WorldWideScience

Sample records for incident wind angle

  1. Solar cell angle of incidence corrections

    Science.gov (United States)

    Burger, Dale R.; Mueller, Robert L.

    1995-01-01

    Literature on solar array angle of incidence corrections was found to be sparse and contained no tabular data for support. This lack along with recent data on 27 GaAs/Ge 4 cm by 4 cm cells initiated the analysis presented in this paper. The literature cites seven possible contributors to angle of incidence effects: cosine, optical front surface, edge, shadowing, UV degradation, particulate soiling, and background color. Only the first three are covered in this paper due to lack of sufficient data. The cosine correction is commonly used but is not sufficient when the incident angle is large. Fresnel reflection calculations require knowledge of the index of refraction of the coverglass front surface. The absolute index of refraction for the coverglass front surface was not known nor was it measured due to lack of funds. However, a value for the index of refraction was obtained by examining how the prediction errors varied with different assumed indices and selecting the best fit to the set of measured values. Corrections using front surface Fresnel reflection along with the cosine correction give very good predictive results when compared to measured data, except there is a definite trend away from predicted values at the larger incident angles. This trend could be related to edge effects and is illustrated by a use of a box plot of the errors and by plotting the deviation of the mean against incidence angle. The trend is for larger deviations at larger incidence angles and there may be a fourth order effect involved in the trend. A chi-squared test was used to determine if the measurement errors were normally distributed. At 10 degrees the chi-squared test failed, probably due to the very small numbers involved or a bias from the measurement procedure. All other angles showed a good fit to the normal distribution with increasing goodness-of-fit as the angles increased which reinforces the very small numbers hypothesis. The contributed data only went to 65 degrees

  2. Oil Slick Observation at Low Incidence Angles in Ku-Band

    Science.gov (United States)

    Panfilova, M. A.; Karaev, V. Y.; Guo, Jie

    2018-03-01

    On the 20 April 2010 the oil platform Deep Water Horizon in the Gulf of Mexico suffered an explosion during the final phases of drilling an exploratory well. As a result, an oil film covered the sea surface area of several thousand square kilometers. In the present paper the data of the Ku-band Precipitation Radar, which operates at low incidence angles, were used to explore the oil spill event. The two-scale model of the scattering surface was used to describe radar backscatter from the sea surface. The algorithm for retrieval of normalized radar cross section at nadir and the total slope variance of large-scale waves compared to the wavelength of electromagnetic wave (22 mm) was developed for the Precipitation Radar swath. It is shown that measurements at low incidence angles can be used for oil spill detection. This is the first time that the dependence of mean square slope of large-scale waves on wind speed has been obtained for oil slicks from Ku-band data, and compared to mean square slope obtained by Cox and Munk from optical data.

  3. Pitch Angle Control for Variable Speed Wind Turbines

    DEFF Research Database (Denmark)

    Chen, Zhe; Zhang, Jianzhong; Cheng, M

    2008-01-01

    Pitch angle control is the most common means for adjusting the aerodynamic torque of the wind turbine when wind speed is above rated speed and various controlling variables may be chosen, such as wind speed, generator speed and generator power. As conventional pitch control usually use PI...... controller, the mathematical model of the system should be known well. A fuzzy logic pitch angle controller is developed in this paper, in which it does not need well known about the system and the mean wind speed is used to compensate the non-linear sensitivity. The fuzzy logic control strategy may have...... the potential when the system contains strong non-linearity, such as wind turbulence is strong, or the control objectives include fatigue loads. The design of the fuzzy logic controller and the comparisons with conversional pitch angle control strategies with various controlling variables are carried out...

  4. Anomalous polymer collapse winding angle distributions

    Science.gov (United States)

    Narros, A.; Owczarek, A. L.; Prellberg, T.

    2018-03-01

    In two dimensions polymer collapse has been shown to be complex with multiple low temperature states and multi-critical points. Recently, strong numerical evidence has been provided for a long-standing prediction of universal scaling of winding angle distributions, where simulations of interacting self-avoiding walks show that the winding angle distribution for N-step walks is compatible with the theoretical prediction of a Gaussian with a variance growing asymptotically as Clog N . Here we extend this work by considering interacting self-avoiding trails which are believed to be a model representative of some of the more complex behaviour. We provide robust evidence that, while the high temperature swollen state of this model has a winding angle distribution that is also Gaussian, this breaks down at the polymer collapse point and at low temperatures. Moreover, we provide some evidence that the distributions are well modelled by stretched/compressed exponentials, in contradistinction to the behaviour found in interacting self-avoiding walks. Dedicated to Professor Stu Whittington on the occasion of his 75th birthday.

  5. Discriminating electromagnetic radiation based on angle of incidence

    Science.gov (United States)

    Hamam, Rafif E.; Bermel, Peter; Celanovic, Ivan; Soljacic, Marin; Yeng, Adrian Y. X.; Ghebrebrhan, Michael; Joannopoulos, John D.

    2015-06-16

    The present invention provides systems, articles, and methods for discriminating electromagnetic radiation based upon the angle of incidence of the electromagnetic radiation. In some cases, the materials and systems described herein can be capable of inhibiting reflection of electromagnetic radiation (e.g., the materials and systems can be capable of transmitting and/or absorbing electromagnetic radiation) within a given range of angles of incidence at a first incident surface, while substantially reflecting electromagnetic radiation outside the range of angles of incidence at a second incident surface (which can be the same as or different from the first incident surface). A photonic material comprising a plurality of periodically occurring separate domains can be used, in some cases, to selectively transmit and/or selectively absorb one portion of incoming electromagnetic radiation while reflecting another portion of incoming electromagnetic radiation, based upon the angle of incidence. In some embodiments, one domain of the photonic material can include an isotropic dielectric function, while another domain of the photonic material can include an anisotropic dielectric function. In some instances, one domain of the photonic material can include an isotropic magnetic permeability, while another domain of the photonic material can include an anisotropic magnetic permeability. In some embodiments, non-photonic materials (e.g., materials with relatively large scale features) can be used to selectively absorb incoming electromagnetic radiation based on angle of incidence.

  6. Responses of three-dimensional flow to variations in the angle of incident wind and profile form of dunes: Greenwich Dunes, Prince Edward Island, Canada

    Science.gov (United States)

    Walker, Ian J.; Hesp, Patrick A.; Davidson-Arnott, Robin G. D.; Bauer, Bernard O.; Namikas, Steven L.; Ollerhead, Jeff

    2009-04-01

    This study reports the responses of three-dimensional near-surface airflow over a vegetated foredune to variations in the conditions of incident flow during an 8-h experiment. Two parallel measurement transects were established on morphologically different dune profiles: i) a taller, concave-convex West foredune transect with 0.5-m high, densely vegetated (45%), seaward incipient foredune, and ii) a shorter, concave-straight East foredune transect with lower, sparsely vegetated (14%) seaward incipient foredune. Five stations on each transect from the incipient dune to the crest were equipped with ultrasonic anemometers at 0.6 and 1.65 m height and logged at 1 Hz. Incident conditions were recorded from a 4-m tower over a flat beach. Winds increased from 6 m s - 1 to > 20 m s - 1 and were generally obliquely onshore (ENE, 73°). Three sub-events and the population of 10-minute averages of key properties of flow ( U, W, S, CV U) from all sample locations on the East transect ( n = 235) are examined to identify location- and profile-specific responses over 52° of the incident direction of flow (from 11 to 63° onshore). Topographic steering and forcing cause major deviations in the properties and vectors of near-surface flow from the regional wind. Topographic forcing on the concave-straight dune profile increases wind speed and steadiness toward the crest, with speed-up values to 65% in the backshore. Wind speed and steadiness of flow are least responsive to changes in incident angle in the backshore because of stagnation of flow and are most responsive at the lower stoss under pronounced streamline compression. On the steeper concave-convex profile, speed and steadiness decrease toward the crest because of stagnation of flow at the toe and flow expansion at the slope inflection point on the lower stoss. Net downward vertical velocity occurs over both profiles, increases toward the crest, and reflects enhanced turbulent momentum conveyance toward the surface. All of

  7. Virtual incidence effect on rotating airfoils in Darrieus wind turbines

    International Nuclear Information System (INIS)

    Bianchini, Alessandro; Balduzzi, Francesco; Ferrara, Giovanni; Ferrari, Lorenzo

    2016-01-01

    Highlights: • Novel methods to reduce CFD results into 1D aerodynamic parameters. • Assessment of the virtual incidence (VI) effect on Darrieus VAWT blades. • It is shown that blades experience a virtual AoA variation with respect to theoretical expectations. • Real AoAs are calculated for different airfoils in motion and compared to BEM predictions. - Abstract: Small Darrieus wind turbines are one of the most interesting emerging technologies in the renewable energies scenario, even if they still are characterized by lower efficiencies than those of conventional horizontal-axis wind turbines due to the more complex aerodynamics involved in their functioning. In case of small rotors, in which the chord-to-radius ratios are generally high not to limit the blade Reynolds number, the performance of turbine blades has been suggested to be moreover influenced by the so-called “flow curvature effects”. Recent works have indeed shown that the curved flowpath encountered by the blades makes them work like virtually cambered airfoils in a rectilinear flow. In the present study, focus is instead given to a further effect that is generated in reason of the curved streamline incoming on the blades, i.e. an extra-incidence seen by the airfoil, generally referred to as “virtual incidence”. In detail, a novel computational method to define the incidence angle has been applied to unsteady CFD simulations of three airfoils in a Darrieus-like motion and their effective angles of attack have been compared to theoretical expectations. The analysis confirmed the presence of an additional virtual incidence on the airfoils and quantified it for different airfoils, chord-to-radius ratios and tip-speed ratios. A comparative discussion on BEM prediction capabilities is finally reported in the study.

  8. Effects of setting angle on performance of fish-bionic wind wheel

    Science.gov (United States)

    Li, G. S.; Yang, Z. X.; Song, L.; Chen, Q.; Li, Y. B.; Chen, W.

    2016-08-01

    With the energy crisis and the increasing environmental pollutionmore and more efforts have been made about wind power development. In this paper, a new type of vertical axis named the fish-bionic wind wheel was proposed, and the outline of wind wheel was constructed by curve of Fourier fitting and polynomial equations. This paper attempted to research the relationship between the setting angle and the wind turbine characteristics by computational fluid dynamics (CFD) simulation. The results showed that the setting angle of the fish-bionic wind wheel has some significant effects on the efficiency of the wind turbine, Within the range of wind speed from 13m/s to 15m/s, wind wheel achieves the maximum efficiency when the setting angle is at 37 degree. The conclusion will work as a guideline for the improvement of wind turbine design.

  9. An oilspill trajectory analysis model with a variable wind deflection angle

    Science.gov (United States)

    Samuels, W.B.; Huang, N.E.; Amstutz, D.E.

    1982-01-01

    The oilspill trajectory movement algorithm consists of a vector sum of the surface drift component due to wind and the surface current component. In the U.S. Geological Survey oilspill trajectory analysis model, the surface drift component is assumed to be 3.5% of the wind speed and is rotated 20 degrees clockwise to account for Coriolis effects in the Northern Hemisphere. Field and laboratory data suggest, however, that the deflection angle of the surface drift current can be highly variable. An empirical formula, based on field observations and theoretical arguments relating wind speed to deflection angle, was used to calculate a new deflection angle at each time step in the model. Comparisons of oilspill contact probabilities to coastal areas calculated for constant and variable deflection angles showed that the model is insensitive to this changing angle at low wind speeds. At high wind speeds, some statistically significant differences in contact probabilities did appear. ?? 1982.

  10. A Study of Radiation Incidence Angle in Anteroposterior Cervical Vertebra Examination

    International Nuclear Information System (INIS)

    Jeung, Seung Woon; Lim, Cheong Hwan; Jung, Hong Ryang; Joo, Yeong Cheol; Park, Mi Ja; Han, Beon Hee

    2012-01-01

    In anteroposterior projection for cervical vertebra, it is general that the incidence angle of X-ray is 15 degrees to 20 degrees to head in order to prevent overlap of mandible and occipital bone and to observe array of cervical interbody and shapes of joints. However, the angle is appropriate for foreigners that was determined by foreign literature review long ago, and there have been few researches of incidence angle for Koreans' body type. The purpose of in this study are to identify the incidence angle appropriate for Koreans and to present methodology. In order to measure the incidence angle, 1,044 patients who visited S Hospital located in Seosan were selected and measured of average length of cervical vertebra, OID, axis angle, and FID. The incidence angle was calculated from the applied formula by measuring average values per age groups and sex (see Formula 1 and 2). The average length of cervical vertebra was 6cm: the length was increased from teenagers to twenties but was decreased since thirties. The difference between males and females was around 1cm (p<.01). The OID was almost the same regardless of age groups and sex. As for axis angle, the slope was increased in teenagers and twenties, but was decreased since thirties. The difference between males and females was around 2 degrees (p<.01). The FID measurements were almost the same regardless of age groups and sex, and when the incidence angle was measured from these values, the teenagers were 15.9 degrees, the twenties were 16.9 degrees, the thirties were 16.6 degrees, the forties were 16.2 degrees, the fifties were 15.9 degrees, and the sixties were 14.5 degrees, indicating that the angle was increased from teenagers to the twenties but decreased since the thirties. While the angles of males and females were measured to be the same in the teenagers, the angle was different between males and females by 2 degrees. When the incidence angle statistically analyzed with measurement of average length of

  11. A Study of Radiation Incidence Angle in Anteroposterior Cervical Vertebra Examination

    Energy Technology Data Exchange (ETDEWEB)

    Jeung, Seung Woon; Lim, Cheong Hwan; Jung, Hong Ryang; Joo, Yeong Cheol; Park, Mi Ja [Dept. of Radiological Science, Hanseo University, Seosan (Korea, Republic of); Han, Beon Hee [Dept. of Radiological Science, Seonam University, Namwon (Korea, Republic of)

    2012-06-15

    In anteroposterior projection for cervical vertebra, it is general that the incidence angle of X-ray is 15 degrees to 20 degrees to head in order to prevent overlap of mandible and occipital bone and to observe array of cervical interbody and shapes of joints. However, the angle is appropriate for foreigners that was determined by foreign literature review long ago, and there have been few researches of incidence angle for Koreans' body type. The purpose of in this study are to identify the incidence angle appropriate for Koreans and to present methodology. In order to measure the incidence angle, 1,044 patients who visited S Hospital located in Seosan were selected and measured of average length of cervical vertebra, OID, axis angle, and FID. The incidence angle was calculated from the applied formula by measuring average values per age groups and sex (see Formula 1 and 2). The average length of cervical vertebra was 6cm: the length was increased from teenagers to twenties but was decreased since thirties. The difference between males and females was around 1cm (p<.01). The OID was almost the same regardless of age groups and sex. As for axis angle, the slope was increased in teenagers and twenties, but was decreased since thirties. The difference between males and females was around 2 degrees (p<.01). The FID measurements were almost the same regardless of age groups and sex, and when the incidence angle was measured from these values, the teenagers were 15.9 degrees, the twenties were 16.9 degrees, the thirties were 16.6 degrees, the forties were 16.2 degrees, the fifties were 15.9 degrees, and the sixties were 14.5 degrees, indicating that the angle was increased from teenagers to the twenties but decreased since the thirties. While the angles of males and females were measured to be the same in the teenagers, the angle was different between males and females by 2 degrees. When the incidence angle statistically analyzed with measurement of average length

  12. Experimental study of separator effect and shift angle on crossflow wind turbine performance

    Science.gov (United States)

    Fahrudin, Tjahjana, Dominicus Danardono Dwi Prija; Santoso, Budi

    2018-02-01

    This paper present experimental test results of separator and shift angle influence on Crossflow vertical axis wind turbine. Modification by using a separator and shift angle is expected to improve the thrust on the blade so as to improve the efficiency. The design of the wind turbine is tested at different wind speeds. There are 2 variations of crossflow turbine design which will be analyzed using an experimental test scheme that is, 3 stage crossflow and 2 stage crossflow with the shift angle. Maximum power coefficient obtained as Cpmax = 0.13 at wind speed 4.05 m/s for 1 separator and Cpmax = 0.12 for 12° shear angle of wind speed 4.05 m/s. In this study, power characteristics of the crossflow rotor with separator and shift angle have been tested. The experimental data was collected by variation of 2 separator and shift angle 0°, 6°, 12° and wind speed 3.01 - 4.85 m/s.

  13. The equivalent incidence angle for porous absorbers backed by a hard surface

    DEFF Research Database (Denmark)

    Jeong, Cheol-Ho; Brunskog, Jonas

    2013-01-01

    experiment using a free-field absorption measurement technique with a source at the equivalent angle. This study investigates the equivalent angle for locally and extendedly reacting porous media mainly by a numerical approach: Numerical minimizations of a cost function that is the difference between...... coefficients by free-field techniques, a broad incidence angle range can be suggested: 20 hi65 for extended reaction and hi65 for locally reacting porous absorbers, if an average difference of 0.05 is allowed.......An equivalent incidence angle is defined as the incidence angle at which the oblique incidence absorption coefficient best approximates the random incidence absorption coefficient. Once the equivalent angle is known, the random incidence absorption coefficient can be estimated by a single...

  14. Data-Driven Method for Wind Turbine Yaw Angle Sensor Zero-Point Shifting Fault Detection

    Directory of Open Access Journals (Sweden)

    Yan Pei

    2018-03-01

    Full Text Available Wind turbine yaw control plays an important role in increasing the wind turbine production and also in protecting the wind turbine. Accurate measurement of yaw angle is the basis of an effective wind turbine yaw controller. The accuracy of yaw angle measurement is affected significantly by the problem of zero-point shifting. Hence, it is essential to evaluate the zero-point shifting error on wind turbines on-line in order to improve the reliability of yaw angle measurement in real time. Particularly, qualitative evaluation of the zero-point shifting error could be useful for wind farm operators to realize prompt and cost-effective maintenance on yaw angle sensors. In the aim of qualitatively evaluating the zero-point shifting error, the yaw angle sensor zero-point shifting fault is firstly defined in this paper. A data-driven method is then proposed to detect the zero-point shifting fault based on Supervisory Control and Data Acquisition (SCADA data. The zero-point shifting fault is detected in the proposed method by analyzing the power performance under different yaw angles. The SCADA data are partitioned into different bins according to both wind speed and yaw angle in order to deeply evaluate the power performance. An indicator is proposed in this method for power performance evaluation under each yaw angle. The yaw angle with the largest indicator is considered as the yaw angle measurement error in our work. A zero-point shifting fault would trigger an alarm if the error is larger than a predefined threshold. Case studies from several actual wind farms proved the effectiveness of the proposed method in detecting zero-point shifting fault and also in improving the wind turbine performance. Results of the proposed method could be useful for wind farm operators to realize prompt adjustment if there exists a large error of yaw angle measurement.

  15. Wakes behind surface-mounted obstacles: Impact of aspect ratio, incident angle, and surface roughness

    Science.gov (United States)

    Tobin, Nicolas; Chamorro, Leonardo P.

    2018-03-01

    The so-called wake-moment coefficient C˜h and lateral wake deflection of three-dimensional windbreaks are explored in the near and far wake. Wind-tunnel experiments were performed to study the functional dependence of C˜h with windbreak aspect ratio, incidence angle, and the ratio of the windbreak height and surface roughness (h /z0 ). Supported with the data, we also propose basic models for the wake deflection of the windbreak in the near and far fields. The near-wake model is based on momentum conservation considering the drag on the windbreak, whereas the far-wake counterpart is based on existing models for wakes behind surface-mounted obstacles. Results show that C˜h does not change with windbreak aspect ratios of 10 or greater; however, it may be lower for an aspect ratio of 5. C˜h is found to change roughly with the cosine of the incidence angle, and to depend strongly on h /z0 . The data broadly support the proposed wake-deflection models, though better predictions could be made with improved knowledge of the windbreak drag coefficient.

  16. Determination of incident angle in radioisotope-excited EDXRF

    Energy Technology Data Exchange (ETDEWEB)

    Somogyi, A.; Pazsit, A. (Lajos Kossuth Univ., Debrecen (Hungary). Isotope Lab.)

    Three different methods were used for the determination of the effective incident angle related to EDXRF when radioisotope annular sources are involved: weighted averaging, Compton peak method and minimization of the difference between the certificated and measured concentrations of six international standard samples. By measuring the Compton peak energies of various analytical reagent grade elements and compounds, it was found that the incoherent peak energy depends on the mean atomic number of the matrix, so the effective incident angle is also matrix dependent. (Author).

  17. Determination of incident angle in radioisotope-excited EDXRF

    International Nuclear Information System (INIS)

    Somogyi, A.; Pazsit, A.

    1993-01-01

    Three different methods were used for the determination of the effective incident angle related to EDXRF when radioisotope annular sources are involved: weighted averaging, Compton peak method and minimization of the difference between the certificated and measured concentrations of six international standard samples. By measuring the Compton peak energies of various analytical reagent grade elements and compounds, it was found that the incoherent peak energy depends on the mean atomic number of the matrix, so the effective incident angle is also matrix dependent. (Author)

  18. Wind Turbine Blade with Angled Girders

    DEFF Research Database (Denmark)

    2011-01-01

    The present invention relates to a reinforced blade for a wind turbine, particularly to a blade having a new arrangement of two or more girders in the blade, wherein each of the girders is connected to the upper part and the lower part of the shell and forms an angle with another girder thereby...

  19. Dependence on incident angle of solid state detector response to gamma-rays

    International Nuclear Information System (INIS)

    Yamanishi, Hirokuni; Yamaguchi, Satarou; Yamaguchi, Takayuki; Ueki, Kohtaro

    2002-01-01

    The shape and size of a NaI(Tl) scintillator that should maximize response variation with γ-ray incident angle was estimated by analytical model calculation. It proved that, even for gamma rays of energy exceeding 1 MeV, a slab detector measuring 50 cm x 50 cm x 5 cm thick should present a ratio of at least 4 between maximum and minimum responses against incidence at different angles. For a sample case of 60 keV gamma rays, estimation of the incident angle dependence by means of Monte Carlo simulation agreed well with experiment using a CZT detector. The counts from photo-electric peak varied with incident angle roughly along a sine curve. The foregoing finding served as basis for proposing a practical direction finder for γ-ray source operating on the principle of determining the source direction from variations in count with incident angle. (author)

  20. Anomalous incident-angle and elliptical-polarization rotation of an elastically refracted P-wave

    Science.gov (United States)

    Fa, Lin; Fa, Yuxiao; Zhang, Yandong; Ding, Pengfei; Gong, Jiamin; Li, Guohui; Li, Lijun; Tang, Shaojie; Zhao, Meishan

    2015-08-01

    We report a newly discovered anomalous incident-angle of an elastically refracted P-wave, arising from a P-wave impinging on an interface between two VTI media with strong anisotropy. This anomalous incident-angle is found to be located in the post-critical incident-angle region corresponding to a refracted P-wave. Invoking Snell’s law for a refracted P-wave provides two distinctive solutions before and after the anomalous incident-angle. For an inhomogeneously refracted and elliptically polarized P-wave at the anomalous incident-angle, its rotational direction experiences an acute variation, from left-hand elliptical to right-hand elliptical polarization. The new findings provide us an enhanced understanding of acoustical-wave scattering and lead potentially to widespread and novel applications.

  1. Anterior Segment Imaging Predicts Incident Gonioscopic Angle Closure.

    Science.gov (United States)

    Baskaran, Mani; Iyer, Jayant V; Narayanaswamy, Arun K; He, Yingke; Sakata, Lisandro M; Wu, Renyi; Liu, Dianna; Nongpiur, Monisha E; Friedman, David S; Aung, Tin

    2015-12-01

    To investigate the incidence of gonioscopic angle closure after 4 years in subjects with gonioscopically open angles but varying degrees of angle closure detected on anterior segment optical coherence tomography (AS OCT; Visante; Carl Zeiss Meditec, Dublin, CA) at baseline. Prospective, observational study. Three hundred forty-two subjects, mostly Chinese, 50 years of age or older, were recruited, of whom 65 were controls with open angles on gonioscopy and AS OCT at baseline, and 277 were cases with baseline open angles on gonioscopy but closed angles (1-4 quadrants) on AS OCT scans. All subjects underwent gonioscopy and AS OCT at baseline (horizontal and vertical single scans) and after 4 years. The examiner performing gonioscopy was masked to the baseline and AS OCT data. Angle closure in a quadrant was defined as nonvisibility of the posterior trabecular meshwork by gonioscopy and visible iridotrabecular contact beyond the scleral spur in AS OCT scans. Gonioscopic angle closure in 2 or 3 quadrants after 4 years. There were no statistically significant differences in age, ethnicity, or gender between cases and controls. None of the control subjects demonstrated gonioscopic angle closure after 4 years. Forty-eight of the 277 subjects (17.3%; 95% confidence interval [CI], 12.8-23; P < 0.0001) with at least 1 quadrant of angle closure on AS OCT at baseline demonstrated gonioscopic angle closure in 2 or more quadrants, whereas 28 subjects (10.1%; 95% CI, 6.7-14.6; P < 0.004) demonstrated gonioscopic angle closure in 3 or more quadrants after 4 years. Individuals with more quadrants of angle closure on baseline AS OCT scans had a greater likelihood of gonioscopic angle closure developing after 4 years (P < 0.0001, chi-square test for trend for both definitions of angle closure). Anterior segment OCT imaging at baseline predicts incident gonioscopic angle closure after 4 years among subjects who have gonioscopically open angles and iridotrabecular contact on AS OCT at

  2. Effect of incidence angle on the wake turbulence of a turbine rotor blade

    International Nuclear Information System (INIS)

    Chang, Sung Il; Lee, Sang Woo

    2005-01-01

    This paper describes effects of incidence angle on the wake turbulent flow of a high-turning turbine rotor blade. For three incidence angles of -5, 0 and 5 degrees, energy spectra as well as profiles of mean velocity magnitude and turbulence intensity at mid-span are reported in the wake. Vortex shedding frequencies are obtained from the energy spectra. The result shows that as the incidence angle changes from -5 to 5 degrees, the suction-side wake tends to be widened and the deviation angle is increased. Strouhal numbers based on the shedding frequencies have a nearly constant value, regardless of the tested incidence angles

  3. Origami-inspired metamaterial absorbers for improving the larger-incident angle absorption

    International Nuclear Information System (INIS)

    Shen, Yang; Pang, Yongqiang; Wang, Jiafu; Ma, Hua; Pei, Zhibin; Qu, Shaobo

    2015-01-01

    When a folded resistive patch array stands up on a metallic plane, it can exhibit more outstanding absorption performance. Our theoretical investigations and simulations demonstrated that the folded resistive patch arrays can enhance the absorption bandwidth progressively with the increase of the incident angle for the oblique transverse magnetic incidence, which is contrary to the conventional resistive frequency selective surface absorber. On illumination, we achieved a 3D structure metamaterial absorber with the folded resistive patches. The proposed absorber is obtained from the inspiration of the origami, and it has broadband and lager-incident angle absorption. Both the simulations and the measurements indicate that the proposed absorber achieves the larger-incident angle absorption until 75° in the frequency band of 3.6–11.4 GHz. In addition, the absorber is extremely lightweight. The areal density of the fabricated sample is about 0.023 g cm −2 . Due to the broadband and lager-incident angle absorption, it is expected that the absorbers may find potential applications such as stealth technologies and electromagnetic interference. (paper)

  4. Asymmetric-cut variable-incident-angle monochromator.

    Science.gov (United States)

    Smither, R K; Graber, T J; Fernandez, P B; Mills, D M

    2012-03-01

    A novel asymmetric-cut variable-incident-angle monochromator was constructed and tested in 1997 at the Advanced Photon Source of Argonne National Laboratory. The monochromator was originally designed as a high heat load monochromator capable of handling 5-10 kW beams from a wiggler source. This was accomplished by spreading the x-ray beam out on the surface an asymmetric-cut crystal and by using liquid metal cooling of the first crystal. The monochromator turned out to be a highly versatile monochromator that could perform many different types of experiments. The monochromator consisted of two 18° asymmetrically cut Si crystals that could be rotated about 3 independent axes. The first stage (Φ) rotates the crystal around an axis perpendicular to the diffraction plane. This rotation changes the angle of the incident beam with the surface of the crystal without changing the Bragg angle. The second rotation (Ψ) is perpendicular to the first and is used to control the shape of the beam footprint on the crystal. The third rotation (Θ) controls the Bragg angle. Besides the high heat load application, the use of asymmetrically cut crystals allows one to increase or decrease the acceptance angle for crystal diffraction of a monochromatic x-ray beam and allows one to increase or decrease the wavelength bandwidth of the diffraction of a continuum source like a bending-magnet beam or a normal x-ray-tube source. When the monochromator is used in the doubly expanding mode, it is possible to expand the vertical size of the double-diffracted beam by a factor of 10-15. When this was combined with a bending magnet source, it was possible to generate an 8 keV area beam, 16 mm wide by 26 mm high with a uniform intensity and parallel to 1.2 arc sec that could be applied in imaging experiments.

  5. Interference in a thick plate at large angle of incidence

    International Nuclear Information System (INIS)

    Tavassoli, M.T.; Shah Shehany, F.

    1991-01-01

    A new approach to the interference in a plane parallel plate is introduced which is valid for any angle of incidence and any thickness. It is shown that the interference in a plate can be interpreted as the interference in a double-slit and the corresponding parameters are derived. It is also shown that for a particular angle of incidence, which depends only on the refractive index, the interfringes are minimum. It is proved theoretically and verified experimentally that the interference around this particular angle of incidence has several exploitable features which include: a) In thick plates large numbers of equidistant fringes are formed which are very adequate for producing interference gratings. b) It provides, in comparison to the conventional interferometric methods, an easier and more accurate means for direct measurement of wave-length. c) Multiple-beam interference at this particular angle improve the accuracy of the measurement of the fine structures of the atomic spectra, compared to other interferometric methods. (author). 4 refs, 4 figs

  6. Study on the influence of attitude angle on lidar wind measurement results

    Science.gov (United States)

    Han, Xiaochen; Dou, Peilin; Xue, Yangyang

    2017-11-01

    When carrying on wind profile measurement of offshore wind farm by shipborne Doppler lidar technique, the ship platform often produces motion response under the action of ocean environment load. In order to measure the performance of shipborne lidar, this paper takes two lidar wind measurement results as the research object, simulating the attitude of the ship in the ocean through the three degree of freedom platform, carrying on the synchronous observation test of the wind profile, giving an example of comparing the wind measurement data of two lidars, and carrying out the linear regression statistical analysis for all the experimental correlation data. The results show that the attitude angle will affect the precision of the lidar, The influence of attitude angle on the accuracy of lidar is uncertain. It is of great significance to the application of shipborne Doppler lidar wind measurement technology in the application of wind resources assessment in offshore wind power projects.

  7. Effects of setting angle and chord length on performance of four blades bionic wind turbine

    Science.gov (United States)

    Yang, Z. X.; Li, G. S.; Song, L.; Bai, Y. F.

