Transforms), was composed in Matlab to process output of vibration analysis data so as to identify natural frequencies of beams. Composites were aged for 12 months and various natural weathering aging conditions effects on woven aramid composite beams were surveyed through vibration analysis with 3 months interval. Five specimens of woven aramid beams were considered for dynamic tests and effect of aging on first three natural frequencies were determined.

  17. Evaluation of a variable speed limit system for wet and extreme weather conditions : phase 1 report. (United States)


    Weather presents considerable challenges to the highway system, both in terms of safety and operations. From a safety standpoint, weather (i.e. precipitation in the form of rain, snow or ice) reduces pavement friction, thus increasing the potential f...

  18. High latitude stratospheric electrical measurements in fair and foul weather under various solar conditions

    International Nuclear Information System (INIS)

    Holzworth, R.H.


    Stratospheric electric field and conductivity measurements during a wide variety of weather and solar conditions are presented. These data are all from high latitude sites in the months of either April or August. The vector electric field is determined by orthogonal double probes connected through high impedance inputs to differential electrometers. The direct conductivity measurement involves determining the relaxation time constant of the medium after refloating a shorted pair of separated probes. Vertical electric field data from several balloon flights with average duration of 18 h at ceiling in fair weather are shown to be well modeled by a simple exponential altitude dependent equation. Examples of solar flare and magnetospheric effects on stratospheric electric fields are shown. Data collected over electrified clouds and thunderstorms are presented along with a discussion of the thunderstorm related electric currents. Lightning stroke signatures in the stratosphere during a large thunderstorm are identified in the electric field data. Current surges through the stratosphere due to DC currents as well as the sferic are calculated. In nearly 1000 h of balloon data no direct solar influence is identified in these data except during major flares. (author)

  19. The behaviour of consolidated volcanic tuffs: weathering mechanisms under simulated laboratory conditions (United States)

    Stück, H.; Forgó, L. Z.; Rüdrich, J.; Siegesmund, S.; Török, Á.


    Five volcanic tuffs ranging from dacitic tuffs of Hungary to rhyolite, phonolite and basaltic tuffs of Germany were consolidated under laboratory conditions. Prior to consolidation an anti-hygro, a hydrous consolidant, which reduces the swelling ability of clay minerals, was applied. The three consolidants, a silicic acid ester (SAE), an elastic silicic acid ester (eSAE) and an acrylate resin (PMMA) were applied on test specimens under vacuum. Petrographic characterisation (polarizing microscopy, XRD, SEM) provided data for fabric analyses and the mineral composition of the tuffs. Changes in fabric, effective porosity, density, tensile strength, ultrasonic wave velocity were evaluated after the treatment. Weathering simulation tests such as hygric dilatation and thermal dilatation aimed to prove the effectiveness of consolidation and the durability of consolidated tuff samples. More than 500 samples were analysed. The tests showed that SAE caused the highest increase in indirect tensile strength. The water absorption and the pore size distribution of the tuffs were modified by consolidation. The PMMA reduced the water absorption the most, whereas SAE modified it the least. All the tested consolidants increased the thermal dilatation of the tuffs. The changes in hygric dilatation were not uniform: for most tuffs SAE increased and PMMA decreased the hygric dilatation, although the clay-rich Habichtswald tuff showed the opposite trend. The changes in hygric and thermal behaviour of consolidated tuff require special care when specific consolidants are chosen. These products modify the physical properties of consolidated tuffs and change the behaviour of weathering.

  20. Charts for Guiding Adjustments of Irrigation Interval to Actual Weather Conditions

    International Nuclear Information System (INIS)

    Kipkorir, E.C.


    Major problems in irrigation management at short time-step during the season are unreliability of rainfall and absence of guidance. By considering the climate of region, crop and soil characteristics, the irrigation method and local irrigation practices, this paper presents the concept of irrigation charts. The charts are based on soil water technique. As an example irrigation chart for a typical irrigation system located in the semi-arid area in Naivasha, Kenya is presented. The chart guides the user in adjustment of irrigation interval to the actual weather conditions throughout the growing season. It is believed that the simplicity of the chart makes it a useful tool for a better utilisation of the limited irrigation water

  1. Two Rare Northern Entoloma Species Observed in Sicily under Exceptionally Cold Weather Conditions

    Directory of Open Access Journals (Sweden)

    Giuseppe Venturella


    Full Text Available The biology and ecology of many Entoloma species is still poorly known as well as their geographical distribution. In Italy, there are no studies on the influence of weather on fungal abundance and richness and our knowledge on the ecology and distribution of Entoloma species needs to be improved. The discovery of two Entoloma species in Sicily (southern Italy, reported in the literature as belonging to the habitat of north European countries, was the basis leading to the assumption that anomalous climatic conditions could stimulate the growth of northern entolomas in the southernmost Mediterranean regions. The results of this study show that the presence of northern Entoloma species in Sicily is not influenced by the Mediterranean type of vegetation, by edaphic or altitudinal factors but by anomalous climatic trends of precipitations and temperatures which stimulate the fructification of basidiomata in correspondence with a thermal shock during autumn.

  2. Sensitivities of crop models to extreme weather conditions during flowering period demonstrated for maize and winter wheat in Austria

    DEFF Research Database (Denmark)

    Eitzinger, J; Thaler, S; Schmid, E


    the start of flowering. Two locations in Austria, representing different agro-climatic zones and soil conditions, were included in the simulations over 2 years, 2003 and 2004, exhibiting contrasting weather conditions. In addition, soil management was modified at both sites by following either ploughing...

  3. Integrating K-means Clustering with Kernel Density Estimation for the Development of a Conditional Weather Generation Downscaling Model (United States)

    Chen, Y.; Ho, C.; Chang, L.


    In previous decades, the climate change caused by global warming increases the occurrence frequency of extreme hydrological events. Water supply shortages caused by extreme events create great challenges for water resource management. To evaluate future climate variations, general circulation models (GCMs) are the most wildly known tools which shows possible weather conditions under pre-defined CO2 emission scenarios announced by IPCC. Because the study area of GCMs is the entire earth, the grid sizes of GCMs are much larger than the basin scale. To overcome the gap, a statistic downscaling technique can transform the regional scale weather factors into basin scale precipitations. The statistic downscaling technique can be divided into three categories include transfer function, weather generator and weather type. The first two categories describe the relationships between the weather factors and precipitations respectively based on deterministic algorithms, such as linear or nonlinear regression and ANN, and stochastic approaches, such as Markov chain theory and statistical distributions. In the weather type, the method has ability to cluster weather factors, which are high dimensional and continuous variables, into weather types, which are limited number of discrete states. In this study, the proposed downscaling model integrates the weather type, using the K-means clustering algorithm, and the weather generator, using the kernel density estimation. The study area is Shihmen basin in northern of Taiwan. In this study, the research process contains two steps, a calibration step and a synthesis step. Three sub-steps were used in the calibration step. First, weather factors, such as pressures, humidities and wind speeds, obtained from NCEP and the precipitations observed from rainfall stations were collected for downscaling. Second, the K-means clustering grouped the weather factors into four weather types. Third, the Markov chain transition matrixes and the

  4. Can Agrometeorological Indices of Adverse Weather Conditions Help to Improve Yield Prediction by Crop Models?

    Directory of Open Access Journals (Sweden)

    Branislava Lalić


    Full Text Available The impact of adverse weather conditions (AWCs on crop production is random in both time and space and depends on factors such as severity, previous agrometeorological conditions, and plant vulnerability at a specific crop development stage. Any exclusion or improper treatment of any of these factors can cause crop models to produce significant under- or overestimates of yield. The analysis presented in this paper focuses on a range of agrometeorological indices (AMI related to AWCs that might affect real yield as well as simulated yield. For this purpose, the analysis addressed four indicators of extreme temperatures and three indicators of dry conditions during the growth period of maize and winter wheat in Austria, Croatia, Serbia, Slovakia, and Sweden. It is shown that increases in the number and intensity of AWCs cannot be unambiguously associated with increased deviations in simulated yields. The identified correlations indicate an increase in modeling uncertainty. This finding represents important information for the crop modeling community. Additionally, it opens a window of opportunity for a statistical (“event scenario” approach based on correlations between agrometeorological indices of AWCs and crop yield data series. This approach can provide scenarios for certain locations, crop types, and AWC patterns and, therefore, improve yield forecasting in the presence of AWCs.

  5. Climate Change and Crop Exposure to Adverse Weather: Changes to Frost Risk and Grapevine Flowering Conditions.

    Directory of Open Access Journals (Sweden)

    Jonathan R Mosedale

    Full Text Available The cultivation of grapevines in the UK and many other cool climate regions is expected to benefit from the higher growing season temperatures predicted under future climate scenarios. Yet the effects of climate change on the risk of adverse weather conditions or events at key stages of crop development are not always captured by aggregated measures of seasonal or yearly climates, or by downscaling techniques that assume climate variability will remain unchanged under future scenarios. Using fine resolution projections of future climate scenarios for south-west England and grapevine phenology models we explore how risks to cool-climate vineyard harvests vary under future climate conditions. Results indicate that the risk of adverse conditions during flowering declines under all future climate scenarios. In contrast, the risk of late spring frosts increases under many future climate projections due to advancement in the timing of budbreak. Estimates of frost risk, however, were highly sensitive to the choice of phenology model, and future frost exposure declined when budbreak was calculated using models that included a winter chill requirement for dormancy break. The lack of robust phenological models is a major source of uncertainty concerning the impacts of future climate change on the development of cool-climate viticulture in historically marginal climatic regions.

  6. Forest soil respiration rate and delta13C is regulated by recent above ground weather conditions. (United States)

    Ekblad, Alf; Boström, Björn; Holm, Anders; Comstedt, Daniel


    Soil respiration, a key component of the global carbon cycle, is a major source of uncertainty when estimating terrestrial carbon budgets at ecosystem and higher levels. Rates of soil and root respiration are assumed to be dependent on soil temperature and soil moisture yet these factors often barely explain half the seasonal variation in soil respiration. We here found that soil moisture (range 16.5-27.6% of dry weight) and soil temperature (range 8-17.5 degrees C) together explained 55% of the variance (cross-validated explained variance; Q2) in soil respiration rate (range 1.0-3.4 micromol C m(-2) s(-1)) in a Norway spruce (Picea abies) forest. We hypothesised that this was due to that the two components of soil respiration, root respiration and decomposition, are governed by different factors. We therefore applied PLS (partial least squares regression) multivariate modelling in which we, together with below ground temperature and soil moisture, used the recent above ground air temperature and air humidity (vapour pressure deficit, VPD) conditions as x-variables. We found that air temperature and VPD data collected 1-4 days before respiration measurements explained 86% of the seasonal variation in the rate of soil respiration. The addition of soil moisture and soil temperature to the PLS-models increased the Q2 to 93%. delta13C analysis of soil respiration supported the hypotheses that there was a fast flux of photosynthates to root respiration and a dependence on recent above ground weather conditions. Taken together, our results suggest that shoot activities the preceding 1-6 days influence, to a large degree, the rate of root and soil respiration. We propose this above ground influence on soil respiration to be proportionally largest in the middle of the growing season and in situations when there is large day-to-day shifts in the above ground weather conditions. During such conditions soil temperature may not exert the major control on root respiration.

  7. Transmitter Spatial Diversity for FSO Uplink in Presence of Atmospheric Turbulence and Weather Conditions for Different IM Schemes (United States)

    Viswanath, Anjitha; Kumar Jain, Virander; Kar, Subrat


    We investigate the error performance of an earth-to-satellite free space optical uplink using transmitter spatial diversity in presence of turbulence and weather conditions, using gamma-gamma distribution and Beer-Lambert law, respectively, for on-off keying (OOK), M-ary pulse position modulation (M-PPM) and M-ary differential PPM (M-DPPM) schemes. Weather conditions such as moderate, light and thin fog cause additional degradation, while dense or thick fog and clouds may lead to link failure. The bit error rate reduces with increase in the number of transmitters for all the schemes. However, beyond a certain number of transmitters, the reduction becomes marginal. Diversity gain remains almost constant for various weather conditions but increases with increase in ground-level turbulence or zenith angle. Further, the number of transmitters required to improve the performance to a desired level is less for M-PPM scheme than M-DPPM and OOK schemes.

  8. Determination of weather types and associated diffusion conditions by statistical treatment of the meteorological data of a site

    International Nuclear Information System (INIS)

    Antoniadis, A.


    A statistical analysis of meteorological data collected at the Grenoble Nuclear Research Center during several years showed they were distributed into 5 homogeneous classes, demonstrating that 5 types of weather prevailed on the site. By means of the usual resolution method of the diffusion equation, average values of atmospheric diffusion coefficients were given to these various weather conditions. For each weather condition and each pollutant release point, the variations of the atmospheric transfer coefficients were plotted vs the distance from the release point. Pollutant concentration values at various points in the environment can thus be predicted in case of planned or accidental release as a function of the diffusion conditions applying to the specific site, and not from universal graphs valid for any kind of site. Two experimental investigations showed a good agreement between predicted and field measurements. More fullscale field experiments shoud be made to confirm the results of this method [fr

  9. Short-Term Changes in Weather and Space Weather Conditions and Emergency Ambulance Calls for Elevated Arterial Blood Pressure

    Directory of Open Access Journals (Sweden)

    Jone Vencloviene


    Full Text Available Circadian rhythm influences the physiology of the cardiovascular system, inducing diurnal variation of blood pressure. We investigated the association between daily emergency ambulance calls (EACs for elevated arterial blood pressure during the time intervals of 8:00–13:59, 14:00–21:59, and 22:00–7:59 and weekly fluctuations of air temperature (T, barometric pressure, relative humidity, wind speed, geomagnetic activity (GMA, and high-speed solar wind (HSSW. We used the Poisson regression to explore the association between the risk of EACs and weather variables, adjusting for seasonality and exposure to CO, PM10, and ozone. An increase of 10 °C when T > 1 °C on the day of the call was associated with a decrease in the risk of EACs during the time periods of 14:00–21:59 (RR (rate ratio = 0.78; p < 0.001 and 22:00–7:59 (RR = 0.88; p = 0.35. During the time period of 8:00–13:59, the risk of EACs was positively associated with T above 1 °C with a lag of 5–7 days (RR = 1.18; p = 0.03. An elevated risk was associated during 8:00–13:59 with active-stormy GMA (RR = 1.22; p = 0.003; during 14:00–21:59 with very low GMA (RR = 1.07; p = 0.008 and HSSW (RR = 1.17; p = 0.014; and during 22:00–7:59 with HSSW occurring after active-stormy days (RR = 1.32; p = 0.019. The associations of environmental variables with the exacerbation of essential hypertension may be analyzed depending on the time of the event.

  10. Bioavailability and biodegradation of weathered diesel fuel in aquifer material under denitrifying conditions

    International Nuclear Information System (INIS)

    Bregnard, T.P.A.; Hoehener, P.; Zeyer, J.


    During the in situ bioremediation of a diesel fuel-contaminated aquifer in Menziken, Switzerland, aquifer material containing weathered diesel fuel (WDF) and indigenous microorganisms was excavated. This material was used to identify factors limiting WDF biodegradation under denitrifying conditions. Incubations of this material for 360 to 390 d under denitrifying conditions resulted in degradation of 23% of the WDF with concomitant consumption of NO 3 - and production of inorganic carbon. The biodegradation of WDF and the rate of NO 3 - consumption was stimulated by agitation of the microcosms. Biodegradation was not stimulated by the addition of a biosurfactant (rhamnolipids) or a synthetic surfactant (Triton X-100) at concentrations above their critical micelle concentrations. The rhamnolipids were biodegraded preferentially to WDF, whereas Triton X-100 was not degraded. Both surfactants reduced the surface tension of the growth medium from 72 to <35 dynes/cm and enhanced the apparent aqueous solubility of the model hydrocarbon n-hexadecane by four orders of magnitude. Solvent-extracted WDF, added at a concentration equal to that already present in the aquifer material, was also biodegraded by the microcosms, but not at a higher rate than the WDF already present in the material. The results show that the denitrifying biodegradation of WDF is not necessarily limited by bioavailability but rather by the inherent recalcitrance of WDF

  11. Complex airborne system with combined action on the conditions of risk weather phenomena

    Directory of Open Access Journals (Sweden)

    Niculae MARIN


    Full Text Available The study of the weather phenomena is one of the main concerns of scientists. Initially, theresearches in this area were intended to provide military structures new ways of fighting in wars suchas the wars in Korea or Vietnam and then continued with the development of technologies to combatthe phenomena that affect the normal conditions of agriculture, the environment, etc. -extremephenomena- hail, low precipitation regime, etc. Since the last decade of last century also in Romaniathere were a number of initiatives supported through a national program of research in the fightagainst hail and stimulation of precipitation. In this context, INCAS proposed in 2008 a researchproject to implement a complex airborne system, which carry out actions to limit the effects of extremeweather events on crops and objectives of national and strategic interest, on the basis of informationreceived from a system of sensors located on the air platform and intended for measuring the physicalcharacteristics of the atmosphere. Also, as a long-term effect, the action of the complex airbornesystem may lead to the rainfall regulation and control, with all the implications arising from this(avoiding flooding, providing protection from frost of autumn crop, etc.The aerial platform chosen for this research approach is the aircraft for school and training IAR99SOIM, INCAS being the author of its structural design and also holding the patent for IndustrialDesign nr.00081 registered with OSIM. Project acronym : COMAEROPREC.

  12. Optimal Altitude, Overlap, and Weather Conditions for Computer Vision UAV Estimates of Forest Structure

    Directory of Open Access Journals (Sweden)

    Jonathan P. Dandois


    Full Text Available Ecological remote sensing is being transformed by three-dimensional (3D, multispectral measurements of forest canopies by unmanned aerial vehicles (UAV and computer vision structure from motion (SFM algorithms. Yet applications of this technology have out-paced understanding of the relationship between collection method and data quality. Here, UAV-SFM remote sensing was used to produce 3D multispectral point clouds of Temperate Deciduous forests at different levels of UAV altitude, image overlap, weather, and image processing. Error in canopy height estimates was explained by the alignment of the canopy height model to the digital terrain model (R2 = 0.81 due to differences in lighting and image overlap. Accounting for this, no significant differences were observed in height error at different levels of lighting, altitude, and side overlap. Overall, accurate estimates of canopy height compared to field measurements (R2 = 0.86, RMSE = 3.6 m and LIDAR (R2 = 0.99, RMSE = 3.0 m were obtained under optimal conditions of clear lighting and high image overlap (>80%. Variation in point cloud quality appeared related to the behavior of SFM ‘image features’. Future research should consider the role of image features as the fundamental unit of SFM remote sensing, akin to the pixel of optical imaging and the laser pulse of LIDAR.

  13. Sensitivities of crop models to extreme weather conditions during flowering period demonstrated for maize and winter wheat in Austria

    Czech Academy of Sciences Publication Activity Database

    Eitzinger, Josef; Thaler, S.; Schmid, E.; Strauss, F.; Ferrise, R.; Moriondo, M.; Bindi, M.; Palosuo, T.; Rötter, R.; Kersebaum, K. C.; Olesen, J. E.; Patil, R. H.; Saylan, L.; Çaldag, B.; Caylak, O.


    Roč. 151, č. 6 (2013), s. 813-835 ISSN 0021-8596 R&D Projects: GA MŠk(CZ) ED1.1.00/02.0073 Institutional support: RVO:67179843 Keywords : crop models * weather conditions * winter wheat * Austria Subject RIV: EH - Ecology, Behaviour Impact factor: 2.891, year: 2013


    Directory of Open Access Journals (Sweden)

    L. N. Lysenko


    Full Text Available The results of the analysis of the applicability of known application software systems for automated synthesis of fuzzy control traffic light UAV during its flight in adverse weather conditions. The solution is based on a previously formulated and put into consideration the principle of permissible limited a priori estimation of the uncertainty of aerodynamic characteristics of UAVs.

  15. Effect of mixed vs single brine composition on salt weathering in porous carbonate building stones for different environmental conditions

    Czech Academy of Sciences Publication Activity Database

    Menéndez, B.; Petráňová, Veronika


    Roč. 210, August (2016), s. 124-139 ISSN 0013-7952 R&D Projects: GA MŠk(CZ) LO1219 Keywords : salt weathering * limestone * environmental conditions * sodium chloride * sodium sulphate * calcium sulphate * salt mixture Subject RIV: AL - Art, Architecture, Cultural Heritage Impact factor: 2.569, year: 2016

  16. Comparing ignitability for in situ burning of oil spills for an asphaltenic, a waxy and a light crude oil as a function of weathering conditions under arctic conditions

    DEFF Research Database (Denmark)

    Fritt-Rasmussen, Janne; Brandvik, Per Johan; Villumsen, Arne


    In situ burning of oil spills in the Arctic is a promising countermeasure. In spite of the research already conducted more knowledge is needed especially regarding burning of weathered oils. This paper uses a new laboratory burning cell (100 mL sample) to test three Norwegian crude oils, Grane...... (asphalthenic), Kobbe (light oil) and Norne (waxy), for ignitability as a function of ice conditions and weathering degree. The crude oils (9 L) were weathered in a laboratory basin (4.8 m3) under simulated arctic conditions (0, 50 and 90% ice cover). The laboratory burning tests show that the ignitability......-windows for the oil to be ignitable. The composition of the oils is important for the window of opportunity. The asphalthenic Grane crude oil had a limited timewindow for in situ burning (9 h or less), while the light Kobbe crude oil and the waxy Norne crude oil had the longest time-windows for in situ burning (from...

  17. Bioprotection and disturbance: Seaweed, microclimatic stability and conditions for mechanical weathering in the intertidal zone (United States)

    Coombes, Martin A.; Naylor, Larissa A.; Viles, Heather A.; Thompson, Richard C.


    As well as their destructive roles, plants, animals and microorganisms contribute to geomorphology and ecology via direct and indirect bioprotection, which can reduce weathering and erosion. For example, indirect bioprotection can operate via biotic influences on microclimate whereby physical decay processes associated with fluctuations in temperature and moisture (salt crystallization, thermal fatigue and wetting-drying), are limited. In the intertidal zone, the spatial and temporal distribution of macroalgae (seaweeds) is patchy, related to physical and ecological conditions for colonization and growth, and the nature and frequency of natural and anthropogenic disturbance. We examined the influence of seaweed canopies (Fucus spp.) on near-surface microclimate and, by implication, on conditions for mechanical rock decay and under-canopy ecology. Monitoring on hard artificial coastal structures in South West England, UK, built from limestone and concrete showed that both the range and maxima of daily summertime temperatures were significantly lower, by an average of 56% and 25%, respectively, in areas colonized by seaweed compared to experimentally cleared areas. Short-term microclimatic variability (minutes-hours) was also significantly reduced, by an average of 78% for temperature and 71% for humidity, under algal canopies during low-tide events. Using seaweed as an example, we develop a conceptual model of the relationship between biological cover and microclimate in the intertidal zone. Disturbance events that remove or drastically reduce seaweed cover mediate shifts between relatively stable and unstable states with respect to mechanical decay and ecological stress associated with heat and desiccation. In urban coastal environments where disturbance may be frequent, facilitating the establishment and recovery of canopy-forming species on rocks and engineered structures could enhance the durability of construction materials as well as support conservation

  18. Hydrological Responses of Weather Conditions and Crop Change of Agricultural Area in the Rincon Valley, New Mexico (United States)

    Ahn, S.; Sheng, Z.; Abudu, S.


    Hydrologic cycle of agricultural area has been changing due to the impacts of climate and land use changes (crop coverage changes) in an arid region of Rincon Valley, New Mexico. This study is to evaluate the impacts of weather condition and crop coverage change on hydrologic behavior of agricultural area in Rincon Valley (2,466km2) for agricultural watershed management using a watershed-scale hydrologic model, SWAT (Soil and Water Assessment Tool). The SWAT model was developed to incorporate irrigation of different crops using auto irrigation function. For the weather condition and crop coverage change evaluation, three spatial crop coverages including a normal (2008), wet (2009), and dry (2011) years were prepared using USDA crop data layer (CDL) for fourteen different crops. The SWAT model was calibrated for the period of 2001-2003 and validated for the period of 2004-2006 using daily-observed streamflow data. Scenario analysis was performed for wet and dry years based on the unique combinations of crop coverages and releases from Caballo Reservoir. The SWAT model simulated the present vertical water budget and horizontal water transfer considering irrigation practices in the Rincon Valley. Simulation results indicated the temporal and spatial variability for irrigation and non-irrigation seasons of hydrologic cycle in agricultural area in terms of surface runoff, evapotranspiration, infiltration, percolation, baseflow, soil moisture, and groundwater recharge. The water supply of the dry year could not fully cover whole irrigation period due to dry weather conditions, resulting in reduction of crop acreage. For extreme weather conditions, the temporal variation of water budget became robust, which requires careful irrigation management of the agricultural area. The results could provide guidelines for farmers to decide crop patterns in response to different weather conditions and water availability.

  19. Wyoming Department of Transportation (WYDOT) road condition reporting application for weather responsive traffic management. (United States)


    Federal Highway Administrations (FHWA) Road Weather Management Program (RWMP) strives to promote the : development and implementation of cutting-edge techniques for maintaining safety, mobility, and productivity of roadways : during adverse weathe...

  20. Predicting favorable conditions for early leaf spot of peanut using output from the Weather Research and Forecasting (WRF) model. (United States)

    Olatinwo, Rabiu O; Prabha, Thara V; Paz, Joel O; Hoogenboom, Gerrit


    Early leaf spot of peanut (Arachis hypogaea L.), a disease caused by Cercospora arachidicola S. Hori, is responsible for an annual crop loss of several million dollars in the southeastern United States alone. The development of early leaf spot on peanut and subsequent spread of the spores of C. arachidicola relies on favorable weather conditions. Accurate spatio-temporal weather information is crucial for monitoring the progression of favorable conditions and determining the potential threat of the disease. Therefore, the development of a prediction model for mitigating the risk of early leaf spot in peanut production is important. The specific objective of this study was to demonstrate the application of the high-resolution Weather Research and Forecasting (WRF) model for management of early leaf spot in peanut. We coupled high-resolution weather output of the WRF, i.e. relative humidity and temperature, with the Oklahoma peanut leaf spot advisory model in predicting favorable conditions for early leaf spot infection over Georgia in 2007. Results showed a more favorable infection condition in the southeastern coastline of Georgia where the infection threshold were met sooner compared to the southwestern and central part of Georgia where the disease risk was lower. A newly introduced infection threat index indicates that the leaf spot threat threshold was met sooner at Alma, GA, compared to Tifton and Cordele, GA. The short-term prediction of weather parameters and their use in the management of peanut diseases is a viable and promising technique, which could help growers make accurate management decisions, and lower disease impact through optimum timing of fungicide applications.

  1. Molecular and structural changes in vegetative buds of Norway spruce during dormancy in natural weather conditions. (United States)

    Guzicka, Marzenna; Pawlowski, Tomasz A; Staszak, Aleksandra; Rozkowski, Roman; Chmura, Daniel J


    The dormancy and the growth of trees in temperate climates are synchronized with seasons. Preparation for dormancy and its proper progression are key for survival and development in the next season. Using a unique approach that combined microscopy and proteomic methods, we investigated changes in Norway spruce (Picea abies (L.) H. Karst.) embryonic shoots during four distinct stages of dormancy in natural weather conditions. We identified 13 proteins that varied among dormancy stages, and were linked to regulation of protein level; functioning of chloroplasts and other plastids; DNA and RNA regulation; and oxidative stress. We also found a group of five proteins, related to cold hardiness, that did not differ in expression among stages of dormancy, but had the highest abundancy level. Ultrastructure of organelles is tightly linked to their metabolic activity, and hence may indicate dormancy status. The observed ultrastructure during endodormancy was stable, whereas during ecodormancy, the structural changes were dynamic and related mainly to nucleus, plastids and mitochondria. At the ultrastructural level, the lack of starch and the presence of callose in plasmodesmata in all regions of embryonic shoot were indicators of full endodormancy. At the initiation of ecodormancy, we noted an increase in metabolic activity of organelles, tissue-specific starch hyperaccumulation and degradation. However, in proteomic analysis, we did not find variation in expression of proteins related to starch degradation or to symplastic isolation of cells. The combination of ultrastructural and proteomic methods gave a more complete picture of vegetative bud dormancy than either of them applied separately. We found some changes at the structural level, but not their analogues in the proteome. Our study suggests a very important role of plastids' organization and metabolism, and their protection in the course of dormancy and during the shift from endo- to ecodormancy and the acquisition

  2. Mass flows of endocrine disruptors in the Glatt River during varying weather conditions

    Energy Technology Data Exchange (ETDEWEB)

    Jonkers, Niels; Kohler, Hans-Peter E.; Dammshaeuser, Anna [Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Duebendorf (Switzerland); Giger, Walter [Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Duebendorf (Switzerland)], E-mail:


    This study focused on the occurrence and behaviour in wastewater and surface waters of several phenolic endocrine disrupting compounds (EDCs) including parabens, alkylphenolic compounds, phenylphenol (PhP) and bisphenol A (BPA). Analytical procedures using solid-phase-extraction and LC-MS/MS techniques were applied to samples of influents and effluents of wastewater treatment plants (WWTPs) discharging into the Glatt River (Switzerland) as well as to river water samples. A mass flow analysis provided insight into the main sources and the fate of these contaminants during different weather conditions. Concentrations in influents were in the low {mu}g/L range for most analytes. Removal of parabens in the WWTPs was mostly above 99%. Nonylphenol polyethoxylates (A{sub 9}PEO) removal amounted to 98%, but in some cases nonylphenoxy acetic acid (A{sub 9}PEC) or nonylphenols (NP) were formed. In effluents, concentrations were highest for the A{sub 9}PEC, A{sub 9}PEO and NP. Concentrations in river water were in the high ng/L range for alkylphenolic compounds and in the low ng/L range for BPA, PhP and the parabens. During the sampling period, in which several rain events occurred, both water flows and mass flows varied strongly. Mass flows in WWTP effluents and in the river increased with increasing water flows for most compounds indicating that higher water flows do not lead necessarily to a proportional dilution of the pollutants. Throughout the low water flow period, mass flows predicted from the known inputs were similar to the actual mass flows at the end of the river for most analytes. For none of the EDCs, significant in-stream removal could be observed. In the periods with high water flows, mass flows in the river were much higher than can be explained by the initially defined sources. Discharge of untreated wastewater influent into the river was assessed as an additional source. Adding this source improved the mass balance for some, but not all of the analytes

  3. Aflatoxins contamination of maize in Serbia: the impact of weather conditions in 2015. (United States)

    Janić Hajnal, Elizabet; Kos, Jovana; Krulj, Jelena; Krstović, Saša; Jajić, Igor; Pezo, Lato; Šarić, Bojana; Nedeljković, Nataša


    In recent years climate changes recorded in temperate regions of Europe have led to aflatoxin (AF) contamination of maize. Thus, the aim of this study was to investigate the influence of weather conditions on levels of aflatoxin B 1 (AFB1), aflatoxin B 2 (AFB2), aflatoxin G 1 (AFG1) and aflatoxin G 2 (AFG2) in 180 maize samples collected from the main maize-growing regions (Western Bačka, North Banat, South Banat and Central Serbia) in Serbia after harvest in 2015. The concentrations of AFs were determined by a validated HPLC method with post-column derivatisation and fluorescence detection (HPLC-FLD). The presence of AFB1, AFB2, AFG1 and AFG2 was detected in 57.2%, 13.9%, 5.6% and 2.8% of maize samples in the concentration ranges of 1.3-88.8 µg kg - 1 , 0.60-2.8 µg kg - 1 , 1.8-28.5 µg kg - 1 and 2.1-7.5 µg kg - 1 respectively. The recorded smaller amount of precipitation and especially higher air temperatures during the summer of 2015 were favourable for AF production, which resulted in 32.2% and 21.1% of samples being unsuitable for human consumption, since AFB1 and the sum of AFs concentrations were above 5.0 and 10.0 µg kg - 1 respectively. Furthermore, the findings in this study indicate that the microclimate conditions in the investigated regions had a great influence on the contamination frequency of maize with AFs. The highest percentage of samples unsuitable for human consumption, considering both AFB1 and total AFs content were 72.5% and 51.5% respectively from Central Serbia, whilst the lowest percentages of 15.6% and 6.2% respectively were found in Western Bačka. These findings confirmed that maize should be continuously monitored in order to protect human and animal health from the harmful effects caused by AFs contamination.

  4. Adverse weather conditions for European wheat production will become more frequent with climate change

    DEFF Research Database (Denmark)

    Trnka, Miroslav; Rötter, Reimund P.; Ruiz-Ramos, Margarita


    events that might significantly affect wheat yield in Europe. For this purpose we analysed changes in the frequency of the occurrence of 11 adverse weather events. Using climate scenarios based on the most recent ensemble of climate models and greenhouse gases emission estimates, we assessed...... crop failure across Europe. This study provides essential information for developing adaptation strategies.......Europe is the largest producer of wheat, the second most widely grown cereal crop after rice. The increased occurrence and magnitude of adverse and extreme agroclimatic events are considered a major threat for wheat production. We present an analysis that accounts for a range of adverse weather...

  5. The Impact of Organo-Mineral Complexation on Mineral Weathering in the Soil Zone under Unsaturated Conditions (United States)

    Michael, H. A.; Tan, F.; Yoo, K.; Imhoff, P. T.


    While organo-mineral complexes can protect organic matter (OM) from biodegradation, their impact on soil mineral weathering is not clear. Previous bench-scale experiments that focused on specific OM and minerals showed that the adsorption of OM to mineral surfaces accelerates the dissolution of some minerals. However, the impact of natural organo-mineral complexes on mineral dissolution under unsaturated conditions is not well known. In this study, soil samples prepared from an undisturbed forest site were used to determine mineral weathering rates under differing conditions of OM sorption to minerals. Two types of soil samples were generated: 1) soil with OM (C horizon soil from 84-100cm depth), and 2) soil without OM (the same soil as in 1) but with OM removed by heating to 350°for 24 h). Soil samples were column-packed and subjected to intermittent infiltration and drainage to mimic natural rainfall events. Each soil sample type was run in duplicate. The unsaturated condition was created by applying gas pressure to the column, and the unsaturated chemical weathering rates during each cycle were calculated from the effluent concentrations. During a single cycle, when applying the same gas pressure, soils with OM retained more moisture than OM-removed media, indicating increased water retention capacity under the impact of OM. This is consistent with the water retention data measured by evaporation experiments (HYPROP) and the dew point method (WP4C Potential Meter). Correspondingly, silicon (Si) denudation rates indicated that dissolution of silicate minerals was 2-4 times higher in OM soils, suggesting that organo-mineral complexes accelerate mineral dissolution under unsaturated conditions. When combining data from all cycles, the results showed that Si denudation rates were positively related to soil water content: denundation rate increased with increasing water content. Therefore, natural mineral chemical weathering under unsaturated conditions, while

  6. Significance of settling model structures and parameter subsets in modelling WWTPs under wet-weather flow and filamentous bulking conditions

    DEFF Research Database (Denmark)

    Ramin, Elham; Sin, Gürkan; Mikkelsen, Peter Steen


    Current research focuses on predicting and mitigating the impacts of high hydraulic loadings on centralized wastewater treatment plants (WWTPs) under wet-weather conditions. The maximum permissible inflow to WWTPs depends not only on the settleability of activated sludge in secondary settling tanks...... (SSTs) but also on the hydraulic behaviour of SSTs. The present study investigates the impacts of ideal and non-ideal flow (dry and wet weather) and settling (good settling and bulking) boundary conditions on the sensitivity of WWTP model outputs to uncertainties intrinsic to the one-dimensional (1-D......) SST model structures and parameters. We identify the critical sources of uncertainty in WWTP models through global sensitivity analysis (GSA) using the Benchmark simulation model No. 1 in combination with first- and second-order 1-D SST models. The results obtained illustrate that the contribution...

  7. An Analytical Approach for Performance Enhancement of FSO Communication System Using Array of Receivers in Adverse Weather Conditions (United States)

    Nagpal, Shaina; Gupta, Amit


    Free Space Optics (FSO) link exploits the tremendous network capacity and is capable of offering wireless communications similar to communications through optical fibres. However, FSO link is extremely weather dependent and the major effect on FSO links is due to adverse weather conditions like fog and snow. In this paper, an FSO link is designed using an array of receivers. The disparity of the link for very high attenuation conditions due to fog and snow is analysed using aperture averaging technique. Further effect of aperture averaging technique is investigated by comparing the systems using aperture averaging technique with systems not using aperture averaging technique. The performance of proposed model of FSO link has been evaluated in terms of Q factor, bit error rate (BER) and eye diagram.

  8. Thermal Performance of Aged and Weathered Spray-On Foam Insulation (SOFI) Materials Under Cryogenic Vacuum Conditions (Cryostat-4) (United States)


    The NASA Cryogenics Test Laboratory at Kennedy Space Center conducted long-term testing of SOFI materials under actual-use cryogenic conditions with Cryostat-4. The materials included in the testing were NCFI 24-124 (acreage foam), BX-265 (close-out foam, including intertank flange and bipod areas), and a potential alternate material, NCFI 27-68, (acreage foam with the flame retardant removed). Specimens of these materials were placed at two locations: a site that simulated aging (the Vehicle Assembly Building [VAB]) and a site that simulated weathering (the Atmospheric Exposure Test Site [beach site]). After aging/weathering intervals of 3, 6, and 12 months, the samples were retrieved and tested for their thermal performance under cryogenic vacuum conditions with test apparatus Cryostat-4.

  9. Modelling of 10 Gbps Free Space Optics Communication Link Using Array of Receivers in Moderate and Harsh Weather Conditions (United States)

    Gupta, Amit; Shaina, Nagpal


    Intersymbol interference and attenuation of signal are two major parameters affecting the quality of transmission in Free Space Optical (FSO) Communication link. In this paper, the impact of these parameters on FSO communication link is analysed for delivering high-quality data transmission. The performance of the link is investigated under the influence of amplifier in the link. The performance parameters of the link like minimum bit error rate, received signal power and Quality factor are examined by employing erbium-doped fibre amplifier in the link. The effects of amplifier are visualized with the amount of received power. Further, the link is simulated for moderate weather conditions at various attenuation levels on transmitted signal. Finally, the designed link is analysed in adverse weather conditions by using high-power laser source for optimum performance.

  10. Russian wheat aphid, Diuraphis noxia (Kurdj.) under adverse weather conditions (2001)(Hom., Aphididae)

    Czech Academy of Sciences Publication Activity Database

    Starý, Petr; Lukášová, H.


    Roč. 75, č. 5 (2002), s. 140-143 ISSN 1436-5693 R&D Projects: GA AV ČR IBS5007102 Institutional research plan: CEZ:AV0Z5007907 Keywords : weather Subject RIV: GF - Plant Pathology, Vermin, Weed, Plant Protection Impact factor: 0.246, year: 2002

  11. Prototype, mesoscale simulator for the study of oil weathering under severe conditions

    National Research Council Canada - National Science Library

    Pelletier, Emilien; Brochu, C. J


    As long-term, open-sea tests on oil weathering could be difficult and experiments in ice in the field even impossible to manage, chose to develop low-cost simulation tank with which to study long-term fate...

  12. Electrified atmospheric dust during disturbed weather conditions in the Negev desert (United States)

    Katz, Shai; Yair, Yoav; Price, Colin; Yaniv, Roy


    Dust storms over the Negev Desert in southern Israel are common and become frequent during the spring and autumn, depending on synoptic conditions and local effects. These storms are often accompanied by significant dust electrification, most likely due to saltation and triboelectric processes. We present new atmospheric electrical measurements conducted at the Wise Observatory (WO) in Mizpe-Ramon (30035'N, 34045'E) Israel, during two strong dust storms that occurred over the Negev desert on October 27-28th and December 1st, 2016. The first event generated a local gust front due to strong downdrafts from an active Cumulonimbus cloud (known as Haboob). In the second event, a Cyprus Low with strong synoptic-scale winds lifted the local sand particles at the Negev and lowered the visibility. During the passage of the dust storms above our instruments, very large fluctuations in the electric field (Ez) and current density (Jz) were measured. In the October Haboob event, the Ez data showed a superposition of signatures generated by lightning and by the dust aloft. The Ez values fluctuated between +123 to +2144 and -15336 to +19788 V m-1 for several hour-long episodes. The respective values of the vertical current density [Jz] were between -18 and +18 pA m-2. During the December dust storm we measured Ez values up to +4000 V m-1 lasting for 3.5 hours and another episode with values up to +668 V m-1 lasting for approximately 1.5 hours. These values were accompanied by changes in the Jz values between -16.5 and +17 pA m-2. The electric field and current density variability and amplitude are significantly different from the average fair-weather values measured at the Wise Observatory (Yaniv et al., 2016), which are 180 V m-1 and 2 pA m-1. We will show that these differences in the electrical behavior between these two dust storms may be related to the speed and direction of the wind near the surface.

  13. Breeding pond selection and movement patterns by eastern spadefoot toads (Scaphiopus holbrookii) in relation to weather and edaphic conditions.

    Energy Technology Data Exchange (ETDEWEB)

    Greenberg, Cathryn H. [USDA Forest Service, New Ellenton, SC (United States); Tanner, George W. [USDA Forest Service, New Ellenton, SC (United States)


    Cathryn H. Greenberg and George W. Tanner. 2004. Breeding pond selection and movement patterns by eastern spadefoot toads (Scaphiopus holbrookii) in relation to weather and edaphic conditions. J. Herp. 38(4):569-577. Abstract: Eastern Spadefoot Toads (Scaphiopus holbrookii) require fish-free, isolated, ephemeral ponds for breeding but otherwise inhabit the surrounding uplands, commonly xeric longleaf pine (Pinus palustris) wiregrass (Aristida beyrichiana). Hence both pond and upland conditions can potentially affect their breeding biology, and population persistence. Hardwood invasion due to fire suppression in sandhills could alter upland and pond suitability by higher hardwood density and increased transpiration. In this paper we explore breeding and neonatal emigration movements in relation to weather, hydrological conditions of ponds, and surrounding upland matrices. We use 9 years of data from continuous monitoring with drift fences and pitfall traps at 8 ephemeral ponds in 2 upland matrices: regularly-burned, savanna-like sandhills (n = 4), and hardwood-invaded sandhills (n = 4). Neither adult nor neonate captures differed between ponds within the 2 upland matrices, suggesting that they are tolerant of upland heterogeneity created by fire frequency. Explosive breeding occurred during 9 periods and in all seasons; adults were captured rarely otherwise. At a landscape-level rainfall, maximum change in barometric pressure, and an interaction between those 2 variables were significant predictors of explosive breeding. At a pond-level, rainfall, change in pond depth during the month prior to breeding, and days since a pond was last dry were significant predictors of adult captures. Transformation date, rather than weather, was associated with neonatal emigrations, which usually were complete within a week. Movement by first-captured adults and neonates was directional, but adult emigrations were apparently not always toward their origin. Our results suggest that

  14. Assessment and prevention of acute health effects of weather conditions in Europe, the PHEWE project: background, objectives, design

    Directory of Open Access Journals (Sweden)

    Anderson Hugh


    Full Text Available Abstract Background The project "Assessment and prevention of acute health effects of weather conditions in Europe" (PHEWE had the aim of assessing the association between weather conditions and acute health effects, during both warm and cold seasons in 16 European cities with widely differing climatic conditions and to provide information for public health policies. Methods The PHEWE project was a three-year pan-European collaboration between epidemiologists, meteorologists and experts in public health. Meteorological, air pollution and mortality data from 16 cities and hospital admission data from 12 cities were available from 1990 to 2000. The short-term effect on mortality/morbidity was evaluated through city-specific and pooled time series analysis. The interaction between weather and air pollutants was evaluated and health impact assessments were performed to quantify the effect on the different populations. A heat/health watch warning system to predict oppressive weather conditions and alert the population was developed in a subgroup of cities and information on existing prevention policies and of adaptive strategies was gathered. Results Main results were presented in a symposium at the conference of the International Society of Environmental Epidemiology in Paris on September 6th 2006 and will be published as scientific articles. The present article introduces the project and includes a description of the database and the framework of the applied methodology. Conclusion The PHEWE project offers the opportunity to investigate the relationship between temperature and mortality in 16 European cities, representing a wide range of climatic, socio-demographic and cultural characteristics; the use of a standardized methodology allows for direct comparison between cities.

  15. Association of day length and weather conditions with physical activity levels in older community dwelling people.

    Directory of Open Access Journals (Sweden)

    Miles D Witham

    Full Text Available Weather is a potentially important determinant of physical activity. Little work has been done examining the relationship between weather and physical activity, and potential modifiers of any relationship in older people. We therefore examined the relationship between weather and physical activity in a cohort of older community-dwelling people.We analysed prospectively collected cross-sectional activity data from community-dwelling people aged 65 and over in the Physical Activity Cohort Scotland. We correlated seven day triaxial accelerometry data with daily weather data (temperature, day length, sunshine, snow, rain, and a series of potential effect modifiers were tested in mixed models: environmental variables (urban vs rural dwelling, percentage of green space, psychological variables (anxiety, depression, perceived behavioural control, social variables (number of close contacts and health status measured using the SF-36 questionnaire.547 participants, mean age 78.5 years, were included in this analysis. Higher minimum daily temperature and longer day length were associated with higher activity levels; these associations remained robust to adjustment for other significant associates of activity: age, perceived behavioural control, number of social contacts and physical function. Of the potential effect modifier variables, only urban vs rural dwelling and the SF-36 measure of social functioning enhanced the association between day length and activity; no variable modified the association between minimum temperature and activity.In older community dwelling people, minimum temperature and day length were associated with objectively measured activity. There was little evidence for moderation of these associations through potentially modifiable health, environmental, social or psychological variables.

