WorldWideScience

Sample records for incinerator field inspection

  1. Incineration in the nuclear field. The SGN experience

    International Nuclear Information System (INIS)

    Carpentier, S.

    1993-01-01

    The operation of power reactors, like that of fuel fabrication and nuclear fuel reprocessing plants, generated substantial quantities of waste. A large share of this waste is low- and medium-level waste, which is also combustible. Similarly, a number of institutes, laboratories, and hospitals, in the course of their activities, generated waste which a portion is radioactive and combustible. The chief advantage of incineration is to minimize the volume of burnable waste treated, and to produce a residue termed 'ash'. SGN has built up 25 years of experience in this field. The incinerators have been designed and the incineration processes are specially studied by SGN

  2. Incineration

    International Nuclear Information System (INIS)

    Holmes, R.G.G.

    1988-01-01

    One of the methods of destroying organics in radwaste is incineration. This presentation will summarise some of the advantages and problems associated with incineration and will illustrate some of these points by discussing progress in an options study into methods of treating plutonium contaminated material waste, being carried out by British Nuclear Fuels plc. The wastes amenable for treatment, fall into two categories, low-level wastes and intermediate-level wastes. (author)

  3. OSE inspection of protection program operations field perspective of inspections

    International Nuclear Information System (INIS)

    Brown, R.W.; Martin, H.R.

    1987-01-01

    Protection Program Operations includes three functional areas: Physical Protection Systems, Protective Forces, and System Performance Testing. The Office of Security Evaluations (OSE) inspects field offices in these areas by evaluating programs relative to Standards and Criteria and by performing a variety of exercises and other types of tests to assure protective systems are effective and maintained at a proper level to meet the defined threat. Their perception of the OSE inspections has been positive. The approach taken by ID, with key areas/activities emphasized, during each phase of the field inspection process is described in this report. The most important areas for field offices to concentrate are: inspection preparations through self-evaluation, improving communications, assigning knowledgeable trusted agents, increasing awareness of facility procedures and operations, and assuring daily validations of inspected areas. Emphasis is placed on striving for a balance in reporting both positive and negative findings, and for consistency between ratings and the importance of report findings. OSE efforts to develop improved rating methodologies are encouraged

  4. Experiences on the fuel inspection field

    International Nuclear Information System (INIS)

    Fernandez, J.R.

    1998-01-01

    The characteristics of the fuel assemblies used in nuclear power plants undergo evolution as a result of operation, an evolution which in certain cases it is interesting to know and to evaluate. In addition fuel assembly improvements and new designs may introduce modifications whose suitability should be verified before they are used in standard supplies. The main characteristics to be checked in the case of spent fuel assemblies are: general condition, dimensional variations, corrosion and fuel rod integrity. This article describes a system developed for the inspection of spent fuel assemblies in pressurized water plants, and is divided mainly into the following sub-assemblies: a) Mechanical equipment to be installed in the spent fuel pool to support and rotate the assemblies and allow the inspection modules to be moved and positioned along the length of the assembly to be inspected. b) A remote control console for operation of the mechanical equipment. c) An artificial vision system for the determination of dimensional measurements. d) An eddy current system for the measurement of the oxide layer on peripheral rods. This article describes also a visual inspection system for fuel assemblies. (Author)

  5. Waste Incinerator

    International Nuclear Information System (INIS)

    1994-05-01

    This book deals with plan and design of waste incinerator, which includes process outline of waste, method of measure, test, analysis, combustion way and classification of incineration facilities, condition of combustion and incineration, combustion calculation and heat calculation, ventilation and flow resistivity, an old body and component materials of supplementary installation, attached device, protection of pollution of incineration ash and waste gas, deodorization, prevention of noise in incineration facility, using heat and electric heat, check order of incineration plan.

  6. Career fields for inspection and enforcement personnel

    International Nuclear Information System (INIS)

    Bartley, H.J.; Harrison, O.J.; Kraas, I.W.; Hagerup, J.E.; Heyer, F.H.K.; Schwartz, E.G.

    1978-09-01

    This document is a report on the development of career fields for Headquarters and regional positions of NRC/IE. Data on the development of qualifications requirements were examined for commonality of knowledge and performance; career fields were postulated as a result of that examination, and then those career fields were tested and revised by more extensive examination. Proposed as a result of this work are four career fields: Construction--Vendor, Health Physics, Reactor Operations, and Safeguards; and two ''career ladders'': Fuel Facilities and Investigation. (The term ''career ladder'' was chosen to describe the relatively narrow patterns of positions open to its members.) All career fields include subfields, which are described in full in the report. In addition to recommending acceptance of these career fields, this document proposes the combination of certain subfields, the retitling of some positions, and the adoption of a standard nomenclature for all NRC/IE positions. 56 figures, 2 tables

  7. Reduced Mandated Inspection by Remote Field Eddy Current Inspection of Unpiggable Pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Albert Teitsma; Julie Maupin

    2006-09-29

    The Remote Field Eddy Current (RFEC) technique is ideal for inspecting unpiggable pipelines because all of its components can be made much smaller than the diameter of the pipe to be inspected. For this reason, RFEC was chosen as a technology for unpiggable pipeline inspections by DOE-NETL with the support of OTD and PRCI, to be integrated with platforms selected by DOENETL. As part of the project, the RFEC laboratory facilities were upgraded and data collection was made nearly autonomous. The resulting improved data collection speeds allowed GTI to test more variables to improve the performance of the combined RFEC and platform technologies. Tests were conducted on 6-, 8-, and 12-inch seamless and seam-welded pipes. Testing on the 6-inch pipes included using seven exciter coils, each of different geometry with an initial focus on preparing the technology for use on an autonomous robotic platform with limited battery capacity. Reductions in power consumption proved successful. Tests with metal components similar to the Explorer II modules were performed to check for interference with the electromagnetic fields. The results of these tests indicated RFEC would be able to produce quality inspections while on the robot. Mechanical constraints imposed by the platform, power requirements, control and communication protocols, and potential busses and connectors were addressed. Much work went into sensor module design including the mechanics and electronic diagrams and schematics. GTI participated in two Technology Demonstrations for inspection technologies held at Battelle Laboratories. GTI showed excellent detection and sizing abilities for natural corrosion. Following the demonstration, module building commenced but was stopped when funding reductions did not permit continued development for the selected robotic platform. Conference calls were held between GTI and its sponsors to resolve the issue of how to proceed with reduced funding. The project was rescoped for 10

  8. Field Investigation of Various Weld Overlays in a Waste Incineration Plant

    DEFF Research Database (Denmark)

    Montgomery, Melanie; Larsen, O. H.

    2005-01-01

    A test waterwall was fabricated so that alternatives to alloy 625 could be exposed in the first pass of the waste incineration plant Haderslev. The difference between application method was also a parameter, such that manual welding, machine welding and arc spraycoating of alloy 625 were compared....... In addition to the test waterwall exposure, the chemical environment from the waste incineration was also monitored by analyzing deposits and corrosion products from various locations in the boiler. These were analyzed with respect to morphology and composition using electron microscopy with EDS analysis...

  9. Incineration technologies

    CERN Document Server

    Buekens, Alfons

    2013-01-01

    Waste incineration is the art of completely combusting waste, while maintaining or reducing emission levels below current emission standards. Where possible, objectives include the recovering of energy as well as the  combustion residues.  Successful waste incineration makes it possible to achieve a deep reduction in waste volume, obtain a compact and sterile residue, and eliminate a wide array of pollutants. This book places waste incineration within the wider context of waste management, and demonstrates that, in contrast to landfills and composting, waste incineration can eliminate objectionable and hazardous properties such as flammability and toxicity, result in a significant reduction in volume, and destroy gaseous and liquid waste streams leaving little or no residues beyond those linked to flue gas neutralization and treatment. Moreover, waste incineration sterilizes and destroys putrescible matter, and produces usable heat.  Incineration Technologies first appeared as a peer-reviewed contribution ...

  10. Smart Infrared Inspection System Field Operational Test Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Siekmann, Adam [ORNL; Capps, Gary J [ORNL; Franzese, Oscar [ORNL; Lascurain, Mary Beth [ORNL

    2011-06-01

    The Smart InfraRed Inspection System (SIRIS) is a tool designed to assist inspectors in determining which vehicles passing through the SIRIS system are in need of further inspection by measuring the thermal data from the wheel components. As a vehicle enters the system, infrared cameras on the road measure temperatures of the brakes, tires, and wheel bearings on both wheel ends of commercial motor vehicles (CMVs) in motion. This thermal data is then presented to enforcement personal inside of the inspection station on a user friendly interface. Vehicles that are suspected to have a violation are automatically alerted to the enforcement staff. The main goal of the SIRIS field operational test (FOT) was to collect data to evaluate the performance of the prototype system and determine the viability of such a system being used for commercial motor vehicle enforcement. From March 2010 to September 2010, ORNL facilitated the SIRIS FOT at the Greene County Inspection Station (IS) in Greeneville, Tennessee. During the course of the FOT, 413 CMVs were given a North American Standard (NAS) Level-1 inspection. Of those 413 CMVs, 384 were subjected to a SIRIS screening. A total of 36 (9.38%) of the vehicles were flagged by SIRIS as having one or more thermal issues; with brakes issues making up 33 (91.67%) of those. Of the 36 vehicles flagged as having thermal issues, 31 (86.11%) were found to have a violation and 30 (83.33%) of those vehicles were placed out-of-service (OOS). Overall the enforcement personnel who have used SIRIS for screening purposes have had positive feedback on the potential of SIRIS. With improvements in detection algorithms and stability, the system will be beneficial to the CMV enforcement community and increase overall trooper productivity by accurately identifying a higher percentage of CMVs to be placed OOS with minimal error. No future evaluation of SIRIS has been deemed necessary and specifications for a production system will soon be drafted.

  11. Waste incineration

    International Nuclear Information System (INIS)

    McCormack, M.D.

    1981-01-01

    As a result of the information gained from retrieval projects, the decision was made to perform an analysis of all the available incinerators to determine which was best suited for processing the INEL waste. A number of processes were evaluated for incinerators currently funded by DOE and for municipal incinerators. Slagging pyrolysis included the processes of three different manufacturers: Andco-Torrax, FLK and Purox

  12. Construction of an interim storage field using recovered municipal solid waste incineration bottom ash: Field performance study.

    Science.gov (United States)

    Sormunen, Laura Annika; Kolisoja, Pauli

    2017-06-01

    The leaching of hazardous substances from municipal solid waste incineration (MSWI) bottom ash (BA) has been studied in many different scales for several years. Less attention has been given to the mechanical performance of MSWI BA in actual civil engineering structures. The durability of structures built with this waste derived material can have major influence on the functional properties of such structures and also the potential leaching of hazardous substances in the long term. Hence, it is necessary to properly evaluate in which type of structures MSWI BA can be safely used in a similar way as natural and crushed rock aggregates. In the current study, MSWI BA treated with ADR (Advance Dry Recovery) technology was used in the structural layers of an interim storage field built within a waste treatment centre. During and half a year after the construction, the development of technical and mechanical properties of BA materials and the built structures were investigated. The aim was to compare these results with the findings of laboratory studies in which the same material was previously investigated. The field results showed that the mechanical performance of recovered BA corresponds to the performance of natural aggregates in the lower structural layers of field structures. Conversely, the recovered MSWI BA cannot be recommended to be used in the base layers as such, even though its stiffness properties increased over time due to material aging and changes in moisture content. The main reason for this is that BA particles are prone for crushing and therefore inadequate to resist the higher stresses occurring in the upper parts of road and field structures. These results were in accordance with the previous laboratory findings. It can thus be concluded that the recovered MSWI BA is durable to be used as a replacement of natural aggregates especially in the lower structural layers of road and field structures, whereas if used in the base layers, an additional base

  13. Waste incineration

    International Nuclear Information System (INIS)

    Rumplmayr, A.; Sammer, G.

    2001-01-01

    Waste incineration can be defined as the thermal conversion processing of solid waste by chemical oxidation. The types of wastes range from solid household waste and infectious hospital waste through to toxic solid, liquid and gaseous chemical wastes. End products include hot incineration gases, composed primarily of nitrogen, carbon dioxide, water vapor and to a smaller extend of non-combustible residue (ash) and air pollutants (e. g. NO x ). Energy can be recovered by heat exchange from the hot incineration gases, thus lowering fossil fuel consumption that in turn can reduce emissions of greenhouse gases. Burning of solid waste can fulfil up to four distinctive objectives (Pera, 2000): 1. Volume reduction: volume reduction of about 90 %, weight reduction of about 70 %; 2. Stabilization of waste: oxidation of organic input; 3. Recovery of energy from waste; 4. Sanitization of waste: destruction of pathogens. Waste incineration is not a means to make waste disappear. It does entail emissions into air as well as water and soil. The generated solid residues are the topic of this task force. Unlike other industrial processes discussed in this platform, waste incineration is not a production process, and is therefore not generating by-products, only residues. Residues that are isolated from e. g. flue gas, are concentrated in another place and form (e. g. air pollution control residues). Hence, there are generally two groups of residues that have to be taken into consideration: residues generated in the actual incineration process and others generated in the flue gas cleaning system. Should waste incineration finally gain public acceptance, it will be necessary to find consistent regulations for both sorts of residues. In some countries waste incineration is seen as the best option for the treatment of waste, whereas in other countries it is seen very negative. (author)

  14. In-field inspection support software: A status report on the Common Inspection On-site Software Package (CIOSP) project

    International Nuclear Information System (INIS)

    Novatchev, Dimitre; Titov, Pavel; Siradjov, Bakhtiiar; Vlad, Ioan; Xiao Jing

    2001-01-01

    Inspection (SNRI) plug-in is planned for this year. Extensive beta and field testing of the CIOSP software has been performed at several facilities in Japan and Indonesia. The feedback received has been reflected in the software and the system is ready to be accepted for inspection use. The significance of this work cannot be underestimated. It will allow facilities to be supported by a single automated tool thus streamlining and improving efficiency of inspection activities. In addition, support for new requirements can be delivered more rapidly. (author)

  15. Development of dual field magnetic flux leakage (MFL) inspection technology to detect mechanical damage.

    Science.gov (United States)

    2013-03-01

    This report details the development and testing of a dual magnetization in-line inspection (ILI) : tool for detecting mechanical damage in operating pipelines, including the first field trials of a : fully operational dual-field magnetic flux leakage...

  16. Leaching behaviour of incineration bottom ash in a reuse scenario: 12years-field data vs. lab test results.

    Science.gov (United States)

    Di Gianfilippo, Martina; Hyks, Jiri; Verginelli, Iason; Costa, Giulia; Hjelmar, Ole; Lombardi, Francesco

    2018-03-01

    Several types of standardized laboratory leaching tests have been developed during the past few decades to evaluate the leaching behaviour of waste materials as a function of different parameters, such as the pH of the eluate and the liquid to solid ratio. However, the link between the results of these tests and leaching data collected from the field (e.g. in disposal or reuse scenarios) is not always straightforward. In this work, we compare data obtained from an on-going large scale field trial, in which municipal solid waste incineration bottom ash is being tested as road sub-base material, with the results obtained from percolation column and pH-dependence laboratory leaching tests carried out on the bottom ash at the beginning of the test. The comparisons reported in this paper show that for soluble substances (e.g. Cl, K and SO 4 ), percolation column tests can provide a good indication of the release expected in the field with deviations usually within a factor of 3. For metals characterized by a solubility-controlled release, i.e. that depends more on eluate pH than the liquid to solid ratio applied, the results of pH-dependence tests describe more accurately the eluate concentration trends observed in the field with deviations that in most cases (around 80%) are within one order of magnitude (see e.g. Al and Cd). The differences between field and lab-scale data might be in part ascribed to the occurrence in the field of weathering reactions (e.g. carbonation) but also to microbial decomposition of organic matter that modifying leachate pH affect the solubility of several constituents (e.g. Ca, Ba and Cr). Besides, weathering reactions can result in enhanced adsorption of fulvic acids to iron/aluminum (hydr)oxides, leading to a decrease in the leaching of fulvic acids and hence of elements such as Cu, Ni and Pb that strongly depend on DOC leaching. Overall, this comparison shows that percolation column tests and pH-dependence tests can represent a reliable

  17. OSE inspection of materials control and accountability: Field perspective of inspections

    International Nuclear Information System (INIS)

    Roberts, N.J.

    1987-01-01

    The Inspection and Evaluation (I and E) process for materials control and accountability (MC and A) is discussed from the perspective of an ''inspectee.'' Methods of preparing for a visit by the I and E team and the operational and budget impacts of the I and E Standards and Criteria are briefly discussed. The I and E process does not have to be traumatic, but it can be if the inspectee is not properly prepared and if ground rules and procedures have not been established. This paper presents the author's views and reflects his perspectives of the Office of Security Evaluations (OSE) MC and A process. In preparation for this paper, the author has talked at length with his peers and has included some of their perceptions of the I and E process. However, this paper is the sole responsibility of the author and does not constitute an official position of the Los Alamos National Laboratory or of any other entity

  18. Biomedical waste management: Incineration vs. environmental safety

    Directory of Open Access Journals (Sweden)

    Gautam V

    2010-01-01

    Full Text Available Public concerns about incinerator emissions, as well as the creation of federal regulations for medical waste incinerators, are causing many health care facilities to rethink their choices in medical waste treatment. As stated by Health Care Without Harm, non-incineration treatment technologies are a growing and developing field. Most medical waste is incinerated, a practice that is short-lived because of environmental considerations. The burning of solid and regulated medical waste generated by health care creates many problems. Medical waste incinerators emit toxic air pollutants and toxic ash residues that are the major source of dioxins in the environment. International Agency for Research on Cancer, an arm of WHO, acknowledged dioxins cancer causing potential and classified it as human carcinogen. Development of waste management policies, careful waste segregation and training programs, as well as attention to materials purchased, are essential in minimizing the environmental and health impacts of any technology.

  19. Field Operations and Enforcement Manual for Air Pollution Control. Volume III: Inspection Procedures for Specific Industries.

    Science.gov (United States)

    Weisburd, Melvin I.

    The Field Operations and Enforcement Manual for Air Pollution Control, Volume III, explains in detail the following: inspection procedures for specific sources, kraft pulp mills, animal rendering, steel mill furnaces, coking operations, petroleum refineries, chemical plants, non-ferrous smelting and refining, foundries, cement plants, aluminum…

  20. Development of a Visual Inspection Data Collection Tool for Evaluation of Fielded PV Module Condition

    Energy Technology Data Exchange (ETDEWEB)

    Packard, C. E.; Wohlgemuth, J. H.; Kurtz, S. R.

    2012-08-01

    A visual inspection data collection tool for the evaluation of fielded photovoltaic (PV) modules has been developed to facilitate describing the condition of PV modules with regard to field performance. The proposed data collection tool consists of 14 sections, each documenting the appearance or properties of a part of the module. This report instructs on how to use the collection tool and defines each attribute to ensure reliable and valid data collection. This tool has been evaluated through the inspection of over 60 PV modules produced by more than 20 manufacturers and fielded at two different sites for varying periods of time. Aggregated data from such a single data collection tool has the potential to enable longitudinal studies of module condition over time, technology evolution, and field location for the enhancement of module reliability models.

  1. Review of design principles for ITER VV remote inspection in magnetic field

    International Nuclear Information System (INIS)

    Izard, Jean-Baptiste; Perrot, Yann; Friconneau, Jean-Pierre

    2009-01-01

    Because ITER magnet system has a limited number of mechanical and thermal stress cycles, shut down number of the toroidal field is limited during lifetime of ITER. Any inspection device able to withstand the toroidal field between two plasma shots will enhance the inspection frequency capacity of ITER during operation phase. In addition to the high magnetic field the system should also cope with high temperature, ultra-high vacuum and high radiation, in order to keep the reactor availability high. Radiation, ultra-high vacuum and temperature constraints already addressed by on going R and D activities within Europe-considering the required level of radiation is to date the highest encountered in remote handling, and that facing all these constraints at once is an additional issue to overcome. Whereas, operating remote handling systems in high magnetic field is quite new field of investigation. This paper aims to be a guideline for future designers to help them choose among options the adequate solution for an ITER relevant inspection device. It provides the designer an objective view of the different effects that stem from technical choices and help them deciding whether a technology is relevant or not depending on the task's requirements. We have selected a set of technologies and products available for structural design, actuation, sensing and data transmission in order to design inspection remote handling equipment for ITER in the given constraints. These different solutions are commented with specific considerations and directions to have them fit in the specifications. Different design strategies to cope with magnetic field are then discussed, which imply either insensitive design or using the magnetic field as a potential energy source and as a positioning help. This analysis is the first result of one of the projects in the PREFIT partnership, part of the European Fusion Training Scheme.

  2. The solid waste contaminated incineration technique used incinerator

    International Nuclear Information System (INIS)

    Sukosrono; Prayitno; Isman, M. T.

    1996-01-01

    The research of the incinerator radioactive waste used incinerator has been done. The aim of the experiment is to determine the number of the organic liquid waste which added on the incineration of the solid radioactive waste. The research was done by incinerate waste in the incinerator prototype which was designed for capacity 2500 gram, and the investigated variables are capacity of the incinerator, specific of the waste, and the method of the incineration. Simulated waste was used in the experiment, the waste specific which was used in the experiment was the mixture between liquid organic waste (TBPK-10%) with solid waste was coming from rice paper, tissue, carton. Two way method were investigated in the experiment, were direct incineration and indirect incineration. The direct incineration was done by incineration solid waste and organic liquid waste in the incinerator together. The indirect incineration was done by incineration of solid waste which have been used to absorb organic liquid waste. The result showed that either direct or indirect incineration independent to the incineration result. The best result have taken place on the 2250 gram capacity of the incinerator, ratio liquid organic waste to solid waste 1% - 20%. In the condition will be found reduction of volume = 43.90 - 35.91 and reduction of the waste = 13.85% - 12.15% and the ash which was resulted from incineration colored white silver with contain a little color black. (author)

  3. Field evaluation of a total mercury continuous emissions monitor at a U.S. Department of Energy mixed waste incinerator

    International Nuclear Information System (INIS)

    Gibson, L.V. Jr.; Dunn, J.E. Jr.; Baker, R.L.; Sigl, W.; Skegg, I.

    1999-01-01

    In conjunction with proposed Maximum Achievable Control Technology (MACT) standards for hazardous waste combustors, extended duration testing sponsored by the US Department of Energy (DOE) and the Environmental Protection Agency (EPA) of three mercury continuous emissions monitors (CEMs) was conducted in the 1996--97 timeframe at a commercial cement kiln burning hazardous wastes at Holly Hill, South Carolina. The emission characteristics of the kiln, specifically the combination of high particulate matter, moisture, and acid gases, were believed to have contributed to the failure of the tested CEMs. The MERCEM mercury analyzer for stack gases manufactured by Perkin Elmer and represented by Aldora Technologies was selected for further evaluation on a DOE mixed waste incinerator at Oak Ridge, Tennessee, expected to present less adverse conditions. The overall scope of the evaluation was carried out over a two-month period from September through October 1998. Not only was the performance of the MERCEM evaluated according to proposed EPA Performance Specification 12 but also were alternative methods of calibration with reference concentrations of mercury and a qualitative assessment of long-term endurance under wet stack conditions

  4. Incineration of radioactive waste

    International Nuclear Information System (INIS)

    Eid, C.

    1985-01-01

    The incineration process currently seems the most appropriate way to solve the problems encountered by the increasing quantities of low and medium active waste from nuclear power generation waste. Although a large number of incinerators operate in the industry, there is still scope for the improvement of safety, throughput capacity and reduction of secondary waste. This seminar intends to give opportunity to scientists working on the different aspects of incineration to present their most salient results and to discuss the possibilities of making headway in the management of LL/ML radioactive waste. These proceedings include 17 contributions ranging over the subjects: incineration of solid β-γ wastes; incineration of other radwastes; measurement and control of wastes; off-gas filtration and release. (orig./G.J.P.)

  5. Ultrafast dark-field surface inspection with hybrid-dispersion laser scanning

    Science.gov (United States)

    Yazaki, Akio; Kim, Chanju; Chan, Jacky; Mahjoubfar, Ata; Goda, Keisuke; Watanabe, Masahiro; Jalali, Bahram

    2014-06-01

    High-speed surface inspection plays an important role in industrial manufacturing, safety monitoring, and quality control. It is desirable to go beyond the speed limitation of current technologies for reducing manufacturing costs and opening a new window onto a class of applications that require high-throughput sensing. Here, we report a high-speed dark-field surface inspector for detection of micrometer-sized surface defects that can travel at a record high speed as high as a few kilometers per second. This method is based on a modified time-stretch microscope that illuminates temporally and spatially dispersed laser pulses on the surface of a fast-moving object and detects scattered light from defects on the surface with a sensitive photodetector in a dark-field configuration. The inspector's ability to perform ultrafast dark-field surface inspection enables real-time identification of difficult-to-detect features on weakly reflecting surfaces and hence renders the method much more practical than in the previously demonstrated bright-field configuration. Consequently, our inspector provides nearly 1000 times higher scanning speed than conventional inspectors. To show our method's broad utility, we demonstrate real-time inspection of the surface of various objects (a non-reflective black film, transparent flexible film, and reflective hard disk) for detection of 10 μm or smaller defects on a moving target at 20 m/s within a scan width of 25 mm at a scan rate of 90.9 MHz. Our method holds promise for improving the cost and performance of organic light-emitting diode displays for next-generation smart phones, lithium-ion batteries for green electronics, and high-efficiency solar cells.

  6. Inspection of surveillance equipment and activities at DOE Field Office, Richland

    Energy Technology Data Exchange (ETDEWEB)

    1991-09-30

    The purpose of this inspection was to review surveillance activities by the Department of Energy's (DOE) Field Office, Richland (RL) and contractor employees at the RL Hanford site for efficiency and economy and compliance with laws and regulations. The scope included surveillance activities, procedures, training, types of surveillance equipment, and management controls over the equipment and activities. We also looked at Departmental policies and procedures regarding the equipment and activities. Allegations of illegal surveillance that came to our attention during the course of this inspection were referred to the Department of Justice. As part of our review, inspectors were on-site at RL from February 11, 1991, through March 1, 1991. Follow-up trips to RL were also made in April, May, and June 1991. We also conducted interviews at Albuquerque, Savannah River, and Germantown of former RL employees and RL contractors who were on travel. Officials from DOE's Office of General Counsel (OGC), Office of Security Affairs, and Office of Safeguards and Security (S S) were also interviewed regarding the Department's purchase and possession of wiretapping and eavesdropping devices. We obtained 75 signed sworn statements from 55 individuals during the course of the inspection. 1 fig., 1 tab.

  7. CO-incineration

    International Nuclear Information System (INIS)

    Boehmer, S.; Rumplmayr, A.

    2001-01-01

    'Co-incineration plant means a stationary or mobile plant whose main purpose is the generation of energy or production of material products and which uses wastes as a regular or additional fuel; or in which waste is thermally treated for the purpose of disposal. This definition covers the site and the entire plant including all incineration lines, waste reception, storage, an site pre-treatment facilities; its waste-, fuel- and air-supply systems; the boiler; facilities for treatment or storage of the residues, exhaust gas and waste water; the stack; devices and systems for controlling incineration operations, recording and monitoring incineration conditions (proposal for a council directive an the incineration of waste - 98/C 372/07). Waste incinerators primarily aim at rendering waste inert, at reduction of its volume and at the generation of energy from waste. The main aim of co-incineration an the other hand is either the recovery of energy from waste, the recovery of its material properties or a combination of the latter in order to save costs for primary energy. Two main groups of interest have lately been pushing waste towards co-incineration: conventional fossil fuels are getting increasingly scarce and hence expensive and generate carbon dioxide (greenhouse gas). The use of high calorific waste fractions is considered as an alternative. In many countries land filling of waste is subject to increasingly strict regulations in order to reduce environmental risk and landfill volume. The Austrian Landfill Ordinance for instance prohibits the disposal of untreated waste from the year 2004. Incineration seems to be the most effective treatment option to destroy organic matter. However the capacities of waste incinerators are limited, giving rise to a search for additional incineration capacity. The obvious advantages of co-incineration, such as the saving of fossil fuels and raw materials, the thermal treatment of waste fractions and possible economic benefits by

  8. Nuclear waste incineration technology status

    International Nuclear Information System (INIS)

    Ziegler, D.L.; Lehmkuhl, G.D.; Meile, L.J.

    1981-01-01

    The incinerators developed and/or used for radioactive waste combustion are discussed and suggestions are made for uses of incineration in radioactive waste management programs and for incinerators best suited for specific applications. Information on the amounts and types of radioactive wastes are included to indicate the scope of combustible wastes being generated and in existence. An analysis of recently developed radwaste incinerators is given to help those interested in choosing incinerators for specific applications. Operating information on US and foreign incinerators is also included to provide additional background information. Development needs are identified for extending incinerator applications and for establishing commercial acceptance

  9. Commercial incineration demonstration

    International Nuclear Information System (INIS)

    Vavruska, J.S.; Borduin, L.C.

    1982-01-01

    Low-level radioactive wastes (LLW) generated by nuclear utilities presently are shipped to commercial burial grounds for disposal. Increasing transportation and disposal costs have caused industry to consider incineration as a cost-effective means of volume reduction of combustible LLW. Repeated inquiries from the nuclear industry regarding the applicability of the Los Alamos controlled air incineration (CAI) design led the DOE to initiate a commercial demonstration program in FY-1980. Development studies and results in support of this program involving ion exchange resin incineration and fission/activation product distributions within the Los Alamos CAI are described

  10. Radwaste incineration at CRNL

    International Nuclear Information System (INIS)

    Beamer, N.V.

    A Waste Treatment Centre (WTC) is being constructed at CRNL to develop and demonstrate processes to convert reactor wastes to a form suitable for disposal. Combustible wastes can be reduced in volume to a stable ash by incineration. A prototype starved-air incinerator in the WTC is currently being commissioned on inactive waste. Overall performance to date is good. Satisfactory control of main process flows and temperatures has been achieved. Checking of system response to process failures has begun. So far, problems with a similar incinerator during initial operation at Ontario Hydro have not been encountered

  11. The Studsvik incinerator

    International Nuclear Information System (INIS)

    Hetzler, F.

    1988-01-01

    The Studsvik Incinerator is a Faurholdt designed, multi-stage, partial pyrolysis, controlled-air system taken into operation in 1976. The incinerator was initially operated without flue-gas filtration from 1976 until 1979 and thereafter with a bag-house filter. The Studsvik site has been host to radioactive activities for approximately 30 years. The last 10 years have included on site incineration of more than 3,000 tons of LLW. During this time routine sampling for activity has been performed, of releases and in the environment, to carefully monitor the area. The author discusses records examined to determine levels of activity prior to incinerator start-up, without and with filter

  12. Inspection planning

    International Nuclear Information System (INIS)

    Korosec, D.; Levstek, M.F.

    2001-01-01

    Slovenian Nuclear Safety Administration (SNSA) division of nuclear and radiological safety inspection has developed systematic approach to their inspections. To be efficient in their efforts regarding regular and other types of inspections, in past years, the inspection plan has been developed. It is yearly based and organized on a such systematic way, that all areas of nuclear safety important activities of the licensee are covered. The inspection plan assures appropriate preparation for conducting the inspections, allows the overview of the progress regarding the areas to be covered during the year. Depending on the licensee activities and nature of facility (nuclear power plant, research reactor, radioactive waste storage, others), the plan has different levels of intensity of inspections and also their frequency. One of the basic approaches of the plan is to cover all nuclear and radiological important activities on such way, that all regulatory requests are fulfilled. In addition, the inspection plan is a good tool to improve inspection effectiveness based on previous experience and allows to have the oversight of the current status of fulfillment of planned inspections. Future improvement of the plan is necessary in the light of newest achievements on this field in the nuclear world, that means, new types of inspections are planned and will be incorporated into plan in next year.(author)

  13. CRNL active waste incinerator

    International Nuclear Information System (INIS)

    McQuade, D.W.

    1965-02-01

    At CRNL the daily collection of 1200 pounds of active combustible waste is burned in a refractory lined multi-chamber incinerator. Capacity is 500-550 pounds per hour; volume reduction 96%. Combustion gases are cooled by air dilution and decontaminated by filtration through glass bags in a baghouse dust collector. This report includes a description of the incinerator plant, its operation, construction and operating costs, and recommendations for future designs. (author)

  14. Field documentation and client presentation of IR inspections on new masonry structures

    Science.gov (United States)

    McMullan, Phillip C.

    1991-03-01

    With the adoption of American Concrete Institute's Design Standard 530 (ACI 530-88/ASCE 5-88) and Specifications (ACI 530.1-88/ASCE 6-88) by more governing bodies throughout the United States, the level and method of inspecting masonry structures is rapidly changing. These new standards set forth inspection criteria such that the Professional of Record (i.e., Architect), can determine the level of inspection based on the type and complexity of the structure being built. For example, a hospital would require considerably more inspection than a Seven-Eleven mini-market. However, the standards require that all new masonry buildings must be inspected. Infrared thermography has proven to be an effective tool to assist in the required inspections. These inspections focus on evaluating masonry for compliance with the design specifications with regard to material, structural strength and thermal performance, the use of video infrared thermography provides a thorough systematic method for inspection of structural solids and thermal integrity of masonry structures. In conducting masonry inspections, the creation of a permanent, well-documented record is valuable in avoiding potential controversy over the inspection findings. Therefore, the inspection method, verification of findings, and presentation of the inspection data are key to the successful use of infrared thermography as an inspection tool. This paper will focus on the method of inspection which TSI employs in conducting new masonry inspections. Additionally, an important component of any work is the presentation of the data. We will look at the information which is generated during this type of inspection and how that data can be converted into a usable report for the various parties involved in construction of a new masonry building.

  15. New Method to Identify Field Joint Coating Failures Based on MFL In-Line Inspection Signals

    Directory of Open Access Journals (Sweden)

    Lianshuang Dai

    2018-02-01

    Full Text Available Above ground indirect detections and random excavations that have applied the past years for buried long distance oil and gas pipelines can only identify some damaged coating locations. Hence, large number of field joint coating (FJC failures happen unconsciously until they lead to failures of the pipelines. Based on the analysis of magnetic flux leakage (MFL in-line inspection (ILI signals, combined with the statistical results of 414 excavations from two different pipeline sections, a new method to identify the failed FJC is established. Though it can only identify FJC failures when there are signs of corrosion on pipe body, it is much more efficient and cost-saving. The concluded identification rule still needs more validations and improvements to be more applicable and accuracy.

  16. Controlled air incineration

    International Nuclear Information System (INIS)

    Seitz, K.A.

    1991-01-01

    From 1960 to 1970, incineration was recognized as an economical method of solid waste disposal with many incinerators in operation through the country. During this period a number of legislation acts began to influence the solid waste disposal industry, namely, the Solid Waste Disposal Act of 1965; Resource Conservation Recovery Act (RCRA) of 1968; Resource Recovery Act of 1970; and Clean Air Act of 1970. This period of increased environmental awareness and newly created regulations began the closure of many excess air incineration facilities and encouraged the development of new controlled air, also known as Starved-Air incinerator systems which could meet the more stringent air emission standards without additional emission control equipment. The Starved-Air technology initially received little recognition because it was considered unproven and radically different from the established and accepted I.I.A. standards. However, there have been many improvements and developments in the starved-air incineration systems since the technology was first introduced and marketed, and now these systems are considered the proven technology standard

  17. Oxygen enrichment incineration

    International Nuclear Information System (INIS)

    Kim, Jeong Guk; Yang, Hee Chul; Park, Geun Il; Kim, Joon Hyung

    2000-10-01

    Oxygen enriched combustion technology has recently been used in waste incineration. To apply the oxygen enrichment on alpha-bearing waste incineration, which is being developed, a state-of-an-art review has been performed. The use of oxygen or oxygen-enriched air instead of air in incineration would result in increase of combustion efficiency and capacity, and reduction of off-gas product. Especially, the off-gas could be reduced below a quarter, which might reduce off-gas treatment facilities, and also increase an efficiency of off-gas treatment. However, the use of oxygen might also lead to local overheating and high nitrogen oxides (NOx) formation. To overcome these problems, an application of low NOx oxy-fuel burner and recycling of a part of off-gas to combustion chamber have been suggested

  18. Oxygen enrichment incineration

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jeong Guk; Yang, Hee Chul; Park, Geun Il; Kim, Joon Hyung

    2000-10-01

    Oxygen enriched combustion technology has recently been used in waste incineration. To apply the oxygen enrichment on alpha-bearing waste incineration, which is being developed, a state-of-an-art review has been performed. The use of oxygen or oxygen-enriched air instead of air in incineration would result in increase of combustion efficiency and capacity, and reduction of off-gas product. Especially, the off-gas could be reduced below a quarter, which might reduce off-gas treatment facilities, and also increase an efficiency of off-gas treatment. However, the use of oxygen might also lead to local overheating and high nitrogen oxides (NOx) formation. To overcome these problems, an application of low NOx oxy-fuel burner and recycling of a part of off-gas to combustion chamber have been suggested.

  19. Field Evaluation of MERCEM Mercury Emission Analyzer System at the Oak Ridge TSCA Incinerator East Tennessee Technology Park Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    None

    2000-03-01

    The authors reached the following conclusions: (1) The two-month evaluation of the MERCEM total mercury monitor from Perkin Elmer provided a useful venue in determining the feasibility of using a CEM to measure total mercury in a saturated flue gas. (2) The MERCEM exhibited potential at a mixed waste incinerator to meet requirements proposed in PS12 under conditions of operation with liquid feeds only at stack mercury concentrations in the range of proposed MACT standards. (3) Performance of the MERCEM under conditions of incinerating solid and liquid wastes simultaneously was less reliable than while feeding liquid feeds only for the operating conditions and configuration of the host facility. (4) The permeation tube calibration method used in this test relied on the CEM internal volumetric and time constants to relate back to a concentration, whereas a compressed gas cylinder concentration is totally independent of the analyzer mass flowmeter and flowrates. (5) Mercury concentration in the compressed gas cylinders was fairly stable over a 5-month period. (6) The reliability of available reference materials was not fully demonstrated without further evaluation of their incorporation into routine operating procedures performed by facility personnel. (7) The degree of mercury control occurring in the TSCA Incinerator off-gas cleaning system could not be quantified from the data collected in this study. (8) It was possible to conduct the demonstration at a facility incinerating radioactively contaminated wastes and to release the equipment for later unrestricted use elsewhere. (9) Experience gained by this testing answered additional site-specific and general questions regarding the operation and maintenance of CEMs and their use in compliance monitoring of total mercury emissions from hazardous waste incinerators.

  20. INSPECTION IN THE FIELD OF EMPLOYMENT RELATIONSHIPS AND PENALTY PROVISIONS UNDER THE LABOR LAW

    Directory of Open Access Journals (Sweden)

    Vojo Belovski

    2017-10-01

    Full Text Available If the primary efficacy of the projected normative order is absent, the mechanism of secondary efficacy occurs, which implies forceful realization of norms – repressive measures, i.e. coercive measures, and punitive undertakings. In the Labor Law there is a whole Chapter (Chapter XXV devoted to inspection supervision in the field of employment relationships. Labor inspection functions as a specialized organ of the Ministry which is responsible for the affairs in the area of labor. A request for a control by a labor inspectorate can be instigated by a worker individually, by the Trade Union and by the employer. It can also be instigated ex officio by the inspection supervision. Concerning supervision of the legal commencement of employment the procedure for the labor inspector is as follows: a to find employees at the place of work of the employer who are not employed according to the law; b employees not registered in the mandatory social insurance; c shall make a decision and shall order the employer to commence employment with the persons found there or with other persons without public job announcement within 8 days; d to employ for an indefinite period of time; e the number of employees shall not be reduced within the next three months; f will make a proposal for settlement by issuing a payment order of misdemeanor for the person responsible or a person authorized by the employer under the Law on Misdemeanors; g if the employer does not accept the payment order of misdemeanor, the inspector in charge will file a request for initiating a misdemeanor procedure. As an example of the misdemeanor provisions, a fine of 7,000 Euros in denar equivalent shall be pronounced on the employerlegal entity if: 1 if no agreement for employment has been made between the employee and the employer and the employer failed to register the employee in the Mandatory pension and Disability Insurance Fund, Health insurance and insurance in case of unemployment

  1. Incineration systems for low level and mixed wastes

    International Nuclear Information System (INIS)

    Vavruska, J.

    1986-01-01

    A variety of technologies has emerged for incineration of combustible radioactive, hazardous, and mixed wastes. Evaluation and selection of an incineration system for a particular application from such a large field of options are often confusing. This paper presents several current incineration technologies applicable to Low Level Waste (LLW), hazardous waste, and mixed waste combustion treatment. The major technologies reviewed include controlled-air, rotary kiln, fluidized bed, and liquid injection. Coupled with any incineration technique is the need to select a compatible offgas effluent cleaning system. This paper also reviews the various methods of treating offgas emissions for acid vapor, particulates, organics, and radioactivity. Such effluent control systems include the two general types - wet and dry scrubbing with a closer look at quenching, inertial systems, fabric filtration, gas absorption, adsorption, and various other filtration techniques. Selection criteria for overall waste incineration systems are discussed as they relate to waste characterization

  2. DESIGN, CONSTRUCTION AND FIELD DEMONSTRATION OF EXPLORER: A LONG-RANGE UNTETHERED LIVE GASLINE INSPECTION ROBOT SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Dr. George C. Vradis; Dr. Hagen Schempf

    2003-04-01

    This program is undertaken in order to construct and field-demonstrate EXPLORER, a modular, remotely controllable, self-powered, untethered robot system for the inspection of live gas distribution 150 mm (6-inch) to 200 mm (8-inch) diameter mains. The modular design of the system allows it to accommodate various components intended to accomplish different inspection, repair, sample retrieval, and other in-pipe tasks. The prototype system being built under this project will include all the basic modules needed, i.e. the locomotor, power storage, wireless communication, and camera. The camera, a solid-state fisheye-type, is used to transmit real-time video to the operator that allows for the live inspection of gas distribution pipes. This module, which incorporates technology developed by NASA, has already been designed, constructed and tested, having exceeded performance expectations. The full prototype system will be comprehensively tested in the laboratory followed by two field demonstrations in real applications in NGA member utilities' pipes. The system under development significantly advances the state of the art in inspection systems for gas distribution mains, which presently consist of tethered systems of limited range (about 500 ft form the point of launch) and limited inspection views. Also current inspection systems have no ability to incorporate additional modules to expand their functionality. The present report summarizes the accomplishments of the project during its third six-month period. The project has in general achieved its goals for this period as outlined in the report. The fabrication of the prototype is complete and is now been tested in the laboratory mainly focusing on the last system integration issues and on software development for the turning and launching routines. Testing of the prototype in the lab is expected to be completed by Summer 2003, to be followed by two field demonstrations in early Fall 2003.

  3. DESIGN, CONSTRUCTION AND FIELD DEMONSTRATION OF EXPLORER: A LONG-RANGE UNTETHERED LIVE GASOLINE INSPECTION ROBOT SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    George C. Vradis; Hagen Schempf

    2004-10-01

    This program is undertaken in order to construct and field-demonstrate ''EXPLORER'', a modular, remotely controllable, self-powered, untethered robot system for the inspection of live gas distribution 150 mm (6-inch) to 200 mm (8-inch) diameter mains. The modular design of the system allows it to accommodate various components intended to accomplish different inspection, repair, sample retrieval, and other in-pipe tasks. The prototype system being built under this project will include all the basic modules needed, i.e. the locomotor, power storage, wireless communication, and camera. The camera, a solid-state fisheye-type, is used to transmit real-time video to the operator that allows for the live inspection of gas distribution pipes. The system under development significantly advances the state of the art in inspection systems for gas distribution mains, which presently consist of tethered systems of limited range (about 500 ft form the point of launch) and limited inspection views. Also current inspection systems have no ability to incorporate additional modules to expand their functionality. This development program is a joint effort among the Northeast Gas Association (formerly New York Gas Group), the Jet Propulsion Laboratory (JPL), the Johnson Space Center (JSC), Carnegie Mellon University's (CMU) National Robotics Engineering Consortium (NREC), and the US Department of Energy (DOE) through the National Energy Technology Laboratory (NETL) The present report summarizes the accomplishments of the project during its sixth six-month period. The project has in general achieved its goals for this period as outlined in the report. The prototype robot completed its first field demonstration in June 2004 and is undergoing further extensive endurance testing and some minor modifications in order to prepare for the second and last field demonstration planned for October 2004.

  4. Fluidized bed incinerator development

    International Nuclear Information System (INIS)

    Ziegler, D.L.; Johnson, A.J.

    1976-01-01

    A fluidized bed incinerator is being developed for burning rad contaminated solid and liquid waste materials. In situ neutralization of acid gases by the bed material, catalytic afterburning, and gas filtration are used to produce a clean flue gas without the use of aqueous scrubbing

  5. PERMITTING HAZARDOUS WASTE INCINERATORS

    Science.gov (United States)

    This publication is a compilation of information presented at a seminar series designed to address the issues that affect the issuance of hazardous waste incineration permits and to improve the overall understanding of trial burn testing. pecifically, the document provides guidan...

  6. DESIGN, CONSTRUCTION AND FIELD DEMONSTRATION OF EXPLORER: A LONG-RANGE UNTETHERED LIVE GASLINE INSPECTION ROBOT SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Hagen Schempf

    2003-10-01

    This program is undertaken in order to construct and field-demonstrate ''EXPLORER'', a modular, remotely controllable, self-powered, untethered robot system for the inspection of live gas distribution 150 mm (6- inch) to 200 mm (8-inch) diameter mains. The modular design of the system allows it to accommodate various components intended to accomplish different inspection, repair, sample retrieval, and other in-pipe tasks. The prototype system being built under this project will include all the basic modules needed, i.e. the locomotor, power storage, wireless communication, and camera. The camera, a solid-state fisheye-type, is used to transmit real-time video to the operator that allows for the live inspection of gas distribution pipes. The system under development significantly advances the state of the art in inspection systems for gas distribution mains, which presently consist of tethered systems of limited range (about 500 ft form the point of launch) and limited inspection views. Also current inspection systems have no ability to incorporate additional modules to expand their functionality. This development program is a joint effort among the Northeast Gas Association (formerly New York Gas Group), the Jet Propulsion Laboratory (JPL), the Johnson Space Center (JSC), Carnegie Mellon University's (CMU) National Robotics Engineering Consortium (NREC), and the US Department of Energy (DOE) through the National Energy Technology Laboratory (NETL) The present report summarizes the accomplishments of the project during its fourth six-month period. The project has in general achieved its goals for this period as outlined in the report. The fabrication of the prototype is complete and is now been tested in the laboratory mainly focusing on endurance testing and testing of launching procedures. Testing of the prototype in the lab is expected to be completed by Fall 2003, to be followed by two field demonstrations in Winter 2003-2004.

  7. DESIGN, CONSTRUCTION AND FIELD DEMONSTRATION OF EXPLORER: A LONG-RANGE UNTETHERED LIVE GASLINE INSPECTION ROBOT SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    George C. Vradis, Hagen Schempf

    2004-04-01

    This program is undertaken in order to construct and field-demonstrate EXPLORER, a modular, remotely controllable, self-powered, untethered robot system for the inspection of live gas distribution 150 mm (6-inch) to 200 mm (8-inch) diameter mains. The modular design of the system allows it to accommodate various components intended to accomplish different inspection, repair, sample retrieval, and other in-pipe tasks. The prototype system being built under this project will include all the basic modules needed, i.e. the locomotor, power storage, wireless communication, and camera. The camera, a solid-state fisheye-type, is used to transmit real-time video to the operator that allows for the live inspection of gas distribution pipes. The system under development significantly advances the state of the art in inspection systems for gas distribution mains, which presently consist of tethered systems of limited range (about 500 ft form the point of launch) and limited inspection views. Also current inspection systems have no ability to incorporate additional modules to expand their functionality. This development program is a joint effort among the Northeast Gas Association (formerly New York Gas Group), the Jet Propulsion Laboratory (JPL), the Johnson Space Center (JSC), Carnegie Mellon University's (CMU) National Robotics Engineering Consortium (NREC), and the US Department of Energy (DOE) through the National Energy Technology Laboratory (NETL) The present report summarizes the accomplishments of the project during its fifth six-month period. The project has in general achieved its goals for this period as outlined in the report. The prototype robot is undergoing extensive endurance testing in order to prepare for the field demonstrations planned for June 2004.

  8. Operation of chemical incinerator for disposal of legacy chemicals

    International Nuclear Information System (INIS)

    Singhal, R.K.; Basu, H.; Saha, S.; Pimple, M.V.; Naik, P.D.

    2017-01-01

    For safe disposal of age-old legacy and unused chemicals in BARC, Trombay, oil-fired chemical incinerator with a capacity of 20 kg h -1 for solid and liquid chemical is installed adjacent to trash incinerator near RSMS, Gamma Field. The Incinerator was supplied by M/s B. L. Engineering Works, Ahmedabad. Commission of the same at Trombay site was carried out, under the supervision of Civil Engineering (CED), Technical Services Division (TSD) and Analytical Chemistry Division (custodian of the facility)

  9. Modular dry-coupled ultrasonic probes for field inspections of multilayered aircraft structures

    Science.gov (United States)

    Komsky, Igor N.

    2005-05-01

    Most of the multi-layered aircraft structures including composite structures are still inspected primarily through various visual methods that require removal of multiple structural components to detect flaws in the internal layers of the structure. Some aircraft operators utilize for the multi-layered inspections more advanced NDI techniques such as X-ray. However, application of the X-ray technique still requires access to the bottom layers of the multi-layered structures for proper positioning of films or digital sensors. Additional time is also needed to comply with the safety rules for the X-ray inspection procedures. Hence, current inspection procedures for the multi-layered aircraft structures are fairly cumbersome, time-consuming and costly. Application of the dry-coupled ultrasonic modules makes it possible to detect and characterize defects in the internal layers from outside aircraft skin without disassembly. The inspection technique is easy to use, and, at the same time, is sensitive enough to identify critical structural degradation caused by the defects. The dry-coupled inspection technique is also sufficiently rapid so that aircraft downtime is minimized. The modules are also suitable for concurrent flaw detection and sealant quality monitoring in the multi-layer aircraft structures. The concept of the dry-coupled transducer modules has already been tested on the DC-10 horizontal stabilizer (crack detection around fasteners). Several current inspection procedures for aircraft multi-layered composite structures were reviewed to identify the areas for effective implementation of the dry-coupled ultrasonic techniques. Ultrasonic inspection techniques are being developed including flaw detection and characterization protocols for internal defects in various layers of the multi-layered structures. Modular dry-coupled ultrasonic transducers with exchangeable elements and digital encoding systems are being modified for applications on the multi

  10. Commercial incineration demonstration

    International Nuclear Information System (INIS)

    Borduin, L.C.; Neuls, A.S.

    1981-01-01

    Low-level radioactive wastes (LLW) generated by nuclear utilities presently are shipped to commercial burial grounds for disposal. Substantially increasing shipping and disposal charges have sparked renewed industry interest in incineration and other advanced volume reduction techniques as potential cost-saving measures. Repeated inquiries from industry sources regarding LLW applicability of the Los Alamos controlled-air incineration (CAI) design led DOE to initiate this commercial demonstration program in FY-1980. The selected program approach to achieving CAI demonstration at a utility site is a DOE sponsored joint effort involving Los Alamos, a nuclear utility, and a liaison subcontractor. Required development tasks and responsibilities of the particpants are described. Target date for project completion is the end of FY-1985

  11. Incineration by accelerator

    International Nuclear Information System (INIS)

    Cribier, M.; FIoni, G.; Legrain, R.; Lelievre, F.; Leray, S.; Pluquet, A.; Safa, H.; Spiro, M.; Terrien, Y.; Veyssiere, Ch.

    1997-01-01

    The use MOX fuel allows to hope a stabilization of plutonium production around 500 tons for the French park. In return, the flow of minor actinides is increased to several tons. INCA (INCineration by Accelerator), dedicated instrument, would allow to transmute several tons of americium, curium and neptunium. It could be able to reduce nuclear waste in the case of stopping nuclear energy use. This project needs: a protons accelerator of 1 GeV at high intensity ( 50 m A), a window separating the accelerator vacuum from the reactor, a spallation target able to produce 30 neutrons by incident proton, an incineration volume where a part of fast neutrons around the target are recovered, and a thermal part in periphery with flows at 2.10 15 n/cm 2 .s; a chemical separation of elements burning in thermal (americium) from the elements needing a flow of fast neutrons. (N.C.)

  12. Controlled air pyrolysis incinerator

    International Nuclear Information System (INIS)

    Dufrane, K.H.; Wilke, M.

    1982-01-01

    An advanced controlled air pyrolysis incinerator has been researched, developed and placed into commercial operation for both radioactive and other combustible wastes. Engineering efforts cocentrated on providing an incinerator which emitted a clean, easily treatable off-gas and which produced a minimum amount of secondary waste. Feed material is continuously fed by gravity into the system's pyrolysis chamber without sorting, shredding, or other such pretreatment. Metal objects, liquids such as oil and gasoline, or solid products such as resins, blocks of plastic, tire, animal carcasses, or compacted trash may be included along with normal processed waste. The temperature of the waste is very gradually increased in a reduced oxygen atmosphere. Volatile pyrolysis gases are produced, tar-like substances are cracked and the resulting product, a relatively uniform, easily burnable material, is introduced into the combustion chamber. Steady burning is thus accomplished under easily controlled excess air conditions with the off-gasthen passing through a simple dry clean-up system. Gas temperatures are then reduced by air dilution before passing through final HEPA filters. Both commercial and nuclear installations have been operated with the most recent application being the central incinerator to service West Germany's nuclear reactors

  13. Evaluation and field validation of Eddy-Current array probes for steam generator tube inspection

    International Nuclear Information System (INIS)

    Dodd, C.V.; Pate, J.R.

    1996-07-01

    The objective of the Improved Eddy-Current ISI for Steam Generator Tubing program is to upgrade and validate eddy-current inspections, including probes, instrumentation, and data processing techniques for inservice inspection of new, used, and repaired steam generator tubes; to improve defect detection, classification, and characterization as affected by diameter and thickness variations, denting, probe wobble, tube sheet, tube supports, copper and sludge deposits, even when defect types and other variables occur in combination; to transfer this advanced technology to NRC's mobile NDE laboratory and staff. This report describes the design of specialized high-speed 16-coil eddy-current array probes. Both pancake and reflection coils are considered. Test results from inspections using the probes in working steam generators are given. Computer programs developed for probe calculations are also supplied

  14. Field experience of cleanliness inspection for secondary-side in PWR steam generators

    International Nuclear Information System (INIS)

    Ding Xunshen

    1997-05-01

    The mechanical cleaning and TV inspection technology for secondary-side in steam generators of Daya Bay Nuclear Power Plant has been used for preventing the heat transfer tubes from damage caused by residues in steam generator and foreign objects. A lancing has been used for steam generators. The high-pressure jet sent from the central lane to the inside of the bundle has two objectives: (a) the mechanical energy in the jet breaks up the deposit, and (b) the particles are then carried to the periphery of the generator, where they are collected by a water circulation system. The TV inspection consists of the inspection before lancing and after lancing. The former includes the inspection of outer tube lane and central tube lane, and the extraction of foreign objects; the latter includes the inspection of inter tube area, outer tube lane and central tube lane, and the extraction of foreign objects. Video cassette are visualized by a specialist who is qualified to realize a map representative of the cleanliness state of the tubesheet, and to judge if it is or not acceptable. The TV inspection obtained a cleanliness conclusion according to acceptance criteria. So, it is important to work out cleanliness acceptance criteria suit for every operation stages. The site practices shown that after lancing, although hard deposit existed and height of hard deposit in some local place exceeded 5 mm, but the sludge remaining on tubesheet was less. If we can conduct periodic lancing to steam generator, the increase rate of hard deposit will be small. (7 refs., 12 figs.)

  15. DESIGN, CONSTRUCTION AND FIELD DEMONSTRATION OF EXPLORER: A LONG-RANGE UNTETHERED LIVE GASLINE INSPECTION ROBOT SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Dr. George C. Vradis; Dr. Hagen Schempf

    2002-10-01

    This program is undertaken in order to construct and field-demonstrate EXPLORER, a modular, remotely controllable, self-powered, untethered robot system for the inspection of live gas distribution 150 mm (6- inch) to 200 mm (8-inch) diameter mains. The modular design of the system allows it to accommodate various components intended to accomplish different inspection, repair, sample retrieval, and other in-pipe tasks. The prototype system being built under this project will include all the basic modules needed, i.e. the locomotor, power storage, wireless communication, and camera. The camera, a solid-state fisheye-type, is used to transmit real-time video to the operator that allows for the live inspection of gas distribution pipes. This module, which incorporates technology developed by NASA, has already been designed, constructed and tested, having exceeded performance expectations. The full prototype system will be comprehensively tested in the laboratory followed by two field demonstrations in real applications in NYGAS member utilities' pipes. The system under development significantly advances the state of the art in inspection systems for gas distribution mains, which presently consist of tethered systems of limited range (about 500 ft form the point of launch) and limited inspection views. Also current inspection systems have no ability to incorporate additional modules to expand their functionality. This development program is a joint effort among the New York Gas Group (NYGAS; a trade association of the publicly owned gas utilities in New York State), the Jet Propulsion Laboratory (JPL), the Johnson Space Center (JSC), Carnegie Mellon University's (CMU) National Robotics Engineering Consortium (NREC), and the US Department of Energy (DOE) through the National Energy Technology Laboratory (NETL). The DOE's contribution to this current phase of the project is $499,023 out of a total of $780,735 (not including NASA's contribution). The

  16. Development and field validation of advanced array probes for steam generator inspection

    International Nuclear Information System (INIS)

    Dodd, C.V.; Pate, J.R.