    2017-11-01

    With the energy crisis and the increasing environmental pollution, more and more efforts have been made about wind power development. In this paper, a four blades bionic wind turbine was proposed, and the outline of wind turbine was constructed by the fitted curve. This paper attempted to research the effects of setting angle and chord length on performance of four blades bionic wind turbine by computational fluid dynamics (CFD) simulation. The results showed that the setting angle and chord length of the bionic wind turbine has some significant effects on the efficiency of the wind turbine, and within the range of wind speed from 7 m/s to 15 m/s, the wind turbine achieved maximum efficiency when the setting angle is 31 degree and the chord length is 125 mm. The conclusion will work as a guideline for the improvement of wind turbine design

  8. Design of a wind turbine pitch angle controller for power system stabilisation

    Energy Technology Data Exchange (ETDEWEB)

    Jauch, Clemens; Soerensen, Poul [Risoe National Laboratory, Wind Energy Department, P.O. Box 49, DK-4000 Roskilde (Denmark); Islam, Syed M. [Department of Electrical and Computer Engineering, Curtin University of Technology, GPO Box U1987, Perth, WA 6845 (Australia); Bak Jensen, Birgitte [Institute of Energy Technology, Aalborg University, Pontoppidanstraede 101, DK-9220 Aalborg East (Denmark)

    2007-11-15

    The design of a PID pitch angle controller for a fixed speed active-stall wind turbine, using the root locus method is described in this paper. The purpose of this controller is to enable an active-stall wind turbine to perform power system stabilisation. For the purpose of controller design, the transfer function of the wind turbine is derived from the wind turbine's step response. The performance of this controller is tested by simulation, where the wind turbine model with its pitch angle controller is connected to a power system model. The power system model employed here is a realistic model of the North European power system. A short circuit fault on a busbar close to the wind turbine generator is simulated, and the dynamic responses of the system with and without the power system stabilisation of the wind turbines are presented. Simulations show that in most operating points the pitch controller can effectively contribute to power system stabilisation. (author)

  9. Design of a wind turbine pitch angle controller for power system stabilisation

    DEFF Research Database (Denmark)

    Jauch, Clemens; Islam, S.M.; Sørensen, Poul Ejnar

    2007-01-01

    The design of a PID pitch angle controller for a fixed speed active-stall wind turbine, using the root locus method is described in this paper. The purpose of this controller is to enable an active-stall wind turbine to perform power system stabilisation. For the purpose of controller design......, the transfer function of the wind turbine is derived from the wind turbine's step response. The performance of this controller is tested by simulation, where the wind turbine model with its pitch angle controller is connected to a power system model. The power system model employed here is a realistic model...... of the North European power system. A short circuit fault on a busbar close to the wind turbine generator is simulated, and the dynamic responses of the system with and without the power system stabilisation of the wind turbines are presented. Simulations show that in most operating points the pitch controller...

  10. Statistical meandering wake model and its application to yaw-angle optimisation of wind farms

    DEFF Research Database (Denmark)

    Thøgersen, Emil; Tranberg, Bo; Herp, Jürgen

    2017-01-01

    deterministic models to a statistical meandering wake model (SMWM), where a random directional deflection is assigned to a narrow wake in such a way that on average it resembles a broad Jensen wake. In a second step, the model is further generalised to wind-farm level, where the deflections of the multiple...... wakes are treated as independently and identically distributed random variables. When carefully calibrated to the Nysted wind farm, the ensemble average of the statistical model produces the same wind-direction dependence of the power efficiency as obtained from the standard Jensen model. Upon using...... the JWM to perform a yaw-angle optimisation of wind-farm power output, we find an optimisation gain of 6.7% for the Nysted wind farm when compared to zero yaw angles and averaged over all wind directions. When applying the obtained JWM-based optimised yaw angles to the SMWM, the ensemble-averaged gain...

  11. Polarization dependence in ELNES: Influence of probe convergence, collector aperture and electron beam incidence angle

    International Nuclear Information System (INIS)

    Le Bosse, J.C.; Epicier, T.; Jouffrey, B.

    2006-01-01

    The differential scattering cross section in electron energy loss near edge spectroscopy (ELNES) generally depends on the orientation of the Q wave vector transferred from the incident electron to an atomic core electron. In the case where the excited atom belongs to a threefold, fourfold or sixfold main rotation axis, the dipole cross section depends on the angle of Q with respect to this axis. In this paper, we restrict to this situation called dichroism. Furthermore, if we take into account the relativistic effects due to the high incident electron velocity, this dipole cross section also depends on the angle of Q with respect to the electron beam axis. It is due to these dependences that the shape of measured electron energy loss spectra varies with the electron beam incidence, the collector aperture, the incident beam convergence and the incident electron energy. The existence of a particular beam incidence angle for which the scattering cross section becomes independent of collection and beam convergence semi-angles is clearly underscored. Conversely, it is shown that EELS spectra do not depend on the beam incidence angle for a set of particular values of collection and convergence semi-angles. Particularly, in the case of a parallel incident beam, there is a collection semi-angle (often called magic angle) for which the cross section becomes independent of the beam orientation. This magic angle depends on the incident beam kinetic energy. If the incident electron velocity V is small compared with the light velocity c, this magic angle is about 3.975θ E (θ E is the scattering angle). It decreases to 0 when V approaches c. These results are illustrated in the case of the K boron edge in the boron nitride

  12. Method and apparatus for controlling pitch and flap angles of a wind turbine

    Science.gov (United States)

    Deering, Kenneth J [Seattle, WA; Wohlwend, Keith P [Issaquah, WA

    2009-05-12

    A wind turbine with improved response to wind conditions is provided. Blade flap angle motion is accompanied by a change in pitch angle by an amount defining a pitch/flap coupling ratio. The coupling ratio is non-constant as a function of a flap angle and is preferably a substantially continuous, non-linear function of flap angle. The non-constant coupling ratio can be provided by mechanical systems such as a series of linkages or by configuring electronic or other control systems and/or angle sensors. A link with a movable proximal end advantageously is part of the mechanical system. The system can provide relatively large coupling ratios and relatively large rates of coupling ratio changes especially for near-feather pitches and low flap angles.

  13. Extended incident-angle dependence formula of sputter yield

    International Nuclear Information System (INIS)

    Ono, T.; Shibata, K.; Muramoto, T.; Kenmotsu, T.; Li Z.; Kawamura, T.

    2006-06-01

    We extend a new semi-empirical formula for incident-angle dependence of normalized sputter yield that includes the contribution to sputter yield from the direct knock-out process that was not considered in the previously proposed one. Three parameters included in the new one are estimated for data calculated with ACAT code for D + ions incident obliquely on C, Fe and W materials in incident-energy regions from several tens of eV to 10 keV. Then, the parameters are expressed with functions of incident energy. The formula with the functions derived well reproduces that using the ACAT data in the whole energy range. (author)

  14. Monte Carlo calculations of ligth-ion sputtering as a function of the incident angle

    International Nuclear Information System (INIS)

    Haggmark, L.G.; Biersack, J.P.

    1980-01-01

    The sputtering of metal surfaces by light ions has been studied as a function of the incident angle using an extension of the TRIM Monte Carlo computer program. Sputtering yields were calculated at both normal and oblique angles of incidence for H, D, T, and 4 He impinging on Ni, Mo, and Au targets with energies <= 10 keV. Direct comparisons are made with the most recent experimental and theoretical results. There is generally good agreement with the experimental data although our calculated maximum in the yield usually occurs at a smaller incident angle, measured from the surface normal. The enhancement of the yield at large incident angles over that at normal incidence is observed to be a complex function of the incident ion's energy and mass and the target's atomic weight and surface binding energy. (orig.)

  15. UV-Vis reflection spectroscopy under variable angle incidence at the air-liquid interface.

    Science.gov (United States)

    Roldán-Carmona, Cristina; Rubia-Payá, Carlos; Pérez-Morales, Marta; Martín-Romero, María T; Giner-Casares, Juan J; Camacho, Luis

    2014-03-07

    The UV-Vis reflection spectroscopy (UV-Vis-RS) in situ at the air-liquid interface provides information about tilt and aggregation of chromophores in Langmuir monolayers. This information is particularly important given in most cases the chromophore is located at the polar region of the Langmuir monolayer. This region of the Langmuir monolayers has been hardly accessible by other experimental techniques. In spite of its enormous potential, the application of UV-Vis-RS has been limited mainly to reflection measurements under light normal incidence or at lower incidence angles than the Brewster angle. Remarkably, this technique is quite sensitive to the tilt of the chromophores at values of incidence angles close to or larger than the Brewster angle. Therefore, a novel method to obtain the order parameter of the chromophores at the air-liquid interface by using s- and p-polarized radiation at different incidence angles is proposed. This method allowed for the first time the experimental observation of the two components with different polarization properties of a single UV-Vis band at the air-liquid interface. The method of UV-Vis spectroscopy under variable angle incidence is presented as a new tool for obtaining rich detailed information on Langmuir monolayers.

  16. Using Order Tracking Analysis Method to Detect the Angle Faults of Blades on Wind Turbine

    DEFF Research Database (Denmark)

    Li, Pengfei; Hu, Weihao; Liu, Juncheng

    2016-01-01

    The angle faults of blades on wind turbines are usually included in the set angle fault and the pitch angle fault. They are occupied with a high proportion in all wind turbine faults. Compare with the traditional fault detection methods, using order tracking analysis method to detect angle faults....... By analyzing and reconstructing the fault signals, it is easy to detect the fault characteristic frequency and see the characteristic frequencies of angle faults depend on the shaft rotating frequency, which is known as the 1P frequency and 3P frequency distinctly....

  17. Incidence angle normalization of radar backscatter data

    Science.gov (United States)

    NASA’s Soil Moisture Passive Active (SMAP) satellite (~2014) will include a radar system that will provide L-band multi-polarization backscatter at a constant incidence angle of 40º. During the pre-launch phase of the project there is a need for observations that will support the radar-based soil mo...

  18. Optimum angle of incidence for monochromatic interference in transparent films on absorbing substrates

    International Nuclear Information System (INIS)

    Muller, R.H.; Sand, M.L.

    1980-01-01

    Angles of incidence for s- and p-polarized light have been computed and confirmed experimentally for which monochromatic interference in transparent thin films on absorbing substrates results in optimum interference fringe contrast (visibility=1). Under these angles of incidence and with polarized light, film thickness determinations which are not possible at normal incidence or with unpolarized light can be carried out by use of thin-film interference

  19. Statistical meandering wake model and its application to yaw-angle optimisation of wind farms

    International Nuclear Information System (INIS)

    Thøgersen, E; Tranberg, B; Greiner, M; Herp, J

    2017-01-01

    The wake produced by a wind turbine is dynamically meandering and of rather narrow nature. Only when looking at large time averages, the wake appears to be static and rather broad, and is then well described by simple engineering models like the Jensen wake model (JWM). We generalise the latter deterministic models to a statistical meandering wake model (SMWM), where a random directional deflection is assigned to a narrow wake in such a way that on average it resembles a broad Jensen wake. In a second step, the model is further generalised to wind-farm level, where the deflections of the multiple wakes are treated as independently and identically distributed random variables. When carefully calibrated to the Nysted wind farm, the ensemble average of the statistical model produces the same wind-direction dependence of the power efficiency as obtained from the standard Jensen model. Upon using the JWM to perform a yaw-angle optimisation of wind-farm power output, we find an optimisation gain of 6.7% for the Nysted wind farm when compared to zero yaw angles and averaged over all wind directions. When applying the obtained JWM-based optimised yaw angles to the SMWM, the ensemble-averaged gain is calculated to be 7.5%. This outcome indicates the possible operational robustness of an optimised yaw control for real-life wind farms. (paper)

  20. Statistical meandering wake model and its application to yaw-angle optimisation of wind farms

    Science.gov (United States)

    Thøgersen, E.; Tranberg, B.; Herp, J.; Greiner, M.

    2017-05-01

    The wake produced by a wind turbine is dynamically meandering and of rather narrow nature. Only when looking at large time averages, the wake appears to be static and rather broad, and is then well described by simple engineering models like the Jensen wake model (JWM). We generalise the latter deterministic models to a statistical meandering wake model (SMWM), where a random directional deflection is assigned to a narrow wake in such a way that on average it resembles a broad Jensen wake. In a second step, the model is further generalised to wind-farm level, where the deflections of the multiple wakes are treated as independently and identically distributed random variables. When carefully calibrated to the Nysted wind farm, the ensemble average of the statistical model produces the same wind-direction dependence of the power efficiency as obtained from the standard Jensen model. Upon using the JWM to perform a yaw-angle optimisation of wind-farm power output, we find an optimisation gain of 6.7% for the Nysted wind farm when compared to zero yaw angles and averaged over all wind directions. When applying the obtained JWM-based optimised yaw angles to the SMWM, the ensemble-averaged gain is calculated to be 7.5%. This outcome indicates the possible operational robustness of an optimised yaw control for real-life wind farms.

  1. Natural Ventilation Driven by Wind and Temperature Difference

    DEFF Research Database (Denmark)

    Larsen, Tine Steen

    Natural ventilation is a commonly used principle when buildings are being ventilated. It can be controlled by openings in the building envelope, which open or close depending on the need of air inside the building. It can also be the simple action of just opening a door or a window to let the fresh...... driving forces are still wind pressure and temperature differences as with cross-ventilation, but here the turbulence in the wind and the pulsating flow near the opening also affect the flow through the opening. From earlier work, some design expressions already exist, but none of these include...... the incidence angle of the wind, which is an important parameter in this type of ventilation. Several wind tunnel experiments are made and from the results of these, a new design expression is made which includes the wind pressure, temperature difference, incidence angle of the wind and the fluctuations...

  2. The effect of vegetation type, microrelief, and incidence angle on radar backscatter

    Science.gov (United States)

    Owe, M.; Oneill, P. E.; Jackson, T. J.; Schmugge, T. J.

    1985-01-01

    The NASA/JPL Synthetic Aperture Radar (SAR) was flown over a 20 x 110 km test site in the Texas High Plains regions north of Lubbock during February/March 1984. The effect of incidence angle was investigated by comparing the pixel values of the calibrated and uncalibrated images. Ten-pixel-wide transects along the entire azimuth were averaged in each of the two scenes, and plotted against the calculated incidence angle of the center of each range increment. It is evident from the graphs that both the magnitudes and patterns exhibited by the corresponding transect means of the two images are highly dissimilar. For each of the cross-poles, the uncalibrated image displayed very distinct and systematic positive trends through the entire range of incidence angles. The two like-poles, however, exhibited relatively constant returns. In the calibrated image, the cross-poles exhibited a constant return, while the like-poles demonstrated a strong negative trend across the range of look-angles, as might be expected.

  3. Study on laser welding of austenitic stainless steel by varying incident angle of pulsed laser beam

    Science.gov (United States)

    Kumar, Nikhil; Mukherjee, Manidipto; Bandyopadhyay, Asish

    2017-09-01

    In the present work, AISI 304 stainless steel sheets are laser welded in butt joint configuration using a robotic control 600 W pulsed Nd:YAG laser system. The objective of the work is of twofold. Firstly, the study aims to find out the effect of incident angle on the weld pool geometry, microstructure and tensile property of the welded joints. Secondly, a set of experiments are conducted, according to response surface design, to investigate the effects of process parameters, namely, incident angle of laser beam, laser power and welding speed, on ultimate tensile strength by developing a second order polynomial equation. Study with three different incident angle of laser beam 89.7 deg, 85.5 deg and 83 deg has been presented in this work. It is observed that the weld pool geometry has been significantly altered with the deviation in incident angle. The weld pool shape at the top surface has been altered from semispherical or nearly spherical shape to tear drop shape with decrease in incident angle. Simultaneously, planer, fine columnar dendritic and coarse columnar dendritic structures have been observed at 89.7 deg, 85.5 deg and 83 deg incident angle respectively. Weld metals with 85.5 deg incident angle has higher fraction of carbide and δ-ferrite precipitation in the austenitic matrix compared to other weld conditions. Hence, weld metal of 85.5 deg incident angle achieved higher micro-hardness of ∼280 HV and tensile strength of 579.26 MPa followed by 89.7 deg and 83 deg incident angle welds. Furthermore, the predicted maximum value of ultimate tensile strength of 580.50 MPa has been achieved for 85.95 deg incident angle using the developed equation where other two optimum parameter settings have been obtained as laser power of 455.52 W and welding speed of 4.95 mm/s. This observation has been satisfactorily validated by three confirmatory tests.

  4. Measurement of the spatial resolution of wide-pitch silicon strip detectors with large incident angle

    International Nuclear Information System (INIS)

    Kawasaki, T.; Hazumi, M.; Nagashima, Y.

    1996-01-01

    As a part of R ampersand D for the BELLE experiment at KEK-B, we measured the spatial resolution of silicon strip detectors for particles with incident angles ranging from 0 degrees to 75 degrees. These detectors have strips with pitches of 50, 125 and 250 μm on the ohmic side. We have obtained the incident angle dependence which agreed well with a Monte Carlo simulation. The resolution was found to be 11 μm for normal incidence with a pitch of 50 μm, and 29 μm for incident angle of 75 degrees with a pitch of 250μm

  5. Wind-break walls with optimized setting angles for natural draft dry cooling tower with vertical radiators

    International Nuclear Information System (INIS)

    Ma, Huan; Si, Fengqi; Kong, Yu; Zhu, Kangping; Yan, Wensheng

    2017-01-01

    Highlights: • Aerodynamic field around dry cooling tower is presented with numerical model. • Performances of cooling deltas are figured out by air inflow velocity analysis. • Setting angles of wind-break walls are optimized to improve cooling performance. • Optimized walls can reduce the interference on air inflow at low wind speeds. • Optimized walls create stronger outside secondary flow at high wind speeds. - Abstract: To get larger cooling performance enhancement for natural draft dry cooling tower with vertical cooling deltas under crosswind, setting angles of wind-break walls were optimized. Considering specific structure of each cooling delta, an efficient numerical model was established and validated by some published results. Aerodynamic fields around cooling deltas under various crosswind speeds were presented, and outlet water temperatures of the two columns of cooling delta were exported as well. It was found that for each cooling delta, there was a difference in cooling performance between the two columns, which is closely related to the characteristic of main airflow outside the tower. Using the present model, air inflow deviation angles at cooling deltas’ inlet were calculated, and the effects of air inflow deviation on outlet water temperatures of the two columns for corresponding cooling delta were explained in detail. Subsequently, at cooling deltas’ inlet along radial direction of the tower, setting angles of wind-break walls were optimized equal to air inflow deviation angles when no airflow separation appeared outside the tower, while equal to zero when outside airflow separation occurred. In addition, wind-break walls with optimized setting angles were verified to be extremely effective, compared to the previous radial walls.

  6. Angular Distributions of Sputtered Atoms from Semiconductor Targets at Grazing Ion Beam Incidence Angles

    International Nuclear Information System (INIS)

    Sekowski, M.; Burenkov, A.; Martinez-Limia, A.; Hernandez-Mangas, J.; Ryssel, H.

    2008-01-01

    Angular distributions of ion sputtered germanium and silicon atoms are investigated within this work. Experiments are performed for the case of grazing ion incidence angles, where the resulting angular distributions are asymmetrical with respect to the polar angle of the sputtered atoms. The performed experiments are compared to Monte-Carlo simulations from different programs. We show here an improved model for the angular distribution, which has an additional dependence of the ion incidence angle.

  7. Effect of the blade arc angle on the performance of a Savonius wind turbine

    Directory of Open Access Journals (Sweden)

    Zhaoyong Mao

    2015-05-01

    Full Text Available Savonius wind turbine is a common vertical axis wind turbine which simply comprises two or three arc-type blades and can generate power under poor wind conditions. With the aim of increasing the turbine’s power efficiency, the effect of the blade arc angle on the performance of a typical two-bladed Savonius wind turbine is investigated with a transient computational fluid dynamics method. Simulations were based on the Reynolds Averaged Navier–Stokes equations, and the renormalization group k − ε turbulent model was utilized. The numerical method was validated with existing experimental data. The results indicate that the turbine with a blade arc angle of 160 ∘ generates the maximum power coefficient, 0.2836, which is 8.37% higher than that from a conventional Savonius turbine.

  8. Influence on ultrasonic incident angle and defect detection sensitivity by cast stainless steel structure

    International Nuclear Information System (INIS)

    Kurozumi, Y.

    2004-01-01

    It is well known that ultrasonic waves are affected strongly by macro-structures in cast stainless steel, as in the primary pipe or other components in pressurized water reactors (PWRs). In this work, ultrasonic refractive angles and defect detection sensitivities are investigated at different incident angles to cast stainless steel. The aims of the investigation are to clarify the transmission of ultrasonic waves in cast stainless steel and to contribute to the transducer design. The results are that ultrasonic refractive angles in cast stainless steel shift towards the 45-degree direction with respect to the direction of dendritic structures by 11.8 degrees at the maximum and that the sensitivity of transducer for inner surface breaking cracks increases with decreasing incident angle. However, in an ultrasonic inspection of actual welds at smaller incident angles, a trade-off occurs between increased defect detection sensitivity and decreased defect discrimination capability due to intense false signals produced by non-defective features. (orig.)

  9. Output Power Control of Wind Turbine Generator by Pitch Angle Control using Minimum Variance Control

    Science.gov (United States)

    Senjyu, Tomonobu; Sakamoto, Ryosei; Urasaki, Naomitsu; Higa, Hiroki; Uezato, Katsumi; Funabashi, Toshihisa

    In recent years, there have been problems such as exhaustion of fossil fuels, e. g., coal and oil, and environmental pollution resulting from consumption. Effective utilization of renewable energies such as wind energy is expected instead of the fossil fuel. Wind energy is not constant and windmill output is proportional to the cube of wind speed, which cause the generated power of wind turbine generators (WTGs) to fluctuate. In order to reduce fluctuating components, there is a method to control pitch angle of blades of the windmill. In this paper, output power leveling of wind turbine generator by pitch angle control using an adaptive control is proposed. A self-tuning regulator is used in adaptive control. The control input is determined by the minimum variance control. It is possible to compensate control input to alleviate generating power fluctuation with using proposed controller. The simulation results with using actual detailed model for wind power system show effectiveness of the proposed controller.

  10. A computational procedure to define the incidence angle on airfoils rotating around an axis orthogonal to flow direction

    International Nuclear Information System (INIS)

    Bianchini, Alessandro; Balduzzi, Francesco; Ferrara, Giovanni; Ferrari, Lorenzo

    2016-01-01

    Highlights: • New method to calculate the incidence angle from a computed CFD flow field. • Applicable to each airfoil rotating around an axis orthogonal to flow direction. • Composed by four, easily automatable steps explained in details. • Robustness of the model assessed on two Darrieus turbine study cases. - Abstract: Numerical simulations provided in the last few years a significant contribution for a better understanding of many phenomena connected to the flow past rotating blades. In case of airfoils rotating around an axis orthogonal to flow direction, one of the most critical issues is represented by the definition of the incidence angle on the airfoil from the computed flow field. Incidence indeed changes continuously as a function of the azimuthal position of the blade and a distribution of peripheral speed is experienced along the airfoil’s thickness due to radius variation. The possibility of reducing the flow to lumped parameters (relative speed modulus and direction), however, would be of capital relevance to transpose accurate CFD numerical results into effective inputs to low-order models that are often exploited for preliminary design analyses. If several techniques are available for this scope in the case of blades rotating around an axis parallel to flow direction (e.g., horizontal-axis wind turbines), the definition of a robust procedure in case the revolution axis is orthogonal to the flow is still missing. In the study, a novel technique has been developed using data from Darrieus-like rotating airfoils. The method makes use of the virtual camber theory to define a virtual airfoil whose pressure coefficient distributions in straight flow are used to match those of the real airfoil in curved flow. Even if developed originally for vertical-axis wind turbines, the method is of general validity and is thought to represent in the near future a valuable tool for researchers to get a new insight on many complex phenomena connected to flow

  11. A method of incident angle estimation for high resolution spectral recovery in filter-array-based spectrometers

    Science.gov (United States)

    Kim, Cheolsun; Lee, Woong-Bi; Ju, Gun Wu; Cho, Jeonghoon; Kim, Seongmin; Oh, Jinkyung; Lim, Dongsung; Lee, Yong Tak; Lee, Heung-No

    2017-02-01

    In recent years, there has been an increasing interest in miniature spectrometers for research and development. Especially, filter-array-based spectrometers have advantages of low cost and portability, and can be applied in various fields such as biology, chemistry and food industry. Miniaturization in optical filters causes degradation of spectral resolution due to limitations on spectral responses and the number of filters. Nowadays, many studies have been reported that the filter-array-based spectrometers have achieved resolution improvements by using digital signal processing (DSP) techniques. The performance of the DSP-based spectral recovery highly depends on the prior information of transmission functions (TFs) of the filters. The TFs vary with respect to an incident angle of light onto the filter-array. Conventionally, it is assumed that the incident angle of light on the filters is fixed and the TFs are known to the DSP. However, the incident angle is inconstant according to various environments and applications, and thus TFs also vary, which leads to performance degradation of spectral recovery. In this paper, we propose a method of incident angle estimation (IAE) for high resolution spectral recovery in the filter-array-based spectrometers. By exploiting sparse signal reconstruction of the L1- norm minimization, IAE estimates an incident angle among all possible incident angles which minimizes the error of the reconstructed signal. Based on IAE, DSP effectively provides a high resolution spectral recovery in the filter-array-based spectrometers.

  12. Incident angle dependence of reactions between graphene and hydrogen atom by molecular dynamics simulation

    International Nuclear Information System (INIS)

    Saito, Seiki; Nakamura, Hiroaki; Ito, Atsushi

    2010-01-01

    Incident angle dependence of reactions between graphene and hydrogen atoms are obtained qualitatively by classical molecular dynamics simulation under the NVE condition with modified Brenner reactive empirical bond order (REBO) potential. Chemical reaction depends on two parameters, i.e., polar angle θ and azimuthal angle φ of the incident hydrogen. From the simulation results, it is found that the reaction rates strongly depend on polar angle θ. Reflection rate becomes larger with increasing θ, and the θ dependence of adsorption rate is also found. The θ dependence is caused by three dimensional structure of the small potential barrier which covers adsorption sites. φ dependence of penetration rate is also found for large θ. (author)

  13. Simulation calculation for the energy deposition profile and the transmission fraction of intense pulsed electron beam at various incident angles

    International Nuclear Information System (INIS)

    Yang Hailiang; Qiu Aici; Zhang Jiasheng; Huang Jianjun; Sun Jianfeng

    2002-01-01

    The incident angles have a heavy effect on the intense pulsed electron beam energy deposition profile, energy deposition fraction and beam current transmission fraction in material. The author presents electron beam energy deposition profile and energy deposition fraction versus electron energy (0.5-2.0 MeV), at various incident angles for three aluminum targets of various thickness via theoretical calculation. The intense pulsed electron beam current transmission fractions versus electron energy (0.4-1.4 MeV) at various incident angles for three thickness of carbon targets were also theoretically calculated. The calculation results indicate that the deposition energy in unit mass of material surface layer increase with the rise of electron beam incident angle, and electron beam with low incident angle (closer to normal incident angle) penetrates deeper into the target material. The electron beams deposit more energy in unit mass of material surface layer at 60 degree-70 degree incident angle

  14. Pitch Angle Control for Variable Speed Wind Turbines

    Directory of Open Access Journals (Sweden)

    Mouna Ben Smida

    2015-08-01

    Full Text Available Abstract.Pitch control is a practical technique for power regulation above the rated wind speed it is considered as the most efficient and popular power control method. As conventional pitch control usually use PI controller, the mathematical model of the system should be known well.This paper deals with the operation and the control of the direct driven permanent magnet synchronous generator (PMSG.Different conventional strategies of pitch angle control are described and validated through simulation results under Matlab\\Simulink.

  15. Incident-angle dependency found in track formation sensitivity of a plastic nuclear track detector (TD-1)

    International Nuclear Information System (INIS)

    Yasuda, Hiroshi

    1999-01-01

    The present study was done since data are hardly available on the incident-angle dependency of track formation sensitivity (S) of the plastic nuclear track detector. Chips of a TD-1 plate, an antioxidant-doped CR-39 (diethyleglycol-bis-allylcarbonate, HARZLAS, Fukuvi Chem. Ind.), were used as a high-LET radiation detector and were exposed to heavy ion beams of C, Ne, and Si under different incident angles in Heavy Ion Medical Accelerator in Chiba of National Institute of Radiological Sciences. After exposed and etched, the chips were observed with an optical microscope and a program for image analysis to calculate S. The S values calculated were found smaller for the beams having lower incident angles. Thus the estimated LET values from the S-LET relationship for vertical incident beams showed large reduction for low-angle particles. Those potential errors should be quantified and corrected in determination of LET spectra in space. (K.H.)

  16. Ocean Surface Wind Speed of Hurricane Helene Observed by SAR

    DEFF Research Database (Denmark)

    Xu, Qing; Cheng, Yongcun; Li, Xiaofeng

    2011-01-01

    Prediction System (NOGAPS) model, C-band geophysical model functions (GMFs) which describe the normalized radar cross section (NRCS) dependence on the wind speed and the geometry of radar observations (i.e., incidence angle and azimuth angle with respect to wind direction) such as CMOD5 and newly developed......The hurricanes can be detected by many remote sensors, but synthetic aperture radar (SAR) can yield high-resolution (sub-kilometer) and low-level wind information that cannot be seen below the cloud by other sensors. In this paper, an assessment of SAR capability of monitoring high...

  17. Arrival time and incidence angle distributions of extensive air showers (EAS) muons

    International Nuclear Information System (INIS)

    Brancus, I.M.; Duma, M.; Vulpescu, B.; Foeller, M.; Rebel, H.; Voelker, G.; Chilingarian, A.A.

    1995-01-01

    The arrival time distributions of the muons can be related to the longitudinal EAS development and may provide additional information about the nature of the primary. Based on EAS simulations using the Monte-Carlo code CORSIKA, the correlations between arrival time and incidence angle distributions have been investigated in a case of a set of ideal detectors (10 m x 10 m) placed at various distances from the shower core. Applying advanced statistical techniques based on Bayes decision rule and non-parametric multivariate analysing methods it turns out that the correlations of muon arrival time and incidence angle at various separating distances of about 50 m exhibit promising features for mass discrimination (author)

  18. Optimized chord and twist angle distributions of wind turbine blade considering Reynolds number effects

    Energy Technology Data Exchange (ETDEWEB)

    Wang, L.; Tang, X. [Univ. of Central Lancashire. Engineering and Physical Sciences, Preston (United Kingdom); Liu, X. [Univ. of Cumbria. Sustainable Engineering, Workington (United Kingdom)

    2012-07-01

    The aerodynamic performance of a wind turbine depends very much on its blade geometric design, typically based on the blade element momentum (BEM) theory, which divides the blade into several blade elements. In current blade design practices based on Schmitz rotor design theory, the blade geometric parameters including chord and twist angle distributions are determined based on airfoil aerodynamic data at a specific Reynolds number. However, rotating wind turbine blade elements operate at different Reynolds numbers due to variable wind speed and different blade span locations. Therefore, the blade design through Schmitz rotor theory at a specific Reynolds number does not necessarily provide the best power performance under operational conditions. This paper aims to provide an optimal blade design strategy for horizontal-axis wind turbines operating at different Reynolds numbers. A fixed-pitch variable-speed (FPVS) wind turbine with S809 airfoil is chosen as a case study and a Matlab program which considers Reynolds number effects is developed to determine the optimized chord and twist angle distributions of the blade. The performance of the optimized blade is compared with that of the preliminary blade which is designed based on Schmitz rotor design theory at a specific Reynolds number. The results demonstrate that the proposed blade design optimization strategy can improve the power performance of the wind turbine. This approach can be further developed for any practice of horizontal axis wind turbine blade design. (Author)

  19. CFD Simulation of Turbulent Wind Effect on an Array of Ground-Mounted Solar PV Panels

    Science.gov (United States)

    Irtaza, Hassan; Agarwal, Ashish

    2018-02-01

    Aim of the present study is to determine the wind loads on the PV panels in a solar array since panels are vulnerable to high winds. Extensive damages of PV panels, arrays and mounting modules have been reported the world over due to high winds. Solar array of dimension 6 m × 4 m having 12 PV panels of size 1 m × 2 m on 3D 1:50 scaled models have been simulated using unsteady solver with Reynolds-Averaged Navier-Stokes equations of computational fluid dynamics techniques to study the turbulent wind effects on PV panels. A standalone solar array with 30° tilt angle in atmospheric surface layer with the Renormalized Group (RNG) turbulence closure subjected to incident wind varied from - 90° to 90°. The net pressure, drag and lift coefficients are found to be maximum when the wind is flowing normally to the PV panel either 90° or - 90°. The tilt angle of solar arrays the world over not vary on the latitude but also on the seasons. Keeping this in mind the ground mounted PV panels in array with varying tilt angle from 10° to 60° at an interval of 10° have been analyzed for normal wind incident i.e. 90° and - 90° using unsteady RNG turbulence model. Net pressure coefficients have been calculated and found to be increasing with increase in array tilting angle. Maximum net pressure coefficient was observed for the 60° tilted PV array for 90° and - 90° wind incident having value of 0.938 and 0.904 respectively. The results can be concluded that the PV panels are subjected to significant lift and drag forces under wind loading, which needs to be quantified with sufficient factor of safety to avoid damages.