  16. Acute Illness Among Surfers After Exposure to Seawater in Dry- and Wet-Weather Conditions. (United States)

    Arnold, Benjamin F; Schiff, Kenneth C; Ercumen, Ayse; Benjamin-Chung, Jade; Steele, Joshua A; Griffith, John F; Steinberg, Steven J; Smith, Paul; McGee, Charles D; Wilson, Richard; Nelsen, Chad; Weisberg, Stephen B; Colford, John M


    Rainstorms increase levels of fecal indicator bacteria in urban coastal waters, but it is unknown whether exposure to seawater after rainstorms increases rates of acute illness. Our objective was to provide the first estimates of rates of acute illness after seawater exposure during both dry- and wet-weather periods and to determine the relationship between levels of indicator bacteria and illness among surfers, a population with a high potential for exposure after rain. We enrolled 654 surfers in San Diego, California, and followed them longitudinally during the 2013-2014 and 2014-2015 winters (33,377 days of observation, 10,081 surf sessions). We measured daily surf activities and illness symptoms (gastrointestinal illness, sinus infections, ear infections, infected wounds). Compared with no exposure, exposure to seawater during dry weather increased incidence rates of all outcomes (e.g., for earache or infection, adjusted incidence rate ratio (IRR) = 1.86, 95% confidence interval (CI): 1.27, 2.71; for infected wounds, IRR = 3.04, 95% CI: 1.54, 5.98); exposure during wet weather further increased rates (e.g., for earache or infection, IRR = 3.28, 95% CI: 1.95, 5.51; for infected wounds, IRR = 4.96, 95% CI: 2.18, 11.29). Fecal indicator bacteria measured in seawater (Enterococcus species, fecal coliforms, total coliforms) were strongly associated with incident illness only during wet weather. Urban coastal seawater exposure increases the incidence rates of many acute illnesses among surfers, with higher incidence rates after rainstorms. © The Author(s) 2017. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health.


    Directory of Open Access Journals (Sweden)

    H. González-Jorge


    Full Text Available Visibility of drivers is crucial to ensure road safety. Visibility is influenced by two main factors, the geometry of the road and the weather present therein. The present work depicts an approach for automatic visibility evaluation using mobile LiDAR data and climate information provided from weather stations located in the neighbourhood of the road. The methodology is based on a ray-tracing algorithm to detect occlusions from point clouds with the purpose of identifying the visibility area from each driver position. The resulting data are normalized with the climate information to provide a polyline with an accurate area of visibility. Visibility ranges from 25 m (heavy fog to more than 10,000 m (clean atmosphere. Values over 250 m are not taken into account for road safety purposes, since this value corresponds to the maximum braking distance of a vehicle. Two case studies are evaluated an urban road in the city of Vigo (Spain and an inter-urban road between the city of Ourense and the village of Castro Caldelas (Spain. In both cases, data from the Galician Weather Agency (Meteogalicia are used. The algorithm shows promising results allowing the detection of particularly dangerous areas from the viewpoint of driver visibility. The mountain road between Ourense and Castro Caldelas, with great presence of slopes and sharp curves, shows special interest for this type of application. In this case, poor visibility can especially contribute to the run over of pedestrians or cyclists traveling on the road shoulders.

  18. Short-Term Relationship between Hip Fracture and Weather Conditions in Two Spanish Health Areas with Different Climates

    Directory of Open Access Journals (Sweden)

    José María Tenías


    Full Text Available Objective. To evaluate differences in the short-term relationship between weather conditions and the incidence of hip fracture in people aged 65 and over among two regions of Spain. Methods. Hip fracture incidence was calculated for the years 2000–2008 for residents of Health Area 14 in Valencian Community (Mediterranean climate and the “Mancha Centro” Health Area in Castilla-La Mancha (inland climate, Spain. The relationship between hip fracture incidence and weather was analyzed with a case-crossover design and explored in subgroups defined by sex, age, and fracture type. Results. In the inland area, a positive and significant tendency for hip fracture incidence was observed (annual increase: 1.5% whereas in the Mediterranean area a seasonal increase of 9% was noted in autumn and winter with respect to spring. Weather conditions, especially wind, were significantly associated with hip fracture incidence: days with more frequent windy periods and/or a greater wind velocity were associated with an increase in hip fracture incidence of 51% in the Mediterranean area and 44% in the inland area. Conclusions. Hip fracture incidence exhibits seasonal changes that differ between the Mediterranean and inland areas. The short-term relationship with climate, although similar in both areas, may partly explain these seasonal changes.

  19. Variability of the essential oil content and composition of chamomile (Matricaria recutita L.) affected by weather conditions. (United States)

    Gosztola, Beáta; Sárosi, Szilvia; Németh, Eva


    In our study we examined the variability of the essential oil content and composition of chamomile (Matricaria recutita L.) during three years (2005-2007). Twenty-eight populations of wild origin and 4 registered cultivars ('Soroksári 40', 'Lutea', 'Goral' and 'Bona') were evaluated in open field experiments. It could be established that the experimental populations represented different genetic potential for essential oil accumulation and composition. The best populations of wild growing origin from the Somogy-region and four cultivars produced the highest essential oil contents (above 0.6 g/100g) in each year. Additionally, the quality of the characteristic main compound of the oil determining the "chemotype", according to Schilcher, was found to be stable during the three years period. However, the actual chemosyndroms are significantly influenced by the weather conditions. In the three years' experiment, the moderately warm and relatively wet year of 2006 produced the highest contents of essential oil and also that of its alpha-bisabolol component. Although bisabolol oxide A also showed a high variability through the years, its direct connection with weather conditions could not be proved. A moderate variability was established for the proportions of chamazulene, and the lowest one for bisabolol-oxide B. Considerable genotype-weather interaction was supposed, especially for the essential oil content and for the ratio of bisabolol-oxide A.

  20. Simulating air temperature in an urban street canyon in all weather conditions using measured data at a reference meteorological station (United States)

    Erell, E.; Williamson, T.


    A model is proposed that adapts data from a standard meteorological station to provide realistic site-specific air temperature in a city street exposed to the same meso-scale environment. In addition to a rudimentary description of the two sites, the canyon air temperature (CAT) model requires only inputs measured at standard weather stations; yet it is capable of accurately predicting the evolution of air temperature in all weather conditions for extended periods. It simulates the effect of urban geometry on radiant exchange; the effect of moisture availability on latent heat flux; energy stored in the ground and in building surfaces; air flow in the street based on wind above roof height; and the sensible heat flux from individual surfaces and from the street canyon as a whole. The CAT model has been tested on field data measured in a monitoring program carried out in Adelaide, Australia, in 2000-2001. After calibrating the model, predicted air temperature correlated well with measured data in all weather conditions over extended periods. The experimental validation provides additional evidence in support of a number of parameterisation schemes incorporated in the model to account for sensible heat and storage flux.

  1. The association between space weather conditions and emergency hospital admissions for myocardial infarction during different stages of solar activity (United States)

    Vencloviene, J.; Antanaitiene, J.; Babarskiene, R.


    A number of studies have established the effects of space weather on the human cardio-vascular system. We investigated whether geomagnetic storms (GS), solar proton events (SPEs), and X-class solar flare affect the risk of emergency hospitalization for acute myocardial infarction (MI) separately during declining (2004-2006) and rising (2010-2012) phases of solar activity. The data on hospital admissions for MI were obtained from the computer database of Lithuanian University of Health sciences from January 1, 2004 to December 31, 2012. We evaluated the associations between space weather conditions and the daily number of emergency admissions for MI by Poisson regression, controlling for seasonal variation and weekdays. During 2004-2006, an increase in the risk of hospital admission for MI was observed on days of the daily mean proton >10 MeV flux >100 pfu (by 63%, p10 MeV flux >100 pfu (by 52%, p=0.015) and on days of GS and 1-2 days after GS (by 17%, p=0.024). These findings suggest that the impact of hazardous space weather conditions on human health depends of the strength of space storm during the investigated period.

  2. Weathering processes under various moisture conditions in a lignite mine spoil from As Pontes (N.W. Spain)

    International Nuclear Information System (INIS)

    Seoane, S.; Leiros, M.C.


    Processes contributing to acid release/consumption during weathering of a lignite mine spoil (2.3% w/w S as sulfides) from As Pontes (N.W. Spain) were studied under three moisture conditions (at field capacity or under alternate wetting-drying or forced percolation), which were simulated in laboratory experiments. Oxidation of sulfides to sulfates was favoured under all three moisture conditions, releasing most acid in spoil kept at field capacity. Hydroxysulfates formed in spoil kept at field capacity or under alternate wetting-drying conditions, thereby contributing to acid release. Acid consumption by dissolution of clay minerals, especially micas, was favoured under all three moisture conditions, but was particularly intense in spoil at field capacity. Dissolution of aluminium oxides was also favoured under all the moisture conditions studied. 27 refs., 8 figs., 6 tabs

  3. Adjustment of corn nitrogen in-season fertilization based on soil texture and weather conditions: a Meta-analysis of North American trials (United States)

    Soil properties and weather conditions are known to affect soil nitrogen (N) availability and plant N uptake. However, studies examining N response as affected by soil and weather sometimes give conflicting results. Meta-analysis is a statistical method for estimating treatment effects in a series o...


    Directory of Open Access Journals (Sweden)

    Robert Rosa


    Full Text Available The aim of the study was to determine the effect of weather components (air temperature, precipitation on the growth, yield and the length of the growing season of sweet corn cultivated in eastern Poland. The results come from a field experiment conducted in 2006–2011. Weather conditions in the successive years of the study significantly modified the yield of ears, weight and number of formatted ears, high of plants and the length of the growing season of sweet corn. Good yielding of sweet corn favoured years with moderate air temperatures in July and uniform distribution of precipitation during the growing season. The highest yield of ears was found in 2011, the lowest in the very difficult in terms of weather 2006. The shortest growing season was characterized corn grown in the years 2006 and 2010 with the high air temperatures in July and August, the longest in the years 2009 and 2011, in which the temperatures in the period June-August were the lowest of all the years of research. Irrespective of the year of study, cv ‘Sheba F1’ was formatted eras with higher weight than cv ‘Sweet Nugget F1’.

  5. Effect of phase change materials on indoor thermal environment under different weather conditions and over a long time

    International Nuclear Information System (INIS)

    Ling, Haoshu; Chen, Chao; Wei, Shen; Guan, Yong; Ma, Caiwen; Xie, Guangya; Li, Na; Chen, Ziguang


    Highlights: • Indicators evaluating the performance of PCMs in greenhouses are introduced. • Real equivalent specific heat capacity of PCMs is embedded in a numerical model. • Real behaviour of PCMs has been monitored over a long time. • Efficiency of PCMs walls are compared for sunny and cloudy days. • Heat storage and release amounts of PCMs walls have been calculated. - Abstract: To evaluate the effect of phase change materials (PCMs) on the indoor thermal environment of greenhouses under different weather conditions and over a long time in the heating season, a study was carried out using both experimental method and numerical method. The study was conducted in a typical greenhouse located in Beijing, China, and important parameters have been monitored continuously for 61 days, including indoor air temperature, outdoor air temperature, solar radiation, surface temperature of greenhouse envelopes and soil temperature. Based on these parameters, a number of indicators, namely, operative temperature, daily effective accumulative temperature, irradiated surface temperature of the north wall, average temperature of PCMs, and daily heat storage and release, have been used to evaluate the performance of PCMs in greenhouses. All indicators have provided consistent results that confirm the positive effect of PCMs on improving the indoor thermal environment of greenhouses over a long time. Additionally, the paper has demonstrated that a sunny weather could help to promote the efficiency of PCMs, comparing to a cloudy weather

  6. Testicular torsion and weather conditions: analysis of 21,289 cases in Brazil

    Directory of Open Access Journals (Sweden)

    Fernando Korkes


    Full Text Available PURPOSE: The hypothesis of association between testicular torsion and hyperactive cremasteric reflex, worsened by cold weather, has not been proved. Thirteen studies in the literature evaluated this issue, with inconclusive results. The aim of the present study was to evaluate the seasonality of testicular torsion in a large subset of patients surgically treated in Brazil, and additionally to estimate the incidence of testicular torsion. MATERIALS AND METHODS: Brazilian Public Health System Database was assessed from 1992-2010 to evaluate hospital admissions associated with treatment of testicular torsion. Average monthly temperature between 1992-2010 was calculated for each region. RESULTS: We identified 21,289 hospital admissions for treatment of testicular torsion. There was a higher number of testicular torsions during colder months (p = 0.002. To estimate the incidence of testicular torsion, we have related our findings to data from the last Brazilian census (2010. In 2010, testicular torsion occurred in 1.4:100,000 men in Brazil. CONCLUSIONS:Testicular torsion occurred at an annual incidence of approximately 1.4:100,000 men in Brazil in 2010. Seasonal variations do occur, with a significant increase of events during winter. Our findings support the theory of etiological role of cold weather to the occurrence of testicular torsion. Strategies to prevent these events can be based on these findings.

  7. What Explains Forest Grouse Mortality: Predation Impacts of Raptors, Vole Abundance, or Weather Conditions?

    Directory of Open Access Journals (Sweden)

    Risto Tornberg


    Full Text Available We investigated predation rates of black grouse chicks during 1985–2007 in two localities in western Finland in light of three predation hypothesis: The Alternative Prey Hypothesis (APH stating that vole-eating generalist predators cause a collapse in grouse reproduction after voles’ decline, the Main Prey Hypothesis (MPH, where grouse specialised predators by a lagged response cause an inversely density dependent predation for prey and the Predation Facilitation Hypothesis (PFH, where generalist and specialist predators act in concert. We also studied the effect of weather on grouse reproduction. We found that buzzard predation alone did not support APH, but did so when combined with goshawk predation. Kill rate by goshawks showed a linear response for black grouse chicks but was not density dependent. It, however, explained the losses of chicks but not their autumn density. Combined density of chicks with adults correlated with vole index in the latter study period (since 1994, thus, giving some support for APH. Weather seemed to have no effect on black grouse reproduction. Although buzzards and goshawks took, on average, only 10% of hatched grouse chicks we conclude that the among-year survival pattern of juvenile forest grouse may largely be determined by raptor predation.

  8. Li-Isotope Fractionation into the Octahedral Framework of Clays: A Way to Understand the Weathering of Basalt in Early Mars Conditions (United States)

    Losa-Adams, E.; Gil-Lozano, C.; Bishop, J. L.; Hoser, A.; Davila, A. F.; Fairen, A. G.; Chevrier, V. F.; Gago-Duport, L.


    We track the use of lithium isotopes as a proxy to understand the degree and extent of basalt weathering in aqueous mediums, providing important information about the prevailing conditions during the formation of water bodies in the past of Mars.

  9. Technology-derived storage solutions for stabilizing insulin in extreme weather conditions I: the ViViCap-1 device. (United States)

    Pfützner, Andreas; Pesach, Gidi; Nagar, Ron


    Injectable life-saving drugs should not be exposed to temperatures 30°C/86°F. Frequently, weather conditions exceed these temperature thresholds in many countries. Insulin is to be kept at 4-8°C/~ 39-47°F until use and once opened, is supposed to be stable for up to 31 days at room temperature (exception: 42 days for insulin levemir). Extremely hot or cold external temperature can lead to insulin degradation in a very short time with loss of its glucose-lowering efficacy. Combined chemical and engineering solutions for heat protection are employed in ViViCap-1 for disposable insulin pens. The device works based on vacuum insulation and heat consumption by phase-change material. Laboratory studies with exposure of ViViCap-1 to hot outside conditions were performed to evaluate the device performance. ViViCap-1 keeps insulin at an internal temperature phase-change process and 'recharges' the device for further use. ViViCap-1 performed within its specifications. The small and convenient device maintains the efficacy and safety of using insulin even when carried under hot weather conditions.

  10. Chemical Degradation of TMR Multilure Dispensers for Fruit Fly Detection Weathered Under California Climatic Conditions. (United States)

    Vargas, Roger I; Souder, Steven K; Morse, Joseph G; Grafton-Cardwell, Elizabeth E; Haviland, David R; Kabashima, John N; Faber, Ben A; Mackey, Bruce; Nkomo, Eddie; Cook, Peter J; Stark, John D


    Degradation models for multilure fruit fly trap dispensers were analyzed to determine their potential for use in large California detection programs. Solid three-component male lure TMR (trimedlure [TML], methyl eugenol [ME], raspberry ketone [RK]) dispensers impregnated with DDVP (2, 2-dichlorovinyl dimethyl phosphate) insecticide placed inside Jackson traps were weathered during summer (8 wk) and winter (12 wk) in five citrus-growing areas. Additionally, TMR wafers without DDVP, but with an insecticidal strip, were compared to TMR dispensers with DDVP. Weathered dispensers were sampled weekly and chemically analyzed. Percent loss of TML, the male lure for Ceratitis capitata (Wiedemann) Mediterranean fruit fly; ME, the male lure for Bactrocera dorsalis (Hendel), oriental fruit fly; RK, the male lure for Bactrocera cucurbitae (Coquillett), melon fly; and DDVP was measured. Based on regression analyses for the male lures, TML degraded the fastest followed by ME. Degradation of the more chemically stable RK was discontinuous, did not fit a regression model, but followed similar seasonal patterns. There were few location differences for all three male lures and DDVP. Dispensers degraded faster during summer than winter. An asymptotic regression model provided a good fit for % loss (ME, TML, and DDVP) for summer data. Degradation of DDVP in TMR dispensers was similar to degradation of DDVP in insecticidal strips. Based on these chemical analyses and prior bioassay results with wild flies, TMR dispensers could potentially be used in place of three individual male lure traps, reducing costs of fruit fly survey programs. Use of an insecticidal tape would not require TMR dispensers without DDVP to be registered with US-EPA. Published by Oxford University Press on behalf of Entomological Society of America 2017. This work is written by US Government employees and is in the public domain in the US.


    Directory of Open Access Journals (Sweden)



    Full Text Available The paper presents the results of research carried out over 1999-2002 with the aims to determine the influence of intercrops and farmyard manure fertilization on consumption value of potato tubers in changeable weather conditions. The following combinations of intercrops fertilization were taken into account: the control plot (without intercrop fertilization, farmyard manure, undersown crop (birdsfoot trefoil, birdsfoot trefoil + Italian ryegrass, Italian ryegrass, stubble crop (oleiferous radish, oleiferous radish – mulch. The results pointed that, the conditions of vegetation period, significantly modified the consumption values of potato tubers. The consumption value of potato tubers which were fertilized with intercrops was formed on approximated level, as the potato which was fertilized with farmyard manure. The best consumption features, especially taste, had potatoes which were fertilized with birdsfoot trefoil and with the mixture of birdsfoot trefoil and Italian ryegrass.

  12. Weather forecast

    CERN Document Server

    Courtier, P


    Weather prediction is performed using the numerical model of the atmosphere evolution.The evolution equations are derived from the Navier Stokes equation for the adiabatic part but the are very much complicated by the change of phase of water, the radiation porocess and the boundary layer.The technique used operationally is described. Weather prediction is an initial value problem and accurate initial conditions need to be specified. Due to the small number of observations available (105 ) as compared to the dimension of the model state variable (107),the problem is largely underdetermined. Techniques of optimal control and inverse problems are used and have been adapted to the large dimension of our problem. our problem.The at mosphere is a chaotic system; the implication for weather prediction is discussed. Ensemble prediction is used operationally and the technique for generating initial conditions which lead to a numerical divergence of the subsequent forecasts is described.


    Directory of Open Access Journals (Sweden)

    M. S. Gaplaev


    Full Text Available Based on the researches conducted in conditions of vertical zonality of the Chechen Republic, the high-yielding varieties of red beet in the certain climate and environmental conditions were selected. Moving from the plain zone to the piedmont and the mountain zones, the yield of red beet roots has increased by 1,6-3,4 t/ha regardless of early ripeness of cultivars and hybrids. Application of mathematical modeling allows the selection of the varieties, which are able to realize their yield potential in various conditions.


    Directory of Open Access Journals (Sweden)

    Ivan Černý


    Full Text Available The field polyfactorial trials were carried out on experimental fields of the Plant Biology and Ecology Centre, the Faculty of Agrobiology and Food Resources of the Slovak University of Agriculture (SUA in Nitra Dolná Malanta in two experimental years 2010 and 2011. Experimental locality is situated in the corn production area (climatic region: warm; climatic sub-region dry; climatic zone: warm, dry with mild winter and long sunshine, in altitude 250 m above sea level, with brown soil. On the trials was observed the influence of both temperature and moisture conditions of experimental area on sunflower yield of achenes and fat content. Fore crop of sunflower was spring barley (Hordeum vulgare L. Technological system of sunflower cultivation was realized in accordance with conventional technology of cultivation. The basic fertilization was made by balance method on the base of agrochemical analysis of soil for expected yield 3 t ha-1. The meteorological data were got out from agro-meteorological station the Faculty of Horticulture and Land Engineering SUA in Nitra. The results show statistically high significant impact of the year weather conditions on the both achenes yield and fat content. In the range of weather conditions, year 2011 have better impact on the values of both indicators than year 2010. The effect of hybrids on monitored production parameters was statistically high significant. In the year 2010 and 2011, in terms of yield quantity but also fat content had hybrid NK Kondi the most stable production. In 2010 and 2011 were reported negative correlations of fat content from achenes yield except of hybrid NK Tristan, which reach positive addiction in 2010.

  15. Effect of wet-cold weather transportation conditions on thermoregulation and the development of accidental hypothermia in pullets under tropical conditions (United States)

    Minka, Ndazo S.; Ayo, Joseph O.


    The present study examines onboard thermal microclimatic conditions and thermoregulation of pullets exposed to accidental hypothermia during wet-cold weather transportation conditions, and the effect of rewarming on colonic temperature (CT) of the birds immediately after transportation. A total of 2200 pullets were transportation for 5 h in two separate vehicles during the nighttime. The last 3 h of the transportation period was characterized by heavy rainfall. During the precipitation period, each vehicle was covered one fourth way from the top-roof with a tarpaulin. The onboard thermal conditions inside the vehicles during transportation, which comprised ambient temperature and relative humidity were recorded, while humidity ratio and specific enthalpy were calculated. The CT of the birds was recorded before and after transportation. During transportation, onboard thermal heterogeneity was observed inside the vehicles with higher ( p < 0.05) values in the front and center, and lower values recorded at the air inlets at the sides and rear planes. The CT values recorded in birds at the front and center planes were between 42.2 and 42.5 °C, indicative of mild hypothermia; while lower CT values between 28 and 38 °C were recorded at the sides and rear planes, indicative of mild to severe hypothermia. Several hours of gradual rewarming returned the CT to normal range. The result, for the first time, demonstrated the occurrence of accidental hypothermia in transported pullets under tropical conditions and a successful rewarming outcome. In conclusion, transportation of pullets during wet weather at onboard temperature of 18-20 °C induced hypothermia on birds located at the air inlets, which recovered fully after several hours of gradual rewarming.

  16. Simulating Small-Scale Rainfall Fields Conditioned by Weather State and Elevation: A Data-Driven Approach Based on Rainfall Radar Images (United States)

    Oriani, Fabio; Ohana-Levi, Noa; Marra, Francesco; Straubhaar, Julien; Mariethoz, Gregoire; Renard, Philippe; Karnieli, Arnon; Morin, Efrat


    The quantification of spatial rainfall is critical for distributed hydrological modeling. Rainfall spatial patterns generated by similar weather conditions can be extremely diverse. This variability can have a significant impact on hydrological processes. Stochastic simulation allows generating multiple realizations of spatial rainfall or filling missing data. The simulated data can then be used as input for numerical models to study the uncertainty on hydrological forecasts. In this paper, we use the direct sampling technique to generate stochastic simulations of high-resolution (1 km) daily rainfall fields, conditioned by elevation and weather state. The technique associates historical radar estimates to variables describing the daily weather conditions, such as the rainfall type and mean intensity, and selects radar images accordingly to form a conditional training image set of each day. Rainfall fields are then generated by resampling pixels from these images. The simulation at each location is conditioned by neighbor patterns of rainfall amount and elevation. The technique is tested on the simulation of daily rainfall amount for the eastern Mediterranean. The results show that it can generate realistic rainfall fields for different weather types, preserving the temporal weather pattern, the spatial features, and the complex relation with elevation. The concept of conditional training image provides added value to multiple-point simulation techniques dealing with extremely nonstationary heterogeneities and extensive data sets.

  17. Use of a driving simulator to assess performance under adverse weather conditions in adults with albinism. (United States)

    Hofman, Gwen M; Summers, C Gail; Ward, Nicholas; Bhargava, Esha; Rakauskas, Michael E; Holleschau, Ann M


    Participants with albinism have reduced vision and nystagmus with reduced foveation times. This prospective study evaluated driving in 12 participants with albinism and 12 matched controls. Participants drove a vehicle simulator through a virtual rural course in sunny and foggy conditions. Under sunny conditions, participants with albinism showed a narrower preferred minimum safety boundary during car-following tasks than did controls, but there was no difference under foggy conditions. Their driving did not differ significantly from that of controls when approaching a stop sign or when choosing gap size between oncoming vehicles when crossing an intersection. However, when compared to control drivers, participants with albinism had a decreased minimum safety boundary for car-following that should be included in counseling regarding driving safety.

  18. Standard Practice for Exposure of Cover Materials for Solar Collectors to Natural Weathering Under Conditions Simulating Operational Mode

    CERN Document Server

    American Society for Testing and Materials. Philadelphia


    1.1 This practice provides a procedure for the exposure of cover materials for flat-plate solar collectors to the natural weather environment at temperatures that are elevated to approximate operating conditions. 1.2 This practice is suitable for exposure of both glass and plastic solar collector cover materials. Provisions are made for exposure of single and double cover assemblies to accommodate the need for exposure of both inner and outer solar collector cover materials. 1.3 This practice does not apply to cover materials for evacuated collectors or photovoltaics. 1.4 The values stated in SI units are to be regarded as the standard. 1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  19. An observed database to characterize the weather conditions associated with subtropical cyclogenesis over southern-southeastern Brazil (United States)

    Yamamoto, R.; Porfirio da Rocha, R.


    A project to study the climatic, dynamic and synoptic aspects of subtropical cyclones that develop in southern-southeastern coast of Brazil is in development. The weather conditions associated with such cyclones is an important question that must be answered in this project. However, for such characterization it is necessary to use the local meteorological observations of wind, wind gust, rainfall, air temperature, etc. The NCEP (National Center for Environmental Prediction) reanalysis have spatial and time resolutions that provide elements to study the synoptic and dynamics of meteorological events (cyclone, anticyclones, troughs, ridges, monsoons circulations, etc) until the production of complex climatology. However, this analysis has coarse horizontal resolution (~250 Km) that often does not allow the identification of intense meteorological phenomena. A more precise characterization of location and intensity of weather conditions associated with subtropical cyclones would be performed using local observations. Therefore, this work describes the methodology to construct a database of surface weather observations using a relational database management system (RDBMS) MySQL. The data source are SYNOP (Surface Synoptic Observations), METAR (Meteorological Aerodrome Report), NCDC (National Climatic Data Center) and CETESB (Environmental Agency of Sao Paulo State) that are available online through dynamic web page. An iterative algorithm robot was developed to automate the data extraction. Most of the data source are encoded or at non-standard format, hence was developed an algorithm in C++, using the REGEX library, an engine of text pattern search, for decode and handle the exception (erroneous and corrupted data). After the data decoding and formatting it is stored into the MySQL database. The structure of database was divided into categories of tables: a table with the source of data definition, a table with stations information and two sets of tables (for hourly

  20. Evaluation Physiological Characteristics and Grain Yield Canola Cultivars under end Seasonal Drought Stress in Weather Condition of Ahvaz

    Directory of Open Access Journals (Sweden)

    A Seyed Ahmadi


    Full Text Available To evaluate canola cultivars response to physiological characteristics and grain yield end seasonal drought stress in weather condition of Ahvaz, farm experiments were done at research farm of Khuzestan agriculture and natural resources center. During 2007-2008 and 2008-2009 crop years. Farm test comprised drought stress was done as split plot form with randomize complete block design with four replication, treatments consist of drought stress (main factor including 50, 60 and 70 percent of water use content, which was applied from early heading stage until physiological maturity, and three spring canola cultivar including Shirali, Hayola 401 and R.G.S. were considered as sub plots. Measurements include biological yield, grain yield, harvesting index, number of pod per plant 1000 grain weight, number of grain in pod, plant height, and stem diameter, oil and protein percentage. Results showed that drought stress reduced significantly grain yield, biological yield, harvest index and the average of reduction of them during 2 years for per unit reduce moisture from 50% to 70% were 2, 1.35, and 0.81 percent, respectively. During two years, 1000 grain weight, number of pods per plant and number of grain per pod reduced 27, 36 and 20 percent, respectively. Terminal Drought stress reduced significantly plant height, stem diameter, stem number per plant and pod length, this reduced were 12, 46, 36 and 14 percent, respectively. Stem diameter, and stem number per plant reduced more than other characteristics. In this study oil grain decreased 12 % and protein grain increased 18.5% but oil and protein yield decreased 44.9% and 27.1% respectively..Finally, in weather condition of Khuzestan, terminal drought stress on February and March in which has simultaneous with early flowering stage and filling seed, significantly, reduced yield and compounded yield and affects on stem growth and qualities oil and protein negatively. Therefore, with irrigation

  1. Has dry/cold weather an impact on the skin condition of cleanroom workers? (United States)

    Weistenhöfer, Wobbeke; Uter, Wolfgang; Drexler, Hans


    In previous epidemiological studies irritant skin changes were reported significantly more frequently under dry/cold ambient air conditions. The aim of this study was to assess whether a similar effect might be observed in cleanroom workers, occupationally exposed to strictly controlled ambient conditions. This investigation examined 690 employees of a semiconductor production company in Germany, one half in winter (n = 358) and the other half in spring (n = 332). In both waves, both cleanroom workers, who used occlusive gloves predominantly during the entire shift, and employees in the administration, serving as the control group, were included. Ambient outdoor temperature and relative humidity (RH) were measured and absolute humidity (AH) was calculated. Hands were dermatologically examined with quantitative clinical skin score HEROS, supplemented by transepidermal water loss (TEWL) and stratum corneum hydration measurements. Temperature ranged from -5.41 to 6.51°C in winter (RH 71.04-92.38%; AH 2.85-6.7 g/m 3 ) and from 6.35 to 10.26°C in spring (RH 76.17-82.79%; AH 5.66-7.92 g/m 3 ). Regarding HEROS, TEWL, and corneometry, no marked consistent pattern regarding an enhanced or decreased risk of irritant skin changes was found. Work in a strictly controlled environment with prolonged wearing of occlusive gloves, with clean hands and without exposure to additional hazardous substances, did not seem to negatively affect the skin. In this particular setting, meteorological conditions also did not appear to adversely affect the skin. It is conceivable that wearing of gloves and air conditioning in the plant protect skin of the hands from adverse effects due to dry and cold air encountered when not working.

  2. Relation of weather forecasts to the prediction of dangerous forest fire conditions (United States)

    R. H. Weidman


    The purpose of predicting dangerous forest-fire conditions, of course, is to reduce the great cost and damage caused by forest fires. In the region of Montana and northern Idaho alone the average cost to the United States Forest Service of fire protection and suppression is over $1,000,000 a year. Although the causes of forest fires will gradually be reduced by...

  3. Synoptic weather conditions, clouds, and sea ice in the Beaufort and Chukchi Seasonal Ice Zone (United States)

    Liu, Z.; Schweiger, A. J. B.


    The connections between synoptic conditions and clouds and sea ice over the Beaufort and Chukchi Seasonal Ice Zone are examined. Four synoptic states with distinct thermodynamic and dynamic spatial and vertical signatures are identified using a k-means classification algorithm and the ERA-Interim reanalysis data from 1979 to 2014. The combined CloudSat and Calipso cloud observations suggest control of clouds by synoptic states. Warm continental air advection is associated with the fewest low-level clouds, cold air advection under low pressure generates the most low-level clouds. Low-level cloud fractions are related to lower-tropospheric stability and both are regulated by synoptic conditions. Observed cloud vertical and spatial variability is reproduced well in ERA-Interim, but winter low-level cloud fraction is overestimated. Sea ice melt onset is related to synoptic conditions. Melt onsets occur more frequently and earlier with warm air advection states. The warm continental air advection state with the highest temperature is the most favorable for melt onsets even though fewer low-level clouds are associated with this state. The other warm advection state is cloudier but colder. In the Beaufort and Chukchi Seasonal Ice Zone, the much higher temperature and total column water of the warm continental air advection state compensate the smaller cloud longwave radiative fluxes due to the smaller low-level cloud fraction. In addition, the higher shortwave radiative fluxes and turbulent fluxes to the surface are also favorable for sea ice melt onset.

  4. Visibility Enhancement of Scene Images Degraded by Foggy Weather Conditions with Deep Neural Networks

    Directory of Open Access Journals (Sweden)

    Farhan Hussain


    Full Text Available Nowadays many camera-based advanced driver assistance systems (ADAS have been introduced to assist the drivers and ensure their safety under various driving conditions. One of the problems faced by drivers is the faded scene visibility and lower contrast while driving in foggy conditions. In this paper, we present a novel approach to provide a solution to this problem by employing deep neural networks. We assume that the fog in an image can be mathematically modeled by an unknown complex function and we utilize the deep neural network to approximate the corresponding mathematical model for the fog. The advantages of our technique are as follows: (i its real-time operation and (ii being based on minimal input, that is, a single image, and exhibiting robustness/generalization for various unseen image data. Experiments carried out on various synthetic images indicate that our proposed technique has the abilities to approximate the corresponding fog function reasonably and remove it for better visibility and safety.

  5. Basalt Weathering, Nutrient Uptake, And Carbon Release By An Exotic And A Native Arizona Grass Species Under Different Temperature Conditions (United States)

    Gallas, G.; Dontsova, K.; Chorover, J.; Hunt, E.; Ravi, S.


    During this past summer, the National Science Foundation funded a 10-week Research Experience for Undergraduates (REU) program “Environmental and Earth Systems Research at Biosphere 2”. This program provides undergraduates with an opportunity to conduct guided research in environmental and Earth systems science and has resulted in this work. Biosphere 2 allows for the exploration of complex questions in Earth sciences because of its large scale and the precise control allowed over many experimental elements. The goal of this study was to observe plant-mediated weathering of granular basalt under two temperature conditions. Two grass species were studied, one native to Arizona: Tanglehead, Heteropogan contortus, and one exotic to Arizona: Buffelgrass, Pennisetum ciliar. The grasses were grown in pots located in the Desert and the Savannah Biomes in the Biosphere 2 to take advantage of a 4° C temperature difference. Understanding differences in how native and invasive grasses weather soil and take up nutrients may explain the mechanism behind current invasion of Sonoran Desert by exotic species and help predict response of native and invasive vegetation to expected increase in temperatures. Each biome also contained three replicate “control” pots without vegetation, and mixtures of the two grass species to observe possible competition between the species. Three factors were compared in this study: 1. Temperature: the same species of grass under two different temperature conditions 2. Species: Native Arizonan species vs. a species exotic to Arizona 3. Temporal: How the grasses use resources differently as they grow Leachate samples were collected and analyzed for pH, electrical conductivity, total organic carbon, total nitrogen, inorganic carbon by high temperature combustion coupled with infrared gas analysis; F-, Cl-, Br-, NO3-, NO2-, SO42-, and PO43- by ion chromatography; and cations and metals by ICP-MS. The data trends indicate that plants enhanced

  6. Weatherability of polypropylene monofilaments. Effects of fiber production conditions. [Xenon arc and. gamma. -rays

    Energy Technology Data Exchange (ETDEWEB)

    Carlsson, D.J.; Garton, A.; Wiles, D.M.


    From a comparison of the photo-and ..gamma..-irradiation-initiated oxidations of monofilaments and films, polypropylene oxidation rates and product ratios were found to be independent of sample morphology and orientation. Filament sensitivity to photo-oxidation was, however, drastically affected by extrusion and draw conditions, photosensitivity increasing with increasing draw speed and decreasing draw temperature. Draw effects were minimized by the exclusion of oxygen, indicating that free radicals produced by backbone cleavage during draw react with oxygen to give chromophoric oxidation products. The most important product detectable after drawing was probably the polypropylene hydroperoxide. A phenolic antioxidant reduced hydroperoxide formation, although sufficient hydroperoxide was still produced to accelerate photodegradation as compared with a similarly stabilized undrawn filament. Melt oxidation within the extruder was concluded to be much more important than thermal oxidation of the extruded filament as it cooled on the spinline.

  7. Conditional Monthly Weather Resampling Procedure for Operational Seasonal Water Resources Forecasting (United States)

    Beckers, J.; Weerts, A.; Tijdeman, E.; Welles, E.; McManamon, A.


    To provide reliable and accurate seasonal streamflow forecasts for water resources management several operational hydrologic agencies and hydropower companies around the world use the Extended Streamflow Prediction (ESP) procedure. The ESP in its original implementation does not accommodate for any additional information that the forecaster may have about expected deviations from climatology in the near future. Several attempts have been conducted to improve the skill of the ESP forecast, especially for areas which are affected by teleconnetions (e,g. ENSO, PDO) via selection (Hamlet and Lettenmaier, 1999) or weighting schemes (Werner et al., 2004; Wood and Lettenmaier, 2006; Najafi et al., 2012). A disadvantage of such schemes is that they lead to a reduction of the signal to noise ratio of the probabilistic forecast. To overcome this, we propose a resampling method conditional on climate indices to generate meteorological time series to be used in the ESP. The method can be used to generate a large number of meteorological ensemble members in order to improve the statistical properties of the ensemble. The effectiveness of the method was demonstrated in a real-time operational hydrologic seasonal forecasts system for the Columbia River basin operated by the Bonneville Power Administration. The forecast skill of the k-nn resampler was tested against the original ESP for three basins at the long-range seasonal time scale. The BSS and CRPSS were used to compare the results to those of the original ESP method. Positive forecast skill scores were found for the resampler method conditioned on different indices for the prediction of spring peak flows in the Dworshak and Hungry Horse basin. For the Libby Dam basin however, no improvement of skill was found. The proposed resampling method is a promising practical approach that can add skill to ESP forecasts at the seasonal time scale. Further improvement is possible by fine tuning the method and selecting the most

  8. Some Like It Hot: Camera Traps Unravel the Effects of Weather Conditions and Predator Presence on the Activity Levels of Two Lizards. (United States)

    Broeckhoven, Chris; le Fras Nortier Mouton, Pieter


    It is generally assumed that favourable weather conditions determine the activity levels of lizards, because of their temperature-dependent behavioural performance. Inactivity, however, might have a selective advantage over activity, as it could increase survival by reducing exposure to predators. Consequently, the effects of weather conditions on the activity patterns of lizards should be strongly influenced by the presence of predators. Using remote camera traps, we test the hypothesis that predator presence and weather conditions interact to modulate daily activity levels in two sedentary cordylid lizards, Karusasaurus polyzonus and Ouroborus cataphractus. While both species are closely related and have a fully overlapping distribution, the former is a fast-moving lightly armoured lizard, whereas the latter is a slow-moving heavily armoured lizard. The significant interspecific difference in antipredator morphology and consequently differential vulnerability to aerial and terrestrial predators, allowed us to unravel the effects of predation risk and weather conditions on activity levels. Our results demonstrate that K. polyzonus is predominantly active during summer, when ambient temperatures are favourable enough to permit activity. In contrast, a peak in activity during spring was observed in O. cataphractus, with individuals being inactive during most of summer. While favourable weather conditions had a strong effect on the activity levels of K. polyzonus, no such relationship was present in O. cataphractus. Contrary to our hypothesis, the presence of terrestrial predators does not seem to affect daily activity levels or alter the influence of weather conditions on activity levels. We conclude that inactivity in O. cataphractus appears to be related to seasonal differences in vulnerability to predators, rather than the presence of predators, and highlight the importance of additional selective pressures, such as food abundance, in determining the species

  9. Some Like It Hot: Camera Traps Unravel the Effects of Weather Conditions and Predator Presence on the Activity Levels of Two Lizards.

    Directory of Open Access Journals (Sweden)

    Chris Broeckhoven

    Full Text Available It is generally assumed that favourable weather conditions determine the activity levels of lizards, because of their temperature-dependent behavioural performance. Inactivity, however, might have a selective advantage over activity, as it could increase survival by reducing exposure to predators. Consequently, the effects of weather conditions on the activity patterns of lizards should be strongly influenced by the presence of predators. Using remote camera traps, we test the hypothesis that predator presence and weather conditions interact to modulate daily activity levels in two sedentary cordylid lizards, Karusasaurus polyzonus and Ouroborus cataphractus. While both species are closely related and have a fully overlapping distribution, the former is a fast-moving lightly armoured lizard, whereas the latter is a slow-moving heavily armoured lizard. The significant interspecific difference in antipredator morphology and consequently differential vulnerability to aerial and terrestrial predators, allowed us to unravel the effects of predation risk and weather conditions on activity levels. Our results demonstrate that K. polyzonus is predominantly active during summer, when ambient temperatures are favourable enough to permit activity. In contrast, a peak in activity during spring was observed in O. cataphractus, with individuals being inactive during most of summer. While favourable weather conditions had a strong effect on the activity levels of K. polyzonus, no such relationship was present in O. cataphractus. Contrary to our hypothesis, the presence of terrestrial predators does not seem to affect daily activity levels or alter the influence of weather conditions on activity levels. We conclude that inactivity in O. cataphractus appears to be related to seasonal differences in vulnerability to predators, rather than the presence of predators, and highlight the importance of additional selective pressures, such as food abundance, in

  10. Use of Ensemble Numerical Weather Prediction Data for Inversely Determining Atmospheric Refractivity in Surface Ducting Conditions (United States)

    Greenway, D. P.; Hackett, E.


    Under certain atmospheric refractivity conditions, propagated electromagnetic waves (EM) can become trapped between the surface and the bottom of the atmosphere's mixed layer, which is referred to as surface duct propagation. Being able to predict the presence of these surface ducts can reap many benefits to users and developers of sensing technologies and communication systems because they significantly influence the performance of these systems. However, the ability to directly measure or model a surface ducting layer is challenging due to the high spatial resolution and large spatial coverage needed to make accurate refractivity estimates for EM propagation; thus, inverse methods have become an increasingly popular way of determining atmospheric refractivity. This study uses data from the Coupled Ocean/Atmosphere Mesoscale Prediction System developed by the Naval Research Laboratory and instrumented helicopter (helo) measurements taken during the Wallops Island Field Experiment to evaluate the use of ensemble forecasts in refractivity inversions. Helo measurements and ensemble forecasts are optimized to a parametric refractivity model, and three experiments are performed to evaluate whether incorporation of ensemble forecast data aids in more timely and accurate inverse solutions using genetic algorithms. The results suggest that using optimized ensemble members as an initial population for the genetic algorithms generally enhances the accuracy and speed of the inverse solution; however, use of the ensemble data to restrict parameter search space yields mixed results. Inaccurate results are related to parameterization of the ensemble members' refractivity profile and the subsequent extraction of the parameter ranges to limit the search space.

  11. Aerosol accumulation intensity and composition variations under different weather conditions in urban environment (United States)

    Steinberga, Iveta; Bikshe, Janis; Eindorfa, Aiva


    During the last decade aerosol (PM10, PM2.5) mass and composition measurements were done in different urban environments - parallel street canyons, industrial sites and at the background level in Riga, Latvia. Effect of meteorological parameters on the accumulation and ventilation intensity was investigated in order to understand microclimatological parameters affecting aerosol pollution level and chemical composition changes. In comparison to industrial sites (shipping activities, bulk cargo, oil and naphtha processing), urban street canyon aerosol mass concentration was significantly higher, for PM10 number of daily limit exceedances are higher by factor 3.4 - 3.9 in street canyons. Exceedances of PM2.5 annual limits were identified only in street canyons as well. Precipitation intensity, wind speed, days with mist highly correlates with aerosol concentration; in average during the year about 1 - 2 % presence of calm wind days, 20 - 30 days with mist facilitate accumulation of aerosols and mitigating growing of secondary aerosols. It has been assessed that about 25 % of daily exceedances in street canyons are connected with sea salt/street sanding factor. Strong dependency of wind speed and direction were identified in winter time - low winds (0.4 - 1.7 m/s) blowing from south, south-east (cross section of the street) contributing to PM10 concentrations over 100 - 150 ug/m3. Seasonal differences in aerosol concentrations were identified as a result of recombination of direct source impact, specific meteorological and synoptical conditions during the period from January until April when usually dominates extremely high aerosol concentrations. While aerosol mass concentration levels in monitoring sites significantly differs, concentrations of heavy metals (Pb, Ni, Cd, and As) are almost at the same level, even more - concentration of Cd for some years was higher in industrial area where main pollution is caused by oil processing and storage, heavy traffic

  12. Quantitative contamination assessment of Escherichia coli in baby spinach primary production in Spain: Effects of weather conditions and agricultural practices. (United States)

    Allende, Ana; Castro-Ibáñez, Irene; Lindqvist, Roland; Gil, María Isabel; Uyttendaele, Mieke; Jacxsens, Liesbeth


    A quantitative microbial contamination model of Escherichia coli during primary production of baby spinach was developed. The model included only systematic contamination routes (e.g. soil and irrigation water) and it was used to evaluate the potential impact of weather conditions, agricultural practices as well as bacterial fitness in soil on the E. coli levels present in the crop at harvest. The model can be used to estimate E. coli contamination of baby spinach via irrigation water, via soil splashing due to irrigation water or rain events, and also including the inactivation of E. coli on plants due to solar radiation during a variable time of culturing before harvest. Seasonality, solar radiation and rainfall were predicted to have an important impact on the E. coli contamination. Winter conditions increased E. coli prevalence and levels when compared to spring conditions. As regards agricultural practices, both water quality and irrigation system slightly influenced E. coli levels on baby spinach. The good microbiological quality of the irrigation water (average E. coli counts in positive water samples below 1 log/100mL) could have influenced the differences observed among the tested agricultural practices (water treatment and irrigation system). This quantitative microbial contamination model represents a preliminary framework that assesses the potential impact of different factors and intervention strategies affecting E. coli concentrations at field level. Taking into account that E. coli strains may serve as a surrogate organism for enteric bacterial pathogens, obtained results on E. coli levels on baby spinach may be indicative of the potential behaviour of these pathogens under defined conditions. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. The impact of extreme weather conditions on the life of settlers in the Central Russia in X - XVI centuries (United States)

    Graves, Irina; Nizovtsev, Viacheslav; Erman, Natalia


    A special place in the reconstruction of climate dynamics takes an analysis of extraordinary meteorological phenomena. These extreme weather events in the first place impact the functioning of, the rhythm and dynamics of the landscapes and determine not only the features of economy, but also certain aspects of historical development. In the analysis of primary chronicles and published data, along with the direct climatic characteristics (hot, warm, cold, wet, dry, etc.) a lot of attention was paid to abnormal (extreme) natural phenomena and indirect indications of climate variability (floods, crop failures, hunger years, epidemics, etc.). As a result, tables were compiled reflecting climatic basic characteristics and extremes for each year since 900 BC. X-XI centuries was a period of minor climatic optimum - the climate was warmer and drier than the modern one. In addition to higher temperatures (up to 1-3C above than mordern), during this period there were no severe winters. A small amount of summer rainfall has led to a reduction in the number of small water reservoirs and flooding rivers. This is evidenced by Slavic settlements on floodplains of a number of rivers in the Moscow region. It is in this favorable climatic time the way "from the Vikings to the Greeks" was open. Catastrophic natural events had a minimum repeatability. For example, during the X century the Russian chronicles mentioned 41 extreme event, but for the XIII century - 102. Most of the villages and towns were located on the low floodplain terraces of rivers. The main farmland was concentrated there as well. In the "period of contrasts" (XIII - XIV centuries) there was an increase of intra-seasonal climate variability, humidity and widespread reduction in summer temperatures by 1-2C. The number of extreme weather events increased: cold prolonged winters, long rains in summers, cold weather returns in the early summer, early frosts in late summer - early autumn. Such conditions often

  14. Warm weather conditions moderated the increase of power consumption in Finland in 2000

    International Nuclear Information System (INIS)

    Kangas, H.


