Sample records for incipient oceanic crust

  1. Incipient boninitic arc crust built on denudated mantle: the Khantaishir ophiolite (western Mongolia) (United States)

    Gianola, Omar; Schmidt, Max W.; Jagoutz, Oliver; Sambuu, Oyungerel


    The 570 Ma old Khantaishir ophiolite is built by up to 4 km harzburgitic mantle with abundant pyroxenites and dunites followed by 2 km of hornblende-gabbros and gabbronorites and by a 2.5 km thick volcanic unit composed of a dyke + sill complex capped by pillow lavas and some volcanoclastics. The volcanics are mainly basaltic andesites and andesites (or boninites) with an average of 58.2 ± 1.0 wt% SiO2, X Mg = 0.61 ± 0.03 ( X Mg = molar MgO/(MgO + FeOtot), TiO2 = 0.4 ± 0.1 wt% and CaO = 7.5 ± 0.6 wt% (errors as 2 σ). Normalized trace element patterns show positive anomalies for Pb and Sr, a negative Nb-anomaly, large ion lithophile elements (LILE) concentrations between N- and E-MORB and distinctly depleted HREE. These characteristics indicate that the Khantaishir volcanics were derived from a refractory mantle source modified by a moderate slab-component, similar to boninites erupted along the Izu-Bonin-Mariana subduction system and to the Troodos and Betts Cove ophiolites. Most strikingly and despite almost complete outcrops over 260 km2, there is no remnant of any pre-existing MORB crust, suggesting that the magmatic suite of this ophiolite formed on completely denudated mantle, most likely upon subduction initiation. The architecture of this 4-5 km thick early arc crust resembles oceanic crust formed at mid ocean ridges, but lacks a sheeted dyke complex; volcanic edifices are not observed. Nevertheless, low melting pressures combined with moderate H2O-contents resulted in high-Si primitive melts, in abundant hornblende-gabbros and in a fast enrichment in bulk SiO2. Fractional crystallization modeling starting from the observed primitive melts (56.6 wt% SiO2) suggests that 25 wt% pyroxene + plagioclase fractionation is sufficient to form the average Khantaishir volcanic crust. Most of the fractionation happened in the mantle, the observed pyroxenite lenses and layers in and at the top of the harzburgites account for the required cumulate volumes. Finally

  2. Generation of continental crust in intra-oceanic arcs (United States)

    Gazel, E.; Hayes, J. L.; Kelemen, P. B.; Everson, E. D.; Holbrook, W. S.; Vance, E.


    The origin of continental crust is still an unsolved mystery in the evolution of our planet. Although the best candidates to produce juvenile continental crust are intra-oceanic arcs these systems are dominated by basaltic lavas, and when silicic magmas are produced, the incompatible-element compositions are generally too depleted to be a good match for continental crust estimates. Others, such as the W. Aleutians, are dominated by andesitic melts with trace element compositions similar to average continental crust. In order to evaluate which intra-oceanic arcs produced modern continental crust, we developed a geochemical continental index (CI) through a statistical analysis that compared all available data from modern intra-oceanic arcs with global estimates of continental crust. Our results suggest that magmas from Costa Rica (tracks. Iwo-Jima and Vanuatu are in a similar tectonic scenario with subducting intraplate seamounts. Melts from the subducting oceanic crust are thought to significantly control the geochemical signature in the W. Aleutians and Panama. In the L. Antilles and E. Aleutians the continental signature may reflect recycling of a component derived from subducting continental sediments. Most of Izu-Bonin, Marianas, S. Scotia and Tonga arcs with a CI >100 have the least continent-like geochemical signatures. In these arcs the subducting plate is old (>100 Ma), not overprinted by enriched intraplate volcanism and the geochemistry may be dominated by slab-derived, aqueous fluids. We also found a strong correlation between the CI and average crustal P-wave velocity, validating the geochemical index with the available seismic data for intra-oceanic arcs. In conclusion, the production of young continental crust with compositions similar to Archean continental crust is an unusual process, limited to locations where there are especially voluminous partial melts of oceanic crust.

  3. Deep-ocean ferromanganese crusts and nodules (United States)

    Hein, James R.; Koschinsky, Andrea


    Ferromanganese crusts and nodules may provide a future resource for a large variety of metals, including many that are essential for emerging high- and green-technology applications. A brief review of nodules and crusts provides a setting for a discussion on the latest (past 10 years) research related to the geochemistry of sequestration of metals from seawater. Special attention is given to cobalt, nickel, titanium, rare earth elements and yttrium, bismuth, platinum, tungsten, tantalum, hafnium, tellurium, molybdenum, niobium, zirconium, and lithium. Sequestration from seawater by sorption, surface oxidation, substitution, and precipitation of discrete phases is discussed. Mechanisms of metal enrichment reflect modes of formation of the crusts and nodules, such as hydrogenetic (from seawater), diagenetic (from porewaters), and mixed diagenetic–hydrogenetic processes.


    Commeau, R.F.; Clark, A.; Johnson, Chad; Manheim, F. T.; Aruscavage, P. J.; Lane, C.M.


    Ferromanganese crusts on raised areas of the ocean floor have joined abyssal manganese nodules and hydrothermal sulfides as potential marine resources. Significant volumes of cobalt-rich (about 1% Co) crusts have been identified to date within the US Exclusive Economic Zone (EEZ) in the Central Pacific: in the NW Hawaiian Ridge and Seamount region and in the seamounts in the Johnston Island and Palmyra Island regions. Large volumes of lower grade crusts, slabs, and nodules are also present in shallow ( greater than 1000 m) waters on the Blake plateau, off Florida-South Carolina in the Atlantic Ocean. Data on ferromanganese crusts have been increased by recent German and USGS cruises, but are still sparse, and other regions having crust potential are under current investigation. The authors discuss economic potentials for cobalt-rich crusts in the Central Pacific and Western North Atlantic oceans, with special reference to US EEZ areas. Additional research is needed before more quantitative resource estimates can be made.

  5. Drilling the Oceanic Lower Crust and Mantle (United States)


    tests (in Puget Sound) scheduled for late summer or fall of 1989, and full scale, deep-ocean (>-000 m) tests on the Washington margin and Gorda Ridge...Klamath Mountains and Sierra Nevada and suggests a spreading geometry where short spreading segments are separated by long arc-parallel transforms

  6. Magnetization of the oceanic crust: TRM or CRM? (United States)

    Raymond, C. A.; Labrecque, J. L.


    A model was proposed in which chemical remanent magnetization (CRM) acquired within the first 20 Ma of crustal evolution may account for 80% of the bulk natural remanent magnetization (NRM) of older basalts. The CRM of the crust is acquired as the original thermoremanent magnetization (TRM) is lost through low temperature alteration. The CRM intensity and direction are controlled by the post-emplacement polarity history. This model explains several independent observations concerning the magnetization of the oceanic crust. The model accounts for amplitude and skewness discrepancies observed in both the intermediate wavelength satellite field and the short wavelength sea surface magnetic anomaly pattern. It also explains the decay of magnetization away from the spreading axis, and the enhanced magnetization of the Cretaceous Quiet Zones while predicting other systematic variations with age in the bulk magnetization of the oceanic crust. The model also explains discrepancies in the anomaly skewness parameter observed for anomalies of Cretaceous age. Further studies indicate varying rates of TRM decay in very young crust which depicts the advance of low temperature alteration through the magnetized layer.

  7. Helium isotopes in ferromanganese crusts from the central Pacific Ocean (United States)

    Basu, S.; Stuart, F.M.; Klemm, V.; Korschinek, G.; Knie, K.; Hein, J.R.


    Helium isotopes have been measured in samples of two ferromanganese crusts (VA13/2 and CD29-2) from the central Pacific Ocean. With the exception of the deepest part of crust CD29-2 the data can be explained by a mixture of implanted solar- and galactic cosmic ray-produced (GCR) He, in extraterrestrial grains, and radiogenic He in wind-borne continental dust grains. 4He concentrations are invariant and require retention of less than 12% of the in situ He produced since crust formation. Loss has occurred by recoil and diffusion. High 4He in CD29-2 samples older than 42 Ma are correlated with phosphatization and can be explained by retention of up to 12% of the in situ-produced 4He. 3He/4He of VA13/2 samples varies from 18.5 to 1852 Ra due almost entirely to variation in the extraterrestrial He contribution. The highest 3He/4He is comparable to the highest values measured in interplanetary dust particles (IDPs) and micrometeorites (MMs). Helium concentrations are orders of magnitude lower than in oceanic sediments reflecting the low trapping efficiency for in-falling terrestrial and extraterrestrial grains of Fe-Mn crusts. The extraterrestrial 3He concentration of the crusts rules out whole, undegassed 4–40 μm diameter IDPs as the host. Instead it requires that the extraterrestrial He inventory is carried by numerous particles with significantly lower He concentrations, and occasional high concentration GCR-He-bearing particles.

  8. Predicting Sediment Thickness on Vanished Ocean Crust Since 200 Ma (United States)

    Dutkiewicz, A.; Müller, R. D.; Wang, X.; O'Callaghan, S.; Cannon, J.; Wright, N. M.


    Tracing sedimentation through time on existing and vanished seafloor is imperative for constraining long-term eustasy and for calculating volumes of subducted deep-sea sediments that contribute to global geochemical cycles. We present regression algorithms that incorporate the age of the ocean crust and the mean distance to the nearest passive margin to predict sediment thicknesses and long-term decompacted sedimentation rates since 200 Ma. The mean sediment thickness decreases from ˜220 m at 200 Ma to a minimum of ˜140 m at 130 Ma, reflecting the replacement of old Panthalassic ocean floor with young sediment-poor mid-ocean ridges, followed by an increase to ˜365 m at present-day. This increase reflects the accumulation of sediments on ageing abyssal plains proximal to passive margins, coupled with a decrease in the mean distance of any parcel of ocean crust to the nearest passive margin by over 700 km, and a doubling of the total passive margin length at present-day. Mean long-term sedimentation rates increase from ˜0.5 cm/ky at 160 Ma to over 0.8 cm/ky today, caused by enhanced terrigenous sediment influx along lengthened passive margins, superimposed by the onset of ocean-wide carbonate sedimentation. Our predictive algorithms, coupled to a plate tectonic model, provide a framework for constraining the seafloor sediment-driven eustatic sea-level component, which has grown from ˜80 to 210 m since 120 Ma. This implies a long-term sea-level rise component of 130 m, partly counteracting the contemporaneous increase in ocean basin depth due to progressive crustal ageing.

  9. Deep Drilling Results in the Atlantic Ocean: Ocean Crust (United States)


    Hamano, the through marine seismological research. We also R.A. Stephen, C. Bollinger , and R. Emmermann, 179-. owe a large measure of thanks to our...If the transform faulted area of the Famous Stephen, C. Bollinger , R. Emmermann, St-idying Area is typical, a randomly placed Atlantic drill oceanic... France Yozo Hamno Geophysical Institute, University of Tokyo, Tokyo 113, Japan Michael Hobart Lamont-Doherty Geological Observatory, Columbia

  10. Contrasting subduction structures within the Philippine Sea plate: Hydrous oceanic crust and anhydrous volcanic arc crust (United States)

    Arai, Ryuta; Iwasaki, Takaya; Sato, Hiroshi; Abe, Susumu; Hirata, Naoshi


    show contrasting subduction structures within the Philippine Sea plate inferred from active-source wide-angle reflection data. Previous studies showed that large-amplitude reflections from the slab are observed in southwest Japan and indicated that a thin low-velocity layer with a high fluid content is formed along the top of the subducting oceanic crust. On the contrary, we found that the slab reflections have smaller amplitudes in the Izu collision zone, central Japan, where the Izu-Bonin volcanic arc has been colliding/subducting, suggesting that such a low-velocity layer does not exist beneath the collision zone. This structural difference is also supported by P-wave and S-wave velocity anomalies by passive-source tomography and electrical conductivity, and correlates with the regional distribution of deep tremors and intraslab earthquakes, both of which are induced by dehydration processes within the downgoing slab. Based on these comparisons, we suggest that the original structure of the incoming plate controls the contrasting subducting systems: typical oceanic plate absorbs water by hydrothermal circulation at spreading centers and/or seawater infiltration at outer rises, whereas volcanic arc crust consumes a large amount of hydrous minerals for melt production and metamorphoses to more stable, anhydrous forms before subduction.

  11. Biomineralisation of the ferromanganese crusts in the Western Pacific Ocean (United States)

    Jiang, Xiao-Dong; Sun, Xiao-Ming; Guan, Yao; Gong, Jun-Li; Lu, Yang; Lu, Rong-Fei; Wang, Chi


    Ferromanganese (Fe-Mn) crusts are deep-sea sedimentary polymetallic minerals that are explored for their economic potential, particularly for Mn, Cu, Co, Ni and rare earth elements (REEs). The precipitation mechanism of the metallic elements in crusts has remained controversial between chemical oxidation (abiotic origin) and microbial enzymatic processes (biomineralization). In this study, the microbial mineralization in ferromanganese crusts from the Western Pacific Ocean was explored. Scanning electron microscope (SEM) and transmission electron microscope (TEM) analyses showed abundant micron-scale spherical aggregates of Mn-oxide filaments (20-80 nm), which are closely associated with filamentous cells within the biofilm (biofilm mineralization) exist within the stromatolitic structure. The high-throughput sequencing of 16S rRNA and phylogenetic analysis suggests that biofilms are dominated by three Mn-oxidizing bacterial species from the families Bacillus, Arthrobacter and Pseudomonas. In addition, Mn concentration in the biofilms is approximately 108 times that of the associated seawater (2.3 ppb Mn). Iron (16.2 wt%), Cu (0.11 wt%), Co (0.719 wt%) and Ni (0.459 wt%) were found in the biofilms via X-ray Fluorescence Spectrometer (XRF) and Inductively Coupled Plasma Mass Spectrometry (ICP-MS). We suggest that biomineralization provides a new perspective for understanding Fe-Mn crustal-related mineral deposits, and the ultra-high microbial trace element enrichment ability is noteworthy. Utilization of microbial activities in accumulating precious metals from seawater may offer a viable alternative for the world's metal production in the future.

  12. Crust-ocean interactions during midocean ridge eruptions (United States)

    Baker, E. T.


    Eruptions are the "quantum event" of crustal accretion, occurring daily to monthly (depending on spreading rate) along the global midocean ridge system. The number of eruptions detected and responded to remain very few, however, so our knowledge of the magnitude and rate of crust-ocean interaction at the instant of an eruption is almost entirely circumstantial. The discovery of uniquely different plumes over a 2008 eruption on the NE Lau spreading center greatly broadened the known range of eruption-initiated transfer of heat, chemicals, and perhaps biota from the crust to the ocean. Serendipitous observations and rapid response cruises have now documented that the "event (mega-) plumes" accompanying eruptions range over a factor of 100 in volume (1-150 km3), yet maintain a distinctive and consistent chemical signature (much lower 3He/heat and Mn/heat and higher H2/heat than typical black smokers). Confirmed event plumes have formed at spreading rates from 55-~90 mm/yr, with some incompletely sampled but "event-like" plumes observed at even slower rates (11-30 mm/yr; Gakkel and Carlsberg Ridges). Presently, only four event plumes can be associated with specific eruptions. Large event plumes in the NE Pacific were found over thick (up to ~75 m), voluminous, and slowly extruded pillow mounds. The 2008 eruption on the fast-spreading NE Lau spreading center demonstrated that thin (a few meters), small, and rapidly emplaced sheet flows can generate smaller event plumes. Available evidence suggests that massive fluid discharge occurs virtually simultaneously with an eruption. At Gorda Ridge in 1996, eruption-indicative seismicity began on the same day and location an event plume was found. At Axial Volcano in 1998, moorings 2 km apart both recorded the appearance of a >100-m-thick plume within minutes of the start of a 72-min-long sheet flow eruption. These observations support inferences from plume modeling and chemistry that event plume generation time is hours, not

  13. Ancient Fungal Life in North Pacific Eocene Oceanic Crust (United States)

    Schumann, G.; Manz, W.; Reitner, J.; Lustrino, M.


    Little is known about the manifold life forms of the deep biosphere although there is increasing scientific evidence that an extensive biosphere does exist in extreme environments such as the rocks below the seafloor. The ODP Leg 200 was devoted to the study of Eocene oceanic crust of the North Pacific Ocean. Within a massive tholeiitic lava flow unit, at depth of 51 mbsf underneath a water column of about 5000 m, we found unique filamentous structures. Based on morphological traits like branching, septa and central pores the filaments are interpreted as fungi. These filaments were found within carbonate-filled vesicles ranging in size from 0.5 to 3 mm in diameter. The net of fungal hyphae completely fills the whole pore space from the basalt-carbonate boundary towards the center of the pores. The cross section dimension of these filaments is about 5-10 micrometer and the length differ from 50 to several hundreds micrometer. Thereby the cell septa of the hyphae are clearly visible. The number of hyphae ranges from some tenth to some hundreds per particular pore. The presence of pyrite within the carbonate cements points out anaerobic conditions in this habitat. After removing the carbonate by etching the vesicles with diluted formic acid, the 3-dimensional structure of the fungus could be clearly visualized. Fine structure analysis of the hyphae obtained by field emission scanning electron microscopy (FE-SEM) revealed a network of tiny small fibers coating the surface of the hyphae. Semi-quantitative chemical analyses of the etched hyphae were conducted with an energy dispersive spectrometer system (EDS) coupled with the FE-SEM. The results evidence a chemical composition of the hyphae different from the surrounding carbonate matrix. Undisturbed filamentous growth through different calcite crystals within the vesicles and small open space between the fungi and matrix indicate endolithic fungal growth after the calcium carbonate filling of the vesicles. To the best

  14. Sediment stratigraphy of the Nansen Basin, Arctic Ocean and characterization of the ultraslow-spreading oceanic crust (United States)

    Lutz, R.; Franke, D.; Berglar, K.; Schnabel, M.


    The Nansen Basin is the southern part of the Eurasia Basin in the Arctic Ocean. Opening of the Eurasia Basin started here with the tear-off of the continental Lomonossov ridge. Here we present a couple of multichannel reflection seismic lines, covering an area from the Barents Shelf to 83.2 deg N. The profiles extend for about 275 km and 170 km, respectively from the Barents Sea margin (Hinlopen margin) into northern direction and cover together ~300 km of oceanic crust on two parallel lines. One connecting profile was acquired on oceanic crust crossing anomaly C23 (~50-52 Ma). The data were acquired during ice-free conditions and reveal for the first time the architecture of the oldest sediments deposited on the oceanic crust. We discuss the seismic facies of the oldest sediments on the oceanic crust and determine their age by correlation of onlap contacts onto oceanic crust with well defined magnetic anomalies. The lowermost sedimentary unit can be subdivided by at least one more prominent seismic reflector in the distal part of the Nansen Basin and two more seismic reflectors in the proximal part. Furthermore we present images and interpretations of oceanic crust formed at the ultraslow-spreading Gakkel ridge (rate). We discuss the basement morphology, volcanic cones and major faults, bounding horsts and grabens in the light of our present understanding of melt-poor ultraslow-spreading ridges.

  15. Growth response of a deep-water ferromanganese crust to evolution of the Neogene Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Banakar, V.K.; Hein, J.R.

    nearly ovelapping palaeo-CCD and palaeo-depth of crust formation, increased early Eocene productivity, instability and reworking of the surface rocks on the flanks of the seamount, and lack of oxic deep-water in the nascent Indian Ocean. Crust accretion...

  16. Direct observation of a section through slow-spreading oceanic crust (United States)

    Auzende, J.-M.; Bideau, D.; Bonatti, E.; Cannat, M.; Honnorez, J.; Lagabrielle, Y.; Malavieille, J.; Mamaloukas-Frangoulis, V.; Mevel, C.


    Understanding the nature and composition of the oceanic crust has been a longstanding goal of Earth scientists. Seismic refraction experiments1-3suggest a simple layered crust made of eruptive basalts underlain by a thick layer of doleritic and gabbroic intrusives and a peridotitic upper mantle. Other evidence comes from ophiolite complexes on land4, although generalizations based on ophiolites are uncertain because they may be dismembered and altered during emplacement, and it is not known whether they represent sections of 'mature' oceanic crust, or crust from very small 'aborted' oceans5, anomalous ocean structures6 or marginal basins. The walls of fracture-zone valleys expose thick sections of oceanic lithosphere which are accessible to in situ observations and sampling7,8, but this approach has been criticized because the pattern of faulting in fracture zones may disrupt the original statigraphy of the crust9, and because the crust near fracture zones is anomalously thin3, 10, 11. Here we report the direct observation and sampling of a section of crust and upper mantle exposed at the Vema fracture zone in the Atlantic, using the French submersibleNautile.

  17. Calcites from Ocean Crust Basalts: Reliable Proxy Archives? (United States)

    Böhm, Florian; Eisenhauer, Anton


    Calcite cements in ocean crust basalts of the deep sea form from mixtures of cold seawater and warm hydrothermal fluids (about 0-70°C). These low temperature alteration (LTA) calcites have recently gained new interest as proxy recorders of seawater composition (Refs. 1-5). Recent LTA calcite reconstructions of the Sr/Ca and Mg/Ca evolution in ocean waters point to considerably lower Sr/Ca and Mg/Ca ratios during the Cretaceous and Paleogene than in the modern ocean. However, diagenetic alteration in contact with the basalt host rock may change the composition of the LTA calcites. For testing the reliability of LTA calcite records of seawater composition multi-proxy approaches are applied: oxygen isotopes indicate precipitation temperatures, strontium isotopes (87Sr/86Sr) and trace elements indicate influences from hydrothermal fluids. Additional information about the influence of basement rocks on LTA calcite composition can be derived from analyses of stable calcium and strontium isotopes (44/40Ca, 88/86Sr). We find low 44/40Ca values for DSDP and ODP sites where the 87Sr/86Sr ratios of LTA calcites indicate basement influence. On the other hand, for some sites the 87Sr/86Sr values inidicate precipitation from pristine seawater, while low 44/40Ca values indicate basement influence. All of these sites are either older than 50 Myr or show calcite precipitation temperatures >50°C. Sites that are younger than 25 Myr and had formation temperatures 50°C significantly higher 88/86Sr values were observed. The calcium isotope results indicate basement influence on LTA calcite composition at temperatures >10°C. Radiogenic strontium isotopes, in contrast, can be used as unequivocal basement influence indicators only at temperatures above 30°C. Below about 20°C 87Sr/86Sr ratios are no reliable indicators of basement influence. All LTA calcites of sites older than 50 Myr formed (or recrystallized) at temperatures >15°C. Low 44/40Ca values indicate that

  18. Continental Growth and Recycling in Convergent Orogens with Large Turbidite Fans on Oceanic Crust

    Directory of Open Access Journals (Sweden)

    Ben D. Goscombe


    Full Text Available Convergent plate margins where large turbidite fans with slivers of oceanic basement are accreted to continents represent important sites of continental crustal growth and recycling. Crust accreted in these settings is dominated by an upper layer of recycled crustal and arc detritus (turbidites underlain by a layer of tectonically imbricated upper oceanic crust and/or thinned continental crust. When oceanic crust is converted to lower continental crust it represents a juvenile addition to the continental growth budget. This two-tiered accreted crust is often the same thickness as average continental crustal and is isostatically balanced near sea level. The Paleozoic Lachlan Orogen of eastern Australia is the archetypical example of a tubidite-dominated accretionary orogeny. The Neoproterozoic-Cambrian Damaran Orogen of SW Africa is similar to the Lachlan Orogen except that it was incorporated into Gondwana via a continent-continent collision. The Mesozoic Rangitatan Orogen of New Zealand illustrates the transition of convergent margin from a Lachlan-type to more typical accretionary wedge type orogen. The spatial and temporal variations in deformation, metamorphism, and magmatism across these orogens illustrate how large volumes of turbidite and their relict oceanic basement eventually become stable continental crust. The timing of deformation and metamorphism recorded in these rocks reflects the crustal thickening phase, whereas post-tectonic magmatism constrains the timing of chemical maturation and cratonization. Cratonization of continental crust is fostered because turbidites represent fertile sources for felsic magmatism. Recognition of similar orogens in the Proterozoic and Archean is important for the evaluation of crustal growth models, particularly for those based on detrital zircon age patterns, because crustal growth by accretion of upper oceanic crust or mafic underplating does not readily result in the addition of voluminous zircon

  19. Controls on ferromanganese crust composition and reconnaissance resource potential, Ninetyeast Ridge, Indian Ocean (United States)

    Hein, James; Conrad, Tracey A.; Mizell, Kira; Banakar, Virupaxa K.; Frey, Frederick A.; Sager, William W.


    A reconnaissance survey of Fe-Mn crusts from the 5000 km long (~31°S to 10°N) Ninetyeast Ridge (NER) in the Indian Ocean shows their widespread occurrence along the ridge as well as with water depth on the ridge flanks. The crusts are hydrogenetic based in growth rates and discrimination plots. Twenty samples from 12 crusts from 9 locations along the ridge were analyzed for chemical and mineralogical compositions, growth rates, and statistical relationships (Q-mode factor analysis, correlation coefficients) were calculated. The crusts collected are relatively thin (maximum 40 mm), and those analyzed varied from 4 mm to 32 mm. However, crusts as thick as 80 mm can be expected to occur based on the age of rocks that comprise the NER and the growth rates calculated here. Growth rates of the crusts increase to the north along the NER and with water depth. The increase to the north resulted from an increased supply of Mn from the oxygen minimum zone (OMZ) to depths below the OMZ combined with an increased supply of Fe at depth from the dissolution of biogenic carbonate and from deep-sourced hydrothermal Fe. These increased supplies of Fe increased growth rates of the deeper-water crusts along the entire NER. Because of the huge terrigenous (rivers, eolian, pyroclastic) and hydrothermal (three spreading centers) inputs to the Indian Ocean, and the history of primary productivity, Fe-Mn crust compositions vary from those analyzed from open-ocean locations in the Pacific.

  20. Hydrothermal activity and the evolution of the seismic properties of upper oceanic crust (United States)

    Grevemeyer, Ingo; Kaul, Norbert; Villinger, Heinrich; Weigel, Wilfried


    In order to investigate the impact of off-axis hydrothermal circulation on changes of the seismic properties of upper oceanic crust (layer 2A), we performed an extensive geophysical survey on the eastern flank of the East Pacific Rise at 14°S. Seismic refraction and heat flow data were obtained along a 720-km-long and 25 to 40-km wide corridor, covering thinly sedimented seafloor created since 8.5 Ma. The seismic data yield a seismic velocity of ˜2.9 km/s at the top of 0.5-m.y.-old basement rocks. Within about 8 m.y. the velocity increases gradually to a value of mature oceanic crust (˜4.3 km/s). Heat flow data, derived from 43 in situ thermal conductivity and 86 geothermal gradient measurements, suggest that an open hydrothermal circulation system persists for at least 6-7 m.y. In crust older than 7 Ma, regional heat flow is close to values predicted by plate cooling models, suggesting that hydrothermal circulation is going to cease. Considering published dating of alteration minerals, it appears that the permeability of uppermost oceanic crust has decreased to values insufficient to promote a vigorous hydrothermal circulation within 10-15 m.y. This idea may explain why seismic velocities in the Pacific ocean have not changed significantly in igneous crust older than 8-10 Ma. In regions where juvenile and consistently hot crust is buried rapidly by sediments the evolution of the seismic properties is quite different; velocities increase rapidly and reach values of mature oceanic crust within 1-2 m.y. We therefore favor a model where basement temperature is governing the evolution of the seismic properties of upper oceanic crust [Stephen and Harding, 1983; Rohr, 1994].

  1. Preface for Discussion on Mid-Ocean Ridges: dynamics of processes associated with creation of new ocean crust (United States)

    Cann, J. R.; Elderfield, H.; Laughton, A.

    Preface for Discussion on Mid-Ocean Ridges: dynamics of processes associated with creation of new ocean crust. A Discussion held at the Royal Society on 6th and 7th March 1996. Organized and edited by J. R. Cann, H. Elderfield and A. Laughton.

  2. Carbon fixation in oceanic crust: Does it happen, and is it important? (United States)

    Orcutt, B.; Sylvan, J. B.; Rogers, D.; Lee, R.; Girguis, P. R.; Carr, S. A.; Jungbluth, S.; Rappe, M. S.


    The carbon sources supporting a deep biosphere in igneous oceanic crust, and furthermore the balance of heterotrophy and autotrophy, are poorly understood. When the large reservoir size of oceanic crust is considered, carbon transformations in this environment have the potential to significantly impact the global carbon cycle. Furthermore, igneous oceanic crust is the most massive potential habitat for life on Earth, so understanding the carbon sources for this potential biosphere are important for understanding life on Earth. Geochemical evidence suggests that warm and anoxic upper basement is net heterotrophic, but the balance of these processes in cooler and potentially oxic oceanic crust are poorly known. Here, we present data from stable carbon isotope tracer incubations to examine carbon fixation in basalts collected from the Loihi Seamount, the Juan de Fuca Ridge, and the western flank of the Mid-Atlantic Ridge, to provide a first order constraint on the rates of carbon fixation on basalts. These data will be compared to recently available assessments of carbon cycling rates in fluids from upper basement to synthesize our current state of understanding of the potential for carbon fixation and respiration in oceanic crust. Moreover, we will present new genomic data of carbon fixation genes observed in the basalt enrichments as well as from the subsurface of the Juan de Fuca Ridge flank, enabling identification of the microbes and metabolic pathways involved in carbon fixation in these systems.

  3. Peculiarities in the Fabric of Oceanic Crust Generated at the Gakkel Ridge, Arctic Ocean. (United States)

    Weigelt, E.; Jokat, W.


    The Gakkel Ridge, northern boundary of the American and Eurasian plates, presents the lowest spreading rate (< 20 mm/yr) of the global ridge system. Therefore it provides an excellent opportunity to study any dependence of crustal fabric on spreading rate. Subject of this contribution are the crustal thickness and the roughness of basement surface in the Eurasian Basin. Reflection seismics and gravity records aquired during the ARCTIC'91 expedition across the Gakkel Ridge and the adjacent Nansen and Amundsen Basin are used. The data are combined with results of former refraction seismic experiments to constrain starting-points for gravity modeling. The topography of the basements surface, buried under more than 3000m thick sediments in the central parts of the basins, appears to be very rough. It varies from several hundred meters up to 1000 m. The RMS-roughness ranges from 450 m in the central Amundsen Basin to 584 m in the southern Eurasian Basin. These values agree reasonably well with RMS-roughness values derived by an empirical model from spreading rates. The gravity models reveal a 5-6 km thick oceanic crust (density of 2900 kg/cm) in the central part of the Amundsen Basin, increasing to 9 km towards the Gakkel Ridge. At the southwestern end of the Eurasian Basin, oceanic crust is only 2-5 km thick and thickens towards the Gakkel Ridge. In our model the ridge is composed of a 2 km thick upper layer with a density of 2600 kg/cm, underlain by an 8 km thick zone with a density of 2900 kg/cm. This is a surprising result, contradicting most theoretical models from which crustal thickness is supposed to decrease with decreasing spreading rate.

  4. Boron contents and isotope compositions of oceanic crusts from the Oman and Troodos ophiolites (United States)

    Yamaoka, K.; Matsukura, S.; Ishikawa, T.; Kawahata, H.


    Boron is excellent tracer for elucidating crustal recycling in subduction zones because of the high concentration of boron in the upper part of the slab and the high mobility of boron during dehydration of the slab. However, fundamental data for vertical distribution of boron in hydrothermally altered oceanic crust are still limited. In this study, boron contents and isotopic compositions were determined for complete section of the oceanic crusts in the Oman and Troodos ophiolite. Although the boron contents of rocks decreased with depth in both the oceanic crusts, altered rocks from deep section showed obvious boron enrichment relative to fresh rocks. The pillow lavas in the Troodos ophiolite, which have been weathered on the seafloor for ~80 Myrs, was highly enriched in boron (>100 ppm), supporting that boron inventory of pillow lava section strongly depends on the crustal age. The δ11B of rocks in the Oman ophiolite systematically increased with depth and negatively correlate with the δ18O values, suggesting that the δ11B values are essentially controlled by alteration temperature. On the other hand, the δ11B profile in the Troodos ophiolite didn't show clear increase trend. The boron contents for the bulk oceanic crusts of the Oman and Troodos ophiolites are estimated to be 3.6 ppm and 12 ppm, respectively. About 8% of δ11B was estimated for both the bulk oceanic crusts. In contrast to previous views, hydrothermally altered gabbro section can be a large sink of boron. This boron-enriched, high-δ11B lower oceanic crust may impact on the estimate of the δ11B value for fluids librated from the subducted oceanic slab, which is believed to largely control the δ11B values of arc magmas generated in the mantle wedge.

  5. Millennial-scale ocean acidification and late Quaternary decline of cryptic bacterial crusts in tropical reefs. (United States)

    Riding, R; Liang, L; Braga, J C


    Ocean acidification by atmospheric carbon dioxide has increased almost continuously since the last glacial maximum (LGM), 21,000 years ago. It is expected to impair tropical reef development, but effects on reefs at the present day and in the recent past have proved difficult to evaluate. We present evidence that acidification has already significantly reduced the formation of calcified bacterial crusts in tropical reefs. Unlike major reef builders such as coralline algae and corals that more closely control their calcification, bacterial calcification is very sensitive to ambient changes in carbonate chemistry. Bacterial crusts in reef cavities have declined in thickness over the past 14,000 years with largest reduction occurring 12,000-10,000 years ago. We interpret this as an early effect of deglacial ocean acidification on reef calcification and infer that similar crusts were likely to have been thicker when seawater carbonate saturation was increased during earlier glacial intervals, and thinner during interglacials. These changes in crust thickness could have substantially affected reef development over glacial cycles, as rigid crusts significantly strengthen framework and their reduction would have increased the susceptibility of reefs to biological and physical erosion. Bacterial crust decline reveals previously unrecognized millennial-scale acidification effects on tropical reefs. This directs attention to the role of crusts in reef formation and the ability of bioinduced calcification to reflect changes in seawater chemistry. It also provides a long-term context for assessing anticipated anthropogenic effects. © 2014 John Wiley & Sons Ltd.

  6. Is There Ultra-slow Spreading Oceanic Crust off the Newfoundland Rifted Margin? (United States)

    Hopper, J. R.; Funck, T.; Larsen, H. C.; Holbrook, W. S.; Louden, K.; Tucholke, B.


    A joint seismic reflection/refraction experiment was carried out along the Newfoundland Margin in July/August 2000 to determine the nature and structure of crust associated with final breakup and the initiation of seafloor spreading between Iberia/North America. Data were collected along 3 major transects and here we report on the northernmost one, which crosses the Flemish Cap and is conjugate to the Galicia margin transects. Continental crust thins rapidly from 30 km to less than 5 km over a distance of ~75km. The thin crust is marked by a deep fault-bounded basin, seaward of which is a block of transparent crust with a continental-type velocity structure. It is bounded by a large seaward dipping fault that is coincident with a dramatic change in basement depth and reflectivity as well as a change to an oceanic-type velocity structure. We interpret this to mark the continent ocean boundary. Beyond this point a zone of domino-style tilted fault blocks are found with 45° dipping normal faults spaced every 1.5 km that penetrate at least 1 km into the crust. 15 km seaward, the fault spacing decreases and is replaced by domal structures reminiscent of the megamullion or core-complex structures described along the Mid-Atlantic ridge. Continuing seaward, the crust thins from 3 km thick to only 1.5 km thick, with large normal faults that clearly penetrate the entire crust and may offset the crust-mantle boundary, which is marked by a strong reflection we term the "Z" reflector. In addition, blocks of tilted and rotated strata are found, the p-wave velocity in the crust is slower, and duplex-type structures may be indicated. Two possible interpretations for this extremely thin crust require consideration. First is that it is oceanic crust that has been thinned mechanically during an interval of magma starvation. Alternatively, it is continental crust, presumably stranded by a small ridge jump. Unfortunately, existing data does not allow us to distinguish between these

  7. Cerium anomaly variations in ferromanganese nodules and crusts from the Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Nath, B.N.; Roelandts, I.; Sudhakar, M.; Pluger, W.L.; Balaram, V.

    Fifty analyses of rare earth elements as well as mineralogical studies have been carried out on a suite of manganese nodules and crusts from the Central Indian Basin and the Western Indian Ocean. The aim was to identify the processes controlling...

  8. Europa's Crust and Ocean: Origin, Composition, and the Prospects for Life (United States)

    Kargel, J.S.; Kaye, J.Z.; Head, J. W.; Marion, G.M.; Sassen, R.; Crowley, J.K.; Ballesteros, O.P.; Grant, S.A.; Hogenboom, D.L.


    We have considered a wide array of scenarios for Europa's chemical evolution in an attempt to explain the presence of ice and hydrated materials on its surface and to understand the physical and chemical nature of any ocean that may lie below. We postulate that, following formation of the jovian system, the europan evolutionary sequence has as its major links: (a) initial carbonaceous chondrite rock, (b) global primordial aqueous differentiation and formation of an impure primordial hydrous crust, (c) brine evolution and intracrustal differentiation, (d) degassing of Europa's mantle and gas venting, (e) hydrothermal processes, and (f) chemical surface alteration. Our models were developed in the context of constraints provided by Galileo imaging, near infrared reflectance spectroscopy, and gravity and magnetometer data. Low-temperature aqueous differentiation from a carbonaceous CI or CM chondrite precursor, without further chemical processing, would result in a crust/ocean enriched in magnesium sulfate and sodium sulfate, consistent with Galileo spectroscopy. Within the bounds of this simple model, a wide range of possible layered structures may result; the final state depends on the details of intracrustal differentiation. Devolatilization of the rocky mantle and hydrothermal brine reactions could have produced very different ocean/crust compositions, e.g., an ocean/crust of sodium carbonate or sulfuric acid, or a crust containing abundant clathrate hydrates. Realistic chemical-physical evolution scenarios differ greatly in detailed predictions, but they generally call for a highly impure and chemically layered crust. Some of these models could lead also to lateral chemical heterogeneities by diapiric upwellings and/or cryovolcanism. We describe some plausible geological consequences of the physical-chemical structures predicted from these scenarios. These predicted consequences and observed aspects of Europa's geology may serve as a basis for further analys is

  9. Mission Moho: Rationale for drilling deep through the ocean crust into the upper mantle (United States)

    Ildefonse, B.; Abe, N.; Kelemen, P. B.; Kumagai, H.; Teagle, D. A. H.; Wilson, D. S.; Moho Proponents, Mission


    Sampling a complete section of the ocean crust to the Moho was the original inspiration for scientific ocean drilling, and remains the main goal of the 21st Century Mohole Initiative in the IODP Science Plan. Fundamental questions about the composition, structure, and geophysical characteristics of the ocean lithosphere, and about the magnitude of chemical exchanges between the mantle, crust and oceans remain unresolved due to the absence of in-situ samples and measurements. The geological nature of the Mohorovičić discontinuity itself remains poorly constrained. "Mission Moho" is a proposal that was submitted to IODP in April 2007, with the ambition to drill completely through intact oceanic crust formed at a fast spreading rate, across the Moho and into the uppermost mantle. Although, eventually, no long-term mission was approved by IODP, the scientific objectives related to deep drilling in the ocean crust remain essential to our understanding of the Earth. These objectives are to : - Determine the geological meaning of the Moho in different oceanic settings, determine the in situ composition, structure and physical properties of the uppermost mantle, and understand mantle melt migration, - Determine the bulk composition of the oceanic crust to establish the chemical links between erupted lavas and primary mantle melts, understand the extent and intensity of seawater hydrothermal exchange with the lithosphere, and estimate the chemical fluxes returned to the mantle by subduction, - Test competing hypotheses of the ocean crust accretion at fast spreading mid-ocean ridges, and quantify the linkages and feedbacks between magma intrusion, hydrothermal circulation and tectonic activity, - Calibrate regional seismic measurements against recovered cores and borehole measurements, and understand the origin of marine magnetic anomalies, - Establish the limits of life in the ocean lithosphere. The "MoHole" was planned as the final stage of Mission Moho, which requires

  10. Glacial cycles drive variations in the production of oceanic crust. (United States)

    Crowley, John W; Katz, Richard F; Huybers, Peter; Langmuir, Charles H; Park, Sung-Hyun


    Glacial cycles redistribute water between oceans and continents, causing pressure changes in the upper mantle, with consequences for the melting of Earth's interior. Using Plio-Pleistocene sea-level variations as a forcing function, theoretical models of mid-ocean ridge dynamics that include melt transport predict temporal variations in crustal thickness of hundreds of meters. New bathymetry from the Australian-Antarctic ridge shows statistically significant spectral energy near the Milankovitch periods of 23, 41, and 100 thousand years, which is consistent with model predictions. These results suggest that abyssal hills, one of the most common bathymetric features on Earth, record the magmatic response to changes in sea level. The models and data support a link between glacial cycles at the surface and mantle melting at depth, recorded in the bathymetric fabric of the sea floor. Copyright © 2015, American Association for the Advancement of Science.

  11. Composition, characteristics and genesis of the ferromanganese crusts and nodules from the Indian and Pacific oceans (United States)

    Chen, S.; Peng, X.


    Ferromanganese crusts and nodules are considered to be one of the most important players in the geochemical cycling of the oceans. However, the lack of integrated studies affects our explicit understanding of the mineralization, characteristics and genesis of the crusts and nodules. In this study, the mineralogy, geochemistry and molecular biology in ferromanganese crusts and nodules obtained from various oceans were explored. The crusts/nodules are composed predominantly of vernadite (δ-MnO2) and amorphous Fe oxides/hydroxides. The shale normalized negative Ce-anomalies, characteristic of hydrothermal oxides, are retained in JL and TVG6. In hydrogenous oxides, the positive Ce-anomalies were found in 21V-S7 and DY119-4. The iron isotopic compositions range between -0.543 and -0.002‰ in δ56Fe IRMM14. Using molecular 16S rRNA gene techniques (clone libraries, real-time PCR) we show that nodules (JL-B and TVG6) provide a suitable habitat for prokaryotes with an abundant and diverse prokaryotic community dominated by Mn(II)-oxidizing bacteria (Pseudomonas putida GB-1). These bacteria were not detected in the crust samples (21V-S7 and DY119-4). The results suggest that a biologically driven Manganese cycle inside the nodule that may be relevant to their formation.

  12. A comparison of the seismic structure of oceanic island arc crust and continental accreted arc terranes (United States)

    Calvert, A. J.


    Amalgamation of island arcs and their accretion to pre-existing continents is considered to have been one of the primary mechanisms of continental growth over the last 3 Ga, with arc terranes identified within Late Archean, Proterozoic, and Phanerozoic continental crust. Crustal-scale seismic refraction surveys can provide P wave velocity models that can be used as a proxy for crustal composition, and although they indicate some velocity variation in accreted arcs, these terranes have significantly lower velocities, and are hence significantly more felsic, than modern island arcs. Modern oceanic arcs exhibit significant variations in crustal thickness, from as little as 10 km in the Bonin arc to 35 km in the Aleutian and northern Izu arcs. Although globally island arcs appear to have a mafic composition, intermediate composition crust is inferred in central America and parts of the Izu arc. The absence of a sharp velocity contrast at the Moho appears to be a first order characteristic of island arc crust, and indicates the existence of a broad crust-mantle transition zone. Multichannel seismic reflection surveys complement refraction surveys by revealing structures associated with variations in density and seismic velocity at the scale of a few hundred meters or less to depths of 60 km or more. Surveys from the Mariana and Aleutian arcs show that modern middle and lower arc crust is mostly non-reflective, but reflections are observed from depths 5-25 km below the refraction Moho suggesting the localized presence of arc roots that may comprise gabbro, garnet gabbro, and pyroxenite within a broad transition from mafic lower crust to ultramafic mantle. Such reflective, high velocity roots are likely separated from the overlying arc crust prior to, or during arc-continent collision, and seismic reflections within accreted arc crust document the collisional process and final crustal architecture.

  13. Forearc oceanic crust in the Izu-Bonin arc - new insights from active-source seismic survey - (United States)

    Kodaira, S.; Noguchi, N.; Takahashi, N.; Ishizuka, O.; Kaneda, Y.


    Petrological studies have suggested that oceanic crust is formed in forearc areas during the initial stage of subduction. However, there is little geophysical evidence for the formation of oceanic crust in those regions. In order to examine crustal formation process associated with a subduction initiation process, we conducted an active-source seismic survey at a forearc region in the Izu-Bonin intra-oceanic arc. The resultant seismic image shows a remarkably thin crust (less than 10 km) at the northern half of the Bonin ridge (at the north of the Chichi-jima) and abrupt thickening the crust (~ 20 km thick) toward the south (at the Haha-jima). Comparison of velocity-depth profiles of the thin forearc crust of the Bonin ridge with those of typical oceanic crusts showed them to be seismologically identical. The observed structural variation also well corresponds to magmatic activities along the forearc. Boninitic magmatism is evident in the area of thin crust and tholeiitic-calcalkaline andesitic volcanism in the area of thick crust. Based on high precision dating studies of those volcanic rocks, we interpreted that the oceanic-type thin crust associated with boninitic volcanism has been created soon after the initiation of subduction (45-48 Ma) and and that the nonoceanic thick crust was created by tholeiitic-calcalkaline andesitic magmatism after the boninitic magmatism was ceased. The above seismological evidences strongly support the idea of forearc oceanic crust (or phiolite) created by forearc spreading in the initial stage of subduction along the intra-oceanic arc.

  14. Layer 2A in 70 Ma Old Oceanic Crust: Velocity Analysis in the Western South Atlantic Ocean (United States)

    Kardell, D. A.; Christeson, G. L.; Reece, R.; Carlson, R. L.; Arnulf, A. F.


    The uppermost igneous layer in oceanic crust, referred to as layer 2A, exhibits seismic velocities rapidly increasing with age and distance from the spreading ridge from 0-10 Ma. This increase in velocity is mainly attributed to chemical alteration by the intrusion and circulation of seawater. At ages >10 Ma layer 2A velocities appear to have little velocity contrast with the underlying layer 2B. However, new seismic reflection data collected during the CREST expedition in the South Atlantic image what appears to be a strong layer 2A event along the entire length of the transect, which covers crustal ages from 0 to 70 Ma. This implies a persistent strong velocity contrast between layer 2A and layer 2B from 0-70 Ma. In order to explore the nature and evolution of the contrast in acoustic impedance causing the observed layer 2A event, we will perform various modeling techniques including traveltime and reflectivity modeling, downward continuation, and tomographic modeling. This research will help constrain the velocity structure of the upper oceanic crust and explore the unexpected continuity and strength of the layer 2A event in relatively old crust. Also, our work will give insight into evolution of the upper crust in a lightly sedimented environment, which has implications for hydrothermal processes.

  15. Uppermost oceanic crust structure and properties from multichannel seismic data at the Alaska subduction zone (United States)

    Becel, A.; Carton, H. D.; Shillington, D. J.


    The most heterogeneous, porous and permeable layer within a subducting oceanic crust is the uppermost layer called Layer 2A. This layer, made of extrusive basalts, forms at the ridge axis and persists as a thin ( 600 m) low-velocity cap in old crust. Nearing the trench axis, when oceanic plate bends, normal faults can be formed or reactivated at the outer-rise allowing a more vigorous hydrothermal circulation to resume within this layer. Porosity and heterogeneity within this layer are important to assess because these parameters might have a profound impact on subduction zone processes. However, conventional refraction data quality is rarely good enough to look into detail into the properties of the uppermost oceanic layer. Here we use 2D marine long-offset multi-channel seismic (MCS) reflection data collected offshore of the Alaska Peninsula during the ALEUT Program. The dataset was acquired aboard the R/V Marcus Langseth with a 636-channels, 8-km long streamer. We present initial results from three 140 km long profiles across the 52-56Myr old incoming Pacific oceanic crust formed at fast spreading rate: two perpendicular margin and one parallel margin profiles. Those profiles are located outboard of the Shumagin gaps. Outboard of this subduction zone segment, abundant bending related normal faults are imaged and concentrated within 50-60 km of the trench. Long-offset MCS data exhibit a prominent triplication that includes postcritical reflections and turning waves within the upper crust at offsets larger than 3 km. The triplication suggests the presence of a velocity discontinuity within the upper oceanic crust. We follow a systematic and uniform approach to extract upper crustal post-critical reflections and add them to them to the vertical incidence MCS images. Images reveal small-scale variations in the thickness of the Layer 2A and the strength of its base along the profiles. The second step consists of the downward continuation followed by travel

  16. In situ Detection of Microbial Life in the Deep Biosphere in Igneous Ocean Crust. (United States)

    Salas, Everett C; Bhartia, Rohit; Anderson, Louise; Hug, William F; Reid, Ray D; Iturrino, Gerardo; Edwards, Katrina J


    The deep biosphere is a major frontier to science. Recent studies have shown the presence and activity of cells in deep marine sediments and in the continental deep biosphere. Volcanic lavas in the deep ocean subsurface, through which substantial fluid flow occurs, present another potentially massive deep biosphere. We present results from the deployment of a novel in situ logging tool designed to detect microbial life harbored in a deep, native, borehole environment within igneous oceanic crust, using deep ultraviolet native fluorescence spectroscopy. Results demonstrate the predominance of microbial-like signatures within the borehole environment, with densities in the range of 10(5) cells/mL. Based on transport and flux models, we estimate that such a concentration of microbial cells could not be supported by transport through the crust, suggesting in situ growth of these communities.

  17. The OSCAR experiment: using full-waveform inversion in the analysis of young oceanic crust (United States)

    Silverton, Akela; Morgan, Joanna; Wilson, Dean; Hobbs, Richard


    The OSCAR experiment aims to derive an integrated model to better explain the effects of heat loss and alteration by hydrothermal fluids, associated with the cooling of young oceanic crust at an axial ridge. High-resolution seismic imaging of the sediments and basaltic basement can be used to map fluid flow pathways between the oceanic crust and the surrounding ocean. To obtain these high-resolution images, we undertake full-waveform inversion (FWI), an advanced seismic imaging technique capable of resolving velocity heterogeneities at a wide range of length scales, from background trends to fine-scale geological/crustal detail, in a fully data-driven automated manner. This technology is widely used within the petroleum sector due to its potential to obtain high-resolution P-wave velocity models that lead to improvements in migrated seismic images of the subsurface. Here, we use the P-wave velocity model obtained from travel-time tomography as the starting model in the application of acoustic, time-domain FWI to a multichannel streamer field dataset acquired in the east Pacific along a profile between the Costa Rica spreading centre and the Ocean Drilling Program (ODP) borehole 504B, where the crust is approximately six million years old. FWI iteratively improves the velocity model by minimizing the misfit between the predicted data and the field data. It seeks to find a high-fidelity velocity model that is capable of matching individual seismic waveforms of the original raw field dataset, with an initial focus on matching the low-frequency components of the early arriving energy. Quality assurance methods adopted during the inversion ensure convergence in the direction of the global minimum. We demonstrate that FWI is able to recover fine-scale, high-resolution velocity heterogeneities within the young oceanic crust along the profile. The highly resolved FWI velocity model is useful in the identification of the layer 2A/2B interface and low-velocity layers that

  18. Asthenosphere and lithosphere structure controls on early onset oceanic crust production in the southern South Atlantic (United States)

    Taposeea, Chandra A.; Armitage, John J.; Collier, Jenny S.


    The southern South Atlantic has often been considered a classic example of continental break-up in the presence of a starting mantle plume. Evidence for a mantle plume includes the Paranà-Etendeka continental flood basalts, which are associated with the Rio Grande Rise and Walvis Ridge, and the wide-spread presence of seaward dipping reflectors and high-velocity lower-crustal bodies along the conjugate margins. Observations from seaward dipping reflector distributions suggested that lithospheric segmentation played a major role in the pattern of volcanism during break-up in this region, and consequent numerical modelling was used to test this. We tested this hypothesis ourselves by measuring the thickness of the earliest oceanic crust generated. This was done through the use of 37 measurements of initial oceanic crustal thickness from wide-angle and multichannel seismic profiles collected along the conjugate margins. These measurements show that at 450 km south of the Paranà-Etendeka flood basalts the oceanic crust is thicker than the global average at 11.7 km. Farther south the oceanic crust thins, reaching 6.1 km at a distance of 2300 km along-strike. Overall, the along-strike trend of oceanic crustal thickness is linear with a regression coefficient of 0.7 and little indication of segmentation. From numerical models representing extension of the lithosphere, we find that observed melt volumes are matched with the presence of a hot layer. If we assume this region of hot mantle has a thickness of 100 km, its excess temperature relative to the asthenosphere has to decrease from 200 to 50 °C, north to south. This decrease in temperature, also seen in published thermobarometry results, suggests that temperature was the primary control of volcanism during the opening of the southern South Atlantic.

  19. Crack structure in oceanic crust: A seismic anisotropy study in the Costa Rica Rift (United States)

    Zhang, Ling; Tong, Vincent; Hobbs, Richard; Lowell, Robert


    In 2015, an interdisciplinary cruise JC114 was carried out over the Costa Rica Rift (CRR) in the Panama Basin. A 5 x 5 grid of ocean-bottom seismographs (OBS) were deployed over the ridge axis, covering an area of 400 km2. Using tomography to invert 69,000 Pn and Pg arrivals, we obtained a three-dimensional velocity-depth model of the upper crust beneath the CRR, discovering a variable velocity structure beneath the axis. By fitting the traveltime residuals of our tomography result with a cosinusoid curve composed of cos(2θ) and cos(4θ) terms, we investigated the crack-induced azimuthal anisotropy in the upper oceanic crust, focusing on the bathymetric dome in the west of our survey region and the small-offset overlapping spreading centre (OSC) to the east. Our results reveal that in the upper crust on/near the axis, the fast direction of P-wave propagation is roughly aligned with the strike of the ridge axis, implying the presence of vertically aligned cracks that are nearly in parallel to the axis in the upper crust. At the dome, beneath which the axial magma chamber has been imaged on coincident seismic reflection data, a high velocity and aspect ratio of A4θ /A2θ region within the dyke section indicates the presence of thinner cracks. We interpret that this interval may be partly filled by the minerals precipitated from active hydrothermal circulation and/or magmatic intrusions. Conversely, in the dyke section beneath the OSC, we observe an anomalously low velocity yet a high A4θ /A2θ with the fast direction oriented oblique counter-clockwise to the axis. These observations suggest the presence of thin and water-saturated cracks under tectonic stress that may provide important pathways for the downflow of seawater into the crust. However, near the bottom of the dyke section, a lower ratio of A4θ /A2θ and higher anisotropy amplitude is evidence for the presence of thicker cracks, which may implicate lower rate of mineral precipitation and/or the absence

  20. Metastable garnet in oceanic crust at the top of the lower mantle. (United States)

    Kubo, Tomoaki; Ohtani, Eiji; Kondo, Tadashi; Kato, Takumi; Toma, Motomasa; Hosoya, Tomofumi; Sano, Asami; Kikegawa, Takumi; Nagase, Toshiro

    As oceanic tectonic plates descend into the Earth's lower mantle, garnet (in the basaltic crust) and silicate spinel (in the underlying peridotite layer) each decompose to form silicate perovskite-the 'post-garnet' and 'post-spinel' transformations, respectively. Recent phase equilibrium studies have shown that the post-garnet transformation occurs in the shallow lower mantle in a cold slab, rather than at approximately 800 km depth as earlier studies indicated, with the implication that the subducted basaltic crust is unlikely to become buoyant enough to delaminate as it enters the lower mantle. But here we report results of a kinetic study of the post-garnet transformation, obtained from in situ X-ray observations using sintered diamond anvils, which show that the kinetics of the post-garnet transformation are significantly slower than for the post-spinel transformation. Although metastable spinel quickly breaks down at a temperature of 1,000 K, we estimate that metastable garnet should survive of the order of 10 Myr even at 1,600 K. Accordingly, the expectation of where the subducted oceanic crust would be buoyant spans a much wider depth range at the top of the lower mantle, when transformation kinetics are taken into account.

  1. Growth response of a deep-water ferromanganese crust to evolution of the Neogene Indian Ocean (United States)

    Banakar, V.K.; Hein, J.R.


    A deep-water ferromanganese crust from a Central Indian Ocean seamount dated previously by 10Be and 230Th(excess) was studied for compositional and textural variations that occurred throughout its growth history. The 10Be/9Be dated interval (upper 32 mm) yields an uniform growth rate of 2.8 ?? 0.1 mm/Ma [Frank, M., O'Nions, R.K., 1998. Sources of Pb for Indian Ocean ferromanganese crusts: a record of Himalayan erosion. Earth Planet. Sci. Lett., 158, pp. 121-130.] which gives an extrapolated age of ~ 26 Ma for the base of the crust at 72 mm and is comparable to the maximum age derived from the Co-model based growth rate estimates. This study shows that Fe-Mn oxyhydroxide precipitation did not occur from the time of emplacement of the seamount during the Eocene (~ 53 Ma) until the late Oligocene (~ 26 Ma). This paucity probably was the result of a nearly overlapping palaeo-CCD and palaeo-depth of crust formation, increased early Eocene productivity, instability and reworking of the surface rocks on the flanks of the seamount, and lack of oxic deep-water in the nascent Indian Ocean. Crust accretion began (older zone) with the formation of isolated cusps of Fe-Mn oxide during a time of high detritus influx, probably due to the early-Miocene intense erosion associated with maximum exhumation of the Himalayas (op. cit.). This cuspate textured zone extends from 72 mm to 42 mm representing the early-Miocene period. Intense polar cooling and increased mixing of deep and intermediate waters at the close of the Oligocene might have led to the increased oxygenation of the bottom-water in the basin. A considerable expansion in the vertical distance between the seafloor depth and the CCD during the early Miocene in addition to the influx of oxygenated bottom-water likely initiated Fe-Mn crust formation. Pillar structure characterises the younger zone, which extends from 40 mm to the surface of the crust, i.e., ~ 15 Ma to Present. This zone is characterised by > 25% higher

  2. Partial Melting of Lower Oceanic Crust Gabbro: Constraints From Poikilitic Clinopyroxene Primocrysts

    Directory of Open Access Journals (Sweden)

    Julien Leuthold


    Full Text Available Successive magma batches underplate, ascend, stall and erupt along spreading ridges, building the oceanic crust. It is therefore important to understand the processes and conditions under which magma differentiates at mid ocean ridges. Although fractional crystallization is considered to be the dominant mechanism for magma differentiation, open-system igneous complexes also experience Melting-Assimilation-Storage-Hybridization (MASH, Hildreth and Moorbath, 1988 processes. Here, we examine crystal-scale records of partial melting in lower crustal gabbroic cumulates from the slow-spreading Atlantic oceanic ridge (Kane Megamullion; collected with Jason ROV and the fast-spreading East Pacific Rise (Hess Deep; IODP expedition 345. Clinopyroxene oikocrysts in these gabbros preserve marked intra-crystal geochemical variations that point to crystallization-dissolution episodes in the gabbro eutectic assemblage. Kane Megamullion and Hess Deep clinopyroxene core1 primocrysts and their plagioclase inclusions indicate crystallization from high temperature basalt (>1,160 and >1,200°C, respectively, close to clinopyroxene saturation temperature (<50% and <25% crystallization. Step-like compatible Cr (and co-varying Al and incompatible Ti, Zr, Y and rare earth elements (REE decrease from anhedral core1 to overgrown core2, while Mg# and Sr/Sr* ratios increase. We show that partial resorption textures and geochemical zoning result from partial melting of REE-poor lower oceanic crust gabbroic cumulate (protolith following intrusion by hot primitive mantle-derived melt, and subsequent overgrowth crystallization (refertilization from a hybrid melt. In addition, toward the outer rims of crystals, Ti, Zr, Y and the REE strongly increase and Al, Cr, Mg#, Eu/Eu*, and Sr/Sr* decrease, suggesting crystallization either from late-stage percolating relatively differentiated melt or from in situ trapped melt. Intrusion of primitive hot reactive melt and percolation of

  3. Eclogitization of the Subducted Oceanic Crust and Its Implications for the Mechanism of Slow Earthquakes (United States)

    Wang, Xinyang; Zhao, Dapeng; Suzuki, Haruhiko; Li, Jiabiao; Ruan, Aiguo


    The generating mechanism and process of slow earthquakes can help us to better understand the seismogenic process and the petrological evolution of the subduction system, but they are still not very clear. In this work we present robust P and S wave tomography and Poisson's ratio images of the subducting Philippine Sea Plate beneath the Kii peninsula in Southwest Japan. Our results clearly reveal the spatial extent and variation of a low-velocity and high Poisson's ratio layer which is interpreted as the remnant of the subducted oceanic crust. The low-velocity layer disappears at depths >50 km, which is attributed to crustal eclogitization and consumption of fluids. The crustal eclogitization and destruction of the impermeable seal play a key role in the generation of slow earthquakes. The Moho depth of the overlying plate is an important factor affecting the depth range of slow earthquakes in warm subduction zones due to the transition of interface permeability from low to high there. The possible mechanism of the deep slow earthquakes is the dehydrated oceanic crustal rupture and shear slip at the transition zone in response to the crustal eclogitization and the temporal stress/strain field. A potential cause of the slow event gap existing beneath easternmost Shikoku and the Kii channel is the premature rupture of the subducted oceanic crust due to the large tensional force.

  4. Upper Paleozoic oceanic crust in the Polish Sudetes: NdSr isotope and trace element evidence (United States)

    Pin, C.; Majerowicz, A.; Wojciechowska, I.


    The two main mafic-ultramafic complexes outcropping in the Polish Sudetes around the Sowie Góry high-grade massif (Mt. Sleza and Nowa Ruda) have been studied for trace elements and NdSr isotopes. Upper Paleozoic SmNd whole-rock isochron ages are obtained for both massifs: 353 ± 21 Ma (2σ) with ɛi = + 8.8 ± 0.1 (Mt. Sleza) and 351 ± 16 Ma with ɛi = 8.5 ± 0.1 (Nowa Ruda). The high initial ɛNd point to a source characterized by a strong time-integrated LREE depletion and, along with incompatible trace-element patterns, they substantiate the oceanic derivation of these massifs. Although a subduction-related marginal basin setting cannot be totally precluded, trace-element and isotopic data rather suggest a normal mid-ocean ridge origin for the Sudetic ophiolites. While these results are in marked contrast with previously inferred Precambrian or early Paleozoic ages, remnants of oceanic crust as young as the Early Carboniferous are consistent with the local sedimentary record of pelagic facies from the Frasnian to the Tournaisian, and they may provide a suitable explanation for the contrasted evolution displayed by different domains of the Sudetes. The Sudetic ophiolites might tentatively be correlated with the upper Paleozoic "prasinites" of the Saxon Lineament if a Late Hercynian ca. 150 km dextral offset is assumed along the Elbe Fracture. In that case, they might represent the latest-stage remnants of an oceanic suture zone between the Saxo-Thuringian and Moldanubian zones. Together with several other examples throughout Europe, these ophiolites provide compelling evidence for the involvement of oceanic crust and plate-tectonic processes in the Variscan belt.

  5. Variations of Oceanic Crust in the Northeastern Gulf of Mexico From Integrated Geophysical Analysis (United States)

    Liu, M.; Filina, I.


    Tectonic history of the Gulf of Mexico remains a subject of debate due to structural complexity of the area and lack of geological constraints. In this study, we focus our investigation on oceanic domain of the northeastern Gulf of Mexico to characterize the crustal distribution and structures. We use published satellite derived potential fields (gravity and magnetics), seismic refraction data (GUMBO3 and GUMBO4) and well logs to build the subsurface models that honor all available datasets. In the previous study, we have applied filters to potential fields grids and mapped the segments of an extinct mid-ocean ridge, ocean-continent boundary (OCB) and several transform faults in our study area. We also developed the 2D potential fields model for seismic profile GUMBO3 (Eddy et al., 2014). The objectives of this study are: 1) to develop a similar model for another seismic profile GUMBO 4 (Christeson, 2014) and derive subsurface properties (densities and magnetic susceptibilities), 2) to compare and contrast the two models, 3) to establish spatial relationship between the two crustal domains. Interpreted seismic velocities for the profiles GUMBO 3 and GUMBO 4 show significant differences, suggesting that these two profiles cross different segments of oceanic crust. The total crustal thickness along GUMBO 3 is much thicker (up to 10 km) than the one for GUMBO 4 (5.7 km). The upper crustal velocity along GUMBO 4 (6.0-6.7 km/s) is significantly higher than the one for GUMBO 3 ( 5.8 km/s). Based our 2D potential fields models along both of the GUMBO lines, we summarize physical properties (seismic velocities, densities and magnetic susceptibilities) for different crustal segments, which are proxies for lithologies. We use our filtered potential fields grids to establish the spatial relationship between these two segments of oceanic crust. The results of our integrated geophysical analysis will be used as additional constraints for the future tectonic reconstruction of

  6. Seismic wave velocity of rocks in the Oman ophiolite: constraints for petrological structure of oceanic crust (United States)

    Saito, S.; Ishikawa, M.; Shibata, S.; Akizuki, R.; Arima, M.; Tatsumi, Y.; Arai, S.


    Evaluation of rock velocities and comparison with velocity profiles defined by seismic refraction experiments are a crucial approach for understanding the petrological structure of the crust. In this study, we calculated the seismic wave velocities of various types of rocks from the Oman ophiolite in order to constrain a petrological structure of the oceanic crust. Christensen & Smewing (1981, JGR) have reported experimental elastic velocities of rocks from the Oman ophiolite under oceanic crust-mantle conditions (6-430 MPa). However, in their relatively low-pressure experiments, internal pore-spaces might affect the velocity and resulted in lower values than the intrinsic velocity of sample. In this study we calculated the velocities of samples based on their modal proportions and chemical compositions of mineral constituents. Our calculated velocities represent the ‘pore-space-free’ intrinsic velocities of the sample. We calculated seismic velocities of rocks from the Oman ophiolite including pillow lavas, dolerites, plagiogranites, gabbros and peridotites at high-pressure-temperature conditions with an Excel macro (Hacker & Avers 2004, G-cubed). The minerals used for calculations for pillow lavas, dolerites and plagiogranites were Qtz, Pl, Prh, Pmp, Chl, Ep, Act, Hbl, Cpx and Mag. Pl, Hbl, Cpx, Opx and Ol were used for the calculations for gabbros and peridotites. Assuming thermal gradient of 20° C/km and pressure gradient of 25 MPa/km, the velocities were calculated in the ranges from the atmospheric pressure (0° C) to 200 MPa (160° C). The calculation yielded P-wave velocities (Vp) of 6.5-6.7 km/s for the pillow lavas, 6.6-6.8 km/s for the dolerites, 6.1-6.3 km/s for the plagiogranites, 6.9-7.5 km/s for the gabbros and 8.1-8.2 km/s for the peridotites. On the other hand, experimental results reported by Christensen & Smewing (1981, JGR) were 4.5-5.9 km/s for the pillow lavas, 5.5-6.3 km/s for the dolerites, 6.1-6.3 km/s for the plagiogranites, 6

  7. The strontium isotopic composition of seawater, and seawater-oceanic crust interaction

    International Nuclear Information System (INIS)

    Spooner, E.T.C.


    The 87 Sr/ 86 Sr ratio of seawater strontium (0.7091) is less than the 87 Sr/ 86 Sr ratio of dissolved strontium delivered to the oceans by continental run-off (approximately 0.716). Isotope exchange with strontium isotopically lighter oceanic crust during hydrothermal convection within spreading oceanic ridges can explain this observation. In quantitative terms, the current 87 Sr/ 86 Sr ratio of seawater (0.7091) may be maintained by balancing the continental run-off flux of strontium (0.59 x 10 12 g/yr) against a hydrothermal recirculation flux of 3.6 x 10 12 g/yr, during which the 87 Sr/ 86 Sr ratio of seawater drops by 0.0011. A concomitant mean increase in the 87 Sr/ 86 Sr ratio of the upper 4.5 km of oceanic crust of 0.0010 (0.7029-0.7039) should be produced. This required 87 Sr enrichment has been observed in hydrothermally metamorphosed ophiolitic rocks from the Troodos Massif, Cyprus. The post-Upper Cretaceous increase in the strontium isotopic composition of seawater (approximately 0.7075-0.7091) covaries smoothly with inferred increase in land area. This suggests that during this period the main factor which has caused variability in the 87 Sr/ 86 Sr ratio of seawater strontium could have been variation in the magnitude of the continental run-off flux caused by variation in land area. Variations in land area may themselves have been partly a consequence of variations in global mean sea-floor spreading rate. (Auth.)

  8. Intraterrestrial life in igneous ocean crust: advances, technologies, and the future (Invited) (United States)

    Edwards, K. J.; Wheat, C. G.


    The “next frontier” of scientific investigation in the deep sub-seafloor microbial biosphere lies in a realm that has been a completely unexplored until just the past decade: the igneous oceanic crust. Problems that have hampered exploration of the “hard rock” marine deep biosphere have revolved around sample access (hard rock drilling is technologically complex), contamination (a major hurdle), momentum (why take on this challenge when the relatively “easier” marine muds also have been a frontier) and suspicion that microbes in more readily accessed using (simpler) non-drilling technologies - like vents - are truly are endemic of subsurface clades/activities. Since the late 1990’s, however, technologies and resultant studies on microbes in the igneous ocean crust deep biosphere have risen sharply, and offer a new and distinct view on this biome. Moreover, microbiologists are now taking leading roles in technological developments that are critically required to address this biosphere - interfacing and collaborating closely with engineers, genomic biologists, geologists, seismologists, and geochemists to accomplish logistically complex and long-term studies that bring observatory research to this deep realm. The future of this field for the least decade is rich - opportunities abound for microbiologists to play new roles in how we study microbiology in the deep subsurface in an oceanographic and Earth system science perspective.

  9. Positive geothermal anomalies in oceanic crust of Cretaceous age offshore Kamchatka

    Directory of Open Access Journals (Sweden)

    G. Delisle


    Full Text Available Heat flow measurements were carried out in 2009 offshore Kamchatka during the German-Russian joint-expedition KALMAR. An area with elevated heat flow in oceanic crust of Cretaceous age – detected ~30 yr ago in the course of several Russian heat flow surveys – was revisited. One previous interpretation postulated anomalous lithospheric conditions or a connection between a postulated mantle plume at great depth (>200 km as the source for the observed high heat flow. However, the positive heat flow anomaly – as our bathymetric data show – is closely associated with the fragmentation of the western flank of the Meiji Seamount into a horst and graben structure initiated during descent of the oceanic crust into the subduction zone offshore Kamchatka. This paper offers an alternative interpretation, which connects high heat flow primarily with natural convection of fluids in the fragmented rock mass and, as a potential additional factor, high rates of erosion, for which evidence is available from our collected bathymetric image. Given high erosion rates, warm rock material at depth rises to nearer the sea floor, where it cools and causes temporary elevated heat flow.

  10. A comparison of chemical compositions of reported altered oceanic crusts and global MORB data set: implication for isotopic heterogeneity of recycled materials (United States)

    Shimoda, G.; Kogiso, T.


    Chemical composition of altered oceanic crust is one of important constraints to delineate chemical heterogeneity of the mantle. Accordingly, many researchers have been studied to determine bulk chemical composition of altered oceanic crust mainly based on chemical compositions of old oceanic crusts at Site 801 and Site 417/418, and young crust at Site 504 (e.g., Staudigel et al., 1996; Bach et al. 2003; Kuo et al., 2016). Their careful estimation provided reliable bulk chemical compositions of these Sites and revealed common geochemical feature of alteration. To assess effect of recycling of altered oceanic crust on chemical evolution of the mantle, it might be meaningful to discuss whether the reported chemical compositions of altered oceanic crusts can represent chemical composition of globally subducted oceanic crusts. Reported chemical compositions of fresh glass or less altered samples from Site 801, 417/418 and 504 were highly depleted compared to that of global MORB reported by Gale et al. (2013), suggesting that there might be sampling bias. Hence, it could be important to consider chemical difference between oceanic crusts of these three Sites and global MORB to discuss effect of recycling of oceanic crust on isotopic heterogeneity of the mantle. It has been suggested that one of controlling factors of chemical variation of oceanic crust is crustal spreading rate because different degree of partial melting affects chemical composition of magmas produced at a mid-ocean ridge. Crustal spreading rate could also affect intensity of alteration. Namely, oceanic crusts produced at slow-spreading ridges may prone to be altered due to existence of larger displacement faults compared to fast spreading ridges which have relatively smooth topography. Thus, it might be significant to evaluate isotopic evolution of oceanic crusts those were produced at different spreading rates. In this presentation, we will provide a possible chemical variation of altered oceanic

  11. Deep-sea mud volcanoes - a window to alteration processes in old oceanic crust? (United States)

    Hensen, Christian; Scholz, Florian; Nuzzo, Marianne; Valadares, Vasco; Terrinha, Pedro; Liebetrau, Volker; Kaul, Norbert; Manzoni, Sonia; Schmidt, Mark; Gràcia, Eulàlia


    A number of deep sea mud volcanoes (>4700 m water depth) were discovered during a recent expedition with the German research vessel Meteor along a prominent WSW-ENE trending strike-slip fault (SWIM 1; Zitellini et al., 2009) in the western extension of the Gulf of Cadiz (NE Atlantic). Mud volcanism was unambiguously related to tectonic activity along the fault and fluids expelled at these sites show a very distinct geochemical composition that has not been reported from any other mud volcano to date. In previous studies on deep-water mud volcanoes in the Western Gulf of Cadiz accretionary wedge it was hypothesized that the discharge fluids were affected by alteration processes occurring in the old (>140 Ma) and deeply buried (>4 km) oceanic crust (Scholz et al., 2009; Sallarès et al, 2011). This hypothesis is supported by recent findings at the mud volcanoes located to the west of the realm of tectonic deformation driven by the accretionary wedge of the Gulf of Cadiz. Pore water geochemical analyses revealed fluid sources from oceanic crust and oldest sedimentary strata. Regardless of the ultimate source, these findings suggest that large strike-slip faults may play a significant, yet unrecognized role in terms of fluid circulation and element redistribution. To date, hot vents and cold seeps occurring at active spreading centers and forearcs of subduction zones have been pinpointed as hotspots of fluid activity. However, bearing in mind that transform-type plate boundaries are equal in length compared to other types of plate boundaries, fluid exchange at this type of plate boundary may provide a similarly important pathway for water and element exchange between the lithosphere and ocean. Sallarès V., Gailler A., Gutscher M.-A., Graindorge D., Bartolomé R., Gràcia E., Díaz J., Dañobeitia J.J. and Zitellini N. (2011) Seismic evidence for the presence of Jurassic oceanic crust in the central Gulf of Cadiz (SW Iberian margin), Earth and Planetary Science Letters

  12. Magnesium isotope composition of the altered upper oceanic crust at ODP Holes 504B and 896A, Costa Rica Rift (United States)

    Beaumais, Aurélien; Teagle, Damon A. H.; James, Rachael H.; Harris, Michelle; Pearce, Christopher R.; Milton, James A.; Cooper, Matthew J.; Alt, Jeffrey C.