  20. CFD Simulation of Turbulent Wind Effect on an Array of Ground-Mounted Solar PV Panels

    Science.gov (United States)

    Irtaza, Hassan; Agarwal, Ashish

    2018-06-01

    Aim of the present study is to determine the wind loads on the PV panels in a solar array since panels are vulnerable to high winds. Extensive damages of PV panels, arrays and mounting modules have been reported the world over due to high winds. Solar array of dimension 6 m × 4 m having 12 PV panels of size 1 m × 2 m on 3D 1:50 scaled models have been simulated using unsteady solver with Reynolds-Averaged Navier-Stokes equations of computational fluid dynamics techniques to study the turbulent wind effects on PV panels. A standalone solar array with 30° tilt angle in atmospheric surface layer with the Renormalized Group (RNG) turbulence closure subjected to incident wind varied from - 90° to 90°. The net pressure, drag and lift coefficients are found to be maximum when the wind is flowing normally to the PV panel either 90° or - 90°. The tilt angle of solar arrays the world over not vary on the latitude but also on the seasons. Keeping this in mind the ground mounted PV panels in array with varying tilt angle from 10° to 60° at an interval of 10° have been analyzed for normal wind incident i.e. 90° and - 90° using unsteady RNG turbulence model. Net pressure coefficients have been calculated and found to be increasing with increase in array tilting angle. Maximum net pressure coefficient was observed for the 60° tilted PV array for 90° and - 90° wind incident having value of 0.938 and 0.904 respectively. The results can be concluded that the PV panels are subjected to significant lift and drag forces under wind loading, which needs to be quantified with sufficient factor of safety to avoid damages.

  1. Power angle control of grid-connected voltage source converter in a wind energy application

    Energy Technology Data Exchange (ETDEWEB)

    Svensson, Jan [Chalmers Univ. of Technology, Goeteborg (Sweden). Dept. of Electric Power Engineering

    1996-12-31

    In this thesis, the connection of a voltage source converter to the grid in a wind energy application is examined. The possibility of using a cheap control system without grid current measurements, is investigated. The control method is based on controlling the voltage angle of the inverter, which governs the active power flow. The highest frequency of the power variation, coming from wind turbine, is approx. 5 Hz. Since the proposed control method easily can handle such power variations it is very well suited for wind turbine applications. The characteristics of the system depend on the DC-link capacitor, the grid filter inductance and resistance. Large values of the resistance damp the system well but increase the energy losses. A high inductance leads to a reduced harmonic level on the grid but makes the system slower. By using feed-forward of the generator/rectifier current signal, the performance is increased compared to an ordinary PI-control. Combining the Linear Quadratic (LQ) control method with Kalman filtered input signals, a robust control method with a good performance is obtained. The LQ controller controls both the phase displacement angle and the modulation index, resulting in higher bandwidth, and the typical power angle resonance at the grid frequency disappears. 22 refs, 109 figs, 14 tabs

  2. X-ray fluorescence analysis of thin films at glancing-incident and -takeoff angles

    International Nuclear Information System (INIS)

    Tsuji, K.; Sato, S.; Hirokawa, K.

    1995-01-01

    We have developed a new analytical method, Glancing-Incidence and -Takeoff X-Ray Fluorescence (GIT-XRF) method for the first time. Here, we present an idea for a thin-film analysis and a surface analysis by the GIT-XRF method. In this method, the dependence of the fluorescent x-ray intensity on takeoff angle is measured at various incident angles of the primary x-ray. Compared with a total reflection x-ray fluorescence method, the GIT-XRF method allows a detailed thin-film analysis, because the thin film is cross-checked by many experimental curves. Moreover, a surface-sensitive analysis is also possible by the GIT-XRF method. (author)

  3. Kinematics of a vertical axis wind turbine with a variable pitch angle

    Science.gov (United States)

    Jakubowski, Mateusz; Starosta, Roman; Fritzkowski, Pawel

    2018-01-01

    A computational model for the kinematics of a vertical axis wind turbine (VAWT) is presented. A H-type rotor turbine with a controlled pitch angle is considered. The aim of this solution is to improve the VAWT productivity. The discussed method is related to a narrow computational branch based on the Blade Element Momentum theory (BEM theory). The paper can be regarded as a theoretical basis and an introduction to further studies with the application of BEM. The obtained torque values show the main advantage of using the variable pitch angle.

  4. Dependence of the solar absorptance of selective absorber coatings on the angle of incidence

    Energy Technology Data Exchange (ETDEWEB)

    Reed, K A

    1977-01-01

    The directional solar absorptances ..cap alpha../sub s/(theta) of samples of a number of selective absorber coatings have been determined. The spectral directional hemispherical reflectances plambda(theta;2..pi..) of each sample was measured over the wavelength range 0.3..mu.. to 2.5..mu.. at angles of incidence theta between 10/sup 0/ and 80/sup 0/. The quantity (1-plambda(theta;2..pi..)) was convoluted over an AM2 solar spectrum to obtain ..cap alpha../sub s/(theta) at each angle of incidence. The solar absorptance at near normal incidence varied from sample to sample and from coating to coating, as expected, given the present state of the art. All the absorptances show similar angular dependences, however. When normalized to unity at normal incidence, the data nearly describe a single curve, for which a power series in theta was found. For comparison, the solar absorptance was also determined for freshly prepared lamp black.

  5. Experimental study of wind-turbine airfoil aerodynamics in high turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Devinant, Ph.; Laverne, T.; Hureau, J. [Laboratoire de Mecanique et d' Energetique Ecole Superieure de l' Energie et des Materiaux Universite d' Orleans, rue Leonard de Vinci F-45072 , Cedex 2 Orleans (France)

    2002-06-01

    Wind turbines very often have to operate in high turbulence related, for example, with lower layers atmospheric turbulence or wakes of other wind turbines. Most available data on airfoil aerodynamics concerns mainly aeronautical applications, which are characterized by a low level of turbulence (generally less than 1%) and low angles of attack. This paper presents wind tunnel test data for the aerodynamic properties-lift, drag, pitching moment, pressure distributions-of an airfoil used on a wind turbine when subjected to incident flow turbulence levels of 0.5-16% and placed at angles of attack up to 90. The results show that the aerodynamic behavior of the airfoil can be strongly affected by the turbulence level both qualitatively and quantitatively. This effect is especially evidenced in the angle of attack range corresponding to airfoil stall, as the boundary layer separation point advances along the leeward surface of the airfoil.

  6. Wind-tunnel investigation of the flow correction for a model-mounted angle of attack sensor at angles of attack from -10 deg to 110 deg. [Langley 12-foot low speed wind tunnel test

    Science.gov (United States)

    Moul, T. M.

    1979-01-01

    A preliminary wind tunnel investigation was undertaken to determine the flow correction for a vane angle of attack sensor over an angle of attack range from -10 deg to 110 deg. The sensor was mounted ahead of the wing on a 1/5 scale model of a general aviation airplane. It was shown that the flow correction was substantial, reaching about 15 deg at an angle of attack of 90 deg. The flow correction was found to increase as the sensor was moved closer to the wing or closer to the fuselage. The experimentally determined slope of the flow correction versus the measured angle of attack below the stall angle of attack agreed closely with the slope of flight data from a similar full scale airplane.

  7. Absorptivity modulation on wavy molten steel surfaces: The influence of laser wavelength and angle of incidence

    International Nuclear Information System (INIS)

    Kaplan, A. F. H.

    2012-01-01

    The modulation of the angle-dependent Fresnel absorptivity across wavy molten steel surfaces during laser materials processing, like drilling, cutting, or welding, has been calculated. The absorptivity is strongly altered by the grazing angle of incidence of the laser beam on the processing front. Owing to its specific Brewster-peak characteristics, the 10.64 μm wavelength CO 2 -laser shows an opposite trend with respect to roughness and angle-of-incidence compared to lasers in the wavelength range of 532-1070 nm. Plateaus or rings of Brewster-peak absorptivity can lead to hot spots on a wavy surface, often in close proximity to cold spots caused by shadow domains.

  8. Impact of Offshore Wind Power Integrated by VSC-HVDC on Power Angle Stability of Power Systems

    Science.gov (United States)

    Lu, Haiyang; Tang, Xisheng

    2017-05-01

    Offshore wind farm connected to grid by VSC-HVDC loses frequency support for power system, so adding frequency control in wind farm and VSC-HVDC system is an effective measure, but it will change wind farm VSC-HVDC’s transient stability on power system. Through theoretical analysis, concluding the relationship between equivalent mechanical power and electromagnetic power of two-machine system with the active power of wind farm VSC-HVDC, then analyzing the impact of wind farm VSC-HVDC with or without frequency control and different frequency control parameters on angle stability of synchronous machine by EEAC. The validity of theoretical analysis has been demonstrated through simulation in PSCAD/EMTDC.

  9. CFD analysis of flow fields for shrouded wind turbine’s diffuser model with different flange angles

    Directory of Open Access Journals (Sweden)

    Aly M. El-Zahaby

    2017-03-01

    Present model verification indicates a good agreement between present numerical work and previous published experimental work. The numerical simulation shows the created vortices behind flange that cause pressure drop which increases mass flow rate through the diffuser. The results indicate also that the right flange angle at 15° is the optimum angle that accelerates flow at diffuser entrance. The increase of velocity at this optimum flange angles is higher than the case of normal angle, where the expected increase in the generated power by wind turbine can reach 5% more compared with normal flange.

  10. The influence of incident beam's angle offset of Fourier transform infrared spectrometer on the spectrum measurement explored with synchrotron radiation

    International Nuclear Information System (INIS)

    Chen Wenhao; Chen Min; Xiao Tiqiao

    2011-01-01

    Effects of the incident angle offset on FT-IR spectra are investigated in this paper. The simulated FT-IR spectra are obtained by Fourier inverse transform. The results show that this frequency shift varies with the angle offset of the incident beam in FT-IR. As an example,the factors that affect the angle of incident IR light at SSRF are analyzed. According to performance specifications of the IR beamline, requirements of the optical component installation precision and position drift of the light source are given. (authors)

  11. Molecular dynamics simulation for the influence of incident angles of energetic carbon atoms on the structure and properties of diamond-like carbon films

    International Nuclear Information System (INIS)

    Li, Xiaowei; Ke, Peiling; Lee, Kwang-Ryeol; Wang, Aiying

    2014-01-01

    The influence of incident angles of energetic carbon atoms (0–60°) on the structure and properties of diamond-like carbon (DLC) films was investigated by the molecular dynamics simulation using a Tersoff interatomic potential. The present simulation revealed that as the incident angles increased from 0 to 60°, the surface roughness of DLC films increased and the more porous structure was generated. Along the growth direction of DLC films, the whole system could be divided into four regions including substrate region, transition region, stable region and surface region except the case at the incident angle of 60°. When the incident angle was 45°, the residual stress was significantly reduced by 12% with little deterioration of mechanical behavior. The further structure analysis using both the bond angles and bond length distributions indicated that the compressive stress reduction mainly resulted from the relaxation of highly distorted C–C bond length. - Highlights: • The dependence of films properties on different incident angles was investigated. • The change of incident angles reduced the stress without obvious damage of density. • The stress reduction attributed to the relaxation of highly distorted bond length

  12. AIRBORNE X-HH INCIDENCE ANGLE IMPACT ON CANOPY HEIGHT RETREIVAL: IMPLICATIONS FOR SPACEBORNE X-HH TANDEM-X GLOBAL CANOPY HEIGHT MODEL

    Directory of Open Access Journals (Sweden)

    M. L. Tighe

    2012-07-01

    Full Text Available To support international climate change mitigation efforts, the United Nations REDD+ initiative (Reducing Emissions from Deforestation and Degradation seeks to reduce land use induced greenhouse gas emissions to the atmosphere. It requires independent monitoring of forest cover and forest biomass information in a spatially explicit form. It is widely recognised that remote sensing is required to deliver this information. Synthetic Aperture Radar interferometry (InSAR techniques have gained traction in the last decade as a viable technology from which vegetation canopy height and bare earth elevations can be derived. The viewing geometry of a SAR sensor is side-looking where the radar pulse is transmitted out to one side of the aircraft or satellite, defining an incidence angle (θ range. The incidence angle will change from near-range (NR to far-range (FR across of the track of the SAR platform. InSAR uses image pairs and thus, contain two set of incidence angles. Changes in the InSAR incidence angles can alter the relative contributions from the vegetation canopy and the ground surface and thus, affect the retrieved vegetation canopy height. Incidence angle change is less pronounced in spaceborne data than in airborne data and mitigated somewhat when multiple InSAR-data takes are combined. This study uses NEXTMap® single- and multi-pass X-band HH polarized InSAR to derive vegetation canopy height from the scattering phase centre height (hspc. Comparisons with in situ vegetation canopy height over three test sites (Arizona-1, Minnesota-2; the effect of incidence angle changes across swath on the X-HH InSAR hspc was examined. Results indicate at steep incidence angles (θ = 35º, more exposure of lower vegetation canopy structure (e.g. tree trunks led to greater lower canopy double bounce, increased ground scattering, and decreased volume scattering. This resulted in a lower scattering phase centre height (hspc or a greater underestimation of

  13. Wide Angle of Incidence-Insensitive Polarization-Independent THz Metamaterial Absorber for Both TE and TM Mode Based on Plasmon Hybridizations

    Directory of Open Access Journals (Sweden)

    Xiu Tao Huang

    2018-04-01

    Full Text Available An ultra-wide-angle THz metamaterial absorber (MA utilizing sixteen-circular-sector (SCR resonator for both transverse electric (TE and transverse magnetic (TM mode is designed and investigated numerically. At normal incidence, the absorptivity of the proposed MA is higher than 93.7% at 9.05 THz for different polarization angles, due to the rotational symmetry structure of the unit cell. Under oblique incidence, the absorptivity can still exceed 90%, even when the incident angle is up to 70° for both TE and TM mode. Especially, the frequency variation in TE mode is less than 0.25% for different incident angles from 0° to 70°. The electric field (Ez distributions are used to explain the absorption mechanism. Numerical simulation results show that the high absorption with wide-angle independence stems from fundamental dipole resonance and gap surface plasmons. The broadband deep-infrared MA is also obtained by stacking three metal-dielectric layers. The designed MA has great potential in bolometric pixel elements, biomedical sensors, THz imaging, and solar cells.

  14. Specular reflectance of soiled glass mirrors - Study on the impact of incidence angles

    Science.gov (United States)

    Heimsath, Anna; Lindner, Philip; Klimm, Elisabeth; Schmid, Tobias; Moreno, Karolina Ordonez; Elon, Yehonatan; Am-Shallem, Morag; Nitz, Peter

    2016-05-01

    The accumulation of dust and soil on the surface of solar reflectors is an important factor reducing the power output of solar power plants. Therefore the effect of accumulated dust on the specular reflectance of solar mirrors should be understood well in order to improve the site-dependent performance prediction. Furthermore, an optimization of the CSP System maintenance, in particular the cleaning cycles, can be achieved. Our measurements show a noticeable decrease of specular reflectance when the angle of incidence is increased. This effect may be explained by shading and blocking mechanisms caused by dirt particles. The main physical causes of radiation loss being absorption and scattering, the near-angle scattering leads to a further decrease of specular reflectance for smaller angles of acceptance. Within this study mirror samples were both outdoor exposed and indoor artificially soiled. For indoor soiling, the mirror samples were artificially soiled in an in-house developed dusting device using both artificial-standardized dust and real dust collected from an arid outdoor test field at the Negev desert. A model function is proposed that approximates the observed reduction of specular reflectance with the incidence angle with a sufficient accuracy and by simple means for this soil type. Hence a first step towards a new approach to improve site dependent performance prediction of solar power plants is taken.

  15. Ocular surface disease incidence in patients with open-angle glaucoma

    Directory of Open Access Journals (Sweden)

    Radenković Marija

    2016-01-01

    Full Text Available Introduction. Ocular surface disease (OSD is a multifactorial disease of the tears and ocular surface that results in symptoms of discomfort, visual disturbances, tear film instability with potential damage to the ocular surface, accompanied by increased tear film osmolarity and inflammation of the ocular surface. It is a consequence of disrupted homeostasis of lacrimal functional unit. The main pathogenetic mechanism stems from tear hyperosmolarity and tear film instability. The etiological classification is hyposecretory (Sy-Sjögren and non-Sjögren and evaporative (extrinsic and intrinsic form. Delphi panel classification grades disease stages. Antiglaucoma topical therapy causes exacerbation or occurrence of symptoms of dry eye due to main ingredients or preservatives (benzalkonium chloride - BAK, which are dose- and time-dependent. BAK reduces the stability of the lipid layer of tears, the number of goblet cells, induces apoptosis and inflammatory infiltration. Objective. The aim of this study was the analysis of the OSD incidence in open-angle glaucoma patients caused by topical medicamentous therapy. Methods. Retrospective analysis of examined patients with open-angle glaucoma was used. Results. Increased incidence of moderate and advanced OSD Index degrees in the group of primary open-angle glaucoma (POAG and pseudoexfoliative glaucoma. According to the Delphi Panel Scale the most common grade is IIb (POAG and pseudoexfoliative glaucoma. Evaporative form of OSD prevailed in all treatment groups. High percentage of dry eye in patients with higher concentrations of preservatives applied was noticed. Conclusion. OSD should be timely diagnosed and treated. Dry eye has an impact on surgical outcome and postoperative visual acuity, and in order to improve patient compliance and quality of life, symptoms of dry eye should be addressed and medications with lower concentrations of preservatives should be applied.

  16. Ocular surface disease incidence in patients with open-angle glaucoma.

    Science.gov (United States)

    Radenković, Marija; Stanković-Babić, Gordana; Jovanović, Predrag; Djordjević-Jocić, Jasmina; Trenkić-Božinović, Marija

    2016-01-01

    Ocular surface disease (OSD) is a multifactorial disease of the tears and ocular surface that results in symptoms of discomfort, visual disturbances, tear film instability with potential damage to the ocular surface, accompanied by increased tear film osmolarity and inflammation of the ocular surface. It is a consequence of disrupted homeostasis of lacrimal functional unit. The main pathogenetic mechanism stems from tear hyperosmolarity and tear film instability. The etiological classification is hyposecretory (Sy-Sjögren and non-Sjögren) and evaporative (extrinsic and intrinsic) form. Delphi panel classification grades disease stages. Antiglaucoma topical therapy causes exacerbation or occurrence of symptoms of dry eye due to main ingredients or preservatives (benzalkonium chloride – BAK), which are dose- and time-dependent. BAK reduces the stability of the lipid layer of tears, the number of goblet cells, induces apoptosis and inflammatory infiltration. The aim of this study was the analysis of the OSD incidence in open-angle glaucoma patients caused by topical medicamentous therapy. Retrospective analysis of examined patients with open-angle glaucoma was used. Increased incidence of moderate and advanced OSD Index degrees in the group of primary open-angle glaucoma (POAG) and pseudoexfoliative glaucoma. According to the Delphi Panel Scale the most common grade is IIb (POAG and pseudoexfoliative glaucoma). Evaporative form of OSD prevailed in all treatment groups. High percentage of dry eye in patients with higher concentrations of preservatives applied was noticed. OSD should be timely diagnosed and treated. Dry eye has an impact on surgical outcome and postoperative visual acuity, and in order to improve patient compliance and quality of life, symptoms of dry eye should be addressed and medications with lower concentrations of preservatives should be applied.

  17. Effects of Strand Lay Direction and Crossing Angle on Tribological Behavior of Winding Hoist Rope

    Directory of Open Access Journals (Sweden)

    Xiang-dong Chang

    2017-06-01

    Full Text Available Friction and wear behavior exists between hoisting ropes that are wound around the drums of a multi-layer winding hoist. It decreases the service life of ropes and threatens mine safety. In this research, a series of experiments were conducted using a self-made test rig to study the effects of the strand lay direction and crossing angle on the winding rope’s tribological behavior. Results show that the friction coefficient in the steady-state period shows a decreasing tendency with an increase of the crossing angle in both cross directions, but the variation range is different under different cross directions. Using thermal imaging, the high temperature regions always distribute along the strand lay direction in the gap between adjacent strands, as the cross direction is the same with the strand lay direction (right cross contact. Additionally, the temperature rise in the steady-state increases with the increase of the crossing angle in both cross directions. The differences of the wear scar morphology are obvious under different cross directions, especially for the large crossing angle tests. In the case of right cross, the variation range of wear mass loss is larger than that in left cross. The damage that forms on the wear surface is mainly ploughing, pits, plastic deformation, and fatigue fracture. The major wear mechanisms are adhesive wear, and abrasive and fatigue wear.

  18. Effects of Strand Lay Direction and Crossing Angle on Tribological Behavior of Winding Hoist Rope.

    Science.gov (United States)

    Chang, Xiang-Dong; Peng, Yu-Xing; Zhu, Zhen-Cai; Gong, Xian-Sheng; Yu, Zhang-Fa; Mi, Zhen-Tao; Xu, Chun-Ming

    2017-06-09

    Friction and wear behavior exists between hoisting ropes that are wound around the drums of a multi-layer winding hoist. It decreases the service life of ropes and threatens mine safety. In this research, a series of experiments were conducted using a self-made test rig to study the effects of the strand lay direction and crossing angle on the winding rope's tribological behavior. Results show that the friction coefficient in the steady-state period shows a decreasing tendency with an increase of the crossing angle in both cross directions, but the variation range is different under different cross directions. Using thermal imaging, the high temperature regions always distribute along the strand lay direction in the gap between adjacent strands, as the cross direction is the same with the strand lay direction (right cross contact). Additionally, the temperature rise in the steady-state increases with the increase of the crossing angle in both cross directions. The differences of the wear scar morphology are obvious under different cross directions, especially for the large crossing angle tests. In the case of right cross, the variation range of wear mass loss is larger than that in left cross. The damage that forms on the wear surface is mainly ploughing, pits, plastic deformation, and fatigue fracture. The major wear mechanisms are adhesive wear, and abrasive and fatigue wear.

  19. Evaluation of the impact of adjusting the angle of the axis of a wind turbine rotor relative to the flow of air stream on operating parameters of a wind turbine model

    Directory of Open Access Journals (Sweden)

    Gumuła Stanisław

    2017-01-01

    Full Text Available The aim of this study was to determine the effect of regulation of an axis of a wind turbine rotor to the direction of wind on the volume of energy produced by wind turbines. A role of an optimal setting of the blades of the wind turbine rotor was specified, as well. According to the measurements, changes in the tilt angle of the axis of the wind turbine rotor in relation to the air stream flow direction cause changes in the use of wind energy. The publication explores the effects of the operating conditions of wind turbines on the possibility of using wind energy. A range of factors affect the operation of the wind turbine, and thus the volume of energy produced by the plant. The impact of design parameters of wind power plant, climatic factors or associated with the location seismic challenges can be shown from among them. One of the parameters has proved to be change settings of the rotor axis in relation to direction of flow of the air stream. Studies have shown that the accurate determination of the optimum angle of the axis of the rotor with respect to flow of air stream strongly influences the characteristics of the wind turbine.

  20. Effect of Blade Pitch Angle on the Aerodynamic Characteristics of a Straight-bladed Vertical Axis Wind Turbine Based on Experiments and Simulations

    Directory of Open Access Journals (Sweden)

    Yanzhao Yang

    2018-06-01

    Full Text Available The blade pitch angle has a significant influence on the aerodynamic characteristics of horizontal axis wind turbines. However, few research results have revealed its impact on the straight-bladed vertical axis wind turbine (Sb-VAWT. In this paper, wind tunnel experiments and CFD simulations were performed at the Sb-VAWT to investigate the effect of different blade pitch angles on the pressure distribution on the blade surface, the torque coefficient, and the power coefficient. In this study, the airfoil type was NACA0021 with two blades. The Sb-VAWT had a rotor radius of 1.0 m with a spanwise length of 1.2 m. The simulations were based on the k-ω Shear Stress Transport (SST turbulence model and the wind tunnel experiments were carried out using a high-speed multiport pressure device. As a result, it was found that the maximum pressure difference on the blade surface was obtained at the blade pitch angle of β = 6° in the upstream region. However, the maximum pressure coefficient was shown at the blade pitch angle of β = 8° in the downstream region. The torque coefficient acting on a single blade reached its maximum value at the blade pitch angle of β = 6°. As the tip speed ratio increased, the power coefficient became higher and reached the optimum level. Subsequently, further increase of the tip speed ratio only led to a quick reversion of the power coefficient. In addition, the results from CFD simulations had also a good agreement with the results from the wind tunnel experiments. As a result, the blade pitch angle did not have a significant influence on the aerodynamic characteristics of the Sb-VAWT.

  1. Performance of silicon pixel detectors at small track incidence angles for the ATLAS Inner Tracker upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Viel, Simon, E-mail: sviel@lbl.gov [Physics Division, Lawrence Berkeley National Laboratory and University of California, Berkeley, CA, United States of America (United States); Banerjee, Swagato [Department of Physics, University of Wisconsin, Madison, WI, United States of America (United States); Brandt, Gerhard; Carney, Rebecca; Garcia-Sciveres, Maurice [Physics Division, Lawrence Berkeley National Laboratory and University of California, Berkeley, CA, United States of America (United States); Hard, Andrew Straiton; Kaplan, Laser Seymour; Kashif, Lashkar [Department of Physics, University of Wisconsin, Madison, WI, United States of America (United States); Pranko, Aliaksandr [Physics Division, Lawrence Berkeley National Laboratory and University of California, Berkeley, CA, United States of America (United States); Rieger, Julia [Physics Division, Lawrence Berkeley National Laboratory and University of California, Berkeley, CA, United States of America (United States); II Physikalisches Institut, Georg-August-Universität, Göttingen (Germany); Wolf, Julian [Physics Division, Lawrence Berkeley National Laboratory and University of California, Berkeley, CA, United States of America (United States); Wu, Sau Lan; Yang, Hongtao [Department of Physics, University of Wisconsin, Madison, WI, United States of America (United States)

    2016-09-21

    In order to enable the ATLAS experiment to successfully track charged particles produced in high-energy collisions at the High-Luminosity Large Hadron Collider, the current ATLAS Inner Detector will be replaced by the Inner Tracker (ITk), entirely composed of silicon pixel and strip detectors. An extension of the tracking coverage of the ITk to very forward pseudorapidity values is proposed, using pixel modules placed in a long cylindrical layer around the beam pipe. The measurement of long pixel clusters, detected when charged particles cross the silicon sensor at small incidence angles, has potential to significantly improve the tracking efficiency, fake track rejection, and resolution of the ITk in the very forward region. The performance of state-of-the-art pixel modules at small track incidence angles is studied using test beam data collected at SLAC and CERN. - Highlights: • Extended inner pixel barrel layers are proposed for the ATLAS ITk upgrade. • Test beam results at small track incidence angles validate this ATLAS ITk design. • Long pixel clusters are reconstructed with high efficiency at low threshold values. • Excellent angular resolution is achieved using pixel cluster length information.

  2. Performance of silicon pixel detectors at small track incidence angles for the ATLAS Inner Tracker upgrade

    International Nuclear Information System (INIS)

    Viel, Simon; Banerjee, Swagato; Brandt, Gerhard; Carney, Rebecca; Garcia-Sciveres, Maurice; Hard, Andrew Straiton; Kaplan, Laser Seymour; Kashif, Lashkar; Pranko, Aliaksandr; Rieger, Julia; Wolf, Julian; Wu, Sau Lan; Yang, Hongtao

    2016-01-01

    In order to enable the ATLAS experiment to successfully track charged particles produced in high-energy collisions at the High-Luminosity Large Hadron Collider, the current ATLAS Inner Detector will be replaced by the Inner Tracker (ITk), entirely composed of silicon pixel and strip detectors. An extension of the tracking coverage of the ITk to very forward pseudorapidity values is proposed, using pixel modules placed in a long cylindrical layer around the beam pipe. The measurement of long pixel clusters, detected when charged particles cross the silicon sensor at small incidence angles, has potential to significantly improve the tracking efficiency, fake track rejection, and resolution of the ITk in the very forward region. The performance of state-of-the-art pixel modules at small track incidence angles is studied using test beam data collected at SLAC and CERN. - Highlights: • Extended inner pixel barrel layers are proposed for the ATLAS ITk upgrade. • Test beam results at small track incidence angles validate this ATLAS ITk design. • Long pixel clusters are reconstructed with high efficiency at low threshold values. • Excellent angular resolution is achieved using pixel cluster length information.

  3. The change in color matches with retinal angle of incidence of the colorimeter beams.

    Science.gov (United States)

    Alpern, M; Kitahara, H; Fielder, G H

    1987-01-01

    Differences between W.D.W. chromaticities of monochromatic lights obtained with all colorimeter beams incident on the retina "off-axis" and those found for lights striking the retina normally have been studied throughout the visible spectrum on 4 normal trichromats. The results are inconsistent with: (i) the assumption in Weale's theories of the Stiles-Crawford hue shift that the sets of absorption spectra of the visual pigments catching normally and obliquely incident photons are identical, and (ii) "self-screening" explanations for the change in color with angle of incidence on the retina. The color matching functions of a protanomalous trichromat are inconsistent with the hypothesis that the absorption spectra of the visual pigments catching normally incident photons in his retina are those catching obliquely incident photons in the normal retina.