    Year 2000 was exceptionally warm in Finland. The amount of rainfalls in Northern Finland was larger than in 1999. This is shown clearly in the production of hydroelectric power. The wind conditions were also better, so the wind power generation doubled in 2000. The increase in power consumption in 2000 was only 1.7%. The power consumption rate was slightly over 79 TWh. The power consumption of household and agricultural sectors decreased by nearly 2% and in the public sector by 0.2%. The industrial power consumption increased by nearly 3%. Year 2000 was excellent for the industrial sector. The industrial production increased by 11%. The increment of power demand in heavy metal industry, chemical industry and forest industry was 5-7%. Power demand of process industry in 2000 exceeded 43.4 TWh, of which the share of building industry was more than 200 GWh. Process industry use about 55% of the total power consumption in Finland in 2000. The power demand of forest industry was 26.3 TWh, which is about 2% higher than in 1999. The corresponding figures for metal industry were 7.1 TWh and growth rate 3%. Chemical industry used in 2000 about 5.9 TWh of electric power. The growth rate was more that 4% higher in 2000 than in 1999. Power consumption of other industrial sectors in 2000 increased about 3% being now about 3.9 TWh. Hydroelectric power generation in 2000 was nearly 14.4 TWh, which is nearly 14.4 % higher than in 1999. The share of hydroelectric power generation of the total power consumption in Finland in 2000 was 18%. The wind power generation in 2000 was nearly 80 GWh, which are about 60% higher than in 1999. The number of wind power plants is 63, and the capacity of them 38 MW. The production of nuclear power in 2000 decreased by about 2% because of the longer and more thorough maintenance stoppages in the Loviisa 1 reactor. The utilisation rates of Finnish nuclear power plants in 2000 were high, Loviisa 1 by nearly 85%, Loviisa 2 by 91%, Olkiluoto 1 by 96

  15. Reaction Norms in Natural Conditions: How Does Metabolic Performance Respond to Weather Variations in a Small Endotherm Facing Cold Environments? (United States)

    Petit, Magali; Vézina, François


    Reaction norms reflect an organisms' capacity to adjust its phenotype to the environment and allows for identifying trait values associated with physiological limits. However, reaction norms of physiological parameters are mostly unknown for endotherms living in natural conditions. Black-capped chickadees (Poecile atricapillus) increase their metabolic performance during winter acclimatization and are thus good model to measure reaction norms in the wild. We repeatedly measured basal (BMR) and summit (Msum) metabolism in chickadees to characterize, for the first time in a free-living endotherm, reaction norms of these parameters across the natural range of weather variation. BMR varied between individuals and was weakly and negatively related to minimal temperature. Msum varied with minimal temperature following a Z-shape curve, increasing linearly between 24°C and −10°C, and changed with absolute humidity following a U-shape relationship. These results suggest that thermal exchanges with the environment have minimal effects on maintenance costs, which may be individual-dependent, while thermogenic capacity is responding to body heat loss. Our results suggest also that BMR and Msum respond to different and likely independent constraints. PMID:25426860

  16. Weather Conditions Associated with the Release and Dispersal of Zymoseptoria tritici Spores in the Argentine Pampas Region

    Directory of Open Access Journals (Sweden)

    C. A. Cordo


    Full Text Available The abundance of Zymoseptoria tritici ascospores and conidia in a field was examined throughout two one-year periods (1998-1999 and 1999-2000 establishing the relationship between spore release and weather variables. Radiation, temperature, intensity of rainfall, and relative humidity significantly affected the dispersal of ascospores and pycnidiospores of this pathogen. Spore traps collected both types of spores, at weekly intervals, at two different stages of the wheat crop (vegetative and wheat stubble stages and different distances from the sources. Ascospores were the predominant sources of inoculum in the field. The numbers of ascospores and pycnidiospores declined with the increase of distance from the sources. The release of pycnidiospores was associated with the increase in rainfall intensity 7 days before the released event and the increase in radiation 60 days before the same event. Relative humidity 3 and 15 days before the release event was positively correlated with ascospores release and negatively correlated with radiation and temperature in all the sampling interval. Also for the first time, a positive correlation between radiation and pycnidiospores dispersal is reported. Understanding the relationship between environment conditions and spores dispersal event could improve the control strategies of the disease.

  17. Extreme groundwater levels caused by extreme weather conditions - the highest ever measured groundwater levels in Middle Germany and their management (United States)

    Reinstorf, Frido; Kramer, Stefanie; Koch, Thomas; Seifert, Sven; Monninkhoff, Bertram; Pfützner, Bernd


    Extreme weather conditions during the years 2009 - 2011 in combination with changes in the regional water management and possible impacts of climate change led to maximum groundwater levels in large areas of Germany in 2011. This resulted in extensive water logging, with problems especially in urban areas near rivers, where water logging produced huge problems for buildings and infrastructure. The acute situation still exists in many areas and requires the development of solution concepts. Taken the example of the Elbe-Saale-Region in the Federal State of Saxony-Anhalt, were a pilot research project was carried out, the analytical situation, the development of a management tool and the implementation of a groundwater management concept are shown. The central tool is a coupled water budget - groundwater flow model. In combination with sophisticated multi-scale parameter estimation, a high resolution groundwater level simulation was carried out. A decision support process with a very intensive stakeholder interaction combined with high resolution simulations enables the development of a management concept for extreme groundwater situations in consideration of sustainable and environmentally sound solutions mainly on the base of passive measures.

  18. Comparative study of the reliability of MPPT algorithms for the crystalline silicon photovoltaic modules in variable weather conditions

    Directory of Open Access Journals (Sweden)

    Abraham Dandoussou


    Full Text Available The crystalline silicon photovoltaic modules are widely used as power supply sources in the tropical areas where the weather conditions change abruptly. Fortunately, many MPPT algorithms are implemented to improve their performance. In the other hand, it is well known that these power supply sources are nonlinear dipoles and so, their intrinsic parameters may vary with the irradiance and the temperature. In this paper, the MPPT algorithms widely used, i.e. Perturb and Observe (P&O, Incremental Conductance (INC, Hill-Climbing (HC, are implemented using Matlab®/Simulink® model of a crystalline silicon photovoltaic module whose intrinsic parameters were extracted by fitting the I(V characteristic to experimental points. Comparing the simulation results, it is obvious that the variable step size INC algorithm has the best reliability than both HC and P&O algorithms for the near to real Simulink® model of photovoltaic modules. With a 60 Wp photovoltaic module, the daily maximum power reaches 50.76 W against 34.40 W when the photovoltaic parameters are fixed. Meanwhile, the daily average energy is 263 Wh/day against 195 Wh/day.

  19. Standard Practice for Exposure of Solar Collector Cover Materials to Natural Weathering Under Conditions Simulating Stagnation Mode

    CERN Document Server

    American Society for Testing and Materials. Philadelphia


    1.1 This practice covers a procedure for the exposure of solar collector cover materials to the natural weather environment at elevated temperatures that approximate stagnation conditions in solar collectors having a combined back and edge loss coefficient of less than 1.5 W/(m2 · °C). 1.2 This practice is suitable for exposure of both glass and plastic solar collector cover materials. Provisions are made for exposure of single and double cover assemblies to accommodate the need for exposure of both inner and outer solar collector cover materials. 1.3 This practice does not apply to cover materials for evacuated collectors, photovoltaic cells, flat-plate collectors having a combined back and edge loss coefficient greater than 1.5 W/(m2 ·° C), or flat-plate collectors whose design incorporates means for limiting temperatures during stagnation. 1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard t...

  20. Adverse Weather Evokes Nostalgia. (United States)

    van Tilburg, Wijnand A P; Sedikides, Constantine; Wildschut, Tim


    Four studies examined the link between adverse weather and the palliative role of nostalgia. We proposed and tested that (a) adverse weather evokes nostalgia (Hypothesis 1); (b) adverse weather causes distress, which predicts elevated nostalgia (Hypothesis 2); (c) preventing nostalgia exacerbates weather-induced distress (Hypothesis 3); and (d) weather-evoked nostalgia confers psychological benefits (Hypothesis 4). In Study 1, participants listened to recordings of wind, thunder, rain, and neutral sounds. Adverse weather evoked nostalgia. In Study 2, participants kept a 10-day diary recording weather conditions, distress, and nostalgia. We also obtained meteorological data. Adverse weather perceptions were positively correlated with distress, which predicted higher nostalgia. Also, adverse natural weather was associated with corresponding weather perceptions, which predicted elevated nostalgia. (Results were mixed for rain.) In Study 3, preventing nostalgia (via cognitive load) increased weather-evoked distress. In Study 4, weather-evoked nostalgia was positively associated with psychological benefits. The findings pioneer the relevance of nostalgia as source of comfort in adverse weather.

  1. Effects of reproductive condition, roost microclimate, and weather patterns on summer torpor use by a vespertilionid bat (United States)

    Johnson, Joseph S; Lacki, Michael J


    A growing number of mammal species are recognized as heterothermic, capable of maintaining a high-core body temperature or entering a state of metabolic suppression known as torpor. Small mammals can achieve large energetic savings when torpid, but they are also subject to ecological costs. Studying torpor use in an ecological and physiological context can help elucidate relative costs and benefits of torpor to different groups within a population. We measured skin temperatures of 46 adult Rafinesque's big-eared bats (Corynorhinus rafinesquii) to evaluate thermoregulatory strategies of a heterothermic small mammal during the reproductive season. We compared daily average and minimum skin temperatures as well as the frequency, duration, and depth of torpor bouts of sex and reproductive classes of bats inhabiting day-roosts with different thermal characteristics. We evaluated roosts with microclimates colder (caves) and warmer (buildings) than ambient air temperatures, as well as roosts with intermediate conditions (trees and rock crevices). Using Akaike's information criterion (AIC), we found that different statistical models best predicted various characteristics of torpor bouts. While the type of day-roost best predicted the average number of torpor bouts that bats used each day, current weather variables best predicted daily average and minimum skin temperatures of bats, and reproductive condition best predicted average torpor bout depth and the average amount of time spent torpid each day by bats. Finding that different models best explain varying aspects of heterothermy illustrates the importance of torpor to both reproductive and nonreproductive small mammals and emphasizes the multifaceted nature of heterothermy and the need to collect data on numerous heterothermic response variables within an ecophysiological context. PMID:24558571

  2. A Mathematical Model of Hourly Solar Radiation in Varying Weather Conditions for a Dynamic Simulation of the Solar Organic Rankine Cycle

    Directory of Open Access Journals (Sweden)

    Taehong Sung


    Full Text Available A mathematical model of hourly solar radiation with weather variability is proposed based on the simple sky model. The model uses a superposition of trigonometric functions with short and long periods. We investigate the effects of the model variables on the clearness (kD and the probability of persistence (POPD indices and also evaluate the proposed model for all of the kD-POPD weather classes. A simple solar organic Rankine cycle (SORC system with thermal storage is simulated using the actual weather conditions, and then, the results are compared with the simulation results using the proposed model and the simple sky model. The simulation results show that the proposed model provides more accurate system operation characteristics than the simple sky model.

  3. Effect of weather conditions and presence of visitors on adrenocortical activity in captive African penguins (Spheniscus demersus). (United States)

    Ozella, L; Anfossi, L; Di Nardo, F; Pessani, D


    A number of potential stressors are present in captive environments and it is critically important to identify them in order to improve health and welfare in ex situ animal populations. In this study, we investigated the adrenocortical activity of a colony of African penguins hosted in an immersive zoo in Italy, with respect to the presence of visitors and local microclimatic conditions, using the non-invasive method of assessing faecal glucocorticoid metabolites (FGMs). The penguins' exhibit is a large naturalistic outdoor enclosure, which closely reproduces the natural habitat of this species. Data collection took place from the beginning of June to the end of August 2014, during the period of maximum flow of visitors. We carried out 12 sampling periods, each involving 2 consecutive days; during the first day we counted the visitors and we registered the meteorological data, and on the second day, we collected the faecal samples, which amounted to a total of 285 faecal samples. Our results showed that the number of visitors did not influence the adrenocortical activity of the African penguins. Conversely, the local microclimatic conditions did influence the physiological stress on these birds. We found that an increase of the daily mean temperature induced a significant increase in FGM concentrations, although humidity and wind speed had a moderating effect on temperature and reduced the heat-induced stress. Moreover, we calculated two climatic indices, commonly used to assess the thermal discomfort in animals, namely the THI (Temperature-Humidity Index) and WCI (Wind Chill Index), and we detected a positive relationship between their values and the FGM levels, demonstrating that these indices could be useful indicators of weather discomfort in African penguins. Our study shows that the simulating naturalistic conditions could have significant benefits for zoo animals, such as reducing the negative effect of visitors. Nevertheless, it should be taken into account


    Directory of Open Access Journals (Sweden)

    Anto Mijić


    Full Text Available With the purpose of determining the influence of weather conditions on the yield components of sunflower, the results of three-year field trials are analysed in the paper. In the trials sown in Osijek in 2013, 2014 and 2015, there were 15 sunflower hybrids: two foreign hybrids and 13 hybrid combinations of the Agricultural Institute Osijek. In the period before sowing (January – March, the highest amount of precipitation was in 2013 (213.1 mm, then in 2015 (167.9 mm, and the lowest in 2014 (109.5 mm. In the growing period (April – September, the highest amount of precipitation (487.3 mm was in 2014, 475.7 mm in 2013, and in 2015 it was the lowest (251.6 mm. In 2013, during the growing period, the mean monthly air temperature was 19.1°C, in 2015 19.9°C, and in 2014 18.6°C. Of these years, statistically significant at the P=0.05, the highest value of the analysed traits was recorded in 2013: grain yield of 6.47 t ha-1, oil content 51.69% and oil yield 3.05 t ha-1. Grain yield, oil content and oil yield were lower in 2015, and the lowest in 2014. Matej, a newly recognized sunflower hybrid of the Agricultural Institute Osijek had the highest values of grain and oil yield (6.95 and 3.39 t ha-1, and by its oil content of 53.44%, it was in the third place. For high grain and oil yields of sunflower, in addition to the optimal air temperature, the amount and distribution of precipitation before and also during the growing season are very important.

  5. The Prevailing Weather and Traffic Conditions in the Evaluation of a Future ECA in the Mediterranean Sea. A view into the Western Mediterranean

    Directory of Open Access Journals (Sweden)

    Marcella Castells i Sanabra


    Full Text Available Appendix III of MARPOL's Annex VI sets out the criteria and procedures for designating an emission control area (ECA.These criteria includes: a clear delineation of the proposed ECA; types of emissions proposed for control, land and sea areas at risk; emission quantification and impact assessment; prevailing weather conditions; data and quality on marine traffic; land based measures concurrent with the ECA adoption and the relative costs of reducing emissions from ships. This paper analyses the climate parameter together with traffic conditions: prevailing weather conditions as a parameter to be kept in mind for the adoption of a future ECA in the Mediterranean Sea. Preliminary results would show how marine emissions coming from existing traffic will impact the sea and land ecology in the Mediterranean area.

  6. Preliminary Results Of Hydrodynamic Responses To Ship Movements And Weather Conditions Along The Coastal Walls Of Shallow Areas (United States)

    Acar, Dursun; Alpar, Bedri; Cagatay, Namık; Ozeren, Sinan; Sarı, Erol; Eris, Kadir; Vardar, Denizhan; Arslan, Tugce; Basegmez, Koray


    Water-level variations in coastal areas and shallow channels take place under the influence of more complex factors, compared to those in deeper areas. Atmospheric pressure, wind, and wave interactions with bottom morphological characteristics are some important natural features while human-induced factors are usually maritime traffic and manoeuvres the ships. While weather conditions cause long-term changes in water level, water level interactions in near shore areas, can occur very quickly depending on the ship manoeuvres and squat characteristics, and these rapid changes can lead to unpredictable water level lowering. Such rapid changes may cause various dangerous incidents and ship accidents, particularly in areas where rapid water oscillations occur. Improper calculations of propulsion power or orientation of the ship body, especially in the areas where geological and morphological characteristics permit fast water movements, are the most important additional causes of accidents due to sudden water level decreases. For an example, even though a 200-m-long vessel can complete its 35° rotation in a circular area with radius of 250 m, if it is calm and sufficiently deep, this diameter increases 5 times at the shallow waters also depending on the hydrodynamic flow conditions. In 2005, "Gerardus Mercator" has bumped into the inside bottom wall of the channel with a low speed (4 knots) turn of when she had just made a 200° turn. Seven years later the cruise ship "Costa Concordia" struck a rock, before she drifted and grounded, in the calm seas of the coast of Isola del Giglio in Italy, due to a combined effects of waves generated by side waves of ship manoeuvres, atmospheric pressure and squat specifications as well. The waves reflected from the seawalls complicate the navigation problems which should be examined in detail. Thus, three prototype models with various angular seawall features were prepared, simple in shape with perpendicular and sloped seawalls with

  7. On-site ocean horizontal aerosol extinction coefficient inversion under different weather conditions on the Bo-hai and Huang-hai Seas (United States)

    Zeng, Xianjiang; Xia, Min; Ge, Yinghui; Guo, Wenping; Yang, Kecheng


    In this paper, we explore the horizontal extinction characteristics under different weather conditions on the ocean surface with on-site experiments on the Bo-hai and Huang-hai Seas in the summer of 2016. An experimental lidar system is designed to collect the on-site experimental data. By aiming at the inhomogeneity and uncertainty of the horizontal aerosol in practice, a joint retrieval method is proposed to retrieve the aerosol extinction coefficients (AEC) from the raw data along the optical path. The retrieval results of both the simulated and the real signals demonstrate that the joint retrieval method is practical. Finally, the sequence observation results of the on-site experiments under different weather conditions are reported and analyzed. These results can provide the attenuation information to analyze the atmospheric aerosol characteristics on the ocean surface.

  8. Effectiveness of short-term numerical weather prediction in predicting growing degree days and meteorological conditions for apple scab appearance

    Czech Academy of Sciences Publication Activity Database

    Lalic, B.; Francia, M.; Eitzinger, Josef; Podrascanin, Z.; Arsenic, I.


    Roč. 23, č. 1 (2016), s. 50-56 ISSN 1350-4827 Institutional support: RVO:86652079 Keywords : venturia-inaequalis * temperature * equation * schemes * model * numerical weather prediction * disease prediction * verification * apple scab * growing degree days Subject RIV: DG - Athmosphere Sciences, Meteorology OBOR OECD: Meteorology and atmospheric sciences Impact factor: 1.411, year: 2016

  9. The effect of environmental conditions on sodium chloride damage: A step in the development of an effective weathering test

    NARCIS (Netherlands)

    Lubelli, B.; Hees, R.P.J. van; Groot, C.J.W.P.


    Laboratory weathering tests are important in the field of restoration as they provide a means of estimating, in a relatively short time, the longer-term performance of conservation materials when applied in practice. Accelerated tests to simulate the damage caused to porous materials by soluble

  10. Thermoregulatory responses and blood parameters of locally adapted ewes under natural weather conditions of Brazilian semiarid region

    Directory of Open Access Journals (Sweden)

    Wirton Peixoto Costa


    Full Text Available The effect of the natural weather conditions on respiratory rate, rectal temperature and hematologic parameters such as glucose, total cholesterol, triacylglycerol, total protein, albumin, globulin, red blood cells, microhematocrit, mean corpuscular volume, serum triiodothyronine (T3 and thyroxine (T4 levels was evaluated in red (RMN and white (WMN coat colored Morada Nova ewes, of different class of body condition score (CBCS, during the dry (from july to december and wet (from january to june seasons, which exhibited different (P<0.05 air temperature, relative humidity and radiant thermal load averages. Tukey’s test was used and the difference considered was to P<0.05. Significant greater averages of respiratory rate were observed in the dry period compared to the rainy period (42.26±8.96 and 36.89±8.20 breaths min-1, respectively, mainly in the RMN (45.54±8.23 breaths min-1 compared with the WMN (39.27±8.57 breaths min-1. No differences were observed in rectal temperature measurements between the dry and the wet periods (38.59±0.58 and 38.60±0.56 oC, respectively, but the WMN had higher values than the RMN (38.77±0.54 and 38.40±0.54 oC, respectively. The glucose and total cholesterol were higher in the wet season, with no variation due to breed variety and CBCS. The triacylglycerol did not change between breed varieties and seasons. The albumin was similar between varieties and in different seasons, being different in CBCS. Total protein and globulin serum were higher during the wet season, but total protein was higher and globulin was lower in better CBCS. T3 and T4 levels were higher in the rainy season (0.25±0.07 and 6.74±11.37 ?g dL-1, for T3 and T4, respectively than in the dry season (0.18±0.08 and 6.31±1.64 ?g dL-1, for T3 and T4, respectively. The red blood cells showed no difference, but microhematocrit was higher in WMN and in the better CBCS and mean corpuscular volume was higher in the dry season. The concentration

  11. Designing Yellow Intervals for Rainy and Wet Roadway Conditions

    Directory of Open Access Journals (Sweden)

    Huan Li


    Full Text Available The research presented in this paper quantifies and models the impact of wet pavement surface and rainy weather conditions on driver perception-reaction times (PRTs, deceleration levels, and traffic signal change interval durations. A total of 648 stop-run records were collected as part of the research effort for a 72 km/h (45 mi/h approach speed where participant drivers encountered a yellow indication initiation at different distances from the intersection. The participant drivers were randomly selected in different age groups (under 40 years old, 40 to 59 years old, and 60 years of age or older and genders (female and male. Using the gathered data, statistical models for driver PRT and deceleration levels were developed, considering roadway surface and environmental parameters, driver attributes (age and gender, roadway grade, approaching speed, and time and distance to the intersection at the onset of yellow. Inclement weather yellow timings were then developed and summarized in lookup tables as a function of different factors (driver age/gender, roadway grade, speed limit, precipitation level, and roadway surface condition to provide practical guidelines for the design of yellow signal timings in wet and rainy weather conditions. The results indicate that wet roadway surface conditions require a 5 percent increase in the change interval and that rainy conditions require a 10 percent or more increase in the duration of the change interval. These recommended change durations can also be integrated within the Vehicle Infrastructure Integration (VII initiative to provide customizable driver warnings prior to a transition to a red indication.

  12. Time scale and conditions of weathering under tropical climate: Study of the Amazon basin with U-series (United States)

    Dosseto, A.; Bourdon, B.; Gaillardet, J.; Allègre, C. J.; Filizola, N.


    The Rio Solimões/Amazonas (Amazon River) and its major tributaries have been analyzed for U-series nuclides. 238U- 234U- 230Th- 226Ra disequilibria have been measured in the dissolved (0.2 μm) as well as bed sands. U-series disequilibria are closely related to major and trace element compositions and therefore reflect elemental fractionation during chemical weathering. Moreover, while the dissolved load records present-day weathering, suspended particles integrate the erosion history over much longer time scales (>100 ka). Lowland rivers are characterized by long time scales of chemical erosion (⩾100 ka) resulting in a high weathering intensity. Moreover, exchange between suspended particles and the dissolved load may explain the U-series signature for these rivers. By combining U-series and Pb isotopes in suspended particles, we show that erosion in the Rio Madeira basin occurred as a multi-step process, whereby the pristine continental crust was eroded several hundreds of Ma ago to produce sediments that have then been integrated in the Cordillera by crustal shortening and are currently eroded. In contrast, recent erosion of a pristine crust is more likely for the Rio Solimões/Amazonas (rivers draining the Andes (Solimões/Amazonas, Madeira) suggest time scales of weathering ranging between 4 and 20 ka. This indicates that suspended particles transported by those rivers are not stored for long periods in the Andean foreland basin and the tropical plain. The sediments delivered to the ocean have resided only a few ka in the Amazon basin (6.3 ± 1 ka for the Rio Amazonas at Óbidos). Nevertheless, a large fraction of the sediments coming out from the Andes are trapped in the foreland basin and may never reach the ocean. Erosion in the Andes is not operating in steady state. U-series systematics shows unambiguously that rivers are exporting a lot more sediments than predicted by steady-state erosion and that is a consequence of soil destruction greater than

  13. The influence of weather on road safety.

    NARCIS (Netherlands)


    The weather has an influence on road safety. Weather conditions partly determine the road conditions and the driver's behaviour. Most studies into the relation between weather and road safety are about the situation during rainfall. However, many other weather conditions are serious influences: fog,

  14. Waste glass weathering

    International Nuclear Information System (INIS)

    Bates, J.K.; Buck, E.C.


    The weathering of glass is reviewed by examining processes that affect the reaction of commercial, historical, natural, and nuclear waste glass under conditions of contact with humid air and slowly dripping water, which may lead to immersion in nearly static solution. Radionuclide release data from weathered glass under conditions that may exist in an unsaturated environment are presented and compared to release under standard leaching conditions. While the comparison between the release under weathering and leaching conditions is not exact, due to variability of reaction in humid air, evidence is presented of radionuclide release under a variety of conditions. These results suggest that both the amount and form of radionuclide release can be affected by the weathering of glass

  15. Field comparison of solar water disinfection (SODIS) efficacy between glass and polyethylene terephalate (PET) plastic bottles under sub-Saharan weather conditions. (United States)

    Asiimwe, J K; Quilty, B; Muyanja, C K; McGuigan, K G


    Concerns about photodegradation products leaching from plastic bottle material into water during solar water disinfection (SODIS) are a major psychological barrier to increased uptake of SODIS. In this study, a comparison of SODIS efficacy using glass and plastic polyethylene terephalate (PET) bottles was carried out under strong real sunlight and overcast weather conditions at Makerere University in central Uganda. Both clear and turbid natural water samples from shallow wells and open dug wells, respectively, were used. Efficacy was determined from the inactivation of a wild strain of Escherichia coli in solar-exposed contaminated water in both glass and PET bottles. The studies reveal no significant difference in SODIS inactivation between glass and PET bottles (95% CI, p > 0.05), for all water samples under the different weather conditions except for clear water under overcast conditions where there was a small but significant difference (95% CI, p = 0.047) with less viable bacterial counts in PET bottles at two intermediate time points but not at the end of the exposure. The results demonstrate that SODIS efficacy in glass under tropical field conditions is comparable to PET plastic. SODIS users in these regions can choose either of reactors depending on availability and preference of the user.

  16. The influence of regional urbanization and abnormal weather conditions on the processes of human climatic adaptation on mountain resorts (United States)

    Artamonova, M.; Golitsyn, G.; Senik, I.; Safronov, A.; Babyakin, A.; Efimenko, N.; Povolotskaya, N.; Topuriya, D.; Chalaya, E.


    This work is a further development in the study of weather pathogenic index (WPI) and negative influence of urbanization processes on the state of people's health with adaptation disorder. This problem is socially significant. According to the data of the WHO, in the world there are from 20 to 45% of healthy people and from 40 to 80% of people with chronic diseases who suffer from the raised meteosensitivity. As a result of our researches of meteosensitivity of people during their short-duration on mountain resorts there were used negative adaptive reactions (NAR) under 26 routine tests, stress-reactions under L.H. Garkavi's hemogram, vegetative indices, tests of neuro-vascular reactivity, signs of imbalance of vegetative and neurohumoral regulation according to the data of biorhythm fractal analysis and sudden aggravations of diseases (SAD) as an indicator of negative climatic and urbanization influence. In 2010-2011 the Caucasian mountain resorts were having long periods of climatic anomalies, strengthening of anthropogenic emissions and forest fires when record-breaking high waves of NAR and SAD were noticed. There have also been specified indices ranks of weather pathogenicity from results of comparison of health characteristics with indicators of synoptico-dynamic processes according to Weather Research and Forecasting model (WRF); air ionization N+, N-, N+/N- spectra of aerosol particles (the size from 500 to 20000 nanometers) and concentrations of chemically active gases (O3, NO, NO2, ), volatile phytoorganic substances in the surface atmosphere, bactericidal characteristics of vegetation by criterion χ2 (not above 0,05). It has allowed us to develop new physiological optimum borders, norm and pessimum, to classify emergency ecologo-weather situations, to develop a new techniques of their forecasting and prevention of meteopathic reactions with meteosensitive patients (Method of treatment and the early (emergency) and planned prevention meteopatic reactions

  17. Weather and emotional state (United States)

    Spasova, Z.


    Introduction Given the proven effects of weather on the human organism, an attempt to examine its effects on a psychic and emotional level has been made. Emotions affect the bio-tonus, working ability and concentration, hence their significance in various domains of economic life, such as health care, education, transportation, tourism, etc. Data and methods The research has been made in Sofia City within a period of 8 months, using 5 psychological methods (Eysenck Personality Questionnaire (EPQ), State-Trait Anxiety Inventory (STAI), Test for Self-assessment of the emotional state (developed by Wessman and Ricks), Test for evaluation of moods and Test "Self-confidence - Activity - Mood" (developed by the specialists from the Military Academy in Saint Petersburg). The Fiodorov-Chubukov's complex-climatic method was used to characterize meteorological conditions because of the purpose to include in the analysis a maximal number of meteorological elements. 16 weather types are defined in dependence of the meteorological elements values according to this method. Abrupt weather changes from one day to another, defined by the same method, were considered as well. Results and discussions The results obtained by t-test show that the different categories of weather lead to changes in the emotional status, which indicates a character either positive or negative for the organism. The abrupt weather changes, according to expectations, have negative effect on human emotions but only when a transition to the cloudy weather or weather type, classified as "unfavourable" has been realized. The relationship between weather and human emotions is rather complicated since it depends on individual characteristics of people. One of these individual psychological characteristics, marked by the dimension "neuroticism", has a strong effect on emotional reactions in different weather conditions. Emotionally stable individuals are more "protected" to the weather influence on their emotions

  18. Phosphates of crandallite type (plumibogummite, goyazite, gorceixcite) results of amblygonite under weathering conditions from Coronel Murta's pegmatites (northeastern Miras Gerais) and your paleoecological meaning

    International Nuclear Information System (INIS)

    Neves, J.M.C.; Marciano, V.R.P.R.O.; Lena, J.C. de; Soares, A.C.P.


    This paper deals with crandallite type phosphates (plumbogummite, go yazite gorceixcite) originating from amblygonite under weathering conditions active in very recent times in the Coronel Murta are (northeastern Minas Gerais). Amblygonite, the crystallization of which too place about 500 Ma ago within the replacement bodies of pegmatites emplaced in mia-bearing quartzites from the Proterozoic Salinas Group, was the start ing material for the above mentione supergene minerals. The pegmatitic veins, emplaced in the quartzites according to wo perpendicular joint systems, underwent a strong weathering which produced the total kaolinization of the pegmatitic primary feldspars observed at the present time. During the supergene processes, the amblygonite, after acting as a geochemical fence for Ca, Sr, Ba, Pb etc., which provided conditions for the formation of the crandallitic minerals, was transformed into kaolinite. The stability fields these crandallitic minerals, comparared to those of kaolinite and amblygonite, show that they are easily formed under rather high pH values. As the environment becomes more acid and keeping in mind the very low cationic activities in groundwaters, al these phosphates become unstable and, under SiO 2 metasomatism, envolve to kaolinite. This is thermodynamically sound as revealed not only by the calculated stability diagrams but by the identified mineral assemblages as well. These mineral assemblages and their widespread regional scaterring seem to be induced not only by climatic and relief conditions but also by their position within the weathering profile. In the Coronel Murta area the most effective factors seem to have the very recent climatic and relief changes. (author) [pt

  19. Effects of shelter type, early environmental enrichment and weather conditions on free-range behaviour of slow-growing broiler chickens. (United States)

    Stadig, L M; Rodenburg, T B; Ampe, B; Reubens, B; Tuyttens, F A M


    Free-range use by broiler chickens is often limited, whereas better use of the free-range area could benefit animal welfare. Use of free-range areas could be stimulated by more appropriate shelter or environmental enrichment (by decreasing birds' fearfulness). This study aimed to assess the effects of shelter type, early environmental enrichment and weather conditions on free-range use. Three production rounds with 440 slow-growing broiler chickens (Sasso T451) were carried out. Birds were housed indoors in four groups (two with males, two with females) from days 0 to 25, during which two of the groups received environmental enrichment. At day 23 birds' fearfulness was assessed with a tonic immobility (TI) test (n=100). At day 25 all birds were moved (in mixed-sex groups) to mobile houses, and provided with free-range access from day 28 onwards. Each group could access a range consisting for 50% of grassland with 21 artificial shelters (ASs, wooden A-frames) and for 50% of short rotation coppice (SRC) with willow (dense vegetation). Free-range use was recorded by live observations at 0900, 1300 and 1700 h for 15 to 21 days between days 28 and 63. For each bird observed outside the shelter type (AS or SRC), distance from the house (0 to 2, 2 to 5, >5 m) and its behaviour (only rounds 2 and 3) were recorded. Weather conditions were recorded by four weather stations. On average, 27.1% of the birds were observed outside at any given moment of observation. Early environmental enrichment did not decrease fearfulness as measured by the TI test. It only had a minor effect on the percentage of birds outside (0.4% more birds outside). At all distances from the house, SRC was preferred over AS. In AS, areas closer to the house were preferred over farther ones, in SRC this was less pronounced. Free-range use increased with age and temperature and decreased with wind speed. In AS, rainfall and decreasing solar radiation were related to finding more birds outside, whereas the

  20. Differences in volatile profiles of Cabernet Sauvignon grapes grown in two distinct regions of China and their responses to weather conditions. (United States)

    Xu, Xiao-Qing; Liu, Bin; Zhu, Bao-Qing; Lan, Yi-Bin; Gao, Yuan; Wang, Dong; Reeves, Malcolm J; Duan, Chang-Qing


    Volatile compounds are considered important for plants to communicate with each other and interact with their environments. Most wine-producing regions in China feature a continental monsoon climate with hot-wet summers and dry-cold winters, giving grapes markedly different growing environments compared to the Mediterranean or oceanic climates described in previous reports. This study focused on comparing the volatile profiles of Vitis vinifera L. cv. Cabernet Sauvignon berries from two regions with distinct climate characteristics: Changli has a warm and semi-humid summer, and Gaotai has a cool-arid summer and a cold winter. The relationship between meteorological metrics and the concentrations of grape volatiles were also examined. In harvested grapes, benzyl alcohol, phenylethyl alcohol, 1-hexanol and 1-octen-3-ol were more abundant in the Changli berries, while hexanal, heptanal, 2-methoxy-3-isobutylpyrazine, and (E)-β-damascenone presented higher levels in the Gaotai berries. The fluctuation in the accumulation of volatile compounds observed during berry development was closely correlated with variations in short-term weather (weather in a week), especially rainfall. The concentration of some volatiles, notably aliphatic aldehydes, was significantly related to diurnal temperature differences. The variability during berry development of concentrations for compounds such as C6 volatile compounds, 2-methoxy-3-isobutylpyrazine and (E)-β-damascenone strongly depended upon weather conditions. This work expands our knowledge about the influence of continental monsoon climates on volatile compounds in developing grape berries. It will also improve the comprehension of the plant response to their surrounding environments through the accumulation of volatiles. The results will help growers to alter viticultural practices according to local conditions to improve the aromatic quality of grapes. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  1. Weather and road capacity

    DEFF Research Database (Denmark)

    Jensen, Thomas Christian


    The paper presents estimations of the effect of bad weather on the observed speed on a Danish highway section; Køge Bugt Motorvejen. The paper concludes that weather, primarily precipitation and snow, has a clear negative effect on speed when the road is not in hypercongestion mode. Furthermore......, the capacity of the highway seems to be reduced in bad weather and there are indications that travel time variability is also increased, at least in free-flow conditions. Heavy precipitation reduces speed and capacity by around 5-8%, whereas snow primarily reduces capacity. Other weather variables......-parametrically against traffic density and in step 2 the residuals from step 1 are regressed linearly against the weather variables. The choice of a non-parametric method is made to avoid constricting ties from a parametric specification and because the focus here is not on the relationship between traffic flow...

  2. The impact of weather conditions on dynamics of Hylocomium splendens annual increment and net production in forest communities of forest-steppe zone in Khakassia

    Directory of Open Access Journals (Sweden)

    I. A. Goncharova


    Full Text Available Dynamics of annual increments of green moss Hylocomium splendens (Hedw. Schimp. in B.S.G. in the Khakassia forest-steppe zone has been studied. The values of the moss linear and phytomass increments were investigated in different habitats for 6 years. The aboveground annual production of the H. splendens in phytocenosis was estimated. Linear increments of the H. splendens growing under the tree canopy and opening between trees were not significantly different. Phytomass increments under the tree canopy are significantly higher than in the openings between trees. The density of moss mats, proportion between leaves and stems were calculated. It was revealed that climatic factors have a different degree and duration influence on the moss increments in different habitats. Linear increments of H. splendens in different habitats synchronously respond to weather factor changes. The air temperature was the most important at the beginning and the end of the vegetation period; the amount of precipitation was more important in the middle of the growth period. Phytomass increments of H. splendens in different habitats respond differently to influence of weather conditions. Phytomass increments under the tree canopy are not sensitive to air temperature, and more sensitive to precipitations in the middle of growth period than one of opening between trees. The specificity of the climatic factors’ influence on the biomass growth depends on habitat conditions.

  3. Power Prediction and Technoeconomic Analysis of a Solar PV Power Plant by MLP-ABC and COMFAR III, considering Cloudy Weather Conditions

    Directory of Open Access Journals (Sweden)

    M. Khademi


    Full Text Available The prediction of power generated by photovoltaic (PV panels in different climates is of great importance. The aim of this paper is to predict the output power of a 3.2 kW PV power plant using the MLP-ABC (multilayer perceptron-artificial bee colony algorithm. Experimental data (ambient temperature, solar radiation, and relative humidity was gathered at five-minute intervals from Tehran University’s PV Power Plant from September 22nd, 2012, to January 14th, 2013. Following data validation, 10665 data sets, equivalent to 35 days, were used in the analysis. The output power was predicted using the MLP-ABC algorithm with the mean absolute percentage error (MAPE, the mean bias error (MBE, and correlation coefficient (R2, of 3.7, 3.1, and 94.7%, respectively. The optimized configuration of the network consisted of two hidden layers. The first layer had four neurons and the second had two neurons. A detailed economic analysis is also presented for sunny and cloudy weather conditions using COMFAR III software. A detailed cost analysis indicated that the total investment’s payback period would be 3.83 years in sunny periods and 4.08 years in cloudy periods. The results showed that the solar PV power plant is feasible from an economic point of view in both cloudy and sunny weather conditions.

  4. Fruit Set of Several Sour Cherry Cultivars in Latvia Influenced by Weather Conditions Before and During Flowering

    Directory of Open Access Journals (Sweden)

    Feldmane Daina


    Full Text Available Fruit set is a crucial stage in the process of yield formation, which is influenced by environmental factors, growing technologies and peculiarities of genotype. The aim of the study was to evaluate the quality of pollen (viability and germination capacity and the effect of weather before and during flowering on fruit set in sour cherry cultivars ‘Latvijas Zemais’, ‘Zentenes’, ‘Bulatnikovskaya’, and ‘Orlica’. The research was carried out in Institute of Horticulture (Latvia University of Agriculture in 2009-2016. Good pollen viability and germination was found for cultivars ‘Latvijas Zemais’ and ‘Bulatnikovskaya’. Negative effects of increasing air temperature (in the range of 7.7 to 17.5 °C and relative humidity (in the range of 51.4 to 88.5% was observed for all cultivars during flowering. The effects of diurnal temperature fluctuations, wind and the amount of days with precipitation differed depending on sour cherry cultivar.

  5. Space Weather Services of Korea (United States)

    Yoon, K.; Hong, S.; Jangsuk, C.; Dong Kyu, K.; Jinyee, C.; Yeongoh, C.


    The Korean Space Weather Center (KSWC) of the National Radio Research Agency (RRA) is a government agency which is the official source of space weather information for Korean Government and the primary action agency of emergency measure to severe space weather condition. KSWC's main role is providing alerts, watches, and forecasts in order to minimize the space weather impacts on both of public and commercial sectors of satellites, aviation, communications, navigations, power grids, and etc. KSWC is also in charge of monitoring the space weather condition and conducting research and development for its main role of space weather operation in Korea. In this study, we will present KSWC's recent efforts on development of application-oriented space weather research products and services on user needs, and introduce new international collaborative projects, such as IPS-Driven Enlil model, DREAM model estimating electron in satellite orbit, global network of DSCOVR and STEREO satellites tracking, and ARMAS (Automated Radiation Measurement for Aviation Safety).

  6. Biotite and chlorite weathering at 25 degrees C: the dependence of pH and (bi)carbonate on weathering kinetics, dissolution stoichiometry, and solubility; and the relation to redox conditions in granitic aquifers

    International Nuclear Information System (INIS)

    Malmstroem, M.; Banwart, S.


    We have studied the kinetics and thermodynamics of biotite and chlorite weathering in the pH range 2 2 -10 2 year); and 2. the development of characteristic Fe(III) concentrations (10 -5 M in 10 - 1 years). The Fe(III)-bearing clay minerals formed during these experiments are similar to the fracture-filling-material observed at the Aespoe Hard Rock Laboratory. Such clays can provide reducing capacity to a repository. They can help maintain anoxic conditions by consuming oxygen that enters the repository during the construction and operation phases thereby helping maintain the redox stability of the repository regarding canister corrosion. The half-life of oxygen trapped in the repository at the time of closure depends on the rate of oxygen uptake by Fe(II) minerals, sulfide minerals and organic carbon. Fe(II)-clay minerals are important to the redox stability of a repository, as well as providing a sorption barrier to radionuclide migration. 107 refs, 52 figs, 35 tabs

  7. Verification of an ENSO-Based Long-Range Prediction of Anomalous Weather Conditions During the Vancouver 2010 Olympics and Paralympics (United States)

    Mo, Ruping; Joe, Paul I.; Doyle, Chris; Whitfield, Paul H.


    A brief review of the anomalous weather conditions during the Vancouver 2010 Winter Olympic and Paralympic Games and the efforts to predict these anomalies based on some preceding El Niño-Southern Oscillation (ENSO) signals are presented. It is shown that the Olympic Games were held under extraordinarily warm conditions in February 2010, with monthly mean temperature anomalies of +2.2 °C in Vancouver and +2.8 °C in Whistler, ranking respectively as the highest and the second highest in the past 30 years (1981-2010). The warm conditions continued, but became less anomalous, in March 2010 for the Paralympic Games. While the precipitation amounts in the area remained near normal through this winter, the lack of snow due to warm conditions created numerous media headlines and practical problems for the alpine competitions. A statistical model was developed on the premise that February and March temperatures in the Vancouver area could be predicted using an ENSO signal with considerable lead time. This model successfully predicted the warmer-than-normal, lower-snowfall conditions for the Vancouver 2010 Winter Olympics and Paralympics.

  8. Can the Weather Affect My Child's Asthma? (United States)

    ... Search English Español Can the Weather Affect My Child's Asthma? KidsHealth / For Parents / Can the Weather Affect My Child's Asthma? Print Can the Weather Affect My Child's Asthma? Yes. Weather conditions can bring on asthma symptoms. ...

  9. Evapotranspiration and land surface process responses to afforestation in western Taiwan: A comparison between dry and wet weather conditions (United States)

    Yongqiang Liu; L.B. Zhang; L. Hao; Ge Sun; S.-C. Liu


    An afforestation project was initiated in the western plain of Taiwan to convert abandoned farming lands into forests to improve the ecological and environmental conditions. This study was conducted to understand the potential impacts of this land cover change on evapotranspiration (ET) and other land surface processes and the...

  10. Combined use of tri-axial accelerometers and GPS reveals the flexible foraging strategy of a bird in relation to weather conditions. (United States)

    Hernández-Pliego, Jesús; Rodríguez, Carlos; Dell'Omo, Giacomo; Bustamante, Javier


    Tri-axial accelerometry has proved to be a useful technique to study animal behavior with little direct observation, and also an effective way to measure energy expenditure, allowing a refreshing revisit to optimal foraging theory. This theory predicts that individuals should gain the most energy for the lowest cost in terms of time and energy when foraging, in order to maximize their fitness. However, during a foraging trip, central-place foragers could face different trade-offs during the commuting and searching parts of the trip, influencing behavioral decisions. Using the lesser kestrel (Falco naumanni) as an example we study the time and energy costs of different behaviors during the commuting and searching parts of a foraging trip. Lesser kestrels are small insectivorous falcons that behave as central-place foragers during the breeding season. They can commute by adopting either time-saving flapping flights or energy-saving soaring-gliding flights, and capture prey by using either time-saving active hovering flights or energy-saving perch-hunting. We tracked 6 lesser kestrels using GPS and tri-axial accelerometers during the breeding season. Our results indicate that males devoted more time and energy to flight behaviors than females in agreement with being the sex responsible for food provisioning to the nest. During the commuting flights, kestrels replaced flapping with soaring-gliding flights as solar radiation increased and thermal updrafts got stronger. In the searching part, they replaced perch-hunting with hovering as wind speed increased and they experienced a stronger lift. But also, they increased the use of hovering as air temperature increased, which has a positive influence on the activity level of the preferred prey (large grasshoppers). Kestrels maintained a constant energy expenditure per foraging trip, although flight and hunting strategies changed dramatically with weather conditions, suggesting a fixed energy budget per trip to which they

  11. Mirador - Weather (United States)

    National Aeronautics and Space Administration — Earth Science data access made simple. Our weather system includes the dynamics of the atmosphere and its interaction with the oceans and land. The improvement of...

  12. Warm Dry Weather Conditions Cause of 2016 Fort McMurray Wild Forest Fire and Associated Air Quality (United States)

    de Azevedo, S. C.; Singh, R. P.; da Silva, E. A., Sr.