    Chemical reactions between the oceanic crust and seawater play a major role in regulating the composition of the oceans that, in turn, influence important geochemical cycles (e.g., C, S, Mg). It is well established that alteration of the oceanic crust is the principal sink of Mg in seawater, but the effect of this process on the Mg isotope composition of the oceans remains unclear. Here we present the first measurements of Mg isotopes in altered oceanic crust from ODP Holes 504B and 896A. These holes are located in 5.9 Ma crust located 200 km south of the intermediate spreading rate Costa Rica Rift. Hole 504B penetrates: (i) A volcanic section, consisting of primitive to moderately altered mid-ocean ridge basalt (MORB) that was open to seawater alteration under oxic-suboxic conditions at temperatures concentrations. Consequently, there is no observable change to the Mg isotopic composition of the dikes at bulk rock scale. [1] Teng et al., (2010) GCA 74, 4150-4166. [2] Huang et al., (2015) Lithos 231, 53-61.

  13. Magnesium Isotopic Evidence for Ancient Subducted Oceanic Crust in LOMU-Like Potassium-Rich Volcanic Rocks (United States)

    Sun, Yang; Teng, Fang-Zhen; Ying, Ji-Feng; Su, Ben-Xun; Hu, Yan; Fan, Qi-Cheng; Zhou, Xin-Hua


    To evaluate the role of subducted oceanic crust in the genesis of potassium-rich magmas, we report high-precision Mg isotopic data for a set of Cenozoic volcanic rocks from Northeast China. These rocks overall are lighter in Mg isotopic composition than the normal mantle and display considerable Mg isotopic variations, with δ26Mg ranging from -0.61 to -0.23. The covariation of δ26Mg with TiO2 in these rocks suggests that their light Mg isotopic compositions were derived from recycled oceanic crust in the form of carbonated eclogite in the source region. The strong correlations between δ26Mg and (Gd/Yb)N ratio as well as Sr-Pb isotopes further indicate a multicomponent and multistage origin of these rocks. Magnesium isotopes may thus be used as a novel tracer of recycled oceanic crust in the source region of mantle-derived magmas.

  14. Genomic evidence for the Wood-Ljungdahl pathway for carbon fixation in warm basaltic ocean crust (United States)

    Smith, A. R.; Fisk, M. R.; Mueller, R.; Colwell, F. S.; Mason, O. U.; Popa, R.


    Microbial life in the deep suboceanic aquifer can harness geochemical energy resulting from water-rock reactions and contribute to carbon cycling in the ocean via primary production, or chemosynthesis. Iron-bearing minerals such as olivine in oceanic crust can produce molecular hydrogen, small molecular weight hydrocarbons, and hydrogen sulfide as they react with seawater. Although this generally occurs in serpentinizing systems at very high temperatures deep in the subsurface, it has also been hypothesized to drive the subseafloor microbial ecosystems present in shallower basaltic aquifers. We present genome-based evidence for chemolithoautotrophic microbes present on the surface of olivine incubated in Juan de Fuca Ridge basaltic ocean crust for a 4-year period. These metagenome-derived genomes show dominant taxa capable of using both branches of the Wood-Ljungdahl pathway for carbon fixation and energy generation. This pathway uses molecular hydrogen potentially derived from the olivine surface as it reacts with seawater and CO2 which is inherent to seawater. These taxa were not reported from aquifer fluid samples, but have been found only in association with mineral surfaces in this study location. Most taxa in this simple community are distant relatives of cultured taxa; therefore this genome information is crucial to understanding how the subseafloor aquifer community is structured, how it obtains energy, how it cycles carbon, and gives us keys to help cultivate these organisms in the laboratory. Our findings also support the Subsurface Lithoautotrophic Microbial Ecosystem (SLiME) hypothesis and have implications for understanding life on early Earth and the potential for life in the Martian subsurface.

  15. Static and fault-related alteration in the lower ocean crust, IODP Expedition 345, Hess Deep (United States)

    McCaig, Andrew; Faak, Kathrin; Marks, Naomi; Nozaka, Toshio; Python, Marie; Wintsch, Robert; Harigane, Yumiko; Titarenko, Sofya


    could be achieved in a permeable fault slot cutting through crust 0.5 to 1 m.y. old. Our study reveals a low temperature alteration assemblage dominated by prehnite and chlorite that is not normally associated with the lower oceanic crust. Yet it is likely to be common in any location where faults intersect the Moho off-axis, including transform faults, near axis normal faults at slow spreading ridges, and bending faults at subduction zones, and would be accompanied by serpentinites in upper mantle rocks, as seen at ODP site 895 in Hess Deep. This prehnite + chlorite assemblage may therefore be significant in the release of volatiles in subduction zones. Gillis, K.M., Snow J. E. and Shipboard Science Party (2014) Primitive layered gabbros from fast-spreading lower oceanic crust. Nature, 505,204-207, doi: 10.1038/nature12778

  16. The effects of post-accretion sedimentation on the magnetization of oceanic crust (United States)

    Dyment, J.; Granot, R.


    The presence of marine magnetic anomalies related to seafloor spreading is often considered a key evidence to locate the continent-ocean boundary (COB) at passive margins. Conversely, thermal demagnetization is also advocated to explain the poor shape of such oceanic anomalies under thick sedimentary cover. To investigate the effects of post-accretion sedimentation on marine magnetic anomalies, we focus our study on two conjugate regions of the southern South Atlantic Ocean (Anomalies M4 to M0) that, although formed at the same time and along the same spreading segments, reveal contrasting characters. The anomalies exhibit strong amplitudes (>400 nT) and a well-marked shape off South Africa, where the sediments are less than 3 km-thick, but become weaker ( 200 nT) and much smoother off northern Argentina, where the sedimentary cover is thicker than 5 km. We interpret this observation as reflecting thermal demagnetization of the extrusive layer and its low Curie temperature titanomagnetite. We perform a series of thermo-magnetic models (Dyment and Arkani-Hamed, Geophys. J. Int., 1995, modified to include the sedimentary cover) to simulate the acquisition and loss of remanent magnetization in the oceanic lithosphere. We assume that most of the sediments accumulated shortly after crustal accretion. We investigate a range of possible thermal demagnetization temperatures for the extrusive layer and find that 200°C to 280ºC best explains the observations, in reasonable agreement with Curie temperatures of titanomagnetite, suggesting that most of the extrusive layer may be demagnetized under sediments thicker than 5 km. Thermal demagnetization should therefore be considered while interpreting marine magnetic anomalies for the age and nature of the crust (i.e., continental versus oceanic) in regions with thick sedimentary cover.

  17. Mantle flow and oceanic crust formation during the opening of the Tyrrhenian back-arc basin (United States)

    Magni, Valentina


    The formation of the Tyrrhenian back-arc basin occurred through short-lived episodes of fast spreading alternated with periods of slow rifting. I present results from three-dimensional numerical models of laterally varying subduction to explain the mechanism of back-arc basin opening and its episodic spreading behaviour. Moreover, I explore the consequences of this alternation between fast and slow episodes of extension on the production of new oceanic crust in the back-arc basin. Results show that the presence of continental plates (i.e. Africa and Adria) nearby the oceanic subduction of the Ionian slab produces localised deformation within the overriding plate and it is, thus, crucial for the opening of the back-arc basin. Moreover, the occurrence of collision results in the formation of two slab windows at the ocean-continent boundaries, which is in very good agreement with what is observed in the Central Mediterranean, nearby the Calabrian slab. During the evolution of the system the trench velocity shows pulses of fast trench retreat that last a few millions of years. This is associated with episodes of more intense melting of the asthenosphere rising at the back-arc basin. Finally, these three-dimensional models are used to track the mantle flow throughout the model evolution and the source of the mantle melting at the spreading centre.

  18. Formation of Oceanic Crust Geostructurs and Relation Between Submarine landslides and Tsunamis (United States)

    Harutyunyan, Albert V.


    Numerous geological and geophysical data proved the presence of oceanic crust relicts of Tethys in the territory of Lesser Caucasus. To discover the deep structure, composition and evolution of the modern Earth crust, the elastic and density properties of basites, ultrabasites and serpentinites of lesser Caucasus at high pressures and temperatures were investigated. On the basis of this data, and numerous geological-geophysical factual data concerning Mid ridges, Transform faults, Subdaction zones, Island arcs and Marginal seas are presented as a possible mechanism of their formations and relation between submarine landslides and tsunamis. The numerous volcanic and seismic centers, serpentinized protrusions and also hydrothermal sources are dated in the rang of Mid ridges and Transform faults. The formation of serpentinized ultrabasites 3-rd layer affects an infiltration of oceanic waters on ultrabasites of the upper mantle. At the same time, on an axial part of the ridge, the horizontally cramping forces, on the 5-6км depth, are established, which step-by-step pass on expanding in the top of the ridge. Analyzing the data about composition and properties of oceanic crust, we suspect that during the formation of Mid ridges, the main role belongs to serpentinized rocks of the 3-rd oceanic layer. Owing to high plasticity and low density, the serpentinized masses, by tectonic faults, in the central zone of Mid ridges, from both parties, float up and by means of protrusions implanted in the oceanic crust, then the serpentinized masses are grasp by basalts lavas. Accumulation in the axial zone of Mid ridges large masses of basalts and serpentinits, under influence of gravitation forces make slides to downwards on the serpentinized layer to the foot of ridge and low-powered sedimentary layers between these masses are saved. In the proposed model we attempted to interpret the above mentioned phenomena in the following sense. 1. Because of serpentinization of ultrabasits

  19. The Deep Subsurface Biosphere in Igneous Ocean Crust: Frontier Habitats for Microbiological Exploration (United States)

    Edwards, Katrina J.; Fisher, Andrew T.; Wheat, C. Geoffrey


    We discuss ridge flank environments in the ocean crust as habitats for subseafloor microbial life. Oceanic ridge flanks, areas far from the magmatic and tectonic influence of seafloor spreading, comprise one of the largest and least explored microbial habitats on the planet. We describe the nature of selected ridge flank crustal environments, and present a framework for delineating a continuum of conditions and processes that are likely to be important for defining subseafloor microbial "provinces." The basis for this framework is three governing conditions that help to determine the nature of subseafloor biomes: crustal age, extent of fluid flow, and thermal state. We present a brief overview of subseafloor conditions, within the context of these three characteristics, for five field sites where microbial studies have been done, are underway, or have been proposed. Technical challenges remain and likely will limit progress in studies of microbial ridge flank ecosystems, which is why it is vital to select and design future studies so as to leverage as much general understanding as possible from work focused at a small number of sites. A characterization framework such that as presented in this paper, perhaps including alternative or additional physical or chemical characteristics, is essential for achieving the greatest benefit from multidisciplinary microbial investigations of oceanic ridge flanks. PMID:22347212

  20. Controls on thallium uptake during hydrothermal alteration of the upper ocean crust (United States)

    Coggon, Rosalind M.; Rehkämper, Mark; Atteck, Charlotte; Teagle, Damon A. H.; Alt, Jeffrey C.; Cooper, Matthew J.


    Hydrothermal circulation is a fundamental component of global biogeochemical cycles. However, the magnitude of the high temperature axial hydrothermal fluid flux remains disputed, and the lower temperature ridge flank fluid flux is difficult to quantify. Thallium (Tl) isotopes behave differently in axial compared to ridge flank systems, with Tl near-quantitatively stripped from the intrusive crust by high temperature hydrothermal reactions, but added to the lavas during low temperature reaction with seawater. This contrasting behavior provides a unique approach to determine the fluid fluxes associated with axial and ridge flank environments. Unfortunately, our understanding of the Tl isotopic mass balance is hindered by poor knowledge of the mineralogical, physical and chemical controls on Tl-uptake by the ocean crust. Here we use analyses of basaltic volcanic upper crust from Integrated Ocean Drilling Program Hole U1301B on the Juan de Fuca Ridge flank, combined with published analyses of dredged seafloor basalts and upper crustal basalts from Holes 504B and 896A, to investigate the controls on Tl-uptake by mid-ocean ridge basalts and evaluate when in the evolution of the ridge flank hydrothermal system Tl-uptake occurs. Seafloor basalts indicate an association between basaltic uptake of Tl from cold seawater and uptake of Cs and Rb, which are known to partition into K-rich phases. Although there is no clear relationship between Tl and K contents of seafloor basalts, the data do not rule out the incorporation of at least some Tl into the same minerals as the alkali elements. In contrast, we find no relationship between the Tl content and either the abundance of secondary phyllosilicate minerals, or the K, Cs or Rb contents in upper crustal basalts. We conclude that the uptake of Tl and alkali elements during hydrothermal alteration of the upper crust involves different processes and/or mineral phases compared to those that govern seafloor weathering. Furthermore

  1. Chemical Composition of Ferromanganese Crusts in the World Ocean: A Review and Comprehensive Database. U.S. Geological Survey. (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The USGS Ferromanganese Crust data set was compiled by F.T. Manheim and C.M. Lane-Bostwick of the U.S. Geological Survey, Woods Hole, MA. The data set consists of...

  2. Chemistry and possible resource potential of cobalt rich ferromanganese crust from Afanasiy-Nikitin seamount in the Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Parthiban, G.; Banakar, V.K.

    Samples of ferromanganese encrustations (fe-Mn crusts) dredged from the upper flank of the Afanasiy-Nikitin seamount, above the Carbonate Compensation Depth (CCD) in the Northern Central Indian Ocean (NCIO) were analysed for Al, Fe, Mn, Ca, Ba, Cu...

  3. High- and low-Cr chromitite and dunite in a Tibetan ophiolite: evolution from mature subduction system to incipient forearc in the Neo-Tethyan Ocean (United States)

    Xiong, Qing; Henry, Hadrien; Griffin, William L.; Zheng, Jian-Ping; Satsukawa, Takako; Pearson, Norman J.; O'Reilly, Suzanne Y.


    The microstructures, major- and trace-element compositions of minerals and electron backscattered diffraction (EBSD) maps of high- and low-Cr# [spinel Cr# = Cr3+/(Cr3+ + Al3+)] chromitites and dunites from the Zedang ophiolite in the Yarlung Zangbo Suture (South Tibet) have been used to reveal their genesis and the related geodynamic processes in the Neo-Tethyan Ocean. The high-Cr# (0.77-0.80) chromitites (with or without diopside exsolution) have chromite compositions consistent with initial crystallization by interaction between boninitic magmas, harzburgite and reaction-produced magmas in a shallow, mature mantle wedge. Some high-Cr# chromitites show crystal-plastic deformation and grain growth on previous chromite relics that have exsolved needles of diopside. These features are similar to those of the Luobusa high-Cr# chromitites, possibly recycled from the deep upper mantle in a mature subduction system. In contrast, mineralogical, chemical and EBSD features of the Zedang low-Cr# (0.49-0.67) chromitites and dunites and the silicate inclusions in chromite indicate that they formed by rapid interaction between forearc basaltic magmas (MORB-like but with rare subduction input) and the Zedang harzburgites in a dynamically extended, incipient forearc lithosphere. The evidence implies that the high-Cr# chromitites were produced or emplaced in an earlier mature arc (possibly Jurassic), while the low-Cr# associations formed in an incipient forearc during the initiation of a new episode of Neo-Tethyan subduction at 130-120 Ma. This two-episode subduction model can provide a new explanation for the coexistence of high- and low-Cr# chromitites in the same volume of ophiolitic mantle.

  4. The Atlantis Bank Gabbro Massif, SW Indian Ridge: the Largest Know Exposure of the Lower Crust in the Oceans (United States)

    Dick, H. J.; Kvassnes, A. J.; Kinoshita, H.; MacLeod, C. J.; Robinson, P. T.


    Until the discovery of oceanic core complexes little was known and much inferred about the lower ocean crust at slow-spreading ridges. Their study shows the ocean crust isn't simply a uniform layer-cake of pillow lavas, sheeted dikes and gabbros, but is highly variable in thickness, composition and architecture, and even absent over large regions. The 660 km2 Atlantis Bank Gabbro Massif in the rift-mountains of the SW Indian Ridge flanking the Atlantis II Transform is the magmatic end member for ocean core complexes, and best approximates `average' slow-spread crust. Thus it has been a focus for drilling since its discovery in 1986, leading to the current attempt to drill to Moho there (Project SloMo). There are 3 ODP and IODP drill holes on its crest: 1508-m deep Hole 735B, 158-m deep Hole 1105A, and 809.4-m deep Hole U1473. These provide a 200 Kyr view of lower crustal accretion at a slow-spread ocean ridge. Here we extend this view to 2.7 Myr. Mapping and sampling shows the gabbro massif extends nearly the length of a single 2nd order magmatic ridge segment. With numerous inliers of the dike-gabbro transition at numerous locations, and a crust-mantle boundary, traced for 30-km along the transform wall, it would appear to represent a full section of the lower crust. As Moho is at 5.5 ± 1 km mbsf near Hole 735B, and 4.5 km beneath the transform, it is likely a serpentinization front. The crust-mantle boundary was crossed by dives at 4 locations. In each case gabbros at the base of the crust crystallized from melt that had previously fractionated 50% or more from a likely parent. Thus the gabbro massif must be laterally zoned, and the parental mantle melts had to have been emplaced at the center of the paleo-ridge segment, before intruding laterally to the distal end of the complex. Gabbros on a lithospheric flow line down the center of the massif closely resemble those from the drill holes. This shows that while lateral variations in crustal composition and

  5. The Opening of the Tyrrhenian Back-arc Basin and the Formation of New Oceanic Crust (United States)

    Magni, V.


    The opening of the Tyrrhenian basin in the Central Mediterranean is a well-documented example of back-arc extension, which is characterized by short-lived episodes of fast spreading. We present results from three-dimensional numerical models of laterally varying subduction to explain the mechanism of back-arc basin opening and its episodic spreading behaviour. Moreover, we explore the consequences of this alternation between fast and slow episodes of extension on the production of new oceanic crust in the back-arc basin. Our results show that the presence of continental plates (i.e. Africa and Adria) nearby the oceanic subduction of the Ionian slab produces localised deformation within the overriding plate and it is, thus, crucial for the opening of the back-arc basin. During this process the trench retreating velocity dramatically increases for a few million of years. This is associated with an episode of intense melt production of the asthenosphere rising at the back-arc basin. Afterwards, the slab breaks off forming slab windows at the ocean/continent boundaries and causing a second pulse of fast extension. This is in very good agreement with what is observed in the Central Mediterranean, where two slab window formed: one in northern Africa around 12-10 Ma, and propagates laterally westward beneath Sicily until the Middle Pleistocene, and a second one beneath the Central Apennines in the Middle Pleistocene. Finally, these three-dimensional models are used to track the mantle flow throughout the model evolution and the source of the mantle melting at the spreading centre.

  6. Dehydration of lawsonite could directly trigger earthquakes in subducting oceanic crust (United States)

    Okazaki, Keishi; Hirth, Greg


    Intermediate-depth earthquakes in cold subduction zones are observed within the subducting oceanic crust, as well as the mantle. In contrast, intermediate-depth earthquakes in hot subduction zones predominantly occur just below the Mohorovičić discontinuity. These observations have stimulated interest in relationships between blueschist-facies metamorphism and seismicity, particularly through dehydration reactions involving the mineral lawsonite. Here we conducted deformation experiments on lawsonite, while monitoring acoustic emissions, in a Griggs-type deformation apparatus. The temperature was increased above the thermal stability of lawsonite, while the sample was deforming, to test whether the lawsonite dehydration reaction induces unstable fault slip. In contrast to similar tests on antigorite, unstable fault slip (that is, stick-slip) occurred during dehydration reactions in the lawsonite and acoustic emission signals were continuously observed. Microstructural observations indicate that strain is highly localized along the fault (R1 and B shears), and that the fault surface develops slickensides (very smooth fault surfaces polished by frictional sliding). The unloading slope during the unstable slip follows the stiffness of the apparatus at all experimental conditions, regardless of the strain rate and temperature ramping rate. A thermomechanical scaling factor for the experiments is within the range estimated for natural subduction zones, indicating the potential for unstable frictional sliding within natural lawsonite layers.

  7. Deep-Ocean Crusts as Telescopes: Using Live Radioisotopes to Probe Supernova Nucleosynthesis

    CERN Document Server

    Fields, B D; Ellis, Jonathan Richard; Fields, Brian D.; Hochmuth, Kathrin A.; Ellis, John


    Live 60Fe has recently been detected in a deep-ocean ferromanganese crust, isolated in layers dating from about 3 Myr ago. Since 60Fe has a mean life of 2.2 Myr, a near-Earth supernova is the only likely source for such a signal, and we explore here the consequences of a supernova origin. We combine the 60Fe data with several supernova nucleosynthesis models to calculate the supernova distance as a function of progenitor mass, finding an allowed range of 15-120 pc. We also predict the signals expected for several other radioisotopes, which are independent of the supernova distance. Species likely to be present near or above background levels are 10Be, 26Al, 53Mn, 182Hf and 244Pu. Of these, 182Hf and 244Pu are nearly background-free, presenting the best opportunities to provide strong confirmation of the supernova origin of the 60Fe signal, and to demonstrate that at least some supernovae are the source for the r-process. The accuracies of our predictions are hampered by large uncertainties in the predicted 60...

  8. Magnetic mapping of (carbonated) oceanic crust-mantle boundary: New insights from Linnajavri, northern Norway (United States)

    Tominaga, M.; Beinlich, A.; Tivey, M.; Andrade Lima, E.; Weiss, B. P.


    The contribution of lower oceanic crust and upper mantle to marine magnetic anomalies has long been recognized, but the detailed magnetic character of this non-volcanic source layer remains to be fully defined. Here, we report preliminary results of a magnetic survey and source characterization of a "carbonated" oceanic Moho (petrological "Mohorovicic discontinuity") sequence observed at the Linnajavri Serpentinite Complex (LSC), northern Norway. The LSC is located at 67° 36'N and 16° 24'E within the upper Allochthon of the Norwegian Caledonides and represents a dismembered ophiolite. Particularly in the southern ("Ridoalggicohkka") area of the LSC, gabbro, serpentinite and its talc-carbonate (soapstone) and quartz-carbonate (listvenite) altered equivalents are extraordinarily well-exposed [1]. An intact oceanic Moho is exposed here, despite its complex tectonic setting. The small degree of arctic rock weathering (≤ 2 mm weathering surface) allowed for detailed regional-scale surface magnetic mapping across alteration fronts (serpentinite-soapstone; soapstone-listvenite) and lithological contacts (soapstone-gabbro). Magnetic mapping was conducted using a handheld 3-axis magnetometer, surface-towed resistivity meter and Teka surface magnetic susceptometer with sample spacing of 1 m. Geophysical field mapping was combined with petrological observations and scanning SQUID microscopy (SM) mapping conducted on thin sections from rock samples that were drilled along the survey lines. Regional scale magnetic mapping indicates that the total magnetic field across both the "carbonated" Moho and the soapstone-serpentinite interfaces show higher frequency changes in their magnetic anomaly character and amplitudes than the surface-towed resistivity data. SQUID microscopy mapping of both natural remanence magnetization (NRM) and anhysteretic remanence magnetization (ARM) on gabbro, serpentinite, soapstone, and listvenite samples, with a sensor-sample separation of ˜190

  9. High-velocity basal sediment package atop oceanic crust, offshore Cascadia: Impacts on plate boundary processes and fluid migration (United States)

    Peterson, D. E.; Keranen, K. M.


    Differences in fluid pressure and mechanical properties at megathrust boundaries in subduction zones have been proposed to create varying seismogenic behavior. In Cascadia, where large ruptures are possible but little seismicity occurs presently, new seismic transects across the deformation front (COAST cruise; Holbrook et al., 2012) image an unusually high-wavespeed sedimentary unit directly overlying oceanic crust. Wavespeed increases before sediments reach the deformation front, and the well-laminated unit, consistently of 1 km thickness, can be traced for 50 km beneath the accretionary prism before imaging quality declines. Wavespeed is modeled via iterative prestack time migration (PSTM) imaging and increases from 3.5 km/sec on the seaward end of the profile to >5.0 km/s near the deformation front. Landward of the deformation front, wavespeed is low along seaward-dipping thrust faults in the Quaternary accretionary prism, indicative of rapid dewatering along faults. The observed wavespeed of 5.5 km/sec just above subducting crust is consistent with porosity consolidation, cementation, and diagenesis as the sediments encounter the deformation front. Beneath the sediment, the compressional wavespeed of uppermost oceanic crust is 3-4 km/sec, likely reduced by alteration and/or fluids, lowest within a propagator wake. The propagator wake intersects the plate boundary at an oblique angle and changes the degree of hydration of the oceanic plate as it subducts within our area. Fluid flow out of oceanic crust is likely impeded by the low-porosity basal sediment package except along the focused thrust faults. Decollements are present at the top of oceanic basement, at the top of the high-wavespeed basal unit, and within sedimentary strata at higher levels; the decollement at the top of oceanic crust is active at the toe of the deformation front. The basal sedimentary unit appears to be mechanically strong, similar to observations from offshore Sumatra, where strongly

  10. Yttrium and rare earth element contents in seamount cobalt crusts in the Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Balaram, V.; Banakar, V.K.; Subramanyam, K.S.V.; Roy, P.; Satyanarayan, M.; RamMohan, M.; Sawant, S.S.

    -Mn crusts are much higher than those of the mid-Pacific seamount and nodules (1,180-1,434 mu g/g). Ce-enrichment up to 0.17 percent has been recorded in the present study as against approx. 0.1 percent content in global seamount Fe-Mn crusts. This enrichment...

  11. Four billion years of ophiolites reveal secular trends in oceanic crust formation

    Directory of Open Access Journals (Sweden)

    Harald Furnes


    Full Text Available We combine a geological, geochemical and tectonic dataset from 118 ophiolite complexes of the major global Phanerozoic orogenic belts with similar datasets of ophiolites from 111 Precambrian greenstone belts to construct an overview of oceanic crust generation over 4 billion years. Geochemical discrimination systematics built on immobile trace elements reveal that the basaltic units of the Phanerozoic ophiolites are dominantly subduction-related (75%, linked to backarc processes and characterized by a strong MORB component, similar to ophiolites in Precambrian greenstone sequences (85%. The remaining 25% Phanerozoic subduction-unrelated ophiolites are mainly (74% of Mid-Ocean-Ridge type (MORB type, in contrast to the equal proportion of Rift/Continental Margin, Plume, and MORB type ophiolites in the Precambrian greenstone belts. Throughout the Phanerozoic there are large geochemical variations in major and trace elements, but for average element values calculated in 5 bins of 100 million year intervals there are no obvious secular trends. By contrast, basaltic units in the ophiolites of the Precambrian greenstones (calculated in 12 bins of 250 million years intervals, starting in late Paleo- to early Mesoproterozoic (ca. 2.0–1.8 Ga, exhibit an apparent decrease in the average values of incompatible elements such as Ti, P, Zr, Y and Nb, and an increase in the compatible elements Ni and Cr with deeper time to the end of the Archean and into the Hadean. These changes can be attributed to decreasing degrees of partial melting of the upper mantle from Hadean/Archean to Present. The onset of geochemical changes coincide with the timing of detectible changes in the structural architecture of the ophiolites such as greater volumes of gabbro and more common sheeted dyke complexes, and lesser occurrences of ocelli (varioles in the pillow lavas in ophiolites younger than 2 Ga. The global data from the Precambrian ophiolites, representative of nearly 50

  12. Global distribution of beryllium isotopes in deep ocean water as derived from Fe-Mn crusts (United States)

    Von Blanckenburg, F.; O'Nions, R. K.; Belshaw, N.S.; Gibb, A.; Hein, J.R.


    The direct measurement of the ratio of cosmogenic 10Be (T1/2 = 1.5 Ma) to stable terrigenously sourced 9Be in deep seawater or marine deposits can be used to trace water mass movements and to quantify the incorporation of trace metals into the deep sea. In this study a SIMS-based technique has been used to determine the 10Be/9Be ratios of the outermost millimetre of hydrogenetic ferromanganese crusts from the worlds oceans. 10Be/9Be ratios, time-corrected for radioactive decay of cosmogenic 10Be using 234U/ 238U, are in good agreement with AMS measurements of modern deep seawater. Ratios are relatively low in the North and equatorial Atlantic samples (0.4-0.5 ?? 10-7). In the Southwest Atlantic ratios increase up to 1 ?? 10-7, they vary between 0.7 and 1.0 ?? 10-7 in Indian Ocean samples, and have a near constant value of 1.1 ?? 0.2 ?? 10-7 for all Pacific samples. If the residence time of 10Be (??10Be) in deep water is constant globally, then the observed variations in 10Be/9Be ratios could be caused by accumulation of 10Be in deep water as it flows and ages along the conveyor, following a transient depletion upon its formation in the Northern Atlantic. In this view both 10Be and 9Be reach local steady-state concentration in Pacific deep water and the global ??10Be ??? 600 a. An alternative possibility is that the Be isotope abundances are controlled by local scavenging. For this scenario ??10Be would vary according to local particle concentration and would ??? 600 a in the central Pacific, but ??10Be ??? 230 a in the Atlantic. Mass balance considerations indicate that hydrothermal additions of 9Be to the oceans are negligible and that the dissolved riverine source is also small. Furthermore, aeolian dust input of 9Be appears insufficient to provide the dissolved Be inventory. The dissolution of only a small proportion (2%) of river-derived particulates could in principle supply the observed seawater Be content. If true, ocean margins would be the sites for 9Be

  13. Global distribution of beryllium isotopes in deep ocean water as derived from FeMn crusts (United States)

    von Blanckenburg, F.; O'Nions, R. K.; Belshaw, N. S.; Gibb, A.; Hein, J. R.


    The direct measurement of the ratio of cosmogenic 10Be ( T 1/2 = 1.5 Ma ) to stable terrigenously sourced 9Be in deep seawater or marine deposits can be used to trace water mass movements and to quantify the incorporation of trace metals into the deep sea. In this study a SIMS-based technique has been used to determine the 10Be /9Be ratios of the outermost millimetre of hydrogenetic ferromanganese crusts from the worlds oceans. 10Be /9Be ratios, time-corrected for radioactive decay of cosmogenic 10Be using 234U /238U , are in good agreement with AMS measurements of modern deep seawater. Ratios are relatively low in the North and equatorial Atlantic samples (0.4-0.5 × 10 -7). In the Southwest Atlantic ratios increase up to 1 × 10 -7, they vary between 0.7 and 1.0 × 10 -7 in Indian Ocean samples, and have a near constant value of 1.1 ± 0.2 × 10 -7 for all Pacific samples. If the residence time of 10Be ( τ10 Be) in deep water is constant globally, then the observed variations in 10Be /9Be ratios could be caused by accumulation of 10Be in deep water as it flows and ages along the conveyor, following a transient depletion upon its formation in the Northern Atlantic. In this view both 10Be and 9Be reach local steady-state concentration in Pacific deep water and the global τ10 Be ≌ 600 a. An alternative possibility is that the Be isotope abundances are controlled by local scavenging. For this scenario τ10 Be would vary according to local particle concentration and would ≌ 600 a in the central Pacific, but τ10 Be ≌ 230 a in the Atlantic. Mass balance considerations indicate that hydrothermal additions of 9Be to the oceans are negligible and that the dissolved riverine source is also small. Furthermore, aeolian dust input of 9Be appears insufficient to provide the dissolved 9Be inventory. The dissolution of only a small proportion (2%) of river-derived particulates could in principle supply the observed seawater 9Be content. If true, ocean margins would be

  14. Detachment Fault Initiation and Control by Partially Molten Zones in the Lower Ocean Crust (United States)

    Dick, H. J.; Natland, J. H.; MacLeod, C. J.; Robinson, P. T.


    The close association of oxide gabbro and deformation in interleaved ferrogabbro and olivine gabbro at Atlantis Bank on the SW Indian Ridge explains the formation of this enormous single-domed gabbroic oceanic core complex. ODP Holes 735B and 1105A show that the stratigraphy is defined by 100's of zones of intense deformation and strain localization in the upper 500-m where various melts percolated including late-stage iron-titanium rich melts. The latter created highly deformed oxide-rich gabbro zones at scales from millimeters to over 100 meters. Mapping by ROV, over-the-side rock drilling, dredging, and submersible shows that this stratigraphy exists uniformly over the bank. Deep drilling and sampling up the headwalls of major landslips cutting into the core complex show that the fault zone was imbricate, likely reflecting relocation of the active slip plane due to cyclic intrusion in the lower crust. The detachment originated as a high-angle fault on the rift valley wall that propagated into a zone of partially molten gabbro beneath the sheeted dikes. This zone then pinned the footwall block, creating a plutonic growth fault along which gabbro intruded beneath the ridge axis was continuously uplifted and exposed on the Antarctic plate for ~3.9 myr. The overlying basaltic carapace spread more slowly to the north on the African Plate. Textural evidence, particularly that provided by iron-titanium oxides, shows that melts migrated along complex shear zones in which several creep mechanisms operated, ranging from crystal plastic dislocation creep, diffusion creep, grain boundary sliding, and brittle deformation. More than one of these mechanisms may have occurred concurrently. Subsequently, these zones localized later solid-state creep, often producing texturally complex rocks where separation of the timing and duration of different creep mechanisms is difficult to unravel. As uplift of the plutonic section progressed, the footwall passed through the zone of diking

  15. Metabolic Activity and Biosignatures of Microbes in the Lower Ocean Crust of Atlantis Bank, IODP Expedition 360 (United States)

    Wee, S. Y.; Edgcomb, V. P.; Burgaud, G.; Klein, F.; Schubotz, F.; Yvon-Lewis, S. A.; Sylvan, J. B.


    International Ocean Discovery Program (IODP) Expedition 360 represents the first leg of a multi-phase drilling program, SloMo, aimed at investigating the nature of the lower crust and Moho at slow spreading ridges. The goal of Expedition 360 was to recover a representative transect of the lower oceanic crust formed at Atlantis Bank, an oceanic core complex on the SW Indian Ridge. Recovered cores were primarily gabbro and olivine gabbro, which may potentially host serpentinization reactions and associated microbial life. Our goal was to sample this subseafloor environment and determine quantity, diversity and metabolic capabilities of any resident microbial life. Hole U1473A was drilled during Expedition 360 down to 790 m below seafloor and samples for detection of microbial communities and microbial biosignatures were collected throughout. We present here quantification of microbial biomass via fluorescence microscopy, preliminary analysis of nutrient addition experiments, data from sequencing of microbial 16S rRNA genes, analysis of microbial lipids, and data from Raman spectra of subsurface isolates. We initiated and sampled 12 nutrient addition experiments from 71-745 mbsf by adding sampled rocks to artificial seawater with no additions, added ammonium, added ammonium plus phosphate, and added organic acids. In nearly all of the experiment bottles, methane was detected when samples were collected at six months and again after one year of incubation. Phosphate in the incubations was drawn down, indicating active microbial metabolism, and archaeal lipids from in situ samples indicate the presence of methanogens, corroborating the likelihood of methanogens as the source of detected methane in the nutrient addition incubations. Altogether, the interdisciplinary approach used here provides a peek into life in the subseafloor upper ocean crust.

  16. Effects of Sediment Layer and Shallow Portion of the Oceanic Crust on Waveforms of Broadband Ocean Bottom Seismometers in Northwest Pacific Ocean (United States)

    Abe, Y.; Kawakatsu, H.


    Earthquake Research Institute, The University of Tokyo and Japan Agency for Marine-Earth Science and Technology have conducted seismic observation in the northwest Pacific Ocean with broadband ocean bottom seismometers (BBOBSs), for understanding the structure of the Earth's interior and the mechanism of plate motion (Normal Mantle Project). We have performed receiver function (RF) analyses using the waveform data, for detecting velocity discontinuities in the upper mantle, and have understood that it is essential to reveal shallower structure (especially structure of sediment) for elucidating the upper mantle structure using RFs (Abe et al., 2014, SSJ meeting; 2015, JpGU meeting). Therefore, we attempted to estimate the shallower structure by using power spectrum and auto correlation function (ACF) of ambient noise in addition to RFs. Power spectrum of horizontal seismogram of a BBOBS has several peaks due to resonances of S wave in the sediment. Godin & Chapman (1999, J. Acoust. Soc. Am.) introduced a method to estimate a 1-D velocity distribution in the sediment from the resonance frequencies. From the location of spectral peaks of a station (NM14), we estimated the velocity distribution to be Vs(z) = 0.519z0.473 (Vs: S wave velocity (km/s), z: depth (km)), assuming a sediment layer thickness of 0.3 km. Two way S wave travel time in this sediment corresponds to the arrival time of a prominent negative ACF peak of horizontal seismogram of the station. On the other hand, for P-wave RFs (0.4-2.0 Hz) of the station, the arrival time of the first positive peak is not explained only by the estimated sediment structure, and another discontinuity located a few hundred meters deeper than the bottom of the sediment is necessary to explain it. We attempt to constrain the structure of the sediment and shallow portion of the oceanic crust by analyzing RF waveforms in more detail that also explains power spectrum and ACF of ambient noise.

  17. A Low Viscosity Lunar Magma Ocean Forms a Stratified Anorthitic Flotation Crust With Mafic Poor and Rich Units: Lunar Magma Ocean Viscosity

    Energy Technology Data Exchange (ETDEWEB)

    Dygert, Nick [Department of Geological Sciences, Jackson School of Geosciences, University of Texas at Austin, Austin TX USA; Planetary Geosciences Institute, Department of Earth and Planetary Sciences, University of Tennessee, Knoxville, Knoxville TN USA; Lin, Jung-Fu [Department of Geological Sciences, Jackson School of Geosciences, University of Texas at Austin, Austin TX USA; Marshall, Edward W. [Department of Geological Sciences, Jackson School of Geosciences, University of Texas at Austin, Austin TX USA; Kono, Yoshio [HPCAT, Geophysical Laboratory, Carnegie Institution of Washington, Argonne IL USA; Gardner, James E. [Department of Geological Sciences, Jackson School of Geosciences, University of Texas at Austin, Austin TX USA


    Much of the lunar crust is monomineralic, comprising >98% plagioclase. The prevailing model argues the crust accumulated as plagioclase floated to the surface of a solidifying lunar magma ocean (LMO). Whether >98% pure anorthosites can form in a flotation scenario is debated. An important determinant of the efficiency of plagioclase fractionation is the viscosity of the LMO liquid, which was unconstrained. Here we present results from new experiments conducted on a late LMO-relevant ferrobasaltic melt. The liquid has an exceptionally low viscosity of 0.22 $+0.11\\atop{-0.19}$to 1.45 $+0.46\\atop{-0.82}$ Pa s at experimental conditions (1,300–1,600°C; 0.1–4.4 GPa) and can be modeled by an Arrhenius relation. Extrapolating to LMO-relevant temperatures, our analysis suggests a low viscosity LMO would form a stratified flotation crust, with the oldest units containing a mafic component and with very pure younger units. Old, impure crust may have been buried by lower crustal diapirs of pure anorthosite in a serial magmatism scenario.

  18. Activity and phylogenetic diversity of sulfate-reducing microorganisms in low-temperature subsurface fluids within the upper oceanic crust (United States)

    Robador, Alberto; Jungbluth, Sean P.; LaRowe, Douglas E.; Bowers, Robert M.; Rappé, Michael S.; Amend, Jan P.; Cowen, James P.


    The basaltic ocean crust is the largest aquifer system on Earth, yet the rates of biological activity in this environment are unknown. Low-temperature (fluid samples were investigated from two borehole observatories in the Juan de Fuca Ridge (JFR) flank, representing a range of upper oceanic basement thermal and geochemical properties. Microbial sulfate reduction rates (SRR) were measured in laboratory incubations with 35S-sulfate over a range of temperatures and the identity of the corresponding sulfate-reducing microorganisms (SRM) was studied by analyzing the sequence diversity of the functional marker dissimilatory (bi)sulfite reductase (dsrAB) gene. We found that microbial sulfate reduction was limited by the decreasing availability of organic electron donors in higher temperature, more altered fluids. Thermodynamic calculations indicate energetic constraints for metabolism, which together with relatively higher cell-specific SRR reveal increased maintenance requirements, consistent with novel species-level dsrAB phylotypes of thermophilic SRM. Our estimates suggest that microbially-mediated sulfate reduction may account for the removal of organic matter in fluids within the upper oceanic crust and underscore the potential quantitative impact of microbial processes in deep subsurface marine crustal fluids on marine and global biogeochemical carbon cycling. PMID:25642212

  19. Activity and phylogenetic diversity of sulfate-reducing microorganisms in low-temperature subsurface fluids within the upper oceanic crust

    Directory of Open Access Journals (Sweden)

    Alberto eRobador


    Full Text Available The basaltic ocean crust is the largest aquifer system on Earth, yet the rates of biological activity in this environment are unknown. Low-temperature (<100 °C fluid samples were investigated from two borehole observatories in the Juan de Fuca Ridge flank, representing a range of upper oceanic basement thermal and geochemical properties. Microbial sulfate reduction rates were measured in laboratory incubations with 35S-sulfate over a range of temperatures, with microbial activity limited by the availability of organic electron donors. Thermodynamic calculations indicate energetic constraints for metabolism in the higher temperature, more altered and isolated fluids, which together with relatively higher cell-specific sulfate reduction rates reveal increased maintenance requirements, consistent with novel species-level dsrAB phylotypes of thermophilic sulfate-reducing microorganisms. Our estimates suggest that microbially-mediated sulfate reduction may account for the removal of organic matter in fluids within the upper oceanic crust and underscore the potential quantitative impact of microbial processes in deep subsurface marine crustal fluids on marine and global biogeochemical carbon cycling.

  20. Association of deep-sea incirrate octopods with manganese crusts and nodule fields in the Pacific Ocean


    Purser, Autun; Marcon, Yann; Hoving, Henk-Jan T.; Vecchione, Michael; Piatkowski, Uwe; Eason, Deborah; Bluhm, Hartmut; Boetius, Antje


    Incirrate octopods (those without fins) are among the larger megafauna inhabiting the benthic environments of all oceans, commonly in water depths down to about 3,000 m. They are known to protect and brood their eggs until the juveniles hatch, but to date there is little published information on octopod deep-sea life cycles and distribution. For this study, three manganese-crust and nodule-abundant regions of the deep Pacific were examined by remote operated-vehicle and towed camera surveys c...

  1. Age, spreading rates, and spreading asymmetry of the world's ocean crust (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The authors present four companion digital models of the age, age uncertainty, spreading rates and spreading asymmetries of the world's ocean basins as geographic...

  2. Proterozoic crustal evolution of the Eucla basement, Australia: Implications for destruction of oceanic crust during emergence of Nuna (United States)

    Kirkland, C. L.; Smithies, R. H.; Spaggiari, C. V.; Wingate, M. T. D.; Quentin de Gromard, R.; Clark, C.; Gardiner, N. J.; Belousova, E. A.


    younger magmatism; 2) recycled c. 1950 Ma crust reworked in primitive arcs and in intra-plate settings and; 3) minor evolved material representing fragments of hyperextended continent. The observed isotopic evolution pattern is comparable to that of other central Australian Proterozoic provinces, including the Musgrave Province, the northern margin of the Gawler Craton, and components within the Rudall Province. Linking these isotopic signatures defines the Mirning Ocean, and its subducted and underplated equivalents. In a global context we suggest c. 1950 Ma crust production reflects the onset of ordered oceanic spreading centres, which swept juvenile crustal fragments into Nuna.

  3. Modification of an oceanic plateau, Aruba, Dutch Caribbean: Implications for the generation of continental crust

    NARCIS (Netherlands)

    White, R.V.; Tarney, J.; Kerr, A.C.; Saunders, A.D.; Kempton, P.D.; Pringle, M.S.; Klaver, G.T.


    The generation of the continental crust may be connected to mantle plume activity. However, the nature of this link, and the processes involved, are not well constrained. An obstacle to understanding relationships between plume-related mafic material and associated silicic rocks is that later

  4. Himalayan sedimentary pulses recorded by silicate detritus within a ferromanganese crust from the Central Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Banakar, V.K.; Galy, A.; Sukumaran, N.P.; Parthiban, G.; Volvaiker, A.Y.

    of the sediment production by the erosion of an active orogenic range and its distribution over a vast area. Additionally, close superimposition of the Early Miocene detritus pulse in the SS663-Crust on the riverine Sr isotopic positive excursion suggests...

  5. Costa Rica Rift Revisited: Constraints on Shallow and Deep Hydrothermal Circulation in Oceanic Crust (United States)

    Davis, E. E.; Becker, K.; He, J.


    New heat-flow observations made along two seismic reflection profiles on 6 Ma crust of the Costa Rica Rift flank show an inverse correlation between heat flow and sediment thickness similar to that observed on other sedimented ridges and young ridge flanks. Extrapolation of the seafloor heat-flow values to the top of the igneous crust - justified by comparing seafloor and borehole determinations where observations are colocated - show the surface of the igneous crust to be of uniform temperature despite large local sediment thickness variations. This is consistent with observations made at DSDP/ODP Holes 504B and 896A where basement temperatures are observed to be nearly identical, also despite contrasting sediment thicknesses. Efficient lateral heat exchange via vigorous crustal hydrothermal circulation is required to create the degree of uniformity inferred and observed. Permeability measurements at the two drill sites show that this vigorous circulation may be restricted to as little as the uppermost tens of m of the crust. Permeability determined deeper in Hole 504B is too low to permit thermally significant flow, although temperature logs suggest that thermally significant flow extends throughout the 2 km section penetrated at Site 504, presumably via pathways not intersected by the borehole. The laterally uniform temperatures in the uppermost igneous crust here and elsewhere are remarkable given the small apparent depth-extent of the circulation that so efficiently distributes heat. While certainly not as vigorous, the circulation at depth suggested by the temperature logs at Site 504 is also noteworthy; unfortunately the observation cannot be generalized because of the lack of other deep crustal holes that could permit direct observations, and the lack of a method for inferring deep hydrothermal structure.

  6. Consequences of Rift Propagation for Spreading in Thick Oceanic Crust in Iceland (United States)

    Karson, J. A.


    Iceland has long been considered a natural laboratory for processes related to seafloor spreading, including propagating rifts, migrating transforms and rotating microplates. The thick, hot, weak crust and subaerial processes of Iceland result in variations on the themes developed along more typical parts of the global MOR system. Compared to most other parts of the MOR, Icelandic rift zones and transform faults are wider and more complex. Rift zones are defined by overlapping arrays of volcanic/tectonic spreading segments as much as 50 km wide. The most active rift zones propagate N and S away from the Iceland hot spot causing migration of transform faults. A trail of crust deformed by bookshelf faulting forms in their wakes. Dead or dying transform strands are truncated along pseudofaults that define propagation rates close to the full spreading rate of ~20 mm/yr. Pseudofaults are blurred by spreading across wide rift zones and laterally extensive subaerial lava flows. Propagation, with decreasing spreading toward the propagator tips causes rotation of crustal blocks on both sides of the active rift zones. The blocks deform internally by the widespread reactivation of spreading-related faults and zones of weakness along dike margins. The sense of slip on these rift-parallel strike-slip faults is inconsistent with transform-fault deformation. These various deformation features as well as subaxial subsidence that accommodate the thickening of the volcanic upper crustal units are probably confined to the brittle, seismogenic, upper 10 km of the crust. At least beneath the active rift zones, the upper crust is probably decoupled from hot, mechanically weak middle and lower gabbroic crust resulting in a broad plate boundary zone between the diverging lithosphere plates. Similar processes may occur at other types of propagating spreading centers and magmatic rifts.

  7. CaSiO3 perovskite in diamond indicates the recycling of oceanic crust into the lower mantle (United States)

    Nestola, F.; Korolev, N.; Kopylova, M.; Rotiroti, N.; Pearson, D. G.; Pamato, M. G.; Alvaro, M.; Peruzzo, L.; Gurney, J. J.; Moore, A. E.; Davidson, J.


    Laboratory experiments and seismology data have created a clear theoretical picture of the most abundant minerals that comprise the deeper parts of the Earth’s mantle. Discoveries of some of these minerals in ‘super-deep’ diamonds—formed between two hundred and about one thousand kilometres into the lower mantle—have confirmed part of this picture. A notable exception is the high-pressure perovskite-structured polymorph of calcium silicate (CaSiO3). This mineral—expected to be the fourth most abundant in the Earth—has not previously been found in nature. Being the dominant host for calcium and, owing to its accommodating crystal structure, the major sink for heat-producing elements (potassium, uranium and thorium) in the transition zone and lower mantle, it is critical to establish its presence. Here we report the discovery of the perovskite-structured polymorph of CaSiO3 in a diamond from South African Cullinan kimberlite. The mineral is intergrown with about six per cent calcium titanate (CaTiO3). The titanium-rich composition of this inclusion indicates a bulk composition consistent with derivation from basaltic oceanic crust subducted to pressures equivalent to those present at the depths of the uppermost lower mantle. The relatively ‘heavy’ carbon isotopic composition of the surrounding diamond, together with the pristine high-pressure CaSiO3 structure, provides evidence for the recycling of oceanic crust and surficial carbon to lower-mantle depths.

  8. Controls on ferromanganese crust composition and reconnaissance resource potential, Ninetyeast Ridge, Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Hein, J.R.; Conrad, T.; Mizell, K.; Banakar, V.K.; Frey, F.A.; Sager, W.W.

    for Te, U, Tm, Tb, Ho, Eu, Ta, Li, Be, Cd, Rb; 0.5-1 ppm for Bi, Ga, Sc, Sn, U, Yb, Er, Lu; 1-2 ppm for Cr, Sb, Th, Dy, Gd, Pr, Sm; 2-5 ppm for Tl, Hf, W, Y; 5-10 ppm for Cu, Sr, V, Zn, As, Nb; 15-25 ppm for Mo, Ba, Ce; three metals had highly variable...-phosphatized NER crusts, which consequently produces fractionation of Y from all the REE; for example, Y/Ho changed from 19 to 49 when the NER crust was phosphatized. Y/Ho ratios around 19 are typical of Pacific and other hydrogenetic, non-phosphatized Fe...

  9. Incorporation of transition and platinum group elements (PGE) in Co-rich Mn crusts at Afanasiy-Nikitin Seamount (AFS) in the equatorial S Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Glasby, G.P.

    ..215 Incorporation of Transition and Platinum Group Elements (PGE) in Co-rich Mn Crusts at Afanasiy-Nikitin Seamount (AFS) in the Equatorial S Indian Ocean Geoffrey P. Glasby National Institute of Oceanography, Dona Paula, Goa, India Abstract Of the 12 elements.... Keywords: Afanasiy-Nikitin Seamount, Co-rich manganese crust, enrichment factor, platinum group elements. 1. Introduction Banakar et al. (2007) have presented a detailed over- view of the incorporation of PGE and Au into Co-rich Mn crusts from the Afanasiy...

  10. Seismic observation of a sharp post-garnet phase transition within the Farallon crust: Evidence for oceanic plateau subduction (United States)

    Maguire, R.; Ritsema, J.


    The tectonic evolution of North America over the past 150 million years was heavily influenced by the complex subduction history of the Farallon plate. In particular, Laramide mountain building may have been triggered by the initiation of flat slab subduction in the late Cretaceous. While it has been proposed that the cause of slab flattening is related to the subduction of an oceanic plateau[1], direct geophysical evidence of a subducted oceanic plateau is lacking. Here, using P-to-S receiver functions, we detect a sharp seismic discontinuity at 720-km depth beneath the southeastern United States and Gulf of Mexico. We interpret this discontinuity as a garnet-to-bridgmanite phase transition occurring within a thickened Farallon crust. Our results are consistent with a subducted oceanic plateau (likely the conjugate half of the Hess rise) which is foundering below the base of the mantle transition zone. Additionally, we find a strong 520-km discontinuity beneath the southeastern United States which may indicate a hydrous transition zone due to the release of H2O from the Farallon slab. These results provide insight into the dynamics of flat slab subduction as well as the tectonic history of North America. [1] Livaccari, R. F., Burke, K., & Şengör, A. M. C. (1981). Was the Laramide orogeny related to subduction of an oceanic plateau? Nature, v. 289, p. 276-278, doi: 10.1038/289276a0

  11. Continental basalts record the crust-mantle interaction in oceanic subduction channel: A geochemical case study from eastern China (United States)

    Xu, Zheng; Zheng, Yong-Fei


    Continental basalts, erupted in either flood or rift mode, usually show oceanic island basalts (OIB)-like geochemical compositions. Although their depletion in Sr-Nd isotope compositions is normally ascribed to contributions from the asthenospheric mantle, their enrichment in large ion lithophile elements (LILE) and light rare earth elements (LREE) is generally associated with variable enrichments in the Sr-Nd isotope compositions. This indicates significant contributions from crustal components such as igneous oceanic crust, lower continental crust and seafloor sediment. Nevertheless, these crustal components were not incorporated into the mantle sources of continental basalts in the form of solidus rocks. Instead they were processed into metasomatic agents through low-degree partial melting in order to have the geochemical fractionation of the largest extent to achieve the enrichment of LILE and LREE in the metasomatic agents. Therefore, the mantle sources of continental basalts were generated by metasomatic reaction of the depleted mid-ocean ridge basalts (MORB) mantle with hydrous felsic melts. Nevertheless, mass balance considerations indicate differential contributions from the mantle and crustal components to the basalts. While the depleted MORB mantle predominates the budget of major elements, the crustal components predominate the budget of melt-mobile incompatible trace elements and their pertinent radiogenic isotopes. These considerations are verified by model calculations that are composed of four steps in an ancient oceanic subduction channel: (1) dehydration of the subducting crustal rocks at subarc depths, (2) anataxis of the dehydrated rocks at postarc depths, (3) metasomatic reaction of the depleted MORB mantle peridotite with the felsic melts to generate ultramafic metasomatites in the lower part of the mantle wedge, and (4) partial melting of the metasomatites for basaltic magmatism. The composition of metasomatites is quantitatively dictated by

  12. Formation of fast-spreading lower oceanic crust as revealed by a new Mg-REE coupled geospeedometer (United States)

    Sun, Chenguang; Lissenberg, C. Johan


    A new geospeedometer is developed based on the differential closures of Mg and rare earth element (REE) bulk-diffusion between coexisting plagioclase and clinopyroxene. By coupling the two elements with distinct bulk closure temperatures, this speedometer can numerically solve the initial temperatures and cooling rates for individual rock samples. As the existing Mg-exchange thermometer was calibrated for a narrow temperature range and strongly relies on model-dependent silica activities, a new thermometer is developed using literature experimental data. When the bulk closure temperatures of Mg and REE are determined, respectively, using this new Mg-exchange thermometer and the existing REE-exchange thermometer, this speedometer can be implemented for a wide range of compositions, mineral modes, and grain sizes. Applications of this new geospeedometer to oceanic gabbros from the fast-spreading East Pacific Rise at Hess Deep reveal that the lower oceanic crust crystallized at temperatures of 998-1353 °C with cooling rates of 0.003-10.2 °C/yr. Stratigraphic variations of the cooling rates and crystallization temperatures support deep hydrothermal circulations and in situ solidification of various replenished magma bodies. Together with existing petrological, geochemical and geophysical evidence, results from this new speedometry suggest that the lower crust formation at fast-spreading mid-ocean ridges involves emplacement of primary mantle melts in the deep section of the crystal mush zone coupled with efficient heat removal by crustal-scale hydrothermal circulations. The replenished melts become chemically and thermally evolved, accumulate as small magma bodies at various depths, feed the shallow axial magma chamber, and may also escape from the mush zone to generate off-axial magma lenses.

  13. Investigation of Collisional Styles of the Caribbean Large Igneous Province (CLIP) vs. Normal Oceanic Crust from Seismic Reflection Profiles (United States)

    Mataracioglu, M.; Magnani, M.; DeShon, H. R.; Cox, R. T.


    The Caribbean plate subducts beneath the North American and the South American plates at the Muertos Trough and the South Caribbean Deformed Belt (SCDB), respectively. During subduction, large amount of crustal material may enter the subduction zone with the subducting plate or may be incorporated into the accretionary prism. To investigate the changes in collisional style and structures associated with subduction of the Caribbean Large Igneous Province (CLIP) versus normal oceanic crust, we interpret seismic reflection profiles collected around the northern and southern margins of the Venezuelan Basin. We refine the extent of the CLIP in the central and eastern Caribbean by identifying the structural differences at the top of the acoustic basement (Horizon B") on a dataset of 150 multi-channel seismic time stack and migrated marine reflection profiles acquired in eight cruises from 1975 to 2004, as well as some selected Integrated Ocean Drilling Program (IODP) drilling data. We will also attempt to determine whether sedimentary material enters the trench and is recycled back into the mantle, and therefore characterize the northern and southern subduction zones as accretionary or erosive. Our preliminary results show that the CLIP extends spatially to most of the Venezuelan Basin, the western part of the Columbian Basin, and a part of the Beata Ridge, but that it does not extend as far south as suggested by previous interpretations. Furthermore, some portions of the CLIP at the northern and southern boundaries subduct beneath the North and the South American plates at the Muertos Trough and the SCDB, respectively. The change in nature of the subducting plate (CLIP or normal oceanic crust) causes variations in the collisional style (i.e., accretionary versus erosive) and in structures at the accretionary wedge and on the downgoing plate.

  14. Iron speciation and redox state of mantle eclogites: Implications for ancient volatile cycles during mantle melting and oceanic crust subduction (United States)

    Aulbach, Sonja; Woodand, Alan; Vasilyev, Prokopiy; Viljoen, Fanus


    Kimberlite-borne mantle eclogite xenoliths of Archaean and Palaeoproterozoic age are commonly interpreted as representing former oceanic crust. As such, they may retain a memory of the redox state of the ancient convecting mantle sources that gave rise to their magmatic protoliths and which controls the speciation of volatiles in planetary interiors. Mantle eclogite suites commonly include both cumulate and variably evolved extrusive varieties [1], which may be characterised by initial differences in Fe3+/Fetotal. Recent Fe-based oxybarometry shows mantle eclogites to have fO2 relative to the fayalite-magnetite-quartz buffer (ΔFMQ) of -3 to 0, whereby low fO2 relative to modern MORB may relate to subduction of more reducing Archaean oceanic crust or loss of ferric Fe during partial melt loss [2]. Indeed, using V/Sc as a redox proxy, it was recently shown that Archaean mantle eclogites are more reduced than modern MORB (ΔFMQ-1.3 vs. ΔFMQ -0.4) [3]. However, in the warmer ancient mantle, they were also subject to modification due to partial melt loss upon recycling and, after capture in the cratonic mantle lithosphere, may be overprinted by interaction with metasomatic melts and fluids. In order to help further constrain the redox state of mantle eclogites and unravel the effect of primary and secondary processes, we measured Fe3+/Fetotal by Mössbauer in garnet from mantle eclogites from the Lace kimberlite (Kaapvaal craton), comprising samples with melt- and cumulate-like oceanic crustal protoliths as well as metasomatised samples. Fe3+/ΣFe in garnet shows a strong negative correlation with jadeite content and bulk-rock Li and Cu abundances, suggesting increased partitioning of Fe3+ into jadeite in the presence of monovalent cations with which it can form coupled substitutions. Broad negative correlation with whole-rock Al2O3/TiO2 and positive correlation with ΣREE are interpreted as incompatible behaviour of Fe3+ during olivine-plagioclase accumulation

  15. Heat Flow Variation along the Nankai Trough Floor Correlated with the Structure of the Shikoku Basin Oceanic Crust (United States)

    Yamano, M.; Kawada, Y.; Gao, X.


    Surface heat flow observed on the floor of the Nankai Trough, near the trench axis, is highly variable and does not well correspond to the seafloor age of the incoming Philippine Sea plate (Shikoku Basin). Recent detailed measurements between 133.5°E and 137°E revealed that heat flow on the trough floor significantly varies along the trough. The most conspicuous variation is found around 136°E. Heat flow is extremely high and variable between 135°E and 136°E, much higher than the value estimated from the age. On the east of 136°E, heat flow gradually decreases eastward over 50 km to the value nearly consistent with the age with no appreciable scatter. Elevated heat flow on the trough floor can be attributed to vigorous fluid circulation in a permeable layer (aquifer) in the subducted oceanic crust, which efficiently transports heat upward along the plate interface (Spinelli and Wang, 2008). The heat flow variation around 136°E may therefore arise from variation in the permeability structure of the crustal aquifer. A probable cause of the heterogeneity in the aquifer permeability is a structure boundary in the incoming Shikoku Basin, the boundary between the younger part on the west formed by spreading in NE-SW direction and the older part on the east formed by E-W spreading. It is located around 136°E, about the same place as the heat flow distribution boundary. A possible additional source of variation in the permeability structure is the geometry of the subducted Philippine Sea plate. A prominent bend in the subducted plate between 135°E and 136°E, which corresponds to the high heat flow area on the trough floor, may have fractured the oceanic crust and enhanced the aquifer permeability. We evaluated the influence of variations in the aquifer permeability on the thermal structure through 3D numerical modelling using a high thermal-conductivity proxy for heat transport by fluid flow. A sharp along-strike change in the permeability of the subducted

  16. New ichthyoliths from ferromanganese crusts and nodules from the Central Indian Ocean Basin

    Digital Repository Service at National Institute of Oceanography (India)

    Gupta, S.M.

    Ferromanganese encrusted hardgrounds, their intraclasts and the nuclei of manganese nodules collected from the Central Indian Ocean basin have yielded plentiful numbers of ichthyoliths. Forty well-knon ichthyoliths, one new type and 35 new subtypes...

  17. Evidence from detrital zircons for the existence of continental crust and oceans on the Earth 4.4 Gyr ago. (United States)

    Wilde, S A; Valley, J W; Peck, W H; Graham, C M


    No crustal rocks are known to have survived since the time of the intense meteor bombardment that affected Earth between its formation about 4,550 Myr ago and 4,030 Myr, the age of the oldest known components in the Acasta Gneiss of northwestern Canada. But evidence of an even older crust is provided by detrital zircons in metamorphosed sediments at Mt Narryer and Jack Hills in the Narryer Gneiss Terrane, Yilgarn Craton, Western Australia, where grains as old as approximately 4,276 Myr have been found. Here we report, based on a detailed micro-analytical study of Jack Hills zircons, the discovery of a detrital zircon with an age as old as 4,404+/-8 Myr--about 130 million years older than any previously identified on Earth. We found that the zircon is zoned with respect to rare earth elements and oxygen isotope ratios (delta18O values from 7.4 to 5.0%), indicating that it formed from an evolving magmatic source. The evolved chemistry, high delta18O value and micro-inclusions of SiO2 are consistent with growth from a granitic melt with a delta18O value from 8.5 to 9.5%. Magmatic oxygen isotope ratios in this range point toward the involvement of supracrustal material that has undergone low-temperature interaction with a liquid hydrosphere. This zircon thus represents the earliest evidence for continental crust and oceans on the Earth.

  18. Uranium isotopic compositions of the crust and ocean: Age corrections, U budget and global extent of modern anoxia (United States)

    Tissot, François L. H.; Dauphas, Nicolas


    The 238U/235U isotopic composition of uranium in seawater can provide important insights into the modern U budget of the oceans. Using the double spike technique and a new data reduction method, we analyzed an array of seawater samples and 41 geostandards covering a broad range of geological settings relevant to low and high temperature geochemistry. Analyses of 18 seawater samples from geographically diverse sites from the Atlantic and Pacific oceans, Mediterranean Sea, Gulf of Mexico, Persian Gulf, and English Channel, together with literature data (n = 17), yield a δ238U value for modern seawater of -0.392 ± 0.005‰ relative to CRM-112a. Measurements of the uranium isotopic compositions of river water, lake water, evaporites, modern coral, shales, and various igneous rocks (n = 64), together with compilations of literature data (n = 380), allow us to estimate the uranium isotopic compositions of the various reservoirs involved in the modern oceanic uranium budget, as well as the fractionation factors associated with U incorporation into those reservoirs. Because the incorporation of U into anoxic/euxinic sediments is accompanied by large isotopic fractionation (ΔAnoxic/Euxinic-SW = +0.6‰), the size of the anoxic/euxinic sink strongly influences the δ238U value of seawater. Keeping all other fluxes constant, the flux of uranium in the anoxic/euxinic sink is constrained to be 7.0 ± 3.1 Mmol/yr (or 14 ± 3% of the total flux out of the ocean). This translates into an areal extent of anoxia into the modern ocean of 0.21 ± 0.09% of the total seafloor. This agrees with independent estimates and rules out a recent uranium budget estimate by Henderson and Anderson (2003). Using the mass fractions and isotopic compositions of various rock types in Earth's crust, we further calculate an average δ238U isotopic composition for the continental crust of -0.29 ± 0.03‰ corresponding to a 238U/235U isotopic ratio of 137.797 ± 0.005. We discuss the implications of

  19. Compositional variation and genesis of ferromanganese crusts of the Afanasiy-Nikitin Seamount, Equatorial Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Rajani, R.P.; Banakar, V.K.; Parthiban, G.; Mudholkar, A.V.; Chodankar, A.R.

    to fractionate during the Fe{Mn crust formation (Elder?eld 1988; De Carlo 1991; De Carlo and McMurtry 1992; Bau et al 1996; Banakar et al 1997). The Co and Ce were shown to readily oxidize to their higher oxidation state on adsorption to negatively charged Mn...-Islandz 307 1100 56.0 54.0 14.0 55 52.0 31.0 28 4.2 currency1Hein et al (2000), currency1currency1De Carlo et al (1992), yWen et al (1997), zAplin (1984). Puteanus 1984; Hein et al 1988). At the outset, based on previous observations, the Co-enrichment can...

  20. Field and geochemical characterisitics of the Mesoarchean (~3075 ma) Ivisaartoq greenstone belt, southern West Greenland: Evidence for seafloor hydrothermal alteration in a supra-subduction oceanic crust

    DEFF Research Database (Denmark)

    Polat, A.; Appel, P.W.U.; Frei, Robert


    The Mesoarchean (ca. 3075 Ma) Ivisaartoq greenstone belt in southern West Greenland includes variably deformed and metamorphosed pillow basalts, ultramafic flows (picrites), serpentinized ultramafic rocks, gabbros, sulphide-rich siliceous layers, and minor siliciclastic sedimentary rocks. Primary...... similarities between the Ivisaartoq greenstone belt and Phanerozoic forearc ophiolites, we suggest that the Ivisaartoq greenstone belt represents Mesoarchean supra-subduction zone oceanic crust....

  1. Comparative geochemistry of four ferromanganese crusts from the Pacific Ocean and significance for the use of Ni isotopes as paleoceanographic tracers (United States)

    Gueguen, Bleuenn; Rouxel, Olivier; Rouget, Marie-Laure; Bollinger, Claire; Ponzevera, Emmanuel; Germain, Yoan; Fouquet, Yves


    Ferromanganese (Fe-Mn) crusts are potential archive of the Ni isotope composition of seawater through time. In this study we aim at (1) understanding Ni isotope fractionation mechanisms and metal enrichment processes in Fe-Mn deposits, (2) addressing global vs. local control of Ni isotope composition of these deposits. Two Fe-Mn crusts from the North Pacific Ocean (Apuupuu Seamount, Hawaii) and two Fe-Mn crusts from the South Pacific Ocean (near Rurutu Island, Austral archipelago of French Polynesia) were characterized for their elemental geochemistry and Ni isotope composition. Geochemical analyses were performed at millimeter intervals in order to provide time-resolved record of Ni isotopes. Chronology and growth rates were determined using cosmogenic 10Be isotope abundances. The results show that, despite different growth rates, textures and geochemical patterns, Fe-Mn crusts from both North and South Pacific Oceans have fairly homogenous Ni isotope compositions over the last ∼17 Ma, yielding average δ60/58Ni values of 1.79 ± 0.21‰ (2sd, n = 31) and 1.73 ± 0.21‰ (2sd, n = 21) respectively. In one crust sample, however, layers directly in contact with the altered substrate show anomalously light δ60/58Ni values down to 0.25 ± 0.05‰ (2se) together with rejuvenated 10Be/9Be ratios correlating with elevated Ni/Mn ratios. Such patterns are best explained by protracted fluid-rock interactions leading to alteration of Mn-phases after crust formation. Isotopically light Ni would be the result of Ni isotope fractionation during adsorption rather than the contribution of external Ni sources (e.g. hydrothermal sources) having light Ni isotope compositions. The combination of our results with previously published data on Fe-Mn crusts indicates that the average Ni isotope composition in deep waters has not changed through the Cenozoic (∼70 Ma). We propose that Ni isotope variations in Fe-Mn crusts may not only record variations of Ni sources to the oceans, but

  2. Scattering beneath Western Pacific subduction zones: evidence for oceanic crust in the mid-mantle (United States)

    Bentham, H. L. M.; Rost, S.


    Small-scale heterogeneities in the mantle can give important insight into the dynamics and composition of the Earth's interior. Here, we analyse seismic energy found as precursors to PP, which is scattered off small-scale heterogeneities related to subduction zones in the upper and mid-mantle. We use data from shallow earthquakes (less than 100 km depth) in the epicentral distance range of 90°-110° and use array methods to study a 100 s window prior to the PP arrival. Our analysis focuses on energy arriving off the great circle path between source and receiver. We select coherent arrivals automatically, based on a semblance weighted beampower spectrum, maximizing the selection of weak amplitude arrivals. Assuming single P-to-P scattering and using the directivity information from array processing, we locate the scattering origin by ray tracing through a 1-D velocity model. Using data from the small-aperture Eielson Array (ILAR) in Alaska, we are able to image structure related to heterogeneities in western Pacific subduction zones. We find evidence for ˜300 small-scale heterogeneities in the region around the present-day Japan, Izu-Bonin, Mariana and West Philippine subduction zones. Most of the detected heterogeneities are located in the crust and upper mantle, but 6 per cent of scatterers are located deeper than 600 km. Scatterers in the transition zone correlate well with edges of fast features in tomographic images and subducted slab contours derived from slab seismicity. We locate deeper scatterers beneath the Izu-Bonin/Mariana subduction zones, which outline a steeply dipping pseudo-planar feature to 1480 km depth, and beneath the ancient (84-144 Ma) Indonesian subduction trench down to 1880 km depth. We image the remnants of subducted crustal material, likely the underside reflection of the subducted Moho. The presence of deep scatterers related to past and present subduction provides evidence that the subducted crust does descend into the lower mantle at

  3. Depth profiles of 230Th excess, transition metals and mineralogy of ferromanganese crusts of the Central Indian Ocean basin and implications for palaeoceanographic influence on crust genesis

    Digital Repository Service at National Institute of Oceanography (India)

    Banakar, V.K.; Borole, D.V.

    /Fe ratios ( 1-l .6), &MnO, as the main Mn mineral phase and a smooth exponential decay pattern of 23”Th clcw and “@Th cxen./232Th activities with depth indicate that these crusts have not recorded any palaeoceano- graphic events of the past u 0.4 Ma...; Banakar, 1988). The Central In- dian basin crusts occur at greater water depths, well below the present-day carbonate compen- sation depth (CCD ), in sharp contrast to the 0 168-9622/9 l/$03.50 0 1991 Elsevier Science Publishers B.V. All rights...

  4. Geochemical constraints on the spatial distribution of recycled oceanic crust in the mantle source of late Cenozoic basalts, Vietnam (United States)

    Hoang, Thi Hong Anh; Choi, Sung Hi; Yu, Yongjae; Pham, Trung Hieu; Nguyen, Kim Hoang; Ryu, Jong-Sik


    This study presents a comprehensive analysis of the major and trace element, mineral, and Sr, Nd, Pb and Mg isotopic compositions of late Cenozoic intraplate basaltic rocks from central and southern Vietnam. The Sr, Nd, and Pb isotopic compositions of these basalts define a tight linear array between Indian mid-ocean-ridge basalt (MORB)-like mantle and enriched mantle type 2 (EM2) components. These basaltic rocks contain low concentrations of CaO (6.4-9.7 wt%) and have high Fe/Mn ratios (> 60) and FeO/CaO-3MgO/SiO2 values (> 0.54), similar to partial melts derived from pyroxenite/eclogite sources. This similarity is also supported by the composition of olivine within these samples, which contains low concentration of Ca and high concentrations of Ni, and shows high Fe/Mn ratios. The basaltic rocks have elevated Dy/Yb ratios that fall within the range of melts derived from garnet lherzolite material, although their Yb contents are much higher than those of modeled melts derived from only garnet lherzolite material and instead plot near the modeled composition of eclogite-derived melts. The Vietnamese basaltic rocks have lighter δ26Mg values (- 0.38 ± 0.06‰) than is expected for the normal mantle (- 0.25 ± 0.07‰), and these values decrease with decreasing Hf/Hf* and Ti/Ti* ratios, indicating that these basalts were derived from a source containing carbonate material. On primitive mantle-normalized multi-element variation diagrams, the central Vietnamese basalts are characterized by positive Sr, Eu, and Ba anomalies. These basalts also plot within the pelagic sediment field in Pbsbnd Pb isotopic space. This suggests that the mantle source of the basalts contained both garnet peridotite and recycled oceanic crust. A systematic analysis of variations in geochemical composition in basalts from southern to central Vietnam indicates that the recycled oceanic crust (possibly the paleo-Pacific slab) source material contains varying proportions of gabbro, basalt, and

  5. Comment on "Glacial cycles drive variations in the production of oceanic crust". (United States)

    Goff, John A


    Crowley et al. (Reports, 13 March 2015, p. 1237) propose that abyssal hill topography can be generated by variations in volcanism at mid-ocean ridges modulated by Milankovitch cycle-driven changes in sea level. Published values for abyssal hill characteristic widths versus spreading rate do not generally support this hypothesis. I argue that abyssal hills are primarily fault-generated rather than volcanically generated features. Copyright © 2015, American Association for the Advancement of Science.

  6. Ridge Segmentation, Tectonic Evolution and Rheology of Slow-Spreading Oceanic Crust (United States)


    vuelta a casa. Ahora Kiku y Gloria saben lo que es el inviemo de verdad. Sergio, Antonia y Xavi Carolina, y Nina, a pesar de comunicaciones ...24 km 4 We examine digital multibeam bathymetric and residual 40 km I ; I gravity data collected over four areas of the slow-spreading MAR . [Purdy et...ocean Acknowledgments. We are grateful to R. Detrick for providing digital ridge magmatism, Geol. Soc. Spec. Publ. London 42, 71-105, 1989. bathymetric

  7. Mineralogy and Geochemistry of Co-bearing manganese crusts from the Govorov and Volcanologist guyots of the Magellan Seamounts (Pacific Ocean) (United States)

    Novikov, G. V.; Melnikov, M. E.; Bogdanova, O. Yu.; Drozdova, A. N.; Lobus, N. V.


    Co-bearing manganese crusts (CMCs) from the Govorov and Volcanologist guyots (Magellan Seamounts, Pacific Ocean) are of the same type and consist of three layers (I-1, II, III) and a "dried crust" variety of layer III. It is shown that the structural and textural pattern are quite similar within individual layers. The major ore minerals of the crusts are poorly crystallized, have a low degree of structural ordering, and include Fe-vernadite, Mn-feroxyhyte, and less abundant, well-crystallized, and structurally ordered vernadite. It is shown that the cations of ore (Co, Ni, Cu), rare, and rare-earth metals are irregularly concentrated in ore minerals of CMCs, which provides evidence for the pulsating nature of their supply at different geological stages.