  4. SU-E-T-494: Influence of Proton Track-Cell Nucleus Incidence Angle On Relative Biological Effectiveness

    Energy Technology Data Exchange (ETDEWEB)

    Pater, P; Backstrom, G; Enger, S; Seuntjens, J; El Naqa, I [McGill University, Montreal, Quebec (Canada); Villegas, F; Ahnesjo, A [Uppsala University, Uppsala (Sweden)

    2015-06-15

    Purpose: To explain a Monte Carlo (MC) simulation artifact whereby differences in relative biological effectiveness (RBE) in the induction of initial double strand breaks are observed as a function of the proton track incidence angles in a geometric cell nucleus model. Secondly, to offer an alternative isotropic irradiation procedure to mitigate this effect. Methods: MC tracks of 1 MeV protons were generated in an event-by-event mode. They were overlaid on a cylindrical model of a cell nucleus containing 6×109 nucleotide base pairs. The tracks incidence angle θ with respect to the cell nucleus’s axis was varied in 10 degrees intervals, each time generating one hundred fractions of ∼2 Gy. Strand breaks were scored in the modeled DNA sugar-phosphate groups and further sub-classified into single or double strand breaks (ssbs or dsbs). For each angle, an RBE for the induction of initial dsbs with reference to Co-60 was calculated. Results: Our results show significant angular dependencies of RBE, with maximum values for incidence angles parallel to the nucleus central axis. Further examination shows that the higher cross-sections for the creation of dsbs is due to the preferential alignment of tracks with geometrical sub-parts of the cell nucleus model, especially the nucleosomes containing the sugar-phosphate groups. To alleviate the impact of this simulation artifact, an average RBE was calculated with a procedure based on a weighted sampling of the angular data. Conclusion: This work demonstrates a possible numerical artifact in estimated RBE if the influence of the particle incidence angle is not correctly taken into account. A correction procedure is presented to better conform the simulations to real-life experimental conditions. We would like to acknowledge support from the Fonds de recherche du Quebec Sante (FRQS), from the CREATE Medical Physics Research Training Network grant (number 432290) of NSERC, support from NSERC under grants RGPIN 397711-11 and

  5. Biomimetic Wind Turbine Design with Lift Enhancing Periodic Stall

    NARCIS (Netherlands)

    Stamhuis, Eize Jan

    2017-01-01

    A wind turbine includes a rotor; a blade; and a periodic stall system. The periodic stall system selectively moves at least part of the blade in an oscillating motion whereby an angle of incidence continuously varies to invoke periodic stall. The periodic stall system can move the entire blade or

  6. Optimization of nonimaging focusing heliostat in dynamic correction of astigmatism for a wide range of incident angles.

    Science.gov (United States)

    Chong, Kok-Keong

    2010-05-15

    To overcome astigmatism has always been a great challenge in designing a heliostat capable of focusing the sunlight on a small receiver throughout the year. In this Letter, a nonimaging focusing heliostat with a dynamic adjustment of facet mirrors in a group manner has been analyzed for optimizing the astigmatic correction in a wide range of incident angles. This what is to the author's knowledge a new heliostat is not only designed to serve the purpose of concentrating sunlight to several hundreds of suns, but also to significantly reduce the variation of the solar flux distribution with the incident angle.

  7. Feedback by AGN Jets and Wide-angle Winds on a Galactic Scale

    Energy Technology Data Exchange (ETDEWEB)

    Dugan, Zachary; Silk, Joseph [The Johns Hopkins University Department of Physics and Astronomy, Bloomberg Center for Physics and Astronomy, Room 366, 3400 N. Charles Street, Baltimore, MD 21218 (United States); Gaibler, Volker [Universität Heidelberg, Zentrum für Astronomie, Institut für Theoretische Astrophysik, Albert-Ueberle-Str. 2, D-69120 Heidelberg (Germany)

    2017-07-20

    To investigate the differences in mechanical feedback from radio-loud and radio-quiet active galactic nuclei on the host galaxy, we perform 3D AMR hydrodynamic simulations of wide-angle, radio-quiet winds with different inclinations on a single, massive, gas-rich disk galaxy at a redshift of 2–3. We compare our results to hydrodynamic simulations of the same galaxy but with a jet. The jet has an inclination of 0° (perpendicular to the galactic plane), and the winds have inclinations of 0°, 45°, and 90°. We analyze the impact on the host’s gas, star formation, and circumgalactic medium. We find that jet feedback is energy-driven and wind feedback is momentum-driven. In all the simulations, the jet or wind creates a cavity mostly devoid of dense gas in the nuclear region where star formation is then quenched, but we find strong positive feedback in all the simulations at radii greater than 3 kpc. All four simulations have similar SFRs and stellar velocities with large radial and vertical components. However, the wind at an inclination of 90° creates the highest density regions through ram pressure and generates the highest rates of star formation due to its ongoing strong interaction with the dense gas of the galactic plane. With increased wind inclination, we find greater asymmetry in gas distribution and resulting star formation. Our model generates an expanding ring of triggered star formation with typical velocities of the order of 1/3 of the circular velocity, superimposed on the older stellar population. This should result in a potentially detectable blue asymmetry in stellar absorption features at kiloparsec scales.

  8. Effects of spray axis incident angle on heat transfer performance of rhombus-pitch shell-and-tube interior spray evaporator

    International Nuclear Information System (INIS)

    Lin, Ru-Li; Chang, Tong-Bou; Liang, Chih-Chang

    2012-01-01

    An interior spray method is proposed for enhancing the heat transfer performance of a compact rhombus-pitch shell-and-tube spray evaporator. The experimental results show that the shell-side heat transfer coefficient obtained using the proposed spray method is significantly higher than that achieved in a conventional flooded-type evaporator. Four different spray axis incident angles (0 .deg., 45 .deg., 60 .deg. and 75 .deg.) are tested in order to investigate the effect of the spray inclination angle on the heat transfer performance of the spray evaporator system. It is shown that the optimal heat transfer performance is obtained using a spray axis incident angle of 60 .deg.

  9. Discrimination and quantification of implanted solar wind in Genesis collector shards using grazing incidence synchrotron x-ray techniques: New detector initial results

    International Nuclear Information System (INIS)

    Kitts, K.; Choi, Y.; Sutton, S.R.; Ghose, S.; Burnett, D.; Eng, P.

    2008-01-01

    Accurate knowledge of the composition of the Sun provides a baseline, which allows an understanding of how the solar system has evolved over time and how solar processes and solar wind mechanics behave. Unfortunately, the errors in photospheric abundances are too large for many planetary science problems and this hampers our understanding of these different processes. Analyses of solar wind implanted in meteorites or lunar soils have provided more precise data [e.g. 1 and references therein] but the extent to which alteration processes on these bodies complicate such information is only now being determined. Therefore, in order to obtain pristine solar wind samples, NASA developed and launched the Genesis Discovery Mission. Unfortunately, the probe crash-landed shattering the 300 collector plates into 15,000+ pieces complicating the analysis and necessitating the development of new analytical techniques and equipment. Thus, shards from the Genesis collector array and their appropriate flight spares are currently being characterized via grazing-incidence synchrotron x-ray techniques at the Advanced Photon Source at Argonne National Laboratory. The goals are (1) determine solar wind fluences of the elements Ca-Ge by grazing-incidence angle-resolved x-ray fluorescence (XRF) and x-ray reflectivity, (2) improve data reduction via the development of XRF spectral deconvolution routines and develop modeling algorithms for reflectivity and fluorescence yield analysis in order to determine element specific depth profiles from which absolute concentration may be extracted and (3) designing and developing a new multi-element silicon multi-channel (SMCD) detector system. These improvements will increase our sensitivity by a factor of three or more, reduce measurement time at a given sensitivity to one-eighth and the minimum detection limit would be reduced by a factor of 3 to ∼3 x 10 8 atoms/cm 2 .

  10. Influence of the incidence angle on the morphology of enamel and dentin under Er:YAG laser irradiation

    International Nuclear Information System (INIS)

    Junqueira Junior, Duilio Naves

    2002-01-01

    The purpose of this study is to make an in vitro evaluation, using scanning electron microscopy, of the influence of the laser beam irradiation angle on the enamel and dentin morphology. These tissues were both irradiated by Er:YAG Laser, with the same energy parameter. Twenty-four incisive bovine teeth were used, separated in eight groups, four of enamel, and four of dentin, with three specimens in each group. Each specimen was submitted to three laser applications, varying the incidence angle, between the laser and the tooth surface, at 90, 50 and 20 degrees. The applied frequency was 2 Hz, with 20 pulses in each application. The KaVo Key Laser 3 was employed, wavelength at 2940 nm, adjustable energy from 40 to 600 mJ and repetition rate from 1 to 25 Hz. The groups were distributed according to the energy parameter as follows - enamel: 250 mJ; 300 mJ; 350 mJ and 400 mJ; dentin: 200 mJ; 250 mJ; 300 mJ and 350 mJ. The results evidenced the Laser incidence angle importance; it is an essential parameter in the protocol of utilization and it should not be disregarded. The observations of this study allow to conclude that the Laser incidence angle has direct influence on the morphological aspect of the alterations produced in enamel and dentin. (author)

  11. Polarimetric Scattering Properties of Landslides in Forested Areas and the Dependence on the Local Incidence Angle

    Directory of Open Access Journals (Sweden)

    Takashi Shibayama

    2015-11-01

    Full Text Available This paper addresses the local incidence angle dependence of several polarimetric indices corresponding to landslides in forested areas. Landslide is deeply related to the loss of human lives and their property. Various kinds of remote sensing techniques, including aerial photography, high-resolution optical satellite imagery, LiDAR and SAR interferometry (InSAR, have been available for landslide investigations. SAR polarimetry is potentially an effective measure to investigate landslides because fully-polarimetric SAR (PolSAR data contain more information compared to conventional single- or dual-polarization SAR data. However, research on landslide recognition utilizing polarimetric SAR (PolSAR is quite limited. Polarimetric properties of landslides have not been examined quantitatively so far. Accordingly, we examined the polarimetric scattering properties of landslides by an assessment of how the decomposed scattering power components and the polarimetric correlation coefficient change with the local incidence angle. In the assessment, PolSAR data acquired from different directions with both spaceborne and airborne SARs were utilized. It was found that the surface scattering power and the polarimetric correlation coefficient of landslides significantly decrease with the local incidence angle, while these indices of surrounding forest do not. This fact leads to establishing a method of effective detection of landslide area by polarimetric information.

  12. Flight and wind-tunnel calibrations of a flush airdata sensor at high angles of attack and sideslip and at supersonic Mach numbers

    Science.gov (United States)

    Moes, Timothy R.; Whitmore, Stephen A.; Jordan, Frank L., Jr.

    1993-01-01

    A nonintrusive airdata-sensing system was calibrated in flight and wind-tunnel experiments to an angle of attack of 70 deg and to angles of sideslip of +/- 15 deg. Flight-calibration data have also been obtained to Mach 1.2. The sensor, known as the flush airdata sensor, was installed on the nosecap of an F-18 aircraft for flight tests and on a full-scale F-18 forebody for wind-tunnel tests. Flight tests occurred at the NASA Dryden Flight Research Facility, Edwards, California, using the F-18 High Alpha Research Vehicle. Wind-tunnel tests were conducted in the 30- by 60-ft wind tunnel at the NASA LaRC, Hampton, Virginia. The sensor consisted of 23 flush-mounted pressure ports arranged in concentric circles and located within 1.75 in. of the tip of the nosecap. An overdetermined mathematical model was used to relate the pressure measurements to the local airdata quantities. The mathematical model was based on potential flow over a sphere and was empirically adjusted based on flight and wind-tunnel data. For quasi-steady maneuvering, the mathematical model worked well throughout the subsonic, transonic, and low supersonic flight regimes. The model also worked well throughout the angle-of-attack and sideslip regions studied.

  13. A verification scenario of nuclear plus interference scattering effects using neutron incident angle distribution to the wall in beam-injected deuterium plasmas

    International Nuclear Information System (INIS)

    Sugiyama, Shota; Matsuura, Hideaki; Uchiyama, Daisuke; Sawada, Daisuke; Watanabe, Tsuguhiro; Goto, Takuya; Mitarai, Osamu

    2015-01-01

    A verification scenario of knock-on tail formation in the deuteron distribution function due to nuclear plus interference scattering is presented by observing the incident angle distribution of neutrons in a vacuum vessel. Assuming a knock-on tail created in a "3He-beam-injected deuterium plasma, the incident angle distribution and energy spectra of the neutrons produced by fusion reactions between 1-MeV and thermal deuterons are evaluated. The relation between the neutron incident angle to the vacuum vessel and neutron energy is examined in the case of anisotropic neutron emission due to knock-on tail formation in neutral-beam-injected plasmas. (author)

  14. Linear systems formulation of scattering theory for rough surfaces with arbitrary incident and scattering angles.

    Science.gov (United States)

    Krywonos, Andrey; Harvey, James E; Choi, Narak

    2011-06-01

    Scattering effects from microtopographic surface roughness are merely nonparaxial diffraction phenomena resulting from random phase variations in the reflected or transmitted wavefront. Rayleigh-Rice, Beckmann-Kirchhoff. or Harvey-Shack surface scatter theories are commonly used to predict surface scatter effects. Smooth-surface and/or paraxial approximations have severely limited the range of applicability of each of the above theoretical treatments. A recent linear systems formulation of nonparaxial scalar diffraction theory applied to surface scatter phenomena resulted first in an empirically modified Beckmann-Kirchhoff surface scatter model, then a generalized Harvey-Shack theory that produces accurate results for rougher surfaces than the Rayleigh-Rice theory and for larger incident and scattered angles than the classical Beckmann-Kirchhoff and the original Harvey-Shack theories. These new developments simplify the analysis and understanding of nonintuitive scattering behavior from rough surfaces illuminated at arbitrary incident angles.

  15. Dependence of secondary electron emission on the incident angle and the energy of primary electrons bombarding bowl-structured beryllium surfaces

    International Nuclear Information System (INIS)

    Kawata, Jun; Ohya, Kaoru.

    1994-01-01

    A Monte Carlo simulation of the secondary electron emission from beryllium is combined with a model of bowl structure for surface roughness, for analyzing the difference between the electron emissions for normal and oblique incidences. At normal incidence, with increasing the roughness parameter H/W, the primary energy E pm at which the maximum electron yield occurs becomes higher, and at more than the E pm , the decrease in the yield is slower; where H and W are the depth and width of the bowl structure, respectively. The dispersion of incident angle to the microscopic surface causes a small increase in the yield at oblique incidence, whereas the blocking of primary electrons from bombarding the bottom of the structure causes an opposite trend. The strong anisotropy in the polar angular distribution with respect to the azimuthal angle is calculated at oblique incidence. (author)

  16. The trapping of potassium atoms by a polycrystalline tungsten surface as a function of energy and angle of incidence. ch. 1

    International Nuclear Information System (INIS)

    Hurkmans, A.; Overbosch, E.G.; Olander, D.R.; Los, J.

    1976-01-01

    The trapping probability of potassium atoms on a polycrystalline tungsten surface has been measured as a function of the angle of incidence and as a function of the energy of the incoming atoms. Below an energy of 1 eV the trapping was complete; above 20 eV only reflection occurred. The trapping probability increased with increasing angle of incidence. The measurements are compared with a simple model of the fraction of atoms initially trapped. The model, a one-dimensional cube model including a Boltzmann distribution of the velocities of oscillating surface atoms, partially explains the data. The trapping probability as a function of incoming energy is well described for normal incidence, justifying the inclusion of thermal motion of the surface atoms in the model. The angular dependence can be explained in a qualitative way, although there is a substantial discrepancy for large angles of incidence, showing the presence of surface structure. (Auth.)

  17. Variation in emission and energy recovery concerning incident angle in a scheme recovering high energy ions by secondary electrons

    International Nuclear Information System (INIS)

    Wada, Takayuki; Konno, Shota; Nakamoto, Satoshi; Takeno, Hiromasa; Furuyama, Yuichi; Taniike, Akira

    2016-01-01

    As an energy recovery device for fast protons produced in D- 3 He nuclear fusion, secondary electron (SE) direct energy converter (SEDEC) was proposed in addition to traveling wave direct energy converter (TWDEC). Some protons passing through a TWDEC come into an SEDEC, where protons penetrate to a number of foil electrodes and emitted SEs are recovered. Following to a development of SE orbit control by magnetic field, dependence on incident angle of protons was examined to optimize structure of SEDEC. Based on a theoretical expectation, experiments were performed by changing incident angle of protons and variation in emission and energy recovery were measured. Both emission and energy recovery increased as the angle increased, and differences with theoretical expectation are discussed. (author)

  18. Analysis of thin films prepared by vacuum-evaporation and dropping solution by Takeoff Angle-Dependent X-Ray Fluorescence spectroscopy at glancing incidence

    International Nuclear Information System (INIS)

    Tsuji, Kouichi; Hirokawa, Kichinosuke; Mitose, Kengo.

    1995-01-01

    We have introduced Takeoff Angle-Dependent X-Ray Fluorescence (TAD-XRF) method for thin film and surface analysis. In this method, the sample on the optically flat substrate is irradiated with the glancing incidence of the primary X-ray, and the fluorescent X-rays emitted from the sample are detected at the glancing takeoff angle. We had previously calculated the relationship between the fluorescent X-ray intensity and the takeoff angle at the glancing incidence. The characterization of the thin film is achieved by investigating the dependence of the fluorescent X-ray intensity on the takeoff angle with the calculated curve. Using this analytical method, we have reported the results of the TAD-XRF measured for the evaporated thin films and the dried films from dropping solution in this paper. The effect of the thickness of the thin film, the density of the substrate and the incident angle on the TAD-XRF curve has been reported. In the case of the dried film from the dropping solution, a broad peak was observed at the takeoff angle which was close to the critical angle for the total reflection of the fluorescent X-ray in the TAD-XRF curve. This broad peak was explained by the double-excitation of the incident beam and the refracted beam of the fluorescent X-ray with the assumption that the X-ray which has a same wavelength to the observed fluorescent X-ray impinges upon the sample surface, because the reciprocity theorem is expected in the X-ray region. (author)

  19. Hybrid intelligent control of PMSG wind generation system using pitch angle control with RBFN

    International Nuclear Information System (INIS)

    Lin, Whei-Min; Hong, Chih-Ming; Ou, Ting-Chia; Chiu, Tai-Ming

    2011-01-01

    This paper presents the design of a fuzzy sliding mode loss-minimization control for the speed of a permanent magnet synchronous generator (PMSG) and a high-performance on-line training radial basis function network (RBFN) for the turbine pitch angle control. The back-propagation learning algorithm is used to regulate the RBFN controller. The PMSG speed uses maximum power point tracking below the rated speed, which corresponds to low and high wind speed, and the maximum energy can be captured from the wind. A sliding mode controller with an integral-operation switching surface is designed, in which a fuzzy inference mechanism is utilized to estimate the upper bound of uncertainties. Furthermore, the fuzzy inference mechanism with center adaptation is investigated to estimate the optimal bound of uncertainties.

  20. Combined analysis of the radar cross-section modulation due to the long ocean waves around 14° and 34° incidence: Implication for the hydrodynamic modulation

    Science.gov (United States)

    Hauser, DanièLe; Caudal, GéRard

    1996-11-01

    The analysis of synthetic aperture radar observations over the ocean to derive the directional spectra of the waves is based upon a complex transfer function which is the sum of three terms: tilt modulation, hydrodynamic modulation, and velocity bunching effect. Both the hydrodynamic and the velocity bunching terms are still poorly known. Here we focus on the hydrodynamic part of the transfer function, from an experimental point of view. In this paper a new method is proposed to estimate the hydrodynamic modulation. The approach consists in analyzing observations obtained with an airborne real-aperture radar (called RESSAC). This radar (C band, HH polarized, broad beam of 14° × 3°) was used during the SEMAPHORE experiment, in two different modes. From the first mode (incidence angles from 7° to 21°) the directional spectra of the long waves are deduced under the assumption that the hydrodynamic modulation can be neglected (small incidence angles) and validated against in situ measurements. From the second mode (incidence angle from 27° to 41°) the amplitude and phase of the hydrodynamic modulation are deduced by combining the measured signal modulation spectrum at a mean incidence angle of 34° and the directional wave spectrum obtained from the first mode. The results, obtained in four different wind-wave cases of the SEMAPHORE experiment, show that the modulus of the hydrodynamic modulation is larger than that of the tilt modulation. Furthermore, we find that the modulus of the hydrodynamic transfer function is several times larger (by a factor 2-12) than the theoretical value proposed in previous works and 1.5-2.5 larger than experimental values reported in recent papers. The phase of the hydrodynamic modulation is found to be close to zero for waves propagating at an angle from the wind direction and between -20° and -40° for waves propagating along the wind direction. This indicates a significant influence of the wind-wave angle on the phase of the

  1. Wind Turbine Power Curve Design for Optimal Power Generation in Wind Farms Considering Wake Effect

    Directory of Open Access Journals (Sweden)

    Jie Tian

    2017-03-01

    Full Text Available In modern wind farms, maximum power point tracking (MPPT is widely implemented. Using the MPPT method, each individual wind turbine is controlled by its pitch angle and tip speed ratio to generate the maximum active power. In a wind farm, the upstream wind turbine may cause power loss to its downstream wind turbines due to the wake effect. According to the wake model, downstream power loss is also determined by the pitch angle and tip speed ratio of the upstream wind turbine. By optimizing the pitch angle and tip speed ratio of each wind turbine, the total active power of the wind farm can be increased. In this paper, the optimal pitch angle and tip speed ratio are selected for each wind turbine by the exhausted search. Considering the estimation error of the wake model, a solution to implement the optimized pitch angle and tip speed ratio is proposed, which is to generate the optimal control curves for each individual wind turbine off-line. In typical wind farms with regular layout, based on the detailed analysis of the influence of pitch angle and tip speed ratio on the total active power of the wind farm by the exhausted search, the optimization is simplified with the reduced computation complexity. By using the optimized control curves, the annual energy production (AEP is increased by 1.03% compared to using the MPPT method in a case-study of a typical eighty-turbine wind farm.

  2. Development of a Wind Turbine Test Rig and Rotor for Trailing Edge Flap Investigation: Static Flap Angles Case

    International Nuclear Information System (INIS)

    Abdelrahman, Ahmed; Johnson, David A

    2014-01-01

    One of the strategies used to improve performance and increase the life-span of wind turbines is active flow control. It involves the modification of the aerodynamic characteristics of a wind turbine blade by means of moveable aerodynamic control surfaces. Trailing edge flaps are relatively small moveable control surfaces placed at the trailing edge of a blade's airfoil that modify the lift of a blade or airfoil section. An instrumented wind turbine test rig and rotor were specifically developed to enable a wide-range of experiments to investigate the potential of trailing edge flaps as an active control technique. A modular blade based on the S833 airfoil was designed to allow accurate instrumentation and customizable settings. The blade is 1.7 meters long, had a constant 178mm chord and a 6° pitch. The modular aerodynamic parts were 3D printed using plastic PC-ABS material. The blade design point was within the range of wind velocities in the available large test facility. The wind facility is a large open jet wind tunnel with a maximum velocity of 11m/s in the test area. The capability of the developed system was demonstrated through an initial study of the effect of stationary trailing edge flaps on blade load and performance. The investigation focused on measuring the changes in flapwise bending moment and power production for different trailing edge flap spanwise locations and deflection angles. The relationship between the load reduction and deflection angle was linear as expected from theory and the highest reduction was caused by the flap furthest from the rotor center. Overall, the experimental setup proved to be effective in measuring small changes in flapwise bending moment within the wind turbine blade and will provide insight when (active) flap control is targeted

  3. Soil Dust Aerosols and Wind as Predictors of Seasonal Meningitis Incidence in Niger

    Science.gov (United States)

    Perez Garcia Pando, Carlos; Stanton, Michelle C.; Diggle, Peter J.; Trzaska, Sylwia; Miller, Ron L.; Perlwitz, Jan P.; Baldasano, Jose M.; Cuevas, Emilio; Ceccato, Pietro; Yaka, Pascal; hide

    2014-01-01

    Background: Epidemics of meningococcal meningitis are concentrated in sub-Saharan Africa during the dry season, a period when the region is affected by the Harmattan, a dry and dusty northeasterly trade wind blowing from the Sahara into the Gulf of Guinea.Objectives: We examined the potential of climate-based statistical forecasting models to predict seasonal incidence of meningitis in Niger at both the national and district levels.Data and methods: We used time series of meningitis incidence from 1986 through 2006 for 38 districts in Niger. We tested models based on data that would be readily available in an operational framework, such as climate and dust, population, and the incidence of early cases before the onset of the meningitis season in January-May. Incidence was used as a proxy for immunological state.

  4. Incidence Angle Effect of Energetic Carbon Ions on Deposition Rate, Topography, and Structure of Ultrathin Amorphous Carbon Films Deposited by Filtered Cathodic Vacuum Arc

    KAUST Repository

    Wang, N.

    2012-07-01

    The effect of the incidence angle of energetic carbon ions on the thickness, topography, and structure of ultrathin amorphous carbon (a-C) films synthesized by filtered cathodic vacuum arc (FCVA) was examined in the context of numerical and experimental results. The thickness of a-C films deposited at different incidence angles was investigated in the light of Monte Carlo simulations, and the calculated depth profiles were compared with those obtained from high-resolution transmission electron microscopy (TEM). The topography and structure of the a-C films were studied by atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS), respectively. The film thickness decreased with the increase of the incidence angle, while the surface roughness increased and the content of tetrahedral carbon hybridization (sp 3) decreased significantly with the increase of the incidence angle above 45° , measured from the surface normal. TEM, AFM, and XPS results indicate that the smoothest and thinnest a-C films with the highest content of sp 3 carbon bonding were produced for an incidence angle of 45°. The findings of this study have direct implications in ultrahigh-density magnetic recording, where ultrathin and smooth a-C films with high sp 3 contents are of critical importance. © 2012 IEEE.

  5. Crystallization behavior of polyethylene on silicon wafers in solution casting processes traced by time-resolved measurements of synchrotron grazing-incidence small-angle and wide-angle X-ray scattering

    International Nuclear Information System (INIS)

    Sasaki, S; Masunaga, H; Takata, M; Itou, K; Tashiro, K; Okuda, H; Takahara, A

    2009-01-01

    Crystallization behavior of polyethylene (PE) on silicon wafers in solution casting processes has been successfully traced by time-resolved grazing-incidence small-angle and wide-angle X-ray scattering (GISWAXS) measurements utilizing synchrotron radiation. A p-xylene solution of PE kept at ca. 343 K was dropped on a silicon wafer at ca. 298 K. While the p-xylene evaporated naturally from the dropped solution sample, PE chains crystallized to be a thin film. Raman spectral measurements were performed simultaneously with the GISWAXS measurements to evaluate quantitatively the p-xylene the dropped solution contained. Grazing-incidence wide-angle X-ray scattering (GIWAXS) patterns indicated nucleation and crystal growth in the dropped solution and the following as-cast film. GIWAXS and Raman spectral data revealed that crystallization of PE was enhanced after complete evaporation of the p-xylene from the dropped solution. The [110] and [200] directions of the orthorhombic PE crystal became relatively parallel to the wafer surface with time, which implied that the flat-on lamellae with respect to the wafer surface were mainly formed in the as-cast film. On the other hand, grazing-incidence small-angle X-ray scattering (GISAXS) patterns implied formation of isolated lamellae in the dropped solution. The lamellae and amorphous might alternatively be stacked in the preferred direction perpendicular to the wafer surface. The synchrotron GISWAXS experimental method could be applied for kinetic study on hierarchical structure of polymer thin films.

  6. Equivalent models of wind farms by using aggregated wind turbines and equivalent winds

    International Nuclear Information System (INIS)

    Fernandez, L.M.; Garcia, C.A.; Saenz, J.R.; Jurado, F.

    2009-01-01

    As a result of the increasing wind farms penetration on power systems, the wind farms begin to influence power system, and therefore the modeling of wind farms has become an interesting research topic. In this paper, new equivalent models of wind farms equipped with wind turbines based on squirrel-cage induction generators and doubly-fed induction generators are proposed to represent the collective behavior on large power systems simulations, instead of using a complete model of wind farms where all the wind turbines are modeled. The models proposed here are based on aggregating wind turbines into an equivalent wind turbine which receives an equivalent wind of the ones incident on the aggregated wind turbines. The equivalent wind turbine presents re-scaled power capacity and the same complete model as the individual wind turbines, which supposes the main feature of the present equivalent models. Two equivalent winds are evaluated in this work: (1) the average wind from the ones incident on the aggregated wind turbines with similar winds, and (2) an equivalent incoming wind derived from the power curve and the wind incident on each wind turbine. The effectiveness of the equivalent models to represent the collective response of the wind farm at the point of common coupling to grid is demonstrated by comparison with the wind farm response obtained from the detailed model during power system dynamic simulations, such as wind fluctuations and a grid disturbance. The present models can be used for grid integration studies of large power system with an important reduction of the model order and the computation time

  7. Hybrid intelligent control of PMSG wind generation system using pitch angle control with RBFN

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Whei-Min; Hong, Chih-Ming [Department of Electrical Engineering, National Sun Yat-Sen University, Kaohsiung 804 (China); Ou, Ting-Chia; Chiu, Tai-Ming [Institute of Nuclear Energy Research, Atomic Energy Council, Taoyuan 325 (China)

    2011-02-15

    This paper presents the design of a fuzzy sliding mode loss-minimization control for the speed of a permanent magnet synchronous generator (PMSG) and a high-performance on-line training radial basis function network (RBFN) for the turbine pitch angle control. The back-propagation learning algorithm is used to regulate the RBFN controller. The PMSG speed uses maximum power point tracking below the rated speed, which corresponds to low and high wind speed, and the maximum energy can be captured from the wind. A sliding mode controller with an integral-operation switching surface is designed, in which a fuzzy inference mechanism is utilized to estimate the upper bound of uncertainties. Furthermore, the fuzzy inference mechanism with center adaptation is investigated to estimate the optimal bound of uncertainties. (author)

  8. Per-point and per-field contextual classification of multipolarization and multiple incidence angle aircraft L-band radar data

    Science.gov (United States)

    Hoffer, Roger M.; Hussin, Yousif Ali

    1989-01-01

    Multipolarized aircraft L-band radar data are classified using two different image classification algorithms: (1) a per-point classifier, and (2) a contextual, or per-field, classifier. Due to the distinct variations in radar backscatter as a function of incidence angle, the data are stratified into three incidence-angle groupings, and training and test data are defined for each stratum. A low-pass digital mean filter with varied window size (i.e., 3x3, 5x5, and 7x7 pixels) is applied to the data prior to the classification. A predominately forested area in northern Florida was the study site. The results obtained by using these image classifiers are then presented and discussed.

  9. Forces and Moments on Flat Plates of Small Aspect Ratio with Application to PV Wind Loads and Small Wind Turbine Blades

    Directory of Open Access Journals (Sweden)

    Xavier Ortiz

    2015-03-01

    Full Text Available To improve knowledge of the wind loads on photovoltaic structures mounted on flat roofs at the high angles required in high latitudes, and to study starting flow on low aspect ratio wind turbine blades, a series of wind tunnel tests were undertaken. Thin flat plates of aspect ratios between 0.4 and 9.0 were mounted on a sensitive three-component instantaneous force and moment sensor. The Reynolds numbers varied from 6 × 104 to 2 × 105. Measurements were made for angles of attack between 0° and 90° both in the free stream and in wall proximity with increased turbulence and mean shear. The ratio of drag to lift closely follows the inverse tangent of the angle of incidence for virtually all measurements. This implies that the forces of interest are due largely to the instantaneous pressure distribution around the plate and are not significantly influenced by shear stresses. The instantaneous forces appear most complex for the smaller aspect ratios but the intensity of the normal force fluctuations is between 10% and 20% in the free-steam but can exceed 30% near the wall. As the wind tunnel floor is approached, the lift and drag reduce with increasing aspect ratio, and there is a reduction in the high frequency components of the forces. It is shown that the centre of pressure is closer to the centre of the plates than the quarter-chord position for nearly all cases.