    The climate change is evident from the increasing temperature around the world, day to day life and increasing frequency of natural hazards. The warm and dry conditions are the cause of frequent forest fires around the globe. Forest fires severely affect the air quality and human health. Multi sensor satellites and dense network of ground stations provide information about vegetation health, meteorological, air quality and atmospheric parameters. We have carried out detailed analysis of satellite and ground data of wild forest fire that occurred in May 2016 in Fort McMurray, Alberta, Canada. This wild forest fire destroyed 10 per cent of Fort McMurray's housing and forced more than 90,000 people to evacuate the surrounding areas. Our results show that the warm and dry conditions with low rainfall were the cause of Fort McMurray wild fire. The air quality parameters (particulate matter, CO, ozone, NO2, methane) and greenhouse gases measured from Atmospheric Infrared Sounder (AIRS) satellite show enhanced levels soon after the forest fire. The emissions from the forest fire affected health of population living in surrounding areas up to 300 km radius.


    Directory of Open Access Journals (Sweden)

    Teguh Prayogo


    Full Text Available Indonesian waters have abundance of natural resources; the potential of small pelagic fish in Natuna Sea and SouthChina Sea have not been optimized yet explores. Unfortunately, it was caused by lacking in the data of environmentalconditions that have been changed and the information of appropriate fishing ground. Hence, dynamical oceanographicinformation and weather condition is necessary to optimize small pelagic fish exploitation.Research location in Natuna Sea and its surrounding with geographical position is 08°N–03°S; 103°–111°E. Theoceanographic condition representative by monthly SST, Chl-a, SSH that derived from satellite data and Dipole ModeIndex for 2002-2007 from FRCGC website. Monthly wind data is variable for weather condition. Small pelagic fishabundance representative by annual fish production (2002-2005 and monthly Catch Per Unit Effort (CPUE ofGoldstripe sardinella, Bigeye scad and Indian scad (2006. It was data collected from Directorate General of CaptureFisheries (Ministry of Marine Affairs and Fisheries and daily fishing operation (2007 used to calculate match-up ratiothat was collected from Pemangkat fishing port in West Kalimantan. Research process consists of image processing,descriptive correlation analysis and GIS analysis to predict fishing ground map and match-up ratio calculation.Result of this research is the annual fish catch production of Bigeye scad and Indian scad (2002-2005 is tend toincrease and the monthly CPUE of both species is high during SE Monsoon (May-Sep that is condition contrarily in NWMonsoon (Nov-Apr. Meanwhile, the annual fish catch production of Goldstripe sardinella production is tend to decreasefrom 2002-2005, it has CPUE is high in early SE Monsoon (May. During the SE Monsoon (May-Sep when DM Index ispositive (+ the Indian scad and Bigeye scad production is high, for Goldstripe sardinella the fish production is highwhen DM Index is positive (+ in May. The accuracy of prediction map of

  14. Variable strength of forest stand attributes and weather conditions on the questing activity of Ixodes ricinus ticks over years in managed forests. (United States)

    Lauterbach, Ralf; Wells, Konstans; O'Hara, Robert B; Kalko, Elisabeth K V; Renner, Swen C


    Given the ever-increasing human impact through land use and climate change on the environment, we crucially need to achieve a better understanding of those factors that influence the questing activity of ixodid ticks, a major disease-transmitting vector in temperate forests. We investigated variation in the relative questing nymph densities of Ixodes ricinus in differently managed forest types for three years (2008-2010) in SW Germany by drag sampling. We used a hierarchical Bayesian modeling approach to examine the relative effects of habitat and weather and to consider possible nested structures of habitat and climate forces. The questing activity of nymphs was considerably larger in young forest successional stages of thicket compared with pole wood and timber stages. Questing nymph density increased markedly with milder winter temperatures. Generally, the relative strength of the various environmental forces on questing nymph density differed across years. In particular, winter temperature had a negative effect on tick activity across sites in 2008 in contrast to the overall effect of temperature across years. Our results suggest that forest management practices have important impacts on questing nymph density. Variable weather conditions, however, might override the effects of forest management practices on the fluctuations and dynamics of tick populations and activity over years, in particular, the preceding winter temperatures. Therefore, robust predictions and the detection of possible interactions and nested structures of habitat and climate forces can only be quantified through the collection of long-term data. Such data are particularly important with regard to future scenarios of forest management and climate warming.

  15. Attraction and mortality of Bactrocera dorsalis (Diptera: Tephritidae) to STATIC Spinosad ME weathered under operational conditions in California and Florida: a reduced-risk male annihilation treatment. (United States)

    Vargas, Roger I; Souder, Steven K; Hoffman, Kevin; Mercogliano, Juan; Smith, Trevor R; Hammond, Jack; Davis, Bobbie J; Brodie, Matt; Dripps, James E


    Studies were conducted in 2013-2014 to quantify attraction, feeding, and mortality of male oriental fruit flies, Bactrocera dorsalis (Hendel) (Diptera: Tephritidae), to STATIC Spinosad ME a reduced-risk male annihilation treatment (MAT) formulation consisting of an amorphous polymer matrix in combination with methyl eugenol (ME) and spinosad compared with the standard treatment of Min-U-Gel mixed with ME and naled (Dibrom). Our approach used a behavioral methodology for evaluation of slow-acting reduced-risk insecticides. ME treatments were weathered for 1, 7, 14, 21, and 28 d under operational conditions in California and Florida and shipped to Hawaii for bioassays. In field tests using bucket traps to attract and capture wild males, and in toxicity studies conducted in 1-m(3) cages using released males of controlled ages, STATIC Spinosad ME performed equally as well to the standard formulation of Min-U-Gel ME with naled for material aged up to 28 d in both California and Florida. In laboratory feeding tests in which individual males were exposed for 5 min to the different ME treatments, mortality induced by STATIC Spinosad ME recorded at 24 h did not differ from mortality caused by Min-U-Gel ME with naled at 1, 7, 14, and 21 d in California and was equal to or higher for all weathered time periods in Florida during two trials. Spinosad has low contact toxicity, and when mixed with an attractant and slow release matrix, offers a reduced-risk alternative for eradication of B. dorsalis and related ME attracted species, without many of the potential negative effects to humans and nontargets associated with broad-spectrum contact insecticides such as naled.

  16. Variable strength of forest stand attributes and weather conditions on the questing activity of Ixodes ricinus ticks over years in managed forests.

    Directory of Open Access Journals (Sweden)

    Ralf Lauterbach

    Full Text Available Given the ever-increasing human impact through land use and climate change on the environment, we crucially need to achieve a better understanding of those factors that influence the questing activity of ixodid ticks, a major disease-transmitting vector in temperate forests. We investigated variation in the relative questing nymph densities of Ixodes ricinus in differently managed forest types for three years (2008-2010 in SW Germany by drag sampling. We used a hierarchical Bayesian modeling approach to examine the relative effects of habitat and weather and to consider possible nested structures of habitat and climate forces. The questing activity of nymphs was considerably larger in young forest successional stages of thicket compared with pole wood and timber stages. Questing nymph density increased markedly with milder winter temperatures. Generally, the relative strength of the various environmental forces on questing nymph density differed across years. In particular, winter temperature had a negative effect on tick activity across sites in 2008 in contrast to the overall effect of temperature across years. Our results suggest that forest management practices have important impacts on questing nymph density. Variable weather conditions, however, might override the effects of forest management practices on the fluctuations and dynamics of tick populations and activity over years, in particular, the preceding winter temperatures. Therefore, robust predictions and the detection of possible interactions and nested structures of habitat and climate forces can only be quantified through the collection of long-term data. Such data are particularly important with regard to future scenarios of forest management and climate warming.

  17. Road Weather and Connected Vehicles (United States)

    Pisano, P.; Boyce, B. C.


    On average, there are over 5.8 M vehicle crashes each year of which 23% are weather-related. Weather-related crashes are defined as those crashes that occur in adverse weather or on slick pavement. The vast majority of weather-related crashes happen on wet pavement (74%) and during rainfall (46%). Connected vehicle technologies hold the promise to transform road-weather management by providing improved road weather data in real time with greater temporal and geographic accuracy. This will dramatically expand the amount of data that can be used to assess, forecast, and address the impacts that weather has on roads, vehicles, and travelers. The use of vehicle-based measurements of the road and surrounding atmosphere with other, more traditional weather data sources, and create road and atmospheric hazard products for a variety of users. The broad availability of road weather data from mobile sources will vastly improve the ability to detect and forecast weather and road conditions, and will provide the capability to manage road-weather response on specific roadway links. The RWMP is currently demonstrating how weather, road conditions, and related vehicle data can be used for decision making through an innovative Integrated Mobile Observations project. FHWA is partnering with 3 DOTs (MN, MI, & NV) to pilot these applications. One is a mobile alerts application called the Motorists Advisories and Warnings (MAW) and a maintenance decision support application. These applications blend traditional weather information (e.g., radar, surface stations) with mobile vehicle data (e.g., temperature, brake status, wiper status) to determine current weather conditions. These weather conditions, and other road-travel-relevant information, are provided to users via web and phone applications. The MAW provides nowcasts and short-term forecasts out to 24 hours while the EMDSS application can provide forecasts up to 72 hours in advance. The three DOTs have placed readers and external

  18. Static and Fatigue Analysis of Wind Turbine Blades Subject to Cold Weather Conditions Using Finite Element Analysis (United States)

    Lillo Gallardo, Patricio Andres

    Canada has aggressive targets for introducing wind energy across the country, but also faces challenges in achieving these goals due to the harsh Canadian climate. One issue which has received little attention in other countries not experiencing these extremes is the behaviour of composite blades in winter conditions. The scope of the work presented is to analyze the static stresses and fatigue response in cold climates using finite element models of the blade. The work opens with a quantification of the extremes of cold experienced in candidate Canadian wind turbine deployment locations. The thesis then narrows its focus to a consideration of the stresses in the root of the composite blades, specifically two common blade-hub connection methods: embedded root carrots and T-bolts. Finite element models of the root are proposed to properly simulate boundary conditions, applied loading and thermal stresses for a 1.5 MW wind turbine. It is shown that the blade root is strongly affected by the thermal stresses caused by the mismatch and orthotrophy of the coefficients of thermal expansion of the blade root constituents. Fatigue analysis of a blade is then presented using temperature dependent material properties including estimated fatigue coefficients.It was found that the natural frequencies of a 1.5 MW wind turbine blade are not significantly altered at cold temperatures. Additionally, cold temperatures slightly increase stresses in the composite blade skin when the blade is loaded, due to an increase in stiffness. Cold temperatures also lead to higher cyclic flapwise bending moments acting on the blade. However, this increase was found not to affect the lifetime fatigue damage. Finally, it was found that the cold climate as seen in Canada improves the fatigue strength of the saturated composite materials used in the blade. The predicted fatigue damage of the triaxial fabric and the spar cap layers in cold climates was therefore predicted to be half that of the

  19. Comparative long-term trend analysis of daily weather conditions with daily pollen concentrations in Brussels, Belgium (United States)

    Bruffaerts, Nicolas; De Smedt, Tom; Delcloo, Andy; Simons, Koen; Hoebeke, Lucie; Verstraeten, Caroline; Van Nieuwenhuyse, An; Packeu, Ann; Hendrickx, Marijke


    A clear rise in seasonal and annual temperatures, a gradual increase of total radiation, and a relative trend of change in seasonal precipitation have been observed for the last four decades in Brussels (Belgium). These local modifications may have a direct and indirect public health impact by altering the timing and intensity of allergenic pollen seasons. In this study, we assessed the statistical correlations (Spearman's test) between pollen concentration and meteorological conditions by using long-term daily datasets of 11 pollen types (8 trees and 3 herbaceous plants) and 10 meteorological parameters observed in Brussels between 1982 and 2015. Furthermore, we analyzed the rate of change in the annual cycle of the same selected pollen types by the Mann-Kendall test. We revealed an overall trend of increase in daily airborne tree pollen (except for the European beech tree) and an overall trend of decrease in daily airborne pollen from herbaceous plants (except for Urticaceae). These results revealed an earlier onset of the flowering period for birch, oak, ash, plane, grasses, and Urticaceae. Finally, the rates of change in pollen annual cycles were shown to be associated with the rates of change in the annual cycles of several meteorological parameters such as temperature, radiation, humidity, and rainfall.

  20. Comparative long-term trend analysis of daily weather conditions with daily pollen concentrations in Brussels, Belgium (United States)

    Bruffaerts, Nicolas; De Smedt, Tom; Delcloo, Andy; Simons, Koen; Hoebeke, Lucie; Verstraeten, Caroline; Van Nieuwenhuyse, An; Packeu, Ann; Hendrickx, Marijke


    A clear rise in seasonal and annual temperatures, a gradual increase of total radiation, and a relative trend of change in seasonal precipitation have been observed for the last four decades in Brussels (Belgium). These local modifications may have a direct and indirect public health impact by altering the timing and intensity of allergenic pollen seasons. In this study, we assessed the statistical correlations (Spearman's test) between pollen concentration and meteorological conditions by using long-term daily datasets of 11 pollen types (8 trees and 3 herbaceous plants) and 10 meteorological parameters observed in Brussels between 1982 and 2015. Furthermore, we analyzed the rate of change in the annual cycle of the same selected pollen types by the Mann-Kendall test. We revealed an overall trend of increase in daily airborne tree pollen (except for the European beech tree) and an overall trend of decrease in daily airborne pollen from herbaceous plants (except for Urticaceae). These results revealed an earlier onset of the flowering period for birch, oak, ash, plane, grasses, and Urticaceae. Finally, the rates of change in pollen annual cycles were shown to be associated with the rates of change in the annual cycles of several meteorological parameters such as temperature, radiation, humidity, and rainfall.

  1. Artificial Weathering as a Function of CO2 Injection in Pahang Sandstone Malaysia: Investigation of Dissolution Rate in Surficial Condition (United States)

    Jalilavi, Madjid; Zoveidavianpoor, Mansoor; Attarhamed, Farshid; Junin, Radzuan; Mohsin, Rahmat


    Formation of carbonate minerals by CO2 sequestration is a potential means to reduce atmospheric CO2 emissions. Vast amount of alkaline and alkali earth metals exist in silicate minerals that may be carbonated. Laboratory experiments carried out to study the dissolution rate in Pahang Sandstone, Malaysia, by CO2 injection at different flow rate in surficial condition. X-ray Powder Diffraction (XRD), Scanning Electron Microscope (SEM) with Energy Dispersive X-ray Spectroscopy (EDX), Atomic Absorption Spectroscopy (AAS) and weight losses measurement were performed to analyze the solid and liquid phase before and after the reaction process. The weight changes and mineral dissolution caused by CO2 injection for two hours CO2 bubbling and one week' aging were 0.28% and 18.74%, respectively. The average variation of concentrations of alkaline earth metals in solution varied from 22.62% for Ca2+ to 17.42% for Mg2+, with in between 16.18% observed for the alkali earth metal, potassium. Analysis of variance (ANOVA) test is performed to determine significant differences of the element concentration, including Ca, Mg, and K, before and after the reaction experiment. Such changes show that the deposition of alkali and alkaline earth metals and the dissolution of required elements in sandstone samples are enhanced by CO2 injection.

  2. Temporal variability of the quality of Taraxacum officinale seed progeny from the East-Ural radioactive trace: is there an interaction between low level radiation and weather conditions? (United States)

    Pozolotina, Vera N; Antonova, Elena V


    The multiple stressors, in different combinations, may impact differently upon seed quality, and low-level doses of radiation may enhance synergistic or antagonistic effects. During 1991-2014 we investigated the quality of the dandelion (Taraxacum officinale s.l.) seed progeny growing under low-level radiation exposure at the East-Ural Radioactive Trace (EURT) area (result of the Kyshtym accident, Russia), and in plants from areas exposed to background radiation. The viability of the dandelion seed progeny was assessed according to chronic radiation exposure, accounting for the variability of weather conditions among years. Environmental factors (temperature, precipitation, and their ratio in different months) can modify the radiobiological effects. We found a wide range of possible responses to multiple stressors: inhibition, stimulation, and indifferent effects in different seasons. The intraspecific variability of the quality of dandelion seed progeny was greatly increased under conditions of low doses of chronic irradiation. Temperature was the most significant factor for seed progeny formation in the EURT zone, whereas the sums of precipitation and ratios of precipitation to temperature dominantly affected organisms from the background population.

  3. The association between air pollution and weather conditions with increase in the number of admissions of asthmatic patients in emergency wards: a case study in Kermanshah. (United States)

    Khamutian, Razieh; Najafi, Farid; Soltanian, Mohammad; Shokoohizadeh, Mohamad Javad; Poorhaghighat, Saeedeh; Dargahi, Abdollah; Sharafi, Kiomars; Afshari, Alireza


    Industrialization and urbanization had a devastating impact on public health and caused an increase in health related morbidity and mortality. In fact, asthma is a chronic condition which is considered as one of the significant challenges of public health. In this study, we investigated the association of air pollution and weather conditions with excess emergency ward admissions of asthmatic patients in Kermanshah hospitals. This was an ecological study. The total number of hospital admissions to emergency wards from all related and major hospitals of Kermanshah was collected from September 2008 through August 2009. In addition, data on air pollution as well as meteorological data were collected from the Environmental Protection Agency and Meteorological Organization of Kermanshah. To determine the association between the number of hospitalization due to asthma with those parameters, Poisson regression was used. The results of Poisson regression revealed a significant association between carbon monoxide, ozone, nitrogen dioxide and temperature with emergency room visits due to asthma in Kermanshah. No associations were found for sulfur dioxide or for particulate matter. This study provides further evidence for the significant effect of monoxide carbon on asthma; and it suggests that temperature may have a role in the exacerbation of asthma. However, due to the multi-factorial nature of asthma, other factors also play a major role in the development and exacerbation of this illness.

  4. Greenhouse gas emissions of drained fen peatlands in Belarus are controlled by water table, land use, and annual weather conditions (United States)

    Burlo, Andrei; Minke, Merten; Chuvashova, Hanna; Augustin, Jürgen; Hoffmann, Mathias; Narkevitch, Ivan


    Drainage of peatlands causes strong emission of the greenhouse gases (GHG) CO2 and N2O, sometimes combined with a weak CH4 uptake. In Belarus drained peatlands occupy about 1505000 ha or more than 7.2 % of the country area. Joosten (2009) estimates CO2 emission from degraded peatlands in Belarus as 41.3 Mt yr-1 what equals to 47 % of total anthropogenic greenhouse gases (GHGs) emission of country in 2011. However, it could not be checked if these numbers are correct since there are no GHG measurements on these sites up to now. Therefore we studied the GHG emissions with the closed chamber approach in four peatlands situated in central and southern Belarus over a period from August 2010 to August 2012. The measurements comprised eight site types representing different water level conditions, and ranging from grassland and arable land over abandoned fields and peat cuts to near-natural sedge fens. Fluxes of CH4 and N2O were determined using the close-chamber approach every second week in snow free periods and every fourth week during winter time. The annual emissions were calculated based on linear interpolation. Carbon dioxide exchange was measured with transparent and opaque chambers every 3-4 weeks and the annual net ecosystem exchange (NEE) was modeled according to Drösler (2005). Most of the drained sites were sources of CO2 in both years. NEE increased with lower mean annual water table level. The highest NEE value (1263.5 g CO2-C m-1yr-1) was observed at the driest site of the study; an abandoned fen formerly used for agriculture. In contrast, a former peat extraction site with moist peat and small Pinus sylvestris tress were sinks of CO2 with uptake to 389.6 g CO2-C m-1yr-1. The highest N2O emissions were recorded at a drained agricultural fen with mean annual rates of up to 2347 mg N2O-N m-2 yr-1. Significant fluxes of CH4 (15 g CH4C m-2 h-1) were observed only at the near-natural site in the first year of investigation when precipitation and the mean water

  5. Synoptic weather types associated with critical fire weather (United States)

    Mark J. Schroeder; Monte Glovinsky; Virgil F. Hendricks; Frank C. Hood; Melvin K. Hull; Henry L. Jacobson; Robert Kirkpatrick; Daniel W. Krueger; Lester P. Mallory; Albert G. Oeztel; Robert H. Reese; Leo A. Sergius; Charles E. Syverson


    Recognizing that weather is an important factor in the spread of both urban and wildland fires, a study was made of the synoptic weather patterns and types which produce strong winds, low relative humidities, high temperatures, and lack of rainfall--the conditions conducive to rapid fire spread. Such historic fires as the San Francisco fire of 1906, the Berkeley fire...

  6. Fire Danger and Fire Weather Records (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Weather Service (formerly Weather Bureau) and Forest Service developed a program to track meteorological conditions conducive to forest fires, resulting...

  7. Late Cenozoic deep weathering patterns on the Fennoscandian shield in northern Finland: A window on ice sheet bed conditions at the onset of Northern Hemisphere glaciation (United States)

    Hall, Adrian M.; Sarala, Pertti; Ebert, Karin


    The nature of the regolith that existed on the shields of the Northern Hemisphere at the onset of ice sheet glaciation is poorly constrained. In this paper, we provide the first detailed account of an exceptionally preserved, deeply weathered late Neogene landscape in the ice sheet divide zone in northern Finland. We mine data sets of drilling and pitting records gathered by the Geological Survey of Finland to reconstruct regional preglacial deep weathering patterns within a GIS framework. Using a large geochemical data set, we give standardised descriptions of saprolite geochemistry using a variant of the Weathering Index of Parker (WIP) as a proxy to assess the intensity of weathering. We also focus on mineral prospects and mines with dense pit and borehole data coverage in order to identify links between geology, topography, and weathering. Geology is closely linked to topography on the preglacial shield landscape of northern Finland and both factors influence weathering patterns. Upstanding, resistant granulite, granite, gabbro, metabasalt, and quartzite rocks were associated with fresh rock outcrops, including tors, or with thin ( 50 m and included intensely weathered kaolinitic clays with WIPfines values below 1000. Late Neogene weathering profiles were varied in character. Tripartite clay-gruss-saprock profiles occur only in limited areas. Bipartite gruss-saprock profiles were widespread, with saprock thicknesses of > 10 m. Weathering profiles included two discontinuities in texture, materials and resistance to erosion, between saprolite and saprock and between saprock and rock. Limited core recovery when drilling below the soil base in mixed rocks of the Tana Belt indicates that weathering locally penetrated deep below upper fresh rock layers. Such deep-seated weathered bands in rock represent a third set of discontinuities. Incipient weathering and supergene mineralisation also extended to depths of > 100 m in mineralised fracture zones. The thin

  8. Weather, Climate, and You. (United States)

    Blai, Boris, Jr.

    Information from the American Institute of Medical Climatologists on human responses to weather and climatic conditions, including clouds, winds, humidity, barometric pressure, heat, cold, and other variables that may exert a pervasive impact on health, behavior, disposition, and the level of efficiency with which individuals function is reviewed.…

  9. Synoptic weather conditions during BOBMEX

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    We document the flow features, which are associated with the important synoptic systems that affected the Bay of Bengal (BoB) and its neighbourhood and controlled the convective activity there during BOBMEX. The monsoon during July and August, 1999 was subdued. It was slightly more active in the initial phase of ...

  10. Synoptic weather conditions during BOBMEX

    Indian Academy of Sciences (India)

    Keywords. BOBMEX; monsoon depression; OLR; intraseasonal oscillation. Abstract. We document the flow features, which are associated with the important synoptic systems that affected the Bay of Bengal (BoB) and its neighbourhood and controlled the convective activity there during BOBMEX. The monsoon during July ...

  11. The influence of ethephon application to processing tomato plants on yield structure in relation to weather conditions during the growing period

    Directory of Open Access Journals (Sweden)

    Jędrszczyk Elżbieta


    Full Text Available The aim of the study was to evaluate the effect of ethephon application (Agrostym 480 SL on the yield and yield structure of five processing tomato cultivars (Rumba, Hubal, Sokal F1 , Mieszko F1 and Polset F1 . The experiment was carried out in the open field in the years 2009-2011 in Mydlniki near Kraków, Poland. Two weeks before harvesting, half of the plants of each cultivar were treated with Agrostym 480 SL (3 dm3 ha-1 and the other half were left as a control without spraying. Marketable yield included properly shaped and welldeveloped light red and red fruits. Non-marketable yield included pink and turning fruits, mature green and breaker fruits, and diseased fruits. A generalized linear model (GLM for Poisson distribution with the log link function was used to determine the relationship between the years of the study and cultivar and selected values of the yield structure. The yield structure of tomato depended significantly on the weather conditions during the growing period in different years of the study, on the cultivar, and on the use of ethephon. Ethephon had a particularly beneficial effect on yield structure in the years with an unfavourable distribution of precipitation. Ethephon application in the years 2009 and 2010 had a beneficial effect on the health of tomato plants.

  12. Using weather forecasts for predicting forest-fire danger (United States)

    H. T. Gisborne


    Three kinds of weather control the fluctuations of forest-fire danger-wet weather, dry weather, and windy weather. Two other conditions also contribute to the fluctuation of fire danger. These are the occurrence of lightning and the activities of man. But neither of these fire-starting agencies is fully effective unless the weather has dried out the forest materials so...

  13. In-soil radon anomalies as precursors of earthquakes: a case study in the SE slope of Mt. Etna in a period of quite stable weather conditions

    International Nuclear Information System (INIS)

    Vizzini, Fabio; Brai, Maria


    In-soil radon concentrations as well as climatic parameters (temperature, atmospheric pressure and relative humidity) were collected in St. Venerina (Eastern Sicily – Italy) from March 19th to May 22nd 2009, close to an active fault system called Timpe Fault System (TFS), which is strictly linked to the geodynamics of Mt. Etna. During the monitoring period no drastic climatic variations were observed and, on the other hand, important seismic events were recorded close to the monitoring site. A seismic swarm composed of 5 earthquakes was observed in the Milo area on March 25th (M max = 2.7) at just 5.1 km from the site, and on May 13th an earthquake of 3.6 magnitude was recorded in the territory of St. Venerina, at just 3.2 km from the site; the earthquake was felt by the population and reported by all local and regional media. The in-soil radon concentrations have shown anomalous increases possibly linked to the earthquakes recorded, but certainly not attributable to local meteorology. To verify this assumption the average radon concentration and the standard deviation (σ) have been calculated and the regions of ±1.5σ and ±2σ deviation from the average concentration have been investigated. Moreover, to further minimise the contribution of the meteorological parameters on the in-soil radon fluctuations, a multiple regressions method has been used. To distinguish those earthquakes which could generate in-soil radon anomalies as precursors, the Dobrovolsky radius has been applied. The results obtained suggests that a clear correlation between earthquakes and in-soil radon increases exist, and that the detection of the in-soil radon anomalies becomes surely simpler in particular favourable conditions: weather stability, earthquakes within the Dobrovolsky radius and close to the monitoring area. Moreover, the absence of large variations of the climatic parameters, which could generate incoherent noise components to the radon signal, has made the radon

  14. Considering the Specific Impact of Harsh Conditions and Oil Weathering on Diversity, Adaptation, and Activity of Hydrocarbon-Degrading Bacteria in Strategies of Bioremediation of Harsh Oily-Polluted Soils (United States)

    Al Disi, Zulfa; Jaoua, Samir; Al-Thani, Dhabia; Al-Meer, Saeed


    Weathering processes change properties and composition of spilled oil, representing the main reason of failure of bioaugmentation strategies. Our purpose was to investigate the metabolic adaptation of hydrocarbon-degrading bacteria at harsh conditions to be considered to overcome the limitations of bioaugmentation strategies at harsh conditions. Polluted soils, exposed for prolonged periods to weathered oil in harsh soils and weather conditions, were used. Two types of enrichment cultures were employed using 5% and 10% oil or diesel as sole carbon sources with varying the mineral nitrogen sources and C/N ratios. The most effective isolates were obtained based on growth, tolerance to toxicity, and removal efficiency of diesel hydrocarbons. Activities of the newly isolated bacteria, in relation to the microenvironment from where they were isoalted and their interaction with the weathered oil, showed individual specific ability to adapt when exposed to such factors, to acquire metabolic potentialities. Among 39 isolates, ten identified ones by 16S rDNA genes similarities, including special two Pseudomonas isolates and one Citrobacter isolate, showed particularity of shifting hydrocarbon-degrading ability from short chain n-alkanes (n-C12–n-C16) to longer chain n-alkanes (n-C21–n-C25) and vice versa by alternating nitrogen source compositions and C/N ratios. This is shown for the first time. PMID:28243605

  15. KZHU Center Weather Advisory (CWA) (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The CWA is an aviation weather warning for conditions meeting or approaching national in-flight advisory (AIRMET, SIGMET or SIGMET for convection) criteria. CWAs are...

  16. KZTL Center Weather Advisory (CWA) (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The CWA is an aviation weather warning for conditions meeting or approaching national in-flight advisory (AIRMET, SIGMET or SIGMET for convection) criteria. CWAs are...

  17. KZOA Center Weather Advisory (CWA) (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The CWA is an aviation weather warning for conditions meeting or approaching national in-flight advisory (AIRMET, SIGMET or SIGMET for convection) criteria. CWAs are...

  18. paza Center Weather Advisory (CWA) (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The CWA is an aviation weather warning for conditions meeting or approaching national in-flight advisory (AIRMET, SIGMET or SIGMET for convection) criteria. CWAs are...

  19. KZDV Center Weather Advisory (CWA) (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The CWA is an aviation weather warning for conditions meeting or approaching national in-flight advisory (AIRMET, SIGMET or SIGMET for convection) criteria. CWAs are...

  20. KZSE Center Weather Advisory (CWA) (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The CWA is an aviation weather warning for conditions meeting or approaching national in-flight advisory (AIRMET, SIGMET or SIGMET for convection) criteria. CWAs are...

  1. KZME Center Weather Advisory (CWA) (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The CWA is an aviation weather warning for conditions meeting or approaching national in-flight advisory (AIRMET, SIGMET or SIGMET for convection) criteria. CWAs are...

  2. Weather warnings predict fall-related injuries among older adults. (United States)

    Mondor, Luke; Charland, Katia; Verma, Aman; Buckeridge, David L


    weather predictions are a useful tool for informing public health planning and prevention strategies for non-injury health outcomes, but the association between winter weather warnings and fall-related injuries has not been assessed previously. to examine the association between fall-related injuries among older adults and government-issued winter weather warnings. using a dynamic cohort of individuals ≥65 years of age who lived in Montreal between 1998 and 2006, we identified all fall-related injuries from administrative data using a validated set of diagnostic and procedure codes. We compared rates of injuries on days with freezing rain or snowstorm warnings to rates observed on days without warnings. We also compared the incidence of injuries on winter days to non-winter days. All analyses were performed overall and stratified by age and sex. freezing rain alerts were associated with an increase in fall-related injuries (incidence rate ratio [IRR] = 1.20, 95% confidence interval [CI]: 1.08-1.32), particularly among males (IRR = 1.31, 95% CI: 1.10-1.56), and lower rates of injuries were associated with snowstorm alerts (IRR = 0.89, 95% CI: 0.80-0.99). The rate of fall-related injuries did not differ seasonally (IRR = 1.00, 95% CI: 0.97-1.03). official weather warnings are predictive of increases in fall-related injuries among older adults. Public health agencies should consider using these warnings to trigger initiation of injury prevention strategies in advance of inclement weather. © The Author 2014. Published by Oxford University Press on behalf of the British Geriatrics Society. All rights reserved. For Permissions, please email:


    Energy Technology Data Exchange (ETDEWEB)

    W. L. Poe, Jr.; P.F. Wise


    The U.S. Department of Energy (DOE) is preparing a proposal to construct, operate 2nd monitor, and eventually close a repository at Yucca Mountain in Nye County, Nevada, for the geologic disposal of spent nuclear fuel (SNF) and high-level radioactive waste (HLW). As part of this effort, DOE has prepared a viability assessment and an assessment of potential consequences that may exist if the repository is not constructed. The assessment of potential consequences if the repository is not constructed assumes that all SNF and HLW would be left at the generator sites. These include 72 commercial generator sites (three commercial facility pairs--Salem and Hope Creek, Fitzpatrick and Nine Mile Point, and Dresden and Morris--would share common storage due to their close proximity to each other) and five DOE sites across the country. DOE analyzed the environmental consequences of the effects of the continued storage of these materials at these sites in a report titled Continued Storage Analysis Report (CSAR; Reference 1 ) . The CSAR analysis includes a discussion of the degradation of these materials when exposed to the environment. This document describes the environmental parameters that influence the degradation analyzed in the CSAR. These include temperature, relative humidity, precipitation chemistry (pH and chemical composition), annual precipitation rates, annual number of rain-days, and annual freeze/thaw cycles. The document also tabulates weather conditions for each storage site, evaluates the degradation of concrete storage modules and vaults in different regions of the country, and provides a thermal analysis of commercial SNF in storage.

  4. Polar ionic conductivity profile in fair weather conditions. Terrestrial test of the Huygens/Hasi-PWA instrument aboard the Comas Sola balloon (United States)

    López-Moreno, J. J.; Molina-Cuberos, G. J.; Rodrigo, R.; Hamelin, M.; Schwingenschuh, K.


    The permittivity wave and altimetry (PWA) instrument is a part of the CASSINI/HUYGENS HASI experiment and was designed to determine the electrical parameters of the atmosphere of Titan in 2004. In December 1995, a balloon campaign was conducted in León, Spain, to test the HASI onboard hardware and software using a HUYGENS probe mock-up in an electromagnetic-disturbance-free environment (mainly from power emission lines at 50Hz). This work is concerned with the measurements of small ion polar conductivities and DC fields using the PWA relaxation probes (RP). The two RP electrodes were periodically set to +/-5V relative to the conductive surface of the mock-up and allowed to discharge in the surrounding atmosphere. The polar components of conductivity are calculated from the discharge time, and the DC field from the floating potential differences once the electrodes reach equilibrium. In spite of some observed effects, such as mock-up charging or oscillations in the measurement of potential, the conductivity measurements are coherent and in good agreement with the obtained results in other experiments. The conductivity data were collected in `fair-weather' conditions, up to 30km during a 4-h flight, every 72s, giving an altitude resolution better than 400m. We also discuss the DC field data that do not lead, in presence of charging effects, to a straightforward measurement of the natural DC field. The Comas Solá balloon flight, first real test of the PWA experiment in the terrestrial atmosphere, confirmed the validity of the ionic conductivity measurements but raised the problem of a reliable interpretation of the DC field.

  5. 49 CFR 195.224 - Welding: Weather. (United States)


    ... 49 Transportation 3 2010-10-01 2010-10-01 false Welding: Weather. 195.224 Section 195.224 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... PIPELINE Construction § 195.224 Welding: Weather. Welding must be protected from weather conditions that...

  6. The greenhouse effect and extreme weather

    International Nuclear Information System (INIS)

    Groenaas, Sigbjoern; Kvamstoe, Nils Gunnar


    The article asserts that an anthropogenic global warming is occurring. This greenhouse effect is expected to cause more occurrences of extreme weather. It is extremely difficult, however, to relate specific weather catastrophes to global warming with certainty, since such extreme weather conditions are rare historically. The subject is controversial. The article also discusses the public debate and the risk of floods

  7. Evaluation of the Weather Research and Forecasting mesoscale model for GABLS3: Impact of boundary-layer schemes, boundary conditions and spin-up

    NARCIS (Netherlands)

    Kleczek, M.A.; Steeneveld, G.J.; Holtslag, A.A.M.


    We evaluated the performance of the three-dimensional Weather Research and Forecasting (WRF) mesoscale model, specifically the performance of the planetary boundary-layer (PBL) parametrizations. For this purpose, Cabauw tower observations were used, with the study extending beyond the third GEWEX

  8. In-soil radon anomalies as precursors of earthquakes: a case study in the SE slope of Mt. Etna in a period of quite stable weather conditions. (United States)

    Vizzini, Fabio; Brai, Maria


    In-soil radon concentrations as well as climatic parameters (temperature, atmospheric pressure and relative humidity) were collected in St. Venerina (Eastern Sicily - Italy) from March 19th to May 22nd 2009, close to an active fault system called Timpe Fault System (TFS), which is strictly linked to the geodynamics of Mt. Etna. During the monitoring period no drastic climatic variations were observed and, on the other hand, important seismic events were recorded close to the monitoring site. A seismic swarm composed of 5 earthquakes was observed in the Milo area on March 25th (M(max) = 2.7) at just 5.1 km from the site, and on May 13th an earthquake of 3.6 magnitude was recorded in the territory of St. Venerina, at just 3.2 km from the site; the earthquake was felt by the population and reported by all local and regional media. The in-soil radon concentrations have shown anomalous increases possibly linked to the earthquakes recorded, but certainly not attributable to local meteorology. To verify this assumption the average radon concentration and the standard deviation (σ) have been calculated and the regions of ±1.5σ and ±2σ deviation from the average concentration have been investigated. Moreover, to further minimise the contribution of the meteorological parameters on the in-soil radon fluctuations, a multiple regressions method has been used. To distinguish those earthquakes which could generate in-soil radon anomalies as precursors, the Dobrovolsky radius has been applied. The results obtained suggests that a clear correlation between earthquakes and in-soil radon increases exist, and that the detection of the in-soil radon anomalies becomes surely simpler in particular favourable conditions: weather stability, earthquakes within the Dobrovolsky radius and close to the monitoring area. Moreover, the absence of large variations of the climatic parameters, which could generate incoherent noise components to the radon signal, has made the radon fluctuations

  9. Colonisation of winter wheat grain by Fusarium spp. and mycotoxin content as dependent on a wheat variety, crop rotation, a crop management system and weather conditions. (United States)

    Czaban, Janusz; Wróblewska, Barbara; Sułek, Alicja; Mikos, Marzena; Boguszewska, Edyta; Podolska, Grażyna; Nieróbca, Anna


    Field experiments were conducted during three consecutive growing seasons (2007/08, 2008/09 and 2009/10) with four winter wheat (Triticum aestivum L.) cultivars - 'Bogatka', 'Kris', 'Satyna' and 'Tonacja' - grown on fields with a three-field crop rotation (winter triticale, spring barley, winter wheat) and in a four-field crop rotation experiment (spring wheat, spring cereals, winter rapeseed, winter wheat). After the harvest, kernels were surface disinfected with 2% NaOCl and then analysed for the internal infection by different species of Fusarium. Fusaria were isolated on Czapek-Dox iprodione dichloran agar medium and identified on the basis of macro- and micro-morphology on potato dextrose agar and synthetic nutrient agar media. The total wheat grain infection by Fusarium depended mainly on relative humidity (RH) and a rainfall during the flowering stage. Intensive rainfall and high RH in 2009 and 2010 in the period meant the proportions of infected kernels by the fungi were much higher than those in 2008 (lack of precipitation during anthesis). Weather conditions during the post-anthesis period changed the species composition of Fusarium communities internally colonising winter wheat grain. The cultivars significantly varied in the proportion of infected kernels by Fusarium spp. The growing season and type of crop rotation had a distinct effect on species composition of Fusarium communities colonising the grain inside. A trend of a higher percentage of the colonised kernels by the fungi in the grain from the systems using more fertilisers and pesticides as well as the buried straw could be perceived. The most frequent species in the grain were F. avenaceum, F. tricinctum and F. poae in 2008, and F. avenaceum, F. graminearum, F. tricinctum and F. poae in 2009 and 2010. The contents of deoxynivalenol and zearalenon in the grain were correlated with the percentage of kernels colonised by F. graminearum and were the highest in 2009 in the grain from the four

  10. A possible association between space weather conditions and the risk of acute coronary syndrome in patients with diabetes and the metabolic syndrome. (United States)

    Vencloviene, Jone; Babarskiene, Ruta Marija; Kiznys, Deivydas


    Hyperglycemia negatively affects cardiovascular variables that are also adversely affected by increased geomagnetic activity. It is likely that geomagnetic storms (GS) could have a stronger negative impact on these patients. We analyzed data on 1548 randomly selected patients with acute coronary syndrome (ACS) who were admitted inpatient treatment in Kaunas city, during 2000-2003. We evaluated the associations of GS, solar proton events (SPE), and high-speed solar wind (HSSW) (solar wind speed ≥600 km/s) with the risk of ACS in patients with diabetes mellitus (DM) and the metabolic syndrome (MS) by using logistic regression with categorical predictors. During days of HSSW, the risk of ACS in DM patients increased by 1.95 times (OR = 1.95, 95 % CI 1.36-2.79) as compared to days without either of these events or 2 days prior to or after them. In the multivariate model, the risk of ACS in DM patients was associated with days of HSSW and 1-2 days after (OR = 1.40, 95 % CI 1.01-1.93), with days of GS lasting >1 day and occurring on days of HSSW or 1-2 days after (OR = 2.31, 95 % CI 1.28-4.17), and with the onset of SPE (OR = 2.72 (1.09-6.83)). The risk of ACS in MS patients was associated with days of GS and 1-2 days prior or after GS (OR = 1.31 (1.00-1.73)); an additional impact was established if these days coincided with days of HSSW or 1-2 days before (OR = 2.16 (1.39-3.35)). These findings suggest that not only GS but also HSSW and changes in space weather conditions prior to SPE affect the human cardiovascular system.

  11. Rainmakers: why bad weather means good productivity. (United States)

    Lee, Jooa Julia; Gino, Francesca; Staats, Bradley R


    People believe that weather conditions influence their everyday work life, but to date, little is known about how weather affects individual productivity. Contrary to conventional wisdom, we predict and find that bad weather increases individual productivity and that it does so by eliminating potential cognitive distractions resulting from good weather. When the weather is bad, individuals appear to focus more on their work than on alternate outdoor activities. We investigate the proposed relationship between worse weather and higher productivity through 4 studies: (a) field data on employees' productivity from a bank in Japan, (b) 2 studies from an online labor market in the United States, and (c) a laboratory experiment. Our findings suggest that worker productivity is higher on bad-, rather than good-, weather days and that cognitive distractions associated with good weather may explain the relationship. We discuss the theoretical and practical implications of our research. (c) 2014 APA, all rights reserved.

  12. Surface Weather, Signal Service and Weather Bureau (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Surface Weather, Signal Service and Weather Bureau (SWSSWB) Records primarily created by the United States Army Signal Service from 1819 until the paid and voluntary...

  13. Winter Weather: Frostbite (United States)

    ... Safety During Fire Cleanup Wildfires PSAs Related Links Winter Weather About Winter Weather Before a Storm Prepare Your Home Prepare Your Car Winter Weather Checklists During a Storm Indoor Safety During ...

  14. Monthly Weather Review (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Supplements to the Monthly Weather Review publication. The Weather Bureau published the Monthly weather review Supplement irregularly from 1914 to 1949. The...

  15. Weather Augmented Risk Determination (WARD) System (United States)

    Niknejad, M.; Mazdiyasni, O.; Momtaz, F.; AghaKouchak, A.


    Extreme climatic events have direct and indirect impacts on society, economy and the environment. Based on the United States Bureau of Economic Analysis (BEA) data, over one third of the U.S. GDP can be considered as weather-sensitive involving some degree of weather risk. This expands from a local scale concrete foundation construction to large scale transportation systems. Extreme and unexpected weather conditions have always been considered as one of the probable risks to human health, productivity and activities. The construction industry is a large sector of the economy, and is also greatly influenced by weather-related risks including work stoppage and low labor productivity. Identification and quantification of these risks, and providing mitigation of their effects are always the concerns of construction project managers. In addition to severe weather conditions' destructive effects, seasonal changes in weather conditions can also have negative impacts on human health. Work stoppage and reduced labor productivity can be caused by precipitation, wind, temperature, relative humidity and other weather conditions. Historical and project-specific weather information can improve better project management and mitigation planning, and ultimately reduce the risk of weather-related conditions. This paper proposes new software for project-specific user-defined data analysis that offers (a) probability of work stoppage and the estimated project length considering weather conditions; (b) information on reduced labor productivity and its impacts on project duration; and (c) probabilistic information on the project timeline based on both weather-related work stoppage and labor productivity. The software (WARD System) is designed such that it can be integrated into the already available project management tools. While the system and presented application focuses on the construction industry, the developed software is general and can be used for any application that involves

  16. Space weather and risk management

    Directory of Open Access Journals (Sweden)

    H. Lappalainen


    Full Text Available The term space weather is used for the solar driven variability in particle and electromagnetic conditions of the near-Earth space that may harm the performance of ground-based and space-borne technology. The European Union (EU and the European Space Agency (ESA have started a common programme called the Global Monitoring for Environment and Security (GMES. Many of the GMES operational services will rely on technology prone to space weather phenomena. For long-term environmental monitoring this is not a problem, but for applications of risk management in emergency situations the impact of space weather should be considered and evaluated. In this paper, we discuss how ESA's previous activity together with European national initiatives in the space weather area can be used to support GMES and how EU could participate in this work in its Framework Programmes and within the European Research Area (ERA.

  17. Kazakhstan Space Weather Initiative (United States)

    Kryakunova, Olga


    Kazakhstan experimental complex is a center of experimental study of space weather. This complex is situated near Almaty, Kazakhstan and includes experimental setup for registration of cosmic ray intensity (neutron monitor) at altitude of 3340 m above sea level, geomagnetic observatory and setup for registration of solar flux density with frequency of 1 and 3 GHz with 1 second time resolution. Results of space environment monitoring in real time are accessible via Internet. This experimental information is used for space weather investigations and different cosmic ray effects. Almaty mountain cosmic ray station is one of the most suitable and sensitive stations for investigation and forecasting of the dangerous situations for satellites; for this reason Almaty cosmic ray station is included in the world-wide neutron monitor network for the real-time monitoring of the space weather conditions and European Database NMDB ( All data are represented on the web-site of the Institute of Ionosphere ( in real time. Since July, 2006 the space environment prediction laboratory represents the forecast of geomagnetic activity every day on the same site (

  18. Theoretical variations of the thermal performance of different solar collectors and solar combi systems as function of the varying yearly weather conditions in Denmark

    DEFF Research Database (Denmark)

    Andersen, Elsa; Furbo, Simon


    radiation, but both the annual thermal performance and the annual utilized solar energy can with a reasonable approximation be fitted to a linear function of the yearly solar radiation on the collector for both flat plate and evacuated tubular solar collectors. Also evacuated tubular solar collectors......The thermal performances of solar collectors and solar combi systems with different solar fractions are studied under the influence of the Danish Design Reference Year, DRY data file, and measured weather data from a solar radiation measurement station situated at the Technical University...... of Denmark in Kgs. Lyngby. The data from DRY data file are used for any location in Denmark. The thermal performances of the solar heating systems are calculated by means of validated computer models. The measured yearly solar radiation varies by approximately 23% in the period from 1990 until 2002...