  8. Subduction of oceanic crust into the deep mantle imaged by a new seismic migration (United States)

    Kito, T.; Korenaga, J.


    The behavior of subducted materials in the deep mantle may be a key issue to understand chemical evolution of the Earth’s mantle. Although recent tomographic images imply that subducted slabs may penetrate into the lower mantle in some regions, the remixing process of slab materials remains poorly understood. To investigate the fate of the subducted slabs beneath Central America, we analyzed USArray data from intermediate- and deep-earthquakes in South America. To suppress artifacts and noise, and obtain a high-resolution image, we applied a newly developed seismic migration method called cross-correlation weighted migration (CCWM) that weights migrated energy based on coherency of waveforms. The migrated seismic energy was then evaluated using bootstrap resampling to determine statistically significant seismic signals. The observed scattered waves may be explained by the subducted former oceanic lithosphere (MORB) in the deep mantle, which provides independent evidence for slab penetration into the lower mantle and mass transportation across the mantle transition zone, at least in this region.

  9. Continuous subduction of oceanic crust into the deep mantle beneath central America (United States)

    Kito, T.; Korenaga, J.


    Recent tomographic images imply that subducted slabs may penetrate into the lower mantle in some regions. However the behavior of the subducted materials around and below the mantle transition zone remains poorly understood. In order to investigate the fate of the subducted slab beneath central America, we have analyzed broadband teleseismic data from intermediate- and deep-earthquakes in south America recorded at several Californian seismic networks. To suppress artifacts and obtain a high resolution image, we have applied seismic migration method called Slowness Back azimuth Weighted Migration (SBWM) which utilizes not only travel time but also slowness and back azimuth information in the wavefield. We have observed reflected/scattered waves from heterogeneities associated with subduction processes. The migrated seismic energy has then been evaluated using the jackknife algorithm to determine statistically significant seismic signals. The observed reflected seismic waves can be explained by the subducted former oceanic lithosphere (MORB) in the deep mantle, which provides independent evidence for slab penetration into the lower mantle and mass transportation across the mantle transition zone, at least in this region.

  10. Tomographic image of crust and upper mantle off the Boso Peninsula using data from an ocean-bottom seismograph array (United States)

    Ito, Aki; Yamamoto, Yojiro; Hino, Ryota; Suetsugu, Daisuke; Sugioka, Hiroko; Nakano, Masaru; Obana, Koichiro; Nakahigashi, Kazuo; Shinohara, Masanao


    We determined the three-dimensional structure of the crust and upper mantle off the Boso Peninsula, Japan, by analyzing seismograms recorded by ocean-bottom seismometers and land stations between 2011 and 2013. We employed seismic tomography to determine the P- and S-wave velocity structures and earthquake locations simultaneously. The tomographic image shows that the mantle parts of the Pacific and the Philippine Sea plates have high-velocity anomalies. The upper boundary of the Philippine Sea plate is delineated as approximately 2-6 km shallower than that previously estimated from land-based data for the area 140.5°E-141.5°E and 35°N-35.5°N. A pronounced low-velocity anomaly in P- and S-waves with low- V p/ V s ratio (1.5-1.6) was observed at depths shallower than 20 km in the overriding North American plate. This anomaly may be caused by the presence of rocks with a low- V p/ V s ratio, such as quartzite, and the water expelled from the subducted Pacific and Philippine Sea plates.[Figure not available: see fulltext.

  11. Self-organization of hydrothermal outflow and recharge in young oceanic crust: Constraints from open-top porous convection analog experiments (United States)

    Mittelstaedt, E. L.; Olive, J. A. L.; Barreyre, T.


    Hydrothermal circulation at the axis of mid-ocean ridges has a profound effect on chemical and biological processes in the deep ocean, and influences the thermo-mechanical state of young oceanic lithosphere. Yet, the geometry of fluid pathways beneath the seafloor and its relation to spatial gradients in crustal permeability remain enigmatic. Here we present new laboratory models of hydrothermal circulation aimed at constraining the self-organization of porous convection cells in homogeneous as well as highly heterogeneous crust analogs. Oceanic crust analogs of known permeability are constructed using uniform glass spheres and 3-D printed plastics with a network of mutually perpendicular tubes. These materials are saturated with corn syrup-water mixtures and heated at their base by a resistive silicone strip heater to initiate thermal convection. A layer of pure fluid (i.e., an analog ocean) overlies the porous medium and allows an "open-top" boundary condition. Areas of fluid discharge from the crust into the ocean are identified by illuminating microscopic glass particles carried by the fluid, using laser sheets. Using particle image velocimetry, we estimate fluid discharge rates as well as the location and extent of fluid recharge. Thermo-couples distributed throughout the crust provide insights into the geometry of convection cells at depth, and enable estimates of convective heat flux, which can be compared to the heat supplied at the base of the system. Preliminary results indicate that in homogeneous crust, convection is largely confined to the narrow slot overlying the heat source. Regularly spaced discharge zones appear focused while recharge areas appear diffuse, and qualitatively resemble the along-axis distribution of hydrothermal fields at oceanic spreading centers. By varying the permeability of the crustal analogs, the viscosity of the convecting fluid, and the imposed basal temperature, our experiments span Rayleigh numbers between 10 and 10

  12. Seismic Velocity Variation and Evolution of the Upper Oceanic Crust across the Mid-Atlantic Ridge at 1.3°S (United States)

    Jian, H.; Singh, S. C.


    The oceanic crust that covers >70% of the solid earth is formed at mid-ocean ridges, but get modified as it ages. Understanding the evolution of oceanic crust requires investigations of crustal structures that extend from zero-age on the ridge axis to old crust. In this study, we analyze a part of a 2000-km-long seismic transect that crosses the Mid-Atlantic Ridge segment at 1.3°S, south of the Chain transform fault. The seismic data were acquired using a 12-km-long multi-sensor streamer and dense air-gun shots. Using a combination of downward continuation and seismic tomography methods, we have derived a high-resolution upper crustal velocity structure down to 2-2.5 km depth below the seafloor, from the ridge axis to 3.5 Ma on both sides of the ridge axis. The results demonstrate that velocities increase at all depths in the upper crust as the crust ages, suggesting that hydrothermal precipitations seal the upper crustal pore spaces. This effect is most significant in layer 2A, causing a velocity increase of 0.5-1 km/s after 1-1.5 Ma, beyond which the velocity increase is very small. Furthermore, the results exhibit a significant decrease in both the frequency and amplitude of the low-velocity anomalies associated with faults beyond 1-1.5 Ma, when faults become inactive, suggesting a linkage between the sealing of fault space and the extinction of hydrothermal activity. Besides, the off-axis velocities are systematically higher on the eastern side of the ridge axis compared to on the western side, suggesting that a higher hydrothermal activity should exist on the outside-corner ridge flank than on the inside-corner flank. While the tomography results shown here cover 0-3.5 Ma crust, the ongoing research will further extend the study area to older crust and also incorporating pre-stack migration and full waveform inversion methods to improve the seismic structure.

  13. Platinum group elements and gold in ferromanganese crusts from Afanasiy-Nikitin seamount, equatorial Indian Ocean: Sources and fractionation

    Digital Repository Service at National Institute of Oceanography (India)

    Banakar, V.K.; Hein, J.R.; Rajani, R.P.; Chodankar, A.R.

    of correlation of those ratios with Co, Ce, and Ce/Co, indicate that the ANS Fe–Mn crusts are distinct from Pacific seamount Fe–Mn crusts, and reflect region-specific chemical characteristics. The platinum group elements (PGE: Ir, Ru, Rh, Pt, and Pd) and Au...

  14. Unstable fault slip induced by lawsonite dehydration in blueschist: Implication for the seismicity in the subducting oceanic crusts (United States)

    Okazaki, K.; Hirth, G.


    Intermediate-depth earthquakes in cold subduction zones are observed within the subducting oceanic crust, as well as the subducting mantle In contrast, intermediate-depth earthquakes in hot subduction zones predominantly occur just below the Moho. These observations have stimulated interest in potential relationships between blueschist-facies metamorphism and seismicity, particularly through the dehydration reactions involving lawsonite. The rheology of these high-pressure and low-temperature metamorphic minerals is largely unknown. We conducted experiments on lawsonite accompanied by monitoring of acoustic emission (AE) in a Griggs-type deformation apparatus. Deformation was started at the confining pressure of 1.0 GPa, the temperature of 300 ˚C, and constant displacement rates of 0.16 to 0.016 μm/s, that correspond to equivalent strain rates (ɛ) of 9 × 10-5 to 9 × 10-6 1/s. In these experiments, temperature was increased at the temperature ramp rate of 0.5 to 0.05˚C/s above the thermal stability of lawsonite (600˚C) while the sample was deforming to test whether the dehydration reaction induces unstable fault slip. In contrast to similar tests on antigorite, unstable fault slip (i.e., stick-slip) occurred during dehydration reactions in the lawsonite gouge layer, and AE signals were continuously observed. Microstructural observations indicate that strain is highly localized along the fault (R1 and B shear), and the fault surface shows mirror-like slickensides. The unloading slope (i.e., rate of stress drop as a function of slip) during the unstable slip follows the stiffness of the apparatus at all experimental conditions regardless of the strain rate and temperature ramping rate. A thermal-mechanical scaling factor in the experiments covers the range estimated for natural subduction zones, indicating the potential for unstable frictional sliding within natural lawsonite layers to induce seismicity in cold subduction zones.

  15. Age and duration of intra-oceanic arc volcanism built on a suprasubduction zone type oceanic crust in southern Neotethys, SE Anatolia

    Directory of Open Access Journals (Sweden)

    Fatih Karaoğlan


    Full Text Available The southeastern Anatolia comprises numbers of tectono-magmatic/stratigraphic units such as the metamorphic massifs, the ophiolites, the volcanic arc units and the granitoid rocks. All of them play important role for the late Cretaceous evolution of the southern Neotethys. The spatial and temporal relations of these units suggest the progressive development of coeval magmatism and thrusting during the late Cretaceous northward subduction/accretion. Our new U-Pb zircon data from the rhyolitic rocks of the wide-spread volcanic arc unit show ages of (83.1 ± 2.2–(74.6 ± 4.4 Ma. Comparison of the ophiolites, the volcanic arc units and the granitoids suggest following late Cretaceous geological evolution. The ophiolites formed in a suprasubduction zone (SSZ setting as a result of northward intra-oceanic subduction. A wide-spread island-arc tholeiitic volcanic unit developed on the top of the SSZ-type crust during 83–75 Ma. Related to regional plate convergence, northward under-thrusting of SSZ-type ophiolites and volcanic arc units was initiated beneath the Tauride platform (Malatya-Keban and followed by the intrusion of I-type calc-alkaline volcanic arc granitoids during 84–82 Ma. New U-Pb ages from the arc-related volcanic-sedimentary unit and granitoids indicate that under-thrusting of ophiolites together with the arc-related units beneath the Malatya-Keban platform took place soon after the initiation of the volcanic arc on the top of the SSZ-type crust. Then the arc-related volcanic-sedimentary unit continued its development and lasted at ∼75 Ma until the deposition of the late Campanian–Maastrichtian shallow marine limestone. The subduction trench eventually collided with the Bitlis-Pütürge massif giving rise to HP-LT metamorphism of the Bitlis massif. Although the development of the volcanic arc units and the granitoids were coeval at the initial stage of the subduction/accretion both tectono-magmatic units were

  16. A Crystallization-Temperature Profile Through Paleo-Oceanic Crust (Wadi Gideah Transect, Oman Ophiolite): Application of the REE-in-Plagioclase-Clinopyroxene Partitioning Thermometer (United States)

    Mueller, S.; Hasenclever, J.; Garbe-Schönberg, D.; Koepke, J.; Hoernle, K.


    The accretion mechanisms forming oceanic crust at fast spreading ridges are still under controversial discussion. Thermal, petrological, and geochemical observations predict different end-member models, i.e., the gabbro glacier and the sheeted sill model. They all bear implications for heat transport, temperature distribution, mode of crystallization and hydrothermal heat removal over crustal depth. In a typical MOR setting, temperature is the key factor driving partitioning of incompatible elements during crystallization. LA-ICP-MS data for co-genetic plagioclase and clinopyroxene in gabbros along a transect through the plutonic section of paleo-oceanic crust (Wadi Gideah Transect, Oman ophiolite) reveal that REE partitioning coefficients are relatively constant in the layered gabbro section but increase for the overlying foliated gabbros, with an enhanced offset towards HREEs. Along with a systematic enrichment of REE's with crustal height, these trends are consistent with a system dominated by in-situ crystallization for the lower gabbros and a change in crystallization mode for the upper gabbros. Sun and Liang (2017) used experimental REE partitioning data for calibrating a new REE-in-plagioclase-clinopyroxene thermometer that we used here for establishing the first crystallization-temperature depth profile through oceanic crust that facilitates a direct comparison with thermal models of crustal accretion. Our results indicate crystallization temperatures of about 1220±8°C for the layered gabbros and lower temperatures of 1175±8°C for the foliated gabbros and a thermal minimum above the layered-to-foliated gabbro transition. Our findings are consistent with a hybrid accretion model for the oceanic crust. The thermal minimum is assumed to represent a zone where the descending crystal mushes originating from the axial melt lens meet with mushes that have crystallized in situ. These results can be used to verify and test thermal models (e.g., Maclennan et al

  17. Multiple scales of hydrothermal circulation in the oceanic crust: Studies from the Juan de Fuca Ridge and flank (United States)

    Stein, Joshua Stephenson

    Seafloor heat flow patterns influenced by hydrothermal circulation within the upper oceanic crust are used to constrain fluid flow, crustal permeability, and thermal budgets at Middle Valley, northern Juan de Fuca Ridge and along the eastern flank of the Juan de Fuca Ridge. We made 397 heat flow measurements in two areas of active venting in Middle Valley, a sedimented spreading center. Heat flow patterns suggest that the top of the hydrothermal reservoir at the Dead Dog vent area is located ˜30 m beneath the vent field and is separated from a shallow secondary circulation system by a thin, impermeable, diagenetic cap. This cap is a hydrologic barrier, separating the high-temperature, overpressured system at depth from a low-temperature, underpressured system near the seafloor. Circulation above the cap is influenced by hydrodynamic interactions with active vents. Vent fluid recharges at the unsedimented edges of Middle Valley and is driven toward the vent field by small driving forces documented by borehole observatories. These small driving forces, in combination with estimated fluid flux (150 l/min), imply that crustal permeability must be high (10 -12 to 10-10 m2). We estimate the total heat loss for a 260 km2 region of Middle Valley to be 274 MW. Conductive and advective heat loss are approximately equal, in contrast to bare-rock ridges that lose 90% or more of their heat advectively. Models of lateral heat and fluid flow across a 26 km transect of the eastern flank of the Juan de Fuca Ridge quantify relations between lateral specific discharge, flow layer thickness and formation permeability. Free flow simulations require non-hydrostatic initial conditions and permeabilities of 10-11 to 10-9 m2, but match heat flow observations with lateral specific discharges of 1.2 to 40 m/yr. These lateral flow rates are 10x to 1000x greater than predicted by apparent radiocarbon ages of the fluids. When apparent radiocarbon ages are corrected to account for diffusion

  18. North Atlantic Deep Water export to the Southern Ocean over the past 14 Myr: Evidence from Nd and Pb isotopes in ferromanganese crusts (United States)

    Frank, M.; Whiteley, N.; Kasten, S.; Hein, J.R.; O'Nions, K.


    The intensity of North Atlantic Deep Water (NADW) production has been one of the most important parameters controlling the global thermohaline ocean circulation system and climate. Here we present a new approach to reconstruct the overall strength of NADW export from the North Atlantic to the Southern Ocean over the past 14 Myr applying the deep water Nd and Pb isotope composition as recorded by ferromanganese crusts and nodules. We present the first long-term Nd and Pb isotope time series for deep Southern Ocean water masses, which are compared with previously published time series for NADW from the NW Atlantic Ocean. These data suggest a continuous and strong export of NADW, or a precursor of it, into the Southern Ocean between 14 and 3 Ma. An increasing difference in Nd and Pb isotope compositions between the NW Atlantic and the Southern Ocean over the past 3 Myr gives evidence for a progressive overall reduction of NADW export since the onset of Northern Hemisphere glaciation (NHG). The Nd isotope data allow us to assess at least semiquantitatively that the amount of this reduction has been in the range between 14 and 37% depending on location.

  19. Palaeoceanographic conditions during the formation of ferromanganese crust from the Afanasiy Nikitin seamount, north central Indian Ocean: geochemical evidence

    Digital Repository Service at National Institute of Oceanography (India)

    Banakar, V.K.; Pattan, J.N.; Mudholkar, A.V.

    coherent behaviour of trivalent rare earth elements (3 + REE) is not observed in the crust. La, Yb and Lu show a positive association with the CFA phase elements (CA and P) and Pr, Nd and Sm with the Mn-oxide phase elements (Mn, Co and Ni). this leads...

  20. Continental crust melting induced by subduction initiation of the South Tianshan Ocean: Insight from the Latest Devonian granitic magmatism in the southern Yili Block, NW China (United States)

    Bao, Zihe; Cai, Keda; Sun, Min; Xiao, Wenjiao; Wan, Bo; Wang, Yannan; Wang, Xiangsong; Xia, Xiaoping


    The Tianshan belt of the southwestern Central Asian Orogenic Belt was generated by Paleozoic multi-stage subduction and final closure of several extinct oceans, including the South Tianshan Ocean between the Kazakhstan-Yili and Tarim blocks. However, the subduction initiation and polarity of the South Tianshan Ocean remain issues of highly debated. This study presents new zircon U-Pb ages, geochemical compositions and Sr-Nd isotopes, as well as zircon Hf isotopic data of the Latest Devonian to Early Carboniferous granitic rocks in the Wusun Mountain of the Yili Paleozoic convergent margin, which, together with the spatial-temporal distributions of regional magmatic rocks, are applied to elucidate their petrogenesis and tectonic linkage to the northward subduction initiation of the South Tianshan Ocean. Our zircon U-Pb dating results reveal that these granites were emplaced at the time interval of 362.0 ± 1.2-360.3 ± 1.9 Ma, suggesting a marked partial melting event of the continental crust in the Latest Devonian to Early Carboniferous. These granites, based on their mineral compositions and textures, can be categorized as monzogranites and K-feldspar granites. Geochemically, both monzogranites and K-feldspar granites have characters of I-type granites with high K2O contents (4.64-4.83 wt.%), and the K-feldspar granites are highly fractionated I-type granites, while the monzogranites have features of unfractionated I-type granites. Whole-rock Sr-Nd isotopic modeling results suggest that ca. 20-40% mantle-derived magmas may be involved in magma mixing with continental crust partial melts to generate the parental magmas of the granites. The mantle-derived basaltic magmas was inferred not only to be a major component of magma mixture but also as an important heat source to fuse the continental crust in an extensional setting, which is evidenced by the high zircon saturation temperatures (713-727 °C and 760-782 °C) of the studied granites. The Latest Devonian to

  1. S-to-P Conversions from Mid-mantle Slow Scatterers in Slab Regions: Observations of Deep/Stagnated Oceanic Crust? (United States)

    He, Xiaobo; Zheng, Yixian


    The fate of a subducted slab is a key ingredient in the context of plate tectonics, yet it remains enigmatic especially in terms of its crustal component. In this study, our efforts are devoted to resolve slab-related structures in the mid-mantle below eastern Indonesia, the Izu-Bonin region, and the Peru area by employing seismic array analysing techniques on high-frequency waveform data from F-net in Japan and the Alaska regional network and the USArray in North America. A pronounced arrival after the direct P wave is observed in the recordings of four deep earthquakes (depths greater than 400 km) from three subduction systems including the Philippines, the Izu-Bonin, and the Peru. This later arrival displays a slightly lower slowness compared to the direct P wave and its back-azimuth deviates somewhat from the great-circle direction. We explain it as an S-to-P conversion at a deep scatterer below the sources in the source region. In total, five scatterers are seen at depths ranging from 930 to 1500 km. Those scatterers appear to be characterised by an 7 km-thick low-velocity layer compared to the ambient mantle. Combined evidence from published mineral physical analysis suggests that past subducted oceanic crust, possibly fragmented, is most likely responsible for these thin-layer compositional heterogeneities trapped in the mid-mantle beneath the study regions. Our observations give a clue to the potential fate of subducted oceanic crust.

  2. Diffusive Transfer of Oxygen From Seamount Basaltic Crust Into Overlying Sediments: an Example From the Clarion-Clipperton Fracture Zone, Equatorial Pacific Ocean (United States)

    Kasten, S.; Mewes, K.; Mogollón, J.; Picard, A.; Rühlemann, C.; Eisenhauer, A.; Kuhn, T.; Ziebis, W.


    Within the Clarion-Clipperton Fracture Zone (CCFZ) located in the equatorial Pacific Ocean numerous seamounts, with diameters ranging from 3 to 30 km and varying heights above the surrounding seafloor of up to 2500 m, occur throughout the deep-sea plain. There is evidence that these may serve as conduits for low-temperature hydrothermal circulation of seawater through the oceanic crust. During RV SONNE cruise SO205 in April/May 2010 and BIONOD cruise with RV ĹATALANTE in spring 2012 we took piston and gravity cores for geochemical analyses, as well as for high-resolution pore-water oxygen and nutrient measurements. Specifically, we took cores along a transect at three sites, located 400, 700 and 1000 m away from the foot of a 240 m high seamount, called 'Teddy Bare'. At all 3 sites oxygen penetrates the entire sediment column of the organic carbon-poor sediment. More importantly, oxygen concentrations initially decrease with sediment depth but increase again at depths of 3 m and 7 m above the basaltic basement, suggesting an upward diffusion of oxygen from seawater circulating within the seamount crust into the overlying basal sediments. This is the first time this has been shown for the deep subsurface in the Pacific Ocean. Mirroring the oxygen concentrations nitrate concentrations accumulate with sediment depth but decrease towards the basement. Transport-reaction modeling revealed that (1) the diffusive flux of oxygen from the basaltic basement exceeds the oxygen consumption through organic matter oxidation and nitrification in the basal sediments and (2) the nutrient exchange between the sediment and the underlying basaltic crust occurs at orders-of-magnitude lower rates than between the sediment surface and the overlying bottom water. We furthermore show that the upward diffusion of oxygen from the basaltic basement affects the preservation of organic compounds within the oxic sediment column at all 3 sites. Our investigations indicate that an upward

  3. Role of hydrology in the formation of Co-rich Mn crusts from the equatorial N Pacific, equatorial S Indian Ocean and the NE Atlantic Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Glasby, G.P.; Mountain, B.; Vineesh, T.C.; Banakar, V.K.; Rajani, R.; Ren, X.

    with the Messin- ian salinity crisis and onset of northern hemisphere glaciation, respectively. At Tropic Seamount, the NW, W and SW slopes of the seamount were steep and covered with manganese crusts from the plateau at 1000 m to a water depth of 2500 m. Volcanic...

  4. Comment on: 'The strontium isotopic composition of seawater and seawater-oceanic crust interaction' by E.T.C. Spooner

    International Nuclear Information System (INIS)

    Brass, G.W.; Turekian, K.L.


    Various processes have been proposed as the source of strontium to the oceans but there is no evidence to support the mechanism of release of relatively unradiogenic strontium from deep dea basalts to sea-water. (B.D.)

  5. The Impact of Fe-Ti Oxide Concentration on the Structural Rigidity of the Lower Oceanic Crust, Atlantis Bank, Southwest Indian Ridge (United States)

    Deans, J. R.; Winkler, D. A.


    Fe-Ti oxides are important components of oceanic core complexes (OCC) formed at slow-spreading ridges, since Fe-Ti oxide phases form throughout the crustal column and are weaker than silicate phases. This study investigated the predicted relationship between the presence and concentration of Fe-Ti oxides and the presence/intensity of crystal-plastic deformation in samples from Atlantis Bank, Southwest Indian Ridge (SWIR). Atlantis Bank is an OCC that formed through the exhumation of lower oceanic crust along a detachment shear zone/fault. OCCs form along slow-spreading ridges and are characterized by the complex interactions between magmatism and crustal extension, thus, making them more susceptible to crystal-plastic deformation at higher temperatures and for weaker phases like Fe-Ti oxides to preferentially partition strain. Atlantis Bank has been the focus of many scientific expeditions to various sites including; Ocean Drilling Program (ODP) Holes 735B and 1105A, and the International Oceanic Discovery Program (IODP) Hole U1473A. A total of 589 thin sections from all three holes were analyzed using the software package Fiji to calculate the Fe-Ti oxide concentration within the thin sections. The Fe-Ti oxide percentage was correlated with the crystal-plastic fabric (CPF) intensity, from 0-5 (no foliation - ultramylonite), for each thin section using the statistical software R. All three holes show a positive correlation between the abundance of Fe-Ti oxides and the CPF intensity. Specifically, 76.3% of samples with a concentration of 5% or more Fe-Ti oxides have a corresponding CPF intensity value of 2 or more (porphyroclastic foliation - ultramylonitic). The positive correlation may be explained by the Fe-Ti oxides preferentially partitioning strain, especially at temperatures below where dry plagioclase can recrystallize. This allows for a mechanism of continued slip along the shear zone or form new shear zones at amphibolite grade conditions while the lower

  6. A documentation on burrows in hard substrates of ferromanganese crusts and associated soft sediments from the Central Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Banerjee, R.

    sediments on the sea floor also show numerous records of recent bioturbation activity. Thus presence of the ancient and modern burrows from tha same locality on the ocean floor indicates a prolonged bioturbation activity in this part of the CIB and this may...

  7. Modes and implications of mantle and lower-crust denudation at slow-spreading mid-ocean ridges (United States)

    Schroeder, Timothy John

    Slow-spreading mid-ocean ridges (Cann, 1993, Cannat, 1993). Extension at mid-ocean ridges is most commonly manifested by slip on high angle (˜60°) normal faults that dip into, and define the rift valley walls (Smith and Cann, 1993). Less commonly, extension occurs by long periods of slip along low-angle normal faults that penetrate to structurally deep levels of oceanic lithosphere and denude gabbro and/or pendotite to the seafloor in domal massifs termed "oceanic core complexes" (Dick et al., 1981; Dick et al., 1991; Tucholke et al., 1998; Mutter and Karson, 1992; Cann et al., 1997; MacLeod et al., 2002). This dissertation addresses processes and implications of tectonic extension at two oceanic core complexes. Atlantis Massif (30°N, Mid-Atlantic Ridge) is formed dominantly of serpentinized peridotite with lesser gabbro, and Atlantis Bank (57°E, Southwest Indian Ridge) is dominated by gabbro. Localization of brittle strain at Atlantis Massif occurred by reaction-softening processes associated with metasomatic alteration of peridotite and serpentmite to amphibole-, chlorite- and talc-bearing assemblages. Ductile strain at Atlantis Massif and Atlantis Bank is localized into intervals of highly-fractionated, oxide-rich gabbro. Two-oxide geothermometry of gabbro indicates that it was not penetratively deformed below ˜500°C. Denuded peridotite at Atlantis Massif is host to hydrothermal circulation driven in part by exothermic serpentinization reactions. Serpentinization decreases the seismic velocity of peridotite and leads to acquisition of a magnetic signature. Venting of highly-alkaline, methane- and hydrogen-rich serpentinization-derived fluids leads to lithification of seafloor carbonate ooze by precipitation of carbonate cement in a zone of mixing with "normal" seawater. This process may be the primary depositional mechanism of ophicalcite deposits and likely occurs wherever peridotite is exposed near the Earth's surface and is fractured to permit water

  8. Large scale obduction of preserved oceanic crust: linking the Lesser Caucasus and NE Anatolian ophiolites and implications for the formation of the Lesser Caucasus-Pontides Arc (United States)

    Hassig, Marc; Rolland, Yann; Sosson, Marc; Galoyan, Ghazar; Sahakyan, Lilit; Topuz, Gultelin; Farouk Çelik, Omer; Avagyan, Ara; Muller, Carla


    During the Mesozoic, the Southern margin of the Eurasian continent was involved in the closure of the Paleotethys and opening Neotethys Ocean. Later, from the Jurassic to the Eocene, subductions, obductions, micro-plate accretions, and finally continent-continent collision occurred between Eurasia and Arabia, and resulted in the closure of Neotethys. In the Lesser Caucasus and NE Anatolia three main domains are distinguished from South to North: (1) the South Armenian Block (SAB) and the Tauride-Anatolide Platform (TAP), Gondwanian-derived continental terranes; (2) scattered outcrops of ophiolite bodies, coming up against the Sevan-Akera and Ankara-Erzincan suture zones; and (3) the Eurasian plate, represented by the Eastern Pontides margin and the Somkheto-Karabagh Arc. The slivers of ophiolites are preserved non-metamorphic relics of the now disappeared Northern Neotethys oceanic domain overthrusting onto the continental South Armenian Block (SAB) as well as on the Tauride-Anatolide plateform from the north to the south. It is important to point out that the major part of this oceanic lithosphere disappeared by subduction under the Eurasian Margin to the north. In the Lesser Caucasus, works using geochemical whole-rock analyses, 40Ar/39Ar dating of basalts and gabbro amphiboles and paleontological dating have shown that the obducted oceanic domain originates from a back-arc setting formed throughout Middle Jurassic times. The comprehension of the geodynamic evolution of the Lesser Caucasus supports the presence of two north dipping subduction zones: (1) a subduction under the Eurasian margin and to the south by (2) an intra-oceanic subduction allowing the continental domain to subduct under the oceanic lithosphere, thus leading to ophiolite emplacement. To the West, the NE Anatolian ophiolites have been intensely studied with the aim to characterize the type of oceanic crust which they originated from. Geochemical analyses have shown similar rock types as in

  9. Paleoceanographic conditions on the São Paulo Ridge, SW Atlantic Ocean, for the past 30 million years inferred from Os and Pb isotopes of a hydrogenous ferromanganese crust (United States)

    Goto, Kosuke T.; Nozaki, Tatsuo; Toyofuku, Takashi; Augustin, Adolpho H.; Shimoda, Gen; Chang, Qing; Kimura, Jun-Ichi; Kameo, Koji; Kitazato, Hiroshi; Suzuki, Katsuhiko


    Hydrogenous ferromanganese (Fe-Mn) crusts can provide records of long-term environmental changes during the Cenozoic. To understand the paleoceanographic conditions in the southwestern Atlantic Ocean, we investigated depth profiles of major- and trace-element concentrations as well as Os and Pb isotopic compositions in a Fe-Mn crust collected from the southern flank of the São Paulo Ridge in the southwestern Atlantic. Major and trace element data plotted on ternary Mn-Fe-10×(Ni+Co+Cu) and rare-earth element plus yttrium (REY) discrimination diagrams indicate that the analyzed sample is a typical hydrogenous Fe-Mn crust. The obtained 187Os/188Os data were matched to the Cenozoic seawater Os isotope evolution curve reconstructed from pelagic sediments. The result suggests that the Fe-Mn crust has accreted over 30 Myr with growth rates of 0.5-3 mm/Myr, although the sample likely grew in two directions during the early stage of its growth. We found no evidence of growth hiatus in the sample, which may contrast with the growth histories of many Pacific Fe-Mn crusts. Hence, the conditions favorable for the accretion of hydrogenous Fe-Mn crusts were likely to have developed on the São Paulo Ridge over the past 30 Myr. The Pb isotopic compositions show very limited ranges (e.g., 206Pb/204Pb=18.80-18.85), and are similar to those of pre-anthropogenic seawater in the Southern Ocean. As the São Paulo Ridge is located near the Vema Channel, which is presently a major path of Antarctic Bottom Water, we suggest that a strong northward bottom current has continuously swept detrital and biogenic sediments from the ridge, and played a vital role in the Fe-Mn crust formation since 30 Ma.

  10. The role of mantle temperature and lithospheric thickness during initial oceanic crust production: numerical modelling constraints from the southern South Atlantic (United States)

    Taposeea, C.; Armitage, J. J.; Collier, J.


    Evidence from seaward dipping reflector distributions has recently suggested that segmentation plays a major role in the pattern of volcanism during breakup, particularly in the South Atlantic. At a larger scale, variations in mantle temperature and lithosphere thickness can enhance or reduce volcanism. To understand what generates along strike variation of volcanism at conjugate margins, we measure the thickness of earliest oceanic crust in the South Atlantic, south of the Walvis and Rio Grande ridges. We use data from 29 published wide-angle and multichannel seismic profiles and at least 14 unpublished multichannel seismic profiles. A strong linear trend between initial oceanic crustal thickness and distance from hotspot centres, defined as the commencement of Walvis and Rio Grande ridges, with a regression coefficient of 0.7, is observed. At 450km south of the Walvis Ridge, earliest oceanic crustal thickness is found to be 11.7km. This reduces to 7.0km in the south at a distance of 1,420km. Such a linear trend suggests rift segmentation plays a secondary role on volcanism during breakup. To explore the cause of this trend, we use a 2D numerical model of extension capable of predicting the volume and composition of melt generated by decompressional melting during extension to steady state seafloor spreading. We explore the effect of both mantle temperature and lithosphere thickness on melt production with a thermal anomaly (hot layer) 100km thick located below the lithosphere with an excess temperature of 50-200°C, and lithospheric thickness ranging from 125-140km, covering the thickness range estimated from tomographic studies. By focusing on a set of key seismic profiles, we show a reduction in hot layer temperature is needed in order to match observed oceanic crustal thickness, even when the effect of north to south variations in lithosphere thickness are included. This model implies that the observed oceanic thickness requires the influence of a hot layer up

  11. A Reference Section through the Lower Fast-spreading Oceanic Crust in the Wadi Gideah (Sumail ophiolite, Sultanate Oman): Drill Sites GT1A and GT2A within the ICDP Oman Drilling Project (United States)

    Mueller, S.; Koepke, J.; Garbe-Schoenberg, C. D.; Müller, T.; Mock, D.; Strauss, H.; Schuth, S.; Ildefonse, B.


    In the absence of a complete profile through fast-spreading oceanic crust in modern oceans, we established a reference profile through the whole paleocrust of the Sumail Ophiolite (Oman), which is regarded as the best analogue for fast-spreading oceanic crust on land. For establishing a coherent data set, we sampled the Wadi Gideah in the Wadi-Tayin massif from the mantle section up to the pillow basalts and performed different analytical and structural investigations on the same suite of samples (pool sample concept). The whole sample set contains about 400 samples focusing on both primary magmatic rocks and hydrothermal fault zones to characterize initial formation processes and cooling of the crust. The Wadi Gideah hosts the sites GT1A (lower crust) and GT2A (foliated / layered gabbro transition) where 400 m long cores have been drilled in the frame of the ICDP Oman Drilling Project (OmanDP). Thus, the Wadi Gideah crustal transect is well-suited for providing a reference frame for these two drill cores. Major and trace element data on minerals and rocks reveal in-situ crystallization in the deep crust, thus strongly supporting a hybrid accretion model that is characterized by sheeted sill intrusion in the lower part of the plutonic crust and gabbro glacier features in the upper section. This hybrid model is also supported by results on crystallographic preferred orientations (CPO) of the minerals within the gabbros, which call for distinct formation mechanisms in the upper and lower gabbro sections. A requirement for our hybrid model is significant hydrothermal cooling in the lower crust for the consumption of the latent heat of crystallization. This was facilitated by channelled hydrothermal flow zones, preserved today in faulted zones of extensively altered gabbro cutting both layered and foliated gabbros. These gabbros show higher Sr87/Sr86 ratios if compared to the background gabbro, the presence of late stage minerals (amphibole, oxides, orthopyroxene

  12. Permeability changes due to mineral diagenesis in fractured crust: implications for hydrothermal circulation at mid-ocean ridges (United States)

    Fontaine, Fabrice Jh.; Rabinowicz, Michel; Boulègue, Jacques


    The hydrothermal processes at ridge crests have been extensively studied during the last two decades. Nevertheless, the reasons why hydrothermal fields are only occasionally found along some ridge segments remain a matter of debate. In the present study we relate this observation to the mineral precipitation induced by hydrothermal circulation. Our study is based on numerical models of convection inside a porous slot 1.5 km high, 2.25 km long and 120 m wide, where seawater is free to enter and exit at its top while the bottom is held at a constant temperature of 420°C. Since the fluid circulation is slow and the fissures in which seawater circulates are narrow, the reactions between seawater and the crust achieve local equilibrium. The rate of mineral precipitation or dissolution is proportional to the total derivative of the temperature with respect to time. Precipitation of minerals reduces the width of the fissures and thus percolation. Using conventional permeability versus porosity laws, we evaluate the evolution of the permeability field during the hydrothermal circulation. Our computations begin with a uniform permeability and a conductive thermal profile. After imposing a small random perturbation on the initial thermal field, the circulation adopts a finger-like structure, typical of convection in vertical porous slots thermally influenced by surrounding walls. Due to the strong temperature dependence of the fluid viscosity and thermal expansion, the hot rising fingers are strongly buoyant and collide with the top cold stagnant water layer. At the interface of the cold and hot layers, a horizontal boundary layer develops causing massive precipitation. This precipitation front produces a barrier to the hydrothermal flow. Consequently, the flow becomes layered on both sides of the front. The fluid temperature at the top of the layer remains quite low: it never exceeds a temperature of 80°C, well below the exit temperature of hot vent sites observed at

  13. Evolution of the Late Cretaceous crust in the equatorial region of the Northern Indian Ocean and its implication in understanding the plate kinematics

    Digital Repository Service at National Institute of Oceanography (India)

    Desa, M.; Ramana, M.V.; Ramprasad, T.

    history of the Late Cretaceous crust characterized by anomaly 34 through 31 (83.5-68.7Ma) under complex tectonic settings. Seafloor spreading model studies suggest that the crust, particularly between the chrons 33R and 33 (79.0-73.6 Ma), was formed...

  14. Crusts: biological (United States)

    Belnap, Jayne; Elias, Scott A.


    Biological soil crusts, a community of cyanobacteria, lichens, mosses, and fungi, are an essential part of dryland ecosystems. They are critical in the stabilization of soils, protecting them from wind and water erosion. Similarly, these soil surface communities also stabilized soils on early Earth, allowing vascular plants to establish. They contribute nitrogen and carbon to otherwise relatively infertile dryland soils, and have a strong influence on hydrologic cycles. Their presence can also influence vascular plant establishment and nutrition.

  15. Metal cation exchange reactions of ore minerals in Fe-Mn crusts of the Marcus Wake Rise (Pacific Ocean) in aqueous-salt solutions (United States)

    Novikov, G. V.; Bogdanova, O. Yu.; Melnikov, M. E.; Drozdova, A. N.; Lobus, N. V.; Shulga, N. A.


    It is shown that the reaction ability of metal cations of ore minerals in Fe-Mn crusts of the Marcus Wake Rise increases in the following manner: (Co2+ minerals is constant and includes these metal cations. Ca2+ and Na+ are major contributors to the exchange capacity of the ore minerals. The capacity of the ore minerals by cations of alkali and base metals is 0.43-0.60 and 2.08-2.70 mg-equiv/g, respectively. The exchange capacity of the ore minerals by cations of base metals increases linearly with the increase in the MnO2 content of the crust and does not depend on the geographical locations of the Marcus Wake guyots.

  16. Incipient plasticity in metallic thin films

    NARCIS (Netherlands)

    Soer, W. A.; De Hosson, J. Th. M.; Minor, A. M.; Shan, Z.; Asif, S. A. Syed; Warren, O. L.


    The authors have compared the incipient plastic behaviors of Al and Al-Mg thin films during indentation under load control and displacement control. In Al-Mg, solute pinning limits the ability of dislocations to propagate into the crystal and thus substantially affects the appearance of plastic

  17. Incipient motion of gravel and coal beds

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    2Department of Civil Engineering, S R K R Engineering College, Bhimavaram. 534202, India e-mail: MS received 15 January 2002. Abstract. An experimental study on incipient motion of gravel and coal beds under unidirectional steady-uniform flow is presented. Experiments were carried out in a ...

  18. Internal time marker (Q1) of the Cretaceous super chron in the Bay of Bengal - a new age constraint for the oceanic crust evolved between India and Elan Bank (United States)

    Krishna, K. S.; Ismaiel, M.; Karlapati, S.; Saha, D.; Mishra, J.


    Analysis of marine magnetic data of the Bay of Bengal (BOB) led to suggest two different tectonic models for the evolution of lithosphere between India and East Antarctica. The first model explains the presence of M-series (M11 to M0) magnetic anomalies in BOB with a small room leaving for accommodating the crust evolved during the long Cretaceous Magnetic Quiet Period. Second model explains in other way that most part of the crust in BOB was evolved during the quite period together with the possible presence of oldest magnetic chron M1/ M0 in close vicinity of ECMI. It is with this perspective we have reinvestigated the existing and recently acquired magnetic data together with regional magnetic model of BOB for identification of new tectonic constraints, thereby to better understand the evolution of lithosphere. Analysis of magnetic data revealed the presence of spreading anomalies C33 and C34 in the vicinity of 8°N, and internal time marker (Q1) corresponding to the age 92 Ma at 12°N in a corridor between 85°E and Ninetyeast ridges. The new time marker and its location, indeed, become a point of reference and benchmark in BOB for estimating the age of oceanic crust towards ECMI. The magnetic model further reveals the presence of network of fracture zones (FZs) with different orientations. Between 85°E and Ninetyeast ridges, two near N-S FZs, approximately followed 87°E and 89.5°E are found to extend into BOB up to 12°N, from there the FZs reorient in N60°W direction and reach to the continental margin region. Along ECMI two sets of FZs are identified with a northern set oriented in N60°W and southern one in N40°W direction. This suggests that both north and south segments of the ECMI were evolved in two different tectonic settings. The bend in FZs marks the timing (92 Ma) of occurrence of first major plate reorganisation of the Indian Ocean and becomes a very critical constraint for understanding the plate tectonic process in early opening of the

  19. Shear velocities in the oceanic crust at the East Pacific Rise 9° 18' N to 10° 30' N from compliance measurements (United States)

    Nooner, S. L.; Webb, S. C.; Crawford, W. C.


    Compliance was measured at 21 sites along the East Pacific Rise (EPR) from 9° 18' N to 10° 30' N during the MADCAP (Melt And Diking from Compliance And Pressure) experiment on the R/V Atlantis from February 13 to March 19, 2007. Measurements at 10° 30' N across the ridge segment 22 km north of the Clipperton transform fault show a stiff lower crust, which suggests that there is little crustal melt. This is consistent with previous descriptions of this segment as "magmatically starved" based on its morphology. Most of the compliance measurements were made on the EPR segment south of the Clipperton transform fault. At the northern end of this ridge segment, a compliance transect at 10° 2' N spans the ridge axis and continues to a seamount 16 km east. These measurements indicate that shear velocities are low beneath the ridge axis but increase rapidly off axis to the east, suggesting no magmatic connection between the ridge axis and the Watchstander seamount chain. Shear velocities beneath the nearest (and most recently active) seamount are similar to other off axis sites, suggesting that there is little or no crustal melt there. A 26 km long compliance transect across the ridge axis near 9° 20' N suggests that the region of low crustal shear velocities is constrained to within 3-4 km of the ridge axis. The compliance measurements preclude the existence of a melt body 18-20 km east of the ridge axis as had been inferred from an apparent mid-crustal reflector observed in a recent OBS experiment. The compliance over that site show low shear velocities only in the uppermost crust associated with a thick layer 2A. A final compliance transect stretches northward along the ridge axis and across the Clipperton ridge-transform intersection (RTI). Measurements made north of where the ridge crosses the inferred location of the RTI show lower crustal shear velocities than normal for off-axis crust, but this observation is consistent with previous refraction work that

  20. Variability of low temperature hydrothermal alteration in upper ocean crust: Juan de Fuca Ridge and North Pond, Mid-Atlantic Ridge (United States)

    Rutter, J.; Harris, M.; Coggon, R. M.; Alt, J.; Teagle, D. A. H.


    Over 2/3 of the global hydrothermal heat flux occurs at low temperatures (sports a thick sediment blanket. Rare basement outcrops are sites of fluid recharge and discharge. The average alteration extent (~10% secondary minerals), oxidation ratio (Fe3+/FeTOT=34%), and alteration character (orange, green, grey halos) of basement is constant with crustal age and depth along a 0.97-3.6 m.yr transect of ODP basement holes. However, vesicle fills record an increasingly complex history of successive alteration with age. In contrast, North Pond, a ~8 m.yr-old sediment-filled basin at 22N on the slow spreading Mid Atlantic Ridge, hosts rapid, relatively cool SE to NW basinal fluid flow. Average alteration extent (~10%) and oxidation ratio (33%) of Hole 395A basalts are similar to JdF. However, 395A cores are dominated by orange alteration halos, lack celadonite, but have abundant zeolite. Vesicle fill combinations are highly variable, but the most common fill progression is from oxidising to less oxidising secondary assemblages. The comparable extent of alteration between these two sites and the absence of an age relationship on the JdF suggests that the alteration extent of the upper crust is uniform and mostly established by 1 Myr. However, the variable alteration character reflects the influence of regional hydrology on hydrothermal alteration.

  1. High-resolution geology, petrology and age of a tectonically accreted section of Paleoarchean oceanic crust, Barberton greenstone belt, South Africa (United States)

    Grosch, Eugene; Vidal, Olivier; McLoughlin, Nicola; Whitehouse, Martin


    The ca. 3.53 to 3.29 Ga Onverwacht Group of the Barberton greenstone belt (BGB), South Africa records a rare sequence of exceptionally well-preserved volcanic, intrusive and volcani-clastic Paleaoarchean rocks. Numerous conflicting models exist for the geologic evolution and stratigraphy of this early Archean greenstone belt, ranging from plume-type dynamics to modern-style plate tectonics. Although much work has focussed on the komatiites of the ca. 3.48 Ga Komati Formation since their discovery in 1969, far less petrological attention has been given to the younger oceanic rock sequences of the Kromberg type-section in the mid-Onverwacht Group. In this study, we present new field observations from a detailed re-mapping of the Kromberg type-section, and combine this with high-resolution lithological observations from continuous drill core of the Barberton Scientific Drilling Project [1]. The new mapping and field observations are compared to a recent preliminary study of the Kromberg type-section [2]. A U-Pb detrital provenance study was conducted on a reworked, volcani-clastic unit in the upper Kromberg type-section for the first time. This included U-Pb age determination of 110 detrital zircons by secondary ion microprobe analyses (SIMS), providing constraints on maximum depositional age, provenance of the ocean-floor detritus, and timing for the onset of Kromberg ocean basin formation. These new zircon age data are compared to a previous U-Pb detrital zircon study conducted on the structurally underlying sediments of the ca. 3.43 Ga Noisy formation [3]. A multi-pronged petrological approach has been applied to various rock units across the Kromberg, including thermodynamic modelling techniques applied to metabasalts and metapyroxenites for PT-estimates, bulk- and in-situ isotope geochemistry providing constraints on protolith geochemistry and metamorphic history. Consequently, it is shown that this previously poorly studied Kromberg oceanic rock sequence of the

  2. Compositional variation and genesis of ferromanganese crusts of ...

    Indian Academy of Sciences (India)

    The Ce-content is the highest reported so far (up to 3763 ppm, average ∼2250 ppm) for global ocean seamount Fe-Mn crusts. In spite of general similarity in the range of major, minor, and strictly trivalent rare earth element composition, the dissimilarity between the present Fe-Mn crusts and the Pacific seamount Fe-Mn ...

  3. Late Precambrian Balkan-Carpathian ophiolite — a slice of the Pan-African ocean crust?: geochemical and tectonic insights from the Tcherni Vrah and Deli Jovan massifs, Bulgaria and Serbia (United States)

    Savov, Ivan; Ryan, Jeff; Haydoutov, Ivan; Schijf, Johan


    The Balkan-Carpathian ophiolite (BCO), which outcrops in Bulgaria, Serbia and Romania, is a Late Precambrian (563 Ma) mafic/ultramafic complex unique in that it has not been strongly deformed or metamorphosed, as have most other basement sequences in Alpine Europe. Samples collected for study from the Tcherni Vrah and Deli Jovan segments of BCO include cumulate dunites, troctolites, wehrlites and plagioclase wehrlites; olivine and amphibole-bearing gabbros; anorthosites; diabases and microgabbros; and basalts representing massive flows, dikes, and pillow lavas, as well as hyaloclastites and umbers (preserved sedimentary cover). Relict Ol, Cpx and Hbl in cumulate peridotites indicate original orthocumulate textures. Plagioclase in troctolites and anorthosites range from An60 to An70. Cumulate gabbro textures range from ophitic to poikilitic, with an inferred crystallization order of Ol-(Plag+Cpx)-Hbl. The extrusive rocks exhibit poikilitic, ophitic and intersertal textures, with Cpx and/or Plag (Oligoclase-Andesine) phenocrysts. The major opaques are Ti-Magnetite and Ilmenite. The metamorphic paragenesis in the mafic samples is Chl-Trem-Ep, whereas the ultramafic rocks show variable degrees of serpentinization, with lizardite and antigorite as dominant phases. Our samples are compositionally and geochemically similar to modern oceanic crust. Major element, trace element and rare earth element (REE) signatures in BCO basalts are comparable to those of MORB. In terms of basalt and dike composition, the BCO is a 'high-Ti' or 'oceanic' ophiolite, based on the classification scheme of Serri [Earth Planet. Sci. Lett. 52 (1981) 203]. Our petrologic and geochemical results, combined with the tectonic position of the BCO massifs (overlain by and in contact with Late Cambrian island arc and back-arc sequences), suggest that the BCO may have formed in a mid-ocean ridge setting. If the BCO records the existence of a Precambrian ocean basin, then there may be a relationship

  4. Russian Federation Snow Depth and Ice Crust Surveys (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Russian Federation Snow Depth and Ice Crust Surveys, dataset DSI-9808, contains routine snow surveys that run throughout the cold season every 10 days (every five...

  5. Araxa Group in the type-area: A fragment of Neoproterozoic oceanic crust in the Brasilia Fold Belt; Grupo Araxa em sua area tipo: um fragmento de crosta oceanica Neoproterozoica na faixa de dobramentos Brasilia

    Energy Technology Data Exchange (ETDEWEB)

    Seer, Hildor Jose [Centro Federal de Educacao Tecnologica de Araxa, (CEFET), MG (Brazil); Brod, Jose Affonso; Fuck, Reinhardt Adolfo; Pimentel, Marcio Martins; Boaventura, Geraldo Resende; Dardenne, Marcel Auguste [Brasilia Univ., DF (Brazil). Inst. de Geociencias


    This study reviews the geological characteristics and puts forward a new evolution model for the Araxa Group in its type-area, the southern segment of the Neo proterozoic Brasilia Belt, Minas Gerais, Brazil. The Araxa Group is confined within a thrust sheet belonging to a syn formal regional fold, the Araxa Syn form, overlying two other thrust sheets made of the Ibia and Canastra Groups. The Araxa Group is described as a tectono stratigraphic terrane in the sense of Howell (1993). It comprises an igneous mafic sequence, with fine and coarse grained amphibolites, associated with pelitic meta sedimentary rocks, and subordinate psanmites. All rocks were metamorphosed to amphibolite facies at ca. 630 Ma ago and were intruded by collisional granites. The amphibolites represent original basaltic and gabbroic rocks, with minor ultramafic (serpentinite/ amphibole-talc schist). The basalts are similar to high Fe O tholeiites, with REE signatures that resemble E-MORB and {epsilon}{sub Nd(T)} =+ 1.1. The meta sedimentary rocks are interpreted as the result of a marine deep-water sedimentation. They have Sm-Nd model ages of 1,9 Ga, and {epsilon}{sub Nd(T)} = -10.21. The amphibolites and metasediments could represent a fragment of back-arc oceanic crust. The data presented here differ significantly from the original definition of Barbosa et al. (1970) who describe the Araxa Group as a pelitic/psanmitic sequence and the collisional granites as a basement complex. (author)

  6. The link between Movability Number and Incipient Motion in river ...

    African Journals Online (AJOL)

    This allowed for a firmer definition of Incipient Motion as well as a new bedload transportation equation. Additional laboratory experimentation for Particle Reynolds number over the range 0.12-486 facilitated the improved prediction of Incipient Motion from a plot of the critical Movability Number vs. Particle Reynolds number ...

  7. Mechanism and duration of plutonic processes in oceanic crust: the example of the South Rallier du Baty intrusive complex, Kerguelen Archipelago (United States)

    Ponthus, Léandre; Guillaume, Damien; de Saint Blanquat, Michel; le Romancer, Marc; Pearson, Norman; Grégoire, Michel; O'Reilly, Sue Y.


    intrusions of successive magmatic injections. LA-ICPMS U-Pb dating of separated zircons shows the entire SRDBIC emplacement occurred over approximately 4 Ma, between 12 and 8 My. Our data show consequently that the SRDBIC was built at an averaged rate comprised between 10-4 and 5.10-5 km3.yr-1. All these new data lead us to propose a new emplacement model for the SRDBIC. We interpret it as a laccolith formed by successive magmatic injections inducing roof-uplift, similar to those forming many upper-crustal continental plutons, but in an oceanic within-plate setting.

  8. The course of incipient diabetic nephropathy

    DEFF Research Database (Denmark)

    Christensen, Cramer; Mogensen, C E


    (incipient diabetic nephropathy) were studied. For comparison 18 normals, 23 diabetics with normal albumin excretion and 10 patients with overt nephropathy were also examined. Diastolic blood pressure (DBP) was elevated to 88 +/- 9 mmHg (mean +/- S.D.) compared to patients with normal urinary albumin...... excretion: 80 +/- 7 (S.D.) (2p = 0.13%) but was below pressures in patients with overt diabetic nephropathy 109 +/- 15 (2p = 0.002%). Glomerular filtration rate (GFR) was elevated to 142 +/- 21 ml/min (mean +/- S.D.) compared to 132 +/- 9 in patients with normal urinary albumin excretion (2p = 4.3%). Renal......With the aim of defining the transitional phase from normal or near normal albumin excretion to overt diabetic nephropathy, 23 male diabetics of more than 7 years' duration, below 40 years of age and a baseline urinary albumin excretion above 15 micrograms/min but without clinical proteinuria...

  9. Subduction of the primordial crust into the deep mantle

    Directory of Open Access Journals (Sweden)

    Hiroki Ichikawa


    Full Text Available The primordial crust on the Earth formed from the crystallization of the surface magma ocean during the Hadean. However, geological surveys have found no evidence of rocks dating back to more than 4 Ga on the Earth's surface, suggesting the Hadean crust was lost due to some processes. We investigated the subduction of one of the possible candidates for the primordial crust, anorthosite and KREEP crust similar to the Moon, which is also considered to have formed from the crystallization of the magma ocean. Similar to the present Earth, the subduction of primordial crust by subduction erosion is expected to be an effective way of eliminating primordial crust from the surface. In this study, the subduction rate of the primordial crust via subduction channels is evaluated by numerical simulations. The subduction channels are located between the subducting slab and the mantle wedge and are comprised of primordial crust materials supplied mainly by subduction erosion. We have found that primordial anorthosite and KREEP crust of up to ∼50 km thick at the Earth's surface was able to be conveyed to the deep mantle within 0.1-2 Gy by that mechanism.

  10. Hafnium isotope stratigraphy of ferromanganese crusts (United States)

    Lee, D.-C.; Halliday, A.N.; Hein, J.R.; Burton, K.W.; Christensen, J.N.; Gunther, D.


    A Cenozoic record of hafnium isotopic compositions of central Pacific deep water has been obtained from two ferromanganese crusts. The crusts are separated by more than 3000 kilometers but display similar secular variations. Significant fluctuations in hafnium isotopic composition occurred in the Eocene and Oligocene, possibly related to direct advection from the Indian and Atlantic oceans. Hafnium isotopic compositions have remained approximately uniform for the past 20 million years, probably reflecting increased isolation of the central Pacific. The mechanisms responsible for the increase in 87Sr/86Sr in seawater through the Cenozoic apparently had no effect on central Pacific deep-water hafnium.

  11. Latest Cretaceous "A2-type" granites in the Sakarya Zone, NE Turkey: Partial melting of mafic lower crust in response to roll-back of Neo-Tethyan oceanic lithosphere (United States)

    Karsli, Orhan; Aydin, Faruk; Uysal, Ibrahim; Dokuz, Abdurrahman; Kumral, Mustafa; Kandemir, Raif; Budakoglu, Murat; Ketenci, Murat


    An integrated study of comprehensive geochronological, geochemical, and Sr-Nd-Hf isotopic data was undertaken for the A-type Topcam pluton that intruded within the Sakarya Zone (NE Turkey) with the aims of elucidating its origin and tectonic significance and gaining new insights into the generation of aluminous A-type granites. New LA-ICP-MS zircon U-Pb crystallization ages of 72 and 73 Ma indicate emplacement in the Late Cretaceous time, just after extensive metaluminous I-type magmatism in the area. The pluton consists mainly of alkali feldspar, quartz, plagioclase, amphibole, and biotite with accessory minerals such as magnetite, apatite, and zircon. The outcrop is composed of granite, syenite, monzonite, and quartz monzonite and possesses a wide range of SiO2 content (57-70 wt%) with elevated Ga/Al ratios and low Mg# (mostly earth elements (LREE) and significant negative Eu (Eu/Eu* = 0.31 to 0.86) anomalies on the chondrite-normalized REE diagram. The rocks are enriched in some large ion lithophile elements (e.g., Rb, Th and Ba), and spidergrams show a relative depletion in Nb, Ti, and Sr. The granitic rocks of the pluton have identical 87Sr/86Sr(i) ratios ranging from 0.70518 to 0.70716, relatively low εNd (t) values varying from - 5.5 to - 0.4, and TDM ages (0.82-1.19 Ga). In situ zircon analyses show that the rocks have variable negative and positive εHf (t) values (- 5.5 to 5.9) and Hf two-stage model ages (742 to 1468 Ma), which are indicative of minor addition of juvenile material. Sr-Nd isotope modelling suggests mixing of 70-90% of lower crustal-derived melt with 10-30% of mantle-derived melt at lower crust depths. The heat source for partial melting is provided by upwelling of hot asthenosphere triggered by slab roll-back events. Geochemical and isotopic data reveal that metaluminous A2-type granites were derived from partial melting of the Paleozoic lower continental crust dominated by mafic rocks in amphibolitic composition, with minor input of

  12. Hydrogenetic Ferromanganese Crusts of the California Continental Margin (United States)

    Conrad, Tracey A.

    Hydrogenetic Ferromanganese (Fe-Mn) crusts grow from seawater and in doing so sequester elements of economic interest and serve as archives of past seawater chemistry. Ferromanganese crusts have been extensively studied in open-ocean environments. However, few studies have examined continent-proximal Fe-Mn crusts especially from the northeast Pacific. This thesis addresses Fe-Mn crusts within the northeast Pacific California continental margin (CCM), which is a dynamic geological and oceanographic environment. In the first of three studies, I analyzed the chemical and mineralogical composition of Fe-Mn crusts and show that continental-proximal processes greatly influence the chemistry and mineralogy of CCM Fe-Mn crusts. When compared to global open-ocean Fe-Mn crusts, CCM crusts have higher concentrations of iron, silica, and thorium with lower concentrations of many elements of economic interest including manganese, cobalt, and tellurium, among other elements. The mineralogy of CCM Fe-Mn crusts is also unique with more birnessite and todorokite present than found in open-ocean samples. Unlike open-ocean Fe-Mn crusts, carbonate-fluorapatite is not present in CCM crusts. This lack of phosphatization makes CCM Fe-Mn crusts excellent candidates for robust paleoceanography records. The second and third studies in this thesis use isotope geochemistry on select CCM Fe-Mn crusts from four seamounts in the CCM to study past terrestrial inputs into the CCM and sources and behavior of Pb and Nd isotopes over the past 7 million years along the northeast Pacific margin. The second study focuses on riverine inputs into the Monterey Submarine Canyon System and sources of the continental material. Osmium isotopes in the crusts are compared to the Cenozoic Os seawater curve to develop an age model for the samples that show the crusts range in age of initiation of crust growth from approximately 20 to 6 Myr. Lead and neodymium isotopes measured in select Fe-Mn crusts show that

  13. Phosphatization Associated Features of Ferromanganese Crusts at Lemkein Seamount, Marshall Islands (United States)

    Choi, J.; Lee, I.; Park, B. K.; Kim, J.


    Old layers of ferromanganese crusts, especially in the Pacific Ocean, have been affected by phosphatization. Ferromanganese crusts on Lemkein seamount in Marshall Islands also are phosphatized (3.3 to 4.2 wt % of P concentration). Furthermore, they have characteristic features that are different from other ferromanganese crusts. These features occur near the phosphorite, which were thought to fill the pore spaces of ferromanganese crusts. Inside the features, ferromanganese crusts are botryoidally precipitated from the round-boundary. The features of the phosphatized lower crusts of Lemkein seamount are observed using microscope and SEM. Elemental compositions of the selected samples were analyzed by SEM-EDS. Based on the observation and analysis of samples, three characteristic structures are identified: (1) phosphate-filled circles, (2) tongue-shaped framboidal crust, and (3) massive framboidal crust. The phosphate-filled circles are mostly composed of phosphorite, and they include trace fossils such as foraminifera. Phosphatized ferromanganese crusts exist at the boundary of this structure. The tongue-shaped crust is connected with the lips downward, and ferromanganese crusts inside the tongue show distinct growth rim. The massive framboidal crust is located below the tongue. Ferromanganese crusts in the massive framboidal crust are enveloped by phosphate, and some of the crusts are phosphatized. Around the structures, Mn oxide phase is concentrated as a shape of corona on BSE image. All of the structures are in the phosphatized crusts that show columnar growth of ferromanganese crusts and have sub-parallel lamination. These observation and chemical analysis of the ferromanganese crusts can provide a clue of diagenetic processes during the formation of ferromanganese crusts.

  14. The Petrology and Geochemistry of Feldspathic Granulitic Breccia NWA 3163: Implications for the Lunar Crust (United States)

    McLeod, C. L.; Brandon, A. D.; Lapen, T. J.; Shafer, J. T.; Peslier, A. H.; Irvine, A. J.


    Lunar meteorites are crucial to understand the Moon s geological history because, being samples of the lunar crust that have been ejected by random impact events, they potentially originate from areas outside the small regions of the lunar surface sampled by the Apollo and Luna missions. The Apollo and Luna sample sites are contained within the Procellarum KREEP Terrain (PKT, Jolliff et al., 2000), where KREEP refers to potassium, rare earth element, and phosphorus-rich lithologies. The KREEP-rich rocks in the PKT are thought to be derived from late-stage residual liquids after approx.95-99% crystallization of a lunar magma ocean (LMO). These are understood to represent late-stage liquids which were enriched in incompatible trace elements (ITE) relative to older rocks (Snyder et al., 1992). As a consequence, the PKT is a significant reservoir for Th and KREEP. However, the majority of the lunar surface is likely to be significantly more depleted in ITE (84%, Jolliff et al., 2000). Lunar meteorites that are low in KREEP and Th may thus sample regions distinct from the PKT and are therefore a valuable source of information regarding the composition of KREEP-poor lunar crust. Northwest Africa (NWA) 3163 is a thermally metamorphosed ferroan, feldspathic, granulitic breccia composed of igneous clasts with a bulk anorthositic, noritic bulk composition. It is relatively mafic (approx.5.8 wt.% FeO; approx.5 wt.% MgO) and has some of the lowest concentrations of ITEs (17ppm Ba) compared to the feldspathic lunar meteorite (FLM) and Apollo sample suites (Hudgins et al., 2011). Localized plagioclase melting and incipient melting of mafic minerals require localized peak shock pressures in excess of 45 GPa (Chen and El Goresy, 2000; Hiesinger and Head, 2006). NWA 3163, and paired samples NWA 4481 and 4883, have previously been interpreted to represent an annealed micro-breccia which was produced by burial metamorphism at depth in the ancient lunar crust (Fernandes et al., 2009

  15. Comment on "207Pb-206Pb single-zircon evaporation ages of some granitoid rocks reveal continent-oceanic island arc collision during the Cretaceous geodynamic evolution of the Central Anatolian crust, Turkey" - Boztug, D., Tichomirowa, M. & Bombach, K., 2007, JAES 31, 71-86 (United States)

    Göncüoglu, M. Cemal

    A continent-oceanic island arc collision model was proposed as a new geodynamic scenario for the evolution of the Cretaceous Central Anatolian granitoids in the Central Anatolian crystalline complex (CACC) by Boztug et al. (2007b) [Boztug, D., Tichomirowa, M., Bombach, K., 2007b. 207Pb-206Pb single-zircon evaporation ages of some granitoid rocks reveal continent-oceanic island arc collision during the Cretaceous geodynamic evolution of the central Anatolian crust, Turkey. Journal of Asian Earth Sciences 31, 71-86]. The key aspects of this model include an intra-oceanic subduction in the Neotethyan Izmir-Ankara Ocean, formation of an island arc and its subsequent collision with the northern margin of the Tauride-Anatolide Platform. The identical scenario was initially proposed by Göncüoglu et al. (1992) [Göncüoglu, M.C., Erler, A., Toprak, V., Yalınız, K., Olgun, E., Rojay, B., 1992. Geology of the western Central Anatolian Massif, Part II: Central Areas. TPAO Report No: 3155, 76 p] . Moreover, the weighted mean values of the reported 207Pb-206Pb single-zircon evaporation ages by Boztug et al. (2007b) [Boztug, D., Tichomirowa, M., Bombach, K., 2007b. 207Pb-206Pb single-zircon evaporation ages of some granitoid rocks reveal continent-oceanic island arc collision during the Cretaceous geodynamic evolution of the central Anatolian crust: Turkey. Journal of Asian Earth Sciences 31, 71-86] from A-type granitoids in the CACC seem to be miscalculated and contrast with the field data.

  16. Current Signature Analysis as Diagnosis Media for Incipient Fault Detection

    Directory of Open Access Journals (Sweden)



    Full Text Available This paper focuses on the experimental investigation for incipient fault detection and fault detection methods existing in the literature, using Wound Rotor Induction Machine (WRIM. Three main experiments (one for stator phase unbalance, one for rotor phase unbalance and one for turn-to-turn faults have been performed to study the electrical behavior of the WRIM. The article aims to provide further documentation for an advanced condition monitoring system, in order to avoid undesirable operating conditions and to detect and diagnose incipient electrical faults. A description of the measurement system and experimental investigation are presented and stator and rotor currents spectrum of the WRIM are analyzed.

  17. Periodic deformation of oceanic crust in the central Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Krishna, K.S.; Ramana, M.V.; Rao, D.G.; Murthy, K.S.R.; Rao, M.M.M.; Subrahmanyam, V.; Sarma, K.V.L.N.S.

    deformational unconformity are mostly present in the area north of 1~'S. It is surmised that the compressional stresses built up since the hard collision of India with Eurasia may have released for a short period prior to the early Miocene time and deformed...

  18. Adaptive divergence with gene flow in incipient speciation of Miscanthus floridulus / sinensis complex (Poaceae)

    KAUST Repository

    Huang, Chao-Li


    Young incipient species provide ideal materials for untangling the process of ecological speciation in the presence of gene flow. The Miscanthus floridulus/sinensis complex exhibits diverse phenotypic and ecological differences despite recent divergence (approximately 1.59million years ago). To elucidate the process of genetic differentiation during early stages of ecological speciation, we analyzed genomic divergence in the Miscanthus complex using 72 randomly selected genes from a newly assembled transcriptome. In this study, rampant gene flow was detected between species, estimated as M=3.36x10(-9) to 1.20x10(-6), resulting in contradicting phylogenies across loci. Nevertheless, beast analyses revealed the species identity and the effects of extrinsic cohesive forces that counteracted the non-stop introgression. As expected, early in speciation with gene flow, only 3-13 loci were highly diverged; two to five outliers (approximately 2.78-6.94% of the genome) were characterized by strong linkage disequilibrium, and asymmetrically distributed among ecotypes, indicating footprints of diversifying selection. In conclusion, ecological speciation of incipient species of Miscanthus probably followed the parapatric model, whereas allopatric speciation cannot be completely ruled out, especially between the geographically isolated northern and southern M.sinensis, for which no significant gene flow across oceanic barriers was detected. Divergence between local ecotypes in early-stage speciation began at a few genomic regions under the influence of natural selection and divergence hitchhiking that overcame gene flow.

  19. The link between Movability Number and Incipient Motion in river ...

    African Journals Online (AJOL)


    Jun 5, 2009 ... The concept of incipient motion has been of continuing interest to researchers and engineers working with sediment move- ...... pipe laws. J. Inst. Civ. Eng. 11 133-156. EINSTEIN HA (1942) Formulas for the transportation of bed load. Trans. ASCE 107 575-577. EINSTEIN HA (1950) The Bed Load Function ...

  20. Three feasible strategies to minimize kidney injury in 'incipient AKI'. (United States)

    Perazella, Mark A; Coca, Steven G


    Acute kidney injury (AKI) is common and increasing in hospitalized patients. The earlier recognition of renal injury, at a stage described as 'incipient AKI', may allow renoprotective strategies to be initiated at a time when more kidney tissue is salvageable. 'Incipient AKI' represents renal injury as manifested by new-onset proteinuria, cellular activity on urine microscopy, or elevated novel biomarkers of kidney injury in the absence of clinical data that meet current diagnostic criteria for AKI. We propose three strategies to preserve kidney function and minimize further kidney injury in patients with 'incipient AKI'. These include--when appropriate for the prevailing cause of 'incipient AKI'--use of low-chloride-containing intravenous solutions, continued use of renin-angiotensin system antagonists, and use of diuretics to achieve adequate control of intravascular volume. The combined approach of the early diagnosis of AKI and early employment of feasible therapeutic strategies may slow the growth of clinical AKI, AKI requiring renal replacement therapy and chronic kidney disease, and might reduce AKI-associated mortality.

  1. Developing countries and incipient industrialization: a case study of ...

    African Journals Online (AJOL)

    Botswana's small and large towns offer good examples of incipient industrialization and enterprise clustering in a developing economy. Using data from Lobatse, a small industrial centre in Botswana, this brief paper shows that clustering in developing countries does not necessarily induce high inter-firm relationships as is ...

  2. Incipient sexual isolation in the nasuta-albomicans complex of ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Biosciences; Volume 26; Issue 3. Incipient sexual isolation in the nasuta-albomicans complex of Drosophila: mating preference in male-, female– and multiple-choice mating experiments. M T Tanuja N B Ramachandra H A Ranganath. Articles Volume 26 Issue 3 September 2001 pp 365-371 ...

  3. [Crusted scabies: A review]. (United States)

    Jouret, G; Bounemeur, R; Presle, A; Takin, R


    Crusted scabies is a rare and severe form of infestation by Sarcoptes scabies var. hominis. It is characterized by profuse hyperkeratosis containing over 4000 mites per gram of skin, with treatment being long and difficult. The condition is both direct and indirectly contagious. It has a central role in epidemic cycles of scabies, the incidence of which is on the rise in economically stable countries. Recent discoveries concerning the biology of mites, the pathophysiology of hyperkeratosis and the key role of IL-17 in this severe form open up new therapeutic perspectives. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  4. Fluid flow and mud volcanism in the Eastern Mediterranean incipient collision zones (United States)

    Zitter, T. A. C.; Woodside, J. M.; Mascle, J.


    Fluid venting activity, either coupled with mud volcanism or along deep active faults or both, has been investigated in the Eastern Mediterranean Sea, mainly in two areas associated with the incipient collision process between Africa and Eurasia. Mud volcanoes are abundant on the crestal part of the Mediterranean Ridge accretionary prism, in association with thrusts, back-thrusts and transcurrent features. They are also found in the Anaximander Mountains/Florence Rise area, to the west of Cyprus, where a wrench system accommodates the pre-collisional deformation. Combined swath multibeam bathymetry and imagery, seismic profiling (ANAXIPROBE survey, 1995 and PRISMED II survey, 1998) and O.R.E.Tech sidescan sonar data (MEDINETH survey, 1999) indicate the genetic relationship between mud volcanoes and tectonics, particularly potential influence of strike-slip faulting. The in situ observations of mud volcanoes (MEDINAUT survey, 1998) have revealed common characteristics at cold seeps, such as carbonate crust constructions and specific chemosynthetic-based fauna. Ground-truth of the sonar data shows that the geophysical signature of mud volcanoes may be related to spatial and temporal evolution of mud volcanism activity, because the seafloor characteristics (surface of the mud flows, distribution and nature of the crusts) and the degree of colonization by benthic fauna vary with the intensity and age of the fluid seepage. Moreover, clay mineralogy studies on the mud matrix samples give insights into the depositional environment, age, and depth of the lithological unit from which the mud breccia is extruded. The shallow signature of the mud reservoir tends to indicate that the overpressured fluids originate from deeper strata than the solid phase of the expelled material.

  5. Physics of Neutron Star Crusts

    Directory of Open Access Journals (Sweden)

    Chamel Nicolas


    Full Text Available The physics of neutron star crusts is vast, involving many different research fields, from nuclear and condensed matter physics to general relativity. This review summarizes the progress, which has been achieved over the last few years, in modeling neutron star crusts, both at the microscopic and macroscopic levels. The confrontation of these theoretical models with observations is also briefly discussed.

  6. Incipient Movement : designing the seamless and the scaleless

    DEFF Research Database (Denmark)

    Brabrand, Helle


    -space-presentations, confronting the actual time-space-depth of a viewer/player with virtual time-space-depth of transformation and deformation of drawing. Architectonic space limits and orients body movement. Conversely, architecture has the potential of setting free and expanding kinesthetic feeling-out in space. This twist......My project Incipient Movement relates seamless and scaleless parameters directly to the drawing of body-space. The project operates with a kind of topological sensing and taking form, by setting up series of relations between simple tectonic forces and forces of movement. The work twists body...... between oriented movement and movement in its incipiency is a basic dimension of architectural experience and related to dimensions in dance. Nevertheless these twists of movement-forces are rather neglected as architectonic design parameters....

  7. Software System for Finding the Incipient Faults in Power Transformers

    Directory of Open Access Journals (Sweden)

    Nikolina Petkova


    Full Text Available In this paper a new software system for finding of incipient faultsis presented.An experiment is made with real measurement of partial discharge(PD that appeared in power transformer. The software system usesacquisition data to define the real state of this transformer. One of the most important criteria for the power transformer’s state is the presence of partial discharges. The wave propagation caused by partial discharge depends on scheme of the winding and construction of the power equipment. In all cases, the PD source had a specific position so the wave measured from the PD –coupling device had a specific waveform. The waveform is different when PDcoupling device is put on a specific place. The waveform and the time of propagation are criteria for the localization of the source of incipient faults in the volume of power transformer.

  8. Crust and mantle of the gulf of Mexico (United States)

    Moore, G.W.