    1995-01-01

    The aging of the steam generators at the nation's nuclear power plants has led to the appearance of new forms of degradation in steam generator tubes and an increase in the frequency of forced outages due to major tube leak events. The eddy-current techniques currently being used for the inspection of steam generator tubing are no longer adequate to ensure that flaws will be detected before they lead to a shutdown of the plant. To meet the need for a fast and reliable method of inspection, ORNL has designed a 16-coil eddy-current array probe which combines an inspection speed similar to that of the bobbin coil with a sensitivity to cracks of any orientation similar to the rotating pancake coil. In addition, neural network and least square methods have been developed for the automatic analysis of the data acquired with the new probes. The probes and analysis software have been tested at two working steam generators where we have found an increase in the signal-to-noise ratio of a factor of five an increase in the inspection speed of a factor of 75 over the rotating pancake coil which maintaining similar detection and characterization capabilities

  17. Waste incineration. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Egede Rasmussen, Anja

    2004-06-15

    This prepatory thesis is a literature study on the incineration of waste. It deals with the concepts of municipal solid waste, the composition and combustion of it. A main focus is on the European emission regulations and the formation of dioxins, as well as a big effort is put into the treatment of solid residues from municipal solid waste incineration. In the latter area, concepts of treatment, such as physical and chemical separations, solidification and stabilization techniques, thermal methods, and extraction methods have been discussed. Evaluation of possible methods of treatment has been done, but no conclusions made of which is the best. Though, indications exist that especially two methods have shown positive qualities and must be further investigated. These methods are the acid extraction and sulfide stabilization (AES) process and the phosphate stabilization method of WES-PHix. Economic potentials of the two methods have been evaluated, and with the information obtained, it seems that the price for treatment and later landfilling of a material with improved leaching characteristics, will be approximately the same as the presently most used solution of export to Norway. However, more tests, investigations and economic evaluations are necessary in order for support of the findings in this work. (au)

  18. Waste treatment activities incineration

    International Nuclear Information System (INIS)

    Weber, D.A.

    1985-01-01

    The waste management policy at SRP is to minimize waste generation as much as possible and detoxify and/or volume reduce waste materials prior to disposal. Incineration is a process being proposed for detoxification and volume reduction of combustion nonradioactive hazardous, low-level mixed and low-level beta-gamma waste. Present operation of the Solvent Burner Demonstration reduces the amount of solid combustible low-level beta-gamma boxed waste disposed of by shallow land burial by approximately 99,000 ft 3 per year producing 1000 ft 3 per year of ash and, by 1988, will detoxify and volume reduce 150,000 gallons or organic Purex solvent producing approximately 250 ft 3 of ash per year

  19. Technical specifications of air handling system of the inspection of a field

    International Nuclear Information System (INIS)

    Kim, Seon Duk; Bang, Hong Sik; Oh, Yon Woo

    2002-07-01

    A T.A.B(Testing, Adjusting and Balancing) technique, the basic technique of air handling facility, is one of the essential technical items which workers in charge of operation of facilities have to acquire. Especially, through scientific and reasonable inspective procedures, the reduction of energy and guarantee of designed skill have become influential important problems in our time rather than in the past days. Entrepreneurs have required more thorough verify of performances and procedure of test in order to raise the investment efficiency and reduce expenditure. For that reason, I hope that co-operator acquire objective and substantial knowledges about air handling facility so that they are helped from them

  20. Suitability of oil bioremediation in an Artic soil using surplus heating from an incineration facility

    DEFF Research Database (Denmark)

    Couto, Nazare; Fritt-Rasmussen, Janne; Jensen, Pernille Erland

    2014-01-01

    A 168-day period field study, carried out in Sisimiut, Greenland, assessed the potential to enhance soil remediation with the surplus heating from an incineration facility. This approach searches a feasible ex situ remediation process that could be extended throughout the year with low costs. Ind...... with low maintenance and using "waste heating" from an incineration facility....

  1. Conditioning processes for incinerator ashes

    International Nuclear Information System (INIS)

    Jouan, A.; Ouvrier, N.; Teulon, F.

    1990-01-01

    Three conditioning processes for alpha-bearing solid waste incineration ashes were investigated and compared according to technical and economic criteria: isostatic pressing, cold-crucible direct-induction melting and cement-resin matrix embedding

  2. Activated carbon for incinerator uses

    International Nuclear Information System (INIS)

    Che Seman Mahmood; Norhayati Alias; Mohd Puad Abu

    2002-01-01

    This paper reports the development of the activated carbon from palm oil kernel shell for use as absorbent and converter for incinerator gas. The procedure is developed in order to prepare the material in bulk quantity and be used in the incinerator. The effect of the use of activating chemicals, physical activation and the preparation parameter to the quality of the carbon products will be discussed. (Author)

  3. Incineration of tyres, radioactive and photographic industry waste

    International Nuclear Information System (INIS)

    Carpentier, S.

    1977-01-01

    In the list every day longer of 'industrial' wastes, there is a special place for combustible waste usually presenting a solution for their elimination, i. e. incineration with or without calory recovery. Three categories are well-known as they concern the general public. The overall data of the problem are first considered, then three incineration plants in three different fields are described: motor-car tyres, nuclear industry, photographic industry. In the last field, well-conducted recovery processes may result in surprising results as to the damping of the plant cost, which finally is both pleasant and useful [fr

  4. Consolidated incineration facility technical support

    International Nuclear Information System (INIS)

    Burns, D.; Looper, M.G.

    1993-01-01

    In 1996, the Savannah River Site plans to begin operation of the Consolidated Incineration Facility (CIF) to treat solid and liquid RCRA hazardous and mixed wastes. The Savannah River Technology Center (SRTC) leads an extensive technical support program designed to obtain incinerator and air pollution control equipment performance data to support facility start-up and operation. Key components of this technical support program include recently completed waste burn tests at both EPA's Incineration Research Facility and at Energy and Environmental Research Corporation's Solid Waste Incineration Test Facility. The main objectives for these tests were determining the fate of heavy metals, measuring organics destruction and removal efficiencies, and quantifying incinerator offgas particulate loading and size distribution as a function of waste feed characteristics and incineration conditions. In addition to these waste burning tests, the SRTC has recently completed installations of the Offgas Components Test Facility (OCTF), a 1/10 scale CIF offgas system pilot plant. This pilot facility will be used to demonstrate system operability and maintainability, evaluate and optimize equipment and instrument performance, and provide direct CIF start-up support. Technical support programs of this type are needed to resolve technical issues related with treatment and disposal of combustible hazardous, mixed, and low-level radioactive waste. Implementation of this program will minimize facility start-up problems and help insure compliance with all facility performance requirements

  5. SRL incinerator components test facility

    International Nuclear Information System (INIS)

    Freed, E.J.

    1982-08-01

    A full-scale (5 kg waste/hour) controlled-air incinerator, the ICTF, is presently being tested with simulated waste as part of a program to develop technology for incineration of Savannah River Plant solid transuranic wastes. This unit is designed specifically to incinerate relatively small quantities of solid combustible waste that are contaminated up to 10 5 times the present nominal 10 nCi/g threshold value for such isotopes as 238 Pu, 239 Pu, 242 Cm, and 252 Cf. Automatic incinerator operation and control has been incorporated into the design, simulating the future plant design which minimizes operator radiation exposure. Over 3000 kg of nonradioactive wastes characteristic of plutonium finishing operations have been incinerated at throughputs exceeding 5 kg/hr. Safety and reliability were the major design objectives. In addition to the incinerator tests, technical data were gathered on two different off-gas systems: a wet system composed of three scrubbers in series, and a dry system employing sintered metal filters

  6. Opportunities for artificial intelligence application in computer- aided management of mixed waste incinerator facilities

    International Nuclear Information System (INIS)

    Rivera, A.L.; Ferrada, J.J.; Singh, S.P.N.

    1992-01-01

    The Department of Energy/Oak Ridge Field Office (DOE/OR) operates a mixed waste incinerator facility at the Oak Ridge K-25 Site. It is designed for the thermal treatment of incinerable liquid, sludge, and solid waste regulated under the Toxic Substances Control Act (TSCA) and the Resource Conservation and Recovery Act (RCRA). This facility, known as the TSCA Incinerator, services seven DOE/OR installations. This incinerator was recently authorized for production operation in the United States for the processing of mixed (radioactively contaminated-chemically hazardous) wastes as regulated under TSCA and RCRA. Operation of the TSCA Incinerator is highly constrained as a result of the regulatory, institutional, technical, and resource availability requirements. These requirements impact the characteristics and disposition of incinerator residues, limits the quality of liquid and gaseous effluents, limit the characteristics and rates of waste feeds and operating conditions, and restrict the handling of the waste feed inventories. This incinerator facility presents an opportunity for applying computer technology as a technical resource for mixed waste incinerator operation to facilitate promoting and sustaining a continuous performance improvement process while demonstrating compliance. Demonstrated computer-aided management systems could be transferred to future mixed waste incinerator facilities

  7. Smart photonic coating for civil engineering field: for a future inspection technology on concrete bridge

    Science.gov (United States)

    Fudouzi, Hiroshi; Tsuchiya, Koichi; Todoroki, Shin-ichi; Hyakutake, Tsuyoshi; Nitta, Hiroyuki; Nishizaki, Itaru; Tanaka, Yoshikazu; Ohya, Takao

    2017-04-01

    Here we will propose the conceptual new idea of the inspection of concrete bridge using smart materials and mobile IoT system. We apply opal photonic crystal film to detect cracks on concrete infrastructures. High quality opal photonic crystal films were coated on black color PET sheet over 1000 cm2 area. The opal film sheet was cut and adhered to concrete or mortar test pieces by epoxy resin. In the tensile test, the structural color of the opal sheet was changed when the crack was formed. As a demonstration, we have installated the opal film sheet on the wall of the concrete bridge. Our final purpose is the color change will be recorded by portable CCD devices, and send to expert via IoT network.

  8. DESIGN, CONSTRUCTION AND FIELD DEMONSTRATION OF EXPLORER: A LONG-RANGE UNTETHERED LIVE GASLINE INSPECTION ROBOT SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Dr. George C. Vradis; Dr. Hagen Schempf

    2002-05-01

    The goal of this program is to construct and demonstrate EXPLORER, a modular, remotely controllable, self-powered, untethered robot system for the inspection of live gas distribution 150 mm (6-inch) to 200 mm (8-inch) diameter mains. The system, which was designed in an earlier effort, is built in a modular fashion in order to accommodate various components intended to accomplish different inspection, repair, sample retrieval, and other in-pipe tasks. The prototype system to be built under this project will include all the basic modules needed by the system, i.e. the locomotion, power storage, wireless communication, and camera. The camera, a solid-state fisheye-type, is used to transmit real-time video to the operator that allows for the live inspection of gas distribution pipes. This module, which incorporates technology developed by NASA, has been designed, constructed and tested in the earlier effort. In the current effort, the full prototype system will be tested in the laboratory followed by two field demonstrations in real applications in NYGAS member utilities' pipes. The purpose for EXPLORER is to be able to access live gas mains, insert the system in the piping network, and remotely ''drive'' it within the gas main and its laterals through distances of five to ten thousand feet. Its adaptable locomotion system allows the robot to function through varying diameter pipes (150 - 200 mm or 6- to 8-inches) and is powered via on-board battery-banks. The presence of fish-eye cameras in both ends of the robot allows the operator to view the forward and circumferential views of the internals live using an above-ground TV. Communication takes place via wireless link between the robot and the launch-chamber used to insert/retrieve the system. This link is based on commercial technology presently employed in wireless telecommunication networks. Communication over long distances as well as battery re-charging will be accomplished without

  9. Flaring versus thermal incineration of waste gases in the oil and gas industry

    International Nuclear Information System (INIS)

    Smolarski, G.M.

    1999-01-01

    The efficient combustion of waste gases at oil processing plants, battery or well sites is discussed. Several problem situations are examined, field test results are reviewed, and custom design systems are explained including modifications to systems to conserve fuel. It is shown that combustion of waste gases in fuel efficient thermal incinerators is a practical means of disposal, particularly for sour or toxic gas of low heating value. These gases contain noxious compounds that may cause odours or adverse health effects. Results of a field tests of a portable in-situ incinerator show that compared to flaring (to oxide waste gas), incineration is a more efficient form of waste management. Emission tests also prove the superior performance of incineration. The feasibility of incinerating oil storage tank vapours was also demonstrated. Tests were also conducted with a fuel-efficient Glycol Still Off-Gas Incinerator which was developed to control toxic waste emissions. Glycol dehydration removes water vapour from natural gas. The key compounds that are removed by glycol are aromatic hydrocarbons or BTEX compounds (benzene, toluene, ethylbenzene and xylene), and sulphur compounds. The main design considerations for any incinerator are temperature, turbulence and residence time. An incinerator exit temperature of 760 degrees C is generally needed to reduce sulphur compounds. 2 refs., 8 tabs., 7 figs

  10. Alpha waste incineration prototype incinerator and industrial project

    International Nuclear Information System (INIS)

    Caramelle, D.; Meyere, A.

    1988-01-01

    To meet our requirements with respect to the processing of solid alpha wastes, a pilot cold incinerator has been used for R and D. This unit has a capacity of 5 kg/hr. The main objectives assigned to this incineration process are: a good reduction factor, controlled combustion, ash composition compatible with plutonium recovery, limited secondary solid and fluid wastes, releases within the nuclear and chemical standards, and in strict observance of the confinement and criticality safety rules. After describing the process we will discuss the major results of the incineration test campaigns with representative solid wastes (50 % PVC). We will then give a description of an industrial project with a capacity of 7 kg/hr, followed by a cost estimate

  11. A Feasibility Study of H{sub 2}S Abatement by Incineration of Noncondensable Gases in Vented Steam Flow from Davies-State 5206-1 Geothermal Steam Well, Geysers Geothermal Steam Field, Lake County, California

    Energy Technology Data Exchange (ETDEWEB)

    None

    2006-08-25

    Determine feasibility of using an incineration-type device to accomplish the required reduction in vent steam H{sub 2}S content to meet ICAPCO rules. This approach is to be the only method considered in this feasibility study.

  12. Incineration demonstration at Savannah River

    International Nuclear Information System (INIS)

    Lewandowski, K.E.; Becker, G.W.; Mersman, K.E.; Roberson, W.A.

    1983-01-01

    A full-scale incineration process for Savannah River Plant (SRP) low level beta-gamma combustible waste was demonstrated at the Savannah River Laboratory (SRL) using nonradioactive wastes. From October 1981 through September 1982, 15,700 kilograms of solid waste and 5.7 m 3 of solvent were incinerated. Emissions of off-gas components (NO/sub x/, SO 2 , CO, and particulates) were well below South Carolina state standards. Volume reductions of 20:1 for solid waste and 7:1 for Purex solvent/lime slurry were achieved. Presently, the process is being upgraded by SRP to accept radioactive wastes. During a two-year SRP demonstration, the facility will be used to incinerate slightly radioactive ( 3 ) solvent and suspect level (<1 mR/hr at 0.0254 meter) solid wastes

  13. Savannah River Plant incinerator demonstration

    International Nuclear Information System (INIS)

    Lewandowski, K.E.

    1983-01-01

    A full-scale incineration process was demonstrated at the Savannah River Laboratory (SRL) using nonradioactive waste. From October 1981 through September 1982, 15,700 kilograms of solid waste and 5.7 m 3 of solvent were incinerated. Emissions of off-gas components (NO/sub x/, SO 2 , CO, and particulates) were well below South Carolina state standards. Volume reductions of 20:1 for solid waste and 7:1 for Purex solvent/lime slurry were achieved. The process has been relocated and upgraded by the Savannah River Plant to accept low-level beta-gamma combustibles. During a two-year demonstration, the facility will incinerate slightly radioactive ( 3 ) solvent and suspect level (< 1 mR/h at 0.0254 meter) solid wastes. This demonstration will begin in early 1984

  14. HANDBOOK: HAZARDOUS WASTE INCINERATION MEASUREMENT GUIDANCE

    Science.gov (United States)

    This publication, Volume III of the Hazardous Waste Incineration Guidance Series, contains general guidance to permit writers in reviewing hazardous waste incineration permit applications and trial burn plans. he handbook is a how-to document dealing with how incineration measure...

  15. Pilot solid-waste incinerator

    International Nuclear Information System (INIS)

    Farber, M.G.; Hootman, H.E.; Trapp, D.J.

    1982-01-01

    An experimental program to develop and confirm technology for incinerating solid radioactive waste is in progress at the Savannah River Laboratory (SRL) in support of the short-term and long-term waste management objectives of the Savannah River Plant (SRP). This report reviews the experience of a pilot incinerator with a capacity of 1.0 lb/hr. The facility was tested with nonradioactive materials similar to the radioactive waste generated at the Savannah River site. The experimental program included determining operating parameters, testing wet and dry off-gas treatment systems, and evaluating materials of construction

  16. Aircraft Field Exercise to Develop Multi-Spectral and Infrared Imaging for CTBT On-Site Inspections

    Energy Technology Data Exchange (ETDEWEB)

    Henderson, J R [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Smith, M O [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Zelinski, M E [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2010-08-23

    The Comprehensive Test Ban Treaty (CTBT) permits Multi-Spectral and InfraRed Imaging (MSIR) to be performed as part of an On-Site Inspection (OSI) for the purpose of reducing the search area for the location of a possible underground nuclear explosion (UNE). Dedicated airborne MSIR measurements have not been made in conjunction with historical or recent UNE’s. Satellite data has been used to show that MSIR observables can be used to reduce the search area, but the satellite data do not have the spatial resolution or spectral and thermal capabilities desired to fully characterize the MSIR observables. Consequently, there is insufficient information currently available to confidently specify an MSIR instrument to be used on an Additional Overflight as part of an OSI. The potential MSIR observables are known, but not well characterized. The possibility of using airborne MSIR measurements to characterize some of those observables has been assessed here for a variety of field exercise scenarios. The main challenge in making aircraft measurements is to have confidence that the field conditions will accurately reproduce the MSIR observable compared to a UNE. The four types of events expected to generate relevant MSIR observables are (1) underground coal fires, (2) road traffic measurements, (3) underground mining operations, and (4) certain carefully staged explosions, such as the Source Physics Experiment.

  17. Non-contact distance measurement and profilometry using thermal near-field radiation towards a high resolution inspection and metrology solution

    NARCIS (Netherlands)

    Bijster, R.J.F.; Sadeghian Marnani, H.; van Keulen, A.; Sanchez, M.I.; Ukraintsev, V.A.

    2016-01-01

    Optical near-field technologies such as solid immersion lenses and hyperlenses are candidate solutions for high resolution and high throughput wafer inspection and metrology for the next technology nodes. Besides sub-diffraction limited optical performance, these concepts share the necessity of

  18. Incineration of Low Level Radioactive Vegetation for Waste Volume Reduction

    International Nuclear Information System (INIS)

    Malik, N.P.S.; Rucker, G.G.; Looper, M.G.

    1995-01-01

    The DOE changing mission at Savannah River Site (SRS) are to increase activities for Waste Management and Environmental Restoration. There are a number of Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) locations that are contaminated with radioactivity and support dense vegetation, and are targeted for remediation. Two such locations have been studied for non-time critical removal actions under the National Contingency Plan (NCP). Both of these sites support about 23 plant species. Surveys of the vegetation show that radiation emanates mainly from vines, shrubs, and trees and range from 20,000 to 200,000 d/m beta gamma. Planning for removal and disposal of low-level radioactive vegetation was done with two principal goals: to process contaminated vegetation for optimum volume reduction and waste minimization, and for the protection of human health and environment. Four alternatives were identified as candidates for vegetation removal and disposal: chipping the vegetation and packing in carbon steel boxes (lined with synthetic commercial liners) and disposal at the Solid Waste Disposal Facility at SRS; composting the vegetation; burning the vegetation in the field; and incinerating the vegetation. One alternative 'incineration' was considered viable choice for waste minimization, safe handling, and the protection of the environment and human health. Advantages and disadvantages of all four alternatives considered have been evaluated. For waste minimization and ultimate disposal of radioactive vegetation incineration is the preferred option. Advantages of incineration are that volume reduction is achieved and low-level radioactive waste are stabilized. For incineration and final disposal vegetation will be chipped and packed in card board boxes and discharged to the rotary kiln of the incinerator. The slow rotation and longer resident time in the kiln will ensure complete combustion of the vegetative material

  19. Incineration of organic solar cells

    NARCIS (Netherlands)

    Søndergaard, Roar R.; Zimmermann, Yannick Serge; Espinosa, Nieves; Lenz, Markus; Krebs, Frederik

    2016-01-01

    Recovery of silver from the electrodes of roll-to-roll processed organic solar cells after incineration has been performed quantitatively by extraction with nitric acid. This procedure is more than 10 times faster than previous reports and the amount of acid needed for the extraction is reduced

  20. Plutonium waste incineration using pyrohydrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, M.L.

    1991-12-31

    Waste generated by Savannah River Site (SRS) plutonium operations includes a contaminated organic waste stream. A conventional method for disposing of the organic waste stream and recovering the nuclear material is by incineration. When the organic material is burned, the plutonium remains in the incinerator ash. Plutonium recovery from incinerator ash is highly dependent on the maximum temperature to which the oxide is exposed. Recovery via acid leaching is reduced for a high fired ash (>800{degree}C), while plutonium oxides fired at lower decomposition temperatures (400--800{degrees}C) are more soluble at any given acid concentration. To determine the feasibility of using a lower temperature process, tests were conducted using an electrically heated, controlled-air incinerator. Nine nonradioactive, solid, waste materials were batch-fed and processed in a top-heated cylindrical furnace. Waste material processing was completed using a 19-liter batch over a nominal 8-hour cycle. A processing cycle consisted of 1 hour for heating, 4 hours for reacting, and 3 hours for chamber cooling. The water gas shift reaction was used to hydrolyze waste materials in an atmosphere of 336% steam and 4.4% oxygen. Throughput ranged from 0.14 to 0.27 kg/hr depending on the variability in the waste material composition and density.

  1. Plutonium waste incineration using pyrohydrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, M.L.

    1991-01-01

    Waste generated by Savannah River Site (SRS) plutonium operations includes a contaminated organic waste stream. A conventional method for disposing of the organic waste stream and recovering the nuclear material is by incineration. When the organic material is burned, the plutonium remains in the incinerator ash. Plutonium recovery from incinerator ash is highly dependent on the maximum temperature to which the oxide is exposed. Recovery via acid leaching is reduced for a high fired ash (>800{degree}C), while plutonium oxides fired at lower decomposition temperatures (400--800{degrees}C) are more soluble at any given acid concentration. To determine the feasibility of using a lower temperature process, tests were conducted using an electrically heated, controlled-air incinerator. Nine nonradioactive, solid, waste materials were batch-fed and processed in a top-heated cylindrical furnace. Waste material processing was completed using a 19-liter batch over a nominal 8-hour cycle. A processing cycle consisted of 1 hour for heating, 4 hours for reacting, and 3 hours for chamber cooling. The water gas shift reaction was used to hydrolyze waste materials in an atmosphere of 336% steam and 4.4% oxygen. Throughput ranged from 0.14 to 0.27 kg/hr depending on the variability in the waste material composition and density.

  2. Plutonium waste incineration using pyrohydrolysis

    International Nuclear Information System (INIS)

    Meyer, M.L.

    1991-01-01

    Waste generated by Savannah River Site (SRS) plutonium operations includes a contaminated organic waste stream. A conventional method for disposing of the organic waste stream and recovering the nuclear material is by incineration. When the organic material is burned, the plutonium remains in the incinerator ash. Plutonium recovery from incinerator ash is highly dependent on the maximum temperature to which the oxide is exposed. Recovery via acid leaching is reduced for a high fired ash (>800 degree C), while plutonium oxides fired at lower decomposition temperatures (400--800 degrees C) are more soluble at any given acid concentration. To determine the feasibility of using a lower temperature process, tests were conducted using an electrically heated, controlled-air incinerator. Nine nonradioactive, solid, waste materials were batch-fed and processed in a top-heated cylindrical furnace. Waste material processing was completed using a 19-liter batch over a nominal 8-hour cycle. A processing cycle consisted of 1 hour for heating, 4 hours for reacting, and 3 hours for chamber cooling. The water gas shift reaction was used to hydrolyze waste materials in an atmosphere of 336% steam and 4.4% oxygen. Throughput ranged from 0.14 to 0.27 kg/hr depending on the variability in the waste material composition and density

  3. Landfilling of waste incineration residues

    DEFF Research Database (Denmark)

    Christensen, Thomas Højlund; Astrup, Thomas; Cai, Zuansi

    2002-01-01

    Residues from waste incineration are bottom ashes and air-pollution-control (APC) residues including fly ashes. The leaching of heavy metals and salts from the ashes is substantial and a wide spectrum of leaching tests and corresponding criteria have been introduced to regulate the landfilling...

  4. Quantitative estimation of defects from measurement obtained by remote field eddy current inspection

    International Nuclear Information System (INIS)

    Davoust, M.E.; Fleury, G.

    1999-01-01

    Remote field eddy current technique is used for dimensioning grooves that may occurs in ferromagnetic pipes. This paper proposes a method to estimate the depth and the length of corrosion grooves from measurement of a pick-up coil signal phase at different positions close to the defect. Grooves dimensioning needs the knowledge of the physical relation between measurements and defect dimensions. So, finite element calculations are performed to obtain a parametric algebraic function of the physical phenomena. By means of this model and a previously defined general approach, an estimate of groove size may be given. In this approach, algebraic function parameters and groove dimensions are linked through a polynomial function. In order to validate this estimation procedure, a statistical study has been performed. The approach is proved to be suitable for real measurements. (authors)

  5. Application of wearable optical coherence tomography (OCT) and loop-mediated isothermal amplification (LAMP) techniques for in situ real-time field inspection of apple Marssonina blotch disease

    Science.gov (United States)

    Wijesinghe, Ruchire Eranga; Lee, Seung-Yeol; Ravichandran, Naresh Kumar; Shirazi, Muhammad Faizan; Han, Sangyeop; Jeong, Hyosang; Kim, Pilun; Jung, Hee-Young; Jeon, Mansik; Kim, Jeehyun

    2017-04-01

    Here we describe the possible application of optical coherence tomography (OCT) to inspect Marssonina coronaria infected apple blotch disease of in situ apple leaves. To fulfill the in situ field inspection requirement, we developed a compact wearable OCT system. For the confirmation of OCT results, simultaneous experiment was performed in realtime using loop-mediated isothermal amplification (LAMP), which is frequently used in agriculture. LAMP method was developed as an alternative approach for the inspection of disease. We performed field inspection for 30 consecutive days, and all the acquired results from both OCT and lamp were compared to confirm the correlation. A clear identification between healthy specimens, apparently healthy but infected specimens, and infected specimens could be obtained through the real-time OCT images, and the correlation between OCT and lamp results was confirmed through the obtained realtime lamp results. Based on this feasibility study, we conclude that the combination of both these diagnosing modalities can be effective for various novel agricultural discoveries.

  6. USDOE radioactive waste incineration technology: status review

    International Nuclear Information System (INIS)

    Borduin, L.C.; Taboas, A.L.

    1980-01-01

    Early attempts were made to incinerate radioactive wastes met with operation and equipment problems such as feed preparation, corrosion, inadequate off-gas cleanup, incomplete combustion, and isotope containment. The US Department of Energy (DOE) continues to sponsor research, development, and the eventual demonstration of radioactive waste incineration. In addition, several industries are developing proprietary incineration system designs to meet other specific radwaste processing requirements. Although development efforts continue, significant results are available for the nuclear community and the general public to draw on in planning. This paper presents an introduction to incineration concerns, and an overview of the prominent radwaste incineration processes being developed within DOE. Brief process descriptions, status and goals of individual incineration systems, and planned or potential applications are also included

  7. Inspection Database

    Data.gov (United States)

    U.S. Department of Health & Human Services — FDA is disclosing the final inspection classification for inspections related to currently marketed FDA-regulated products. The disclosure of this information is not...

  8. Controlled air incinerator conceptual design study

    International Nuclear Information System (INIS)

    1982-01-01

    This report presents a conceptual design study for a controlled air incinerator facility for incineration of low level combustible waste at Three Mile Island Unit 2 (TMI-2). The facility design is based on the use of a Helix Process Systems controlled air incinerator. Cost estimates and associated engineering, procurement, and construction schedules are also provided. The cost estimates and schedules are presented for two incinerator facility designs, one with provisions for waste ash solidification, the other with provisions for packaging the waste ash for transport to an undefined location

  9. Offgas treatment for radioactive waste incinerators

    International Nuclear Information System (INIS)

    Stretz, L.A.; Koenig, R.A.

    1980-01-01

    Incineration of radioactive materials for resource recovery or waste volume reduction is recognized as an effective waste treatment method that will increase in usage and importance throughout the nuclear industry. The offgas cleanup subsystem of an incineration process is essential to ensure radionuclide containment and protection of the environment. Several incineration processes and associated offgas cleanup systems are discussed along with potential application of commercial pollution control components to radioactive service. Problems common to radioactive waste incinerator offgas service are identified and areas of needed research and development effort are noted

  10. Arc plasma incineration of surrogate radioactive wastes

    International Nuclear Information System (INIS)

    Girold, C.; Cartier, R.; Taupiac, J.P.; Vandensteendam, C.; Baronnet, J.M.

    1995-01-01

    The aim of this presentation is to demonstrate the feasibility to substitute a single plasma reactor, where the arc is transferred on a melt glass bath, for several steps in an existing nuclear technological wastes incinerator. The incineration of wastes, the produced gas treatment and the vitrification of ashes issued from waste incineration are the three simultaneous functions of this new kind of reactor. The three steps of the work are described: first, post-combustion in an oxygen plasma of gases generated from the waste pyrolysis, then, vitrification of ashes from the calcination of wastes in the transferred plasma furnace and finally, incineration/vitrification of wastes in the same furnace

  11. Incineration process fire and explosion protection

    International Nuclear Information System (INIS)

    Ziegler, D.L.

    1975-01-01

    Two incinerators will be installed in the plutonium recovery facility under construction at the Rocky Flats Plant. The fire and explosion protection features designed into the incineration facility are discussed as well as the nuclear safety and radioactive material containment features. Even though the incinerator system will be tied into an emergency power generation system, a potential hazard is associated with a 60-second delay in obtaining emergency power from a gas turbine driven generator. This hazard is eliminated by the use of steam jet ejectors to provide normal gas flow through the incinerator system during the 60 s power interruption. (U.S.)

  12. Mobile Inspection Assistance

    OpenAIRE

    ECT Team, Purdue

    2007-01-01

    While advanced bridge management systems are being created, deployed and used to collect data for inventories of bridges and support the systematic identification and prioritization of needs, the bridge inspectors in the field are using paper-based to support, and record the result of their inspection process. MIA which is a wearable computer system, helps bridge inspectors collect multimedia information in the field and produce the inspection report. This system allows the inspector to fill ...

  13. Incineration of European non-nuclear radioactive waste in the USA

    International Nuclear Information System (INIS)

    Moloney, B. P.; Ferguson, D.; Stephenson, B.

    2013-01-01

    Incineration of dry low level radioactive waste from nuclear stations is a well established process achieving high volume reduction factors to minimise disposal costs and to stabilise residues for disposal. Incineration has also been applied successfully in many European Union member countries to wastes arising from use of radionuclides in medicine, nonnuclear research and industry. However, some nations have preferred to accumulate wastes over many years in decay stores to reduce the radioactive burden at point of processing. After decay and sorting the waste, they then require a safe, industrial scale and affordable processing solution for the large volumes accumulated. This paper reports the regulatory, logistical and technical issues encountered in a programme delivered for Eckert and Ziegler Nuclitec to incinerate safely 100 te of waste collected originally from German research, hospital and industrial centres, applying for the first time a 'burn and return' process model for European waste in the US. The EnergySolutions incinerators at Bear Creek, Oak Ridge, Tennessee, USA routinely incinerate waste arising from the non-nuclear user community. To address the requirement from Germany, EnergySolutions had to run a dedicated campaign to reduce cross-contamination with non-German radionuclides to the practical minimum. The waste itself had to be sampled in a carefully controlled programme to ensure the exacting standards of Bear Creek's license and US emissions laws were maintained. Innovation was required in packaging of the waste to minimise transportation costs, including sea freight. The incineration was inspected on behalf of the German regulator (the BfS) to ensure suitability for return to Germany and disposal. This first 'burn and return' programme has safely completed the incineration phase in February and the arising ash will be returned to Germany presently. The paper reports the main findings and lessons learned on this first

  14. Inspection robots

    International Nuclear Information System (INIS)

    Takenaka, Toshio; Oya, Tadashi

    1990-01-01

    Inspections of nuclear power plants make it possible to achieve and maintain high levels of plant reliability and availability. The Corporation is developing robots to perform inspection tasks. The benefits of robot use include maintaining higher surveillance levels, reducing occupational radiation exposure, and reduced labor costs. The article introduces two fully developed products: a remote-inspection robot for use inside nuclear reactor containment vessels, and a remote inspection and repair robot for use inside the the vacuum vessel of the JT-60 nuclear-fusion critical plasma test reactor. It also describes a prototype automatic inspection robot that detects abnormalities using video and infrared cameras and an image-processing system. (author)

  15. Inspection quality demonstrations

    International Nuclear Information System (INIS)

    Dau, G.J.

    1985-01-01

    This paper discusses an inspection demonstration process that was initiated in late 1982 and is still functioning. In 1982, the Nine Mile Point-1 boiling water reactor completed the required inspection governed by rules established by the American Society of Mechanical Engineers Boiler and Pressure Vessel Code and the U.S. Nuclear Regulatory Commission. The inspection results indicated there were no cracks when the results were evaluated against the established criteria. Later, while performing the system hydro-test prior to returning to power, one of the joints leaked, indicating a through-wall crack. The demonstration process, including a training program recognized by the NRC, are described in the paper. The final answer on how good the demonstration and field inspection are can only be determined by comparison of the inspection results with direct observation of the flaws. This is currently in progress

  16. Materials for Waste Incinerators and Biomass Plants

    DEFF Research Database (Denmark)

    Rademakers, P.; Grossmann, G.; Karlsson, A.

    1998-01-01

    This paper reviews the projects of the sub-package on waste incineration and biomass firing carried out within COST 501 Round III, Work Package 13.......This paper reviews the projects of the sub-package on waste incineration and biomass firing carried out within COST 501 Round III, Work Package 13....

  17. FUEL-EFFICIENT SEWAGE SLUDGE INCINERATION

    Science.gov (United States)

    A study was performed to evaluate the status of incineration with low fuel use as a sludge disposal technology. The energy requirements, life-cycle costs, operation and maintenance requirements, and process capabilities of four sludge incineration facilities were evaluated. These...

  18. High temperature incineration. Densification of granules from high temperature incineration

    International Nuclear Information System (INIS)

    Voorde, N. van de; Claes, J.; Taeymans, A.; Hennart, D.; Gijbels, J.; Balleux, W.; Geenen, G.; Vangeel, J.

    1982-01-01

    The incineration system of radioactive waste discussed in this report, is an ''integral'' system, which directly transforms a definite mixture of burnable and unburnable radioactive waste in a final product with a sufficient insolubility to be safely disposed of. At the same time, a significant volume reduction occurs by this treatment. The essential part of the system is a high temperature incinerator. The construction of this oven started in 1974, and while different tests with simulated inactive or very low-level active waste were carried out, the whole system was progressively and continuously extended and adapted, ending finally in an installation with completely remote control, enclosed in an alpha-tight room. In this report, a whole description of the plant and of its auxiliary installations will be given; then the already gained experimental results will be summarized. Finally, the planning for industrial operation will be briefly outlined. An extended test with radioactive waste, which was carried out in March 1981, will be discussed in the appendix

  19. Potential applications of artificial intelligence in computer-based management systems for mixed waste incinerator facility operation

    International Nuclear Information System (INIS)

    Rivera, A.L.; Singh, S.P.N.; Ferrada, J.J.

    1991-01-01

    The Department of Energy/Oak Ridge Field Office (DOE/OR) operates a mixed waste incinerator facility at the Oak Ridge K-25 Site, designed for the thermal treatment of incinerable liquid, sludge, and solid waste regulated under the Toxic Substances Control Act (TSCA) and the Resource Conversion and Recovery Act (RCRA). Operation of the TSCA Incinerator is highly constrained as a result of the regulatory, institutional, technical, and resource availability requirements. This presents an opportunity for applying computer technology as a technical resource for mixed waste incinerator operation to facilitate promoting and sustaining a continuous performance improvement process while demonstrating compliance. This paper describes mixed waste incinerator facility performance-oriented tasks that could be assisted by Artificial Intelligence (AI) and the requirements for AI tools that would implement these algorithms in a computer-based system. 4 figs., 1 tab

  20. Organic household waste - incineration or recycling

    International Nuclear Information System (INIS)

    2003-01-01

    The Danish Environmental Protection Agency has carried out a cost benefit analysis of the consequences of increasing recycling of organic household waste. In the cost benefit analysis both the economic consequences for the affected parties and the welfare-economic consequences for the society as a whole have been investigated. In the welfare-economic analysis the value of the environmental effects has been included. The analysis shows that it is more expensive for the society to recycle organic household waste by anaerobic digestion or central composting than by incineration. Incineration is the cheapest solution for the society, while central composting is the most expensive. Furthermore, technical studies have shown that there are only small environmental benefits connected with anaerobic digestion of organic waste compared with incineration of the waste. The primary reason for recycling being more expensive than incineration is the necessary, but cost-intensive, dual collection of the household waste. Treatment itself is cheaper for recycling compared to incinerating. (BA)

  1. 7 CFR 160.201 - Fees generally for field inspection and certification of naval stores and drum containers of rosin.

    Science.gov (United States)

    2010-01-01

    ... Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... concentration and storage yards, subsequent to grading, per drum—$2.25. (iv) Examination of the external or... inspector or the Chief of the Marketing Programs Branch has been advised regarding the location, nature...

  2. Permitting a hazardous waste incinerator

    International Nuclear Information System (INIS)

    Ambrose, M.L.

    1987-01-01

    In recent years, changes in the laws and regulations have produced an increased emphasis on proper solid waste disposal. Experience with various types of industrial wastes has shown that a large segment of these materials should not go to a landfill. If these wastes are prohibited from landfills, an effective alternative is incineration. The Department of Energy (DOE) has seen the need to build an incinerator at the Oak Ridge Gaseous Diffusion Plant to treat wastes that are generated at the DOE-Oak Ridge Operations facilities, many of which are contaminated with low levels of radioactivity. An extensive effort has been put forth to bring this project to reality. Several permits from the Environmental Protection Agency and the Tennessee Department of Health and Environment are required before the facility can operate. These permits include: (1) Resource Conservation and Recovery Act Part B Permit, (2) Toxic Substances Control Act Permit, (3) National Pollutant Discharge Elimination System Permit, (4) Tennessee State Air Permit, and (5) National Emission Standard for Hazardous Air Pollutants Approval Letter. The permitting process has been very long and involved and has taken nearly three years to complete. Currently, plans are to have the facility fully operational by January 1988

  3. Apparatus for incinerating hazardous waste

    Science.gov (United States)

    Chang, R.C.W.

    1994-12-20

    An apparatus is described for incinerating wastes, including an incinerator having a combustion chamber, a fluid-tight shell enclosing the combustion chamber, an afterburner, an off-gas particulate removal system and an emergency off-gas cooling system. The region between the inner surface of the shell and the outer surface of the combustion chamber forms a cavity. Air is supplied to the cavity and heated as it passes over the outer surface of the combustion chamber. Heated air is drawn from the cavity and mixed with fuel for input into the combustion chamber. The pressure in the cavity is maintained at least approximately 2.5 cm WC higher than the pressure in the combustion chamber. Gases cannot leak from the combustion chamber since the pressure outside the chamber (inside the cavity) is higher than the pressure inside the chamber. The apparatus can be used to treat any combustible wastes, including biological wastes, toxic materials, low level radioactive wastes, and mixed hazardous and low level transuranic wastes. 1 figure.

  4. Suicide by self-incineration

    DEFF Research Database (Denmark)

    Leth, Peter Mygind; Hardt-Madsen, Michael

    1997-01-01

    During a 10-year period (1980-1989), at least 43 cases of self-incineration with lethal outcome took place in Denmark. The incidence seems to be increasing: 11 cases took place in the first 5 years and 32 cases in the last 5 years. An even sex ratio as found (male:female = 23:20). The median age...... was 43 years, with a broad age range (20-87). Many incidents of self-incineration as a form of political protest were reported in the press especially during the 1960s and 1970s, and the press reports often inspired others to commit suicide in the same way. None of the cases in our investigation were...... victims were of Danish origin, and a religious motive played no significant role. Most of the victims were suffering from mental illness, and a majority had tried to commit suicide before. None of the victims left a suicide note. The scene was most often at home and indoors--only a minority committed...

  5. Introduce Construction Technology through Home Inspection

    Science.gov (United States)

    Wiggins, Enrique R.

    2007-01-01

    Introducing technology education students to the field of home inspection gives them a great opportunity to learn about and apply construction technology content. In working with his 8th-grade students, the author covers the purpose of a home inspection, the dynamic of home inspections, the process involved in inspecting schools and homes and…

  6. No effects of power line frequency extremely low frequency electromagnetic field exposure on selected neurobehavior tests of workers inspecting transformers and distribution line stations versus controls.

    Science.gov (United States)

    Li, Li; Xiong, De-fu; Liu, Jia-wen; Li, Zi-xin; Zeng, Guang-cheng; Li, Hua-liang

    2014-03-01

    We aimed to evaluate the interference of 50 Hz extremely low frequency electromagnetic field (ELF-EMF) occupational exposure on the neurobehavior tests of workers performing tour-inspection close to transformers and distribution power lines. Occupational short-term "spot" measurements were carried out. 310 inspection workers and 300 logistics staff were selected as exposure and control. The neurobehavior tests were performed through computer-based neurobehavior evaluation system, including mental arithmetic, curve coincide, simple visual reaction time, visual retention, auditory digit span and pursuit aiming. In 500 kV areas electric field intensity at 71.98% of total measured 590 spots were above 5 kV/m (national occupational standard), while in 220 kV areas electric field intensity at 15.69% of total 701 spots were above 5 kV/m. Magnetic field flux density at all the spots was below 1,000 μT (ICNIRP occupational standard). The neurobehavior score changes showed no statistical significance. Results of neurobehavior tests among different age, seniority groups showed no significant changes. Neurobehavior changes caused by daily repeated ELF-EMF exposure were not observed in the current study.

  7. AMES, NESC and ENIQ: European networks in the field of structural integrity involving NDE and inspection effectiveness assessment

    International Nuclear Information System (INIS)

    Crutzen, S.; Hurst, R.; Debarberis, L.; Lemaitre, P.; Eriksen, B.

    1999-01-01

    Three European networks on structural integrity aspects of ageing nuclear components are presently managed by the Institute for Advanced Materials of the Joint Research Centre of the European Commission: AMES (Ageing Materials Evaluation and Studies), ENIQ (European Network for Inspection Qualification) and NESC (Network for Evaluating Steel Components). All three networks involve actions, which aim at the effectiveness and reliability assessment of NDE techniques and of inspection procedures: Either for materials damage detection and characterisation or for defect detection and evaluation. This paper is describing very generally the objectives of the three networks and is then concentrating on the results obtained in ENIQ, which are relevant with ISI and regulatory issues. (orig./DGE)

  8. Radioactive-waste incineration at Purdue University

    International Nuclear Information System (INIS)

    1982-11-01

    A study conducted at Purdue University to evaluate the feasibility of using a small (45 kg/h), inexpensive (less than $10K) incinerator for incinerating low-level radioactive waste is described. An oil-fired, dual-chamber pathological waste incinerator was installed on a 12.7-cm-thick concrete floor in a metal quonset building. A standard EPA Method 5 sampling train was used to obtain stack samples. Also, stack gas velocity was measured with a type 5 pitot tube; stack temperature was measured with a thermocouple and pyrometer. The incinerator was tested for emissions from incineration of laboratory animal carcasses, liquid scintillation fluid, and trash. Emissions measured were particulates, SO/sub x/, NO/sub x/, Cl, CO, CO 2 , H 2 O, and unburned hydrocarbons in the particulate fraction. Three analyses were then averaged to arrive at the final determinations. Results of the study demonstrated the feasibility and cost-effectiveness of incinerating radioactive animal carcasses and liquid scintillation fluids, since emissions from those waste types were within EPA and State of Indiana limits. However, emissions from burning of trash exceeded State of Indiana limits. Therefore, incineration of trash alone, particularly if it contains glass or significant amounts of plastic, is not a recommended use of the tested equipment

  9. Emissions and dioxins formation from waste incinerators

    International Nuclear Information System (INIS)

    Carbone, A.I.; Zagaroli, M.

    1989-01-01

    This paper describes current knowledge on dioxins formation and emission from waste incinerators. The pertinent Italian law and effects on man health are dealt with, too. The picture of existing municipal incinerators is presented concerning both the actual emission levels and the monitored levels in the environment. Sampling and analysis systems of these organic chlorinated micro-pollutants and current theories on precursors, formation mechanisms, and influence of different parameters are also described. The last section deals with some of the techniques that can be used to reduce dioxins formation and emission from municipal incinerators. (author)

  10. Radwaste incineration, is it ready for use

    International Nuclear Information System (INIS)

    Coplan, B.W.

    1982-01-01

    The incinerator installed at JAERI in 1973 has the record of being operated continually for eight years without noticeable damage even in the refractories. We are convinced that it can be used for along period of time. These incinerators in Japan are now regarded as the useful and reliable waste management facilities, though they are processing the restricted sorts of wastes, such as low level ombustible solids and oils. In the future, incinerators of these types are supposed to increase in number in Japan, and they will continue to contribute as an important volume reduction measure which can also convert the wastes to chemically stable substances

  11. Development and testing of a mobile incinerator

    International Nuclear Information System (INIS)

    Eggett, D.R.

    1986-01-01

    The development and testing of a mobile incinerator for processing of combustible dry active waste (DAW) and contaminated oil generated at Nuclear Power Plants is presented. Topics of discussion include initial thoughts on incineration as applied to nuclear waste; DOE's Aerojet's, and CECo's role in the Project; design engineering concepts; site engineering support; licensability; generation of test data; required reports of the NRC and Illinois and California EPA's; present project schedule for incinerating DAW at Dresden and other CECo Stations; and lessons learned from the project

  12. Incineration facilities for treatment of radioactive wastes: a review

    Energy Technology Data Exchange (ETDEWEB)

    Perkins, B.L.

    1976-02-01

    A description is given of incinerator installations in the US and in foreign countries. Included are descriptions of inactive incinerators, incinerator facilities currently in operation, and incinerator installations under construction. Special features of each installation and operational problems of each facility are emphasized. Problems in the incineration of radioactive waste are discussed in relation to the composition of the waste and the amount and type of radioactive contaminant.

  13. Incineration facilities for treatment of radioactive wastes: a review

    International Nuclear Information System (INIS)

    Perkins, B.L.

    1976-02-01

    A description is given of incinerator installations in the US and in foreign countries. Included are descriptions of inactive incinerators, incinerator facilities currently in operation, and incinerator installations under construction. Special features of each installation and operational problems of each facility are emphasized. Problems in the incineration of radioactive waste are discussed in relation to the composition of the waste and the amount and type of radioactive contaminant

  14. Suicide by self-incineration

    DEFF Research Database (Denmark)

    Leth, Peter Mygind; Hardt-Madsen, Michael

    1997-01-01

    was 43 years, with a broad age range (20-87). Many incidents of self-incineration as a form of political protest were reported in the press especially during the 1960s and 1970s, and the press reports often inspired others to commit suicide in the same way. None of the cases in our investigation were...... victims were of Danish origin, and a religious motive played no significant role. Most of the victims were suffering from mental illness, and a majority had tried to commit suicide before. None of the victims left a suicide note. The scene was most often at home and indoors--only a minority committed...... suicide in remote areas of the countryside. Most were found dead at the scene, and the cause of death was usually heat exposure. Only a minority had a lethal carboxy-hemoglobin (CO-Hb) concentration. It is concluded that close cooperation between police, fire experts, and the forensic pathologist...

  15. Solidification of radioactive incinerator ash

    International Nuclear Information System (INIS)

    Schuler, T.F.; Charlesworth, D.L.

    1986-01-01

    The Ashcrete process will solidify ash generated by the Beta Gamma Incinerator (BGI) at the Savannah River Plant (SRP). The system remotely handles, adds material to, and tumbles drums of ash to produce ashcrete, a stabilized wasteform. Full-scale testing of the Ashcrete unit began at Savannah River Laboratory (SRL) in January 1984, using nonradioactive ash. Tests determined product homogeneity, temperature distribution, compressive strength, and final product formulation. Product formulations that yielded good mix homogeneity and final product compressive strength were developed. Drum pressurization and temperature rise (resulting from the cement's heat of hydration) were also studied to verify safe storage and handling characteristics. In addition to these tests, an expert system was developed to assist process troubleshooting

  16. Quantifying capital goods for waste incineration

    DEFF Research Database (Denmark)

    Brogaard, Line Kai-Sørensen; Riber, C.; Christensen, Thomas Højlund

    2013-01-01

    Materials and energy used for the construction of modern waste incineration plants were quantified. The data was collected from five incineration plants (72,000–240,000tonnes per year) built in Scandinavia (Norway, Finland and Denmark) between 2006 and 2012. Concrete for the buildings was the main...... of producing the materials used in the construction, steel for the building and the machinery contributed the most. The material and energy used for the construction corresponded to the emission of 7–14kg CO2 per tonne of waste combusted throughout the lifetime of the incineration plant. The assessment showed...... that, compared to data reported in the literature on direct emissions from the operation of incinerators, the environmental impacts caused by the construction of buildings and machinery (capital goods) could amount to 2–3% with respect to kg CO2 per tonne of waste combusted....

  17. Solid waste combustion for alpha waste incineration

    International Nuclear Information System (INIS)

    Orloff, D.I.

    1981-02-01

    Radioactive waste incinerator development at the Savannah River Laboratory has been augmented by fundamental combustion studies at the University of South Carolina. The objective was to measure and model pyrolysis and combustion rates of typical Savannah River Plant waste materials as a function of incinerator operating conditions. The analytical models developed in this work have been incorporated into a waste burning transient code. The code predicts maximum air requirement and heat energy release as a function of waste type, package size, combustion chamber size, and temperature. Historically, relationships have been determined by direct experiments that did not allow an engineering basis for predicting combustion rates in untested incinerators. The computed combustion rates and burning times agree with measured values in the Savannah River Laboratory pilot (1 lb/hr) and full-scale (12 lb/hr) alpha incinerators for a wide variety of typical waste materials

  18. Los Alamos controlled-air incineration studies

    International Nuclear Information System (INIS)

    Koenig, R.A.; Warner, C.L.

    1983-01-01

    Current regulations of the Environmental Protection Agency (EPA) require that PCBs in concentrations greater than 500 ppM be disposed of in EPA-permitted incinerators. Four commercial incineration systems in the United States have EPA operating permits for receiving and disposing of concentrated PCBs, but none can accept PCBs contaminated with nuclear materials. The first section of this report presents an overview of an EPA-sponsored program for studying PCB destruction in the large-scale Los Alamos controlled-air incinerator. A second major FY 1983 program, sponsored by the Naval Weapons Support Center, Crane, Indiana, is designed to determine operating conditions that will destroy marker smoke compounds without also forming polycyclic aromatic hydrocarbons (PAHs), some of which are known or suspected to be carcinogenic. We discuss the results of preliminary trial burns in which various equipment and feed formulations were tested. We present qualitative analyses for PAHs in the incinerator offgas as a result of these tests

  19. Highly Efficient Fecal Waste Incinerator, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Volume reduction is a critical element of Solid Waste Management for manned spacecraft and planetary habitations. To this end, the proposed fecal waste incinerator...

  20. 40 years of experience in incineration of radioactive waste in Belgium

    International Nuclear Information System (INIS)

    Vanbrabant, R.; Deckers, J.; Luycx, P.; Detilleux, M.; Beguin, Ph.

    2001-01-01

    Since the very beginning of the nuclear activities in Belgium, the incineration of radioactive waste was chosen as a suitable technique for achieving an optimal volume reduction of the produced waste quantities; several R and D projects were realised in this specific field and different facilities were erected and operated. An experimental furnace ''Evence Coppee'' was built in 1960 for treatment of LLW produced by the Belgian Research Centre (SCK/CEN). Regularly this furnace has been modified, improved and equipped with additional installations to obtain better combustion conditions and a more efficient gas cleaning system. Based on the 35 years experience gained by the operation of the ''Evence Coppee'', a completely new industrial incineration installation has been designed in the nineties and commissioned in May 1995, in the frame of the erection of the Belgian Centralised Treatment/Conditioning Facility CILVA. At the end of 1998, the new furnace has burnt 455 tons of solid waste and 246 tons of liquid waste. Besides the conventional incineration process, a High Temperature Slagging Incinerator (HTSI) has been developed, constructed and operated for 10 years in the past. This installation was the combination of an incinerator and a melter producing melted granulated material instead of ashes, and provided experience in the incineration of hazardous waste, such as chlorinated organic compounds and waste with PCB content. The paper presents ''the Belgian Experience'' accumulated year after year with the design and the operation of the above mentioned facilities and demonstrates how the needs required today for a modern installation are met. The paper covers the following aspects; design particularities and description of the systems, operational results for different solid waste categories (bulk waste, precompacted waste, ion exchange resins) and for different liquid waste categories (organic, aqueous, oil), required pretreatment of the waste, ashes conditioning

  1. ORGDP RCRA/PCB incinerator facility

    International Nuclear Information System (INIS)

    Rogers, T.

    1987-01-01

    A dual purpose solid/liquid incinerator is currently being constructed at the Oak Ridge Gaseous Diffusion Plant [ORGDP (K-25)] to destroy uranium contaminated, hazardous organic wastes in compliance with the Toxic Substances Control Act (TSCA) and the Resource Conservation and Recovery Act (RCRA). These wastes are generated by the gaseous diffusion plants in Oak Ridge, TN; Paducah, KY; and Portsmouth, OH. In addition, waste will also be received from the Y-12 Plant, Oak Ridge National Laboratory (ORNL), and the Feed Materials Production Center (FMPC). Destruction of PCBs and hazardous liquid organic wastes will be accomplished in a rotary kiln incinerator with an afterburner. This system was selected faster a study of various alternatives. Incineration was chosen because it is dependable, permanent, detoxifies organics, and reduces volume. The rotary kiln incinerator was selected because it can thermally destroy organic constituents of liquids, solids, and sludges to produce an organically inert ash. In addition to the incineration off-gas treatment system, the facility includes a tank farm, drum storage buildings, a solids preparation area, a control room, and a data management system. The incineration system, off-gas treatment system, and related instrumentation and controls are being provided by International Waste Energy Systems (IWES) which is responsible for design, construction, startup, and performances testing

  2. Recycling ampersand incineration: Evaluating the choices

    International Nuclear Information System (INIS)

    Denison, R.A.; Ruston, J.

    1993-01-01

    Conflicts between proponents of municipal solid waste incineration and advocates of recycling have escalated with efforts to reduce the volume of waste that ends up in landfills. Central to this debate is competition for materials that are both combustible and recyclable. Environmental and economic concerns also play a major role. This book, produced by the Environmental Defense Fund, compares recycling and incineration. It is intended for 'citizens, government officials, and business people who want to help resolve the solid-waste crisis.' The book is divided into three parts: recycling and incineration; health and environmental risk of incineration; and planning, public participation, and environmental review requirements. The book does an excellent job of discussing the benefits of recycling and the pitfalls of incineration. It provides helpful information for identifying questions that should be raised about incineration, but it does not raise similar queries about recycling. There is much worthwhile information here, but the book would be more useful if it identified critical issues for all waste reduction and management options

  3. Hospital Inspections

    Data.gov (United States)

    U.S. Department of Health & Human Services — Welcome to hospitalinspections.org, a website run by the Association of Health Care Journalists (AHCJ) that aims to make federal hospital inspection reports easier...

  4. New alloys for high temperature applications in incineration plants

    International Nuclear Information System (INIS)

    Martinz, H.P.; Koeck, W.