  10. The relationship between the microwave radar cross section and both wind speed and stress: Model function studies using Frontal Air-Sea Interaction Experiment data

    Science.gov (United States)

    Weissman, David E.; Davidson, Kenneth L.; Brown, Robert A.; Friehe, Carl A.; Li, Fuk

    1994-01-01

    The Frontal Air-Sea Interaction Experiment (FASINEX) provided a unique data set with coincident airborne scatterometer measurements of the ocean surface radar cross section (RCS)(at Ku band) and near-surface wind and wind stress. These data have been analyzed to study new model functions which relate wind speed and surface friction velocity (square root of the kinematic wind stress) to the radar cross section and to better understand the processes in the boundary layer that have a strong influence on the radar backscatter. Studies of data from FASINEX indicate that the RCS has a different relation to the friction velocity than to the wind speed. The difference between the RCS models using these two variables depends on the polarization and the incidence angle. The radar data have been acquired from the Jet Propulsion Laboratory airborne scatterometer. These data span 10 different flight days. Stress measurements were inferred from shipboard instruments and from aircraft flying at low altitudes, closely following the scatterometer. Wide ranges of radar incidence angles and environmental conditions needed to fully develop algorithms are available from this experiment.

  11. Identification of variations of angle of attack and lift coefficient for a large horizontal-axis wind turbine

    DEFF Research Database (Denmark)

    Rezaeiha, Abdolrahim; Arjomandi, Maziar; Kotsonis, Marios

    2015-01-01

    and the aggregate effect of elements on variations of mean value and standard deviation of the angle of attack and lift coefficient in order to distinguish the major contributing factors. The results of the current study is of paramount importance in the design of active load control systems for wind turbine....

  12. Investigation of photon detection probability dependence of SPADnet-I digital photon counter as a function of angle of incidence, wavelength and polarization

    Energy Technology Data Exchange (ETDEWEB)

    Játékos, Balázs, E-mail: jatekosb@eik.bme.hu; Ujhelyi, Ferenc; Lőrincz, Emőke; Erdei, Gábor

    2015-01-01

    SPADnet-I is a prototype, fully digital, high spatial and temporal resolution silicon photon counter, based on standard CMOS imaging technology, developed by the SPADnet consortium. Being a novel device, the exact dependence of photon detection probability (PDP) of SPADnet-I was not known as a function of angle of incidence, wavelength and polarization of the incident light. Our targeted application area of this sensor is next generation PET detector modules, where they will be used along with LYSO:Ce scintillators. Hence, we performed an extended investigation of PDP in a wide range of angle of incidence (0° to 80°), concentrating onto a 60 nm broad wavelength interval around the characteristic emission peak (λ=420 nm) of the scintillator. In the case where the sensor was optically coupled to a scintillator, our experiments showed a notable dependence of PDP on angle, polarization and wavelength. The sensor has an average PDP of approximately 30% from 0° to 60° angle of incidence, where it starts to drop rapidly. The PDP turned out not to be polarization dependent below 30°. If the sensor is used without a scintillator (i.e. the light source is in air), the polarization dependence is much less expressed, it begins only from 50°.

  13. Model Deformation and Optical Angle of Attack Measurement System in the NASA Ames Unitary Plan Wind Tunnel

    Science.gov (United States)

    Kushner, Laura K.; Drain, Bethany A.; Schairer, Edward T.; Heineck, James T.; Bell, James H.

    2017-01-01

    Both AoA and MDM measurements can be made using an optical system that relies on photogrammetry. Optical measurements are being requested by customers in wind tunnels with increasing frequency due to their non-intrusive nature and recent hardware and software advances that allow measurements to become near real time. The NASA Ames Research Center Unitary Plan Wind Tunnel is currently developing a system based on photogrammetry to measure model deformation and model angle of attack. This paper describes the new system, its development, its use on recent tests and plans to further develop the system.

  14. Tungsten self-sputtering yield with different incidence angles and target temperatures

    International Nuclear Information System (INIS)

    Bandourko, V.; Nakamura, K.; Akiba, M.; Jimbou, R.

    1998-01-01

    The self-sputtering of different types of tungsten due to 1 keV W + bombardment at temperatures of 25 C and 600 C and incident angles in the range of 30-60 was studied by means of the weight loss method. The experimental data at room temperature agreed reasonably with the results of TRIM calculations. Enhanced self-sputtering yields due to beam-induced desorption of WO 2 were found at a temperature of 600 C. The weight loss of W-Cu composite is larger than that of the CVD-W and ps-W under the same irradiation conditions due to the selective removal of copper. (orig.)

  15. Influence of crack opening and incident wave angle on second harmonic generation of Lamb waves

    Science.gov (United States)

    Yang, Yi; Ng, Ching-Tai; Kotousov, Andrei

    2018-05-01

    Techniques utilising second harmonic generation (SHG) have proven their great potential in detecting contact-type damage. However, the gap between the practical applications and laboratory studies is still quite large. The current work is aimed to bridge this gap by investigating the effects of the applied load and incident wave angle on the detectability of fatigue cracks at various lengths. Both effects are critical for practical implementations of these techniques. The present experimental study supported by three-dimensional (3D) finite element (FE) modelling has demonstrated that the applied load, which changes the crack opening and, subsequently, the contact nonlinearity, significantly affects the amplitude of the second harmonic generated by the fundamental symmetric mode (S0) of Lamb wave. This amplitude is also dependent on the length of the fatigue crack as well as the incident wave angle. The experimental and FE results correlate well, so the modelling approach can be implemented for practical design of damage monitoring systems as well as for the evaluation of the severity of the fatigue cracks.

  16. Maneuverability of Ships with small Draught in Steady Wind

    Directory of Open Access Journals (Sweden)

    Daeng Paroka

    2016-04-01

    Full Text Available Wind force and moment may force a ship to drastically decrease its speed and use a large drift angle as well as a large rudder angle in order to maintain its course. Shipswith a small draught might have more risk in maneuvering to its point of view compared with a ship with a larger draught. This paper discusses maneuverability of a ship with a small draught in steady wind. The effect of wind on ship speed, drift angle, and rudder angle are investigated in a steady state condition. Five different ratios of wind velocity to ship speed from 1.0 to 20.0 are used in the simulation. The variation in wind direction is examined from 0°to 180°. Results of the numerical simulation show that thewind has a significant effect on the reduction in ship speed with a wind direction less than 100°. The drift angle increases due to increasing wind velocity in the same wind direction. Wind direction also has a significant effect on the drift angle especially when the wind direction is less than 140°. The same phenomenon was found for the rudder angle. The necessary rudder angle is greater than the maximum rudder angle of the ship when the wind direction is 60°with a wind velocity to ship speed ratio of 20 or more.

  17. Determination of 2D equivalent angles of attack for a non-rotating wind turbine rotor blade

    Energy Technology Data Exchange (ETDEWEB)

    Maassen, W.H.

    1993-11-01

    For the investigation into models to compute the title subject use has been made of the Lanchester-Prandtl lifting line model. The inflow conditions are given by a uniform inflow velocity and the geometrical angles of attack at every spanwise position. A model using pressure measurements at the instrumented sections and a model using 2-dimensional C{sub L}-{alpha} data at certain spanwise positions were investigated. In section two the experimental setups of the experiments at ECN (Netherlands Energy Research Foundation) and FFA (the Aeronautical Research Institute of Sweden) are presented. In section three the theoretical background and the different methods to compute the 2D equivalent angles of attack are outlined. In section four the results of the computations of the downwash and the 2D equivalent angles of attack for the considered FFA wind tunnel experiment is presented. Finally, in section five the most important conclusions are summarized and a recommendation for the computation of the 2D equivalent angles of attack for the non-rotating blade experiments at ECN is formulated. 59 figs., 2 tabs., 3 appendices, 30 refs.

  18. The double Brewster angle effect

    Science.gov (United States)

    Thirion-Lefevre, Laetitia; Guinvarc'h, Régis

    2018-01-01

    The Double Brewster angle effect (DBE) is an extension of the Brewster angle to double reflection on two orthogonal dielectric surfaces. It results from the combination of two pseudo-Brewster angles occurring in complementary incidence angles domains. It can be observed for a large range of incidence angles provided that double bounces mechanism is present. As a consequence of this effect, we show that the reflection coefficient at VV polarization can be at least 10 dB lower than the reflection coefficient at HH polarization over a wide range of incidence angle - typically from 20 to 70∘. It is experimentally demonstrated using a Synthetic Aperture Radar (SAR) image that this effect can be seen on buildings and forests. For large buildings, the difference can reach more than 20 dB. xml:lang="fr"

  19. Reflection and self-sputtering of nickel at oblique angles of ion incidence

    International Nuclear Information System (INIS)

    Hechtl, E.; Eckstein, W.; Roth, J.

    1994-01-01

    Measurement of the erosion yield of a target under ion bombardment using the weight change determines the sum of the sputtering yield and the particle reflection coefficient. The different erosion behavior of a volatile (Kr) and a nonvolatile projectile (Ni) are investigated on a nickel target in the energy range from 60 eV to 10 keV at an incidence angle of 75 . The angular dependence of the erosion yield is studied for 100, 500, and 2500 eV. In comparison with Monte Carlo calculations using the TRIM.SP program it is shown that at low energies ( 1 keV). (orig.)

  20. Dependence of ion-electron emission from clean metals on the incidence angle of the projectile

    International Nuclear Information System (INIS)

    Ferron, J.; Alonso, E.V.; Baragiola, R.A.; Oliva-Florio, A.

    1981-01-01

    We have studied the dependence of electron yields γ from clean Cu and Au surfaces on the incidence angle theta of 5--50-keV He + , Ar + , and Xe + projectiles, in the angular range 0--80 0 , and under ultrahigh-vacuum conditions. We have found that, at small angles, γproportionalsec/sup f/theta, with f generally different from unity. For Xe + on Cu, γ(theta) presents an energy-dependence maximum, similar to that obtained for sputtering. The results are explained in terms of the anisotropy of the electron cascade in the solid, the depth distribution of the inelastic energy deposited by the projectile and by rapidly recoiling target atoms in the near-surface region of the solid

  1. Wind Retrieval Algorithms for the IWRAP and HIWRAP Airborne Doppler Radars with Applications to Hurricanes

    Science.gov (United States)

    Guimond, Stephen Richard; Tian, Lin; Heymsfield, Gerald M.; Frasier, Stephen J.

    2013-01-01

    Algorithms for the retrieval of atmospheric winds in precipitating systems from downward-pointing, conically-scanning airborne Doppler radars are presented. The focus in the paper is on two radars: the Imaging Wind and Rain Airborne Profiler(IWRAP) and the High-altitude IWRAP (HIWRAP). The IWRAP is a dual-frequency (Cand Ku band), multi-beam (incidence angles of 30 50) system that flies on the NOAAWP-3D aircraft at altitudes of 2-4 km. The HIWRAP is a dual-frequency (Ku and Kaband), dual-beam (incidence angles of 30 and 40) system that flies on the NASA Global Hawk aircraft at altitudes of 18-20 km. Retrievals of the three Cartesian wind components over the entire radar sampling volume are described, which can be determined using either a traditional least squares or variational solution procedure. The random errors in the retrievals are evaluated using both an error propagation analysis and a numerical simulation of a hurricane. These analyses show that the vertical and along-track wind errors have strong across-track dependence with values of 0.25 m s-1 at nadir to 2.0 m s-1 and 1.0 m s-1 at the swath edges, respectively. The across-track wind errors also have across-track structure and are on average, 3.0 3.5 m s-1 or 10 of the hurricane wind speed. For typical rotated figure four flight patterns through hurricanes, the zonal and meridional wind speed errors are 2 3 m s-1.Examples of measured data retrievals from IWRAP during an eyewall replacement cycle in Hurricane Isabel (2003) and from HIWRAP during the development of Tropical Storm Matthew (2010) are shown.

  2. Preliminary Analysis of Chinese GF-3 SAR Quad-Polarization Measurements to Extract Winds in Each Polarization

    Directory of Open Access Journals (Sweden)

    Lin Ren

    2017-11-01

    Full Text Available This study analyzed the noise equivalent sigma zero (NESZ and ocean wind sensitivity for Chinese C-band Gaofen-3 (GF-3 quad-polarization synthetic aperture radar (SAR measurements to facilitate further operational wind extraction from GF-3 data. Data from the GF-3 quad-polarization SAR and collocated winds from both NOAA/NCEP Global Forecast System (GFS atmospheric model and National Data Buoy Center (NDBC buoys were used in the analysis. For NESZ, the co-polarization was slightly higher compared to the cross-polarization. Regarding co-polarization and cross-polarization, NESZ was close to RadarSAT-2 and Sentinel-1 A. Wind sensitivity was analyzed by evaluating the dependence on winds in terms of normalized radar cross-sections (NRCS and polarization combinations. The closest geophysical model function (GMF and the polarization ratio (PR model to GF-3 data were determined by comparing data and the model results. The dependence of co-polarized NRCS on wind speed and azimuth angle was consistent with the proposed GMF models. The combination of CMOD5 and CMOD5.N was considered to be the closest GMF in co-polarization. The cross-polarized NRCS exhibited a strong linear relationship with moderate wind speeds higher than 4 m·s−1, but a weak correlation with the azimuth angle. The proposed model was considered as the closest GMF in cross-polarization. For polarization combinations, PR and polarization difference (PD were considered. PR increased only with the incidence angle, whereas PD increased with wind speed and varied with azimuth angle. There were three very close PR models and each can be considered as the closest. Preliminary results indicate that GF-3 quad-polarization data are valid and have the ability to extract winds in each polarization.

  3. Adaptive sliding mode back-stepping pitch angle control of a variable-displacement pump controlled pitch system for wind turbines.

    Science.gov (United States)

    Yin, Xiu-xing; Lin, Yong-gang; Li, Wei; Liu, Hong-wei; Gu, Ya-jing

    2015-09-01

    A variable-displacement pump controlled pitch system is proposed to mitigate generator power and flap-wise load fluctuations for wind turbines. The pitch system mainly consists of a variable-displacement hydraulic pump, a fixed-displacement hydraulic motor and a gear set. The hydraulic motor can be accurately regulated by controlling the pump displacement and fluid flows to change the pitch angle through the gear set. The detailed mathematical representation and dynamic characteristics of the proposed pitch system are thoroughly analyzed. An adaptive sliding mode pump displacement controller and a back-stepping stroke piston controller are designed for the proposed pitch system such that the resulting pitch angle tracks its desired value regardless of external disturbances and uncertainties. The effectiveness and control efficiency of the proposed pitch system and controllers have been verified by using realistic dataset of a 750 kW research wind turbine. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  4. Stress measurements by multi-reflection grazing-incidence X-ray diffraction method (MGIXD) using different radiation wavelengths and different incident angles

    International Nuclear Information System (INIS)

    Marciszko, Marianna; Baczmański, Andrzej; Braham, Chedly; Wróbel, Mirosław; Wroński, Sebastian; Cios, Grzegorz

    2017-01-01

    The presented study introduces the development of the multi-reflection grazing-incidence X-ray diffraction method (MGIXD) for residual stress determination. The proposed new methodology is aimed at obtaining more reliable experimental data and increasing the depth of non-destructive stress determination below the sample surface. To verify proposed method measurements were performed on a classical X-ray diffractometer (Cu Kα radiation) and using synchrotron radiation (three different wavelengths: λ = 1.2527 Å, λ = 1.5419 Å and λ = 1.7512 Å). The Al2017 alloy subjected to three different surface treatments was investigated in this study. The obtained results showed that the proposed development of MGIXD method, in which not only different incident angles but also different wavelengths of X-ray are used, can be successfully applied for residual stress determination, especially when stress gradients are present in the sample.

  5. Aspects regarding the Calculation of the Dielectric Loss Angle Tangent between the Windings of a Rated 40 MVA Transformer

    Directory of Open Access Journals (Sweden)

    Cristinel Popescu

    2015-09-01

    Full Text Available The paper aims to identify how to determine the dielectric loss angle tangent of the electric transformers from the transformer stations. Autors of the paper managed a case study on the dielectric established between high respectively medium voltage windings of an electrical rated 40 MVA transformer.

  6. Residual stress analysis on materials with steep stress gradient by using X-ray incidence at higher angles

    International Nuclear Information System (INIS)

    Ohya, Shin-ichi; Yoshioka, Yasuo; Maeno, Shigeki

    1996-01-01

    X-ray stress measurements for isotropic polycrystalline are materials are usually carried out by the sin 2 ψ method under the assumption of no stress gradient in X-ray penetration depth. When a steep stress gradient exists in the vicinity of surface layer, however, non-linear sin 2 ψ relation is observed and the sin 2 ψ method cannot be applied on such cases. Although several X-ray stress analyzers have been developed for materials with steep stress gradient in the surface layer, it is desirable to use diffraction data at higher incident angles of ψ 0 as possible as close on 90 degrees in order to determine the both values of surface stress and stress gradient with high accuracy. In the present study, an X-ray stress analyzer based on Ω geometry was fabricated to enable X-ray incidence at higher angle of ψ 0 . The X-ray detector was positioned on -η side against X-ray incident beam. Both of the residual surface stress and stress gradient were determined by use of the COSψ method on shot-peened steel and silicon nitride specimens. This prototype stress analyzer was found effective to perform a biaxial or triaxial stress analysis. (author)

  7. Dependence of ion-electron emission from clean metals on the incidence angle of the projectile

    Energy Technology Data Exchange (ETDEWEB)

    Ferron, J.; Alonso, E.V.; Baragiola, R.A.; Oliva-Florio, A.

    1981-10-15

    We have studied the dependence of electron yields ..gamma.. from clean Cu and Au surfaces on the incidence angle theta of 5--50-keV He/sup +/, Ar/sup +/, and Xe/sup +/ projectiles, in the angular range 0--80 /sup 0/, and under ultrahigh-vacuum conditions. We have found that, at small angles, ..gamma..proportionalsec/sup f/theta, with f generally different from unity. For Xe/sup +/ on Cu, ..gamma..(theta) presents an energy-dependence maximum, similar to that obtained for sputtering. The results are explained in terms of the anisotropy of the electron cascade in the solid, the depth distribution of the inelastic energy deposited by the projectile and by rapidly recoiling target atoms in the near-surface region of the solid.

  8. The effect of alpha incident- and poloidal-angle distributions on blister-induced first-wall erosion

    International Nuclear Information System (INIS)

    Fenske, G.; Hively, L.; Miley, G.

    1979-01-01

    The incident velocity distribution of high-energy alpha particles bombarding the first wall of an axisymmetric tokamak is evaluated as a function of poloidal angle (theta). The resulting helium concentration profile as a function of the poloidal angle and the implant depth is calculated for a typical Experimental Power Reactor (EPR) design. The critical helium concentration for blistering is first exceeded at theta approx. 55 0 . Peak concentrations are reduced somewhat through continuous D-T sputtering which, dependent on theta, reduces the blister skin thicknesses. The blistering-induced impurity level is found to increase drastically (< approx. 50%), relative to sputtering-induced impurities, at periodic intervals corresponding to approx. 4000 hours operation when each generation of blister begins to exfoliate. (orig.)

  9. Flow structure in the downstream of a square cylinder with different angles of incidence

    Directory of Open Access Journals (Sweden)

    N Jamshidi

    2016-09-01

    Full Text Available This paper presents comparisons between flow fields for turbulent flow over square cylinder with two different angles of incidence in free stream at Reynolds number of Re = 3400. The present numerical results were obtained using a two-dimensional finite-volume code which solves governing equations. The pressure field was obtained with well known SIMPLE algorithm. The central difference scheme was employed for the discretization of convection and diffusion terms. The ν2 f and standard k - ε model were used for simulation of turbulent flow. Time averaged velocity, root mean square velocities and streamlines in the downstream of square cylinders are presented. A number of quantities such as Strouhal number, drag coefficient and the length of the wake are calculated for the case of angle of incidence α = 0°, 45° with two turbulent models. Strouhal number and the length of the wake are larger for the case of α = 45° because of the sharp corners in it which results in more diffusion of turbulence in the downstream of the cylinder. On the other hand, with comparison of results obtained by ν2 f and standard k - ε models with experiment, it is obvious that ν2 f leads to much more accurate results.

  10. On the Emission of Electrons from Solid H_2 and D_2 by Bombardment with 1-3 keV Electrons up to Very Large Angles of Incidence

    DEFF Research Database (Denmark)

    Schou, Jørgen; Sørensen, H.

    1982-01-01

    at the largest angles. The results agree well with the existing qualitative tendencies described in the literature. The variation with the angle of incidence shows a fair agreement with an estimate based on data for the angular distribution of electrons ejected from ionized hydrogen molecules. In addition......Electron emission, i.e. electron reflection (ER) and secondary electron emission (SEE), was studied for solid H2 and D2 for oblique incidence of 1-3 keV electrons up to an angle of incidence θ of 83°. The ER coefficient η was small at low angles, and rose rapidly with increasing θ above 60......, an ionization cascade treatment leads to an expression for the behavior of the yield of those secondary electrons that are generated directly by the primaries. The agreement with experimental data is good...

  11. Evaluation of the Effect of Spar Cap Fiber Angle of Bending-Torsion Coupled Blades on the Aero-Structural Performance of Wind Turbines

    DEFF Research Database (Denmark)

    Sener, Ozgun; Farsadi, Touraj; Gozc, M. Ozan

    2018-01-01

    with the fatigue load mitigation in the whole wind turbine system, tower clearances, peak stresses in the blades, and power generation of wind turbines. For this purpose, a full E-glass/epoxy reference blade has been designed, following the inverse design methodology for a 5-MW wind turbine. An E-glass/epoxy blade...... with IBTC, and besides the fiber orientation angle, sectional properties of hybrid blades must be adjusted accordingly using proper number of carbon/epoxy layers in the sections of the blade with IBTC, in order to simultaneously reduce generator power losses and the FEL....

  12. Study on variable pitch strategy in H-type wind turbine considering effect of small angle of attack

    DEFF Research Database (Denmark)

    Zhao, Zhenzhou; Qian, Siyuan; Shen, Wenzhong

    2017-01-01

    Variable-pitch (VP) technology is an effective approach to upgrade the aerodynamics of the blade of an H-type vertical-axis wind turbine (VAWT). At present, most of the research efforts are focused on the performance improvement of the azimuth angle owing to the large angle of attack (Ao...... distribution in the swept area of turbine changes from an arched shape of the FP-VAWT into a rectangular shape of the VP-VAWT. At last, an 18.9% growth in power efficiency is achieved. All of the above results confirm that the new VP-technology can effectively improve VAWT performance and also widens...... the highest performance tip speed ratio zone which makes the turbines capable of running with high efficiency in wider zones....

  13. Methods for root effects, tip effects and extending the angle of attack range to {+-} 180 deg., with application to aerodynamics for blades on wind turbines and propellers

    Energy Technology Data Exchange (ETDEWEB)

    Montgomerie, Bjoern

    2004-06-01

    For wind turbine and propeller performance calculations aerodynamic data, valid for several radial stations along the blade, are used. For wind turbines the data must be valid for the 360 degree angle of attack range. The reason is that all kinds of abnormal conditions must be analysed especially during the design of the turbine. Frequently aerodynamic data are available from wind tunnel tests where the angle of attack range is from say -5 to +20 degrees. This report describes a method to extend such data to be valid for {+-} 180 degrees. Previously the extension of data has been very approximate following the whim of the moment with the analyst. Furthermore, the Himmelskamp effect at the root and tip effects are treated in the complete method.

  14. Angle-selective all-dielectric Huygens’ metasurfaces

    Science.gov (United States)

    Arslan, D.; Chong, K. E.; Miroshnichenko, A. E.; Choi, D.-Y.; Neshev, D. N.; Pertsch, T.; Kivshar, Y. S.; Staude, I.

    2017-11-01

    We experimentally and numerically study the angularly resolved transmission properties of dielectric metasurfaces consisting of silicon nanodisks which support electric and magnetic dipolar Mie-type resonances in the near-infrared spectral range. First, we concentrate on Huygens’ metasurfaces which are characterised by a spectral overlap of the fundamental electric and magnetic dipole resonances of the silicon nanodisks at normal incidence. Huygens’ metasurfaces exhibit a high transmitted intensity over the spectral width of the resonances due to impedance matching, while the transmitted phase shows a variation of 2π as the wavelength is swept across the width of the resonances. We observe that the transmittance of the Huygens’ metasurfaces depends on the incidence angle and is sensitive to polarisation for non-normal incidence. As the incidence angle is increased starting from normal incidence, the two dipole resonances are shifted out of the spectral overlap and the resonant features appear as pronounced transmittance minima. Next, we consider a metasurface with an increased nanodisk radius as compared to the Huygens’ metasurface, which supports spectrally separate electric and magnetic dipole resonances at normal incidence. We show that for TM polarisation, we can shift the resonances of this metasurface into spectral overlap and regain the high resonant transmittance characteristic of Huygens’ metasurfaces at a particular incidence angle. Furthermore, both metasurfaces are demonstrated to reject all TM polarised light incident under angles other than the design overlap angle at their respective operation frequency. Our experimental observations are in good qualitative agreement with numerical calculations.

  15. Extraction of the wake induction and angle of attack on rotating wind turbine blades from PIV and CFD results

    Directory of Open Access Journals (Sweden)

    I. Herráez

    2018-01-01

    Full Text Available The analysis of wind turbine aerodynamics requires accurate information about the axial and tangential wake induction as well as the local angle of attack along the blades. In this work we present a new method for obtaining them conveniently from the velocity field. We apply the method to the New Mexico particle image velocimetry (PIV data set and to computational fluid dynamics (CFD simulations of the same turbine. This allows the comparison of experimental and numerical results of the mentioned quantities on a rotating wind turbine. The presented results open up new possibilities for the validation of numerical rotor models.

  16. Dosimetric performance evaluation regarding proton beam incident angles of a lithium-based AB-BNCT design

    International Nuclear Information System (INIS)

    Lee, Pei-Yi; Jiang, Shiang-Huei; Liu, Yuan-Hao

    2014-01-01

    The 7 Li(p,xn) 7 Be nuclear reaction, based on the low-energy protons, could produce soft neutrons for accelerator-based boron neutron capture therapy (AB-BNCT). Based on the fact that the induced neutron field is relatively divergent, the relationship between the incident angle of proton beam and the neutron beam quality was evaluated in this study. To provide an intense epithermal neutron beam, a beam-shaping assembly (BSA) was designed. And a modified Snyder head phantom was used in the calculations for evaluating the dosimetric performance. From the calculated results, the intensity of epithermal neutrons increased with the increase in proton incident angle. Hence, either the irradiation time or the required proton current can be reduced. When the incident angle of 2.5-MeV proton beam is 120 deg., the required proton current is ∼13.3 mA for an irradiation time of half an hour. The results of this study show that the BSA designs can generate neutron beams with good intensity and penetrability. Using a 20-mA, 2.5-MeV proton beam as the source, the required irradiation time, to induce 60 RBE-Gy of maximum tumour dose, is less than half an hour in any proton beam alignments. On the premise that the dosimetric performances are similar, the intensity of epithermal neutrons can be increased by using non-collinear (e.g. 90 deg., 120 deg.) incident protons. Thus, either the irradiation time or the required proton current can be reduced. The use of 120 deg. BSA model shows the possibility to reduce the required proton current to ∼13.3 mA when the goal of irradiation time is 30 min. The decrease of required proton beam current certainly will make the use of lithium target much easier. In June 2013, a 5-MeV, 30-mA radio frequency quadruple (RFQ) accelerator for BNCT was built at INFN-LNL (Legnaro National Laboratories, Italy), which shows a possibility to build a suitable RFQ accelerator for the authors' design. In addition, a 2.5-MeV, 30-mA Tandem accelerator was

  17. Tjæreborg Wind Turbine

    DEFF Research Database (Denmark)

    Øye, Stig

    1991-01-01

    This paper presents results from the fourth measurement camapign at the Tjæreborg (Tjaereborg) WInd Turbine during operation with stepwise pitch angle changes. The measurements cover one hour of operation at wind speeds between 7 and 10 m/s aceraging approximately 8.7 m/s.......This paper presents results from the fourth measurement camapign at the Tjæreborg (Tjaereborg) WInd Turbine during operation with stepwise pitch angle changes. The measurements cover one hour of operation at wind speeds between 7 and 10 m/s aceraging approximately 8.7 m/s....

  18. Evaluation of different methods for determining the angle of attack on wind turbine blades with CFD results under axial inflow conditions

    DEFF Research Database (Denmark)

    Rahimi, Vajiheh; Schepers, J.G.; Shen, Wen Zhong

    2018-01-01

    as shortcomings, are presented. The investigations are performed for two 10 MW reference wind turbines under axial inflow conditions, namely the turbines designed in the EU AVATAR and INNWIND.EU projects. The results show that the evaluated methods are in good agreement with each other at the mid-span, though......This work presents an investigation on different methods for the calculation of the angle of attack and the underlying induced velocity on wind turbine blades using data obtained from three-dimensional Computational Fluid Dynamics (CFD). Several methods are examined and their advantages, as well...

  19. Effect of surface roughness on takeoff-angle-dependent X-ray fluorescence of ultrathin films at glancing incidence

    International Nuclear Information System (INIS)

    Tsuji, Kouichi; Hirokawa, Kichinosuke; Sasaki, Atsushi.

    1994-01-01

    We had previously shown that takeoff-angle-dependent X-ray fluorescence (TAD-XRF) at glancing incidence is a useful method for the characterization of thin films. Here we report the effect of surface roughness of the substrate on TAD-XRF of an ultrathin film at a glancing incidence. An optically flat glass, scratched glasses and plano-convex lenses were used as substrates. A large-range contour such as warp and a roughness of microscopic scale affect the TAD-XRF profile. Therefore, to characterize the ultrathin film by the TAD-XRF method, the material whose roughness is being investigated should be used as the substrate in TAD-XRF measurement. (author)

  20. Wideband metamaterial array with polarization-independent and wide incident angle for harvesting ambient electromagnetic energy and wireless power transfer

    Science.gov (United States)

    Zhong, Hui-Teng; Yang, Xue-Xia; Song, Xing-Tang; Guo, Zhen-Yue; Yu, Fan

    2017-11-01

    In this work, we introduced the design, demonstration, and discussion of a wideband metamaterial array with polarization-independent and wide-angle for harvesting ambient electromagnetic (EM) energy and wireless power transfer. The array consists of unit cells with one square ring and four metal bars. In comparison to the published metamaterial arrays for harvesting EM energy or wireless transfer, this design had the wide operation bandwidth with the HPBW (Half Power Band Width) of 110% (6.2 GHz-21.4 GHz), which overcomes the narrow-band operation induced by the resonance characteristic of the metamaterial. On the normal incidence, the simulated maximum harvesting efficiency was 96% and the HPBW was 110% for the random polarization wave. As the incident angle increases to 45°, the maximum efficiency remained higher than 88% and the HPBW remained higher than 83% for the random polarization wave. Furthermore, the experimental verification of the designed metamaterial array was conducted, and the measured results were in reasonable agreement with the simulated ones.