    A SEEMING paradox has puzzled investigators of the crustal structure of the Gulf of Mexico since Ewing et al.1 calculated that a unit area of the rather thick crust in the gulf contains less mass than does a combination of the crust and enough of the upper mantle to make a comparable thickness in the Atlantic Ocean. They also noted that the free-air gravity of the gulf is essentially normal and fails by a large factor to be low enough to reflect the mass difference that they calculated. We propose a solution to this problem. ?? 1972 Nature Publishing Group.

  9. High-Silica Hadean Crust (United States)

    Boehnke, P.; Bell, E. A.; Stephan, T.; Trappitsch, R.; Keller, C. B.; Pardo, O. S.; Davis, A. M.; Harrison, M.; Pellin, M. J.


    Understanding Hadean (>4 Ga) Earth requires knowledge of its crust. The composition of the crust and volatiles migrating through it directly influence the makeup of the atmosphere, the composition of seawater, and nutrient availability. Despite its importance, there is little known and less agreed upon regarding the nature of the Hadean crust. For example, compilations of whole-rock elemental abundances suggest to some a dominantly mafic crust, while the geochemistry and inclusions in Hadean zircons suggest the existence of felsic crust and possibly even life. We address this question by analyzing the 87Sr/86Sr ratio of apatite inclusions in Archean zircons from Nuvvuagittuq, Canada, using the Chicago Instrument for Laser Ionization (CHILI). Our results show that the protolith of the Nuvvuagittuq zircons had formed a reservoir with a high (>1) Rb/Sr ratio by 4.4 Ga. The Rb/Sr ratio of this reservoir is too high to be explained by only a mafic crust or a terrestrial "KREEP" layer. Indeed, high Rb/Sr ratios only occur in high SiO2 rocks, and our data suggests that the 4.4 Ga Nuvvuagittuq source was felsic rather than mafic. Specifically, our results suggest that the 4.4 Ga Nuvvuagittuq protolith was of rhyolitic compositions. This finding implies that the early crust had a broad range of igneous rocks, extending from mafic to highly silicic compositions.

  10. Incipient fault detection and power system protection for spaceborne systems (United States)

    Russell, B. Don; Hackler, Irene M.


    A program was initiated to study the feasibility of using advanced terrestrial power system protection techniques for spacecraft power systems. It was designed to enhance and automate spacecraft power distribution systems in the areas of safety, reliability and maintenance. The proposed power management/distribution system is described as well as security assessment and control, incipient and low current fault detection, and the proposed spaceborne protection system. It is noted that the intelligent remote power controller permits the implementation of digital relaying algorithms with both adaptive and programmable characteristics.

  11. Collisional stripping of planetary crusts (United States)

    Carter, Philip J.; Leinhardt, Zoë M.; Elliott, Tim; Stewart, Sarah T.; Walter, Michael J.


    Geochemical studies of planetary accretion and evolution have invoked various degrees of collisional erosion to explain differences in bulk composition between planets and chondrites. Here we undertake a full, dynamical evaluation of 'crustal stripping' during accretion and its key geochemical consequences. Crusts are expected to contain a significant fraction of planetary budgets of incompatible elements, which include the major heat producing nuclides. We present smoothed particle hydrodynamics simulations of collisions between differentiated rocky planetesimals and planetary embryos. We find that the crust is preferentially lost relative to the mantle during impacts, and we have developed a scaling law based on these simulations that approximates the mass of crust that remains in the largest remnant. Using this scaling law and a recent set of N-body simulations of terrestrial planet formation, we have estimated the maximum effect of crustal stripping on incompatible element abundances during the accretion of planetary embryos. We find that on average approximately one third of the initial crust is stripped from embryos as they accrete, which leads to a reduction of ∼20% in the budgets of the heat producing elements if the stripped crust does not reaccrete. Erosion of crusts can lead to non-chondritic ratios of incompatible elements, but the magnitude of this effect depends sensitively on the details of the crust-forming melting process on the planetesimals. The Lu/Hf system is fractionated for a wide range of crustal formation scenarios. Using eucrites (the products of planetesimal silicate melting, thought to represent the crust of Vesta) as a guide to the Lu/Hf of planetesimal crust partially lost during accretion, we predict the Earth could evolve to a superchondritic 176Hf/177Hf (3-5 parts per ten thousand) at present day. Such values are in keeping with compositional estimates of the bulk Earth. Stripping of planetary crusts during accretion can lead to

  12. Color characterization of Arctic Biological Soil Crusts (United States)

    Mele, Giacono; Gargiulo, Laura; Ventura, Stefano


    Global climate change makes large areas lacking the vegetation coverage continuously available to primary colonization by biological soil crusts (BSCs). This happens in many different environments, included high mountains and Polar Regions where new areas can become available due to glaciers retreat. Presence of BSCs leads to the stabilization of the substrate and to a possible development of protosoil, with an increase of fertility and resilience against erosion. Polar BSCs can exhibit many different proportions of cyanobacteria, algae, microfungi, lichens, and bryophytes which induce a large variability of the crust morphology and specific ecosystem functions. An effective and easy way for identifying the BSCs in the field would be very useful to rapidly recognize their development stage and help in understanding the overall impact of climate change in the delicate polar environments. Color analysis has long been applied as an easily measurable physical attribute of soil closely correlated with pedogenic processes and some soil functions. In this preliminary work we used RGB and CIE-L*a*b* color models in order to physically characterize fourteen different BSCs identified in Spitsbergen island of Svalbard archipelago in Arctic Ocean at 79° north latitude. We found that the "redness parameter "a*" of CIE-L*a*b* model was well correlated to the succession process of some BSCs at given geomorphology condition. Most of color parameters showed, moreover, a great potential to be correlated to photosynthetic activity and other ecosystem functions of BSCs.

  13. Models of a partially hydrated Titan interior with clathrate crust (United States)

    Lunine, J. I.; Castillo-Rogez, J.


    We present an updated model of the interior evolution of Titan over time, assuming the silicate core was hydrated early in Titan's history and is dehydrating over time. The original model presented in Castillo-Rogez and Lunine (2010) was motivated by a Cassini-derived moment of inertia (Iess et al., 2010) for Titan too large to be accommodated by classical fully differentiated models in which an anhydrous silicate core was overlain by a water ice (with possible perched ocean) mantle. Our model consisted of a silicate core still in the process of dehydrating today, a situation made possible by the leaching of radiogenic potassium from the silicates into the liquid water ocean. The crust of Titan was assumed to be pure water ice I. The model was consistent with the moment of inertia of Titan, but neglected the presence of large amounts of methane in the upper crust invoked to explain methane's persistence at present and through geologic time (Tobie et al. 2006). We have updated our model with such a feature. We have also improved our modeling with a better physical model for the dehydration of antigorite and other hydrated minerals. In particular our modeling now simulates heat advection resulting from water circulation (e.g., Seipold and Schilling 2003), rather than the purely conductive heat transfer regime assumed in the first version of our model. The modeling proceeds as in Castillo-Rogez and Lunine (2010), with the thermal conductivity of the methane clathrate crust rather than that of ice I. The former is several times lower than that of the latter, and the two have rather different temperature dependences (English and Tse, 2009). The crust turns out to have essentially no bearing on the temperature of the silicate core and hence the timing of dehydration, but it profoundly affects the thickness of the high-pressure ice layer beneath the ocean. Indeed, with the insulating methane clathrate crust, there must be a liquid water ocean beneath the methane clathrate

  14. Incipient cognition solves the spatial reciprocity conundrum of cooperation.

    Directory of Open Access Journals (Sweden)

    Jeromos Vukov

    Full Text Available BACKGROUND: From the simplest living organisms to human societies, cooperation among individuals emerges as a paradox difficult to explain and describe mathematically, although very often observed in reality. Evolutionary game theory offers an excellent toolbar to investigate this issue. Spatial structure has been one of the first mechanisms promoting cooperation; however, alone it only opens a narrow window of viability. METHODOLOGY/PRINCIPAL FINDINGS: Here we equip individuals with incipient cognitive abilities, and investigate the evolution of cooperation in a spatial world where retaliation, forgiveness, treason and mutualism may coexist, as individuals engage in Prisoner's Dilemma games. In the model, individuals are able to distinguish their partners and act towards them based on previous interactions. We show how the simplest level of cognition, alone, can lead to the emergence of cooperation. CONCLUSIONS/SIGNIFICANCE: Despite the incipient nature of the individuals' cognitive abilities, cooperation emerges for unprecedented values of the temptation to cheat, being also robust to invasion by cheaters, errors in decision making and inaccuracy of imitation, features akin to many species, including humans.

  15. Controlling incipient oxidation of pyrite for improved rejection. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, R.H.; Richardson, P.E.; Tao, D.P.


    It is well known that superficial oxidation of pyrite produces a hydrophobic sulfur-rich surface and creates problems in separating the mineral from coal using surface-based processes such as flotation and agglomeration. Numerous studies of pyrite oxidation have been conducted but most of them were concerned with the advanced stages of oxidation, and as a result it was not possible to establish a relationship between oxidation and flotation behavior. A better understanding of the mechanisms and kinetics of the incipient oxidation reactions, which may vary with the origin, morphology, texture, and solid state properties of pyrite, can lead to the development of new processes that can improve pyrite rejection from coal. This project is aimed at better understanding of the mechanisms involved during the initial stages of pyrite oxidation to foster the development of advanced coal cleaning technologies. Studies were conducted by fracturing pyrite electrodes in-situ in an electrochemical cell to create virgin surfaces. Electrochemical and photoelectrochemical techniques were employed to characterize the incipient oxidation of pyrite in aqueous solutions. Microflotation tests were conducted to obtain information on the hydrophobicity of pyrite under controlled E{sub h} and pH conditions, and the results were correlated with electrochemical studies.

  16. Geochemical Consequence of Extraction of Incipient CO2-rich melts from Earth's Deep Upper Mantle (United States)

    Dasgupta, R.; Withers, A. C.; McDonough, W. F.; Hirschmann, M. M.


    The initiation of partial melting beneath mid-oceanic ridges and ocean islands likely produces incipient carbonatitic melts. These highly mobile melts generated at great depth may not only affect geophysical properties of deep upper mantle but can also influence Earth's geochemical evolution by releasing incompatible parent and/or daughter elements, heat producing elements, and volatiles. But constraints on the fractionation of the key trace elements between the peridotitic residue and carbonatitic melts are lacking at conditions of initiation of partial melting beneath ridges.Experiments at 6.6-8.6 GPa and 1265-1470 °C on carbonated peridotite doped with a blend of trace elements produced cpx + garnet + magnesite ± opx ± olivine + carbonatitic melt (cbL) similar in composition to that expected at the solidus of carbonated peridotite (Ca# = 0.52 at 6.6 GPa and 0.45 at 8.6 GPa; Na2O = ~4 wt.% at 6.6 GPa and ~2.5 wt.% at 8.6 GPa). Compared to previous studies at lower pressures (2.0-4.6 GPa), Dcpx/cbL from the present study are smaller for elements substituting into the cpx M2 site, especially trivalent cations ( DLu = 0.17, DLa = 0.006). Dcpx/cbL for U (0.001) and Th (0.002) are also noticeably lower than the previous estimates. In contrast, Dgarnet/cbL values are higher for REEs ( DLu = 4.6, DLa = 0.039) and HFSEs, U (0.023) and Th (0.017).Our estimate of Dperidotite/cbL indicates that incipient carbonatite extraction from the deep upper mantle will produce a residue with a more depleted Rb/Sr, U/Pb, Th/U, and enriched Sm/Nd, which may evolve to produce the most common of the mantle end member components, PREMA. Metasomatic implantation of deep carbonatitic melt into the lithosphere can generate a high-μ (238U/204Pb) signature, whereas mixing of carbonatite with elevated Th/U can contribute to the observed 230Th-excesses in MORBs. However, carbonatites derived by incipient melting of depleted (DMM) mantle have limited trace element enrichments, ~10-100

  17. A measurement-based technique for incipient anomaly detection

    KAUST Repository

    Harrou, Fouzi


    Fault detection is essential for safe operation of various engineering systems. Principal component analysis (PCA) has been widely used in monitoring highly correlated process variables. Conventional PCA-based methods, nevertheless, often fail to detect small or incipient faults. In this paper, we develop new PCA-based monitoring charts, combining PCA with multivariate memory control charts, such as the multivariate cumulative sum (MCUSUM) and multivariate exponentially weighted moving average (MEWMA) monitoring schemes. The multivariate control charts with memory are sensitive to small and moderate faults in the process mean, which significantly improves the performance of PCA methods and widen their applicability in practice. Using simulated data, we demonstrate that the proposed PCA-based MEWMA and MCUSUM control charts are more effective in detecting small shifts in the mean of the multivariate process variables, and outperform the conventional PCA-based monitoring charts. © 2015 IEEE.

  18. Processes of Magma-crust Interaction : Insights from Geochemistry and Experimental Petrology


    Deegan, Frances M


    This work focuses on crustal interaction in magmatic systems, drawing on experimental petrology and elemental and isotope geochemistry. Various magma-chamber processes such as magma-mixing, fractional crystallisation and magma-crust interaction are explored throughout the papers comprising the thesis. Emphasis is placed on gaining insights into the extent of crustal contamination in ocean island magmas from the Canary Islands and the processes of magma-crust interaction observed both in natur...

  19. Profiling planktonic foraminiferal crust formation

    NARCIS (Netherlands)

    Steinhardt, Juliane; de Nooijer, Lennart; Brummer, Geert Jan; Reichart, Gert Jan


    Planktonic foraminifera migrate vertically through the water column during their life, thereby growing and calcifying over a range of depth-associated conditions. Some species form a calcite veneer, crust, or cortex at the end of their lifecycle. This additional calcite layer may vary in structure,

  20. Complexity, depth, and rapidity of processes that formed the lunar crust

    International Nuclear Information System (INIS)

    Ryder, G.; Dasch, J.


    From its birth the moon had a large-scale, complex magma system. The evidence is the massive differentiation of the moon that was partially preserved. The system might be a magma ocean or a magmasphere; even in the former case it was superposed by smaller but also very complex magma systems. The main episode produced a plagioclase-rich crust including genuine anorthosites; it was over by about 4.35 b.y. ago, although magmatism continues. The processes of crust-building remain in serious dispute. Lunar crusts; massive differentiation; crustal material composition; processes which produced crustal materials; and differences from earth are briefly discussed

  1. Crust and Mantle Structure Beneath the Samoan Islands (United States)

    Browning, J. M.; Courtier, A. M.; Jackson, M. G.; Lekic, V.; Hart, S. R.; Collins, J. A.


    We used teleseismic receiver functions to map the seismic structure under the Samoan Islands in the southern Pacific Ocean. We acquired seismograms for the permanent seismic station, AFI, and for five temporary stations located across the island chain from the Samoan Lithospheric Integrated Seismic Experiment (SLISE). We used multiple-taper correlation and Markov chain Monte Carlo algorithms to calculate receiver functions for events with epicentral distance of 30° to 95° and examined the results in a frequency range of 1.0 - 5.0 Hz for crustal structure and 0.1 - 2.0 Hz for mantle structure. We identify complex crustal layering, including the interface between volcanic rocks and the ocean crust and a substantial underplated layer beneath the normal ocean crust. We find that the crust thins with decreasing age across the Samoan Islands and correlates with previous observations from gravity data (Workman, 2005). We additionally identify a velocity increase in the range of 50-100 km depth, potentially the Hales discontinuity. Deeper in the mantle, we observe transition zone thickness of 245-250 km across the island chain, which is within the margin of error for globally observed transition zone thickness. When migrated with IASP, transition zone discontinuity depths do appear deeper beneath the youngest island, indicating slower velocities and/or deeper discontinuity depths relative to the older islands in the system. We will provide improved constraints on transition zone discontinuity depths from ScS reverberations for all stations, and will place the crust and mantle results into a multi-disciplinary context, with comparisons to geochemical and surface observations. Workman, R., 2005. Geochemical characterization of endmember mantle components, Doctoral dissertation, Massachusetts Institute of Technology,

  2. Galenicals in the treatment of crusted scabies

    Directory of Open Access Journals (Sweden)

    Sugathan P


    Full Text Available Crusted scabies is rare. It is a therapeutic challenge, as the common drugs used against scabies are unsatisfactory. The successful use of galenicals in a 10-year-old girl with crusted scabies is reported.

  3. Brazilian and Mexican experiences in the study of incipient domestication. (United States)

    Lins Neto, Ernani Machado de Freitas; Peroni, Nivaldo; Casas, Alejandro; Parra, Fabiola; Aguirre, Xitlali; Guillén, Susana; Albuquerque, Ulysses Paulino


    diverse cultural and ecological contexts for a better understanding of evolution under incipient processes of domestication. Higher research effort is particularly required in Brazil, where studies on this topic are scarcer than in Mexico but where diversity of human cultures managing their also high plant resources diversity offer high potential for documenting the diversity of mechanisms of artificial selection and evolutionary trends. Comparisons and evaluations of incipient domestication in the regions studied as well as the Andean area would significantly contribute to understanding origins and diffusion of the experience of managing and domesticating plants.

  4. Chronology of early lunar crust

    International Nuclear Information System (INIS)

    Dasch, E.J.; Nyquist, L.E.; Ryder, G.


    The chronology of lunar rocks is summarized. The oldest pristine (i.e., lacking meteoritic contamination of admixed components) lunar rock, recently dated with Sm-Nd by Lugmair, is a ferroan anorthosite, with an age of 4.44 + 0.02 Ga. Ages of Mg-suite rocks (4.1 to 4.5 Ga) have large uncertainties, so that age differences between lunar plutonic rock suites cannot yet be resolved. Most mare basalts crystallized between 3.1 and 3.9 Ga. The vast bulk of the lunar crust, therefore, formed before the oldest preserved terrestrial rocks. If the Moon accreted at 4.56 Ga, then 120 Ma may have elapsed before lunar crust was formed

  5. Physics of the earth crust

    International Nuclear Information System (INIS)

    Lauterbach, R.


    This book deals in 12 chapters, amongst other things, with the subjects: Structure of the crust and the upper earth mantle, geology and geophysics of sea beds, satellite and aero-methods of geophysics, state of the art of geothermal research, geophysical potential fields and their anomalies, applied seismology, electrical methods of geophysics, geophysics in engineering and rock engineering, borehole geophysics, petrophysics, and geochemistry. (RW) [de

  6. Genomics of Rapid Incipient Speciation in Sympatric Threespine Stickleback.

    Directory of Open Access Journals (Sweden)

    David A Marques


    Full Text Available Ecological speciation is the process by which reproductively isolated populations emerge as a consequence of divergent natural or ecologically-mediated sexual selection. Most genomic studies of ecological speciation have investigated allopatric populations, making it difficult to infer reproductive isolation. The few studies on sympatric ecotypes have focused on advanced stages of the speciation process after thousands of generations of divergence. As a consequence, we still do not know what genomic signatures of the early onset of ecological speciation look like. Here, we examined genomic differentiation among migratory lake and resident stream ecotypes of threespine stickleback reproducing in sympatry in one stream, and in parapatry in another stream. Importantly, these ecotypes started diverging less than 150 years ago. We obtained 34,756 SNPs with restriction-site associated DNA sequencing and identified genomic islands of differentiation using a Hidden Markov Model approach. Consistent with incipient ecological speciation, we found significant genomic differentiation between ecotypes both in sympatry and parapatry. Of 19 islands of differentiation resisting gene flow in sympatry, all were also differentiated in parapatry and were thus likely driven by divergent selection among habitats. These islands clustered in quantitative trait loci controlling divergent traits among the ecotypes, many of them concentrated in one region with low to intermediate recombination. Our findings suggest that adaptive genomic differentiation at many genetic loci can arise and persist in sympatry at the very early stage of ecotype divergence, and that the genomic architecture of adaptation may facilitate this.

  7. The extent of continental crust beneath the Seychelles (United States)

    Hammond, J. O. S.; Kendall, J.-M.; Collier, J. S.; Rümpker, G.


    The granitic islands of the Seychelles Plateau have long been recognised to overlie continental crust, isolated from Madagascar and India during the formation of the Indian Ocean. However, to date the extent of continental crust beneath the Seychelles region remains unknown. This is particularly true beneath the Mascarene Basin between the Seychelles Plateau and Madagascar and beneath the Amirante Arc. Constraining the size and shape of the Seychelles continental fragment is needed for accurate plate reconstructions of the breakup of Gondwana and has implications for the processes of continental breakup in general. Here we present new estimates of crustal thickness and VP/VS from H-κ stacking of receiver functions from a year long deployment of seismic stations across the Seychelles covering the topographic plateau, the Amirante Ridge and the northern Mascarene Basin. These results, combined with gravity modelling of historical ship track data, confirm that continental crust is present beneath the Seychelles Plateau. This is ˜30-33 km thick, but with a relatively high velocity lower crustal layer. This layer thins southwards from ˜10 km to ˜1 km over a distance of ˜50 km, which is consistent with the Seychelles being at the edge of the Deccan plume prior to its separation from India. In contrast, the majority of the Seychelles Islands away from the topographic plateau show no direct evidence for continental crust. The exception to this is the island of Desroche on the northern Amirante Ridge, where thicker low density crust, consistent with a block of continental material is present. We suggest that the northern Amirantes are likely continental in nature and that small fragments of continental material are a common feature of plume affected continental breakup.

  8. Dense and Dry Mantle Between the Continental Crust and the Oceanic Slab: Folding, Faulting and Tearing in the Slab in the Pampean Flat Slab, Southern Central Andes Evidenced by 3D Body Wave Tomography Along the 2015 Illapel, Chile Earthquake Rupture Area (United States)

    Comte, D.; Farías, M.; Roecker, S. W.; Brandon, M. T.


    The 2015 Illapel interplate earthquake Mw 8.4 generated a large amount of aftershocks that was recorded by the Chile-Illapel Aftershock Experiment (CHILLAX) during a year after the mainshock. Using this database, along with previous seismological campaigns, an improved 3D body wave tomographic image was obtained, allowing us to visualize first-order lithospheric discontinuities. This new analysis confirms not only the presence of this dense block, but also that the Benioff zone extends with a 30° dip even below the 100 km depth, where the Nazca plate has been interpreted to be flat. Recent results of seismic anisotropy show that the oceanic plate has been detached at depths greater than 300 km. We propose that: i) The dry, cold mantle beneath the continental crust is an entrapped mantle, cooled by the slab flattening, while the western part would be hydrated by slab-derived fluid; ii) The Nazca plate would be faulted and is now subducting with a normal dip beneath the flattened slab segment. Considering that the slab segment is detached from deeper part of the subducted plate, slab pull on the flat segment would be reduced, decreasing its eastward advance. In the western side, the flat segment of the slab has been observed to be slightly folded. We propose that the current normal subduction is related to the slab break-off resulting from the loss of a slab-pull force, producing the accretion of the slab beneath the dry and cold mantle. Considering that the flat slab segment does not occur at depths shallower than 100 km, rollback of the slab is not expected. In turn, suction forces would have induced the shortening in the flat segment considering its eastward slowing down due to slab break-off, thus producing a breakthrough faulting. This proposition implies that the underplated flat slab segment, along with the overlying dense and dry mantle may be delaminated by gravitional instabilities and ablative subduction effects.

  9. Robust Fault Diagnosis Design for Linear Multiagent Systems with Incipient Faults

    Directory of Open Access Journals (Sweden)

    Jingping Xia


    Full Text Available The design of a robust fault estimation observer is studied for linear multiagent systems subject to incipient faults. By considering the fact that incipient faults are in low-frequency domain, the fault estimation of such faults is proposed for discrete-time multiagent systems based on finite-frequency technique. Moreover, using the decomposition design, an equivalent conclusion is given. Simulation results of a numerical example are presented to demonstrate the effectiveness of the proposed techniques.

  10. Evidence of Incipient Forest Transition in Southern Mexico (United States)

    Vaca, Raúl Abel; Golicher, Duncan John; Cayuela, Luis; Hewson, Jenny; Steininger, Marc


    Case studies of land use change have suggested that deforestation across Southern Mexico is accelerating. However, forest transition theory predicts that trajectories of change can be modified by economic factors, leading to spatial and temporal heterogeneity in rates of change that may take the form of the Environmental Kuznets Curve (EKC). This study aimed to assess the evidence regarding potential forest transition in Southern Mexico by classifying regional forest cover change using Landsat imagery from 1990 through to 2006. Patterns of forest cover change were found to be complex and non-linear. When rates of forest loss were averaged over 342 municipalities using mixed-effects modelling the results showed a significant (p<0.001) overall reduction of the mean rate of forest loss from 0.85% per year in the 1990–2000 period to 0.67% in the 2000–2006 period. The overall regional annual rate of deforestation has fallen from 0.33% to 0.28% from the 1990s to 2000s. A high proportion of the spatial variability in forest cover change cannot be explained statistically. However analysis using spline based general additive models detected underlying relationships between forest cover and income or population density of a form consistent with the EKC. The incipient forest transition has not, as yet, resulted in widespread reforestation. Forest recovery remains below 0.20% per year. Reforestation is mostly the result of passive processes associated with reductions in the intensity of land use. Deforestation continues to occur at high rates in some focal areas. A transition could be accelerated if there were a broader recognition among policy makers that the regional rate of forest loss has now begun to fall. The changing trajectory provides an opportunity to actively restore forest cover through stimulating afforestation and stimulating more sustainable land use practices. The results have clear implications for policy aimed at carbon sequestration through reducing

  11. Evidence of incipient forest transition in Southern Mexico.

    Directory of Open Access Journals (Sweden)

    Raúl Abel Vaca

    Full Text Available Case studies of land use change have suggested that deforestation across Southern Mexico is accelerating. However, forest transition theory predicts that trajectories of change can be modified by economic factors, leading to spatial and temporal heterogeneity in rates of change that may take the form of the Environmental Kuznets Curve (EKC. This study aimed to assess the evidence regarding potential forest transition in Southern Mexico by classifying regional forest cover change using Landsat imagery from 1990 through to 2006. Patterns of forest cover change were found to be complex and non-linear. When rates of forest loss were averaged over 342 municipalities using mixed-effects modelling the results showed a significant (p<0.001 overall reduction of the mean rate of forest loss from 0.85% per year in the 1990-2000 period to 0.67% in the 2000-2006 period. The overall regional annual rate of deforestation has fallen from 0.33% to 0.28% from the 1990s to 2000s. A high proportion of the spatial variability in forest cover change cannot be explained statistically. However analysis using spline based general additive models detected underlying relationships between forest cover and income or population density of a form consistent with the EKC. The incipient forest transition has not, as yet, resulted in widespread reforestation. Forest recovery remains below 0.20% per year. Reforestation is mostly the result of passive processes associated with reductions in the intensity of land use. Deforestation continues to occur at high rates in some focal areas. A transition could be accelerated if there were a broader recognition among policy makers that the regional rate of forest loss has now begun to fall. The changing trajectory provides an opportunity to actively restore forest cover through stimulating afforestation and stimulating more sustainable land use practices. The results have clear implications for policy aimed at carbon sequestration through

  12. The chemical evolution of Earth's emerged crust inferred from titanium isotopes (United States)

    Greber, N. D.; Dauphas, N.; Bekker, A.; Ptáček, M. P.; Bindeman, I. N.; Hofmann, A.


    Earth's earliest crust was ultramafic/mafic in composition. In contrast, modern Earth consists of a mafic oceanic crust and a continental crust dominated by felsic rocks. The Hadean zircon record suggests that at around 4.0 Ga, Earth's crust included some felsic rocks but their proportion relative to mafic rocks has been the subject of much discussion [1]. Several studies have shown evidence that the early Archean continental crust was mostly mafic and transitioned from 3.0 to 2.0 Ga to a modern-like felsic crust. This change in the nature of continental crust was tied to the onset of plate tectonics, arguing that it is difficult to make a large proportion of felsic rocks in a non-subduction setting [2]. Understanding the nature of Earth's early continental crust is also critical as it controls the bio-nutrient supply to the oceans and influences Earth's climate. Most reconstructions of the composition of Earth's emerged crust rely on terrigenous sediments whose composition can be altered relative to source rocks by weathering, sediment transport and metasomatism. We present a novel approach based on the Ti isotopic composition (δ49Ti) of shales to reconstruct the chemical composition of emerged continental crust through time. This proxy is based on the observation that the δ49Ti value of igneous rocks increases with increasing SiO2 concentration. Komatiites and basalts have an identical δ49Ti value to the bulk silicate Earth (around +0.005‰). Rocks with a granitic composition can reach up to a δ49Ti value of +0.55‰ [3]. Therefore, by measuring the δ49Ti values of shales with continental provenance, the SiO2 content of the emerged continental crust can be estimated, providing constraints on the proportion of mafic to felsic rocks. We measured δ49Ti values of shales ranging in age from 3.5 Ga to present. The average δ49Ti value of shales is almost constant over the last 3.5 Ga and always heavier than that of mafic rocks. We applied a three

  13. History of the incipient Icelandic plume: Observations from ancient buried landscapes (United States)

    Stucky de Quay, Gaia; Roberts, Gareth G.; Watson, Jonathan S.; Jackson, Christopher A.-L.


    Ancient buried terrestrial landscapes contain records of vertical motions which can be used to probe histories of geodynamical processes. In the North Atlantic Ocean, sedimentary basins contain excellent evidence that the continental shelf experienced staged subaerial exposure. For example, now buried landscapes were uplifted, rapidly eroded, and drowned close to the Paleocene-Eocene boundary. We use commercial wells and three-dimensional seismic data to reconstruct a 57-55 Ma landscape now buried 1.5 km beneath the seabed in the Bressay area of the northern North Sea. Geochemical analyses of organic matter from core samples intersecting the erosional landscape indicate the presence of angiosperm (flowering plant) debris. Combined with the presence of coarse clastic material, mapped beach ridges, and dendritic drainage patterns, these observations indicate that this landscape was of terrestrial origin. Longitudinal profiles of ancient rivers were extracted and inverted for an uplift rate history. The best-fitting uplift rate history has three phases and total cumulative uplift of 350 m. Biostratigraphic data from surrounding marine stratigraphy indicate that this landscape formed within 1-1.5 Ma. This uplift history is similar to that of a slightly older buried landscape in the Faeroe-Shetland basin 400 km to the west. These records of vertical motion can explained by pulses of anomalously hot asthenosphere spreading out from the incipient Icelandic plume. Using simple isostatic calculations we estimate that the maximum thermal anomaly beneath Bressay was 50˚. Our observations suggest that a thermal anomaly departed the Icelandic plume as early as 58.5 Ma and had highest average temperatures at 55.6 Ma.

  14. Topography of the crust-mantle boundary beneath the Black Sea Basin.

    NARCIS (Netherlands)

    Starostenkp, V.; Buryanov, V.; Makarenko, I.; Rusakov, O.M.; Stephenson, R.A.; Nikishin, A.M.; Georgiev, G.; Gerasimov, M.; Dimitriu, R.; Legostaeva, O.V.; Pchelarov, V.; Sava, C.S.


    A map of Moho depth for the Black Sea and its immediate surroundings has been inferred from 3-D gravity modelling, and crustal structure has been clarified. Beneath the basin centre, the thickness of the crystalline layer is similar to that of the oceanic crust. In the Western and Eastern Black Sea

  15. A note on incipient spilitisation of central Indian basin basalts

    Digital Repository Service at National Institute of Oceanography (India)

    Karisiddaiah, S.M.; Iyer, S.D.

    of chlorite, epidote and opaques. The oxide variation plots indicate a mid-ocean ridge basalt trend for the samples, which have been spilitised to varying degrees. It is suggested that the basalts formed as a result of a fissure type of eruption along...

  16. Depth anomalies in the Arabian Basin, NW Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Ajay, K.K.; Chaubey, A.K.

    as the difference between the observed depth to oceanic basement (corrected for sediment load) and the calculated depth to oceanic basement of the same age. The results indicate an anomalous depth to basement of oceanic crust in the Arabian Basin in the age bracket...

  17. Enrichment mechanisms of tellurium in ferromanganese crusts (United States)

    Sakaguchi, A.; Sugiyama, T.; Usui, A.; Takahashi, Y.


    Marine ferromanganese crusts (FMCs) consist of iron (Fe) hydroxides and manganese (Mn) oxides with various minor and trace elements. Especially for tellurium (Te), which is recognized as one of the rare metals, it has been reported that this element is concentrated about 105 times in FMCs compared with earth's crust, and the host phase might be Fe (oxy)hydroxide (Hein et al., 2003). Actually, in our previous study, the high concentration of Te in very surface layers of FMCs was found from the top to halfway down of a seamount in the Pacific Ocean. However, the concentration of Te in surface layers through the seamount showed good correlation with that of Mn instead of Fe. In this study, we attempted to clarify the enrichment mechanism of Te in FMCs with some methods including X-ray absorption fine structure (XAFS) technique for synthesised /natural samples. Seventeen FMC samples were collected from the Takuyo-Daigo seamount, from 950 m (summit) to 3000 m in water depth, with hyper-dolphin (remotely operated vehicle) equipped with live video camera and manipulators. The growth rates of all FMC samples were estimated to be about 3 mm/Ma. Very surface layer (less than 1 mm) of all FMC was analyzed with XRD and XAFS to confirm the mineral composition and speciation of Te. Furthermore, to serve as an aid to clarify the adsorption mechanism of Te on FMCs, distribution coefficients (Kd) and oxidation states were determined through the adsorption experiments of Te(IV) and Te(VI) on ferrihydrite and δ-MnO2. In all the experiments, pH and ionic strength were adjusted to pH 7.5 and 0.7 M, respectively. The oxidation state of Te in water phase was determined with HPLC-ICP-MS. As for the analysis of oxidation and adsorption states on the solid phase, XAFS was employed. The major mineral composition of Fe and Mn had no significant variation through the water depth of Takuyo-Daigo seamount. The oxidation state of Te in all samples showed hexavalent, and there was no significant

  18. Localization of incipient tip vortex cavitation using ray based matched field inversion method (United States)

    Kim, Dongho; Seong, Woojae; Choo, Youngmin; Lee, Jeunghoon


    Cavitation of marine propeller is one of the main contributing factors of broadband radiated ship noise. In this research, an algorithm for the source localization of incipient vortex cavitation is suggested. Incipient cavitation is modeled as monopole type source and matched-field inversion method is applied to find the source position by comparing the spatial correlation between measured and replicated pressure fields at the receiver array. The accuracy of source localization is improved by broadband matched-field inversion technique that enhances correlation by incoherently averaging correlations of individual frequencies. Suggested localization algorithm is verified through known virtual source and model test conducted in Samsung ship model basin cavitation tunnel. It is found that suggested localization algorithm enables efficient localization of incipient tip vortex cavitation using a few pressure data measured on the outer hull above the propeller and practically applicable to the typically performed model scale experiment in a cavitation tunnel at the early design stage.

  19. Fault prediction for nonlinear stochastic system with incipient faults based on particle filter and nonlinear regression. (United States)

    Ding, Bo; Fang, Huajing


    This paper is concerned with the fault prediction for the nonlinear stochastic system with incipient faults. Based on the particle filter and the reasonable assumption about the incipient faults, the modified fault estimation algorithm is proposed, and the system state is estimated simultaneously. According to the modified fault estimation, an intuitive fault detection strategy is introduced. Once each of the incipient fault is detected, the parameters of which are identified by a nonlinear regression method. Then, based on the estimated parameters, the future fault signal can be predicted. Finally, the effectiveness of the proposed method is verified by the simulations of the Three-tank system. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  20. Crystallization Age and Impact Resetting of Ancient Lunar Crust from the Descartes Terrane (United States)

    Norman, M. D.; Borg, L. E.; Nyquist, L. E.; Bogard, D. D.


    Lunar ferroan anorthosites (FANs) are relics of an ancient, primary feldspathic crust that is widely believed to have crystallized from a global magma ocean. Compositions and ages of FANs provide fundamental information about the origin and magmatic evolution of the Moon, while the petrology and thermal history of lunar FANs illustrate the structure and impact history of the lunar crust. Here we report petrologic, geochemical, and isotopic (Nd-Sr-Ar) studies of a ferroan noritic anorthosite clast from lunar breccia 67215 to improve our understanding of the composition, age, and thermal history of the Moon.

  1. USArray Imaging of North American Continental Crust (United States)

    Ma, Xiaofei

    The layered structure and bulk composition of continental crust contains important clues about its history of mountain-building, about its magmatic evolution, and about dynamical processes that continue to happen now. Geophysical and geological features such as gravity anomalies, surface topography, lithospheric strength and the deformation that drives the earthquake cycle are all directly related to deep crustal chemistry and the movement of materials through the crust that alter that chemistry. The North American continental crust records billions of years of history of tectonic and dynamical changes. The western U.S. is currently experiencing a diverse array of dynamical processes including modification by the Yellowstone hotspot, shortening and extension related to Pacific coast subduction and transform boundary shear, and plate interior seismicity driven by flow of the lower crust and upper mantle. The midcontinent and eastern U.S. is mostly stable but records a history of ancient continental collision and rifting. EarthScope's USArray seismic deployment has collected massive amounts of data across the entire United States that illuminates the deep continental crust, lithosphere and deeper mantle. This study uses EarthScope data to investigate the thickness and composition of the continental crust, including properties of its upper and lower layers. One-layer and two-layer models of crustal properties exhibit interesting relationships to the history of North American continental formation and recent tectonic activities that promise to significantly improve our understanding of the deep processes that shape the Earth's surface. Model results show that seismic velocity ratios are unusually low in the lower crust under the western U.S. Cordillera. Further modeling of how chemistry affects the seismic velocity ratio at temperatures and pressures found in the lower crust suggests that low seismic velocity ratios occur when water is mixed into the mineral matrix

  2. Microphytic crusts: 'topsoil' of the desert (United States)

    Belnap, Jayne


    Deserts throughout the world are the home of microphytic, or cryptogamic, crusts. These crusts are dominated by cyanobacteria, previously called blue-green algae, and also include lichens, mosses, green algae, microfungi and bacteria. They are critical components of desert ecosystems, significantly modifying the surfaces on which they occur. In the cold deserts of the Colorado Plateau (including parts of Utah, Arizona, Colorado, and New Mexico), these crusts are extraordinarily well-developed, and may represent 70-80% of the living ground cover.

  3. Incipient Stator Insulation Fault Detection of Permanent Magnet Synchronous Wind Generators Based on Hilbert–Huang Transformation

    DEFF Research Database (Denmark)

    Wang, Chao; Liu, Xiao; Chen, Zhe


    Incipient stator winding fault in permanent magnet synchronous wind generators (PMSWGs) is very difficult to be detected as the fault generated variations in terminal electrical parameters are very weak and chaotic. This paper simulates the incipient stator winding faults at different degree...

  4. Correlation between laser fluorescence readings and volume of tooth preparation in incipient occlusal caries in vitro. (United States)

    Ghaname, Eduardo S; Ritter, André V; Heymann, Harald O; Vann, William F; Shugars, Daniel A; Bader, James D


    This study evaluated the correlation between laser fluorescence readings and the extent of incipient occlusal caries as measured by the volume of tooth preparation in vitro. One hundred and three permanent molars and premolars containing incipient occlusal pit-and-fissure caries and sound occlusal surfaces (1/4 of the sample, control) were selected. DIAGNOdent (KaVo Dental Corporation, Lake Zurich, IL, USA) readings were obtained according to manufacturer instructions. Caries was removed with 1/4 round burs in high speed. The volume of tooth preparation was measured using a surrogate measure based on the amount of composite needed to fill the preparations. Sensitivity and specificity using different cutoff values were calculated for lesions/preparations extending into dentin. The results were analyzed statistically. The Pearson correlation for preparation volume and DIAGNOdent reading measurements was low (r = 0.285). Sensitivity and specificity of DIAGNOdent for detection of dentinal lesions were 0.83 and 0.60, and 0.66 and 0.73 for the cutoff values of 20 and 30, respectively. Within the limitations of this study, laser fluorescence measured with DIAGNOdent does not correlate well with extent of carious tooth structure in incipient occlusal caries. Clinicians should not rely only on DIAGNOdent readings to determine the extension of incipient occlusal caries.

  5. Incipient merger of Cls 11 and 5 in Xhosa? | Gowlett | South African ...

    African Journals Online (AJOL)

    In Xhosa, there appears to be an incipient merger between Noun Classes 5 and 11, as revealed by frequent mismatches between Cl. 11 nouns and various concordial elements, and even the replacement of the Cl. 11 noun prefix by that of Cl. 5. In this article we explore possible reasons for this putative merger, and present ...

  6. Transformer Incipient Fault Prediction Using Combined Artificial Neural Network and Various Particle Swarm Optimisation Techniques.

    Directory of Open Access Journals (Sweden)

    Hazlee Azil Illias

    Full Text Available It is important to predict the incipient fault in transformer oil accurately so that the maintenance of transformer oil can be performed correctly, reducing the cost of maintenance and minimise the error. Dissolved gas analysis (DGA has been widely used to predict the incipient fault in power transformers. However, sometimes the existing DGA methods yield inaccurate prediction of the incipient fault in transformer oil because each method is only suitable for certain conditions. Many previous works have reported on the use of intelligence methods to predict the transformer faults. However, it is believed that the accuracy of the previously proposed methods can still be improved. Since artificial neural network (ANN and particle swarm optimisation (PSO techniques have never been used in the previously reported work, this work proposes a combination of ANN and various PSO techniques to predict the transformer incipient fault. The advantages of PSO are simplicity and easy implementation. The effectiveness of various PSO techniques in combination with ANN is validated by comparison with the results from the actual fault diagnosis, an existing diagnosis method and ANN alone. Comparison of the results from the proposed methods with the previously reported work was also performed to show the improvement of the proposed methods. It was found that the proposed ANN-Evolutionary PSO method yields the highest percentage of correct identification for transformer fault type than the existing diagnosis method and previously reported works.

  7. Incipient ovarian failure and premature ovarian failure show the same immunological profile

    NARCIS (Netherlands)

    van Kasteren, YM; von Blomberg, M; Hoek, A; de Koning, C; Lambalk, N; van Montfrans, J; Kuik, J

    PROBLEM: Incipient ovarian failure (IOF) is characterized by regular menstrual cycles, infertility and a raised early-follicular FSH in women under 40. IOF might be a precursor or a mitigated form of premature ovarian failure (POF). Disturbances in the immune system may play a role in ovarian

  8. Abnormal albuminuria and blood pressure rise in incipient diabetic nephropathy induced by exercise

    DEFF Research Database (Denmark)

    Christensen, Cramer


    The aim of the study was to evaluate the influence of light to moderate dynamic work (450 kpm/min followed by 600 kpm/min during 20 min each) on the blood pressure and renal protein handling in insulin-dependent diabetic patients with incipient nephropathy (D3) (elevated baseline albumin excretio...

  9. CSF biomarkers and incipient Alzheimer disease in patients with mild cognitive impairment.

    NARCIS (Netherlands)

    Mattsson, N.; Zetterberg, H.; Hansson, O.; Andreasen, N.; Parnetti, L.; Jonsson, M.; Herukka, S.K.; Flier, W.M. van der; Blankenstein, M.A.; Ewers, M.; Rich, K.; Kaiser, E.; Verbeek, M.M.; Tsolaki, M.; Mulugeta, E.; Rosen, E.; Aarsland, D.; Visser, P.J.; Schroder, J.; Marcusson, J.; Leon, M.; Hampel, H.; Scheltens, P.; Pirttilä, T.; Wallin, A.; Jonhagen, M.E.; Minthon, L.; Winblad, B.; Blennow, K.


    CONTEXT: Small single-center studies have shown that cerebrospinal fluid (CSF) biomarkers may be useful to identify incipient Alzheimer disease (AD) in patients with mild cognitive impairment (MCI), but large-scale multicenter studies have not been conducted. OBJECTIVE: To determine the diagnostic

  10. Incipient ferroelectric properties of NaTaO.sub.3./sub

    Czech Academy of Sciences Publication Activity Database

    Kamba, Stanislav; Goian, Veronica; Bovtun, Viktor; Nuzhnyy, Dmitry; Kempa, Martin; Spreitzer, M.; König, J.; Suvorov, D.


    Roč. 426, SI (2012), s. 206-214 ISSN 0015-0193 R&D Projects: GA ČR(CZ) GA202/09/0682 Institutional research plan: CEZ:AV0Z10100520 Keywords : incipient ferroelectricity * infrared and THz spectroscopy * phonons * microwave ceramics Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.415, year: 2012

  11. Influence of decelerating flow on incipient motion of a gravel-bed ...

    Indian Academy of Sciences (India)

    Influence of decelerating flow on incipient motion of a gravel-bed stream. HOSSEIN AFZALIMHR. ∗,1. , SUBHASISH DEY. 2 and. POONEH RASOULIANFAR. 1. 1Department of Water Engineering, Isfahan University of Technology, Isfahan, Iran. 2Department of Civil Engineering, Indian Institute of Technology,. Kharagpur ...

  12. Transformer Incipient Fault Prediction Using Combined Artificial Neural Network and Various Particle Swarm Optimisation Techniques (United States)


    It is important to predict the incipient fault in transformer oil accurately so that the maintenance of transformer oil can be performed correctly, reducing the cost of maintenance and minimise the error. Dissolved gas analysis (DGA) has been widely used to predict the incipient fault in power transformers. However, sometimes the existing DGA methods yield inaccurate prediction of the incipient fault in transformer oil because each method is only suitable for certain conditions. Many previous works have reported on the use of intelligence methods to predict the transformer faults. However, it is believed that the accuracy of the previously proposed methods can still be improved. Since artificial neural network (ANN) and particle swarm optimisation (PSO) techniques have never been used in the previously reported work, this work proposes a combination of ANN and various PSO techniques to predict the transformer incipient fault. The advantages of PSO are simplicity and easy implementation. The effectiveness of various PSO techniques in combination with ANN is validated by comparison with the results from the actual fault diagnosis, an existing diagnosis method and ANN alone. Comparison of the results from the proposed methods with the previously reported work was also performed to show the improvement of the proposed methods. It was found that the proposed ANN-Evolutionary PSO method yields the highest percentage of correct identification for transformer fault type than the existing diagnosis method and previously reported works. PMID:26103634

  13. Neutron stars with outbursts from superfluid crust (United States)

    Kaminker, A. D.; Chaikin, E. A.; Kaurov, A. A.; Yakovlev, D. G.


    We model heat propagation and the thermal surface luminosity L{s}^∞ ≤ft( t \\right) of a neutron star after an internal outburst in its crust. Simulations take into account superfluidity of free neutrons and the thickness of the outbursting layer (heater) in the crust. Crustal superfluidity can shorten and intensify variations of L{s}^∞ ≤ft( t \\right).

  14. Decrease in oceanic crustal thickness since the breakup of Pangaea (United States)

    van Avendonk, Harm J. A.; Davis, Joshua K.; Harding, Jennifer L.; Lawver, Lawrence A.


    Earth's mantle has cooled by 6-11 °C every 100 million years since the Archaean, 2.5 billion years ago. In more recent times, the surface heat loss that led to this temperature drop may have been enhanced by plate-tectonic processes, such as continental breakup, the continuous creation of oceanic lithosphere at mid-ocean ridges and subduction at deep-sea trenches. Here we use a compilation of marine seismic refraction data from ocean basins globally to analyse changes in the thickness of oceanic crust over time. We find that oceanic crust formed in the mid-Jurassic, about 170 million years ago, is 1.7 km thicker on average than crust produced along the present-day mid-ocean ridge system. If a higher mantle temperature is the cause of thicker Jurassic ocean crust, the upper mantle may have cooled by 15-20 °C per 100 million years over this time period. The difference between this and the long-term mantle cooling rate indeed suggests that modern plate tectonics coincide with greater mantle heat loss. We also find that the increase of ocean crustal thickness with plate age is stronger in the Indian and Atlantic oceans compared with the Pacific Ocean. This observation supports the idea that upper mantle temperature in the Jurassic was higher in the wake of the fragmented supercontinent Pangaea due to the effect of continental insulation.

  15. Zircon dating of oceanic crustal accretion. (United States)

    Lissenberg, C Johan; Rioux, Matthew; Shimizu, Nobumichi; Bowring, Samuel A; Mével, Catherine


    Most of Earth's present-day crust formed at mid-ocean ridges. High-precision uranium-lead dating of zircons in gabbros from the Vema Fracture Zone on the Mid-Atlantic Ridge reveals that the crust there grew in a highly regular pattern characterized by shallow melt delivery. Combined with results from previous dating studies, this finding suggests that two distinct modes of crustal accretion occur along slow-spreading ridges. Individual samples record a zircon date range of 90,000 to 235,000 years, which is interpreted to reflect the time scale of zircon crystallization in oceanic plutonic rocks.

  16. Determination and microscopic study of incipient defects in irradiated power reactor fuel rods. Final report

    International Nuclear Information System (INIS)

    Pasupathi, V.; Perrin, J.S.; Roberts, E.


    This report presents the results of nondestructive and destructive examinations carried out on the Point Beach-1 (PWR) and Dresden-3 (BWR) candidate fuel rods selected for the study of pellet-clad interaction (PCI) induced incipient defects. In addition, the report includes results of examination of sections from Oskarshamn-1 (BWR) fuel rods. Eddy current examination of Point Beach-1 rods showed indications of possible incipient defects in the fuel rods. The profilometry and the gamma scan data also indicated that the source of the eddy current indications may be incipient defects. No failed rods or rods with incipient failure were found in the sample from Point Beach-1. Despite the lack of success in finding incipient defects and filed rods, the mechanism for fuel rod failures in Point Beach-1 is postulated to be PCI-related, with high startup rates and fuel handling being the key elements. Nine out of the 10 candidate fuel rods from Dresden-3 (BWR) were failed, and all the failed rods had leaked water so that the initial mechanism was observed. Examination of clad inner surfaces of the specimens from failed and unfailed rods showed fuel deposits of widely varying appearance. The deposits were found to contain uranium, cesium, and tellurium. Transmission electron microscopy of clad specimens showed evidence of microscopic strain. Metallographic examination of fuel pellets from the peak transient power location showed extensive grain boundary separation and axial movement of the fuel indicative of rapid release of fission products. Examination of Oskarshamn clad specimens did not show any stress corrosion crack (SCC) type defects. The defects found in the examinations appear to be related to secondary hydriding. The clad inner surface of the Oskarshamn specimens also showed uranium-rich deposits of varying features

  17. Incipient cytotoxicity: A time-independent measure of cytotoxic potency in vitro. (United States)

    Gülden, Michael; Kähler, Daria; Seibert, Hasso


    Time is an important determinant of toxicity but largely ignored in in vitro toxicity assays where exposure times chosen are rather arbitrary. To investigate the impact of time on the cytotoxic potency of chemicals in vitro, the concentration dependent cytotoxic action of selected chemicals (surfactants, metals, oxidative stressors, a mitochondrial poison) was determined after various exposure times (1-72 h) in cultures of Balb/c 3T3 cells. Time affected the cytotoxic potency as well as the cytotoxic efficacy. The median cytotoxic concentrations, EC50, decreased and in most cases approached an "incipient" value, EC50,∞, within 72 h. Cytotoxicity due to mitochondrial insult occurred after a threshold time which was dependent on the medium glucose concentration. Within the chemicals studied the extent of potency change with time ranged from 3- to >1000-fold and the "time to incipient cytotoxicity", tic, from 4 to >72 h. Hence, also the relative cytotoxic potencies depend on exposure time. Ignoring this may lead to severe bias in toxicological hazard and risk assessment. Therefore it is recommended to determine the incipient cytotoxic potency of chemical compounds, represented by, e.g., the incipient median effect (EC50,∞), no effect (NEC∞) or lowest effect concentrations (LEC∞) instead of measures obtained after arbitrary exposure times. If this is not possible, the 72 h-potency measurements appear to be useful surrogates. These time-independent incipient potency values can be reasonably compared between substances, endpoints, cells and biological test systems and may serve to define points of departure for quantitative in vitro-in vivo extrapolations. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  18. The Mafic Lower Crust of Neoproterozoic age beneath Western Arabia: Implications for Understanding African Lower Crust (United States)

    Stern, R. J.; Mooney, W. D.


    We review evidence that the lower crust of Arabia - and by implication, that beneath much of Africa was formed at the same time as the upper crust, rather than being a product of Cenozoic magmatic underplating. Arabia is a recent orphan of Africa, separated by opening of the Red Sea ~20 Ma, so our understanding of its lower crust provides insights into that of Africa. Arabian Shield (exposed in W. Arabia) is mostly Neoproterozoic (880-540 Ma) reflecting a 300-million year process of continental crustal growth due to amalgamated juvenile magmatic arcs welded together by granitoid intrusions that make up as much as 50% of the Shield's surface. Seismic refraction studies of SW Arabia (Mooney et al., 1985) reveal two layers, each ~20 km thick, separated by a well-defined Conrad discontinuity. The upper crust has average Vp ~6.3 km/sec whereas the lower crust has average Vp ~7.0 km/sec, corresponding to a granitic upper crust and gabbroic lower crust. Neogene (Yemen to Syria. Many of these lavas contain xenoliths, providing a remarkable glimpse of the lower-crustal and upper-mantle lithosphere beneath W. Arabia. Lower crustal xenoliths brought up in 8 harrats in Saudi Arabia, Jordan, and Syria are mostly 2-pyroxene granulites of igneous (gabbroic, anorthositic, and dioritic) origin. They contain plagioclase, orthopyroxene, and clinopyroxene, and a few contain garnet and rare amphibole and yield mineral-equilibrium temperatures of 700-900°C. Pyroxene-rich and plagioclase-rich suites have mean Al2O3 contents of 13% and 19%, respectively: otherwise the two groups have similar elemental compositions, with ~50% SiO2 and ~1% TiO2, with low K2O (time. Lower crust of Arabia clearly formed during Neoproterozoic time, about the same time as its upper crust complement; a similar origin for the lower crust beneath the broad expanses of Neoproterozoic crust in N and E Africa is likely. There is no evidence that any of the mafic lower crust of Arabia formed due to underplating by

  19. Titanium isotopic evidence for felsic crust and plate tectonics 3.5 billion years ago. (United States)

    Greber, Nicolas D; Dauphas, Nicolas; Bekker, Andrey; Ptáček, Matouš P; Bindeman, Ilya N; Hofmann, Axel


    Earth exhibits a dichotomy in elevation and chemical composition between the continents and ocean floor. Reconstructing when this dichotomy arose is important for understanding when plate tectonics started and how the supply of nutrients to the oceans changed through time. We measured the titanium isotopic composition of shales to constrain the chemical composition of the continental crust exposed to weathering and found that shales of all ages have a uniform isotopic composition. This can only be explained if the emerged crust was predominantly felsic (silica-rich) since 3.5 billion years ago, requiring an early initiation of plate tectonics. We also observed a change in the abundance of biologically important nutrients phosphorus and nickel across the Archean-Proterozoic boundary, which might have helped trigger the rise in atmospheric oxygen. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  20. On the effect of cross sectional shape on incipient motion and deposition of sediments in fixed bed channels

    Directory of Open Access Journals (Sweden)

    Safari Mir-Jafar-Sadegh


    Full Text Available The condition of incipient motion and deposition are of the essential issues for the study of sediment transport. This phenomenon is of great importance to hydraulic engineers for designing sewers, drainage, as well as other rigid boundary channels. This is a study carried out with the objectives of describing the effect of cross-sectional shape on incipient motion and deposition of particles in rigid boundary channels. In this research work, the experimental data given by Loveless (1992 and Mohammadi (2005 are used. On the basis of the critical velocity approach, a new incipient motion equation for a V-shaped bottom channel and incipient deposition of sediment particles equations for rigid boundary channels having circular, rectangular, and U-shaped cross sections are obtained. New equations were compared to the other incipient motion equations. The result shows that the cross-sectional shape is an important factor for defining the minimum velocity for no-deposit particles. This study also distinguishes incipient motion of particles from incipient deposition for particles. The results may be useful for designing fixed bed channels with a limited deposition condition.

  1. Basin Excavation, Lower Crust, Composition, and Bulk Moon Mass balance in Light of a Thin Crust (United States)

    Jolliff, B. L.; Korotev, R. L.; Ziegler, R. A.


    New lunar gravity results from GRAIL have been interpreted to reflect an overall thin and low-density lunar crust. Accordingly, crustal thickness has been modeled as ranging from 0 to 60 km, with thinnest crust at the locations of Crisium and Moscoviense basins and thickest crust in the central farside highlands. The thin crust has cosmochemical significance, namely in terms of implications for the Moon s bulk composition, especially refractory lithophile elements that are strongly concentrated in the crust. Wieczorek et al. concluded that the bulk Moon need not be enriched compared to Earth in refractory lithophile elements such as Al. Less Al in the crust means less Al has been extracted from the mantle, permitting relatively low bulk lunar mantle Al contents and low pre- and post-crust-extraction values for the mantle (or the upper mantle if only the upper mantle underwent LMO melting). Simple mass-balance calculations using the method of [4] suggests that the same conclusion might hold for Th and the entire suite of refractory lithophile elements that are incompatible in olivine and pyroxene, including the KREEP elements, that are likewise concentrated in the crust.

  2. Study of formation mechanism of incipient melting in thixo-cast Al–Si–Cu–Mg alloys

    Energy Technology Data Exchange (ETDEWEB)

    Du, Kang, E-mail:; Zhu, Qiang, E-mail:; Li, Daquan, E-mail:; Zhang, Fan, E-mail:


    Mechanical properties of thixo-cast Al–Si–Cu–Mg alloys can be enhanced by T61 heat treatment. Copper and magnesium atoms in aluminum matrix can form homogeneously distributed precipitations after solution and aging treatment which harden the alloys. However, microsegregation of these alloying elements could form numerous tiny multi-compound phases during solidification. These phases could cause incipient melting defects in subsequent heat treatment process and degrade the macro-mechanical properties of productions. This study is to present heterogeneous distribution of Cu, Si, and Mg elements and formation of incipient melting defects (pores). In this study, incipient melting pores that occurred during solution treatment at various temperatures, even lower than common melting points of various intermetallic phases, were identified, in terms of a method of investigating the same surface area in the samples before and after solution treatment in a vacuum environment. The results also show that the incipient melting mostly originates at the clusters with fine intermetallic particles while also some at the edge of block-like Al{sub 2}Cu. The fine particles were determined being Al{sub 2}Cu, Al{sub 5}Cu{sub 2}Mg{sub 8}Si{sub 6} and Al{sub 8}Mg{sub 3}FeSi{sub 2}. Tendency of the incipient melting decreases with decreases of the width of the clusters. The formation mechanism of incipient melting pores in solution treatment process was discussed using both the Fick law and the LSW theory. Finally, a criterion of solution treatment to avoid incipient melting pores for the thixo-cast alloys is proposed. - Highlights: • In-situ comparison technique was used to analysis the change of eutectic phases. • The ralationship between eutectic phase size and incipient melting was studied. • Teat treatment criterion for higher incipient melting resistance was proposed.

  3. DaMaSCUS-CRUST: Dark Matter Simulation Code for Underground Scatterings - Crust Edition (United States)

    Emken, Timon; Kouvaris, Chris


    DaMaSCUS-CRUST determines the critical cross-section for strongly interacting DM for various direct detection experiments systematically and precisely using Monte Carlo simulations of DM trajectories inside the Earth's crust, atmosphere, or any kind of shielding. Above a critical dark matter-nucleus scattering cross section, any terrestrial direct detection experiment loses sensitivity to dark matter, since the Earth crust, atmosphere, and potential shielding layers start to block off the dark matter particles. This critical cross section is commonly determined by describing the average energy loss of the dark matter particles analytically. However, this treatment overestimates the stopping power of the Earth crust; therefore, the obtained bounds should be considered as conservative. DaMaSCUS-CRUST is a modified version of DaMaSCUS (ascl:1706.003) that accounts for shielding effects and returns a precise exclusion band.

  4. Crustal structure transition from oceanic arc to continental arc, eastern Aleutian Islands and Alaska Peninsula (United States)

    Fliedner, Moritz M.; Klemperer, Simon L.


    The Aleutian island arc crosses from the Pacific Ocean to the North-American continent at the island of Unimak. 3-D finite-difference traveltime inversion of our onshore-offshore seismic reflection/refraction data gives a velocity model of the crust and uppermost mantle. The arc crust is on average 30 km thick, but thickens to almost 40 km under the western Alaska Peninsula. The transition from oceanic arc to continental arc is characterised by a decrease in average velocity in the upper crust from about 6.5 km/s to less than 6.0 km/s, with no systematic change in the velocity of the lower crust. Throughout our study area, in the upper 15 km of the crust the highest velocities are observed in the fore-arc just south of the volcanic line. In the lower crust, the lowest velocities of just 6.2 km/s are found close to the volcanic line. The uppermost mantle is quite heterogeneous with velocities ranging from 7.6 to 8.2 km/s, in part due to the thermal gradient from cold fore-arc to hot back-arc. Whereas the Aleutian oceanic (fore-)arc has higher seismic velocities than average continental crust throughout the crust, the Peninsula section is close to the continental average in the upper c. 20 km of the crust. We infer that repeated episodes of arc magmatism can produce a felsic-to-intermediate upper crust as is observed in the continents, but arc magmatism produces a thicker mafic lower crust than the average continent retains. Some of the excess mafic material in the island-arc crust can be attributed to pre-existing oceanic crust, which is less evident or absent in a continental arc.

  5. Earth's crust model of the South-Okhotsk Basin by wide-angle OBS data (United States)

    Kashubin, Sergey N.; Petrov, Oleg V.; Rybalka, Alexander V.; Milshtein, Evgenia D.; Shokalsky, Sergey P.; Verba, Mark L.; Petrov, Evgeniy O.


    Deep seismic studies of the Sea of Okhotsk region started in late 1950s. Since that time, wide-angle reflection and refraction data on more than two dozen profiles were acquired. Only five of those profiles either crossed or entered the deep-water area of the South-Okhotsk Basin (also known as the Kuril Basin or the South-Okhotsk Deep-Water Trough). Only P-waves were used to develop velocity-interface models in all the early research. Thus, all seismic and geodynamic models of the Okhotsk region were based only on the information on compressional waves. Nevertheless, the use of Vp/Vs ratio in addition to P-wave velocity allows discriminating felsic and mafic crustal layers with similar Vp values. In 2007 the Russian seismic service company Sevmorgeo acquired multi-component data with ocean bottom seismometers (OBS) along the 1700-km-long north-south 2-DV-M Profile. Only P-wave information was used previously to develop models for the entire profile. In this study, a multi-wave processing, analysis, and interpretation of the OBS data are presented for the 550-km-long southern segment of this Profile that crosses the deep-water South-Okhotsk Basin. Within this segment 50 seismometers were deployed with nominal OBS station spacing of 10-12 km. Shot point spacing was 250 m. Not only primary P-waves and S-waves but also multiples and P-S, S-P converted waves were analyzed in this study to constrain velocity-interface models by means of travel time forward modeling. In offshore deep seismic studies, thick water layer hinders an estimation of velocities in the sedimentary cover and in the upper consolidated crust. Primarily, this is due to the fact that refracted waves propagating in low-velocity solid upper layers interfere with high-amplitude direct water wave. However, in multi-component measurements with ocean bottom seismometers, it is possible to use converted and multiple waves for velocity estimations in these layers. Consequently, one can obtain P- and S

  6. 60 Myr records of major elements and Pb-Nd isotopes from hydrogenous ferromanganese crusts: Reconstruction of seawater paleochemistry (United States)

    Frank, M.; O'Nions, R. K.; Hein, J.R.; Banakar, V.K.


    We compare the time series of major element geochemical and Pb- and Nd-isotopic composition obtained for seven hydrogenous ferromanganese crusts from the Atlantic, Indian, and Pacific Oceans which cover the last 60 Myr. Average crust growth rates and age-depth relationships were determined directly for the last about 10 Myr using 10Be/9Be profiles. In the absence of other information these were extrapolated to the base of the crusts assuming constant growth rates and constant initial 10Be/9Be ratios due to the lack of additional information. Co contents have also been used previously to estimate growth rates in Co-rich Pacific and Atlantic seamount crusts (Puteanus and Halbach, 1988). A comparison of 10Be/9Be- and Co-based dating of three Co-rich crusts supports the validity of this approach and confirms the earlier chronologies derived from extrapolated 10Be/9Be-based growth rates back to 60 Ma. Our data show that the flux of Co into Co-poor crusts has been considerably lower. The relationship between growth rate and Co content for the Co-poor crusts developed from these data is in good agreement with a previous study of a wider range of marine deposits (Manheim, 1986). The results suggest that the Co content provides detailed information on the growth history of ferromanganese crusts, particularly prior to 10-12 Ma where the 10Be-based method is not applicable. The distributions of Pb and Nd isotopes in the deep oceans over the last 60 Myr are expected to be controlled by two main factors: (a) variations of oceanic mixing patterns and flow paths of water masses with distinct isotopic signatures related to major paleogeographic changes and (b) variability of supply rates or provenance of detrital material delivered to the ocean, linked to climate change (glaciations) or major tectonic uplift. The major element profiles of crusts in this study show neither systematic features which are common to crusts with similar isotope records nor do they generally show

  7. Crust formation in drying colloidal suspensions

    KAUST Repository

    Style, R. W.


    During the drying of colloidal suspensions, the desiccation process causes the suspension near the air interface to consolidate into a connected porous matrix or crust. Fluid transport in the porous medium is governed by Darcy\\'s law and the equations of poroelasticity, while the equations of colloid physics govern processes in the suspension. We derive new equations describing this process, including unique boundary conditions coupling the two regions, yielding a moving-boundary model of the concentration and stress profiles during drying. A solution is found for the steady-state growth of a nedimensional crust during constant evaporation rate from the surface. The solution is used to demonstrate the importance of the system boundary conditions on stress profiles and diffusivity in a drying crust. © 2011 The Royal Society.

  8. Elemental composition of the Martian crust. (United States)

    McSween, Harry Y; Taylor, G Jeffrey; Wyatt, Michael B


    The composition of Mars' crust records the planet's integrated geologic history and provides clues to its differentiation. Spacecraft and meteorite data now provide a global view of the chemistry of the igneous crust that can be used to assess this history. Surface rocks on Mars are dominantly tholeiitic basalts formed by extensive partial melting and are not highly weathered. Siliceous or calc-alkaline rocks produced by melting and/or fractional crystallization of hydrated, recycled mantle sources, and silica-poor rocks produced by limited melting of alkali-rich mantle sources, are uncommon or absent. Spacecraft data suggest that martian meteorites are not representative of older, more voluminous crust and prompt questions about their use in defining diagnostic geochemical characteristics and in constraining mantle compositional models for Mars.

  9. Sensitivity of gap symmetry to an incipient band: Application to iron based superconductors (United States)

    Mishra, Vivek; Scalapino, Douglas; Maier, Thomas

    Observation of high temperature superconductivity in iron-based superconductors with a submerged hole band has attracted wide interest. A spin fluctuation mediated pairing mechanism has been proposed as a possible explanation for the high transition temperatures observed in these systems. Here we discuss the importance of the submerged band in the context of the gap symmetry. We show that the incipient band can lead to an attractive pairing interaction and thus have significant effects on the pairing symmetry. We propose a framework to include the effect of the incipient band in the standard multi-orbital spin-fluctuation theories which are widely used for studying various iron-based superconductors. Research sponsored by the Laboratory Directed Research and Development Program of Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the U. S. Department of Energy.

  10. A New MLP Approach for the Detection of the Incipient Bearing Damage

    Directory of Open Access Journals (Sweden)

    SEKER, S.


    Full Text Available In this study, it is aimed to track the aging trend of the incipient bearing damage in an induction motor which is subjected to an accelerated aging process. For this purpose, a new Multilayer perceptron (MLP neural network approach is introduced. The input signals are extracted from power spectral densities (PSD of the vibration signals taken from a 5-HP induction motor. Principal component analysis (PCA has been applied to select the best possible feature vectors as a dimensionality reduction purpose. Variance and entropy values are used as the targets of the MLP network. The healthy motor condition was modelled by the MLP network considering all load conditions. The results showed that the incipient bearing damage was clearly extracted by the oscillations of the MLP output error.

  11. Are Guidelines Needed for the Diagnosis and Management of Incipient Alzheimer's Disease and Mild Cognitive Impairment?

    Directory of Open Access Journals (Sweden)

    Katie Palmer


    Full Text Available Current research is aiming to push the boundaries of the point at which a diagnosis of Alzheimer Disease (AD can be made. Clinical syndromes such as Mild Cognitive Impairment (MCI and various clinical and biological markers of AD may help to identify people in the early stage of AD, before a full dementia syndrome is present. In the first part of this paper, we discuss whether MCI represents incipient AD, and examine some of the methods currently used in research to identify AD patients in the preclinical phase. In the second part, we discuss whether specific guidelines are needed for the diagnosis and management of MCI and incipient AD, and consider the potential impact of this on clinical practice and public health from the perspective of patients, caregivers, and healthcare providers.

  12. Early diagnosis of incipient caries based on non-invasive lasers (United States)

    Velescu, A.; Todea, C.; Vitez, B.


    AIM: The aim of this study is to detect incipient caries and enamel demineralization using laser fluorescence.This serves only as an auxilary aid to identify and to monitor the development of these lesions. MATERIALS AND METHODS: 6 patients were involved in this study, three females and three male. Each patient underwent a professional cleaning, visual examination of the oral cavity, and then direct inspection using DiagnoCam and DIAGNOdent. After data recording each patient was submitted to retro-alveolar X-ray on teeth that were detected with enamel lesions. All data was collected and analyzed statistically. RESULTS: Of 36 areas considered in clinically healthy, 24 carious surfaces were found using laser fluorescence, a totally non-invasive method for detecting incipient carious lesions compared with the radiographic examination. CONCLUSIONS: This method has good applicability for patients because it improves treatment plan by early detection of caries and involves less fear for anxious patients and children.

  13. Tungsten Stable Isotope Compositions of Ferromanganese Crusts (United States)

    Abraham, K.; Barling, J.; Hein, J. R.; Schauble, E. A.; Halliday, A. N.


    We report the first accurate and precise data for mass-dependent fractionation of tungsten (W) stable isotopes, using a double spike technique and MC-ICPMS. Results are expressed relative to the NIST 3136 W isotope standard as per mil deviations in 186W/184W (δ186W). Although heavy element mass-dependent fractionations are expected to be small, Tl and U both display significant low temperature isotopic fractionations. Theoretical calculations indicate that W nuclear volume isotopic effects should be smaller than mass-dependent fractionations at low temperatures. Hydrogenetic ferromanganese (Fe-Mn) crusts precipitate directly from seawater and have been used as paleoceanographic recorders of temporal changes in seawater chemistry. Crusts are strongly enriched in W and other metals, and are a promising medium for exploring W isotopic variability. Tungsten has a relatively long residence time in seawater of ~61,000 years, mainly as the tungstate ion (WO42-). Water depth profiles show conservative behaviour. During adsorption on Fe-Mn crusts, W species form inner-sphere complexes in the hexavalent (W6+) state. The major host phase is thought to be Mn oxides and the lighter W isotope is expected to be absorbed preferentially. Surface scrapings of 13 globally distributed hydrogenetic Fe-Mn crusts display δ186W from -0.08 to -0.22‰ (±0.03‰, 2sd). A trend toward lighter W isotope composition exists with increasing water depth (~1500 to ~5200m) and W concentration. One hydrothermal Mn-oxide sample is anomalously light and Mn nodules are both heavy and light relative to Fe-Mn crusts. Tungsten speciation depends on concentration, pH, and time in solution and is not well understood because of the extremely slow kinetics of the reactions. In addition, speciation of aqueous and/or adsorbed species might be sensitive to pressure, showing similar thermodynamic stability but different effective volumes. Thus, W stable isotopes might be used as a water-depth barometer in

  14. Cenozoic marine geochemistry of thallium deduced from isotopic studies of ferromanganese crusts and pelagic sediments (United States)

    Rehkamper, M.; Frank, M.; Hein, J.R.; Halliday, A.


    Cenozoic records of Tl isotope compositions recorded by ferromanganese (Fe-Mn) crusts have been obtained. Such records are of interest because recent growth surfaces of Fe-Mn crusts display a nearly constant Tl isotope fractionation relative to seawater. The time-series data are complemented by results for bulk samples and leachates of various marine sediments. Oxic pelagic sediments and anoxic marine deposits can be distinguished by their Tl isotope compositions. Both pelagic clays and biogenic oozes are typically characterized by ??205Tl greater than +2.5, whereas anoxic sediments have ??205Tl of less than -1.5 (??205Tl is the deviation of the 205Tl/203Tl isotope ratio of a sample from NIST SRM 997 Tl in parts per 104). Leaching experiments indicate that the high ??205Tl values of oxic sediments probably reflect authigenic Fe-Mn oxyhydroxides. Time-resolved Tl isotope compositions were obtained from six Fe-Mn crusts from the Atlantic, Indian, and Pacific oceans and a number of observations indicate that these records were not biased by diagenetic alteration. Over the last 25 Myr, the data do not show isotopic variations that significantly exceed the range of Tl isotope compositions observed for surface layers of Fe-Mn crusts distributed globally (??205 Tl=+12.8??1.2). This indicates that variations in deep-ocean temperature were not recorded by Tl isotopes. The results most likely reflect a constant Tl isotope composition for seawater. The growth layers of three Fe-Mn crusts that are older than 25 Ma show a systematic increase of ??205Tl with decreasing age, from about +6 at 60-50 Ma to about +12 at 25 Ma. These trends are thought to be due to variations in the Tl isotope composition of seawater, which requires that the oceans of the early Cenozoic either had smaller output fluxes or received larger input fluxes of Tl with low ??205Tl. Larger inputs of isotopically light Tl may have been supplied by benthic fluxes from reducing sediments, rivers, and/or volcanic

  15. Survey of the current state of knowledge of incipient boiling superheat in sodium

    International Nuclear Information System (INIS)

    Greer, B.