    1993-01-01

    The hot components of incineration plants exposed to temperatures between 800 and 1,200 C like boilers, grates, thermocouple sheaths and nozzles suffer from severe joint slag and hot gas attack. Considering corrosion resistance only, ceramic materials show excellent performance under these conditions. But because of the ceramics' brittleness metallic materials exhibit an overall advantage although being corroded faster. Within the class of suitable metals PM-ODS (oxide dispersion strengthened)-superalloys based on iron or nickel and PM-Cr-base-alloys are among the most promising ones. This can be derived from various laboratory and field tests which were performed up to now. Laboratory oxidation tests indicate that these new alloys can be used at temperatures up to 1,300 C in hot air. High temperature erosion tests with quartz particles show that PM 2,000 (Fe 19,5Cr5,5Al0,5Ti0,5Y 2 O 3 ) and Ducropur (99.7% Cr) have almost the same resistance against particle impact as alumina or zirconia at 900 C. The corresponding laboratory and field tests under typical joint slag and hot gas conditions at temperatures up to 1,200 C show good results for PM 2,000 and already lead to the actual application of boiler components. Extensive testing has been performed in the field of municipal waste incineration. Depending on temperature, slag and hot gas composition selected grades of the PM-ODS and Cr-base-alloy-group give satisfactory results in the field tests. In the pulp industry black liquor, an alkaline solution with high concentrations of organic waste, is incinerated for the recovery of caustic soda. Flame sprayed coatings of Ducrolloy Cr50Ni give a sixfold increase of the lifetime of the burner nozzles compared to unprotected stainless steel

  5. Packaging supplier inspection guide

    International Nuclear Information System (INIS)

    Stromberg, H.M.; Gregg, R.E.; Kido, C.; Boyle, C.D.

    1991-05-01

    This is document is a guide for conducting quality assurance inspections of transportations packaging suppliers, where suppliers are defined as designers, fabricators, distributors, users, or owners of transportation packaging. This document can be used during an inspection to determine regulatory compliance within the requirements of 10 Code of Federal Regulations, Part 71, Subpart H (10 CFR 71.101--71.135). The guidance described in this document provides a framework for an inspection. It provides the inspector with the flexibility to adapt the methods and concepts presented here to meet the needs of the particular facility being inspected. The guide was developed to ensure a structured and consistent approach for inspections. The method treats each activity at a supplier facility as a separate entity (or functional element), and combines the activities within the framework of an ''inspection tree.'' The method separates each functional element into several areas of performance and then identifies guidelines, based on regulatory requirements, to be used to qualitatively rate each area. This document was developed to serve as a field manual to facilitate the work of inspectors. 1 ref., 1 fig., 5 tabs

  6. Report: environmental assessment of Darmstadt (Germany) municipal waste incineration plant.

    Science.gov (United States)

    Rimaityte, Ingrida; Denafas, Gintaras; Jager, Johannes

    2007-04-01

    The focus of this study was the emissions from waste incineration plants using Darmstadt (Germany) waste incineration plant as an example. In the study the emissions generated by incineration of the waste were considered using three different approaches. Initially the emissions from the waste incineration plant were assessed as part of the impact of waste management systems on the environment by using a Municipal Solid Waste Management System (MSWMS) assessment tool (also called: LCA-IWM assessment tool). This was followed by a comparison between the optimal waste incineration process and the real situation. Finally a comparison was made between the emissions from the incineration plant and the emissions from a vehicle.

  7. Conventional incinerator redesign for the incineration of low level radioactive solid wastes

    International Nuclear Information System (INIS)

    Lara Z, L.E.C.

    1997-01-01

    From several years ago have been detected some problems with the storage of low level radioactive solids wastes, they are occasioned growth in volume and weight, one of most effective treatment for its reduction, the incineration has been. In the work was designed an incinerator of low level radioactive solid wastes, the characteristics, range of temperatures, that operate and the excess of air in order to get a near incineration at 100 %; thickness of refractory material in the combustion chamber, materials and forms of installation, the balances of mass, energy and radioactive material necessary for the design of the auxiliary peripheral equipment is discussed. In theory the incineration is a viable option for the treatment of low level radioactive solid wastes, upon getting an approximate reduction to 95 % of the wastes introduced to the incinerator in the Department of Radioactive Wastes of the National Institute of Nuclear Research, avoiding the dispersion of combustion gases and radioactive material at the environment. (Author)

  8. Incineration of contaminated oil from Sellafield - 16246

    International Nuclear Information System (INIS)

    Broadbent, Craig; Cassidy, Helen; Stenmark, Anders

    2009-01-01

    Studsvik have been incinerating Low Level Waste (LLW) at its licensed facility in Sweden since the mid-1970's. This process not only enables the volume of waste to be significantly reduced but also produces an inert residue suitable for final disposal. The facility has historically incinerated only solid dry LLW, however in 2008 an authorisation was obtained to permit the routine incineration of LLW contaminated oil at the facility. Prior to obtaining the authorisation to incinerate oils and other organic liquids - both from clean-up activities on the Studsvik site and on a commercial basis - a development program was established. The primary aims of this were to identify the optimum process set-up for the incinerator and also to demonstrate to the regulatory authorities that the appropriate environmental and radiological parameters would be maintained throughout the new process. The final phase of the development program was to incinerate a larger campaign of contaminated oil from the nuclear industry. A suitable accumulation of oil was identified on the Sellafield site in Cumbria and a commercial contract was established to incinerate approximately 40 tonnes of oil from the site. The inventory of oil chosen for the trial incineration represented a significant challenge to the incineration facility as it had been generated from various facilities on-site and had degraded significantly following years of storage. In order to transport the contaminated oil from the Sellafield site in the UK to the Studsvik facility in Sweden several challenges had to be overcome. These included characterisation, packaging and international transportation (under a Transfrontier Shipment (TFS) authorisation) for one of the first transports of liquid radioactive wastes outside the UK. The incineration commenced in late 2007 and was successfully completed in early 2008. The total volume reduction achieved was greater than 97%, with the resultant ash packaged and returned to the UK (for

  9. 7 CFR 29.26 - Office of inspection.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Office of inspection. 29.26 Section 29.26 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... INSPECTION Regulations Definitions § 29.26 Office of inspection. A field office of the tobacco inspection...

  10. Field test of short-notice random inspections for inventory-change verification at a low-enriched-uranium fuel-fabrication plant

    International Nuclear Information System (INIS)

    Fishbone, L.G.; Moussalli, G.; Naegele, G.

    1995-01-01

    An approach of short-notice random inspections (SNRIs) for inventory-change verification can enhance the effectiveness and efficiency of international safeguards at natural or low-enriched uranium (LEU) fuel fabrication plants. According to this approach, the plant operator declares the contents of nuclear material items before knowing if an inspection will occur to verify them. Additionally, items about which declarations are newly made should remain available for verification for an agreed time. Then a statistical inference can be made from verification results for items verified during SNRIs to the entire populations, i.e. the entire strata, even if inspectors were not present when many items were received or produced. A six-month field test of the feasibility of such SNRIs took place at the Westinghouse Electric Corporation Commercial Nuclear Fuel Division during 1993. Westinghouse personnel made daily declarations about both feed and product items, uranium hexafluoride cylinders and finished fuel assemblies, using a custom-designed computer ''mailbox''. Safeguards inspectors from the IAEA conducted eight SNRIs to verify these declarations. They arrived unannounced at the plant, in most cases immediately after travel from Canada, where the IAEA maintains a regional office. Items from both strata were verified during the SNRIs by meant of nondestructive assay equipment

  11. Theoretical aspects of solid waste incineration

    International Nuclear Information System (INIS)

    Tarbell, J.M.

    1975-01-01

    Theoretical considerations that may be incorporated into the design basis of a prototype incinerator for solid transuranic wastes are described. It is concluded that primary pyrolysis followed by secondary afterburning is a very unattractive incineration strategy unless waste resource recovery is a process goal. The absence of primary combustion air leads to poor waste dispersion with associated diffusion and conduction limitations rendering the process inefficient. Single step oxidative incineration is most attractive when volume reduction is of primary importance. The volume of this type of incinerator (including afterburner) should be relatively much smaller than the pyrolysis type. Afterburning is limited by soot oxidation when preceded by pyrolysis, but limited by turbulent mixing when preceded by direct solid waste oxidation. In either case, afterburner temperatures above 1300 0 K are not warranted. Results based on a nominal solid waste composition and anticipated throughput indicate that NO/sub x/, HF, and SO 2 will not exceed the ambient air quality standards. Control of radioactive particulates, which can be achieved by multiple HEPA filtration, will reduce the conventional particulate emission to the vanishing point. Chemical equilibrium calculations also indicate that chlorine and to a lesser extent fluorine may be precipitated out in the ash as sodium salts if a sufficient flux of sodium is introduced into the incinerator

  12. Quantifying capital goods for waste incineration.

    Science.gov (United States)

    Brogaard, L K; Riber, C; Christensen, T H

    2013-06-01

    Materials and energy used for the construction of modern waste incineration plants were quantified. The data was collected from five incineration plants (72,000-240,000 tonnes per year) built in Scandinavia (Norway, Finland and Denmark) between 2006 and 2012. Concrete for the buildings was the main material used amounting to 19,000-26,000 tonnes per plant. The quantification further included six main materials, electronic systems, cables and all transportation. The energy used for the actual on-site construction of the incinerators was in the range 4000-5000 MW h. In terms of the environmental burden of producing the materials used in the construction, steel for the building and the machinery contributed the most. The material and energy used for the construction corresponded to the emission of 7-14 kg CO2 per tonne of waste combusted throughout the lifetime of the incineration plant. The assessment showed that, compared to data reported in the literature on direct emissions from the operation of incinerators, the environmental impacts caused by the construction of buildings and machinery (capital goods) could amount to 2-3% with respect to kg CO2 per tonne of waste combusted. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Ultrasonic Inspection

    Science.gov (United States)

    1976-01-01

    Automation Industries Inc. has had more than $2 million in contracts to produce innovative equipment for the Apollo program. When Marshall Space Flight Center sought a fast nondestructive way to inspect butt welds in aluminum alloys for spacecraft, the company developed a reliable ultrasonic device using multiple transducers called "delta manipulators" which detect lack of weld penetration not readily seen in radiograph automation. Industry soon adapted the ultrasonic equipment to a unique rail inspection device that saves countless man hours. Device is contained in self propelled railroad cars produced and operated by the company to check old track welds for deterioration.

  14. Operational inspections

    International Nuclear Information System (INIS)

    Bystersky, M.

    1997-01-01

    Special equipment is described, designed for inspection of reactor pressure vessels performed from the inside. Central shaft manipulator ZMM-5 is available for crack detection control using ultrasound and eddy currents, for visual check of surfaces, repair works at the reactor pressure vessel, and hardness measurements. The manipulator consists of the manipulator bridge, a cable container, shaft segments, a control mechanism and auxiliary parts. Eight inspections were performed at the Bohunice nuclear power plant and two at the Paks nuclear power plant. (M.D.)

  15. Clinical waste incinerators in Cameroon--a case study

    DEFF Research Database (Denmark)

    Mochungong, Peter Ikome Kuwoh; Gulis, Gabriel; Sodemann, Morten

    2012-01-01

    Incinerators are widely used to treat clinical waste in Cameroon's Northwest Region. These incinerators cause public apprehension owing to purported risks to operators, communities and the environment. This article aims to summarize findings from an April 2008 case study....

  16. Mound cyclone incinerator. Volume I. Description and performance

    International Nuclear Information System (INIS)

    Klingler, L.M.

    1981-01-01

    The Mound cyclone incinerator was developed to fill a need for a simple, relaible incinerator for volume reduction of dry solid waste contaminated with plutonium-238. Although the basic design of the incinerator is for batch burning of solid combustible waste, the incinerator has also been adapted to volume reduction of other waste forms. Specialized waste feeding equipment enables continuous burning of both solid and liquid waste, including full scintillation vials. Modifications to the incinerator offgas system enable burning of waste contaminated with isotopes other than plutonium-238. This document presents the design and performance characteristics of the Mound Cyclone Incinerator for incineration of both solid and liquid waste. Suggestions are included for adaptation of the incinerator to specialized waste materials

  17. Alkali activation processes for incinerator residues management.

    Science.gov (United States)

    Lancellotti, Isabella; Ponzoni, Chiara; Barbieri, Luisa; Leonelli, Cristina

    2013-08-01

    Incinerator bottom ash (BA) is produced in large amount worldwide and in Italy, where 5.1 millionstons of municipal solid residues have been incinerated in 2010, corresponding to 1.2-1.5 millionstons of produced bottom ash. This residue has been used in the present study for producing dense geopolymers containing high percentage (50-70 wt%) of ash. The amount of potentially reactive aluminosilicate fraction in the ash has been determined by means of test in NaOH. The final properties of geopolymers prepared with or without taking into account this reactive fraction have been compared. The results showed that due to the presence of both amorphous and crystalline fractions with a different degree of reactivity, the incinerator BA geopolymers exhibit significant differences in terms of Si/Al ratio and microstructure when reactive fraction is considered. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Secondary incinerator for radioactive gaseous waste

    International Nuclear Information System (INIS)

    Takeda, Tadashi; Masuda, Takashi.

    1997-01-01

    A vessel incorporated with packings, in which at least either of the packings and the vessel is put to induction-heating by high frequency induction coils, is disposed in a flow channel of radioactive gaseous wastes exhausted from a radioactive waste incinerator. The packings include metals such as stainless pipes and electroconductive ceramics such as C-SiC ceramics. Since only electricity is used as an energy source, in the secondary incinerator for the radioactive gaseous wastes, it can be installed in a cell safely. In addition, if ceramics are used, there is no worry of deterioration of the incinerator due to organic materials, and essential functions are not lowered. (T.M.)

  19. 40 CFR 63.988 - Incinerators, boilers, and process heaters.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 10 2010-07-01 2010-07-01 false Incinerators, boilers, and process... Routing to a Fuel Gas System or a Process § 63.988 Incinerators, boilers, and process heaters. (a) Equipment and operating requirements. (1) Owners or operators using incinerators, boilers, or process...

  20. Conceptual process description of M division incinerator project

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, T.K.

    1989-04-13

    This interoffice memorandum describes an incineration system to be used for incinerating wood. The system is comprised of a shredder and an incinerator. The entire process is described in detail. A brief study of particulates, carbon monoxide, carbon dioxide, and nitrogen oxides emission is presented.

  1. Addition of liquid waste incineration capability to the INEL's low-level waste incinerator

    International Nuclear Information System (INIS)

    Steverson, E.M.; Clark, D.P.; McFee, J.N.

    1986-01-01

    A liquid waste system has recently been installed in the Waste Experimental Reduction Facility (WERF) incinerator at the Idaho National Engineering Laboratory (INEL). In this paper, aspects of the incineration system such as the components, operations, capabilities, capital cost, EPA permit requirements, and future plans are discussed. The principal objective of the liquid incineration system is to provide the capability to process hazardous, radioactively contaminated, non-halogenated liquid wastes. The system consists primarily of a waste feed system, instrumentation and controls, and a liquid burner, which were procured at a capital cost of $115,000

  2. Piping inspection round robin

    International Nuclear Information System (INIS)

    Heasler, P.G.; Doctor, S.R.

    1996-04-01

    The piping inspection round robin was conducted in 1981 at the Pacific Northwest National Laboratory (PNNL) to quantify the capability of ultrasonics for inservice inspection and to address some aspects of reliability for this type of nondestructive evaluation (NDE). The round robin measured the crack detection capabilities of seven field inspection teams who employed procedures that met or exceeded the 1977 edition through the 1978 addenda of the American Society of Mechanical Engineers (ASME) Section 11 Code requirements. Three different types of materials were employed in the study (cast stainless steel, clad ferritic, and wrought stainless steel), and two different types of flaws were implanted into the specimens (intergranular stress corrosion cracks (IGSCCs) and thermal fatigue cracks (TFCs)). When considering near-side inspection, far-side inspection, and false call rate, the overall performance was found to be best in clad ferritic, less effective in wrought stainless steel and the worst in cast stainless steel. Depth sizing performance showed little correlation with the true crack depths

  3. Sea bed mapping and inspection

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    The conference has 24 presentations on the topics: Sea bed mapping, inspection, positioning, hydrography, marine archaeology, remote operation vehicles and computerized simulation technologies, oil field activities and plans, technological experiences and problems. (tk)

  4. Hazardous and radioactive waste incineration studies

    International Nuclear Information System (INIS)

    Vavruska, J.S.; Stretz, L.A.; Borduin, L.C.

    1981-01-01

    Development and demonstration of a transuranic (TRU) waste volume-reduction process is described. A production-scale controlled air incinerator using commercially available equipment and technology has been modified for solid radioactive waste service. This unit successfully demonstrated the volume reduction of transuranic (TRU) waste with an average TRU content of about 20 nCi/g. The same incinerator and offgas treatment system is being modified further to evaluate the destruction of hazardous liquid wastes such as polychlorinated biphenyls (PCBs) and hazardous solid wastes such as pentachlorophenol (PCP)-treated wood

  5. New Swedish regulations in the area of plant inspection and in-service inspection

    International Nuclear Information System (INIS)

    Hansson, B.

    1998-01-01

    History and present status od Swedish regulations in the field of NPP inspection and in-service inspection are described. The presentation focuses on the development of regulations and establishing new ones. A description of different organisations involved is included

  6. Acid gas control process and apparatus for waste fired incinerators

    International Nuclear Information System (INIS)

    Kubin, P.Z.; Stepan, J.E.

    1992-01-01

    This patent describes a process for reducing noxious emission produced in a waste material incinerator. It comprises incinerating solid waste material in a furnace section of the waste material incinerator; providing an additive to an additive supply storage unit; conveying the additive to an additive injection means that communicates with the furnace section of the waste material incinerator; injecting the additive into a turbulent reaction zone of the furnace section such that acid gas content, acid dewpoint temperature and the level of corrosion in the incinerator are reduced

  7. Incineration of wastes from nuclear installations with the Juelich incineration process

    International Nuclear Information System (INIS)

    Wilke, M.

    1979-01-01

    In the Juelich Research Center a two-stage incineration process has been developed which, due to an integral thermal treatment stage, is most suitable for the incineration of heterogeneous waste material. The major advantages of this technique are to be seen in the fact that mechanical treatment of the waste material is no longer required and that off gas treatment is considerably facilitated. (orig.) [de

  8. Electrically fired incineration of combustible radioactive waste

    International Nuclear Information System (INIS)

    Charlesworth, D.; Hill, M.

    1985-01-01

    Du Pont Company and Shirco, Inc. are developing a process to incinerate plutonium-contaminated combustible waste in an electrically fired incineration system. Preliminary development was completed at Shirco, Inc. prior to installing an incineration system at the Savannah River Laboratory (SRL), which is operated by Du Pont for the US Department of Energy (DOE). The waste consists of disposable protective clothing, cleaning materials, used filter elements, and miscellaneous materials exposed to plutonium contamination. Incinerator performance testing, using physically representative nonradioactive materials, was completed in March 1983 at Shirco's Pilot Test Facility in Dallas, TX. Based on the test results, equipment sizing and mechanical begin of a full-scale process were completed by June 1983. The full-scale unit is being installed at SRL to confirm the initial performance testing and is scheduled to begin in June 1985. Remote operation and maintenance of the system is required, since the system will eventually be installed in an isolated process cell. Initial operation of the process will use nonradioactive simulated waste. 2 figs., 2 tabs

  9. EIA for a waste incinerator in Denmark

    DEFF Research Database (Denmark)

    Larsen, Sanne Vammen

    2017-01-01

    A planned new waste incinerator will be located in an area which is at risk of flooding – a risk that will increase under climate change. During public hear- ings as part of the project’s EIA, inclusion of climate risks was requested. This led to mitigation measures which will decrease the risk...

  10. Nitrous Oxide Emissions from Waste Incineration

    Czech Academy of Sciences Publication Activity Database

    Svoboda, Karel; Baxter, D.; Martinec, J.

    2006-01-01

    Roč. 60, č. 1 (2006), s. 78-90 ISSN 0366-6352 R&D Projects: GA AV ČR(CZ) IAA4072201 Institutional research plan: CEZ:AV0Z40720504 Keywords : nitrous oxide * waste * incineration Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 0.360, year: 2006

  11. OVERVIEW OF HAZARDOUS/TOXIC WASTE INCINERATION

    Science.gov (United States)

    Effective hazardous/toxic waste disposal and safe dumpsite cleanup are two of EPA's major missions in the 1980s. Incineration has been recognized as a very efficient process to destroy the hazardous wastes generated by industry or by the dumpsite remediations. The paper provides ...

  12. Incineration of Non-radioactive Simulated Waste

    International Nuclear Information System (INIS)

    Ahmed, A.Z.; Abdelrazek, I.D.

    1999-01-01

    An advanced controlled air incinerator has been investigated, developed and put into successful operation for both non radioactive simulated and other combustible solid wastes. Engineering efforts concentrated on providing an incinerator which emitted a clean, easily treatable off-gas and which produced minimum amounts of secondary waste. Feed material is fed by gravity into the gas reactor without shredding or other pretreatment. The temperature of the waste is gradually increased in a reduced oxygen atmosphere as the resulting products are introduced into the combustion chamber. Steady burning is thus accomplished under easily controlled excess air conditions with the off-gas then passing through a simple dry cleaning-up system. Experimental studies showed that, at lower temperature, CO 2 , and CH 4 contents in gas reactor effluent increase by the increase of glowing bed temperature, while H 2 O, H 2 and CO decrease . It was proved that, a burn-out efficiency (for ash residues) and a volume reduction factor appeared to be better than 95.5% and 98% respectively. Moreover, high temperature permits increased volumes of incinerated material and results in increased gasification products. It was also found that 8% by weight of ashes are separated by flue gas cleaning system as it has chemical and size uniformity. This high incineration efficiency has been obtained through automated control and optimization of process variables like temperature of the glowing bed and the oxygen feed rate to the gas reactor

  13. Use plan for demonstration radioactive-waste incinerator

    International Nuclear Information System (INIS)

    Cooley, L.R.; McCampbell, M.R.; Thompson, J.D.

    1982-04-01

    The University of Maryland at Baltimore was awarded a grant from the Department of Energy to test a specially modified incinerator to burn biomedical radioactive waste. In preparation for the incinerator, the Radiation Safety Office devised a comprehensive plan for its safe and effective use. The incinerator plan includes a discussion of regulations regarding on-site incineration of radioactive waste, plans for optimum use in burning four principal waste forms, controlled air incineration technology, and standard health physics safety practices; a use plan, including waste categorization and segregation, processing, and ash disposition; safety procedures, including personnel and area monitoring; and methods to evaluate the incinerator's effectiveness by estimating its volume reduction factors, mass and activity balances, and by determining the cost effectiveness of incineration versus commercial shallow land burial

  14. Oxygen incineration process for treatment of alpha-contaminated wastes

    International Nuclear Information System (INIS)

    Kim, Jeong Guk; Yang, Hee Chul; Park, Geun Il; Kim, In Tae; Kim, Joon Hyung

    2001-07-01

    As a part of development of a treatment technology for burnable alpha-bearing (or -contaminated) wastes using an oxygen incineration process, which would be expected to produce in Korea, the off-gas volume and compositions were estimated form mass and heat balance, and then compared to those of a general air incineration process. A laboratory-scale oxygen incineration process, to investigate a burnable wastes from nuclear fuel fabricatin facility, was designed, constructed, and then operated. The use of oxygen instead of air in incineratin would result in reduction on off-gas product below one seventh theoretically. In addition, the trends on incineration and melting processes to treat the radioactive alpha-contaminated wastes, and the regulations and guide lines, related to design, construction, and operation of incineration process, were reviewed. Finallu, the domestic regulations related incineration, and the operation and maintenance manuals for oxy-fuel burner and oxygen incineration process were shown in appendixes

  15. On site clean up with a hazardous waste incinerator

    International Nuclear Information System (INIS)

    Cross, F.L. Jr.; Tessitore, J.L.

    1987-01-01

    The Army Corps of Engineers and the EPA have determined that on-site incineration for the detoxification of soils, sediments, and sludges is a viable, safe, and economic alternative. This paper discusses an approach to on-site incineration as a method of detoxification of soils/sediments contaminated with organic hazardous wastes. Specifically, this paper describes the procedures used to evaluate on-site incineration at a large Superfund site with extensive PCB contaminated soils and sediments. The paper includes the following: (1) a discussion of site waste quantities and properties, (2) a selection of an incineration technology with a resulting concept and design, (3) a discussion of incinerator permitting requirements, (4) discussion and rationale for an incinerator sub-scale testing approach, and (5) analysis of on-site incineration cost

  16. Passive electromagnetic NDE for mechanical damage inspection by detecting leakage magnetic flux. (I. Reconstruction of magnetic charges from detected field signals)

    International Nuclear Information System (INIS)

    Chen, Zhenmao; Aoto, Kazumi; Kato, Syoichi

    1999-07-01

    In this report, reconstruction of magnetic charges induced by mechanical damages in a test piece of SUS304 stainless steel is performed as a part of efforts to establish a passive nondestructive testing method on the basis of the inspection of leakage magnetic field. The approach for solving this typical ill-posed inverse problem is selected as a way in the least square method category. Concerning the ill-poseness of the system of equations, an iteration algorithm is adopted to its solving in which the designations of initial profile, the weight coefficients and the total number of iterations are taken as means of regularization. From examples using simulated input data, it is verified that the approach gives good reconstruction results in case of signals with a relative high S/N ratio. For improving the robustness of the proposed method, a Galerkin procedure with base functions chosen as the Daubechies' wavelet is also introduced for discretizing the governing equation. By comparing the reconstruction results of the least square method and those using wavelet discretization, it is found that the wavelet used approach is more feasible in the inversion of noise polluted signals. Reconstruction of 1-D and 2-D magnetic charges with the least square strategy and reconstruction of an 1-D problem with the wavelet used method are carried out from both simulated and measured magnetic field signals which are used as the validation of the proposed inversion strategy. (author)

  17. Passive electromagnetic NDE for mechanical damage inspection by detecting leakage magnetic flux. (I. Reconstruction of magnetic charges from detected field signals)

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Zhenmao; Aoto, Kazumi; Kato, Syoichi [Structure Safety Engineering Group, Oarai Engineering Center, Japan Nuclear Cycle Development Inst., Oarai, Ibaraki (Japan)

    1999-07-01

    In this report, reconstruction of magnetic charges induced by mechanical damages in a test piece of SUS304 stainless steel is performed as a part of efforts to establish a passive nondestructive testing method on the basis of the inspection of leakage magnetic field. The approach for solving this typical ill-posed inverse problem is selected as a way in the least square method category. Concerning the ill-poseness of the system of equations, an iteration algorithm is adopted to its solving in which the designations of initial profile, the weight coefficients and the total number of iterations are taken as means of regularization. From examples using simulated input data, it is verified that the approach gives good reconstruction results in case of signals with a relative high S/N ratio. For improving the robustness of the proposed method, a Galerkin procedure with base functions chosen as the Daubechies' wavelet is also introduced for discretizing the governing equation. By comparing the reconstruction results of the least square method and those using wavelet discretization, it is found that the wavelet used approach is more feasible in the inversion of noise polluted signals. Reconstruction of 1-D and 2-D magnetic charges with the least square strategy and reconstruction of an 1-D problem with the wavelet used method are carried out from both simulated and measured magnetic field signals which are used as the validation of the proposed inversion strategy. (author)

  18. Numerical study of radiation effect on the municipal solid waste combustion characteristics inside an incinerator

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jingfu, E-mail: jfwang@bjut.edu.cn; Xue, Yanqing; Zhang, Xinxin; Shu, Xinran

    2015-10-15

    Highlights: • A 3-D model for the MSW incinerator with preheated air was developed. • Gas radiative properties were obtained from a statistical narrow-band model. • Non-gray body radiation model can provide more accurate simulation results. - Abstract: Due to its advantages of high degree volume reduction, relatively stable residue, and energy reclamation, incineration becomes one of the best choices for Municipal Solid Waste (MSW) disposal. However, detailed measurements of temperature and gas species inside a furnace are difficulty by conventional experimental techniques. Therefore, numerical simulation of MSW incineration in the packed bed and gas flow field was applied. In this work, a three dimensional (3-D) model of incinerator system, including flow, heat transfer, detailed chemical mechanisms, and non-gray gas models, was developed. Radiation from the furnace wall and the flame formed above the bed is of importance for drying and igniting the waste. The preheated air with high temperature is used for the MSW combustion. Under the conditions of high temperature and high pressure, MSW combustion produces a variety of radiating gases. The wavelength-depend radiative properties of flame adopted in non-gray radiation model were obtained from a statistical narrow-band model. The influence of radiative heat transfer on temperature, flow field is researched by adiabatic model (without considering radiation), gray radiation model, and non-gray radiation model. The simulation results show that taking into account the non-gray radiation is essential.

  19. Regulatory inspection in Spain

    International Nuclear Information System (INIS)

    Alvarez de Buergo, L.

    1977-01-01

    The 1964 Act on Nuclear Energy lays down that the Junta de Energia Nuclear is responsible for assessing the hazards of and inspecting nuclear power plants as well as for the transport of nuclear fuel for these plants. The Junta de Energia Nuclear has a specialised service, the Nuclear Safety Department in charge of performing these duties. Experience acquired from work in this field is analysed in this paper. (NEA) [fr

  20. Defense waste cyclone incinerator demonstration program: October--March 1979

    International Nuclear Information System (INIS)

    Klinger, L.M.

    1979-01-01

    The cyclone incinerator developed at Mound has proven to be an effective tool for waste volume reduction. During the first half of FY-1979, efforts have been made to increase the versatility of the system. Incinerator development was continued in three areas. Design changes were drafted for the present developmental incinerator to rectify several minor operational deficiencies of the system. Improvements will be limited to redesign unless installation is required to prove design or to permit implementation of other portions of the plan. The applications development portion of the feasibility plan is focused upon expanding the versatility of the incinerator. An improved delivery system was installed for burning various liquids. An improved continuous feed system was installed and will be demonstrated later this year. Late in FY-1979, work will begin on the conceptual design of a production cyclone incinerator which will handle nonrecoverable TRU waste, and which will fully demonstrate the capabilities of the cyclone incinerator system. Data generated in past years and during FY-1979 are being collected to establish cyclone incineration effects on solids, liquids, and gases in the system. Data reflecting equipment life cycles and corrosion have been tabulated. Basic design criteria for a cyclone incinerator system based on developmental work on the incinerator through FY-1979 have been assembled. The portion of the material dealing with batch-type operation of the incinerator will be published later this year

  1. Ohio incinerator given the go-ahead

    International Nuclear Information System (INIS)

    Kemezis, P.

    1992-01-01

    A federal judge has denied a request for an injunction against the startup of the long-stalled Waste Technologies Industries (WTI) commercial hazardous waste incinerator in East Liverpool, OH. The $140-million plant, owned by a US subsidiary of Swiss engineering group Von Roll Ltd. (Zuerich), will go through a startup stage and a seven-day trial burn during the next two months, according to WTI. In testimony in federal court in Huntington, WV, WTI had said it was losing $115,000/day in fixed costs because of the plant's startup delay. The company also said that long-term contracts with Chemical Waste Management (CWM; Oak Brook, IL), Du Pont (Wilmington, DE), and BASF Corp. (Parsippany, NJ) to use plant services could be jeopardized by the delay. WTI is believed to have 10-year service contracts with the three companies and also will use CWM to dispose of the ash from the incinerator

  2. Design, operation and management of waste incinerators; Design, Betrieb und Management von Muellverbrennungsanlagen

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, U.; Swithenbank, J.; Nasserzadeh, V.; Ewan, B.; Lee, P.H. [Sheffield Univ. (United Kingdom). Waste Incineration Centre; Lawrence, D.; Garrod, N.P. [Sheffield Heat and Power Ltd. (United Kingdom); Jones, B.; Sykes, G. [Sheffield Incinerator Plant (United Kingdom); Bernet, U. [Electrowatt Engineering Ltd. (Switzerland)

    1998-09-01

    Design of combustion chambers for solid residues combution is hampered by the non-existence of accurate mathematical models of the combustion process, so that semi-empirical correlations must be used. Modern flow simulation programs (computational fluid dynamics), on the other hand, offer the pssibility of predicting flow in the gaseous phase although further tests are still required for validation. Since experiments on a laboratory scale hardly ever provide reliable data material, research in the field of waste incineration must make tests on industrial-scale systems. For this reason, the Sheffield University Waste Incineration Centre (SUWIC) cooperated with Sheffield Heat and Power Ltd and was therefore able to carry out extensive research at the Bernard Road waste incinerator in Sheffield. (orig./SR) [Deutsch] Die Konstruktion von Feueraeumen zur Feststoffverbrennung wird dadurch behindert, dass kein genaues mathematisches Modell fuer den Verbrennungsprozess existiert. Statt dessen muss noch immer auf halb-empirische Korrelationen zurueckgegriffen werden. Aufgrund moderner Stroemungssimulationsprogramme (Computational Fluid Dynamics) ist hingegen die Vorhersage des Stroemungsverhaltens der Gasphase in Verbrennungsanlagen weiter entwickelt, obwohl zusaetzliche Tests zur Validierung noch erforderlich sind. Da Versuche im Testmassstab selten verlaessliches Datenmaterial liefern, ist die Forschung im Bereich der Muellverbrennung auf Tests an Grossanlagen angewiesen. Dank der guten Beziehungen zu Sheffield Heat and Power Ltd hat Sheffield University Waste Incineration Centre (SUWIC) an der Bernard Road Muellverbrennungsanlage in Sheffield ein umfangreiches Forchungsprogramm durchfuehren koennen. (orig./SR)

  3. An Inclusive Investigation on Conceivable Performance of Rice Straw Incinerated Electricity Generation

    Science.gov (United States)

    Bhattacharjee, Subhadeep; Mohanta, Subhajit

    2018-03-01

    Biomass energy is one of the potential renewable energy sources which occupy 77% of the available natural resources of the world. In India, agro residues constitute a major part of the total annual production of the biomass resource. Rice is the major crop in India that leaves substantial quantity of straw in the field. 34% of rice straw residue produced in the country is surplus and is either left in the field as uncollected or to a large extent open-field burnt. Thus, the unutilized rice straw is found promising for heat and power generation either through incineration (direct combustion) or thermo chemical conversion. This present work envisages the comprehensive performative evaluation of a rice straw supported biomass incineration power plant mainly through plant performance characterization, plant economics, and co-firing issues with emission analysis.

  4. Conceptual design report for alpha waste incinerator

    International Nuclear Information System (INIS)

    1979-04-01

    The Alpha Waste Incinerator, a new facility in the SRP H-Area, will process transuranic or alpha-contaminated combustible solid wastes. It will seal the radioactive ash and scrubbing salt residues in cans for interim storage in drums on site burial ground pads. This report includes objectives, project estimate, schedule, standards and criteria, excluded costs, safety evaluation, energy consumption, environmental assessment, and key drawings

  5. The Savannah River Plant Consolidated Incineration Facility

    International Nuclear Information System (INIS)

    Weber, D.A.

    1987-01-01

    A full scale incinerator is proposed for construction at the Savannah River Plant (SRP) beginning in August 1989 for detoxifiction and volume reduction of liquid and solid low-level radioactive, mixed and RCRA hazardous waste. Wastes to be burned include drummed liquids, sludges and solids, liquid process wastes, and low-level boxed job control waste. The facility will consist of a rotary kiln primary combustion chamber followed by a tangentially fired cylindrical secondary combustion chamber (SCC) and be designed to process up to 12 tons per day of solid and liquid waste. Solid waste packaged in combustible containers will be fed to the rotary kiln incinerator using a ram feed system and liquid wastes will be introduced to the rotary kiln through a burner nozzle. Liquid waste will also be fed through a high intensity vortex burner in the SCC. Combustion gases will exit the SCC and be cooled to saturation in a spray quench. Particulate and acid gas are removed in a free jet scrubber. The off-gas will then pass through a cyclone separator, mist eliminator, reheater high efficiency particulate air (HEPA) filtration and induced draft blowers before release to the atmosphere. Incinerator ash and scrubber blowdown will be immobilized in a cement matrix and disposed of in an onsite RCRA permitted facility. The Consolidated Incineration Facility (CIF) will provide detoxification and volume reduction for up to 560,000 CUFT/yr of solid waste and up to 35,700 CUFT/yr of liquid waste. Up to 50,500 CUFT/yr of cement stabilized ash and blowdown will beproduced for an average overall volume reduction fator of 22:1. 3 figs., 2 tabs

  6. Arsenic burden survey among refuse incinerator workers

    Directory of Open Access Journals (Sweden)

    Chao Chung-Liang

    2005-01-01

    Full Text Available Background: Incinerator workers are not considered to have arsenic overexposure although they have the risk of overexposure to other heavy metals. Aim: To examine the relationship between arsenic burden and risk of occupational exposure in employees working at a municipal refuse incinerator by determining the concentrations of arsenic in the blood and urine. Settings and Design: The workers were divided into three groups based on their probability of contact with combustion-generated residues, namely Group 1: indirect contact, Group 2: direct contact and Group 3: no contact. Healthy age- and sex-matched residents living in the vicinity were enrolled as the control group. Materials and Methods: Heavy metal concentrations were measured by atomic absorption spectrophotometer. Downstream rivers and drinking water of the residents were examined for environmental arsenic pollution. A questionnaire survey concerning the contact history of arsenic was simultaneously conducted. Statistical analysis: Non-parametric tests, cross-tabulation and multinomial logistic regression. Results: This study recruited 122 incinerator workers. The urine and blood arsenic concentrations as well as incidences of overexposure were significantly higher in the workers than in control subjects. The workers who had indirect or no contact with combustion-generated residues had significantly higher blood arsenic level. Arsenic contact history could not explain the difference. Airborne and waterborne arsenic pollution were not detected. Conclusion: Incinerator workers run the risk of being exposed to arsenic pollution, especially those who have incomplete protection in the workplace even though they only have indirect or no contact with combustion-generated pollutants.

  7. Possibilities of municipal solid waste incinerator fly ash utilisation.

    Science.gov (United States)

    Hartmann, Silvie; Koval, Lukáš; Škrobánková, Hana; Matýsek, Dalibor; Winter, Franz; Purgar, Amon

    2015-08-01

    Properties of the waste treatment residual fly ash generated from municipal solid waste incinerator fly ash were investigated in this study. Six different mortar blends with the addition of the municipal solid waste incinerator fly ash were evaluated. The Portland cement replacement levels of the municipal solid waste incinerator fly ash used were 25%, 30% and 50%. Both, raw and washed municipal solid waste incinerator fly ash samples were examined. According to the mineralogical composition measurements, a 22.6% increase in the pozzolanic/hydraulic properties was observed for the washed municipal solid waste incinerator fly ash sample. The maximum replacement level of 25% for the washed municipal solid waste incinerator fly ash in mortar blends was established in order to preserve the compressive strength properties. Moreover, the leaching characteristics of the crushed mortar blend was analysed in order to examine the immobilisation of its hazardous contents. © The Author(s) 2015.

  8. Commercial Cyclone Incinerator Demonstration Program: April-September 1979

    International Nuclear Information System (INIS)

    Alexander, B.M.

    1979-01-01

    The commercial cyclone incinerator program was designed to study the effects of burning low-level waste contaminated with beta and gamma emitters in a cyclone system. The ultimate program goal is the demonstration of a cyclone incinerator at a nuclear power plant. During the past six months, the first program objective, NRC review of the Feasibility Plan, was achieved, and work began on the second objective, Complete Incinerator Feasibility Plan. Potential applications for the cyclone incinerator have been investigated. The feasibility plan for the incinerator system was reviewed with the Nuclear Regulatory Commission (NRC). Following a series of cold checkout burns, implementation of the feasibility plan was begun with the start of laboratory-scale experiments. Inconel 601 is being investigated as a material of construction for the incinerator burn chamber

  9. Geotechnical engineering properties of incinerator ash mixes.

    Science.gov (United States)

    Muhunthan, B; Taha, R; Said, J

    2004-08-01

    The incineration of solid waste produces large quantities of bottom and fly ash. Landfilling has been the primary mode of disposal of these waste materials. Shortage in landfill space and the high cost of treatment have, however, prompted the search for alternative uses of these waste materials. This study presents an experimental program that was conducted to determine the engineering properties of incinerator ash mixes for use as construction materials. Incinerator ash mixes were tested as received and around optimum compacted conditions. Compaction curves, shear strength, and permeability values of fly ash, bottom ash, and their various blends were investigated. Bottom ash tends to achieve maximum dry density at much lower water content than does fly ash. The mixes displayed a change in their cohesion and friction angle values when one of the two mix components was altered or as a result of the addition of water. The permeability of bottom ash is quite comparable to that of sand. The permeability of fly ash lies in the range of those values obtained for silts and clays. A 100% bottom ash compacted at the optimum water content has a lower density value and yields a higher friction angle and cohesion values than most construction fills. This would encourage the use of bottom ash as a fill or embankment material because free drainage of water will prevent the buildup of pore water pressures.

  10. Rocky Flats Plant fluidized-bed incinerator

    International Nuclear Information System (INIS)

    Meile, L.J.; Meyer, F.G.; Johnson, A.J.; Ziegler, D.L.

    1982-01-01

    Laboratory and pilot-scale testing of a fluidized-bed incineration process for radioactive wastes led to the installation of an 82-kg/hr demonstration unit at Rocky Flats Plant in 1978. Design philosophy and criteria were formulated to fulfill the needs and objectives of an improved radwaste-incineration system. Unique process concepts include low-temperature (550 0 C), flameless, fluidized-bed combustion and catalytic afterburning; in-situ neutralization of acid gases; and dry off-gas cleanup. Detailed descriptions of the process and equipment are presented along with a summary of the equipment and process performance during a 2-1/2 year operational-testing period. Equipment modifications made during the test period are described. Operating personnel requirements for solid-waste burning are shown to be greater than those required for liquid-waste incineration; differences are discussed. Process-utility and raw-materials consumption rates for full-capacity operation are presented and explained. Improvements in equipment and operating procedures are recommended for any future installations. Process flow diagrams, an area floor plan, a process-control-system schematic, and equipment sketches are included

  11. Mobility of organic carbon from incineration residues

    International Nuclear Information System (INIS)

    Ecke, Holger; Svensson, Malin

    2008-01-01

    Dissolved organic carbon (DOC) may affect the transport of pollutants from incineration residues when landfilled or used in geotechnical construction. The leaching of dissolved organic carbon (DOC) from municipal solid waste incineration (MSWI) bottom ash and air pollution control residue (APC) from the incineration of waste wood was investigated. Factors affecting the mobility of DOC were studied in a reduced 2 6-1 experimental design. Controlled factors were treatment with ultrasonic radiation, full carbonation (addition of CO 2 until the pH was stable for 2.5 h), liquid-to-solid (L/S) ratio, pH, leaching temperature and time. Full carbonation, pH and the L/S ratio were the main factors controlling the mobility of DOC in the bottom ash. Approximately 60 weight-% of the total organic carbon (TOC) in the bottom ash was available for leaching in aqueous solutions. The L/S ratio and pH mainly controlled the mobilization of DOC from the APC residue. About 93 weight-% of TOC in the APC residue was, however, not mobilized at all, which might be due to a high content of elemental carbon. Using the European standard EN 13 137 for determination of total organic carbon (TOC) in MSWI residues is inappropriate. The results might be biased due to elemental carbon. It is recommended to develop a TOC method distinguishing between organic and elemental carbon

  12. Research and development plan for the Slagging Pyrolysis Incinerator

    International Nuclear Information System (INIS)

    Hedahl, T.G.; McCormack, M.D.

    1979-01-01

    Objective is to develop an incinerator for processing disposed transuranium waste. This R and D plan describes the R and D efforts required to begin conceptual design of the Slagging Pyrolysis Incinerator (Andco-Torrax). The program includes: incinerator, off-gas treatment, waste handling, instrumentation, immobilization analyses, migration studies, regulations, Belgium R and D test plan, Disney World test plan, and remote operation and maintenance

  13. Incinerators for radioactive wastes in Japanese nuclear power stations

    International Nuclear Information System (INIS)

    Karita, Yoichi

    1983-01-01

    As the measures of treatment and disposal of radioactive wastes in nuclear power stations, the development of the techniques to decrease wastes, to reduce the volume of wastes, to treat wastes by solidification and to dispose wastes has been advanced energetically. In particular, efforts have been exerted on the volume reduction treatment from the viewpoint of the improvement of storage efficiency and the reduction of transport and disposal costs. Incineration as one of the volume reduction techniques has been regarded as the most effective method with large reduction ratio, but it was not included in waste treatment system. NGK Insulators Ltd. developed NGK type miscellaneous solid incinerators, and seven incinerators were installed in nuclear power stations. These incinerators have been operated smoothly, and the construction is in progress in six more plants. The necessity of incinerators in nuclear power stations and the problems in their adoption, the circumstance of the development of NGK type miscellaneous solid incinerators, the outline of the incinerator of Karlsruhe nuclear power station and the problems, the contents of the technical development in NGK, the outline of NGK type incinerators and the features, the outline of the pretreatment system, incinerator system, exhaust gas treatment system, ash taking out system and accessory equipment, the operational results and the performance are described. (Kako, I.)

  14. Nuclear incineration method for long life radioactive wastes

    International Nuclear Information System (INIS)

    Matsumoto, Takaaki; Uematsu, Kunihiko.

    1987-01-01

    Nuclear incineration method is the method of converting the long life radioactive nuclides in wastes to short life or stable nuclides by utilizing the nuclear reaction caused by radiation, unlike usual chemical incineration. By the nuclear incineration, the radioactivity of wastes increases in a short period, but the problems at the time of the disposal are reduced because of the decrease of long life radioactive nuclides. As the radiation used for the nuclear incineration, the neutron beam from fission and fusion reactors and accelerators, the proton beam and gamma ray from accelerators have been studied. The object of the nuclear incineration is actinide, Sr-90, Cs-137, I-129 and Tc-99. In particular, waste actinide emits alpha ray, and is strongly toxic, accordingly, the motive of attempting the nuclear incineration is strong. In Japan, about 24t of waste actinide will accumulate by 2000. The principle of the nuclear incineration, and the nuclear incineration using nuclear fission and fusion reactors and accelerators are described. The nuclear incineration using fission reactors was examined for the first time in 1972 in USA. It is most promising because it is feasible by the present technology without particular research and development. (Kako, I.)

  15. Waste incineration industry and development policies in China.

    Science.gov (United States)

    Li, Yun; Zhao, Xingang; Li, Yanbin; Li, Xiaoyu

    2015-12-01

    The growing pollution from municipal solid waste due to economic growth and urbanization has brought great challenge to China. The main method of waste disposal has gradually changed from landfill to incineration, because of the enormous land occupation by landfills. The paper presents the results of a study of the development status of the upstream and downstream of the waste incineration industry chain in China, reviews the government policies for the waste incineration power industry, and provides a forecast of the development trend of the waste incineration industry. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Simulation of co-incineration of sewage sludge with municipal solid waste in a grate furnace incinerator.

    Science.gov (United States)

    Lin, Hai; Ma, Xiaoqian

    2012-03-01

    Incineration is one of the most important methods in the resource recovery disposal of sewage sludge. The combustion characteristics of sewage sludge and an increasing number of municipal solid waste (MSW) incineration plants provide the possibility of co-incineration of sludge with MSW. Computational fluid dynamics (CFD) analysis was used to verify the feasibility of co-incineration of sludge with MSW, and predict the effect of co-incineration. In this study, wet sludge and semi-dried sludge were separately blended with MSW as mixed fuels, which were at a co-incineration ratios of 5 wt.% (wet basis, the same below), 10 wt.%, 15 wt.%, 20 wt.% and 25 wt.%. The result indicates that co-incineration of 10 wt.% wet sludge with MSW can ensure the furnace temperature, the residence time and other vital items in allowable level, while 20 wt.% of semi-dried sludge can reach the same standards. With lower moisture content and higher low heating value (LHV), semi-dried sludge can be more appropriate in co-incineration with MSW in a grate furnace incinerator. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Significance of waste incineration in Germany; Stellenwert der Abfallverbrennung in Deutschland

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-10-15

    The report on the relevance of waste incineration in Germany is covering the following issues: change of the issue waste incineration in the last century, the controversy on waste incineration in the 80ies; environmental relevance of waste incineration; utilization of incineration residues; contribution to environmental protection; possible hazards for human health due are waste incinerator plants; the central challenges of waste incineration today; potential restraints to energy utilization in thermal waste processing; optimization of the energetic utilization of municipal wastes; future of the waste management and the relevance of waste incineration.

  18. Terahertz Radome Inspection

    Directory of Open Access Journals (Sweden)

    Fabian Friederich

    2018-01-01

    Full Text Available Radomes protecting sensitive radar, navigational, and communications equipment of, e.g., aircraft, are strongly exposed to the environment and have to withstand harsh weather conditions and potential impacts. Besides their significance to the structural integrity of the radomes, it is often crucial to optimize the composite structures for best possible radio performance. Hence, there exists a significant interest in non-destructive testing techniques, which can be used for defect inspection of radomes in field use as well as for quality inspection during the manufacturing process. Contactless millimeter-wave and terahertz imaging techniques provide millimeter resolution and have the potential to address both application scenarios. We report on our development of a three-dimensional (3D terahertz imaging system for radome inspection during industrial manufacturing processes. The system was designed for operation within a machining center for radome manufacturing. It simultaneously gathers terahertz depth information in adjacent frequency ranges, from 70 to 110 GHz and from 110 to 170 GHz by combining two frequency modulated continuous-wave terahertz sensing units into a single measurement device. Results from spiraliform image acquisition of a radome test sample demonstrate the successful integration of the measurement system.

  19. Section 32 Program. Streambank Erosion Control Evaluation and Demonstration. Work Unit 2. Evaluation of Existing Bank Protection. Field Inspection of the Mill Creek Midfloodway Gabion Barrier in the Los Agneles District,

    Science.gov (United States)

    1980-04-01

    flow channel (paragraph 13) was disposed downstream from and in line with the gabion barrier to provide limited additional protection of the levee and...divert flows away from the levees and under the bridge. The locations of these upstream gabions and a cross- sectional view are shown in Figures 3 and 12...ALUATION AND DEMONSTRATION __ WORK UNIT 2-E-VALUATION OF EXISTING BANK PROTE-CTION 0 FIELD INSPECTION OF THE MILL CREEK MIDFLOOD WAY GABION BARRIER IN THE

  20. A study of defects on EUV mask using blank inspection, patterned mask inspection, and wafer inspection

    Energy Technology Data Exchange (ETDEWEB)

    Huh, S.; Ren, L.; Chan, D.; Wurm, S.; Goldberg, K. A.; Mochi, I.; Nakajima, T.; Kishimoto, M.; Ahn, B.; Kang, I.; Park, J.-O.; Cho, K.; Han, S.-I.; Laursen, T.

    2010-03-12

    The availability of defect-free masks remains one of the key challenges for inserting extreme ultraviolet lithography (EUVL) into high volume manufacturing. yet link data is available for understanding native defects on real masks. In this paper, a full-field EUV mask is fabricated to investigate the printability of various defects on the mask. The printability of defects and identification of their source from mask fabrication to handling were studied using wafer inspection. The printable blank defect density excluding particles and patterns is 0.63 cm{sup 2}. Mask inspection is shown to have better sensitivity than wafer inspection. The sensitivity of wafer inspection must be improved using through-focus analysis and a different wafer stack.

  1. Pre-treatment of municipal solid waste incineration (MSWI) bottom ash for utilisation in road construction

    OpenAIRE

    Todorovic, Jelena

    2006-01-01

    Municipal solid waste incineration (MSWI) bottom ash has the potential for utilisation in construction, e.g. as a road base material. Such an utilisation would decrease the amount of bottom ash to be landfilled. However, leachates generated from bottom ash could be concentrated with respect to salts and metals, causing environmental problems. The use of carbonation of as a method to decrease the leaching of inorganic pollutants from MSWI bottom ash has been studied. Field investigations and l...

  2. Holographic inspection of nuclear plant

    International Nuclear Information System (INIS)

    Gordon, A.L.; Armour, I.A.; Glanville, R.; Malcolm, G.J.; Wright, D.G.

    1988-01-01

    The high resolution, enormous depth of field and high tolerance to radiation of holography mean that it has great potential as an inspection tool in the nuclear industry. In addition, the ability of double-pulse holography to yield detailed information on vibration over the whole field of both large and small structures provides measurements that often cannot be obtained in any other way. This paper reviews the development of equipment for the holographic inspection of nuclear fuel elements; a portable holocamera for use inside reactors; and the application of holographic techniques for vibration measurements in a nuclear power station. (author)

  3. Expansion control for cementation of incinerated ash

    International Nuclear Information System (INIS)

    Nakayama, T.; Suzuki, S.; Hanada, K.; Tomioka, O.; Sato, J.; Irisawa, K.; Kato, J.; Kawato, Y.; Meguro, Y.

    2015-01-01

    A method, in which incinerated ash is solidified with a cement material, has been developed to dispose of radioactive incinerated ash waste. A small amount of metallic Al, which was not oxidized in the incineration, existed in the ash. When such ash was mixed with a cement material and water, alkaline components in the ash and the cement were dissolved in the mixing water and then metallic Al reaction with the alkaline compounds resulted in generation of H 2 . Because the H 2 generation began immediately just after the mixing, H 2 bubbles pushed up the mixed grout material and an expanded solidified form was obtained. The expansion leads to lowering the strength of the solidified form and making harmful void. In this study, we tried to control H 2 generation from the reaction of metallic Al in the cementation by means of following two methods, one was a method to let metallic Al react prior to the cementation and the other was a method to add an expansion inhibitor that made an oxide film on the surface of metallic Al. In the pre-treatment, the ash was soaked in water in order to let metallic Al react with it, and then the ash with the immersion solution was dried at 105 Celsius degrees. The pre-treated ash was mixed with an ordinary portland cement and water. The inhibitor of lithium nitrite, sodium nitrite, phosphoric acid, or potassium dihydrogen phosphate was added at the mixing process. The solidified forms prepared using the pre-treated ash and lithium nitrite were not expanded. Phosphoric acid and sodium nitrite were effective for expansion control, but potassium dihydrogen phosphate did not work. (authors)

  4. Radioactivity partitioning in incinerators for miscellaneous low-level wastes

    International Nuclear Information System (INIS)

    Kyle, S.; Bellinger, E.

    1988-03-01

    Her Majesty's Inspectorate of Pollution (HMIP) authorises the use of hospital, university and Local Authority incinerators for the disposal of solid radioactive wastes. At present these authorisations are calculated on ''worst case'' assumptions, this report aims to review the experimental data on radioactivity partitioning in these incinerators, in order to improve the accuracy of HMIP predictions. The types of radionuclides used in medicine were presented and it is noted there is no literature on the composition of university waste. The different types of incinerators are detailed, with diagrams. Major differences in design are apparent, particularly the offgas cleaning equipment in nuclear incinerators which hinders comparisons with institutional incinerators. A comprehensive literature review revealed 17 references on institutional radioactive waste incineration, 11 of these contained data sets. The partitioning experiments were described and show a wide range of methodology from incinerating guinea pigs to filter papers. In general, only ash composition data were presented, with no details of emissions or plating out in the incinerator. Thus the data sets were incomplete, often with a poor degree of accuracy. The data sets contained information on 40 elements; those were compared and general trends were apparent such as the absence of H-3, C-14 and I-125 in the ash in contrast to the high retention of Sc-46. Large differences between data sets were noted for P-32, Sr-85 and Sn-113 and within one experiment for S-35. (author)

  5. 10 CFR 20.2004 - Treatment or disposal by incineration.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Treatment or disposal by incineration. 20.2004 Section 20.2004 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Waste Disposal § 20.2004 Treatment or disposal by incineration. (a) A licensee may treat or dispose of licensed...

  6. Refuse derived fuel incineration: Fuel gas monitoring and analysis

    International Nuclear Information System (INIS)

    Ranaldi, E.; Coronidi, M.; De Stefanis, P.; Di Palo, C.; Zagaroli, M.

    1993-11-01

    Experience and results on refuse derived fuel (selected from municipal solid wastes) incineration are reported. The study involved the investigation of inorganic compounds (heavy metals, acids and toxic gases) emissions, and included feeding materials and incineration residues characterization and mass balance

  7. Project No. 4 - Waste incineration facility

    International Nuclear Information System (INIS)

    2000-01-01

    There are currently 12000 m 3 of combustible waste stored at the Ignalina NPP site. It is estimated that by 2005 the volume will have increase to 15000 m 3 (filters, personnel protection, clothing and plastics). As a part of the preparation for the closure of the Ignalina NPP an incineration facility will be required to process combustible wastes to reduce the overall volume of short-lived radioactive wastes stored at the Ignalina NPP site, thus reducing the overall risk to the environment. Project activities includes the design, construction and commissioning of the proposed facility, including all licensing documentation

  8. High temperature filter for incinerator gas purification

    International Nuclear Information System (INIS)

    Billard, Francois; Brion, Jacques; Cousin, Michel; Delarue, Roger

    1969-01-01

    This note describes a regenerable filter for the hot filtering of incinerator gases. The filter is made of several wire gauze candles coated with asbestos fibers as filtering medium. Unburnt products, like carbon black, terminate their combustion on the filter, reducing the risk of clogging and enhancing the operation time to several hundreds of hours between two regeneration cycles. The filter was tested on a smaller scale mockup, and then on an industrial pilot plant with a 20 kg/h capacity during a long duration. This note describes the installation and presents the results obtained [fr

  9. Incineration, pyrolysis and gasification of electronic waste

    Directory of Open Access Journals (Sweden)

    Gurgul Agnieszka

    2017-01-01

    Full Text Available Three high temperature processes of the electronic waste processing: smelting/incineration, pyrolysis and gasification were shortly discussed. The most distinctive feature of electronic waste is complexity of components and their integration. This type of waste consists of polymeric materials and has high content of valuable metals that could be recovered. The purpose of thermal treatment of electronic waste is elimination of plastic components (especially epoxy resins while leaving non-volatile mineral and metallic phases in more or less original forms. Additionally, the gaseous product of the process after cleaning may be used for energy recovery or as syngas.