  1. Tjæreborg Wind Turbine (Esbjerg)

    DEFF Research Database (Denmark)

    Øye, Stig

    1991-01-01

    This paper presents the first measured timeseries for the Tjæreborg (Tjaereborg) Wind Turbine during operation with stepwise pitch angle changes.......This paper presents the first measured timeseries for the Tjæreborg (Tjaereborg) Wind Turbine during operation with stepwise pitch angle changes....

  2. Cooperative wind turbine control for maximizing wind farm power using sequential convex programming

    International Nuclear Information System (INIS)

    Park, Jinkyoo; Law, Kincho H.

    2015-01-01

    Highlights: • The continuous wake model describes well the wake profile behind a wind turbine. • The wind farm power function describes well the power production of a wind farm. • Cooperative control increases the wind farm power efficiency by 7.3% in average. • SCP can be employed to efficiently optimize the control actions of wind turbines. - Abstract: This paper describes the use of a cooperative wind farm control approach to improve the power production of a wind farm. The power production by a downstream wind turbine can decrease significantly due to reduced wind speed caused by the upstream wind turbines, thereby lowering the overall wind farm power production efficiency. In spite of the interactions among the wind turbines, the conventional (greedy) wind turbine control strategy tries to maximize the power of each individual wind turbine by controlling its yaw angle, its blade pitch angle and its generator torque. To maximize the overall wind farm power production while taking the wake interference into account, this study employs a cooperative control strategy. We first derive the wind farm power as a differentiable function of the control actions for the wind turbines in a wind farm. The wind farm power function is then maximized using sequential convex programming (SCP) to determine the optimum coordinated control actions for the wind turbines. Using an example wind farm site and available wind data, we show how the cooperative control strategy improves the power production of the wind farm

  3. Deviation from an inverse cosine dependence of kinetic secondary electron emission for angle of incidence at keV energy

    International Nuclear Information System (INIS)

    Ohya, Kaoru; Kawata, Jun; Mori, Ichiro

    1989-01-01

    Incident angle dependence of kinetic secondary electron emission from metals resulting from incidence of keV ions is investigated by computer simulation with the TRIM Monte Carlo program of ion scattering in matter. The results show large deviations from the inverse cosine dependence, which derives from high-energy approximation, because of a series of elastic collisions of incident ions with metal atoms. In the keV energy region, the elastic collisions have two different effects on the angular dependence for relatively high-energy light ions and for low-energy heavy ions: they result in over- and under-inverse-cosine dependences, respectively. The properties are observed even with an experiment of the keV-neutral incidence on a contaminated surface. In addition, the effects of the thin oxide layer and roughness on the surface are examined with simplified models. (author)

  4. Effects of extreme wind shear on aeroelastic modal damping of wind turbines

    DEFF Research Database (Denmark)

    Skjoldan, P.F.; Hansen, Morten Hartvig

    2013-01-01

    Wind shear is an important contributor to fatigue loads on wind turbines. Because it causes an azimuthal variation in angle of attack, it can also affect aerodynamic damping. In this paper, a linearized model of a wind turbine, based on the nonlinear aeroelastic code BHawC, is used to investigate...

  5. Wind power engine

    Energy Technology Data Exchange (ETDEWEB)

    Musgrove, P J

    1977-02-10

    The device is a wind-power engine with vertical axis and with one or several wings with airfoil profile fixed on a frame which is pivoted at the vertical axis. Each wing forms at least on one part of its length an angle of inclination with the vertical. The angle increases under the influence of the centrifugal force when the r.p.m. exceed a normal operation range. This method helps to reduce mechanical loads occurring with high wind speeds without requiring a complicated construction.

  6. An evaluation of several methods of determining the local angle of attack on wind turbine blades

    DEFF Research Database (Denmark)

    Guntur, Srinivas; Sørensen, Niels N.

    2014-01-01

    Several methods of determining the angles of attack (AOAs) on wind turbine blades are discussed in this paper. A brief survey of the methods that have been used in the past are presented, and the advantages of each method are discussed relative to their application in the BEM theory. Data from...... existing as well as new full rotor CFD computations of the MEXICO rotor are used in this analysis. A more accurate estimation of the AOA is possible from 3D full rotor CFD computations, but when working with experimental data, pressure measurements and sectional forces are often the only data available...

  7. Measuring helium bubble diameter distributions in tungsten with grazing incidence small angle x-ray scattering (GISAXS)

    Science.gov (United States)

    Thompson, M.; Kluth, P.; Doerner, R. P.; Kirby, N.; Riley, D.; Corr, C. S.

    2016-02-01

    Grazing incidence small angle x-ray scattering was performed on tungsten samples exposed to helium plasma in the MAGPIE and Pisces-A linear plasma devices to measure the size distributions of resulting helium nano-bubbles. Nano-bubbles were fitted assuming spheroidal particles and an exponential diameter distribution. These particles had mean diameters between 0.36 and 0.62 nm. Pisces-A exposed samples showed more complex patterns, which may suggest the formation of faceted nano-bubbles or nano-scale surface structures.

  8. Numerical study of alfvénic wave activity in the solar wind as a cause for pitch angle scattering with focus on kinetic processes

    Science.gov (United States)

    Keilbach, D.; Berger, L.; Drews, C.; Marsch, E.; Wimmer-Schweingruber, R. F.

    2017-12-01

    Recent studies, that determined the inflow longitude of the local interstellar medium from the anisotropy of interstellar pickup ion (PUI) radial velocity, have once again raised the question, how transport effects and especially wave activity in the solar wind modifies the velocity distribution function of PUIs.This study investigates the modification of an oxygen PUI torus distribution by alfvénic waves qualitatively with a numerical approach. The focus of this study is to understand this modification kinetically, which means, that instead of describing the PUI transport through diffusion approaches, we trace the trajectories of test particles in pitch angle space with a time resolution of at least 100 time steps per gyro orbit in order to find first principles of wave particle interactions on the most basic scale.Therefore we have implemented a Leapfrog solver of the Lorentz-Newton equations of motion for a charged test particle in a electro-magnetic field. The alfvénic waves were represented through a continuous circularly polarized wave superimposed to a constant 5 nT background magnetic field. In addition an electric field arising from induction has been added to the simulation's boundary conditions. The simulation code computes the particles' trajectories in the solar wind bulk system.Upon interaction with mono frequent single-frequency waves, the particles are found to perform stationary trajectories in pitch angle space, so that the pitch angle distribution of a conglomerate of test particles does not experience a systematic broadening over time. Also the particles do not react most strongly with waves at resonant frequencies, since the pitch angle modification by the waves sweeps their parallel velocity out of resonance quickly. However, within frequencies close to first order resonance, strong interactions between waves and particles are observed.Altogether the framework of our simulation is readily expandable to simulate additional effects, which may

  9. Analysis of a Split-Plot Experimental Design Applied to a Low-Speed Wind Tunnel Investigation

    Science.gov (United States)

    Erickson, Gary E.

    2013-01-01

    A procedure to analyze a split-plot experimental design featuring two input factors, two levels of randomization, and two error structures in a low-speed wind tunnel investigation of a small-scale model of a fighter airplane configuration is described in this report. Standard commercially-available statistical software was used to analyze the test results obtained in a randomization-restricted environment often encountered in wind tunnel testing. The input factors were differential horizontal stabilizer incidence and the angle of attack. The response variables were the aerodynamic coefficients of lift, drag, and pitching moment. Using split-plot terminology, the whole plot, or difficult-to-change, factor was the differential horizontal stabilizer incidence, and the subplot, or easy-to-change, factor was the angle of attack. The whole plot and subplot factors were both tested at three levels. Degrees of freedom for the whole plot error were provided by replication in the form of three blocks, or replicates, which were intended to simulate three consecutive days of wind tunnel facility operation. The analysis was conducted in three stages, which yielded the estimated mean squares, multiple regression function coefficients, and corresponding tests of significance for all individual terms at the whole plot and subplot levels for the three aerodynamic response variables. The estimated regression functions included main effects and two-factor interaction for the lift coefficient, main effects, two-factor interaction, and quadratic effects for the drag coefficient, and only main effects for the pitching moment coefficient.

  10. Variable angle asymmetric cut monochromator

    International Nuclear Information System (INIS)

    Smither, R.K.; Fernandez, P.B.

    1993-09-01

    A variable incident angle, asymmetric cut, double crystal monochromator was tested for use on beamlines at the Advanced Photon Source (APS). For both undulator and wiggler beams the monochromator can expand area of footprint of beam on surface of the crystals to 50 times the area of incident beam; this will reduce the slope errors by a factor of 2500. The asymmetric cut allows one to increase the acceptance angle for incident radiation and obtain a better match to the opening angle of the incident beam. This can increase intensity of the diffracted beam by a factor of 2 to 5 and can make the beam more monochromatic, as well. The monochromator consists of two matched, asymmetric cut (18 degrees), silicon crystals mounted so that they can be rotated about three independent axes. Rotation around the first axis controls the Bragg angle. The second rotation axis is perpendicular to the diffraction planes and controls the increase of the area of the footprint of the beam on the crystal surface. Rotation around the third axis controls the angle between the surface of the crystal and the wider, horizontal axis for the beam and can make the footprint a rectangle with a minimum. length for this area. The asymmetric cut is 18 degrees for the matched pair of crystals, which allows one to expand the footprint area by a factor of 50 for Bragg angles up to 19.15 degrees (6 keV for Si[111] planes). This monochromator, with proper cooling, will be useful for analyzing the high intensity x-ray beams produced by both undulators and wigglers at the APS

  11. Glancing angle x-ray studies of oxide films

    International Nuclear Information System (INIS)

    Davenport, A.J.; Isaacs, H.S.

    1989-01-01

    High brightness synchrotron radiation incident at glancing angles has been used to study inhibiting species present in low concentrations in oxide films on aluminum. Glancing incident angle fluorescence measurements give surface-sensitive information on the valence state of elements from the shape of the x-ray absorption edge. Angle-resolved measurements show the depth distribution of the species present. 15 refs., 4 figs

  12. Investigating the use of the dual-polarized and large incident angle of SAR data for mapping the fluvial and aeolian deposits

    Directory of Open Access Journals (Sweden)

    Ahmed Gaber

    2017-12-01

    Full Text Available Mapping the spatial distributions of the fluvial deposits in terms of particles size as well as imaging the near-surface features along the non-vegetated aeolian sand-sheets, provides valuable geological information. Thus this work aims at investigating the contribution of the dual-polarization SAR data in classifying and mapping the surface sediments as well as investigating the effect of the radar incident-angle on improving the images of the hidden features under the desert sand cover. For mapping the fluvial deposits, the covariance matrix ([C2] using four dual-polarized ALOS/PALSAR-1 scenes cover the Wadi El Matulla, East Qena, Egypt were generated. This [C2] matrix was used to generate a supervised classification map with three main classes (gravel, gravel/sand and sand. The polarimetric scattering response, spectral reflectance and temperatures brightness of these 3 classes were extracted. However for the aeolian deposits investigation, two Radarsat-1 and three full-polarimetric ALOS/PALSAR-1 images, which cover the northwestern sandy part of Sinai, Egypt were calibrated, filtered, geocoded and ingested in a GIS database to image the near-surface features. The fluvial mapping results show that the values of the radar backscattered coefficient (σ° and the degree of randomness of the obtained three classes are increasing respectively by increasing their grain size. Moreover, the large incident angle (θi = 39.7 of the Radarsat-1 image has revealed a meandering buried stream under the sand sheet of the northwestern part of Sinai. Such buried stream does not appear in the other optical, SRTM and SAR dataset. The main reason is the enhanced contrast between the low backscattered return from the revealed meandering stream and the surroundings as a result of the increased backscattering intensity, which is related to the relatively large incident angle along the undulated surface of the study area. All archaeological

  13. Basic DTU Wind Energy controller

    DEFF Research Database (Denmark)

    Hansen, Morten Hartvig; Henriksen, Lars Christian

    This report contains a description and documentation, including source code, of the basic DTU Wind Energy controller applicable for pitch-regulated, variable speed wind turbines. The controller features both partial and full load operation capabilities as well as switching mechanisms ensuring......-integral controller to counter the effects of changing dynamics of the wind turbine for different wind speeds. Blade pitch servo and generator models are not included in this controller and should be modeled separately, if they are to be included in the simulations....... dependent minimum blade pitch in partial load operation. The controller uses the collective blade pitch angle and electromagnetic generator torque to control the wind turbine. In full load operation a feedback term from the collective blade pitch angle is used to schedule the gains of the proportional...

  14. Effect of laser incidence angle on cut quality of 4 mm thick stainless steel sheet using fiber laser

    Science.gov (United States)

    Mullick, Suvradip; Agrawal, Arpit Kumar; Nath, Ashish Kumar

    2016-07-01

    Fiber laser has potential to outperform the more traditionally used CO2 lasers in sheet metal cutting applications due to its higher efficiency, better beam quality, reliability and ease of beam delivery through optical fiber. It has been however, reported that the higher focusability and shorter wavelength are advantageous for cutting thin metal sheets up to about 2 mm only. Better focasability results in narrower kerf-width, which leads to an earlier flow separation in the flow of assist gas within the kerf, resulting in uncontrolled material removal and poor cut quality. However, the advarse effect of tight focusability can be taken care by shifting the focal point position towards the bottom surface of work-piece, which results in a wider kerf size. This results in a more stable flow within the kerf for a longer depth, which improves the cut quality. It has also been reported that fiber laser has an unfavourable angle of incidence during cutting of thick sections, resulting in poor absorption at the metal surface. Therefore, the effect of laser incidence angle, along with other process parameters, viz. cutting speed and assist gas pressure on the cut quality of 4 mm thick steel sheet has been investigated. The change in laser incidence angle has been incorporated by inclining the beam towards and away from the cut front, and the quality factors are taken as the ratio of kerf width and the striation depth. Besides the absorption of laser radiation, beam inclination is also expected to influence the gas flow characteristics inside the kerf, shear force phenomena on the molten pool, laser beam coupling and laser power distribution at the inclined cut surface. Design of experiment has been used by implementing response surface methodology (RSM) to study the parametric dependence of cut quality, as well as to find out the optimum cut quality. An improvement in quality has been observed for both the inclination due to the combined effect of multiple phenomena.

  15. Surface morphological changes on the human dental enamel and cement after the Er:YAG laser irradiation at different incidence angles

    International Nuclear Information System (INIS)

    Tannous, Jose Trancoso

    2001-01-01

    This is a morphological analysis study through SEM of the differences of the laser tissue interaction as a function of the laser beam irradiation angle, under different parameters of energy. Fourteen freshly extracted molars stored in a 0,9% sodium chloride solution were divided in seven pairs and were irradiated with 100, 200, 300, 400, 500, 600 and 700 mJ per pulse, respectively. Each sample received three enamel irradiations and three cement irradiations, either in the punctual or in the contact mode, one near to the other, with respectively 30, 45 and 90 inclinations degrees of dental surface-laser-beam incidence. Four Er:YAG pulses (2,94 μm, 7-20 Hz, 0,1-1 J energy/pulse - Opus 20 - Opus Dent) with water cooling system (0,4 ml/s) were applied. After the laser irradiation the specimens were analysed through scanning electron microscope (SEM). The results were analysed by SEM micrographs showing a great difference on the laser tissue interaction characteristics as a function of the irradiation angle of the laser beam. All the observations led to conclude that, considering the laser parameters used, the incidence angle variation is a very important parameter regarding the desired morphological effects. This represents an extremely relevant detail on the technical description of the Er:YAG laser irradiation protocols on dental tissues. (author)

  16. Operation Design of Wind Turbines in Strong Wind Conditions

    DEFF Research Database (Denmark)

    Shen, Wen Zhong; Montes, Melissa Barroso; Odgaard, Peter Fogh

    2012-01-01

    and variable speed pitch regulated wind turbines. The variable speed design is more suitable for wind turbines to run at very high wind speeds which can help the turbine braking system to stop the turbine at the new "cut-out" wind speed. Reference power, rotational speed and pitch angle have been designed...... optimally. In order to reduce the possible increased loading, fatigue due to the wind gusts, control strategies have been considered for both constant sped and variable speed pitch regulated wind turbines. The control study shows that the designed controllers can reduce the standard deviations efficiently......In order to reduce the impact on the electrical grid from the shutdown of MW wind turbines at wind speeds higher than the cut-out wind speed of 25 m/s, we propose in this paper to run the turbines at high wind speeds up to 40 m/s. Two different operation designs are made for both constant speed...

  17. Maximum Energy Yield Oriented Turbine Control in PMSG based Wind Farm

    DEFF Research Database (Denmark)

    Tian, Jie; Zhou, Dao; Su, Chi

    2017-01-01

    : In the modern power systems, with the fast integration of the wind power into the grid, it turns to develop large-scale offshore wind farms equipped with the permanent magnet synchronous generator (PMSG) wind turbine. In large-scale offshore wind farms, the wind turbine operating reliability...... and the wake effect in the wind farm became important issues. The pitch angle and tip speed ratio are the two degrees of freedom for the PMSG wind turbine active power control, which are also the determining factors of the wind turbine lifetime. As the energy production of the wind turbine is the product...... of its active power and lifetime, the energy production can be maximised by optimising its pitch angle and tip speed ratio. In this study, the energy production of a 2 MW PMSG wind turbine is maximised by optimising its pitch angle and tip speed ratio. Moreover, taking into account the wake effect...

  18. Discrimination and quantification of contamination and implanted solar wind in Genesis collector shards using grazing incidence synchrotron x-ray techniques: Initial results

    International Nuclear Information System (INIS)

    Kitts, K.; Sutton, S.; Eng, P.; Ghose, S.; Burnett, D.

    2006-01-01

    Grazing incidence X-ray fluorescence is a non-destructive technique that can differentiate the embedded solar wind component from surface contamination and collector background in the Genesis shards. Initial solar Fe abundance in D30554 is 8 x 10 12 /cm 2 . Accurate knowledge of the composition of the Sun provides a baseline, which allows an understanding of how the solar system has evolved over time and how solar processes and solar wind mechanics behave. Unfortunately, the errors in photospheric abundances are too large for many planetary science problems and this hampers our understanding of these different processes. Analyses of solar wind implanted in meteorites or lunar soils have provided more precise data but alteration processes on these bodies may complicate such information. In response to this need for pristine solar wind samples, NASA developed and launched the Genesis Probe. Unfortunately, the probe smashed into the Utah desert shattering the 300 collector plates into 15,000+ pieces all of which are now coated in a both a fine terrestrial dust and Si and Ge powder from the disrupted collectors themselves. The solar wind penetration depth is 100-200 nm and the superposed contamination layers are typically 40-50 nm. Stringent cleaning regimes have the potential of removing the solar wind itself. The best solution is to have sufficient spatial resolution to separately analyze the surface contamination and penetrated solar wind. To that end, three Genesis collector array shards and their appropriate flight spares were characterized via grazing incidence x-ray fluorescence and x-ray reflectivity. The goals were (1) to evaluate the various cleaning methods used to eliminate contamination, (2) to identify the collector substrates most suited for this technique, (3) to determine whether the solar wind signature could be deconvolved from the collector background signature, and (4) to measure the relative abundances of Ca to Ge in the embedded solar wind.

  19. The interdependence between the incidence angles associated with quasi-stable intersections during ion erosion

    International Nuclear Information System (INIS)

    Vasiliu, F.; Frunza, S.

    1984-01-01

    A general discussion, which is valid for any angular dependence of sputtering yield S = S(theta), concerning the interdependence between the incidence angles thetasub(e) and theta 0 , associated with quasi-stable intersections during ion erosion, is given. The object was firstly to establish the location of thetasub(e) roots as a function of theta 0 and secondly to identify the stationary points and general trend for the complex dependence thetasub(e) = thetasub(e)(theta 0 ). The results obtained are applied to a quasi-stability analysis of some specific surface features during ion erosion. Various possible types of quasi-stable intersections (surface-surface, plane-surface, plane-plane) are reviewed from the point of view of their evolution caused by ion bombardment. (author)

  20. Proteins on surfaces investigated by microbeam grazing incidence small angle X-ray scattering

    Energy Technology Data Exchange (ETDEWEB)

    Gebhardt, Ronald; Riekel, Christian; Burghammer, Manfred [European Synchrotron Radiation Facility, B.P. 220, F-38043 Grenoble Cedex (France); Vendrely, Charlotte [Universite de Cergy-Pontoise, ERRMECE, F-95000, Cergy-Pontoise (France); Mueller-Buschbaum, Peter [TU Muenchen, Physik Department E13, Muenchen (Germany)

    2009-07-01

    Grazing incidence small angle scattering with a 1 micron x-ray beam ({mu}GISAXS) is applied to study structural ordering of casein micelles and fibroin in solution cast films. {mu}GISAXS scans provide the possibility to locate highly ordered areas and to investigate variation in the molecular packing. In the case of the casein micelles, ordered film structures have been generated by decreasing their natural size dispersion. While dynamic light scattering was used to characterize the different size fractions in solution, {mu}GISAXS and roughness are measured on the resulting casein films. GISAXS-Patterns are analyzed by simulations providing the dimension and nearest neighbor distances of casein micelles. In the case of fibroin, ordering of nano-fibers formed during the drying process is investigated. The experimental data are analyzed by simulations and compared to SEM, AFM and Raman scattering experiments.

  1. First results of the wind evaluation breadboard for ELT primary mirror design

    Science.gov (United States)

    Reyes García-Talavera, Marcos; Viera, Teodora; Núñez, Miguel

    2010-07-01

    The Wind Evaluation Breadboard (WEB) is a primary mirror and telescope simulator formed by seven aluminium segments, including position sensors, electromechanical support systems and support structures. WEB has been developed to evaluate technologies for primary mirror wavefront control and to evaluate the performance of the control of wind buffeting disturbance on ELT segmented mirrors. For this purpose WEB electro-mechanical set-up simulates the real operational constrains applied to large segmented mirrors. This paper describes the WEB assembly, integration and verification, the instrument characterisation and close loop control design, including the dynamical characterization of the instrument and the control architecture. The performance of the new technologies developed for position sensing, acting and controlling is evaluated. The integration of the instrument in the observatory and the results of the first experiments are summarised, with different wind conditions, elevation and azimuth angles of incidence. Conclusions are extracted with respect the wind rejection performance and the control strategy for an ELT. WEB has been designed and developed by IAC, ESO, ALTRAN and JUPASA, with the integration of subsystems of FOGALE and TNO.

  2. Adaptive pitch control for variable speed wind turbines

    Science.gov (United States)

    Johnson, Kathryn E [Boulder, CO; Fingersh, Lee Jay [Westminster, CO

    2012-05-08

    An adaptive method for adjusting blade pitch angle, and controllers implementing such a method, for achieving higher power coefficients. Average power coefficients are determined for first and second periods of operation for the wind turbine. When the average power coefficient for the second time period is larger than for the first, a pitch increment, which may be generated based on the power coefficients, is added (or the sign is retained) to the nominal pitch angle value for the wind turbine. When the average power coefficient for the second time period is less than for the first, the pitch increment is subtracted (or the sign is changed). A control signal is generated based on the adapted pitch angle value and sent to blade pitch actuators that act to change the pitch angle of the wind turbine to the new or modified pitch angle setting, and this process is iteratively performed.

  3. Numerical simulation of wind loads on solar panels

    Science.gov (United States)

    Su, Kao-Chun; Chung, Kung-Ming; Hsu, Shu-Tsung

    2018-05-01

    Solar panels mounted on the roof of a building or ground are often vulnerable to strong wind loads. This study aims to investigate wind loads on solar panels using computational fluid dynamic (CFD). The results show good agreement with wind tunnel data, e.g. the streamwise distribution of mean surface pressure coefficient of a solar panel. Wind uplift for solar panels with four aspect ratios is evaluated. The effect of inclined angle and clearance (or height) of a solar panel is addressed. It is found that wind uplift of a solar panel increases when there is an increase in inclined angle and the clearance above ground shows an opposite effect.

  4. Numerical study of effect of pitch angle on performance characteristics of a HAWT

    Directory of Open Access Journals (Sweden)

    Sudhamshu A.R.

    2016-03-01

    Full Text Available Wind energy is one of the clean renewable forms of energy that can handle the existing global fossil fuel crisis. Although it contributes to 2.5% of the global electricity demand, with diminishing fossil fuel sources, it is important that wind energy is harnessed to a greater extent to meet the energy crisis and problem of pollution. The present work involves study of effect of pitch angle on the performance of a horizontal axis wind turbine (HAWT, NREL Phase VI. The wind velocities considered for the study are 7, 15.1 and 25.1 m/s. The simulations are performed using a commercial CFD code Fluent. A frozen rotor model is used for simulation, wherein the governing equations are solved in the moving frame of reference rotating with the rotor speed. The SST k-ω turbulence model has been used. It is seen that the thrust increases with increase in wind velocity, and decreases with increase in pitch angle. For a given wind velocity, there is an optimum pitch angle where the power generated by the turbine is maximum. The observed effect of pitch angle on the power produced has been correlated to the stall characteristics of the airfoil blade.

  5. Solar Illumination Control of the Polar Wind

    Science.gov (United States)

    Maes, L.; Maggiolo, R.; De Keyser, J.; André, M.; Eriksson, A. I.; Haaland, S.; Li, K.; Poedts, S.

    2017-11-01

    Polar wind outflow is an important process through which the ionosphere supplies plasma to the magnetosphere. The main source of energy driving the polar wind is solar illumination of the ionosphere. As a result, many studies have found a relation between polar wind flux densities and solar EUV intensity, but less is known about their relation to the solar zenith angle at the ionospheric origin, certainly at higher altitudes. The low energy of the outflowing particles and spacecraft charging means it is very difficult to measure the polar wind at high altitudes. We take advantage of an alternative method that allows estimations of the polar wind flux densities far in the lobes. We analyze measurements made by the Cluster spacecraft at altitudes from 4 up to 20 RE. We observe a strong dependence on the solar zenith angle in the ion flux density and see that both the ion velocity and density exhibit a solar zenith angle dependence as well. We also find a seasonal variation of the flux density.

  6. Field Experiments on SAR Detection of Film Slicks

    Science.gov (United States)

    Ermakov, S.; da Silva, J. C. B.; Kapustin, I.; Sergievskaya, I.

    2013-03-01

    Field experiments on radar detection of film slicks using satellite synthetic aperture radar TerraSAR-X and X-band scatterometer on board a research vessel are described. The experiments were carried out with surfactant films with known physical parameters, the surface tension and the film elasticity, at low to moderate wind conditions and at different radar incidence angles. It is shown that the depression of radar backscatter (contrast) in films slicks for X-band SAR weakly depends on wind velocity/direction, film elasticity and incidence angles within the range of 200-400. Scatterometer contrasts obtained at incidence angles of about 600 are larger than SAR contrasts. Theoretical analysis of radar contrasts for low-to-moderate incidence angles has been carried out based on a hydrodynamic model of wind wave damping due to films and on a composite radar imaging model. The hydrodynamic model takes into account wave damping due to viscoelastic films, wind wave generation and a phenomenological term describing nonlinear limitation of the wind wave spectrum. The radar model takes into account Bragg scattering and specular scattering mechanisms, the latter is usually negligible compared to the Bragg mechanism at moderate incidence angles (larger than 30-35 degrees), but gives noticeable contribution to radar backscattering at smaller incidence angles particularly for slick areas when cm-scale ripples are strongly depressed by films. Calculated radar contrasts in slicks are compared with experiments and it is concluded that development of the model is needed to predict quantitatively observations.

  7. Addressing Spatial Variability of Surface-Layer Wind with Long-Range WindScanners

    DEFF Research Database (Denmark)

    Berg, Jacob; Vasiljevic, Nikola; Kelly, Mark C.

    2015-01-01

    of the WindScanner data is high, although the fidelity of the estimated vertical velocity component is significantly limited by the elevation angles of the scanner heads. The system of long-range WindScanners presented in this paper is close to being fully operational, with the pilot study herein serving...

  8. Adjoint-Baed Optimal Control on the Pitch Angle of a Single-Bladed Vertical-Axis Wind Turbine

    Science.gov (United States)

    Tsai, Hsieh-Chen; Colonius, Tim

    2017-11-01

    Optimal control on the pitch angle of a NACA0018 single-bladed vertical-axis wind turbine (VAWT) is numerically investigated at a low Reynolds number of 1500. With fixed tip-speed ratio, the input power is minimized and mean tangential force is maximized over a specific time horizon. The immersed boundary method is used to simulate the two-dimensional, incompressible flow around a horizontal cross section of the VAWT. The problem is formulated as a PDE constrained optimization problem and an iterative solution is obtained using adjoint-based conjugate gradient methods. By the end of the longest control horizon examined, two controls end up with time-invariant pitch angles of about the same magnitude but with the opposite signs. The results show that both cases lead to a reduction in the input power but not necessarily an enhancement in the mean tangential force. These reductions in input power are due to the removal of a power-damaging phenomenon that occurs when a vortex pair is captured by the blade in the upwind-half region of a cycle. This project was supported by Caltech FLOWE center/Gordon and Betty Moore Foundation.

  9. Incidence Angle Effect of Energetic Carbon Ions on Deposition Rate, Topography, and Structure of Ultrathin Amorphous Carbon Films Deposited by Filtered Cathodic Vacuum Arc

    KAUST Repository

    Wang, N.; Komvopoulos, K.

    2012-01-01

    The effect of the incidence angle of energetic carbon ions on the thickness, topography, and structure of ultrathin amorphous carbon (a-C) films synthesized by filtered cathodic vacuum arc (FCVA) was examined in the context of numerical

  10. Colliding Stellar Winds Structure and X-ray Emission

    Science.gov (United States)

    Pittard, J. M.; Dawson, B.

    2018-04-01

    We investigate the structure and X-ray emission from the colliding stellar winds in massive star binaries. We find that the opening angle of the contact discontinuity (CD) is overestimated by several formulae in the literature at very small values of the wind momentum ratio, η. We find also that the shocks in the primary (dominant) and secondary winds flare by ≈20° compared to the CD, and that the entire secondary wind is shocked when η ≲ 0.02. Analytical expressions for the opening angles of the shocks, and the fraction of each wind that is shocked, are provided. We find that the X-ray luminosity Lx∝η, and that the spectrum softens slightly as η decreases.