    Superheat data obtained by various investigators indicate that many parameters affect this phenomenon. Controlling parameters appear to be inert gas concentration, oxide concentration, system pressure, pressure-temperature history, rate of temperature rise, heat flux, flow rate, operating time on the system, surface conditions, and radiation. Of these, the two believed most influential in controlling incipient boiling superheat are the inert gas concentration and oxide concentration. Experimental results for the heat flux and rate of temperature rise appear to be the most inconsistent

  16. Near-infrared hyperspectral imaging of water evaporation dynamics for early detection of incipient caries. (United States)

    Usenik, Peter; Bürmen, Miran; Fidler, Aleš; Pernuš, Franjo; Likar, Boštjan


    Incipient caries is characterized as demineralization of the tooth enamel reflecting in increased porosity of enamel structure. As a result, the demineralized enamel may contain increased amount of water, and exhibit different water evaporation dynamics than the sound enamel. The objective of this paper is to assess the applicability of water evaporation dynamics of sound and demineralized enamel for detection and quantification of incipient caries using near-infrared hyperspectral imaging. The time lapse of water evaporation from enamel samples with artificial and natural caries lesions of different stages was imaged by a near-infrared hyperspectral imaging system. Partial least squares regression was used to predict the water content from the acquired spectra. The water evaporation dynamics was characterized by a first order logarithmic drying model. The calculated time constants of the logarithmic drying model were used as the discriminative feature. The conducted measurements showed that demineralized enamel contains more water and exhibits significantly faster water evaporation than the sound enamel. By appropriate modelling of the water evaporation process from the enamel surface, the contrast between the sound and demineralized enamel observed in the individual near infrared spectral images can be substantially enhanced. The presented results indicate that near-infrared based prediction of water content combined with an appropriate drying model presents a strong foundation for development of novel diagnostic tools for incipient caries detection. The results of the study enhance the understanding of the water evaporation process from the sound and demineralized enamel and have significant implications for the detection of incipient caries by near-infrared hyperspectral imaging. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Acoustic Emission Monitoring of Incipient in Journal Bearings - Part I : Detectability and measurement for bearing damages

    International Nuclear Information System (INIS)

    Yoon, Dong Jin; Kwon, Oh Yang; Chung, Min Hwa; Kim, Kyung Woong


    In contrast to the machinery using rolling element bearings, systems with journal bearings generally operate in large scale and under severe loading condition such as steam generator turbines and internal combustion engines. Failure of the bearings in these machinery can result in the system breakdown. To avoid the time consuming repair and considerable economic loss, the detection of incipient failure in journal bearings becomes very important. In this experimental approach, acoustic emission monitoring is applied to the detection of incipient failure caused by several types of abnormal operating condition most probable in the journal bearing systems. It has been known that the intervention of foreign materials, insufficient lubrication and misassembly etc. are principal factors to cause bearing failure and distress. The experiment was conducted under such designed conditions as hard particles in the lubrication layer, insufficient lubrication, and metallic contact in the simulated journal bearing system. The results showed that acoustic emission could be an effective tool to detect the incipient failure in journal bearings

  18. Incipient multiple fault diagnosis in real time with applications to large-scale systems

    International Nuclear Information System (INIS)

    Chung, H.Y.; Bien, Z.; Park, J.H.; Seon, P.H.


    By using a modified signed directed graph (SDG) together with the distributed artificial neutral networks and a knowledge-based system, a method of incipient multi-fault diagnosis is presented for large-scale physical systems with complex pipes and instrumentations such as valves, actuators, sensors, and controllers. The proposed method is designed so as to (1) make a real-time incipient fault diagnosis possible for large-scale systems, (2) perform the fault diagnosis not only in the steady-state case but also in the transient case as well by using a concept of fault propagation time, which is newly adopted in the SDG model, (3) provide with highly reliable diagnosis results and explanation capability of faults diagnosed as in an expert system, and (4) diagnose the pipe damage such as leaking, break, or throttling. This method is applied for diagnosis of a pressurizer in the Kori Nuclear Power Plant (NPP) unit 2 in Korea under a transient condition, and its result is reported to show satisfactory performance of the method for the incipient multi-fault diagnosis of such a large-scale system in a real-time manner

  19. Incipient toxicity of lithium to freshwater organisms representing a salmonid habitat

    International Nuclear Information System (INIS)

    Emery, R.; Klopfer, D.C.; Skalski, J.R.


    Because the eventual development of fusion power reactors could increase the mining, use and disposal of lithium five-fold by the year 2000, potential effects from unusual amounts of lithium in aquatic environments were investigated. Freshwater oganisms representing a Pacific Northwest salmonid habitat were exposed to elevated conentrations of lithium. Nine parameters were used to determine the incipient toxicity of lithium to rainbow trout (Salmo gairdneri), insect larvae (Chironomus sp.), and Columbia River periphyton. All three groups of biota were incipiently sensitive to lithium at concentrations ranging between 0.1 and 1 mg/L. These results correspond with the incipient toxicity of beryllium, a chemically similar component of fusion reactor cores. A maximum lithium concentration of 0.01 mg/L occurs naturally in most freshwater environments (beryllium is rarer). Therefore, a concentration range of 0.01 to 0.1 mg/L may be regarded as approaching toxic concentrations when assessing the hazards of lithium in freshwaters

  20. Incipient toxicity of lithium to freshwater organisms representing a salmonid habitat

    Energy Technology Data Exchange (ETDEWEB)

    Emery, R.; Klopfer, D.C.; Skalski, J.R.


    Because the eventual development of fusion power reactors could increase the mining, use and disposal of lithium five-fold by the year 2000, potential effects from unusual amounts of lithium in aquatic environments were investigated. Freshwater oganisms representing a Pacific Northwest salmonid habitat were exposed to elevated conentrations of lithium. Nine parameters were used to determine the incipient toxicity of lithium to rainbow trout (Salmo gairdneri), insect larvae (Chironomus sp.), and Columbia River periphyton. All three groups of biota were incipiently sensitive to lithium at concentrations ranging between 0.1 and 1 mg/L. These results correspond with the incipient toxicity of beryllium, a chemically similar component of fusion reactor cores. A maximum lithium concentration of 0.01 mg/L occurs naturally in most freshwater environments (beryllium is rarer). Therefore, a concentration range of 0.01 to 0.1 mg/L may be regarded as approaching toxic concentrations when assessing the hazards of lithium in freshwaters.

  1. [Preventive and remineralization effect over incipient lesions of caries decay by phosphopeptide-amorphous calcium phosphate]. (United States)

    Juárez-López, María Lilia Adriana; Hernández-Palacios, Rosa Diana; Hernández-Guerrero, Juan Carlos; Jiménez-Farfán, Dolores; Molina-Frechero, Nelly


    INTRODUCTION. Dental caries continues to affect a large percentage of Mexican children and currently advises that if diagnosed at an early stage can be reversed with minimally invasive treatments. The casein phosphopeptide amorphous calcium phosphate known as CPP-ACP is a phosphoprotein capable of releasing calcium and phosphate ions in the oral environment promoting remineralization. OBJECTIVE. To evaluate the effect of CPP-ACP with fluoride added in a scholar preventive program. MATERIAL AND METHODS. A cuasi- experimental study was conducted in 104 schools of six years old. The children were classified into three groups and received six months biweekly applications of different treatments: casein phosphopeptide amorphous calcium phosphate added fluoride (CPP-ACPF), sodium fluoride (NaF) and a control group. Clinical evaluation was performed with the laser fluorescence technique (Diagnodent model 2095). 1340 teeth were included: 294 teeth with incipient lesions and 1,046 healthy teeth. Statistical tests of χ2 y Mc Nemar were used. RESULTS. In the group that received the application of CPP-ACPF, 38% of incipient carious lesions were remineralizing compared with 21% in the group receiving the NaF (p application biweekly for six months of CPP-ACPF showed a protective and remineralizing effect on incipient carious lesions. His action was better than the application of NaF. However, to reduce the impact from dental caries in schoolchildren is important to have a comprehensive preventive approach that includes promoting self-care, as well as the application of sealants.

  2. Multiple incipient sensor faults diagnosis with application to high-speed railway traction devices. (United States)

    Wu, Yunkai; Jiang, Bin; Lu, Ningyun; Yang, Hao; Zhou, Yang


    This paper deals with the problem of incipient fault diagnosis for a class of Lipschitz nonlinear systems with sensor biases and explores further results of total measurable fault information residual (ToMFIR). Firstly, state and output transformations are introduced to transform the original system into two subsystems. The first subsystem is subject to system disturbances and free from sensor faults, while the second subsystem contains sensor faults but without any system disturbances. Sensor faults in the second subsystem are then formed as actuator faults by using a pseudo-actuator based approach. Since the effects of system disturbances on the residual are completely decoupled, multiple incipient sensor faults can be detected by constructing ToMFIR, and the fault detectability condition is then derived for discriminating the detectable incipient sensor faults. Further, a sliding-mode observers (SMOs) based fault isolation scheme is designed to guarantee accurate isolation of multiple sensor faults. Finally, simulation results conducted on a CRH2 high-speed railway traction device are given to demonstrate the effectiveness of the proposed approach. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  3. Has 7% of Continental Crust been Lost since Pangea Broke Up? (United States)

    Scholl, D. W.; Stern, R. J.


    After modern plate tectonics began, the net growth or loss of continental crust predominantly involved the mass balance at subduction zones (SZs) between the yin of adding mantle-sourced arc igneous rocks and the subtracting yang of recycling existing crust back into the mantle. Field observations suggest that during Mesozoic and Cenozoic time, a rough long-term balance existed at ocean-margin SZs (e.g., W. N. America, Andes). But a different picture, one of net loss, emerges when additions and losses at collisional or crust-suturing SZs (e.g., India-Tibet) are considered. GAINS AND LOSSES SINCE ~200 Ma Because Mesozoic and Cenozoic convergent margins can be field inspected, the net growth of continental crust after the breakup of Pangea at ~200 Ma can be estimated. Pangea breakup also marked the beginning of the present supercontinent cycle. Newly established (Eocene) ocean-margin SZs (e.g., IBM, Tonga-Kermadec) added juvenile arc crust for at least 10-15 Myr at rates ~10-15 times higher than later and elsewhere at long-established SZs (~30 km3/Myr/km). During the Cenozoic, at colliding SZs (e.g., Alps, India-Tibet, Arabia-Eurasia) tomographic and geological data document losses of subducted continental crust sustained for 15-50 Myr at rates ~15 times that typical from the upper plate at ocean-margin SZs (~70 km3/Myr/km). For additions, we considered that as the Atlantic opened in early Jurassic time, new, prodigiously productive SZs were initiated along the western margin of North and Middle America but not along western South America and the eastern margin of Eurasia. In the Cretaceous, new SZs formed along much of the northern margin of the Tethys, along western Sumatra and southern Java, and at the great arc of the Caribbean. In the early Eocene, in the offshore, a lengthy (~20,000 km) curtain of new, voluminously productive intra-oceanic SZs formed from the Aleutian Islands southward to the Kermadec Islands. For subtractions, we applied subduction losses (~70

  4. A relatively reduced Hadean continental crust (United States)

    Yang, Xiaozhi; Gaillard, Fabrice; Scaillet, Bruno


    Among the physical and chemical parameters used to characterize the Earth, oxidation state, as reflected by its prevailing oxygen fugacity (fO2), is a particularly important one. It controls many physicochemical properties and geological processes of the Earth's different reservoirs, and affects the partitioning of elements between coexisting phases and the speciation of degassed volatiles in melts. In the past decades, numerous studies have been conducted to document the evolution of mantle and atmospheric oxidation state with time and in particular the possible transition from an early reduced state to the present oxidized conditions. So far, it has been established that the oxidation state of the uppermost mantle is within ±2 log units of the quartz-fayalite-magnetite (QFM) buffer, probably back to ~4.4 billion years ago (Ga) based on trace-elements studies of mantle-derived komatiites, kimberlites, basalts, volcanics and zircons, and that the O2 levels of atmosphere were initially low and rose markedly ~2.3 Ga known as the Great Oxidation Event (GOE), progressively reaching its present oxidation state of ~10 log units above QFM. In contrast, the secular evolution of oxidation state of the continental crust, an important boundary separating the underlying upper mantle from the surrounding atmosphere and buffering the exchanges and interactions between the Earth's interior and exterior, has rarely been addressed, although the presence of evolved crustal materials on the Earth can be traced back to ~4.4 Ga, e.g. by detrital zircons. Zircon is a common accessory mineral in nature, occurring in a wide variety of igneous, sedimentary and metamorphic rocks, and is almost ubiquitous in crustal rocks. The physical and chemical durability of zircons makes them widely used in geochemical studies in terms of trace-elements, isotopes, ages and melt/mineral inclusions; in particular, zircons are persistent under most crustal conditions and can survive many secondary

  5. Ferrobasalts from the Central Indian Ocean Basin

    Digital Repository Service at National Institute of Oceanography (India)

    Iyer, S.D.; Mukhopadhyay, R.; Popko, D.C.

    and Johnson GL (1973) Magnetic telechemistry of oceanic crust. Nature 245 :373}375 Wilson DS, Clague DA, Sleep NH, and Morton JL (1988) Implica- tions of magma convection for the size and temperature of magma chambers at fast spreading ridges. Journal...

  6. Self-Consistent Generation of Primordial Continental Crust in Global Mantle Convection Models (United States)

    Jain, C.; Rozel, A.; Tackley, P. J.


    We present the generation of primordial continental crust (TTG rocks) using self-consistent and evolutionary thermochemical mantle convection models (Tackley, PEPI 2008). Numerical modelling commonly shows that mantle convection and continents have strong feedbacks on each other. However in most studies, continents are inserted a priori while basaltic (oceanic) crust is generated self-consistently in some models (Lourenco et al., EPSL 2016). Formation of primordial continental crust happened by fractional melting and crystallisation in episodes of relatively rapid growth from late Archean to late Proterozoic eras (3-1 Ga) (Hawkesworth & Kemp, Nature 2006) and it has also been linked to the onset of plate tectonics around 3 Ga. It takes several stages of differentiation to generate Tonalite-Trondhjemite-Granodiorite (TTG) rocks or proto-continents. First, the basaltic magma is extracted from the pyrolitic mantle which is both erupted at the surface and intruded at the base of the crust. Second, it goes through eclogitic transformation and then partially melts to form TTGs (Rudnick, Nature 1995; Herzberg & Rudnick, Lithos 2012). TTGs account for the majority of the Archean continental crust. Based on the melting conditions proposed by Moyen (Lithos 2011), the feasibility of generating TTG rocks in numerical simulations has already been demonstrated by Rozel et al. (Nature, 2017). Here, we have developed the code further by parameterising TTG formation. We vary the ratio of intrusive (plutonic) and extrusive (volcanic) magmatism (Crisp, Volcanol. Geotherm. 1984) to study the relative volumes of three petrological TTG compositions as reported from field data (Moyen, Lithos 2011). Furthermore, we systematically vary parameters such as friction coefficient, initial core temperature and composition-dependent viscosity to investigate the global tectonic regime of early Earth. Continental crust can also be destroyed by subduction or delamination. We will investigate

  7. Norwegian crusted scabies: an unusual case presentation. (United States)

    Maghrabi, Michael M; Lum, Shireen; Joba, Ameha T; Meier, Molly J; Holmbeck, Ryan J; Kennedy, Kate


    Scabies is a contagious condition that is transmitted through direct contact with an infected person and has been frequently associated with institutional and healthcare-facility outbreaks. The subtype Norwegian crusted scabies can masquerade as other dermatologic diseases owing to the heavy plaque formation. Successful treatment has been documented in published reports, including oral ivermectin and topical permethrin. Few case studies documenting the treatment of Norwegian crusted scabies have reported the use of surgical debridement as an aid to topical and/or oral treatment when severe plaque formation has been noted. A nursing home patient was admitted to the hospital for severe plaque formation of both feet. A superficial biopsy was negative for both fungus and scabies because of the severity of the plaque formation on both feet. The patient underwent a surgical, diagnostic biopsy of both feet, leading to the diagnosis of Norwegian crusted scabies. A second surgical debridement was then performed to remove the extensive plaque formation and aid the oral ivermectin and topical permethrin treatment. The patient subsequently made a full recovery and was discharged back to the nursing home. At 2 and 6 months after treatment, the patient remained free of scabies infestation, and the surgical wound had healed uneventfully. The present case presentation has demonstrated that surgical debridement can be complementary to the standard topical and oral medications in the treatment of those with Norwegian crusted scabies infestation. Copyright © 2014 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.

  8. Dew formation and activity of biological crusts

    NARCIS (Netherlands)

    Veste, M.; Heusinkveld, B.G.; Berkowicz, S.M.; Breckle, S.W.; Littmann, T.; Jacobs, A.F.G.


    Biological soil crusts are prominent in many drylands and can be found in diverse parts of the globe including the Atacama desert, Chile, the Namib desert, Namibia, the Succulent-Karoo desert, South Africa, and the Negev desert, Israel. Because precipitation can be negligible in deserts ¿ the

  9. Eocene deep crust at Ama Drime, Tibet

    DEFF Research Database (Denmark)

    Kellett, Dawn; Cottle, John; Smit, Matthijs Arjen


    for burial of the lower Indian crust beneath Tibet reported from the central-eastern Himalaya. Granulite-facies overprinting followed at ca. 15–13 Ma, as indicated by U-Pb zircon ages. Unlike ultrahigh-pressure eclogites of the northwest Himalaya, the Ama Drime eclogites are not characteristic of rapid...

  10. Seismic structure of the Slave craton crust (United States)

    Barantseva, O.; Vinnik, L. P.; Farra, V.; van der Hilst, R. D.; Artemieva, I. M.; Montagner, J. P.


    We present P- and S-receiver functions for 20 stations along a 200-km-long NNW-SSE seismological profile across the Slave craton, and estimate the average crustal Vp/Vs ratio which is indicative of rock composition. We observe high Vp/Vs ratio ( 1.85-2.00) for the bulk crust and elevated Vp values at a depth range from 20-30 km to 40 km. High Vp values (>7.0 km/s) suggest mafic composition of the lower crust. In case of dry lower crustal rocks, the Vp/Vs ratio is expected to range from 1.6 to 1.8, which is lower than the observed values of 1.9-2.0. Laboratory studies show that Vp/Vs 1.9-2.0 can be explained by the presence of numerous cracks saturated with an incompressible fluid. Our results are at odds with the structure of the cratonic crust in many regions worldwide, and may suggest a unique geodynamic evolution of the Slave crust. Possible explanations for the observed crustal structure include the presence of an underplated mafic material, possibly related to intraplate magmatism or paleosubduction. Receiver functions are highly sensitive to the change of acoustic impedance and S-wave velocities, but do not resolve the internal seismic structure with a high precision. We extend our study of the crustal structure by using ambient noise tomography (ANT). We measure Rayleigh wave dispersion from Green's functions that are estimated from one-year noise cross-correlation (NCF). The phase velocity maps are inverted for 1D wave speed profiles which are then combined to form 2D and 3D models of the crust of the Slave Province. The combined results of RF analyses and ANT are interpreted in terms of crustal structure, composition, and evolution.

  11. Crust and upper-mantle seismic anisotropy variations from the coast to inland in central and Southern Mexico (United States)

    Castellanos, Jorge; Pérez-Campos, Xyoli; Valenzuela, Raúl; Husker, Allen; Ferrari, Luca


    Subduction zones are among the most dynamic tectonic environments on Earth. Deformation mechanisms of various scales produce networks of oriented structures and faulting systems that result in a highly anisotropic medium for seismic wave propagation. In this study, we combine shear wave splitting inferred from receiver functions and the results from a previous SKS-wave study to quantify and constrain the vertically averaged shear wave splitting at different depths along the 100-station MesoAmerican Subduction Experiment array. This produces a transect that runs perpendicular to the trench across the flat slab portion of the subduction zone below central and southern Mexico. Strong anisotropy in the continental crust is found below the Trans-Mexican Volcanic Belt (TMVB) and above the source region of slow-slip events. We interpret this as the result of fluid/melt ascent. The upper oceanic crust and the overlying low-velocity zone exhibit highly complex anisotropy, while the oceanic lower crust is relatively homogeneous. Regions of strong oceanic crust anisotropy correlate with previously found low Vp/Vs regions, indicating that the relatively high Vs is an anisotropic effect. Upper-mantle anisotropy in the southern part of the array is in trench-perpendicular direction, consistent with the alignment of type-A olivine and with entrained subslab flow. The fast polarization direction of mantle anisotropy changes to N-S in the north, likely reflecting mantle wedge corner flow perpendicular to the TMVB.

  12. Postcollisional mafic igneous rocks record crust-mantle interaction during continental deep subduction. (United States)

    Zhao, Zi-Fu; Dai, Li-Qun; Zheng, Yong-Fei


    Findings of coesite and microdiamond in metamorphic rocks of supracrustal protolith led to the recognition of continental subduction to mantle depths. The crust-mantle interaction is expected to take place during subduction of the continental crust beneath the subcontinental lithospheric mantle wedge. This is recorded by postcollisional mafic igneous rocks in the Dabie-Sulu orogenic belt and its adjacent continental margin in the North China Block. These rocks exhibit the geochemical inheritance of whole-rock trace elements and Sr-Nd-Pb isotopes as well as zircon U-Pb ages and Hf-O isotopes from felsic melts derived from the subducted continental crust. Reaction of such melts with the overlying wedge peridotite would transfer the crustal signatures to the mantle sources for postcollisional mafic magmatism. Therefore, postcollisonal mafic igneous rocks above continental subduction zones are an analog to arc volcanics above oceanic subduction zones, providing an additional laboratory for the study of crust-mantle interaction at convergent plate margins.

  13. Estimating the formation age distribution of continental crust by unmixing zircon ages (United States)

    Korenaga, Jun


    Continental crust provides first-order control on Earth's surface environment, enabling the presence of stable dry landmasses surrounded by deep oceans. The evolution of continental crust is important for atmospheric evolution, because continental crust is an essential component of deep carbon cycle and is likely to have played a critical role in the oxygenation of the atmosphere. Geochemical information stored in the mineral zircon, known for its resilience to diagenesis and metamorphism, has been central to ongoing debates on the genesis and evolution of continental crust. However, correction for crustal reworking, which is the most critical step when estimating original formation ages, has been incorrectly formulated, undermining the significance of previous estimates. Here I suggest a simple yet promising approach for reworking correction using the global compilation of zircon data. The present-day distribution of crustal formation age estimated by the new "unmixing" method serves as the lower bound to the true crustal growth, and large deviations from growth models based on mantle depletion imply the important role of crustal recycling through the Earth history.

  14. Tracing incipient continental breakup from dike swarms: application of high-resolution aeromagnetics in Namibia (United States)

    Trumbull, R.; Vietor, T.; Hahne, K.; Wackerle, R.; Kamati, T.; Ledru, P.


    High-resolution aeromagnetic data reveals a major Mesozoic dike swarm in north-central Namibia (the Henties Bay-Outjo Dikes or HOD), which extends NE at least 600 km inland from the Atlantic coast and 800 km from the continental shelf edge. Field relations and radiometric dates indicate emplacement ages of 120 to 140 Ma for the predominantly basic dikes, which agrees with ages of flood basalts and alkaline igneous complexes in the same region, and with similar rocks on the conjugate margin of Brazil and Uruguay. The density (number per unit area) and orientation of dikes in the HOD vary with distance from the coast, reflecting structural changes in the crustal basement and perhaps also proximity to a magma source at the developing continent-ocean boundary. In the coastal section (to ca. 100 km inland) the density of dikes is highest and orientations are dominantly NE-SW, with subordinate but important coast-parallel components. In the central section, the density of dikes decreases continuously inland and coast-parallel orientations are rare. In the northern section close to the boundary of the Congo Craton, the density of dikes increases again and orientations become more irregular and increasingly discordant to the structures of the Neoproterzoic Damara Belt. Some of the dikes propagate across the craton boundary in a fan-like array extending to beneath the Etosha Basin. Within the craton, the density of dikes is lower and individual dikes are longer and more continuous than in the Damara Belt, probably reflecting the more rigid and thicker crust. We interpret the HOD as one arm of a triple junction formed at the intersection of the NE-trending Damara Belt and the Namibian shelf edge west of Walfish Bay. This rift geometry is unlikely to reflect doming over a mantle plume since plate reconstructions place the Tristan plume head under southern Congo in the Early Cretaceous. Instead, it may represent reactivation of much older structures at the juncture between the

  15. Diffuse degassing through magmatic arc crust (Invited) (United States)

    Manning, C. E.; Ingebritsen, S.


    The crust of magmatic arcs plays an important role in the volatile cycle at convergent margins. The fluxes of subduction- and arc-related volatiles such as H2O, C, Cl, S are poorly known. It is commonly believed that gases emitted from volcanoes account nearly quantitatively for the volatiles that cross the Moho beneath the volcanic front. This volcanic degassing may occur during eruption, emission from summit fumaroles and hot springs, or more 'diffuse' delivery to volcano flanks. However, several observations suggest that volatiles also transit arc crust by even more diffuse pathways, which could account for significant volatile loss on long time and length scales. Active metamorphism of arc crust produces crustal-scale permeability that is sufficient to transport a large volume of subducted volatiles (Ingebritsen and Manning, 2002, PNAS, 99, 9113). Arc magmas may reach volatile saturation deeper than the maximum depths recorded by melt inclusions (e.g., Blundy et al., 2010, EPSL, 290, 289), and exhumed sections of magmatic arc crust typically record voluminous plutons reflecting magma crystallization and volatile loss at depths well below the volcanic edifice. At shallower depths, topographically driven meteoric groundwater systems can absorb magmatic volatiles and transport them laterally by tens of km (e.g., James et al., 1999, Geology, 27, 823; Evans et al., 2002, JVGR, 114, 291). Hydrothermal ore deposits formed at subvolcanic depths sequester vast amounts of volatiles, especially sulfur, that are only returned to the surface on the time scale of exhumation and/or erosion. Water-rich metamorphic fluids throughout the crust can readily carry exsolved volcanic gases because the solubilities of volatile bearing minerals such as calcite, anhydrite, and fluorite are quite high at elevated pressure and temperature (e.g., Newton and Manning, 2002, Am Min, 87, 1401; 2005, J Pet, 46, 701; Tropper and Manning, 2007, Chem Geol, 242, 299). Taken together, these

  16. From a collage of microplates to stable continental crust - an example from Precambrian Europe (United States)

    Korja, Annakaisa


    of spreading. Close to the original ocean-continent plate boundary, in the core of the Svecofennian orogen, the thickened accretionary crust carries pervasive stretching lineations at surface and seismic vp-velocity anisotropy in the crust. The direction of spreading and crustal flow seems to be diverted by shapes of the pre-existing boundaries. It is concluded that lateral spreading and midcrustal flow not only rearrange the bedrock architecture but also stabilize the young accreted continental crust in emerging internal orogenic systems. Pre-existing microplate/terrane boundaries will affect the final architecture of the orogenic belt.

  17. Characteristics and management options of crusting soils in a ...

    African Journals Online (AJOL)

    ... to control the crusting. The relationship between crust thickness and soil physical and chemical properties and management practices were assessed using stepwise regression analysis. Soil crusting was largely related to soil aggregation, infiltration, fine sand fraction, cotton monocropping and crop residue incorporation.

  18. Reaction-Enhanced Permeability in Gabbroic Crust, IODP Site 1309, mid Atlantic Ridge (United States)

    McCaig, A. M.; Condliffe, E.; Frost, B. R.; Jamtveit, B.


    Thermal cracking is normally assumed to be the main mechanism of permeability generation in the oceanic crust. Here we present microstructural evidence that metamorphic reactions played a significant role in creating porosity and permeability in gabbroic rocks beneath a detachment fault at 30° N in the Atlantic ocean. At least two mechanisms for permeability generation have been identified: 1) In basaltic intrusions, euhedral zoning in amphibole replacing clinopyroxene suggests a dissolution/precipitation mechanism similar to textures observed in epidosites from the Troodos ophiolite. The basaltic sills lack macroscopic fractures and alteration patterns suggest a fingering instability allowed fluid to enter the rock. 2) Volume increase reactions in olivine gabbros and troctolites. These generated radial crack networks filled with secondary minerals where olivine was surrounded by other phases, and are seen both in serpentinization reactions and in reaction between olivine and plagioclase forming tremolite-chlorite coronas. Discrete-element modelling shows how isolated olivines can be linked by propagating networks of cracks allowing fluid to access initially impermeable crust. Assuming that most fluid flow occurs along major fractures, reaction permeability provides an effective mechanism for fluid to access intervening unaltered rock, and may be important for scavenging ore-forming components from the crust. The most permeable part of the system is likely to be at the reaction front before precipitating minerals occlude the porosity, and this may promote front-parallel fluid flow.

  19. Exotic crust formation on Mercury: Consequences of a shallow, FeO-poor mantle (United States)

    Vander Kaaden, Kathleen E.; McCubbin, Francis M.


    The range in density and compressibility of Mercurian melt compositions was determined to better understand the products of a possible Mercurian magma ocean and subsequent volcanism. Our experiments indicate that the only mineral to remain buoyant with respect to melts of the Mercurian mantle is graphite; consequently, it is the only candidate mineral to have composed a primary floatation crust during a global magma ocean. This exotic result is further supported by Mercury's volatile-rich nature and inexplicably darkened surface. Additionally, our experiments illustrate that partial melts of the Mercurian mantle that compose the secondary crust were buoyant over the entire mantle depth and could have come from as deep as the core-mantle boundary. Furthermore, Mercury could have erupted higher percentages of its partial melts compared to other terrestrial planets because magmas would not have stalled during ascent due to gravitational forces. These findings stem from the FeO-poor composition and shallow depth of Mercury's mantle, which has resulted in both low-melt density and a very limited range in melt density responsible for Mercury's primary and secondary crusts. The enigmatically darkened, yet low-FeO surface, which is observed today, can be explained by secondary volcanism and impact processes that have since mixed the primary and secondary crustal materials.

  20. Tectonic juxtaposition of crust and continental growth during orogenesis: Example from the Rengali Province, eastern India

    Directory of Open Access Journals (Sweden)

    Sankar Bose


    Full Text Available The southern boundary of the Singhbhum Craton witnessed multiple orogenies that juxtaposed thin slice of granulite suite of the Rengali Province against the low-grade granite-greenstone belt of the craton along the E–W trending Sukinda Thrust. The strong southerly dipping mylonitic foliation within the granulites along with the prominent down-dip mineral lineation, suggest a northerly-verging thrusting. Mylonitized charnockite at the contact zone contains enclaves of mafic and ultramafic granulite, whereas granitoid gneiss contains enclaves of pelitic granulite. Mafic granulite enclaves preserve an early (S1M foliation that formed during D1M deformation. This rock, along with the host charnockite, were intensely deformed by the D2M thrusting event and resulting S2M foliation development in both rock suites. Geothermobarometric and pseudosection analyses show that the garnet-clinopyroxene-plagioclase-orthopyroxene-ilmenite-quartz assemblage in mafic granulite was stabilized at high-pressure and temperature conditions (10−12 kbar, 860 °C and was overprinted by a fine-grained assemblage of clinopyroxene-plagioclase ± hornblende that developed during decompression (down to 5.5–7.5 kbar. Matrix hornblende shows incipient breakdown to garnet-clinopyroxene-quartz intergrowth due to a granulite facies reworking. A contrasting P-T history is preserved in the pelitic granulite. The peak assemblage garnet-orthopyroxene-cordierite-quartz-rutile was stabilized at ∼6.0 kbar, 730 °C which resulted from heating of the mid crust magma during the D2M thrusting. The contrasting P-T histories could result from the tectonic juxtaposition of lower- and mid-crustal section during the D2M event. Evidences of an early orogenic imprint within the mafic granulite imply involvement of deep continental crust during southward growth of the Singhbhum Craton.

  1. Density Sorting During the Evolution of Continental Crust (United States)

    Kelemen, P. B.; Behn, M. D.; Hacker, B. R.


    We consider two settings - in addition to "delamination" of arc lower crust - in which dense, mafic eclogites founder into the convecting mantle while buoyant, felsic lithologies accumulate at the base of evolving continental crust. Arc processes play a central role in generating continental crust, but it remains uncertain how basaltic arc crust is transformed to andesitic continental crust. Dense, SiO2-poor products of fractionation may founder from the base of arc crust by "delamination", but lower arc crust after delamination has significantly different trace elements compared to lower continental crust (LCC). In an alternative model, buoyant magmatic rocks generated at arcs are first subducted, mainly via subduction erosion. Upon heating, these buoyant lithologies ascend through the mantle wedge or along a subduction channel, and are "relaminated" at
the base of overlying crust (e.g., Hacker et al EPSL 11, AREPS 15). Average buoyant lavas and plutons
for the Aleutians, Izu-Bonin-Marianas, Kohistan and Talkeetna arcs fall within the range of estimated LCC major and trace elements. Relamination is more efficient in generating continental crust than delamination. Himalayan cross-sections show Indian crust thrust beneath Tibetan crust, with no intervening mantle. There is a horizontal Moho at ca 80 km depth, extending from thickened Indian crust, across the region where Tibetan crust overlies Indian crust, into thickened Tibetan crust. About half the subducted Indian crust is present, whereas the other half is missing. Data (Vp/Vs; Miocene lavas formed by interaction of continental crust with mantle; xenolith thermometry) indicate 1000°C or more from ca 50 km depth to the Moho since the Miocene. We build on earlier studies (LePichon et al Tectonics 92, T'phys 97; Schulte-Pelkum et al Nature 05; Monsalve et al JGR 08) to advance the hypothesis that rapid growth of garnet occurs at 70-80 km and 1000°C within subducting Indian crust. Dense eclogites founder

  2. Defining Incipient Subduction by Detecting Serpentenised Mantle in the Regional Magnetic Field (United States)

    Pires, Rui; Clark, Stuart; Reis, Rui


    Keywords: Subduction initiation, Incipient Subduction, Active Margins, Southeast Asia, Mantle wedge The mechanisms of subduction initiation are poorly understood. One idea is to look for incipient subduction zones in the present day and see what features are common in these zones. However, incipient subduction zones are very difficult to detect and debate surrounds particular cases as to whether they qualify as incipient or not. In the analysis conducted in this work, we use the signal of the presence of a mantle wedge in the magnetic anomaly field as an indicator of incipient subduction. Each subduction zone exhibits variations in the particular responses of the system, such as slab-dip angle, maximum earthquake depths and volcanism to various parameters. So far, attempts to reduce the system to a dominate controlling parameter have failed, probably as a result of the limited number of cases and the large variety of controlling parameters. Parameters such as down-going and overriding plate morphology and velocity, mantle flow, the presence of plumes or not, sediment transport into the trench are a few of the parameters that have been studied in the literature. However, one of the characteristics associated with a subduction zones is the presence of a mantelic wedge as a result of the partial melt of the subducting plate and the development of a mantle wedge between the subducting plate and the overriding plate. The wedge is characterised by the presence of water (coming from sediments in the down-going plate) as well as lower temperatures (because the wedge is between two relatively cold lithospheres). As a results a serpentinized mantle wedge is formed that contains hydrous minerals, of which magnetite is an example, that alter the composition and properties of this region. According to Blakely (2005), this region exhibits both higher magnetic susceptibility and lower densities than the surrounding medium. We analysed five active margin boundaries located

  3. Crusted Scabies in the Burned Patient

    DEFF Research Database (Denmark)

    Berg, Jais Oliver; Alsbjørn, Bjarne


    The objectives of this study were 1) to describe a case of crusted scabies (CS) in a burned patient, which was primarily undiagnosed and led to a nosocomial outbreak in the burn unit; 2) to analyze and discuss the difficulties in diagnosing and treating this subset of patients with burn injury......; and 3) to design a treatment strategy for future patients. Case analysis and literature review were performed. The index patient had undiagnosed crusted scabies (sive Scabies norvegica) with the ensuing mite hyperinfestation when admitted to the department with minor acute dermal burns. Conservative...... healing and autograft healing were impaired because of the condition. Successful treatment of the burns was only accomplished secondarily to scabicide treatment. An outbreak of scabies among staff members indirectly led to diagnosis. CS is ubiquitous, and diagnosis may be difficult. This is the first...

  4. Outer crust of nonaccreting cold neutron stars

    International Nuclear Information System (INIS)

    Ruester, Stefan B.; Hempel, Matthias; Schaffner-Bielich, Juergen


    The properties of the outer crust of nonaccreting cold neutron stars are studied by using modern nuclear data and theoretical mass tables, updating in particular the classic work of Baym, Pethick, and Sutherland. Experimental data from the atomic mass table from Audi, Wapstra, and Thibault of 2003 are used and a thorough comparison of many modern theoretical nuclear models, both relativistic and nonrelativistic, is performed for the first time. In addition, the influences of pairing and deformation are investigated. State-of-the-art theoretical nuclear mass tables are compared to check their differences concerning the neutron drip line, magic neutron numbers, the equation of state, and the sequence of neutron-rich nuclei up to the drip line in the outer crust of nonaccreting cold neutron stars

  5. Composition and genesis of zeolitic claystones from the central Indian Ocean Basin

    Digital Repository Service at National Institute of Oceanography (India)

    Iyer, S.D; Sudhakar, M.; Das, P.

    More than fifty indurated sediments recovered from the Central Indian Ocean Basin (CIoB) are examined during the course of collection for manganese nodules and crusts. The samples occur as slabs either over which ferromanganese oxides are present...

  6. Ocean Circulation


    Thompson, Andrew F.; Rahmstorf, Stefan


    The ocean moderates the Earth's climate due to its vast capacity to store and transport heat; the influence of the large-scale ocean circulation on changes in climate is considered in this chapter. The ocean experiences both buoyancy forcing (through heating/cooling and evaporation/precipitation) and wind forcing. Almost all ocean forcing occurs at the surface, but these changes are communicated throughout the entire depth of the ocean through the meridional overturning circulation (MOC). In ...

  7. Evidence for accretion in the lower crust at fast- and intermediate-spreading ridges based on olivine-hosted melt inclusions (United States)

    Wanless, V.; Shaw, A. M.


    Here we present volatile (CO2, H2O, F, S, Cl), major, and trace element data from >200 olivine-hosted, glassy, melt inclusions and glasses erupted on three different mid-ocean ridges (East Pacific Rise, EPR; Juan de Fuca Ridge, JdFR; and Gakkel Ridge). We provide geochemical constraints on both the compositional variations and the depths of crystallization beneath ridge axes using vapor-saturation pressures derived from volatile concentrations. Vapor-saturation pressures calculated from equilibrium CO2-H2O concentrations suggest crystallization occurs over a range of depths from below the crust-mantle transition to the seafloor for both the fast-spreading EPR and the intermediate-spreading JdFR. Depths inferred from minimum pressures estimates indicate that most melt inclusions cluster between 1 and 2.5 km on the EPR (~70%) and between 2 and 3.5 km on the JdFR (~60%), consistent with crystallization in or near the seismically-determined shallow melt lenses. However, 30 to 40% of the melt inclusions are equilibrated at relatively deep depths, suggesting that a significant amount of crystallization occurs in the lower crust. In comparison, equilibrium pressures in melt inclusions from the ultra-slow-spreading Gakkel ridge, where the oceanic crust is much thinner, indicate that significant crystallization occurs in both the upper mantle and throughout crust. These results are inconsistent with the exclusively shallow depths of crystallization anticipated for purely top-down, gabbro glacier models of crustal accretion on mid-ocean ridges and instead, require models in which crystallization occurs throughout the oceanic crust and uppermost mantle (e.g., staked sill or melt-rock reaction models). Combining our pressure estimates with major and trace element concentrations from several different ridges, results in a detailed picture of how melt compositions vary within the ocean crust and across spreading rates. Major element and volatile concentrations from the EPR are

  8. Development of a custom-made "smart-sphere" to assess incipient entrainment by rolling (United States)

    Valyrakis, Manousos; Kitsikoudis, Vasileios; Alexakis, Athanasios; Trinder, Jon


    The most widely applied criterion for sediment incipient motion in engineering applications is the time- and space-averaged approach of critical Shields shear stress. Nonetheless, in the recent years published research has highlighted the importance of turbulence fluctuations in sediment incipient motion and its stochastic character. The present experimental study investigates statistically the link of the response of a "smart-pebble" to hydrodynamics in near-critical flow conditions and discusses how such a device can be utilized in engineering design. A set of specifically designed fluvial experiments monitoring the entrainment conditions for a "smart-pebble", were carried out in a tilting, recirculating flume in turbulent flow conditions while three-dimensional flow measurements were obtained with an acoustic Doppler velocimeter. The "smart-pebble" employed herein is a custom-made instrumented sphere with 7 cm diameter, which has a number of sensors embedded within its waterproof 3D-printed plastic shell. Specifically, the "smart-pebble" is equipped with miniaturized, off the shelf, low-cost, three-dimensional acceleration, orientation and angular displacement sensors. A 3D-printed local micro topography of known geometry was installed in the flume's test section and the "smart-pebble" was placed there in order to facilitate the analysis. Every time the "smart-sphere" is displaced by the flow a downstream located pin blocks its full entrainment. This allows for continuous recording of the entrainment events due to the passage of energetic events, after which the "smart-pebble" returns to its resting pocket. The "smart-pebble" device under such a configuration allows the recording of normally indiscernible (with the naked eye) vibrations, twitching motions, and full entrainments for the studied particle, allowing its analysis from a Langrangian framework. During the incipient motion experiments the retrieved data are stored in an internal memory unit or

  9. Micro-topography controls on incipient motion in very steep, ephemeral streams (United States)

    Scheingross, J. S.; Winchell, E. W.; Lamb, M. P.; Dietrich, W. E.


    Much of the drainage network in hilly and mountainous areas is composed of small, steep streams, and predicting incipient sediment motion in these streams is critical to modeling bedload transport, bedrock incision, and landscape evolution. While the conditions for incipient motion in low lying rivers have been well established, field measurements on initial motion in steep, mountainous streams remain sparse, and existing models remain relatively untested. To fill this knowledge gap, we monitored initial motion of sediment in six small (drainage areas of 0.05 - 2 km2) and steep (slopes of 3.5 - 35%) tributaries of the South Fork Eel River, CA. Sites were monitored for three winters from 2007 - 2010 using automated field cameras, water stage height recorders, and painted sediment. We calculated critical shear stress for grain entrainment using a number of methods including a 1D non-uniform hydraulic model (HEC-RAS), a normal flow model (i.e. τ = ρghS), and a form-drag-corrected model that accounts for immobile grains (i.e. Yager et al, 2007). In all cases, the available empirical and theoretical predictions do not adequately describe the observed transport. Furthermore, the data itself is highly scattered suggesting that the traditional non-dimensional framework used to describe incipient motion in low slope rivers (e.g. Shields number and relative grain roughness) may not adequately capture the physics of sediment transport in small, steep streams. We hypothesize that this discrepancy is due to centimeter-scale topographic variations and grain-size patchiness that appear to play an important role in controlling variations in sediment transport in these streams, especially at low-stage. Small steps and depressions within the channel bed create low-stage chutes and pools that result in highly variable flow velocities and basal shear stresses even within a single channel cross section. By changing shear stress distributions, these micro-topographic variations

  10. Millennial-scale ocean acidification and late Quaternary

    Energy Technology Data Exchange (ETDEWEB)

    Riding, Dr Robert E [University of Tennessee (UT); Liang, Liyuan [ORNL; Braga, Dr Juan Carlos [Universidad de Granada, Departamento de Estratigrafıa y Paleontologıa, Granada, Spain


    Ocean acidification by atmospheric carbon dioxide has increased almost continuously since the last glacial maximum (LGM), 21 000 years ago. It is expected to impair tropical reef development, but effects on reefs at the present day and in the recent past have proved difficult to evaluate. We present evidence that acidification has already significantly reduced the formation of calcified bacterial crusts in tropical reefs. Unlike major reef builders such as coralline algae and corals that more closely control their calcification, bacterial calcification is very sensitive to ambient changes in carbonate chemistry. Bacterial crusts in reef cavities have declined in thickness over the past 14 000 years with largest reduction occurring 12 000 10 000 years ago. We interpret this as an early effect of deglacial ocean acidification on reef calcification and infer that similar crusts were likely to have been thicker when seawater carbonate saturation was increased during earlier glacial intervals, and thinner during interglacials. These changes in crust thickness could have substantially affected reef development over glacial cycles, as rigid crusts significantly strengthen framework and their reduction would have increased the susceptibility of reefs to biological and physical erosion. Bacterial crust decline reveals previously unrecognized millennial-scale acidification effects on tropical reefs. This directs attention to the role of crusts in reef formation and the ability of bioinduced calcification to reflect changes in seawater chemistry. It also provides a long-term context for assessing anticipated anthropogenic effects.

  11. Receiver function analysis of the crust and upper mantle in Fennoscandia - isostatic implications

    DEFF Research Database (Denmark)

    Frassetto, Andrew; Thybo, Hans


    The mountains across southern Norway and other margins of the North Atlantic Ocean appear conspicuously high in the absence of recent convergent tectonics. We investigate this phenomenon with receiver functions calculated for seismometers deployed across southern Fennoscandia. These are used...... to constrain the structure and seismic properties of the lithosphere and primarily to measure the thickness and infer the bulk composition of the crust. Such parameters are key to understanding crustal isostasy and assessing its role, or lack thereof, in supporting the observed elevations. Our study focuses...... on the southern Scandes mountain range that has an average elevation >1.0 km above mean sea level. The crust-mantle boundary (Moho) is ubiquitously imaged, and we occasionally observe structures that may represent the base of the continental lithosphere or other thermal, chemical, or viscous boundaries...

  12. Crust and upper mantle structure in the Caribbean region by group velocity tomography and regionalization

    International Nuclear Information System (INIS)

    O'Leary, Gonzalez; Alvarez, L.; Chimera, G.; Panza, G.F.


    An overview of the crust and upper mantle structure of the Central America and Caribbean region is presented as a result of the processing of more than 200 seismograms recorded by digital broadband stations from SSSN and GSN seismic networks. By FTAN analysis of the fundamental mode of the Rayleigh waves, group velocity dispersion curves are obtained in the period range from 10 s to 40 s; the error of these measurements varies from 0.06 and 0.10 km/s. From the dispersion curves, seven tomographic maps at different periods and with average spatial resolution of 500 km are obtained. Using the logical combinatorial classification techniques, eight main groups of dispersion curves are determined from the tomographic maps and eleven main regions, each one characterized by one kind of dispersion curves, are identified. The average dispersion curves obtained for each region are extended to 150 s by adding data from the tomographic study of and inverted using a non-linear procedure. As a result of the inversion process, a set of models of the S-wave velocity vs. depth in the crust and upper mantle are found. In six regions, we identify a typically oceanic crust and upper mantle structure, while in the other two the models are consistent with the presence of a continental structure. Two regions, located over the major geological zones of the accretionary crust of the Caribbean region, are characterized by a peculiar crust and upper mantle structure, indicating the presence of lithospheric roots reaching, at least, about 200 km of depth. (author)

  13. Phase equilibrium modeling of incipient charnockite formation in NCKFMASHTO and MnNCKFMASHTO systems: A case study from Rajapalaiyam, Madurai Block, southern India

    Directory of Open Access Journals (Sweden)

    Takahiro Endo


    Full Text Available Incipient charnockites represent granulite formation on a mesoscopic scale and have received considerable attention in understanding fluid processes in the deep crust. Here we report new petrological data from an incipient charnockite locality at Rajapalaiyam in the Madurai Block, southern India, and discuss the petrogenesis based on mineral phase equilibrium modeling and pseudosection analysis. Rajapalaiyam is a key locality in southern India from where diagnostic mineral assemblages for ultrahigh-temperature (UHT metamorphism have been reported. Proximal to the UHT rocks are patches and lenses of charnockite (Kfs + Qtz + Pl + Bt + Opx + Grt + Ilm occurring within Opx-free Grt-Bt gneiss (Kfs + Pl + Qtz + Bt + Grt + Ilm + Mt which we report in this study. The application of mineral equilibrium modeling on the charnockitic assemblage in NCKFMASHTO system yields a p-T range of ∼820 °C and ∼9 kbar. Modeling of the charnockite assemblage in the MnNCKFMASHTO system indicates a slight shift of the equilibrium condition toward lower p and T (∼760 °C and ∼7.5 kbar, which is consistent with the results obtained from geothermobarometry (710–760 °C, 6.7–7.5 kbar, but significantly lower than the peak temperatures (>1000 °C recorded from the UHT rocks in this locality, suggesting that charnockitization is a post-peak event. The modeling of T versus molar H2O content in the rock (M(H2O demonstrates that the Opx-bearing assemblage in charnockite and Opx-free assemblage in Grt-Bt gneiss are both stable at M(H2O = 0.3 mol%–0.6 mol%, and there is no significant difference in water activity between the two domains. Our finding is in contrast to the previous petrogenetic model of incipient charnockite formation which envisages lowering of water activity and stabilization of orthopyroxene through breakdown of biotite by dehydration caused by the infiltration of CO2-rich fluid. T-XFe3+ (=Fe2O3/(FeO + Fe2O3 in

  14. Molecular controls on Cu and Zn isotopic fractionation in Fe-Mn crusts (United States)

    Little, S. H.; Sherman, D. M.; Vance, D.; Hein, J. R.


    The isotopic systems of the transition metals are increasingly being developed as oceanic tracers, due to their tendency to be fractionated by biological and/or redox-related processes. However, for many of these promising isotope systems the molecular level controls on their isotopic fractionations are only just beginning to be explored. Here we investigate the relative roles of abiotic and biotic fractionation processes in controlling modern seawater Cu and Zn isotopic compositions. Scavenging to Fe-Mn oxides represents the principal output for Cu and Zn to sediments deposited under normal marine (oxic) conditions. Using Fe-Mn crusts as an analogue for these dispersed phases, we investigate the phase association and crystal chemistry of Cu and Zn in such sediments. We present the results of an EXAFS study that demonstrate unequivocally that Cu and Zn are predominantly associated with the birnessite (δ-MnO2) phase in Fe-Mn crusts, as previously predicted from sequential leaching experiments (e.g., Koschinsky and Hein, 2003). The crystal chemistry of Cu and Zn in the crusts implies a reduction in coordination number in the sorbed phase relative to the free metal ion in seawater. Thus, theory would predict equilibrium fractionations that enrich the heavy isotope in the sorbed phase (e.g., Schauble, 2004). In natural samples, Fe-Mn crusts and nodules are indeed isotopically heavy in Zn isotopes (at ∼1‰) compared to deep seawater (at ∼0.5‰), consistent with the predicted direction of equilibrium isotopic fractionation based on our observations of the coordination environment of sorbed Zn. Further, ∼50% of inorganic Zn‧ is chloro-complexed (the other ∼50% is present as the free Zn2+ ion), and complexation by Cl- is also predicted to favour equilibrium partitioning of light Zn isotopes into the dissolved phase. The heavy Zn isotopic composition of Fe-Mn crusts and nodules relative to seawater can therefore be explained by an inorganic fractionation during

  15. Detecting incipient schizophrenia: a validation of the Azima battery in first episode psychosis. (United States)

    Zafran, Hiba; Mazer, Barbara; Tallant, Beverlea; Chilingaryan, Gevorg; Gelinas, Isabelle


    Early psychosis intervention aims to accurately detect adolescents and young adults at risk for major mental disorders, particularly schizophrenia, yet early biomedical diagnostic accuracy remains poor. However, phenomenological approaches focusing on eliciting and understanding the subjective experience of help-seeking youth better detect incipient schizophrenia. The Azima Battery is an occupational therapy projective assessment that uses expressive media in a standard setup, in order to phenomenologically elicit and describe the activity performance and narratives of individuals at risk of, or on, the psychotic-spectrum.The purpose of this study was to estimate the predictive validity of the Azima Battery with youth seeking help for a first episode of psychosis, and identify patterns of performance distinctive of a diagnosis of schizophrenia 1-year later. A mixed methods phenomenological approach was used to calculate the predictive validity of the Azima Battery in detecting incipient schizophrenia, and to qualitatively identify patterns of performance. Study results demonstrate that the diagnostic accuracy of the Azima Battery is greater than psychiatric interviewing for a future diagnosis of schizophrenia (N = 62: 88.7 % vs 42 %). Performance elements and patterns statistically distinctive of schizophrenia are described, and relate to the structure of the created objects. Therefore, the Azima Battery is a valid measure for clinical use by occupational therapists working in early intervention for psychosis as a complement to traditional psychiatric interviewing.

  16. Evaluation of CO2 laser irradiation effect on enamel microhardness after incipient caries creation

    Directory of Open Access Journals (Sweden)

    Loghman Rezaei-Soufi


    Full Text Available Objective: The important mission in modern science of caries prevention is identification and providing the necessary actions for caries prevention to patients with an elevated risk of caries. The aim of this study was evaluation of CO2 laser irradiation effect on enamel microhardness after incipient caries creation. Material and methods: In this in vitro-experimental study, for evaluation of enamel microhardness 30 teeth after disinfection process were divided randomly into three groups A, B, C [n=10]: A] Control [normal saline] B] Immersed in cariogenic solution for 1 month C] Immersed in cariogenic solution for 1 month + CO2 laser [10.6µm, 10Hz, 0.5W, 20s, beam diameter 0.2 mm]. Data analyzing was used by 16 SPSS software. Parametric one-way ANOVA and Tukey were used for surface microhardness at 0.05% significance level. Results: According to one-way ANOVA parametric test, there was a significant difference between three groups [p=0.047]. In the following, results of Tukey test showed that there was a significant statistical difference between the microhardness of control and other groups [P=0.038]. On the other hand, there wasn’t statistical difference between A, C and B, C group means [P>0.05]. Conclusion: These study findings showed that CO2 laser irradiation on enamel surface with incipient caries had no significant effect on surface microhardness enhancement.

  17. Velocity-based analysis of sediment incipient deposition in rigid boundary open channels. (United States)

    Aksoy, Hafzullah; Safari, Mir Jafar Sadegh; Unal, Necati Erdem; Mohammadi, Mirali


    Drainage systems must be designed in a way to minimize undesired problems such as decrease in hydraulic capacity of the channel, blockage and transport of pollutants due to deposition of sediment. Channel design considering self-cleansing criteria are used to solve the sedimentation problem. Incipient deposition is one of the non-deposition self-cleansing design criteria that can be used as a conservative method for channel design. Experimental studies have been carried out in five different cross-section channels, namely trapezoidal, rectangular, circular, U-shape and V-bottom. Experiments were performed in a tilting flume using four different sizes of sands as sediment in nine different channel bed slopes. Two well-known methods, namely the Novak & Nalluri and Yang methods are considered for the analysis of sediment motion. Equations developed using experimental data are found to be in agreement with the literature. It is concluded that the design velocity depends on the shape of the channel cross-section. Rectangular and V-bottom channels need lower and higher incipient deposition velocities, respectively, in comparison with other channels.

  18. Evaluation of diagnostic ability of CCD digital radiography in the detection of incipient dental caries

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Wan; Lee, Byung Do [Wonkwang University College of Medicine, Iksan (Korea, Republic of)


    The purpose of this experiment was to evaluate the diagnostic ability of a CCD-based digital system (CDX-2000HQ) in the detection of incipient dental caries. 93 extracted human teeth with sound proximal surfaces and interproximal artificial cavities were radiographed using 4 imaging methods. Automatically processed No.2 Insight film (Eastman Kodak Co., U.S.A.) was used for conventional radiography, scanned images of conventional radiograms for indirect digital radiography were used. For the direct digital radiography, the CDX-2000HQ CCD system (Biomedisys Co. Korea) was used. The subtraction images were made from two direct digital images by Sunny program in the CDX-2000HQ system. Two radiologists and three endodontists examined the presence of lesions using a five-point confidence scale and compared the diagnostic ability by ROC (Receiver Operating Characteristic) analysis and one way ANOVA test. The mean ROC areas of conventional radiography, indirect digital radiography, direct digital radiography, and digital subtraction radiography were 0.9093, 0.9102, 0.9184, and 0.9056, respectively. The diagnostic ability of direct digital radiography was better than the other imaging modalities, but there were no statistical differences among these imaging modalities (p>0.05). These results indicate that new CCD-based digital systems (CDX-2000HQ) have the potential to serve as an alternative to conventional radiography in the detection of incipient dental caries.

  19. Evaluation of diagnostic ability of CCD digital radiography in the detection of incipient dental caries

    International Nuclear Information System (INIS)

    Lee, Wan; Lee, Byung Do


    The purpose of this experiment was to evaluate the diagnostic ability of a CCD-based digital system (CDX-2000HQ) in the detection of incipient dental caries. 93 extracted human teeth with sound proximal surfaces and interproximal artificial cavities were radiographed using 4 imaging methods. Automatically processed No.2 Insight film (Eastman Kodak Co., U.S.A.) was used for conventional radiography, scanned images of conventional radiograms for indirect digital radiography were used. For the direct digital radiography, the CDX-2000HQ CCD system (Biomedisys Co. Korea) was used. The subtraction images were made from two direct digital images by Sunny program in the CDX-2000HQ system. Two radiologists and three endodontists examined the presence of lesions using a five-point confidence scale and compared the diagnostic ability by ROC (Receiver Operating Characteristic) analysis and one way ANOVA test. The mean ROC areas of conventional radiography, indirect digital radiography, direct digital radiography, and digital subtraction radiography were 0.9093, 0.9102, 0.9184, and 0.9056, respectively. The diagnostic ability of direct digital radiography was better than the other imaging modalities, but there were no statistical differences among these imaging modalities (p>0.05). These results indicate that new CCD-based digital systems (CDX-2000HQ) have the potential to serve as an alternative to conventional radiography in the detection of incipient dental caries.

  20. Ecosystem Composition Controls the Fate of Rare Earth Elements during Incipient Soil Genesis (United States)

    Zaharescu, Dragos G.; Burghelea, Carmen I.; Dontsova, Katerina; Presler, Jennifer K.; Maier, Raina M.; Huxman, Travis; Domanik, Kenneth J.; Hunt, Edward A.; Amistadi, Mary K.; Gaddis, Emily E.; Palacios-Menendez, Maria A.; Vaquera-Ibarra, Maria O.; Chorover, Jon


    The rare earth elements (REE) are increasingly important in a variety of science and economic fields, including (bio)geosciences, paleoecology, astrobiology, and mining. However, REE distribution in early rock-microbe-plant systems has remained elusive. We tested the hypothesis that REE mass-partitioning during incipient weathering of basalt, rhyolite, granite and schist depends on the activity of microbes, vascular plants (Buffalo grass), and arbuscular mycorrhiza. Pore-water element abundances revealed a rapid transition from abiotic to biotic signatures of weathering, the latter associated with smaller aqueous loss and larger plant uptake. Abiotic dissolution was 39% of total denudation in plant-microbes-mycorrhiza treatment. Microbes incremented denudation, particularly in rhyolite, and this resulted in decreased bioavailable solid pools in this rock. Total mobilization (aqueous + uptake) was ten times greater in planted compared to abiotic treatments, REE masses in plant generally exceeding those in water. Larger plants increased bioavailable solid pools, consistent with enhanced soil genesis. Mycorrhiza generally had a positive effect on total mobilization. The main mechanism behind incipient REE weathering was carbonation enhanced by biotic respiration, the denudation patterns being largely dictated by mineralogy. A consistent biotic signature was observed in La:phosphate and mobilization: solid pool ratios, and in the pattern of denudation and uptake.

  1. Perspectives on Geoacoustic Inversion of Ocean Bottom Reflectivity Data

    Directory of Open Access Journals (Sweden)

    N. Ross Chapman


    Full Text Available This paper focuses on acoustic reflectivity of the ocean bottom, and describes inversion of reflection data from an experiment designed to study the physical properties and structure of the ocean bottom. The formalism of Bayesian inference is reviewed briefly to establish an understanding of the approach for inversion that is in widespread use. A Bayesian inversion of ocean bottom reflection coefficient versus angle data to estimate geoacoustic model parameters of young oceanic crust is presented. The data were obtained in an experiment to study the variation of sound speed in crustal basalt with age of the crust at deep water sites in the Pacific Ocean where the sediment deposits overlying the basalt are very thin. The inversion results show that sound speed of both compressional and shear waves is increasing with crustal age over the track of the experiment where age increased from 40 to 70 million years.

  2. Acute and long-term effect of antihypertensive treatment on exercise-induced albuminuria in incipient diabetic nephropathy

    DEFF Research Database (Denmark)

    Christensen, Cramer; Mogensen, C E


    . In the acute study, using placebo/metoprolol 10 mg i.v. in patients with normal UAE, the maximal SBP at 600 kpm/min was reduced by 17 mmHg +/- 10 (SD) (2p less than 1.0%) and the maximal SBP at 600 kpm/min in the patients with incipient nephropathy was reduced by 15 mmHg +/- 11 (SD) (2p less than 1.......0%). However, no difference was observed in UAE, in patients with normal UAE or those with incipient nephropathy. Five of the patients with incipient nephropathy were followed with repeated exercise tests before and during 2.6 years of antihypertensive treatment, using metoprolol 200 mg/24 h and subsequently...

  3. The morphostructure of the atlantic ocean floor its development in the meso-cenozoic

    CERN Document Server

    Litvin, V M


    The study of the topography and structure of the ocean floor is one of the most important stages in ascertaining the geological structure and history of development of the Earth's oceanic crust. This, in its turn, provides a means for purposeful, scientifically-substantiated prospecting, exploration and development of the mineral resources of the ocean. The Atlantic Ocean has been geologically and geophysically studied to a great extent and many years of investigating its floor have revealed the laws governing the structure of the major forms of its submarine relief (e. g. , the continental shelf, the continental slope, the transition zones, the ocean bed, and the Mid-Oceanic Ridge). The basic features of the Earth's oceanic crust structure, anomalous geophysical fields, and the thickness and structure of its sedimentary cover have also been studied. Based on the investigations of the Atlantic Ocean floor and its surrounding continents, the presently prevalent concept of new global tectonics has appeared. A g...

  4. Review of candidate methods for detecting incipient defects due to aging of installed cables in nuclear power plants

    International Nuclear Information System (INIS)

    Martzloff, F.D.


    Several types of test methods have been proposed for detecting incipient defects due to aging in cable insulation systems, none offering certainty of detecting all possible types of defects. Some methods apply direct detection of a defect in the cable; other methods detect changes in electrical or non-electrical parameters from which inference can be drawn on the integrity of the cable. The paper summarizes the first year of a program conducted at the National Bureau of Standards to assess the potential of success for in situ detection of incipient defects by the most promising of these methods

  5. Forward modelling of oceanic lithospheric magnetization (United States)

    Masterton, S. M.; Gubbins, D.; Müller, R. D.; Singh, K. H.


    We construct a model of remanence for the oceans, combine it with a model of induced magnetization for the whole Earth from a previous study, compute the predicted lithospheric geomagnetic field and compare the result with a model, MF7, that is based on satellite data. Remanence is computed by assigning magnetizations to the oceanic lithosphere acquired at the location and time of formation. The magnetizing field is assumed to be an axial dipole that switches polarity with the reversal time scale. The magnetization evolves with time by decay of thermal remanence and acquisition of chemical remanence. The direction of remanence is calculated by Euler rotation of the original geomagnetic field direction with respect to an absolute reference frame, significantly improving previous results which did not include realistic oceanic magnetization computed this way. Remanence only accounts for 24 per cent of the energy of the oceanic magnetization, the induced magnetization being dominant, increasing slightly to 30 per cent of the part of the magnetization responsible for generating geomagnetic anomalies and 39 per cent of the Lowes energy of the geomagnetic anomalies. This is because our model of oceanic crust and lithosphere is fairly uniform, and a uniform layer magnetized by a magnetic field of internal origin produces no external field. The largest anomalies are produced by oceanic lithosphere magnetized during the Cretaceous Normal Superchron. Away from ridges and magnetic quiet zones the prediction fails to match the MF7 values; these are also generally, but not always, somewhat smaller than the observations. This may indicate that the magnetization estimates are too small, in which case the most likely error is in the poorly-known magnetization deep in the crust or upper mantle, or it may indicate some other source such as locally underplated continental lithosphere or anomalous oceanic crust, or even small-scale core fields.

  6. Non-cyanobacterial diazotrophs mediate dinitrogen fixation in biological soil crusts during early crust formation. (United States)

    Pepe-Ranney, Charles; Koechli, Chantal; Potrafka, Ruth; Andam, Cheryl; Eggleston, Erin; Garcia-Pichel, Ferran; Buckley, Daniel H


    Biological soil crusts (BSCs) are key components of ecosystem productivity in arid lands and they cover a substantial fraction of the terrestrial surface. In particular, BSC N2-fixation contributes significantly to the nitrogen (N) budget of arid land ecosystems. In mature crusts, N2-fixation is largely attributed to heterocystous cyanobacteria; however, early successional crusts possess few N2-fixing cyanobacteria and this suggests that microorganisms other than cyanobacteria mediate N2-fixation during the critical early stages of BSC development. DNA stable isotope probing with (15)N2 revealed that Clostridiaceae and Proteobacteria are the most common microorganisms that assimilate (15)N2 in early successional crusts. The Clostridiaceae identified are divergent from previously characterized isolates, though N2-fixation has previously been observed in this family. The Proteobacteria identified share >98.5% small subunit rRNA gene sequence identity with isolates from genera known to possess diazotrophs (for example, Pseudomonas, Klebsiella, Shigella and Ideonella). The low abundance of these heterotrophic diazotrophs in BSCs may explain why they have not been characterized previously. Diazotrophs have a critical role in BSC formation and characterization of these organisms represents a crucial step towards understanding how anthropogenic change will affect the formation and ecological function of BSCs in arid ecosystems.

  7. Experimental Constraints on Fluid-Rock Reactions during Incipient Serpentinization of Harzburgite (United States)

    Klein, F.; Grozeva, N. G.; Seewald, J.; McCollom, T. M.; Humphris, S. E.; Moskowitz, B. M.; Berquo, T. S.; Kahl, W. A.


    The exposure of mantle peridotite to water at crustal levels leads to a cascade of interconnected dissolution-precipitation and reduction-oxidation reactions - a process referred to as serpentinization. These reactions have major implications for microbial life through the provision of hydrogen (H2). To simulate incipient serpentinization and the release of H2 under well-constrained conditions, we reacted uncrushed harzburgite with chemically modified seawater at 300°C and 35 MPa for ca. 1.5 years (13441 hours), monitored changes in fluid chemistry over time, and examined the secondary mineralogy at the termination of the experiment. Approximately 4 mol % of the protolith underwent alteration forming serpentine, accessory magnetite, chlorite, and traces of calcite and heazlewoodite. Alteration textures bear remarkable similarities to those found in partially serpentinized abyssal peridotites. Neither brucite nor talc precipitated during the experiment. Given that the starting material contained ~3.8 times more olivine than orthopyroxene on a molar basis, mass balance requires that dissolution of orthopyroxene was significantly faster than dissolution of olivine. However, the H2 release rate was not uniform, slowing from ~2 nmol H2(aq) gperidotite-1 s-1 at the beginning of the experiment to ~0.2 nmol H2(aq) gperidotite-1 s-1 at its termination. Serpentinization consumed water but did not release significant amounts of dissolved species (other than H2) suggesting that incipient hydration reactions involved a volume increase of ~40%. The reduced access of water to olivine surfaces due to filling of fractures and coating of primary minerals with alteration products led to decreased rates of serpentinization and H2 release. While this concept might seem at odds with completely serpentinized seafloor peridotites, reaction-driven fracturing offers an intriguing solution to the seemingly self-limiting nature of serpentinization. Indeed, the reacted sample revealed a

  8. Surface coating for prevention of crust formation

    Energy Technology Data Exchange (ETDEWEB)

    Kronberg, J.W.


    A flexible surface coating which promotes the removal of deposits as they reach the surface by preventing adhesion and crust formation is disclosed. Flexible layers are attached to each side of a flexible mesh substrate comprising of a plurality of zones composed of one or more neighboring cells, each zone having a different compressibility than its adjacent zones. The substrate is composed of a mesh made of strands and open cells. The cells may be filled with foam. Studs or bearings may also be positioned in the cells to increase the variation in compressibility and thus the degree of flexing of the coating. Surface loading produces varying amounts of compression from point to point causing the coating to flex as deposits reach it, breaking up any hardening deposits before a continuous crust forms. Preferably one or more additional layers are also used, such as an outer layer of a non-stick material such as TEFLON, which may be pigmented, and an inner, adhesive layer to facilitate applying the coating to a surface. 5 figs.

  9. CHAMP Magnetic Anomalies of the Antarctic Crust (United States)

    Kim, Hyung Rae; Gaya-Pique, Luis R.; vonFrese, Ralph R. B.; Taylor, Patrick T.; Kim, Jeong Woo


    Regional magnetic signals of the crust are strongly masked by the core field and its secular variations components and hence difficult to isolate in the satellite measurements. In particular, the un-modeled effects of the strong auroral external fields and the complicated- behavior of the core field near the geomagnetic poles conspire to greatly reduce the crustal magnetic signal-to-noise ratio in the polar regions relative to the rest of the Earth. We can, however, use spectral correlation theory to filter the static lithospheric and core field components from the dynamic external field effects. To help isolate regional lithospheric from core field components, the correlations between CHAMP magnetic anomalies and the pseudo magnetic effects inferred from gravity-derived crustal thickness variations can also be exploited.. Employing these procedures, we processed the CHAMP magnetic observations for an improved magnetic anomaly map of the Antarctic crust. Relative to the much higher altitude Orsted and noisier Magsat observations, the CHAMP magnetic anomalies at 400 km altitude reveal new details on the effects of intracrustal magnetic features and crustal thickness variations of the Antarctic.

  10. Kinetics of the crust thickness development of bread during baking. (United States)

    Soleimani Pour-Damanab, Alireza; Jafary, A; Rafiee, Sh


    The development of crust thickness of bread during baking is an important aspect of bread quality and shelf-life. Computer vision system was used for measuring the crust thickness via colorimetric properties of bread surface during baking process. Crust thickness had a negative and positive relationship with Lightness (L (*) ) and total color change (E (*) ) of bread surface, respectively. A linear negative trend was found between crust thickness and moisture ratio of bread samples. A simple mathematical model was proposed to predict the development of crust thickness of bread during baking, where the crust thickness was depended on moisture ratio that was described by the Page moisture losing model. The independent variables of the model were baking conditions, i.e. oven temperature and air velocity, and baking time. Consequently, the proposed model had well prediction ability, as the mean absolute estimation error of the model was 7.93 %.

  11. White coat hypertension in NIDDM patients with and without incipient and overt diabetic nephropathy

    DEFF Research Database (Denmark)

    Nielsen, F S; Gaede, P; Vedel, P


    OBJECTIVE: Early data have suggested a high prevalence of white coat hypertension (approximately 50%) in NIDDM patients. To study this phenomenon further, we determined the prevalence of white coat hypertension in NIDDM patients with normo- or microalbuminuria or with diabetic nephropathy. RESEARCH...... DESIGN AND METHODS: Three groups of hypertensive NIDDM patients (repeated clinic blood pressure > 140/90 mmHg or antihypertensive treatment) attending the Steno Diabetes Center were investigated in a cross-sectional study. Group 1 had normoalbuminuria (a urinary albumin excretion [UAE] rate ... in normoalbuminuric NIDDM patients resembles that observed in nondiabetic subjects with essential hypertension, whereas the prevalence is significantly lower in NIDDM patients with incipient or overt diabetic nephropathy, suggesting a difference between primary and secondary hypertension....

  12. Monitoring kidney function in type 2 diabetic patients with incipient and overt diabetic nephropathy

    DEFF Research Database (Denmark)

    Rossing, Peter; Rossing, Kasper; Gaede, Peter


    -EDTA. RESEARCH DESIGN AND METHODS: We followed a cohort of 156 microalbuminuric type 2 diabetic patients for 8 years with four measurements of GFR and another cohort of 227 type 2 diabetic patients with overt diabetic nephropathy for 6.5 (range 3-17) years with seven (3-22) measurements of GFR. RESULTS...... is also significantly underestimated with both equations. This makes GFR estimations based upon these equations unacceptable for monitoring kidney function in type 2 diabetic patients with incipient and overt diabetic nephropathy.......OBJECTIVE: The purpose of this study was to assess agreement between glomerular filtration rate (GFR) and the decline in GFR estimated with the Modification of Diet in Renal Disease (MDRD) Study Group equation or the Cockcroft-Gault formula and measured by the plasma clearance of 51Cr...

  13. Incipient ferroelectricity of water molecules confined to nano-channels of beryl (United States)

    Gorshunov, B. P.; Torgashev, V. I.; Zhukova, E. S.; Thomas, V. G.; Belyanchikov, M. A.; Kadlec, C.; Kadlec, F.; Savinov, M.; Ostapchuk, T.; Petzelt, J.; Prokleška, J.; Tomas, P. V.; Pestrjakov, E. V.; Fursenko, D. A.; Shakurov, G. S.; Prokhorov, A. S.; Gorelik, V. S.; Kadyrov, L. S.; Uskov, V. V.; Kremer, R. K.; Dressel, M.


    Water is characterized by large molecular electric dipole moments and strong interactions between molecules; however, hydrogen bonds screen the dipole-dipole coupling and suppress the ferroelectric order. The situation changes drastically when water is confined: in this case ordering of the molecular dipoles has been predicted, but never unambiguously detected experimentally. In the present study we place separate H2O molecules in the structural channels of a beryl single crystal so that they are located far enough to prevent hydrogen bonding, but close enough to keep the dipole-dipole interaction, resulting in incipient ferroelectricity in the water molecular subsystem. We observe a ferroelectric soft mode that causes Curie-Weiss behaviour of the static permittivity, which saturates below 10 K due to quantum fluctuations. The ferroelectricity of water molecules may play a key role in the functioning of biological systems and find applications in fuel and memory cells, light emitters and other nanoscale electronic devices.

  14. White coat hypertension in NIDDM patients with and without incipient and overt diabetic nephropathy

    DEFF Research Database (Denmark)

    Nielsen, F S; Gaede, P; Vedel, P


    in normoalbuminuric NIDDM patients resembles that observed in nondiabetic subjects with essential hypertension, whereas the prevalence is significantly lower in NIDDM patients with incipient or overt diabetic nephropathy, suggesting a difference between primary and secondary hypertension.......OBJECTIVE: Early data have suggested a high prevalence of white coat hypertension (approximately 50%) in NIDDM patients. To study this phenomenon further, we determined the prevalence of white coat hypertension in NIDDM patients with normo- or microalbuminuria or with diabetic nephropathy. RESEARCH...... DESIGN AND METHODS: Three groups of hypertensive NIDDM patients (repeated clinic blood pressure > 140/90 mmHg or antihypertensive treatment) attending the Steno Diabetes Center were investigated in a cross-sectional study. Group 1 had normoalbuminuria (a urinary albumin excretion [UAE] rate

  15. Radiographic diagnosis of incipient proximal caries: an ex-vivo study. (United States)

    da Silva Neto, José Moreira; dos Santos, Rosenês Lima; Sampaio, Maria Carmeli Correia; Sampaio, Fábio Correia; Passos, Isabela Albuquerque


    The aim of this ex vivo study was to compare visual clinical and radiographic examinations to the histological analysis for proximal caries diagnosis in extracted permanent molars and premolars. The relationship between clinical aspects and carious lesions was also evaluated. Eighty-eight proximal surfaces (44 freshly extracted teeth) were longitudinally sectioned with a 370-microm diamond disk, thinned with wet silicon carbide paper and observed with a stereomicroscope at x40 magnification. Sensitivity and specificity were 65.6% and 83.3% for clinical examination and 29.7% and 95.8% for radiographic examination, respectively. Kappa values ranged from 0.64 to 0.91. The white spots corresponded to lesions restricted to enamel, while the dark spots corresponded to lesions that reached the dentinoenamel junction. In most cases, cavitation corresponded to dentin lesions. It may be concluded that interproximal radiographic examination is not a reliable method for detection of incipient proximal carious lesions.