  19. Weather Risk Management in Agriculture

    Directory of Open Access Journals (Sweden)

    Martina Bobriková


    Full Text Available The paper focuses on valuation of a weather derivative with payoffs depending on temperature. We use historical data from the weather station in the Slovak town Košice to obtain unique prices of option contracts in an incomplete market. Numerical examples of prices of some contracts are presented, using the Burn analysis. We provide an example of how a weather contract can be designed to hedge the financial risk of a suboptimal temperature condition. The comparative comparison of the selected option hedging strategies has shown the best results for the producers in agricultural industries who hedges against an unfavourable weather conditions. The results of analysis proved that by buying put option or call option, the farmer establishes the highest payoff in the case of temperature decrease or increase. The Long Straddle Strategy is the most expensive but is available to the farmer who hedges against a high volatility in temperature movement. We conclude with the findings that weather derivatives could be useful tools to diminish the financial losses for agricultural industries highly dependent for temperature.

  20. Effects of genotype, latitude, and weather conditions on the composition of sugars, sugar alcohols, fruit acids, and ascorbic acid in sea buckthorn (Hippophaë rhamnoides ssp. mongolica) berry juice. (United States)

    Zheng, Jie; Yang, Baoru; Trépanier, Martin; Kallio, Heikki


    Sea buckthorn berries (Hippophaë rhamnoides ssp. mongolica) of nine varieties were collected from three growth locations in five inconsecutive years (n = 152) to study the compositional differences of sugars, sugar alcohols, fruit acids, and ascorbic acid in berries of different genotypes. Fructose and glucose (major sugars) were highest in Chuiskaya and Vitaminaya among the varieties studied, respectively. Malic acid and quinic acid (major acids) were highest in Pertsik and Vitaminaya, respectively. Ascorbic acid was highest in Oranzhevaya and lowest in Vitaminaya. Berry samples of nine varieties collected from two growth locations in five years (n = 124) were combined to study the effects of latitude and weather conditions on the composition of H. rhamnoides ssp. mongolica. Sea buckthorn berries grown at lower latitude had higher levels of total sugar and sugar/acid ratio and a lower level of total acid and were supposed to have better sensory properties than those grown at higher latitude. Glucose, quinic acid, and ascorbic acid were hardly influenced by weather conditions. The other components showed various correlations with temperature, radiation, precipitation, and humidity variables. In addition, fructose, sucrose, and myo-inositol correlated positively with each other and showed negative correlation with malic acid on the basis of all the samples studied (n = 152).

  1. Effects of Changing Weather, Oceanographic Conditions, and Land Uses on Spatio-Temporal Variation of Sedimentation Dynamics along Near-Shore Coral Reefs

    Directory of Open Access Journals (Sweden)

    Abimarie Otaño-Cruz


    Full Text Available Sedimentation is a critical threat to coral reefs worldwide. Major land use alteration at steep, highly erodible semi-arid islands accelerates the potential of soil erosion, runoff, and sedimentation stress to nearshore coral reefs during extreme rainfall events. The goal of this study was to assess spatio-temporal variation of sedimentation dynamics across nearshore coral reefs as a function of land use patterns, weather and oceanographic dynamics, to identify marine ecosystem conservation strategies. Sediment was collected at a distance gradient from shore at Bahia Tamarindo (BTA and Punta Soldado (PSO coral reefs at Culebra Island, Puerto Rico. Sediment texture and composition were analyzed by dry sieving and loss-on-ignition techniques, and were contrasted with environmental variables for the research period (February 2014 to April 2015. Rainfall and oceanographic data were analyzed to address their potential role on affecting sediment distribution with BEST BIO-ENV, RELATE correlation, and linear regression analysis. A significant difference in sedimentation rate was observed by time and distance from shore (PERMANOVA, p < 0.0100, mostly attributed to higher sediment exposure at reef zones closer to shore due to strong relationships with coastal runoff. Sedimentation rate positively correlated with strong rainfall events (Rho = 0.301, p = 0.0400 associated with storms and rainfall intensity exceeding 15 mm/h. At BTA, sediment deposited were mostly composed of sand, suggesting a potential influence of resuspension produced by waves and swells. In contrast, PSO sediments were mostly composed of silt-clay and terrigenous material, mainly attributed to a deforestation event that occurred at adjacent steep sub-watershed during the study period. Spatial and temporal variation of sedimentation pulses and terrigenous sediment input implies that coral reefs exposure to sediment stress is determined by local land use patterns, weather, and

  2. Risk of Fall-Related Injury due to Adverse Weather Events, Philadelphia, Pennsylvania, 2006-2011. (United States)

    Gevitz, Kathryn; Madera, Robbie; Newbern, Claire; Lojo, José; Johnson, Caroline C

    Following a surge in fall-related visits to local hospital emergency departments (EDs) after a severe ice storm, the Philadelphia Department of Public Health examined the association between inclement winter weather events and fall-related ED visits during a 5-year period. Using a standardized set of keywords, we identified fall-related injuries in ED chief complaint logs submitted as part of Philadelphia Department of Public Health's syndromic surveillance from December 2006 through March 2011. We compared days when falls exceeded the winter fall threshold (ie, "high-fall days") with control days within the same winter season. We then conducted matched case-control analysis to identify weather and patient characteristics related to increased fall-related ED visits. Fifteen high-fall days occurred during winter months in the 5-year period. In multivariable analysis, 18- to 64-year-olds were twice as likely to receive ED care for fall-related injuries on high-fall days than on control days. The crude odds of ED visits occurring from 7:00 am to 10:59 am were 70% higher on high-fall days vs control days. Snow was a predictor of a high-fall day: the adjusted odds of snow before a high-fall day as compared with snow before a control day was 13.4. The association between the number of fall-related ED visits and weather-related fall injuries, age, and timing suggests that many events occurred en route to work in the morning. Promoting work closures or delaying openings after severe winter weather would allow time for better snow or ice removal, and including "fall risk" in winter weather advisories might effectively warn morning commuters. Both strategies could help reduce the number of weather-related fall injuries.

  3. Uncertainty analysis of weather controlled systems

    NARCIS (Netherlands)

    Keesman, K.J.; Doeswijk, T.G.


    The indoor climate of many storage facilities for agricultural produce is controlled by mixing ambient air with the air flow through the store room. Hence, the indoor climate is affected by the ambient weather conditions. Given hourly fluctuating energy tariffs, weather forecasts over some days are

  4. Investigating the association between weather conditions, calendar events and socio-economic patterns with trends in fire incidence: an Australian case study (United States)

    Corcoran, Jonathan; Higgs, Gary; Rohde, David; Chhetri, Prem


    Fires in urban areas can cause significant economic, physical and psychological damage. Despite this, there has been a comparative lack of research into the spatial and temporal analysis of fire incidence in urban contexts. In this paper, we redress this gap through an exploration of the association of fire incidence to weather, calendar events and socio-economic characteristics in South-East Queensland, Australia using innovative technique termed the quad plot. Analysing trends in five fire incident types, including malicious false alarms (hoax calls), residential buildings, secondary (outdoor), vehicle and suspicious fires, results suggest that risk associated with all is greatly increased during school holidays and during long weekends. For all fire types the lowest risk of incidence was found to occur between one and six a.m. It was also found that there was a higher fire incidence in socially disadvantaged neighbourhoods and there was some evidence to suggest that there may be a compounding impact of high temperatures in such areas. We suggest that these findings may be used to guide the operations of fire services through spatial and temporal targeting to better utilise finite resources, help mitigate risk and reduce casualties.


    Directory of Open Access Journals (Sweden)

    Botos Horia Mircea


    Full Text Available This paper approaches the subject of Weather Derivatives, more exactly their basic element the weather index. The weather index has two forms, the Heating Degree Day (HDD and the Cooling Degree Day (CDD. We will try to explain their origin, use and the relationship between the two forms of the index. In our research we started from the analysis of the weather derivatives and what they are based on. After finding out about weather index, we were interested in understanding exactly how they work and how they influence the value of the contract. On the national level the research in the field is scares, but foreign materials available. The study for this paper was based firstly on reading about Weather Derivative, and then going in the meteorogical field and determining the way by which the indices were determined. After this, we went to the field with interest in the indices, such as the energy and gas industries, and figured out how they determined the weather index. For the examples we obtained data from the weather index database, and calculated the value for the period. The study is made on a period of five years, in 8 cities of the European Union. The result of this research is that we can now understand better the importance of the way the indices work and how they influence the value of the Weather Derivatives. This research has an implication on the field of insurance, because of the fact that weather derivative are at the convergence point of the stock markets and the insurance market. The originality of the paper comes from the personal touch given to the theoretical aspect and through the analysis of the HDD and CDD index in order to show their general behaviour and relationship.

  6. Weather Radar Stations (United States)

    Department of Homeland Security — These data represent Next-Generation Radar (NEXRAD) and Terminal Doppler Weather Radar (TDWR) weather radar stations within the US. The NEXRAD radar stations are...

  7. Winter Weather Emergencies (United States)

    Severe winter weather can lead to health and safety challenges. You may have to cope with Cold related health ... Although there are no guarantees of safety during winter weather emergencies, you can take actions to protect ...

  8. National Convective Weather Diagnostic (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Current convective hazards identified by the National Convective Weather Detection algorithm. The National Convective Weather Diagnostic (NCWD) is an automatically...

  9. Mariners Weather Log (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Mariners Weather Log (MWL) is a publication containing articles, news and information about marine weather events and phenomena, worldwide environmental impact...

  10. Radar Weather Observation (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Radar Weather Observation is a set of archived historical manuscripts stored on microfiche. The primary source of these radar weather observations manuscript records...

  11. Natural Weathering Exposure Station (United States)

    Federal Laboratory Consortium — The Corps of Engineers' Treat Island Natural Weathering Exposure Station is a long-term natural weathering facility used to study concrete durability. Located on the...

  12. Surface Weather Observations (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Surface Weather Observation Collection consists primarily of hourly, synoptic, daily, and monthly forms submitted to the archive by the National Weather Service...

  13. Land Surface Weather Observations (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — METAR is the international standard code format for hourly surface weather observations. The acronym roughly translates from French as Aviation Routine Weather...

  14. Pilot Weather Reports (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Aviation weather reports relayed from pilots to FAA air traffic controllers or National Weather Service personnel. Elements include sky cover, turbulence, wind...

  15. Daily Weather Records (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These daily weather records were compiled from a subset of stations in the Global Historical Climatological Network (GHCN)-Daily dataset. A weather record is...

  16. Surface Weather Observing Manuals (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Manuals and instructions for taking weather observations. Includes the annual Weather Bureau 'Instructions for Preparing Meteorological Forms...' and early airways...

  17. Surface Weather Observations Hourly (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Standard hourly observations taken at Weather Bureau/National Weather Service offices and airports throughout the United States. Hourly observations began during the...

  18. Internet Weather Source (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Weather Service (NWS) National Telecommunications Gateway provides weather, hydrologic, and climate forecasts and warnings for the United States, its...

  19. Space Weather in Operation (United States)

    National Aeronautics and Space Administration — The “Space Weather in Operations” effort will provide on-demand and near-real time space weather event information to the Data Access Toolkit (DAT), which is the...

  20. Solar weather monitoring

    Directory of Open Access Journals (Sweden)

    J.-F. Hochedez


    Full Text Available Space Weather nowcasting and forecasting require solar observations because geoeffective disturbances can arise from three types of solar phenomena: coronal mass ejections (CMEs, flares and coronal holes. For each, we discuss their definition and review their precursors in terms of remote sensing and in-situ observations. The objectives of Space Weather require some specific instrumental features, which we list using the experience gained from the daily operations of the Solar Influences Data analysis Centre (SIDC at the Royal Observatory of Belgium. Nowcasting requires real-time monitoring to assess quickly and reliably the severity of any potentially geoeffective solar event. Both research and forecasting could incorporate more observations in order to feed case studies and data assimilation respectively. Numerical models will result in better predictions of geomagnetic storms and solar energetic particle (SEP events. We review the data types available to monitor solar activity and interplanetary conditions. They come from space missions and ground observatories and range from sequences of dopplergrams, magnetograms, white-light, chromospheric, coronal, coronagraphic and radio images, to irradiance and in-situ time-series. Their role is summarized together with indications about current and future solar monitoring instruments.

  1. Space Weather, Environment and Societies

    CERN Document Server

    Lilensten, Jean


    Our planet exists within a space environment affected by constantly changing solar atmosphere producing cosmic particles and electromagnetic waves. This "space weather" profoundly influences the performance of our technology because we primarily use two means for transmitting information and energy; namely, electromagnetic waves and electricity. On an everyday basis, we have developed methods to cope with the normal conditions. However, the sun remains a fiery star whose 'angry' outbursts can potentially destroy spacecrafts, kill astronauts, melt electricity transformers, stop trains, and generally wreak havoc with human activities. Space Weather is the developing field within astronomy that aims at predicting the sun’s violent activity and minimizing the impacts on our daily lives. Space Weather, Environment, and Societies explains why our technological societies are so dependent on solar activity and how the Sun disturbs the transmission of information and energy. Footnotes expand specific points and the ...

  2. Weather Fundamentals: Meteorology. [Videotape]. (United States)


    The videos in this educational series, for grades 4-7, help students understand the science behind weather phenomena through dramatic live-action footage, vivid animated graphics, detailed weather maps, and hands-on experiments. This episode (23 minutes) looks at how meteorologists gather and interpret current weather data collected from sources…

  3. Convective Weather Avoidance with Uncertain Weather Forecasts (United States)

    Karahan, Sinan; Windhorst, Robert D.


    Convective weather events have a disruptive impact on air traffic both in terminal area and in en-route airspaces. In order to make sure that the national air transportation system is safe and efficient, it is essential to respond to convective weather events effectively. Traffic flow control initiatives in response to convective weather include ground delay, airborne delay, miles-in-trail restrictions as well as tactical and strategic rerouting. The rerouting initiatives can potentially increase traffic density and complexity in regions neighboring the convective weather activity. There is a need to perform rerouting in an intelligent and efficient way such that the disruptive effects of rerouting are minimized. An important area of research is to study the interaction of in-flight rerouting with traffic congestion or complexity and developing methods that quantitatively measure this interaction. Furthermore, it is necessary to find rerouting solutions that account for uncertainties in weather forecasts. These are important steps toward managing complexity during rerouting operations, and the paper is motivated by these research questions. An automated system is developed for rerouting air traffic in order to avoid convective weather regions during the 20- minute - 2-hour time horizon. Such a system is envisioned to work in concert with separation assurance (0 - 20-minute time horizon), and longer term air traffic management (2-hours and beyond) to provide a more comprehensive solution to complexity and safety management. In this study, weather is dynamic and uncertain; it is represented as regions of airspace that pilots are likely to avoid. Algorithms are implemented in an air traffic simulation environment to support the research study. The algorithms used are deterministic but periodically revise reroutes to account for weather forecast updates. In contrast to previous studies, in this study convective weather is represented as regions of airspace that pilots

  4. Modeling Weather Impact on Ground Delay Programs (United States)

    Wang, Yao; Kulkarni, Deepak


    Scheduled arriving aircraft demand may exceed airport arrival capacity when there is abnormal weather at an airport. In such situations, Federal Aviation Administration (FAA) institutes ground-delay programs (GDP) to delay flights before they depart from their originating airports. Efficient GDP planning depends on the accuracy of prediction of airport capacity and demand in the presence of uncertainties in weather forecast. This paper presents a study of the impact of dynamic airport surface weather on GDPs. Using the National Traffic Management Log, effect of weather conditions on the characteristics of GDP events at selected busy airports is investigated. Two machine learning methods are used to generate models that map the airport operational conditions and weather information to issued GDP parameters and results of validation tests are described.

  5. Beyond the Weather Chart: Weathering New Experiences. (United States)

    Huffman, Amy Bruno


    Describes an early childhood educator's approach to teaching children about rain, rainbows, clouds, precipitation, the sun, air, and wind. Recommends ways to organize study topics and describes experiments that can help children better understand the different elements of weather. (MOK)

  6. Weatherization and Intergovernmental Program - Weatherization Assistance Program

    Energy Technology Data Exchange (ETDEWEB)



    The U.S. Department of Energy’s (DOE) Weatherization Assistance Program reduces energy costs for low-income households by increasing the energy efficiency of their homes, while ensuring their health and safety.

  7. Seasonal Forecasting of Fire Weather Based on a New Global Fire Weather Database (United States)

    Dowdy, Andrew J.; Field, Robert D.; Spessa, Allan C.


    Seasonal forecasting of fire weather is examined based on a recently produced global database of the Fire Weather Index (FWI) system beginning in 1980. Seasonal average values of the FWI are examined in relation to measures of the El Nino-Southern Oscillation (ENSO) and the Indian Ocean Dipole (IOD). The results are used to examine seasonal forecasts of fire weather conditions throughout the world.

  8. Extreme weather events and infectious disease outbreaks. (United States)

    McMichael, Anthony J


    Human-driven climatic changes will fundamentally influence patterns of human health, including infectious disease clusters and epidemics following extreme weather events. Extreme weather events are projected to increase further with the advance of human-driven climate change. Both recent and historical experiences indicate that infectious disease outbreaks very often follow extreme weather events, as microbes, vectors and reservoir animal hosts exploit the disrupted social and environmental conditions of extreme weather events. This review article examines infectious disease risks associated with extreme weather events; it draws on recent experiences including Hurricane Katrina in 2005 and the 2010 Pakistan mega-floods, and historical examples from previous centuries of epidemics and 'pestilence' associated with extreme weather disasters and climatic changes. A fuller understanding of climatic change, the precursors and triggers of extreme weather events and health consequences is needed in order to anticipate and respond to the infectious disease risks associated with human-driven climate change. Post-event risks to human health can be constrained, nonetheless, by reducing background rates of persistent infection, preparatory action such as coordinated disease surveillance and vaccination coverage, and strengthened disaster response. In the face of changing climate and weather conditions, it is critically important to think in ecological terms about the determinants of health, disease and death in human populations.

  9. Natural Weathering Rates of Silicate Minerals (United States)

    White, A. F.


    Silicates constitute more than 90% of the rocks exposed at Earth's land surface (Garrels and Mackenzie, 1971). Most primary minerals comprising these rocks are thermodynamically unstable at surface pressure/temperature conditions and are therefore susceptible to chemical weathering. Such weathering has long been of interest in the natural sciences. Hartt (1853) correctly attributed chemical weathering to "the efficacy of water containing carbonic acid in promoting the decomposition of igneous rocks." Antecedent to the recent interest in the role of vegetation on chemical weathering, Belt (1874) observed that the most intense weathering of rocks in tropical Nicaragua was confined to forested regions. He attributed this effect to "the percolation through rocks of rain water charged with a little acid from decomposing vegetation." Chamberlin (1899) proposed that the enhanced rates of chemical weathering associated with major mountain building episodes in Earth's history resulted in a drawdown of atmospheric CO2 that led to periods of global cooling. Many of the major characteristics of chemical weathering had been described when Merrill (1906) published the groundbreaking volume Rocks, Rock Weathering, and Soils.The major advances since that time, particularly during the last several decades, have centered on understanding the fundamental chemical, hydrologic, and biologic processes that control weathering and in establishing quantitative weathering rates. This research has been driven by the importance of chemical weathering to a number environmentally and economically important issues. Undoubtedly, the most significant aspect of chemical weathering is the breakdown of rocks to form soils, a process that makes life possible on the surface of the Earth. The availability of many soil macronutrients such as magnesium, calcium, potassium, and PO4 is directly related to the rate at which primary minerals weather. Often such nutrient balances are upset by anthropogenic

  10. 14 CFR 135.175 - Airborne weather radar equipment requirements. (United States)


    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Airborne weather radar equipment... Aircraft and Equipment § 135.175 Airborne weather radar equipment requirements. (a) No person may operate a... conditions that can be detected with airborne weather radar equipment, may reasonably be expected along the...

  11. The impact of the weather conditions on the cooling performance of the heat pump driven by an internal natural gas combustion engine

    Directory of Open Access Journals (Sweden)

    Janovcová Martina


    Full Text Available Market with sources of heat and cold offers unlimited choice of different power these devices, design technology, efficiency and price categories. New progressive technologies are constantly discovering, about which is still little information, which include heat pumps powered by a combustion engine running on natural gas. A few pieces of these installations are in Slovakia, but no studies about their work and effectiveness under real conditions. This article deals with experimental measurements of gas heat pump efficiency in cooling mode. Since the gas heat pump works only in system air – water, air is the primary low – energy source, it is necessary to monitor the impact of the climate conditions for the gas heat pump performance.

  12. Space Weathering of Rocks (United States)

    Noble, Sarah


    Space weathering discussions have generally centered around soils but exposed rocks will also incur the effects of weathering. On the Moon, rocks make up only a very small percentage of the exposed surface and areas where rocks are exposed, like central peaks, are often among the least space weathered regions we find in remote sensing data. However, our studies of weathered Ap 17 rocks 76015 and 76237 show that significant amounts of weathering products can build up on rock surfaces. Because rocks have much longer surface lifetimes than an individual soil grain, and thus record a longer history of exposure, we can study these products to gain a deeper perspective on the weathering process and better assess the relative impo!1ance of various weathering components on the Moon. In contrast to the lunar case, on small asteroids, like Itokowa, rocks make up a large fraction of the exposed surface. Results from the Hayabusa spacecraft at Itokowa suggest that while the low gravity does not allow for the development of a mature regolith, weathering patinas can and do develop on rock surfaces, in fact, the rocky surfaces were seen to be darker and appear spectrally more weathered than regions with finer materials. To explore how weathering of asteroidal rocks may differ from lunar, a set of ordinary chondrite meteorites (H, L, and LL) which have been subjected to artificial space weathering by nanopulse laser were examined by TEM. NpFe(sup 0) bearing glasses were ubiquitous in both the naturally-weathered lunar and the artificially-weathered meteorite samples.

  13. Insurance against weather risk : use of heating degree-days from non-local stations for weather derivatives

    NARCIS (Netherlands)

    Asseldonk, van M.A.P.M.


    Weather derivatives enable policy-holders to safeguard themselves against extreme weather conditions. The effectiveness and the efficiency of the risk transfer is determined by the spatial risk basis, which is the stochastic dependency of the local weather outcome being insured and the outcome of

  14. Weather during bloom affects pollination and yield of highbush blueberry. (United States)

    Tuell, Julianna K; Isaacs, Rufus


    Weather plays an important role in spring-blooming fruit crops due to the combined effects on bee activity, flower opening, pollen germination, and fertilization. To determine the effects of weather on highbush blueberry, Vaccinium corymbosum L., productivity, we monitored bee activity and compared fruit set, weight, and seed number in a field stocked with honey bees, Apis mellifera L., and common eastern bumble bees, Bombus impatiens (Cresson). Flowers were subjected to one of five treatments during bloom: enclosed, open, open during poor weather only, open during good weather only, or open during poor and good weather. Fewer bees of all types were observed foraging and fewer pollen foragers returned to colonies during poor weather than during good weather. There were also changes in foraging community composition: honey bees dominated during good weather, whereas bumble bees dominated during poor weather. Berries from flowers exposed only during poor weather had higher fruit set in 1 yr and higher berry weight in the other year compared with enclosed clusters. In both years, clusters exposed only during good weather had > 5 times as many mature seeds, weighed twice as much, and had double the fruit set of those not exposed. No significant increase over flowers exposed during good weather was observed when clusters were exposed during good and poor weather. Our results are discussed in terms of the role of weather during bloom on the contribution of bees adapted to foraging during cool conditions.

  15. Longing for Clouds - Does Beautiful Weather have to be Fine?

    Directory of Open Access Journals (Sweden)

    Mădălina Diaconu


    Full Text Available Any attempt to outline a meteorological aesthetics centered on so-called beautiful weather has to overcome several difficulties: In everyday life, the appreciation of the weather is mostly related to practical interests or reduced to the ideal of stereotypical fine weather that is conceived according to blue-sky thinking irrespective of climate diversity. Also, an aesthetics of fine weather seems, strictly speaking, to be impossible given that such weather conditions usually allow humans to focus on aspects other than weather, which contradicts the autotelic character of beauty. The unreflective equation of beautiful weather with moderately sunny weather and a cloudless sky also collides with the psychological need for variation: even living in a “paradisal” climate would be condemned to end in monotony. Finally, whereas fine weather is related in modern realistic literature to cosmic harmony and a universal natural order, contemporary literary examples show that in the age of the climate change, fine weather may be deceitful and its passive contemplation, irresponsible. This implies the necessity of a reflective aesthetic attitude on weather, as influenced by art, literature, and science, which discovers the poetics of bad weather and the wonder that underlies average weather conditions.

  16. conditions

    Directory of Open Access Journals (Sweden)

    M. Venkatesulu


    Full Text Available Solutions of initial value problems associated with a pair of ordinary differential systems (L1,L2 defined on two adjacent intervals I1 and I2 and satisfying certain interface-spatial conditions at the common end (interface point are studied.

  17. Measurements of Atmospheric CO2 Column in Cloudy Weather Conditions using An IM-CW Lidar at 1.57 Micron (United States)

    Lin, Bing; Obland, Michael; Harrison, F. Wallace; Nehrir, Amin; Browell, Edward; Campbell, Joel; Dobler, Jeremy; Meadows, Bryon; Fan, Tai-Fang; Kooi, Susan; hide


    This study evaluates the capability of atmospheric CO2 column measurements under cloudy conditions using an airborne intensity-modulated continuous-wave integrated-path-differential-absorption lidar operating in the 1.57-m CO2 absorption band. The atmospheric CO2 column amounts from the aircraft to the tops of optically thick cumulus clouds and to the surface in the presence of optically thin clouds are retrieved from lidar data obtained during the summer 2011 and spring 2013 flight campaigns, respectively.

  18. Computing tomorrow's weather (United States)

    Lynch, Peter


    The development of computer models that simulate the Earth's atmosphere, allowing us to predict weather and anticipate climate change, is one of the triumphs of 20th-century science. Weather forecasting used to be very hit-and-miss, based on rough rules of thumb and the assumption that similar weather patterns would evolve in a similar manner. But from 1950 onwards, digital computers revolutionized the field, transforming it from a woolly empirical activity to a precise, quantitative, science-based procedure. Weather forecasting was among the first computational sciences and is still a major application for high-end computers today. In Weather by the Numbers, the historian Kristine Harper tells the fascinating story of how numerical weather prediction became possible.

  19. Influence of Special Weather on Output of PV System (United States)

    Zhang, Zele


    The output of PV system is affected by different environmental factors, therefore, it is important to study the output of PV system under different environmental conditions. Through collecting data on the spot, collecting the output of photovoltaic panels under special weather conditions, and comparing the collected data, the output characteristics of the photovoltaic panels under different weather conditions are obtained. The influence of weather factors such as temperature, humidity and irradiance on the output of photovoltaic panels was investigated.

  20. Space Weather Analysis (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Space Weather Analysis archives are model output of ionospheric, thermospheric and magnetospheric particle populations, energies and electrodynamics

  1. Weather it's Climate Change? (United States)

    Bostrom, A.; Lashof, D.


    For almost two decades both national polls and in-depth studies of global warming perceptions have shown that people commonly conflate weather and global climate change. Not only are current weather events such as anecdotal heat waves, droughts or cold spells treated as evidence for or against global warming, but weather changes such as warmer weather and increased storm intensity and frequency are the consequences most likely to come to mind. Distinguishing weather from climate remains a challenge for many. This weather 'framing' of global warming may inhibit behavioral and policy change in several ways. Weather is understood as natural, on an immense scale that makes controlling it difficult to conceive. Further, these attributes contribute to perceptions that global warming, like weather, is uncontrollable. This talk presents an analysis of data from public opinion polls, focus groups, and cognitive studies regarding people's mental models of and 'frames' for global warming and climate change, and the role weather plays in these. This research suggests that priming people with a model of global warming as being caused by a "thickening blanket of carbon dioxide" that "traps heat" in the atmosphere solves some of these communications problems and makes it more likely that people will support policies to address global warming.

  2. Space Weather Laboratory (United States)

    Federal Laboratory Consortium — The Space Weather Computational Laboratory is a Unix and PC based modeling and simulation facility devoted to research analysis of naturally occurring electrically...

  3. Study of atmospheric condition during the heavy rain event in Bojonegoro using weather research and forecasting (WRF) model: case study 9 February 2017 (United States)

    Saragih, I. J. A.; Meygatama, A. G.; Sugihartati, F. M.; Sidauruk, M.; Mulsandi, A.


    During 2016, there are frequent heavy rains in the Bojonegoro region, one of which is rain on 9 February 2016. The occurrence of heavy rainfall can cause the floods that inundate the settlements, rice fields, roads, and public facilities. This makes it important to analyze the atmospheric conditions during the heavy rainfall events in Bojonegoro. One of the analytical methods that can be used is using WRF-Advanced Research WRF (WRF-ARW) model. This study was conducted by comparing the rain analysis from WRF-ARW model with the Himawari-8 satellite imagery. The data used are Final Analysis (FNL) data for the WRF-ARW model and infrared (IR) channel for Himawari-8 satellite imagery. The data are processed into the time-series images and then analyzed descriptively. The meteorological parameters selected to be analyzed are relative humidity, vortices, divergences, air stability index, and precipitation. These parameters are expected to indicate the existence of a convective activity in Bojonegoro during the heavy rainfall event. The Himawari-8 satellite imagery shows that there is a cluster of convective clouds in Bojonegoro during the heavy rainfall event. The lowest value of the cloud top temperature indicates that the cluster of convective clouds is a cluster of Cumulonimbus cloud (CB).

  4. Vicissitudes of oxidative stress biomarkers in the estuarine crab Scylla serrata with reference to dry and wet weather conditions in Ennore estuary, Tamil Nadu, India. (United States)

    Ragunathan, M G


    The primary objective of this study was to understand the impact of monsoon and summer seasons on the Polychlorinated Biphenyls (PCB's) and petroleum hydrocarbon compounds (PHC's) load in Ennore estuary and how the physiological response of estuarine Scylla serrata inhabiting in this estuary changed with reference to antioxidant defense. Seasonal levels of PCB's and PHC's were assessed in the water along with their bioaccumulation in gills, hemolymph, hepatopancreas and ovary of S. serrata. Concentration of PCB's and PHC's in water and their bioaccumulation was found to be higher in summer season when compared to monsoon season. Enzymic antioxidant assays [superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPX), glutathione reductase (GR), glutathione-S-transferase (GST)]; non-enzymic antioxidant assays [glutathione (GSH), vitamin C, vitamin E] and macromolecular alterations [membrane lipid peroxidation (LPO), and DNA Damage (strand breaks)] were assessed in the gills, hemolymph and hepatopancreas of S. serrata. There was a significant (p<0.05) upregulation in lipid peroxidation activity and DNA damage activity collected during the summer season when compared to the pre- and post-monsoon seasons. On the contrary, the enzymic and non-enzymic antioxidants exhibited significant (p<0.05) down regulation in the gills, hemolymph, hepatopancreas and ovary of S. serrata. Oxidative stress biomarkers represented a significant (p<0.05) maximum in gills when compared to hemolymph and hepatopancreas of S. serrata. Present study provided scientific evidences of how the antioxidant defense status of S. serrata responded to PCB's and PAH's stress with reference to seasonal vicissitudes, which indirectly represented the environmental health conditions of the estuary. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Investigation and Modeling of Cranberry Weather Stress. (United States)

    Croft, Paul Joseph

    Cranberry bog weather conditions and weather-related stress were investigated for development of crop yield prediction models and models to predict daily weather conditions in the bog. Field investigations and data gathering were completed at the Rutgers University Blueberry/Cranberry Research Center experimental bogs in Chatsworth, New Jersey. Study indicated that although cranberries generally exhibit little or no stomatal response to changing atmospheric conditions, the evaluation of weather-related stress could be accomplished via use of micrometeorological data. Definition of weather -related stress was made by establishing critical thresholds of the frequencies of occurrence, and magnitudes of, temperature and precipitation in the bog based on values determined by a review of the literature and a grower questionnaire. Stress frequencies were correlated with cranberry yield to develop predictive models based on the previous season's yield, prior season data, prior and current season data, current season data; and prior and current season data through July 31 of the current season. The predictive ability of the prior season models was best and could be used in crop planning and production. Further examination of bog micrometeorological data permitted the isolation of those weather conditions conducive to cranberry scald and allowed for the institution of a pilot scald advisory program during the 1991 season. The micrometeorological data from the bog was also used to develop models to predict daily canopy temperature and precipitation, based on upper air data, for grower use. Models were developed for each month for maximum and minimum temperatures and for precipitation and generally performed well. The modeling of bog weather conditions is an important first step toward daily prediction of cranberry weather-related stress.

  6. Designing a Weather Station (United States)

    Roman, Harry T.


    The collection and analysis of weather data is crucial to the location of alternate energy systems like solar and wind. This article presents a design challenge that gives students a chance to design a weather station to collect data in advance of a large wind turbine installation. Data analysis is a crucial part of any science or engineering…

  7. Fabulous Weather Day (United States)

    Marshall, Candice; Mogil, H. Michael


    Each year, first graders at Kensington Parkwood Elementary School in Kensington, Maryland, look forward to Fabulous Weather Day. Students learn how meteorologists collect data about the weather, how they study wind, temperature, precipitation, basic types/characteristics of clouds, and how they forecast. The project helps the students grow in…

  8. Evaporation and weather

    NARCIS (Netherlands)

    Bruin, H.A.R. de; Feddes, R.A.; Holtslag, A.A.M.; Lablans, W.N.; Schuurmans, C.J.E.; Shuttleworth, W.J.


    Data on evaporation to be used in agriculture, hydrology, forestry, etc. are usually supplied by meteorologists. Meteorologists themselves also use evaporation data. Air mass properties determining weather are strongly dependent on the input of water vapour from the surface. So for weather

  9. Tales of future weather

    NARCIS (Netherlands)

    Hazeleger, W.; van den Hurk, B.J.J.M.; Min, E.; van Oldenborgh, G.J.; Wang, X.; Petersen, A.C.; Stainforth, D.A.; Vasileiadou, E.; Smith, L.A.


    Society is vulnerable to extreme weather events and, by extension, to human impacts on future events. As climate changes weather patterns will change. The search is on for more effective methodologies to aid decision-makers both in mitigation to avoid climate change and in adaptation to changes. The

  10. Fair weather atmospheric electricity

    International Nuclear Information System (INIS)

    Harrison, R G


    Not long after Franklin's iconic studies, an atmospheric electric field was discovered in 'fair weather' regions, well away from thunderstorms. The origin of the fair weather field was sought by Lord Kelvin, through development of electrostatic instrumentation and early data logging techniques, but was ultimately explained through the global circuit model of C.T.R. Wilson. In Wilson's model, charge exchanged by disturbed weather electrifies the ionosphere, and returns via a small vertical current density in fair weather regions. New insights into the relevance of fair weather atmospheric electricity to terrestrial and planetary atmospheres are now emerging. For example, there is a possible role of the global circuit current density in atmospheric processes, such as cloud formation. Beyond natural atmospheric processes, a novel practical application is the use of early atmospheric electrostatic investigations to provide quantitative information on past urban air pollution.

  11. Effects of intraday weather changes on asset returns and volatilities

    Directory of Open Access Journals (Sweden)

    Hyein Shim


    Full Text Available Analyzing the intraday dataset on weather and market information with the use of the extended GJR-GARCH framework, this study explores in depth the weather effects on the asset returns and volatilities of the Korean stock and derivatives markets. Our intraday analyses contribute to the existing literature by going beyond the attempt of prior studies to capture the weather effects using the average daily observations alone. The empirical results document a modest presence of the weather effect on the returns and volatilities, though the significance of its impact is found to vary across different market conditions and indices. We also find that the return and volatility respond asymmetrically to extremely good and bad weather conditions. The intraday analyses show that the weather effect on the returns and volatilities is more statistically significant at the beginning of the working day or the lunch break, indicating the intraday weather effects on the financial market.

  12. Combating bad weather part I rain removal from video

    CERN Document Server

    Mukhopadhyay, Sudipta


    Current vision systems are designed to perform in normal weather condition. However, no one can escape from severe weather conditions. Bad weather reduces scene contrast and visibility, which results in degradation in the performance of various computer vision algorithms such as object tracking, segmentation and recognition. Thus, current vision systems must include some mechanisms that enable them to perform up to the mark in bad weather conditions such as rain and fog. Rain causes the spatial and temporal intensity variations in images or video frames. These intensity changes are due to the

  13. Environmental Education Tips: Weather Activities. (United States)

    Brainard, Audrey H.


    Provides weather activities including questions, on weather, heating the earth's surface, air, tools of the meteorologist, clouds, humidity, wind, and evaporation. Shows an example of a weather chart activity. (RT)

  14. Weather effects on the success of longleaf pine cone crops (United States)

    Daniel J. Leduc; Shi-Jean Susana Sung; Dale G. Brockway; Mary Anne Sword Sayer


    We used National Oceanic and Atmospheric Administration weather data and historical records of cone crops from across the South to relate weather conditions to the yield of cones in 10 longleaf pine (Pinus palustris Mill.) stands. Seed development in this species occurs over a three-year time period and weather conditions during any part of this...

  15. What is the weather like today (United States)

    Jovic, Sladjana


    Meteorology is the study of all changes in the atmosphere that surround the Earth. In this project, students will design and build some of the instruments that meteorologists use and make two school Weather Stations and placed them in different school yards so that results of weather parameters date can be follow during three months and be compared. Poster will present a procedure and a preparation how to work with weather stations that contain 1. Barometer (Air pressure) 2. Rain Gauge (Precipitation) 3. Thermometer (Temperature ) 4. Wind Vane (Wind Direction) By collecting their own data, the students found out more about weather through a process similar to the one that professional meteorologists used. Finally students compared differences between two school weather station and used these results to presented how different places had different climate and how climate changed during the months in a year. This was opportunity for cooperation between students from different schools and different grades when older students from secondary school helped younger student to make their weather station and shared knowledge and experience while they followed weather condition during the project .

  16. Dothistroma septosporum: spore production and weather conditions

    Energy Technology Data Exchange (ETDEWEB)

    Dvorak, M.; Drapela, K.; Kankovsky, L.


    Dartmouth's septosporum, the causal agent of Dothistroma needle blight is a widespread fungus which infects more than 80 species of coniferous trees through the entire world. Spreading of the infection is strongly affected by climatic factors of each locality where it is recorded. We attempt to describe the concrete limiting climatic factors necessary for the releasing of conidia of D. septosporum and to find out the timing of its spore production within the year. For this purpose we used an automatic volumetric spore trap and an automatic meteorological station. We found that a minimum daily average temperature of 10 degree centigrade was necessary for any spore production, as well as a long period of high air humidity. The values obtained in the present study were a little bit higher than those previously published, which may arise questions about a possible changing trend of the behaviour in the development of the Dothistroma needle blight causal agent. We used autoregressive integrated moving average (ARIMA) models to predict the spore counts on the base of previous values of spore counts and dew point. For a locality from Hackerovka, the best ARIMA model was 1,0,0; and for a locality from Lanzhot, the best was 3,1,0. (Author) 19 refs.

  17. Effects of Weather on Tourism and its Moderation (United States)

    Park, J. H.; Kim, S.; Lee, D. K.


    Tourism is weather sensitive industry (Gómez Martín, 2005). As climate change has been intensifying, the concerns about negative effects of weather on tourism also have been increasing. This study attempted to find ways that mitigate the negative effects from weather on tourism, by analyzing a path of the effects of weather on intention to revisit and its moderation. The data of the study were collected by a self-recording online questionnaire survey of South Korean domestic tourists during August 2015, and 2,412 samples were gathered. A path model of effects of weather on intention to revisit that including moderating effects from physical attraction satisfaction and service satisfaction was ran. Season was controlled in the path model. The model fit was adequate (CMIN/DF=2.372(p=.000), CFI=.974, RMSEA=.024, SRMR=0.040), and the Model Comparison, which assumes that the base model to be correct with season constrained model, showed that there was a seasonal differences in the model ( DF=24, CMIN=32.430, P=.117). By the analysis, it was figured out that weather and weather expectation affected weather satisfaction, and the weather satisfaction affected intention to revisit (spring/fall: .167**, summer: .104**, and winter: .114**). Meanwhile physical attraction satisfaction (.200**), and service satisfaction (.210**) of tourism positively moderated weather satisfaction in summer, and weather satisfaction positively moderated physical attraction (.238**) satisfaction and service satisfaction (.339**). In other words, in summer, dissatisfaction from hot weather was moderated by satisfaction from physical attractions and services, and in spring/fall, comfort weather conditions promoted tourists to accept tourism experience and be satisfied from attractions and services positively. Based on the result, it was expected that if industries focus on offering the good attractions and services based on weather conditions, there would be positive effects to alleviate tourists

  18. Types of weather at selected meteorological stations in Sri Lanka (United States)

    Dobrowolska, Ksenia


    The paper aims to present the structure of weather types at two meteorological stations Galle and Nuwara Eliya (Sri Lanka). The weather type is determined as a generalized characteristic of the weather by features and gradation of selected meteorological elements. All available data on daily average, maximum and minimum air temperature, the average daily total cloud amount and the daily precipitation amount come from OGIMET database and have been used to designate weather types. The analysis was performed for the period April 2002 - March 2012. The weather types were designated based on the modified A. Woś (2010) classification of weather types. The frequency of groups, subgroups, classes, and types of weather were determined. Additionally, determined frequency of sequences of days with the same weather type. The analysis allows to conclude, that the structure of weather types at both stations was poorly differentiated. There were very stable weather conditions. In Galle, the most frequent was very warm, partly cloudy weather, without precipitation (920) and in Nuwara Eliya warm, partly cloudy weather without precipitation (820).

  19. Weather Information Processing (United States)


    Science Communications International (SCI), formerly General Science Corporation, has developed several commercial products based upon experience acquired as a NASA Contractor. Among them are METPRO, a meteorological data acquisition and processing system, which has been widely used, RISKPRO, an environmental assessment system, and MAPPRO, a geographic information system. METPRO software is used to collect weather data from satellites, ground-based observation systems and radio weather broadcasts to generate weather maps, enabling potential disaster areas to receive advance warning. GSC's initial work for NASA Goddard Space Flight Center resulted in METPAK, a weather satellite data analysis system. METPAK led to the commercial METPRO system. The company also provides data to other government agencies, U.S. embassies and foreign countries.

  20. Oil Rig Weather Observations (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Weather observations taken at offshore platforms along the United States coastlines. The majority are located in oil-rich areas of the Gulf of Mexico, Gulf of...

  1. Space Weather Products (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Collection includes a variety of space weather datasets from the National Oceanic and Atmospheric Administration and from the World Data Service for Geophysics,...

  2. Winter weather demand considerations. (United States)


    Winter weather has varied effects on travel behavior. Using 418 survey responses from the Northern Virginia : commuting area of Washington, D.C. and binary logit models, this study examines travel related changes under : different types of winter wea...

  3. Uruguay - Surface Weather Observations (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Surface weather observation forms for 26 stations in Uruguay. Period of record 1896-2005, with two to eight observations per day. Files created through a...

  4. National Weather Service (United States)

    ... Daily Briefing Damage/Fatality/Injury Statistics Forecast Models GIS Data Portal NOAA Weather Radio Publications SKYWARN Storm Spotters StormReady TsunamiReady EDUCATION Be A Force of Nature NWS Education Home ...

  5. Cape Kennedy Weather Data (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Digitized data taken from original weather observations taken at Cape Kennedy Air Force Station, Florida. Elements recorded are wind speed and direction,...

  6. Daily Weather Maps (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Several different government offices have published the Daily weather maps over its history. The publication has also gone by different names over time. The U.S....

  7. Surface Weather Observations Monthly (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Surface Weather Observation 1001 Forms is a set of historical manuscript records for the period 1893-1948. The collection includes two very similar form types: Form...

  8. Climate and Weather Analysis of Afghanistan Thunderstorms (United States)


    56); (6) conditionally unstable air associated with LL moisture; (7) HLTT and LI values that are consistent with instability . 103 Figure 55. Skew T...NTSTM Tc (Figure 57); (6) conditionally unstable air made associated with LL moisture; (7) HLTT and LI values that are consistent with instability ...NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS Approved for public release; distribution is unlimited CLIMATE AND WEATHER

  9. Differences in the importance of weather and weather-based decisions among campers in Ontario parks (Canada) (United States)

    Hewer, Micah J.; Scott, Daniel J.; Gough, William A.


    Parks and protected areas represent an important resource for tourism in Canada, in which camping is a common recreational activity. The important relationship between weather and climate with recreation and tourism has been widely acknowledged within the academic literature. Howbeit, the need for activity-specific assessments has been identified as an on-going need for future research in the field of tourism climatology. Furthermore, very little is known about the interrelationships between personal characteristics and socio-demographics with weather preferences and behavioural thresholds. This study uses a stated climate preferences approach (survey responses) to explore differences in the importance of weather and related weather-based decisions among summer campers in Ontario parks. Statistically significant differences were found among campers for each of the four dependent variables tested in this study. Physically active campers placed greater importance on weather but were still more tolerant of adverse weather conditions. Older campers placed greater importance on weather. Campers travelling shorter distances placed greater importance on weather and were more likely to leave the park early due to adverse weather. Campers staying for longer periods of time were less likely to leave early due to weather and were willing to endure longer durations of adverse weather conditions. Beginner campers placed greater importance on weather, were more likely to leave early due to weather and recorded lower temporal weather thresholds. The results of this study contribute to the study of tourism climatology by furthering understanding of how personal characteristics such as gender, age, activity selection, trip duration, distance travelled, travel experience and life cycles affect weather preferences and decisions, focusing this time on recreational camping in a park tourism context.

  10. 3-Dimensional Weather Visualisation


    Nimitz, Sarah; Forsyth, Duke; Knittle, Andrew


    Senior Design Project presentation and report for CS 4624 Multimedia/Hypertext Capstone. Two Zip archives also are provided, with software for each of the front and back end parts of the system. Project deliverables are provided, including a detailed description of the creation of a polling and parsing system for keeping track of severe weather warnings, as delivered by the National Weather Service, and an interface to allow the user to view a representation of Doppler radar data in three ...

  11. Sunspots, Space Weather and Climate (United States)

    Hathaway, David H.


    Four hundred years ago this year the telescope was first used for astronomical observations. Within a year, Galileo in Italy and Harriot in England reported seeing spots on the surface of the Sun. Yet, it took over 230 years of observations before a Swiss amateur astronomer noticed that the sunspots increased and decreased in number over a period of about 11 years. Within 15 years of this discovery of the sunspot cycle astronomers made the first observations of a flare on the surface of the Sun. In the 150 years since that discovery we have learned much about sunspots, the sunspot cycle, and the Sun s explosive events - solar flares, prominence eruptions and coronal mass ejections that usually accompany the sunspots. These events produce what is called Space Weather. The conditions in space are dramatically affected by these events. Space Weather can damage our satellites, harm our astronauts, and affect our lives here on the surface of planet Earth. Long term changes in the sunspot cycle have been linked to changes in our climate as well. In this public lecture I will give an introduction to sunspots, the sunspot cycle, space weather, and the possible impact of solar variability on our climate.