  10. Incineration, pyrolysis and gasification of electronic waste

    Science.gov (United States)

    Gurgul, Agnieszka; Szczepaniak, Włodzimierz; Zabłocka-Malicka, Monika

    2017-11-01

    Three high temperature processes of the electronic waste processing: smelting/incineration, pyrolysis and gasification were shortly discussed. The most distinctive feature of electronic waste is complexity of components and their integration. This type of waste consists of polymeric materials and has high content of valuable metals that could be recovered. The purpose of thermal treatment of electronic waste is elimination of plastic components (especially epoxy resins) while leaving non-volatile mineral and metallic phases in more or less original forms. Additionally, the gaseous product of the process after cleaning may be used for energy recovery or as syngas.

  11. ATUE: the end of the incinerator

    International Nuclear Information System (INIS)

    Lilbonne, P.

    1997-01-01

    The CEA's ATUE incinerator is used to burn low-level contaminated solvents and oils since 1981, in order to transform them into chemically stable ashes, thus leading to an important volume reduction: it is composed of an horizontal burner and a vertical gas cooling chamber. Combustion temperature is 900 C; ashes are collected and blocked into cement, with a new special process (PICC). 5 m 3 of liquid produces 350 kg of a solid and stable mixture. This equipment is due to be closed in December 1997, and will then be dismantled

  12. Incineration of low level and mixed wastes: 1986

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    The University of California at Irvine, in cooperation with the Department of Energy, American Society of Mechanical Engineers, and chapters of the Health Physics Society, coordinated this conference on the Incineration of Low-Level Radioactive and Mixed Wastes, with the guidance of professionals active in the waste management community. The conference was held in April 22-25, 1986 at Sheraton airport hotel Charlotte, North Carolina. Some of the papers' titles were: Protection and safety of different off-gas treatment systems in radioactive waste incineration; performance assessment of refractory samples in the Los Alamos controlled-Air incinerator; incineration systems for low-level and mixed wastes; incineration of low-level radioactive waste in Switzerland-operational experience and future activities

  13. Thermal analysis of an enriched flame incinerator for aqueous residues

    Energy Technology Data Exchange (ETDEWEB)

    Lacava, Pedro Teixeira; Pimenta, Amilcar Porto [Divisao de Engenharia Aeronautica, Instituto Tecnologico de Aeronautica, Pca. Mal. Eduardo Gomes, 50, Vila das Acacias, 12228-900, Sao Jose dos Campos, SP (Brazil); Carvalho, Joao A. [Departamento de Energia, Campus de Guaratingueta, Universidade Estadual Paulista, Av. Dr. Ariberto Pereira da Cunha, 333, 12516-410, Guaratingueta, SP (Brazil); Ferreira, Marco Aurelio [Laboratorio Associado de Combustao e Propulsao, Instituto Nacional de Pesquisas Espaciais, Rod. Presidente Dutra, km 40, 12630-000, Cachoeira Paulista, SP (Brazil)

    2006-03-01

    The use of oxygen to enrich the combustion air can be an attractive technique to increase capacity of an incinerator originally designed to operate with air. If incinerator parameters such as operation temperature, turbulence level and residence time are fixed for a certain fuel supply rate, it is possible to increase the residue consumption rate using enriched air. This paper presents the thermal analysis for operation with enriched air of an aqueous residue experimental incinerator. The auxiliary fuel was diesel oil. The theoretical results showed that there is a considerable increase in the incineration ratio up to approximately 50% of O{sub 2} in the oxidiser. The tendency was confirmed experimentally. Thermal analysis was demonstrated to be an important tool to predict possible incinerator capacity increase. (author)

  14. Licensing requirements for backfit incinerators at commercial nuclear power plants

    International Nuclear Information System (INIS)

    Dodge, R.L.; Edwards, C.W.; Wilson, B.

    1984-01-01

    This paper, and the project it reports on, examines the licensing requirements for backfit incinerators at operating power plants. Analysis was made of incinerating low-level dry radioactive waste in a backfit incinerator at an existing power plant. The operation of the incinerator has been studied from viewpoints of operator safety, consequence of system failures including worst case scenarios, and radiological impact for normal and upset conditions. Analysis showed that releases under all normal operating or upset conditions are an extremely small fraction of the applicable limits. Nuclear Regulatory Commission review concluded that the document produced as a result of this project was useful as a design guide and of value in licensing backfit incinerators. 1 table

  15. LCA Comparison of waste incineration in Denmark and Italy

    DEFF Research Database (Denmark)

    Turconi, Roberto; Butera, Stefania; Boldrin, Alessio

    2011-01-01

    Every year around 50 millions Mg solid waste are incinerated in Europe. Large differences exist in different regions, mainly regarding energy recovery, flue gas treatment and management of solid residues. This paper aims to identify and quantify those differences, providing a Life Cycle Assessment...... of two incinerator systems that are representative of conditions in Northern and Southern Europe. The two case studies are Aarhus (Denmark) and Milan (Italy). The results show that waste incineration appears more environmentally friendly in the Danish case than in the Italian one, due to the higher...... energy recovery and to local conditions, e.g. substitution of electricity and heat in the area. Focusing on the incineration process, Milan incinerator performs better than Aarhus, since its upstream impacts (related to the production of chemicals used in flue gas cleaning) are more than compensated...

  16. Additive Manufacturing Infrared Inspection

    Science.gov (United States)

    Gaddy, Darrell; Nettles, Mindy

    2015-01-01

    The Additive Manufacturing Infrared Inspection Task started the development of a real-time dimensional inspection technique and digital quality record for the additive manufacturing process using infrared camera imaging and processing techniques. This project will benefit additive manufacturing by providing real-time inspection of internal geometry that is not currently possible and reduce the time and cost of additive manufactured parts with automated real-time dimensional inspections which deletes post-production inspections.

  17. Waste processing building with incineration technology

    Science.gov (United States)

    Wasilah, Wasilah; Zaldi Suradin, Muh.

    2017-12-01

    In Indonesia, waste problem is one of major problem of the society in the city as part of their life dynamics. Based on Regional Medium Term Development Plan of South Sulawesi Province in 2013-2018, total volume and waste production from Makassar City, Maros, Gowa, and Takalar Regency estimates the garbage dump level 9,076.949 m3/person/day. Additionally, aim of this design is to present a recommendation on waste processing facility design that would accommodate waste processing process activity by incineration technology and supported by supporting activity such as place of education and research on waste, and the administration activity on waste processing facility. Implementation of incineration technology would reduce waste volume up to 90% followed by relative negative impact possibility. The result planning is in form of landscape layout that inspired from the observation analysis of satellite image line pattern of planning site and then created as a building site pattern. Consideration of building orientation conducted by wind analysis process and sun path by auto desk project Vasari software. The footprint designed by separate circulation system between waste management facility interest and the social visiting activity in order to minimize the croos and thus bring convenient to the building user. Building mass designed by inseparable connection series system, from the main building that located in the Northward, then connected to a centre visitor area lengthways, and walked to the waste processing area into the residue area in the Southward area.

  18. Acidic extraction and precipitation of heavy metals from biomass incinerator cyclone fly ash

    Directory of Open Access Journals (Sweden)

    Kröppl M.

    2013-04-01

    Full Text Available Biomass incineration is increasingly used for the generation of heat and/or electricity. After incineration two ash fractions remain. Bottom ashes (the coarser ash fraction can usually be used as fertilizing agent on fields as it contains valuable elements for soils and plants and only minor concentrations of heavy metals. Fly ashes (the finer ash fraction are in most cases disposed as their heavy metal concentrations are too high for a usage as soil enhancer. In this study highly heavy metal contaminated fly ash has been cleaned through extraction with hydrochloric acid. The heavy metals were removed from the extract by precipitation with sodium hydroxide. After the cleaning procedure the ash can be pelletized and be returned to the soils.

  19. Analysis of Discharged Gas from Incinerator using Simulated Organic Solution

    International Nuclear Information System (INIS)

    Kim, Seungil; Kim, Hyunki; Heo, Jun; Kang, Dukwon; Kim, Yunbok; Kwon, Youngbock

    2014-01-01

    Korea has no experience of treatment of RI organic waste and appropriate measures for treatment of organic waste did not suggested. RI organic wastes which are occurring in KOREA are stored at the RI waste storage building of KORAD. But they can't no more receive the RI organic waste because the storage facility for RI organic waste was saturated with these organic wastes. In case of Japan, they recognized the dangerousness of long-term storage for RI organic wastes. In case of Korea, the released concentration of gaseous pollutant from the incinerator is regulated by attached table No.1 of the Notification No. 2012-60 of Nuclear Safety Commission and attached table No.8 of Clean Air Conservation Act. And the dioxin from the incinerator is regulated by attached table No.3 of Persistent Organic Pollutants Control Act. This experiment was performed to examine whether the incinerator introduced from Japan is manufactured suitably for municipal law regulation and to confirm the compliance about the gaseous pollutant released from incinerator with the above-mentioned laws especially attached table No.1 of NSC using simulated organic waste solution. In this experiment, we examined whether the incinerator was manufactured suitably for municipal law regulation and confirmed the compliance about the gaseous pollutant released from incinerator with the above-mentioned laws using simulated organic waste solution. The design requirement of incinerator for RI organic waste in the municipal law regulation is proposed briefly but the requirements for more detail about the incinerator are proposed in regulation of Japan. The incinerator used in this experiment is satisfied with all clauses of the domestic as well as Japan. Multiple safety functions were installed in the incinerator such as air purge system to remove unburned inflammable gases in the furnace and earthquake detector. Also, perfect combustion of RI organic waste is achieved because the temperature in the furnace

  20. Incineration of a Commercial Coating with Nano CeO2

    Science.gov (United States)

    Le Bihan, Olivier; Ounoughene, Ghania; Meunier, Laurent; Debray, Bruno; Aguerre-Chariol, Olivier

    2017-06-01

    The potential environmental risk arising from the incineration of waste containing nanomaterials is a new field which deserves further attention. Some recent studies have begun to focus on this topic but the data are incomplete. In addition, there is a need to consider real life waste. The present study gives some insight into the fate and behavior of a commercial coating containing a commercial additive (7% w/w) based on nano-CeO2 (aggregates of 10 to 40 nm, with elemental particles of 2-3 nm). The tests have been conducted with a system developed in the frame of the NanoFlueGas project. The test protocol was designed to respect the regulatory criteria of a good combustion in incineration plants (temperature around 850°C, highly ventilated combustion, at least 2 s residence time for the combustion gas in a post-combustion chamber at 850°C, and high oxygen/fuel contact). Time tracking by electric low pressure impaction (ELPI) shows that the incineration produces aerosol with number concentration dominated by sub-100 nm particles. Cerium is observed by TEM and EDS analysis but as a minor compound of a sub-group of particles. No nanoCeO2 particles have been observed in the aerosol. ICP-MS analysis indicates that the residual material consists mainly of CeO2 (60% of the mass). Observation by TEM establishes that this material is in the form of aggregates with individual particle of 40-200 nm and suggests that sintering occurred during incineration. As a conclusion, the lab scale incineration study led mainly to the release of nano-CeO2 in the residual material, as the major component. Its size distribution is different than the one of the nano-CeO2 observed in the initial sample before incineration. Additional research is needed to improve the understanding of nanoCeO2 behavior, and to integrate experiments at lab and real scale.

  1. Low-level waste institutional waste incinerator program

    International Nuclear Information System (INIS)

    Thompson, J.D.

    1980-04-01

    Literature surveyed indicated that institutional LLW is composed of organic solids and liquids, laboratory equipment and trash, and some pathological waste. Some toxic and hazardous chemicals are included in the variety of LLW generated in the nation's hospitals, universities, and research laboratories. Thus, the incinerator to be demonstrated in this program should be able to accept each of these types of materials as feedstock. Effluents from the DOE institutional incinerator demonstration should be such that all existing and proposed environmental standards be met. A design requirement was established to meet the most stringent flue gas standards. LLW incineration practice was reviewed in a survey of institutional LLW generators. Incinerator manufacturers were identified by the survey, and operational experience in incineration was noted for institutional users. Manufacturers identified in the survey were contacted and queried with regard to their ability to supply an incinerator with the desired capability. Special requirements for ash removal characteristics and hearth type were imposed on the selection. At the present time, an incinerator type, manufacturer, and model have been chosen for demonstration

  2. Volume Reduction of Decommissioning Burnable Waste with Oxygen Enrich Incinerator

    Energy Technology Data Exchange (ETDEWEB)

    Min, B. Y.; Yang, D. S.; Lee, K. W.; Choi, J. W. [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    The incineration technology is an effective treatment method that contains hazardous chemicals as well as radioactive contamination. The volume reduction of the combustible wastes through the incineration technologies has merits from the view point of a decrease in the amount of waste to be disposed of resulting in a reduction of the disposal cost. Incineration is generally accepted as a method of reducing the volume of radioactive waste. The incineration technology is an effective treatment method that contains hazardous chemicals as well as radioactive contamination. This paper covers the general facility operation of an oxygen-enriched incinerator for the treatment of decommissioning wastes generated from a decommissioning project. The combustible wastes have been treated by the utilization of incinerator the capacity of the average 20 kg/hr. The decommissioning combustible waste of about 31 tons has been treated using Oxygen Enriched incinerator by at the end of 2016. The off-gas flow and temperature were maintained constant or within the desired range. The measured gases and particulate materials in the stack were considerably below the regulatory limits.

  3. Volume Reduction of Decommissioning Burnable Waste with Oxygen Enrich Incinerator

    International Nuclear Information System (INIS)

    Min, B. Y.; Yang, D. S.; Lee, K. W.; Choi, J. W.

    2016-01-01

    The incineration technology is an effective treatment method that contains hazardous chemicals as well as radioactive contamination. The volume reduction of the combustible wastes through the incineration technologies has merits from the view point of a decrease in the amount of waste to be disposed of resulting in a reduction of the disposal cost. Incineration is generally accepted as a method of reducing the volume of radioactive waste. The incineration technology is an effective treatment method that contains hazardous chemicals as well as radioactive contamination. This paper covers the general facility operation of an oxygen-enriched incinerator for the treatment of decommissioning wastes generated from a decommissioning project. The combustible wastes have been treated by the utilization of incinerator the capacity of the average 20 kg/hr. The decommissioning combustible waste of about 31 tons has been treated using Oxygen Enriched incinerator by at the end of 2016. The off-gas flow and temperature were maintained constant or within the desired range. The measured gases and particulate materials in the stack were considerably below the regulatory limits.

  4. Aspects of Inspection Planning

    DEFF Research Database (Denmark)

    Faber, M. H.; Sørensen, John Dalsgaard

    2000-01-01

    Inspection planning for systems is considered with special emphasis to the effect of the quality of inspections on the system reliability and the probability of repair. Inspection quality is described and discussed in terms of inspection reliability and inspection coverage where the latter is set...... in relation to the correlation between the failure modes of the considered system. The inspection planning problem is described in general terms taking basis in the Bayesian decision theory. Practical applicable approaches are derived from the more general but also more involving formulations. The theoretical...

  5. ROBOTIC TANK INSPECTION END EFFECTOR

    International Nuclear Information System (INIS)

    Rachel Landry

    1999-01-01

    The objective of this contract between Oceaneering Space Systems (OSS) and the Department of Energy (DOE) was to provide a tool for the DOE to inspect the inside tank walls of underground radioactive waste storage tanks in their tank farms. Some of these tanks are suspected to have leaks, but the harsh nature of the environment within the tanks precludes human inspection of tank walls. As a result of these conditions only a few inspection methods can fulfill this task. Of the methods available, OSS chose to pursue Alternating Current Field Measurement (ACFM), because it does not require clean surfaces for inspection, nor any contact with the Surface being inspected, and introduces no extra by-products in the inspection process (no coupling fluids or residues are left behind). The tool produced by OSS is the Robotic Tank Inspection End Effector (RTIEE), which is initially deployed on the tip of the Light Duty Utility Arm (LDUA). The RTEE combines ACFM with a color video camera for both electromagnetic and visual inspection The complete package consists of an end effector, its corresponding electronics and software, and a user's manual to guide the operator through an inspection. The system has both coarse and fine inspection modes and allows the user to catalog defects and suspected areas of leakage in a database for further examination, which may lead to emptying the tank for repair, decommissioning, etc.. The following is an updated report to OSS document OSS-21100-7002, which was submitted in 1995. During the course of the contract, two related sub-tasks arose, the Wall and Coating Thickness Sensor and the Vacuum Scarifying and Sampling Tool Assembly. The first of these sub-tasks was intended to evaluate the corrosion and wall thinning of 55-gallon steel drums. The second was retrieved and characterized the waste material trapped inside the annulus region of the underground tanks on the DOE's tank farms. While these sub-tasks were derived from the original intent

  6. ROBOTIC TANK INSPECTION END EFFECTOR

    Energy Technology Data Exchange (ETDEWEB)

    Rachel Landry

    1999-10-01

    The objective of this contract between Oceaneering Space Systems (OSS) and the Department of Energy (DOE) was to provide a tool for the DOE to inspect the inside tank walls of underground radioactive waste storage tanks in their tank farms. Some of these tanks are suspected to have leaks, but the harsh nature of the environment within the tanks precludes human inspection of tank walls. As a result of these conditions only a few inspection methods can fulfill this task. Of the methods available, OSS chose to pursue Alternating Current Field Measurement (ACFM), because it does not require clean surfaces for inspection, nor any contact with the Surface being inspected, and introduces no extra by-products in the inspection process (no coupling fluids or residues are left behind). The tool produced by OSS is the Robotic Tank Inspection End Effector (RTIEE), which is initially deployed on the tip of the Light Duty Utility Arm (LDUA). The RTEE combines ACFM with a color video camera for both electromagnetic and visual inspection The complete package consists of an end effector, its corresponding electronics and software, and a user's manual to guide the operator through an inspection. The system has both coarse and fine inspection modes and allows the user to catalog defects and suspected areas of leakage in a database for further examination, which may lead to emptying the tank for repair, decommissioning, etc.. The following is an updated report to OSS document OSS-21100-7002, which was submitted in 1995. During the course of the contract, two related subtasks arose, the Wall and Coating Thickness Sensor and the Vacuum Scarifying and Sampling Tool Assembly. The first of these subtasks was intended to evaluate the corrosion and wall thinning of 55-gallon steel drums. The second was retrieved and characterized the waste material trapped inside the annulus region of the underground tanks on the DOE's tank farms. While these subtasks were derived from the original

  7. Recovery of plutonium from incinerator ash at Rocky Flats

    International Nuclear Information System (INIS)

    Johnson, T.C.

    1976-01-01

    Incineration of combustible materials highly contaminated with plutonium produces a residue of incinerator ash. Recovery of plutonium from incinerator ash residues at Rocky Flats is accomplished by a continuous leaching operation with nitric acid containing fluoride ion. Special equipment used in the leaching operation consists of a screw feeder, air-lift dissolvers, filters, solids dryer, and vapor collection system. Each equipment item is described in detail. The average dissolution efficiency of plutonium experienced with the process was 68% on the first pass, 74% on the second pass, and 64% on each subsequent pass. Total-solids dissolution efficiencies averaged 47% on the first pass and about 25% on each subsequent pass

  8. CIF---Design basis for an integrated incineration facility

    International Nuclear Information System (INIS)

    Bennett, G.F.

    1991-01-01

    This paper discusses the evolution of chosen technologies that occurred during the design process of the US Department of Energy (DOE) incineration system designated the Consolidated Incineration Facility (CIF) as the Savannah River Plant, Aiken, South Carolina. The Plant is operated for DOE by the Westinghouse Savannah River Company. The purpose of the incineration system is to treat low level radioactive and/or hazardous liquid and solid wastes by combustion. The objective for the facility is to thermally destroy toxic constituents and volume reduce waste material. Design criteria requires operation be controlled within the limits of RCRA's permit envelope

  9. Assessing potential health effects from municipal sludge incinerators: screening methodology

    Energy Technology Data Exchange (ETDEWEB)

    Fradkin, L.; Bruins, J.F.; Lutkenhoff, S.D.; Stara, J.F.; Lomnitz, E.; Rubin, A.

    1987-04-01

    This paper describes a risk assessment methodology for preliminary assessment of municipal sludge incineration. The methodology is a valuable tool in that it can be used for determining the hazard indices of chemical contaminants that might be present in sewage sludge used in incineration. The paper examines source characteristics (i.e., facility design), atmospheric dispersion of emission, and resulting human exposure and risk from sludge incinerators. Seven of the ten organics were screened for further investigation. An example of the calculations are presented for cadmium.

  10. Municipal Solid Waste Incineration For Accra Brewery Limited (Ghana)

    OpenAIRE

    Akoore, Alfred Akelibilna

    2016-01-01

    Waste incineration is a common practice of waste management tool in most developed countries, for the purpose of converting mass and volumes of waste into a very useful energy content. The aim of this study was to compare the costs benefits of waste incineration for Accra Brewery boiler plant and to investigate also the availability of waste and it´s compositions in Accra, as well as to determine the feasibility of using this waste as a source of fuel to the waste incineration plant. T...

  11. Development of an incineration system for radioactive waste

    International Nuclear Information System (INIS)

    Chrubasik, A.

    1989-01-01

    NUKEM GmbH (W. Germany) has developed and built some plants for treatment of radioactive waste. In cooperation with Karlsruhe Nuclear Research Center and on the basis of non-nuclear incineration plants, NUKEM has designed and built a new incineration plant for low level radioactive solid waste. The main features of the plant are improvement of the waste handling during feeding, very low particulate load downstream the incinerator and simple flue-gas cleaning system. This process is suitable for treatment of waste generated above all in nuclear power plants. (author)

  12. Beta-gamma contaminated solid waste incinerator facility

    Energy Technology Data Exchange (ETDEWEB)

    Hootman, H.E.

    1979-10-01

    This technical data summary outlines a reference process to provide a 2-stage, 400 lb/hour incinerator to reduce the storage volume of combustible process waste contaminated with low-level beta-gamma emitters in response to DOE Manual 0511. This waste, amounting to more than 200,000 ft/sup 3/ per year, is presently buried in trenches in the burial ground. The anticipated storage volume reduction from incineration will be a factor of 20. The incinerator will also dispose of 150,000 gallons of degraded solvent from the chemical separations areas and 5000 gallons per year of miscellaneous nonradioactive solvents which are presently being drummed for storage.

  13. Incineration system for solid and liquid radioactive wastes

    International Nuclear Information System (INIS)

    Krutman, J.K.Z.; Grosche Filho, C.E.; Alfonso, S.A.

    1986-01-01

    An incineration system that allows the burning of solid and liquid radioactive wastes transforming them to highly insoluble ashes, and volumetric reduction from 30 to 50 times, depending on the incinerated waste. The global factor of activity retention contained in the waste is the order of 99%. The proposed incineration system allows the total combustion of radioactive waste and the generated gases during the burning. The formation of gaseous secondary wastes is minimum and any liquid waste is formed, reducing the costs of installation and operation. (M.C.K.) [pt

  14. Holography for fast reactor inspection

    International Nuclear Information System (INIS)

    Tozer, B.A.

    1980-01-01

    Holography, an optical process whereby an image of the original subject can be reconstructed in three dimensions, is being developed for use as an optical inspection tool. With a potential information storage density of 10 16 bits/m 2 , the ability to reconstruct in 3 dimensions, a depth of field of up to 8 metres, extremely wide angle of view, and potentially diffraction limited resolution, holography should be invaluable for the optical recording of fast reactors during construction, and the inspection of optically accessible regions during operation, or maintenance down-times. The photographic emulsions used for high resolution holography are fine-grained and fog only very slowly when subjected to γ-radiation, so that inspection of highly radio-active regions and components can be effected satisfactorily. Some of the practical limitations affecting holography are described and ways of overcoming them discussed. Some preliminary results are presented. (author)

  15. Process modeling study of the CIF incinerator

    International Nuclear Information System (INIS)

    Hang, T.

    1995-01-01

    The Savannah River Site (SRS) plans to begin operating the Consolidated Incineration Facility (CIF) in 1996. The CIF will treat liquid and solid low-level radioactive, mixed and RCRA hazardous wastes generated at SRS. In addition to experimental test programs, process modeling was applied to provide guidance in areas of safety, environmental regulation compliances, process improvement and optimization. A steady-state flowsheet model was used to calculate material/energy balances and to track key chemical constituents throughout the process units. Dynamic models were developed to predict the CIF transient characteristics in normal and abnormal operation scenarios. Predictions include the rotary kiln heat transfer, dynamic responses of the CIF to fluctuations in the solid waste feed or upsets in the system equipments, performance of the control system, air inleakage in the kiln, etc. This paper reviews the modeling study performed to assist in the deflagration risk assessment

  16. Incineration experience at Oconee Nuclear Station

    International Nuclear Information System (INIS)

    Terrell, M.S.

    1986-01-01

    The Radwaste Facility at Oconee Nuclear Station contains a Fluidized Bed Dryer/Incinerator System which will be used to process contaminated trash (DAW), oil, powdex resin, and chemical cleaning waste. This system was designed by Aerojet Energy Conversion Company. The ash and salts resulting from this process will be solidified using the Stock Equipment Company Polymer Solidification System. The purpose of this paper is to discuss the results of start-up and pre-operational testing of these systems, describe the mass balance program the authors will be using to meet the requirements of 10CFR61, and to discuss the sampling of the ash and salts that will be produced as a result of the process. Additionally, tests which are designed to verify the mass balance for the Aeroject System, are discussed

  17. An incineration technology for low level radioactive solid waste

    International Nuclear Information System (INIS)

    Suyari, Mamoru; Nakanishi, Ryota; Noura, Tsuyoshi; Fujitomi, Masashi; Ano, Shintaroh

    2003-01-01

    Low-level radioactive solid waste, mainly consisting of rag paper and cloth, is usually incinerated. However, polymeric waste, including rubber and polyvinyl chloride plastic, is securely stored in view of safe treatment. Kobe Steel has developed a new kind of incinerator which can be used for polymeric waste. It has the following characteristics: (a) A controlled air type furnace with a unique grate design (b) In order to control dioxin emissions, the furnace wall is refractory-lined to maintain furnace temperatures at 900degC or higher (c) Secondary combustion air is injected into the furnace to mix with gas from the primary combustion zone. In this paper, the following non-radioactive test results using an actual incinerator, (feed rate: 130 kg/hr.) are presented: (1) Polymeric waste, including rubber, polyethylene and polyvinyl chloride plastic, was incinerated under stable operation; (2) Design specifications including treatment capacity, emission limits were satisfactorily achieved. (author)

  18. Experimentation with a prototype incinerator for beta-gamma waste

    International Nuclear Information System (INIS)

    Farber, M.G.; Lewandowski, K.E.; Becker, G.W.

    1982-01-01

    A test facility for the incineration of suspect and low-level beta-gamma waste has been built and operated at the Savannah River Laboratory. The processing steps include waste feeding, incineration, ash residue packaging, and off-gas cleanup. Demonstration of the full-scale (180 kg/hr) facility with nonradioactive, simulated waste is currently in progress. At the present time, over nine metric tons of material including rubber, polyethylene, and cellulose have been incinerated during three burning campaigns. A comprehensive test program of solid and liquid waste incineration is being implemented. The data from the research program is providing the technical basis for a phase of testing with low-level beta-gamma waste generated at the Savannah River Plant

  19. Elemental composition of suspended particles released in refuse incineration

    International Nuclear Information System (INIS)

    Mamuro, Tetsuo; Mizohata, Akira

    1979-01-01

    Suspended particles released in refuse incineration were subjected to multielement analysis by means of instrumental neutron activation method and energy dispersive X-ray fluorescence spectrometry. The analytical results were compared with the elemental concentrations observed in the urban atmosphere, and the contribution of the refuse incineration to the urban atmosphere was roughly estimated. Greenberg et al. pointed out on the basis of their analyses that the refuse incineration can account for major portions of the Zn, Cd and Sb observed on urban aerosols. According to our results, the contribution of the refuse incineration for Zn, Cd and Sb is not negligible, but not so serious as in U.S.A. big cities. In Japan big cities there must be other more important sources of these elements. (author)

  20. Numerical modeling of batch formation in waste incineration plants

    Directory of Open Access Journals (Sweden)

    Obroučka Karel

    2015-03-01

    Full Text Available The aim of this paper is a mathematical description of algorithm for controlled assembly of incinerated batch of waste. The basis for formation of batch is selected parameters of incinerated waste as its calorific value or content of pollutants or the combination of both. The numerical model will allow, based on selected criteria, to compile batch of wastes which continuously follows the previous batch, which is a prerequisite for optimized operation of incinerator. The model was prepared as for waste storage in containers, as well as for waste storage in continuously refilled boxes. The mathematical model was developed into the computer program and its functionality was verified either by practical measurements or by numerical simulations. The proposed model can be used in incinerators for hazardous and municipal waste.

  1. Pretreatment and utilization of waste incineration bottom ashes

    DEFF Research Database (Denmark)

    Astrup, Thomas

    2007-01-01

    Within recent years, researchers and authorities have had increasing focus on leaching properties from waste incineration bottom ashes. Researchers have investigated processes such as those related to carbonation, weathering, metal complexation, and leaching control. Most of these investigations...

  2. Control system for high-temperature slagging incinerator plant

    International Nuclear Information System (INIS)

    Matsuzaki, Yuji

    1986-01-01

    Low-level radioactive wastes generated in the nuclear generating plants are increasing year by year and to dispose them safely constitutes a big problem for the society. A few years ago, as the means of reducing them to as little volume as possible by incinerating and fusing the wastes, a high-temperature slagging incinerating method was developed, and this method is highly assessed. JGC Corp. has introduced that system technology and in order to prove the capacity of disposal and salubrity of the plant, and have constructed a full-sized pilot plant, then obtained the operational record and performance as they had planned. This report introduces the general processing of the wastes from their incineration and fusion as well as process control technology characteristic to high-temperature slagging incinerator furnaces and sensor technology. (author)

  3. Technical objectives of inspection

    International Nuclear Information System (INIS)

    Sorenson, R.J.; Stewart, K.B.; Schneider, R.A.

    1976-01-01

    The various technical objectives of inspection are discussed in a very general manner. The discussion includes how the inspection function is related to the assumed threat, the various degrees of assurance and reliance on criteria, and the hierarchy of assurance which is obtained from the various types or levels of inspection

  4. Corrosion Problems in Incinerators and Biomass-Fuel-Fired Boilers

    Directory of Open Access Journals (Sweden)

    Deepa Mudgal

    2014-01-01

    Full Text Available Incinerators are widely used to burn the municipal waste, biowaste, wood, straw, and biomedical waste. Combustion of these types of waste results in generation of chlorides of sodium and potassium which may attack the metallic part of the incinerator. In biofuel-fired boilers, similar type of highly corrosive environment is present. Attempt has been made to review the corrosion problems and their solutions as per the available literature.

  5. Corrosion Problems in Incinerators and Biomass-Fuel-Fired Boilers

    OpenAIRE

    Mudgal, Deepa; Singh, Surendra; Prakash, Satya

    2014-01-01

    Incinerators are widely used to burn the municipal waste, biowaste, wood, straw, and biomedical waste. Combustion of these types of waste results in generation of chlorides of sodium and potassium which may attack the metallic part of the incinerator. In biofuel-fired boilers, similar type of highly corrosive environment is present. Attempt has been made to review the corrosion problems and their solutions as per the available literature.

  6. Method for controlling incineration in combustor for radioactive wastes

    International Nuclear Information System (INIS)

    Takaoku, Y.; Uehara, A.

    1991-01-01

    This invention relates to a method for controlling incineration in a combustor for low-level radioactive wastes. In particular, it relates to a method for economizing in the consumption of supplemental fuel while maintaining a stable incineration state by controlling the amount of fuel and of radioactive wastes fed to the combustor. The amount of fuel supplied is determined by the outlet gas temperature of the combustor. (L.L.)

  7. Design considerations for incineration of transuranic-contaminated solid wastes

    International Nuclear Information System (INIS)

    Koenig, R.A.

    1977-01-01

    The Los Alamos Scientific Laboratory has established a development program to evaluate alternate production-level (100-200 lb/hr throughput) volume reduction processes for transuranic-contaminated solid waste. The first process selected for installation and study is based on controlled-air incineration. Design considerations leading to selection of feed preparation, incineration, residue removal, and off-gas cleanup components and their respective radioactive containment provisions will be presented

  8. Consolidated Incineration Facility waste burn test. Final report

    International Nuclear Information System (INIS)

    Burns, D.B.

    1995-01-01

    The Savannah River Technology Center (SRTC) is Providing technical support for start-up and operation of the Consolidated Incineration Facility. This support program includes a series of pilot incineration tests performed at the Environmental Protection Agency's (EPA's) Incineration Research Facility (MF) using surrogate CIF mixed wastes. The objectives for this test program included measuring incinerator offgas particulate loading and size distributions as a function of several operating variables, characterizing kiln bottom ash and offgas particulates, determining heavy metal partition between the kiln bottom ash and incinerator stack gas, and measuring kiln organics emissions (particularly polychlorinated dioxins and furans). These tests were designed to investigate the effect of the following operating parameters: Incineration Temperature; Waste Feed Rate; Waste Density; Kiln Solids Residence Time; and Waste Composition. Tests were conducted at three kiln operating temperatures. Three solid waste simulants were burned, two waste mixtures (paper, plastic, latex, and PVC) with one containing spiked toxic organic and metal compounds, and one waste type containing only paper. Secondary Combustion Chamber (SCC) offgases were sampled for particulate loading and size distribution, organic compounds, polychlorinated dibenzo[p]dioxins and polychlorinated dibenzofurans (PCDD/PCDF), metals, and combustion products. Kiln bottom ash and offgas particulates were characterized to determine the principal elements and compounds comprising these secondary wastes

  9. Experience with radioactive waste incineration at Chalk River Nuclear Laboratories

    International Nuclear Information System (INIS)

    Le, V.T.; Beamer, N.V.; Buckley, L.P.

    1988-06-01

    Chalk River Nuclear Laboratories is a nuclear research centre operated by Atomic Energy of Canada Limited. A full-scale waste treatment centre has been constructed to process low- and intermediate-level radioactive wastes generated on-site. A batch-loaded, two-stage, starved-air incinerator for solid combustible waste is one of the processes installed in this facility. The incinerator has been operating since 1982. It has consistently reduced combustible wastes to an inert ash product, with an average volume reduction factor of about 150:1. The incinerator ash is stored in 200 L drums awaiting solidification in bitumen. The incinerator and a 50-ton hydraulic baler have provided treatment for a combined volume of about 1300 m 3 /a of solid low-level radioactive waste. This paper presents a review of the performance of the incinerator during its six years of operation. In addition to presenting operational experience, an assessment of the starved-air incineration technique will also be discussed

  10. Incineration technology for alpha-bearing radioactive waste in Germany

    International Nuclear Information System (INIS)

    Dirks, Friedlich; Pfeiffer, Reinhard

    1997-01-01

    Since 1971 the Karlsruhe Research Center has developed and operated plants for the incineration of radioactive waste. Three incineration plants for pure β/γ solid, α-bearing solid and radioactive liquid waste have been successfully utilized during last two decades. Recently more than 20 year-old β/γ plant was shut down with the economic point of view, mainly due to the recently reduced volume of burnable β/γ waste. Burnable β/γ solid waste is now being treated with α-bearing waste in a α solid incineration plant. The status of incineration technology for α-bearing waste and other radioactive waste treatment technologies, which are now utilized in Karlsruhe Research Center, such as conditioning of incineration ash, supercompaction, scrapping, and decontamination of solid radioactive waste, etc. are introduced in this presentation. Additionally, operational results of the recently installed new dioxin adsorber and fluidized-bed drier for scrubber liquid in α incineration plant are also described in this presentation. (author) 1 tab., 13 figs

  11. Randomization of inspections

    International Nuclear Information System (INIS)

    Markin, J.T.

    1989-01-01

    As the numbers and complexity of nuclear facilities increase, limitations on resources for international safeguards may restrict attainment of safeguards goals. One option for improving the efficiency of limited resources is to expand the current inspection regime to include random allocation of the amount and frequency of inspection effort to material strata or to facilities. This paper identifies the changes in safeguards policy, administrative procedures, and operational procedures that would be necessary to accommodate randomized inspections and identifies those situations where randomization can improve inspection efficiency and those situations where the current nonrandom inspections should be maintained. 9 refs., 1 tab

  12. Prospects offered by the departmental plans inspection; Les perspectives offertes par la revision des plans departementaux

    Energy Technology Data Exchange (ETDEWEB)

    Thauvin, Ph.

    2000-07-01

    In the framework of the departmental plans inspection, a detailed document is presented on the domestic and industrial wastes management. These plans forecast an increase of the recycling facing the incineration, a mastership of the costs, a better application of the regulations and a campaign of public information. The indicators of control and the main points of these plans are discussed, supported by tables and definitions. (A.L.B.)

  13. The incineration of absorbed liquid wastes in the INEL's [Idaho National Engineering Laboratory] WERF [Waste Experimental Reduction Facility] incinerator

    International Nuclear Information System (INIS)

    Steverson, E.M.; McFee, J.N.

    1987-01-01

    The concept of burning absorbed flammable liquids in boxes in the WERF incinerator was evaluated as a waste treatment method. The safety and feasibility of this procedure were evaluated in a series of tests. In the testing, the effect on incinerator operations of burning various quantities of absorbed flammable liquids was measured and compared to normal operations conducted on low-level radioactive waste (LLW). The test results indicated that the proposed procedure is safe and practical for use on a wide variety of solvents with quantities as high as one liter per box. No adverse or unacceptable operating conditions resulted from burning any of the solvents tested. Incineration of the solvents in this fashion was no different than burning LLW during normal incineration. 6 refs., 7 figs., 3 tabs

  14. Error Sources in Proccessing LIDAR Based Bridge Inspection

    Science.gov (United States)

    Bian, H.; Chen, S. E.; Liu, W.

    2017-09-01

    Bridge inspection is a critical task in infrastructure management and is facing unprecedented challenges after a series of bridge failures. The prevailing visual inspection was insufficient in providing reliable and quantitative bridge information although a systematic quality management framework was built to ensure visual bridge inspection data quality to minimize errors during the inspection process. The LiDAR based remote sensing is recommended as an effective tool in overcoming some of the disadvantages of visual inspection. In order to evaluate the potential of applying this technology in bridge inspection, some of the error sources in LiDAR based bridge inspection are analysed. The scanning angle variance in field data collection and the different algorithm design in scanning data processing are the found factors that will introduce errors into inspection results. Besides studying the errors sources, advanced considerations should be placed on improving the inspection data quality, and statistical analysis might be employed to evaluate inspection operation process that contains a series of uncertain factors in the future. Overall, the development of a reliable bridge inspection system requires not only the improvement of data processing algorithms, but also systematic considerations to mitigate possible errors in the entire inspection workflow. If LiDAR or some other technology can be accepted as a supplement for visual inspection, the current quality management framework will be modified or redesigned, and this would be as urgent as the refine of inspection techniques.

  15. Environmental impacts of residual municipal solid waste incineration: a comparison of 110 French incinerators using a life cycle approach.

    Science.gov (United States)

    Beylot, Antoine; Villeneuve, Jacques

    2013-12-01

    Incineration is the main option for residual Municipal Solid Waste treatment in France. This study compares the environmental performances of 110 French incinerators (i.e., 85% of the total number of plants currently in activity in France) in a Life Cycle Assessment perspective, considering 5 non-toxic impact categories: climate change, photochemical oxidant formation, particulate matter formation, terrestrial acidification and marine eutrophication. Mean, median and lower/upper impact potentials are determined considering the incineration of 1 tonne of French residual Municipal Solid Waste. The results highlight the relatively large variability of the impact potentials as a function of the plant technical performances. In particular, the climate change impact potential of the incineration of 1 tonne of waste ranges from a benefit of -58 kg CO2-eq to a relatively large burden of 408 kg CO2-eq, with 294 kg CO2-eq as the average impact. Two main plant-specific parameters drive the impact potentials regarding the 5 non-toxic impact categories under study: the energy recovery and delivery rate and the NOx process-specific emissions. The variability of the impact potentials as a function of incinerator characteristics therefore calls for the use of site-specific data when required by the LCA goal and scope definition phase, in particular when the study focuses on a specific incinerator or on a local waste management plan, and when these data are available. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. A comparative assessment of waste incinerators in the UK

    Energy Technology Data Exchange (ETDEWEB)

    Nixon, J.D., E-mail: j.nixon@kingston.ac.uk [Sustainable Environment Research Group, School of Engineering and Applied Science, Aston University, Aston Triangle, Birmingham B4 7ET (United Kingdom); Wright, D.G.; Dey, P.K. [Aston Business School, Aston University, Aston Triangle, Birmingham B4 7ET (United Kingdom); Ghosh, S.K. [Mechanical Engineering Department, Centre for Quality Management System, Jadavpur University, Kolkata 700 032 (India); Davies, P.A. [Sustainable Environment Research Group, School of Engineering and Applied Science, Aston University, Aston Triangle, Birmingham B4 7ET (United Kingdom)

    2013-11-15

    Highlights: • We evaluate operational municipal solid waste incinerators in the UK. • The supply chain of four case study plants are examined and compared in detail. • Technical, financial and operational data has been gathered for the four plants. • We suggest the best business practices for waste incinerators. • Appropriate strategy choices are the major difficulties for waste to energy plants. - Abstract: The uptake in Europe of Energy from Waste (EfW) incinerator plants has increased rapidly in recent years. In the UK, 25 municipal waste incinerators with energy recovery are now in operation; however, their waste supply chains and business practices vary significantly. With over a hundred more plant developments being considered it is important to establish best business practices for ensuring efficient environmental and operational performance. By reviewing the 25 plants we identify four suitable case study plants to compare technologies (moving grate, fluidised bed and rotary kiln), plant economics and operations. Using data collected from annual reports and through interviews and site visits we provide recommendations for improving the supply chain for waste incinerators and highlight the current issues and challenges faced by the industry. We find that plants using moving grate have a high availability of 87–92%. However, compared to the fluidised bed and rotary kiln, quantities of bottom ash and emissions of hydrogen chloride and carbon monoxide are high. The uptake of integrated recycling practices, combined heat and power, and post incineration non-ferrous metal collections needs to be increased among EfW incinerators in the UK. We conclude that one of the major difficulties encountered by waste facilities is the appropriate selection of technology, capacity, site, waste suppliers and heat consumers. This study will be of particular value to EfW plant developers, government authorities and researchers working within the sector of waste

  17. A comparative assessment of waste incinerators in the UK

    International Nuclear Information System (INIS)

    Nixon, J.D.; Wright, D.G.; Dey, P.K.; Ghosh, S.K.; Davies, P.A.

    2013-01-01

    Highlights: • We evaluate operational municipal solid waste incinerators in the UK. • The supply chain of four case study plants are examined and compared in detail. • Technical, financial and operational data has been gathered for the four plants. • We suggest the best business practices for waste incinerators. • Appropriate strategy choices are the major difficulties for waste to energy plants. - Abstract: The uptake in Europe of Energy from Waste (EfW) incinerator plants has increased rapidly in recent years. In the UK, 25 municipal waste incinerators with energy recovery are now in operation; however, their waste supply chains and business practices vary significantly. With over a hundred more plant developments being considered it is important to establish best business practices for ensuring efficient environmental and operational performance. By reviewing the 25 plants we identify four suitable case study plants to compare technologies (moving grate, fluidised bed and rotary kiln), plant economics and operations. Using data collected from annual reports and through interviews and site visits we provide recommendations for improving the supply chain for waste incinerators and highlight the current issues and challenges faced by the industry. We find that plants using moving grate have a high availability of 87–92%. However, compared to the fluidised bed and rotary kiln, quantities of bottom ash and emissions of hydrogen chloride and carbon monoxide are high. The uptake of integrated recycling practices, combined heat and power, and post incineration non-ferrous metal collections needs to be increased among EfW incinerators in the UK. We conclude that one of the major difficulties encountered by waste facilities is the appropriate selection of technology, capacity, site, waste suppliers and heat consumers. This study will be of particular value to EfW plant developers, government authorities and researchers working within the sector of waste

  18. CRYOTHERAPY FOLLOWING VISUAL INSPECTION WITH ACETIC ACID AND LUGOL'S IODINE (VIA/VILI) IN KHWISERO, WESTERN KENYA: LESSON FROM THE FIELD AFFECTING POLICY AND PRACTICE.

    Science.gov (United States)

    Ngichabe, S K; Muthaura, P N; Murungi, C; Muyoka, J; Omenge, E; Muchiri, L

    2013-10-01

    Cervical cancer can be prevented and mortality/morbidity reduced by early detection and referral. Developing countries are likely to benefit from more cost effective methods of screening and treatment. Visual inspection with acetic acid and Lugol's iodine (VIA/VILI) offers a see and treat solution thus an affordable and efficient way to identify pre-malignant lesions. Immediate treatment with cryotherapy can be offered if pre-malignant lesions are found on visual inspection. Cryotherapyis a simple procedure that is curative for dysplasia; it is likely to benefit cervical dysplasia cases picked early in resource poor settings, however there are several factors that hinder patients' access to this noble technique. Determine hindrances to cryotherapy for patients following positive results of VIA/VILI after referral. Cross sectional Study Khwisero, Western Kenya. Women attending a medical camp, willing to get screened for cervical cancer. One hundred and nine patients were screened; seventy three (66.97%) were negative for VIA/VILI, twenty one (19.26%) were positive and referred for cryotherapy. Reasons for lack of follow up were financial constraints, lack of medical personnel at referral centres and poor access to the referral facilities.19.26% of women identified with positive lesions required intervention. No patient received cryotherapy following referral. There is urgent need for availability of cryotherapy machines and training of personnel who can perform cryotherapy at the primary care level. Regional studies on knowledge attitudes and practices about VIA/VILI and cryotherapy are required to provide reasons for the poor uptake of this procedure.

  19. Accelerator driven systems for energy production and waste incineration: Physics, design and related nuclear data

    International Nuclear Information System (INIS)

    Herman, M.; Stanculescu, A.; Paver, N.

    2003-01-01

    This volume contains the notes of lectures given at the workshops 'Hybrid Nuclear Systems for Energy Production, Utilisation of Actinides and Transmutation of Long-lived Radioactive Waste' and 'Nuclear Data for Science and Technology: Accelerator Driven Waste Incineration', held at the Abdus Salam ICTP in September 2001. The subject of the first workshop was focused on the so-called Accelerator Driven Systems, and covered the most important physics and technological aspects of this innovative field. The second workshop was devoted to an exhaustive survey on the acquisition, evaluation, retrieval and validation of the nuclear data relevant to the design of Accelerator Driven Systems

  20. Emission of greenhouse gases from waste incineration in Korea.

    Science.gov (United States)

    Hwang, Kum-Lok; Choi, Sang-Min; Kim, Moon-Kyung; Heo, Jong-Bae; Zoh, Kyung-Duk

    2017-07-01

    Greenhouse gas (GHG) emission factors previously reported from various waste incineration plants have shown significant variations according to country-specific, plant-specific, and operational conditions. The purpose of this study is to estimate GHG emissions and emission factors at nine incineration facilities in Korea by measuring the GHG concentrations in the flue gas samples. The selected incineration plants had different operation systems (i.e., stoker, fluidized bed, moving grate, rotary kiln, and kiln & stoker), and different nitrogen oxide (NO x ) removal systems (i.e., selective catalytic reduction (SCR) and selective non-catalytic reduction (SNCR)) to treat municipal solid waste (MSW), commercial solid waste (CSW), and specified waste (SW). The total mean emission factors for A and B facilities for MSW incineration were found to be 134 ± 17 kg CO 2 ton -1 , 88 ± 36 g CH 4 ton -1 , and 69 ± 16 g N 2 O ton -1 , while those for CSW incineration were 22.56 g CH 4 ton -1 and 259.76 g N 2 O ton -1 , and for SW incineration emission factors were 2959 kg CO 2 ton -1 , 43.44 g CH 4 ton -1 and 401.21 g N 2 O ton -1 , respectively. Total emissions calculated using annual incineration for MSW were 3587 ton CO 2 -eq yr -1 for A facility and 11,082 ton CO 2 -eq yr -1 for B facility, while those of IPCC default values were 13,167 ton CO 2- eq yr -1 for A facility and 32,916 ton CO 2- eq yr -1 , indicating that the emissions of IPCC default values were estimated higher than those of the plant-specific emission factors. The emission of CSW for C facility was 1403 ton CO 2 -eq yr -1 , while those of SW for D to I facilities was 28,830 ton CO 2 -eq yr -1 . The sensitivity analysis using a Monte Carlo simulation for GHG emission factors in MSW showed that the GHG concentrations have a greater impact than the incineration amount and flow rate of flue gas. For MSW incineration plants using the same stoker type in operation, the estimated emissions and

  1. Environmental impacts of residual Municipal Solid Waste incineration: A comparison of 110 French incinerators using a life cycle approach

    Energy Technology Data Exchange (ETDEWEB)

    Beylot, Antoine, E-mail: a.beylot@brgm.fr; Villeneuve, Jacques

    2013-12-15

    Highlights: • 110 French incinerators are compared with LCA based on plant-specific data. • Environmental impacts vary as a function of plants energy recovery and NO{sub x} emissions. • E.g. climate change impact ranges from −58 to 408 kg CO{sub 2}-eq/tonne of residual MSW. • Implications for LCA of waste management in a decision-making process are detailed. - Abstract: Incineration is the main option for residual Municipal Solid Waste treatment in France. This study compares the environmental performances of 110 French incinerators (i.e. 85% of the total number of plants currently in activity in France) in a Life Cycle Assessment perspective, considering 5 non-toxic impact categories: climate change, photochemical oxidant formation, particulate matter formation, terrestrial acidification and marine eutrophication. Mean, median and lower/upper impact potentials are determined considering the incineration of 1 tonne of French residual Municipal Solid Waste. The results highlight the relatively large variability of the impact potentials as a function of the plant technical performances. In particular, the climate change impact potential of the incineration of 1 tonne of waste ranges from a benefit of −58 kg CO{sub 2}-eq to a relatively large burden of 408 kg CO{sub 2}-eq, with 294 kg CO{sub 2}-eq as the average impact. Two main plant-specific parameters drive the impact potentials regarding the 5 non-toxic impact categories under study: the energy recovery and delivery rate and the NO{sub x} process-specific emissions. The variability of the impact potentials as a function of incinerator characteristics therefore calls for the use of site-specific data when required by the LCA goal and scope definition phase, in particular when the study focuses on a specific incinerator or on a local waste management plan, and when these data are available.

  2. Optical fiber inspection system

    Science.gov (United States)

    Moore, Francis W.

    1987-01-01

    A remote optical inspection system including an inspection head. The inspection head has a passageway through which pellets or other objects are passed. A window is provided along the passageway through which light is beamed against the objects being inspected. A plurality of lens assemblies are arranged about the window so that reflected light can be gathered and transferred to a plurality of coherent optical fiber light guides. The light guides transfer the light images to a television or other image transducer which converts the optical images into a representative electronic signal. The electronic signal can then be displayed on a signal viewer such as a television monitor for inspection by a person. A staging means can be used to support the objects for viewing through the window. Routing means can be used to direct inspected objects into appropriate exit passages for accepted or rejected objects. The inspected objects are advantageously fed in a singular manner to the staging means and routing means. The inspection system is advantageously used in an enclosure when toxic or hazardous materials are being inspected.

  3. Hazardous waste incineration in context with carbon dioxide.

    Science.gov (United States)

    Reinhardt, Tim; Richers, Ulf; Suchomel, Horst

    2008-02-01

    The Kyoto Protocol of 1997 demands an emission reduction of climate-affecting gases in various industrial sectors. In this context CO2 is one of the relevant gases and waste management is one of the relevant sectors. Referring to the situation in Europe, waste incineration is one of the major sources of CO2 in the waste management sector. The Kyoto Protocol, however, only covers CO2-emissions originating from fossil fuels, whereas the incineration of renewable materials, e.g. wood, is considered to be climate-neutral since it does not make any net contribution to the CO2 inventory of the atmosphere. Unlike the situation with municipal waste, there is little if any information on the CO2-emissions caused by the incineration of hazardous waste in specialized plants, and the renewable fraction in these materials. The present paper focuses on this gap of knowledge. Taking the full-scale hazardous waste incineration plant in Biebesheim, Germany, as an example, a carbon balance was set up for the whole-plant taking into account all other material flows. Afterwards the determination of the proportion of renewable materials in the hazardous waste incinerated by means of the radiocarbon method (14C) is reported. On the basis of the results, optimization potentials are discussed.

  4. A sustainability analysis of an incineration project in Serbia.

    Science.gov (United States)

    Mikic, Miljan; Naunovic, Zorana

    2013-11-01

    The only option for municipal solid waste (MSW) treatment adopted so far in Serbia is landfilling. Similarly to other south-eastern European countries, Serbia is not recovering any energy from MSW. Fifty percent of electricity in Serbia is produced in coal-fired power plants with emission control systems dating from the 1980s. In this article, the option of MSW incineration with energy recovery is proposed and examined for the city of Novi Sad. A sustainability analysis consisting of financial, economic and sensitivity analyses was done in the form of a cost-benefit analysis following recommendations from the European Commission. Positive and negative social and environmental effects of electricity generation through incineration were valuated partly using conversion factors and shadow prices, and partly using the results of previous studies. Public aversion to MSW incineration was considered. The results showed that the incineration project would require external financial assistance, and that an increase of the electricity and/or a waste treatment fee is needed to make the project financially positive. It is also more expensive than the landfilling option. However, the economic analysis showed that society would have net benefits from an incineration project. The feed-in tariff addition of only €0.03 (KWh)(-1) to the existing electricity price, which would enable the project to make a positive contribution to economic welfare, is lower than the actual external costs of electricity generation from coal in Serbia.

  5. A comparative assessment of waste incinerators in the UK.

    Science.gov (United States)

    Nixon, J D; Wright, D G; Dey, P K; Ghosh, S K; Davies, P A

    2013-11-01

    The uptake in Europe of Energy from Waste (EfW) incinerator plants has increased rapidly in recent years. In the UK, 25 municipal waste incinerators with energy recovery are now in operation; however, their waste supply chains and business practices vary significantly. With over a hundred more plant developments being considered it is important to establish best business practices for ensuring efficient environmental and operational performance. By reviewing the 25 plants we identify four suitable case study plants to compare technologies (moving grate, fluidised bed and rotary kiln), plant economics and operations. Using data collected from annual reports and through interviews and site visits we provide recommendations for improving the supply chain for waste incinerators and highlight the current issues and challenges faced by the industry. We find that plants using moving grate have a high availability of 87-92%. However, compared to the fluidised bed and rotary kiln, quantities of bottom ash and emissions of hydrogen chloride and carbon monoxide are high. The uptake of integrated recycling practices, combined heat and power, and post incineration non-ferrous metal collections needs to be increased among EfW incinerators in the UK. We conclude that one of the major difficulties encountered by waste facilities is the appropriate selection of technology, capacity, site, waste suppliers and heat consumers. This study will be of particular value to EfW plant developers, government authorities and researchers working within the sector of waste management. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Processing of combustible radioactive waste using incineration techniques

    International Nuclear Information System (INIS)

    Maestas, E.

    1981-01-01

    Among the OECD Nuclear Energy Agency Member countries numerous incineration concepts are being studied as potential methods for conditioning alpha-bearing and other types of combustible radioactive waste. The common objective of these different processes is volume reduction and the transformation of the waste to a more acceptable waste form. Because the combustion processes reduce the mass and volume of waste to a form which is generally more inert than the feed material, the resulting waste can be more uniformly compatible with safe handling, packaging, storage and/or disposal techniques. The number of different types of combustion process designed and operating specifically for alpha-bearing wastes is somewhat small compared with those for non-alpha radioactive wastes; however, research and development is under way in a number of countries to develop and improve alpha incinerators. This paper provides an overview of most alpha-incineration concepts in operation or under development in OECD/NEA Member countries. The special features of each concept are briefly discussed. A table containing characteristic data of incinerators is presented so that a comparison of the major programmes can be made. The table includes the incinerator name and location, process type, capacity throughput, operational status and application. (author)

  7. Operation of a pilot incinerator for solid waste

    International Nuclear Information System (INIS)

    Hootman, H.E.; Trapp, D.J.; Warren, J.H.

    1979-01-01

    A laboratory-scale incinerator (0.5 kg waste/hr) was built and operated for more than 18 months as part of a program to adapt and confirm technology for incineration of Savannah River Plant solid wastes, which are contaminated with about 0.3 Ci/kg of alpha-emitting transuranium (TRU) nuclides (Slide 1). About 4000 packages of simulated nonradioactive wastes were burned, including HEPA (high-efficiency particulate air) filters, resins, and other types of solid combustible waste from plutonium finishing operations. Throughputs of more than 3 kg/hr for periods up to 4 hours were demonstrated. The incinerator was oerated at temperatures above 750 0 C for more than 7700 hours during a period of 12 months, for an overall availability of 88%. The incinerator was shut down three times during the year: once to replace the primary combustion chamber electrical heater, and twice to replace oxidized electrical connectors to the secondary chamber heaters. Practical experience with this pilot facility provided the design basis for the full-size (5 kg waste/hr) nonradioactive test incinerator, which began operation in March 1979

  8. A COMPARISON: ORGANIC EMISSIONS FROM HAZARDOUS WASTE INCINERATORS VERSUS THE 1990 TOXICS RELEASE INVENTORY AIR RELEASES.