  16. Crust formation and its effect on the molten pool coolability

    Energy Technology Data Exchange (ETDEWEB)

    Park, R.J.; Lee, S.J.; Sim, S.K. [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)


    Experimental and analytical studies of the crust formation and its effect on the molten pool coolability have been performed to examine the crust formation process as a function of boundary temperatures as well as to investigate heat transfer characteristics between molten pool and overlying water in order to evaluate coolability of the molten pool. The experimental test results have shown that the surface temperature of the bottom plate is a dominant parameter in the crust formation process of the molten pool. It is also found that the crust thickness of the case with direct coolant injection into the molten pool is greater than that of the case with a heat exchanger. Increasing mass flow rate of direct coolant injection to the molten pool does not affect the temperature of molten pool after the crust has been formed in the molten pool because the crust behaves as a thermal barrier. The Nusselt number between the molten pool and the coolant of the case with no crust formation is greater than that of the case with crust formation. The results of FLOW-3D analyses have shown that the temperature distribution contributes to the crust formation process due to Rayleigh-Benard natural convection flow.

  17. Biological Soil Crusts: Webs of Life in the Desert (United States)

    Belnap, Jayne


    Although the soil surface may look like dirt to you, it is full of living organisms that are a vital part of desert ecosystems. This veneer of life is called a biological soil crust. These crusts are found throughout the world, from hot deserts to polar regions. Crusts generally cover all soil spaces not occupied by green plants. In many areas, they comprise over 70% of the living ground cover and are key in reducing erosion, increasing water retention, and increasing soil fertility. In most dry regions, these crusts are dominated by cyanobacteria (previously called blue-green algae), which are one of the oldest known life forms. Communities of soil crusts also include lichens, mosses, microfungi, bacteria, and green algae. These living organisms and their by-products create a continuous crust on the soil surface. The general color, surface appearance, and amount of coverage of these crusts vary depending on climate and disturbance patterns. Immature crusts are generally flat and the color of the soil, which makes them difficult to distinguish from bare ground. Mature crusts, in contrast, are usually bumpy and dark-colored due to the presence of lichens, mosses, and high densities of cyanobacteria and other organisms.

  18. Incipient Social Groups: An Analysis via In-Vivo Behavioral Tracking.

    Directory of Open Access Journals (Sweden)

    Jamin Halberstadt

    Full Text Available Social psychology is fundamentally the study of individuals in groups, yet there remain basic unanswered questions about group formation, structure, and change. We argue that the problem is methodological. Until recently, there was no way to track who was interacting with whom with anything approximating valid resolution and scale. In the current study we describe a new method that applies recent advances in image-based tracking to study incipient group formation and evolution with experimental precision and control. In this method, which we term "in vivo behavioral tracking," we track individuals' movements with a high definition video camera mounted atop a large field laboratory. We report results of an initial study that quantifies the composition, structure, and size of the incipient groups. We also apply in-vivo spatial tracking to study participants' tendency to cooperate as a function of their embeddedness in those crowds. We find that participants form groups of seven on average, are more likely to approach others of similar attractiveness and (to a lesser extent gender, and that participants' gender and attractiveness are both associated with their proximity to the spatial center of groups (such that women and attractive individuals are more likely than men and unattractive individuals to end up in the center of their groups. Furthermore, participants' proximity to others early in the study predicted the effort they exerted in a subsequent cooperative task, suggesting that submergence in a crowd may predict social loafing. We conclude that in vivo behavioral tracking is a uniquely powerful new tool for answering longstanding, fundamental questions about group dynamics.

  19. Incipient Social Groups: An Analysis via In-Vivo Behavioral Tracking. (United States)

    Halberstadt, Jamin; Jackson, Joshua Conrad; Bilkey, David; Jong, Jonathan; Whitehouse, Harvey; McNaughton, Craig; Zollmann, Stefanie


    Social psychology is fundamentally the study of individuals in groups, yet there remain basic unanswered questions about group formation, structure, and change. We argue that the problem is methodological. Until recently, there was no way to track who was interacting with whom with anything approximating valid resolution and scale. In the current study we describe a new method that applies recent advances in image-based tracking to study incipient group formation and evolution with experimental precision and control. In this method, which we term "in vivo behavioral tracking," we track individuals' movements with a high definition video camera mounted atop a large field laboratory. We report results of an initial study that quantifies the composition, structure, and size of the incipient groups. We also apply in-vivo spatial tracking to study participants' tendency to cooperate as a function of their embeddedness in those crowds. We find that participants form groups of seven on average, are more likely to approach others of similar attractiveness and (to a lesser extent) gender, and that participants' gender and attractiveness are both associated with their proximity to the spatial center of groups (such that women and attractive individuals are more likely than men and unattractive individuals to end up in the center of their groups). Furthermore, participants' proximity to others early in the study predicted the effort they exerted in a subsequent cooperative task, suggesting that submergence in a crowd may predict social loafing. We conclude that in vivo behavioral tracking is a uniquely powerful new tool for answering longstanding, fundamental questions about group dynamics.

  20. Plucking in Mixed Alluvial-Bedrock Rivers: The Incipient Motion Problem (United States)

    Hurst, A. A.; Furbish, D. J.


    Bedrock river channel erosion is an important factor in the evolution of landscapes, driving the relief of mountainous drainage basins and setting the lowest erosional positions of terrestrial landscapes. The mechanics behind erosional processes (predominantly plucking and abrasion) in these rivers are only recently being explored in depth. Plucking, the fracture and extraction of jointed blocks, is observationally an order of magnitude more efficient than abrasion, but if a river cannot provide the force necessary to move the plucked block, erosion by plucking cannot proceed. Therefore, incipient motion of blocks starting at rest on a solid surface is an important factor in erosion by plucking. Calculations of forces necessary for incipient motion require values of drag coefficients, which do not exist for bedrock contact geometry. We discovered from experiments on a flume that drag coefficients (CD) are inversely proportional to aspect ratios (RA), defined as the frontal block height to width. We used the relationship with field data from plucked blocks at a stream at Montgomery Bell State Park in Burns, TN, a mixed-alluvial bedrock channel with an actively incising knick zone, to support our theory and experimental data. Sizes of plucked blocks were compared to the velocities needed to move them, and then calculations done for bankfull velocities at the stream at Montgomery Bell to determine if it could attain these velocities. It was discovered that this stream has a bankfull depth-averaged velocity of 1.26 m s-1 and is capable of moving a large range of plucked block sizes. Therefore, erosion of this particular stream is plucking-limited, not transport-limited.

  1. Improved detection of incipient anomalies via multivariate memory monitoring charts: Application to an air flow heating system

    KAUST Repository

    Harrou, Fouzi


    Detecting anomalies is important for reliable operation of several engineering systems. Multivariate statistical monitoring charts are an efficient tool for checking the quality of a process by identifying abnormalities. Principal component analysis (PCA) was shown effective in monitoring processes with highly correlated data. Traditional PCA-based methods, nevertheless, often are relatively inefficient at detecting incipient anomalies. Here, we propose a statistical approach that exploits the advantages of PCA and those of multivariate memory monitoring schemes, like the multivariate cumulative sum (MCUSUM) and multivariate exponentially weighted moving average (MEWMA) monitoring schemes to better detect incipient anomalies. Memory monitoring charts are sensitive to incipient anomalies in process mean, which significantly improve the performance of PCA method and enlarge its profitability, and to utilize these improvements in various applications. The performance of PCA-based MEWMA and MCUSUM control techniques are demonstrated and compared with traditional PCA-based monitoring methods. Using practical data gathered from a heating air-flow system, we demonstrate the greater sensitivity and efficiency of the developed method over the traditional PCA-based methods. Results indicate that the proposed techniques have potential for detecting incipient anomalies in multivariate data. © 2016 Elsevier Ltd

  2. Incipient-signature identification of mechanical anomalies in a ship-borne satellite antenna system using an ensemble multiwavelet

    International Nuclear Information System (INIS)

    He, Shuilong; Zi, Yanyang; Chen, Jinglong; Chen, Binqiang; He, Zhengjia; Zhao, Chenlu; Yuan, Jing


    The instrumented tracking and telemetry ship with a ship-borne satellite antenna (SSA) is the critical device to ensure high quality of space exploration work. To effectively detect mechanical anomalies that can lead to unexpected downtime of the SSA, an ensemble multiwavelet (EM) is presented for identifying the anomaly related incipient-signatures within the measured dynamic signals. Rather than using a predetermined basis as in a conventional multiwavelet, an EM optimizes the matching basis which satisfactorily adapts to the anomaly related incipient-signatures. The construction technique of an EM is based on the conjunction of a two-scale similarity transform (TST) and lifting scheme (LS). For the technique above, the TST improves the regularity by increasing the approximation order of multiscaling functions, while subsequently the LS enhances the smoothness and localizability via utilizing the vanishing moment of multiwavelet functions. Moreover, combining the Hilbert transform with EM decomposition, we identify the incipient-signatures induced by the mechanical anomalies from the measured dynamic signals. A numerical simulation and two successful applications of diagnosis cases (a planetary gearbox and a roller bearing) demonstrate that the proposed technique is capable of dealing with the challenging incipient-signature identification task even though spectral complexity, as well as the strong amplitude/frequency modulation effect, is present in the dynamic signals. (paper)

  3. Exploring the plutonic crust at a fast-spreading ridge:new drilling at Hess Deep

    Energy Technology Data Exchange (ETDEWEB)

    Gillis, Kathryn M. [Univ. of Victoria, BC (Canada). School of Earth and Ocean Sciences; Snow, Jonathan E. [Univ. of Houston, Houston, TX (United States). Earth & Atmospheric Sciences; Klaus, Adam [Texas A & M Univ., College Station, TX (United States). Integrated Ocean Drilling Program (IODP). United States Implementing Organization.; Guerin, Gilles [Lamont-Doherty Earth Observatory of Columbia Univ., Palisades, NY (United States). Borehole Research Group; Abe, Natsue [Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka (Japan). Inst. for Research on Earth Evolution (IFREE); Akizawa, Norikatsu [Kanazawa Univ. (Japan). Dept. of Earth Sciences; Ceuleneer, Georges [Univ. Paul Sabatier, Toulouse (France). Observatoire Midi-Pyrenees (UMS 831), CNRS; Cheadle, Michael J. [Univ. of Wyoming, Laramie, WY (United States). Dept. of Geology and Geophysics; Adriao, Alden de Brito [Federal Univ. of Rio Grande do Sul, Porto Alegre (Brazil). Geology Inst. (IGEO); Faak, Kathrin [Ruhr Univ., Bochum (Germany). Geological Inst.; Falloon, Trevor J. [Univ. of Tasmania, Hobart, TAS (Australia). Inst. for Marine and Antarctic Studies; Friedman, Sarah A. [Southern Illinois Univ., Carbondale, IL (United States). Dept. of Geology; Godard, Marguerite M. [Univ. Montpellier II (France). Geosciences Montpellier-UMR 5243; Harigane, Yumiko [National Inst. of Advanced Industrial Science and Technology (AIST), Tsukuba (Japan). Marine Geology Dept.; Horst, Andrew J. [Syracuse Univ., NY (United States). Dept. of Earth Science; Hoshide, Takashi [Tohoku Univ., Sendai (Japan). Graduate School of Science; Ildefonse, Benoit [Univ. Montpellier II (France). Lab. de Tectonophysique; Jean, Marlon M. [Northern Illinois Univ., DeKalb, IL (United States). Dept. of Geology and Environmental Geosciences; John, Barbara E. [Univ. of Wyoming, Laramie, WY (United States). Dept. of Geology and Geophysics; Koepke, Juergen H. [Univ. of Hannover (Germany). Inst. of Mineralogy; Machi, Sumiaki [Kanazawa Univ. (Japan). Dept. of Earth Sciences; Maeda, Jinichiro [Hokkaido Univ., Sapporo (Japan). Dept. of Natural History Sciences; Marks, Naomi E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). Chemistry and Material Sciences Dept.; McCaig, Andrew M. [Univ. of Leeds (United Kingdom). School of Earth and Environment; Meyer, Romain [Univ. of Bergen (Norway). Dept. of Earth Science and Centre for Geobiology; Morris, Antony [Univ. of Plymouth (United Kingdom). School of Earth, Ocean & Environmental Sciences; Nozaka, Toshio [Okayama Univ. (Japan). Dept. of Earth Sciences; Python, Marie [Hokkaido Univ., Sapporo (Japan). Dept. of Earth and Planetary Sciences; Saha, Abhishek [Indian Inst. of Science (IISC), Bangalore (India). Centre for Earth Sciences; Wintsch, Robert P. [Indiana Univ., Bloomington, IN (United States). Dept. of Geological Sciences


    Integrated Ocean Drilling Program (IODP) Hess Deep Expedition 345 was designed to sample lower crustal primitive gabbroic rocks that formed at the fast-spreading East Pacific Rise (EPR) in order to test models of magmatic accretion and the intensity of hydrothermal cooling at depth. The Hess Deep Rift was selected to exploit tectonic exposures of young EPR plutonic crust, building upon results from ODP Leg 147 as well as more recent submersible, remotely operated vehicle, and near-bottom surveys. The primary goal was to acquire the observations required to test end-member crustal accretion models that were in large part based on relationships from ophiolites, in combination with mid-ocean ridge geophysical studies. This goal was achieved with the recovery of primitive layered olivine gabbros and troctolites with many unexpected mineralogical and textural relationships, such as the abundance of orthopyroxene and the preservation of delicate skeletal olivine textures.

  4. Crusting susceptibility in some allic Colombian soils

    International Nuclear Information System (INIS)

    Arias, Dora M; Madero E E; Amezquita E


    Many lab methods were used: dry and water soil aggregates stability, instability index and erosion index and their results were related with soil characteristics like texture, Fe and Al oxides and organic matter. Soil samples collected within 0-2.5 and 2.5-5 cm of the soil surface came from terrains with many kinds of both forest and savanna intervened systems. Those results were analyzed like a completely randomized designed. It was found that significative changes in oxides content could increase soil-crusting susceptibility unless soil humus was up to was up to 4%. In this sense, pastures or its rotation with rice and leguminous offer a best alternative for intervening these natural systems. Intensive land husbandry or monocultures with low stubble soil incorporation caused an increase in physical instability at the top of soil. Dry soil stability test and instability index were most adequate for these soils

  5. Moho vs crust-mantle boundary: Evolution of an idea (United States)

    O'Reilly, Suzanne Y.; Griffin, W. L.


    The concept that the Mohorovicic Discontinuity (Moho) does not necessarily coincide with the base of the continental crust as defined by rock-type compositions was introduced in the early 1980s. This had an important impact on understanding the nature of the crust-mantle boundary using information from seismology and from deep-seated samples brought to the surface as xenoliths in magmas, or as tectonic terranes. The use of empirically-constrained P-T estimates to plot the locus of temperature vs depth for xenoliths defined a variety of geotherms depending on tectonic environment. The xenolith geotherms provided a framework for constructing lithological sections through the deep lithosphere, and revealed that the crust-mantle boundary in off-craton regions commonly is transitional over a depth range of about 5-20 km. Early seismic-reflection data showed common layering near the Moho, correlating with the petrological observation of multiple episodes of basaltic intrusion around the crust-mantle boundary. Developments in seismology, petrophysics and experimental petrology have refined interpretation of lithospheric domains. The expansion of in situ geochronology (especially zircon U-Pb ages and Hf-isotopes; Os isotopes of mantle sulfides) has defined tectonic events that affected whole crust-mantle sections, and revealed that the crust-mantle boundary can change in depth through time. However, the nature of the crust-mantle boundary in cratonic regions remains enigmatic, mainly due to lack of key xenoliths or exposed sections. The observation that the Moho may lie significantly deeper than the crust-mantle boundary has important implications for modeling the volume of the crust. Mapping the crust using seismic techniques alone, without consideration of the petrological problems, may lead to an overestimation of crustal thickness by 15-30%. This will propagate to large uncertainties in the calculation of elemental mass balances relevant to crust-formation processes

  6. Paleomagnetism continents and oceans

    CERN Document Server

    McElhinny, Michael W; Dmowska, Renata; Holton, James R; Rossby, H Thomas


    Paleomagnetism is the study of the fossil magnetism in rocks. It has been paramount in determining that the continents have drifted over the surface of the Earth throughout geological time. The fossil magnetism preserved in the ocean floor has demonstrated how continental drift takes place through the process of sea-floor spreading. The methods and techniques used in paleomagnetic studies of continental rocks and of the ocean floor are described and then applied to determining horizontal movements of the Earth''s crust over geological time. An up-to-date review of global paleomagnetic data enables 1000 millionyears of Earth history to be summarized in terms of the drift of the major crustal blocks over the surface of the Earth. The first edition of McElhinny''s book was heralded as a "classic and definitive text." It thoroughly discussed the theory of geomagnetism, the geologicreversals of the Earth''s magnetic field, and the shifting of magnetic poles. In the 25 years since the highly successful first editio...

  7. Ocean transportation

    National Research Council Canada - National Science Library

    Frankel, Ernst G; Marcus, Henry S


    .... This analysis starts with a review of ocean transportation demand and supply including projections of ship capacity demand and world shipbuilding capacity under various economic and political assumptions...

  8. Lunar Magma Ocean Crystallization: Constraints from Fractional Crystallization Experiments (United States)

    Rapp, J. F.; Draper, D. S.


    The currently accepted paradigm of lunar formation is that of accretion from the ejecta of a giant impact, followed by crystallization of a global scale magma ocean. This model accounts for the formation of the anorthosite highlands crust, which is globally distributed and old, and the formation of the younger mare basalts which are derived from a source region that has experienced plagioclase extraction. Several attempts at modelling the crystallization of such a lunar magma ocean (LMO) have been made, but our ever-increasing knowledge of the lunar samples and surface have raised as many questions as these models have answered. Geodynamic models of lunar accretion suggest that shortly following accretion the bulk of the lunar mass was hot, likely at least above the solidus]. Models of LMO crystallization that assume a deep magma ocean are therefore geodynamically favorable, but they have been difficult to reconcile with a thick plagioclase-rich crust. A refractory element enriched bulk composition, a shallow magma ocean, or a combination of the two have been suggested as a way to produce enough plagioclase to account for the assumed thickness of the crust. Recently however, geophysical data from the GRAIL mission have indicated that the lunar anorthositic crust is not as thick as was initially estimated, which allows for both a deeper magma ocean and a bulk composition more similar to the terrestrial upper mantle. We report on experimental simulations of the fractional crystallization of a deep (approximately 100km) LMO with a terrestrial upper mantle-like (LPUM) bulk composition. Our experimental results will help to define the composition of the lunar crust and mantle cumulates, and allow us to consider important questions such as source regions of the mare basalts and Mg-suite, the role of mantle overturn after magma ocean crystallization and the nature of KREEP

  9. Soil Characteristics of Crusted outside and Subcanopy Areas of four ...

    African Journals Online (AJOL)

    The results on compaction, salinity, pH, water holding capacity, respiration and organic carbon supported the model. The crust:shrub ratio is crucial for the functioning and sustained productivity of the system. Keywords: Soil characteristics; shrub subcanopy; crust; sink-source, Negev desert [IJARD Vol.3 2002: 162-170] ...

  10. Identification of radiogenic heat source distribution in the crust: A ...

    Indian Academy of Sciences (India)

    Radiogenic heat sources present in the continental crust contribute significantly to the total surface heat flow and temperature distribution in the crust. Various modelsforthe depth distribution of radiogenic sources have been proposed. Among these modelsthe exponential model has been shown to be an optimal, smooth ...

  11. Increasing cotton stand establishment in soils prone to soil crusting (United States)

    Many factors can contribute to poor cotton stand establishment, and cotton is notorious for its weak seedling vigor. Soil crusting can be a major factor hindering cotton seedling emergence in many of the cotton production regions of the US and the world. Crusting is mainly an issue in silty soils ...

  12. Rainfall pattern effects on crusting, infiltration and erodibility in some ...

    African Journals Online (AJOL)

    Rainfall characteristics affect crust formation, infiltration rate and erosion depending on intrinsic soil properties such as texture and mineralogy. The current study investigated the effects of rainfall pattern on crust strength, steady state infiltration rate (SSIR) and erosion in soils with various texture and minerals. Soil samples ...

  13. Structure of the crust beneath Cameroon, West Africa, from the joint inversion of Rayleigh wave group velocities and receiver functions (United States)

    Tokam, Alain-Pierre K.; Tabod, Charles T.; Nyblade, Andrew A.; Julià, Jordi; Wiens, Douglas A.; Pasyanos, Michael E.


    The Cameroon Volcanic Line (CVL) consists of a linear chain of Tertiary to Recent, generally alkaline, volcanoes that do not exhibit an age progression. Here we study crustal structure beneath the CVL and adjacent regions in Cameroon using 1-D shear wave velocity models obtained from the joint inversion of Rayleigh wave group velocities and P-receiver functions for 32 broad-band seismic stations deployed between 2005 January and 2007 February. We find that (1) crustal thickness (35-39km) and velocity structure is similar beneath the CVL and the Pan African Oubanguides Belt to the south of the CVL, (2) crust is thicker (43-48km) under the northern margin of the Congo Craton and is characterized by shear wave velocities >=4.0kms-1 in its lower part and (3) crust is thinner (26-31km) under the Garoua rift and the coastal plain. In addition, a fast velocity layer (Vs of 3.6-3.8kms-1) in the upper crust is found beneath many of the seismic stations. Crustal structure beneath the CVL and the Oubanguides Belt is very similar to Pan African crustal structure in the Mozambique Belt, and therefore it appears not to have been modified significantly by the magmatic activity associated with the CVL. The crust beneath the coastal plain was probably thinned during the opening of the southern Atlantic Ocean, while the crust beneath the Garoua rift was likely thinned during the formation of the Benue Trough in the early Cretaceous. We suggest that the thickened crust and the thick mafic lower crustal layer beneath the northern margin of the Congo Craton may be relict features from a continent-continent collision along this margin during the formation of Gondwana.

  14. High-pressure phase relation of KREEP basalts: A clue for finding the lost Hadean crust? (United States)

    Gréaux, Steeve; Nishi, Masayuki; Tateno, Shigehiko; Kuwayama, Yasuhiro; Hirao, Naohisa; Kawai, Kenji; Maruyama, Shigenori; Irifune, Tetsuo


    The phase relations, mineral chemistry and density of KREEP basalt were investigated at pressures of 12-125 GPa and temperatures up to 2810 K by a combination of large volume multi-anvil press experiments and in situ synchrotron X-ray diffraction measurements in a laser-heated diamond anvil cell. Our results showed that grossular-rich majorite garnet, liebermannite and Al-bearing stishovite are dominant in the upper-to-middle part of the upper mantle while in the lowermost transition zone a dense Ti-rich CaSiO3 perovskite exsoluted from the garnet, which becomes more pyropic with increasing pressure. At lower mantle conditions, these minerals transform into an assemblage of bridgmanite, Ca-perovskite, Al-stishovite, the new aluminium-rich (NAL) phase and the calcium-ferrite type (CF) phase. At pressures higher than 50 GPa, NAL phase completely dissolved into the CF phase, which becomes the main deposit of alkali metals in the lower mantle. The density of KREEP estimated from phase compositions obtained by energy dispersive X-ray spectroscopy (EDS) in scanning (SEM) and transmission (TEM) electron microscopes, was found substantially denser than pyrolite suggesting that the Earth primordial crust likely subducted deep into the Earth's mantle after or slightly before the final solidification of magma ocean at 4.53 Ga. Radiogenic elements U, Th and 40K which were abundant in the final residue of magma ocean were brought down along the subduction of the primordial crust and generate heat by decay after the settlement of the primordial crust on top of the CMB, suggesting the non-homogeneous distribution of radiogenic elements in the Hadean mantle with implications for the thermal history of the Earth.

  15. Reduction of acrylamide content in bread crust by starch coating. (United States)

    Liu, Jie; Liu, Xiaojie; Man, Yong; Liu, Yawei


    A technique of starch coating to reduce acrylamide content in bread crust was proposed. Bread was prepared in accordance with a conventional procedure and corn or potato starch coating was brushed on the surface of the fermented dough prior to baking. Corn starch coating caused a decrease in acrylamide of 66.7% and 77.1% for the outer and inner crust, respectively. The decrease caused by the potato starch coating was 68.4% and 77.4%, respectively. Starch coating reduced asparagine content significantly (43.4-82.9%; P bread crust were a result of starch coating, which effectively shortened the time span (4-8 min) over which acrylamide could form and accumulate. The present study demonstrates that starch coating could be a simple, effective and practical application for reducing acrylamide levels in bread crust without changing the texture and crust color of bread. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  16. Oceanic archipelagos

    DEFF Research Database (Denmark)

    Triantis, Kostas A.; Whittaker, Robert James; Fernández-Palacios, José María


    Since the contributions of Charles Darwin and Alfred Russel Wallace, oceanic archipelagos have played a central role in the development of biogeography. However, despite the critical influence of oceanic islands on ecological and evolutionary theory, our focus has remained limited to either the i...

  17. Ocean acidification

    National Research Council Canada - National Science Library

    Gattuso, J.P; Hansson, L


    The fate of much of the CO 2 we produce will be to enter the ocean. In a sense, we are fortunate that ocean water is endowed with the capacity to absorb far more CO 2 per litre than were it salt free...

  18. Ocean technology

    Digital Repository Service at National Institute of Oceanography (India)

    Peshwe, V.B

    stream_size 2 stream_content_type text/plain stream_name Voices_Oceans_1996_113.pdf.txt stream_source_info Voices_Oceans_1996_113.pdf.txt Content-Encoding ISO-8859-1 Content-Type text/plain; charset=ISO-8859-1 ...

  19. The Indian Ocean Nodule Field: Petrotectonic evolution and ferromanganese deposits

    Digital Repository Service at National Institute of Oceanography (India)

    Mukhopadhyay, R.; Iyer, S.D.; Ghosh, A.K.

    these issues here under three broad sections. First, we analyse the tectonic and magmatic activities normally of large magnitudes associated with the formation of the oceanic crust between 60 and 49 Ma at the ridge crest. Second, we document the tectono...

  20. Geophysics of an Oceanic Ice Shell on Snowball Earth (United States)

    Gaidos, E. J.


    Kirschvink proposed Precambrian low-latitude glaciation could result in an albedo-driven catastrophic runaway to a "Snowball Earth" state in which pack ice up to 1 km thick covered the world ocean. The geophysical state of an ice crust on a Snowball Earth is examined.

  1. Soil crusts to warm the planet (United States)

    Garcia-Pichel, Ferran; Couradeau, Estelle; Karaoz, Ulas; da Rocha Ulisses, Nunes; Lim Hsiao, Chiem; Northen, Trent; Brodie, Eoin


    Soil surface temperature, an important driver of terrestrial biogeochemical processes, depends strongly on soil albedo, which can be significantly modified by factors such as plant cover. In sparsely vegetated lands, the soil surface can also be colonized by photosynthetic microbes that build biocrust communities. We used concurrent physical, biochemical and microbiological analyses to show that mature biocrusts can increase surface soil temperature by as much as 10 °C through the accumulation of large quantities of a secondary metabolite, the microbial sunscreen scytonemin, produced by a group of late-successional cyanobacteria. Scytonemin accumulation decreases soil albedo significantly. Such localized warming had apparent and immediate consequences for the crust soil microbiome, inducing the replacement of thermosensitive bacterial species with more thermotolerant forms. These results reveal that not only vegetation but also microorganisms are a factor in modifying terrestrial albedo, potentially impacting biosphere feedbacks on past and future climate, and call for a direct assessment of such effects at larger scales. Based on estimates of the global biomass of cyanobacteria in soil biocrusts, one can easily calculate that there must currently exist about 15 million metric tons of scytonemin at work, warming soil surfaces worldwide

  2. A thin, dense crust for Mercury (United States)

    Sori, Michael M.


    Crustal thickness is a crucial geophysical parameter in understanding the geology and geochemistry of terrestrial planets. Recent development of mathematical techniques suggests that previous studies based on assumptions of isostasy overestimated crustal thickness on some of the solid bodies of the solar system, leading to a need to revisit those analyses. Here, I apply these techniques to Mercury. Using MESSENGER-derived elemental abundances, I calculate a map of grain density (average 2974 ± 89 kg/m3) which shows that Pratt isostasy is unlikely to be a major compensation mechanism of Mercury's topography. Assuming Airy isostasy, I find the best fit value for Mercury's mean crustal thickness is 26 ± 11 km, 25% lower than the most recently reported and previously thinnest number. Several geological implications follow from this relatively low value for crustal thickness, including showing that the largest impacts very likely excavated mantle material onto Mercury's surface. The new results also show that Mercury and the Moon have a similar proportion of their rocky silicates composing their crusts, and thus Mercury is not uniquely efficient at crustal production amongst terrestrial bodies. Higher resolution topography and gravity data, especially for the southern hemisphere, will be necessary to refine Mercury's crustal parameters further.

  3. Incipient mantle plume evolution: Constraints from ancient landscapes buried beneath the North Sea (United States)

    Stucky de Quay, G.; Roberts, G. G.; Watson, J. S.; Jackson, C. A.-L.


    Geological observations that constrain the history of mantle convection are sparse despite its importance in determining vertical and horizontal plate motions, plate rheology, and magmatism. We use a suite of geological and geophysical observations from the northern North Sea to constrain evolution of the incipient Paleocene-Eocene Icelandic plume. Well data and a three-dimensional seismic survey are used to reconstruct a 58-55 Ma landscape now buried ˜1.5 km beneath the seabed in the Bressay region. Geochemical analyses of cuttings from wells that intersect the landscape indicate the presence of angiosperm debris. These observations, combined with presence of coarse clastic material, interpreted beach ridges, and a large dendritic drainage network, indicate that this landscape formed subaerially. Longitudinal profiles of paleo-rivers were extracted and inverted for an uplift rate history, indicating three distinct phases of uplift and total cumulative uplift of ˜350 m. Dinoflagellate cysts in the surrounding marine stratigraphy indicate that this terrestrial landscape formed in ˜150 km/Ma.

  4. Incipient microphase separation in short chain perfluoropolyether-block-poly(ethylene oxide) copolymers. (United States)

    Chintapalli, Mahati; Timachova, Ksenia; Olson, Kevin R; Banaszak, Michał; Thelen, Jacob L; Mecham, Sue J; DeSimone, Joseph M; Balsara, Nitash P


    Incipient microphase separation is observed by wide angle X-ray scattering (WAXS) in short chain multiblock copolymers consisting of perfluoropolyether (PFPE) and poly(ethylene oxide) (PEO) segments. Two PFPE-PEO block copolymers were studied; one with dihydroxyl end groups and one with dimethyl carbonate end groups. Despite having a low degree of polymerization (N ∼ 10), these materials exhibited significant scattering intensity, due to disordered concentration fluctuations between their PFPE-rich and PEO-rich domains. The disordered scattering intensity was fit to a model based on a multicomponent random phase approximation to determine the value of the interaction parameter, χ, and the radius of gyration, R g . Over the temperature range 30-90 °C, the values of χ were determined to be very large (∼2-2.5), indicating a high degree of immiscibility between the PFPE and PEO blocks. In PFPE-PEO, due to the large electron density contrast between the fluorinated and non-fluorinated block and the high value of χ, disordered scattering was detected at intermediate scattering angles, (q ∼ 2 nm -1 ) for relatively small polymer chains. Our ability to detect concentration fluctuations was enabled by both a relatively large value of χ and significant scattering contrast.

  5. Transcriptome analysis of synaptoneurosomes identifies neuroplasticity genes overexpressed in incipient Alzheimer's disease.

    Directory of Open Access Journals (Sweden)

    Celia Williams

    Full Text Available In Alzheimer's disease (AD, early deficits in learning and memory are a consequence of synaptic modification induced by toxic beta-amyloid oligomers (oAbeta. To identify immediate molecular targets downstream of oAbeta binding, we prepared synaptoneurosomes from prefrontal cortex of control and incipient AD (IAD patients, and isolated mRNAs for comparison of gene expression. This novel approach concentrates synaptic mRNA, thereby increasing the ratio of synaptic to somal mRNA and allowing discrimination of expression changes in synaptically localized genes. In IAD patients, global measures of cognition declined with increasing levels of dimeric Abeta (dAbeta. These patients also showed increased expression of neuroplasticity related genes, many encoding 3'UTR consensus sequences that regulate translation in the synapse. An increase in mRNA encoding the GluR2 subunit of the alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor (AMPAR was paralleled by elevated expression of the corresponding protein in IAD. These results imply a functional impact on synaptic transmission as GluR2, if inserted, maintains the receptors in a low conductance state. Some overexpressed genes may induce early deficits in cognition and others compensatory mechanisms, providing targets for intervention to moderate the response to dAbeta.

  6. Evidence of incipient speciation in Astyanax scabripinnis species complex (Teleostei: Characidae

    Directory of Open Access Journals (Sweden)

    Jonathan P. Castro

    Full Text Available Two populations of the Astyanax scabripinniscomplex, isolated by a waterfall with over 100 meters depth and inhabiting different altitudes of the same river (1850 m a.s.l. and 662 m a.s.l. were compared in reproductive data, geometric morphometry, tooth morphology, anal-fin rays counts, and karyotype, in order to test the hypothesis of speciation between the two populations. The results in the geometric morphometry analysis showed differences between the populations. Discriminant function analysis (DFA and canonical variance analysis revealed sexual dimorphism. Secondary sexual characters, such as hooks in the anal fin rays of the males are absent in the lower altitude population. Both populations had the same macro karyotype structure, except for the absence of B chromosomes in the lower altitude population. The fluorescence in situ hybridization showed differences for both markers (18S rDNA and 5S rDNA, and reproductive data suggests pre-zygotic reproductive isolation among the two populations. The data showed the absence of gene flow, indicating that an incipient speciation process has occurred, which leads the two populations to follow independent evolutionary pathways.

  7. Threshold Criteria for Incipient Grain Motion with Turbulent Fluctuations on a Horizontal Bed

    International Nuclear Information System (INIS)

    Wan, M.W.H.M.


    The effect of turbulent fluctuations on the threshold criteria for incipient grain motion over a wide range of sediment size is investigated. In this work, attention is paid to the comparison of the critical Shields parameter θ c profile obtained when the near-bed fluid forces induced sediment motion are oscillating-grid turbulence and a single idealised eddy of vortex ring. For experimental work, near-spherical monodisperse sediments were used throughout with relative densities of 1.2 and 2.5 and mean diameters d ranging between 80 and 1087 μm. The measured values of θ c on a horizontal bed α = 0 (hence denoted as θ c0 ), were compared to the θ c0 profiles obtained by grid turbulence and vortex ring experiments. Although different in magnitude, the θ c0 profiles were comparable, that is the θ c0 were seen to increase monotonically for hydraulically smooth bed forms and to be approximately constant for hydraulically rough bed forms. However the limit of hydraulically smooth region was found to vary between the oscillating-grid turbulence experiments, where wider smooth region was found when the turbulent fluctuations used to calculate θ c0 is not the near-bed velocity. (author)

  8. Advanced power system protection and incipient fault detection and protection of spaceborne power systems (United States)

    Russell, B. Don


    This research concentrated on the application of advanced signal processing, expert system, and digital technologies for the detection and control of low grade, incipient faults on spaceborne power systems. The researchers have considerable experience in the application of advanced digital technologies and the protection of terrestrial power systems. This experience was used in the current contracts to develop new approaches for protecting the electrical distribution system in spaceborne applications. The project was divided into three distinct areas: (1) investigate the applicability of fault detection algorithms developed for terrestrial power systems to the detection of faults in spaceborne systems; (2) investigate the digital hardware and architectures required to monitor and control spaceborne power systems with full capability to implement new detection and diagnostic algorithms; and (3) develop a real-time expert operating system for implementing diagnostic and protection algorithms. Significant progress has been made in each of the above areas. Several terrestrial fault detection algorithms were modified to better adapt to spaceborne power system environments. Several digital architectures were developed and evaluated in light of the fault detection algorithms.

  9. On the Shape of the Crest of Short Wavelength Water Waves at Incipient Breaking (United States)

    Diorio, J. D.; Liu, X.; Duncan, J. H.


    Breaking waves with wavelengths ranging from about 0.1 to 1.2 m are studied experimentally in a wind wave tank that is 11.8 m long, 1.15 m wide and 1.8 m high (1.0 m of water). The tank includes a wind tunnel with speeds up to 10 m/s and a programmable wave maker that resides at the upwind end of the tank. The shortest waves are generated by wind with speeds ranging from about 4 to 7 m/s. The longest waves are generated mechanically from focused wave packets with average frequencies ranging from 1.15 to 1.42 Hz. Waves with intermediate lengths are formed either by wind or by a nonlinear wave train with unstable sidebands generated by the wave maker. At incipient breaking, all the waves have a capillary-ripple pattern at the crest rather than a plunging jet. It is found that in spite of the wide range of wavelengths and major differences in the generation methods, the shapes of the capillary-ripple pattern are remarkably similar. Various geometrical parameters including the length of the first capillary wave and the length and thickness of the bulge that forms at the crest are extracted from the data. The variation of these parameters with gravity wavelength and slope of the front face of the wave is examined.

  10. Abnormal albuminuria and blood pressure rise in incipient diabetic nephropathy induced by exercise

    DEFF Research Database (Denmark)

    Christensen, Cramer


    The aim of the study was to evaluate the influence of light to moderate dynamic work (450 kpm/min followed by 600 kpm/min during 20 min each) on the blood pressure and renal protein handling in insulin-dependent diabetic patients with incipient nephropathy (D3) (elevated baseline albumin excretion...... but without clinical proteinuria). Fifteen male diabetic patients (D3) with a mean age of 26.5 +/- 4.8 years (SD) and a diabetes duration of 15.6 +/- 3.4 years (SD), 11 comparable diabetic patients with normal urinary albumin excretion (D2), and ten non-diabetic subjects (C) were studied. In D3 baseline....../min in D3 (193.0 mm Hg +/- 23.0) compared to D2 (170.5 +/- 17.3, 2P = 1.2%) and C (157.5 mm Hg +/- 20.9, 2P = 0.07%). Baseline albumin excretion in D3 was 82.6 micrograms/min X/ divided by 2.5 (geometric mean X/ divided by tolerance factor) and during exercise the maximal albumin excretion rose to 195...

  11. Comparison of nano-hydroxyapatite and sodium fluoride mouthrinse for remineralization of incipient carious lesions.

    Directory of Open Access Journals (Sweden)

    Roza Haghgoo


    Full Text Available Dental caries is an infectious disease that can be prevented in several ways. The aim of this study was to compare the efficacy of sodium fluoride mouthrinse and nano- hydroxyapatite (nano-HA for the remineralization of incipient caries.After obtaining different concentrations of nano-HA (0-2-5-10%, 60 sound premolars fixed in acrylic blocks were coated with nail polish except for one surface. Ten teeth (control group were stored in distilled water and the remaining 50 samples were demineralized by immersion in 13 ml of 0.1 M lactic acid and 0.2% poly acrylic acid for 48 hours. Their microhardness was then measured and compared to that of the control group. Next, the 50 test teeth were randomly divided into 5 groups of group1 (negative, group 2 (2% nano-HA, group 3 (5% nano-HA, group 4(10% nano-HA and group 5 (0.2 NAF mouthrinse. The microhardness of the teeth was measured after 12 hours of immersion in the above-mentioned solutions. Data were analyzed using repeated measures analysis of variance (ANOVA.Microhardness of all samples decreased significantly after immersion in the demineralization solution and increased following immersion in nano-HA and NAF mouthrinses; however, this increase was not statistically significant (P=0.711.Nano-HA and NAF mouthrinses can greatly enhance remineralization and increase tooth microhardness.

  12. Incipient Fault Detection and Isolation of Field Devices in Nuclear Power Systems Using Principal Component Analysis

    International Nuclear Information System (INIS)

    Kaistha, Nitin; Upadhyaya, Belle R.


    An integrated method for the detection and isolation of incipient faults in common field devices, such as sensors and actuators, using plant operational data is presented. The approach is based on the premise that data for normal operation lie on a surface and abnormal situations lead to deviations from the surface in a particular way. Statistically significant deviations from the surface result in the detection of faults, and the characteristic directions of deviations are used for isolation of one or more faults from the set of typical faults. Principal component analysis (PCA), a multivariate data-driven technique, is used to capture the relationships in the data and fit a hyperplane to the data. The fault direction for each of the scenarios is obtained using the singular value decomposition on the state and control function prediction errors, and fault isolation is then accomplished from projections on the fault directions. This approach is demonstrated for a simulated pressurized water reactor steam generator system and for a laboratory process control system under single device fault conditions. Enhanced fault isolation capability is also illustrated by incorporating realistic nonlinear terms in the PCA data matrix

  13. An Elderly Long-Term Care Resident with Crusted Scabies

    Directory of Open Access Journals (Sweden)

    Matthew Sandre


    Full Text Available Crusted scabies is a highly contagious form of scabies. Altered immune response, nutritional deficiencies and modified host response are all risk factors for crusted scabies. The authors report a case involving a patient found to have a chronic maculopapular, erythematous rash with large hyperkeratotic, white and grey plaques on the soles of both feet. An ultimate diagnosis of crusted scabies was reached after a delay in diagnosis suspected to be caused by the similarity in appearance to more common skin conditions such as psoriasis. After topical permethrin was unsuccessful, intermittent dosing of oral ivermectin resulted in a rapid reduction in cutaneous plaques.

  14. An Itchy Problem: A Clinical Case of Crusted Scabies

    Directory of Open Access Journals (Sweden)

    António Araújo Ferreira


    Full Text Available Scabies is an infestation of the skin by the mite Sarcoptes scabiei. A more severe form called crusted or Norwegian scabies may occur in immunosuppressed patients and the elderly. Crusted scabies mostly differs from normal scabies by the exuberance of its lesions, body distribution and high contagiousness, and requires different and more prolonged treatment. Early recognition of the lesions and isolation precautions are crucial for disease control and prevention of transmission. The authors describe a clinical case of crusted scabies with pruritus and exuberant cutaneous lesions.

  15. Ocean Acidification (United States)

    Ocean and coastal acidification is an emerging issue caused by increasing amounts of carbon dioxide being absorbed by seawater. Changing seawater chemistry impacts marine life, ecosystem services, and humans. Learn what EPA is doing and what you can do.

  16. Ocean transportation

    National Research Council Canada - National Science Library

    Frankel, Ernst G; Marcus, Henry S


    .... In ocean transportation economics we present investment and operating costs as well as the results of a study of financing of shipping. Similarly, a discussion of government aid to shipping is presented.

  17. Ocean Color (United States)

    National Aeronautics and Space Administration — Satellite-derived Ocean Color Data sets from historical and currently operational NASA and International Satellite missions including the NASA Coastal Zone Color...

  18. Ocean Quality


    Brevik, Roy Schjølberg; Jordheim, Nikolai; Martinsen, John Christian; Labori, Aleksander; Torjul, Aleksander Lelis


    Bacheloroppgave i Internasjonal Markedsføring fra ESADE i Spania, 2017 In this thesis we were going to answer the problem definition “which segments in the Spanish market should Ocean Quality target”. By doing so we started to collect data from secondary sources in order to find information about the industry Ocean Quality are operating in. After conducting the secondary research, we still lacked essential information about the existing competition in the aquaculture industry o...


    Directory of Open Access Journals (Sweden)

    V. N. Senachin


    Full Text Available Studying the density of both the crust and mantle is one of the topical problems in modern geophysics. Gravity modeling in combination with seismic tomography is an important tool for detecting density inhomogeneities in the crust and mantle, which can cause stresses and thus significantly impact the regional tectonics [Pogorelov, Baranov, 2010], especially in zones wherein continental margins actively interact with subducting oceanic plates and the entire depth of the tectonosphere is subject to stresses. Associated processes lead to considerable horizontal and vertical stresses that often cause catastrophic events on a global scale. The challenge of studying the global tectonic processes in the Earth’s tectonosphere can be addressed by gravity modeling in combination with seismic surveying.Data from previous studies. I.L. Nersesov et al. [1975] pioneered in calculating the spatial pattern of mantle density inhomogeneities in Central Asia. Although the accuracy of their estimations was not high due to the limited database, their study yielded significant results considering the structure of the crust. Numerous subsequent geophysical projects have researched the crust to a level sufficient to develop regional models, that can give quite adequate information on the depths of external and internal boundaries of the crust and suggest the distribution patterns of seismic velocities and density values. With reference to such data, mantle density inhomogeneities can be studied with higher accuracy.This paper reports on the estimations of gravity anomalies in the crust and upper mantle in Central and South Asia. The study region represents the full range of crust thicknesses and ages, as well a variety of crust formation types [Christensen, Mooney, 1995]. We used the 3D gravity modeling software package 3SGravity developed by Senachin [2015a, 2015b] that considers the spherical shape of the Earth's surface, and estimated gravitional anomalies using

  20. Palaeoceanographic interpretation of a seismic profile from the southern Mozambique Ridge, SW Indian Ocean


    Uenzelmann-Neben, Gabriele; Watkeys, M. K.; Kretzinger, W.; Frank, M.; Heuer, L.


    Seismic reflection data from the southern Mozambique Ridge, SW Indian Ocean, show indications for a modification in the oceanic circulation system. In the absence of an age-depth model based on a drill site information gathered from the study of radiogenic isotopes of ferromanganese nodules and crusts were used. Major reorganisations in the Indian Ocean circulation system led to the onset of current controlled sedimentation in the vicinity of the Mozambique Ridge at 14 Ma. The modific...

  1. Investigation of oceanic spreading center hydrothermal processes using ocean bottom seismometers (United States)

    Golden, Charles Edward

    Hydrothermal circulation at oceanic spreading centers can penetrate up to several kilometers of oceanic crust, depending on the permeability structure of the host rock and the depth of the heat source provided by seafloor spreading. A wide range of geophysical techniques have been developed to study hydrothermal systems at the seafloor, but direct observations of deep hydrothermal processes are limited. The research described in this dissertation uses ocean bottom seismometers to record and locate small-magnitude microearthquakes generated by thermal strain as hydrothermal circulation cools the oceanic crust. Microearthquakes triggered near the base of hydrothermal convection cells provide a unique opportunity to investigate the nature and extent of deep hydrothermal circulation in an oceanic spreading center environment. Seismic data from two ocean bottom seismometer deployments were recorded at Dead Dog vent field, an active hydrothermal field on the northern Juan de Fuca Ridge. The first instrument deployment was part of a 1993 seismic refraction survey designed to constrain seismic velocity structure and facilitate microearthquake hypocenter localization. The seismic velocity model developed from this dataset is consistent with results from the Ocean Drilling Program: the igneous rock surrounding Dead Dog vent field is buried under several hundred meters of turbidite sediment, and the shallow underlying crust is a sequence of inter-bedded sediment and basaltic sills. The second seismometer network was uniquely designed with a compact inter-element spacing of 500 m to record small-magnitude microearthquakes triggered by hydrothermal processes near the Dead Dog vents. The seismometers recorded 1,220 microearthquakes beneath the vent field from August 1996 to January 1997. The seismicity is comprised of 13 spatially and temporally distinct swarms located at 1--3 km depth beneath a region of elevated heat flow associated with the Dead Dog hydrothermal system. The

  2. [Crusted scabies induced by topical corticosteroids: A case report]. (United States)

    Bilan, P; Colin-Gorski, A-M; Chapelon, E; Sigal, M-L; Mahé, E


    The frequency of scabies is increasing in France. Crusted (or Norwegian) scabies is a very contagious form of scabies because of the huge number of mites in the skin. It is observed in patients suffering from immunodepression, motor or sensory deficiency, or mental retardation. The clinical presentation, except for the classic manifestation of scabies, is characterized by crusted lesions. Treatment is not easy and requires hospitalization. Topical corticosteroids are frequently used for children's dermatological diseases. Their long-term and inappropriate application in an infested scabies child can induce crusted scabies. We report on a case of an 8-year-old boy who developed crusted scabies induced by topical corticosteroid application. We discuss the therapeutic aspects of this severe form of scabies. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  3. Yellow sorediate crusts called Caloplaca citrina in England

    Czech Academy of Sciences Publication Activity Database

    Powell, M.; Vondrák, Jan


    Roč. 2012, č. 110 (2012), s. 20-24 ISSN 0300-4562 Institutional research plan: CEZ:AV0Z60050516 Institutional support: RVO:67985939 Keywords : biodiversity * crytic species * sorediate crusts Subject RIV: EF - Botanics

  4. Water sorption and transport in dry crispy bread crust

    NARCIS (Netherlands)

    Meinders, M.B.J.; Nieuwenhuijzen, van N.H.; Tromp, R.H.; Hamer, R.J.; Vliet, van T.


    Water sorption and dynamical properties of bread crust have been studied using gravimetric sorption experiments. Water uptake and loss were followed while relative humidity (RH) was stepwise in- or decreased (isotherm experiment) or varied between two adjusted values (oscillatory experiment).

  5. Formation and development of salt crusts on soil surfaces

    KAUST Repository

    Dai, Sheng


    The salt concentration gradually increases at the soil free surface when the evaporation rate exceeds the diffusive counter transport. Eventually, salt precipitates and crystals form a porous sodium chloride crust with a porosity of 0.43 ± 0.14. After detaching from soils, the salt crust still experiences water condensation and salt deliquescence at the bottom, brine transport across the crust driven by the humidity gradient, and continued air-side precipitation. This transport mechanism allows salt crust migration away from the soil surface at a rate of 5 μm/h forming salt domes above soil surfaces. The surface characteristics of mineral substrates and the evaporation rate affect the morphology and the crystal size of precipitated salt. In particular, substrate hydrophobicity and low evaporation rate suppress salt spreading.

  6. The origin of continental crust: Outlines of a general theory (United States)

    Lowman, P. D., Jr.


    The lower continental crust, formerly very poorly understood, has recently been investigated by various geological and geophysical techniques that are beginning to yield a generally agreed on though still vague model (Lowman, 1984). As typified by at least some exposed high grade terranes, such as the Scottish Scourian complex, the lower crust in areas not affected by Phanerozoic orogeny or crustal extension appears to consist of gently dipping granulite gneisses of intermediate bulk composition, formed from partly or largely supracrustal precursors. This model, to the degree that it is correct, has important implications for early crustal genesis and the origin of continental crust in general. Most important, it implies that except for areas of major overthrusting (which may of course be considerable) normal superposition relations prevail, and that since even the oldest exposed rocks are underlain by tens of kilometers of sial, true primordial crust may still survive in the lower crustal levels (of. Phinney, 1981).

  7. The evolution of Mercury's crust: a global perspective from MESSENGER. (United States)

    Denevi, Brett W; Robinson, Mark S; Solomon, Sean C; Murchie, Scott L; Blewett, David T; Domingue, Deborah L; McCoy, Timothy J; Ernst, Carolyn M; Head, James W; Watters, Thomas R; Chabot, Nancy L


    Mapping the distribution and extent of major terrain types on a planet's surface helps to constrain the origin and evolution of its crust. Together, MESSENGER and Mariner 10 observations of Mercury now provide a near-global look at the planet, revealing lateral and vertical heterogeneities in the color and thus composition of Mercury's crust. Smooth plains cover approximately 40% of the surface, and evidence for the volcanic origin of large expanses of plains suggests that a substantial portion of the crust originated volcanically. A low-reflectance, relatively blue component affects at least 15% of the surface and is concentrated in crater and basin ejecta. Its spectral characteristics and likely origin at depth are consistent with its apparent excavation from a lower crust or upper mantle enriched in iron- and titanium-bearing oxides.

  8. Black manganese-rich crusts on a Gothic cathedral (United States)

    Macholdt, Dorothea S.; Herrmann, Siegfried; Jochum, Klaus Peter; Kilcoyne, A. L. David; Laubscher, Thomas; Pfisterer, Jonas H. K.; Pöhlker, Christopher; Schwager, Beate; Weber, Bettina; Weigand, Markus; Domke, Katrin F.; Andreae, Meinrat O.


    Black manganese-rich crusts are found worldwide on the façades of historical buildings. In this study, they were studied exemplarily on the façade of the Freiburger Münster (Freiburg Minster), Germany, and measured in-situ by portable X-ray fluorescence (XRF). The XRF was calibrated to allow the conversion from apparent mass fractions to Mn surface density (Mn mass per area), to compensate for the fact that portable XRF mass fraction measurements from thin layers violate the assumption of a homogeneous measurement volume. Additionally, 200-nm femtosecond laser ablation-inductively coupled plasma-mass spectrometry (fs LA-ICP-MS) measurements, scanning transmission X-ray microscopy-near edge X-ray absorption fine structure spectroscopy (STXM-NEXAFS), Raman spectroscopy, and imaging by light microscopy were conducted to obtain further insight into the crust material, such as potential biogenic contributions, element distributions, trace element compositions, and organic functional groups. While black crusts of various types are present at many places on the minster's facade, crusts rich in Mn (with a Mn surface density >150 μg cm-2) are restricted to a maximum height of about 7 m. The only exceptions are those developed on the Renaissance-Vorhalle (Renaissance Portico) at a height of about 8 m. This part of the façade had been cleaned and treated with a silicon resin as recently as 2003. These crusts thus accumulated over a period of only 12 years. Yet, they are exceptionally Mn-rich with a surface density of 1200 μg cm-2, and therefore require an accumulation rate of about 100 μg cm-2 Mn per year. Trace element analyses support the theory that vehicle emissions are responsible for most of the Mn supply. Lead, barium, and zinc correlate with manganese, indicating that tire material, brake pads, and resuspended road dust are likely to be the element sources. Microscopic investigations show no organisms on or in the Mn-rich crusts. In contrast, Mn-free black

  9. Formation and Thermal Infrared Spectroscopy of Halite Crusts (United States)

    Baldridge, A. M.; Christensen, P. R.


    Efflorescent salt crusts form as groundwater evaporates from capillary updraw of brine through sediment. Salts precipitate at the surface, coating and cementing the upper few layers of sediment. If enough brine is present to completely saturate and pond on top of the surface, halite will precipitate at the surface of the brine and settle out as layers of crystalline salt on top of the sediment. In playa environments, salts such as sulfates, carbonates and halides, and forms such crusts. In remote sensing studies of such surfaces, it is important to understand how the presence of salt crusts affects the spectral features of the surrounding sediment. This is especially true when the crusts form from a non-absorbing salt such as halite. Halite has been observed to exhibit unusual spectral properties in the thermal infrared. Specifically, granular mixtures of minerals with halite produced spectra in which the spectral features inverted form reflectivity, shifted to shorter wavelengths and the spectral contrast increased near absorption bands. However, in crusted surfaces, in which the halite cements, coats or overlays the mineral grains, the presence of halite has a different affect on the spectra. This work will examine the precipitation of halite and the formation of salt crusts for several sediment and brine mixtures. Laboratory measurements of thermal emission spectra for the crusts will be compared to previous studies for particulate mixtures of halite with minerals and well as to natural surface crusts. Detailed knowledge of such surfaces will allow for their discrimination and identification in terrestrial playa settings as well as in paleo-environments on Mars.

  10. Basinal seamounts and seamount chains of the Central Indian Ocean: Probable near-axis origin from a fast-spreading ridge

    Digital Repository Service at National Institute of Oceanography (India)

    Mukhopadhyay, R.; Batiza, R.

    Hydrosweep mapping of crust in the Central Indian Ocean Basin reveals abundant volcanoes occurring both as isolated seamounts and linear seamount chains parallel to flow lines. Their shapes, sizes and overall style of occurrence...

  11. Models of a partially hydrated Titan interior with a clathrate crust (United States)

    Lunine, J. I.; Castillo-Rogez, J. C.; Choukroun, M.; Sotin, C.


    We present a model of the interior evolution of Titan over time, assuming the silicate core was hydrated early in Titan’s history and is dehydrating over time. The original model presented in Castillo-Rogez and Lunine (2010) was motivated by a Cassini-derived moment of inertia (Iess et al., 2010) for Titan too large to be accommodated by classical fully differentiated models in which an anhydrous silicate core was overlain by a water ice (with possible perched ocean) mantle. Our model consists of a silicate core still in the process of dehydrating today, a situation made possible by the leaching of radiogenic potassium from the silicates into the perched liquid water ocean. The most recent version of our model accounts for the likely presence of large amounts of methane in the upper crust invoked to explain methane’s persistence at present and through geologic time (Tobie et al. 2006). The methane-rich crust turns out to have essentially no bearing on the temperature of the silicate core and hence the timing of dehydration, but it profoundly affects the thickness of the high-pressure ice layer beneath the ocean. Indeed, the insulating effect of the methane clathrate crust could have delayed the formation of the high-pressure layer, resulting in the interaction of liquid water with the silicate core for extended periods of time. Although a high-pressure ice layer is likely in place today, it is thin enough that plumes of hot water from the dehydrating core probably breach that layer. The implications of such a deep hydrothermal system for the later stages of the evolution of Titan’s interior and surface will be discussed. Part of this work has been performed at the Jet Propulsion Laboratory, California Institute of Technology, under contract to NASA. Government sponsorship acknowledged. References: Castillo-Rogez, J., Lunine, J.: “Evolution of Titan’s rocky core constrained by Cassini observations”. GRL, Vol. 37, L20205, 2010. Iess, L., et al.:

  12. Stress intensity factor at the tip of cladding incipient crack in RIA-simulating experiments for high-burnup PWR fuels

    International Nuclear Information System (INIS)

    Udagawa, Yutaka; Suzuki, Motoe; Sugiyama, Tomoyuki; Fuketa, Toyoshi


    RIA-simulating experiments for high-burnup PWR fuels have been performed in the NSRR, and the stress intensity factor K 1 at the tip of cladding incipient crack has been evaluated in order to investigate its validity as a PCMI failure threshold under RIA conditions. An incipient crack depth was determined by observation of metallographs. The maximum hydride-rim thickness in the cladding of the test fuel rod was regarded as the incipient crack depth in each test case. Hoop stress in the cladding periphery during the pulse power transient was calculated by the RANNS code. K 1 was calculated based on crack depth and hoop stress. According to the RANNS calculation, PCMI failure cases can be divided into two groups: failure in the elastic phase and failure in the plastic phase. In the former case, elastic deformation was predominant around the incipient crack at failure time. K 1 is available only in this case. In the latter, plastic deformation was predominant around the incipient crack at failure time. Failure in the elastic phase never occurred when K 1 was less than 17 MPa m 1/2 . For failure in the plastic phase, the plastic hoop strain of the cladding periphery at failure time clearly showed a tendency to decrease with incipient crack depth. The combination of K 1 , for failure in the elastic phase, and plastic hoop strain at failure, for failure in the plastic phase, can be an effective index of PCMI failure under RIA conditions. (author)

  13. Magnetically-driven oceans on Jovian satellites (United States)

    Gissinger, C.; Petitdemange, L.


    During the last decade, data from Galileo space missions have added strong support for the existence of subsurface liquid oceans on several moons of Jupiter. For instance, it is now commonly accepted that an electrically conducting fluid beneath the icy crust of Europa's surface may explain the variations of the induced field measured near the satellite. These observations have raised many questions regarding the size and the salinity of such subsurface ocean, or how and why the water remains liquid. In addition, the hydrodynamics of such oceans is mostly unknown. These questions are of primary importance since Europa is often considered as a good candidate for the presence of life beyond the Earth. Here, we present the first numerical modeling of the rapidly-rotating magnetohydrodynamic (MHD) flow generated in Europa's interior: due to Jupiter's rotation with respect to Europa, we show that the Lorentz force induced by the time-varying Jovian magnetic field is able to generate an oceanic flow of a few km/h. Our results are understood in the framework of a simple theoretical model and we obtain a scaling law for the prediction of the mean oceanic velocity and the total heating generated inside the ocean of Europa. Finally, by comparing our simulations to Galileo observations, we make predictions on both the thickness and the electrical conductivity of the ocean of different Jovian's satellites.

  14. Kullback-Leibler distance-based enhanced detection of incipient anomalies

    KAUST Repository

    Harrou, Fouzi


    Accurate and effective anomaly detection and diagnosis of modern engineering systems by monitoring processes ensure reliability and safety of a product while maintaining desired quality. In this paper, an innovative method based on Kullback-Leibler divergence for detecting incipient anomalies in highly correlated multivariate data is presented. We use a partial least square (PLS) method as a modeling framework and a symmetrized Kullback-Leibler distance (KLD) as an anomaly indicator, where it is used to quantify the dissimilarity between current PLS-based residual and reference probability distributions obtained using fault-free data. Furthermore, this paper reports the development of two monitoring charts based on the KLD. The first approach is a KLD-Shewhart chart, where the Shewhart monitoring chart with a three sigma rule is used to monitor the KLD of the response variables residuals from the PLS model. The second approach integrates the KLD statistic into the exponentially weighted moving average monitoring chart. The performance of the PLS-based KLD anomaly-detection methods is illustrated and compared to that of conventional PLS-based anomaly detection methods. Using synthetic data and simulated distillation column data, we demonstrate the greater sensitivity and effectiveness of the developed method over the conventional PLS-based methods, especially when data are highly correlated and small anomalies are of interest. Results indicate that the proposed chart is a very promising KLD-based method because KLD-based charts are, in practice, designed to detect small shifts in process parameters. © 2016 Elsevier Ltd

  15. Incipiently drowned platform deposit in cyclic Ordovician shelf sequence: Lower Ordovician Chepultepec Formation, Virginia

    Energy Technology Data Exchange (ETDEWEB)

    Bova, J.A.; Read, J.F.


    The Chepultepec interval, 145 to 260 m (476 to 853 ft) thick, in Virginia contains the Lower Member up to 150 m (492 ft) thick, and the Upper Member, up to 85 m (279 ft) thick, of peritidal cyclic limestone and dolomite, and a Middle Member, up to 110 m (360 ft) thick, of subtidal limestone and bioherms, passing northwestward into cyclic facies. Calculated long term subsidence rates were 4 to 5 cm/1000 yr (mature passive margin rates), shelf gradients were 6 cm/km, and average duration of cycles was 140,00 years. Peritidal cyclic sequences are upward shallowing sequences of pellet-skeletal limestone, thrombolites, rippled calcisiltites and intraclast grainstone, and laminite caps. They formed by rapid transgression with apparent submergence increments averaging approximately 2 m (6.5 ft) in Lower Member and 3.5 m (11.4 ft), Upper Member. Deposition during Middle Member time was dominated by skeletal limestone-mudstone, calcisiltite with storm generated fining-upward sequences, and burrow-mixed units that were formed near fair-weather wave base, along with thrombolite bioherms. Locally, there are upward shallowing sequences, of basal wackestone/mudstone to calcisiltite to bioherm complexes (locally with erosional scalloped tops). Following each submergence, carbonate sedimentation was able to build to sea level prior to renewed submergence. Large submergence events caused tidal flats to be shifted far to the west, and they were unable to prograde out onto the open shelf because of insufficient time before subsidence was renewed, and because the open shelf setting inhibited tidal flat deposition. The Middle Member represents an incipiently drowned sequence that developed by repeated submergence events.

  16. Interactions of C+(2PJ) with rare gas atoms: incipient chemical interactions, potentials and transport coefficients (United States)

    Tuttle, William D.; Thorington, Rebecca L.; Viehland, Larry A.; Breckenridge, W. H.; Wright, Timothy G.


    Accurate interatomic potentials were calculated for the interaction of a singly charged carbon cation, C+, with a single rare gas atom, RG (RG = Ne-Xe). The RCCSD(T) method and basis sets of quadruple-ζ and quintuple-ζ quality were employed; each interaction energy was counterpoise corrected and extrapolated to the basis set limit. The lowest C+(2P) electronic term of the carbon cation was considered, and the interatomic potentials calculated for the diatomic terms that arise from these: 2Π and 2Σ+. Additionally, the interatomic potentials for the respective spin-orbit levels were calculated, and the effect on the spectroscopic parameters was examined. In doing this, anomalously large spin-orbit splittings for RG = Ar-Xe were found, and this was investigated using multi-reference configuration interaction calculations. The latter indicated a small amount of RG → C+ electron transfer and this was used to rationalize the observations. This is taken as evidence of an incipient chemical interaction, which was also examined via contour plots, Birge-Sponer plots and various population analyses across the C+-RG series (RG = He-Xe), with the latter showing unexpected results. Trends in several spectroscopic parameters were examined as a function of the increasing atomic number of the RG atom. Finally, each set of RCCSD(T) potentials was employed, including spin-orbit coupling to calculate the transport coefficients for C+ in RG, and the results were compared with the limited available data. This article is part of the theme issue `Modern theoretical chemistry'.

  17. Incipient balancing selection through adaptive loss of aquaporins in natural Saccharomyces cerevisiae populations. (United States)

    Will, Jessica L; Kim, Hyun Seok; Clarke, Jessica; Painter, John C; Fay, Justin C; Gasch, Audrey P


    A major goal in evolutionary biology is to understand how adaptive evolution has influenced natural variation, but identifying loci subject to positive selection has been a challenge. Here we present the adaptive loss of a pair of paralogous genes in specific Saccharomyces cerevisiae subpopulations. We mapped natural variation in freeze-thaw tolerance to two water transporters, AQY1 and AQY2, previously implicated in freeze-thaw survival. However, whereas freeze-thaw-tolerant strains harbor functional aquaporin genes, the set of sensitive strains lost aquaporin function at least 6 independent times. Several genomic signatures at AQY1 and/or AQY2 reveal low variation surrounding these loci within strains of the same haplotype, but high variation between strain groups. This is consistent with recent adaptive loss of aquaporins in subgroups of strains, leading to incipient balancing selection. We show that, although aquaporins are critical for surviving freeze-thaw stress, loss of both genes provides a major fitness advantage on high-sugar substrates common to many strains' natural niche. Strikingly, strains with non-functional alleles have also lost the ancestral requirement for aquaporins during spore formation. Thus, the antagonistic effect of aquaporin function-providing an advantage in freeze-thaw tolerance but a fitness defect for growth in high-sugar environments-contributes to the maintenance of both functional and nonfunctional alleles in S. cerevisiae. This work also shows that gene loss through multiple missense and nonsense mutations, hallmarks of pseudogenization presumed to emerge after loss of constraint, can arise through positive selection.

  18. Interactions of C+(2 PJ ) with rare gas atoms: incipient chemical interactions, potentials and transport coefficients. (United States)

    Tuttle, William D; Thorington, Rebecca L; Viehland, Larry A; Breckenridge, W H; Wright, Timothy G


    Accurate interatomic potentials were calculated for the interaction of a singly charged carbon cation, C + , with a single rare gas atom, RG (RG = Ne-Xe). The RCCSD(T) method and basis sets of quadruple-ζ and quintuple-ζ quality were employed; each interaction energy was counterpoise corrected and extrapolated to the basis set limit. The lowest C + ( 2 P ) electronic term of the carbon cation was considered, and the interatomic potentials calculated for the diatomic terms that arise from these: 2 Π and 2 Σ + Additionally, the interatomic potentials for the respective spin-orbit levels were calculated, and the effect on the spectroscopic parameters was examined. In doing this, anomalously large spin-orbit splittings for RG = Ar-Xe were found, and this was investigated using multi-reference configuration interaction calculations. The latter indicated a small amount of RG → C + electron transfer and this was used to rationalize the observations. This is taken as evidence of an incipient chemical interaction, which was also examined via contour plots, Birge-Sponer plots and various population analyses across the C + -RG series (RG = He-Xe), with the latter showing unexpected results. Trends in several spectroscopic parameters were examined as a function of the increasing atomic number of the RG atom. Finally, each set of RCCSD(T) potentials was employed, including spin-orbit coupling to calculate the transport coefficients for C + in RG, and the results were compared with the limited available data.This article is part of the theme issue 'Modern theoretical chemistry'. © 2018 The Author(s).

  19. Persistently elevated right ventricular index of myocardial performance in preterm infants with incipient bronchopulmonary dysplasia.

    Directory of Open Access Journals (Sweden)

    Christoph Czernik

    Full Text Available OBJECTIVES: Elevated pulmonary vascular resistance occurs during the first days after birth in all newborn infants and persists in infants at risk for bronchopulmonary dysplasia (BPD. It is difficult to measure in a non-invasive fashion. We assessed the usefulness of the right ventricular index of myocardial performance (RIMP to estimate pulmonary vascular resistance in very low birth weight infants. STUDY DESIGN: Prospective echocardiography on day of life (DOL 2, 7, 14, and 28 in 121 preterm infants (median [quartiles] gestational age 28 [26]-[29] weeks, birth weight 998 [743-1225] g of whom 36 developed BPD (oxygen supplementation at 36 postmenstrual weeks. RESULTS: RIMP derived by conventional pulsed Doppler technique was unrelated to heart rate or mean blood pressure. RIMP on DOL 2 was similar in infants who subsequently did (0.39 [0.33-0.55] and did not develop BPD (0.39 [0.28-0.51], p = 0.467. RIMP declined steadily in non-BPD infants but not in BPD infants (DOL 7: 0.31[0.22-0.39] vs. 0.35[0.29-0.48], p = 0.014; DOL 14: 0.23[0.17-0.30] vs. 0.35[0.25-0.43], p<0.001; DOL 28: 0.21[0.15-0.28] vs. 0.31 [0.21-0.35], p = 0.015. CONCLUSIONS: In preterm infants, a decline in RIMP after birth was not observed in those with incipient BPD. The pattern of RIMP measured in preterm infants is commensurate with that of pulmonary vascular resistance.

  20. Seismic characteristics of central Brazil crust and upper mantle: A deep seismic refraction study (United States)

    Soares, J.E.; Berrocal, J.; Fuck, R.A.; Mooney, W.D.; Ventura, D.B.R.


    A two-dimensional model of the Brazilian central crust and upper mantle was obtained from the traveltime interpretation of deep seismic refraction data from the Porangatu and Cavalcante lines, each approximately 300 km long. When the lines were deployed, they overlapped by 50 km, forming an E-W transect approximately 530 km long across the Tocantins Province and western Sa??o Francisco Craton. The Tocantins Province formed during the Neoproterozoic when the Sa??o Francisco, the Paranapanema, and the Amazon cratons collided, following the subduction of the former Goia??s ocean basin. Average crustal VP and VP/VS ratios, Moho topography, and lateral discontinuities within crustal layers suggest that the crust beneath central Brazil can be associated with major geological domains recognized at the surface. The Moho is an irregular interface, between 36 and 44 km deep, that shows evidences of first-order tectonic structures. The 8.05 and 8.23 km s-1 P wave velocities identify the upper mantle beneath the Porangatu and Cavalcante lines, respectively. The observed seismic features allow for the identification of (1) the crust has largely felsic composition in the studied region, (2) the absence of the mafic-ultramafic root beneath the Goia??s magmatic arc, and (3) block tectonics in the foreland fold-and-thrust belt of the northern Brasi??lia Belt during the Neoproterozoic. Seismic data also suggested that the Bouguer gravimetric discontinuities are mainly compensated by differences in mass distribution within the lithospheric mantle. Finally, the Goia??s-Tocantins seismic belt can be interpreted as a natural seismic alignment related to the Neoproterozoic mantle domain. Copyright 2006 by the American Geophysical Union.

  1. Temporal Evolution of the Upper Continental Crust: Implications for the Mode of Crustal Growth and the Evolution of the Hydrosphere (United States)

    Rudnick, R. L.; Gaschnig, R. M.; Li, S.; Tang, M.; Qiu, L.; Valley, J. W.; Zurkowski, C.; McDonough, W. F.


    The upper continental crust (UCC), the interface between the atmosphere and solid Earth, is the site of weathering that produces sedimentary rocks, influences ocean chemistry through runoff of soluble elements, and affects climate through CO2 draw-down. The UCC also contains more than 50% of the crust's highly incompatible element budget (including K, Th, and U). Therefore, understanding its composition and evolution provides insight into how continents have formed, evolved, and interacted with the hydrosphere. New major and trace element compositions of >100 glacial diamictites and >100 Archean shales, plus δ7Li and δ18O for a subset of these samples, combined with data from the literature, show that the average composition of the UCC has changed through time, reflecting both the rise of atmospheric oxygen and its attendant effects on weathering, as well as the mode of crust formation and differentiation. Some changes that occur as a step function near the Archean/Proterozoic boundary (increased Th/U, decreased Mo/Pr, V/Lu) reflect the rise of oxygen at the great oxidation event (GOE) and its influence on chemical weathering signatures in the UCC. Other changes are more gradual with time (e.g., higher Th/Sc and δ18O, lower Ni/Co, La/Nb, Eu/Eu* and transition metal abundances) and reflect an UCC that has transitioned from a more mafic to a more felsic bulk composition, and which experienced increased interaction with the hydrosphere with time. The gradual nature of these compositional changes likely reflects the waning heat production of the Earth, rather than an abrupt change in tectonics or style of crust formation. These more gradual changes in crust composition, which contrast with the abrupt changes associated with the GOE, suggest that a fundamental change in the nature of crust differentiation is unlikely to be responsible for the rise of atmospheric oxygen (cf. Keller and Schoene, 2012). Indeed, it appears that the opposite may be true: that the rise of

  2. Estimation of seismic velocity in the subducting crust of the Pacific slab beneath Hokkaido, northern Japan by using guided waves (United States)

    Shiina, T.; Nakajima, J.; Toyokuni, G.; Kita, S.; Matsuzawa, T.


    A subducting crust contains a large amount of water as a form of hydrous minerals (e.g., Hacker et al., 2003), and the crust plays important roles for water transportation and seismogenesis in subduction zones at intermediate depths (e.g., Kirby et al., 1996; Iwamori, 2007). Therefore, the investigation of seismic structure in the crust is important to understand ongoing physical processes with subduction of oceanic lithosphere. A guided wave which propagates in the subducting crust is recorded in seismograms at Hokkaido, northern Japan (Shiina et al., 2014). Here, we estimated P- and S-wave velocity in the crust with guided waves, and obtained P-wave velocity of 6.6-7.3 km/s and S-wave velocity of 3.6-4.2 km/s at depths of 50-90 km. Moreover, Vp/Vs ratio in the crust is calculated to be 1.80-1.85 in that depth range. The obtained P-wave velocity about 6.6km/s at depths of 50-70 km is consistent with those estimated in Tohoku, northeast Japan (Shiina et al., 2013), and this the P-wave velocity is lower than those expected from models of subducting crustal compositions, such as metamorphosed MORB model (Hacker et al., 2003). In contrast, at greater depths (>80 km), the P-wave velocity marks higher velocity than the case of NE Japan and the velocity is roughly comparable to those of the MORB model. The obtained S-wave velocity distribution also shows characteristics similar to P waves. This regional variation may be caused by a small variation in thermal regime of the Pacific slab beneath the two regions as a result of the normal subduction in Tohoku and oblique subduction in Hokkaido. In addition, the effect of seismic anisotropy in the subducting crust would not be ruled out because rays used in the analysis in Hokkaido propagate mostly in the trench-parallel direction, while those in Tohoku are sufficiently criss-crossed.