  12. The influence of the direct- and semi-direct effect on the weather conditions in Europe caused by the volcanic ash plume of the Eyjafjallajökull eruption during April and May 2010 with WRF-Chem (United States)

    Hirtl, Marcus; Stuefer, Martin; Arias, Delia Arnold; Flandorfer, Claudia; Maurer, Christian; Natali, Stefano; Scherllin-Pirscher, Barbara


    Volcanic eruptions, with gas and/or particle emissions, directly influence our environment, with special significance when they either occur near inhabited regions or are transported towards them. In addition to the well-known impact of air traffic, with large economic costs, the ground touching plumes can directly contaminate soil and water and lead to a decrease of air quality. Aerosols are also known to have an impact on weather and climate via their direct effect on radiation and via their impact on cloud formation. These feedbacks between atmospheric aerosol particles and meteorological processes were known for quite some time and have been implemented into several regional models. This study reveals first results obtained with the on-line coupled meteorological and chemical transport model WRF-Chem which is used to simulate the dispersion of the volcanic ash plume caused by the Eyjafjallajökull eruption in 2010. The main emphasis is to determine the influence of feedback processes caused by aerosol-meteorology interactions which can be simulated with WRF-Chem. The model is used with different set-ups (e.g. direct-effect turned off/on) to quantify the influence of the ash plume on the meteorological conditions during the main episode from April until end of May 2010. This contribution focuses on the investigation/quantification of the direct- and semi-direct effects of the ash plume. The simulated changes caused by the presence of the ash cloud on radiation and other atmospheric parameters such as temperature and wind are presented. A comprehensive observation data set from in-situ and remote sensing instruments is used to evaluate the model simulations.

  13. Prevalence of weather sensitivity in Germany and Canada (United States)

    Mackensen, Sylvia; Hoeppe, Peter; Maarouf, Abdel; Tourigny, Pierre; Nowak, Dennis


    Several studies have shown that atmospheric conditions can affect well-being or disease, and that some individuals seem to be more sensitive to weather than others. Since epidemiological data on the prevalence of weather-related health effects are lacking, two representative weather sensitivity (WS) surveys were conducted independently in Germany and Canada. The objectives of this paper are: (1) to identify the prevalence of WS in Germany and Canada, (2) to describe weather-related symptoms and the corresponding weather conditions, and (3) to compare the findings in the two countries. In Germany 1,064 citizens (age >16 years) were interviewed in January 2001, and in Canada 1,506 persons (age >18 years) were interviewed in January 1994. The results showed that 19.2% of the German population thought that weather affected their health “to a strong degree,” 35.3% that weather had “some influence on their health” (sum of both = 54.5% weather sensitive), whereas the remaining 45.5% did not consider that weather had an effect on their health status. In Canada 61% of the respondents considered themselves to be sensitive to the weather. The highest prevalence of WS (high + some influence) in Germans was found in the age group older than 60 years (68%), which was almost identical in the Canadian population (69%). The highest frequencies of weather-related symptoms were reported in Germany for stormy weather (30%) and when it became colder (29%). In Canada mainly cold weather (46%), dampness (21%) and rain (20%) were considered to affect health more than other weather types. The most frequent symptoms reported in Germany were headache/migraine (61%), lethargy (47%), sleep disturbances (46%), fatigue (42%), joint pain (40%), irritation (31%), depression (27%), vertigo (26%), concentration problems (26%) and scar pain (23%). Canadian weather-sensitive persons reported colds (29%), psychological effects (28%) and painful joints, muscles or arthritis (10%). In Germany 32

  14. Weather derivatives: Business hedge instrument from weather risks

    Directory of Open Access Journals (Sweden)

    Đorđević Bojan S.


    Full Text Available In the late 1990s, a new financial market was developed - a market for weather derivatives, so that the risk managers could hedge their exposure to weather risk. After a rather slow start, the weather derivatives market had started to grow rapidly. Risk managers could no longer blame poor financial results on the weather. Weather risk could now be removed by hedging procedure. This paper will explain briefly what the weather derivatives are and will point out at some of the motives for use of derivatives. Thereafter we will look at the history of the weather risk market, how the weather derivatives market has developed in recent years and also who are the current and potential players in the weather derivatives market.

  15. Dynamic Weather Routes: A Weather Avoidance Concept for Trajectory-Based Operations (United States)

    McNally, B. David; Love, John


    The integration of convective weather modeling with trajectory automation for conflict detection, trial planning, direct routing, and auto resolution has uncovered a concept that could help controllers, dispatchers, and pilots identify improved weather routes that result in significant savings in flying time and fuel burn. Trajectory automation continuously and automatically monitors aircraft in flight to find those that could potentially benefit from improved weather reroutes. Controllers, dispatchers, and pilots then evaluate reroute options to assess their suitability given current weather and traffic. In today's operations aircraft fly convective weather avoidance routes that were implemented often hours before aircraft approach the weather and automation does not exist to automatically monitor traffic to find improved weather routes that open up due to changing weather conditions. The automation concept runs in real-time and employs two keysteps. First, a direct routing algorithm automatically identifies flights with large dog legs in their routes and therefore potentially large savings in flying time. These are common - and usually necessary - during convective weather operations and analysis of Fort Worth Center traffic shows many aircraft with short cuts that indicate savings on the order of 10 flying minutes. The second and most critical step is to apply trajectory automation with weather modeling to determine what savings could be achieved by modifying the direct route such that it avoids weather and traffic and is acceptable to controllers and flight crews. Initial analysis of Fort Worth Center traffic suggests a savings of roughly 50% of the direct route savings could be achievable.The core concept is to apply trajectory automation with convective weather modeling in real time to identify a reroute that is free of weather and traffic conflicts and indicates enough time and fuel savings to be considered. The concept is interoperable with today

  16. Can Small Farmers Protect Themselves Against Bad Weather?


    World Bank


    Severe weather conditions can undo even the best efforts of families to break free of poverty. Households that rely on subsistence or small-scale farming are especially at the mercy of severe weather. Droughts and floods wipe out crops, leaving families hungry or without anything to sell to pay for essentials such as school fees or medicines. Climate changes have made weather even more var...

  17. Spaceborne weather radar (United States)

    Meneghini, Robert; Kozu, Toshiaki


    The present work on the development status of spaceborne weather radar systems and services discusses radar instrument complementarities, the current forms of equations for the characterization of such aspects of weather radar performance as surface and mirror-image returns, polarimetry, and Doppler considerations, and such essential factors in spaceborne weather radar design as frequency selection, scanning modes, and the application of SAR to rain detection. Attention is then given to radar signal absorption by the various atmospheric gases, rain drop size distribution and wind velocity determinations, and the characteristics of clouds, as well as the range of available estimation methods for backscattering, single- and dual-wavelength attenuation, and polarimetric and climatological characteristics.

  18. Utilization of Live Localized Weather Information for Sustainable Agriculture (United States)

    Anderson, J.; Usher, J.


    Authors: Jim Anderson VP, Global Network and Business Development WeatherBug® Professional Jeremy Usher Managing Director, Europe WeatherBug® Professional Localized, real-time weather information is vital for day-to-day agronomic management of all crops. The challenge for agriculture is twofold in that local and timely weather data is not often available for producers and farmers, and it is not integrated into decision-support tools they require. Many of the traditional sources of weather information are not sufficient for agricultural applications because of the long distances between weather stations, meaning the data is not always applicable for on-farm decision making processes. The second constraint with traditional weather information is the timeliness of the data. Most delivery systems are designed on a one-hour time step, whereas many decisions in agriculture are based on minute-by-minute weather conditions. This is especially true for decisions surrounding chemical and fertilizer application and frost events. This presentation will outline how the creation of an agricultural mesonet (weather network) can enable producers and farmers with live, local weather information from weather stations installed in farm/field locations. The live weather information collected from each weather station is integrated into a web-enabled decision support tool, supporting numerous on-farm agronomic activities such as pest management, or dealing with heavy rainfall and frost events. Agronomic models can be used to assess the potential of disease pressure, enhance the farmer's abilities to time pesticide applications, or assess conditions contributing to yield and quality fluctuations. Farmers and industry stakeholders may also view quality-assured historical weather variables at any location. This serves as a record-management tool for viewing previously uncharted agronomic weather events in graph or table form. This set of weather tools is unique and provides a

  19. Weather at LANL

    Energy Technology Data Exchange (ETDEWEB)

    Bruggeman, David Alan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)


    This report gives general information about how to become a meteorologist and what kinds of jobs exist in that field. Then it goes into detail about why weather is monitored at LANL, how it is done, and where the data can be accessed online.

  20. Rainy Weather Science. (United States)

    Reynolds, Karen


    Presents ideas on the use of rainy weather for activities in the earth, life, and physical sciences. Topics include formation and collision of raindrops, amount and distribution of rain, shedding of water by plants, mapping puddles and potholes, rainbow formation, stalking storms online, lightning, and comparing particles in the air before and…

  1. Climate, weather, and hops (United States)

    As climate and weather become more variable, hop growers face increased uncertainty in making decisions about their crop. Given the unprecedented nature of these changes, growers may no longer have enough information and intuitive understanding to adequately assess the situation and evaluate their m...

  2. Energy and the weather

    International Nuclear Information System (INIS)

    Roggen, M.


    Energy companies need to take the weather forecast into account these days. Proper anticipation of wind, sunshine and rain may yield a considerable profit for a programme manager, a trader or a renewable energy producer. Meteo Consult has made the energy market one of its priority issues and is developing all kinds of services to advise and assist the sector [nl

  3. Accessing Space Weather Information (United States)

    Morrison, D.; Weiss, M.; Immer, E. A.; Patrone, D.; Potter, M.; Barnes, R. J.; Colclough, C.; Holder, R.


    To meet the needs of our technology based society, space weather forecasting needs to be advanced and this will entail collaboration amongst research, military and commercial communities to find new ways to understand, characterize, and forecast. In this presentation VITMO, the Virtual Ionosphere-Thermosphere-Mesosphere Observatory will be used as a prototype for a generalized system as a means to bring together a set of tools to access data, models and online collaboration tools to enable rapid progress. VITMO, available at, currently provides a data access portal for researchers and scientists to enable finding data products as well as access to tools and models. To further the needs of space weather forecasters, the existing VITMO data holdings need to be expanded to provide additional datasets as well as integrating relevant models and model output. VITMO can easily be adapted for the Space Weather domain in its entirety. In this presentation, we will demonstrate how VITMO and the VITMO architecture can be utilized as a prototype in support of integration of Space Weather forecasting tools, models and data.

  4. Concept of Operations for Road Weather Connected Vehicle and Automated Vehicle Applications (United States)


    Weather has a significant impact on the operations of the nation's roadway system year round. These weather events translate into changes in traffic conditions, roadway safety, travel reliability, operational effectiveness and productivity. It is, th...

  5. Weatherization Works: An interim report of the National Weatherization Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Brown, M.A.; Berry, L.G. [Oak Ridge National Lab., TN (United States); Kinney, L.F. [Synertech Systems Corp., Syracuse, NY (United States)


    The National Weatherization Evaluation is the first comprehensive evaluation of the Weatherization Assistance Program since 1984. The evaluation was designed to accomplish the following goals: Estimate energy savings and cost effectiveness; Assess nonenergy impacts; Describe the weatherization network; Characterize the eligible population and resources; and Identify factors influencing outcomes and opportunities for the future. As a national program, weatherization incorporates considerable diversity due to regional differences. Therefore, evaluation results are presented both in aggregate and for three climate regions: cold, moderate and hot.

  6. Weather to travel to the beach

    NARCIS (Netherlands)

    Sabir, M.; van Ommeren, J.N.; Rietveld, P.


    Weather conditions have a strong effect on certain leisure destinations choices causing extreme road and parking congestion. An important question is then to what extent travelers react to these forms of congestion by switching to other travel modes. Using information from a national travel survey

  7. Characterization of weathering profile in granites and ...

    Indian Academy of Sciences (India)

    Characterization of weathering profile in granites and volcanosedimentary rocks in West Africa under humid tropical climate conditions. Case of the Dimbokro Catchment (Ivory Coast). M Koita1,2,∗, H Jourde1, K J P Koffi3, K S Da Silveira1 and A Biaou1. 1Water and Climate Research Center, International Institute for Water.

  8. First results of fair-weather atmospheric electricity measurements in ...

    Indian Academy of Sciences (India)

    The main objective of the campaign was to characterize the diurnal variation of three parameters namely vertical potential gradient (), vertical air–earth current density (Jz) and atmospheric electrical conductivity () in fair-weather conditions. The diurnal variation of and Jz over sixteen fair-weather days shows two ...

  9. Weather or Not To Teach Junior High Meteorology. (United States)

    Knorr, Thomas P.


    Presents a technique for teaching meteorology allowing students to observe and analyze consecutive weather maps and relate local conditions; a model illustrating the three-dimensional nature of the atmosphere is employed. Instructional methods based on studies of daily weather maps to trace systems sweeping across the United States are discussed.…

  10. Estuary wader capacity following severe weather mortality

    International Nuclear Information System (INIS)

    Clark, J.A.; Baillie, S.R.; Clark, N.A.; Langston, R.H.W.


    The building of a tidal power barrage across an estuary may lead to substantial changes in its ecology. Many of Britain's estuaries hold internationally important numbers of waders. Careful consideration, therefore, needs to be given to the likely effects of tidal power barrages on wader populations. The opportunity for increased understanding of the mechanisms which govern wader populations was provided by a period of severe winter weather in 1991, which resulted in a substantial mortality of waders in eastern England. Such conditions are known to be stressful to birds and the study objectives were to investigate both the effects of and recovery from severe weather. (author)

  11. Cold Weather and Cardiovascular Disease (United States)

    ... Venous Thromboembolism Aortic Aneurysm More Cold Weather and Cardiovascular Disease Updated:Sep 16,2015 Th is winter season ... can affect your heart, especially if you have cardiovascular disease . Some people who are outdoors in cold weather ...

  12. North America Synoptic Weather Maps (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Series of Synoptic Weather Maps. Maps contains a surface analysis comprised of plotted weather station observations, isobars indicating low and high-pressure...

  13. Severe Weather Data Inventory (SWDI) (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Severe Weather Data Inventory (SWDI) is an integrated database of severe weather records for the United States. SWDI enables a user to search through a variety...

  14. A survey of customers of space weather information (United States)

    Schrijver, C. J.; Rabanal, J. P.


    We present an analysis of the users of space weather information based on 2783 responses to an online survey among subscribers of NOAA's Space Weather Prediction Center e-mail services. The survey requested information focused on the three NOAA space weather scales: geomagnetic storms, solar radiation storms, and radio blackouts. Space weather information is most commonly obtained for reasons of human safety and continuity or reliability of operations. The information is primarily used for situational awareness, as aid to understand anomalies, to avoid impacts on current and near-future operations by implementing mitigating strategies, and to prepare for potential near-future impacts that might occur in conjunction with contingencies that include electric power outages or GPS perturbations. Interest in, anticipated impacts from, and responses to the three main categories of space weather are quite uniform across societal sectors. Approximately 40% of the respondents expect serious to very serious impacts from space weather events if no action were taken to mitigate or in the absence of adequate space weather information. The impacts of space weather are deemed to be substantially reduced because of the availability of, and their response to, space weather forecasts and alerts. Current and near-future space weather conditions are generally highly valued, considered useful, and generally, though not fully, adequate to avoid or mitigate societal impacts. We conclude that even among those receiving space weather information, there is considerable uncertainty about the possible impacts of space weather and thus about how to act on the space weather information that is provided.

  15. Artificial weathering of oils by rotary evaporator

    International Nuclear Information System (INIS)

    Fieldhouse, B.; Hollebone, B.P.; Singh, N.R.; Tong, T.S.; Mullin, J.


    Oil weathering has a considerable affect on the behaviour, impact and ultimate fate of an oil spill. As such, efforts have been made to study weathering as a whole using bench-scale procedures. The studies are generally divided into individual processes where the effect of other major processes are introduce as an amended sample input rather than a concurrent process. The weathering process that has the greatest effect immediately following an oil spill is evaporation, particularly for lighter oils. The rotary evaporator apparatus offers a convenient means of producing artificially weathered oil for laboratory studies. This paper reported on a study that examined the representativeness of samples obtained by this method compared to pan evaporation and the impact of changes to the apparatus or method parameters on sample chemistry. Experiments were performed on Alberta Sweet Mixed Blend no. 5 in a rotary evaporator under varying conditions of temperature and air flow at ambient pressure using 2 apparatus. The rate of mass loss increased with temperature and air flow rate as expected, but the quantitative relationships could not be defined from the data due to contributions by other uncontrolled factors. It was concluded that the rotary evaporator is not suited for evaporation rate studies, but rather for producing samples suitable for use in other studies. Chemical analysis showed that the relative abundance distributions of target n-alkane hydrocarbons varied with the degree of weathering of an oil in a consistent manner at ambient pressure, regardless of the temperature, rate of air exchange or other factors related to the apparatus and procedure. The composition of the artificially weathered oil was also consistent with that from an open pan simulation of a weathered oil slick. Loss of water content varied with the conditions of evaporation because of the differential rates of evaporation due to relative humidity considerations. It was concluded that weathering

  16. Space weather and space anomalies

    Directory of Open Access Journals (Sweden)

    L. I. Dorman


    Full Text Available A large database of anomalies, registered by 220 satellites in different orbits over the period 1971-1994 has been compiled. For the first time, data from 49 Russian Kosmos satellites have been included in a statistical analysis. The database also contains a large set of daily and hourly space weather parameters. A series of statistical analyses made it possible to quantify, for different satellite orbits, space weather conditions on the days characterized by anomaly occurrences. In particular, very intense fluxes (>1000 pfu at energy >10 MeV of solar protons are linked to anomalies registered by satellites in high-altitude (>15000 km, near-polar (inclination >55° orbits typical for navigation satellites, such as those used in the GPS network, NAVSTAR, etc. (the rate of anomalies increases by a factor ~20, and to a much smaller extent to anomalies in geostationary orbits, (they increase by a factor ~4. Direct and indirect connections between anomaly occurrence and geomagnetic perturbations are also discussed.

  17. Weather-centric rangeland revegetation planning (United States)

    Hardegree, Stuart P.; Abatzoglou, John T.; Brunson, Mark W.; Germino, Matthew; Hegewisch, Katherine C.; Moffet, Corey A.; Pilliod, David S.; Roundy, Bruce A.; Boehm, Alex R.; Meredith, Gwendwr R.


    Invasive annual weeds negatively impact ecosystem services and pose a major conservation threat on semiarid rangelands throughout the western United States. Rehabilitation of these rangelands is challenging due to interannual climate and subseasonal weather variability that impacts seed germination, seedling survival and establishment, annual weed dynamics, wildfire frequency, and soil stability. Rehabilitation and restoration outcomes could be improved by adopting a weather-centric approach that uses the full spectrum of available site-specific weather information from historical observations, seasonal climate forecasts, and climate-change projections. Climate data can be used retrospectively to interpret success or failure of past seedings by describing seasonal and longer-term patterns of environmental variability subsequent to planting. A more detailed evaluation of weather impacts on site conditions may yield more flexible adaptive-management strategies for rangeland restoration and rehabilitation, as well as provide estimates of transition probabilities between desirable and undesirable vegetation states. Skillful seasonal climate forecasts could greatly improve the cost efficiency of management treatments by limiting revegetation activities to time periods where forecasts suggest higher probabilities of successful seedling establishment. Climate-change projections are key to the application of current environmental models for development of mitigation and adaptation strategies and for management practices that require a multidecadal planning horizon. Adoption of new weather technology will require collaboration between land managers and revegetation specialists and modifications to the way we currently plan and conduct rangeland rehabilitation and restoration in the Intermountain West.

  18. Whether weather affects music (United States)

    Aplin, Karen L.; Williams, Paul D.


    The creative output of composers, writers, and artists is often influenced by their surroundings. To give a literary example, it has been claimed recently that some of the characters in Oliver Twist and A Christmas Carol were based on real-life people who lived near Charles Dickens in London [Richardson, 2012]. Of course, an important part of what we see and hear is not only the people with whom we interact but also our geophysical surroundings. Of all the geophysical phenomena to influence us, the weather is arguably the most significant because we are exposed to it directly and daily. The weather was a great source of inspiration for artists Claude Monet, John Constable, and William Turner, who are known for their scientifically accurate paintings of the skies [e.g., Baker and Thornes, 2006].

  19. Historical halo displays as past weather indicator (United States)

    Neuhäuser, Dagmar; Neuhäuser, Ralph


    Certain halo displays like the 22° circle were known to indicate specific weather pattern since millennia - as specified in Babylonian omina, Aristotle's Meteorology, farmers' weather lore, etc. Today, it is known that halo phenomena are due to refraction and reflection of sun and moon light in ice crystals in cirrus and cirrostratus, so that halo observations do indicate atmospheric conditions like temperature, humidity, pressure etc. in a few km height. The Astronomical Diaries of Babylonia have recorded both halo phenomena (circles, parhelia, etc.) and weather conditions (rain, clouds, etc.), so that we can use them to show statistically, whether, which and how fast halo phenomena are related to weather - for the last few centuries BC for Babylonia. We can then also compare the observations of Babylonian priests in the given BC epoch (without air and light pollution) with the last few decades of the modern epoch (with air and light pollution), where amateur halo observers have systematically recorded such phenomena (in Europe). Weather and climate are known to be partly driven by solar activity. Hence, one could also consider whether there is an indirect relation between halo displays as weather proxy and aurorae as solar activity proxy - if low solar activity leads to low pressure systems, one could expect more halos, preliminary studies show such a hint. For the last few decades, we have many halo observations, satellite imaging of the aurora oval, and many data on solar activity. A statistically sufficient amount of aurora and halo observations should be available for the historic time to investigate such a possible connection: halos were recorded very often in antiquity and the medieval times (as found in chronicles etc.), and modern scholarly catalogs of aurorae also often contain unrecognized halo displays.

  20. Space Weathering of Lunar Rocks (United States)

    Noble, S. K.; Keller, L. P.; Christoffersen, R.; Rahman, Z.


    All materials exposed at the lunar surface undergo space weathering processes. On the Moon, boulders make up only a small percentage of the exposed surface, and areas where such rocks are exposed, like central peaks, are often among the least space weathered regions identified from remote sensing data. Yet space weathered surfaces (patina) are relatively common on returned rock samples, some of which directly sample the surface of larger boulders. Because, as witness plates to lunar space weathering, rocks and boulders experience longer exposure times compared to lunar soil grains, they allow us to develop a deeper perspective on the relative importance of various weathering processes as a function of time.

  1. Performance evaluation of solar heating system with thermal core type soil heat storage. Part 5. Performance prediction and evaluation of the system considered of the weather condition; Taiyonetsu riyo netsu kakushiki dojo chikunetsu system no seino hyoka. 5. Kisho joken wo koryoshita system no seino yosoku to hyoka

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, N. [Nishimatsu Construction Co. Ltd., Tokyo (Japan); Nakajima, Y. [Kogakuin University, Tokyo (Japan)


    The paper studied a solar heating system with thermal core type soil heat storage (combining a thermal core composing of a water tank and an underground pebble tank and the soil around the heat storage tank and also using solar energy). Solar energy is stored by temperature level in the high temperature water tank, the low temperature pebble heat storage tank and the soil around the heat storage tank. Heat is recovered according to temperature as direct ventilation space heating (utilization of pebble tank air), floor heating (utilization of hot water of the heat storage water tank) and heat pump heat source (utilization of pebble tank air). A study was made of performance and regional effectiveness of the system under different weather conditions. A study was also made of effects of the water tank for short term heat storage by changing the water volume. Using the same structure, etc. for the system, the system was evaluated using weather data of Sapporo, Tokyo and Kagoshima. In terms of efficiency of the system, the system structure was found to be most suitable for weather conditions in Tokyo. However, the air heat source heat pump which cannot be usually used in the cold area has come to be used. Such effect except efficiency is also considered, and the amount of performance to be targeted in each region changes. 2 refs., 14 figs., 1 tab.

  2. Fire behavior, fuel treatments, and fire suppression on the Hayman Fire - Part 1: Fire weather, meteorology, and climate (United States)

    Larry Bradshaw; Roberta Bartlette; John McGinely; Karl Zeller


    The Hayman Fire in June 2002 was heavily influenced by antecedent regional weather conditions, culminating in a series of daily weather events that aligned to produce widely varying fire behavior. This review of weather conditions associated with the Hayman Fire consists of two parts: 1) A brief overview of prior conditions as described by a regional climate review and...

  3. Designing and Implementing Weather Generators as Web Services

    Directory of Open Access Journals (Sweden)

    Rassarin Chinnachodteeranun


    Full Text Available Climate and weather realizations are essential inputs for simulating crop growth and yields to analyze the risks associated with future conditions. To simplify the procedure of generating weather realizations and make them available over the Internet, we implemented novel mechanisms for providing weather generators as web services, as well as a mechanism for sharing identical weather realizations given a climatological information. A web service for preparing long-term climate data was implemented based on an international standard, Sensor Observation Service (SOS. The weather generator services, which are the core components of the framework, analyze climatological data, and can take seasonal climate forecasts as inputs for generating weather realizations. The generated weather realizations are encoded in a standard format, which are ready for use to crop modeling. All outputs are generated in SOS standard, which broadens the extent of data sharing and interoperability with other sectoral applications, e.g., water resources management. These services facilitate the development of other applications requiring input weather realizations, as these can be obtained easily by just calling the service. The workload of analysts related to data preparation and handling of legacy weather generator programs can be reduced. The architectural design and implementation presented here can be used as a prototype for constructing further services on top of an interoperable sensor network system.

  4. Is It Going to Rain Today? Understanding the Weather Forecast. (United States)

    Allsopp, Jim; And Others


    Presents a resource for science teachers to develop a better understanding of weather forecasts, including outlooks, watches, warnings, advisories, severe local storms, winter storms, floods, hurricanes, nonprecipitation hazards, precipitation probabilities, sky condition, and UV index. (MKR)

  5. Researching the weather impact on trip generation in European cities

    Directory of Open Access Journals (Sweden)

    Petrović Dragana D.


    Full Text Available Climate change and changes in weather conditions have the impact on the transport system. Changes in weather conditions cause changes in the transport supply, as well as in transport demand. The first researches about weather impact on transport demand in the cities were carried out at the end of the nineties and have been intensified in the last ten years. Most of the researches about weather impact on trip generation were carried out in the countries of Northern Europe. In recent years, researches are also conducted in European countries that have climate conditions and population habits significantly different from northern European countries. This paper presents an overview of the areas in which weather impact on the trip generation was investigated. The most important conclusions of the conducted research are presented and the weather components that have the greatest influence on the trip generation are indicated. Understanding the weather impact on the transport demand is necessary for the implementation of transportation planning procedures in the upcoming climate change conditions.

  6. Activities of NICT space weather project (United States)

    Murata, Ken T.; Nagatsuma, Tsutomu; Watari, Shinichi; Shinagawa, Hiroyuki; Ishii, Mamoru

    NICT (National Institute of Information and Communications Technology) has been in charge of space weather forecast service in Japan for more than 20 years. The main target region of the space weather is the geo-space in the vicinity of the Earth where human activities are dominant. In the geo-space, serious damages of satellites, international space stations and astronauts take place caused by energetic particles or electromagnetic disturbances: the origin of the causes is dynamically changing of solar activities. Positioning systems via GPS satellites are also im-portant recently. Since the most significant effect of positioning error comes from disturbances of the ionosphere, it is crucial to estimate time-dependent modulation of the electron density profiles in the ionosphere. NICT is one of the 13 members of the ISES (International Space Environment Service), which is an international assembly of space weather forecast centers under the UNESCO. With help of geo-space environment data exchanging among the member nations, NICT operates daily space weather forecast service every day to provide informa-tion on forecasts of solar flare, geomagnetic disturbances, solar proton event, and radio-wave propagation conditions in the ionosphere. The space weather forecast at NICT is conducted based on the three methodologies: observations, simulations and informatics (OSI model). For real-time or quasi real-time reporting of space weather, we conduct our original observations: Hiraiso solar observatory to monitor the solar activity (solar flare, coronal mass ejection, and so on), domestic ionosonde network, magnetometer HF radar observations in far-east Siberia, and south-east Asia low-latitude ionosonde network (SEALION). Real-time observation data to monitor solar and solar-wind activities are obtained through antennae at NICT from ACE and STEREO satellites. We have a middle-class super-computer (NEC SX-8R) to maintain real-time computer simulations for solar and solar

  7. Fat, weather, and date affect migratory songbirds’ departure decisions, routes, and time it takes to cross the Gulf of Mexico (United States)

    Deppe, Jill L.; Ward, Michael P.; Bolus, Rachel T.; Diehl, Robert H.; Celis-Murillo, A.; Zenzal, Theodore J.; Moore, Frank R.; Benson, Thomas J.; Smolinsky, Jaclyn A.; Schofield, Lynn N.; Enstrom, David A.; Paxton, Eben H.; Bohrer, Gil; Beveroth, Tara A.; Raim, Arlo; Obringer, Renee L.; Delaney, David; Cochran, William W.


    Approximately two thirds of migratory songbirds in eastern North America negotiate the Gulf of Mexico (GOM), where inclement weather coupled with no refueling or resting opportunities can be lethal. However, decisions made when navigating such features and their consequences remain largely unknown due to technological limitations of tracking small animals over large areas. We used automated radio telemetry to track three songbird species (Red-eyed Vireo, Swainson’s Thrush, Wood Thrush) from coastal Alabama to the northern Yucatan Peninsula (YP) during fall migration. Detecting songbirds after crossing ∼1,000 km of open water allowed us to examine intrinsic (age, wing length, fat) and extrinsic (weather, date) variables shaping departure decisions, arrival at the YP, and crossing times. Large fat reserves and low humidity, indicative of beneficial synoptic weather patterns, favored southward departure across the Gulf. Individuals detected in the YP departed with large fat reserves and later in the fall with profitable winds, and flight durations (mean = 22.4 h) were positively related to wind profit. Age was not related to departure behavior, arrival, or travel time. However, vireos negotiated the GOM differently than thrushes, including different departure decisions, lower probability of detection in the YP, and longer crossing times. Defense of winter territories by thrushes but not vireos and species-specific foraging habits may explain the divergent migratory behaviors. Fat reserves appear extremely important to departure decisions and arrival in the YP. As habitat along the GOM is degraded, birds may be limited in their ability to acquire fat to cross the Gulf.

  8. Winter Weather Tips: Understanding Alerts and Staying Safe this Season | Poster (United States)

    By Jenna Seiss and Kylie Tomlin, Guest Writers, and Ashley DeVine, Staff Writer Maryland residents face the possibility of dangerous winter weather each year—from icy conditions to frigid temperatures. You may be familiar with the different types of winter weather alerts issued by the National Weather Service (NWS), but do you know what each alert means?  

  9. Weather and Atmospheric Effects on the Measurement and Use of Electro-Optical Signature Data (United States)


    Radiation from these atmospheric constituents also contaminates the radiation from targets. Some weather conditions, such as clouds and fogs...Optical Systems Group RCC 469-17 WEATHER AND ATMOSPHERIC EFFECTS ON THE MEASUREMENT AND USE OF ELECTRO-OPTICAL SIGNATURE DATA...NATIONAL AERONAUTICS AND SPACE ADMINISTRATION This page intentionally left blank. DOCUMENT 469-17 WEATHER AND ATMOSPHERIC

  10. Effects of weather extremes on crop yields in Nigeria | J O | African ...

    African Journals Online (AJOL)

    This study seeks to analyze how extreme weather conditions affect crop yield and risk in Nigeria and to assess the potential implications of weather extremes on the nation's crop insurance portfolio. A panel of Nigerian state-level crop yields was paired with a fine-scale weather data set that included distribution of ...

  11. Development research for wind power weather insurance index through analysis of weather elements and new renewable energy (United States)

    Park, Ki-Jun; jung, jihoon


    Recently, social interests and concerns regarding weather risk are gradually growing with increase in frequency of unusual phenomena. Actually, the threat to many vulnerable industries (sensitive to climate conditions) such as agriculture, architecture, logistics, transportation, clothing, home appliance, and food is increasing. According to climate change scenario reports published by National Institute of Meteorological Research (NIMR) in 2012, temperature and precipitation are expected to increase by 4.8% and 13.2% respectively with current status of CO2 emissions (RCP 8.5) at the end of the 21st century. Furthermore, most of areas in Korea except some mountainous areas are also expected to shift from temperate climate to subtropical climate. In the context of climate change, the intensity of severe weathers such as heavy rainfalls and droughts is enhanced, which, in turn, increases the necessity and importance of weather insurance. However, most insurance market is small and limited to policy insurance like crop disaster insurance, and natural disaster insurance in Korea. The reason for poor and small weather insurance market could result from the lack of recognition of weather risk management even though all economic components (firms, governments, and households) are significantly influenced by weather. However, fortunately, new renewable energy and leisure industry which are vulnerable to weather risk are in a long term uptrend and the interest of weather risk is also getting larger and larger in Korea. So, in the long run, growth potential of weather insurance market in Korea might be higher than ever. Therefore, in this study, the capacity of power generation per hour and hourly wind speed are analyzed to develop and test weather insurance index for wind power, and then the effectiveness of weather insurance index are investigated and the guidance will be derived to objectively calculate the weather insurance index.

  12. The Weather in Richmond


    Harless, William Edwin


    ABSTRACT: The Weather in Richmond is a short documentary about the Oilers, the football team at Richmond High School in downtown Richmond, California, as they struggle in 2012 with the legacy of winning no games, with the exception of a forfeit, in two years. The video documents the city of Richmond’s poverty and violence, but it also is an account of the city’s cultural diversity, of the city’s industrial history and of the hopes of some of the people who grow up there. The...

  13. Weather Balloon Ascent Rate (United States)

    Denny, Mark


    The physics of a weather balloon is analyzed. The surprising aspect of the motion of these balloons is that they ascend to great altitudes (typically 35 km) at a more or less constant rate. Such behavior is not surprising near the ground—say for a helium-filled party balloon rising from street level to the top of the Empire State building—but it is unexpected for a balloon that rises to altitudes where the air is rarefied. We show from elementary physical laws why the ascent rate is approximately constant.

  14. Combating bad weather

    CERN Document Server

    Mukhopadhyay, Sudipta


    Every year lives and properties are lost in road accidents. About one-fourth of these accidents are due to low vision in foggy weather. At present, there is no algorithm that is specifically designed for the removal of fog from videos. Application of a single-image fog removal algorithm over each video frame is a time-consuming and costly affair. It is demonstrated that with the intelligent use of temporal redundancy, fog removal algorithms designed for a single image can be extended to the real-time video application. Results confirm that the presented framework used for the extension of the

  15. Weather Impact on Airport Arrival Meter Fix Throughput (United States)

    Wang, Yao


    Time-based flow management provides arrival aircraft schedules based on arrival airport conditions, airport capacity, required spacing, and weather conditions. In order to meet a scheduled time at which arrival aircraft can cross an airport arrival meter fix prior to entering the airport terminal airspace, air traffic controllers make regulations on air traffic. Severe weather may create an airport arrival bottleneck if one or more of airport arrival meter fixes are partially or completely blocked by the weather and the arrival demand has not been reduced accordingly. Under these conditions, aircraft are frequently being put in holding patterns until they can be rerouted. A model that predicts the weather impacted meter fix throughput may help air traffic controllers direct arrival flows into the airport more efficiently, minimizing arrival meter fix congestion. This paper presents an analysis of air traffic flows across arrival meter fixes at the Newark Liberty International Airport (EWR). Several scenarios of weather impacted EWR arrival fix flows are described. Furthermore, multiple linear regression and regression tree ensemble learning approaches for translating multiple sector Weather Impacted Traffic Indexes (WITI) to EWR arrival meter fix throughputs are examined. These weather translation models are developed and validated using the EWR arrival flight and weather data for the period of April-September in 2014. This study also compares the performance of the regression tree ensemble with traditional multiple linear regression models for estimating the weather impacted throughputs at each of the EWR arrival meter fixes. For all meter fixes investigated, the results from the regression tree ensemble weather translation models show a stronger correlation between model outputs and observed meter fix throughputs than that produced from multiple linear regression method.

  16. Severe Weather Forecast Decision Aid (United States)

    Bauman, William H., III; Wheeler, Mark M.; Short, David A.


    This report presents a 15-year climatological study of severe weather events and related severe weather atmospheric parameters. Data sources included local forecast rules, archived sounding data, Cloud-to-Ground Lightning Surveillance System (CGLSS) data, surface and upper air maps, and two severe weather event databases covering east-central Florida. The local forecast rules were used to set threat assessment thresholds for stability parameters that were derived from the sounding data. The severe weather events databases were used to identify days with reported severe weather and the CGLSS data was used to differentiate between lightning and non-lightning days. These data sets provided the foundation for analyzing the stability parameters and synoptic patterns that were used to develop an objective tool to aid in forecasting severe weather events. The period of record for the analysis was May - September, 1989 - 2003. The results indicate that there are certain synoptic patterns more prevalent on days with severe weather and some of the stability parameters are better predictors of severe weather days based on locally tuned threat values. The results also revealed the stability parameters that did not display any skill related to severe weather days. An interactive web-based Severe Weather Decision Aid was developed to assist the duty forecaster by providing a level of objective guidance based on the analysis of the stability parameters, CGLSS data, and synoptic-scale dynamics. The tool will be tested and evaluated during the 2005 warm season.

  17. Weatherization Apprenticeship Program

    Energy Technology Data Exchange (ETDEWEB)

    Watson, Eric J


    Weatherization improvement services will be provided to Native people by Native people. The proposed project will recruit, train and hire two full-time weatherization technicians who will improve the energy efficiency of homes of Alaska Natives/American Indians residing in the Indian areas, within the Cook Inlet Region of Alaska. The Region includes Anchorage as well as 8 small tribal villages: The Native Villages of Eklutna, Knik, Chickaloon, Seldovia, Ninilchik, Kenaitze, Salamatof, and Tyonek. This project will be a partnership between three entities, with Cook Inlet Tribal Council (CITC) as the lead agency: CITCA's Employment and Training Services Department, Cook Inlet Housing Authority and Alaska Works Partnership. Additionally, six of the eight tribal villages within the Cook Inlet Region of Alaska have agreed to work with the project in order to improve the energy efficiency of their tribally owned buildings and homes. The remaining three villages will be invited to participate in the establishment of an intertribal consortium through this project. Tribal homes and buildings within Anchorage fall under Cook Inlet Region, Inc. (CIRI) tribal authority.

  18. Space Weather- Physics and Effects

    CERN Document Server

    Bothmer, Volker


    This book is a state-of-the-art review on the physics of space weather and on space weather impacts on human technology, including manned spaceflight. With contributions from a team of international experts, this comprehensive work covers all aspects of space weather physical processes, and all known aspects of space hazards from humans, both in space and on Earth. Space Weather - Physics and Effects provides the first comprehensive, scientific background of space storms caused by the sun and its impact on geospace focuses on weather issues that have become vital for the development of nationwide technological infrastructures explains magnetic storms on Earth, including the effects of EUV radiation on the atmosphere is an invaluable aid in establishing real-time weather forecasts details the threat that solar effects might have on modern telecommunication systems, including national power grid systems, aircraft and manned spaceflight.

  19. Land plants, weathering, and Paleozoic climatic evolution (United States)

    Goddéris, Yves; Maffre, Pierre; Donnadieu, Yannick; Carretier, Sébastien


    At the end of the Paleozoic, the Earth plunged into the longest and most severe glaciation of the Phanerozoic eon (Montanez et al., 2013). The triggers for this event (called the Late Paleozoic Ice Age, LPIA) are still debated. Based on field observations and laboratory experiments showing that CO2 consumption by rock weathering is enhanced by the presence of plants, the onset of the LPIA has been related to the colonization of the continents by vascular plants in the latest Devonian. By releasing organic acids, concentrating respired CO2 in the soil, and by mechanically breaking rocks with their roots, land plants may have increased the weatherability of the continental surfaces. The "greening" of the continents may also have contributed to an enhanced burial of organic carbon in continental sedimentary basins, assuming that lignin decomposers have not yet evolved (Berner, 2004). As a consequence, CO2 went down, setting the conditions for the onset of the LPIA. This scenario is now widely accepted in the scientific community, and reinforces the feeling that biotic evolutionary steps are main drivers of the long-term climatic evolution. Although appealing, this scenario suffers from some weaknesses. The timing of the continent colonization by vascular plants was achieved in the late Devonian, several tens of million years before the onset of the LPIA (Davies and Gibling, 2013). Second, lignin decomposer fungi were present at the beginning of the Carboniferous, 360 million years ago while the LPIA started around 340-330 Ma (Nelsen et al., 2016). Land plants have also decreased the continental albedo, warming the Earth surface and promoting runoff. Weathering was thus facilitated and CO2 went down. Yet, temperature may have stayed constant, the albedo change compensating for the CO2 fall (Le Hir et al., 2010). From a modelling point of view, the effect of land plants on CO2 consumption by rock weathering is accounted for by forcing the weatherability of the

  20. Chemical weathering within high mountain depositional structures (United States)

    Emberson, R.; Hovius, N.; Hsieh, M.; Galy, A.


    Material eroded from active mountain belts can spend extended periods in depositional structures within the mountain catchments before reaching its final destination. This can be in the form of colluvial fills, debris fans, or alluvial valley fills and terraces. The existence of these landforms is testament to the catastrophic nature of the events that lead to their formation. Sourced by landslides or debris flows, the material that forms them is in many cases either unweathered or incompletely weathered (e.g. Hsieh and Chyi 2010). Due to their porosity and permeability, these deposits likely serve as locations for extensive chemical weathering within bedrock landscapes. Recent studies considering the weathering flux from active mountain belts (e.g. Calmels et al. 2011) have distinguished between shallow and deep groundwater in terms of the contribution to the solute budget from a catchment; in this study we have attempted to more tightly constrain the sources of these groundwater components in the context of the previously mentioned depositional structures. We have collected water samples from a large number of sites within the Chen-you-lan catchment (370 km2) in central west Taiwan to elucidate the location of chemical weathering as well as how the sourcing of weathering products varies depending on the meteorological conditions. Central Taiwan has good attributes for this work considering both the extremely active tectonics and tropical climate, (including extensive cyclonic activity) which stimulate both extensive physical erosion (Dadson et al. 2003) and chemical weathering (Calmels et al. 2011). The Chen-you-lan catchment in particular contains some of the largest alluvial deposits inside the Taiwan mountain belt (Hsieh and Chyi 2010). Our preliminary results suggest that weathering within intramontane deposits may be a significant source of solutes, with the hyporheic systems within mountain rivers of particular import. This input of solutes occurs over

  1. Space Weather Activities in Ireland


    Gallagher, Peter


    Talk given at Space Weather Seminar at Irish National Emergency Coordinating Centre (NECC), Office of Emergency Planning, Department of Defence, Kildare Street, Dublin on Thursday 3 July, 2014. Agenda 14.00: Welcome and Introduction– Brigitta O’Doherty, Office of Emergency Planning 14.05: Space Weather – What are the issues ? - Mr. William J Murtagh, Programm Coordinator, Space Weather Prediction Centre, National Oceanic and Observation Administration, US Department of Commerce 15...

  2. Chemical weathering of flat continents (United States)

    Maffre, Pierre; Goddéris, Yves; Ladant, Jean-Baptiste; Carretier, Sébastien; Moquet, Jean-Sébastien; Donnadieu, Yannick; Labat, David; Vigier, Nathalie


    Mountain uplift is often cited as the main trigger of the end Cenozoic glacial state. Conversely, the absence of major uplift is invoked to explain the early Eocene warmth. This hypothesis relies on the fact that mountain uplift increases the supply of "fresh" silicate rocks through enhanced physical erosion, and boosts CO2 consumption by chemical weathering. Atmospheric CO2 —and therefore climate— then adjust to compensate for the changes in weatherability and keep the geological carbon cycle balanced (Walker's feedback). Yet, orography also strongly influences the global atmospheric and oceanic circulation. Consequently, building mountains does not only change the weathering regime in the restricted area of the orogen, but also modifies the worldwide distribution of the weathering flux. We conduct a numerical experiment in which we simulate the climate of the present day world, with all mountain ranges being removed. Up-to-date weathering and erosion laws (West, 2012; Carretier et al., 2014) are then used to quantify the global weathering for a "flat world". Specifically, the parameters of the weathering law are first carefully calculated such that the present day distribution of the weathering fluxes matches the riverine geochemical data. When removing mountains, we predict a warmer and wetter climate, especially in geographic spots located in the equatorial band. The calculated response of the global weathering flux ranges from an increase by 50% to a decrease by 70% (relative to the present day with mountains). These contrasted responses are pending on the parameterisation of the weathering model, that makes it more sensitive to reaction rate (kinetically-limited mode) or to rock supply by erosion (supply-limited mode). The most likely parameterisation —based on data-model comparison— predicts a decrease of CO2 consumption by weathering by 40% when mountains are removed. These results show that (1) the behaviour of the weathering engine depends on the

  3. Active Discriminative Dictionary Learning for Weather Recognition

    Directory of Open Access Journals (Sweden)

    Caixia Zheng


    Full Text Available Weather recognition based on outdoor images is a brand-new and challenging subject, which is widely required in many fields. This paper presents a novel framework for recognizing different weather conditions. Compared with other algorithms, the proposed method possesses the following advantages. Firstly, our method extracts both visual appearance features of the sky region and physical characteristics features of the nonsky region in images. Thus, the extracted features are more comprehensive than some of the existing methods in which only the features of sky region are considered. Secondly, unlike other methods which used the traditional classifiers (e.g., SVM and K-NN, we use discriminative dictionary learning as the classification model for weather, which could address the limitations of previous works. Moreover, the active learning procedure is introduced into dictionary learning to avoid requiring a large number of labeled samples to train the classification model for achieving good performance of weather recognition. Experiments and comparisons are performed on two datasets to verify the effectiveness of the proposed method.