    Science.gov (United States)

    Incineration is often the preferred technology for disposing of hazardous waste, and remediating Superfund sites. The effective implementation of this technology is frequently impeded by strong public opposition `to hazardous waste' incineration HWI). One of the reasons cited for...

  9. The selection, licensing, and operation of a low-level radioactive waste incinerator

    International Nuclear Information System (INIS)

    Arrowsmith, H.W.; Dalton, D.

    1990-01-01

    The Scientific Ecology Group has just completed the selection, procurement, licensing, and start-up of a low-level radioactive waste incinerator. This incinerator is the only commercial radioactive waste incinerator in the US and was licensed by the Environmental Protection Agency, the State of Tennessee, the City of Oak Ridge, and the Tennessee Valley Authority. This incinerator has a thermal capacity of 13,000,000 BTUs and can burn approximately 1,000 pounds per hour of typical radioactive waste. Waste to be incinerated is sorted in a new waste sorting system at the SEG facility. The sorting is essential to assure that the incinerator will not be damaged by any unexpected waste and to maintain the purity of the incinerator off-gas. The volume reduction expected for typical waste is approximately 100:1. After burning, the incinerator ash is compacted or vitrified before shipment to burial sites

  10. Alternatives to incineration. Technical area status report

    Energy Technology Data Exchange (ETDEWEB)

    Schwinkendorf, W.E. [BDM Federal, Inc., Albuquerque, NM (United States); McFee, J.; Devarakonda, M. [International Technology Corp., Albuquerque, NM (United States); Nenninger, L.L.; Fadullon, F.S. [Science Applications International Corp., Gaithersburg, MD (United States); Donaldson, T.L. [Oak Ridge National Lab., TN (United States); Dickerson, K. [Oak Ridge National Lab., TN (United States)]|[Rocky Flats Environmental Technology Site, Golden, CO (United States)

    1995-04-01

    Recently, the DOE`s Mixed Waste Integrated Program (MWIP) (superseded by the Mixed Waste Focus Area) initiated an evaluation of alternatives to incineration to identify technologies capable of treating DOE organically contaminated mixed wastes and which may be more easily permitted. These technologies have the potential of alleviating stakeholder concerns by decreasing off-gas volurties and the associated emissions of particulates, volatilized metals and radionuclides, PICs, NO{sub x}, SO{sub x}, and recombination products (dioxins and furans). Ideally, the alternate technology would be easily permitted, relatively omnivorous and effective in treating a variety of wastes with varying constituents, require minimal pretreatment or characterization, and be easy to implement. In addition, it would produce secondary waste stream volumes significantly smaller than the original waste stream, and would minimize the environmental health and safety effects on workers and the public. The purpose of this report is to provide an up-to-date (as of early 1995) compendium of iternative technologies for designers of mixed waste treatment facilities, and to identify Iternate technologies that may merit funding for further development. Various categories of non-thermal and thermal technologies have been evaluated and are summarized in Table ES-1. Brief descriptions of these technologies are provided in Section 1.7 of the Introduction. This report provides a detailed description of approximately 30 alternative technologies in these categories. Included in the report are descriptions of each technology; applicable input waste streams and the characteristics of the secondary, or output, waste streams; the current status of each technology relative to its availability for implementation; performance data; and costs. This information was gleaned from the open literature, governments reports, and discussions with principal investigators and developers.

  11. Alternatives to incineration. Technical area status report

    International Nuclear Information System (INIS)

    Schwinkendorf, W.E.; McFee, J.; Devarakonda, M.; Nenninger, L.L.; Fadullon, F.S.; Donaldson, T.L.; Dickerson, K.

    1995-04-01

    Recently, the DOE's Mixed Waste Integrated Program (MWIP) (superseded by the Mixed Waste Focus Area) initiated an evaluation of alternatives to incineration to identify technologies capable of treating DOE organically contaminated mixed wastes and which may be more easily permitted. These technologies have the potential of alleviating stakeholder concerns by decreasing off-gas volurties and the associated emissions of particulates, volatilized metals and radionuclides, PICs, NO x , SO x , and recombination products (dioxins and furans). Ideally, the alternate technology would be easily permitted, relatively omnivorous and effective in treating a variety of wastes with varying constituents, require minimal pretreatment or characterization, and be easy to implement. In addition, it would produce secondary waste stream volumes significantly smaller than the original waste stream, and would minimize the environmental health and safety effects on workers and the public. The purpose of this report is to provide an up-to-date (as of early 1995) compendium of iternative technologies for designers of mixed waste treatment facilities, and to identify Iternate technologies that may merit funding for further development. Various categories of non-thermal and thermal technologies have been evaluated and are summarized in Table ES-1. Brief descriptions of these technologies are provided in Section 1.7 of the Introduction. This report provides a detailed description of approximately 30 alternative technologies in these categories. Included in the report are descriptions of each technology; applicable input waste streams and the characteristics of the secondary, or output, waste streams; the current status of each technology relative to its availability for implementation; performance data; and costs. This information was gleaned from the open literature, governments reports, and discussions with principal investigators and developers

  12. Speciation of Chromium in Bottom Ash Obtained by the Incineration of the Leather Waste Shavings

    OpenAIRE

    k. louhab; H. Assas

    2006-01-01

    The evolution of bottom ash morphology and chromium metals behavior during incineration of a leather waste shavings at different incineration temperature have been studied. The Cr, Ca, Mg, Cl rates in bottom ashes, flay ashes and emitted gases in different incineration temperature of the tannery wastes are also determined. The morphology of the bottom ashes obtained by incineration at different temperature from the leather waste shavings was examined by MEB. The result sho...

  13. Vitrification of bottom ash from a municipal solid waste incinerator.

    Science.gov (United States)

    Xiao, Y; Oorsprong, M; Yang, Y; Voncken, J H L

    2008-01-01

    During incineration of municipal solid waste (MSW), various environmentally harmful elements and heavy metals are liberated either into bottom ash, or carried away with the off-gases and subsequently trapped in fly-ash. If these minor but harmful elements are not properly isolated and immobilized, it can lead to secondary environmental pollution to the air, soil and water. The stricter environmental regulations to be implemented in the near future in The Netherlands require a higher immobilization efficiency of the bottom ash treatment. In the present study, MSW incinerator bottom ash was vitrified at higher temperatures and the slag formed and metal recovered were examined. The behaviour of soluble elements that remain in the slag is evaluated by standard leaching test. The results obtained can provide a valuable route to treat the ashes from incinerators, and to make recycling and more efficient utilization of the bottom ash possible.

  14. Disposal of waste or excess high explosives. Final report. [Incineration

    Energy Technology Data Exchange (ETDEWEB)

    1977-01-01

    The ''Disposal of Waste or Excess High Explosives'' project began January 1971. Various methods of disposal were investigated with the conclusion that incineration, at major ERDA facilities, would be the most feasible and safest method with the least cost and development time required. Two independent incinerator concepts were investigated: a rotary type for continuous processing and an enclosed pit type for batch processing. Both concepts are feasible; however, it is recommended that further investigations would be required to render them acceptable. It is felt that a larger effort would be required in the case of the rotary incinerator. The project was terminated (December 1976) prior to completion as a result of a grant of authority by the Texas Air Control Board allowing the ERDA Pantex Plant to continue indefinitely outdoor burning of explosives.

  15. Radiation safety for incineration of radioactive waste contaminated by cesium

    International Nuclear Information System (INIS)

    Veryuzhs'kij, Yu.V.; Gryin'ko, O.M.; Tokarevs'kij, V.V.

    2016-01-01

    Problems in the treatment of radioactive waste contaminated by cesium nuclides are considered in the paper. Chornobyl experience in the management of contaminated soil and contaminated forests is analyzed in relation to the accident at Fukushima-1. The minimization of release of cesium aerosols into atmosphere is very important. Radiation influence of inhaling atmosphere aerosols polluted by cesium has damage effect for humans. The research focuses on the treatment of forests contaminated by big volumes of cesium. One of the most important technologies is a pyro-gasification incineration with chemical reactions of cesium paying attention to gas purification problems. Requirements for process, physical and chemical properties of treatment of radioactive waste based on the dry pyro-gasification incineration facilities are considered in the paper together with the discussion of details related to incineration facilities. General similarities and discrepancies in the environmental pollution caused by the accidents at Chornobyl NPP and Fukushima-1 NPP in Japan are analyzed

  16. Economic sensitivity of DAW incineration to PVC content

    International Nuclear Information System (INIS)

    Rossmassler, R.L.

    1986-01-01

    Economic analyses of the volume reduction of low level radwaste, including the incinerator of Dry Active Waste (DAW), spent resins and filter sludges, are performed using the microcomputer code VOLREDUCER. Based on BWR and PWR data taken from previous EPRI work, the sensitivity of incinerator economics to polyvinyl chloride (PVC) content in DAW is examined. An annual cost penalty associated with the presence of PVC in the waste is formulated, and the sensitivity of this penalty to a variety of parameters is determined. The alternative of sorting out PVC from the rest of the waste is compared to incineration with regard to this annual cost penalty. These penalties may range as high as $100,000 annually depending on the waste characteristics and percent of PVC

  17. Progress on radioactive waste slurry incineration with oxygen and steam

    International Nuclear Information System (INIS)

    Hoshino, M.; Hayashi, M.; Oda, I.; Nonaka, N.; Kuwayama, K.; Shigeta, T.

    1988-01-01

    The radioactive waste (radwaste) slurry generated from the nuclear power plant operation, such as spent ion-exchange resins (powdered, bead), fire-retardant oils including phosphate ester and concentrated laundry (by the wet method) liquid waste, has been stored in an untreated condition on the plant site. Recently, since the Condensate Filter Demineralizer (CFD) has been applied in advanced BWR plants, the discharged volume of untreated spent powered resin slurry has been increasing steadily. TEE and NCE have been developing an effective new volume reduction system to treat this radwaste slurry based on an innovative incineration concept. The new system is called the IOS process, the feature of which is incineration with oxygen and steam admixture instead of conventional air. The IOS process, which consists mainly of high heat load incineration with slurry atomization, and combustion gas cooling and condensation by the wet method, has several advantages which are summarized in this paper

  18. Focusing Automatic Code Inspections

    NARCIS (Netherlands)

    Boogerd, C.J.

    2010-01-01

    Automatic Code Inspection tools help developers in early detection of defects in software. A well-known drawback of many automatic inspection approaches is that they yield too many warnings and require a clearer focus. In this thesis, we provide such focus by proposing two methods to prioritize

  19. A feasibility study of adaptive plasma-assisted incineration

    Science.gov (United States)

    Filion, Julie

    Rising awareness in the need for environmental protection has brought into question the adequacy of conventional hazardous waste treatment operations. Regulatory standards are increasingly strict, and there is growing concern over the safety of incineration facilities. This research project examines the technoeconomic potential of thermal plasma technology in this context. Adaptive Plasma-Assisted Incineration (APAI) is a novel concept for secondary gas treatment in hazardous waste incineration. As an energy source for waste destruction, a thermal plasma can provide conditions far higher in temperature and in reactivity than those obtained using a combustion flame. Thus, the plasma is more effective at destroying hazardous materials, albeit at a higher cost. APAI features a thermal plasma afterburner with continual on-line optical monitoring of the gas product and feedback optimization of the plasma conditions. This approach allows complete destruction of persistent organic compounds and cost-effective response to feed load variations. The process supplements conventional incineration techniques with the effectiveness and flexibility of thermal plasma treatment. The main objectives are to reduce the risk of harmful emissions during hazardous waste incineration and to facilitate compliance with new environmental regulations. In this project, the technical feasibility of APAI was demonstrated experimentally using a laboratory-scale plasma afterburner model. The work focused on the development of a spectroscopic monitoring procedure and on the application of optimization techniques for cost-effective operation of the model system. The techno-economic potential and limitations of APAI were addressed in a conceptual study. Preliminary designs and cost estimates were developed for specific applications. The costs of plasma-assisted and conventional methods were compared for contaminated soil remediation (by incineration and desorption) and for organic liquid waste

  20. Transformation of Silver Nanoparticles in Sewage Sludge during Incineration.

    Science.gov (United States)

    Meier, Christoph; Voegelin, Andreas; Pradas del Real, Ana; Sarret, Geraldine; Mueller, Christoph R; Kaegi, Ralf

    2016-04-05

    Silver nanoparticles (Ag-NP) discharged into the municipal sewer system largely accumulate in the sewage sludge. Incineration and agricultural use are currently the most important strategies for sewage sludge management. Thus, the behavior of Ag-NP during sewage sludge incineration is essential for a comprehensive life cycle analysis and a more complete understanding of the fate of Ag-NP in the (urban) environment. To address the transformation of Ag-NP during sewage sludge incineration, we spiked metallic Ag(0)-NP to a pilot wastewater treatment plant and digested the sludge anaerobically. The sludge was then incinerated on a bench-scale fluidized bed reactor in a series of experiments under variable conditions. Complementary results from X-ray absorption spectroscopy (XAS) and electron microscopy-energy dispersive X-ray (EM-EDX) analysis revealed that Ag(0)-NP transformed into Ag2S-NP during the wastewater treatment, in agreement with previous studies. On the basis of a principal component analysis and subsequent target testing of the XAS spectra, Ag(0) was identified as a major Ag component in the ashes, and Ag2S was clearly absent. The reformation of Ag(0)-NP was confirmed by EM-EDX. The fraction of Ag(0) of the total Ag in the ashes was quantified by linear combination fitting (LCF) of XAS spectra, and values as high as 0.8 were found for sewage sludge incinerated at 800 °C in a synthetic flue gas atmosphere. Low LCF totals (72% to 94%) indicated that at least one relevant reference spectrum was missing in the LCF analysis. The presence of spherical Ag-NP with a diameter of sewage sludge incineration, as demonstrated in this study, needs to be considered in the life cycle assessment of engineered Ag-NP.

  1. Dioxins from medical waste incineration: Normal operation and transient conditions.

    Science.gov (United States)

    Chen, Tong; Zhan, Ming-xiu; Yan, Mi; Fu, Jian-ying; Lu, Sheng-yong; Li, Xiao-dong; Yan, Jian-hua; Buekens, Alfons

    2015-07-01

    Polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs) are key pollutants in waste incineration. At present, incinerator managers and official supervisors focus only on emissions evolving during steady-state operation. Yet, these emissions may considerably be raised during periods of poor combustion, plant shutdown, and especially when starting-up from cold. Until now there were no data on transient emissions from medical (or hospital) waste incineration (MWI). However, MWI is reputed to engender higher emissions than those from municipal solid waste incineration (MSWI). The emission levels in this study recorded for shutdown and start-up, however, were significantly higher: 483 ± 184 ng Nm(-3) (1.47 ± 0.17 ng I-TEQ Nm(-3)) for shutdown and 735 ng Nm(-3) (7.73 ng I-TEQ Nm(-3)) for start-up conditions, respectively. Thus, the average (I-TEQ) concentration during shutdown is 2.6 (3.8) times higher than the average concentration during normal operation, and the average (I-TEQ) concentration during start-up is 4.0 (almost 20) times higher. So monitoring should cover the entire incineration cycle, including start-up, operation and shutdown, rather than optimised operation only. This suggestion is important for medical waste incinerators, as these facilities frequently start up and shut down, because of their small size, or of lacking waste supply. Forthcoming operation should shift towards much longer operating cycles, i.e., a single weekly start-up and shutdown. © The Author(s) 2015.

  2. The Use of Microwave Incineration to Process Biological Wastes

    Science.gov (United States)

    Sun, Sidney C.; Srinivasan, Venkatesh; Covington, Alan (Technical Monitor)

    1994-01-01

    The handling and disposal of solid waste matter that has biological or biohazardous components is a difficult issue for hospitals, research laboratories, and industry. NASA faces the same challenge as it is developing regenerative systems that will process waste materials into materials that can be used to sustain humans living in space for extended durations. Plants provide critical functions in such a regenerative life support scheme in that they photosynthesize carbon dioxide and water into glucose and oxygen. The edible portions of the plant provide a food source for the crew. Inedible portions can be processed into materials that are more recyclable. The Advanced Life Support Division at NASA Ames Research Center has been evaluating a microwave incinerator that will oxidize inedible plant matter into carbon dioxide and water. The commercially available microwave incinerator is produced by Matsushita Electronic Instruments Corporation of Japan. Microwave incineration is a technology that is simple, safe, and compact enough for home use. It also has potential applications for institutions that produce biological or biohazardous waste. The incinerator produces a sterile ash that has only 13% of the mass of the original waste. The authors have run several sets of tests with the incinerator to establish its viability in processing biological material. One goal of the tests is to show that the incinerator does not generate toxic compounds as a byproduct of the combustion process. This paper will describe the results of the tests, including analyses of the resulting ash and exhaust gases. The significance of the results and their implications on commercial applications of the technology will also be discussed.

  3. Health products inspection

    International Nuclear Information System (INIS)

    Stoltz, M.

    2009-01-01

    To protect public health, the Health Products Inspection is a public service mission where the application of regulations concerning activities on human health products and cosmetic products is verified. This mission permits a global approach to assess the health products risk-based benefit and, in monitoring by laboratory testing and by on site inspections, to verify their compliance with appropriate regulations. The seventy five inspectors perform about eight hundred inspections per year, in France and abroad. These inspections are related to data provided in the health products assessment and also to manufacturing and delivery practices. The French inspection body is also involved in the training of foreign inspectors and in the harmonization of national, European and international practices either for operators than for the competent authorities. (author)

  4. Principles and Application of Magnetic Rubber Testing for Crack Detection in High-Strength Steel Components: II. Residual-Field Inspection

    Science.gov (United States)

    2014-12-01

    and subsequent removal of a magnetic field, relying on the remanent magnetisation of the component to produce crack indications. For certain...can be reliably detected b Crack depth B Magnetic Induction, Magnetic Flux Density B Magnitude of Magnetic Induction = |B| Br Remanent Magnetic...Induction ( Remanence ) Fmag Magnetic force on a spherical particle H Magnetic Field Strength, Magnetising Force UNCLASSIFIED DSTO-TR-3033

  5. Advancement of safeguards inspection technology for CANDU nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jae Sung; Park, W. S.; Cha, H. R.; Ham, Y. S.; Lee, Y. G.; Kim, K. P.; Hong, Y. D

    1999-04-01

    The objectives of this project are to develop both inspection technology and safeguards instruments, related to CANDU safeguards inspection, through international cooperation, so that those outcomes are to be applied in field inspections of national safeguards. Furthermore, those could contribute to the improvement of verification correctness of IAEA inspections. Considering the level of national inspection technology, it looked not possible to perform national inspections without the joint use of containment and surveillance equipment conjunction with the IAEA. In this connection, basic studies for the successful implementation of national inspections was performed, optimal structure of safeguards inspection was attained, and advancement of safeguards inspection technology was forwarded. The successful implementation of this project contributed to both the improvement of inspection technology on CANDU reactors and the implementation of national inspection to be performed according to the legal framework. In addition, it would be an opportunity to improve the ability of negotiating in equal shares in relation to the IAEA on the occasion of discussing or negotiating the safeguards issues concerned. Now that the national safeguards technology for CANDU reactors was developed, the safeguards criteria, procedure and instruments as to the other item facilities and fabrication facilities should be developed for the perfection of national inspections. It would be desirable that the recommendations proposed and concreted in this study, so as to both cope with the strengthened international safeguards and detect the undeclared nuclear activities, could be applied to national safeguards scheme. (author)

  6. Radioactive waste incineration studies at the Los Alamos Scientific Laboratory

    International Nuclear Information System (INIS)

    Stretz, L.A.; Borduin, L.C.; Draper, W.E.; Koenig, R.A.; Newmyer, J.M.

    1980-01-01

    Development and demonstration of a transuranic (TRU) waste volume-reduction process is described. A controlled-air incinerator, based upon commercially available equipment and technology, was modified for radioactive service and was successfully tested and demonstrated with contaminated waste. Demonstration of the production-scale unit was completed in May 1980 with the incineration of 272 kg of waste with an average TRU content of about 20 nCi/g. Weight and volume reduction factors for the demonstration run were 40:1 and 120:1, respectively

  7. Experiences with waste incineration for energy production in Denmark

    DEFF Research Database (Denmark)

    Kirkeby, Janus; Grohnheit, Poul Erik; Møller Andersen, Frits

    The Bioenergy Department in SENER have requested assistance with planning for the deployment of bioenergy (Biomass, biogas and waste incineration) in Mexico and information on Danish experiences with developing policy initiatives promoting bioenergy. This introduction to the Danish experiences...... with waste incineration for energy production use is compiled as preparation for SENER’s potential visit to Denmark in 2014. This report was prepared 19 June, 2014 by COWI DTU System Analysis to Danish Energy Agency (DEA) as part of a frame contract agreement....

  8. Radioactivity partitioning of oil sludge undergoing incineration process

    International Nuclear Information System (INIS)

    Muhamat Omar; Suhaimi Hamzah; Muhd Noor Muhd Yunus

    1997-01-01

    Oil sludge waste is a controlled item under the Atomic Energy Act (Act 304) 1984 of which the radioactivity content shall be subjected to analysis. Apart from that the treatment method also shall be approved by Atomic Energy Licensing Board (AELB). Thus, an analysis of the oil sludge for MSE fluidized incinerator was conducted to comply with above requirements using various techniques. Further screening analysis of fly ash as well as bed material were done to study the effect of incinerating the sludge. This paper highlights the analysis techniques and discusses the results with respect to the radioactivity level and the fate of radionuclides subjected to the processing of the waste

  9. Development of a computer system to optimize the registration of scheduled inspections and the occurrences observed in field; Desenvolvimento de um sistema computacional para otimizar o cadastramento das inspecoes programadas e das ocorrencias observadas em campo

    Energy Technology Data Exchange (ETDEWEB)

    Senne, E.L F.; Freire Junior, J.C.; Fernandes Filho, G.E.F.; Cassula, A.M. [Universidade Estadual Paulista (FEG/UNESP), Guaratingueta, SP (Brazil). Fac. de Engenharia], E-mails: elfsenne@feg.unesp.br, jcfreire@feg.unesp.br, gfilippo@feg.unesp.br, agnelo@feg.unesp.br; Avila, J.I. [Bandeirante Energia S.A., Sao Jose dos Campos, SP (Brazil)], Email: joao.avila@enbr.com.br

    2009-07-01

    The development of computational tools for programming and implementing inspections in distribution aerial network is presented. The programming of inspections can be elaborated for each maintenance centre or for the entire concession centrally. Inspections may be programmed for any time horizon. Running of scheduled inspections is made with the aid of mobile devices PDA (Personal Digital Assistant) type through an system developed in J2ME for data collection. Data collected on the defects observed are stored in the PDA in an XML file format and can be exported to a database through the Internet. The programming system of inspections, from the information stored in the database, may issue reports about registered inspections, about the observations recorded and about the canceled inspections.

  10. Research on UAV Intelligent Obstacle Avoidance Technology During Inspection of Transmission Line

    Science.gov (United States)

    Wei, Chuanhu; Zhang, Fei; Yin, Chaoyuan; Liu, Yue; Liu, Liang; Li, Zongyu; Wang, Wanguo

    Autonomous obstacle avoidance of unmanned aerial vehicle (hereinafter referred to as UAV) in electric power line inspection process has important significance for operation safety and economy for UAV intelligent inspection system of transmission line as main content of UAV intelligent inspection system on transmission line. In the paper, principles of UAV inspection obstacle avoidance technology of transmission line are introduced. UAV inspection obstacle avoidance technology based on particle swarm global optimization algorithm is proposed after common obstacle avoidance technologies are studied. Stimulation comparison is implemented with traditional UAV inspection obstacle avoidance technology which adopts artificial potential field method. Results show that UAV inspection strategy of particle swarm optimization algorithm, adopted in the paper, is prominently better than UAV inspection strategy of artificial potential field method in the aspects of obstacle avoidance effect and the ability of returning to preset inspection track after passing through the obstacle. An effective method is provided for UAV inspection obstacle avoidance of transmission line.

  11. Leaching from municipal solid waste incineration residues

    Energy Technology Data Exchange (ETDEWEB)

    Hyks, J.

    2008-02-15

    Leaching of pollutants from Municipal Solid Waste Incineration (MSWI) residues has been investigated combining a range of laboratory leaching experiments with geochemical modeling. Special attention was paid to assessing the applicability of laboratory data for subsequent modeling with respect to presumed full-scale conditions; both sample pretreatment and actual influence of leaching conditions on the results of laboratory experiments were considered. It was shown that sample pretreatment may have large impact on leaching test data. In particular, a significant fraction of Pb was shown mobile during the washing of residues with water. In addition, drying of residues (i.e. slow oxidation) prior to leaching experiments increased the leaching of Cr significantly. Significant differences regarding the leaching behavior of individual elements with respect to (non)equilibrium conditions in column percolation experiments were observed in the study. As a result, three groups of elements were identified based on the predominant leaching control and the influence of (non)equilibrium on the results of the laboratory column experiments: I. Predominantly availability-controlled elements (e.g. Na, K, Cl) II. Solubility-controlled elements (e.g. Ca, S, Si, Al, Ba, and Zn) III. Complexation-controlled elements (e.g. Cu and Ni) With respect to the above groups it was suggested that results of laboratory column experiments can, with consideration, be used to estimate full-scale leaching of elements from Group I and II. However, in order to avoid large underestimations in the assessment of leaching from Group III, it is imperative to describe the time-dependent transport of dissolved organic carbon (DOC) in the tested system or to minimize the physical non-equilibrium during laboratory experiments (e.g. bigger column, slower flow velocity). Forward geochemical modeling was applied to simulate long-term release of elements from a MSWI air-pollution-control residue. Leaching of a

  12. Peer review panel summary report for technical determination of mixed waste incineration off-gas systems for Rocky Flats

    International Nuclear Information System (INIS)

    1992-01-01

    A Peer Review Panel was convened on September 15-17, 1992 in Boulder, Co. The members of this panel included representatives from DOE, EPA, and DOE contractors along with invited experts in the fields of air pollution control and waste incineration. The primary purpose of this review panel was to make a technical determination of a hold, test and release off gas capture system should be implemented in the proposed RF Pland mixed waste incineration system; or if a state of the art continuous air pollution control and monitoring system should be utilized as the sole off-gas control system. All of the evaluations by the panel were based upon the use of the fluidized bed unit proposed by Rocky Flats and cannot be generalized to other systems

  13. Inspection control and the environmental protection

    Directory of Open Access Journals (Sweden)

    Milkov Dragan L.

    2015-01-01

    Full Text Available Environmental protection is the task of many administrative bodies, but the activity of the environmental inspection is of special importance. According to the Law on Environmental Protection, inspection's tasks in this area belong to the competence of republican bodies, ie. Ministry of Agriculture and Environmental Protection. Autonomous province and local self-government have only delegated competence in this field, under condition that this is explicitly regulated in special laws. Environmental inspection's activity consists in preventive actions, certain prior - preparatory activities and the audit itself. In addition, following the intervention of the Inspector issue of the control may be corrective or repressive. According to the Law on Inspection Control and the Law on Environmental Protection, the inspectors have a number of powers and responsibilities, which enable them to ensure the lawful and proper conduct of individuals and legal entities.

  14. Waste wood incineration: long-lasting, environment-friendly and CO2-neutral

    International Nuclear Information System (INIS)

    Bouma, J.W.J.

    1993-01-01

    The economic aspects of energy production from waste wood are evaluated. Heating systems based on the incineration of wood have been considerably improved recently. Several aspects of the incineration of waste wood are reviewed: the implications with regard to the greenhouse effect, the calorific value of wood, the incineration process, and the cost price calculation of energy production by waste wood incineration. In conclusion is stated that energy production by waste wood incineration is a valuable economic alternative for heat production by oil products, especially in view of the current anti-pollution taxes in Belgium. (A.S.)

  15. Exposure dose evaluation of worker at radioactive waste incineration facility on KAERI

    International Nuclear Information System (INIS)

    Park, Sang Kyu; Jeon, Jong Seon; Kim, Youn Hwa; Lee, Jae Min; Lee, Gi Won

    2011-01-01

    An incineration treatment of inflammable radioactive wastes leads to have a reduction effect of disposal cost and also to contribute an enhancement of safety at a disposal site by taking the advantage of stabilization of the wastes which is accomplished by converting organic materials into inorganic materials. As it was required for an incineration technology, KAERI (Korea Atomic Energy Research Institute) has developed a pilot incineration process and then constructed a demonstration incineration facility having based on the operating experiences of the pilot process. In this study, worker exposure doses were evaluated to confirm safety of workers before the demonstration incineration facility will commence a commercial. (author)

  16. The domestic wastes incinerators; Les incinerateurs d'ordures menegares: quels risques? quelles politiques?

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-10-01

    This document presents the opinion of the Committee of Prevention and Precaution (CPP), on the domestic wastes incinerators, in the framework of the global wastes policy. The seven chapters detail and bring advices on the following topics: the elements which are going in and out of the incinerators, the technical processes, the occupational activities and the risks bound to the incinerators use, the transfer modes towards the different environmental areas, the exposure estimation, the risks of people living near the domestic wastes incinerators compared to the other concerning a cancer development, the legislation concerning the domestic wastes and the social acceptability of the incinerators. (A.L.B.)

  17. 40 CFR 60.1445 - What are the emission limits for air curtain incinerators that burn 100 percent yard waste?

    Science.gov (United States)

    2010-07-01

    ... curtain incinerators that burn 100 percent yard waste? 60.1445 Section 60.1445 Protection of Environment... Air Curtain Incinerators That Burn 100 Percent Yard Waste § 60.1445 What are the emission limits for air curtain incinerators that burn 100 percent yard waste? If your air curtain incinerator combusts...

  18. Runway Inspection by RPAS

    Directory of Open Access Journals (Sweden)

    Stanislav Absolon

    2015-10-01

    Full Text Available This article discusses the use of the RPAS for the inspection of the airport operating areas. The paper compares the current process of the inspection of the airport operating areas by the airport staff with the possibilities which are offered by the use of the modern technology RPAS. The following text also describes how to inspect airport operating areas by the RPAS, specific technical possibilities and the applicable technical solutions. Furthermore there are variants of piloting the RPAS, comparing usable equipment, equipment for video recording and the possibility of using thermal imaging camera in the article.

  19. Current practice of incineration of low-level institutional radioactive waste

    International Nuclear Information System (INIS)

    Cooley, L.R.; McCampbell, M.R.; Thompson, J.D.

    1981-02-01

    During 1972, 142 medical and academic institutions were surveyed to assess the current practice of incineration of low-level radioactive waste. This was one activity carried out by the University of Maryland as part of a contract with EG and G Idaho, Inc., to site a radioactive waste incineration system. Of those surveyed, 46 (approximately 32%) were presently incinerating some type of radioactive waste. All were using controlled-air, multistage incinerators. Incinerators were most often used to burn animal carcasses and other biological wastes (96%). The average size unit had a capacity of 113 kg/h. Disposal of liquid scintillation vials posed special problems; eight institutions incinerated full scintillation vials and five incinerated scintillation fluids in bulk form. Most institutions (87%) used the incinerator to dispose of other wastes in addition to radioactive wastes. About half (20) of the institutions incinerating radioactive wastes reported shortcomings in their incineration process; those most often mentioned were: problems with liquid scintillation wastes, ash removal, melting glass, and visible smoke. Frequently cited reasons for incinerating wastes were: less expensive than shipping for commercial shallow land burial, volume reduction, convenience, and closure of existing disposal sites

  20. Heavy Metal Concentrations around a Hospital Incinerator and a ...

    African Journals Online (AJOL)

    Studies to determine the concentrations of heavy metals in the surrounding soils and bottom ash of a hospital incinerator and a municipal dumpsite were carried out in Ibadan City, South-West Nigeria from November 2010 to January 2011. Samples were analyzed for Pb, Fe, Cu, Zn, Cr and Ni using Flame Atomic Absorption ...

  1. Controlled-air incineration of transuranic-contaminated solid waste

    International Nuclear Information System (INIS)

    Borduin, L.C.; Draper, W.E.; Koenig, R.A.; Neuls, A.S.; Warner, C.L.

    1976-01-01

    A controlled-air incinerator and an associated high-energy aqueous off-gas cleaning system are being installed at the Los Alamos Scientific Laboratory (LASL) Transuranic Waste Treatment Development Facility (TDF) for evaluation as a low-level transuranic-contaminated (TRU) solid waste volume reduction process. Program objectives are: (1) assembly and operation of a production scale (45 kg/hr) operation of ''off-the-shelf'' components representative of current incineration and pollution control technology; (2) process development and modification to meet radioactive health and safety standards, and (3) evaluation of the process to define the advantages and limitations of conventional technology. The results of the program will be the design specifications and operating procedures necessary for successful incineration of TRU waste. Testing, with nonradioactive waste, will begin in October 1976. This discussion covers commercially available incinerator and off-gas cleaning components, the modifications required for radioactive service, process components performance expectations, and a description of the LASL experimental program

  2. Sustainable waste management via incineration system: an Islamic ...

    African Journals Online (AJOL)

    This paper would firstly examine solid waste management currently experienced in Malaysia with special concentration given to waste incineration. Its function and benefits entailed from this system shall then be identified. This paper attempts to emphasize this notion within the Islamic perspective, stressing on the needs to ...

  3. Design, construction and test operation of a thermal incinerator for ...

    African Journals Online (AJOL)

    Montfort type intermittent incinerator for combusting medical wastes were the waste types, fuel, chimney size, and flue gas residence time. The design analysis was based on flue gas flow rate of 0.13 m3/s, maximum primary chamber ...

  4. Initial emission assessment of hazardous-waste-incineration facilities

    International Nuclear Information System (INIS)

    Harrington, E.S.; Holton, G.A.; O'Donnell, F.R.

    1982-01-01

    Health and Safety Research Division, sponsored by EPA, conducted a study to quantify emission factors from stacks, spills, fugitives, storage, and treatment for a typical hazardous waste incinerator facility. Engineering participated in preparing flowsheets and providing calculations for fugitive emissions. Typical block-flow diagrams were developed two types of hazardous waste incinerators (rotary kiln and liquid-injector) and for three capacities (small: 1 MM Btu/hr, median: 10 MM Btu/hr, and large: 150 MM Btu/hr). Storage reqirements and support services were determined in more detail. Using the properties of a typical waste, fugitive emissions were determined, including emissions from pump leaks, valve leaks, flange leaks, and tank vents. An atmospheric dispersion model was then employed to calculate atmospheric concentration and population exposure estimates. With these estimates, an assessment was performed to determine the percentage of concentrations and exposure associated with selected emissions from each source at the incineration facility. Results indicated the relative importance of each source at the incineration facility. Results indicated the relative importance of each source both in terms of public health and pollution control requirements

  5. Development of gas boy medical incinerator as a substitute for ...

    African Journals Online (AJOL)

    The stench that emanates from the burial of placentas, limbs etc especially after rainfall, are unbearable and awful within most hospital environments. A solution has been found in the engineering of all-in-one medical gas boy incinerator with quick rise in temperature and even distribution of heat, with drying and firing cycles ...

  6. The impact of incinerators on human health and environment.

    Science.gov (United States)

    Sharma, Raman; Sharma, Meenakshi; Sharma, Ratika; Sharma, Vivek

    2013-01-01

    Of the total wastes generated by health-care organizations, 10%-25% are biomedical wastes, which are hazardous to humans and the environment and requires specific treatment and management. For decades, incineration was the method of choice for the treatment of such infectious wastes. Incinerator releases a wide variety of pollutants depending on the composition of the waste, which leads to health deterioration and environmental degradation. The significant pollutants emitted are particulate matter, metals, acid gases, oxides of nitrogen, and sulfur, aside from the release of innumerable substances of unknown toxicity. This process of waste incineration poses a significant threat to public health and the environment. The major impact on health is the higher incidence of cancer and respiratory symptoms; other potential effects are congenital abnormalities, hormonal defects, and increase in sex ratio. The effect on the environmental is in the form of global warming, acidification, photochemical ozone or smog formation, eutrophication, and human and animal toxicity. Thus, there is a need to skip to newer, widely accepted, economical, and environment-friendly technologies. The use of hydroclaves and plasma pyrolysis for the incineration of biomedical wastes leads to lesser environmental degradation, negligible health impacts, safe handling of treated wastes, lesser running and maintenance costs, more effective reduction of microorganisms, and safer disposal.

  7. Strategy for nuclear wastes incineration in hybrid reactors

    International Nuclear Information System (INIS)

    Lelievre, F.

    1998-01-01

    The transmutation of nuclear wastes in accelerator-driven nuclear reactors offers undeniable advantages. But before going into the detailed study of a particular project, we should (i) examine the possible applications of such systems and (ii) compare the different configurations, in order to guide technological decisions. We propose an approach, answering both concerns, based on the complete description of hybrid reactors. It is possible, with only the transmutation objective and a few technological constraints chosen a posteriori, to determine precisely the essential parameters of such reactors: number of reactors, beam current, size of the core, sub-criticality... The approach also clearly pinpoints the strategic decisions, for which the scientist or engineer is not competent. This global scheme is applied to three distinct nuclear cycles: incineration of solid fuel without recycling, incineration of liquid fuel without recycling and incineration of liquid fuel with on-line recycling; and for two spectra, either thermal or fast. We show that the radiotoxicity reduction with a solid fuel is significant only with a fast spectrum, but the incineration times range from 20 to 30 years. The liquid fuel is appropriate only with on-line recycling, at equilibrium. The gain on the radiotoxicity can be considerable and we describe a number of such systems. The potential of ADS for the transmutation of nuclear wastes is confirmed, but we should continue the description of specific systems obtained through this approach. (author)

  8. Effectiveness of incinerators in the management of medical wastes ...

    African Journals Online (AJOL)

    Introduction and Objectives Medical waste incinerators release into the air a host of pollutants that have serious adverse consequences on public health and the environment. This study aimed at determining ... Questionnaires, researcher observation and laboratory investigations of ash samples were used in data collection.

  9. Transformation of Silver Nanoparticles in Fresh, Aged, and Incinerated Biosolids

    Science.gov (United States)

    Abstract The purpose of this research was to assess the chemical transformation of silver nanoparticles (AgNPs) in aged, fresh, and incinerated biosolids in order to provide information for AgNP life cycle analyses. Silver nanoparticles were introduced to the influent of a pilot...

  10. the development of new generation of solid waste refuse incinerators

    African Journals Online (AJOL)

    MATERIALS AND METHODS. These new generation of solid waste refuse incinerators are designed in the round with various locally manufactured special bricks for maximum stability and with minimal use of angle irons except for the doors since they are susceptible to rusting. The four fire boxes apart from allowing the ...

  11. Thermal Stability and Material Balance of Nanomaterials in Waste Incineration

    Science.gov (United States)

    Paur, H.-R.; Baumann, W.; Hauser, M.; Lang, I.; Teuscher, N.; Seifert, H.; Stapf, D.

    2017-06-01

    Nanostructured materials are widely used to improve the properties of consumer products such as tires, cosmetics, light weight equipment etc. Due to their complex composition these products are hardly recycled and thermal treatment is preferred. In this study we investigated the thermal stability and material balance of nanostructured metal oxides in flames and in an industrial waste incinerator. We studied the size distribution of nanostructured metal oxides (CeO2, TiO2, SiO2) in a flame reactor and in a heated reaction tube. In the premixed ethylene/air flame, nano-structured CeO2 partly evaporates forming a new particle mode. This is probably due to chemical reactions in the flame. In addition sintering of agglomerates takes place in the flame. In the electrically heated reaction tube however only sintering of the agglomerated nanomaterials is observed. Ceria has a low background in waste incinerators and is therefore a suitable tracer for investigating the fate of nanostructured materials. Low concentrations of Ceria were introduced by a two-phase nozzle into the post-combustion zone of a waste incinerator. By the incineration of coal dust in a burning chamber the Ceria nanoparticles are mainly found in the size range of the fly ash (1 - 10 µm) because of agglomeration. With gas as a fuel less agglomeration was observed and the Ceria nanoparticles were in the particle size range below 1 µm.

  12. EXPERIMENTAL INVESTIGATION OF CRITICAL FUNDAMENTAL ISSUES IN HAZARDOUS WASTE INCINERATION

    Science.gov (United States)

    The report gives results of a laboratory-scale program investigating several fundamental issues involved in hazardous waste incineration. The key experiment for each study was the measurement of waste destruction behavior in a sub-scale turbulent spray flame. (1) Atomization Qual...

  13. Danish Emission Inventory for Waste Incineration and Other Waste

    DEFF Research Database (Denmark)

    Hjelgaard, Katja

    2013-01-01

    This report contains detailed methodological issues, activity data, emission factors, uncertainties and references for waste incineration without energy recovery and other waste source categories of the Danish emission inventories 2013. The emissions are calculated for the years 1980-2011 according...

  14. Thermal Stability and Material Balance of Nanomaterials in Waste Incineration

    International Nuclear Information System (INIS)

    Paur, H.-R.; Baumann, W.; Hauser, M.; Lang, I.; Teuscher, N.; Seifert, H.; Stapf, D.

    2017-01-01

    Nanostructured materials are widely used to improve the properties of consumer products such as tires, cosmetics, light weight equipment etc. Due to their complex composition these products are hardly recycled and thermal treatment is preferred. In this study we investigated the thermal stability and material balance of nanostructured metal oxides in flames and in an industrial waste incinerator. We studied the size distribution of nanostructured metal oxides (CeO 2 , TiO 2 , SiO 2 ) in a flame reactor and in a heated reaction tube. In the premixed ethylene/air flame, nano-structured CeO 2 partly evaporates forming a new particle mode. This is probably due to chemical reactions in the flame. In addition sintering of agglomerates takes place in the flame. In the electrically heated reaction tube however only sintering of the agglomerated nanomaterials is observed. Ceria has a low background in waste incinerators and is therefore a suitable tracer for investigating the fate of nanostructured materials. Low concentrations of Ceria were introduced by a two-phase nozzle into the post-combustion zone of a waste incinerator. By the incineration of coal dust in a burning chamber the Ceria nanoparticles are mainly found in the size range of the fly ash (1 – 10 µm) because of agglomeration. With gas as a fuel less agglomeration was observed and the Ceria nanoparticles were in the particle size range below 1 µm. (paper)

  15. Design and Fabrication of a Domestic Incinerator *1OMOREGIE, MJ ...

    African Journals Online (AJOL)

    ADOWIE PERE

    JASEM https://dx.doi.org/10.4314/jasem.v21i5.27. Keywords: Incinerator, wastes, combustion, scrubber, lagging, conductivity ... Combustion Process: Waste material is burnt in the combustion chamber using a proportionate air/ ... pipe, r1= internal radius of the pipe, r2 = external radius of the pipe; Rf = thermal resistance of ...

  16. Mathematical modelling of MSW incineration in a packed bed

    DEFF Research Database (Denmark)

    Chen, Guanyi; Gu, Tianbao; He, Xiao

    2017-01-01

    Grate-firing is the most commonly used technology for municipal solid waste (MSW) incineration for heat and power generation, in which MSW undergoes thermochemical conversion (e.g., drying, devolatilization, char gasification and oxidation) in the fuel bed on the grate while the combustible gases...

  17. Forensic considerations when dealing with incinerated human dental remains.

    Science.gov (United States)

    Reesu, Gowri Vijay; Augustine, Jeyaseelan; Urs, Aadithya B

    2015-01-01

    Establishing the human dental identification process relies upon sufficient post-mortem data being recovered to allow for a meaningful comparison with ante-mortem records of the deceased person. Teeth are the most indestructible components of the human body and are structurally unique in their composition. They possess the highest resistance to most environmental effects like fire, desiccation, decomposition and prolonged immersion. In most natural as well as man-made disasters, teeth may provide the only means of positive identification of an otherwise unrecognizable body. It is imperative that dental evidence should not be destroyed through erroneous handling until appropriate radiographs, photographs, or impressions can be fabricated. Proper methods of physical stabilization of incinerated human dental remains should be followed. The maintenance of integrity of extremely fragile structures is crucial to the successful confirmation of identity. In such situations, the forensic dentist must stabilise these teeth before the fragile remains are transported to the mortuary to ensure preservation of possibly vital identification evidence. Thus, while dealing with any incinerated dental remains, a systematic approach must be followed through each stage of evaluation of incinerated dental remains to prevent the loss of potential dental evidence. This paper presents a composite review of various studies on incinerated human dental remains and discusses their impact on the process of human identification and suggests a step by step approach. Copyright © 2014 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.

  18. Possibilities for gas turbine and waste incinerator integration

    NARCIS (Netherlands)

    Korobitsyn, M.A.; Jellema, P.; Hirs, Gerard

    1999-01-01

    The aggressive nature of the flue gases in municipal waste incinerators does not allow the temperature of steam in the boiler to rise above 400°C. An increase in steam temperature can be achieved by external superheating in a heat recovery steam generator positioned behind a gas turbine, so that

  19. Behavior of radioactive cesium during incineration of radioactively contaminated wastes from decontamination activities in Fukushima.

    Science.gov (United States)

    Fujiwara, Hiroshi; Kuramochi, Hidetoshi; Nomura, Kazutaka; Maeseto, Tomoharu; Osako, Masahiro

    2017-11-01

    Large volumes of decontamination wastes (DW) generated by off-site decontamination activities in Fukushima Prefecture have been incinerated since 2015. The behavior of radioactive cesium during incineration of DW was investigated at a working incineration plant. The incineration discharged bottom ash (BA) and fly ash (FA) with similar levels of radiocesium, and the leachability of the radiocesium from both types of ash was very low (incineration of contaminated municipal solid waste (CMSW) reported in earlier studies. The source of radiocesium in DW-FA is chiefly small particles derived from DW and DW-BA blown into the flue gas, not the deposition of gaseous synthesized radiocesium compounds on the surfaces of ash particles in the flue gas as observed in CMSW incineration. This source difference causes the behavior of radiocesium during waste incineration to differ between DW and CMSW. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Improvement of remote control system of automatic ultrasonic equipment for inspection of reactor pressure vessel

    Energy Technology Data Exchange (ETDEWEB)

    Cheong, Yong Moo; Jung, H. K.; Joo, Y. S.; Koo, K. M.; Hyung, H.; Sim, C. M.; Gong, U. S.; Kim, S. H.; Lee, J. P.; Rhoo, H. C.; Kim, M. S.; Ryoo, S. K.; Choi, C. H.; Oh, K. I

    1999-12-01

    One of the important issues related to the nuclear safety is in-service inspection of reactor pressure vessel (RPV). A remote controlled automatic ultrasonic method is applied to the inspection. At present the automatic ultrasonic inspection system owned by KAERI is interrupted due to degradation of parts. In order to resume field inspection new remote control system for the equipment was designed and installed to the existing equipment. New ultrasonic sensors and their modules for RPV inspection were designed and fabricated in accordance with the new requirements of the inspection codes. Ultrasonic sensors were verified for the use in the RPV inspection. (autho0008.

  1. Principles and Application of Magnetic Rubber Testing for Crack Detection in High-Strength Steel Components: I. Active-Field Inspection

    Science.gov (United States)

    2014-12-01

    residual field MRT, which utilises the residual (or remanent ) magnetisation remaining in the component following prior magnetisation by an external...normal (perpendicular) to the surface of a material Br Remanent magnetic induction ( Remanence ) Bt Component of B tangent (parallel) to the surface...structure and then removed. The rubber is subsequently applied to the component and allowed to cure while the specimen is in a remanent magnetic

  2. Wheel inspection system environment.

    Science.gov (United States)

    2008-11-18

    International Electronic Machines Corporation (IEM) has developed and is now marketing a state-of-the-art Wheel Inspection System Environment (WISE). WISE provides wheel profile and dimensional measurements, i.e. rim thickness, flange height, flange ...

  3. Signal Station Inspection Reports

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Handwritten reports resulting from detailed inspections of US Army Signal Service Stations, 1871-1889. Features reported included instrument exposure and condition,...

  4. Treatment of off-gas from radioactive waste incinerators

    International Nuclear Information System (INIS)

    1989-01-01

    An effective process reducing volume of radioactive wastes is incineration of combustible wastes. Appropriate design of the off-gas treatment system is necessary to ensure that any releases of airborne radionuclides into the environment are kept below acceptable limits. In many cases, the off-gas system must be designed to accommodate chemical constituents in the gas stream. The purpose of this publication is to provide the most up-to-date information regarding off-gas treatment as well as an account of some of the developments so as to aid users in the selection of an integrated system for a particular application. The choice of incinerator/off-gas system combination depends on the wastes to be treated, as well as other factors, such as regulatory requirements. Current problems and development needs are discussed. Following comprehensive discussions of the various factors affecting a choice, various incinerator and off-gas treatment systems are recommended for the various types of wastes that may be treated: low PVC content solid, high PVC content solid, organic liquid and resins. The economics or costs of the off-gas system and an evaluation of the overall cost effectiveness of incineration or direct burial is not discussed in detail. This publication is specifically directed toward technical aspects and addresses: incineration types and origin, sources and characteristics of off-gas streams; descriptions of available technologies for off-gas treatment; basic component design requirements and component description; operational experience of plants in active operation and their current practices; legal aspects and safety requirements; remaining problems to be solved and development trends in plant design and component structure. This report seeks to broaden and enhance the understanding of the developed technology and to indicate areas where improvements can be made by further research and development. 110 refs

  5. Incineration and flue gas cleaning in China - a Review

    International Nuclear Information System (INIS)

    Buekens, Alfons; Yan, Mi; Jiang, Xuguan; Li, Xiaodong; Lu, Shengyong; Chi, Yong; Yan, Jianhua; Cen, Kefa

    2010-01-01

    Waste incineration is rapidly developing in China. Different technologies are proposed for Municipal Solid Waste (MSW), Hazardous Waste (HW), and Medical Waste (MW). The required technologies are either imported, or developed locally. Some data are cited to illustrate these rapid developments. Incinerator flue gas arises at rather limited scale (10,000-100,000 Nm 3 /h), compared to power generation, yet the number of pollutants to be counted with is huge: dust and grit, acid gases, NO x , selected heavy metals, aerosols and nanoparticles, Polycyclic Aromatic Hydrocarbons, and dioxins. Major options in flue gas cleaning can be derived from Best Available Technologies (BAT), as were developed in the European Union. Hence, E.U. practice is analyzed in some detail, by considering the present situation in selected E.U. countries (Germany, Sweden, the Netherlands, Denmark, Belgium). A comparison is made with China. Also, the situation in Japan is examined. Based on this wide experience, a number of technical suggestions regarding incineration, flue gas cleaning, and emission control are formulated. Also, the possibility of co incineration is considered. Starting from the particular experience of Zhejiang University (as a designer of Fluid Bed and Rotary Kiln plant, with large experience in Fluid Bed processes, coal firing, gasification and pyrolysis, and actively monitoring thermal units throughout China) some specific Case Studies are examined, e.g., a fluidized bed incinerator and its gas cleaning system (MSWI and HWI from ITPE). Some attention is paid to the potential threats in China from uncontrolled combustion sources. As a conclusion, some recommendations are formulated regarding flue gas cleaning in Developing Nations at large and in China in particular. (author)

  6. System of the incineration for the liquid scintillation garbage

    International Nuclear Information System (INIS)

    Naba, Katsumi

    1981-12-01

    In Japan from 1980 the incineration of the used scintillation liquid has been permitted according to the safety guide regulation of Japan Scientific Technology Agency. This incineration method would disperse the radioactivity in local site and destroy the chemicals at the same time. This system are consist of three parts. (1) Filtration and pH. adjustment of liquid garbage. (2) Bubbling vaporization in closed cycle. The temperature of the solution inside vessel is kept from 65 0 C to 85 0 C and the solution is bubbled with nealy 4 0 C circulated air. After the end of distillation, water layer is separated from the organic chemical layer and put it down the drain according to the regulation. (3) The residue is mixed with only the distilled organic chemicals according to the next classification, thereafter incineration is carried out. (a) For under the radioactive concentration of 1 x 10 -3 μCi/ml, the mixed scintillation liquid are burned up in specially designed incinerator. (b) For over the level of 1 x 10 -3 μCi/ml, only the distilled organic chemicals are burned up and the residue will be sent to the Waste Disposal Site. (c) For under the water content of 5% these liquid garbage can be directly are burned up without distillation The residue seemed to be suitable for the combustion of the dried carcased animals as the auxiliary fuels. This incinerator will be able to use as room heater or water heater for the bath without radioactive contamination inside of install room. (author)

  7. Inspection at Summerhill

    OpenAIRE

    Keeble-Ramsay, Diane

    2016-01-01

    This paper considers issues surrounding the 1999 OFSTED inspection of Summerhill school (in Suffolk) which led to a Notice of Closure, and subsequent successful appeal on the grounds of inappropriate judgements made by OFSTED inspectors. It is useful to note that Summerhill School has existed in the independent sector offering ‘progressive education’ since the 1920s. However, following a 1990s inspection from OFSTED, its existence was threatened in terms of its freedom in future continuing to...

  8. Dangerous waste incineration and its impact on air quality. Case study: the incinerator SC Mondeco SRL Suceava

    Directory of Open Access Journals (Sweden)

    Dumitru MIHĂILĂ

    2015-03-01

    Full Text Available Dangerous waste, such as oil residues, pesticides, lacquers, stains, glues, organic solvents, hospital and food industry residues represent a major risk for all components of the environment (water, air, earth, soil, flora, fauna, people as well. Consequently, their incineration with high-performance burning installations lessens the impact on the environment, especially on the air quality, and it gives the possibility to recuperate the warmth of the incineration. This research presents a representative technique of incineration of dangerous waste at S.C. Mondeco S.R.L. Suceava, which runs according to the European standards, located in the industrial zone of Suceava, on the Suceava river valley Suceava. Also it is analysed the impact of this unit on the quality of nearby air. Moreover, not only the concentrations of gases and powders during the action of the incineration process (paramaters that are continuously monitored by highly methods are analysed, but also here are described the dispersions of those pollutants in the air, taking into account the characteristics of the source and the meteorological parametres that are in the riverbed. 

  9. Suitability of oil bioremediation in an Artic soil using surplus heating from an incineration facility.

    Science.gov (United States)

    Couto, Nazaré; Fritt-Rasmussen, Janne; Jensen, Pernille E; Højrup, Mads; Rodrigo, Ana P; Ribeiro, Alexandra B

    2014-05-01

    A 168-day period field study, carried out in Sisimiut, Greenland, assessed the potential to enhance soil remediation with the surplus heating from an incineration facility. This approach searches a feasible ex situ remediation process that could be extended throughout the year with low costs. Individual and synergistic effects of biostimulation were also tested, in parallel. An interim evaluation at the end of the first 42 days showed that biostimulation and active heating, as separate treatments, enhanced petroleum hydrocarbon (PHC) removal compared to natural attenuation. The coupling of both technologies was even more effective, corroborating the benefits of both techniques in a remediation strategy. However, between day 42 and day 168, there was an opposite remediation trend with all treatments suggesting a stabilization except for natural attenuation, where PHC values continued to decrease. This enforces the "self-purification" capacity of the system, even at low temperatures. Coupling biostimulation with active heating was the best approach for PHC removal, namely for a short period of time (42 days). The proposed remediation scheme can be considered a reliable option for faster PHC removal with low maintenance and using "waste heating" from an incineration facility.

  10. Fate of heavy metals during municipal solid waste incineration in Shanghai.

    Science.gov (United States)

    Zhang, Hua; He, Pin-Jing; Shao, Li-Ming

    2008-08-15

    The transfer behavior of heavy metals during municipal solid waste (MSW) incineration was investigated based on 2-year field measurements in two large-scale incinerators in Shanghai. Great temporal and spatial diversification was observed. Most of Hg and Cd were evaporated and then removed by air pollution control (APC) system through condensation and adsorption processes, thus being enriched in the fine APC residues particles. Cr, Cu, and Ni were transferred into the APC residues mainly by entrainment, and distributed uniformly in the two residues flows, as well as in the ash particles with different sizes. Pb and Zn in the APC residues were from both entrainment and evaporation, resulting in the higher concentrations (two to four times) compared with the bottom ash. Arsenic was transported into the flue gas mainly by evaporation, however, its transfer coefficient was lower. Though the heavy metals contents in the APC residues were higher than that in bottom ash, more than 80% of As, Cr, Cu, and Ni, 74-94% of Zn, as well as 46-79% of Pb remained in the bottom ash, due to its high mass ratio (85-93%) in the residues. While 47-73% of Cd and 60-100% of Hg were transferred into the APC residues, respectively.

  11. Codified Risk Based Inspection Planning

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard; Faber, Michael Havbro

    2002-01-01

    and inspection/repair techniques. Generic inspection plans can be used for design of new structures as well as for requalification of existing structures. In this paper it is described how generic inspection plans can be used for codification purposes in connection with inspection planning of steel structures....