  3. Oceans Past

    DEFF Research Database (Denmark)

    Based on research for the History of Marine Animal Populations project, Oceans Past examines the complex relationship our forebears had with the sea and the animals that inhabit it. It presents eleven studies ranging from fisheries and invasive species to offshore technology and the study of marine...... environmental history, bringing together the perspectives of historians and marine scientists to enhance understanding of ocean management of the past, present and future. In doing so, it also highlights the influence that changes in marine ecosystems have upon the politics, welfare and culture of human...

  4. Ocean energy

    International Nuclear Information System (INIS)


    There are 5 different ways of harnessing ocean energy: tides, swells, currents, osmotic pressure and deep water thermal gradients. The tidal power sector is the most mature. A single French site - The Rance tidal power station (240 MW) which was commissioned in 1966 produces 90% of the world's ocean energy. Smaller scale power stations operate around the world, 10 are operating in the European Union and 5 are being tested. Underwater generators and wave energy converters are expanding. In France a 1 km 2 sea test platform is planned for 2010. (A.C.)

  5. Calorimetric studies of cryptogamic crust metabolism in response to temperature, water vapor, and liquid water (United States)

    Dorothy A. Stradling; Tonya Thygerson; Bruce N. Smith; Lee D. Hansen; Richard S. Criddle; Rosemary L. Pendleton


    Cryptogamic crusts are communities composed of lichens, cyanobacteria, algae, mosses, and fungi. These integrated soil crusts are susceptible to disturbance, but if intact, appear to play a role in providing nutrients, especially nitrogen, to higher plants. It is not known how or under what conditions desert crusts can grow. Crust samples from localities on the...

  6. Effects of crust and cracks on simulated catchment discharge and soil loss

    NARCIS (Netherlands)

    Stolte, J.; Ritsema, C.J.; Roo, de A.P.J.


    Sealing, crusting and cracking of crusts of the soil surface has been observed in many parts of the world in areas with sandy, silty and loamy soils. Sealing and crust formation occurs under the influence of rain storm and drying weather. With prolonged drying, surface crusts might crack, leading to

  7. Viruses in the Oceanic Basement

    Directory of Open Access Journals (Sweden)

    Olivia D. Nigro


    Full Text Available Microbial life has been detected well into the igneous crust of the seafloor (i.e., the oceanic basement, but there have been no reports confirming the presence of viruses in this habitat. To detect and characterize an ocean basement virome, geothermally heated fluid samples (ca. 60 to 65°C were collected from 117 to 292 m deep into the ocean basement using seafloor observatories installed in two boreholes (Integrated Ocean Drilling Program [IODP] U1362A and U1362B drilled in the eastern sediment-covered flank of the Juan de Fuca Ridge. Concentrations of virus-like particles in the fluid samples were on the order of 0.2 × 105 to 2 × 105 ml−1 (n = 8, higher than prokaryote-like cells in the same samples by a factor of 9 on average (range, 1.5 to 27. Electron microscopy revealed diverse viral morphotypes similar to those of viruses known to infect bacteria and thermophilic archaea. An analysis of virus-like sequences in basement microbial metagenomes suggests that those from archaeon-infecting viruses were the most common (63 to 80%. Complete genomes of a putative archaeon-infecting virus and a prophage within an archaeal scaffold were identified among the assembled sequences, and sequence analysis suggests that they represent lineages divergent from known thermophilic viruses. Of the clustered regularly interspaced short palindromic repeat (CRISPR-containing scaffolds in the metagenomes for which a taxonomy could be inferred (163 out of 737, 51 to 55% appeared to be archaeal and 45 to 49% appeared to be bacterial. These results imply that the warmed, highly altered fluids in deeply buried ocean basement harbor a distinct assemblage of novel viruses, including many that infect archaea, and that these viruses are active participants in the ecology of the basement microbiome.

  8. Syn-collisional felsic magmatism and continental crust growth: A case study from the North Qilian Orogenic Belt at the northern margin of the Tibetan Plateau (United States)

    Chen, Shuo; Niu, Yaoling; Xue, Qiqi


    The abundant syn-collisional granitoids produced and preserved at the northern Tibetan Plateau margin provide a prime case for studying the felsic magmatism as well as continental crust growth in response to continental collision. Here we present the results from a systematic study of the syn-collisional granitoids and their mafic magmatic enclaves (MMEs) in the Laohushan (LHS) and Machangshan (MCS) plutons from the North Qilian Orogenic Belt (NQOB). Two types of MMEs from the LHS pluton exhibit identical crystallization age ( 430 Ma) and bulk-rock isotopic compositions to their host granitoids, indicating their genetic link. The phase equilibrium constraints and pressure estimates for amphiboles from the LHS pluton together with the whole rock data suggest that the two types of MMEs represent two evolution products of the same hydrous andesitic magmas. In combination with the data on NQOB syn-collisional granitoids elsewhere, we suggest that the syn-collisional granitoids in the NQOB are material evidence of melting of ocean crust and sediment. The remarkable compositional similarity between the LHS granitoids and the model bulk continental crust in terms of major elements, trace elements, and some key element ratios indicates that the syn-collisional magmatism in the NQOB contributes to net continental crust growth, and that the way of continental crust growth in the Phanerozoic through syn-collisional felsic magmatism (production and preservation) is a straightforward process without the need of petrologically and physically complex processes.

  9. Heterogeneity of the North Atlantic oceanic lithosphere based on integrated analysis of GOCE satellite gravity and geological data

    DEFF Research Database (Denmark)

    Barantseva, Olga; Artemieva, Irina; Thybo, Hans


    -to-density conversion curves based on published laboratory measurements for the crystalline basement (Ludwig, Nafe, Drake, 1970; Christensen and Mooney, 1995) and for oceanic sediments and oceanic crust based on laboratory measurements for serpentinites and gabbros from the Mid-Atlantic Ridge (Kelemen et al., 2004...

  10. Seismic anisotropy of the shallow crust at the Juan de Fuca Ridge (United States)

    Almendros, J.; Barclay, A.H.; Wilcock, W.S.D.; Purdy, G.M.


    Microearthquake data recorded on four ocean bottom seismometers are used to study shear-wave splitting on the Endeavour Segment of the Juan de Fuca Ridge. The covariance matrix decomposition method is used to determine the sensor orientation from explosive shot data and to estimate the anisotropy parameters for 238 earthquake records. At three of the four sites, the results show a remarkably consistent fast direction parallel to the ridge axis. The time delays between the fast and the slow waves range from 40 to 200 ms, with an average of 90 ms. They are not clearly related to earthquake range, focal depth or source-receiver azimuth. The splitting of the shear waves is interpreted as an effect of structural anisotropy due to the presence of ridge-parallel cracks in the shallow crust. If we assume that anisotropy is concentrated in the upper 1-2 km, the splitting times require a high crack density of ~0.1.

  11. Exploring the Earth's crust: history and results of controlled-source seismology (United States)

    Prodehl, Claus; Mooney, Walter D.


    This volume contains a comprehensive, worldwide history of seismological studies of the Earth’s crust using controlled sources from 1850 to 2005. Essentially all major seismic projects on land and the most important oceanic projects are covered. The time period 1850 to 1939 is presented as a general synthesis, and from 1940 onward the history and results are presented in separate chapters for each decade, with the material organized by geographical region. Each chapter highlights the major advances achieved during that decade in terms of data acquisition, processing technology, and interpretation methods. For all major seismic projects, the authors provide specific details on field observations, interpreted crustal cross sections, and key references. They conclude with global and continental-scale maps of all field measurements and interpreted Moho contours. An accompanying DVD contains important out-of-print publications and an extensive collection of controlled-source data, location maps, and crustal cross sections.

  12. Oceans Past

    DEFF Research Database (Denmark)

    Based on research for the History of Marine Animal Populations project, Oceans Past examines the complex relationship our forebears had with the sea and the animals that inhabit it. It presents eleven studies ranging from fisheries and invasive species to offshore technology and the study of mari...

  13. Enceladus's crust as a non-uniform thin shell: I tidal deformations (United States)

    Beuthe, Mikael


    The geologic activity at Enceladus's south pole remains unexplained, though tidal deformations are probably the ultimate cause. Recent gravity and libration data indicate that Enceladus's icy crust floats on a global ocean, is rather thin, and has a strongly non-uniform thickness. Tidal effects are enhanced by crustal thinning at the south pole, so that realistic models of tidal tectonics and dissipation should take into account the lateral variations of shell structure. I construct here the theory of non-uniform viscoelastic thin shells, allowing for depth-dependent rheology and large lateral variations of shell thickness and rheology. Coupling to tides yields two 2D linear partial differential equations of the fourth order on the sphere which take into account self-gravity, density stratification below the shell, and core viscoelasticity. If the shell is laterally uniform, the solution agrees with analytical formulas for tidal Love numbers; errors on displacements and stresses are less than 5% and 15%, respectively, if the thickness is less than 10% of the radius. If the shell is non-uniform, the tidal thin shell equations are solved as a system of coupled linear equations in a spherical harmonic basis. Compared to finite element models, thin shell predictions are similar for the deformations due to Enceladus's pressurized ocean, but differ for the tides of Ganymede. If Enceladus's shell is conductive with isostatic thickness variations, surface stresses are approximately inversely proportional to the local shell thickness. The radial tide is only moderately enhanced at the south pole. The combination of crustal thinning and convection below the poles can amplify south polar stresses by a factor of 10, but it cannot explain the apparent time lag between the maximum plume brightness and the opening of tiger stripes. In a second paper, I will study the impact of a non-uniform crust on tidal dissipation.

  14. Population structure of guppies in north-eastern Venezuela, the area of putative incipient speciation. (United States)

    Herdegen, Magdalena; Alexander, Heather J; Babik, Wiesław; Mavárez, Jesús; Breden, Felix; Radwan, Jacek


    Geographic barriers to gene flow and divergence among populations in sexual traits are two important causes of genetic isolation which may lead to speciation. Genetic isolation may be facilitated if these two mechanisms act synergistically. The guppy from the Cumaná region (within the Cariaco drainage) of eastern Venezuela has been previously described as a case of incipient speciation driven by sexual selection, significantly differentiated in sexual colouration and body shape from the common guppy, Poecilia reticulata. The latter occurs widely in northern Venezuela, including the south-eastern side of Cordillera de la Costa, where it inhabits streams belonging to the San Juan drainage. Here, we present molecular and morphological analyses of differentiation among guppy populations in the Cariaco and San Juan drainages. Our analyses are based on a 953 bp long mtDNA fragment, a set of 15 microsatellites (519 fish from 20 populations), and four phenotypic traits. Both microsatellite and mtDNA data showed that guppies inhabiting the two drainages are characterised by a significant genetic differentiation, but a higher proportion of the genetic variance was distributed among populations within regions. Most guppies in the Cariaco drainage had mtDNA from a distinct lineage, but we also found evidence for widespread introgression of mtDNA from the San Juan drainage into the Cariaco drainage. Phenotypically, populations in the two regions differed significantly only in the number of black crescents. Phenotypic clustering did not support existence of two distinct groupings, but indicated a degree of distinctiveness of Central Cumaná (CC) population. However, CC population showed little differentiation at the neutral markers from the proximate populations within the Cariaco drainage. Our findings are consistent with only partial genetic isolation between the two geographic regions and indicate that the geographic barrier of Cordillera de la Costa has not played an

  15. Crusted scabies-associated immune reconstitution inflammatory syndrome. (United States)

    Fernández-Sánchez, Mónica; Saeb-Lima, Marcela; Alvarado-de la Barrera, Claudia; Reyes-Terán, Gustavo


    Despite the widely accepted association between crusted scabies and human immunodeficiency virus (HIV)-infection, crusted scabies has not been included in the spectrum of infections associated with immune reconstitution inflammatory syndrome in HIV-infected patients initiating antiretroviral therapy. We report a case of a 28-year-old Mexican individual with late HIV-infection, who had no apparent skin lesions but soon after initiation of antiretroviral therapy, he developed an aggressive form of crusted scabies with rapid progression of lesions. Severe infestation by Sarcoptes scabiei was confirmed by microscopic examination of the scale and skin biopsy. Due to the atypical presentation of scabies in a patient responding to antiretroviral therapy, preceded by no apparent skin lesions at initiation of antiretroviral therapy, the episode was interpreted for the first time as "unmasking crusted scabies-associated immune reconstitution inflammatory syndrome". This case illustrates that when crusted scabies is observed in HIV-infected patients responding to antiretroviral therapy, it might as well be considered as a possible manifestation of immune reconstitution inflammatory syndrome. Patient context should be considered for adequate diagnosis and treatment of conditions exacerbated by antiretroviral therapy-induced immune reconstitution.

  16. Microenvironments and microscale productivity of cyanobacterial desert crusts (United States)

    Garcia-Pichel, F.; Belnap, Jayne


    We used microsensors to characterize physicochemical microenvironments and photosynthesis occurring immediately after water saturation in two desert soil crusts from southeastern Utah, which were formed by the cyanobacteria Microcoleus vaginatus Gomont, Nostoc spp., and Scytonema sp. The light fields within the crusts presented steep vertical gradients in magnitude and spectral composition. Near-surface light-trapping zones were formed due to the scattering nature of the sand particles, but strong light attenuation resulted in euphotic zones only ca. 1 mm deep, which were progressively enriched in longer wavelengths with depth. Rates of gross photosynthesis (3.4a??9.4 mmol O2A?ma??2A?ha??1) and dark respiration (0.81a??3.1 mmol Oa??2A?ma??2A?ha??1) occurring within 1 to several mm from the surface were high enough to drive the formation of marked oxygen microenvironments that ranged from oxygen supersaturation to anoxia. The photosynthetic activity also resulted in localized pH values in excess of 10, 2a??3 units above the soil pH. Differences in metabolic parameters and community structure between two types of crusts were consistent with a successional pattern, which could be partially explained on the basis of the microenvironments. We discuss the significance of high metabolic rates and the formation of microenvironments for the ecology of desert crusts, as well as the advantages and limitations of microsensor-based methods for crust investigation.

  17. Crusted scabies-associated immune reconstitution inflammatory syndrome

    Directory of Open Access Journals (Sweden)

    Fernández-Sánchez Mónica


    Full Text Available Abstract Background Despite the widely accepted association between crusted scabies and human immunodeficiency virus (HIV-infection, crusted scabies has not been included in the spectrum of infections associated with immune reconstitution inflammatory syndrome in HIV-infected patients initiating antiretroviral therapy. Case presentation We report a case of a 28-year-old Mexican individual with late HIV-infection, who had no apparent skin lesions but soon after initiation of antiretroviral therapy, he developed an aggressive form of crusted scabies with rapid progression of lesions. Severe infestation by Sarcoptes scabiei was confirmed by microscopic examination of the scale and skin biopsy. Due to the atypical presentation of scabies in a patient responding to antiretroviral therapy, preceded by no apparent skin lesions at initiation of antiretroviral therapy, the episode was interpreted for the first time as “unmasking crusted scabies-associated immune reconstitution inflammatory syndrome”. Conclusion This case illustrates that when crusted scabies is observed in HIV-infected patients responding to antiretroviral therapy, it might as well be considered as a possible manifestation of immune reconstitution inflammatory syndrome. Patient context should be considered for adequate diagnosis and treatment of conditions exacerbated by antiretroviral therapy-induced immune reconstitution.

  18. Petrogenesis of incipient charnockite in the Ikalamavony sub-domain, south-central Madagascar: New insights from phase equilibrium modeling (United States)

    Endo, Takahiro; Tsunogae, Toshiaki; Santosh, M.; Shaji, E.; Rambeloson, Roger A.


    Incipient charnockites representing granulite formation on a mesoscopic scale occur in the Ambodin Ifandana area of Ikalamavony sub-domain in south-central Madagascar. Here we report new petrological data from these rocks, and discuss the process of granulite formation on the basis of petrography, mineral equilibrium modeling, and fluid inclusion studies. The incipient charnockites occur as brownish patches, lenses, and layers characterized by an assemblage of biotite + orthopyroxene + K-feldspar + plagioclase + quartz + magnetite + ilmenite within host orthopyroxene-free biotite gneiss with an assemblage of biotite + K-feldspar + plagioclase + quartz + magnetite + ilmenite. Lenses and layers of calc-silicate rock (clinopyroxene + garnet + plagioclase + quartz + titanite + calcite) are typically associated with the charnockite. Coarse-grained charnockite occurs along the contact between the layered charnockite and calc-silicate rock. The application of mineral equilibrium modeling on the mineral assemblages in charnockite and biotite gneiss employing the NCKFMASHTO system as well as fluid inclusion study on coarse-grained charnockite defines a P-T range of 8.5-10.5 kbar and 880-900 °C, which is nearly consistent with the inferred P-T condition of the Ikalamavony sub-domain (8.0-10.5 kbar and 820-880 °C). The result of T versus H2O activity (a(H2O)) modeling demonstrates that orthopyroxene-bearing assemblage in charnockite is stable under relatively low a(H2O) condition of 0.42-0.43, which is consistent with the popular models of incipient-charnockite formation related to the lowering of water activity and stabilization of orthopyroxene through dehydration of biotite. The occurrence of calc-silicate rocks adjacent to the charnockite suggests that the CO2-bearing fluid that caused dehydration and incipient-charnockite formation might have been derived through decarbonation of calc-silicate rocks during the initial stage of decompression slightly after the peak

  19. Stable isotope composition and volume of Early Archaean oceans

    DEFF Research Database (Denmark)

    Pope, Emily Catherine; Rosing, Minik Thorleif; Bird, Dennis K.

    Oxygen and hydrogen isotope compositions of seawater are controlled by volatile fluxes between mantle, lithospheric (oceanic and continental crust) and atmospheric reservoirs. Throughout geologic time oxygen was likely conserved within these Earth system reservoirs, but hydrogen was not, as it can...... escape to space [1]. Hydrogen isotope ratios of serpentinites from the ~3.8Ga Isua Supracrustal Belt in West Greenland are between -53 and -99‰; the highest values are in antigorite ± lizardite serpentinites from a low-strain lithologic domain where hydrothermal reaction of Archaean seawater with oceanic...... of continents present at that time), and the mass of Early Archaean oceans to ~109 to 126% of present day oceans. Oxygen isotope analyses from these Isua serpentinites (δ18O = +0.1 to 5.6‰ relative to VSMOW) indicate that early Archaean δ18OSEAWATER similar to modern oceans. Our observations suggest...

  20. Numerical modeling of oceanic crustal hydrothermal systems (United States)

    Latychev, Konstantin

    The oceanic crust is a complex rock-mineral formation which extends up to several kilometers below the sea floor and covers laterally about two thirds of the planet. Hydrothermal circulation within the crust is driven by magmatic sources and carried by the fluid residing in pores and cracks. Hydrothermal advection transfers about one quarter of the Earth's total heat power from the interior. Marine sediments are believed to be the largest repositories of solid ice-like methane clathrate hydrates. The compliance technique is an important tool for assessment of this resource. It makes use of the oceanic surface gravity waves to induce pressure variations on the sea floor and measure the corresponding vertical deformation. This thesis deals with the convective heat and mass transfer within the oceanic crust, as a fractured porous medium, and the elastic, quasi-static response of hydrated marine sediments to gravity wave loading. Both generic and site-specific applications are considered. Most applications are tackled numerically in three spatial dimensions. The major results are as follows. Fractures can trigger and maintain hydrothermal circulation. The permeability-thickness product in the direction of flow is an adequate parameter to represent the fracture if convection is not vigorous. A new temperature homogenization mechanism for the off-axial convection is proposed which is due to quasi-lateral circulation within a permeable zone between sediment cover and basalt. It explains both the observed correlation between surface heat flux and sediment thickness, as well as regular heat flux variations when no buried topography is present. A hydrothermal model for the CoAxial Segment of the Juan de Fuca Ridge predicts ridge-parallel convection with the low-temperature vents spaced 1 km apart. The compliance approach is feasible for a non-layered medium. The average compliance response depends on the bulk hydrate content, but not on a particular connectivity pattern

  1. Misdiagnosed crusted scabies in an AIDS patient leads to hyperinfestation. (United States)

    Yari, Niloofar; Malone, C Helen; Rivas, Antonio


    Crusted scabies is a severe, highly contagious form of classic scabies caused by the mite Sarcoptes scabiei var hominis . Crusted scabies is more common in immunosuppressed populations and overcrowded environments. In this condition, the host's immune system is overwhelmed and unable to defend against the mites on the skin, resulting in hyperinfestation of the host. Diagnosis can be challenging because the condition resembles other common skin conditions, such as plaque psoriasis. Furthermore, delayed diagnosis and inappropriate treatment can lead to worsening of the condition. We report a case of crusted scabies that was initially misdiagnosed in a 34-year-old incarcerated man with multidrug-resistant human immunodeficiency virus/AIDS. The patient had a complicated but complete recovery after treatment with permethrin and ivermectin was instituted.

  2. Vortex Pinning and Dynamics in the Neutron Star Crust (United States)

    Wlazłowski, Gabriel; Sekizawa, Kazuyuki; Magierski, Piotr; Bulgac, Aurel; Forbes, Michael McNeil


    The nature of the interaction between superfluid vortices and the neutron star crust, conjectured by Anderson and Itoh in 1975 to be at the heart vortex creep and the cause of glitches, has been a long-standing question in astrophysics. Using a qualitatively new approach, we follow the dynamics as superfluid vortices move in response to the presence of "nuclei" (nuclear defects in the crust). The resulting motion is perpendicular to the force, similar to the motion of a spinning top when pushed. We show that nuclei repel vortices in the neutron star crust, and characterize the force per unit length of the vortex line as a function of the vortex element to the nucleus separation.

  3. Structure of the Crust and the Lithosperic Mantle in Siberia

    DEFF Research Database (Denmark)

    Cherepanova, Yulia

    the development of a new regional crustal model, SibCrust, that is a digital crustal model for both the Siberian Craton and the West Siberian Basin. The SibCrust model, constrained by digitizing of all available seismic profiles and crustal velocity models across the Siberia, also includes a critical quality...... assessment of regional seismic data and crustal regionalization based on seismic structure of the crust. The second part of the study included the development of the SibDensity model that is the density model of the lithospheric mantle calculated by the mass balance method. Mantle density modeling involved...... in the lithospheric mantle density, are interpreted in terms of regional tectonic evolution, namely the mechanism by which the Paleozoic intracontinental basin has been formed and the tectono-magmatic processes by which the Archean-Proterozoic craton has been modified as reflected in the composition of its mantle....

  4. Entrainment in the inner crust of a neutron star

    International Nuclear Information System (INIS)

    Chamel, N.


    The inner crust of a neutron star, which is composed of a solid Coulomb lattice of nuclei immersed in a neutron super-fluid, is studied from both a macroscopic and a microscopic level. In the first part, we develop a non-relativistic but 4-dimensionally covariant formulation of the hydrodynamics of a perfect fluid mixture based on a variational principle. This formalism is applied to the description of neutron star crust as 2-fluid model, a neutron super-fluid and a plasma of nuclei and electrons coupled via non dissipative entrainment effects, whose microscopic evaluation is studied in a second part. Applying mean field methods beyond the Wigner-Seitz approximation, the Bragg scattering of dripped neutrons upon crustal nuclei lead to a 'mesoscopic' effective neutron mass, which unlike the 'microscopic' effective mass, takes very large values compared to the bare mass in the middle layers of the crust. (author)

  5. Evidences for incipient hydrothermal event(s) in the Central Indian Basin: A review

    Digital Repository Service at National Institute of Oceanography (India)

    Iyer, S.D.

    fragments, absence of wustite and alpha-iron minerals and the presence of magmaphile elements (Del Monte et al., 1975) and the presence of Ti and Mn (El Goresy, 1968). Models of hydrovolcanic ash formation by fragmentation have been... Feb. 2005 83 and an appreciable Mn are enigmatic to explain (El Goresy, 1968). Lozovaya (1981) reported the occurrence of various types of volcanic spherules in the Mesozoic-Cenozoic deposits of the Atlantic Ocean...

  6. Ocean acidification

    International Nuclear Information System (INIS)

    Soubelet, Helene; Veyre, Philippe; Monnoyer-Smith, Laurence


    This brief publication first recalls and outlines that ocean acidification is expected to increase, and will result in severe ecological impacts (more fragile coral reefs, migration of species, and so on), and therefore social and economic impacts. This issue is particularly important for France who possesses the second exclusive maritime area in the world. The various impacts of ocean acidification on living species is described, notably for phytoplankton, coral reefs, algae, molluscs, and fishes. Social and economic impacts are also briefly presented: tourism, protection against risks (notably by coral reefs), shellfish aquaculture and fishing. Issues to be addressed by scientific research are evoked: interaction between elements of an ecosystem and between different ecosystems, multi-stress effects all along organism lifetime, vulnerability and adaptability of human societies

  7. USArray Imaging of Continental Crust in the Conterminous United States (United States)

    Ma, Xiaofei; Lowry, Anthony R.


    The thickness and bulk composition of continental crust provide important constraints on the evolution and dynamics of continents. Crustal mineralogy and thickness both may influence gravity anomalies, topographic elevation, and lithospheric strength, but prior to the inception of EarthScope's USArray, seismic measurements of crustal thickness and properties useful for inferring lithology are sparse. Here we improve upon a previously published methodology for joint inversion of Bouguer gravity anomalies and seismic receiver functions by using parameter space stacking of cross correlations of modeled synthetic and observed receiver functions instead of standard H-κ amplitude stacking. The new method is applied to estimation of thickness and bulk seismic velocity ratio, vP/vS, of continental crust in the conterminous United States using USArray and other broadband network data. Crustal thickness variations are reasonably consistent with those found in other studies and show interesting relationships to the history of North American continental formation. Seismic velocity ratios derived in this study are more robust than in other analyses and hint at large-scale variations in composition of continental crust. To interpret the results, we model the pressure-/temperature-dependent thermodynamics of mineral formation for various crustal chemistries, with and without volatile constituents. Our results suggest that hydration lowers bulk crustal vP/vS and density and releases heat in the shallow crust but absorbs heat in the lowermost crust (where plagioclase breaks down to pyroxene and garnet resulting in higher seismic velocity). Hence, vP/vS variations may provide a useful proxy for hydration state in the crust.

  8. Formation of hybrid arc andesites beneath thick continental crust (United States)

    Straub, Susanne M.; Gomez-Tuena, Arturo; Stuart, Finlay M.; Zellmer, Georg F.; Espinasa-Perena, Ramon; Cai, Yue; Iizuka, Yoshiyuki


    Andesite magmatism at convergent margins is essential for the differentiation of silicate Earth, but no consensus exists as to andesite petrogenesis. Models proposing origin of primary andesite melts from mantle and/or slab materials remain in deadlock with the seemingly irrefutable petrographic and chemical evidence for andesite formation through mixing of basaltic mantle melts with silicic components from the overlying crust. Here we use 3He/4He ratios of high-Ni olivines to demonstrate the mantle origin of basaltic to andesitic arc magmas in the central Mexican Volcanic Belt (MVB) that is constructed on ~ 50 km thick continental crust. We propose that the central MVB arc magmas are hybrids of high-Mg# > 70 basaltic and dacitic initial mantle melts which were produced by melting of a peridotite subarc mantle interspersed with silica-deficient and silica-excess pyroxenite veins. These veins formed by infiltration of reactive silicic components from the subducting slab. Partial melts from pyroxenites, and minor component melts from peridotite, mix in variable proportions to produce high-Mg# basaltic, andesitic and dacitic magmas. Moderate fractional crystallization and recharge melt mixing in the overlying crust produces then the lower-Mg# magmas erupted. Our model accounts for the contrast between the arc-typical SiO2 variability at a given Mg# and the strong correlation between major element oxides SiO2, MgO and FeO which is not reproduced by mantle-crust mixing models. Our data further indicate that viscous high-silica mantle magmas may preferentially be emplaced as intrusive silicic plutonic rocks in the crust rather than erupt. Ultimately, our results imply a stronger turnover of slab and mantle materials in subduction zones with a negligible, or lesser dilution, by materials from the overlying crust.

  9. Modeling of dust emission for a crusted surface (United States)

    Ghodsi Zadeh, Z.; Klose, M.; DuBois, D. W.


    Dust storms are frequent phenomena in the southwestern United Sates. Dust source areas in the region are often (partly) crusted. A critical prerequisite in dust aerosol modeling is an accurate representation of dust emission. While several dust emission schemes have been developed over the last decades, their applicability for crusted surfaces is not well tested. In this study, we use and test the applicability of the dust emission scheme of Shao (2004) (S04), which estimates dust emission based on the soil volume removed by saltation particle impacts, to model dust emission from a crusted surface in New Mexico, USA, for three dust events in spring 2016. Detailed field data are available for these events which are used as scheme input (surface crust and vegetation fraction, friction velocity, minimally- and fully-dispersed particle-size distributions) and for evaluation (saltation flux and dust emission flux). Results show that the saltation flux modeled with the scheme of White (1979) was overestimated by three orders of magnitude. This is expected as the supply of particles available for saltation is limited at the site. As our focus is on dust emission, a constant scaling factor was applied to match modeled and observed saltation fluxes. Parameters that describe the efficiency of saltator impacts to emit dust and the degree of dispersion during erosion need to be adapted in the S04 scheme to represent the soil surface setting at the study site. Our results show that changing those parameters has little effect on the modeled dust emission and dust emission is generally underestimated when PSDs of the top 1 cm soil layer are used as it is common. The reason for this is that the crust at the site is relatively thin and the soil overall sandy, which results in only a small difference between the two PSDs. If, however, the minimally- and fully-dispersed PSDs are replaced with the PSDs of, respectively, loose erodible material and crust, then the difference increases

  10. Viruses in the Oceanic Basement. (United States)

    Nigro, Olivia D; Jungbluth, Sean P; Lin, Huei-Ting; Hsieh, Chih-Chiang; Miranda, Jaclyn A; Schvarcz, Christopher R; Rappé, Michael S; Steward, Grieg F


    Microbial life has been detected well into the igneous crust of the seafloor (i.e., the oceanic basement), but there have been no reports confirming the presence of viruses in this habitat. To detect and characterize an ocean basement virome, geothermally heated fluid samples (ca. 60 to 65°C) were collected from 117 to 292 m deep into the ocean basement using seafloor observatories installed in two boreholes (Integrated Ocean Drilling Program [IODP] U1362A and U1362B) drilled in the eastern sediment-covered flank of the Juan de Fuca Ridge. Concentrations of virus-like particles in the fluid samples were on the order of 0.2 × 10 5 to 2 × 10 5  ml -1 ( n = 8), higher than prokaryote-like cells in the same samples by a factor of 9 on average (range, 1.5 to 27). Electron microscopy revealed diverse viral morphotypes similar to those of viruses known to infect bacteria and thermophilic archaea. An analysis of virus-like sequences in basement microbial metagenomes suggests that those from archaeon-infecting viruses were the most common (63 to 80%). Complete genomes of a putative archaeon-infecting virus and a prophage within an archaeal scaffold were identified among the assembled sequences, and sequence analysis suggests that they represent lineages divergent from known thermophilic viruses. Of the clustered regularly interspaced short palindromic repeat (CRISPR)-containing scaffolds in the metagenomes for which a taxonomy could be inferred (163 out of 737), 51 to 55% appeared to be archaeal and 45 to 49% appeared to be bacterial. These results imply that the warmed, highly altered fluids in deeply buried ocean basement harbor a distinct assemblage of novel viruses, including many that infect archaea, and that these viruses are active participants in the ecology of the basement microbiome. IMPORTANCE The hydrothermally active ocean basement is voluminous and likely provided conditions critical to the origins of life, but the microbiology of this vast habitat is not

  11. Mossbauer studies and oxidised manganese ratio in ferromanganese nodules and crusts from the Central Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Pattan, J.N.; Mudholkar, A.V.

    stream_size 5 stream_content_type text/plain stream_name Geo-Mar_Lett_11_51.pdf.txt stream_source_info Geo-Mar_Lett_11_51.pdf.txt Content-Encoding ISO-8859-1 Content-Type text/plain; charset=ISO-8859-1 ...

  12. Efficacy of 1.23% APF gel applications on incipient carious lesions: a double-blind randomized clinical trial

    Directory of Open Access Journals (Sweden)

    Maria Laura Menezes Bonow


    Full Text Available The aim of this double-blind randomized clinical trial was to evaluate the efficacy of 1.23% APF gel application on the arrest of active incipient carious lesions in children. Sixty 7- to 12-year-old children, with active incipient lesions were included in the study. Children were divided randomly into 2 groups: 1.23% APF gel and placebo gel applications. Each group received 8 weekly applications of treatment. The lesions were re-evaluated at the 4th and 8th appointments. Poisson regression analysis was used to estimate relative risks of the presence of active white spot lesions. Groups showed similar results (PR = 1.67; CI 95% 0.69–3.98. The persistence of at least 1 active lesion was associated with a higher number of lesions in the baseline (PR = 2.67; CI 95% 1.19–6.03, but not with sugar intake (PR = 1.06; CI 95% 0.56–2.86 and previous exposure to fluoride dentifrice (PR = 1.26; CI 95% 0.49–2.29. The trial demonstrates the equivalence of the treatments. The use of the APF gel showed no additional benefits in this sample of children exposed to fluoridated water and dentifrice. The professional dental plaque removal in both groups may also account for the resulting equivalence of the treatments.

  13. Crustal Stretching Style and Lower Crust Flow of the South China Sea Northern Margin (United States)

    Bai, Y.; Dong, D.; Runlin, D.


    There is a controversy about crustal stretching style of the South China Sea (SCS) northern margin mainly due to considerable uncertainty of stretching factor estimation, for example, as much as 40% of upper crust extension (Walsh et al., 1991) would be lost by seismic profiles due to poor resolution. To discover and understand crustal stretching style and lower crustal flow on the whole, we map the Moho and Conrad geometries based on gravity inversion constrained by deep seismic profiles, then according to the assumption of upper and lower crust initial thickness, upper and lower crust stretching factors are estimated. According to the comparison between upper and lower crust stretching factors, the SCS northern margin could be segmented into three parts, (1) sediment basins where upper crust is stretched more than lower crust, (2) COT regions where lower crust is stretched more than upper crust, (3) other regions where the two layers have similar stretching factors. Stretching factor map shows that lower crust flow happened in both of COT and sediment basin regions where upper crust decouples with lower crust due to high temperature. Pressure contrast by sediment loading in basins and erosion in sediment-source regions will lead to lower crust flow away from sediment sink to source. Decoupled and fractured upper crust is stretched further by sediment loading and the following compensation would result in relatively thick lower crust than upper crust. In COT regions with thin sediment coverage, low-viscosity lower crust is easier to thin in extensional environment, also the lower crust tends to flow away induced by magma upwelling. Therefore, continental crust on the margin is not stretching in a constant way but varies with the tectonic setting changes. This work is supported by National Natural Science Foundation of China (Grant No. 41506055, 41476042) and Fundamental Research Funds for the Central Universities China (No.17CX02003A).

  14. Fracture behaviour of bread crust: Effect of ingredient modification

    NARCIS (Netherlands)

    Primo-Martin, C.; Beukelaer, de H.J.; Hamer, R.J.; Vliet, van T.


    The influence of the formulation on the crispness of bread crust was studied. Crispness is a relevant sensory attribute that depends on several factors particularly the plasticizer content (water), the mechanical properties of the solid matrix and the morphological architecture of the bread. Enzymes

  15. Fracture behaviour of bread crust: Effect of bread cooling conditions

    NARCIS (Netherlands)

    Primo Martin, C.; Beukelaer, de H.J.; Hamer, R.J.; Vliet, van T.


    The effect of air and vacuum cooling on the fracture behaviour and accompanying sound emission, moisture content and crispness of bread crust were investigated. Vacuum cooling resulted in rapid evaporative cooling of products that contained high moisture content. Fracture experiments showed a clear

  16. Characteristics and management options of crusting soils in a ...

    African Journals Online (AJOL)

    scheme include destruction of soil structure by heavy tillage implements prior to resettlement, low soil organic carbon input practices and high-intensity rain storms (Bronick and. Lal 2005). The objectives of this study were therefore to. (1) assess the nature and distribution of the crusting soils at the scheme and (2) determine ...

  17. The off-crust origin of granite batholiths

    Directory of Open Access Journals (Sweden)

    Antonio Castro


    Full Text Available Granitod batholiths of I-type features (mostly granodiorites and tonalites, and particularly those forming the large plutonic associations of active continental margins and intracontinental collisional belts, represent the most outstanding magmatic episodes occurred in the continental crust. The origin of magmas, however, remains controversial. The application of principles from phase equilibria is crucial to understand the problem of granitoid magma generation. An adequate comparison between rock compositions and experimental liquids has been addressed by using a projected compositional space in the plane F(Fe + Mg–Anorthite–Orthoclase. Many calc-alkaline granitoid trends can be considered cotectic liquids. Assimilation of country rocks and other not-cotectic processes are identified in the projected diagram. The identification of cotectic patterns in batholith implies high temperatures of magma segregation and fractionation (or partial melting from an intermediate (andesitic source. The comparison of batholiths with lower crust granulites, in terms of major-element geochemistry, yields that both represent liquids and solid residues respectively from a common andesitic system. This is compatible with magmas being formed by melting, and eventual reaction with the peridotite mantle, of subducted mélanges that are finally relaminated as magmas to the lower crust. Thus, the off-crust generation of granitoids batholiths constitutes a new paradigm in which important geological implications can be satisfactorily explained. Geochemical features of Cordilleran-type batholiths are totally compatible with this new conception.

  18. Rainfall intensity effects on crusting and mode of seedling ...

    African Journals Online (AJOL)

    Predicted changes in rainfall intensity due to climate change are likely to influence key soil health parameters, especially structural attributes and crop growth. Variations in rainfall intensity will impact crop ... and growth in these soils. Keywords: climate change, crusting, mineralogy, penetration resistance, soil organic matter ...

  19. Pairing :from atomic nuclei to neutron-star crusts


    Chamel, Nicolas; Pearson, Michael J.; Goriely, Stéphane


    Nuclear pairing is studied both in atomic nuclei and in neutron-star crusts in the unified framework of the energy-density functional theory using generalized Skyrme functionals complemented with a local pairing functional obtained from many-body calculations in homogeneous nuclear matter using realistic forces.

  20. Geoelectrical and geological structure of the crust in Western Slovakia

    Czech Academy of Sciences Publication Activity Database

    Bezák, V.; Pek, Josef; Vozár, J.; Bielik, M.; Vozár, J.


    Roč. 58, č. 3 (2014), s. 473-488 ISSN 0039-3169 Institutional support: RVO:67985530 Keywords : magnetotellurics * MT15 profile * Western Carpathians * applied geophysics * Earth’s crust Subject RIV: DE - Earth Magnetism, Geodesy, Geography Impact factor: 0.806, year: 2014

  1. Crusted scabies in a chid with systemic lupus erythematosus

    Directory of Open Access Journals (Sweden)

    Nurimar C.F. Wanke


    Full Text Available A child with systemic lupus erythematosus who has been treated with prednisone for three years, developed crusted scabies. Scrapings from lesions revealed Sarcoptes scabiei adult mites mad eggs. The patient died with septicemia and renal failure soon after starting topical 20% sulfur. A marked improvement was observed in the cutaneous lesions.

  2. Characteristics and management options of crusting soils in a ...

    African Journals Online (AJOL)

    agriculture is practised (Nyamapfene and Hungwe 1986). Farmers experience considerable economic losses due to poor establishment of small-seeded crops, e.g. cotton. (Gossypium hirsutum) and soybean (Glycine max), reduced water infiltration and accelerated soil erosion resulting from soil crusting (Borseli et al. 1996 ...

  3. Identification of radiogenic heat source distribution in the crust: A ...

    Indian Academy of Sciences (India)

    optimal, smooth model through the variational approach applied to the heat conduction equation. ... an additional term is an optimal model for the radiogenic heat source distribution in this case also. They treated the crust as .... Burghes D, Graham A 1980 Introduction to control theory including optimal control. Mathematics.

  4. Compositional variation and genesis of ferromanganese crusts of ...

    Indian Academy of Sciences (India)

    mately intermixed. The dominant controls on the incorporation of various metals in the Fe–Mn crusts ... and Halbach 1995), and most dominantly enriched metal species are those of the transition group com- prising Mn ...... Banakar V K 1990 Uranium–thorium isotopes and tran- sition metal fluxes in two oriented manganese ...

  5. Platinum group elements and gold in ferromanganese crusts from ...

    Indian Academy of Sciences (India)

    All Ag and Os concentrations are below detection limit. $. – estimated values (see text). provide fluids that contribute to the formation of. Fe–Mn crusts nor diagenetically influence their composition (Banakar and Hein 2000; Hein and. Morgan 1999). The sources of PGE and Au in seawater are ter- restrial and cosmogenic ...

  6. Acoustic techniques for studying soil-surface seals and crusts (United States)

    The impact of raindrops on a soil surface during a rainstorm may cause soil-surface sealing and upon drying, soil crusting. Soil-surface sealing is a result of the clogging of interaggregate pores by smaller suspended particles in the water and by structural deformation of the soil fabric, which red...

  7. An updated reconstruction of basaltic crust emplacement in Tyrrhenian sea, Italy. (United States)

    Savelli, Carlo; Ligi, Marco


    Basaltic crust is present in the oceans and marginal seas. Oceanic accretion from inception to ending may be usefully recognized in small basin setting like the Tyrrhenian. Alternating episodes of strong and moderate extensional tectonics characterized the small Tyrrhenian opening. Hyperextension (drifting) of late-Miocene and latemost Pliocene age was followed by Pliocene and Late Quaternary moderate extension (rifting). Early hyperextension (~7.5-6.3 Ma) acted in the submerged margin of Hercynian Sardinia. Sardinia offshore, E-directed low-angle faults were accompanied by MORB-like volcanism of non linear shape in the shallow Vavilov plain - inherited segment of alpine-age orogen. Late hyperextension (~1.9-1.7 Ma) acted along the central N-S lineament of Vavilov plain, former metamorphic core complex. At the lineament northern side, E-dipping detachment faulting exposed serpentinized peridotite. At the other side, Vavilov volcano was faulted and its east flank tilted westwards. At the same time, volcanism with affinity to transitional MORB induced opening of Marsili basin. The drift episodes were characterized by absence or scarcity of volcanic activity on the conjugated emerged margins. The rift episodes (respectively ~5-1.9 Ma, and ~1/0.8 Ma-Recent) saw growth of major north-south trending volcanoes in bathyal area as intense volcanic activity developed on the continental margins.

  8. Modeling the Crust and Upper Mantle in Northern Beata Ridge (CARIBE NORTE Project) (United States)

    Núñez, Diana; Córdoba, Diego; Cotilla, Mario Octavio; Pazos, Antonio


    The complex tectonic region of NE Caribbean, where Hispaniola and Puerto Rico are located, is bordered by subduction zone with oblique convergence in the north and by incipient subduction zone associated to Muertos Trough in the south. Central Caribbean basin is characterized by the presence of a prominent topographic structure known as Beata Ridge, whose oceanic crustal thickness is unusual. The northern part of Beata Ridge is colliding with the central part of Hispaniola along a transverse NE alignment, which constitutes a morphostructural limit, thus producing the interruption of the Cibao Valley and the divergence of the rivers and basins in opposite directions. The direction of this alignment coincides with the discontinuity that could explain the extreme difference between west and east seismicity of the island. Different studies have provided information about Beata Ridge, mainly about the shallow structure from MCS data. In this work, CARIBE NORTE (2009) wide-angle seismic data are analyzed along a WNW-ESE trending line in the northern flank of Beata Ridge, providing a complete tectonic view about shallow, middle and deep structures. The results show clear tectonic differences between west and east separated by Beata Island. In the Haiti Basin area, sedimentary cover is strongly influenced by the bathymetry and its thickness decreases toward to the island. In this area, the Upper Mantle reaches 20 km deep increasing up to 24 km below the island where the sedimentary cover disappears. To the east, the three seamounts of Beata Ridge provoke the appearance of a structure completely different where sedimentary cover reaches thicknesses of 4 km between seamounts and Moho rises up to 13 km deep. This study has allowed to determine the Moho topography and to characterize seismically the first upper mantle layers along the northern Beata Ridge, which had not been possible with previous MCS data.

  9. Evolution of Fractal Parameters through Development Stage of Soil Crust (United States)

    Ospina, Abelardo; Florentino, Adriana; Tarquis, Ana Maria


    Soil surface characteristics are subjected to changes driven by several interactions between water, air, biotic and abiotic components. One of the examples of such interactions is provided through biological soil crusts (BSC) in arid and semi-arid environments. BSC are communities composed of cyanobacteria, fungi, mosses, lichens, algae and liverworts covering the soil surface and play an important role in ecosystem functioning. The characteristics and formation of these BSC influence the soil hydrological balance, control the mass of eroded sediment, increase stability of soil surface, and influence plant productivity through the modification of nitrogen and carbon cycle. The site of this work is located at Quibor and Ojo de Agua (Lara state, Venezuela). The Quibor Depression in Venezuela is a major agricultural area being at semi-arid conditions and limited drainage favor the natural process of salinization. Additionally, the extension and intensification of agriculture has led to over-exploitation of groundwater in the past 30 years (Méndoza et al., 2013). The soil microbial crust develops initially on physical crusts which are mainly generated since wetting and drying, being a recurrent feature in the Quíbor arid zone. The microbiotic crust is organic, composed of macro organisms (bryophytes and lichens) and microorganisms (cyanobacteria, fungi algae, etc.); growing on the ground, forming a thickness no greater than 3 mm. For further details see Toledo and Florentino (2009). This study focus on characterize the development stage of the BSC based on image analysis. To this end, grayscale images of different types of biological soil crust at different stages where taken, each image corresponding to an area of 12.96 cm2 with a resolution of 1024x1024 pixels (Ospina et al., 2015). For each image lacunarity and fractal dimension through the differential box counting method were calculated. These were made with the software ImageJ/Fraclac (Karperien, 2013

  10. The Taitao Granites: I-type granites formed by subduction of the Chile Ridge and its implication in growth of continental crusts (United States)

    Anma, Ryo


    Late Miocene to Early Pliocene granite plutons are exposed at the tip of the Taitao peninsula, the westernmost promontory of the Chilean coast, together with a contemporaneous ophiolite with a Penrose-type stratigraphy. Namely, the Taitao granites and the Taitao ohiolite, respectively, are located at ~30 km southeast of the Chile triple junction, where a spreading center of the Chile ridge system is subducting underneath the South America plate. This unique tectonic setting provides an excellent opportunity to study the generation processes of granitic magmas at a ridge subduction environment, and the complex magmatic interactions between the subducting ridge, overlying crust and sediments, and mantle. This paper reviews previous studies on the Taitao ophiolite/granite complex and use geochemical data and U-Pb age distributions of zircons separated from igneous and sedimentary rocks from the area to discuss the mechanism that formed juvenile magma of calc-alkaline I-type granites during ridge subduction. Our model implies that the magmas of the Taitao granites formed mainly due to partial melting of hot oceanic crust adjacent to the subducting mid-oceanic ridge that has been under influence of deep crustal contamination and/or metasomatized sub-arc mantle through slab window. The partial melting took place under garnet-free-amphibolite conditions. The juvenile magmas then incorporated a different amount of subducted sediments to form the I-type granites with various compositions. The Taitao granites provide an ideal case study field that shows the processes to develop continental crusts out of oceanic crusts through ridge subduction.

  11. The potential hydrothermal systems unexplored in the Southwest Indian Ocean (United States)

    Suo, Yanhui; Li, Sanzhong; Li, Xiyao; Zhang, Zhen; Ding, Dong


    Deep-sea hydrothermal vents possess complex ecosystems and abundant metallic mineral deposits valuable to human being. On-axial vents along tectonic plate boundaries have achieved prominent results and obtained huge resources, while nearly 90% of the global mid-ocean ridge and the majority of the off-axial vents buried by thick oceanic sediments within plates remain as relatively undiscovered domains. Based on previous detailed investigations, hydrothermal vents have been mapped along five sections along the Southwest Indian Ridge (SWIR) with different bathymetry, spreading rates, and gravity features, two at the western end (10°-16°E Section B and 16°-25°E Section C) and three at the eastern end (49°-52°E Section D, 52°-61°E Section E and 61°-70°E Section F). Hydrothermal vents along the Sections B, C, E and F with thin oceanic crust are hosted by ultramafic rocks under tectonic-controlled magmatic-starved settings, and hydrothermal vents along the Section D are associated with exceed magmatism. Limited coverage of investigations is provided along the 35°-47°E SWIR (between Marion and Indomed fracture zones) and a lot of research has been done around the Bouvet Island, while no hydrothermal vents has been reported. Analyzing bathymetry, gravity and geochemical data, magmatism settings are favourable for the occurrence of hydrothermal systems along these two sections. An off-axial hydrothermal system in the southern flank of the SWIR that exhibits ultra-thin oceanic crust associated with an oceanic continental transition is postulated to exist along the 100-Ma slow-spreading isochron in the Enderby Basin. A discrete, denser enriched or less depleted mantle beneath the Antarctic Plate is an alternative explanation for the large scale thin oceanic crust concentrated on the southern flank of the SWIR.

  12. Continental crust formation on early Earth controlled by intrusive magmatism. (United States)

    Rozel, A B; Golabek, G J; Jain, C; Tackley, P J; Gerya, T


    The global geodynamic regime of early Earth, which operated before the onset of plate tectonics, remains contentious. As geological and geochemical data suggest hotter Archean mantle temperature and more intense juvenile magmatism than in the present-day Earth, two crust-mantle interaction modes differing in melt eruption efficiency have been proposed: the Io-like heat-pipe tectonics regime dominated by volcanism and the "Plutonic squishy lid" tectonics regime governed by intrusive magmatism, which is thought to apply to the dynamics of Venus. Both tectonics regimes are capable of producing primordial tonalite-trondhjemite-granodiorite (TTG) continental crust but lithospheric geotherms and crust production rates as well as proportions of various TTG compositions differ greatly, which implies that the heat-pipe and Plutonic squishy lid hypotheses can be tested using natural data. Here we investigate the creation of primordial TTG-like continental crust using self-consistent numerical models of global thermochemical convection associated with magmatic processes. We show that the volcanism-dominated heat-pipe tectonics model results in cold crustal geotherms and is not able to produce Earth-like primordial continental crust. In contrast, the Plutonic squishy lid tectonics regime dominated by intrusive magmatism results in hotter crustal geotherms and is capable of reproducing the observed proportions of various TTG rocks. Using a systematic parameter study, we show that the typical modern eruption efficiency of less than 40 per cent leads to the production of the expected amounts of the three main primordial crustal compositions previously reported from field data (low-, medium- and high-pressure TTG). Our study thus suggests that the pre-plate-tectonics Archean Earth operated globally in the Plutonic squishy lid regime rather than in an Io-like heat-pipe regime.

  13. [Effects of soil crusts on surface hydrology in the semiarid Loess hilly area]. (United States)

    Wei, Wei; Wen, Zhi; Chen, Li-Ding; Chen, Jin; Wu, Dong-Ping


    Soil crusts are distributed extensively in the Chinese Loess Plateau and play key roles in surface hydrological processes. In this study, a typical loess hilly region in Anjiagou catchment, Dingxi city, Gansu province was selected as the study region, and soil crusts in the catchment were investigated. Then, the hydrological effect of soil crusts was studied by using multi-sampling and hydrological monitoring experiments. Several key results were shown as follows. Firstly, compared with bared soil without crust cover, soil crusts can greatly reduce the bulk density, improve the porosity of soil, and raise the holding capacity of soil moisture which ranges from 1.4 to 1.9 times of that of bared soil. Secondly, the role of soil crust on rainfall interception was very significant. Moss crust was found to be strongest on rainfall interception, followed by synantectic crusts and lichen crusts. Bared soil without covering crusts was poorest in resisting rainfall splash. Thirdly, hydrological simulation experiments indicate that soil crusts play a certain positive role in promoting the water infiltration capacity, and the mean infiltration rate of the crusted soil was 2 times higher than that of the no-crust covered soils. While the accumulated infiltrated water amounts was also far higher than that of the bared soil.

  14. Exposure to natural radiation from the earth's crust, atmosphere and outer space - the natural radioactivity of the earth's crust

    International Nuclear Information System (INIS)

    Schwab, R.G.


    Any conclusions to be drawn from the geochemical distribution pattern of radioactive elements for one's own conduct require to study their distribution in soil, earth crust, magmatic differentiation, rock disintegration zone and biosphere. The author notes that high activities in soils and rocks are contrasted by relatively low radiation dose levels absorbed by the human body. This is different for incorporated radiation. (DG) [de

  15. Magnetic anomalies across the transitional crust of the passive conjugate margins of the North Atlantic: Iberian Abyssal Plain/Northern Newfoundland Basin (United States)

    Srivastava, S.; Sibuet, J.; Manatschal, G.


    The magma starved Iberia Abyssal Plain (IAP) margin off Iberia is probably one of the most studied non-volcanic continental margin in the world. Numerous multi-channel seismic cruises, detailed refraction surveys, and ODP drilling (Legs 149 and 173) have been carried out across it. Yet serious disagreement exists about the nature and mode of emplacement of the transitional crust which lies between true continental and true oceanic crusts in this region. One group regards this crust to be excessively thinned continental crust through which mantle was exhumed while the other group regards it to be oceanic crust, a mixture of basalt and mantle material, formed during ultraslow seafloor spreading. However, neither the drilling, which was carried out only on the basement highs and recovered serpentinized peridotites together with some gabbroic material, nor the detailed refraction measurements have been of much help in solving this dispute because the velocity values in this region neither correspond to true volcanic materials nor to true continental rocks. Similarly the magnetic anomalies in this region have been also interpreted differently by the two groups. One group negates the existence of any seafloor spreading type anomalies over the transition zone. On the other hand, examination of surface and deep-tow magnetic data from conjugate sections of the margins across this part of the North Atlantic shows a good correlation between them. The prime reason for such differences in the interpretation of magnetic data lies in the low amplitude of the surface magnetic anomalies forming the M sequence anomalies in this region compared to those of similar age present in the Central Atlantic. We demonstrate here that the symmetrical magnetic anomalies identified within the transitional zones between Iberia and North America, and across passive margins in general where separation between plates has been very slow, are caused by the serpentinization of the exhumed mantle rocks

  16. The Lund University Checklist for Incipient Exhaustion: a prospective validation of the onset of sustained stress and exhaustion warnings

    Directory of Open Access Journals (Sweden)

    Kai Österberg


    Full Text Available Abstract Background The need for instruments that can assist in detecting the prodromal stages of stress-related exhaustion has been acknowledged. The aim of the present study was to evaluate whether the Lund University Checklist for Incipient Exhaustion (LUCIE could accurately and prospectively detect the onset of incipient exhaustion and to what extent work stressor exposure and private burdens were associated with increasing LUCIE scores. Methods Using surveys, 1355 employees were followed for 11 quarters. Participants with prospectively elevated LUCIE scores were targeted by three algorithms entailing 4 quarters: (1 abrupt onset to a sustained Stress Warning (n = 18, (2 gradual onset to a sustained Stress Warning (n = 42, and (3 sustained Exhaustion Warning (n = 36. The targeted participants’ survey reports on changes in work situation and private life during the fulfillment of any algorithm criteria were analyzed, together with the interview data. Participants untargeted by the algorithms constituted a control group (n = 745. Results Eighty-seven percent of participants fulfilling any LUCIE algorithm criteria (LUCIE indication cases rated a negative change in their work situation during the 4 quarters, compared to 48 % of controls. Ratings of negative changes in private life were also more common in the LUCIE indication groups than among controls (58 % vs. 29 %, but free-text commentaries revealed that almost half of the ratings in the LUCIE indication groups were due to work-to-family conflicts and health problems caused by excessive workload, assigned more properly to work-related negative changes. When excluding the themes related to work-stress-related private life compromises, negative private life changes in the LUCIE indication groups dropped from 58 to 32 %, while only a negligible drop from 29 to 26 % was observed among controls. In retrospective interviews, 79 % of the LUCIE indication participants

  17. The Lund University Checklist for Incipient Exhaustion: a prospective validation of the onset of sustained stress and exhaustion warnings. (United States)

    Österberg, Kai; Persson, Roger; Viborg, Njördur; Jönsson, Peter; Tenenbaum, Artur


    The need for instruments that can assist in detecting the prodromal stages of stress-related exhaustion has been acknowledged. The aim of the present study was to evaluate whether the Lund University Checklist for Incipient Exhaustion (LUCIE) could accurately and prospectively detect the onset of incipient exhaustion and to what extent work stressor exposure and private burdens were associated with increasing LUCIE scores. Using surveys, 1355 employees were followed for 11 quarters. Participants with prospectively elevated LUCIE scores were targeted by three algorithms entailing 4 quarters: (1) abrupt onset to a sustained Stress Warning (n = 18), (2) gradual onset to a sustained Stress Warning (n = 42), and (3) sustained Exhaustion Warning (n = 36). The targeted participants' survey reports on changes in work situation and private life during the fulfillment of any algorithm criteria were analyzed, together with the interview data. Participants untargeted by the algorithms constituted a control group (n = 745). Eighty-seven percent of participants fulfilling any LUCIE algorithm criteria (LUCIE indication cases) rated a negative change in their work situation during the 4 quarters, compared to 48 % of controls. Ratings of negative changes in private life were also more common in the LUCIE indication groups than among controls (58 % vs. 29 %), but free-text commentaries revealed that almost half of the ratings in the LUCIE indication groups were due to work-to-family conflicts and health problems caused by excessive workload, assigned more properly to work-related negative changes. When excluding the themes related to work-stress-related private life compromises, negative private life changes in the LUCIE indication groups dropped from 58 to 32 %, while only a negligible drop from 29 to 26 % was observed among controls. In retrospective interviews, 79 % of the LUCIE indication participants confirmed exclusively/predominantly work stressors

  18. Thermal Coupling Between the Ocean and Mantle of Europa: Implications for Ocean Convection (United States)

    Soderlund, Krista M.; Schmidt, Britney E.; Wicht, Johannes; Blankenship, Donald D.


    Magnetic induction signatures at Europa indicate the presence of a subsurface ocean beneath the cold icy crust. The underlying mantle is heated by radioactive decay and tidal dissipation, leading to a thermal contrast sufficient to drive convection and active dynamics within the ocean. Radiogenic heat sources may be distributed uniformly in the interior, while tidal heating varies spatially with a pattern that depends on whether eccentricity or obliquity tides are dominant. The distribution of mantle heat flow along the seafloor may therefore be heterogeneous and impact the regional vigor of ocean convection. Here, we use numerical simulations of thermal convection in a global, Europa-like ocean to test the sensitivity of ocean dynamics to variations in mantle heat flow patterns. Towards this end, three end-member cases are considered: an isothermal seafloor associated with dominant radiogenic heating, enhanced seafloor temperatures at high latitudes associated with eccentricity tides, and enhanced equatorial seafloor temperatures associated with obliquity tides. Our analyses will focus on convective heat transfer since the heat flux pattern along the ice-ocean interface can directly impact the ice shell and the potential for geologic activity within it.

  19. Big Impacts and Transient Oceans on Titan (United States)

    Zahnle, K. J.; Korycansky, D. G.; Nixon, C. A.


    We have studied the thermal consequences of very big impacts on Titan [1]. Titan's thick atmosphere and volatile-rich surface cause it to respond to big impacts in a somewhat Earth-like manner. Here we construct a simple globally-averaged model that tracks the flow of energy through the environment in the weeks, years, and millenia after a big comet strikes Titan. The model Titan is endowed with 1.4 bars of N2 and 0.07 bars of CH4, methane lakes, a water ice crust, and enough methane underground to saturate the regolith to the surface. We assume that half of the impact energy is immediately available to the atmosphere and surface while the other half is buried at the site of the crater and is unavailable on time scales of interest. The atmosphere and surface are treated as isothermal. We make the simplifying assumptions that the crust is everywhere as methane saturated as it was at the Huygens landing site, that the concentration of methane in the regolith is the same as it is at the surface, and that the crust is made of water ice. Heat flow into and out of the crust is approximated by step-functions. If the impact is great enough, ice melts. The meltwater oceans cool to the atmosphere conductively through an ice lid while at the base melting their way into the interior, driven down in part through Rayleigh-Taylor instabilities between the dense water and the warm ice. Topography, CO2, and hydrocarbons other than methane are ignored. Methane and ethane clathrate hydrates are discussed quantitatively but not fully incorporated into the model.

  20. Impact Features on Europa: Rheological and Thermal States of the Icy Crust (United States)

    Mevel, L.; Grasset, O.; Mercier, E.


    Rheological and thermal characteristics of Europa icy crust are studied in the two impact features Tyre and Callanish. The importance of grain size, composition, and deformation rates, on the rheological structure of the icy crust are investigated.

  1. Evidence from gabbro of the Troodos ophiolite for lateral magma transport along a slow-spreading mid-ocean ridge. (United States)

    Abelson, M; Baer, G; Agnon, A


    The lateral flow of magma and ductile deformation of the lower crust along oceanic spreading axes has been thought to play a significant role in suppressing both mid-ocean ridge segmentation and variations in crustal thickness. Direct investigation of such flow patterns is hampered by the kilometres of water that cover the oceanic crust, but such studies can be made on ophiolites (fragments of oceanic crust accreted to a continent). In the Oman ophiolite, small-scale radial patterns of flow have been mapped along what is thought to be the relict of a fast-spreading mid-ocean ridge. Here we present evidence for broad-scale along-axis flow that has been frozen into the gabbro of the Troodos ophiolite in Cyprus (thought to be representative of a slow-spreading ridge axis). The gabbro suite of Troodos spans nearly 20 km of a segment of a fossil spreading axis, near a ridge-transform intersection. We mapped the pattern of magma flow by analysing the rocks' magnetic fabric at 20 sites widely distributed in the gabbro suite, and by examining the petrographic fabric at 9 sites. We infer an along-axis magma flow for much of the gabbro suite, which indicates that redistribution of melt occurred towards the segment edge in a large depth range of the oceanic crust. Our results support the magma plumbing structure that has been inferred indirectly from a seismic tomography experiment on the slow-spreading Mid-Atlantic Ridge.

  2. Net Reaction Rate and Neutrino Cooling Rate for the Urca Process in Departure from Chemical Equilibrium in the Crust of Fast-accreting Neutron Stars (United States)

    Wang, Wei-Hua; Huang, Xi; Zheng, Xiao-Ping

    We discuss the effect of compression on Urca shells in the ocean and crust of accreting neutron stars, especially in superbursting sources. We find that Urca shells may be deviated from chemical equilibrium in neutron stars which accrete at several tenths of the local Eddington accretion rate. The deviation depends on the energy threshold of the parent and daughter nuclei, the transition strength, the temperature, and the local accretion rate. In a typical crust model of accreting neutron stars, the chemical departures range from a few tenths of kBT to tens of kBT for various Urca pairs. If the Urca shell can exist in crusts of accreting neutron stars, compression may enhance the net neutrino cooling rate by a factor of about 1-2 relative to the neutrino emissivity in chemical equilibrium. For some cases, such as Urca pairs with small energy thresholds and/or weak transition strength, the large chemical departure may result in net heating rather than cooling, although the released heat can be small. Strong Urca pairs in the deep crust are hard to be deviated even in neutron stars accreting at the local Eddington accretion rate.

  3. Coupled Hf-Nd-Pb isotope co-variations of HIMU oceanic island basalts suggest an Archean source component in the mantle transition zone

    NARCIS (Netherlands)

    Nebel, O.; Arculus, R.J.; van Westrenen, W.; Woodhead, J.D.; Jenner, F.E.; Nebel-Jacobsen, Y.J.; Wille, M.; Eggins, S.M.


    Although it is widely accepted that oceanic island basalts (OIB) sample geochemically distinct mantle reservoirs including recycled oceanic crust, the composition, age, and locus of these reservoirs remain uncertain. OIB with highly radiogenic Pb isotope signatures are grouped as HIMU (high-μ, with

  4. Ocean contribution to co-seismic crustal deformation and geoid anomalies : Application to the 2004 December 26 Sumatra-Andaman earthquake

    NARCIS (Netherlands)

    Broerse, D.B.T.; Vermeersen, L.L.A.; Riva, R.E.M.; Van der Wal, W.


    Large earthquakes do not only heavily deform the crust in the vicinity of the fault, they also change the gravity field of the area affected by the earthquake due to mass redistribution in the upper layers of the Earth. Besides that, for sub-oceanic earthquakes deformation of the ocean floor causes

  5. Planet Ocean (United States)

    Afonso, Isabel


    A more adequate name for Planet Earth could be Planet Ocean, seeing that ocean water covers more than seventy percent of the planet's surface and plays a fundamental role in the survival of almost all living species. Actually, oceans are aqueous solutions of extraordinary importance due to its direct implications in the current living conditions of our planet and its potential role on the continuity of life as well, as long as we know how to respect the limits of its immense but finite capacities. We may therefore state that natural aqueous solutions are excellent contexts for the approach and further understanding of many important chemical concepts, whether they be of chemical equilibrium, acid-base reactions, solubility and oxidation-reduction reactions. The topic of the 2014 edition of GIFT ('Our Changing Planet') will explore some of the recent complex changes of our environment, subjects that have been lately included in Chemistry teaching programs. This is particularly relevant on high school programs, with themes such as 'Earth Atmosphere: radiation, matter and structure', 'From Atmosphere to the Ocean: solutions on Earth and to Earth', 'Spring Waters and Public Water Supply: Water acidity and alkalinity'. These are the subjects that I want to develop on my school project with my pupils. Geographically, our school is located near the sea in a region where a stream flows into the sea. Besides that, our school water comes from a borehole which shows that the quality of the water we use is of significant importance. This project will establish and implement several procedures that, supported by physical and chemical analysis, will monitor the quality of water - not only the water used in our school, but also the surrounding waters (stream and beach water). The samples will be collected in the borehole of the school, in the stream near the school and in the beach of Carcavelos. Several physical-chemical characteristics related to the quality of the water will

  6. Evaporative losses from soils covered by physical and different types of biological soil crusts (United States)

    Chamizo, S.; Cantón, Y.; Domingo, F.; Belnap, J.


    Evaporation of soil moisture is one of the most important processes affecting water availability in semiarid ecosystems. Biological soil crusts, which are widely distributed ground cover in these ecosystems, play a recognized role on water processes. Where they roughen surfaces, water residence time and thus infiltration can be greatly enhanced, whereas their ability to clog soil pores or cap the soil surface when wetted can greatly decrease infiltration rate, thus affecting evaporative losses. In this work, we compared evaporation in soils covered by physical crusts, biological crusts in different developmental stages and in the soils underlying the different biological crust types. Our results show that during the time of the highest evaporation (Day 1), there was no difference among any of the crust types or the soils underlying them. On Day 2, when soil moisture was moderately low (11%), evaporation was slightly higher in well-developed biological soil crusts than in physical or poorly developed biological soil crusts. However, crust removal did not cause significant changes in evaporation compared with the respective soil crust type. These results suggest that the small differences we observed in evaporation among crust types could be caused by differences in the properties of the soil underneath the biological crusts. At low soil moisture (evaporation among crust types or the underlying soils. Water loss for the complete evaporative cycle (from saturation to dry soil) was similar in both crusted and scraped soils. Therefore, we conclude that for the specific crust and soil types tested, the presence or the type of biological soil crust did not greatly modify evaporation with respect to physical crusts or scraped soils.

  7. The potential roles of biological soil crusts in dryland hydrologic cycles (United States)

    Belnap, J.


    Biological soil crusts (BSCs) are the dominant living cover in many drylands of the world. They possess many features that can influence different aspects of local hydrologic cycles, including soil porosity, absorptivity, roughness, aggregate stability, texture, pore formation, and water retention. The influence of biological soil crusts on these factors depends on their internal and external structure, which varies with climate, soil, and disturbance history. This paper presents the different types of biological soil crusts, discusses how crust type likely influences various aspects of the hydrologic cycle, and reviews what is known and not known about the influence of biological crusts on sediment production and water infiltration versus runoff in various drylands around the world. Most studies examining the effect of biological soil crusts on local hydrology are done by comparing undisturbed sites with those recently disturbed by the researchers. Unfortunately, this greatly complicates interpretation of the results. Applied disturbances alter many soil features such as soil texture, roughness, aggregate stability, physical crusting, porosity, and bulk density in ways that would not necessarily be the same if crusts were not naturally present. Combined, these studies show little agreement on how biological crusts affect water infiltration or runoff. However, when studies are separated by biological crust type and utilize naturally occurring differences among these types, results indicate that biological crusts in hyperarid regions reduce infiltration and increase runoff, have mixed effects in and regions, and increase infiltration and reduce runoff in semiarid cool and cold drylands. However, more studies are needed before broad generalizations can be made on how biological crusts affect infiltration and runoff. We especially need studies that control for sub-surface soil features such as bulk density, micro- and macropores, and biological crust structure. Unlike

  8. Incipient crystallization of transition-metal tungstates under microwaves probed by Raman scattering and transmission electron microscopy

    International Nuclear Information System (INIS)

    Siqueira, Kisla P. F.; Dias, Anderson


    Microwave synthesis was used to produce nanosized transition-metal tungstates in environmentally friendly conditions not yet reported by the literature: 110 and 150 °C, for times of 10 and 20 min. X-ray diffraction evidenced incipient crystallized materials, while transmission electron microscopy indicates nanostructured regions of about 2–5 nm inside an amorphous matrix. Raman spectroscopy was used to probe short-range ordering in the achieved samples and also to obtain a reliable set of spectra containing all the Raman-active bands predicted by group-theory calculations. The vibrational spectra showed no extra feature, indicating that the microwave processing was able to produce short-range ordered materials without tetrahedral distortions. These distortions are frequently reported when commercially modified kitchen microwave units are employed. In this work, the syntheses were conducted in a commercial apparatus especially designed for fully controlled temperature–time–pressure conditions.

  9. Incipient colonisation of Lutzomyia longipalpis in the city of Resistencia, province of Chaco, Argentina (2010-2012). (United States)

    Szelag, Enrique Alejandro; Parras, Matías Ariel; Fabiani, Mariela; Rosa, Juan Ramón; Salomón, Oscar Daniel


    Lutzomyia longipalpis was recorded for the first time in Argentina in 2004, in the province of Formosa. In the following years, the vector spread to the south and west in the country and was recorded in the province of Chaco in 2010. From November 2010-May 2012, captures of Phlebotominae were made in the city of Resistencia and its surroundings, to monitor the spread and possible colonisation of Lu. longipalpis in the province of Chaco. In this monitoring, Lu. longipalpis was absent in urban sampling sites and its presence was restricted to Barrio de los Pescadores. This suggests that the incipient colonisation observed in 2010 was not followed by continuous installation of vector populations and expansion of their spatial distribution as in other urban centres of Argentina.

  10. Abandoned Paleocene spreading center in the northeastern Indian Ocean: evidence from magnetic and seismic reflection data

    Digital Repository Service at National Institute of Oceanography (India)

    Krishna, K.S.; Rao, D.G.

    , K.S., Ramprasad, T., Maria Desa, 1998. Seamounts an addi- tional tool to confirm the nature of the crust and to locate possible mineral resources for dredging. Mar. Georesour. Geotechnol. 16, 41–51. Schlich, R., 1982. The Indian Ocean, aseismic...

  11. Global Mapping of Oceanic and Continental Shelf Crustal Thickness and Ocean-Continent Transition Structure (United States)

    Kusznir, Nick; Alvey, Andy; Roberts, Alan


    The 3D mapping of crustal thickness for continental shelves and oceanic crust, and the determination of ocean-continent transition (OCT) structure and continent-ocean boundary (COB) location, represents a substantial challenge. Geophysical inversion of satellite derived free-air gravity anomaly data incorporating a lithosphere thermal anomaly correction (Chappell & Kusznir, 2008) now provides a useful and reliable methodology for mapping crustal thickness in the marine domain. Using this we have produced the first comprehensive maps of global crustal thickness for oceanic and continental shelf regions. Maps of crustal thickness and continental lithosphere thinning factor from gravity inversion may be used to determine the distribution of oceanic lithosphere, micro-continents and oceanic plateaux including for the inaccessible polar regions (e.g. Arctic Ocean, Alvey et al.,2008). The gravity inversion method provides a prediction of continent-ocean boundary location which is independent of ocean magnetic anomaly and isochron interpretation. Using crustal thickness and continental lithosphere thinning factor maps with superimposed shaded-relief free-air gravity anomaly, we can improve the determination of pre-breakup rifted margin conjugacy and sea-floor spreading trajectory during ocean basin formation. By restoring crustal thickness & continental lithosphere thinning to their initial post-breakup configuration we show the geometry and segmentation of the rifted continental margins at their time of breakup, together with the location of highly-stretched failed breakup basins and rifted micro-continents. For detailed analysis to constrain OCT structure, margin type (i.e. magma poor, "normal" or magma rich) and COB location, a suite of quantitative analytical methods may be used which include: (i) Crustal cross-sections showing Moho depth and crustal basement thickness from gravity inversion. (ii) Residual depth anomaly (RDA) analysis which is used to investigate OCT

  12. Oxygen Distribution and Potential Ammonia Oxidation in Floating, Liquid Manure Crusts

    DEFF Research Database (Denmark)

    Nielsen, Daniel Aagren; Nielsen, Lars Peter; Schramm, Andreas


     availability. In old natural crusts total potential NH3 oxidation rates were similar to reported fluxes of NH3 from slurry without surface crust. These results indicate that old, natural surface crusts may develop into a porous matrix with high O2 availability that harbors an active population of aerobic...

  13. Tillage and farmyard manure efects on crusting and compacting soils at Katumani, Semi-arid Kenya

    NARCIS (Netherlands)

    Biamah, E.K.; Sterk, G.; Stroosnijder, L.


    In semi-arid Kenya, the most dominatn soil types are of limited agricultural productivity due to crusting and compaction. The occurence of soil crusting and compaction is attributed to seasonal rainfall characteristics, physical soil properties and bad tillage practices. Soil crusting and compaction

  14. A New Device for Studying Deep-Frying Behavior of Batters and Resulting Crust Properties

    NARCIS (Netherlands)

    Visser, J.E.; Beukelaer, de H.J.; Hamer, R.J.; Vliet, van T.


    The formation and properties of a crust during and after deep frying are difficult to study. Batter pickup (the amount of batter adhering to a product) and core properties affect crust formation and properties of the crust in such way that it is difficult to compare batters of different viscosity or

  15. Don’t bust the biological soil crust: Preserving and restoring an important desert resource (United States)

    Sue Miller; Steve Warren; Larry St. Clair


    Biological soil crusts are a complex of microscopic organisms growing on the soil surface in many arid and semi-arid ecosystems. These crusts perform the important role of stabilizing soil and reducing or eliminating water and wind erosion. One of the largest threats to biological soil crusts in the arid and semi-arid areas of the western United States is mechanical...

  16. Ocean Uses: Hawaii (PROUA) (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This Pacific Regional Ocean Uses Atlas (PROUA) Project is an innovative partnership between NOAA and the Bureau of Ocean Energy Management (BOEM) designed to...