  4. Space Weather: What is it, and Why Should a Meteorologist Care? (United States)

    SaintCyr, Chris; Murtagh, Bill


    "Space weather" is a term coined almost 15 years ago to describe environmental conditions ABOVE Earth's atmosphere that affect satellites and astronauts. As society has become more dependent on technology, we nave found that space weather conditions increasingly affect numerous commercial and infrastructure sectors: airline operations, the precision positioning industry, and the electric power grid, to name a few. Similar to meteorology where "weather" often refers to severe conditions, "space weather" includes geomagnetic storms, radiation storms, and radio blackouts. But almost all space weather conditions begin at the Sun--our middle-age, magnetically-variable star. At NASA, the science behind space weather takes place in the Heliophysics Division. The Space Weather Prediction Center in Boulder, Colorado, is manned jointly by NCAA and US Air Force personnel, and it provides space weather alerts and warnings for disturbances that can affect people and equipment working in space and on Earth. Organizationally, it resides in NOAA's National Weather Service as one of the National Centers for Environmental Prediction. In this seminar we hope to give the audience a brief introduction to the causes of space weather, discuss some of the effects, and describe the state of the art in forecasting. Our goal is to highlight that meteorologists are increasingly becoming the "first responders" to questions about space weather causes and effects.

  5. Multiple weather factors affect apparent survival of European passerine birds.

    Directory of Open Access Journals (Sweden)

    Volker Salewski

    Full Text Available Weather affects the demography of animals and thus climate change will cause local changes in demographic rates. In birds numerous studies have correlated demographic factors with weather but few of those examined variation in the impacts of weather in different seasons and, in the case of migrants, in different regions. Using capture-recapture models we correlated weather with apparent survival of seven passerine bird species with different migration strategies to assess the importance of selected facets of weather throughout the year on apparent survival. Contrary to our expectations weather experienced during the breeding season did not affect apparent survival of the target species. However, measures for winter severity were associated with apparent survival of a resident species, two short-distance/partial migrants and a long-distance migrant. Apparent survival of two short distance migrants as well as two long-distance migrants was further correlated with conditions experienced during the non-breeding season in Spain. Conditions in Africa had statistically significant but relatively minor effects on the apparent survival of the two long-distance migrants but also of a presumably short-distance migrant and a short-distance/partial migrant. In general several weather effects independently explained similar amounts of variation in apparent survival for the majority of species and single factors explained only relatively low amounts of temporal variation of apparent survival. Although the directions of the effects on apparent survival mostly met our expectations and there are clear predictions for effects of future climate we caution against simple extrapolations of present conditions to predict future population dynamics. Not only did weather explains limited amounts of variation in apparent survival, but future demographics will likely be affected by changing interspecific interactions, opposing effects of weather in different seasons, and

  6. The potential impact of regional climate change on fire weather in the United States (United States)

    Ying Tang; Shiyuan Zhong; Lifeng Luo; Xindi Bian; Warren E. Heilman; Julie. Winkler


    Climate change is expected to alter the frequency and severity of atmospheric conditions conducive for wildfires. In this study, we assess potential changes in fire weather conditions for the contiguous United States using the Haines Index (HI), a fire weather index that has been employed operationally to detect atmospheric conditions favorable for large and erratic...

  7. Implementation of bayesian model averaging on the weather data forecasting applications utilizing open weather map (United States)

    Rahmat, R. F.; Nasution, F. R.; Seniman; Syahputra, M. F.; Sitompul, O. S.


    Weather is condition of air in a certain region at a relatively short period of time, measured with various parameters such as; temperature, air preasure, wind velocity, humidity and another phenomenons in the atmosphere. In fact, extreme weather due to global warming would lead to drought, flood, hurricane and other forms of weather occasion, which directly affects social andeconomic activities. Hence, a forecasting technique is to predict weather with distinctive output, particullary mapping process based on GIS with information about current weather status in certain cordinates of each region with capability to forecast for seven days afterward. Data used in this research are retrieved in real time from the server openweathermap and BMKG. In order to obtain a low error rate and high accuracy of forecasting, the authors use Bayesian Model Averaging (BMA) method. The result shows that the BMA method has good accuracy. Forecasting error value is calculated by mean square error shows (MSE). The error value emerges at minumum temperature rated at 0.28 and maximum temperature rated at 0.15. Meanwhile, the error value of minimum humidity rates at 0.38 and the error value of maximum humidity rates at 0.04. Afterall, the forecasting error rate of wind speed is at 0.076. The lower the forecasting error rate, the more optimized the accuracy is.

  8. Prototype road weather performance management (RW-PM) tool and Minnesota Department of Transportation (MnDOT) field evaluation. (United States)


    FHWAs Road Weather Management Program developed : a Prototype Road Weather Management (RW-PM) Tool : to help DOTs maximize the effectiveness of their maintenance : resources and efficiently adjust deployments dynamically, : as road conditions and ...

  9. The Challenge of Weather Prediction

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 2; Issue 3. The Challenge of Weather Prediction Old and Modern Ways of Weather Forecasting. B N Goswami. Series Article Volume 2 Issue 3 March 1997 pp 8-15. Fulltext. Click here to view fulltext PDF. Permanent link:

  10. Now, Here's the Weather Forecast... (United States)

    Richardson, Mathew


    The Met Office has a long history of weather forecasting, creating tailored weather forecasts for customers across the world. Based in Exeter, the Met Office is also home to the Met Office Hadley Centre, a world-leading centre for the study of climate change and its potential impacts. Climate information from the Met Office Hadley Centre is used…

  11. Weatherization Assistance Program Fact Sheet

    Energy Technology Data Exchange (ETDEWEB)



    The U.S. Department of Energy’s (DOE) Weatherization Assistance Program reduces energy costs for low-income households by increasing the energy e ciency of their homes, while ensuring their health and safety. The Program supports 8,500 jobs and provides weatherization services to approximately 35,000 homes every year using DOE funds.

  12. Regional-seasonal weather forecasting

    Energy Technology Data Exchange (ETDEWEB)

    Abarbanel, H.; Foley, H.; MacDonald, G.; Rothaus, O.; Rudermann, M.; Vesecky, J.


    In the interest of allocating heating fuels optimally, the state-of-the-art for seasonal weather forecasting is reviewed. A model using an enormous data base of past weather data is contemplated to improve seasonal forecasts, but present skills do not make that practicable. 90 references. (PSB)

  13. Detection of Weather Radar Clutter

    DEFF Research Database (Denmark)

    Bøvith, Thomas


    Weather radars provide valuable information on precipitation in the atmosphere but due to the way radars work, not only precipitation is observed by the weather radar. Weather radar clutter, echoes from non-precipitating targets, occur frequently in the data, resulting in lowered data quality....... Especially in the application of weather radar data in quantitative precipitation estimation and forecasting a high data quality is important. Clutter detection is one of the key components in achieving this goal. This thesis presents three methods for detection of clutter. The methods use supervised...... and precipitating and non-precipitating clouds. Another method uses the difference in the motion field of clutter and precipitation measured between two radar images. Furthermore, the direction of the wind field extracted from a weather model is used. The third method uses information about the refractive index...

  14. PV powering a weather station for severe weather

    Energy Technology Data Exchange (ETDEWEB)

    Young, W. Jr. [Florida Solar Energy Center, Cocoa, FL (United States); Schmidt, J. [Joe Schmidt, Inc., Miami, FL (United States)


    A natural disaster, such as Hurricane Andrew, destroys thousands of homes and businesses. The destruction from this storm left thousands of people without communications, potable water, and electrical power. This prompted the Florida Solar Energy Center to study the application of solar electric power for use in disasters. During this same period, volunteers at the Tropical Prediction Center at the National Hurricane Center (NHC), Miami, Florida and the Miami Office of the National Weather Service (NWS) were working to increase the quantity and quality of observations received from home weather stations. Forecasters at NHC have found surface reports from home weather stations a valuable tool in determining the size, strength and course of hurricanes. Home weather stations appear able to record the required information with an adequate level of accuracy. Amateur radio, utilizing the Automatic Packet Report System, (APRS) can be used to transmit this data to weather service offices in virtually real time. Many weather data collecting stations are at remote sites which are not readily serviced by dependable commercial power. Photovoltaic (solar electric) modules generate electricity and when connected to a battery can operate as a stand alone power system. The integration of these components provides an inexpensive standalone system. The system is easy to install, operates automatically and has good communication capabilities. This paper discusses the design criteria, operation, construction and deployment of a prototype solar powered weather station.

  15. Aviation weather : FAA and the National Weather Service are considering plans to consolidate weather service offices, but face significant challenges. (United States)


    The National Weather Services (NWS) weather products are a vital component of the Federal Aviation Administrations (FAA) air traffic control system. In addition to providing aviation weather products developed at its own facilities, NWS also pr...

  16. Colluvial deposits as a possible weathering reservoir in uplifting mountains (United States)

    Carretier, Sébastien; Goddéris, Yves; Martinez, Javier; Reich, Martin; Martinod, Pierre


    The role of mountain uplift in the evolution of the global climate over geological times is controversial. At the heart of this debate is the capacity of rapid denudation to drive silicate weathering, which consumes CO2. Here we present the results of a 3-D model that couples erosion and weathering during mountain uplift, in which, for the first time, the weathered material is traced during its stochastic transport from the hillslopes to the mountain outlet. To explore the response of weathering fluxes to progressively cooler and drier climatic conditions, we run model simulations accounting for a decrease in temperature with or without modifications in the rainfall pattern based on a simple orographic model. At this stage, the model does not simulate the deep water circulation, the precipitation of secondary minerals, variations in the pH, below-ground pCO2, and the chemical affinity of the water in contact with minerals. Consequently, the predicted silicate weathering fluxes probably represent a maximum, although the predicted silicate weathering rates are within the range of silicate and total weathering rates estimated from field data. In all cases, the erosion rate increases during mountain uplift, which thins the regolith and produces a hump in the weathering rate evolution. This model thus predicts that the weathering outflux reaches a peak and then falls, consistent with predictions of previous 1-D models. By tracking the pathways of particles, the model can also consider how lateral river erosion drives mass wasting and the temporary storage of colluvial deposits on the valley sides. This reservoir is comprised of fresh material that has a residence time ranging from several years up to several thousand years. During this period, the weathering of colluvium appears to sustain the mountain weathering flux. The relative weathering contribution of colluvium depends on the area covered by regolith on the hillslopes. For mountains sparsely covered by regolith

  17. Colluvial deposits as a possible weathering reservoir in uplifting mountains

    Directory of Open Access Journals (Sweden)

    S. Carretier


    Full Text Available The role of mountain uplift in the evolution of the global climate over geological times is controversial. At the heart of this debate is the capacity of rapid denudation to drive silicate weathering, which consumes CO2. Here we present the results of a 3-D model that couples erosion and weathering during mountain uplift, in which, for the first time, the weathered material is traced during its stochastic transport from the hillslopes to the mountain outlet. To explore the response of weathering fluxes to progressively cooler and drier climatic conditions, we run model simulations accounting for a decrease in temperature with or without modifications in the rainfall pattern based on a simple orographic model. At this stage, the model does not simulate the deep water circulation, the precipitation of secondary minerals, variations in the pH, below-ground pCO2, and the chemical affinity of the water in contact with minerals. Consequently, the predicted silicate weathering fluxes probably represent a maximum, although the predicted silicate weathering rates are within the range of silicate and total weathering rates estimated from field data. In all cases, the erosion rate increases during mountain uplift, which thins the regolith and produces a hump in the weathering rate evolution. This model thus predicts that the weathering outflux reaches a peak and then falls, consistent with predictions of previous 1-D models. By tracking the pathways of particles, the model can also consider how lateral river erosion drives mass wasting and the temporary storage of colluvial deposits on the valley sides. This reservoir is comprised of fresh material that has a residence time ranging from several years up to several thousand years. During this period, the weathering of colluvium appears to sustain the mountain weathering flux. The relative weathering contribution of colluvium depends on the area covered by regolith on the hillslopes. For mountains

  18. Cooling China: The Weather Dependence of Air Conditioner Adoption


    Maximilian Auffhammer


    One of the major adaptation mechanisms to climate change is increased demand for cooling via the air conditioning of indoor environments. China¡¯s demand for air conditioners has displayed explosive growth since 1995. This paper provides estimates of the income and short run weather sensitivity of air conditioner adoption across urban areas for 29 Chinese provincial entities. We show that the adoption decision displays significant income and weather sensitivity in the short run, with adoption...

  19. Reconstruction of Historical Weather by Assimilating Old Weather Diary Data (United States)

    Neluwala, P.; Yoshimura, K.; Toride, K.; Hirano, J.; Ichino, M.; Okazaki, A.


    Climate can control not only human life style but also other living beings. It is important to investigate historical climate to understand the current and future climates. Information about daily weather can give a better understanding of past life on earth. Long-term weather influences crop calendar as well as the development of civilizations. Unfortunately, existing reconstructed daily weather data are limited to 1850s due to the availability of instrumental data. The climate data prior to that are derived from proxy materials (e.g., tree-ring width, ice core isotopes, etc.) which are either in annual or decadal scale. However, there are many historical documents which contain information about weather such as personal diaries. In Japan, around 20 diaries in average during the 16th - 19th centuries have been collected and converted into a digitized form. As such, diary data exist in many other countries. This study aims to reconstruct historical daily weather during the 18th and 19th centuries using personal daily diaries which have analogue weather descriptions such as `cloudy' or `sunny'. A recent study has shown the possibility of assimilating coarse weather data using idealized experiments. We further extend this study by assimilating modern weather descriptions similar to diary data in recent periods. The Global Spectral model (GSM) of National Centers for Environmental Prediction (NCEP) is used to reconstruct weather with the Local Ensemble Kalman filter (LETKF). Descriptive data are first converted to model variables such as total cloud cover (TCC), solar radiation and precipitation using empirical relationships. Those variables are then assimilated on a daily basis after adding random errors to consider the uncertainty of actual diary data. The assimilation of downward short wave solar radiation using weather descriptions improves RMSE from 64.3 w/m2 to 33.0 w/m2 and correlation coefficient (R) from 0.5 to 0.8 compared with the case without any

  20. ... AND HERE COMES THE WEATHER - Austrian TV and radio weather news in the eye of the public (United States)

    Keul, A.; Holzer, A. M.; Wostal, T.


    Media weather reports as the main avenue of meteorological and climatological information to the general public have always been in the focus of critical investigation. Former research found that although weather reports are high-interest topics, the amount of information recalled by non-experts is rather low, and criticized this. A pilot study (Keul et al., 2009) by the Salzburg University in cooperation with ORF, the Austrian Broadcasting Corporation, used historic radio files on a fair-weather and a storm situation. It identified the importance of intelligible wording of the weather forecast messages for lay people. Without quality control, weather information can stimulate rumours, false comfort or false alarms. More qualitative and experimental research, also on TV weather, seems justified. This need for further research was addressed by a second and larger field experiment in the spring of 2010. The survey took place in Salzburg City, Austria, with a quota sample of about 90 lay persons. This time TV and radio weather reports were used and a more realistic listening and viewing situation was created by presenting the latest weather forecasts of the given day to the test persons in the very next hours after originally broadcasting them. It asked lay people what they find important in the weather reports and what they remember for their actual next-day use. Reports of a fairweather prognosis were compared with a warning condition. The weather media mix of the users was explored. A second part of the study was a questionnaire which tested the understanding of typical figures of speech used in weather forecasts or even meteorological terms, which might also be important for fully understanding the severe weather warnings. This leads to quantitative and qualitative analysis from which the most important and unexpected results are presented. Short presentation times (1.5 to 2 minutes) make Austrian radio and TV weather reports a narrow compromise between general

  1. Space Weather: The Solar Perspective (United States)

    Schwenn, Rainer


    The term space weather refers to conditions on the Sun and in the solar wind, magnetosphere, ionosphere, and thermosphere that can influence the performance and reliability of space-borne and ground-based technological systems and that can affect human life and health. Our modern hi-tech society has become increasingly vulnerable to disturbances from outside the Earth system, in particular to those initiated by explosive events on the Sun: Flares release flashes of radiation that can heat up the terrestrial atmosphere such that satellites are slowed down and drop into lower orbits, solar energetic particles accelerated to near-relativistic energies may endanger astronauts traveling through interplanetary space, and coronal mass ejections are gigantic clouds of ionized gas ejected into interplanetary space that after a few hours or days may hit the Earth and cause geomagnetic storms. In this review, I describe the several chains of actions originating in our parent star, the Sun, that affect Earth, with particular attention to the solar phenomena and the subsequent effects in interplanetary space.

  2. Space Weather: The Solar Perspective

    Directory of Open Access Journals (Sweden)

    Schwenn Rainer


    Full Text Available The term space weather refers to conditions on the Sun and in the solar wind, magnetosphere, ionosphere, and thermosphere that can influence the performance and reliability of space-borne and ground-based technological systems and that can affect human life and health. Our modern hi-tech society has become increasingly vulnerable to disturbances from outside the Earth system, in particular to those initiated by explosive events on the Sun: Flares release flashes of radiation that can heat up the terrestrial atmosphere such that satellites are slowed down and drop into lower orbits, solar energetic particles accelerated to near-relativistic energies may endanger astronauts traveling through interplanetary space, and coronal mass ejections are gigantic clouds of ionized gas ejected into interplanetary space that after a few hours or days may hit the Earth and cause geomagnetic storms. In this review, I describe the several chains of actions originating in our parent star, the Sun, that affect Earth, with particular attention to the solar phenomena and the subsequent effects in interplanetary space.

  3. Cold weather oil spill response training

    International Nuclear Information System (INIS)

    Solsberg, L.B.; Owens, E.H.


    In April 2000, a three-day oil spill response training program was conducted on Alaska's North Slope. The unique hands-on program was specifically developed for Chevron Corporation's world-wide response team. It featured a combination of classroom and outdoor sessions that helped participants to learn and apply emergency measures in a series of field exercises performed in very cold weather conditions. Temperatures remained below minus 20 degrees C and sometimes reached minus 40 degrees C throughout the training. The classroom instructions introduced participants to the Emergency Prevention Preparedness and Response (EPPR) Working Group's Field Guide for Spill Response in Arctic Waters. This guide provides response strategies specific to the Arctic, including open water, ice and snow conditions. The sessions also reviewed the Alaska Clean Seas Tactics Manual which addresses spill containment and recovery, storage, tracking, burning and disposal. The issues that were emphasized throughout the training program were cold weather safety and survival. During the training sessions, participants were required to set up weather ports and drive snowmobiles and all terrain vehicles. Their mission was to detect oil with infra-red and hand-held devices. They were required to contain the oil by piling snow into snow banks, and by augering, trenching and slotting ice. Oil was removed by trimming operations on solid ice, snow melting, snow blowing, skimming and pumping. In-situ burning was also performed. Other sessions were also conducted develop skills in site characterization and treating oiled shorelines. The successfully conducted field sessions spanned all phases of a cleanup operation in cold weather. 5 refs., 7 figs

  4. Powernext weather, benchmark indices for effective weather risk management

    International Nuclear Information System (INIS)


    According to the U.S. Department of Energy, an estimated 25% of the GNP is affected by weather-related events. The variations in temperature - even small ones - can also have long-lasting effects on the operational results of a company. Among other, the Energy supply sector is sensitive to weather risks: a milder or harsher than usual winter leads to a decrease or increase of energy consumption. The price of electricity on power trading facilities like Powernext is especially sensitive to odd changes in temperatures. Powernext and Meteo-France (the French meteorological agency) have joined expertise in order to promote the use of weather indices in term of decision making or underlying of hedging tools to energy actors, end users from any other sector of activity and specialists of the weather risk hedging. The Powernext Weather indices are made from information collected by Meteo-France's main observation network according to the norms of international meteorology, in areas carefully selected. The gross data are submitted to a thorough review allowing the correction of abnormalities and the reconstitution of missing data. Each index is fashioned to take into account the economic activity in the various regions of the country as represented by each region's population. This demographic information represents a fair approximation of the weight of the regional economic activity. This document presents the Powernext/Meteo France partnership for the elaboration of efficient weather-related risk management indices. (J.S.)

  5. Conference Proceedings on Effects of Adverse Weather on Aerodynamics Held in Toulouse, France on 29 April-1 May 1991 (Les Effets des Conditions Meteorologiques Adverses sur l’Aerodynamique) (United States)


    Measurement of Water Film Thickness on Airfoils in Heavy Rain Conditions Using 16 Conductance Sensors by A. Feo, F. Rogles and M. Urdiales Experimental...MEASUREMENT OF WATER FILM THICKNESS ON AIRFOILS IN HEAVY RAIN CONDITIONS USING CONDUCTANCE SENSORS A. Feo F. Rogles M. Urdiales Experimental Aerodynamics

  6. Prescribed burning weather in Minnesota. (United States)

    Rodney W. Sando


    Describes the weather patterns in northern Minnesota as related to prescribed burning. The prevailing wind direction, average wind speed, most persistent wind direction, and average Buildup Index are considered in making recommendations.

  7. Road weather management performance metrics. (United States)


    This report presents the results of a study to identify appropriate measures of performance that can be attributed to the Federal Highway Administrations (FHWA) Road Weather Management Program (RWMP) products and activities. Specifically, the stud...

  8. Weather data communication and utilization (United States)

    Mcfarland, R. H.; Nickum, J. D.; Mccall, D. L.


    The communication of weather data to aircraft is discussed. Problems encountered because of the great quantities of data available and the limited capacity to transfer this via radio link to an aircraft are discussed. Display devices are discussed.

  9. Food Safety for Warmer Weather (United States)

    ... Subscribe July 2014 Print this issue Fight Off Food Poisoning Food Safety for Warmer Weather En español Send ... handle food properly to avoid the misery of food poisoning. It can be hard to keep foods safe ...

  10. Northern Hemisphere Synoptic Weather Maps (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Daily Series of Synoptic Weather Maps. Part I consists of plotted and analyzed daily maps of sea-level and 500-mb maps for 0300, 0400, 1200, 1230, 1300, and 1500...

  11. The science of space weather. (United States)

    Eastwood, Jonathan P


    The basic physics underpinning space weather is reviewed, beginning with a brief overview of the main causes of variability in the near-Earth space environment. Although many plasma phenomena contribute to space weather, one of the most important is magnetic reconnection, and recent cutting edge research in this field is reviewed. We then place this research in context by discussing a number of specific types of space weather in more detail. As society inexorably increases its dependence on space, the necessity of predicting and mitigating space weather will become ever more acute. This requires a deep understanding of the complexities inherent in the plasmas that fill space and has prompted the development of a new generation of scientific space missions at the international level.

  12. US Weather Bureau Storm Reports (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Weather Bureau and US Army Corps and other reports of storms from 1886-1955. Hourly precipitation from recording rain gauges captured during heavy rain, snow,...

  13. Practical Weathering for Geology Students. (United States)

    Hodder, A. Peter


    The design and data management of an activity to study weathering by increasing the rate of mineral dissolution in a microwave oven is described. Data analysis in terms of parabolic and first-order kinetics is discussed. (CW)

  14. Relationships between CO2, thermodynamic limits on silicate weathering, and the strength of the silicate weathering feedback (United States)

    Winnick, Matthew J.; Maher, Kate


    Recent studies have suggested that thermodynamic limitations on chemical weathering rates exert a first-order control on riverine solute fluxes and by extension, global chemical weathering rates. As such, these limitations may play a prominent role in the regulation of carbon dioxide levels (pCO2) over geologic timescales by constraining the maximum global weathering flux. In this study, we develop a theoretical scaling relationship between equilibrium solute concentrations and pCO2 based on equilibrium constants and reaction stoichiometry relating primary mineral dissolution and secondary mineral precipitation. We test this theoretical scaling relationship against reactive transport simulations of chemical weathering profiles under open- and closed-system conditions, representing partially and fully water-saturated regolith, respectively. Under open-system conditions, equilibrium bicarbonate concentrations vary as a power-law function of pCO2 (y = kxn) where n is dependent on reaction stoichiometry and k is dependent on both reaction stoichiometry and the equilibrium constant. Under closed-system conditions, bicarbonate concentrations vary linearly with pCO2 at low values and approach open-system scaling at high pCO2. To describe the potential role of thermodynamic limitations in the global silicate weathering feedback, we develop a new mathematical framework to assess weathering feedback strength in terms of both (1) steady-state atmospheric pCO2 concentrations, and (2) susceptibility to secular changes in degassing rates and transient carbon cycle perturbations, which we term 1st and 2nd order feedback strength, respectively. Finally, we discuss the implications of these results for the effects of vascular land plant evolution on feedback strength, the potential role of vegetation in controlling modern solute fluxes, and the application of these frameworks to a more complete functional description of the silicate weathering feedback. Most notably, the dependence

  15. Global CO2-consumption by chemical weathering: What is the contribution of highly active weathering regions? (United States)

    Hartmann, Jens; Jansen, Nils; Dürr, Hans H.; Kempe, Stephan; Köhler, Peter


    is important to distinguish among the various types of sedimentary rocks and their diagenetic history to evaluate the spatial distribution of rock weathering and thus lateral inorganic carbon fluxes. Results highlight the role of hotspots (>10 times global average weathering rates) and hyperactive areas (5 to 10 times global average rates). Only 9% of the global exorheic area is responsible for about 50% of CO2- consumption by chemical weathering (or if hotspots and hyperactive areas are considered: 3.4% of exorheic surface area corresponds to 28% of global CO2-consumption). The contribution of endorheic areas to the global CO2-consumption is with 3.7 Mt C a-1 only minor. A significant impact on the global CO2-consumption rate can be expected if identified highly active areas are affected by changes in the overall spatial patterns of the hydrological cycle due to ongoing global climate change. Specifically if comparing the Last Glacial Maximum with present conditions it is probable that also the global carbon cycle has been affected by those changes. It is expected that results will contribute to improve global carbon and global circulation models. In addition, recognizing chemical weathering rates and geochemical composition of certain lithological classes may be of value for studies focusing on biological aspects of the carbon cycles (e.g. studies needing information on the abundance of phosphorus or silica in the soil or aquatic system). Reference: Hartmann, J., Kempe, S, Dürr, H.H., Jansen, N. (2009) Global CO2-consumption by chemical weathering: What is the contribution of highly active weathering regions?. Global and Planetary Change, 69, 185-194. doi:10.1016/j.gloplacha.2009.07.007

  16. Railway infrastructure disturbances and train operator performance: The role of weather

    NARCIS (Netherlands)

    Xia, Y.; van Ommeren, J.N.; Rietveld, P.; Verhagen, W.


    In this paper, we estimate the effects of weather conditions such as wind, temperature and precipitation on railway operator performance of passenger train services. We distinguish between the direct effects of weather conditions and the indirect effects through disturbances in infrastructure. We

  17. Distinct Mineral Weathering Behaviors of the Novel Mineral-Weathering Strains Rhizobium yantingense H66 and Rhizobium etli CFN42. (United States)

    Chen, Wei; Luo, Long; He, Lin-Yan; Wang, Qi; Sheng, Xia-Fang


    Bacteria play important roles in mineral weathering, soil formation, and element cycling. However, little is known about the interaction between silicate minerals and rhizobia. In this study, Rhizobium yantingense H66 (a novel mineral-weathering rhizobium) and Rhizobium etli CFN42 were compared with respect to potash feldspar weathering, mineral surface adsorption, and metabolic activity during the mineral weathering process. Strain H66 showed significantly higher Si, Al, and K mobilization from the mineral and higher ratios of cell numbers on the mineral surface to total cell numbers than strain CFN42. Although the two strains produced gluconic acid, strain H66 also produced acetic, malic, and succinic acids during mineral weathering in low- and high-glucose media. Notably, higher Si, Al, and K releases, higher ratios of cell numbers on the mineral surface to total cell numbers, and a higher production of organic acids by strain H66 were observed in the low-glucose medium than in the high-glucose medium. Scanning electron microscope analyses of the mineral surfaces and redundancy analysis showed stronger positive correlations between the mineral surface cell adsorption and mineral weathering, indicated by the dissolved Al and K concentrations. The results showed that the two rhizobia behaved differently with respect to mineral weathering. The results suggested that Rhizobium yantingense H66 promoted potash feldspar weathering through increased adsorption of cells to the mineral surface and through differences in glucose metabolism at low and high nutrient concentrations, especially at low nutrient concentrations. This study reported the potash feldspar weathering, the cell adsorption capacity of the mineral surfaces, and the metabolic differences between the novel mineral-weathering Rhizobium yantingense H66 and Rhizobium etli CFN42 under different nutritional conditions. The results showed that Rhizobium yantingense H66 had a greater ability to weather the

  18. Weather radar research at the USA's storm laboratory (United States)

    Doviak, R. J.


    Radar research that is directed toward improving storm forecasts and hazard warnings and studying lightning is discussed. The two moderately sensitive Doppler weather radars in central Oklahoma, with their wide dynamic range, have demonstrated the feasibility of mapping wind fields in all weather conditions from the clear skies of quiescent air and disturbed prestorm air near the earth's surface to the optically opaque interior of severe and sometimes tornadic thunderstorms. Observations and analyses of Doppler weather radar data demonstrate that improved warning of severe storm phenomena and improved short-term forecast of storms may be available when Doppler techniques are well integrated into the national network of weather radars. When used in combination with other sensors, it provides an opportunity to learn more about the complex interrelations between the wind, water, and electricity in storms.

  19. The primacy of doubt: Evolution of numerical weather prediction from determinism to probability (United States)

    Palmer, Tim


    Over the last 25 years, the focus of operational numerical weather prediction has evolved from that of estimating the most likely evolution of weather to that of estimating probability distributions of future weather associated with inevitable uncertainties in both initial conditions and model equations. This evolution from determinism to uncertainty has not only increased the scientific rigor of weather prediction, it has also increased the value of weather forecasts for users. In addition, it has opened up a new approach to solving the equations of motion, likely to be of importance for both weather and climate prediction in an age where high-performance computing is limited by power consumption. However, despite all this, the numerical weather prediction community has yet to embrace fully the concept of the primacy of doubt. It is now time to take the final step in this direction.

  20. Innovative Near Real-Time Data Dissemination Tools Developed by the Space Weather Research Center (United States)

    Mullinix, R.; Maddox, M. M.; Berrios, D.; Kuznetsova, M.; Pulkkinen, A.; Rastaetter, L.; Zheng, Y.


    Space weather affects virtually all of NASA's endeavors, from robotic missions to human exploration. Knowledge and prediction of space weather conditions are therefore essential to NASA operations. The diverse nature of currently available space environment measurements and modeling products compels the need for a single access point to such information. The Integrated Space Weather Analysis (iSWA) System provides this single point access along with the capability to collect and catalog a vast range of sources including both observational and model data. NASA Goddard Space Weather Research Center heavily utilizes the iSWA System daily for research, space weather model validation, and forecasting for NASA missions. iSWA provides the capabilities to view and analyze near real-time space weather data from any where in the world. This presentation will describe the technology behind the iSWA system and describe how to use the system for space weather research, forecasting, training, education, and sharing.

  1. Where fast weathering creates thin regolith and slow weathering creates thick regolith (United States)

    Bazilevskaya, Ekaterina; Lebedeva, Marina; Pavich, Milan J.; Brantley, Susan L.; Rother, Gernot; Parkinson, Dilworth Y.; Cole, David


    Weathering disaggregates rock into regolith – the fractured or granular earth material that sustains life on the continental land surface. Here, we investigate what controls the depth of regolith formed on ridges of two rock compositions with similar initial porosities in Virginia (USA). A priori, we predicted that the regolith on diabase would be thicker than on granite because the dominant mineral (feldspar) in the diabase weathers faster than its granitic counterpart. However, weathering advanced 20 deeper into the granite than the diabase. The 20 -thicker regolith is attributed mainly to connected micron-sized pores, microfractures formed around oxidizing biotite at 20 m depth, and the lower iron (Fe) content in the felsic rock. Such porosity allows pervasive advection and deep oxidation in the granite. These observations may explain why regolith worldwide is thicker on felsic compared to mafic rock under similar conditions. To understand regolith formation will require better understanding of such deep oxidation reactions and how they impact fluid flow during weathering.

  2. Wide variability in physical activity environments and weather-related outdoor play policies in child care centers within a single county of Ohio. (United States)

    Copeland, Kristen A; Sherman, Susan N; Khoury, Jane C; Foster, Karla E; Saelens, Brian E; Kalkwarf, Heidi J


    To examine the variability of physical activity environments and outdoor play policies in child care centers and to determine whether this variability is associated with the demographic characteristics of the child care centers surveyed. Early Learning Environments Physical Activity and Nutrition Telephone Survey. Child care centers in Hamilton County (greater Cincinnati area), Ohio, during the period from 2008 to 2009. Directors of all 185 licensed full-time child care centers in Hamilton County. Descriptive measures of playground and indoor physical activity environments and weather-related outdoor play policies. Of 185 eligible child care centers, 162 (88%) responded to our survey. Of the 162 centers that responded, 151 (93%) reported an on-site playground, but slightly more than half reported that their playgrounds were large, that they were at least one-third covered in shade, or that they had a variety of portable play equipment. Only half reported having a dedicated indoor gross motor room where children could be active during inclement weather. Only 32 centers (20%) allowed children to go outside in temperatures below 32°F (0°C), and 70 centers (43%) reported allowing children outdoors during light rain. A higher percentage of children receiving tuition assistance was associated with lower quality physical activity facilities and stricter weather-related practices. National accreditation was associated with more physical activity-promoting practices. We found considerable variability in the indoor and outdoor physical activity environments offered by child care centers within a single county of Ohio. Depending on the outdoor play policy and options for indoor physical activity of a child care center, children's opportunities for physical activity can be curtailed as a result of subfreezing temperatures or light rain. Policy changes and education of parents and teachers may be needed to ensure that children have ample opportunity for daily physical

  3. Improving High-resolution Weather Forecasts using the Weather Research and Forecasting (WRF) Model with Upgraded Kain-Fritsch Cumulus Scheme (United States)

    High-resolution weather forecasting is affected by many aspects, i.e. model initial conditions, subgrid-scale cumulus convection and cloud microphysics schemes. Recent 12km grid studies using the Weather Research and Forecasting (WRF) model have identified the importance of inco...

  4. Integration of Weather Avoidance and Traffic Separation (United States)

    Consiglio, Maria C.; Chamberlain, James P.; Wilson, Sara R.


    This paper describes a dynamic convective weather avoidance concept that compensates for weather motion uncertainties; the integration of this weather avoidance concept into a prototype 4-D trajectory-based Airborne Separation Assurance System (ASAS) application; and test results from a batch (non-piloted) simulation of the integrated application with high traffic densities and a dynamic convective weather model. The weather model can simulate a number of pseudo-random hazardous weather patterns, such as slow- or fast-moving cells and opening or closing weather gaps, and also allows for modeling of onboard weather radar limitations in range and azimuth. The weather avoidance concept employs nested "core" and "avoid" polygons around convective weather cells, and the simulations assess the effectiveness of various avoid polygon sizes in the presence of different weather patterns, using traffic scenarios representing approximately two times the current traffic density in en-route airspace. Results from the simulation experiment show that the weather avoidance concept is effective over a wide range of weather patterns and cell speeds. Avoid polygons that are only 2-3 miles larger than their core polygons are sufficient to account for weather uncertainties in almost all cases, and traffic separation performance does not appear to degrade with the addition of weather polygon avoidance. Additional "lessons learned" from the batch simulation study are discussed in the paper, along with insights for improving the weather avoidance concept. Introduction

  5. The Effect of NEXRAD Image Looping and National Convective Weather Forecast Product on Pilot Decision Making in the Use of a Cockpit Weather Information Display (United States)

    Burgess, Malcolm A.; Thomas, Rickey P.


    This experiment investigated improvements to cockpit weather displays to better support the hazardous weather avoidance decision-making of general aviation pilots. Forty-eight general aviation pilots were divided into three equal groups and presented with a simulated flight scenario involving embedded convective activity. The control group had access to conventional sources of pre-flight and in-flight weather products. The two treatment groups were provided with a weather display that presented NEXRAD mosaic images, graphic depiction of METARs, and text METARs. One treatment group used a NEXRAD image looping feature and the second group used the National Convective Weather Forecast (NCWF) product overlaid on the NEXRAD display. Both of the treatment displays provided a significant increase in situation awareness but, they provided incomplete information required to deal with hazardous convective weather conditions, and would require substantial pilot training to permit their safe and effective use.

  6. Stormy Weather in Healthcare

    DEFF Research Database (Denmark)

    Clemensen, Jane; Jakobsen, Pernille Ravn; Myhre Jensen, Charlotte


    This paper discusses how the roles of patients and health professionals have changed over the years. It also explores how accelerated courses of treatment and busy staff have turned healthcare services and hospitals into “factories”, where care and relationships now exist in very cramped conditions...... a holistic approach to one another....

  7. Interplanetary Space Weather and Its Planetary Connection (United States)

    Crosby, Norma; Bothmer, Volker; Facius, Rainer; Grießmeier, Jean-Mathias; Moussas, Xenophon; Panasyuk, Mikhail; Romanova, Natalia; Withers, Paul


    Interplanetary travel is not just a science fiction scenario anymore, but a goal as realistic as when our ancestors started to cross the oceans. With curiosity driving humans to visit other planets in our solar system, the understanding of interplanetary space weather is a vital subject today, particularly because the physical conditions faced during a space vehicle's transit to its targeted solar system object are crucial to a mission's success and vital to the health and safety of spacecraft crew, especially when scheduling planned extravehicular activities.

  8. Neural Substrates Associated with Weather-Induced Mood Variability: An Exploratory Study Using ASL Perfusion fMRI


    Gillihan, Seth J.; Detre, John A.; Farah, Martha J.; Rao, Hengyi


    Daily variations in weather are known to be associated with variations in mood. However, little is known about the specific brain regions that instantiate weather-related mood changes. We used a data-driven approach and ASL perfusion fMRI to assess the neural substrates associated with weather-induced mood variability. The data-driven approach was conducted with mood ratings under various weather conditions (N = 464). Forward stepwise regression was conducted to develop a statistical model of...

  9. Space Weather Forecasting and Research at the Community Coordinated Modeling Center (United States)

    Aronne, M.


    The Space Weather Research Center (SWRC), within the Community Coordinated Modeling Center (CCMC), provides experimental research forecasts and analysis for NASA's robotic mission operators. Space weather conditions are monitored to provide advance warning and forecasts based on observations and modeling using the integrated Space Weather Analysis Network (iSWA). Space weather forecasters come from a variety of backgrounds, ranging from modelers to astrophysicists to undergraduate students. This presentation will discuss space weather operations and research from an undergraduate perspective. The Space Weather Research, Education, and Development Initiative (SW REDI) is the starting point for many undergraduate opportunities in space weather forecasting and research. Space weather analyst interns play an active role year-round as entry-level space weather analysts. Students develop the technical and professional skills to forecast space weather through a summer internship that includes a two week long space weather boot camp, mentorship, poster session, and research opportunities. My unique development of research projects includes studying high speed stream events as well as a study of 20 historic, high-impact solar energetic particle events. This unique opportunity to combine daily real-time analysis with related research prepares students for future careers in Heliophysics.

  10. Image processing for hazard recognition in on-board weather radar (United States)

    Kelly, Wallace E. (Inventor); Rand, Timothy W. (Inventor); Uckun, Serdar (Inventor); Ruokangas, Corinne C. (Inventor)


    A method of providing weather radar images to a user includes obtaining radar image data corresponding to a weather radar image to be displayed. The radar image data is image processed to identify a feature of the weather radar image which is potentially indicative of a hazardous weather condition. The weather radar image is displayed to the user along with a notification of the existence of the feature which is potentially indicative of the hazardous weather condition. Notification can take the form of textual information regarding the feature, including feature type and proximity information. Notification can also take the form of visually highlighting the feature, for example by forming a visual border around the feature. Other forms of notification can also be used.

  11. Insight into American tourists’ experiences with weather in South Africa

    Directory of Open Access Journals (Sweden)

    Giddy Julia K.


    Full Text Available Weather and climate are often important factors determining the success of a tourism destination and resultant satisfaction among tourists. This is particularly true for South Africa due the predominance of outdoor tourist attractions. Increasing numbers of international tourists have visited South Africa since the fall of apartheid, particularly those from the United States (U.S., which is an important market for South African tourism. Therefore, this paper seeks to examine a sample of American tourists’ experience with day-to-day weather and climatic conditions in South Africa. The results show that although respondents did not feel that climatic conditions were an important factor in motivations to visit the country, the day-to-day weather did often impact the enjoyment of their visit. Most notably, weather controlled their ability to participate in outdoor activities. In correlating accounts of unpleasant weather conditions with the meteorological records, a close association emerged, particularly for excessively high temperatures. This indicates that the experiences of American tourists are an accurate indication of climatic unsuitability for tourism, which poses threats to the South African outdoor tourism sector.

  12. Weather Derivatives – Origin, Types and Application


    Piotr Binkowski


    The number of companies that are exposed to the revenues loss risk caused by weather variability is still increasing. The businesses that are mostly exposed to weather risk are following: energy, agriculture, constructions and transport. That situation has initiated dynamic growth of weather derivatives markets as well as the awareness of the weather risk among the market participants. Presently, the weather derivatives markets evaluate rapidly in all the mature economies: USA, Asia and Europ...

  13. Space Weather Research: Indian perspective (United States)

    Bhardwaj, Anil; Pant, Tarun Kumar; Choudhary, R. K.; Nandy, Dibyendu; Manoharan, P. K.


    Space weather, just like its meteorological counterpart, is of extreme importance when it comes to its impact on terrestrial near- and far-space environments. In recent years, space weather research has acquired an important place as a thrust area of research having implications both in space science and technology. The presence of satellites and other technological systems from different nations in near-Earth space necessitates that one must have a comprehensive understanding not only of the origin and evolution of space weather processes but also of their impact on technology and terrestrial upper atmosphere. To address this aspect, nations across the globe including India have been investing in research concerning Sun, solar processes and their evolution from solar interior into the interplanetary space, and their impact on Earth's magnetosphere-ionosphere-thermosphere system. In India, over the years, a substantial amount of work has been done in each of these areas by various agencies/institutions. In fact, India has been, and continues to be, at the forefront of space research and has ambitious future programs concerning these areas encompassing space weather. This review aims at providing a glimpse of this Indian perspective on space weather research to the reader and presenting an up-to-date status of the same.

  14. Influence of weather on daily symptoms of pain and fatigue in female patients with fibromyalgia: a multilevel regression analysis. (United States)

    Bossema, Ercolie R; van Middendorp, Henriët; Jacobs, Johannes W G; Bijlsma, Johannes W J; Geenen, Rinie


    Although patients with fibromyalgia often report that specific weather conditions aggravate their symptoms, empirical studies have not conclusively demonstrated such a relationship. Our aim was to examine the association between weather conditions and daily symptoms of pain and fatigue in fibromyalgia, and to identify patient characteristics explaining individual differences in weather sensitivity. Female patients with fibromyalgia (n = 333, mean age 47.0 years, mean time since diagnosis 3.5 years) completed questions on pain and fatigue on 28 consecutive days. Daily weather conditions, including air temperature, sunshine duration, precipitation, atmospheric pressure, and relative humidity, were obtained from the Royal Netherlands Meteorological Institute. Multilevel regression analysis was applied. In 5 (10%) of 50 analyses, weather variables showed a significant but small effect on either pain or fatigue. In 10 analyses (20%), significant, small differences between patients were observed in the random effects of the weather variables, suggesting that symptoms of patients were, to a small extent, differentially affected by some weather conditions, for example, high pain with either low or high atmospheric pressure. These individual differences were explained neither by demographic, functional, or mental patient characteristics, nor by season or weather variation during the assessment period. There is more evidence against than in support of a uniform influence of weather on daily pain and fatigue in female patients with fibromyalgia. Although individuals appear to be differentially sensitive to certain weather conditions, there is no indication that specific patient characteristics play a role in weather sensitivity. Copyright © 2013 by the American College of Rheumatology.

  15. Outdoor weathering of facial prosthetic elastomers differing in Durometer hardness. (United States)

    Willett, Emily S; Beatty, Mark W


    Facial prosthetic elastomers with wide ranges in hardness are available, yet material weatherability is unknown. The purpose of this study was to assess color, Durometer hardness, and tensile property changes after 3000 hours of outdoor weathering. Unpigmented elastomers with Durometer hardness 5, 30, 50, 70, and A-2186 were polymerized into dumbbells (ASTM D412) and disks, 34 mm in diameter by 6 mm thick. Materials were subjected to outdoor or time passage environments for 3000 hours. CIELab color (n=5), Durometer hardness (n=5), and tensile mechanical properties (n=10) were measured at 0 and 3000 hours, and group differences were assessed by material and weathering condition (ANOVA/Tukey, α=.05). Except for A-2186, the mean Durometer changes for all materials were 1 unit or less, with no significant differences observed between time passage and weathered groups (P≥.05). Three-thousand-hour tensile mechanical property results demonstrated nonsignificant differences between time passage and weathered materials but significantly changed properties from immediately tested materials (Phardness 5 and 30 and A-2186. With a few exceptions, outdoor weathering produced relatively small changes in color, Durometer hardness, or tensile properties compared with time passage. Copyright © 2015 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  16. The Economic Impact of Space Weather: Where Do We Stand? (United States)

    Eastwood, J P; Biffis, E; Hapgood, M A; Green, L; Bisi, M M; Bentley, R D; Wicks, R; McKinnell, L-A; Gibbs, M; Burnett, C


    Space weather describes the way in which the Sun, and conditions in space more generally, impact human activity and technology both in space and on the ground. It is now well understood that space weather represents a significant threat to infrastructure resilience, and is a source of risk that is wide-ranging in its impact and the pathways by which this impact may occur. Although space weather is growing rapidly as a field, work rigorously assessing the overall economic cost of space weather appears to be in its infancy. Here, we provide an initial literature review to gather and assess the quality of any published assessments of space weather impacts and socioeconomic studies. Generally speaking, there is a good volume of scientific peer-reviewed literature detailing the likelihood and statistics of different types of space weather phenomena. These phenomena all typically exhibit "power-law" behavior in their severity. The literature on documented impacts is not as extensive, with many case studies, but few statistical studies. The literature on the economic impacts of space weather is rather sparse and not as well developed when compared to the other sections, most probably due to the somewhat limited data that are available from end-users. The major risk is attached to power distribution systems and there is disagreement as to the severity of the technological footprint. This strongly controls the economic impact. Consequently, urgent work is required to better quantify the risk of future space weather events. © 2017 The Authors Risk Analysis published by Wiley Periodicals, Inc. on behalf of Society for Risk Analysis.