  11. Dispersion measurement on chirped mirrors at arbitrary incidence angle and polarization state (Conference Presentation)

    Science.gov (United States)

    Kovacs, Mate; Somoskoi, Tamas; Seres, Imre; Borzsonyi, Adam; Sipos, Aron; Osvay, Károly

    2017-05-01

    The optical elements of femtosecond high peak power lasers have to fulfill more and more strict requirements in order to support pulses with high intensity and broad spectrum. In most cases chirped pulse amplification scheme is used to generate high peak power ultrashort laser pulses, where a very precise control of spectral intensity and spectral phase is required in reaching transform-limited temporal shape at the output. In the case of few cycle regime, the conventional bulk glass, prism-, grating- and their combination based compressors are not sufficient anymore, due to undesirable nonlinear effects in their material and proneness to optical damages. The chirped mirrors are also commonly used to complete the compression after a beam transport system just before the target. Moreover, the manufacturing technology requires quality checks right after production and over the lifetime of the mirror as well, since undesired deposition on the surface can lead alteration from the designed value over a large part of the aperture. For the high harmonic generation, polarization gating technology is used to generate single attosecond pulses [1]. In this case the pulse to be compressed has various polarization state falling to the chirped mirrors. For this reason, it is crucial to measure the dispersion of the mirrors for the different polarization states. In this presentation we demonstrate a simple technique to measure the dispersion of arbitrary mirror at angles of incidence from 0 to 55 degree, even for a 12" optics. A large aperture 4" mirror has been scanned over with micrometer accuracy and the dispersion property through the surface has been investigated with a stable interference fringes in that robust geometry. We used Spectrally Resolved Interferometry, which is based on a Michaelson interferometer and a combined visible and infrared spectrometer. Tungsten halogen lamp with 10 mW coupled optical power was used as a white-light source so with the selected

  12. Observations of C-Band Brightness Temperature and Ocean Surface Wind Speed and Rain Rate in Hurricanes Earl And Karl (2010)

    Science.gov (United States)

    Miller, Timothy; James, Mark; Roberts, Brent J.; Biswax, Sayak; Uhlhorn, Eric; Black, Peter; Linwood Jones, W.; Johnson, Jimmy; Farrar, Spencer; Sahawneh, Saleem

    2012-01-01

    Ocean surface emission is affected by: a) Sea surface temperature. b) Wind speed (foam fraction). c) Salinity After production of calibrated Tb fields, geophysical fields wind speed and rain rate (or column) are retrieved. HIRAD utilizes NASA Instrument Incubator Technology: a) Provides unique observations of sea surface wind, temp and rain b) Advances understanding & prediction of hurricane intensity c) Expands Stepped Frequency Microwave Radiometer capabilities d) Uses synthetic thinned array and RFI mitigation technology of Lightweight Rain Radiometer (NASA Instrument Incubator) Passive Microwave C-Band Radiometer with Freq: 4, 5, 6 & 6.6 GHz: a) Version 1: H-pol for ocean wind speed, b) Version 2: dual ]pol for ocean wind vectors. Performance Characteristics: a) Earth Incidence angle: 0deg - 60deg, b) Spatial Resolution: 2-5 km, c) Swath: approx.70 km for 20 km altitude. Observational Goals: WS 10 - >85 m/s RR 5 - > 100 mm/hr.

  13. Noble-gas ion sputtering yield of gold and copper: Dependence on the energy and angle of incidence of the projectiles

    Energy Technology Data Exchange (ETDEWEB)

    Oliva-Florio, A.; Baragiola, R.A.; Jakas, M.M.; Alonso, E.V.; Ferron, J.

    1987-02-15

    We have measured the sputtering yield of Au and Cu targets as a function of energy and the angle of incidence of noble-gas projectiles in the energy range 2--50 keV. The experimental results were compared with the analytical theory of sputtering and with computer simulations. Our study indicates that the linear-cascade model is applicable only asymptotically for low nuclear stopping powers.

  14. Electrocardiographic spatial QRS-T angle and incident cardiovascular disease in HIV-infected patients (from the Strategies for the Management of Antiretroviral Therapy [SMART] study)

    DEFF Research Database (Denmark)

    Dawood, Farah Z; Khan, Faraaz; Roediger, Mollie P

    2013-01-01

    the baseline resting 12-lead electrocardiogram of 4,453 HIV-infected patients aged 43.5 ± 9.3 years from the Strategies for Management of Antiretroviral Therapy (SMART) trial. CVD events were identified during a median follow-up of 28.7 months. Quartiles of the spatial QRS-T angle was calculated for men......Widening of the electrocardiographic (ECG) spatial QRS-T angle has been predictive of cardiovascular disease (CVD) events in the general population. However, its prognostic significance in human immunodeficiency virus (HIV)-infected patients remains unknown. The spatial QRS-T angle was derived from...... and women separately, and values in the upper quartile were considered as a widened angle (values >74° for women and >93° for men). A multivariate Cox proportional hazards analysis was used to examine the association between a widened baseline spatial QRS-T angle and incident CVD events. During 11...

  15. Wind and Temperature Spectrometry of the Upper Atmosphere in Low-Earth Orbit

    Science.gov (United States)

    Herrero, Federico

    2011-01-01

    Wind and Temperature Spectrometry (WATS) is a new approach to measure the full wind vector, temperature, and relative densities of major neutral species in the Earth's thermosphere. The method uses an energy-angle spectrometer moving through the tenuous upper atmosphere to measure directly the angular and energy distributions of the air stream that enters the spectrometer. The angular distribution gives the direction of the total velocity of the air entering the spectrometer, and the energy distribution gives the magnitude of the total velocity. The wind velocity vector is uniquely determined since the measured total velocity depends on the wind vector and the orbiting velocity vector. The orbiting spectrometer moves supersonically, Mach 8 or greater, through the air and must point within a few degrees of its orbital velocity vector (the ram direction). Pointing knowledge is critical; for example, pointing errors 0.1 lead to errors of about 10 m/s in the wind. The WATS method may also be applied without modification to measure the ion-drift vector, ion temperature, and relative ion densities of major ionic species in the ionosphere. In such an application it may be called IDTS: Ion-Drift Temperature Spectrometry. A spectrometer-based coordinate system with one axis instantaneously pointing along the ram direction makes it possible to transform the Maxwellian velocity distribution of the air molecules to a Maxwellian energy-angle distribution for the molecular flux entering the spectrometer. This implementation of WATS is called the gas kinetic method (GKM) because it is applied to the case of the Maxwellian distribution. The WATS method follows from the recognition that in a supersonic platform moving at 8,000 m/s, the measurement of small wind velocities in the air on the order of a few 100 m/s and less requires precise knowledge of the angle of incidence of the neutral atoms and molecules. The same is true for the case of ion-drift measurements. WATS also

  16. Aerodynamic Interactions between Pairs of Vertical-Axis Wind Turbines

    Science.gov (United States)

    Brownstein, Ian; Dabiri, John

    2017-11-01

    Increased power production has been observed in downstream vertical-axis wind turbines (VAWTs) when positioned offset from the wake of upstream turbines. This effect was found to exist in both laboratory and field environments with pairs of co- and counter-rotating turbines. It is hypothesized that the observed power production enhancement is due to flow acceleration adjacent to the upstream turbine caused by bluff body blockage, which increases the incident freestream velocity on appropriately positioned downstream turbines. This type of flow acceleration has been observed in computational and laboratory studies of VAWTs and will be further investigated here using 3D-PTV measurements around pairs of laboratory-scale VAWTs. These measurements will be used to understand the mechanisms behind the performance enhancement effect and seek to determine optimal separation distances and angles between turbines based on turbine design parameters. These results will lead to recommendations for optimizing the power production of VAWT wind farms which utilize this effect.

  17. Gracing incidence small angle neutron scattering of incommensurate magnetic structures in MnSi thin films

    Energy Technology Data Exchange (ETDEWEB)

    Wiedemann, Birgit; Pfleiderer, Christian; Boeni, Peter [Physik Department, Technische Universitaet Muenchen (Germany); Zhang, Shilei; Hesjedal, Thorsten [Clarendon Laboratory, Department of Physics, University of Oxford (United Kingdom); Khaydukov, Yury; Soltwedel, Olaf; Keller, Thomas [Max-Planck-Institut fuer Festkoerperforschung (Germany); Max Planck Society, Outstation at FRM-II (Germany); Muehlbauer, Sebastian [Forschungsneutronenquelle Heinz Maier Leibnitz, Technische Universitaet Muenchen (Germany); Chacon, Alfonso [Physik Department, Technische Universitaet Muenchen (Germany); Forschungsneutronenquelle Heinz Maier Leibnitz, Technische Universitaet Muenchen (Germany)

    2015-07-01

    The topological stability of skyrmions in bulk samples of MnSi and the observation of spin transfer torque effects at ultra-low current densities have generated great interest in skyrmions in chiral magnets as a new route towards next generation spintronics devices. Yet, the formation of skyrmions in MBE grown thin films of MnSi reported in the literature is highly controversial. We report gracing incidence small angle neutron scattering (GISANS) of the magnetic order in selected thin films of MnSi grown by state of the art MBE techniques. In combination with polarised neutron reflectometry (PNR) and magnetisation measurements of the same samples our data provide direct reciprocal space information of the incommensurate magnetic order, clarifying the nature of magnetic phase diagram.

  18. Grazing incidence small angle X-ray scattering study of silver nanoparticles in ion-exchanged glasses

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Weidong, E-mail: 57399942@qq.com [College of Materials Science and Engineering, Qiqihar University, Qiqihar 161006 (China); Wu, Zhaojun [Department of Practice Teaching and Equipment Management, Qiqihar University, Qiqihar 161006 (China); Gu, Xiaohua [College of Materials Science and Engineering, Qiqihar University, Qiqihar 161006 (China); Xing, Xueqing; Mo, Guang [Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); Wu, Zhonghua, E-mail: wuzh@ihep.ac.cn [Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China)

    2015-05-15

    The size and distribution of silver nanoparticles in ion-exchanged silicate glass induced by thermal treatments in air at different temperatures were investigated by means of grazing incidence small angle X-ray scattering technique, X-ray diffraction and optical absorption spectra. Silver–sodium ion exchange of soda-lime silicate glasses was done at 350 °C for 240 min, then the samples were treated by thermal annealing in air at different temperatures 400, 500 and 550 °C, respectively, for 1 h. After the annealing treatment above 400 °C for 1 h, smaller Ag nanoparticles occurred, together with bigger ones. Both dissolution of smaller Ag nanoparticles and diffusion of larger ones are discussed in these stages of annealing in this contribution.

  19. Influence of inflow angle on flexible flap aerodynamic performance

    International Nuclear Information System (INIS)

    Zhao, H Y; Ye, Z; Li, Z M; Li, C

    2013-01-01

    Large scale wind turbines have larger blade lengths and weights, which creates new challenges for blade design. This paper selects NREL S809 airfoil, and uses the parameterized technology to realize the flexible trailing edge deformation, researches the dynamic aerodynamic characteristics in the process of continuous flexible deformation, analyses the influence of inflow angle on flexible flap aerodynamic performance, in order to further realize the flexible wind turbine blade design and provides some references for the active control scheme. The results show that compared with the original airfoil, proper trailing edge deformation can improve the lift coefficient, reduce the drag coefficient, and thereby more efficiently realize flow field active control. With inflow angle increases, dynamic lift-drag coefficient hysteresis loop shape deviation occurs, even turns into different shapes. Appropriate swing angle can improve the flap lift coefficient, but may cause early separation of flow. To improve the overall performance of wind turbine blades, different angular control should be used at different cross sections, in order to achieve the best performance

  20. Load alleviation of wind turbines by yaw misalignment

    DEFF Research Database (Denmark)

    Kragh, Knud Abildgaard; Hansen, Morten Hartvig

    2014-01-01

    Vertical wind shear is one of the dominating causes of load variations on the blades of a horizontal axis wind turbine. To alleviate the varying loads, wind turbine control systems have been augmented with sensors and actuators for individual pitch control. However, the loads caused by a vertical...... wind shear can also be affected through yaw misalignment. Recent studies of yaw control have been focused on improving the yaw alignment to increase the power capture at below rated wind speeds. In this study, the potential of alleviating blade load variations induced by the wind shear through yaw...... misalignment is assessed. The study is performed through simulations of a reference turbine. The study shows that optimal yaw misalignment angles for minimizing the blade load variations can be identified for both deterministic and turbulent inflows. It is shown that the optimal yaw misalignment angles can...

  1. Stress analysis of composite wind turbine blade by finite element method

    Science.gov (United States)

    Yeh, Meng-Kao; Wang, Chen-Hsu

    2017-10-01

    In this study, the finite element analysis software ANSYS was used to analyze the composite wind turbine blade. The wind turbine blade model used is adopted from the 5 MW model of US National Renewable Energy Laboratory (NREL). The wind turbine blade is a sandwich structure, comprising outermost carbon fiber cloth/epoxy composites, the inner glass fiber/vinylester layers, and PVC foam core, together with stiffeners. The wind pressure is converted into the load on the blade structure. The stress distribution and deformation of wind turbine blade were obtained by considering different pitch angles and at different angular positions. The Tsai-Hill criterion was used to determine the failure of wind turbine blade. The results show that at the 0° pitch angle, the wind turbine blade is subjected to the largest combined load and therefore the stress is the largest; with the increasing pitch angle, the load gradually decreases and the stress is also smaller. The stress and displacement are the greatest when the wind blade is located at 120° angular position from its highest vertex.

  2. Research and analysis on response characteristics of bracket-line coupling system under wind load

    Science.gov (United States)

    Jiayu, Zhao; Qing, Sun

    2018-01-01

    In this paper, a three-dimensional finite element model of bracket-line coupling system is established based on ANSYS software. Using the wind velocity time series which is generated by MATLAB as a power input, by comparing and analyzing the influence of different wind speeds and different wind attack angles, it is found that when 0 degree wind acts on the structure, wires have a certain damping effect in the bracket-line coupling system and at the same wind speed, the 90 degree direction is the most unfavorable wind direction for the whole structure according to the three kinds of angle wind calculated at present. In the bracket-line coupling system, the bracket structure is more sensitive to the increase of wind speed while the conductors are more sensitive to the change of wind attack angle.

  3. Estimates of oceanic surface wind speed and direction using orthogonal beam scatterometer measurements and comparison of recent sea scattering theories

    Science.gov (United States)

    Moore, R. K.; Fung, A. K.; Dome, G. J.; Birrer, I. J.

    1978-01-01

    The wind direction properties of radar backscatter from the sea were empirically modelled using a cosine Fourier series through the 4th harmonic in wind direction (referenced to upwind). A comparison with 1975 JONSWAP (Joint North Sea Wave Project) scatterometer data, at incidence angles of 40 and 65, indicates that effects to third and fourth harmonics are negligible. Another important result is that the Fourier coefficients through the second harmonic are related to wind speed by a power law expression. A technique is also proposed to estimate the wind speed and direction over the ocean from two orthogonal scattering measurements. A comparison between two different types of sea scatter theories, one type presented by the work of Wright and the other by that of Chan and Fung, was made with recent scatterometer measurements. It demonstrates that a complete scattering model must include some provisions for the anisotropic characteristics of the sea scatter, and use a sea spectrum which depends upon wind speed.

  4. Forces and Moments on Flat Plates of Small Aspect Ratio with Application to PV Wind Loads and Small Wind Turbine Blades

    OpenAIRE

    Xavier Ortiz; David Rival; David Wood

    2015-01-01

    To improve knowledge of the wind loads on photovoltaic structures mounted on flat roofs at the high angles required in high latitudes, and to study starting flow on low aspect ratio wind turbine blades, a series of wind tunnel tests were undertaken. Thin flat plates of aspect ratios between 0.4 and 9.0 were mounted on a sensitive three-component instantaneous force and moment sensor. The Reynolds numbers varied from 6 × 10 4 to 2 × 10 5 . Measurements were made for angles of attack between 0°...

  5. Investigation and modeling of the effects of light spectrum and incident angle on the growth of Chlorella vulgaris in photobioreactors.

    Science.gov (United States)

    Souliès, Antoine; Legrand, Jack; Marec, Hélène; Pruvost, Jérémy; Castelain, Cathy; Burghelea, Teodor; Cornet, Jean-François

    2016-03-01

    An in-depth investigation of how various illumination conditions influence microalgal growth in photobioreactors (PBR) has been presented. Effects of both the light emission spectrum (white and red) and the light incident angle (0° and 60°) on the PBR surface were investigated. The experiments were conducted in two fully controlled lab-scale PBRs, a torus PBR and a thin flat-panel PBR for high cell density culture. The results obtained in the torus PBR were used to build the kinetic growth model of Chlorella vulgaris taken as a model species. The PBR model was then applied to the thin flat-panel PBR, which was run with various illumination conditions. Its detailed representation of local rate of photon absorption under various conditions (spectral calculation of light attenuation, incident angle influence) enabled the model to take into account all the tested conditions with no further adjustment. This allowed a detailed investigation of the coupling between radiation field and photosynthetic growth. Effects of all the radiation conditions together with pigment acclimation, which was found to be relevant, were investigated in depth. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:247-261, 2016. © 2016 American Institute of Chemical Engineers.

  6. Optimal multivariable control of a wind turbine with variable speed

    NARCIS (Netherlands)

    Steinbuch, M.

    1987-01-01

    The control system design for a 310 kW horizontal axis wind energy conversion system with a synchronous generator and DC link is investigated. Because the wind turbine system has multiple inputs (pitch angle, field vollage alld delay angle), and multiple outputs, (speed and power), and because the

  7. An evaluation of several methods of determining the local angle of attack on wind turbine blades

    International Nuclear Information System (INIS)

    Guntur, S; Sørensen, N N

    2014-01-01

    Several methods of determining the angles of attack (AOAs) on wind turbine blades are discussed in this paper. A brief survey of the methods that have been used in the past are presented, and the advantages of each method are discussed relative to their application in the BEM theory. Data from existing as well as new full rotor CFD computations of the MEXICO rotor are used in this analysis. A more accurate estimation of the AOA is possible from 3D full rotor CFD computations, but when working with experimental data, pressure measurements and sectional forces are often the only data available. The aim of this work is to analyse the reliability of some of the simpler methods of estimating the 3D effective AOA compared some of the more rigorous CFD based methods

  8. Aerodynamic performance of wind turbine under different yaw angles

    DEFF Research Database (Denmark)

    Shi, Yali; Zuo, Hongmei; Yang, Hua

    2015-01-01

    is simulated by ANSYS CFX with the turbulence model of SST (shear stress transport), high resolution is chosen as advection scheme, and transient rotor stator as the domain interface method. The results are converted into data, processed and analyzed by MATLAB. Finally the following conclusions are drawn....... With the increasing of yaw angle, the pressure coefficients of the suction side are increasing and the location of minimum pressure coefficient moves to airfoil trailing edge slightly. For the pressure side, the pressure coefficients increase at first and then decrease, and the location of maximum pressure...... coefficient moves to airfoil leading edge slightly. The axial load coefficients and tangential load coefficients of blades first decrease and then increase and then decrease again with the increase of the azimuthal angle. With the increase of the yaw angle, the axial and tangential load coefficients are both...

  9. Basic DTU Wind Energy controller

    Energy Technology Data Exchange (ETDEWEB)

    Hartvig Hansen, M.; Henriksen, Lars Christian

    2013-01-15

    This report contains a description and documentation, including source code, of the basic DTU Wind Energy controller applicable for pitch-regulated, variable speed wind turbines. The controller features both partial and full load operation capabilities as well as switching mechanisms ensuring smooth switching between the two modes of operation. The partial and full load controllers are both based on classical proportional-integral control theory as well as additional filters such as an optional drive train damper and a notch filter mitigating the influence of rotor speed dependent variations in the feedback. The controller relies on generator speed as the primary feedback sensor. Additionally, the reference generator power is used as a feedback term to smoothen the switching between partial and full load operation. Optionally, a low-pass filtered wind speed measurement can be used for wind speed dependent minimum blade pitch in partial load operation. The controller uses the collective blade pitch angle and electromagnetic generator torque to control the wind turbine. In full load operation a feedback term from the collective blade pitch angle is used to schedule the gains of the proportional-integral controller to counter the effects of changing dynamics of the wind turbine for different wind speeds. Blade pitch servo and generator models are not included in this controller and should be modeled separately, if they are to be included in the simulations. (Author)

  10. Control strategies for wind farm power optimization: LES study

    Science.gov (United States)

    Ciri, Umberto; Rotea, Mario; Leonardi, Stefano

    2017-11-01

    Turbines in wind farms operate in off-design conditions as wake interactions occur for particular wind directions. Advanced wind farm control strategies aim at coordinating and adjusting turbine operations to mitigate power losses in such conditions. Coordination is achieved by controlling on upstream turbines either the wake intensity, through the blade pitch angle or the generator torque, or the wake direction, through yaw misalignment. Downstream turbines can be adapted to work in waked conditions and limit power losses, using the blade pitch angle or the generator torque. As wind conditions in wind farm operations may change significantly, it is difficult to determine and parameterize the variations of the coordinated optimal settings. An alternative is model-free control and optimization of wind farms, which does not require any parameterization and can track the optimal settings as conditions vary. In this work, we employ a model-free optimization algorithm, extremum-seeking control, to find the optimal set-points of generator torque, blade pitch and yaw angle for a three-turbine configuration. Large-Eddy Simulations are used to provide a virtual environment to evaluate the performance of the control strategies under realistic, unsteady incoming wind. This work was supported by the National Science Foundation, Grants No. 1243482 (the WINDINSPIRE project) and IIP 1362033 (I/UCRC WindSTAR). TACC is acknowledged for providing computational time.

  11. Method and apparatus for wind turbine braking

    Science.gov (United States)

    Barbu, Corneliu [Laguna Hills, CA; Teichmann, Ralph [Nishkayuna, NY; Avagliano, Aaron [Houston, TX; Kammer, Leonardo Cesar [Niskayuna, NY; Pierce, Kirk Gee [Simpsonville, SC; Pesetsky, David Samuel [Greenville, SC; Gauchel, Peter [Muenster, DE

    2009-02-10

    A method for braking a wind turbine including at least one rotor blade coupled to a rotor. The method includes selectively controlling an angle of pitch of the at least one rotor blade with respect to a wind direction based on a design parameter of a component of the wind turbine to facilitate reducing a force induced into the wind turbine component as a result of braking.

  12. Chinese HJ-1C SAR And Its Wind Mapping Capability

    Science.gov (United States)

    Huang, Weigen; Chen, Fengfeng; Yang, Jingsong; Fu, Bin; Chen, Peng; Zhang, Chan

    2010-04-01

    Chinese Huan Jing (HJ)-1C synthetic aperture radar (SAR) satellite has been planed to be launched in 2010. HJ-1C satellite will fly in a sun-synchronous polar orbit of 500-km altitude. SAR will be the only sensor on board the satellite. It operates in S band with VV polarization. Its image mode has the incidence angles 25°and 47°at the near and far sides of the swath respectively. There are two selectable SAR modes of operation, which are fine resolution beams and standard beams respectively. The sea surface wind mapping capability of the SAR has been examined using M4S radar imaging model developed by Romeiser. The model is based on Bragg scattering theory in a composite surface model expansion. It accounts for contributions of the full ocean wave spectrum to the radar backscatter from ocean surface. The model reproduces absolute normalized radar cross section (NRCS) values for wide ranges of wind speeds. The model results of HJ-1C SAR have been compared with the model results of Envisat ASAR. It shows that HJ-1C SAR is as good as Envisat ASAR at sea surface wind mapping.

  13. In situ grazing incidence small-angle X-ray scattering investigation of polystyrene nanoparticle spray deposition onto silicon.

    Science.gov (United States)

    Herzog, Gerd; Benecke, Gunthard; Buffet, Adeline; Heidmann, Berit; Perlich, Jan; Risch, Johannes F H; Santoro, Gonzalo; Schwartzkopf, Matthias; Yu, Shun; Wurth, Wilfried; Roth, Stephan V

    2013-09-10

    We investigated the spray deposition and subsequent self-assembly during drying of a polystyrene nanoparticle dispersion with in situ grazing incidence small-angle X-ray scattering at high time resolution. During the fast deposition of the dispersion and the subsequent evaporation of the solvent, different transient stages of nanoparticle assembly can be identified. In the first stage, the solvent starts to evaporate without ordering of the nanoparticles. During the second stage, large-scale structures imposed by the breakup of the liquid film are observable. In this stage, the solvent evaporates further and nanoparticle ordering starts. In the late third drying stage, the nanoparticles self-assemble into the final layer structure.

  14. Aerodynamic flow simulation of wind turbine: Downwind versus upwind configuration

    International Nuclear Information System (INIS)

    Janajreh, Isam; Qudaih, Rana; Talab, Ilham; Ghenai, Chaouki

    2010-01-01

    Large scale wind turbines and wind farms continue to grow mounting 94.1 GW of the electrical grid capacity in 2007 and expected to reach 160.0 GW in 2010. Wind energy plays a vital role in the quest for renewable and sustainable energy as well as in reducing carbon emission. Early generation wind turbines (windmills) were used mainly for water pumping and seed grinding, whereas today they generate 1/5 of the current Denmark's electricity and will double its grid capacity reaching 12.5% in 2010. Wind energy is plentiful (72 TW estimated to be commercially viable) and clean while its intensive capital cost still impede widespread deployment. However, there are technological challenges, i.e. high fatigue load, noise emission, and meeting stringent reliability and safety standards. Newer inventions, e.g., downstream wind turbines and flapping rotor blades, are sought to enhance their performance, i.e. lower turning moments and cut-in speed and to absorb portion of the cost due to the absent of yaw mechanisms. In this work, numerical analysis of the downstream wind turbine blade is conducted. In particular, the interaction between the tower and the rotor passage is investigated. Circular cross sectional tower and aerofoil shapes are considered in a staggered configuration and under cross-stream motion. The resulting blade static pressure and aerodynamic forces are computed at different incident wind angles and wind speeds. The computed forces are compared to the conventional upstream wind turbine. Steady state and transient, incompressible, viscous Navier-Stokes and turbulent flow analysis are employed. The k-epsilon model is utilized as the turbulence closure. The passage of the rotor blade is governed by ALE and is represented numerically as a sliding mesh against the upstream fixed tower domain.

  15. Influence of the tilting reflection mirror on the temperature and wind velocity retrieved by a polarizing atmospheric Michelson interferometer.

    Science.gov (United States)

    Zhang, Chunmin; Li, Ying

    2012-09-20

    The principles of a polarizing atmospheric Michelson interferometer are outlined. The tilt of its reflection mirror results in deflection of the reflected beam and affects the intensities of the observed inteferogram. This effect is systematically analyzed. Both rectangular and circular apertures are considered. The theoretical expression of the modulation depth and phase of the interferogram are derived. These parameters vary with the inclination angle of the mirror and the distance between the deflection center and the optical axis and significantly influence the retrieved temperature and wind speed. If the wind and temperature errors are required to be less than 3 m/s and 5 K, the deflection angle must be less than 0.5°. The errors are also dependent on the shape of aperture. If the reflection mirror is deflected in one direction, the temperature error is smaller for a circular aperture (1.3 K) than for a rectangular one (2.6 K), but the wind velocity errors are almost the same (less than 3 m/s). If the deflection center and incident light beam are coincident, the temperature errors are 3 × 10(-4) K and 0.45 K for circular and rectangular apertures, respectively. The wind velocity errors are 1.2 × 10(-3) m/s and 0.06 m/s. Both are small. The result would be helpful for theoretical research and development of the static polarization wind imaging interferometer.

  16. A multiple-fan active control wind tunnel for outdoor wind speed and direction simulation

    Science.gov (United States)

    Wang, Jia-Ying; Meng, Qing-Hao; Luo, Bing; Zeng, Ming

    2018-03-01

    This article presents a new type of active controlled multiple-fan wind tunnel. The wind tunnel consists of swivel plates and arrays of direct current fans, and the rotation speed of each fan and the shaft angle of each swivel plate can be controlled independently for simulating different kinds of outdoor wind fields. To measure the similarity between the simulated wind field and the outdoor wind field, wind speed and direction time series of two kinds of wind fields are recorded by nine two-dimensional ultrasonic anemometers, and then statistical properties of the wind signals in different time scales are analyzed based on the empirical mode decomposition. In addition, the complexity of wind speed and direction time series is also investigated using multiscale entropy and multivariate multiscale entropy. Results suggest that the simulated wind field in the multiple-fan wind tunnel has a high degree of similarity with the outdoor wind field.

  17. Wind Tunnel Tests for Wind Pressure Distribution on Gable Roof Buildings

    Science.gov (United States)

    2013-01-01

    Gable roof buildings are widely used in industrial buildings. Based on wind tunnel tests with rigid models, wind pressure distributions on gable roof buildings with different aspect ratios were measured simultaneously. Some characteristics of the measured wind pressure field on the surfaces of the models were analyzed, including mean wind pressure, fluctuating wind pressure, peak negative wind pressure, and characteristics of proper orthogonal decomposition results of the measured wind pressure field. The results show that extremely high local suctions often occur in the leading edges of longitudinal wall and windward roof, roof corner, and roof ridge which are the severe damaged locations under strong wind. The aspect ratio of building has a certain effect on the mean wind pressure coefficients, and the effect relates to wind attack angle. Compared with experimental results, the region division of roof corner and roof ridge from AIJ2004 is more reasonable than those from CECS102:2002 and MBMA2006.The contributions of the first several eigenvectors to the overall wind pressure distributions become much bigger. The investigation can offer some basic understanding for estimating wind load distribution on gable roof buildings and facilitate wind-resistant design of cladding components and their connections considering wind load path. PMID:24082851

  18. Neutron spin echo scattering angle measurement (SESAME)

    International Nuclear Information System (INIS)

    Pynn, R.; Fitzsimmons, M.R.; Fritzsche, H.; Gierlings, M.; Major, J.; Jason, A.

    2005-01-01

    We describe experiments in which the neutron spin echo technique is used to measure neutron scattering angles. We have implemented the technique, dubbed spin echo scattering angle measurement (SESAME), using thin films of Permalloy electrodeposited on silicon wafers as sources of the magnetic fields within which neutron spins precess. With 30-μm-thick films we resolve neutron scattering angles to about 0.02 deg. with neutrons of 4.66 A wavelength. This allows us to probe correlation lengths up to 200 nm in an application to small angle neutron scattering. We also demonstrate that SESAME can be used to separate specular and diffuse neutron reflection from surfaces at grazing incidence. In both of these cases, SESAME can make measurements at higher neutron intensity than is available with conventional methods because the angular resolution achieved is independent of the divergence of the neutron beam. Finally, we discuss the conditions under which SESAME might be used to probe in-plane structure in thin films and show that the method has advantages for incident neutron angles close to the critical angle because multiple scattering is automatically accounted for

  19. Design improvements to the ESI-80 wind turbine

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, T.; Kleeman, A.; Manwell, J.; McGowan, J. [Univ. of Massachusetts, Amherst, MA (United States)

    1996-12-31

    This paper describes two investigations related to improvements to an ESI-80 wind turbine. One of them involved modeling the tip flaps during braking. The other was a study of the turbine behavior with various delta-3 angles. These topics are of interest since the turbine is a two-bladed, teetered, free-yaw machine with tip flaps and an adjustable delta-3 angle. Tip flaps are used for slowing the turbine during shutdown and as an emergency system to insure that the rotor does not go into an overspeed condition in the event of failure of other parts of the system. Upon deployment, the tip flaps are exposed to a number of varying forces including aerodynamic, damper, spring, centripetal, and gravitational forces and forces at the hinged connection to the blades. For maximum braking the angle of tip flap deployment needs to be as large as possible without striking the blades in overspeed conditions and when covered with ice. To investigate tip flap design tradeoffs, a dynamic model of the tip flaps on the modified ESI-80 turbine was developed. Results include a determination of the effect of the addition of weight to the flap, overspeed conditions, and changes in damping coefficient. Changes in the delta-3 angle can be used to couple pitching and flapping motions, affecting both teeter and yaw behavior. These effects have been investigated using a modified version of YawDyn. The effects of changes in the delta-3 angle on the teeter and yaw behavior of the modified ESI-80 wind turbine were investigated. Results show that increased teeter excursions in steady high winds can be reduced by increasing the delta-3 angle. Increasing the delta-3 angle may also increase yaw motion in low wind speeds. Results suggest that the optimum delta-3 angle for improved performance may be substantially greater than the presently used angle of zero degrees. 8 refs., 16 figs.