  17. Marine biominerals: perspectives and challenges for polymetallic nodules and crusts. (United States)

    Wang, Xiaohong; Müller, Werner E G


    Deep sea minerals in polymetallic nodules, crusts and hydrothermal vents are not only formed by mineralization but also by biologically driven processes involving microorganisms (biomineralization). Within the nodules, free-living and biofilm-forming bacteria provide the matrix for manganese deposition, and in cobalt-rich crusts, coccolithophores represent the dominant organisms that act as bio-seeds for an initial manganese deposition. These (bio)minerals are economically important: manganese is an important alloying component and cobalt forms part of special steels in addition to being used, along with other rare metals, in plasma screens, hard-disk magnets and hybrid car motors. Recent progress in our understanding of the participation of the organic matrices in the enrichment of these metals might provide the basis for feasibility studies of biotechnological applications.

  18. Electromagnetic signals produced by elastic waves in the Earth's crust (United States)

    Sgrigna, V.; Buzzi, A.; Conti, L.; Guglielmi, A. V.; Pokhotelov, O. A.


    The paper describes the excitation of geoelectromagnetic-field oscillations caused by elastic waves propagating in the Earth's crust and generated by natural and anthropogenic phenomena, such as earthquakes, explosions, etc. Two mechanisms of electromagnetic signal generation, i.e. induction and electrokinetics ones, are considered and a comparative analysis between them is carried out. The first mechanism is associated with the induction of Foucault currents due to movements of the Earth's crust in the core geomagnetic field. The second mechanism is connected with movements of liquids filling pores and cracks of rocks. An equation is derived for describing in a uniform way these two manifestations of seismomagnetism. The equation is solved for body and surface waves. The study shows that a magnetic precursor signal is moving in the front of elastic waves.

  19. Instability of superfluid flow in the neutron star inner crust (United States)

    Link, B.


    Pinning of superfluid vortices to the nuclear lattice of the inner crust of a neutron star supports a velocity difference between the superfluid and the solid as the star spins down. Under the Magnus force that arises on the vortex lattice, vortices undergo vortex creep through thermal activation or quantum tunnelling. We examine the hydrodynamic stability of this situation. Vortex creep introduces two low-frequency modes, one of which is unstable above a critical wavenumber for any non-zero flow velocity of the superfluid with respect to the solid. For typical pinning parameters of the inner crust, the superfluid flow is unstable over length scales ≲10 m and over time-scales as fast as months. The vortex lattice could degenerate into a tangle, and the superfluid flow could become turbulent. Unexpectedly large dissipation would suppress this instability.

  20. 85Kr distribution in the atmosphere and earth crust

    International Nuclear Information System (INIS)

    Belov, A.P.; Styro, B.I.


    A three-layer model of the 85 Kr stationary distribution in the atmosphere and in the earth's crust was considered. The 85 Kr concentration by height profile which existed before the artificial generation of the radionuclide was found. Quantitative evaluations of the anthropogenic 85 Kr releases due to the nuclear weapon tests and nuclear power engineering development and of the influence of the rereases on the steady-state 85 Kr distribution in the environment were given. It was shown that due to the atmospheric radionuclide releases a contamination with the 85 Kr of the near-surface layers of the earth's crust and of the surface waters occured. Calculations for the different dynamic states of the atmosphere were carried out and the influence of the 85 Kr washout coefficient on its vertical was analyzed

  1. Geoelectromagnetic investigation of the earth’s crust and mantle

    CERN Document Server

    Rokityansky, Igor I


    Electrical conductivity is a parameter which characterizes composition and physical state of the Earth's interior. Studies of the state equations of solids at high temperature and pressure indicate that there is a close relation be­ tween the electrical conductivity of rocks and temperature. Therefore, measurements of deep conductivity can provide knowledge of the present state and temperature of the Earth's crust and upper mantle matter. Infor­ mation about the temperature of the Earth's interior in the remote past is derived from heat flow data. Experimental investigation of water-containing rocks has revealed a pronounced increase of electrical conductivity in the temperature range D from 500 to 700 DC which may be attributed to the beginning of fractional melting. Hence, anomalies of electrical conductivity may be helpful in identitying zones of melting and dehydration. The studies of these zones are perspective in the scientific research of the mobile areas of the Earth's crust and upper mantle where t...

  2. Paleomagnetic Constraints on the Evolution of Atlantis Bank: Results from IODP Expedition 360 "SW Indian Ridge Lower Crust and Moho" (United States)

    Morris, A.; Bowles, J. A.; Tivey, M.; Expedition 360 Scientists, I.


    International Ocean Discovery Program Expedition 360 was the first step in a multiphase drilling program designed to better understand the nature of lower oceanic crust and the Moho at slower spreading ridges. Hole U1473A was drilled to 790 meters below seafloor on the summit of Atlantis Bank, an oceanic core complex, where the lower crust has been exposed by detachment faulting. Paleomagnetic data on the gabbroic cores allow us to constrain tectonic rotations, investigate magmatic and sub-solidus deformation of the rocks, and better understand the nature of lower crustal contributions to marine magnetic anomalies. The average paleomagnetic inclination at U1473A is consistent with results found at other ODP Atlantis Bank Holes 735B and 1105A and suggests a minimum platform-wide rotation of 20° subsequent to cooling through magnetic blocking temperature(s). However, in detail, inclination data from U1473A reveal down-core variations consistent with relative tectonic rotation of up to 12° across at least one major fault zones. Anisotropy of magnetic susceptibility results show magnetic fabrics that on average are slightly more foliated than lineated, with a foliation that dips at 40°, with considerable down-hole variation and with a reasonable correlation with observed macroscopic crystal-plastic fabric dips. While the majority of Hole U1473A carries a reversed polarity magnetization, consistent with formation in geomagnetic polarity chron C5r.3r, some narrow zones of altered gabbro carry an apparent normal polarity. These zones were likely remagnetized during a subsequent normal polarity period, and although the timing of the alteration cannot be uniquely determined, this suggests that the boundary between reverse chron C5r.3r and normal chron C5r.2n may occur near the current bottom of the hole.

  3. Analysis of the black crust on Saint Michael's Church (United States)

    Popister, I.; Zeman, A.


    The goal of the present study is to characterize the black crust on the main stone used at Saint Michael's Church in Cluj-Napoca, Romania. The gases in the atmosphere, along with natural and artificial pollutants can cause damage the integrity of the stone when it comes in contact with the stone's chemistry. In order to explain the mechanism of stone decay due to black crust it is necessary to know what "weathering" means, so it must be seen as a complex process that consists of: type of material, the environment in which the material is located, and the amount of time required for the process to take place. Each material has particular properties, due to its composition and genesis. When it comes in contact with the acidity of the "acid rain" (caused by sulphur, nitrogen oxides and carbon dioxide), the rain penetrates into the pore structure, corroding it and "allowing" the atmospheric particles to penetrate the stone. St. Michael's Church is one of the oldest Gothic architectural monuments in Cluj, Romania, being built predominantly from Cenozoic (Upper Eocene) limestone, locally known as the Cluj Limestone. The main quarry was in Baciu, near Cluj. The samples that were collected from the Saint Michael's Church were characterized by means of: optical microscope, Scattering Electronic Microscope, thin sections, EDS The samples that were collected from the Saint Michael's Church went through a series of tests: optical microscope, Scattering Electronic Microscope, thin sections, EDX, and cross-section. The optical microscope analysis of the thin sections revealed that the black crust layer is approximately 0.01mm, and in the sample there are perfectly shaped ooides, which is characteristic to this type of limestone. The SEM analysis shows a resedimentation layer on the surface of the black crust, which occurred probably due to the effect of acid rain. Further information regarding the results of the test will be presented on the poster.

  4. Biological soil crusts as an integral component of desert environments (United States)

    Belnap, Jayne; Weber, Bettina


    The biology and ecology of biological soil crusts, a soil surface community of mosses, lichens, cyanobacteria, green algae, fungi, and bacteria, have only recently been a topic of research. Most efforts began in the western U.S. (Cameron, Harper, Rushforth, and St. Clair), Australia (Rogers), and Israel (Friedmann, Evenari, and Lange) in the late 1960s and 1970s (e.g., Friedmann et al. 1967; Evenari 1985reviewed in Harper and Marble 1988). However, these groups worked independently of each other and, in fact, were often not aware of each other’s work. In addition, biological soil crust communities were seen as more a novelty than a critical component of dryland ecosystems. Since then, researchers have investigated many different aspects of these communities and have shown that although small to microscopic, biological soil crusts are critical in many ecological processes of deserts. They often cover most of desert soil surfaces and substantially mediate inputs and outputs from desert soils (Belnap et al. 2003). They can be a large source of biodiversity for deserts, as they can contain more species than the surrounding vascular plant community (Rosentreter 1986). These communities are important in reducing soil erosion and increasing soil fertility through the capture of dust and the fixation of atmospheric nitrogen and carbon into forms available to other life forms (Elbert et al. 2012). Because of their many effects on soil characteristics, such as external and internal morphological characteristics, aggregate stability, soil moisture, and permeability, they also affect seed germination and establishment and local hydrological cycles. Covering up to 70% of the surface area in many arid and semi-arid regions around the world (Belnap and Lange 2003), biological soil crusts are a key component within desert environments.

  5. Geophysical Monitoring of Geodynamic Processes of Central Armenia Earth Crust (United States)

    Avetyan, R.; Pashayan, R.


    The method of geophysical monitoring of earth crust was introduced. It allows by continuous supervision to track modern geodynamic processes of Armenia. Methodological practices of monitoring come down to allocation of a signal which reflects deformation of rocks. The indicators of deformations are not only deviations of geophysical indicators from certain background values, but also parameters of variations of these indicators. Data on changes of parameters of barometric efficiency and saw tooth oscillations of underground water level before seismic events were received. Low-amplitude periodic fluctuations of water level are the reflection of geodynamic processes taking place in upper levels of earth crust. There were recorded fluctuations of underground water level resulting from luni-solar tides and enabling to control the systems of borehole-bed in changes of voluminous deformations. The slow lowering (raising) of underground water level in the form of trend reflects long-period changes of stress-deformative state of environment. Application of method promotes identification of medium-term precursors on anomalous events of variations of geomagnetic field, change of content of subsoil radon, dynamics of level of underground water, geochemistry and water temperature. Increase of activity of geodynamic processes in Central Armenian tectonic complex is observed to change macro component Na+, Ca2+, Mg2-, CL-, SO42-, HCO3-, H4SiO4, pH and gas - CO2 structure of mineral water. Modern geodynamic movements of earth crust of Armenia are the result of seismic processes and active geodynamics of deep faults of longitudinal and transversal stretching. Key Words: monitoring, hydrogeodynamics, geomagnetic field, seismicity, deformation, earth crust

  6. Crust formation and dissolution during corium concrete interaction

    International Nuclear Information System (INIS)

    Carenini, L.; Haquet, J.F.; Journeau, Ch.


    In the hypothetical case of a severe accident, the reactor core could melt and the formed mixture, called corium, could melt through the vessel and interact with the reactor pit concrete. Recent two-dimensional concrete-ablation experiments (CCI and VULCANO VB test series) have shown that the ablation is roughly isotropic for limestone-rich concretes while, for silica-rich concretes, ablation is slower downwards than sideward. Crusts at the pool bottom are assumed to be mechanically more stable than those on the vertical walls. Models for the solidification and the melting of these crusts are proposed. They describe the transient heat and mass transfer in the following multilayered system: solid concrete, molten concrete, corium crust, liquid corium. It appears that molten concrete can play a significant role in dissolving the solidified corium crust. This effect is important for limestone-rich concretes due to the presence of a eutectic in the corium-concrete pseudo-binary phase diagram and to the larger chemical diffusion coefficient in the silica-poor concrete melts. For silica-rich concretes, it has been observed that siliceous aggregates are not molten with the surrounding mortar but have been found entrapped in the solidified pool near its boundaries, during post-test examinations. They can contribute to the solidification of corium, acting as cold sources. A model of the simultaneous gravel melting and corium solidification based on Kerr (1994) works is proposed. Numerical applications to the oxidic-corium concrete interaction tests performed in the VULCANO facility with the two types of concretes and two corium compositions will be presented and discussed to support this analytical approach. (authors)

  7. The Seismic Structure of the Crust of Madagascar (United States)

    Wysession, M. E.; Andriampenomanana Ny Ony, F. S. T.; Tsiriandrimanana, R.; Pratt, M. J.; Aleqabi, G. I.; Wiens, D. A.; Nyblade, A.; Shore, P.; Rambolamanana, G.; Tilmann, F. J.


    The structure of Madagascar's crust is determined using both body wave receiver functions as well as an analysis of surface waves using ambient-noise and two-plane-wave earthquake surface waves analyses. The primary data used are from the 2011-2013 MACOMO (Madagascar, the Comoros, and Mozambique) broadband seismic array from the PASSCAL program of IRIS (Incorporated Research Institutions for Seismology), funded by the NSF. Additional data came from the RHUM-RUM project (led by G. Barruol and K. Sigloch), the Madagascar Seismic Profile (led by F. Tilmann), and the GSN. The crustal structure of Madagascar, which had previously only been inferred from a gravity survey assuming isostasy, shows a strong correlation with its tectonic history. Crustal thicknesses are greatest, reaching 45 km, along the spine of Madagascar's mountains, which run north-south across the island. Crustal thicknesses thin to the east and west, which are both regions of tectonic separation, however, with very different results. Extensive crustal thinning occurred along the western coasts of Madagascar when the island rifted away from mainland Africa beginning 160 Ma ago. The crust is as thin as 20 km here, but the thickness of basin sediments is as great as 9 km, with the crystalline basement continental crust thinning to 12 km at its thinnest. Along the east coast, the crustal thickness is within the 33-38 km range, but it is thickest in the two places where mesoarchaean crust was rifted off from the Indian subcontinent when it broke away from Madagascar. Surface wave studies show that velocities beneath Madagascar are generally slow, when compared to global models such as AK135. This appears to be due to the occurrence of Cenozoic intraplate volcanism in three regions of Madagascar (north, central, and southwest), each of which has strong underlying seismic low-velocity anomalies in the lithospheric mantle and asthenosphere.

  8. Investigation of Biological Soil Crusts Metabolic Webs Using Exometabolomic Analysis (United States)

    Northen, T.; Karaoz, U.; Jenkins, S.; Lau, R.; Bowen, B.; Cadillo-Quiroz, H.; Garcia-Pichel, F.; Brodie, E.; Richard, B.


    Desert biological soil crusts are simple cyanobacteria-dominated surface soil microbial communities found in areas with infrequent wetting, often extreme temperatures, low coverage of vascular plants and constitute the world's largest biofilm. They exist for extended periods in a desiccated dormant state, yet rapidly re-boot metabolism within minutes of wetting. These soil microbial communities are highly dependent on filamentous cyanobacteria such as Microcoleus vaginatusto stabilize the soil and to act as primary producers for the community through the release carbon sources to feed a diversity of heterotrophs. Exometabolomic analysis was performed using liquid chromatography coupled to tandem mass spectrometry on biological soil crust pore water and spent media of key soil bacterial isolates. Comparison of spent vs. fresh media was used to determine uptake or release of metabolites by specific microbes. To link pore water experiments with isolate studies, metabolite extracts of authentic soil were used as supplements for isolate exometabolomic profiling. Our soil metabolomics methods detected hundreds of metabolites from soils including may novel compounds. Only a small set of which being targeted by all isolates. Beyond these few metabolites, the individual bacteria examined showed specialization towards specific metabolites. Surprisingly, many of the most abundant oligosaccharides and other metabolites were ignored by these isolates. The observed specialization of biological soil crust bacteria may play a significant role in determining community structure.

  9. Dacite formation on Vesta: Partial melting of the eucritic crust (United States)

    Hahn, Timothy M.; Lunning, Nicole G.; MCSween, Harry Y.; Bodnar, Robert J.; Taylor, Lawrence A.


    The Dominion Range 2010 howardite pairing group contains an evolved lithic clast of dacite composition. The dacite contains an assemblage of plagioclase, quartz, and augite, with minor pigeonite, troilite, ilmenite, FeNi metal, K-feldspar, and phosphates. Primary augite occurs as >1 mm oikocrysts enclosing plagioclase. Quartz is abundant, comprising approximately 30% of the clast. Textural and geochemical characteristics support the hypothesis that the dacite is a primary igneous lithology, and represents a partial melt of the eucritic crust. Numerical modeling (MELTS) suggests 10-20% partial melting of a Juvinas source could have produced the dacite lithology; quantitative trace element modeling further supports crustal partial melting as the magma source for the dacite. The dacite likely formed as evolved-melt pockets, and thus represents a volumetrically minor lithology in the Vestan crust, although its formation provides direct support for a genetic relationship between Stannern and residual trend eucrites, and is the first identification of residual eucrite complementary melts. We propose the dacite clast is the first characterized sample of tertiary crust on Vesta.

  10. Argentine anchovy (Engraulis anchoita stock identification and incipient exploitation in southern Brazil

    Directory of Open Access Journals (Sweden)

    Felipe M Carvalho


    Full Text Available The Argentine anchovy (Engraulis anchoita is an essential species in the pelagic ecosystem of the southwest Atlantic Ocean, and a potentially important fishery resource. Exploitation has recently started in southern Brazil, so it requires a better understanding of their structure and population dynamics. This work aims to update the information on the population identification of E. anchoita. Parameters such as age and size composition, length-at-age data and other parameters using sagittae otoliths were used to compare anchovy of the continental shelf between 20° and 32°S. The results indicate the existence of different populations in the southeastern and southern regions of Brazil: the bonaerense stock in southern Brazil is shared with Argentina and Uruguay and exhibits migratory behavior, while in the southeast there is a population confined to this region and shows different population characteristics. This has implications for the management of this species and should be taken into account by the institutions responsible for the assessment and management of fisheries in Brazil.

  11. Ocean optics

    Energy Technology Data Exchange (ETDEWEB)

    Spinard, R.W.; Carder, K.L.; Perry, M.J.


    This volume is the twenty fifth in the series of Oxford Monographs in Geology and Geophysics. The propagation off light in the hydra-atmosphere systems is governed by the integral-differential Radiative Transfer Equation (RTE). Closure and inversion are the most common techniques in optical oceanography to understand the most basic principles of natural variability. Three types of closure are dealt with: scale closure, experimental closure, and instrument closure. The subject is well introduced by Spinard et al. in the Preface while Howard Gordon in Chapter 1 provides an in-depth introduction to the RTE and its inherent problems. Inherent and apparent optical properties are dealt with in Chapter 2 by John Kirk and the realities of optical closure are presented in the following chapter by Ronald Zaneveld. The balance of the papers in this volume is quite varied. The early papers deal in a very mathematical manner with the basics of radiative transfer and the relationship between inherent and optical properties. Polarization of sea water is discussed in a chapter that contains a chronological listing of discoveries in polarization, starting at about 1000 AD with the discovery of dichroic properties of crystals by the Vikings and ending with the demonstration of polarotaxis in certain marine organisms by Waterman in 1972. Chapter 12 on Raman scattering in pure water and the pattern recognition techniques presented in Chapter 13 on the optical effects of large particles may be of relevance to fields outside ocean optics.

  12. Arctic Ocean: hydrothermal activity on Gakkel Ridge. (United States)

    Jean-Baptiste, Philippe; Fourré, Elise


    In the hydrothermal circulation at mid-ocean ridges, sea water penetrates the fractured crust, becomes heated by its proximity to the hot magma, and returns to the sea floor as hot fluids enriched in various chemical elements. In contradiction to earlier results that predict diminishing hydrothermal activity with decreasing spreading rate, a survey of the ultra-slowly spreading Gakkel Ridge (Arctic Ocean) by Edmonds et al. and Michael et al. suggests that, instead of being rare, the hydrothermal activity is abundant--exceeding by at least a factor of two to three what would be expected by extrapolation from observation on faster spreading ridges. Here we use helium-3 (3He), a hydrothermal tracer, to show that this abundance of venting sites does not translate, as would be expected, into an anomalous hydrothermal 3He output from the ridge. Because of the wide implications of the submarine hydrothermal processes for mantle heat and mass fluxes to the ocean, these conflicting results call for clarification of the link between hydrothermal activity and crustal production at mid-ocean ridges.

  13. Seismic Wave Propagation in Icy Ocean Worlds (United States)

    Stähler, Simon C.; Panning, Mark P.; Vance, Steven D.; Lorenz, Ralph D.; van Driel, Martin; Nissen-Meyer, Tarje; Kedar, Sharon


    Seismology was developed on Earth and shaped our model of the Earth's interior over the twentieth century. With the exception of the Philae lander, all in situ extraterrestrial seismological effort to date was limited to other terrestrial planets. All have in common a rigid crust above a solid mantle. The coming years may see the installation of seismometers on Europa, Titan, and Enceladus, so it is necessary to adapt seismological concepts to the setting of worlds with global oceans covered in ice. Here we use waveform analyses to identify and classify wave types, developing a lexicon for icy ocean world seismology intended to be useful to both seismologists and planetary scientists. We use results from spectral-element simulations of broadband seismic wavefields to adapt seismological concepts to icy ocean worlds. We present a concise naming scheme for seismic waves and an overview of the features of the seismic wavefield on Europa, Titan, Ganymede, and Enceladus. In close connection with geophysical interior models, we analyze simulated seismic measurements of Europa and Titan that might be used to constrain geochemical parameters governing the habitability of a sub-ice ocean.

  14. The Composition of the Complete Crust at Ultraslow Ridges (United States)

    Kvassnes, A. J.; Devey, C.; Dick, H. J.


    Strongly focused magmatic activity at discrete points along the ridge axis is typical for the ultraslow ridges, resulting in the formation of axis-perpendicular basement ridges (Dick et al., Nature 426, 405-412, 2003; Jokat et al., Nature 423: 962-965, 2003). Middle and lower crustal rocks are exposed along steeply dipping normal faults at the basement ridges in places where seismic studies have demonstrated the crust to be ~2-km thick (Jokat et al., op. cit., Michael, et al., Nature Vol 423: 956-961, 2003). High Na8 values and low Fe8 values in many of the basaltic glasses probably result from very low rate of fractional melting of the mantle and caused the very thin crust to be formed. We present a model of the major and trace element composition of the complete crust at these ultraslow ridges based on an extensive study of whole rocks and minerals from upper, middle and lower crustal rocks from the Gakkel and Southwest Indian ridges. The Gakkel Ridge rocks fall clearly into two geochemical types based on geographic region the Western Volcanic Zone and the Sparsely Magmatic Zone. Magmas from the Western Volcanic Zone shows geochemical signatures indicating very large degrees of melting, or derivation from a very depleted source, or both, and as such are atypical of magmas from ultraslow ridges, and may or may not be a red herring. Therefore, in order to calculate a magmatic budget for the complete crust at the typical ultraslow ridges, we have used the data from the Sparsely Magmatic Zone together with the ultraslow part of the Southwest Indian Ridge. We have derived models for the major element compositions of coexisting mineral phases using the modeling program "Melts" (Ghiorso and Sack, Cont Min Pet, 119: 197- 212, 1995), and compared them to our data, in order to determine how much each of the rocks were crystallized relative to the major elements of a parental magma. The major and trace elements for the different rock types are then added together in

  15. The structure of the crust and uppermost mantle beneath Madagascar (United States)

    Andriampenomanana, Fenitra; Nyblade, Andrew A.; Wysession, Michael E.; Durrheim, Raymond J.; Tilmann, Frederik; Julià, Jordi; Pratt, Martin J.; Rambolamanana, Gérard; Aleqabi, Ghassan; Shore, Patrick J.; Rakotondraibe, Tsiriandrimanana


    The lithosphere of Madagascar was initially amalgamated during the Pan-African events in the Neoproterozoic. It has subsequently been reshaped by extensional processes associated with the separation from Africa and India in the Jurassic and Cretaceous, respectively, and been subjected to several magmatic events in the late Cretaceous and the Cenozoic. In this study, the crust and uppermost mantle have been investigated to gain insights into the present-day structure and tectonic evolution of Madagascar. We analysed receiver functions, computed from data recorded on 37 broad-band seismic stations, using the H-κ stacking method and a joint inversion with Rayleigh-wave phase-velocity measurements. The thickness of the Malagasy crust ranges between 18 and 46 km. It is generally thick beneath the spine of mountains in the centre part (up to 46 km thick) and decreases in thickness towards the edges of the island. The shallowest Moho is found beneath the western sedimentary basins (18 km thick), which formed during both the Permo-Triassic Karro rifting in Gondwana and the Jurassic rifting of Madagascar from eastern Africa. The crust below the sedimentary basin thickens towards the north and east, reflecting the progressive development of the basins. In contrast, in the east there was no major rifting episode. Instead, the slight thinning of the crust along the east coast (31-36 km thick) may have been caused by crustal uplift and erosion when Madagascar moved over the Marion hotspot and India broke away from it. The parameters describing the crustal structure of Archean and Proterozoic terranes, including average thickness (40 km versus 35 km), Poisson's ratio (0.25 versus 0.26), average shear-wave velocity (both 3.7 km s-1), and thickness of mafic lower crust (7 km versus 4 km), show weak evidence of secular variation. The uppermost mantle beneath Madagascar is generally characterized by shear-wave velocities typical of stable lithosphere (∼4.5 km s-1). However

  16. Biological soil crusts in Chile along the precipitation gradient (United States)

    Samolov, Elena; Glaser, Karin; Baumann, Karen; Leinweber, Peter; Jung, Patrick; Büdel, Burkhard; Mikhailyuk, Tatiana; Karsten, Ulf


    Biological soil crusts in Chile along a precipitation gradient Elena Samolov* (1), Karin Glaser (1), Karen Baumann (2), Peter Leinweber (2), Patrick Jung (3), Burkhard Büdel (3), Tatiana Mikhailyuk (4) and Ulf Karsten (1) (1) Institute of Biological Sciences - Applied Ecology and Phycology, University of Rostock, Rostock, Germany, (2) Faculty of Agricultural and Environmental Sciences - Soil Sciences, University of Rostock, Rostock, Germany (3) University of Kaiserslautern, Kaiserslautern, Germany (4) M.H. Kholodny Institute of Botany, National Academy of Science of Ukraine, Kyiv, Ukraine * Biological soil crusts (BSCs) are an association of different microorganisms and soil particles in the top millimeters of the soil. They are formed by algae, cyanobacteria, microfungi, bacteria, bryophytes and lichens in various compositions; together with their by-products they create a micro-ecosystem that performs important ecological functions, e.g. primary production, nitrogen fixation, mineralization and stabilization of soils. These top-soil assemblages are almost unstudied in South America (Büdel et al. 2016). Therefore, our aim is to investigate for the first time biodiversity of the key photosynthetic organisms, green algae and cyanobacteria following a precipitation gradient along the west coast of Chile. We are applying polyphasic approach - a combination of microscopy, culture dependent (16S and 18S rRNA, ITS) and culture independent molecular techniques (NGS). First results, based on culturing and light microscopy, showed high diversity of eukaryotic algae in biocrusts from humid regions, followed by semi-arid regions. Lichen dominated biocrusts from arid regions were characterized by a high diversity of green algae, while cyanobacteria were scarcely present. The functional role of the BSCs in the biogeochemical cycle of phosphorous (P) was evaluated using state of the art analytical methods including 31P-NMR (nuclear magnetic

  17. Energy conservation in the earth's crust and climate change. (United States)

    Mu, Yao; Mu, Xinzhi


    Among various matters which make up the earth's crust, the thermal conductivity of coal, oil, and oil-gas, which are formed over a long period of geological time, is extremely low. This is significant to prevent transferring the internal heat of the earth to the thermal insulation of the surface, cooling the surface of the earth, stimulating biological evolution, and maintaining natural ecological balance as well. Fossil energy is thermal insulating layer in the earth's crust. Just like the function of the thermal isolation of subcutaneous fatty tissue under the dermis of human skin, it keeps the internal heat within the organism so it won't be transferred to the skin's surface and be lost maintaining body temperature at low temperatures. Coal, oil, oil-gas, and fat belong to the same hydrocarbons, and the functions of their thermal insulation are exactly the same. That is to say, coal, oil, and oil-gas are just like the earth's "subcutaneous fatty tissue" and objectively formed the insulation protection on earth's surface. This paper argues that the human large-scale extraction of fossil energy leads to damage of the earth's crust heat-resistant sealing, increasing terrestrial heat flow, or the heat flow as it is called, transferring the internal heat of the earth to Earth's surface excessively, and causing geotemperature and sea temperature to rise, thus giving rise to global warming. The reason for climate warming is not due to the expansion of greenhouse gases but to the wide exploitation of fossil energy, which destroyed the heat insulation of the earth's crust, making more heat from the interior of the earth be released to the atmosphere. Based on the energy conservation principle, the measurement of the increase of the average global temperature that was caused by the increase of terrestrial heat flow since the Industrial Revolution is consistent with practical data. This paper illustrates "pathogenesis" of climate change using medical knowledge. The

  18. Compositional variation and genesis of ferromanganese crusts of ...

    Indian Academy of Sciences (India)

    and genesis of submarine manganese deposits; In: Ferro- manganese deposits on the Ocean Floor, (ed.) D R Horn,. N S F, Washington, DC, 149–166. Borisova A Y, Portnyagin M V, Sushchevskaya N M,. Tsekhonya T I and Kononkova N N 2001 Olivine basalts of the Afanasiy–Nikitin Rise, Indian Ocean: Petrology.

  19. Cyanobacterial crust induction using two non-previously tested cyanobacterial inoculants: crusting capability and role of EPSs (United States)

    Mugnai, Gianmarco; Rossi, Federico; De Philippis, Roberto


    The use of cyanobacteria as soil improvers and bio-conditioners (a technique often referred to as algalization) has been studied for decades. Several studies proved that cyanobacteria are feasible eco-friendly candidates to trigger soil fertilization and enrichment from agricultural to arid and hyper-arid systems. This approach can be successful to achieve stabilization and rehabilitation of degraded environments. Much of the effectiveness of algalization is due to the productivity and the characteristics of extracellular polysaccharides (EPSs) which, among their features, embed soil particles and promote the development of a first stable organo-mineral layer (cyanobacterial crusts). In natural settings, cyanobacterial crust induction represents a first step of a succession that may lead to the formation of mature biological soil crusts (Lan et al., 2014). The aim of this research was to investigate the crusting capabilities, and the characteristics of excreted EPSs by two newly tested non-heterocystous cyanobacterial inoculants, in microcosm experiments carried out using oligothrophic sand collected from sand dunes in Negev Desert, Israel. The cyanobacteria tested were Schizothrix AMPL1601, originally isolated from biocrusts collected in Hobq Desert, Inner Mongolia (China) and Leptolyngbia ohadii, originally isolated from biocrusts collected in Negev Desert, Israel. Inoculated microcosms were maintained at 30 °C in a growth chamber under continuous illumination and minimal water availability. Under such stressing conditions, and for a three-months incubation time, the growth and the colonization of the strains in the microcosms were monitored. At the same time, EPSs production and their chemical and macromolecular characteristics were determined by applying a methodology optimized for the purpose. Notably, EPSs were analyzed in two operationally-defined fractions, one more dispersed in the crust matrix (loosely bound EPSs, LB-EPSs) and one more condensed and

  20. Mycobacterium tuberculosis thymidylate kinase antigen assays for designating incipient, high-risk latent M.tb infection. (United States)

    Wayengera, Misaki; Kateete, David P; Asiimwe, Benon; Joloba, Moses L


    Precise designation of high risk forms of latent Mycobacterium tuberculosis-M.tb infections (LTBI) is impossible. Delineation of high-risk LTBI can, however, allow for chemoprophylaxis and curtail majority cases of active tuberculosis (ATB). There is epidemiological evidence to support the view that LTBI in context of HIV-1 co-infection is high-risk for progression to ATB relative to LTBI among HIV-ve persons. We recently showed that assays of M.tb thymidylate kinase (TMKmt) antigen and host specific IgG can differentiate ATB from LTBI and or no TB (NTB, or healthy controls). In this study, we aimed to expose the differential levels of TMKmt Ag among HIV+ve co-infected LTBI relative to HIV-ve LTBI as a strategy to advance these assays for designating incipient LTBI. TMKmt host specific IgM and IgG detection Enzyme Immuno-Assays (EIA) were conducted on 40 TB exposed house-hold contacts (22 LTBI vs. 18 no TB (NTB) by QunatiFERON-TB GOLD®); and TMKmt Ag detection EIA done on 82 LTBI (46 HIV+ve vs 36 HIV-ve) and 9 NTB (American donors). Purified recombinant TMKmt protein was used as positive control for the Ag assays. IgM levels were found to be equally low across QuantiFERON-TB GOLD® prequalified NTB and TB exposed house-hold contacts. Higher TMKmt host specific IgG trends were found among TB house-hold contacts relative to NTB controls. TMKmt Ag levels among HIV+ve LTBI were 0.2676 ± 0.0197 (95% CI: 0.2279 to 0.3073) relative to 0.1069 ± 0.01628 (95% CI: 0.07385 to 0.14) for HIV-ve LTBI (supporting incipient nature of LTBI in context of HIV-1 co-infection). NTB had TMKmt Ag levels of 0.1013 ± 0.02505 (5% CI: 0.0421 to 0.1606) (intimating that some were indeed LTBI). TMKmt Ag levels represent a novel surrogate biomarker for high-risk LTBI, while host-specific IgG can be used to designate NTB from LTBI.

  1. The interaction of a vortex ring with a sloped sediment layer: Critical criteria for incipient grain motion (United States)

    Munro, R. J.


    Experiments were performed to analyse the interaction between a vortex ring and a sloped sediment layer. Attention focussed on interactions under "critical" conditions, in which sediment motion was only just induced by the ring's flow field. Both hydraulically smooth and hydraulically rough bedforms were analysed, using near-spherical monodisperse sediments with relative densities of 1.2 and 2.5 and mean diameters (dp) ranging between 80 and 1087 μm. Measurements of the vortex-ring flow field were obtained, during the interaction, using two-dimensional particle imaging velocimetry. The threshold conditions for incipient sediment motion were analysed in terms of the critical Shields parameter (Nc), defined in terms of the peak tangential velocity measured adjacent to the bed surface. Bed-slope effects were investigated by tilting the sediment layer at various angles between the horizontal and the repose limit for the sediment. In all cases, the propagation axis of the vortex ring was aligned normal to the bed surface. The measured values of Nc were compared with a force-balance model based on the conditions for incipient grain motion on a sloping bed. For hydraulically smooth bedforms, where the bed roughness is small compared to the boundary-layer depth, the model was derived to account for how viscous stresses affect the drag and lift forces acting on the near surface sediment. For hydraulically rough bedforms, where this viscous-damping effect is not present, the model assumes the drag and lift forces scale with the square of the near-bed (inviscid) velocity scale. In both cases, the model predicts that bedforms become more mobile as the bed slope is increased. However, the damping effect of the viscous sublayer acts as a stabilizing influence for hydraulically smooth bedforms, to reduce the rate at which the bed mobility increases with bed slope. The measured values of Nc were in agreement with the trends predicted by this model, and exhibit a transition in

  2. Mitochondrial DNA evidences reflect an incipient population structure in Atlantic goliath grouper (Epinephelus itajara, Epinephelidae in Brazil

    Directory of Open Access Journals (Sweden)

    Júnio S. Damasceno


    Full Text Available The Atlantic goliath grouper is a critically endangered species that inhabits estuarine and reef environments and is threatened primarily by fishing activities and habitat destruction. Despite the urgent need for protection, its genetic conservation status remains unknown. The aim of the present study was to evaluate the gene flow among the populations of the species along the coast of Brazil based on the control region of the mitochondrial DNA. The results indicate low haplotype diversity (0.40-0.86 and very low nucleotide diversity (0.1-0.5%. They also show that the genetic diversity of the species varies considerably along the coast and that this finding may be especially important for the identification of priority areas for its conservation. The population analyses indicate a low but significant degree of genetic structuring (ΦST =0.111, probably due to the occurrence of rare haplotypes at some locations, although the genetic differentiation between sites was not correlated with geographic distance (r=0.0501; p=0.7719, and the shared haplotypes indicate that gene flow occurs among all locations along the Brazilian coast. The results of the pairwise FST indicate a high degree of genetic differentiation between locations. The incipient population structuring detected in the present study is not related systematically to the geological or physical features of the Brazilian coast. The complex interaction of fluctuations in sea level, marine currents, and the reproductive characteristics of the species hampers the identification of the specific role of each of these processes in the gene flow dynamics of the population units of the Atlantic goliath grouper. The low overall levels of genetic diversity, the pairwise FST values and the significant population structuring among groups (ΦCT identified in the present study all reinforce the critically endangered status of the species and are inconsistent with the presence of a single, panmictic

  3. Biogeochemical signals from deep microbial life in terrestrial crust.

    Directory of Open Access Journals (Sweden)

    Yohey Suzuki

    Full Text Available In contrast to the deep subseafloor biosphere, a volumetrically vast and stable habitat for microbial life in the terrestrial crust remains poorly explored. For the long-term sustainability of a crustal biome, high-energy fluxes derived from hydrothermal circulation and water radiolysis in uranium-enriched rocks are seemingly essential. However, the crustal habitability depending on a low supply of energy is unknown. We present multi-isotopic evidence of microbially mediated sulfate reduction in a granitic aquifer, a representative of the terrestrial crust habitat. Deep meteoric groundwater was collected from underground boreholes drilled into Cretaceous Toki granite (central Japan. A large sulfur isotopic fractionation of 20-60‰ diagnostic to microbial sulfate reduction is associated with the investigated groundwater containing sulfate below 0.2 mM. In contrast, a small carbon isotopic fractionation (<30‰ is not indicative of methanogenesis. Except for 2011, the concentrations of H2 ranged mostly from 1 to 5 nM, which is also consistent with an aquifer where a terminal electron accepting process is dominantly controlled by ongoing sulfate reduction. High isotopic ratios of mantle-derived 3He relative to radiogenic 4He in groundwater and the flux of H2 along adjacent faults suggest that, in addition to low concentrations of organic matter (<70 µM, H2 from deeper sources might partly fuel metabolic activities. Our results demonstrate that the deep biosphere in the terrestrial crust is metabolically active and playing a crucial role in the formation of reducing groundwater even under low-energy fluxes.

  4. Is "milk crust" a transient form of golden retriever ichthyosis? (United States)

    Roethig, Anja; Schildt, Kirsti J M; Welle, Monika M; Wildermuth, Brett E; Neiger, Reto; Thom, Nina


    A recessive inherited form of lamellar ichthyosis is well recognized in golden retrievers. In this breed, young puppies demonstrate a self-limiting scaling disorder which is commonly recognized by breeders, who use the term "milk crust" to describe this syndrome. To determine whether "milk crust" is a new keratinization disorder or a self-limiting form of golden retriever ichthyosis. A total of 179 golden retriever dogs (21 dams and 158 puppies) were examined. Dermatological examination and assessment of the patatin-like phospholipase-1 (PNPLA1) genotype by PCR testing of buccal mucosal swabs. Skin biopsies from one affected puppy were evaluated for histopathological abnormalities. Forty-five of 158 (28%) puppies exhibited scaling at 8 weeks of age; 113 of 158 (72%) were dermatologically normal. Of 144 analysed samples, 40 of 144 (28%) puppies demonstrated a homozygous mutation of the PNPLA1 genotype [of which, 36 of 40 (90%) had signs of scaling], 77 of 144 (53%) demonstrated a heterozygous mutation and 27 of 144 (19%) were a normal wild-type. In six of 17 (35%) dams, a homozygous mutation of the PNPLA1 genotype was found, eight of 17 (47%) demonstrated a heterozygous mutation and three of 17 (18%) were normal wild-type. Dams with a homozygous mutation were clinically unaffected. A 1 year follow-up revealed that 23 of 28 (82%) puppies affected with this syndrome failed to develop typical signs of ichthyosis. In five of 28 (18%) dogs there was persistence of mild scaling. We hypothesize that the clinical syndrome termed "milk crust" could represent a transient form of golden retriever ichthyosis. Remission is not fully linked to PNPLA1 genotype, suggesting that unknown factors may contribute to the clinical disease. © 2015 ESVD and ACVD.

  5. Correlation between aerosols, deposits and weathering crusts on ancient marbles. (United States)

    Moropoulou, A; Bisbikou, K; Van Grieken, R; Torfs, K; Polikreti, K


    The structure and physicochemical characteristics of weathered surfaces of marble in industrial environments can be attributed to the interconnected evolution of the processes taking place at the atmospheric environment--marble interface. The present work is an attempt to correlate the aerosols of a heavily polluted atmosphere with the different weathering patterns observed on marble surfaces. Energy Dispersive X-Ray Fluorescence, X-Ray Diffraction, Porosimetry, Atomic Absorption, Atomic Emission Spectrometry, Ion Chromatography, Optical Microscopy and Scanning Electron Microscopy results were used together in principal component and discriminant analysis. These analyses were performed on forty six samples of aerosols and eighteen samples of crusts. Other parameters like orientation of the weathered surface, exposure to rainfall, presence of recrystalised calcite and gypsum were also used. The samples were collected from the archaeological site of the Sanctuary of Demeter, located near Eleusis (west of Athens, Greece), where a great number of industries (mainly metallurgical and chemical) cause several environmental problems. The results provide invaluable information on the nature of marble surface decay. The elements determining the chemical composition of the coarse airborne particles are Ca, Si, S, Br and Cl. The presence of gypsum is strongly related to black crusts or loose deposits. Y, Mn and rain exposure, are correlated with each other and related to black-gray crusts. Ca and Sr are correlated with washed-out surfaces. Finally discriminant analysis is proved to be a powerful tool in prediction of the type of decay that will be occur on a marble surface, given the composition and type of the polluted atmosphere.

  6. Reconstruction of food webs in biological soil crusts using metabolomics. (United States)

    Baran, Richard; Brodie, Eoin L.; Mayberry-Lewis, Jazmine; Nunes Da Rocha, Ulisses; Bowen, Benjamin P.; Karaoz, Ulas; Cadillo-Quiroz, Hinsby; Garcia-Pichel, Ferran; Northen, Trent R.


    Biological soil crusts (BSCs) are communities of organisms inhabiting the upper layer of soil in arid environments. BSCs persist in a dessicated dormant state for extended periods of time and experience pulsed periods of activity facilitated by infrequent rainfall. Microcoleus vaginatus, a non-diazotrophic filamentous cyanobacterium, is the key primary producer in BSCs in the Colorado Plateau and is an early pioneer in colonizing arid environments. Over decades, BSCs proceed through developmental stages with increasing complexity of constituent microorganisms and macroscopic properties. Metabolic interactions among BSC microorganisms probably play a key role in determining the community dynamics and cycling of carbon and nitrogen. However, these metabolic interactions have not been studied systematically. Towards this goal, exometabolomic analysis was performed using liquid chromatography coupled to tandem mass spectrometry on biological soil crust pore water and spent media of key soil bacterial isolates. Comparison of spent vs. fresh media was used to determine uptake or release of metabolites by specific microbes. To link pore water experiments with isolate studies, metabolite extracts of authentic soil were used as supplements for isolate exometabolomic profiling. Our soil metabolomics methods detected hundreds of metabolites from soils including many novel compounds. Overall, Microcoleus vaginatus was found to release and utilize a broad range of metabolites. Many of these metabolites were also taken up by heterotrophs but there were surprisingly few metabolites uptaken by all isolates. This points to a competition for a small set of central metabolites and specialization of individual heterotrophs towards a diverse pool of available organic nutrients. Overall, these data suggest that understanding the substrate specialization of biological soil crust bacteria can help link community structure to nutrient cycling.

  7. Persistence of deeply sourced iron in the Pacific Ocean. (United States)

    Horner, Tristan J; Williams, Helen M; Hein, James R; Saito, Mak A; Burton, Kevin W; Halliday, Alex N; Nielsen, Sune G


    Biological carbon fixation is limited by the supply of Fe in vast regions of the global ocean. Dissolved Fe in seawater is primarily sourced from continental mineral dust, submarine hydrothermalism, and sediment dissolution along continental margins. However, the relative contributions of these three sources to the Fe budget of the open ocean remains contentious. By exploiting the Fe stable isotopic fingerprints of these sources, it is possible to trace distinct Fe pools through marine environments, and through time using sedimentary records. We present a reconstruction of deep-sea Fe isotopic compositions from a Pacific Fe-Mn crust spanning the past 76 My. We find that there have been large and systematic changes in the Fe isotopic composition of seawater over the Cenozoic that reflect the influence of several, distinct Fe sources to the central Pacific Ocean. Given that deeply sourced Fe from hydrothermalism and marginal sediment dissolution exhibit the largest Fe isotopic variations in modern oceanic settings, the record requires that these deep Fe sources have exerted a major control over the Fe inventory of the Pacific for the past 76 My. The persistence of deeply sourced Fe in the Pacific Ocean illustrates that multiple sources contribute to the total Fe budget of the ocean and highlights the importance of oceanic circulation in determining if deeply sourced Fe is ever ventilated at the surface.

  8. Assessing level of development and successional stages in biological soil crusts with biological indicators. (United States)

    Lan, Shubin; Wu, Li; Zhang, Delu; Hu, Chunxiang


    Biological soil crusts (BSCs) perform vital ecosystem services, but the difference in biological components or developmental level still affects the rate and type of these services. In order to differentiate crust successional stages in quantity and analyze the relationship between crust developmental level and successional stages, this work determined several biological indicators in a series of different developmental BSCs in the Shapotou region of China. The results showed that crust developmental level (level of development index) can be well indicated by crust biological indicators. Photosynthetic biomass was the most appropriate to differentiate crust successional stages, although both photosynthetic biomass and respiration intensity increased with the development and succession of BSCs. Based on of the different biological compositions, BSCs were quantificationally categorized into different successional stages including cyanobacterial crusts (lichen and moss coverages 20 % but moss coverage 20 % but 75 %). In addition, it was found that cyanobacterial and microalgal biomass first increased as cyanobacterial crusts formed, then decreased when lots of mosses emerged on the crust surface; however nitrogen-fixing cyanobacteria and heterotrophic microbes increased in the later developmental BSCs. The structural adjustment of biological components in the different developmental BSCs may reflect the requirement of crust survival and material transition.

  9. Models for Interpreting Tungsten Isotope Anomalies in the Earth's Crust (United States)

    Humayun, M.; Brandon, A. D.; Righter, K.


    There have been several reports of positive tungsten isotope anomalies of about +15 ppm in rocks from Nuvvuagittuq (4.3 Ga), Isua (3.8 Ga) and Kostomuksha (2.8 Ga) that challenge models of differentiation and mantle mixing. Here, we employ constraints from experimental partitioning of W between metal and silicate, and from partial melting models, to evaluate the production and preservation of these W isotope anomalies in the Earth's earliest crust. We will also provide a revised interpretation of the Kostomuksha W isotope anomalies based on flow differentiation and metamorphism of komatiites. Two sets of models are produced. Model Set 1: Because D(metal-silicate) for W diminishes with increasing depth, the deep mantle has a higher W abundance, and a lower Hf/W ratio and consequently evolves a negative anomaly in W while the upper mantle evolves a complementary positive anomaly. Subsequent solid-state convection (4.55-2.8 Ga) mixes away the complementary W isotope anomalies to yield the modern mantle null value. This set of models predicts that the complementary negative anomalies in W should eventually be discovered in ancient magmatic rocks of deep mantle origin such as komatiites. Model Set 2: Tungsten is significantly more incompatible (like U, Th and Ba) than Hf, the latter being similar in compatibility to Sm. Our results show that extraction of low-degree partial melts (crust would result in negative anomalies in later plume lavas, while partitioning of W into an enriched "hidden reservoir" would not. Nd isotope anomalies indicate a melting event around 35-75 Ma after solar system formation, the upper end of which is consistent with our models of Hf/W fractionation, that also yield a depleted mantle composition consistent with DMM. Production of the anomalies is accompanied by the need to preserve the anomalies. We argue that the most effective means of preserving the W isotope anomalies is by crustal storage, and we hypothesize that W is efficiently recycled


    Directory of Open Access Journals (Sweden)



    Full Text Available Globular cavities in calcimicrobial Lithocodium crusts are interpreted as trace fossils of boring sponges belonging to the ichnogenus Entobia. Two informal groups can be differentiated: a Norian-Rhaetian group from Tabas area(NE Iran and Adnet (near Salzburg, Austria, characterized by large chambers and broad bifurcating apertural canals, and a second group from the Aptian of central Italy presenting smaller chambers and canals. The distal ends of these canals are closed by alveolar structures, preventing water circulation and leading to the death of the sponge. 

  11. Ganymede and Callisto - Complex crater formation and planetary crusts (United States)

    Schenk, Paul M.


    Results are presented on measurements of crater depths and other morphological parameters (such as central peak and terrace frequency) of fresh craters on Ganymede and Callisto, two geophysically very similar but geologically divergent large icy satellites of Jupiter. These data were used to investigate the crater mechanics on icy satellites and the intersatellite crater scaling and crustal properties. The morphological transition diameters of and complex crater depths on Ganymede and Callisto were found to be similar, indicating that the crusts of both satellites are dominated by water ice with only a minor rocky component.

  12. Urban decay of trachyte: correlating crust composition with air quality (United States)

    Germinario, Luigi; Maritan, Lara; Mazzoli, Claudio; Siegesmund, Siegfried


    Decay of trachyte in the urban built environment was investigated on the Renaissance city walls of Padua, in northern Italy. They were raised by the Republic of Venice Serenissima in the 16th century for defending its most important mainland center, using trachyte of the Euganean Hills as building stone, a subvolcanic porphyritic rock quarried nearby. Weathering crusts and patinas were sampled on trachyte exposed surfaces and analyzed by optical microscopy, SEM, EDS mapping, XRD and LA-ICPMS, in order to determine their mineralogical and microstructural features, and major- and trace-element chemical composition. The results were placed in direct correlation with quantitative environmental parameters, in particular concerning air quality and anthropogenic emission of pollutants, either measured or modelled. Influence of the specific composition of trachyte and other neighboring materials was explored as well. The weathering layers on trachyte turned out to be mainly originated by exogenous processes. The enrichment in carbon and heavy metals (lead, arsenic, chromium, nickel, cadmium, antimony, bismuth etc.) is traced back to deposition of particulate matter from road traffic and domestic combustion of woody biomass; a secondary source is industrial processes in Padua and Venice-Porto Marghera, one of the biggest coastal industrial zones in Europe. The crystalline matrix of the crusts and patinas is typically formed by carbonates, especially calcite: since their concentration is negligible in the host rock, their near-surface abundance can be explained mostly by leaching of calcium from neighboring lime-mortar joints, and its mobilization and reprecipitation on trachyte according to local pH fluctuations. It is worth noting that the calcite layers may even promote growth of gypsum crusts, but their occurrence is seldom though. The sole significant intrinsic factor of trachyte alteration is related to dissolution of iron from biotite and other Fe-bearing phases

  13. Electrical conductivity of the oceanic asthenosphere and its interpretation based on laboratory measurements (United States)

    Katsura, Tomoo; Baba, Kiyoshi; Yoshino, Takashi; Kogiso, Tetsu


    We review the currently available results of laboratory experiments, geochemistry and MT observations and attempt to explain the conductivity structures in the oceanic asthenosphere by constructing mineral-physics models for the depleted mid-oceanic ridge basalt (MORB) mantle (DMM) and volatile-enriched plume mantle (EM) along the normal and plume geotherms. The hopping and ionic conductivity of olivine has a large temperature dependence, whereas the proton conductivity has a smaller dependence. The contribution of proton conduction is small in DMM. Melt conductivity is enhanced by the H2O and CO2 components. The effects of incipient melts with high volatile components on bulk conductivity are significant. The low solidus temperatures of the hydrous carbonated peridotite produce incipient melts in the asthenosphere, which strongly increase conductivity around 100 km depth under older plates. DMM has a conductivity of 10- 1.2 - 1.5 S/m at 100-300 km depth, regardless of the plate age. Plume mantle should have much higher conductivity than normal mantle, due to its high volatile content and high temperatures. The MT observations of the oceanic asthenosphere show a relatively uniform conductivity at 200-300 km depth, consistent with the mineral-physics model. On the other hand, the MT observations show large lateral variations in shallow parts of the asthenosphere despite similar tectonic settings and close locations. Such variations are difficult to explain with the mineral-physics model. High conductivity layers (HCL), which are associated with anisotropy in the direction of the plate motion, have only been observed in the asthenosphere under infant or young plates, but they are not ubiquitous in the oceanic asthenosphere. Although the general features of HCL imply their high-temperature melting origin, the mineral-physics model cannot explain them quantitatively. Much lower conductivity under hotspots, compared with the model plume-mantle conductivity suggests the

  14. Studying ocean acidification in the Arctic Ocean (United States)

    Robbins, Lisa


    The U.S. Geological Survey (USGS) partnership with the U.S. Coast Guard Ice Breaker Healey and its United Nations Convention Law of the Sea (UNCLOS) cruises has produced new synoptic data from samples collected in the Arctic Ocean and insights into the patterns and extent of ocean acidification. This framework of foundational geochemical information will help inform our understanding of potential risks to Arctic resources due to ocean acidification.

  15. Evaluation of Alternative Atomistic Models for the Incipient Growth of ZnO by Atomic Layer Deposition

    Energy Technology Data Exchange (ETDEWEB)

    Chu, Manh-Hung; Tian, Liang; Chaker, Ahmad; Skopin, Evgenii; Cantelli, Valentina; Ouled, Toufik; Boichot, Raphaël; Crisci, Alexandre; Lay, Sabine; Richard, Marie-Ingrid; Thomas, Olivier; Deschanvres, Jean-Luc; Renevier, Hubert; Fong, Dillon; Ciatto, Gianluca


    ZnO thin films are interesting for applications in several technological fields, including optoelectronics and renewable energies. Nanodevice applications require controlled synthesis of ZnO structures at nanometer scale, which can be achieved via atomic layer deposition (ALD). However, the mechanisms governing the initial stages of ALD had not been addressed until very recently. Investigations into the initial nucleation and growth as well as the atomic structure of the heterointerface are crucial to optimize the ALD process and understand the structure-property relationships for ZnO. We have used a complementary suite of in situ synchrotron x-ray techniques to investigate both the structural and chemical evolution during ZnO growth by ALD on two different substrates, i.e., SiO2 and Al2O3, which led us to formulate an atomistic model of the incipient growth of ZnO. The model relies on the formation of nanoscale islands of different size and aspect ratio and consequent disorder induced in the Zn neighbors' distribution. However, endorsement of our model requires testing and discussion of possible alternative models which could account for the experimental results. In this work, we review, test, and rule out several alternative models; the results confirm our view of the atomistic mechanisms at play, which influence the overall microstructure and resulting properties of the final thin film.

  16. Europa the ocean moon : search for an alien biosphere

    CERN Document Server

    Greenberg, Richard


    Europa - The Ocean Moon tells the story of the Galileo spacecraft probe to Jupiter's moon, Europa. It provides a detailed description of the physical processes, including the dominating tidal forces that operate on Europa, and includes a comprehensive tour of Europa using images taken by Galileo's camera. The book reviews and evaluates the interpretative work carried out to date, providing a philosophical discussion of the scientific process of analyzing results and the pitfalls that accompany it. It also examines the astrobiological constraints on this possible biosphere, and implications for future research, exploration and planetary biological protection. Europa - The Ocean Moon provides a unique understanding of the Galileo images of Europa, discusses the theory of tidal processes that govern its icy ridged and disrupted surface, and examines in detail the physical setting that might sustain extra-terrestrial life in Europa's ocean and icy crust.

  17. Crust and uppermost-mantle structure of Greenland and the Northwest Atlantic from Rayleigh wave group velocity tomography (United States)

    Darbyshire, Fiona A.; Dahl-Jensen, Trine; Larsen, Tine B.; Voss, Peter H.; Joyal, Guillaume


    The Greenland landmass preserves ˜4 billion years of tectonic history, but much of the continent is inaccessible to geological study due to the extensive inland ice cap. We map out, for the first time, the 3-D crustal structure of Greenland and the NW Atlantic ocean, using Rayleigh wave anisotropic group velocity tomography, in the period range 10-80 s, from regional earthquakes and the ongoing GLATIS/GLISN seismograph networks. 1-D inversion gives a pseudo-3-D model of shear wave velocity structure to depths of ˜100 km with a horizontal resolution of ˜200 km. Crustal thickness across mainland Greenland ranges from ˜25 km to over 50 km, and the velocity structure shows considerable heterogeneity. The large sedimentary basins on the continental shelf are clearly visible as low velocities in the upper ˜5-15 km. Within the upper continental basement, velocities are systematically lower in northern Greenland than in the south, and exhibit a broadly NW-SE trend. The thinning of the crust at the continental margins is also clearly imaged. Upper-mantle velocities show a clear distinction between typical fast cratonic lithosphere (Vs ≥4.6 km s-1) beneath Greenland and its NE margin and anomalously slow oceanic mantle (Vs ˜4.3-4.4 km s-1) beneath the NW Atlantic. We do not observe any sign of pervasive lithospheric modification across Greenland in the regions associated with the presumed Iceland hotspot track, though the average crustal velocity in this region is higher than that of areas to the north and south. Crustal anisotropy beneath Greenland is strong and complex, likely reflecting numerous episodes of tectonic deformation. Beneath the North Atlantic and Baffin Bay, the dominant anisotropy directions are perpendicular to the active and extinct spreading centres. Anisotropy in the subcontinental lithosphere is weaker than that of the crust, but still significant, consistent with cratonic lithosphere worldwide.

  18. Ocean acoustic reverberation tomography. (United States)

    Dunn, Robert A


    Seismic wide-angle imaging using ship-towed acoustic sources and networks of ocean bottom seismographs is a common technique for exploring earth structure beneath the oceans. In these studies, the recorded data are dominated by acoustic waves propagating as reverberations in the water column. For surveys with a small receiver spacing (e.g., ocean acoustic reverberation tomography, is developed that uses the travel times of direct and reflected waves to image ocean acoustic structure. Reverberation tomography offers an alternative approach for determining the structure of the oceans and advancing the understanding of ocean heat content and mixing processes. The technique has the potential for revealing small-scale ocean thermal structure over the entire vertical height of the water column and along long survey profiles or across three-dimensional volumes of the ocean. For realistic experimental geometries and data noise levels, the method can produce images of ocean sound speed on a smaller scale than traditional acoustic tomography.

  19. Parametric resonant states of charged fermions in the magnetar's crust (United States)

    Dariescu, Marina-Aura; Dariescu, Ciprian


    We have presently derived the positive-energy solutions to the Dirac equation minimally coupled to a depth-dependent spatially harmonic tangential magnetostatic field to the magnetar crust, similar to the one proposed by Wareing and Hollerbach. It turns out that, for ultra-relativistic fermions and time-intervals much less the characteristic time (comparable to the average Ohmic timescale in the crust), the corresponding linearly independent modes get their depth-dependent amplitudes expressed in terms of Mathieu's functions and therefore, non-trivial resonances arise, leading to instabilities in the system, for computable ranges of the model parameters. In order to detail these features, we have also discussed the current density components, pointing out the regions for which the particle density has a double bounded modulation. Finally as the magnetic field induction is increasing, the instability range gets larger triggering the exponential growth of the amplitudes, once the imaginary part of the Mathieu Characteristic Exponent becomes more and more dominant.

  20. Study of stellar objects with strange quark matter crust

    International Nuclear Information System (INIS)

    Hothi, N.; Bisht, S.


    The absolute stability of strange quark matter is a viable possibility and immensely effects physics at the astrophysical scale. Relativistic heavy-ion reactions offer a stage to produce this exotic state of matter and the enhanced production of strange particles during these reactions can be studied within the framework of quark-gluon plasma (QGP). We have tried to investigate the role of strangeness under the compact star phenomenology. Emphasis is laid upon the possibility of existence of a third family of strange quark stars and its study help in revealing a number of unexplored features of the cosmos. Bag model parameters have been used to determine some integral parameters for a sequence of strange stars with crust and strange dwarfs constructed out of strange quark matter crust. A comparative analysis is performed between the strange and neutron stars and the strange and white dwarfs based upon these intrinsic parameters and paramount differences are observed. The intimacy between astrophysics and strange quarks depends strongly upon the strange quark matter hypothesis. It states that for a collection of more than a few hundred u, d and s quarks, the energy per baryon E/A of strange quark matter (SQM) can be well below the energy per baryon of the most stable atomic nuclei

  1. Biological soil crusts as soil stabilizers: Chapter 16 (United States)

    Belnap, Jayne; Buedel, Burkhard; Weber, Bettina; Buedel, Burkhard; Belnap, Jayne


    Soil erosion is of particular concern in dryland regions, as the sparse cover of vascular plants results in large interspaces unprotected from the erosive forces of wind and water. Thus, most of these soil surfaces are stabilized by physical or biological soil crusts. However, as drylands are extensively used by humans and their animals, these crusts are often disturbed, compromising their stabilizing abilities. As a result, approximately 17.5% of the global terrestrial lands are currently being degraded by wind and water erosion. All components of biocrusts stabilize soils, including green algae, cyanobacteria, fungi, lichens, and bryophytes, and as the biomass of these organisms increases, so does soil stability. In addition, as lichens and bryophytes live atop the soil surface, they provide added protection from raindrop impact that cyanobacteria and fungi, living within the soil, cannot. Much research is still needed to determine the relative ability of individual species and suites of species to stabilize soils. We also need a better understanding of why some individuals or combination of species are better than others, especially as these organisms become more frequently used in restoration efforts.

  2. Greenhouse gas microbiology in wet and dry straw crust covering pig slurry

    DEFF Research Database (Denmark)

    Hansen, Rikke Ruth; Nielsen, Daniel Aagren; Schramm, Andreas


    oxidizing bacteria were undetectable and methane oxidizing bacteria were only sparsely present in the "Wet" treatment. A change to anoxia did not affect the CH4 emission indicating the virtual absence of aerobic methane oxidation in the investigated 2-months old crusts. However, an increase in N2O emission......Liquid manure (slurry) storages are sources of gases such as ammonia (NH3) and methane (CH4). Danish slurry storages are required to be covered to reduce NH3 emissions and often a floating crust of straw is applied. This study investigated whether physical properties of the crust or crust...... microbiology had an effect on the emission of the potent greenhouse gases CH4 and nitrous oxide (N2O) when crust moisture was manipulated ("Dry", "Moderate", and "Wet"). The dry crust had the deepest oxygen penetration (45 mm as compared to 20 mm in the Wet treatment) as measured with microsensors, the highest...

  3. In-situ observation of the lower crust and upper mantle lithology in Atlantis Bank, SWIR - results from ABCDE Cruise (United States)

    Matsumoto, T.; Dick, H. J.; Abcde Cruise, O.


    The ABCDE Cruise (Cruise ID = YK01-14) was carried out in the Southwest Indian Ridge by R/V YOKOSKA from December 2001 until January 2002. The main purpose of the cruise was to test the ophiolite model, lithology and development processes of the oceanic crust by observing crust-mantle boundary and distribution of dike intrusion into the gabbroic massifs in the Atlantis Bank core-complex by SHINKAI6500 dives and precise geophysical surveys. The cruise was based on the past three ODP legs and three submersible cruises. Dive area was limited to Atlantis bank surrounded by 33-00'S, 32-30'S, 57-05'E, and 57-30'E lines. Finally 13 dives were completed during the one-month cruise. Unaltered lower crust and uppermost mantle rocks were observed in a limited site on the southwestern slope of Atlantis Bank. It was proved that the lower crust of SWIR is essentially the same as the ophiolite which exposes ashore as a result. On the other hand, a large number of sites of dike intrusion into gabbroic massifs were observed on the eastern wall and on the southern slope of the bank. This is corresponding to dike-gabbro transition in the ophiolite model. However, dike intrusion was also observed in the mantle peridotite domains. This suggests that mantle peridotite was dragged out just after the construction of the bank near the spreading axis along the detachment faults then the remaining magma intruded into the bank. The segment west of the Atlantis-II Fracture Zone was mapped intensively for regional geophysical survey at night and on the submersible maintenance days. The northern RTI of the Atlantis-II active transform presents an L-shaped nodal basin while the southern RTI a V-shaped one. The difference in these RTI types suggest the difference in the structure and basement rock types. Mantle Bouguer anomaly shows intense bull's eye above the spreading segment west of the Atlantis-II FZ while a slight bull_fs eye is located above the axis east of the FZ, suggesting that the

  4. The Thermal Structure of Oceanic Lithosphere (United States)

    McKenzie, D. P.; Priestley, K.


    Unlike our understanding of plate kinematics, which has undergone scarcely anychanges in the last fifty years, that of the thermal structure of plates hasrequired major modifications to Hess's original ideas. His proposal, thatridges were underlain by hot upwelling sheets in the mantle, is not compatiblewith their observed evolution. The problems disappear if ridges have no deepstructure and are simply passive features resulting from upwelling betweenseparating plates, like upwelling sea water between separating ice flows. Itgradually became clear that such a model could account for the variation ofoceanic depth and of heat flow with age, and also the constant thickness ofthe oceanic crust if the mantle potential temperature was constant. But theboundary condition at the base of the plates remains controversial. In theplate model the temperature at some depth remains essentially constant,because the cooling boundary layer becomes convectively unstable as itthickens. In contrast, in the half space model the boundary layer remainsstable and thickens without limit. Analysis of the variation of depth withage supports the plate model, though the observations are confused by seamountvolcanism and sedimentation. A recent advance in technology, surface wavetomography, can now be used to generate three dimensional maps of thetemperature of oceanic lithosphere. These clearly show how oceanic platesdevelop by passive upwelling and cooling, and provide important constraints ontheir temperature structure.

  5. Crusted scabies due to indiscriminate use of glucocorticoid therapy in infant. (United States)

    Lima, Fernanda Carvalho da Rocha; Cerqueira, Ana Maria Mósca; Guimarães, Manuela Boleira Sieiro; Padilha, Carolina Barbosa de Sousa; Craide, Fernanda Helena; Bombardelli, Marina


    Crusted or Norwegian scabies is a parasitic infectious disease caused by Sarcoptes scabiei var. hominis that mainly affects immunocompromised individuals and those with neurological patients. We report a case of crusted scabies in a 4-month-old infant who had been treated erroneously for atopic dermatitis with high doses of corticosteroids. This initial misdiagnosis associated with the abusive use of corticosteroid facilitated the evolution of scabies to crusted scabies and its main complications of secondary infection and sepsis.

  6. The role of non-rainfall water on physiological activation in desert biological soil crusts (United States)

    Zheng, Jiaoli; Peng, Chengrong; Li, Hua; Li, Shuangshuang; Huang, Shun; Hu, Yao; Zhang, Jinli; Li, Dunhai


    Non-rainfall water (NRW, e.g. fog and dew), in addition to rainfall and snowfall, are considered important water inputs to drylands. At the same time, biological soil crusts (BSCs) are important components of drylands. However, little information is available regarding the effect of NRW inputs on BSC activation. In this study, the effects of NRW on physiological activation in three BSC successional stages, including the cyanobacteria crust stage (Crust-C), moss colonization stage (Crust-CM), and moss crust stage (Crust-M), were studied in situ. Results suggest NRW inputs hydrated and activated physiological activity (Fv/Fm, carbon exchange, and nitrogen fixation) in BSCs but led to a negative carbon balance and low rates of nitrogen fixation in BSCs. One effective NRW event could hydrate BSCs for 7 h. Following simulated rainfall, the physiological activities recovered within 3 h, and net carbon gain occurred until 3 h after hydration, whereas NRW-induced physiological recovery processes were slower and exhibited lower activities, leading to a negative carbon balance. There were significant positive correlations between NRW amounts and the recovered values of Fv/Fm in all the three BSC stages (p < .001). The thresholds for Fv/Fm activation decreased with BSC succession, and the annual effective NRW events increased with BSC succession, with values of 29.8, 89.2, and 110.7 in Crust-C, Crust-CM and Crust-M, respectively. The results suggest that moss crust and moss-cyanobacteria crust use NRW to prolong metabolic activity and reduce drought stress more efficiently than cyanobacteria crusts. Therefore, these results suggest that BSCs utilize NRW to sustain life while growth and biomass accumulation require precipitation (rainfall) events over a certain threshold.

  7. Structure of the Crust beneath Cameroon, West Africa, from the Joint Inversion of Rayleigh Wave Group Velocities and Receiver Functions

    Energy Technology Data Exchange (ETDEWEB)

    Tokam, A K; Tabod, C T; Nyblade, A A; Julia, J; Wiens, D A; Pasyanos, M E


    The Cameroon Volcanic Line (CVL) is a major geologic feature that cuts across Cameroon from the south west to the north east. It is a unique volcanic lineament which has both an oceanic and a continental sector and consists of a chain of Tertiary to Recent, generally alkaline volcanoes stretching from the Atlantic island of Pagalu to the interior of the African continent. The oceanic sector includes the islands of Bioko (formerly Fernando Po) and Sao Tome and Principe while the continental sector includes the Etinde, Cameroon, Manengouba, Bamboutos, Oku and Mandara mountains, as well as the Adamawa and Biu Plateaus. In addition to the CVL, three other major tectonic features characterize the region: the Benue Trough located northwest of the CVL, the Central African Shear Zone (CASZ), trending N70 degrees E, roughly parallel to the CVL, and the Congo Craton in southern Cameroon. The origin of the CVL is still the subject of considerable debate, with both plume and non-plume models invoked by many authors (e.g., Deruelle et al., 2007; Ngako et al, 2006; Ritsema and Allen, 2003; Burke, 2001; Ebinger and Sleep, 1998; Lee et al, 1994; Dorbath et al., 1986; Fairhead and Binks, 1991; King and Ritsema, 2000; Reusch et al., 2010). Crustal structure beneath Cameroon has been investigated previously using active (Stuart et al, 1985) and passive (Dorbath et al., 1986; Tabod, 1991; Tabod et al, 1992; Plomerova et al, 1993) source seismic data, revealing a crust about 33 km thick at the south-western end of the continental portion of the CVL (Tabod, 1991) and the Adamawa Plateau, and thinner crust (23 km thick) beneath the Garoua Rift in the north (Stuart et al, 1985) (Figure 1). Estimates of crustal thickness obtained using gravity data show similar variations between the Garoua rift, Adamawa Plateau, and southern part of the CVL (Poudjom et al., 1995; Nnange et al., 2000). In this study, we investigate further crustal structure beneath the CVL and the adjacent regions in

  8. Cobalt- and platinum-rich ferromanganese crusts and associated substrate rocks from the Marshall Islands (United States)

    Hein, J.R.; Schwab, W.C.; Davis, A.


    Ferromanganese crusts cover most hard substrates on seafloor edifices in the central Pacific basin. Crust samples and their associated substrates from seven volcanic edifices of Cretaceous age along the Ratak chain of the Marshall Islands are discussed. The two most abundant substrate lithologies recovered were limestone, dominantly fore-reef slope deposits, and volcanic breccia composed primarily of differentiated alkalic basalt and hawaiite clasts in a phosphatized carbonate matrix. The degree of mass wasting on the slopes of these seamounts is inversely correlated with the thickness of crusts. Crusts are generally thin on limestone substrate. Away from areas of active mass-wasting processes, and large atolls, crusts may be as thick as 10 cm maximum. The dominant crystalline phase in the Marshall Islands crusts is ??-MnO2 (vernadite). High concentrations of cobalt, platinum and rhodium strongly suggest that the Marshall Islands crusts are a viable source for these important metals. Many metals and the rare earth elements vary significantly on a fine scale through most crusts, thus reflecting the abundances of different host mineral phases in the crusts and changes in seawater composition with time. High concentrations of cobalt, nickel, titanium, zinc, lead, cerium and platinum result from a combination of their substitution in the iron and manganese phases and their oxidation potential. ?? 1988.

  9. Microradiometers Reveal Ocean Health, Climate Change (United States)


    When NASA researcher Stanford Hooker is in the field, he pays close attention to color. For Hooker, being in the field means being at sea. On one such research trip to the frigid waters of the Arctic, with a Coast Guard icebreaker looming nearby and the snow-crusted ice shelf a few feet away, Hooker leaned over the edge of his small boat and lowered a tethered device into the bright turquoise water, a new product devised by a NASA partner and enabled by a promising technology for oceanographers and atmospheric scientists alike. Color is a function of light. Pure water is clear, but the variation in color observed during a visit to the beach or a flight along a coastline depends on the water s depth and the constituents in it, how far down the light penetrates and how it is absorbed and scattered by dissolved and suspended material. Hooker cares about ocean color because of what it can reveal about the health of the ocean, and in turn, the health of our planet. "The main thing we are interested in is the productivity of the water," Hooker says. The seawater contains phytoplankton, microscopic plants, which are the food base for the ocean s ecosystems. Changes in the water s properties, whether due to natural seasonal effects or human influence, can lead to problems for delicate ecosystems such as coral reefs. Ocean color can inform researchers about the quantities and distribution of phytoplankton and other materials, providing clues as to how the world ocean is changing. NASA s Coastal Zone Color Scanner, launched in 1978, was the first ocean color instrument flown on a spacecraft. Since then, the Agency s ocean color research capabilities have become increasingly sophisticated with the launch of the SeaWiFS instrument in 1997 and the twin MODIS instruments carried into orbit on NASA s Terra (1999) and Aqua (2002) satellites. The technology provides sweeping, global information on ocean color on a scale unattainable by any other means. One issue that arises from

  10. 75 FR 18778 - Safety Zone; Ocean City Air Show 2010, Atlantic Ocean, Ocean City, MD (United States)


    ...-AA00 Safety Zone; Ocean City Air Show 2010, Atlantic Ocean, Ocean City, MD AGENCY: Coast Guard, DHS... zone on the Atlantic Ocean in the vicinity of Ocean City, Maryland to support the Ocean City Air Show. This action is intended to restrict vessel traffic movement on the Atlantic Ocean to protect mariners...

  11. Ocean Robotic Networks

    Energy Technology Data Exchange (ETDEWEB)

    Schofield, Oscar [Rutgers University


    We live on an ocean planet which is central to regulating the Earth’s climate and human society. Despite the importance of understanding the processes operating in the ocean, it remains chronically undersampled due to the harsh operating conditions. This is problematic given the limited long term information available about how the ocean is changing. The changes include rising sea level, declining sea ice, ocean acidification, and the decline of mega fauna. While the changes are daunting, oceanography is in the midst of a technical revolution with the expansion of numerical modeling techniques, combined with ocean robotics. Operating together, these systems represent a new generation of ocean observatories. I will review the evolution of these ocean observatories and provide a few case examples of the science that they enable, spanning from the waters offshore New Jersey to the remote waters of the Southern Ocean.

  12. Ocean Uses: California (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This Ocean Uses Atlas Project is an innovative partnership between NOAA's National Marine Protected Areas Center and Marine Conservation Biology Institute. The...

  13. Ocean Disposal Sites (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — In 1972, Congress enacted the Marine Protection, Research, and Sanctuaries Act (MPRSA, also known as the Ocean Dumping Act) to prohibit the dumping of material into...

  14. Ocean Disposal Site Monitoring