  17. Weather, knowledge base and life-style (United States)

    Bohle, Martin


    Why to main-stream curiosity for earth-science topics, thus to appraise these topics as of public interest? Namely, to influence practices how humankind's activities intersect the geosphere. How to main-stream that curiosity for earth-science topics? Namely, by weaving diverse concerns into common threads drawing on a wide range of perspectives: be it beauty or particularity of ordinary or special phenomena, evaluating hazards for or from mundane environments, or connecting the scholarly investigation with concerns of citizens at large; applying for threading traditional or modern media, arts or story-telling. Three examples: First "weather"; weather is a topic of primordial interest for most people: weather impacts on humans lives, be it for settlement, for food, for mobility, for hunting, for fishing, or for battle. It is the single earth-science topic that went "prime-time" since in the early 1950-ties the broadcasting of weather forecasts started and meteorologists present their work to the public, daily. Second "knowledge base"; earth-sciences are a relevant for modern societies' economy and value setting: earth-sciences provide insights into the evolution of live-bearing planets, the functioning of Earth's systems and the impact of humankind's activities on biogeochemical systems on Earth. These insights bear on production of goods, living conditions and individual well-being. Third "life-style"; citizen's urban culture prejudice their experiential connections: earth-sciences related phenomena are witnessed rarely, even most weather phenomena. In the past, traditional rural communities mediated their rich experiences through earth-centric story-telling. In course of the global urbanisation process this culture has given place to society-centric story-telling. Only recently anthropogenic global change triggered discussions on geoengineering, hazard mitigation, demographics, which interwoven with arts, linguistics and cultural histories offer a rich narrative

  18. Acidic weathering of carbonate building stones: experimental assessment

    Directory of Open Access Journals (Sweden)

    Ryszard Kryza


    Full Text Available Three types of carbonate rocks, travertine, limestone and marble have been studied to determine their selected technical parameters (water absorption, resistance to salt crystallization damage and reaction to experimentally modelled acid rain weathering imitating the polluted urban atmospheric conditions. The acidic agents present in natural acid rain precipitation, H2SO4, HCl, HNO3, CH3COOH and mixture of all the acids, “Acid mix”, were tested. The initial stages of acid weathering involve, apart from chemical dissolution, particularly intense physical detachment of rock particles (granular disintegration significantly contributing to the total mass loss. Travertine was found to be most prone to salt crystallization damage and to acid weathering, and these features should be taken into account especially in external architectural usage of this stone in cold climate conditions and polluted urban atmosphere.

  19. Space Weather Forecasting at IZMIRAN (United States)

    Gaidash, S. P.; Belov, A. V.; Abunina, M. A.; Abunin, A. A.


    Since 1998, the Institute of Terrestrial Magnetism, Ionosphere, and Radio Wave Propagation (IZMIRAN) has had an operating heliogeophysical service—the Center for Space Weather Forecasts. This center transfers the results of basic research in solar-terrestrial physics into daily forecasting of various space weather parameters for various lead times. The forecasts are promptly available to interested consumers. This article describes the center and the main types of forecasts it provides: solar and geomagnetic activity, magnetospheric electron fluxes, and probabilities of proton increases. The challenges associated with the forecasting of effects of coronal mass ejections and coronal holes are discussed. Verification data are provided for the center's forecasts.

  20. Observations and Impact Assessments of Extreme Space Weather Events (United States)

    Baker, D. N.


    "Space weather" refers to conditions on the Sun, in the solar wind, and in Earth`s magnetosphere, ionosphere, and thermosphere. Activity on the Sun such as solar flares and coronal mass ejections can lead to high levels of radiation in space and can cause major magnetic storms at the Earth. Space radiation can come as energetic particles or as electromagnetic emissions. Adverse conditions in the near-Earth space environment can cause disruption of satellite operations, communications, navigation, and electric power distribution grids. This can lead to a variety of socioeconomic losses. Astronauts and airline passengers exposed to high levels of radiation are also at risk. Society`s vulnerability to space weather effects is an issue of increasing concern. We are dependent on technological systems that are becoming more susceptible to space weather disturbances. We also have a permanent human presence in space with the International Space Station and the President and NASA have expressed a desire to expand our human space activities with missions to the moon and Mars. This will make space weather of even greater concern in the future. In this talk I will describe many space weather effects and will describe some of the societal and economic impacts that extreme events have had.

  1. Space Weather Monitoring and Forecasting Activity in NICT (United States)

    Nagatsuma, Tsutomu; Watari, Shinichi; T. Murata, Ken

    Disturbances of Space environment around the Earth (geospace) is controlled by the activity of the Sun and the solar wind. Disturbances in geospace sometimes cause serious problems to satellites, astronauts, and telecommunications. To minimize the effect of the problems, space weather forecasting is necessary. In Japan, NICT (National Institute of Information and Communications Technology) is in charge of space weather forecasting services as a regional warning center of International Space Environment Service. With help of geospace environment data exchanging among the international cooperation, NICT operates daily space weather forecast service every day to provide information on nowcasts and forecasts of solar flare, geomagnetic disturbances, solar proton event, and radio-wave propagation conditions in the ionosphere. For prompt reporting of space weather information, we also conduct our original observation networks from the Sun to the upper atmosphere: Hiraiso solar observatory, domestic ionosonde networks, magnetometer & HF radar observations in far-east Siberia and Alaska, and south-east Asia low-latitude ionospheric network (SEALION). ACE (Advanced Composition Explorer) and STEREO (Solar TErrestrial RElations Observatory) real-time beacon data are received using our antenna facilities to monitor the solar and solar wind conditions in near real-time. Our current activities and future perspective of space weather monitoring and forecasting will be introduced in this report.

  2. Weatherization Works II - Summary of Findings from the ARRA Period Evaluation of the U.S. Department of Energy's Weatherization Assistance Program

    Energy Technology Data Exchange (ETDEWEB)

    Tonn, Bruce Edward [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Carroll, David [APPRISE, Inc.. Princeton, NJ (United States); Rose, Erin M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hawkins, Beth A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Pigg, Scott [Energy Center of Wisconsin, Madison, WI (United States); Dalhoff, Greg [Dalhoff & Associates. Verona, WI (United STates); Blasnik, Michael [Blasnik & Associates, Boston, MA (United States); Eisenberg, Joel Fred [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Cowan, Claire [Energy Center of Wisconsin, Madison, WI (United States); Conlon, Brian [Univ. of Tennessee, Knoxville, TN (United States)


    This report presents a summary of the American Recovery and Reinvestment Act of 2009 (ARRA) evaluation of the U.S. Department of Energy s low-income Weatherization Program. This evaluation focused on the WAP Program Year 2010. The ARRA evaluation produced fourteen separate reports, including this summary. Three separate reports address the energy savings, energy cost savings, and cost effectiveness of WAP across four housing types: single family, mobile home, and large multifamily. Other reports address the environmental emissions benefits attributable to WAP, and characterize the program. Special studies were conducted to: estimate the impacts of weatherization and healthy homes interventions on asthma-related Medicaid claims in a small cohort in Washington State; assess how weatherization recipients communicate their weatherization experiences to those in their social network, and assess processes implemented to defer homes for weatherization. Small studies addressed energy use in refrigerators, WAP as implemented in the U.S. territories for the first time, and weatherization s impacts on air conditioning energy savings. The national occupant survey was mined for additional insights on the impacts of weatherization on household budgets and energy behaviors post-weatherization. Lastly, the results of a survey of weatherization training centers are summarized.

  3. The Challenge of Weather Prediction

    Indian Academy of Sciences (India)

    If weather is also governed by physical laws, why ... radiate according to Planck's law (higher the temperature of the ..... in vertical motion. • Frictional Forces: In addition to the above forces that tend to produce acceleration, there are forces that retard the motion. These are the frictional forces primarily active near the surface.

  4. The Challenge of Weather Prediction

    Indian Academy of Sciences (India)

    weather and climate prediction. His interests include understanding variability and predictability of all tropical phenomena including the monsoon. B N Goswami .... change the global average annual mean surface temperature Ts' the external solar forcing ..... Colombia, Toronto, London, Sydney. p 532, 1981. •. A Miller, J C ...

  5. Dynamic Weather Routes Architecture Overview (United States)

    Eslami, Hassan; Eshow, Michelle


    Dynamic Weather Routes Architecture Overview, presents the high level software architecture of DWR, based on the CTAS software framework and the Direct-To automation tool. The document also covers external and internal data flows, required dataset, changes to the Direct-To software for DWR, collection of software statistics, and the code structure.

  6. A decade of weather extremes

    NARCIS (Netherlands)

    Coumou, Dim; Rahmstorf, Stefan

    The ostensibly large number of recent extreme weather events has triggered intensive discussions, both in- and outside the scientific community, on whether they are related to global warming. Here, we review the evidence and argue that for some types of extreme - notably heatwaves, but also

  7. Road weather forecast quality analysis (United States)


    It is just as important to keep the highways functioning in a safe and efficient manner as it is to construct them in : the first place. Our economy is built around an efficient transportation system. Winter weather plays an important role : in highw...

  8. Tomorrow's Forecast: Oceans and Weather. (United States)

    Smigielski, Alan


    This issue of "Art to Zoo" focuses on weather and climate and is tied to the traveling exhibition Ocean Planet from the Smithsonian's National Museum of Natural History. The lessons encourage students to think about the profound influence the oceans have on planetary climate and life on earth. Sections of the lesson plan include: (1)…

  9. Weather delay costs to trucking. (United States)


    Estimates of the nations freight sector of transportation range to upwards of $600 billion of total gross domestic product with 70 percent of total value and 60 percent of total weight moving by truck. Weather-related delays can add significantly ...

  10. Fatigue Strength of Weathering Steel

    Czech Academy of Sciences Publication Activity Database

    Kunz, Ludvík; Lukáš, Petr; Klusák, Jan


    Roč. 18, č. 1 (2012), s. 18-22 ISSN 1392-1320 Grant - others:GA MPO(CZ) FT/TA5/076 Institutional support: RVO:68081723 Keywords : fatigue of weathering steel * corrosion pits * fatigue notch factor Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 0.522, year: 2012

  11. The Challenge of Weather Prediction

    Indian Academy of Sciences (India)

    B N Goswami is with the. Centre for Atmospheric and Oceanic Sciences at the Indian Institute of. Science, Bangalore. After his PhD in Plasma Physics he was attracted to this field by the challenges in weather and climate prediction. His interests include understanding variability and predictability of all tropical phenomena.

  12. Fire weather and behavior of the Little Sioux fire. (United States)

    Rodney W. Sando; Donald A. Haines


    In mid-May 1971, a northern Minnesota fire burned almost 15,000 acres of forest land. The extreme fire behavior it exhibited was the product of a number of described features. This paper documents the attendant fuel and weather conditions.

  13. Influence of weather factors on population dynamics of two lagomorph species based on hunting bag records

    NARCIS (Netherlands)

    Rödel, H.; Dekker, J.J.A.


    Weather conditions can have a significant influence on short-term fluctuations of animal populations. In our study, which is based on time series of hunting bag records of up to 28 years from 26 counties of The Netherlands and Germany, we investigated the impact of different weather variables on

  14. Comparison of three weather generators for crop modeling: a case study for subtropical environments

    NARCIS (Netherlands)

    Hartkamp, A.D.; White, J.W.; Hoogenboom, G.


    The use and application of decision support systems (DDS) that consider variation in climate and soil conditions has expanded in recent years. Most of these DSS are based on crop simulation models that require daily weather data, so access to weather data, at single sites as well as large amount of

  15. Coal weathering and the geochemical carbon cycle (United States)

    Chang, Soobum; Berner, Robert A.


    The weathering rate of sedimentary organic matter in the continental surficial environment is poorly constrained despite its importance to the geochemical carbon cycle. During this weathering, complete oxidation to carbon dioxide is normally assumed, but there is little proof that this actually occurs. Knowledge of the rate and mechanisms of sedimentary organic matter weathering is important because it is one of the major controls on atmospheric oxygen level through geologic time. We have determined the aqueous oxidation rates of pyrite-free bituminous coal at 24° and 50°C by using a dual-cell flow-through method. Coal was used as an example of sedimentary organic matter because of the difficulty in obtaining pyrite-free kerogen for laboratory study. The aqueous oxidation rate obtained in the present study for air-saturated water (270 μM O2) was found to be on the order of 2 × 10-12 mol O2/m2/s at 25°C, which is fast compared to other geologic processes such as tectonic uplift and exposure through erosion. The reaction order with respect to oxygen level is 0.5 on a several thousand hour time scale for both 24° and 50°C experiments. Activation energies, determined under 24° and 50°C conditions, were ≈40 kJ/mol O2 indicating that the oxidation reaction is surface reaction controlled. The oxygen consumption rate obtained in this study is two to three orders of magnitude smaller than that for pyrite oxidation in water, but still rapid on a geologic time scale. Aqueous coal oxidation results in the formation of dissolved CO2, dissolved organic carbon (DOC), and solid oxidation products, which are all quantitatively significant reaction products.

  16. Desenvolvimento floral e produção de pessegueiros 'granada' sob distintas condições climáticas Floral development and yield of 'granada' peach tree under different weather conditions

    Directory of Open Access Journals (Sweden)

    Gilmar Antônio Nava


    Full Text Available A cultivar de pessegueiro 'Granada' vem apresentando baixa frutificação e irregularidade de produção nas principais regiões produtoras de pêssego no Estado do Rio Grande do Sul. Este trabalho teve como objetivo comparar o desenvolvimento floral e a produção de pessegueiros 'Granada' em duas regiões com distintas condições climáticas. Os pomares estudados, nas safras de 2004 e 2005, localizam-se nos municípios de Charqueadas e Canguçu, nas regiões Depressão Central e Sul do RS, respectivamente. Conclui-se que o pessegueiro 'Granada' mostra-se muito instável em termos de produção. A baixa produção e a viabilidade do pólen, aliada ao atraso no desenvolvimento dos óvulos, influenciadas sobretudo pela ocorrência de altas temperaturas na pré-floração e floração, foram as principais causas do baixo desempenho reprodutivo e produtivo do pessegueiro 'Granada' em Charqueadas, em 2004, e em Canguçu, em 2005.The peach cultivar Granada is showing low fruit set and irregularity of yield in major producing regions of peach fruit in Rio Grande do Sul State, Brazil. This work aimed to compare the floral development and yield of 'Granada' peach tree in two regions with different climatic conditions. The orchards studied, in 2004 and 2005, are located in Charqueadas, in the Central Depression, and Canguçu, in the Southern State. The low yield and viability of pollen, associated to delay in the ovules development, mainly influenced by high temperatures during the pré-flowering and flowering, were the causes of low reproductive and productive performance of 'Granada' peach tree at Charqueadas in 2004 and at Canguçu in 2005.

  17. A Real-Time Offshore Weather Risk Advisory System (United States)

    Jolivet, Samuel; Zemskyy, Pavlo; Mynampati, Kalyan; Babovic, Vladan


    Offshore oil and gas operations in South East Asia periodically face extended downtime due to unpredictable weather conditions, including squalls that are accompanied by strong winds, thunder, and heavy rains. This downtime results in financial losses. Hence, a real time weather risk advisory system is developed to provide the offshore Oil and Gas (O&G) industry specific weather warnings in support of safety and environment security. This system provides safe operating windows based on sensitivity of offshore operations to sea state. Information products for safety and security include area of squall occurrence for the next 24 hours, time before squall strike, and heavy sea state warning for the next 3, 6, 12 & 24 hours. These are predicted using radar now-cast, high resolution Numerical Weather Prediction (NWP) and Data Assimilation (DA). Radar based now-casting leverages the radar data to produce short term (up to 3 hours) predictions of severe weather events including squalls/thunderstorms. A sea state approximation is provided through developing a translational model based on these predictions to risk rank the sensitivity of operations. A high resolution Weather Research and Forecasting (WRF, an open source NWP model) is developed for offshore Brunei, Malaysia and the Philippines. This high resolution model is optimized and validated against the adaptation of temperate to tropical met-ocean parameterization. This locally specific parameters are calibrated against federated data to achieve a 24 hour forecast of high resolution Convective Available Potential Energy (CAPE). CAPE is being used as a proxy for the risk of squall occurrence. Spectral decomposition is used to blend the outputs of the now-cast and the forecast in order to assimilate near real time weather observations as an implementation of the integration of data sources. This system uses the now-cast for the first 3 hours and then the forecast prediction horizons of 3, 6, 12 & 24 hours. The output is

  18. Attic or Roof? An Evaluation of Two Advanced Weatherization Packages

    Energy Technology Data Exchange (ETDEWEB)

    Neuhauser, Ken [Building Science Corporation, Somerville, MA (United States)


    This project examines implementation of advanced retrofit measures in the context of a large-scale weatherization program and the archetypal Chicago brick bungalow. One strategy applies best practice air sealing methods and a standard insulation method to the attic floor. The other strategy creates an unvented roof assembly using materials and methods typically available to weatherization contractors. Through implementations of the retrofit strategies in a total of eight (8) test homes, the research found that the two different strategies achieve similar reductions in air leakage measurement (55%) and predicted energy performance (18%) relative to the pre-retrofit conditions.

  19. Verification of Forecast Weather Surface Variables over Vietnam Using the National Numerical Weather Prediction System

    Directory of Open Access Journals (Sweden)

    Tien Du Duc


    Full Text Available The national numerical weather prediction system of Vietnam is presented and evaluated. The system is based on three main models, namely, the Japanese Global Spectral Model, the US Global Forecast System, and the US Weather Research and Forecasting (WRF model. The global forecast products have been received at 0.25- and 0.5-degree horizontal resolution, respectively, and the WRF model has been run locally with 16 km horizontal resolution at the National Center for Hydro-Meteorological Forecasting using lateral conditions from GSM and GFS. The model performance is evaluated by comparing model output against observations of precipitation, wind speed, and temperature at 168 weather stations, with daily data from 2010 to 2014. In general, the global models provide more accurate forecasts than the regional models, probably due to the low horizontal resolution in the regional model. Also, the model performance is poorer for stations with altitudes greater than 500 meters above sea level (masl. For tropical cyclone performance validations, the maximum wind surface forecast from global and regional models is also verified against the best track of Joint Typhoon Warning Center. Finally, the model forecast skill during a recent extreme rain event in northeast Vietnam is evaluated.

  20. The National Eclipse Weather Experiment: an assessment of citizen scientist weather observations. (United States)

    Barnard, L; Portas, A M; Gray, S L; Harrison, R G


    The National Eclipse Weather Experiment (NEWEx) was a citizen science project designed to assess the effects of the 20 March 2015 partial solar eclipse on the weather over the United Kingdom (UK). NEWEx had two principal objectives: to provide a spatial network of meteorological observations across the UK to aid the investigation of eclipse-induced weather changes, and to develop a nationwide public engagement activity-based participation of citizen scientists. In total, NEWEx collected 15 606 observations of air temperature, cloudiness and wind speed and direction from 309 locations across the UK, over a 3 h window spanning the eclipse period. The headline results were processed in near real time, immediately published online, and featured in UK national press articles on the day of the eclipse. Here, we describe the technical development of NEWEx and how the observations provided by the citizen scientists were analysed. By comparing the results of the NEWEx analyses with results from other investigations of the same eclipse using different observational networks, including measurements from the University of Reading's Atmospheric Observatory, we demonstrate that NEWEx provided a fair representation of the change in the UK meteorological conditions throughout the eclipse. Despite the simplicity of the approach adopted, robust reductions in both temperature and wind speed during the eclipse were observed.This article is part of the themed issue 'Atmospheric effects of solar eclipses stimulated by the 2015 UK eclipse'. © 2016 The Authors.

  1. Utah DOT weather responsive traveler information system. (United States)


    Over the past decade, the Federal Highway Administrations (FHWA) Road Weather Management Program (RWMP) : has championed the cause of improving traffic operations and safety during weather events. The programs current : emphasis is to encourage...

  2. Weather Watchers--Activities for Young Meteorologists. (United States)

    Ludwig, Fran


    Describes science activities which were adapted from a teacher's guide entitled "For Spacious Skies" and contains resources for interdisciplinary weather studies. Includes studying properties of air, gravity, cloud movement, humidity, tornadoes, and weather instruments. (RT)

  3. Climate change & extreme weather vulnerability assessment framework. (United States)


    The Federal Highway Administrations (FHWAs) Climate Change and Extreme Weather Vulnerability : Assessment Framework is a guide for transportation agencies interested in assessing their vulnerability : to climate change and extreme weather event...

  4. General Aviation Weather Encounter Case Studies (United States)


    This study presents a compilation of 24 cases involving general aviation (GA) pilots weather encounters over the : continental U.S. The project team interviewed pilots who had experienced a weather encounter, and we : examined their backgrounds, f...

  5. Enhanced road weather forecasting : Clarus regional demonstrations. (United States)


    The quality of road weather forecasts : has major impacts on users of surface : transportation systems and managers : of those systems. Improving the quality : involves the ability to provide accurate, : route-specific road weather information : (e.g...

  6. Road weather forecast quality analysis : project summary (United States)


    The purpose of this research is to enhance the use of KDOTs Roadway Weather : Information System by improving the weather forecasts themselves and raising the level of : confidence in these forecasts.

  7. World War II Weather Record Transmittances (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — World War II Weather Record Transmittances are a record of the weather and meteorological data observed during World War II and transferred to the archive. It...

  8. NOAA Weather and Climate Toolkit (WCT) (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NOAA Weather and Climate Toolkit is an application that provides simple visualization and data export of weather and climatological data archived at NCDC. The...

  9. Vehicle automation and weather : challenges and opportunities. (United States)


    Adverse weather has major impacts on the safety and operations of all roads, from signalized arterials to Interstate highways. Weather affects driver behavior, vehicle performance, pavement friction, and roadway infrastructure, thereby increasing the...

  10. Integrating Sphere-based Weathering Device (United States)

    Federal Laboratory Consortium — Description:In the artificial ultraviolet (UV) weathering of materials, a need exists for weathering devices that can uniformly illuminate test specimens with a high...

  11. SIGWX Charts - High Level Significant Weather (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — High level significant weather (SIGWX) forecasts are provided for the en-route portion of international flights. NOAA's National Weather Service Aviation Center...

  12. Newspaper Clippings and Articles (Weather-related) (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Weather-related newspaper articles and photos, almost exclusively from Baltimore, MD and nearby areas. Includes storm damage, rainfall reports, and weather's affect...

  13. Weather Derivatives – Origin, Types and Application

    Directory of Open Access Journals (Sweden)

    Piotr Binkowski


    Full Text Available The number of companies that are exposed to the revenues loss risk caused by weather variability is still increasing. The businesses that are mostly exposed to weather risk are following: energy, agriculture, constructions and transport. That situation has initiated dynamic growth of weather derivatives markets as well as the awareness of the weather risk among the market participants. Presently, the weather derivatives markets evaluate rapidly in all the mature economies: USA, Asia and Europe. Constructing weather derivatives relies on qu- antifying climate factors in the form of indexes, what is quite simple task, more difficultly can be gathering precise historical data of required climate factors. Taking into consideration so far development of derivatives especially the financial derivatives based on different types of indexes financial market has at disposal wide range of different types of proved derivatives (futures, forward, options, swaps, which can be successfully utilised on the weather-driven markets both for hedging weather risk and speculating.

  14. The sensitivity of snowfall to weather states over Sweden (United States)

    Norin, Lars; Devasthale, Abhay; L'Ecuyer, Tristan S.


    For a high-latitude country like Sweden snowfall is an important contributor to the regional water cycle. Furthermore, snowfall impacts surface properties, affects atmospheric thermodynamics, has implications for traffic and logistics management, disaster preparedness, and also impacts climate through changes in surface albedo and turbulent heat fluxes. For Sweden it has been shown that large-scale atmospheric circulation patterns, or weather states, are important for precipitation variability. Although the link between atmospheric circulation patterns and precipitation has been investigated for rainfall there are no studies focused on the sensitivity of snowfall to weather states over Sweden.In this work we investigate the response of snowfall to eight selected weather states. These weather states consist of four dominant wind directions together with cyclonic and anticyclonic circulation patterns and enhanced positive and negative phases of the North Atlantic Oscillation. The presented analysis is based on multiple data sources, such as ground-based radar measurements, satellite observations, spatially interpolated in situ observations, and reanalysis data. The data from these sources converge to underline the sensitivity of falling snow over Sweden to the different weather states.In this paper we examine both average snowfall intensities and snowfall accumulations associated with the different weather states. It is shown that, even though the heaviest snowfall intensities occur during conditions with winds from the south-west, the largest contribution to snowfall accumulation arrives with winds from the south-east. Large differences in snowfall due to variations in the North Atlantic Oscillation are shown as well as a strong effect of cyclonic and anticyclonic circulation patterns. Satellite observations are used to reveal the vertical structures of snowfall during the different weather states.

  15. Experimental weathering rates of aluminium silicates

    International Nuclear Information System (INIS)

    Gudbrandsson, Snorri


    The chemical weathering of primary rocks and minerals in natural systems has a major impact on soil development and its composition. Chemical weathering is driven to a large extent by mineral dissolution. Through mineral dissolution, elements are released into groundwater and can readily react to precipitate secondary minerals such as clays, zeolites, and carbonates. Carbonates form from divalent cations (e.g. Ca, Fe and Mg) and CO 2 , and kaolin clay and gibbsite formation is attributed to the weathering of aluminium-rich minerals, most notably the feldspars. The CarbFix Project in Hellisheidi (SW-Iceland) aims to use natural weathering processes to form carbonate minerals by the re-injection of CO 2 from a geothermal power plant back into surrounding basaltic rocks. This process is driven by the dissolution of basaltic rocks, rich in divalent cations, which can combine with injected CO 2 to form and precipitate carbonates. This thesis focuses on the dissolution behaviour of Stapafell crystalline basalt, which consists of three major phases (plagioclase, pyroxene, and olivine) and is rich in divalent cations. Steady-state element release rates from crystalline basalt at far-from-equilibrium conditions were measured at pH from 2 to 11 and temperatures from 5 to 75 C in mixed-flow reactors. Steady-state Si and Ca release rates exhibit a U-shaped variation with pH, where rates decrease with increasing pH at acid condition but increase with increasing pH at alkaline conditions. Silicon release rates from crystalline basalt are comparable to Si release rates from basaltic glass of the same chemical composition at low pH and temperatures ≥25 C but slower at alkaline pH and temperatures ≥50 C. In contrast, Mg and Fe release rates decrease continuously with increasing pH at all temperatures. This behaviour is interpreted to stem from the contrasting dissolution behaviours of the three major minerals comprising the basalt: plagioclase, pyroxene, and olivine. Element

  16. Solar Radio Observations and Space Weather (United States)

    Magdalenic, Jasmina


    Coronal mass ejections and associated shock waves are the most important drivers of disturbed geomagnetic conditions. Therefore, tracking of CMEs and the CME-driven shock waves, and predicting their arrival at the Earth, became one of the frequently addressed topics of the space weather research. Studies of radio emission associated with CME-driven shock waves, so-called type II radio bursts, are of particular interest because radio observations cover a broad frequency domain which enables tracking of the shocks all the way from the low corona to the Earth. Consequently, the shock arrival estimate using the coronal radio emission can be updated once the shock signatures are observed in the interplanetary space. In this presentation I will discuss on how radio observations (both ground based and space based) can be used in the space weather forecasting with focus on the recent results in the radio triangulation studies of type II emission which are bringing the new insight in the causal relationship of the CMEs and associated solar radio emission. I will also present high resolution LOFAR observations of the shock wave signatures which show type II emission in a completely new light and therefore bring new challenges to the shock wave physics.

  17. Vulnerability of Bread-Baskets to Weather Shocks (United States)

    Gerber, J. S.; Ray, D. K.; West, P. C.; Foley, J. A.


    Many analyses of food security consider broad trends in food supply (crop production, crop use) and demand (changing diets, population growth.) However, if past shocks to the food system due to weather events (i.e. droughts) were to repeat themselves today, the resulting famines could be far more serious due to increased concentration of grain production in vulnerable bread-baskets, and decreased resilience of global and regional food systems (i.e. lower stocks, dependence on fewer crops). The present research project takes advantage of high-resolution historical weather datasets to assess probabilities of historically observed droughts repeating themselves in one or more of today's bread-basket regions. Using recently developed relationships between weather and crop yield, we consider the likelihood of region-wide crop failures under current conditions, and also under various climate scenarios.

  18. Reducing prediction uncertainty of weather controlled systems

    NARCIS (Netherlands)

    Doeswijk, T.G.


    In closed agricultural systems the weather acts both as a disturbance and as a resource. By using weather forecasts in control strategies the effects of disturbances can be minimized whereas the resources can be utilized. In this situation weather forecast uncertainty and model based control are

  19. Characterization of weathering profile in granites and ...

    Indian Academy of Sciences (India)

    In granitic rocks, various models of weathering profile have been proposed, but never for the hard rocks of West Africa. Besides, in the literature there is no description of the weathering profile in volcanosed- imentrary rocks. Therefore, we propose three models describing the weathering profiles in granites, metasediments ...

  20. Efficient Ways to Learn Weather Radar Polarimetry (United States)

    Cao, Qing; Yeary, M. B.; Zhang, Guifu


    The U.S. weather radar network is currently being upgraded with dual-polarization capability. Weather radar polarimetry is an interdisciplinary area of engineering and meteorology. This paper presents efficient ways to learn weather radar polarimetry through several basic and practical topics. These topics include: 1) hydrometeor scattering model…

  1. Fire Weather Index application in north-western Italy (United States)

    Cane, D.; Ciccarelli, N.; Gottero, F.; Francesetti, A.; Pelfini, F.; Pelosini, R.


    Piedmont region is located in North-Western Italy and is surrounded by the alpine chain and by the Appennines. The region is covered by a wide extension of forests, mainly in its mountain areas (the forests cover 36% of the regional territory). Forested areas are interested by wildfire events. In the period 1997-2005 Piedmont was interested by an average 387 forest fires per year, covering an average 1926 ha of forest per year. Meteorological conditions like long periods without precipitation contribute to create favourable conditions to forest fire development, while the fire propagation is made easier by the foehn winds, frequently interesting the region in winter and spring particularly. The meteorological danger index FWI (Fire Weather Index) was developed by Van Wagner (1987) for the Canadian Forestry Service, providing a complete description of the behaviour of the different forest components in response to the changing weather conditions. We applied the FWI to the Piedmont region on warning areas previously defined for fire management purposes. The meteorological data-set is based on the data of the very-dense non-GTS network of weather stations managed by Arpa Piemonte. The thresholds for the definition of a danger scenarios system were defined comparing historical FWI data with fires occurred on a 5 years period. The implementation of a prognostic FWI prediction system is planned for the early 2008, involving the use of good forecasts of weather parameters at the station locations obtained by the Multimodel SuperEnsemble post-processing technique.

  2. Ambient Weather Model Research and Development: Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    Walker, Stel Nathan; Wade, John Edward


    Ratings for Bonneville Power Administration (BPA) transmission lines are based upon the IEEE Standard for Calculation of Bare Overhead Conductor Temperatures and Ampacity under Steady-State Conditions (1985). This steady-state model is very sensitive to the ambient weather conditions of temperature and wind speed. The model does not account for wind yaw, turbulence, or conductor roughness as proposed by Davis (1976) for a real time rating system. The objective of this research has been to determine (1) how conservative the present rating system is for typical ambient weather conditions, (2) develop a probability-based methodology, (3) compile available weather data into a compatible format, and (4) apply the rating methodology to a hypothetical line. The potential benefit from this research is to rate transmission lines statistically which will allow BPA to take advantage of any unknown thermal capacity. The present deterministic weather model is conservative overall and studies suggest a refined model will uncover additional unknown capacity. 14 refs., 40 figs., 7 tabs.

  3. Beam Propagator for Weather Radars, Modules 1 and 2

    Energy Technology Data Exchange (ETDEWEB)



  4. Approaches to evaluating weathering effects on release of ... (United States)

    Increased production and use of engineered nanomaterials (ENMs) over the past decade has increased the potential for the transport and release of these materials into the environment. Here we present results of two separate studies designed to simulate the effects of weathering on the potential release of multiwalled carbon nanotubes (MWCNTs) from polyamide or epoxy composites, and nanosilica from composites with low-density polyethylene (LOPE) with added pro-oxidant. With these weathering-resistant ENMs, the release was primarily driven by degradation of the polymer matrix. The MWCNT-polymer composites were investigated in a pilot inter-laboratory study to simulate the effects of weathering on the potential release of multiwalled carbon nanotubes (MWCNTs) from their composites with two polymers. Wafers of MWCNTs in epoxy and polyamide nanocomposi tes were exposed in four laboratories in the US and Europe under carefully controlled conditions to cycles of simulated sunlight and rainfall over a 2000-hour period. Particles released upon submersion of the weathered wafers in the leaching fluid described in EPA Method 1311 were analyzed by Transmission Electron Microscopy (TEM), Inductively Coupled Plasma- Mass Spectrometry (ICP-MS), and Ultraviolet-Visible Spectroscopy (UV-Vis). Rates ofrelease of MWCNTS determined by ICP-MS (Co associatedwith MWCNTS) and UY-Vis agreed within a factor of two. Other weathering studies of nanosilica-LDPE composites were conducted usi

  5. Weather, Climate and Food Security (United States)

    Beer, T.


    To climatologists food security is dominated by the impacts of weather and climate on food systems. But the link between the atmosphere and food security is more complex. Extreme weather events such as tropical cyclones impact directly on agriculture, but they also impact on the logistical distribution of food and can thus disrupt the food supply chain, especially in urban areas. Drought affects human life and health as well as impacting dramatically on the sustainable development of society. It represents a pending danger for vulnerable agricultural systems that depend on the rainfall, water supply and reservoirs. Developed countries are affected, but the impact is disproportionate within the developing world. Drought, especially when it results in famine, can change the life and economic development of developing nations and stifle their development for decades. A holistic approach is required to understand the phenomena, to forecast catastrophic events such as drought and famine and to predict their societal consequences. In the Food Security recommendations of the Rio+20 Forum on Science, Technology and Innovation for Sustainable Development it states that it is important "To understand fully how to measure, assess and reduce the impacts of production on the natural environment including climate change, recognizing that different measures of impact (e.g. water, land, biodiversity, carbon and other greenhouse gases, etc) may trade-off against each other..." This talk will review the historical link between weather, climate, drought and food supplies; examine the international situation; and summarise the response of the scientific community

  6. Positive lightning and severe weather (United States)

    Price, C.; Murphy, B.


    In recent years researchers have noticed that severe weather (tornados, hail and damaging winds) are closely related to the amount of positive lightning occurring in thunderstorms. On 4 July 1999, a severe derecho (wind storm) caused extensive damage to forested regions along the United States/Canada border, west of Lake Superior. There were 665,000 acres of forest destroyed in the Boundary Waters Canoe Area Wilderness (BWCAW) in Minnesota and Quetico Provincial Park in Canada, with approximately 12.5 million trees blown down. This storm resulted in additional severe weather before and after the occurrence of the derecho, with continuous cloud-to-ground (CG) lightning occurring for more than 34 hours during its path across North America. At the time of the derecho the percentage of positive cloud-to-ground (+CG) lightning measured by the Canadian Lightning Detection Network (CLDN) was greater than 70% for more than three hours, with peak values reaching 97% positive CG lightning. Such high ratios of +CG are rare, and may be useful indicators for short-term forecasts of severe weather.

  7. [Advance in the study of the powdered weathering profile of sandstone on China Yungang Grottoes based on VIS/NIR hyperspectral imaging]. (United States)

    Zhou, Xiao; Gao, Feng; Zhang, Ai-wu; Zhou, Ke-chao


    Yungang Grottoes were built in the mid-5th century A. D., and named as a UNESCO World Heritage site in 2001. Most of the grottoes were built on the feldspathic quartz sandstones. They were seriously damaged due to the environmental impact. The main form of the weathering is the powdered weathering. The weathering conditions are generally characterized by electrical sounding, penetration resistance, molecular spectroscopy, etc. However, although these methods can give good results about the weathering conditions for a specified sample or site, they are not suitable for providing a global profile of the weathering conditions. The present paper provides a method for effectively and roundly assessing the overall powdered weathering conditions of the Yungang Grottoes based on hyperspectral imaging. Powdered weathering could change the structure and granularity of the sandstone, and thus change the spectral reflectance of the sandstone surface. Based on the hyperspectral data collected from 400 nm to 1 000 nm and normalized by log residuals method, the powdered weathering conditions of the sandstones were classified into strong weathering and weak weathering. The weathering profile was also mapped in the Envi platform. The mapping images were verified using the measured hyperspectal data of the columns in front of the 9th and 10th grottoes as the examples. The mapping images were substantially fitted to the real observations, showing that hyperspectral imaging can be used to estimate the overall powdered weathering of the sandstones.

  8. Road weather management performance measures : a way to measure achievement. (United States)


    This flyer describes the Road Weather Management Performance Measures that will help the Road Weather Management Program (RWMP) maximize the use of available road weather information and technologies; expand road weather research and development effo...

  9. Effects of weathering on impregnated charcoal performance

    International Nuclear Information System (INIS)

    Deitz, V.R.


    Commercial activated charcoals have been exposed to known contaminants under controlled laboratory conditions and also to large volumes of outdoor air and each sample then evaluated for methyl iodide penetration. There is strong evidence that the interaction of water vapor and the charcoal is a significant factor in the degradation of the charcoals when the relative humidity is 70% and greater. The laboratory air mixtures studied were water vapor, water vapor and sulfur dioxide, water vapor and ozone, and water vapor and carbon monoxide. The charcoal in each of the four 0.5-in. layers making up the 2-in. test bed was degraded by the contaminants, but the first layer was influenced most. For the same charcoal the cumulative effect during one, two, and three months of weathering with outdoor air led to a progressive increase in methyl iodide penetration. The experimentation is being extended to additional commercial charcoals and to additional contaminant species in the laboratory experiments

  10. Influence of weather on daily symptoms of pain and fatigue in female patients with fibromyalgia: a multilevel regression analysis

    NARCIS (Netherlands)

    Bossema, E.R.; Middendorp, H. van; Jacobs, J.W.G.; Bijlsma, J.W.J.; Geenen, R.


    OBJECTIVE: Although patients with fibromyalgia often report that specific weather conditions aggravate their symptoms, empirical studies have not conclusively demonstrated such a relationship. Our aim was to examine the association between weather conditions and daily symptoms of pain and fatigue in

  11. Weather effects on the returns and volatility of the Shanghai stock market (United States)

    Kang, Sang Hoon; Jiang, Zhuhua; Lee, Yeonjeong; Yoon, Seong-Min


    This study investigates the weather effects on returns as well as volatility in the Shanghai stock market. In order to analyze the influence of the opening of B-share market to domestic investors, it is assumed that domestic investors are more sensitive to the Shanghai local weather than foreign investors. In doing so, extreme weather condition dummies are generated by using the 21-day and 31-day moving average and its standard deviation. Empirical analysis provides two key results regarding weather effects. First, the weather effect exists in the A-share returns, but does not exist in the B-share returns over the whole period. In addition, the post-opening period shows the strong weather effect on B-share returns only, indicating that the market openness to domestic investors results in the weather effect. Second, the weather effect has a strong influence on the volatility of both A- and B-share returns. Similar to the case of returns, the weather effect on volatility is explained by the openness of B-share market.

  12. Characterization of the Weatherization Assistance Program network. Weatherization Assistance Program

    Energy Technology Data Exchange (ETDEWEB)

    Mihlmester, P.E.; Koehler, W.C. Jr.; Beyer, M.A. [Aspen Systems Corp., Oak Ridge, TN (United States). Applied Management Sciences Div.; Brown, M.A. [Oak Ridge National Lab., TN (United States); Beschen, D.A. Jr. [Department of Energy, Washington, DC (United States). Office of Weatherization Assistance Programs


    The Characterization of the Weatherization Assistance Program (WAP) Network was designed to describe the national network of State and local agencies that provide WAP services to qualifying low-income households. The objective of this study was to profile the current WAP network. To achieve the objective, two national surveys were conducted: one survey collected data from 49 State WAP agencies (including the coterminous 48 States and the District of Columbia), and the second survey collected data from 920 (or 81 percent) of the local WAP agencies.

  13. Adverse weather impacts on arable cropping systems (United States)

    Gobin, Anne


    Damages due to extreme or adverse weather strongly depend on crop type, crop stage, soil conditions and management. The impact is largest during the sensitive periods of the farming calendar, and requires a modelling approach to capture the interactions between the crop, its environment and the occurrence of the meteorological event. The hypothesis is that extreme and adverse weather events can be quantified and subsequently incorporated in current crop models. Since crop development is driven by thermal time and photoperiod, a regional crop model was used to examine the likely frequency, magnitude and impacts of frost, drought, heat stress and waterlogging in relation to the cropping season and crop sensitive stages. Risk profiles and associated return levels were obtained by fitting generalized extreme value distributions to block maxima for air humidity, water balance and temperature variables. The risk profiles were subsequently confronted with yields and yield losses for the major arable crops in Belgium, notably winter wheat, winter barley, winter oilseed rape, sugar beet, potato and maize at the field (farm records) to regional scale (statistics). The average daily vapour pressure deficit (VPD) and reference evapotranspiration (ET0) during the growing season is significantly lower (p < 0.001) and has a higher variability before 1988 than after 1988. Distribution patterns of VPD and ET0 have relevant impacts on crop yields. The response to rising temperatures depends on the crop's capability to condition its microenvironment. Crops short of water close their stomata, lose their evaporative cooling potential and ultimately become susceptible to heat stress. Effects of heat stress therefore have to be combined with moisture availability such as the precipitation deficit or the soil water balance. Risks of combined heat and moisture deficit stress appear during the summer. These risks are subsequently related to crop damage. The methodology of defining

  14. Typhoon impacts on chemical weathering source provenance of a High Standing Island watershed, Taiwan (United States)

    Meyer, Kevin J.; Carey, Anne E.; You, Chen-Feng


    Chemical weathering source provenance changes associated with Typhoon Mindulle (2004) were identified for the Choshui River Watershed in west-central Taiwan using radiogenic Sr isotope (87Sr/86Sr) and major ion chemistry analysis of water samples collected before, during, and following the storm event. Storm water sampling over 72 h was conducted in 3 h intervals, allowing for novel insight into weathering regime changes in response to intense rainfall events. Chemical weathering sources were determined to be bulk silicate and disseminated carbonate minerals at the surface and silicate contributions from deep thermal waters. Loss on ignition analysis of collected rock samples indicate disseminated carbonate can compose over 25% by weight of surface mineralogy, but typically makes up ∼2-3% of watershed rock. 87Sr/86Sr and major element molar ratios indicate that Typhoon Mindulle caused a weathering regime switch from normal flow incorporating a deep thermal signature to that of a system dominated by surface weathering. The data suggest release of silicate solute rich soil pore waters during storm events, creating a greater relative contribution of silicate weathering to the solute load during periods of increased precipitation and runoff. Partial depletion of this soil solute reservoir and possible erosion enhanced carbonate weathering lead to increased importance of carbonates to the weathering regime as the storm continues. Major ion data indicate that complex mica weathering (muscovite, biotite, illite, chlorite) may represent an important silicate weathering pathway in the watershed. Deep thermal waters represent an important contribution to river solutes during normal non-storm flow conditions. Sulfuric acid sourced from pyrite weathering is likely a major weathering agent in the Choshui River watershed.

  15. Ocean-atmosphere interaction and synoptic weather conditions in ...

    Indian Academy of Sciences (India)

    ... period of strong north-south pressure gradient over the Bay region. Events of prominent fall in SST and in the upper 15m ocean layer mean temperature and salinity values during typical rainfall events are cited. The impact of monsoon disturbances on ocean-atmosphere interface transfer processes has been investigated.

  16. Effects of weather conditions on cassava yield in Nigeria ...

    African Journals Online (AJOL)

    This study examines the effect of agro-climatic variables on cassava yield in Nigeria. Secondary data on cassava yields were collected over the period of 40 years (1965 – 2004) from international institute of Tropical Agriculture (IITA) Ibadan. The Linear Trend Model (regression) and Parvin\\'s Model were used for data ...

  17. Suitability of Nigerian Weather Conditions for Cultivation of Microalgae

    African Journals Online (AJOL)


    ±4µmolm2/s for Kaduna, ... effect of inoculation volume on the growth of Chlorella sorokiniana and Euglena showed that these species can be ... (hydrocarbon synthesizer) are potential sources of energy rich fuels. Some of the primary and.

  18. Weather conditions and daylight-mediated photodynamic therapy

    DEFF Research Database (Denmark)

    Wiegell, S R; Fabricius, S; Heydenreich, J


    Photodynamic therapy (PDT) is an attractive therapy for nonmelanoma skin cancers and actinic keratoses (AKs). Daylight-mediated methyl aminolaevulinate PDT (daylight-PDT) is a simple and painless treatment procedure for PDT. All daylight-PDT studies have been performed in the Nordic countries. To...

  19. Predictive Models for Photovoltaic Electricity Production in Hot Weather Conditions

    Directory of Open Access Journals (Sweden)

    Jabar H. Yousif


    Full Text Available The process of finding a correct forecast equation for photovoltaic electricity production from renewable sources is an important matter, since knowing the factors affecting the increase in the proportion of renewable energy production and reducing the cost of the product has economic and scientific benefits. This paper proposes a mathematical model for forecasting energy production in photovoltaic (PV panels based on a self-organizing feature map (SOFM model. The proposed model is compared with other models, including the multi-layer perceptron (MLP and support vector machine (SVM models. Moreover, a mathematical model based on a polynomial function for fitting the desired output is proposed. Different practical measurement methods are used to validate the findings of the proposed neural and mathematical models such as mean square error (MSE, mean absolute error (MAE, correlation (R, and coefficient of determination (R2. The proposed SOFM model achieved a final MSE of 0.0007 in the training phase and 0.0005 in the cross-validation phase. In contrast, the SVM model resulted in a small MSE value equal to 0.0058, while the MLP model achieved a final MSE of 0.026 with a correlation coefficient of 0.9989, which indicates a strong relationship between input and output variables. The proposed SOFM model closely fits the desired results based on the R2 value, which is equal to 0.9555. Finally, the comparison results of MAE for the three models show that the SOFM model achieved a best result of 0.36156, whereas the SVM and MLP models yielded 4.53761 and 3.63927, respectively. A small MAE value indicates that the output of the SOFM model closely fits the actual results and predicts the desired output.

  20. Dynamics of temporal wetlands under changing weather conditions

    NARCIS (Netherlands)

    Dullo, Bikila Warkineh


    Moerassen of in het engels “wetlands”zijn dynamische ecosystemen die voor de mensheid van heel veel nut zijn en zijn geweest, zowel direct of op een indirecte manier. Ze zijn echter heel sterk afhankelijk van de heersende waterhuishouding van het gebied. Op zijn beurt is de hydrologie afhankelijk