  12. Quantitative estimation of defects from measurement obtained by remote field eddy current inspection; Evaluation quantitative de defauts a partir de mesures par courants de Foucault en champ lointain

    Energy Technology Data Exchange (ETDEWEB)

    Davoust, M.E.; Fleury, G. [Ecole Superieure d' Electricite, 91 - Gif-sur-Yvette (France)

    1999-07-01

    Remote field eddy current technique is used for dimensioning grooves that may occurs in ferromagnetic pipes.This paper proposes a method to estimate the depth and the length of corrosion grooves from measurement of a pick-up coil signal phase at different positions close to the defect. Grooves dimensioning needs the knowledge of the physical relation between measurements and defect dimensions. So, finite element calculations are performed to obtain a parametric algebraic function of the physical phenomena. By means of this model and a previously defined general approach, an estimate of groove size may be given. In this approach, algebraic function parameters and groove dimensions are linked through a polynomial function. In order to validate this estimation procedure, a statistical study has been performed. The approach is proved to be suitable for real measurements. (authors)

  13. Incore inspection device

    International Nuclear Information System (INIS)

    Ogisu, Tatsuki; Taguchi, Kosei.

    1995-01-01

    The device of the present invention can inspect surfaces of equipments in reactor water in a nuclear reactor in a state of atmospheric air. Namely, an inspection device is movable forwardly and backwardly in a water-proof vessel. An annular sucker with pleats is disposed to the outer side of a lid of the water-proof vessel. A television camera for an under water monitoring is disposed to the inner side of the lid of the water-proof vessel by way of a partitioning wall with lid. Transferring screws are disposed at the back and on the side of the water-proof vessel. In the device having such a constitution, (1) the inside of the water-proof vessel is at first made water-tight by closing the partitioning wall with lid, (2) the back and the side screws are operated by the guide of the underwater monitoring television camera, to transfer the water-proof vessel to the surface of the reactor core to be inspected, (3) the annular sucker with pleats is urged on the surface to be inspected by the back screw, to fix the water-proof vessel, (4) reactor water in a space of the annular sucker with pleats is discharged and replaced with air, and (5) the lid of the partition wall with lid is opened and the inspection device is disposed at a position of the underwater monitoring television camera, to inspect the surface to be inspected in a state of atmospheric air. (I.S.)

  14. Inspection Strategies for Concrete Bridges

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard; Thoft-Christensen, Palle

    1989-01-01

    In this paper an optimal inspection strategy for concrete bridges based on periodic routine and detailed inspections is presented. The failure mode considered is corrosion of the reinforcement due to chlorides. A simple modelling of the corrosion and of the inspection strategy is presented....... The optimal inspection strategy is determined from an optimization problem, where the design variables are time intervals between detailed inspections and the concrete cover. The strategy is illustrated on a simple structure, namely a reinforced concrete beam....

  15. Waste Calcining Facility remote inspection report

    International Nuclear Information System (INIS)

    Patterson, M.W.; Ison, W.M.

    1994-08-01

    The purpose of the Waste Calcining Facility (WCF) remote inspections was to evaluate areas in the facility which are difficult to access due to high radiation fields. The areas inspected were the ventilation exhaust duct, waste hold cell, adsorber manifold cell, off-gas cell, calciner cell and calciner vessel. The WCF solidified acidic, high-level mixed waste generated during nuclear fuel reprocessing. Solidification was accomplished through high temperature oxidation and evaporation. Since its shutdown in 1981, the WCFs vessels, piping systems, pumps, off-gas blowers and process cells have remained contaminated. Access to the below-grade areas is limited due to contamination and high radiation fields. Each inspection technique was tested with a mock-up in a radiologically clean area before the equipment was taken to the WCF for the actual inspection. During the inspections, essential information was obtained regarding the cleanliness, structural integrity, in-leakage of ground water, indications of process leaks, indications of corrosion, radiation levels and the general condition of the cells and equipment. In general, the cells contain a great deal of dust and debris, as well as hand tools, piping and miscellaneous equipment. Although the building appears to be structurally sound, the paint is peeling to some degree in all of the cells. Cracking and spalling of the concrete walls is evident in every cell, although the east wall of the off-gas cell is the worst. The results of the completed inspections and lessons learned will be used to plan future activities for stabilization and deactivation of the facility. Remote clean-up of loose piping, hand tools, and miscellaneous debris can start immediately while information from the inspections is factored into the conceptual design for deactivating the facility

  16. Behavior of cesium in municipal solid waste incineration

    International Nuclear Information System (INIS)

    Oshita, Kazuyuki; Aoki, Hiroshi; Fukutani, Satoshi; Shiota, Kenji; Fujimori, Takashi; Takaoka, Masaki

    2015-01-01

    As a result of the Fukushima Daiichi Nuclear Power Plant accident on March 11, 2011 in Japan radioactive nuclides, primarily 134 Cs and 137 Cs were released, contaminating municipal solid waste and sewage sludge in the area. Although stabilizing the waste and reducing its volume is an important issue differing from Chernobyl nuclear power plant accident, secondary emission of radioactive nuclides as a result of any intermediate remediation process is of concern. Unfortunately, there is little research on the behavior of radioactive nuclides during waste treatment. This study focuses on waste incineration in an effort to clarify the behavior of radioactive nuclides, specifically, refuse-derived fuel (RDF) with added 133 Cs (stable nuclide) or 134 Cs (radioactive nuclide) was incinerated in laboratory- and pilot-scale experiments. Next, thermogravimetric (TG) and differential thermal analysis (DTA) of stable Cs compounds, as well as an X-ray absorption fine structure (XAFS) analysis of Cs concentrated in the ashes were performed to validate the behavior and chemical forms of Cs during the combustion. Our results showed that at higher temperatures and at larger equivalence ratios, 133 Cs was distributed to the bottom ash at lower concentration, and the influence of the equivalence ratio was more significant at lower temperatures. 134 Cs behaved in a similar fashion as 133 Cs. We found through TG–DTA and XAFS analysis that a portion of Cs in RDF vaporizes and is transferred to fly ash where it exists as CsCl in the MSW incinerator. We conclude that Cs-contaminated municipal solid wastes could be incinerated at high temperatures resulting in a small amount of fly ash with a high concentration of radioactive Cs, and a bottom ash with low concentrations. - Highlights: • Behaviors of Cs on the incineration of the model waste were investigated. • More Cs was moved to fly ash with increasing of equivalence ratio and temperature. • Chemical forms of Cs in the fly ash

  17. Promoting transparency: The Korean national inspection experience

    International Nuclear Information System (INIS)

    Kim, B.K.

    1999-01-01

    The Republic of Korea started the LAMA full-scope safeguards inspection with the TRIGA research reactor in 1976 when the nuclear industry was at its infancy. Over two decades of rapid economic growth was propelled by stable supply of electricity, substantially from nuclear energy. Today nearly half of the nations electricity comes from sixteen operating nuclear power plants (12 LWRs + 4 OLRs). Total number of facilities under IAEA inspection reaches 30 where the Agency conducts about 400 PDIs annually. Within the last decade, nuclear transparency in Korea has transformed into the international norm primarily from the needs of rapidly expanding domestic nuclear program. In addition, possibility of North/South mutual inspection helped initiate the national inspection regime in addition to the IAEA inspection. The Technology Center for Nuclear Control was established at KAERI in 1994 in order to maintain the nation's nuclear verification expertise in support of the Korean government. National inspections have been carried out simultaneously with the IAEA inspection since 1997 with trial facilities, and all domestic facilities are being inspected from this year. Necessary legal framework and working procedures were developed and field-tried for LWRs, OLRs, fuel fabrication plants and research reactor facilities. Although the inspection equipment and technology along with the safeguards criteria are quite similar to those of the Agency, it is essential to maintain the independent conclusion capabilities between IAEA and the national authority. Substantial improvements in the IAEA safeguards inspection goal attainments since 1997 are credited to the increasing safeguards awareness among operators and SSAC. Further work is necessary to develop the evaluation criteria based on the field inspection results to meet the national inspection goals. The Korean Government signed the Additional Protocol with IAEA on June, 1999 after much deliberation since it involves facilities

  18. 30 CFR 18.97 - Inspection of machines; minimum requirements.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Inspection of machines; minimum requirements. 18.97 Section 18.97 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR... Field Approval of Electrically Operated Mining Equipment § 18.97 Inspection of machines; minimum...

  19. Inspection device in liquid

    International Nuclear Information System (INIS)

    Nagaoka, Etsuo.

    1996-01-01

    The present invention provides an inspection device in PWR reactor core in which inspection operations are made efficient by stabilizing a posture of the device in front-to-back, vertical and left-to-right directions by a simple structure. When the device conducts inspection while running in liquid, the front and the back directions of the device main body are inspected using a visual device while changing the posture by operating a front-to-back direction propulsion device and a right-to-left direction propulsion device, and a vertical direction propulsion device against to rolling, pitching and yawing of the device main body. In this case, a spherical magnet moves freely in the gravitational direction in a vibration-damping fluid in a non-magnetic spherical shell following the change of the posture of the device main body, in which the vibrations due to the movement of the spherical magnet is settled by the vibration-damping fluid thereby stabilizing the posture of the device main body. At a typical inspection posture, the settling effect is enhanced by the attraction force between the spherical magnets in the spherical shell and each of magnetic force-attracted magnetic members disposed to the outer circumference of the shell, and the posture of the device main body can be confirmed in front-to-back, right-to-left and vertical directions by each of the posture confirming magnetic sensors. (N.H.)

  20. PIPES expert system speeds up eddy current inspection planning

    International Nuclear Information System (INIS)

    Neuschaefer, C.H.; Rzasa, P.

    1990-01-01

    Combustion Engineering's Steam Generator Inspection Planning Expert System (PIPES) is a PC-based software system which automates the lengthy process of selecting which steam generator tubes are to be eddy current tested. It allows the computer to be used as a tool for developing the plan, and provides documented records of the inspection. The system was first used in the field during an outage inspection at the Maine Yankee plant in April 1986, enabling outage planners to generate inspection programmes in minutes. The system's benefits and operation are outlined. (author)

  1. Quality assurance inspections for shipping and storage containers

    Energy Technology Data Exchange (ETDEWEB)

    Stromberg, H.M.; Roberts, G.D.; Bryce, J.H. [Lockheed Idaho Technologies Co., Idaho Falls, ID (United States)

    1996-04-01

    This is a guide for conducting quality assurance inspections of transportation packaging and dry spent fuel storage system suppliers. (Suppliers are defined as designers, fabricators, distributors, users or owners of those packaging and storage systems.) This guide may be used during inspection to determine regulatory compliance with 10 CFR, Part 71, Subpart H; 10 CFR, Part 72, Subpart G; 10 CFR, Part 21; and supplier`s quality assurance program commitments. It was developed to provide a structured, consistent approach to inspections. The guidance therein provides a framework for evaluation of transportation packaging and dry spent fuel storage systems quality assurance programs. Inspectors are provided with the flexibility to adapt the methods and concepts to meet inspection requirements for the particular facility. The method used in the guide treats each activity at a facility as a separate performance element and combines the activities within the framework of an ``inspection tree.``The method separates each performance element into several areas for inspection and identifies guidelines, based on regulatory requirements, to qualitatively evaluate each area. This guide also serves as a field manual to facilitate quality assurance inspection activities. This guide replaces an earlier one, NUREG/CR-5717 (Packing Supplier Inspection Guide). This replacement guide enhances the inspection activities for transportation packagings and adds the dry spent fuel storage system quality assurance inspection activities.

  2. Advances in inspection automation

    Science.gov (United States)

    Weber, Walter H.; Mair, H. Douglas; Jansen, Dion; Lombardi, Luciano

    2013-01-01

    This new session at QNDE reflects the growing interest in inspection automation. Our paper describes a newly developed platform that makes the complex NDE automation possible without the need for software programmers. Inspection tasks that are tedious, error-prone or impossible for humans to perform can now be automated using a form of drag and drop visual scripting. Our work attempts to rectify the problem that NDE is not keeping pace with the rest of factory automation. Outside of NDE, robots routinely and autonomously machine parts, assemble components, weld structures and report progress to corporate databases. By contrast, components arriving in the NDT department typically require manual part handling, calibrations and analysis. The automation examples in this paper cover the development of robotic thickness gauging and the use of adaptive contour following on the NRU reactor inspection at Chalk River.

  3. U.S. Industry Activities on Inspection of CRDM Penetrations

    International Nuclear Information System (INIS)

    Alley, Tom; Kietzman, Kim; Ammirato, Frank

    2002-01-01

    The discovery of primary water stress corrosion cracking (PWSCC) in control rod drive mechanisms (CRDM) penetrations in U.S. and European plants prompted the U.S. nuclear industry to focus considerable effort on development and implementation of effective inspection methods. In particular, cracking was discovered in butt welds connecting reactor vessel nozzles to main coolant piping and in control rod drive mechanism (CRDM) head penetration base material and attachment welds. The EPRI Materials Reliability Program (EPRI-MRP) formed an Inspection Committee to address development of industry guidance for inspection of these components, development of effective non-destructive examination (NDE) methods, and demonstration of inspection processes. This paper discusses the MRP activities pertaining to inspection of CRDM penetrations. Results of demonstrations and field inspections conducted will also be summarized. (authors)

  4. Solid waste treatment volume reduction by compaction or incineration

    International Nuclear Information System (INIS)

    Vigreux, B.; Carpentier, S.

    1986-01-01

    A short presentation is made of various techniques available for volume reduction by compaction of solid waste produced during nuclear plant operation. A long industrial experience has been accumulated in France on such compactors. Incineration is the most performing method of volume reduction for combustible waste. The CEA Group and SGN have developed a very reliable, simple and safe incinerator which operates with excess air and at high temperature. Sorting and feeding of the waste, ash discharge and transportation to the conditioning unit, gas treatment, are included in the system. The adding of a programmable controller makes it fully automated. The system is described with some detail and recent performance measurements are given [fr

  5. Solid waste treatment volume reduction by compaction or incineration

    International Nuclear Information System (INIS)

    Vigreux, B.; Carpentier, S.

    1985-01-01

    A short presentation is made of various techniques available for volume reduction by compaction of solid waste produced during nuclear plant operation. A long industrial experience has been accumulated in France on such compactors. Incineration is the most performing method of volume reduction for combustible waste. The CEA Group and SGN have developed a very reliable, simple and safe incinerator which operates with excess air and at high temperature. Sorting and feeding of the waste, ash discharge and transportation to the conditioning unit, gas treatment, are included in the system. The adding of a programmable controller makes it fully automated. The system is described with some detail and recent performance measurements are given [fr

  6. Aluminium alloys in municipal solid waste incineration bottom ash.

    Science.gov (United States)

    Hu, Yanjun; Rem, Peter

    2009-05-01

    With the increasing growth of incineration of household waste, more and more aluminium is retained in municipal solid waste incinerator bottom ash. Therefore recycling of aluminium from bottom ash becomes increasingly important. Previous research suggests that aluminium from different sources is found in different size fractions resulting in different recycling rates. The purpose of this study was to develop analytical and sampling techniques to measure the particle size distribution of individual alloys in bottom ash. In particular, cast aluminium alloys were investigated. Based on the particle size distribution it was computed how well these alloys were recovered in a typical state-of-the-art treatment plant. Assessment of the cast alloy distribution was carried out by wet physical separation processes, as well as chemical methods, X-ray fluorescence analysis and electron microprobe analysis. The results from laboratory analyses showed that cast alloys tend to concentrate in the coarser fractions and therefore are better recovered in bottom ash treatment plants.

  7. Description of the Seibersdorf incineration plant for low level waste

    International Nuclear Information System (INIS)

    Chalupa, G.; Petschnik, G.

    1986-09-01

    After a description of the design and the construction principles of the incinerator building, the furnace and its attached auxilary devices are explained. The incinerator is layed out for low level wastes. It has a vertical furnace, operates with discontinuous feeding for trashes with heat-values between 600 and 10000 kcal/kg waste. The maximum throughput amounts 40 kg/h. The purification of the off-gas is guaranteed by a multistage filter system: 2 stages with ceramic candles, cooling column and a HEPA-filter system. The control of the off-gas cleaning is carried out by a stack instrumentation, consisting of an aerosol-, gas-, Iodine- and Tritium-monitor; the building is surveilled by doserate- and aerosolmonitors. (Author)

  8. Savannah River Plant low-level waste incinerator demonstration

    International Nuclear Information System (INIS)

    Tallman, J.A.

    1984-01-01

    A two-year demonstration facility was constructed at the Savannah River Plant (SRP) to incinerate suspect contaminated solid and low-level solvent wastes. Since startup in January 1984, 4460 kilograms and 5300 liters of simulated (uncontaminated) solid and solvent waste have been incinerated to establish the technical and operating data base for the facility. Combustion safeguards have been enhanced, process controls and interlocks refined, some materials handling problems identified and operating experience gained as a result of the 6 month cold run-in. Volume reductions of 20:1 for solid and 25:1 for solvent waste have been demonstrated. Stack emissions (NO 2 , SO 2 , CO, and particulates) were only 0.5% of the South Carolina ambient air quality standards. Radioactive waste processing is scheduled to begin in July 1984. 2 figures, 2 tables

  9. Fluidized bed incineration of a slurry waste from caprolactam production

    Energy Technology Data Exchange (ETDEWEB)

    Cammarota, A.; D' Amore, M.; Donsi, G.; Massimilla, L.

    1980-08-01

    Caprolactam tails are a slurry waste produced in the SNIA process for the synthesis of caprolactam. They contain about 65% water, 25% ash and 10% combustible matter. The ashes are low melting, due to the presence of sodium compounds. The incineration of this waste is carried out at temperatures below 600/sup 0/C in beds of silica sand, using a laboratory scale apparatus with a 40 mm ID fluidization column. Variables investigated include sand particle size, slurry flow rate, bed temperature, bed height. The concentrations of CO/sub 2/ and CO are determined continuously in the flue gases. Bed solids are sampled periodically to determine the carbon content. Results of experiments show that the low temperature incineration on a bed of inert solids is a useful technique for the disposal of caprolactam tails. 8 refs.

  10. Destruction of nuclear graphite using closed chamber incineration

    International Nuclear Information System (INIS)

    Senor, D.J.; Hollenberg, G.W.; Morgan, W.C.; Marianowski, L.G.

    1994-01-01

    Closed chamber incineration (CCI) is a novel technique by which irradiated nuclear graphite may be destroyed without the risk of radioactive cation release into the environment. The process utilizes an enclosed combustion chamber coupled with molten carbonate fuel cells (MCFCs). The transport of cations is intrinsically suppressed by the MCFCs, such that only the combustion gases are conducted through for release to the environment. An example CCI design was developed which had as its goal the destruction of graphite fuel elements from the Fort St. Vrain reactor (FSVR). By employing CCI, the volume of high level waste from the FSVR will be reduced by approximately 87 percent. Additionally, the incineration process will convert the SiC coating on the FSVR fuel particles to SiO 2 , thus creating a form potentially suitable for direct incorporation in a vitrification process stream. The design is compact, efficient, and makes use of currently available technology

  11. Particulate collection in a low level radioactive waste incinerator

    International Nuclear Information System (INIS)

    Rudnick, S.N.; Leith, D.; First, M.W.

    1976-01-01

    As designed, sintered stainless steel filters will clean the gas from the secondary cyclone at a low level radioactive waste incinerator. Using bench scale apparatus, asbestos floats and diatomaceous earth were evaluated as filter aids to prevent clogging of the sintered metal interstices and to decrease filter penetration. Both precoats prevented irreversible pressure drop increase, and decreased cold DOP penetration from 80% to less than 1%. To collect the same quantity of fly ash, less diatomaceous earth was needed than asbestos floats. A back-up study evaluated a moving bed of sodium carbonate pellets in lieu of the sintered metal filters. Since identical sodium carbonate pellets are used to neutralize hydrogen chloride in the incinerator, their use in a moving bed has the advantages of trouble free disposal and cost free replacement. Co, counter, and cross-current beds were studied and gave fly ash penetrations less than 0.1% at moderate pressure drop

  12. MINT Incineration and Renewable Energy Centre - experience and challenge

    International Nuclear Information System (INIS)

    Mohamad Puad Abu

    2005-01-01

    MIREC is the acronym for MINT Incineration and Renewable Energy Centre which was established in the year 2000 to carry out research and provide services on matters related to incineration technology and renewable energy. Throughout this period, many challenges and experiences has been faced by MIREC. Three research contracts with the value of nearly RM 1 million have been signed. Four laboratory scale burners have been designed and fabricated. Three mathematical models have been developed. Three programs on enhancement image have been published. Three papers have been published in the international journal. In order to achieve all these, many obstacles were faced by MIREC. This paper will discuss on the experiences and challenges that could be shared together with MINT staff. (Author)

  13. Operation of low-level radioactive waste incinerator

    International Nuclear Information System (INIS)

    Choi, E.C.; Drolet, T.S.; Stewart, W.B.; Campbell, A.V.

    1979-01-01

    Ontaro Hydro's radioactive waste incinerator designed to reduce the volume of low-level combustible wastes from nuclear generating station's was declared in-service in September 1977. Hiterto about 1500 m 3 of combustible waste have been processed in over 90 separate batches. The process has resulted in 40:1 reduction in the volume and 12.5:1 reduction in the weight of the Type 1 wastes. The ultimate volume reduction factor after storage is 23:1. Airborne emissions has been maintained at the order of 10 -3 to 10 -5 % of the Derived Emission Limits. Incineration of radioactive combustible wastes has been proven feasible, and will remain as one of the most important processes in Ontario Hydro's Radioactive Waste Management Program

  14. Design of a Pu-238 waste incineration process

    International Nuclear Information System (INIS)

    Charlesworth, D.L.; McCampbell, R.B.

    1985-01-01

    Combustible 238 Pu waste is generated as a result of normal operation and decommissioning activity at the Savannah River Plant and is being retrievably stored at the Plant. As part of the long-term plan to process the stored waste and current waste in preparation for future disposition, a 238 Pu incinceration process is being cold-tested at SRL. The incineration process consists of a continuous-feed preparation system, a two-stage, electrically fired incinerator, and a filtration off-gas system. Process equipment has been designed, fabricated, and installed for nonradioactive testing and cold run-in. Design features to maximize the ability to remotely maintain the equipment were incorporated into the process. Interlock, alarm, and control functions are provided by a programmable controller. Cold testing is scheduled to be completed in 1986

  15. Inspection and test planning

    International Nuclear Information System (INIS)

    Miller, T.

    1980-01-01

    Purpose of Quality Plan - arrangement of all necessary tests or inspections as far as possible filted to certain components or systems. Subject of Quality Plan - precise determination of tests or inspections and - according to the actual safety significance - the certificates to be done. Disposition of Quality Plan - accommodation of tests to the actual state of fabrication. Application of Quality Plan - to any component or system that is regarded. Supervision of Employment - by authorized personnel of manufacturer, customer or authority providing exact employment of quality plan. Overservance of Instructions - certificates given by authorized personnel. (orig./RW)

  16. Federal environmental inspections handbook

    International Nuclear Information System (INIS)

    1991-10-01

    This Federal Environmental Inspection Handbook has been prepared by the Department of Energy (DOE), Office of Environmental Guidance, RCRA/CERCLA Division (EH-231). It is designed to provide DOE personnel with an easily accessible compilation of the environmental inspection requirements under Federal environmental statutes which may impact DOE operations and activities. DOE personnel are reminded that this Handbook is intended to be used in concert with, and not as a substitute for, the Code of Federal Regulations (CFR). Federal Register (FR), and other applicable regulatory documents

  17. Behavior of cesium in municipal solid waste incineration.

    Science.gov (United States)

    Oshita, Kazuyuki; Aoki, Hiroshi; Fukutani, Satoshi; Shiota, Kenji; Fujimori, Takashi; Takaoka, Masaki

    2015-05-01

    As a result of the Fukushima Daiichi Nuclear Power Plant accident on March 11, 2011 in Japan radioactive nuclides, primarily (134)Cs and (137)Cs were released, contaminating municipal solid waste and sewage sludge in the area. Although stabilizing the waste and reducing its volume is an important issue differing from Chernobyl nuclear power plant accident, secondary emission of radioactive nuclides as a result of any intermediate remediation process is of concern. Unfortunately, there is little research on the behavior of radioactive nuclides during waste treatment. This study focuses on waste incineration in an effort to clarify the behavior of radioactive nuclides, specifically, refuse-derived fuel (RDF) with added (133)Cs (stable nuclide) or (134)Cs (radioactive nuclide) was incinerated in laboratory- and pilot-scale experiments. Next, thermogravimetric (TG) and differential thermal analysis (DTA) of stable Cs compounds, as well as an X-ray absorption fine structure (XAFS) analysis of Cs concentrated in the ashes were performed to validate the behavior and chemical forms of Cs during the combustion. Our results showed that at higher temperatures and at larger equivalence ratios, (133)Cs was distributed to the bottom ash at lower concentration, and the influence of the equivalence ratio was more significant at lower temperatures. (134)Cs behaved in a similar fashion as (133)Cs. We found through TG-DTA and XAFS analysis that a portion of Cs in RDF vaporizes and is transferred to fly ash where it exists as CsCl in the MSW incinerator. We conclude that Cs-contaminated municipal solid wastes could be incinerated at high temperatures resulting in a small amount of fly ash with a high concentration of radioactive Cs, and a bottom ash with low concentrations. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Review of organic nitrile incineration at the Toxic Substances Control Act Incinerator

    International Nuclear Information System (INIS)

    1997-10-01

    Lockheed Martin Energy Systems, Inc. (LMES) operates the East Tennessee Technology Park (ETTP), formerly called the Oak Ridge K-25 Site, where uranium was enriched under contract with the US Department of Energy (DOE). Currently, ETTP missions include environmental management, waste management (WM), and the development of new technologies. As part of its WM mission, ETTP operates the TSCA (Toxic Substances Control Act) Incinerator (TSCAI) for treatment of hazardous waste and polychlorinated biphenyls (PCBs) contaminated with low-level radioactivity. Beginning in the autumn of 1995, employees from diverse ETTP buildings and departments reported experiencing headaches, fatigue, depression, muscle aches, sleeplessness, and muscle tremors. These symptoms were judged by a physician in the ETTP Health Services Department to be consistent with chronic exposures to hydrogen cyanide (HCN). The National Institute for Occupational Safety and Health (NIOSH) was called in to perform a health hazard evaluation to ascertain whether the employees' illnesses were in fact caused by occupational exposure to HCN. The NIOSH evaluation found no patterns for employees' reported symptoms with respect to work location or department. NIOSH also conducted a comprehensive air sampling study, which did not detect airborne cyanides at the ETTP. Employees, however, expressed concerns that the burning of nitrile-bearing wastes at the TSCAI might have produced HCN as a combustion product. Therefore, LMES and DOE established a multidisciplinary team (TSCAI Technical Review Team) to make a more detailed review of the possibility that combustion of nitrile-bearing wastes at the TSCAI might have either released nitriles or created HCN as a product of incomplete combustion (PIC)

  19. Separation of nanoparticles: Filtration and scavenging from waste incineration plants.

    Science.gov (United States)

    Förster, Henning; Thajudeen, Thaseem; Funk, Christine; Peukert, Wolfgang

    2016-06-01

    Increased amounts of nanoparticles are applied in products of everyday life and despite material recycling efforts, at the end of their life cycle they are fed into waste incineration plants. This raises the question on the fate of nanoparticles during incineration. In terms of environmental impact the key question is how well airborne nanoparticles are removed by separation processes on their way to the bag house filters and by the existing filtration process based on pulse-jet cleanable fibrous filter media. Therefore, we investigate the scavenging and the filtration of metal nanoparticles under typical conditions in waste incineration plants. The scavenging process is investigated by a population balance model while the nanoparticle filtration experiments are realized in a filter test rig. The results show that depending on the particle sizes, in some cases nearly 80% of the nanoparticles are scavenged by fly ash particles before they reach the bag house filter. For the filtration step dust cakes with a pressure drop of 500Pa or higher are found to be very effective in preventing nanoparticles from penetrating through the filter. Thus, regeneration of the filter must be undertaken with care in order to guarantee highly efficient collection of particles even in the lower nanometre size regime. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Design and operation of radioactive waste incineration facilities

    International Nuclear Information System (INIS)

    1992-01-01

    The purpose of this guide is to provide safety guidance for the design and operation of radioactive waste incineration facilities. The guide emphasizes the design objectives and system requirements to be met and provides recommendations for the procedure of process selection and equipment design and operation. It is recognized that some incinerators may handle only very low or 'insignificant' levels of radioactivity, and in such cases some requirements or recommendations of this guide may not fully apply. Nevertheless, it is expected that any non-compliance with the guide will be addressed and justified in the licensing process. It is also recognized that the regulatory body may place a limit on the level of the radioactivity of the waste to be incinerated at a specific installation. For the purpose of this guide an insignificant level of release of radioactivity may typically be defined as either the continuous or single event release of the design basis radionuclide inventory that represents a negligible risk to the population, the operating personnel, and/or the environment. The guidance on what constitutes a negligible risk and how to translate negligible risk or dose into level of activity can be found in Safety Series No. 89, IAEA, Vienna. 20 refs, 1 fig

  1. The use of incinerated pig head in dental identification simulation.

    Science.gov (United States)

    Berketa, John; James, Helen; Langlois, Neil; Richards, Lindsay

    2015-12-01

    The aim of this exercise was to simulate a disaster victim identification scenario to allow training in documentation of postmortem incinerated remains and reconciliation of dental data. Varying number of restorations were placed in ten pig heads. The teeth and restorations were charted, with the restorations radiographed and documented, creating an ante-mortem data set. The following day the heads were cremated. Following cooling and recording they were transported for a post-mortem examination by trained specialist odontologists who were not involved in the initial antemortem phase. Recordings included the charting of teeth, restorations, lost teeth, and radiographs to simulate a post-mortem examination. A reconciliation of postmortem to antemortem information was attempted. There was an unacceptable amount of error in the postmortem examination of the heads. The errors related mainly to avulsed teeth and incorrect opinion of which charted surfaces the restorations were placed upon. Also noted were a considerable number of root fractures occurring beneath the crestal bone. This observation does not mimic the evidence observed in human incinerated teeth where the crowns tend to fracture off the roots at the dentin-enamel junction. The use of incinerated pig (Sus Scrofa) heads is not an ideal model for forensic odontology training in disaster victim identification. Differences in both anatomy and behavior following exposure to heat were shown to hamper documentation and subsequent comparison to antemortem data.

  2. Inspection of Emergency Arrangements

    International Nuclear Information System (INIS)

    2013-01-01

    The Working Group on Inspection Practices (WGIP) was tasked by the NEA CNRA to examine and evaluate the extent to which emergency arrangements are inspected and to identify areas of importance for the development of good inspection practices. WGIP members shared their approaches to the inspection of emergency arrangements by the use of questionnaires, which were developed from the requirements set out in IAEA Safety Standards. Detailed responses to the questionnaires from WGIP member countries have been compiled and are presented in the appendix to this report. The following commendable practices have been drawn from the completed questionnaires and views provided by WGIP members: - RBs and their Inspectors have sufficient knowledge and information regarding operator's arrangements for the preparedness and response to nuclear emergencies, to enable authoritative advice to be given to the national coordinating authority, where necessary. - Inspectors check that the operator's response to a nuclear emergency is adequately integrated with relevant response organisations. - Inspectors pay attention to consider the integration of the operator's response to safety and security threats. - The efficiency of international relations is checked in depth during some exercises (e.g. early warning, assistance and technical information), especially for near-border facilities that could lead to an emergency response abroad. - RB inspection programmes consider the adequacy of arrangements for emergency preparedness and response to multi-unit accidents. - RBs assess the adequacy of arrangements to respond to accidents in other countries. - The RB's role is adequately documented and communicated to all agencies taking part in the response to a nuclear or radiological emergency. - Inspectors check that threat assessments for NPPs have been undertaken in accordance with national requirements and that up-to-date assessments have been used as the basis for developing emergency plans for

  3. Waste incineration and immobilization for nuclear facilities. Status report, October 1977--March 1978

    International Nuclear Information System (INIS)

    Johnson, A.J.; Burkhardt, S.C.; Ledford, J.A.; Williams, P.M.

    1979-01-01

    Fluidized bed incineration and processes for immobilization of wastes generated at nuclear facilities are undergoing development. After minor piping modifications to eliminate dust collecting points, a pilot plant fluidized bed incinerator run of 225 continuous hours was successfully completed in a demonstration of component reliability. Vitrification of incinerator ash and other wastes is now being accomplished using a pilot scale unit developed as a continuous flow process

  4. Incineration of hazardous and low-level radioactive waste by a small generator. Final report

    International Nuclear Information System (INIS)

    Dwight, C.C.

    1984-10-01

    The results from Arizona State University's study of the feasibility of a small generator incinerating low-level radioactive waste in a pathological incinerator are reported. The research included various aspects of environmental impact, public relations, cost versus benefit, and licensing procedures. Three years of work resulted in a license amendment authorizing the University to incinerate certain hazardous and low-level radioactive wastes. 13 references, 6 figures, 16 tables

  5. Development of Mitsui/Juelich Incineration System and hydro-thermal ash solidification

    International Nuclear Information System (INIS)

    Suzuki, S.; Kamada, S.; Nakamori, Y.; Katakura, M.; Yamazaki, N.

    1988-01-01

    This paper summarizes the developing program for Mitsui/Juelich Incinerated System combined with Hydrothermal ash solidification. The system is an integrated one and capable for volume reduction of various kind of radioactive waste and safe disposal of residual incinerator ash. The system also has an advantage of reducing construction and operation cost. An outline of the incineration plant is also presented in this paper

  6. Dampak Pengolahan Limbah Padat Medis pada Petugas Incinerator di RSUP H. Adam Malik Tahun 2014

    OpenAIRE

    Darwin

    2016-01-01

    Adam Malik Central General Hospital causes some complaints from the incinerator operators such as wounded by spuit needles, wounded by broken glasses, and difficult to breathe because they inhale incinerator smoke or gas in the medical solid waste. Therefore, job safety and health in the hospital, especially in managing medical solid waste should be done. The research was qualitative which was aimed to analyze the effect of K3 (Job safety and health) n incinerator operators at H. Adam ...

  7. UK: Technical data for waste incineration background for modelling of product-specific emissions in a life cycle assessment context

    DEFF Research Database (Denmark)

    Hauschild, Michael Zwicky

    with the disposal of a product through waste incineration. Based on knowledge of the material composition of the product and the technology applied in the waste incineration plant, the model estimates input of energy and auxiliary materials required for the incineration of the product and generation of energy...... and output of emissions to the environment caused by the incineration. The work has been performed as part of the EUREKA project EUROENVIRON 1296: LCAGAPS, sponsored by the Danish Agency for Industry and Trade. This report presents a compilation of technical data on waste incineration that serve...... as background for a model of incineration processes to be used in the inventory analysis of LCA....

  8. Automatic Inspection During Machining

    Science.gov (United States)

    Ransom, Clyde L.

    1988-01-01

    In experimental manufacturing process, numerically-controlled machine tool temporarily converts into inspection machine by installing electronic touch probes and specially-developed numerical-control software. Software drives probes in paths to and on newly machined parts and collects data on dimensions of parts.

  9. Environmental impact assessment of the incineration of municipal solid waste with auxiliary coal in China

    DEFF Research Database (Denmark)

    Zhao, Yan; Xing, Wei; Lu, Wenjing

    2012-01-01

    The environmental impacts of waste incineration with auxiliary coal were investigated using the life-cycle-based software, EASEWASTE, based on the municipal solid waste (MSW) management system in Shuozhou City. In the current system, MSW is collected, transported, and incinerated with 250kg of co...... political reduction targets. Results indicate that heavy metal and acidic gas emissions should be given more attention in waste incineration. This study provides scientific support for the management of MSW systems dominated by incineration with auxiliary coal in China.......The environmental impacts of waste incineration with auxiliary coal were investigated using the life-cycle-based software, EASEWASTE, based on the municipal solid waste (MSW) management system in Shuozhou City. In the current system, MSW is collected, transported, and incinerated with 250kg of coal...... per ton of waste. Based on observed environmental impacts of incineration, fossil CO2 and heavy metals were primary contributors to global warming and ecotoxicity in soil, respectively. Compared with incinerators using excess coal, incineration with adequate coal presents significant benefits...

  10. Operational testing of an electrically fired Pu-238 waste incineration process

    International Nuclear Information System (INIS)

    Holmes, H.; Charlesworth, D.L.

    1987-01-01

    Combustible 238 Pu waste is generated from normal operation and decommissioning activity at the Savannah River Plant and is being retrievably stored at the Plant. An electrically fired, two-stage incineration process is being developed to use incineration to process and recovery plutonium from the waste. A prototype incinerator is being tested to assess its capability to be remotely operated and maintained. Technical development is focusing on continuous feeding, vacuum control, remote operability and mechanical integrity of the system, ash burnout, and life of the belt in the primary incinerator chamber. 6 figs., 5 tabs

  11. Design of municipal solid waste incinerator for use in semi-arid regions

    Directory of Open Access Journals (Sweden)

    M. B. Oumarou

    2012-08-01

    Full Text Available The paper treats the design of a municipal solid waste incinerator suited to the semiarid regions with northern Nigeria and Niger Republic in West Africa as the study area. Proximate and ultimate analyses results from the solid waste were used as basis for calculations, using standard formulas and correlations. The calorific value of the solid waste samples in the study area is not high enough to sustain an incineration process and it ranges from 5.024 MJ/kg to 5.867 MJ/kg. For these types of low calorific value fuels, the parallel flow concept was found to be the appropriate type of incinerator. The solid waste to be fed in the incinerator needs to be mixed with 50% of supplementary fuel in the form of readily available bagasse to make it up to the required lower calorific value. Major characteristics of the designed municipal solid waste incinerator were: total volume of incinerator chamber: 82.5 m3, length of the incinerator bed: 11m; width of the incinerator bed: 3m and height of the incinerator chamber: 2.5 m, while the suitable adiabatic flame temperature was found to be 1,587 K.

  12. Evaluation of Heavy Metals Contamination at CFAD Dundurn Resulting from Small-Arms Ammunition Incineration

    National Research Council Canada - National Science Library

    Thiboutot, S

    2001-01-01

    .... The safety concerns associated with these pollutants are so serious that the United Kingdom requires stringent environmental licensing of ammunition incineration facilities, and several US states...

  13. State of art in incineration technology of radioactive combustible solid wastes

    International Nuclear Information System (INIS)

    Karita, Yoichi

    1984-01-01

    The features of incineration treatment as the method of treating radioactive wastes are the effect of volume reduction and inorganic stabilization (change to ash). The process of incineration treatment is roughly divided into dry process and wet process. But that in practical use is dry incineration by excess air combustion or suppressed combustion. The important things in incineration techniques are the techniques of exhaust gas treatment as well as combustion techniques. In Europe and USA, incineration has been practiced in laboratories and reprocessing plants for low level combustible solids, but the example of application in nuclear power stations is few. In Japan, though the fundamental techniques are based on the introduction from Europe, the incineration treatment of combustible solids has been carried out in laboratories, reprocessing plants, nuclear fuel production facilities and also nuclear power stations. The techniques of solidifying ash by incineration and the techniques of incinerating spent ion exchange resin are actively developed, and the development of the treatment of radioactive wastes in the lump including incineration also is in progress. (Kako, I.)

  14. Mixed incineration of RAIW and liquid scintillator waste after storage for decay

    International Nuclear Information System (INIS)

    Naba, K.; Nakazato, K.; Kataoka, K.

    1993-01-01

    Most medical radioactive waste is combustible after radioactive decay. Moreover mixed incineration of LLW with biomedical radioactive waste will lessen radiation exposure to the public. This paper describes the total system flowsheet for the processing of liquid scintillator wastes and radioimmunoassay tube wastes containing iodine 125 (after a two-year storage for decay). The process was tested with a 60 kg/hr capacity incinerator from 1987 to 1991; this has been upgraded to a 150 kg/hr incinerator which is used for nonradioactive biomedical waste incineration as well

  15. Greenlandic Waste Incineration Fly And Bottom Ash As Secondary Resource In Mortar

    DEFF Research Database (Denmark)

    Kirkelund, Gunvor Marie; Ottosen, Lisbeth M.; Jensen, Pernille Erland

    2016-01-01

    Today, 900 tons incineration fly ash is shipped abroad annually from Greenland for deposits, whereas the 6,000 tons incineration bottom ash is deposited locally. These incineration ashes could be valuable in concrete production, where the cement has to be shipped to Greenland. For this purpose...... and cement with fly ash. Based on the compressive strength tests, it is found that using Greenlandic incineration ashes in mortar as 5% cement replacement could consume all ash instead of disposals, and could thus turn the ashes into a local resource and simultaneously reduce the import of cement....

  16. Volume reduction of low- and medium-level waste by incineration/calcination

    International Nuclear Information System (INIS)

    Buzonniere, A. de; Gauthey, J.C.

    1993-01-01

    Nuclear installations generate large quantities of low- and medium-level radwaste. This waste comes from various installations in the fuel cycle, reactor operation, research institute, hospitals, nuclear plate dismantling, etc.. TECHNICATOME did the project development work for the incineration plant of PIERRELATE (France) on behalf of COGEMA (Compagnie Generale des d'Etudes Technique). This plant has been in active service since November 1987. In addition, TECHNICATOME was in charge of the incinerator by a turnkey contract. This incinerator was commissioned in 1992. For a number of years, TECHNICATOME has been examining, developing and producing incineration and drying/calcination installations. They are used for precessing low- and medium-level radwaste

  17. Improvement of the reliability on nondestructive inspection

    Energy Technology Data Exchange (ETDEWEB)

    Song, Sung Jin; Kim, Young H. [Sungkyunkwan Univ., Suwon (Korea, Republic of); Lee, Hyang Beom [Soongsil Univ., Seoul (Korea, Republic of); Shin, Young Kil [Kunsan National Univ., Gunsan (Korea, Republic of); Jung, Hyun Jo [Wonkwang Univ., Iksan (Korea, Republic of); Park, Ik Keun; Park, Eun Soo [Seoul Nationl Univ., Seoul (Korea, Republic of)

    2002-03-15

    Retaining reliabilities of nondestructive testing is essential for the life-time maintenance of Nuclear Power Plant. The nondestructive testing methods which are frequently used in the Nuclear Power Plant are eddy current testing for the inspection of steam generator tubes and ultrasonic testing for the inspection of weldments. In order to improve reliabilities of ultrasonic testing and eddy current testing, the subjects carried out in this study are as follows : development of BEM analysis technique for ECT of SG tube, development of neural network technique for the intelligent analysis of ECT flaw signals of SG tubes, development of RFECT technology for the inspection of SG tube, FEM analysis of ultrasonic scattering field, evaluation of statistical reliability of PD-RR test of ultrasonic testing and development of multi-Gaussian beam modeling technique to predict accurate signal of signal beam ultrasonic testing with the efficiency in calculation time.

  18. Biogas--municipal solid waste incinerator bottom ash interactions: sulphur compounds removal.

    Science.gov (United States)

    Ducom, Gaëlle; Radu-Tirnoveanu, Daniela; Pascual, Christophe; Benadda, Belkacem; Germain, Patrick

    2009-07-30

    This study focuses on a new way of reusing municipal solid waste incinerator bottom ash: landfill gas purification before energetic valorisation. A pilot plant was designed and operated on a landfill site located in France (Loire). One kilogram bottom ash is able to sequestrate more than 3.0 g of hydrogen sulphide, 44 mg of methyl mercaptan, and 86 mg of dimethyl sulphide. Hydrogen sulphide retention is probably due to acid-basic reactions conducting to sulphur mineralisation under the form of low solubility metal sulphides. The reaction medium is hydration water. The retention mechanism for methyl mercaptan is probably similar but dimethyl sulphide is most likely retained by physical adsorption. As methane is not retained by bottom ash, the landfill gas energetic content will not be lowered. There seems to be no appreciable difference in these results whether bottom ash is fresh or carbonated. These results are encouraging in the perspective of a field scale application of this biogas treatment process.

  19. Mathematical modelling of MSW incineration on a travelling bed.

    Science.gov (United States)

    Yang, Y B; Goh, Y R; Zakaria, R; Nasserzadeh, V; Swithenbank, J

    2002-01-01

    The rising popularity of incineration of municipal solid waste (MSW) calls for detailed mathematical modelling and understanding of the incineration process. In this paper, governing equations for mass, momentum and heat transfer for both solid and gaseous phases in a moving bed in a solid-waste incineration furnace are described and relevant sub-models are presented. The burning rates of volatile hydrocarbons in the moving bed of solids are limited not only by the reaction kinetics but also the mixing of the volatile fuels with the under-fire air. The mixing rate is averaged across a computation cell and correlated to a number of parameters including local void fraction of the bed, gas velocity and a length scale comparable to the particle size in the bed. A correlation equation is also included to calculate the mixing in the freeboard area immediately next to the bed surface. A small-scale fixed bed waste incinerator was built and test runs were made in which total mass loss from the bed, temperature and gas composition at different locations along the bed height were measured. A 2-D bed-modelling program (FLIC) was developed which incorporates the various sub-process models and solves the governing equations for both gases and solids. Thermal and chemical processes are mainly confined within a layer about 5-9 times in thickness of the averaged particle size in the burning bed. For a large part of the burning process, the total mass loss rate was constant until the solid waste was totally dried out and a period of highly rising CO emission followed. The maximum bed temperature was around 1200 K. The whole burning process ended within 60 min. Big fluctuations in species concentration were observed due to channelling and subsequent 'catastrophic' changes in the local bed conditions. Reasonably good agreement between modelling and measurements has been achieved. Yet the modelling work is complicated by the channelling phenomenon in the bed. Numerical simulations

  20. Process control in municipal solid waste incinerators: survey and assessment.

    Science.gov (United States)

    El Asri, R; Baxter, D

    2004-06-01

    As there is only rare and scattered published information about the process control in industrial incineration facilities for municipal solid waste (MSW), a survey of the literature has been supplemented by a number of waste incineration site visits in Belgium and The Netherlands, in order to make a realistic assessment of the current status of technology in the area. Owing to the commercial character, and therefore, the confidentiality restrictions imposed by plant builders and many of the operators, much of the information collected has either to be presented in a generalized manner, and in any case anonymously. The survey was focused on four major issues: process control strategy, process control systems, monitors used for process control and finally the correlation between the 850 degrees C/2 s rule in the European waste incineration directive and integrated process control. The process control strategies range from reaching good and stable emissions at the stack to stabilizing and maximizing the energy output from the process. The main indicator to be monitored, in cases in which the focus is controlling emissions, is the oxygen content in the stack. Keeping the oxygen concentration in a determined range (usually between 8 and 12 vol.%) ensures stable and tolerated concentrations of the gaseous emissions. In the case for which stabilization of energy production is the principal aim, the main controlled parameter is the steam temperature and flow-rate, which is usually related to the fuel energetic input. A lot of other parameters are used as alarm criteria, the most common of which is the carbon monoxide concentration. The process control systems used most commonly feature partially automated classical proportional integral derivative (PID) controllers. New and innovative process control systems, such as fuzzy-logic control systems, are still unknown to most plant managers while their performance is reported to be unsatisfactory in plants in which such systems

  1. Plasma-thermal processing and incineration of wastes in a shaft incinerator with a combustible filtering material

    Science.gov (United States)

    Kalitko, V. A.; Mossé, A. L.

    2000-09-01

    The authors report the basic technological principles and the special features of a method of combined plasma-thermal processing and incineration of harmful wastes in a shaft incinerator under a layer of the charge of such a well-filtering and well-combustible material as wood sawdust, which absorbs up to 99% of the aerosols of waste gases by fixing and concentrating them in the ash. A calculated-analytical estimate of the filtration properties of wood sawdust is obtained as a function of its dispersity, the thickness of the charge layer, and the filtration rate of the waste gases. Determination is made of the optimum design relations and the parameters of charging of a filtering material under different conditions of processing of wastes, including moistening and impregnation of wood sawdust by an aqueous solution of sorbents to absorb harmful metals. The calculated results are compared and demonstrate consistency with the data on the filtration properties of wood sawdust in other technologies, including thermal processing of radioactive wastes in a similar shaft incinerator.

  2. Conditioning of alpha and beta-gamma ashes of incinerator, obtained by radioactive wastes incinerating and encapsulation in several matrices

    International Nuclear Information System (INIS)

    Kertesz, C.J.; Chenavas, P.R.; Auffret, L.

    1993-01-01

    In this final report, the work carried out, and the results, obtained on the ash incinerator conditioning study, by means of encapsulation in several matrices, are presented. Three encapsulation matrices were checked: - a ternary cement, containing OPC, blast furnace slag and flying ash, - a two component epoxide system, - an epoxide-cement compound matrix. Three ash categories were employed: - real alpha ash, coming from plutonium bearing wastes, - ash, from inactive combustible waste, obtained by treatment in an incinerator prototype, - ash coming from inactive waste incineration plant. Using three different matrices, the encapsulated form properties were determined: at the laboratory scale, the encapsulating formulation was established, and physico mechanical data were obtained, - on active encapsulated forms, containing a calculated amount of 238 Pu, a radiolysis study was performed in order to measure the composition and volume of the radiolytic gas flow, - at the industrial scale, a pilot plant operating the polyvalent encapsulating process, was designed and put into service. Bench-scale experiments were done, on alpha ash embedded forms using the modified sulphur cement matrix as embedding agent. 4 refs., 30 figs., 27 tabs

  3. Metallic elements fractionation in municipal solid waste incineration residues

    Science.gov (United States)

    Kowalski, Piotr R.; Kasina, Monika; Michalik, Marek

    2016-04-01

    Municipal solid waste incineration (MSWI) residues are represented by three main materials: bottom ash, fly ash and air pollution control (APC) residues. Among them ˜80 wt% is bottom ash. All of that materials are products of high temperature (>1000° C) treatment of waste. Incineration process allows to obtain significant reduction of waste mass (up to 70%) and volume (up to 90%) what is commonly used in waste management to reduce the amount need to be landfilled or managed in other way. Incineration promote accumulation non-combustible fraction of waste, which part are metallic elements. That type of concentration is object of concerns about the incineration residues impact on the environment and also gives the possibility of attempts to recover them. Metallic elements are not equally distributed among the materials. Several factors influence the process: melting points, volatility and place and forms of metallic occurrence in the incinerated waste. To investigate metallic elements distribution in MSWI residues samples from one of the biggest MSW incineration plant in Poland were collected in 2015. Chemical analysis with emphasis on the metallic elements content were performed using inductively coupled plasma optical emission (ICP-OES) and mass spectrometry (ICP-MS). The bottom ash was a SiO2-CaO-Al2O3-Fe2O3-Na2O rich material, whereas fly ash and APC residues were mostly composed of CaO and SiO2. All of the materials were rich in amorphous phase occurring together with various, mostly silicate crystalline phases. In a mass of bottom ash 11 wt% were metallic elements but also in ashes 8.5 wt% (fly ash) and ˜4.5 wt% (APC residues) of them were present. Among the metallic elements equal distribution between bottom and fly ash was observed for Al (˜3.85 wt%), Mn (770 ppm) and Ni (˜65 ppm). In bottom ash Fe (5.5 wt%), Cr (590 ppm) and Cu (1250 ppm) were concentrated. These values in comparison to fly ash were 5-fold higher for Fe, 3-fold for Cu and 1.5-fold for

  4. A lysimeter experimental study and numerical characterisation of the leaching of incinerator bottom ash waste.

    Science.gov (United States)

    Ahmed, Abdelkader T; Khalid, Hussain A; Ahmed, Ashraf A; Chen, Daoyi

    2010-01-01

    Incinerator bottom ash (IBA) is a residual produced from incinerating municipal solid waste. In the past, IBA presented a big waste disposal problem; however, various recycling approaches have been adopted in recent years to mitigate this problem, as well as to provide a useful alternative to using primary aggregate resources. The use of IBA as an alternative to conventional aggregates in different civil engineering construction applications helps to conserve premium grade aggregate supplies; however, when IBA is in contact with water in the field, as a consequence of precipitation events or changes in water table, elements, such as salts and heavy metals, may be released to the soil and ground water. In this work, IBA waste was mixed with limestone aggregate to produce a blend with acceptable mechanical properties and minimum environmental risks for use as road foundation. The study focused on evaluating potential environmental impacts of some constituents, including sulphate, chloride, sodium, copper, zinc and lead in IBA blends using a lysimeter as a large scale leaching tool. Moreover, a specific scenario simulating field conditions was adopted in the lysimeter to assess the potential impact of changing conditions, such as IBA content in the blend, liquid to solid ratio (L/S) and pH value, on long-term release of heavy metals and salts. Then, numerical modelling was used to predict the release of the aforementioned constituents from IBA based on initial measurement of intrinsic material properties and the kinetic desorption process concept. Experimental results showed that zinc and lead were released in very low concentrations but sodium and sulphate were in high concentrations. The control limestone only blend also demonstrated low release concentrations of constituents in comparison to IBA blends, where constituent concentrations increased with increase in IBA content. Experimental results were compared with numerical results obtained using a non

  5. 7 CFR 868.61 - How to request appeal inspection service.

    Science.gov (United States)

    2010-01-01

    ... may be made with the Board of Appeals and Review or the field office that performed the appeal... application shall be made: (i) Before the rice has left the place where the inspection being appealed was... inspection be based on: (i) The file sample or (ii) a new sample. However, an appeal inspection shall be...

  6. The role of independent inspection in verification activities

    International Nuclear Information System (INIS)

    Fuerste, W.

    1982-01-01

    Independent inspection has its origin in the early Middle Ages, when kings prescribed to textile manufacturers a quality control by authorized inspectors. Independent inspection became more important with respect to the safety of workers in the industrial era beginning in the 18th century, when the high-pressure steam engines were introduced and many accidents and explosions of steam boilers occurred. Nowadays, independent inspection is of utmost importance, because the safety of the public is endangered by industrial plants located near highly populated areas. To better understand the role of independent inspection, the paper reviews its historical development in Europe from the Middle Ages to the 20th century. Most of the independent inspection associations in European countries were established after the second half of the 19th century and began with the surveillance of steam boilers. Nowadays, organizations like the TUEVs (Technical Inspection Agencies) in the Federal Republic of Germany perform expertise and inspection on behalf of the government in various fields of industrial safety. To show how independent inspection is involved in quality assurance, the methods practised in the United States of America and the Federal Republic of Germany are compared and future trends discussed. For developing countries starting with nuclear energy, it is important to consider the information and recommendations regarding independent inspection and its regulation as laid down in a number of publications in the IAEA NUSS Programme. (author)

  7. Flexible ultrasonic pipe inspection apparatus

    Energy Technology Data Exchange (ETDEWEB)

    Jenkins, C.F.; Howard, B.D.

    1994-01-01

    Pipe crawlers, pipe inspection {open_quotes}rabbits{close_quotes} and similar vehicles are widely used for inspecting the interior surfaces of piping systems, storage tanks and process vessels for damaged or flawed structural features. This paper describes the design of a flexible, modular ultrasonic pipe inspection apparatus.

  8. A Comparison of Organic Emissions from Hazardous Waste Incinerators Versus the 1990 Toxics Release Inventory Air Releases

    Science.gov (United States)

    Incineration is often the preferred technology for disposing of hazardous waste and remediating Superfund sites. The effective implementation of this technology is frequently impeded by strong public opposition to hazardous waste incineration (HWI). One of the reasons cited for t...

  9. Track inspection planning and risk measurement analysis.

    Science.gov (United States)

    2014-11-01

    This project models track inspection operations on a railroad network and discusses how the inspection results can : be used to measure the risk of failure on the tracks. In particular, the inspection times of the tracks, inspection frequency of the ...

  10. Overview of the software inspection process

    Energy Technology Data Exchange (ETDEWEB)

    Lane, G.L.; Dabbs, R. [Sandia National Labs., Albuquerque, NM (United States)

    1997-11-01

    This tutorial introduces attendees to the Inspection Process and teaches them how to organize and participate in a software inspection. The tutorial advocates the benefits of inspections and encourages attendees to socialize the inspection process in their organizations.

  11. Very low emissions of airborne particulate pollutants measured from two municipal solid waste incineration plants in Switzerland

    Science.gov (United States)

    Setyan, Ari; Patrick, Michael; Wang, Jing

    2017-10-01

    A field campaign has been performed in two municipal solid waste incineration (MSWI) plants in Switzerland, at Hinwil (ZH) and Giubiasco (TI). The aim was to measure airborne pollutants at different locations of the abatement systems (including those released from the stacks into the atmosphere) and at a near-field (∼1 km) downwind site, in order to assess the efficiency of the abatement systems and the environmental impact of these plants. During this study, we measured the particle number concentration with a condensation particle counter (CPC), and the size distribution with a scanning mobility particle sizer (SMPS) and an aerodynamic particle sizer (APS). We also sampled particles on filters for subsequent analyses of the morphology, size and elemental composition with a scanning electron microscope coupled to an energy dispersive X-ray spectroscope (SEM/EDX), and of water soluble ions by ion chromatography (IC). Finally, volatile organic compounds (VOCs) were sampled on adsorbing cartridges and analyzed by thermal desorption-gas chromatography/mass spectrometry (TD-GC/MS), and a portable gas analyzer was used to monitor NO, SO2, CO, CO2, and O2. The particle concentration decreased significantly at two locations of the plants: at the electrostatic precipitator and the bag-house filter. The particle concentrations measured at the stacks were very low (efficiency of the abatement system of the two plants. At Hinwil, particles sampled at the stack were mainly constituted of NaCl and KCl, two salts known to be involved in the corrosion process in incinerators. At Giubiasco, no significant differences were observed for the morphology and chemical composition of the particles collected in the ambient background and at the downwind site, suggesting that the incineration plant released very limited amounts of particles to the surrounding areas.

  12. Subsea Infrastructure Inspection

    DEFF Research Database (Denmark)

    Mai, Christian; Pedersen, Simon; Hansen, Leif

    2016-01-01

    Due to the increasing energy demands, the offshore energy business has boomed in recent decades. Sub-sea pipeline and power transmission cable installations are commonly applied worldwide. Any potential breakages can cause equipment damage and also damage the environment. The majority of the offs......Due to the increasing energy demands, the offshore energy business has boomed in recent decades. Sub-sea pipeline and power transmission cable installations are commonly applied worldwide. Any potential breakages can cause equipment damage and also damage the environment. The majority...... of the offshore pipeline inspections are currently committed using Towed or Remotely Operated Vehicle (ROV) systems. It is well-known that the ROVs are very time-consuming and expensive to operate, with respect to the fact that they require a relatively large support ship to accommodate the equipment as well...... as very skilled pilot and crews. The paper examines the existing challenges related to the sub-sea inspection in general, the ROVs, AUVs and semi-autonomous ROVs advantages and disadvantages in different subsea inspec-tion applications. Replacing the ROVs with Semi or fully-Autonomous Underwa-ter Vehicle...

  13. Technical data for waste incineration - background for modelling of product-specific emissions in a life cycle assessment context

    DEFF Research Database (Denmark)

    Erichsen, Hanne; Hauschild, Michael Zwicky

    with the disposal of a product through waste incineration. Based on knowledge of the material composition of the product and the technology applied in the waste incineration plant, the model estimates input of energy and auxiliary materials required for the incineration of the product and generation of energy...... and output of emissions to the environment caused by the incineration. The work has been performed as part of the EUREKA project EUROENVIRON 1296: LCAGAPS, sponsored by the Danish Agency for Industry and Trade....

  14. Pressurized water reactor inspection procedures

    International Nuclear Information System (INIS)

    Heinrich, D.; Mueller, G.; Otte, H.J.; Roth, W.

    1998-01-01

    Inspections of the reactor pressure vessels of pressurized water reactors (PWR) so far used to be carried out with different central mast manipulators. For technical reasons, parallel inspections of two manipulators alongside work on the refueling cavity, so as to reduce the time spent on the critical path in a revision outage, are not possible. Efforts made to minimize the inspection time required with one manipulator have been successful, but their effects are limited. Major reductions in inspection time can be achieved only if inspections are run with two manipulators in parallel. The decentralized manipulator built by GEC Alsthom Energie and so far emmployed in boiling water reactors in the USA, Spain, Switzerland and Japan allows two systems to be used in parallel, thus reducing the time required for standard inspection of a pressure vessel from some six days to three days. These savings of approximately three days are made possible without any compromises in terms of positioning by rail-bound systems. During inspection, the reactor refueling cavity is available for other revision work without any restrictions. The manipulator can be used equally well for inspecting standard PWR, PWR with a thermal shield, for inspecting the land between in-core instrumentation nozzles, BWR with and without jet pumps (complementary inspection), and for inspecting core support shrouds. (orig.) [de

  15. Emission of greenhouse gases from controlled incineration of cattle manure.

    Science.gov (United States)

    Oshita, Kazuyuki; Sun, Xiucui; Taniguchi, Miki; Takaoka, Masaki; Matsukawa, Kazutsugu; Fujiwara, Taku

    2012-01-01

    Greenhouse gas emission is a potential limiting factor in livestock farming development. While incineration is one approach to minimize livestock manure, there are concerns about significant levels of nitrogen and organic compounds in manure as potential sources of greenhouse gas emissions (N2O and CH4). In this study, the effects of various incineration conditions, such as the furnace temperature and air ratio on N2O and CH4 formation behaviour, of cattle manure (as a representative livestock manure) were investigated in a pilot rotary kiln furnace. The results revealed that N2O emissions decreased with increasing temperature and decreasing air ratio. In addition, CH4 emissions tended to be high above 800 degrees C at a low air ratio. The emission factors for N2O and CH4 under the general conditions (combustion temperature of 800-850 degrees C and air ratio of 1.4) were determined to be 1.9-6.0% g-N2O-N/g-N and 0.0046-0.26% g-CH4/g-burning object, respectively. The emission factor for CH4 differed slightly from the published values between 0.16 and 0.38% g-CH4/g-burning object. However, the emission factor for N2O was much higher than the currently accepted value of 0.7% g-N2O-N/g-N and, therefore, it is necessary to revise the N2O emission factor for the incineration of livestock manure.

  16. Recovery and distribution of incinerated aluminum packaging waste.

    Science.gov (United States)

    Hu, Y; Bakker, M C M; de Heij, P G

    2011-12-01

    A study was performed into relations between physical properties of aluminum packaging waste and the corresponding aluminum scraps in bottom ash from three typical incineration processes. First, Dutch municipal solid waste incineration (MSWI) bottom ash was analyzed for the identifiable beverage can alloy scraps in the +2mm size ranges using chemical detection and X-ray fluorescence. Second, laboratory-scale pot furnace tests were conducted to investigate the relations between aluminum packaging in base household waste and the corresponding metal recovery rates. The representative packaging wastes include beverage cans, foil containers and thin foils. Third, small samples of aluminum packaging waste were incinerated in a high-temperature oven to determine leading factors influencing metal recovery rates. Packaging properties, combustion conditions, presence of magnesium and some specific contaminants commonly found in household waste were investigated independently in the high-temperature oven. In 2007, the bottom ash (+2mm fraction) from the AEB MSWI plant was estimated to be enriched by 0.1 wt.% of aluminum beverage cans scrap. Extrapolating from this number, the recovery potential of all eleven MSWI plants in the Netherlands is estimated at 720 ton of aluminum cans scrap. More than 85 wt.% of this estimate would end up in +6mm size fractions and were amenable for efficient recycling. The pot furnace tests showed that the average recovery rate of metallic aluminum typically decreases from beverage cans (93 wt.%) to foil containers (85 wt.%) to thin foils (77 wt.%). The oven tests showed that in order of decreasing impact the main factors promoting metallic aluminum losses are the packaging type, combustion temperature, residence time and salt contamination. To a lesser degree magnesium as alloying element, smaller packaging size and basic contaminations may also promote losses. Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.

  17. Long term plant biomonitoring in the vicinity of waste incinerators in The Netherlands

    NARCIS (Netherlands)

    Dijk, van C.J.; Doorn, van W.; Alfen, van A.J.

    2015-01-01

    Since the mid-nineties new waste incineration plants have come into operation in the Netherlands. Burning of waste can result in the emission of potentially toxic compounds. Although the incineration plants must comply with strict conditions concerning emission control, public concern on the

  18. Life cycle assessment of sewage sludge co-incineration in a coal-based power station.

    Science.gov (United States)

    Hong, Jingmin; Xu, Changqing; Hong, Jinglan; Tan, Xianfeng; Chen, Wei

    2013-09-01

    A life cycle assessment was conducted to evaluate the environmental and economic effects of sewage sludge co-incineration in a coal-fired power plant. The general approach employed by a coal-fired power plant was also assessed as control. Sewage sludge co-incineration technology causes greater environmental burden than does coal-based energy production technology because of the additional electricity consumption and wastewater treatment required for the pretreatment of sewage sludge, direct emissions from sludge incineration, and incinerated ash disposal processes. However, sewage sludge co-incineration presents higher economic benefits because of electricity subsidies and the income generating potential of sludge. Environmental assessment results indicate that sewage sludge co-incineration is unsuitable for mitigating the increasing pressure brought on by sewage sludge pollution. Reducing the overall environmental effect of sludge co-incineration power stations necessitates increasing net coal consumption efficiency, incinerated ash reuse rate, dedust system efficiency, and sludge water content rate. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. 78 FR 34918 - Direct Final Approval of Sewage Sludge Incinerators State Plan for Designated Facilities and...

    Science.gov (United States)

    2013-06-11

    ... Approval of Sewage Sludge Incinerators State Plan for Designated Facilities and Pollutants; Indiana AGENCY... to control air pollutants from ``Sewage Sludge Incinerators'' (SSI). The Indiana Department of... unit,'' in part, as any device that combusts sewage sludge for the purpose of reducing the volume of...

  20. Characterization of deposits and their influence on corrosion in waste incineration plants in Denmark

    DEFF Research Database (Denmark)

    Montgomery, Melanie; Larsen, OH

    2001-01-01

    A program has been initiated in Denmark to investigate the aggressive environment in various waste incineration plants. The results described are the preliminary results from one waste incineration plant. Deposits and corrosion products have been removed from various locations in the boiler...

  1. The estimation of N2O emissions from municipal solid waste incineration facilities: The Korea case

    International Nuclear Information System (INIS)

    Park, Sangwon; Choi, Jun-Ho; Park, Jinwon

    2011-01-01

    The greenhouse gases (GHGs) generated in municipal solid waste (MSW) incineration are carbon dioxide (CO 2 ), methane (CH 4 ), and nitrous oxide (N 2 O). In South Korea case, the total of GHGs from the waste incineration facilities has been increasing at an annual rate 10%. In these view, waste incineration facilities should consider to reduce GHG emissions. This study is designed to estimate the N 2 O emission factors from MSW incineration plants, and calculate the N 2 O emissions based on these factors. The three MSW incinerators examined in this study were either stoker or both stoker and rotary kiln facilities. The N 2 O concentrations from the MSW incinerators were measured using gas chromatography-electron capture detection (GC-ECD) equipment. The average of the N 2 O emission factors for the M01 plant, M02 plant, and M03 plant are 71, 75, and 153 g-N 2 O/ton-waste, respectively. These results showed a significant difference from the default values of the intergovernmental panel on climate change (IPCC), while approaching those values derived in Japan and Germany. Furthermore, comparing the results of this study to the Korea Energy Economics Institute (KEEI) (2007) data on waste incineration, N 2 O emissions from MSW incineration comprised 19% of the total N 2 O emissions.

  2. The estimation of N2O emissions from municipal solid waste incineration facilities: The Korea case.

    Science.gov (United States)

    Park, Sangwon; Choi, Jun-Ho; Park, Jinwon

    2011-08-01

    The greenhouse gases (GHGs) generated in municipal solid waste (MSW) incineration are carbon dioxide (CO(2)), methane (CH(4)), and nitrous oxide (N(2)O). In South Korea case, the total of GHGs from the waste incineration facilities has been increasing at an annual rate 10%. In these view, waste incineration facilities should consider to reduce GHG emissions. This study is designed to estimate the N(2)O emission factors from MSW incineration plants, and calculate the N(2)O emissions based on these factors. The three MSW incinerators examined in this study were either stoker or both stoker and rotary kiln facilities. The N(2)O concentrations from the MSW incinerators were measured using gas chromatography-electron capture detection (GC-ECD) equipment. The average of the N(2)O emission factors for the M01 plant, M02 plant, and M03 plant are 71, 75, and 153g-N(2)O/ton-waste, respectively. These results showed a significant difference from the default values of the intergovernmental panel on climate change (IPCC), while approaching those values derived in Japan and Germany. Furthermore, comparing the results of this study to the Korea Energy Economics Institute (KEEI) (2007) data on waste incineration, N(2)O emissions from MSW incineration comprised 19% of the total N(2)O emissions. Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.

  3. GIS analysis in the siting of incinerators as a panacea for solid waste ...

    African Journals Online (AJOL)

    Solid waste represents a key issue that threatens environmental quality in Kaduna metropolis. One of the most viable options to treat such an issue is to incinerate the collected solid waste, which can reduce the cost of solid waste disposal as well as pollution and generate electricity. Despite the significance of incineration, ...

  4. Plutonium dissolution from Rocky Flats Plant incinerator ash

    International Nuclear Information System (INIS)

    Delegard, C.H.

    1985-06-01

    Rockwell Hanford Operations (Rockwell) soon will commence recovery of plutonium from Rocky Flats Plant incinerator ash. In preparation for this processing, Rockwell undertook literature and laboratory studies to identify, select and optimize plutonium dissolution methods for treating the ash. Ash reburning, followed by dissolution in nitric acid containing calcium fluoride, was selected as the processing method for the ash. Recommended values of process parameters were identified. Using the selected process, 99.5% plutonium recovery was achieved, leaving about 12.7 wt % heel residue for an equal weight composite of the three ashes tested. 15 refs., 26 figs

  5. Incineration of technological waste contaminated with alpha emitters

    International Nuclear Information System (INIS)

    Otter, C.; Moncouyoux, J.P.; Cartier, R.; Durec, J.P.; Afettouche, R.

    1990-01-01

    A large R and D programme is in progress at the CEA on alpha-bearing waste incineration. The program is developed in the laboratory and a pilot plant including the following aspects: physico-chemical characterization of wastes, study of thermal decomposition of wastes, laboratory study of generated gases (first with inactive then with active wastes), development of an industrial pilot plant with inactive wastes, study of corrosion resistance of material (laboratory and pilot plant), study and qualification of nuclear measurements on wastes, ashes and equipment [fr

  6. Safety and human factors engineering analysis. Heat recovery incinerator installation

    Science.gov (United States)

    1982-09-01

    This report contains a safety and human factors analysis of the Navy's heat recovery incinerator (HRI) systems. These requirements were based on current military standards and an evaluation of the HRI's at NAS, Jacksonville and NS, Mayport, Fl. The data collected were used to develop preliminary design criteria for future HRIs. The safety analysis lists specific areas where problems can occur and what should be done to prevent injury to plant personnel. The human factors design criteria section lists steps that can be taken to improve personnel and plant operating efficiency. Finally, specific problems that are occurring at NAS, Jacksonville and NS, Mayport are given.

  7. Metallic materials corrosion in the CRNL radwaste incinerator

    International Nuclear Information System (INIS)

    Tapping, R.L.; McVey, E.G.; Disney, D.J.

    1987-01-01

    Corrosion coupon evaluation and in-service materials performance for the CRNL waste incinerator has been carried out since 1980. Data are presented to show that types 309, 310 and 446 stainless steel, Alloy 625 and Alloy 333 all perform well in short-term tests in the afterburner environment (850-1000 0 C) but are subject to sigma-phase embrittlement and grain boundary carbide precipitation following long-term exposures. Several alloys performed satisfactorily in the primary chamber (500 0 C), and the material of construction, type 310 stainless steel, continues to provide good service

  8. Volume reduction through incineration of low-activity radioactive wastes

    International Nuclear Information System (INIS)

    Eymeri, J.; Gauthey, J.C.; Chaise, D.; Lafite, G.

    1993-01-01

    The aim of the waste treatment plant, designed by Technicatome (CEA) for an Indonesian Nuclear Research Center, is to reduce through incineration the volume of low-activity radioactive wastes such as technological solids (cotton, PVC, paper board), biological solids (animal bones) and liquids (cutting fluids...). The complete combustion is realized with a total air multi-fuel burner (liquid wastes) and flash pyrolysis-complete combustion (solid wastes). A two stage flue gas filtration system, a flue gas washing system, and an ash recovery system are used. A test platform has been built. 3 figs

  9. High temperature slagging incinerator for alpha contaminated wastes

    International Nuclear Information System (INIS)

    Van de Voorde, N.

    1985-01-01

    This report describes the experiences collected by the treatment of plutonium-contaminated wastes, in the High Temperature Slagging Incinerator at the C.E.N./S.C.K. at Mol, with the support of the Commission of the European Communities. The major objective of the exercise is to demonstrate the operability of this facility for the treatment of mixed transuranic (TRU) and beta-gamma solid waste material. The process will substantially reduce the TRU waste volume by burning the combustibles and converting the non-combustibles into a chemically inert and physically stable basalt-like slag product, suitable for safe transport and final disposal. (Auth.)

  10. 40 CFR 62.14825 - What are the recordkeeping and reporting requirements for air curtain incinerators that burn 100...

    Science.gov (United States)

    2010-07-01

    ... reporting requirements for air curtain incinerators that burn 100 percent wood wastes, clean lumber, and/or... Commenced Construction On or Before November 30, 1999 Air Curtain Incinerators That Burn 100 Percent Wood... for air curtain incinerators that burn 100 percent wood wastes, clean lumber, and/or yard waste? (a...

  11. 40 CFR 62.15375 - What are the emission limits for air curtain incinerators that burn 100 percent yard waste?

    Science.gov (United States)

    2010-07-01

    ... curtain incinerators that burn 100 percent yard waste? 62.15375 Section 62.15375 Protection of Environment... Combustion Units Constructed on or Before August 30, 1999 Air Curtain Incinerators That Burn 100 Percent Yard Waste § 62.15375 What are the emission limits for air curtain incinerators that burn 100 percent yard...

  12. 40 CFR 62.14815 - What are the emission limitations for air curtain incinerators that burn 100 percent wood wastes...

    Science.gov (United States)

    2010-07-01

    ... air curtain incinerators that burn 100 percent wood wastes, clean lumber and/or yard waste? 62.14815... Before November 30, 1999 Air Curtain Incinerators That Burn 100 Percent Wood Wastes, Clean Lumber And/or Yard Waste § 62.14815 What are the emission limitations for air curtain incinerators that burn 100...

  13. 40 CFR 62.15380 - How must I monitor opacity for air curtain incinerators that burn 100 percent yard waste?

    Science.gov (United States)

    2010-07-01

    ... curtain incinerators that burn 100 percent yard waste? 62.15380 Section 62.15380 Protection of Environment... Combustion Units Constructed on or Before August 30, 1999 Air Curtain Incinerators That Burn 100 Percent Yard Waste § 62.15380 How must I monitor opacity for air curtain incinerators that burn 100 percent yard...

  14. 40 CFR 60.1930 - What are the recordkeeping and reporting requirements for air curtain incinerators that burn 100...

    Science.gov (United States)

    2010-07-01

    ... reporting requirements for air curtain incinerators that burn 100 percent yard waste? 60.1930 Section 60... Incinerators That Burn 100 Percent Yard Waste § 60.1930 What are the recordkeeping and reporting requirements for air curtain incinerators that burn 100 percent yard waste? (a) Provide a notice of construction...

  15. 40 CFR 60.1455 - What are the recordkeeping and reporting requirements for air curtain incinerators that burn 100...

    Science.gov (United States)

    2010-07-01

    ... reporting requirements for air curtain incinerators that burn 100 percent yard waste? 60.1455 Section 60... Reconstruction is Commenced After June 6, 2001 Air Curtain Incinerators That Burn 100 Percent Yard Waste § 60.1455 What are the recordkeeping and reporting requirements for air curtain incinerators that burn 100...

  16. 40 CFR 60.2973 - What are the recordkeeping and reporting requirements for air curtain incinerators that burn only...

    Science.gov (United States)

    2010-07-01

    ... reporting requirements for air curtain incinerators that burn only wood waste, clean lumber, and yard waste... Qualification Air Curtain Incinerators That Burn Only Wood Waste, Clean Lumber, and Yard Waste § 60.2973 What are the recordkeeping and reporting requirements for air curtain incinerators that burn only wood...

  17. 40 CFR 60.1920 - What are the emission limits for air curtain incinerators that burn 100 percent yard waste?

    Science.gov (United States)

    2010-07-01

    ... curtain incinerators that burn 100 percent yard waste? 60.1920 Section 60.1920 Protection of Environment... or Before August 30, 1999 Model Rule-Air Curtain Incinerators That Burn 100 Percent Yard Waste § 60.1920 What are the emission limits for air curtain incinerators that burn 100 percent yard waste? If...

  18. 40 CFR 60.3068 - What are the recordkeeping and reporting requirements for air curtain incinerators that burn only...

    Science.gov (United States)

    2010-07-01

    ... reporting requirements for air curtain incinerators that burn only wood waste, clean lumber, and yard waste... Model Rule-Air Curtain Incinerators That Burn Only Wood Waste, Clean Lumber, and Yard Waste § 60.3068 What are the recordkeeping and reporting requirements for air curtain incinerators that burn only wood...

  19. 40 CFR 60.1925 - How must I monitor opacity for air curtain incinerators that burn 100 percent yard waste?

    Science.gov (United States)

    2010-07-01

    ... curtain incinerators that burn 100 percent yard waste? 60.1925 Section 60.1925 Protection of Environment... or Before August 30, 1999 Model Rule-Air Curtain Incinerators That Burn 100 Percent Yard Waste § 60.1925 How must I monitor opacity for air curtain incinerators that burn 100 percent yard waste? (a) Use...

  20. 40 CFR 60.1450 - How must I monitor opacity for air curtain incinerators that burn 100 percent yard waste?

    Science.gov (United States)

    2010-07-01

    ... curtain incinerators that burn 100 percent yard waste? 60.1450 Section 60.1450 Protection of Environment... Air Curtain Incinerators That Burn 100 Percent Yard Waste § 60.1450 How must I monitor opacity for air curtain incinerators that burn 100 percent yard waste? (a) Use EPA Reference Method 9 in appendix A of...

  1. 40 CFR 60.2971 - What are the emission limitations for air curtain incinerators that burn only wood waste, clean...

    Science.gov (United States)

    2010-07-01

    ... air curtain incinerators that burn only wood waste, clean lumber, and yard waste? 60.2971 Section 60... Incinerators That Burn Only Wood Waste, Clean Lumber, and Yard Waste § 60.2971 What are the emission limitations for air curtain incinerators that burn only wood waste, clean lumber, and yard waste? (a) Within...

  2. 40 CFR 62.15385 - What are the recordkeeping and reporting requirements for air curtain incinerators that burn 100...

    Science.gov (United States)

    2010-07-01

    ... reporting requirements for air curtain incinerators that burn 100 percent yard waste? 62.15385 Section 62... Incinerators That Burn 100 Percent Yard Waste § 62.15385 What are the recordkeeping and reporting requirements for air curtain incinerators that burn 100 percent yard waste? (a) Provide a notice of construction...

  3. 40 CFR 60.3066 - What are the emission limitations for air curtain incinerators that burn only wood waste, clean...

    Science.gov (United States)

    2010-07-01

    ... Waste Incineration Units That Commenced Construction On or Before December 9, 2004 Model Rule-Air Curtain Incinerators That Burn Only Wood Waste, Clean Lumber, and Yard Waste § 60.3066 What are the... air curtain incinerators that burn only wood waste, clean lumber, and yard waste? 60.3066 Section 60...

  4. Findings of the inspection grading system on industrial radiography

    International Nuclear Information System (INIS)

    Gloria Doloressa

    2011-01-01

    The use of industrial radiography techniques evolve rapidly and widely. Various jobs in industry require the examination of welding techniques / connecting pipes and metal construction. The use of industrial radiography is one type of utilization of nuclear energy must get control so that its use does not cause harmful impacts to worker safety, community, and environment. Regulations is done through inspections, in order to supervise the observance of the terms in the licensing and legislation in the field of nuclear safety. The main purpose of inspection is to ensure the utilization of radiation sources of radiation have been used with. Findings of the inspection is a decline in the performance of licensees in meeting safety requirements. The Grading System to the findings of the inspection needs to be done to improve the effectiveness and efficiency of inspection, and it is expected that the company can improve the management of radiation safety. (author)

  5. Waste incineration and immobilization for nuclear facilities, April--September 1977

    International Nuclear Information System (INIS)

    Johnson, A.J.; Fong, L.Q.

    1978-01-01

    Fluidized bed incineration and waste immobilization processes are being developed to process the types of waste expected from nuclear facilities. An air classification system has been developed to separate tramp metal from shredded combustible solid waste prior to the waste being fed to a fluidized-bed pilot-plant incinerator. Used organic ion exchange resin with up to 55 percent water has been effectively burned in the fluidized bed incinerator. Various methods of feeding waste into the incinerator were investigated as alternatives to the present compression screw; an extrusion ram was found to suffer extensive damage from hard particles in tested waste. A bench-scale continuous waste immobilization process has been operated and has produced glass from incinerator residue and other types of waste materials

  6. A summary of the National Incinerator Testing and Evaluation Program ash characterization and solidification studies

    International Nuclear Information System (INIS)

    Sawell, S.E.; Constable, T.W.; Klicius, R.K.

    1991-01-01

    In 1984, Environment Canada established the National Incinerator Testing and Evaluation Program (NITEP) to examine the potential impact of municipal solid waste incineration on the environment. As a part of NITEP, the Wastewater Technology Center (WTC) evaluated the chemical properties and leachability of different types of ashes from various types of MSW incinerators using a battery of laboratory procedures. This paper presents a summary of results generated from the NITEP ash program. Emphasis is placed on the variability of ash characteristics based on ash type, incinerator technology and incinerator operating conditions, as well as major trends in leaching, such as the effect of pH on metal solubility. In addition, the results will be placed in context with the current Canadian federal guidelines and provincial regulations for ash disposal. Finally, the feasibility of solidification as a treatment technique for fly ash will also be discussed

  7. Effect of incineration temperature on phosphorus availability in bio-ash from manure.

    Science.gov (United States)

    Thygesen, A M; Wernberg, O; Skou, E; Sommer, S G

    2011-04-01

    In the near future phosphorus (P) will be a limited resource in high demand. This will increase the incentives for recycling P in animal manure. In this study the dry-matter-rich fraction from slurry separation was incinerated and the P availability of the ash fraction examined. The aim was to adjust incineration temperature to support a high plant-availability of P in ash. The plant-availability of P was approximately halved when the incineration temperature was increased from 400 to 700 degrees C. This decrease in plant-availability was probably due to the formation of hydroxyapatite. Incineration temperatures should therefore be kept below 700 degrees C to ensure a high fertilizer efficiency of P in ash. This may conflict with the energy production, which is optimal at temperatures above 800 degrees C. An alternative to incineration may therefore be thermal gasification of the dry-matter-rich fraction, which can be carried out efficiently at lower temperatures.

  8. Volume reduction and solidification of radioactive waste incineration ash with waste glass

    International Nuclear Information System (INIS)

    Koyama, Hidemi; Kobayashi, Masayuki

    2007-01-01

    The low-level radioactive waste generated from research institutions and hospitals etc. is packed into a container and is kept. The volume reduced state or the unprocessed state by incineration or compression processing are used because neither landfill sites nor disposal methods have been fixed. Especially, because the bulk density is low, and it is easy to disperse, the low-level radioactive waste incineration ash incinerated for the volume reduction is a big issue in security, safety, stability in the inventory location. A safe and appropriate disposal processing method is desired. When the low temperature sintering method in the use of the glass bottle cullet was examined, volume reduction and stabilization of low-level radioactive waste incineration ash were verified. The proposed method is useful for the easy treatment of the low-level radioactive waste incineration ash. (author)

  9. Low-level waste incineration: experience at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Bohrer, H.A.; Dalton, J.D.

    1987-01-01

    The Waste Experimental Reduction Facility (WERF) is a low level radioactive waste treatment facility being operated at the Idaho National Engineering Laboratory (INEL). A key component of the facility is a dual chambered controlled air incinerator with a dry off-gas treatment system. The incinerator began processing radioactive waste in September, 1984. Limited operations continued from that data until October, 1985, at which time all INEL generators began shipping combustible waste for incineration. The incinerator is presently processing all available INEL combustible Dry Active Waste (DAW) (approximately 1700 m 3 per year) operating about five days per month. Performance to date has demonstrated the effectiveness, viability and safety of incineration as a volume reduction method of DAW. 3 figures

  10. Operating experience and data on revolving type fluidized bed incineration plants

    International Nuclear Information System (INIS)

    Nakayama, J.

    1990-01-01

    In refuse incinerators operating by revolving fluidization (Revolving Type Fluidized Bed Incinerator) a broad range of wastes, from low caloric refuse of high moisture content to high caloric value material including a wide variety of plastics, can be incinerated at high efficiency because the unit is outstanding in terms of distribution of waste in the incinerator bed and uniformity of heat. In addition, its vigorous revolving fluidization action is very effective in pulverizing refuse, so even relatively strict emission standards can be met without fine pre-shredding. Residues are discharged in a clean, dry form free of putrescible material. Data on practical operation of the revolving fluidized bed incinerator are presented in this paper

  11. Environmental impact assessment of the incineration of municipal solid waste with auxiliary coal in China.

    Science.gov (United States)

    Zhao, Yan; Xing, Wei; Lu, Wenjing; Zhang, Xu; Christensen, Thomas H

    2012-10-01

    The environmental impacts of waste incineration with auxiliary coal were investigated using the life-cycle-based software, EASEWASTE, based on the municipal solid waste (MSW) management system in Shuozhou City. In the current system, MSW is collected, transported, and incinerated with 250 kg of coal per ton of waste. Based on observed environmental impacts of incineration, fossil CO(2) and heavy metals were primary contributors to global warming and ecotoxicity in soil, respectively. Compared with incinerators using excess coal, incineration with adequate coal presents significant benefits in mitigating global warming, whereas incineration with a mass of coal can avoid more impacts to acidification, photochemical ozone and nutrient enrichment because of increased electricity substitution and reduced emission from coal power plants. The "Emission standard of air pollutants for thermal power plants (GB13223-2011)" implemented in 2012 introduced stricter policies on controlling SO(2) and NO(x) emissions from coal power plants. Thus, increased use of auxiliary coal during incineration yields fewer avoided impacts on acidification and nutrient enrichment. When two-thirds of ash is source-separated and landfilled, the incineration of rest-waste presents better results on global warming, acidification, nutrient enrichment, and even ecotoxicity in soil. This process is considered a promising solution for MSW management in Shuozhou City. Weighted normalized environmental impacts were assessed based on Chinese political reduction targets. Results indicate that heavy metal and acidic gas emissions should be given more attention in waste incineration. This study provides scientific support for the management of MSW systems dominated by incineration with auxiliary coal in China. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. [Mercury Distribution Characteristics and Atmospheric Mercury Emission Factors of Typical Waste Incineration Plants in Chongqing].

    Science.gov (United States)

    Duan, Zhen-ya; Su, Hai-tao; Wang, Feng-yang; Zhang, Lei; Wang, Shu-xiao; Yu, Bin

    2016-02-15

    Waste incineration is one of the important atmospheric mercury emission sources. The aim of this article is to explore the atmospheric mercury pollution level of waste incineration industry from Chongqing. This study investigated the mercury emissions from a municipal solid waste incineration plant and a medical waste incineration plant in Chongqing. The exhaust gas samples in these two incineration plants were obtained using USA EPA 30B method. The mercury concentrations in the fly ash and bottom ash samples were analyzed. The results indicated that the mercury concentrations of the municipal solid waste and medical waste incineration plant in Chongqing were (26.4 +/- 22.7) microg x m(-3) and (3.1 +/- 0.8) microg x m(-3) in exhaust gas respectively, (5279.2 +/- 798.0) microg x kg(-1) and (11,709.5 +/- 460.5) microg x kg(-1) in fly ash respectively. Besides, the distribution proportions of the mercury content from municipal solid waste and medical waste in exhaust gas, fly ash, and bottom ash were 34.0%, 65.3%, 0.7% and 32.3%, 67.5%, 0.2% respectively; The mercury removal efficiencies of municipal solid waste and medical waste incineration plants were 66.0% and 67.7% respectively. The atmospheric mercury emission factors of municipal solid waste and medical waste incineration plants were (126.7 +/- 109.0) microg x kg(-1) and (46.5 +/- 12.0) microg x kg(-1) respectively. Compared with domestic municipal solid waste incineration plants in the Pearl River Delta region, the atmospheric mercury emission factor of municipal solid waste incineration plant in Chongqing was lower.

  13. Shell Inspection History and Current CMM Inspection Efforts

    Energy Technology Data Exchange (ETDEWEB)

    Montano, Joshua Daniel [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-01-26

    The following report provides a review of past and current CMM Shell Inspection efforts. Calibration of the Sheffield rotary contour gauge has expired and the primary inspector, Matthew Naranjo, has retired. Efforts within the Inspection team are transitioning from maintaining and training new inspectors on Sheffield to off-the-shelf CMM technology. Although inspection of a shell has many requirements, the scope of the data presented in this report focuses on the inner contour, outer contour, radial wall thickness and mass comparisons.

  14. Laser Damage Inspection Final Report

    International Nuclear Information System (INIS)

    Salmon, J.T.; Brase, J.M.; Bliss, E.S.; Carrano, C.J.; Kegelmeyer, L.M.; Miller, M.G.; Orth, C.D.; Sacks, R.A.

    2001-01-01

    Large, high-power laser systems are often designed as reimaging multipass cavities to maximize the extraction of energy from the amplifiers. These multipass cavities often have vacuum spatial filters that suppress the growth of beam instability via B-integral effects. These spatial filters also relay images of laser damage, often nearly superimposing these images in common planes. Also, the fluence damage threshold limits the minimum size of the optics. When used as vacuum barriers in the spatial filters, these large optics present a safety hazard from the risk of implosion if the laser damage were sufficiently large. The objective of the project was to develop algorithms and methods for optical detection and characterization of laser-induced damage of optics. The system should detect small defects (about 5% of the critical size), track their growth over multiple laser shots, and characterize the defects accurately so that the optic can be replaced (at 25% of the critical size) and, hence, minimize the risk of implosion. The depth of field must be short enough to isolate the damaged vacuum barrier from other damaged optics in the beamline, and the system should also be capable of inspecting other optics in the beamline, since damage on one optic can subsequently damage subsequent optics. Laser induced damage starts as a small (<<1mm) crater and grows as material is removed on subsequent laser shots. The highly fractured rough surface of the crater scatters light from the illuminating inspection beam. This scattered light is imaged by the inspection system. Other types of defects may occur as well including inclusions in the bulk glass, tooling marks, and surface contamination. This report will discuss the detection and characterization of crater-like surface defects although the general techniques may prove useful for other types of defects. The work described here covers the development of an image processing approach and specific algorithms for defect detection

  15. Laser Safety Inspection Criteria

    International Nuclear Information System (INIS)

    Barat, K.

    2005-01-01

    A responsibility of the Laser Safety Officer (LSO) is to perform laser audits. The American National Standard Z136.1 Safe Use of Lasers references this requirement through several sections. One such reference is Section 1.3.2.8, Safety Features Audits, ''The LSO shall ensure that the safety features of the laser installation facilities and laser equipment are audited periodically to assure proper operation''. The composition, frequency and rigor of that inspection/audit rests in the hands of the LSO. A common practice for institutions is to develop laser audit checklists or survey forms It is common for audit findings from one inspector or inspection to the next to vary even when reviewing the same material. How often has one heard a comment, ''well this area has been inspected several times over the years and no one ever said this or that was a problem before''. A great number of audit items, and therefore findings, are subjective because they are based on the experience and interest of the auditor to particular items on the checklist. Beam block usage, to one set of eyes might be completely adequate, while to another, inadequate. In order to provide consistency, the Laser Safety Office of the National Ignition Facility Directorate has established criteria for a number of items found on the typical laser safety audit form. The criteria are distributed to laser users. It serves two broad purposes; first, it gives the user an expectation of what will be reviewed by an auditor. Second, it is an opportunity to explain audit items to the laser user and thus the reasons for some of these items, such as labelling of beam blocks

  16. Pellet inspection apparatus

    Science.gov (United States)

    Wilks, Robert S.; Taleff, Alexander; Sturges, Jr., Robert H.

    1982-01-01

    Apparatus for inspecting nuclear fuel pellets in a sealed container for diameter, flaws, length and weight. The apparatus includes, in an array, a pellet pick-up station, four pellet inspection stations and a pellet sorting station. The pellets are delivered one at a time to the pick-up station by a vibrating bowl through a vibrating linear conveyor. Grippers each associated with a successive pair of the stations are reciprocable together to pick up a pellet at the upstream station of each pair and to deposit the pellet at the corresponding downstream station. The gripper jaws are opened selectively depending on the state of the pellets at the stations and the particular cycle in which the apparatus is operating. Inspection for diameter, flaws and length is effected in each case by a laser beam projected on the pellets by a precise optical system while each pellet is rotated by rollers. Each laser and its optical system are mounted in a container which is free standing on a precise surface and is provided with locating buttons which engage locating holes in the surface so that each laser and its optical system is precisely set. The roller stands are likewise free standing and are similarly precisely positioned. The diameter optical system projects a thin beam of light which scans across the top of each pellet and is projected on a diode array. The fl GOVERNMENT CONTRACT CLAUSE The invention herein described was made in the course of or under a contract or subcontract thereunder with the Department of Energy bearing No. EY-67-14-C-2170.

  17. Safeguards management inspection procedures

    International Nuclear Information System (INIS)

    Barth, M.J.; Dunn, D.R.

    1984-08-01

    The objective of this inspection module is to independently assess the contributions of licensee management to overall safeguards systems performance. The inspector accomplishes this objective by comparing the licensee's safeguards management to both the 10 CFR, parts 70 and 73, requirements and to generally accepted management practices. The vehicle by which this comparison is to be made consists of assessment questions and key issues which point the inspector to areas of primary concern to the NRC and which raise additional issues for the purpose of exposing management ineffectiveness. Further insight into management effectiveness is obtained through those assessment questions specifically directed toward the licensee's safeguards system performance. If the quality of the safeguards is poor, then the inspector should strongly suspect that management's role is ineffective and should attempt to determine management's influence (or lack thereof) on the underlying safeguards deficiencies. (The converse is not necessarily true, however.) The assessment questions in essence provide an opportunity for the inspector to identify, to single out, and to probe further, questionable management practices. Specific issues, circumstances, and concerns which point to questionable or inappropriate practices should be explicitly identified and referenced against the CFR and the assessment questions. The inspection report should also explain why the inspector feels certain management practices are poor, counter to the CFR, and/or point to ineffecive management. Concurrent with documenting the inspection results, the inspector should provide recommendations for alleviating observed management practices that are detrimental to effective safeguards. The recommendations could include: specific changes in the practices of the licensee, followup procedures on the part of NRC, and proposed license changes

  18. Particulate collection in a low level radioactive waste incinerator

    International Nuclear Information System (INIS)

    Rudnick, S.N.; Leith, D.; First, M.W.

    1976-01-01

    As designed, sintered stainless steel filters will clean the gas from the secondary cyclone at a low level radioactive waste incinerator. Bench-scale apparatus was used to evaluate asbestos floats and diatomaceous earth as filter aids to prevent clogging of the sintered metal interstices and to decrease filter penetration. Both precoats prevented irreversible pressure drop increase, and decreased cold DOP penetration from 80 percent to less than 1 percent. Less diatomaceous earth was needed than asbestos floats, to collect the same quantity of fly ash. A back-up study evaluated a moving bed of sodium carbonate pellets in lieu of the sintered metal filters. Since identical sodium carbonate pellets are used to neutralize hydrogen chloride in the incinerator, their use in a moving bed has the advantages of trouble free disposal and cost free replacement. Co - , counter, and cross-current beds were studied and gave fly ash penetrations less than 0.1 percent at moderate pressure drop. The filter cake which forms on the pellet surfaces decreases penetration greatly

  19. The persistent pollutants emission from medical waste incineration in China

    International Nuclear Information System (INIS)

    Yan, Mi; Li, Xiao-Dong; Lu, Sheng-Yong; Yan, Jian-Hua

    2010-01-01

    The huge amount of medical waste (MW) has caused a tough challenge to environment protection, for its serious infectious feature. At present, the incineration is the priority and main technology option for MW disposal in China. However, the medical waste incineration (MWI) is considered the major source of persistent organic pollutants (POPs), especially PCDD/Fs. In order to get an overall information of pollutants emission from MWI, a series study were conducted, involved in the generation and the components content of MW in China, the fingerprint of PCDD/Fs emission from MWI, POPs (PCDD/Fs, PCBs and HxCBz) concentration in residue ash. It is estimated that the generation of MW was 897,034 tons in 2008, plastic and rubber accounted for 24.5% of the MW weight. PCDD/Fs emission could be divided into two main groups according the fingerprint, and the ratio of PCDFs to PCDDs was mostly over 1.5. The TEQ of PCDD/Fs was over 30 times than WHO-TEQ of PCBs, and the TEQ of PCDD/Fs accounted for about 65% of the total output of PCDD/Fs in line with the UNEP default emission factors for MWI (Class 3, 63.7%). (author)

  20. High temperature slagging incinerator for TRU-waste treatment

    International Nuclear Information System (INIS)

    Van De Voorde, N.; Hennart, D.; Gijbels, J.; Mergan, L.

    1984-01-01

    Since 1974 the Belgian Nuclear Study Center (SCK/CEN) at Mol, with the support of the European Communities, has developed an ''integral'' system for the treatment and the conditioning of radioactive contaminated wastes. The system converts directly, at high temperature (1500 0 C), mixtures of combustibles (paper, plastics, rubber etc.) and non-combustibles (metals, soil, sludge, concrete.) contaminated with transuranium elements as well as beta-gamma emitting isotopes, into a chemically inert and physically stable slag. More than 4000 hours of successful operation, with wide variety of simulated waste composition as well as real waste, have confirmed the safe operability of the high temperature sl'Gging incinerator and the connected installations, such as sorting cells, waste shredder, off-gas purification train, slag extraction system, remoted control, and the alpha-containment building. During the fall of 1983, a final confirmation of the performance of the installation was given by the successful accomplishment of an incineration campaign of 16 to 17 tons of simulated solid plutonium contaminated wastes

  1. Leaching of solidified TRU-contaminated incinerator ash

    International Nuclear Information System (INIS)

    Fuhrmann, M.; Colombo, P.

    1984-01-01

    Leach rate and cumulative fractional releases of plutonium were determined for a series of laboratory-scale waste forms containing transuranic (TRU) contaminated incinerator ash. The solidification agents from which these waste forms were produced are commercially available materials for radioactive waste disposal. The leachants simulate groundwaters with chemical compositions that are indiginous to different geological media proposed for repositories. In this study TRU-contaminated ash was incorporated into waste forms fabricated with portland type I cement, urea-formaldehyde, polyester-styrene or Pioneer 221 bitumen. The ash was generated at the dual-chamber incinerator at the Rocky Flats Plant. These waste forms contained between 1.25 x 10 -2 and 4.4 x 10 -2 Ci (depending on the solidification agent) of mixed TRU isotopes comprised primarily of 239 Pu and 240 Pu. Five leachant solutions were prepared consisting of: (1) demineralized water, (2) simulated brine, (3) simplified sodium-dominated groundwater (30 meq NaCl/liter), (4) simplified calcium-dominated groundwater (30 meq CaCl 2 /liter), and (5) simplified bicarbonate-dominated groundwater (30 meq NaHCO 3 /liter). Cumulative fractional releases were found to vary significantly with different leachants and solidification agents. In all cases waste forms leached in brine gave the lowest leach rates. Urea-formaldehyde had the greatest release of radionuclides while polyester-styrene and portland cement had approximately equivalent fractional releases. Cement cured for 210 days retained radionuclides three times more effectively than cement cured only 30 days

  2. Acoustic inspection device

    Energy Technology Data Exchange (ETDEWEB)

    Diaz, Aaron A.; Burghard, Brion J.; Skorpik, James R.; Pappas, Richard A.; Mullen, O. Dennis; Samuel, Todd J.; Reid, Larry D.; Harris, Joe C.; Valencia, Juan D.; Smalley, Jonathan T.; Shepard, Chester L.; Taylor, Theodore T.

    2005-09-06

    An ultrasound inspection apparatus particularly adapted to examine containers (sealed or unsealed) containing a liquid or solid bulk material. The apparatus has an overall configuration of a hand held pistol with a front transducer contact surface that is positioned against a front wall of the container. An ultrasound pulse is transmitted from the apparatus to be reflected from a back wall of a container being investigated. The received echo pulse is converted to a digital waveform. The waveform is analyzed relative to temperature, travel distance of the pulse(s), and time of travel to ascertain characteristics of the liquid or other materials and to provide identification of the same.

  3. Waste inspection tomography (WIT)

    International Nuclear Information System (INIS)

    Bernardi, R.T.

    1995-01-01

    Waste Inspection Tomography (WIT) provides mobile semi-trailer mounted nondestructive examination (NDE) and assay (NDA) for nuclear waste drum characterization. WIT uses various computed tomography (CT) methods for both NDE and NDA of nuclear waste drums. Low level waste (LLW), transuranic (TRU), and mixed radioactive waste can be inspected and characterized without opening the drums. With externally transmitted x-ray NDE techniques, WIT has the ability to identify high density waste materials like heavy metals, define drum contents in two- and three-dimensional space, quantify free liquid volumes through density and x-ray attenuation coefficient discrimination, and measure drum wall thickness. With waste emitting gamma-ray NDA techniques, WIT can locate gamma emitting radioactive sources in two- and three-dimensional space, identify gamma emitting, isotopic species, identify the external activity levels of emitting gamma-ray sources, correct for waste matrix attenuation, provide internal activity approximations, and provide the data needed for waste classification as LLW or TRU

  4. CTBT on-site inspections

    Science.gov (United States)

    Zucca, J. J.

    2014-05-01

    On-site inspection (OSI) is a critical part of the verification regime for the Comprehensive Nuclear-Test-Ban Treaty (CTBT). The OSI verification regime provides for international inspectors to make a suite of measurements and observations on site at the location of an event of interest. The other critical component of the verification regime is the International Monitoring System (IMS), which is a globally distributed network of monitoring stations. The IMS along with technical monitoring data from CTBT member countries, as appropriate, will be used to trigger an OSI. After the decision is made to carry out an OSI, it is important for the inspectors to deploy to the field site rapidly to be able to detect short-lived phenomena such as the aftershocks that may be observable after an underground nuclear explosion. The inspectors will be on site from weeks to months and will be working with many tens of tons of equipment. Parts of the OSI regime will be tested in a field exercise in the country of Jordan late in 2014. The build-up of the OSI regime has been proceeding steadily since the CTBT was signed in 1996 and is on track to becoming a deterrent to someone considering conducting a nuclear explosion in violation of the Treaty.

  5. CTBT on-site inspections

    International Nuclear Information System (INIS)

    Zucca, J. J.

    2014-01-01

    On-site inspection (OSI) is a critical part of the verification regime for the Comprehensive Nuclear-Test-Ban Treaty (CTBT). The OSI verification regime provides for international inspectors to make a suite of measurements and observations on site at the location of an event of interest. The other critical component of the verification regime is the International Monitoring System (IMS), which is a globally distributed network of monitoring stations. The IMS along with technical monitoring data from CTBT member countries, as appropriate, will be used to trigger an OSI. After the decision is made to carry out an OSI, it is important for the inspectors to deploy to the field site rapidly to be able to detect short-lived phenomena such as the aftershocks that may be observable after an underground nuclear explosion. The inspectors will be on site from weeks to months and will be working with many tens of tons of equipment. Parts of the OSI regime will be tested in a field exercise in the country of Jordan late in 2014. The build-up of the OSI regime has been proceeding steadily since the CTBT was signed in 1996 and is on track to becoming a deterrent to someone considering conducting a nuclear explosion in violation of the Treaty

  6. Inspection robots for nuclear industry

    International Nuclear Information System (INIS)

    Miyazawa, Tatsuo; Kimura, Motohiko; Sato, Michio

    1990-01-01

    In order to maintain the soundness in nuclear facilities including nuclear power stations, the inspection prior to operation and the inspection during operation as well as the quality control at the time of manufacture are carried out. The main methods of inspection are nondestructive inspection, and visual, ultrasonic flaw detection, eddy current flaw detection, X-ray and other inspections are carried out. In nuclear facilities, it is necessary to do inspection in the places where radiation and radioactivity exist, accordingly in view of reducing the dose in working as far as possible, remote and automatic inspection is desirable. Besides, the research and development of the upgrading of quality and the shortening of time of inspection have been done. The ultrasonic flaw detection of the nozzle parts of reactor pressure vessels, welded pipings and so on was automated, and the application of CT technology to make the three-dimensional images of piping defects has been studied. In this report, a remote, automatic ultrasonic flaw detection apparatus and an underwater visual inspection apparatus are described. The former is composed of an electromagnetic acoustic transducer and its running mechanism of trackless magnetic sticking type. The latter uses a television camera mounted on a vehicle. (K.I.)

  7. PWR vessel inspection performance improvements

    International Nuclear Information System (INIS)

    Blair Fairbrother, D.; Bodson, Francis

    1998-01-01

    A compact robot for ultrasonic inspection of reactor vessels has been developed that reduces setup logistics and schedule time for mandatory code inspections. Rather than installing a large structure to access the entire weld inspection area from its flange attachment, the compact robot examines welds in overlapping patches from a suction cup anchor to the shell wall. The compact robot size allows two robots to be operated in the vessel simultaneously. This significantly reduces the time required to complete the inspection. Experience to date indicates that time for vessel examinations can be reduced to fewer than four days. (author)

  8. The incineration of low-level radioactive waste: A report for the Advisory Committee on Nuclear Waste

    International Nuclear Information System (INIS)

    Long, S.W.

    1990-06-01

    This report is a summary of the contemporary use of incineration technology as a method for volume reduction of LLW. It is intended primarily to serve as an overview of the technology for waste management professionals involved in the use or regulation of LLW incineration. It is also expected that organizations presently considering the use of incineration as part of their radioactive waste management programs will benefit by gaining a general knowledge of incinerator operating experience. Specific types of incineration technologies are addressed in this report, including designation of the kinds of wastes that can be processed, the magnitudes of volume reduction that are achievable in typical operation, and requirements for ash handling and off-gas filtering and scrubbing. A status listing of both US and foreign incinerators provides highlights of activities at government, industry, institutional, and commercial nuclear power plant sites. The Federal and State legislative structures for the regulation of LLW incineration are also described. 84 refs., 33 tabs

  9. Incineration of DOE offsite mixed waste at the Idaho National Engineering and Environmental Laboratory

    International Nuclear Information System (INIS)

    Harris, J.D.; Harvego, L.A.; Jacobs, A.M.; Willcox, M.V.

    1998-01-01

    The Waste Experimental Reduction Facility (WERF) incinerator at the Idaho National Engineering and Environmental Laboratory (INEEL) is one of three incinerators in the US Department of Energy (DOE) Complex capable of incinerating mixed low-level waste (MLLW). WERF has received MLLW from offsite generators and is scheduled to receive more. The State of Idaho supports receipt of offsite MLLW waste at the WERF incinerator within the requirements established in the (INEEL) Site Treatment Plan (STP). The incinerator is operating as a Resource Conservation and Recovery Act (RCRA) Interim Status Facility, with a RCRA Part B permit application currently being reviewed by the State of Idaho. Offsite MLLW received from other DOE facilities are currently being incinerated at WERF at no charge to the generator. Residues associated with the incineration of offsite MLLW waste that meet the Envirocare of Utah waste acceptance criteria are sent to that facility for treatment and/or disposal. WERF is contributing to the treatment and reduction of MLLW in the DOE Complex

  10. Energy analysis and environmental impacts of a MSW oxy-fuel incineration power plant in China

    International Nuclear Information System (INIS)

    Tang, YuTing; Ma, XiaoQian; Lai, ZhiYi; Chen, Yong

    2013-01-01

    The entire life cycle of a municipal solid waste (MSW) oxy-fuel incineration power plant was evaluated using the method of life cycle assessment (LCA) to identify and quantify the fossil energy requirements and environmental impacts. The functional unit was 1000 kg (1 t) MSW. During the life cycle, the saving standard coal by electricity generation was more than diesel consumption, and the effect of soot and ashes was the greatest among all calculated categorization impacts. The total weighted resource consumption and total weighted environment potential of MSW oxy-fuel incineration were −0.37 mPR 90 (milli person equivalent) and −0.27 PET 2010 (person equivalent), better than MSW incineration with CO 2 capture via monoethanolamine (MEA) absorption. The sensitivity analysis showed that the electric power consumption of air separation unit (ASU) was the primary influencing parameter, and the influence of electric power consumption of CO 2 compressor was secondary, while transport distance had small influence. Overall, MSW oxy-fuel incineration technology has certain development potential with the increment of MSW power supply efficiency and development of ASU in the future. - Highlights: • Life cycle assessment of a MSW oxy-fuel incineration power plant is novel. • The MSW oxy-fuel incineration was better than the MSW incineration with MEA. • Among calculated impacts, the effect of soot and ashes was the greatest. • The electric power consumption of ASU was the primary influencing parameter

  11. Heavy Metal Contamination of Soils around a Hospital Waste Incinerator Bottom Ash Dumps Site.

    Science.gov (United States)

    Adama, M; Esena, R; Fosu-Mensah, B; Yirenya-Tawiah, D

    2016-01-01

    Waste incineration is the main waste management strategy used in treating hospital waste in many developing countries. However, the release of dioxins, POPs, and heavy metals in fly and bottom ash poses environmental and public health concerns. To determine heavy metal (Hg, Pb, Cd, Cr, and Ag) in levels in incinerator bottom ash and soils 100 m around the incinerator bottom ash dump site, ash samples and surrounding soil samples were collected at 20 m, 40 m, 60 m, 80 m, 100 m, and 1,200 m from incinerator. These were analyzed using the absorption spectrophotometer method. The geoaccumulation (I geo) and pollution load indices (PLI) were used to assess the level of heavy metal contamination of surrounding soils. The study revealed high concentrations in mg/kg for, Zn (16417.69), Pb (143.80), Cr (99.30), and Cd (7.54) in bottom ash and these were above allowable limits for disposal in landfill. The study also found soils within 60 m radius of the incinerator to be polluted with the metals. It is recommended that health care waste managers be educated on the implication of improper management of incinerator bottom ash and regulators monitor hospital waste incinerator sites.

  12. Mercury contamination and potential impacts from municipal waste incinerator on Samui Island, Thailand.

    Science.gov (United States)

    Muenhor, Dudsadee; Satayavivad, Jutamaad; Limpaseni, Wongpun; Parkpian, Preeda; Delaune, R D; Gambrell, R P; Jugsujinda, Aroon

    2009-03-01

    In recent years, mercury (Hg) pollution generated by municipal waste incinerators (MWIs) has become the subject of serious public concern. On Samui Island, Thailand, a large-scale municipal waste incinerator has been in operation for over 7 years with a capacity of 140 tons/day for meeting the growing demand for municipal waste disposal. This research assessed Hg contamination in environmental matrices adjacent to the waste incinerating plant. Total Hg concentrations were determined in municipal solid waste, soil and sediment within a distance of 100 m to 5 km from the incinerator operation in both wet and dry seasons. Hg analyses conducted in municipal solid waste showed low levels of Hg ranging between 0.15-0.56 mg/kg. The low level was due to the type of waste incinerator. Waste such as electrical appliances, motors and spare parts, rubber tires and hospital wastes are not allowed to feed into the plant. As a result, low Hg levels were also found in fly and bottom ashes (0.1-0.4 mg/kg and contaminated from Hg emissions produced by this incinerator. However the increase of Hg measured in downwind direction of the incinerator should be monitored for future potential risk.

  13. Heavy Metal Contamination of Soils around a Hospital Waste Incinerator Bottom Ash Dumps Site

    Directory of Open Access Journals (Sweden)

    M. Adama

    2016-01-01

    Full Text Available Waste incineration is the main waste management strategy used in treating hospital waste in many developing countries. However, the release of dioxins, POPs, and heavy metals in fly and bottom ash poses environmental and public health concerns. To determine heavy metal (Hg, Pb, Cd, Cr, and Ag in levels in incinerator bottom ash and soils 100 m around the incinerator bottom ash dump site, ash samples and surrounding soil samples were collected at 20 m, 40 m, 60 m, 80 m, 100 m, and 1,200 m from incinerator. These were analyzed using the absorption spectrophotometer method. The geoaccumulation (Igeo and pollution load indices (PLI were used to assess the level of heavy metal contamination of surrounding soils. The study revealed high concentrations in mg/kg for, Zn (16417.69, Pb (143.80, Cr (99.30, and Cd (7.54 in bottom ash and these were above allowable limits for disposal in landfill. The study also found soils within 60 m radius of the incinerator to be polluted with the metals. It is recommended that health care waste managers be educated on the implication of improper management of incinerator bottom ash and regulators monitor hospital waste incinerator sites.

  14. Experimental study of the energy efficiency of an incinerator for medical waste

    International Nuclear Information System (INIS)

    Bujak, J.

    2009-01-01

    The aim of this paper is to explore the flux of usable energy and the coefficient of energy efficiency of an incinerator for medical waste combustion. The incineration facility incorporates a heat recovery system. The installation consists of a loading unit, a combustion chamber, a thermoreactor chamber, and a recovery boiler. The analysis was carried out in the Oncological Hospital in Bydgoszcz (Poland). The primary fuel was comprised of medical waste, with natural gas used as a secondary fuel. The study shows that one can obtain about 660-800 kW of usable energy from 100 kg of medical waste. This amount corresponds to 1000-1200 kg of saturated steam, assuming that the incinerator operates at a heat load above φ > 65%. The average heat flux in additional fuel used for incinerating 100 kg of waste was 415 kW. The coefficient of energy efficiency was set within the range of 47% and 62% depending on the incinerator load. The tests revealed that the flux of usable energy and the coefficient of energy efficiency depend on the incinerator load. In the investigated range of the heat load, this dependence is significant. When the heat load of the incinerator increases, the flux of usable energy and the coefficient of energy efficiency also increase.

  15. Heavy Metal Contamination of Soils around a Hospital Waste Incinerator Bottom Ash Dumps Site

    Science.gov (United States)

    Adama, M.; Esena, R.; Fosu-Mensah, B.; Yirenya-Tawiah, D.

    2016-01-01

    Waste incineration is the main waste management strategy used in treating hospital waste in many developing countries. However, the release of dioxins, POPs, and heavy metals in fly and bottom ash poses environmental and public health concerns. To determine heavy metal (Hg, Pb, Cd, Cr, and Ag) in levels in incinerator bottom ash and soils 100 m around the incinerator bottom ash dump site, ash samples and surrounding soil samples were collected at 20 m, 40 m, 60 m, 80 m, 100 m, and 1,200 m from incinerator. These were analyzed using the absorption spectrophotometer method. The geoaccumulation (I geo) and pollution load indices (PLI) were used to assess the level of heavy metal contamination of surrounding soils. The study revealed high concentrations in mg/kg for, Zn (16417.69), Pb (143.80), Cr (99.30), and Cd (7.54) in bottom ash and these were above allowable limits for disposal in landfill. The study also found soils within 60 m radius of the incinerator to be polluted with the metals. It is recommended that health care waste managers be educated on the implication of improper management of incinerator bottom ash and regulators monitor hospital waste incinerator sites. PMID:27034685

  16. Analysis of Radiation Accident of Non-destructive Inspection and Rational Preparing Bills

    International Nuclear Information System (INIS)

    Bae, Junwoo; Yoo, Donghan; Kim, Hee Reyoung

    2013-01-01

    After 2006, according to enactment of Non-destructive Inspection Promotion Act, the number of non-destructive inspection companies and corresponding accident is increased sharply. In this research, it includes characteristic analysis of field of the non-destructive inspection. And from the result of analysis, the purpose of this research is discovering reason for 'Why there is higher accident ratio in non-destructive inspection field, relatively' and preparing effective bill for reducing radiation accidents. The number of worker for non-destructive inspect is increased steadily and non-destructive inspect worker take highest dose. Corresponding to these, it must be needed to prepare bills to protect non-destructive inspect workers. By analysis of accident case, there are many case of carelessness that tools are too heavy to carry it everywhere workers go. And there are some cases caused by deficiency of education that less understanding of radiation and poor operation by less understanding of structure of tools. Also, there is no data specialized to non-destructive inspect field. So, it has to take information from statistical data. Because of this, it is hard to analyze nondestructive inspect field accurately. So, it is required to; preparing rational bills to protect non-destructive inspect workers nondestructive inspect instrument lightening and easy manual which can understandable for low education background people accurate survey data from real worker. To accomplish these, we needs to do; analyze and comprehend the present law about non-destructive inspect worker understand non-destructive inspect instruments accurately and conduct research for developing material developing rational survey to measuring real condition for non-destructive inspect workers

  17. Tracing source and migration of Pb during waste incineration using stable Pb isotopes

    International Nuclear Information System (INIS)

    Li, Yang; Zhang, Hua; Shao, Li-Ming; He, Pin-Jing

    2017-01-01

    Highlights: • The migration of Pb during waste incineration was investigated using Pb isotopes. • Source tracing of Pb during incineration by isotopic technology was feasible. • Contributions of MSW components were measured to trace Pb sources quantitatively. • Isotopic technology helps understand the migration of Pb during thermal treatment. - Abstract: Emission of Pb is a significant environmental concern during solid waste incineration. To target Pb emission control strategies effectively, the major sources of Pb in the waste incineration byproducts must be traced and quantified. However, identifying the migration of Pb in each waste component is difficult because of the heterogeneity of the waste. This study used a laboratory-scale incinerator to simulate the incineration of municipal solid waste (MSW). The Pb isotope ratios of the major waste components ( 207 Pb/ 206 Pb = 0.8550–0.8627 and 208 Pb/ 206 Pb = 2.0957–2.1131) and their incineration byproducts were measured to trace sources and quantify the Pb contribution of each component to incineration byproducts. As the proportions of food waste (FW), newspaper (NP), and polyethylene bag (PE) in the artificial MSW changed, the contribution ratios of FW and PE to Pb in fly ash changed accordingly, ranging from 31.2% to 50.6% and from 35.0% to 41.8%, respectively. The replacement of PE by PVC significantly increased the partitioning and migration ratio of Pb. The use of Pb isotope ratios as a quantitative tool for tracing Pb from raw waste to incineration byproducts is a feasible means for improving Pb pollution control.

  18. Tracing source and migration of Pb during waste incineration using stable Pb isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yang [State Key Laboratory of Pollution Control and Resources Reuse, Tongji University, 1239 Siping Road, Shanghai 200092 (China); Institute of Waste Treatment and Reclamation, Tongji University, 1239 Siping Road, Shanghai 200092 (China); Zhang, Hua, E-mail: zhanghua_tj@tongji.edu.cn [State Key Laboratory of Pollution Control and Resources Reuse, Tongji University, 1239 Siping Road, Shanghai 200092 (China); Institute of Waste Treatment and Reclamation, Tongji University, 1239 Siping Road, Shanghai 200092 (China); Shao, Li-Ming; He, Pin-Jing [Institute of Waste Treatment and Reclamation, Tongji University, 1239 Siping Road, Shanghai 200092 (China); Research and Training Center on Rural Waste Management, Ministry of Housing and Urban-Rural Development of P.R. China, 1239 Siping Road, Shanghai 200092 (China)

    2017-04-05

    Highlights: • The migration of Pb during waste incineration was investigated using Pb isotopes. • Source tracing of Pb during incineration by isotopic technology was feasible. • Contributions of MSW components were measured to trace Pb sources quantitatively. • Isotopic technology helps understand the migration of Pb during thermal treatment. - Abstract: Emission of Pb is a significant environmental concern during solid waste incineration. To target Pb emission control strategies effectively, the major sources of Pb in the waste incineration byproducts must be traced and quantified. However, identifying the migration of Pb in each waste component is difficult because of the heterogeneity of the waste. This study used a laboratory-scale incinerator to simulate the incineration of municipal solid waste (MSW). The Pb isotope ratios of the major waste components ({sup 207}Pb/{sup 206}Pb = 0.8550–0.8627 and {sup 208}Pb/{sup 206}Pb = 2.0957–2.1131) and their incineration byproducts were measured to trace sources and quantify the Pb contribution of each component to incineration byproducts. As the proportions of food waste (FW), newspaper (NP), and polyethylene bag (PE) in the artificial MSW changed, the contribution ratios of FW and PE to Pb in fly ash changed accordingly, ranging from 31.2% to 50.6% and from 35.0% to 41.8%, respectively. The replacement of PE by PVC significantly increased the partitioning and migration ratio of Pb. The use of Pb isotope ratios as a quantitative tool for tracing Pb from raw waste to incineration byproducts is a feasible means for improving Pb pollution control.

  19. Laser Safety Inspection Criteria

    International Nuclear Information System (INIS)

    Barat, K

    2005-01-01

    A responsibility of the Laser Safety Officer (LSO) is to perform laser safety audits. The American National Standard Z136.1 Safe use of Lasers references this requirement in several sections: (1) Section 1.3.2 LSO Specific Responsibilities states under Hazard Evaluation, ''The LSO shall be responsible for hazards evaluation of laser work areas''; (2) Section 1.3.2.8, Safety Features Audits, ''The LSO shall ensure that the safety features of the laser installation facilities and laser equipment are audited periodically to assure proper operation''; and (3) Appendix D, under Survey and Inspections, it states, ''the LSO will survey by inspection, as considered necessary, all areas where laser equipment is used''. Therefore, for facilities using Class 3B and or Class 4 lasers, audits for laser safety compliance are expected to be conducted. The composition, frequency and rigueur of that inspection/audit rests in the hands of the LSO. A common practice for institutions is to develop laser audit checklists or survey forms. In many institutions, a sole Laser Safety Officer (LSO) or a number of Deputy LSO's perform these audits. For that matter, there are institutions that request users to perform a self-assessment audit. Many items on the common audit list and the associated findings are subjective because they are based on the experience and interest of the LSO or auditor in particular items on the checklist. Beam block usage is an example; to one set of eyes a particular arrangement might be completely adequate, while to another the installation may be inadequate. In order to provide more consistency, the National Ignition Facility Directorate at Lawrence Livermore National Laboratory (NIF-LLNL) has established criteria for a number of items found on the typical laser safety audit form. These criteria are distributed to laser users, and they serve two broad purposes: first, it gives the user an expectation of what will be reviewed by an auditor, and second, it is an

  20. Wireless Roadside Inspection Proof of Concept Test Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Capps, Gary J [ORNL; Franzese, Oscar [ORNL; Knee, Helmut E [ORNL; Plate, Randall S [ORNL; Lascurain, Mary Beth [ORNL

    2009-03-01

    The U.S. Department of Transportation (DOT) FMCSA commissioned the Wireless Roadside Inspection (WRI) Program to validate technologies and methodologies that can improve safety through inspections using wireless technologies that convey real-time identification of commercial vehicles, drivers, and carriers, as well as information about the condition of the vehicles and their drivers. It is hypothesized that these inspections will: -- Increase safety -- Decrease the number of unsafe commercial vehicles on the road; -- Increase efficiency -- Speed up the inspection process, enabling more inspections to occur, at least on par with the number of weight inspections; -- Improve effectiveness -- Reduce the probability of drivers bypassing CMV inspection stations and increase the likelihood that fleets will attempt to meet the safety regulations; and -- Benefit industry -- Reduce fleet costs, provide good return-on-investment, minimize wait times, and level the playing field. The WRI Program is defined in three phases which are: Phase 1: Proof of Concept Test (POC) Testing of commercially available off-the-shelf (COTS) or near-COTS technology to validate the wireless inspection concept. Phase 2: Pilot Test Safety technology maturation and back office system integration Phase 3: Field Operational Test Multi-vehicle testing over a multi-state instrumented corridor This report focuses on Phase 1 efforts that were initiated in March, 2006. Technical efforts dealt with the ability of a Universal Wireless Inspection System (UWIS) to collect driver, vehicle, and carrier information; format a Safety Data Message Set from this information; and wirelessly transmit a Safety Data Message Set to a roadside receiver unit or mobile enforcement vehicle.

  1. Design and operation of a prototype incinerator for beta-gamma waste

    International Nuclear Information System (INIS)

    Farber, M.G.; Hootman, H.E.; Becker, G.W. Jr.; Makohon, P.A.

    1981-01-01

    A full-scale test incinerator has been built at the Savannah River Laboratory to provide a design basis for a radioactive facility that will burn low-level beta-gamma contaminated waste. The processing steps include waste feed loading, incineration, ash residue packaging, and off-gas cleanup. Both solid and liquid waste will be incinerated during the test program. The components of the solid waste are cellulose, latex, polyethylene, and PVC; the solvent is composed of n-paraffin and TBP. A research program will confirm the feasibility of the design and determine the operating parameters

  2. Screening methodology for assessing potential health effects from municipal sludge incinerators

    Energy Technology Data Exchange (ETDEWEB)

    Fradkin, L.; Bruins, R.J.F.; Lutkenhoff, S.D.; Stara, J.F.; Lomnitz, E.

    1987-01-01

    This paper describes a risk assessment methodology for preliminary assessment of municipal sludge incineration. The methodology is a valuable tool in that it can be used for determining the hazard indices of chemical contaminants that might be present in sewage sludge used in incineration. The paper examines source characteristics (i.e., facility design), atmospheric dispersion of emission, and resulting human exposure and risk from sludge incinerators. Seven of the ten organics were screened for further investigation. An example of the calculations are presented for cadmium.

  3. Screening methodology for assessing potential health effects from municipal sludge incinerators

    Energy Technology Data Exchange (ETDEWEB)

    Fradkin, L.; Bruins, R.J.F.; Lutkenhoff, S.D.; Stara, J.F.; Lomnitz, E.; Rubin, A.

    1987-04-01

    This paper describes a risk assessment of methodology for preliminary assessment of municipal sludge incineration. The methodology is a valuable tool in that it can be used for determining the hazard indices of chemical contaminants that might be present in sewage sludge used in incineration. The paper examines source characteristics (i.e. facility design), atmospheric dispersion of emission, and resulting human exposure and risk from sludge incinerators. Seven of the ten organics were screened for further investigation. An example of the calculations are presented for cadmium. (Refs. 5).

  4. Waste incineration and waste prevention: not a contradiction in terms; Abfallverbrennung ist kein Gegner der Abfallvermeidung

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-07-15

    The paper provides a detailed analysis of the current situation on waste management in Germany and identifies 10 arguments on the issue that waste incineration and waste prevention are not contradiction in terms. The following topics are discussed within this frame: waste prevention in production and consumption; resource-efficient products; offsetting of efficiency gains by growth of volume; consumer behavior, need of waste management; influence of long-term waste management contracts; product responsibility; highest recovery rates despite incineration of residual waste; precise sorting as a prerequisite for recovery. It is concluded that waste incineration with energy generation and utilization of slag is an environmentally sound option.

  5. Incinerator carryover tests with dysprosium as a stand-in for plutonium

    International Nuclear Information System (INIS)

    Hooker, R.L.

    1981-11-01

    A full-scale (5 kg/h) incinerator is being tested with nonradioactive feed materials which simulate SRP-generator combustible transuranic wastes. The incinerator is two-stage and is designed to provide relatively quiescent conditions in the primary chamber where the ash is formed. This feature should minimize entrainment of Pu-bearing particles into the off-gas system. A series of runs have been completed in which incinerator feed was spiked with dysprosium to simulate Pu. Carryover of Dy into the off-gas system was found to be low (about 1/4%). 4 figures, 3 tables

  6. Comparison of slagging pyrolysis and molten salt incinerators for treating TRU waste at the INEL

    International Nuclear Information System (INIS)

    1977-11-01

    For the comparison, it is assumed that the waste product is required to meet the acceptance criteria of the Waste Isolation Pilot Plant, i.e., low leachability. Slagging pyrolysis incinerates combustible waste and melts noncombustible waste; the resulting slag forms a glass of low leachability. In the molten salt incinerator, combustion occurs at low temperatures with no accumulation of explosive gases, but the waste must have been previously sorted into combustibles and noncombustibles and then shredded. The economics, safety, and technical features are compared. Advantages, disadvantages, and areas of technical uncertainty of the two systems are listed. Development costs and schedules for the two types of incinerators are discussed

  7. Stereoscopic inspection system

    International Nuclear Information System (INIS)

    Stewart, P.A.E.; Robinson, M.; Przybyla, J.S.

    1989-01-01

    A stereoscopic X-ray inspection system has a binocular radiographic source in which the binocular radiographic dimensions affecting presentation of the stereoscopic image are variable. The separation distance between X-ray sources and the convergence angle of the X-ray beams may be altered to change the individual perspective views comprising the final image. The acquired views are stored in video frame stores ready for display in a manner appropriate to stereoscopic presentation and the lateral disparity between the images may also be altered to control the position in depth relative to the display screen in the perceived stereo image. The object may be a cargo container. The X-ray sources may comprise accelerating waveguides in which microwaves from magnetrons or klystrons and waveguides accelerate pulses of electrons form an electron gun onto an anode. (author)

  8. Short notice inspections

    International Nuclear Information System (INIS)

    Pouchkarev, V.

    1998-01-01

    For 30 years the IAEA safeguards system have evolved and have been strengthened by the regular introduction of new methods and techniques, improving both its effectiveness and efficiency. The member States of the IAEA have indicated their willingness to accept new obligations and associated technical measure that greatly strengthen the nuclear safeguards system. One element of this is the extent to which the IAEA inspectors have physical access to relevant locations for the purpose of providing independent verification of the exclusively peaceful intent of a State nuclear program. The Protocol to Safeguards granted new legal authority with respect to information on, and short notice inspector access to, all buildings on a nuclear site and administrative agreements that improve the process of designating inspectors and IAEA access to modern means of communication. This report is a short description of unannounced or short notice inspections as measures on which the new strengthened and cost efficient system will be based

  9. 7 CFR 29.39 - Permissive inspection.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Permissive inspection. 29.39 Section 29.39 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... INSPECTION Regulations Definitions § 29.39 Permissive inspection. Inspection authorized under section 6 of...

  10. Incineration of animal by-products--The impact of selected parameters on the flux of flue gas enthalpy.

    Science.gov (United States)

    Bujak, Janusz; Sitarz, Piotr

    2016-04-01

    This paper presents model analyses and tests of animal by-product waste thermal treatment plants. A schedule of tests was prepared, and 62,024 cases of system operation were analysed. A map/work field of the tested plant was drawn up on the basis thereof. Calculations were made following an algorithm described by Bujak (2015a) written in the VBA (Visual Basic for Application) language. The tests showed that when incinerating animal waste, the flux of physical enthalpy of the flue gas from the afterburner chamber depends on numerous design and operating parameters. The most important include the following: humidity and flux of the waste, concentration of oxygen in the flue gas in the afterburner chamber and loss of heat flux to the atmosphere through the external surfaces of the plant. Individual design and operating parameters can be selected so that the process of incineration is ensured without additional fuel. The performed analyses were verified against the actual object at the industrial scale using a meat plant that manufactures ham and processes beef, pork and poultry with a capacity of 150 tonnes/day. The production process waste included mainly bones and - in much smaller quantities - meat and bone meal, at 17 tonnes/day. The performed tests and analyses can be used to optimise the operation of the waste thermal treatment plant at the stages of design and operation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Research paper 2000-B-6: adjustments in the Dutch domestic waste incineration sector in the context of the European directive 89/429/EEC. A case study on national implementation, environmental effectiveness, allocative efficiency, productive efficiency and administrative costs

    Energy Technology Data Exchange (ETDEWEB)

    Lulofs, K. [Twente Univ., Center for Clean Technology and Environmental Policy, Enschede (Netherlands)

    2000-07-01

    Within the context of the IMPOL project several fields of European environmental policy are studied on aspects as national implementation and environmental and efficiency outcomes. For the IMPOL project a case study was done on the transformation of the Dutch sector of domestic waste incineration in the context of the European Directive Directives 89/369/EEC and 89/429/ EEC. The case study was done and indicators for environmental effectiveness, allocative efficiency, productive efficiency and administrative costs were chosen in line with a document to coordinate the efforts in the four IMPOL countries. The European Directives 89/369/EEC and 89/429/ EEC regulate Plants for Domestic waste Incineration on the emissions of several pollutants. These emissions are relevant for air quality in general, acidification and the spreading of toxic substances. In the empirical part of this report emphasis is laid on 'existing' incineration plants, being permitted before 1990. In chapter 2 of this report the implementation of the directives 89/369/EEC and 89/429/EEC in the Netherlands is described. In section 2.1 already existing 'older' Dutch policy and regulation is presented. In paragraph 2.2 the integration of the European Directives into Dutch national law is described. In chapter 2.3 the efforts and outcomes on monitoring and enforcement are presented. Chapter 3 goes into the environmental effectiveness. Section 3.1 describes the abatement performance of the whole municipal waste incineration sector during the period of research. Section 3.2 goes into factors that explain the environmental outcomes. Within the IMPOL research-team the decision was taken to concentrate on a number of pollutants of existing waste incinerators. In section 3.3 the data for the existing incinerators are given. In chapter 4 the allocative efficiency of adjustments is elaborated. In section 4.1 the abatement patterns of existing municipal waste incineration plants are presented

  12. Glass phase in municipal and industrial waste incineration bottom ashes

    Science.gov (United States)

    Rafał Kowalski, Piotr; Michalik, Marek

    2015-04-01

    Waste incineration bottom ash is a material with rising significance in waste streams in numerous countries. Even if some part of them is now used as raw materials the great amount is still landfilled. High temperature of thermal processes (>1000°C) together with fast cooling results in high content of glass in bottom ash. Its chemical composition is influenced by various factors like composition of raw wastes and used incineration technique. Most of bottom ash grains are composed of glass with large amount of mineral phases and also metallic constituents embedded into it. Glass susceptibility for alteration processes together with the characteristics of glass-based grains can bring environmental risk in time of improper or long term storage on landfill site. In this study bottom ashes from thermal treatment of municipal and industrial (including hazardous and medical) wastes were studied to determine glass content, its chemical composition with emphasis on metal content (especially potentially hazardous) and its relations to metallic components of grains. Samples were collected from two thermal treatment plants in Poland. Qualitative and quantitative X-ray diffraction (XRD) analyses were used for determination of mineral composition of studied samples. Rietveld method and addition of internal standard for determination of amorphous phase content were used. Scanning electron microscopy fitted with energy dispersive spectrometry (SEM-EDS) were used for detailed analysis of glass and glass associated phases. Waste incineration bottom ash is a multi-components material rich in amorphous phase. It dominant part is represented by Si-rich glass. It is a main component of bottom ash grains but it contains minerals present in large quantities and also various forms of metallic elements. Glass within grains is often porous and cracked. In bottom ashes from thermal treatment of municipal wastes ~ 45-55 wt % of amorphous phase were present, mostly in form of glass with high

  13. Cementation and solidification of Rocky Flats Plant incinerator ash

    International Nuclear Information System (INIS)

    Phillips, J.A.; Semones, G.B.

    1994-01-01

    Cementation studies on various aqueous waste streams at Rocky Flats have shown this technology to be effective for immobilizing the RCRA constituents in the waste. Cementation is also being evaluated for encapsulation of incinerator ash. Experiments will initially evaluate a surrogate ash waste using a Taguchi experimental design to optimize the cement formulation and waste loading levels for this application. Variables of waste loading, fly ash additions, water/cement ratio, and cement type will be tested at three levels each during the course of this work. Tests will finally be conducted on actual waste using the optimized cement formulation developed from this testing. This progression of tests will evaluate the effectiveness of cement encapsulation for this waste stream without generating any additional wastes

  14. Exergy analysis of aluminum recovery from municipal solid waste incineration

    DEFF Research Database (Denmark)

    Vyzinkarova, Dana; Allegrini, Elisa; Laner, D.

    Two main challenges, associated with the recovery of aluminum from state-of-the-art municipal solid waste (MSW) incineration plants, are yield as well as quality losses of metallic aluminum due to particle surface oxidation and presence of impurities. Yet, in the framework of life cycle assessment...... (LCA) a direct measure for expressing the quality of primary and secondary resources is missing. In view of a possible solution, exergy has been proposed as a concept to evaluate the quality of resources. In this paper, LCA and exergy analyses for two waste treatment approaches are conducted...... in parallel to each other, with a goal to evaluate the added value of exergy for LCA studies in the resource recovery context. The functional unit is the treatment of 1 ton MSW. Two alternative approaches for recovering aluminum from MSW directed to a waste-to-energy plant are considered. A) MSW is treated...

  15. A research on dioxin generation from the industrial waste incineration.

    Science.gov (United States)

    Yoneda, Kenichi; Ikeguchi, Takasi; Yagi, Yoshio; Tamade, Yoshinori; Omori, Kosaku

    2002-03-01

    By using fluidized-bed furnace and rotary-kiln+stoker furnace and four different kinds of industrial wastes such as waste wood, coffee mill, waste oils and waste plastics, we have drawn the following conclusions: (1) A relationship between H6CBz and DXN is acquired, which is DXN = 0.34 x H6CBz(1.1) (2) The following means of emission reduction can be considered. (a) Reduction of DXN and Cl accumulation within the furnace, (b) control by the incinerated object, (c) control through the precursors of H6CBz, (d) improvement through operational control, (e) ammonia injection into the high-temperature zone of the furnace seems to be effective in reducing DXN and (f) DXN concentration is high with CO above 1,800 ppm, though it decreases with CO below approximately 10 ppm.

  16. Destruction and formation of organic micropollutants in incineration process

    International Nuclear Information System (INIS)

    Mascolo, G.; Bagnuolo, G.; Lotito, V.; Spinosa, L.; Mininni, G.

    2001-01-01

    In this paper are presented the results obtained from a lab-scale investigation carried out with a system for Thermal Diagnostic Studies (STDS) aimed to study the effect of some process variables during incineration. The study has been focused on (I) gas phase dioxins formation during precursors thermal degradation, (II) thermal degradation of toxic organic compounds, (III) products of incomplete combustion (PICs) formation during thermal degradation of urban sludge spiked with toxic organics, (IV) PICs formation during process failure modes, (V) polynuclear aromatic hydrocarbons (PAHs) formation during urban sludge thermal degradation and (VI) influence of conditioning polymer on PICs emission during sludge incineration. The study about gas phase dioxins formation during precursors thermal degradation has been carried out with 2, 4, 6-trichloro- and 2, 4, 6 -tribromo-phenol that were thermal degraded at temperatures between 300 and 800 0 C in an air atmosphere. Both phenols showed the formation of the same tetra-halo-dioxin isomers that were further degraded at higher temperature. Furthermore, chlorine-containing dioxins showed higher thermal stability than bromine-containing dioxins. The study about thermal degradation of toxic organic compounds has been carried out with chlorobenzene, tetrachloroethylene and toluene that were thermal degraded at temperatures between 300 and 1000 0 C in an inert as well as air atmosphere. Results show that in all experimental conditions tetrachloroethylene and toluene are the most and less thermal stable compounds respectively. Also, all compounds are more thermal resistant during pyrolytic experiments and less thermal resistant when they are treated as a whole mixture. The study about PICs formation during thermal degradation of urban sludge spiked with toxic organics has been carried out by thermally degrading urban sludge alone or spiked with the above reported three organics at different conditions of temperature and oxygen

  17. Heavy metals behavior during thermal plasma vitrification of incineration residues

    International Nuclear Information System (INIS)

    Cerqueira, N.; Vandensteendam, C.; Baronnet, J.M.

    2005-01-01

    In the developed world, incineration of wastes is widely and increasingly practiced. Worldwide, a total of approximately 100 millions of tons of municipal solid waste (MSW) material is incinerated annually. Incineration of one ton of MSW leads to the formation of 30 to 50 kg of fly ash, depending on the type of incinerator. The waste disposal of these dusts already causes great problems today; they are of low bulk density, they contain high concentrations of hazardous water-soluble heavy metal compounds, organohalogen compounds (dioxines, furanes), sulfur, and chlorinated compounds. Thermal processes, based mainly on electrical arc processes, show great promise: the residues are melted at high temperature and converted in a relatively inert glass. A few tens of plants, essentially in Japan and Taiwan, have been in industrial operation for a few years. To be authorized to be dumped in a common landfill, the glassy product has to satisfy the leaching test procedure to ensure long-term durability. But to satisfy the regulation to be reused, for example as a nonhazardous standard material in road building, the glassy product would probably include contents in some heavy metals lower than critical limits. So today, there are two alternatives: the first one is to improve the heavy toxic metals evaporation to get a 'light' glassy product and to recycle separately the said separated metals; the second is on the contrary to improve the incorporation of a maximum of heavy metals into the vitreous silicate matrix. Whatever, it is highly required to control, in situ and in real time, volatility of these metals during ash melting under electrical arc. The objective of this work was to reach basic data about metals volatility under the plasma column of an electrical arc transferred on the melt: an experiment has been designed to examine the effects of processing conditions, such as melt temperature, melt composition, and furnace atmosphere, upon volatilization and glassy slag

  18. Current Methods to Detoxify Fly Ash from Waste Incineration

    Energy Technology Data Exchange (ETDEWEB)

    Hallgren, Christine; Stroemberg, Birgitta [TPS Termiska Processer AB, Nykoeping (Sweden)

    2004-07-01

    Fly ash from waste incineration contains large amounts of heavy metals and dioxins, which will cause a significant disposal problem within the coming years. The amount of fly ash produced in Sweden is currently approximately 60,000 tons/y. New technological options for the decontamination and/or inertization of incinerator fly ash are being developed with the objective of rendering a product that can be reused or, at least, be deposited at standard landfill sites with no risk. Many of these technologies have been tested at industrial scale or in pilot projects. The proposed alternatives include: Thermal treatments; Immobilization/stabilization by cement based techniques; Wet chemical treatments (extractions, immobilizations); Microbiological treatments. Of these, thermal treatments are the most promising solution. Depending on the temperature thermal treatments are classified in two main types: 1) low temperature (below 600 deg C) thermal treatments and 2) high temperature (above 1200 deg C) thermal treatments (vitrification). Most dioxins can be successfully destroyed at temperatures up to 400 deg C under oxygen deficient conditions and at temperatures up to 600 deg C under oxidising conditions. However most heavy metals remain in the fly ash after low temperature treatment. At a temperature of 900 deg C most heavy metals can also be removed in a 10% HCl atmosphere by forming volatile metal chlorides (CT-Fluapur process). During vitrification processes the fly ash melts and forms an inert glassy slag. The product does not leach any significant amount of heavy metals and is free from dioxin. The volume of the fly ash is significantly reduced. The product can be land filled at low costs or used as construction material. The properties of the product depend on the cooling process and on additives such as sand, limestone or waste glass. A series of vitrification methods at industrial size or in pilot scale using different furnaces are studied. Among these, plasma

  19. Design of an experimental incinerator for alpha waste

    International Nuclear Information System (INIS)

    Warren, J.H.

    1979-08-01

    An electrically heated controlled-air two-stage incinerator has been designed for burning small volumes (5 kg/h) of solid wastes. Distinguishing features of the design are compactness, relatively lightweight, and ease of assembly made possible by using prefabricated ceramic components to form two combustion chambers surrounded by packed fiber insulation within a steel case. Electric girdle heaters around the two combustion chambers provide 600 to 1000 0 C. These temperatures combined with controlled air give minimum ash entrainment and long combustion gas residence times to yield approx. 10 9 off-gas decontamination factors with conventional off-gas cleaning equipment. After decommissioning, the design allows for ease of disassembly and convenient disposal of the ceramic components. 24 figures, 1 table

  20. Inspection of disposal canisters components

    International Nuclear Information System (INIS)

    Pitkaenen, J.

    2013-12-01

    This report presents the inspection techniques of disposal canister components. Manufacturing methods and a description of the defects related to different manufacturing methods are described briefly. The defect types form a basis for the design of non-destructive testing because the defect types, which occur in the inspected components, affect to choice of inspection methods. The canister components are to nodular cast iron insert, steel lid, lid screw, metal gasket, copper tube with integrated or separate bottom, and copper lid. The inspection of copper material is challenging due to the anisotropic properties of the material and local changes in the grain size of the copper material. The cast iron insert has some acoustical material property variation (attenuation, velocity changes, scattering properties), which make the ultrasonic inspection demanding from calibration point of view. Mainly three different methods are used for inspection. Ultrasonic testing technique is used for inspection of volume, eddy current technique, for copper components only, and visual testing technique are used for inspection of the surface and near surface area

  1. Automated visual inspection of textile

    DEFF Research Database (Denmark)

    Jensen, Rune Fisker; Carstensen, Jens Michael

    1997-01-01

    A method for automated inspection of two types of textile is presented. The goal of the inspection is to determine defects in the textile. A prototype is constructed for simulating the textile production line. At the prototype the images of the textile are acquired by a high speed line scan camera...

  2. The review on radiographic inspection in 1978

    International Nuclear Information System (INIS)

    Furuta, Junichiro

    1979-01-01

    This is a review paper on the activities of radiographic inspection performed in 1978. The state of safety management in 1978 is reported. The JIS standards for the radiographic inspection were investigated. Problems concerning the measurement of the height of defects by non-destructive test were studied. The radiographic method with narrow irradiation field was developed. Radiography of the welded parts at corners, fiber reinforced plastics, offshore structures, nozzles, pipes and so on was investigated. Scattering ratio, contrast, and beam quality affect on identification, and these effects were studied. Defect-like patterns seen in X-ray graphs of cast metals and welded parts are due to X-ray diffraction. The relation between exposure and density of pictures was obtained as linear relation. The property of scattering ratio and an empirical formula were deduced. Development of instruments and films have been made. (Kato, T.)

  3. Radiological assessment of a mixed-waste incinerator

    Energy Technology Data Exchange (ETDEWEB)

    Hertel, N.E.; Evans, T.M.; Mulholland, J.A.; Coward, H.M. [Georgia Inst. of Technology, Atlanta, GA (United States); Burge, D.A. [Westinghouse Savannah River Site, Aikens, SC (United States)

    1996-12-31

    The Consolidated Incineration Facility (CIF) scheduled for operation in the near future will incinerate hazardous, radio- active, and mixed wastes generated on the Savannah River site (SRS). Doses that might result from estimated CIF radionuclide air emissions have been computed for four hypothetical individuals: (1) An on-site worker (350 m north of the CIF) who is exposed by inhalation and immersion in the contaminant plume as well as irradiation by radionuclides deposited on the ground. (2) A subsistence farmer who lives at the nearest site boundary from the CIF (11 770 m NNW of the CIF) and is exposed by the inhalation, immersion, ground surface irradiation, and soil and food ingestion. The farmer consumes food at maximum consumption rates for the SRS region and grows most of his own food. The remainder of this food is obtained from within the assessment area. (3) A subsistence fisher residing at the same location as the subsistence farmer is exposed via the consumption of fish from a pond at his residence, homegrown food consumption, ingestion of soil, and air immersion and inhalation. The fish pond is contaminated by the deposition of radionuclides from the plume. He consumes food at maximum consumption rates. (4) The average individual has average food consumption rates for the SRS region. A fraction of his food is grown in the assessment area, and the remainder is imported. The average individual dose was computed out to distances of 80 500 m from the CIF. The individual is also exposed by air immersion, ground-surface irradiation, soil ingestion, and inhalation.

  4. The Louisiana State University waste-to-energy incinerator

    International Nuclear Information System (INIS)

    1994-01-01

    This proposed action is for cost-shared construction of an incinerator/steam-generation facility at Louisiana State University under the State Energy Conservation Program (SECP). The SECP, created by the Energy Policy and Conservation Act, calls upon DOE to encourage energy conservation, renewable energy, and energy efficiency by providing Federal technical and financial assistance in developing and implementing comprehensive state energy conservation plans and projects. Currently, LSU runs a campus-wide recycling program in order to reduce the quantity of solid waste requiring disposal. This program has removed recyclable paper from the waste stream; however, a considerable quantity of other non-recyclable combustible wastes are produced on campus. Until recently, these wastes were disposed of in the Devil's Swamp landfill (also known as the East Baton Rouge Parish landfill). When this facility reached its capacity, a new landfill was opened a short distance away, and this new site is now used for disposal of the University's non-recyclable wastes. While this new landfill has enough capacity to last for at least 20 years (from 1994), the University has identified the need for a more efficient and effective manner of waste disposal than landfilling. The University also has non-renderable biological and potentially infectious waste materials from the School of Veterinary Medicine and the Student Health Center, primarily the former, whose wastes include animal carcasses and bedding materials. Renderable animal wastes from the School of Veterinary Medicine are sent to a rendering plant. Non-renderable, non-infectious animal wastes currently are disposed of in an existing on-campus incinerator near the School of Veterinary Medicine building

  5. Radiological assessment of a mixed-waste incinerator

    International Nuclear Information System (INIS)

    Hertel, N.E.; Evans, T.M.; Mulholland, J.A.; Coward, H.M.; Burge, D.A.

    1996-01-01

    The Consolidated Incineration Facility (CIF) scheduled for operation in the near future will incinerate hazardous, radio- active, and mixed wastes generated on the Savannah River site (SRS). Doses that might result from estimated CIF radionuclide air emissions have been computed for four hypothetical individuals: (1) An on-site worker (350 m north of the CIF) who is exposed by inhalation and immersion in the contaminant plume as well as irradiation by radionuclides deposited on the ground. (2) A subsistence farmer who lives at the nearest site boundary from the CIF (11 770 m NNW of the CIF) and is exposed by the inhalation, immersion, ground surface irradiation, and soil and food ingestion. The farmer consumes food at maximum consumption rates for the SRS region and grows most of his own food. The remainder of this food is obtained from within the assessment area. (3) A subsistence fisher residing at the same location as the subsistence farmer is exposed via the consumption of fish from a pond at his residence, homegrown food consumption, ingestion of soil, and air immersion and inhalation. The fish pond is contaminated by the deposition of radionuclides from the plume. He consumes food at maximum consumption rates. (4) The average individual has average food consumption rates for the SRS region. A fraction of his food is grown in the assessment area, and the remainder is imported. The average individual dose was computed out to distances of 80 500 m from the CIF. The individual is also exposed by air immersion, ground-surface irradiation, soil ingestion, and inhalation

  6. Conditioning of incinerator ash at the CEN, Cadarache

    International Nuclear Information System (INIS)

    Kertesz, C.; Courtois, C.

    1989-01-01

    The Cadarache Nuclear Research Centre (CEN) has several stocks of incinerator ash resulting from the treatment of low and medium level wastes. The ash is at present in temporary storage awaiting conditioning which would allow it to be stored as a surface site. Laboratory studies have been carried out to test various embedding matrices, such as hydraulic binders, bitumen, thermosetting plastic (epoxy) and, finally, a composite matrix of cement and epoxy resin. The cement-resin composite matrix has several advantages, including compatibility with the various types of ash tested, unlike cement alone, whose composition must be adapted to the nature of the ash (problems with phosphated ash resulting from incineration of tributyl phosphate), or epoxy resin, which may require pretreatment of the wastes. A characterization programme has been produced for the embedded ash in the cement-resin composite in order to obtain Andra approval for surface storage of the packages produced. The guiding principles of the programme are the characterization criteria defined in the Basic Safety Regulations and the Andra minimum characterization programme; it includes laboratory scale tests and a series of tests to be carried out on real packages (100 L drums). A pilot plant for embedding on a scale appropriate to the quantities of stored ash requiring conditioning is being set up. It is being commissioned for two purposes: (1) as an industrial tool, it will facilitate the resorption of existing and future stocks of ash; (2) as an R and D tool, it is designed to facilitate a change in embedding matrix by substitution of the cement-resin compound for epoxy resin or cement alone. This makes it possible to manufacture industrial embedded materials in three different matrices at a single installation. (author). 4 refs, 4 figs, 7 tabs

  7. The emission of fluorine gas during incineration of fluoroborate residue

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Yuheng, E-mail: fengyh@tongji.edu.cn [Thermal & Environmental Engineering Institute, Tongji University, Shanghai 200092 (China); Jiang, Xuguang [State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027 (China); Chen, Dezhen [Thermal & Environmental Engineering Institute, Tongji University, Shanghai 200092 (China)

    2016-05-05

    Highlights: • Gaseous fluorine products were identified when combusting fluoroborate residue. • BF{sub 3} and SiF{sub 4} tend to be hydrolyzed into HF with the increase of temperature. • The emission of BF{sub 3} and SiF{sub 4} from the chamber could be negligible at 1100 °C. - Abstract: The emission behaviors of wastes from fluorine chemical industry during incineration have raised concerns because multiple fluorine products might danger human health. In this study, fluorine emission from a two-stage incineration system during the combustion of fluoroborate residue was examined. In a TG-FTIR analysis BF{sub 3}, SiF{sub 4} and HF were identified as the initial fluorine forms to be released, while fluorine gases of greenhouse effect such as CF{sub 4} and SF{sub 6} were not found. Below 700 °C, NaBF{sub 4} in the sample decomposed to generate BF{sub 3}. Then part of BF{sub 3} reacted with SiO{sub 2} in the system to form SiF{sub 4} or hydrolyzed to HF. At higher temperatures, the NaF left in the sample was gradually hydrolyzed to form HF. A lab-scale two-stage tube furnace is established to simulate the typical two-stage combustion chamber in China. Experimental tests proved that HF was the only fluorine gas in the flue gas, and emissions of BF{sub 3} and SiF{sub 4} can be negligible. Thermodynamic equilibrium model predicted that all SiF{sub 4} would be hydrolyzed at 1100 °C in the secondary-chamber, which agreed well with the experimental results.

  8. The Louisiana State University waste-to-energy incinerator

    Energy Technology Data Exchange (ETDEWEB)

    1994-10-26

    This proposed action is for cost-shared construction of an incinerator/steam-generation facility at Louisiana State University under the State Energy Conservation Program (SECP). The SECP, created by the Energy Policy and Conservation Act, calls upon DOE to encourage energy conservation, renewable energy, and energy efficiency by providing Federal technical and financial assistance in developing and implementing comprehensive state energy conservation plans and projects. Currently, LSU runs a campus-wide recycling program in order to reduce the quantity of solid waste requiring disposal. This program has removed recyclable paper from the waste stream; however, a considerable quantity of other non-recyclable combustible wastes are produced on campus. Until recently, these wastes were disposed of in the Devil`s Swamp landfill (also known as the East Baton Rouge Parish landfill). When this facility reached its capacity, a new landfill was opened a short distance away, and this new site is now used for disposal of the University`s non-recyclable wastes. While this new landfill has enough capacity to last for at least 20 years (from 1994), the University has identified the need for a more efficient and effective manner of waste disposal than landfilling. The University also has non-renderable biological and potentially infectious waste materials from the School of Veterinary Medicine and the Student Health Center, primarily the former, whose wastes include animal carcasses and bedding materials. Renderable animal wastes from the School of Veterinary Medicine are sent to a rendering plant. Non-renderable, non-infectious animal wastes currently are disposed of in an existing on-campus incinerator near the School of Veterinary Medicine building.

  9. Laser plasma X-ray for non-destructive inspection

    International Nuclear Information System (INIS)

    Yagi, T.; Kusama, H.

    1995-01-01

    External electric field is applied to the laser produced plasma, and its found that plasma shape in soft X-ray region is changed due to the penetrating electric field. The plasma emits strong hard X-ray, which can be used as a compact light source for non-destructive inspection. (author)

  10. Thermographic inspection of massive structures

    International Nuclear Information System (INIS)

    Renshaw, Jeremy B.; Guimaraes, Maria; Scott, David B.

    2014-01-01

    Nondestructive Evaluation of concrete structures is a growing concern for the nuclear industry as well as for many other industries. As critical concrete components continue to age, the ability to assess the health and suitability for continued service has become a key consideration. In some cases, repair of these structures is difficult and expensive, while replacement is prohibitively expensive or, in some cases, not feasible. Therefore, the ability to inspect these key assets is a primary concern, especially in the nuclear industry. Due to the large size of containment buildings, cooling towers, and other large concrete assets, the ability to rapidly inspect for defects of concern is very desirable. Thermographic inspection appears to have the required ability to rapidly inspect large structures to ascertain the location and size of many of the defects of concern. This ability was demonstrated by performing a thermographic inspection of a large concrete dam in 2 days

  11. A survey on inspecting structures using robotic systems

    Directory of Open Access Journals (Sweden)

    Randa Almadhoun

    2016-11-01

    Full Text Available Advancements in robotics and autonomous systems are being deployed nowadays in many application domains such as search and rescue, industrial automation, domestic services and healthcare. These systems are developed to tackle tasks in some of the most challenging, labour intensive and dangerous environments. Inspecting structures (e.g. bridges, buildings, ships, wind turbines and aircrafts is considered a hard task for humans to perform and of critical importance since missing any details could affect the structure’s performance and integrity. Additionally, structure inspection is time and resource intensive and should be performed as efficiently and accurately as possible. Inspecting various structures has been reported in the literature using different robotic platforms to: inspect difficult to reach areas and detect various types of faults and anomalies. Typically, inspection missions involve performing three main tasks: coverage path planning, shape, model or surface reconstruction and the actual inspection of the structure. Coverage path planning ensures the generation of an optimized path that guarantees the complete coverage of the structure of interest in order to gather highly accurate information to be used for shape/model reconstruction. This article aims to provide an overview of the recent work and breakthroughs in the field of coverage path planning and model reconstruction, with focus on 3D reconstruction, for the purpose of robotic inspection.

  12. Mobile X-ray inspection of light weight materials

    Energy Technology Data Exchange (ETDEWEB)

    Ewert, Uwe; Redmer, Bernhard; Raedel, Christoph; Osterloh, Kurt [Federal Inst. for Materials Research and Testing (BAM), Berlin (Germany); Schnars, Ulf; Henrich, Rudolf; Schimmelmann, Olaf [Airbus, Bremen/Stade (Germany); Bavendiek, Klaus; Jahn, Mirko [YXLON International, Hamburg (Germany)

    2008-07-01

    Digital detectors such as phosphor imaging plates (IP) and digital detector arrays (DDA) allow radiographic inspection with higher efficiency and improved image quality in comparison to the classic film technique. Mobile X-ray flash tubes are used routinely for veterinarian and security applications. New high sensitive IPs and DDAs enable to apply them for inspection of light materials with low X-ray attenuation as in aluminium, plastics and composites. A versatile computed tomography (CT) system was developed for in situ inspection of large aircraft components under production conditions. A gate based planar computed tomograph was developed and tested for inspection of integrity of the stringer incorporation. Successful test trials were performed to prove the detection rate of cracks in embedded stringers. Honey comb structures of aircrafts have to be inspected for water inclusions during in-service inspections. Thermography is a powerful method for in house inspections when variations in temperature caused e.g. by sunshine can be excluded. A new X-ray diaphragm was developed for mobile back scatter measurements of large components. This method is insensitive to heat alterations in the field and thus can be applied also outdoors. (orig.)

  13. Mobile X-ray inspection of light weight materials

    International Nuclear Information System (INIS)

    Ewert, Uwe; Redmer, Bernhard; Raedel, Christoph; Osterloh, Kurt; Schnars, Ulf; Henrich, Rudolf; Schimmelmann, Olaf; Bavendiek, Klaus; Jahn, Mirko

    2008-01-01

    Digital detectors such as phosphor imaging plates (IP) and digital detector arrays (DDA) allow radiographic inspection with higher efficiency and improved image quality in comparison to the classic film technique. Mobile X-ray flash tubes are used routinely for veterinarian and security applications. New high sensitive IPs and DDAs enable to apply them for inspection of light materials with low X-ray attenuation as in aluminium, plastics and composites. A versatile computed tomography (CT) system was developed for in situ inspection of large aircraft components under production conditions. A gate based planar computed tomograph was developed and tested for inspection of integrity of the stringer incorporation. Successful test trials were performed to prove the detection rate of cracks in embedded stringers. Honey comb structures of aircrafts have to be inspected for water inclusions during in-service inspections. Thermography is a powerful method for in house inspections when variations in temperature caused e.g. by sunshine can be excluded. A new X-ray diaphragm was developed for mobile back scatter measurements of large components. This method is insensitive to heat alterations in the field and thus can be applied also outdoors. (orig.)

  14. Licensee contractor and Vendor Inspection status report

    International Nuclear Information System (INIS)

    1992-05-01

    This periodical covers the results of inspections performed by the NRC's Vendor Inspection Branch that have been distributed to the inspected organizations during the period from January through March 1992

  15. Licensee contractor and vendor inspection status report

    International Nuclear Information System (INIS)

    1989-12-01

    This periodical covers the results of inspections performed by the NRC's Vendor Inspection Branch that have been distributed to the inspected organizations during the period from July 1989 through September 1989

  16. Licensee contractor and vendor inspection status report

    International Nuclear Information System (INIS)

    1993-05-01

    This periodical covers the results of inspections performed by the NRC's Vendor Inspection Branch that have been distributed to the inspected organizations during the period from January 1993 through March 1993

  17. Licensee contractor and vendor inspection status report

    International Nuclear Information System (INIS)

    1991-10-01

    This periodical covers the results of inspections performed by the NRC's Vendor Inspection Branch that have been distributed to the inspected organization during the period from July 1991 through September 1991

  18. Licensee contractor and vendor inspection status report

    International Nuclear Information System (INIS)

    1993-08-01

    This periodical covers the results of inspections performed by the NRC's Vendor Inspection Branch that have been distributed to the inspected organizations during the period from April through June 1993

  19. Licensee contractor and vendor inspection status report

    International Nuclear Information System (INIS)

    1990-11-01

    This periodical covers the results of inspections performed by the NRC's Vendor Inspection Branch that have been distributed to the inspected organization during the period from April 1990 through June 1990

  20. Licensee contractor and vendor inspection status report

    International Nuclear Information System (INIS)

    1990-07-01

    This periodical covers the results of inspections performed by the NRC's Vendor Inspection Branch that have been distributed to the inspected organization during the period from January 1990 through March 1990

  1. Licensee contractor and vendor inspection status report

    International Nuclear Information System (INIS)

    1991-09-01

    This periodical covers the results of inspections performed by the NRC's Vendor Inspection Branch that have been distributed to the inspected organization during the period from April 1991 through June 1991

  2. Licensee contractor and vendor inspection status report

    International Nuclear Information System (INIS)

    1992-11-01

    This periodical covers the results of inspections performed by the NRC's Vendor Inspection Branch that have been distributed to the inspected organization during the period from July 1992 through September 1992

  3. Licensee Contractor and vendor inspection status report

    International Nuclear Information System (INIS)

    1992-01-01

    This periodical covers the results of inspections performed by the NRC's Vendor Inspection Branch that have been distributed to the inspected organization during the period from October through December 1991

  4. Licensee contractor and vendor inspection status report

    International Nuclear Information System (INIS)

    1991-05-01

    This periodical covers the results of inspections performed by the NRC's Vendor Inspection Branch that have been distributed to the inspected organization during the period from January 1991 through March 1991

  5. Licensee contractor and vendor inspection status report

    International Nuclear Information System (INIS)

    1990-01-01

    This periodical covers the results of inspections performed by the NRC's Vendor Inspection Branch that have been distributed to the inspected organizations during the period from October 1989 through December 1989

  6. Licensee contractor and Vendor Inspection status report

    International Nuclear Information System (INIS)

    1993-01-01

    This periodical covers the results of inspections performed by the NRC's Vendor Inspection Branch that have been distributed to the inspected organizations during the period from October 1992 through December 1992

  7. Lean Construction Applications for Bridge Inspection

    Science.gov (United States)

    2017-10-01

    Lean philosophy was used to analyze the efficiency of bridge inspection. Emphasis was put on identifying activities that add value to the final output, an owner approved bridge inspection report. 26 bridge inspections were shadowed. Time spent on bri...

  8. Licensee contractor and vendor inspection status report

    International Nuclear Information System (INIS)

    1991-02-01

    This periodical covers the results of inspections performed by the NRC's Vendor Inspection Branch that have been distributed to the inspected organizations during the period from October 1990 through December 1990

  9. Incineration By-Products of AA2, NC Fines, and NG Slums

    National Research Council Canada - National Science Library

    Cropek, Donald

    2001-01-01

    ...) and associated energetic wastes (EW). Knowledge of the by-products from incineration is invaluable for the proper design of emission control systems and selection of operating parameters to ensure maximum destruction efficiency...

  10. Waste incineration and immobilization for nuclear facilities. Status report, April-September 1978

    International Nuclear Information System (INIS)

    Johnson, A.J.; Williams, P.M.; Burkhardt, S.C.; Ledford, J.A.; Gallagher, K.Y.

    1980-01-01

    The fluidized bed incinerator and waste immobilization processes are being developed to process various liquid and solid wastes that are generated by a nuclear facility. The versatility of the incinerator liquid waste handling system has been enhanced by recent changes made in the pumping and related piping system. Tributyl phosphate-solvent incineration has been evaluated thoroughly using the pilot plant fluidized bed incinerator. Vitrified glass pellets were made to determine operating parameters of a resistance-heated reactor and to produce samples for testing. Procedures were developed for testing the product pellets. A simplified start-up procedure was devised as development continued on a second type of reactor, the Joule-heated melter

  11. How the families of the victims of suicide through self-incineration ...

    African Journals Online (AJOL)

    incineration was markedly reduced after the events. It is recommended that attention be given especially to the perception of witchcraft being responsible for suicide, and that grief support groups be established in the community to assist affected ...

  12. Feasibility and conceptual design for a mobile incineration system for combustible LLW

    International Nuclear Information System (INIS)

    1982-09-01

    Since volume reduction by incineration, with subsequent solidification before shipping, can result in typical overall reductions between 40 to 1 and 60 to 1 (depending on density), there are strong economic incentives for small generators to incinerate their low-level radioactive wastes, and minimize the volumes for which they must pay to ship and bury. Because of these factors, the concept of a Mobile Incineration System (MIS) appears to be a viable alternative for small generators. This report covers the conceptual design of a MIS consisting of a controlled-air incinerator with the required off-gas treatment system mounted on two semi-trailers which can be brought to the site of the small generator. It also covers the regulatory and licensing aspects, as well as the economics related to the design. 17 tables

  13. Applicability Flowchart for Hospital/Medical/Infectious Waste Incinerators (HIMWI) Amended October 6, 2009

    Science.gov (United States)

    This October 2009 document contains a diagram that that are intended to assist you in determining whether you own or operate any equipment that is subject to the Hospital/Medical/Infectious Waste Incinerators (HIMWI) regulations.

  14. Development of thermal conditioning technology for Alpha-containment wastes: Alpha-contaminated waste incineration technology

    International Nuclear Information System (INIS)

    Kim, Joon Hyung; Kim, Jeong Guk; Yang, Hee Chul; Choi, Byung Seon; Jeong, Myeong Soo

    1999-03-01

    As the first step of a 3-year project named 'development of alpha-contaminated waste incineration technology', the basic information and data were reviewed, while focusing on establishment of R and D direction to develop the final goal, self-supporting treatment of α- wastes that would be generated from domestic nuclear industries. The status on α waste incineration technology of advanced states was reviewed. A conceptual design for α waste incineration process was suggested. Besides, removal characteristics of volatile metals and radionuclides in a low-temperature dry off-gas system were investigated. Radiation dose assessments and some modification for the Demonstration-scale Incineration Plant (DSIP) at Korea Atomic Energy Research Institute (KAERI) were also done

  15. Pilot incineration plant for solid, combustible, and low-level wastes

    International Nuclear Information System (INIS)

    Francioni, W.M.

    Radioactively contaminated wastes are formed in the handling of radioactive materials at the Federal Institute for Reactor Research (FIRR) and in other facilities, hospitals, sanitoria, industry, and nuclear power plants. A large part of the wastes are combustible and only very slightly radioactive. Incineration of these wastes is obvious. A pilot incineration plant, henceforth called the PIP, for radioactive combustible wastes of the FIRR is surveyed. The plant and its individual components are described. The production costs of the plant and experience gained in operation available at present are reviewed. Solid combustible radioactive waste can be incinerated in the PIP. The maximum possible reduction in volume of these wastes is achieved by incineration. Subsequently the chemically sterile ashes can be consolidated in a stable block suitable for long-term storage mixing with cement

  16. Enviromental impact of a hospital waste incineration plant in Krakow (Poland).

    Science.gov (United States)

    Gielar, Agnieszka; Helios-Rybicka, Edeltrauda

    2013-07-01

    The environmental impact of a hospital waste incineration plant in Krakow was investigated. The objective of this study was to assess the degree of environmental effect of the secondary solid waste generated during the incineration process of medical waste. The analysis of pollution of the air emissions and leaching test of ashes and slag were carried out. The obtained results allowed us to conclude that (i) the hospital waste incineration plant significantly solves the problems of medical waste treatment in Krakow; (ii) the detected contaminant concentrations were generally lower than the permissible values; (iii) the generated ashes and slag contained considerable concentrations of heavy metals, mainly zinc, and chloride and sulfate anions. Ashes and slag constituted 10-15% of the mass of incinerated wastes; they are more harmful for the environment when compared with untreated waste, and after solidification they can be deposited in the hazardous waste disposal.

  17. Municipal solid waste incineration in China and the issue of acidification: A review.

    Science.gov (United States)

    Ji, Longjie; Lu, Shengyong; Yang, Jie; Du, Cuicui; Chen, Zhiliang; Buekens, Alfons; Yan, Jianhua

    2016-04-01

    In China, incineration is essential for reducing the volume of municipal solid waste arising in its numerous megacities. The evolution of incinerator capacity has been huge, yet it creates strong opposition from a small, but vocal part of the population. The characteristics of Chinese municipal solid waste are analysed and data presented on its calorific value and composition. These are not so favourable for incineration, since the sustained use of auxiliary fuel is necessary for ensuring adequate combustion temperatures. Also, the emission standard for acid gases is more lenient in China than in the European Union, so special attention should be paid to the issue of acidification arising from flue gas. Next, the techniques used in flue gas cleaning in China are reviewed and the acidification potential by cleaned flue gas is estimated. Still, acidification induced by municipal solid waste incinerators remains marginal compared with the effects of coal-fired power plants. © The Author(s) 2016.

  18. Energy potential of municipal solid waste incineration in urban areas of China.

    NARCIS (Netherlands)

    Zheng, Ling

    2006-01-01

    This study aims to evaluate the energy potential of municipal solid waste (MSW) incineration in Chinese cities from 1996 to 2020. In China, with improving the standard of living recently, the extreme increase of the municipal solid waste generation (MSWG)

  19. An Engineering Model for Prediction of Waste Incineration in a Dump Combustor

    National Research Council Canada - National Science Library

    Arunajatesan, S

    1997-01-01

    An engineering model that can be used to obtain predictions of axial distributions of temperature and species concentrations in complex flows has been formulated and applied to waste incineration in a dump combustor...

  20. Comparative Assessment of Particulate Air Pollution Exposure from Municipal Solid Waste Incinerator Emissions

    Science.gov (United States)

    Ashworth, Danielle C.; Fuller, Gary W.; Toledano, Mireille B.; Font, Anna; Elliott, Paul; Hansell, Anna L.; de Hoogh, Kees

    2013-01-01

    Background. Research to date on health effects associated with incineration has found limited evidence of health risks, but many previous studies have been constrained by poor exposure assessment. This paper provides a comparative assessment of atmospheric dispersion modelling and distance from source (a commonly used proxy for exposure) as exposure assessment methods for pollutants released from incinerators. Methods. Distance from source and the atmospheric dispersion model ADMS-Urban were used to characterise ambient exposures to particulates from two municipal solid waste incinerators (MSWIs) in the UK. Additionally an exploration of the sensitivity of the dispersion model simulations to input parameters was performed. Results. The model output indicated extremely low ground level concentrations of PM10, with maximum concentrations of incinerator characteristics, magnitude of emissions, and surrounding meteorological and topographical conditions are considered. Reducing exposure misclassification is particularly important in environmental epidemiology to aid detection of low-level risks. PMID:23935644