  20. Electrostatic Solitary Waves in the Solar Wind: Evidence for Instability at Solar Wind Current Sheets

    Science.gov (United States)

    Malaspina, David M.; Newman, David L.; Wilson, Lynn Bruce; Goetz, Keith; Kellogg, Paul J.; Kerstin, Kris

    2013-01-01

    A strong spatial association between bipolar electrostatic solitary waves (ESWs) and magnetic current sheets (CSs) in the solar wind is reported here for the first time. This association requires that the plasma instabilities (e.g., Buneman, electron two stream) which generate ESWs are preferentially localized to solar wind CSs. Distributions of CS properties (including shear angle, thickness, solar wind speed, and vector magnetic field change) are examined for differences between CSs associated with ESWs and randomly chosen CSs. Possible mechanisms for producing ESW-generating instabilities at solar wind CSs are considered, including magnetic reconnection.

  1. The effect of incidence angle on ion bombardment induced surface topography development on single crystal copper

    International Nuclear Information System (INIS)

    Carter, G.; Nobes, M.J.; Lewis, G.W.; Whitton, J.L.

    1982-01-01

    The fluence dependence of development of microscopic surface features, particularly etch pits, during 9 keV Ar + ion bombardment of (11,3,1) oriented Cu single crystals has been studied employing quasi-dynamic irradiation and observation techniques in a scanning electron microscope-accelerator system. 9 keV ions are observed not to produce crystallographic pyramids under all irradiation conditions for this surface, a very different result from our earlier studies with higher energy ions. The bombardment does elaborate etch pits however, the habits and growth kinetics of which depend upon both polar and azimuthal angles of ion incidence to the surface. The results are explained in terms of differential erosion of crystal planes modified by the presence of pre-existing and irradiation induces extended defects. (orig.)

  2. Particle transport patterns of short-distance soil erosion by wind-driven rain, rain and wind

    Science.gov (United States)

    Marzen, Miriam; Iserloh, Thomas; de Lima, João L. M. P.; Ries, Johannes B.

    2015-04-01

    Short distance erosion of soil surface material is one of the big question marks in soil erosion studies. The exact measurement of short-distance transported soil particles, prior to the occurrence of overland flow, is a challenge to soil erosion science due to the particular requirements of the experimental setup and test procedure. To approach a quantification of amount and distance of each type of transport, we applied an especially developed multiple-gutter system installed inside the Trier Portable Wind and Rainfall Simulator (PWRS). We measured the amount and travel distance of soil particles detached and transported by raindrops (splash), wind-driven rain (splash-saltation and splash-drift) and wind (saltation). The test setup included three different erosion agents (rain/ wind-driven rain/ wind), two substrates (sandy/ loamy), three surface structures (grain roughness/ rills lengthwise/ rills transversal) and three slope angles (0°/+7°/-7°). The results present detailed transport patterns of the three erosion agents under the varying soil and surface conditions up to a distance of 1.6 m. Under the applied rain intensity and wind velocity, wind-driven rain splash generates the highest erosion. The erodibility and travel distance of the two substrates depend on the erosion agent. The total erosion is slightly higher for the slope angle -7° (downslope), but for wind-driven rain splash, the inclination is not a relevant factor. The effect of surface structures (rills) changes with traveling distance. The wind driven rain splash generates a much higher amount of erosion and a further travel distance of the particles due to the combined action of wind and rain. The wind-driven rain factor appears to be much more significant than the other factors. The study highlights the effects of different erosion agents and surface parameters on short-distance particle transport and the powerful impact of wind-driven rain on soil erosion.

  3. Effects of incident energy and angle on carbon cluster ions implantation on silicon substrate: a molecular dynamics study

    Science.gov (United States)

    Wei, Ye; Sang, Shengbo; Zhou, Bing; Deng, Xiao; Chai, Jing; Ji, Jianlong; Ge, Yang; Huo, Yuanliang; Zhang, Wendong

    2017-09-01

    Carbon cluster ion implantation is an important technique in fabricating functional devices at micro/nanoscale. In this work, a numerical model is constructed for implantation and implemented with a cutting-edge molecular dynamics method. A series of simulations with varying incident energies and incident angles is performed for incidence on silicon substrate and correlated effects are compared in detail. Meanwhile, the behavior of the cluster during implantation is also examined under elevated temperatures. By mapping the nanoscopic morphology with variable parameters, numerical formalism is proposed to explain the different impacts on phrase transition and surface pattern formation. Particularly, implantation efficiency (IE) is computed and further used to evaluate the performance of the overall process. The calculated results could be properly adopted as the theoretical basis for designing nano-structures and adjusting devices’ properties. Project supported by the National Natural Science Foundation of China (Nos. 51622507, 61471255, 61474079, 61403273, 51502193, 51205273), the Natural Science Foundation of Shanxi (Nos. 201601D021057, 201603D421035), the Youth Foundation Project of Shanxi Province (Nos. 2015021097), the Doctoral Fund of MOE of China (No. 20131402110013), the National High Technology Research and Development Program of China (No. 2015AA042601), and the Specialized Project in Public Welfare from The Ministry of Water Resources of China (Nos. 1261530110110).

  4. Dynamics of Line-Driven Winds from Disks in Cataclysmic Variables. I. Solution Topology and Wind Geometry

    OpenAIRE

    Feldmeier, Achim; Shlosman, Isaac

    1999-01-01

    We analyze the dynamics of 2-D stationary, line-driven winds from accretion disks in cataclysmic variable stars. The driving force is that of line radiation pressure, in the formalism developed by Castor, Abbott & Klein for O stars. Our main assumption is that wind helical streamlines lie on straight cones. We find that the Euler equation for the disk wind has two eigenvalues, the mass loss rate and the flow tilt angle with the disk. Both are calculated self-consistently. The wind is characte...

  5. Wind inflow observation from load harmonics

    OpenAIRE

    Marta, Bertelè; Bottasso, Carlo L.; Cacciola, Stefano; Fabiano Daher Adegas,; Sara, Delport

    2017-01-01

    The wind field leaves its fingerprint on the rotor response. This fact can be exploited by using the rotor as a sensor: by looking at the rotor response, in the present case in terms of blade loads, one may infer the wind characteristics. This paper describes a wind state observer that estimates four wind parameters, namely the vertical and horizontal shears and the yaw and upflow misalignment angles, from out-of-plane and in-plane blade bending moments. The resulting observ...

  6. Field Tests of Wind Turbine Unit with Tandem Wind Rotors and Double Rotational Armatures

    Science.gov (United States)

    Galal, Ahmed Mohamed; Kanemoto, Toshiaki

    This paper discusses the field tests of the wind turbine unit, in which the front and the rear wind rotors drive the inner and the outer armatures of the synchronous generator. The wind rotors were designed conveniently by the traditional procedure for the single wind rotor, where the diameters of the front and the rear wind rotors are 2 m and 1.33 m. The tests were done on a pick-up type truck driven straightly at constant speed. The rotational torque of the unit is directly proportional to the induced electric current irrespective of the rotational speeds of the wind rotors, while the induced voltage is proportional to the relative rotational speed. The performance of the unit is significantly affected not only by the wind velocity, but also by the blade setting angles of both wind rotors and the applied load especially at lower wind velocity.

  7. Filament winding technique, experiment and simulation analysis on tubular structure

    Science.gov (United States)

    Quanjin, Ma; Rejab, M. R. M.; Kaige, Jiang; Idris, M. S.; Harith, M. N.

    2018-04-01

    Filament winding process has emerged as one of the potential composite fabrication processes with lower costs. Filament wound products involve classic axisymmetric parts (pipes, rings, driveshafts, high-pressure vessels and storage tanks), non-axisymmetric parts (prismatic nonround sections and pipe fittings). Based on the 3-axis filament winding machine has been designed with the inexpensive control system, it is completely necessary to make a relative comparison between experiment and simulation on tubular structure. In this technical paper, the aim of this paper is to perform a dry winding experiment using the 3-axis filament winding machine and simulate winding process on the tubular structure using CADWIND software with 30°, 45°, 60° winding angle. The main result indicates that the 3-axis filament winding machine can produce tubular structure with high winding pattern performance with different winding angle. This developed 3-axis winding machine still has weakness compared to CAWIND software simulation results with high axes winding machine about winding pattern, turnaround impact, process error, thickness, friction impact etc. In conclusion, the 3-axis filament winding machine improvements and recommendations come up with its comparison results, which can intuitively understand its limitations and characteristics.

  8. An isodose shift technique for obliquely incident electron beams

    International Nuclear Information System (INIS)

    Ulin, K.; Sternick, E.S.

    1989-01-01

    It is well known that when an electron beam is incident obliquely on the surface of a phantom, the depth dose curve measured normal to the surface is shifted toward the surface. Based on geometrical arguments alone, the depth of the nth isodose line for an electron beam incident at an angle θ should be equal to the product of cos θ and the depth of the nth isodose line at normal incidence. This method, however, ignores the effects of scatter and can lead to significant errors in isodose placement for beams at large angles of incidence. A semi-empirical functional relationship and a table of isodose shift factors have been developed with which one may easily calculate the depth of any isodose line for beams at incident angles of 0 degree to 60 degree. The isodose shift factors are tabulated in terms of beam energy (6--22 MeV) and isodose line (10%--90%) and are shown to be relatively independent of beam size and incident angle for angles <60 degree. Extensive measurements have been made on a Varian Clinac 2500 linear accelerator with a parallel-plate chamber and polystyrene phantom. The dependence of the chamber response on beam angulation has been checked, and the scaling factor of the polystyrene phantom has been determined to be equal to 1.00

  9. Effects of wind velocity and slope on flame properties

    Science.gov (United States)

    David R. Weise; Gregory S. Biging

    1996-01-01

    Abstract: The combined effects of wind velocity and percent slope on flame length and angle were measured in an open-topped, tilting wind tunnel by burning fuel beds composed of vertical birch sticks and aspen excelsior. Mean flame length ranged from 0.08 to 1.69 m; 0.25 m was the maximum observed flame length for most backing fires. Flame angle ranged from -46o to 50o...

  10. WIND TURBINE OPERATION PARAMETER CHARACTERISTICS AT A GIVEN WIND SPEED

    Directory of Open Access Journals (Sweden)

    Zdzisław Kamiński

    2014-06-01

    Full Text Available This paper discusses the results of the CFD simulation of the flow around Vertical Axis Wind Turbine rotor. The examined rotor was designed following patent application no. 402214. The turbine operation is characterised by parameters, such as opening angle of blades, power, torque, rotational velocity at a given wind velocity. Those parameters have an impact on the performance of entire assembly. The distribution of forces acting on the working surfaces in the turbine can change, depending on the angle of rotor rotation. Moreover, the resultant force derived from the force acting on the oncoming and leaving blades should be as high as possible. Accordingly, those parameters were individually simulated over time for each blade in three complete rotations. The attempts to improve the performance of the entire system resulted in a new research trend to improve the performance of working turbine rotor blades.

  11. Dimensional analysis of flame angles versus wind speed

    Science.gov (United States)

    Robert E. Martin; Mark A. Finney; Domingo M. Molina; David B. Sapsis; Scott L. Stephens; Joe H. Scott; David R. Weise

    1991-01-01

    Dimensional analysis has potential to help explain and predict physical phenomena, but has been used very little in studies of wildland fire behavior. By combining variables into dimensionless groups, the number of variables to be handled and the experiments to be run is greatly reduced. A low velocity wind tunnel was constructed, and methyl, ethyl, and isopropyl...

  12. Wind Farms: Modeling and Control

    DEFF Research Database (Denmark)

    Soleimanzadeh, Maryam

    2012-01-01

    is minimized. The controller is practically feasible. Yet, the results on load reduction in this approach are not very significant. In the second strategy, the wind farm control problem has been divided into below rated and above rated wind speed conditions. In the above rated wind speed pitch angle and power....... Distributed controller design commences with formulating the problem, where a structured matrix approach has been put in to practice. Afterwards, an H2 control problem is implemented to obtain the controller dynamics for a wind farm such that the structural loads on wind turbines are minimized.......The primary purpose of this work is to develop control algorithms for wind farms to optimize the power production and augment the lifetime of wind turbines in wind farms. In this regard, a dynamical model for wind farms was required to be the basis of the controller design. In the first stage...

  13. Spondylolysis and the sacro-horizontal angle in athletes

    International Nuclear Information System (INIS)

    Swaerd, L.; Hellstroem, M.; Jacobsson, B.; Peterson, L.; Sahlgrenska Sjukhuset, Goeteborg; King Faisal Specialist Hospital and Research Centre, Riyadh

    1989-01-01

    The frequency of spondylolysis and the relationship between spondylolysis and the sacro-horizontal angle in 143 athletes and 30 non-athletes is reported. Athletes had a larger sacro-horizontal angle than non-athletes. The sacro-horizontal angle was larger in athletes with spondylolysis as compared with those without. An increased incidence of spondylolysis with an increased angle was demonstrated. It is suggested that an increased sacro-horizontal angle may predispose to spondylolysis, especially in combination with the high mechanical loads sustained in certain sports. (orig.)

  14. Spondylolysis and the sacro-horizontal angle in athletes

    Energy Technology Data Exchange (ETDEWEB)

    Swaerd, L.; Hellstroem, M.; Jacobsson, B.; Peterson, L. (Oestra Sjukhuset, Goeteborg (Sweden). Dept. of Orthopaedics; Sahlgrenska Sjukhuset, Goeteborg (Sweden). Dept. of Diagnostic Radiology; King Faisal Specialist Hospital and Research Centre, Riyadh (Saudi Arabia). Dept. of Radiology)

    The frequency of spondylolysis and the relationship between spondylolysis and the sacro-horizontal angle in 143 athletes and 30 non-athletes is reported. Athletes had a larger sacro-horizontal angle than non-athletes. The sacro-horizontal angle was larger in athletes with spondylolysis as compared with those without. An increased incidence of spondylolysis with an increased angle was demonstrated. It is suggested that an increased sacro-horizontal angle may predispose to spondylolysis, especially in combination with the high mechanical loads sustained in certain sports. (orig.).

  15. Wind inflow observation from load harmonics

    Directory of Open Access Journals (Sweden)

    M. Bertelè

    2017-12-01

    Full Text Available The wind field leaves its fingerprint on the rotor response. This fact can be exploited by using the rotor as a sensor: by looking at the rotor response, in the present case in terms of blade loads, one may infer the wind characteristics. This paper describes a wind state observer that estimates four wind parameters, namely the vertical and horizontal shears and the yaw and upflow misalignment angles, from out-of-plane and in-plane blade bending moments. The resulting observer provides on-rotor wind inflow characteristics that can be exploited for wind turbine and wind farm control. The proposed formulation is evaluated through extensive numerical simulations in turbulent and nonturbulent wind conditions using a high-fidelity aeroservoelastic model of a multi-MW wind turbine.

  16. Self-starting aerodynamics analysis of vertical axis wind turbine

    Directory of Open Access Journals (Sweden)

    Jianyang Zhu

    2015-12-01

    Full Text Available Vertical axis wind turbine is a special type of wind-force electric generator which is capable of working in the complicated wind environment. The self-starting aerodynamics is one of the most important considerations for this kind of turbine. This article aims at providing a systematic synthesis on the self-starting aerodynamic characteristics of vertical axis wind turbine based on the numerical analysis approach. First, the physical model of vertical axis wind turbine and its parameter definitions are presented. Secondary, the interaction model between the vertical axis wind turbine and fluid is developed by using the weak coupling approach; the numerical data of this model are then compared with the wind tunnel experimental data to show its feasibility. Third, the effects of solidity and fixed pitch angle on the self-starting aerodynamic characteristics of the vertical axis wind turbine are analyzed systematically. Finally, the quantification effects of the solidity and fixed pitch angle on the self-starting performance of the turbine can be obtained. The analysis in this study will provide straightforward physical insight into the self-starting aerodynamic characteristics of vertical axis wind turbine.

  17. Neural Network Control for Variable Pitch Angle in Grid Connected Wind Turbine%并网风力机中基于变桨距角的神经网络控制方法

    Institute of Scientific and Technical Information of China (English)

    王凌云; 张涛; 孟娟

    2012-01-01

    针对并网风力机的运行特性,在其传动系统和发电机的动态模型基础上设计控制器.当外界风速较大,提出采用基于神经网络的风力机叶片桨距角控制器抑制多余的风能进入发电系统,维持风力发电机馈送到电网的功率稳定;当风速较低时,风力机转速需要跟随风速变化,调整叶片桨距角处于捕捉最大风能位置处,保证风力机的风能转换效率最优,提高其运行效率.仿真结果验证了该控制方法的有效性.%For the operation characteristics of a grid connected wind turbine, two controllers are designed based on the dynamical model of the wind turbine drive system and generator. When the wind speed is higher, the neural network controller of the turbine blades pitch angle is proposed to restrict the excess wind energy entering the generation system in order to keep the power injected into the grid stable. Meanwhile, when the wind speed is lower, the turbine speed is changed with the variation of wind speed by adjusting the blades angle at the value of capturing maximum wind power, then the optimal wind energy conversion efficiency is guaranteed. The simulation results verify this control method is highly effective.

  18. Measurements of diamond-turned copper mirrors at glancing incidence

    International Nuclear Information System (INIS)

    Kimura, W.D.; Saito, T.T.

    1987-01-01

    The results of glancing incidence absorptance measurements performed on diamond-turned copper mirrors are presented. A photoacoustic calorimetry technique is used in which the output from a low power, chopped cw Nd:YAG laser (1.06 μm) is incident upon the mirror at angles of incidence from 0 to 87 0 , for both s and p-polarizations. Measurements are obtained as a function of the diamond turning groove orientation with respect to the plane of incidence. Minimum absorptance, at high angles of incidence, is achieved with s-polarized light and with the grooves aligned parallel to the plane of incidence. The affects on the absorptance of a large scratch at glancing incidence are also described

  19. Measurements of diamond turned copper mirrors at glancing incidence

    International Nuclear Information System (INIS)

    Kimura, W.D.; Saito, T.T.

    1987-01-01

    The results of glancing incidence absorptance measurements performed on diamond turned copper mirrors are presented. A photoacoustic calorimetry technique is used in which the output from a low power, chopped cw Nd:YAG laser (1.06 μm) is incident upon the mirror at angles of incidence from 0 to 87 0 , for both s and p-polarizations. Measurements are obtained as a function of the diamond turning groove orientation with respect to the plane of incidence. Minimum absorptance at high angles of incidence is achieved with s-polarized light and with the grooves aligned parallel to the plane of incidence. The effects on the absorptance of a large scratch at glancing incidence are also described

  20. Numerical study on small scale vertical axis wind turbine

    Directory of Open Access Journals (Sweden)

    Parra-Santos Teresa

    2016-01-01

    Full Text Available The performance of a Vertical Axis Wind Turbine (VAWT is numerically analyzed. The set-up is Hdarrieus with three straight blades airfoils NACA attached to a rotating vertical shaft. The wind turbine has solidity equals to the unity operating with wind velocity of 7 m/s. Influence of pitch angle is tested to get design tendencies. 2D, transient, Navier Stokes equations are solved using the code Ansys-Fluent. Conservation equations were solved with a Third-Order MUSCL scheme using SIMPLE to couple pressure and velocity. More than six revolutions must be simulated to get the periodic behavior. Two models of turbulence have been contrasted Realizable k-epsilon and Transition SST concluding the last one show more realistic flow features. Pitch angles of 0º, -6º and -10º have been tested with Tip Speed Ratios ranging from 0.7 and 1.6. The no null pitch angles improve the performance of the wind turbine. Instantaneous and averaged power coefficients as well as detailed flow field around the airfoils are showed.

  1. Evaluation of Wind Energy Potential in Zaria Metropolis

    African Journals Online (AJOL)

    Keywords: Wind, Extractible Energy, Speed, Power. 41 ... wind results from the movement of air masses and arises primarily due to ... rotation is reclaimed at an angle of 23.5 to the plane in which it ... The power (P ) available in a free flowing wind of a a given cross ..... use and electricity generation: A life-cycle analysis.

  2. Flow deflection over a foredune

    Science.gov (United States)

    Hesp, Patrick A.; Smyth, Thomas A. G.; Nielsen, Peter; Walker, Ian J.; Bauer, Bernard O.; Davidson-Arnott, Robin

    2015-02-01

    Flow deflection of surface winds is common across coastal foredunes and blowouts. Incident winds approaching obliquely to the dune toe and crestline tend to be deflected towards a more crest-normal orientation across the stoss slope of the foredune. This paper examines field measurements for obliquely incident winds, and compares them to computational fluid dynamics (CFD) modelling of flow deflection in 10° increments from onshore (0°) to alongshore (90°) wind approach angles. The mechanics of flow deflection are discussed, followed by a comparative analysis of measured and modelled flow deflection data that shows strong agreement. CFD modelling of the full range of onshore to alongshore incident winds reveals that deflection of the incident wind flow is minimal at 0° and gradually increases as the incident wind turns towards 30° to the dune crest. The greatest deflection occurs between 30° and 70° incident to the dune crest. The degree of flow deflection depends secondarily on height above the dune surface, with the greatest effect near the surface and toward the dune crest. Topographically forced flow acceleration ("speed-up") across the stoss slope of the foredune is greatest for winds less than 30° (i.e., roughly perpendicular) and declines significantly for winds with more oblique approach angles. There is less lateral uniformity in the wind field when the incident wind approaches from > 60° because the effect of aspect ratio on topographic forcing and streamline convergence is less pronounced.

  3. Lightning protection for wind turbines in Vietnam

    Directory of Open Access Journals (Sweden)

    Thuan Nguyen

    2017-01-01

    Full Text Available Wind energy has become increasingly important in the total electrical energy supply mix in Vietnam over the last few years. Small, kW turbines were installed in isolated areas a decade ago, while wind farms of several MW to few hundred MW are now being connected directly to national grid, with many additional projects in planning or under construction to fulfill an objective of 6% of the total installed capacity by 2030 (approximately 6200 MW of wind energy component. The increase in wind farm generation results in increased damage from lightning. In this paper, the annual frequency of lightning strikes to wind turbines in Vietnam is calculated using electrogeometric model. Reported lightning incidents to three major wind farms in Vietnam are summarized. Possible causes of failure are discussed, and an EMTP simulation for each incident was performed accordingly. The simulations suggest the failure mechanisms as well the potential of improved grounding to reduce lightning induced damage in future windfarms.

  4. Estimation of effective wind speed

    Science.gov (United States)

    Østergaard, K. Z.; Brath, P.; Stoustrup, J.

    2007-07-01

    The wind speed has a huge impact on the dynamic response of wind turbine. Because of this, many control algorithms use a measure of the wind speed to increase performance, e.g. by gain scheduling and feed forward. Unfortunately, no accurate measurement of the effective wind speed is online available from direct measurements, which means that it must be estimated in order to make such control methods applicable in practice. In this paper a new method is presented for the estimation of the effective wind speed. First, the rotor speed and aerodynamic torque are estimated by a combined state and input observer. These two variables combined with the measured pitch angle is then used to calculate the effective wind speed by an inversion of a static aerodynamic model.

  5. Wind power and bird kills

    International Nuclear Information System (INIS)

    Raynolds, M.

    1998-01-01

    The accidental killing of birds by wind generators, and design improvements in the towers that support the turbines that might cut down on the bird killings were discussed. The first problem for the industry began in the late 1980s when the California Energy Commission reported as many as 160 birds (the majority being raptors, including the protected golden eagle) killed in one year in the vicinity of wind power plants. The key factor identified was the design of the towers as birds of prey are attracted to lattice towers as a place to hunt from. Tubular towers do not provide a place for the birds to perch, therefore they reduce the potential for bird strikes. Bird strikes also have been reported in Spain and the siting of the towers have been considered as the principal cause of the bird strikes. In view of these incidents, the wind power industry is developing standards for studying the potential of bird strikes and is continuing to study bird behaviour leading to collisions, the impact of topography, cumulative impacts and new techniques to reduce bird strikes. Despite the reported incidents, the risk of bird strikes by wind turbines, compared to other threats to birds such as pollution, oil spills, and other threats from fossil and nuclear fuels, is considered to be negligible. With continuing efforts to minimize incidents by proper design and siting, wind power can continue to grow as an environmentally sound and efficient source of energy

  6. Wind power and bird kills

    Energy Technology Data Exchange (ETDEWEB)

    Raynolds, M.

    1998-12-01

    The accidental killing of birds by wind generators, and design improvements in the towers that support the turbines that might cut down on the bird killings were discussed. The first problem for the industry began in the late 1980s when the California Energy Commission reported as many as 160 birds (the majority being raptors, including the protected golden eagle) killed in one year in the vicinity of wind power plants. The key factor identified was the design of the towers as birds of prey are attracted to lattice towers as a place to hunt from. Tubular towers do not provide a place for the birds to perch, therefore they reduce the potential for bird strikes. Bird strikes also have been reported in Spain and the siting of the towers have been considered as the principal cause of the bird strikes. In view of these incidents, the wind power industry is developing standards for studying the potential of bird strikes and is continuing to study bird behaviour leading to collisions, the impact of topography, cumulative impacts and new techniques to reduce bird strikes. Despite the reported incidents, the risk of bird strikes by wind turbines, compared to other threats to birds such as pollution, oil spills, and other threats from fossil and nuclear fuels, is considered to be negligible. With continuing efforts to minimize incidents by proper design and siting, wind power can continue to grow as an environmentally sound and efficient source of energy.

  7. Model of the saltation transport by Discrete Element Method coupled with wind interaction

    Directory of Open Access Journals (Sweden)

    Oger Luc

    2017-01-01

    Full Text Available We study the Aeolian saltation transport problem by analysing the collision of incident energetic beads with granular packing. We investigate the collision process for the case where the incident bead and those from the packing have identical mechanical properties. We analyse the features of the consecutive collision process. We used a molecular dynamics method known as DEM (soft Discrete Element Method with 20000 particles (2D. The grains were displayed randomly in a box (250X60. A few incident disks are launched with a constant velocity and angle with high random position to initiate the flow. A wind velocity profile is applied on the flowing zone of the saltation. The velocity profile is obtained by the calculi of the counter-flow due to the local packing fraction induced by the granular flow. We analyse the evolution of the upper surface of the disk packing. In the beginning, the saltation process can be seen as the classical “splash function” in which one bead hits a fully static dense packing. Then, the quasi-fluidized upper layer of the packing creates a completely different behaviour of the “animated splash function”. The dilation of the upper surface due to the previous collisions is responsible for a need of less input energy for launching new ejected disks. This phenomenon permits to maintain a constant granular flow with a “small” wind velocity on the surface of the disk bed.

  8. Design procedure for a wind-wheel with self-adjusting blade mechanism

    Directory of Open Access Journals (Sweden)

    Gennady A. Oborsky

    2014-12-01

    Full Text Available Developed is a wind-wheel design equipped with the self-adjusting blade. The blade is positioned eccentrically to the balance wheel and can freely rotate around its axis. Elaborated is the method of calculating the energy characteristics for a wind-wheel with the self-adjusting blade, considering not only the wind force but the force of air counter flow resistance to the blade’s rotation. Initially, the blade being located at an angle α = 45 to the wheel rotation plane, the air flow rotates the wheel with the maximum force. Thus, the speed of rotation increases that involves the increase in air counter flow resistance and results in blade turning with respective angle α reduction. This, consequently, reduces the torque. When the torsional force and the resistance enter into equilibrium, the blade takes a certain angle α, and the wheel speed becomes constant. This wind-wheel design including a self-adjusting blade allows increasing the air flow load ratio when compared to the wind-wheel equipped with a jammed blade.

  9. Optimal Control to Increase Energy Production of Wind Farm Considering Wake Effect and Lifetime Estimation

    DEFF Research Database (Denmark)

    Tian, Jie; Zhou, Dao; Su, Chi

    2017-01-01

    as an example. Due to the small range of the effective wake area, it is found that the energy production is almost the same. Finally, the pitch angle curve and active power curve are optimized according to the Maximum Energy Production (MEP) of a wind farm. Upon considering and contrasting the MPPT method...... to maximize the energy production of wind farms by considering the wake effect and the lifetime of wind turbine. It starts with the analysis of the pitch angle curve and active power curve seen from the Maximum Power Point Tracking (MPPT) of individual wind turbines. Taking the wake effect into account......, the pitch angle curve and active power curve are optimized with the aim of Maximum Power Generation (MPG) of the wind farm. Afterwards, considering the lifetime of wind turbines, a comparison is offered between the MPPT method and the MPG method for energy production using a simplified two-turbine wind farm...

  10. Grid-connected wind and photovoltaic system

    Science.gov (United States)

    Devabakthuni, Sindhuja

    The objective of this thesis is to design a grid connected wind and photovoltaic system. A new model of converter control was designed which maintains the voltage of the bus to grid as constant when combined system of solar and wind is connected to AC bus. The model is designed to track maximum power at each point irrespective of changes in irradiance, temperature and wind speed which affects the power supplied to grid. Solar power from the sun is not constant as it is affected by changes in irradiances and temperature. Even the wind power is affected by wind speed. A MPPT controller was designed for both systems. A boost converter is designed which uses the pulses from MPPT controller to boost the output. Wind system consists of wind turbine block from the MATLAB with a pitch angle controller to maintain optimum pitch angle. The output from wind turbine is connected to a permanent magnet synchronous generator. The unregulated DC output from the photovoltaic system is directly given to boost converter. The AC output from the wind system is given to an uncontrolled rectifier to get a unregulated DC output. The unregulated DC output goes to the boost converter. A voltage source inverter was designed which converts the rectified DC output from the boost converter to AC power. The inverter is designed to maintain constant AC bus voltage irrespective of the disturbances in the power supply. Photovoltaic and wind systems are individually designed for 5KW each in MATLAB-Simulink environment. In this thesis, the models were subjected to changes in irradiance, temperature and wind speed and the results were interpreted. The model was successful in tracking maximum at every instant and the AC bus voltage was maintained constant throughout the simulation.

  11. Angle resolved characterization of nanostructured and conventionally textured silicon solar cells

    DEFF Research Database (Denmark)

    Davidsen, Rasmus Schmidt; Ormstrup, Jeppe; Ommen, Martin Lind

    2015-01-01

    current, open circuit voltage, fill factor (FF) and power conversion efficiency are each measured as function of the relative incident angle between the solar cell and the light source. The relative incident angle is varied from 0° to 90° in steps of 10° in orthogonal axes, such that each solar cell......We report angle resolved characterization of nanostructured and conventionally textured silicon solar cells. The nanostructured solar cells are realized through a single step, mask-less, scalable reactive ion etching (RIE) texturing of the surface. Photovoltaic properties including short circuit...

  12. Impact of Penetration Wind Turbines on Transient Stability in Sulbagsel Electrical Interconnection System

    Science.gov (United States)

    Nurtrimarini Karim, Andi; Mawar Said, Sri; Chaerah Gunadin, Indar; Darusman B, Mustadir

    2018-03-01

    This paper presents a rotor angle analysis when transient disturbance occurs when wind turbines enter the southern Sulawesi electrical interconnection system (Sulbagsel) both without and with the addition of a Power Stabilizer (PSS) control device. Time domain simulation (TDS) method is used to analyze the rotor angle deviation (δ) and rotor angle velocity (ω). A total of 44 buses, 47 lines, 6 transformers, 15 generators and 34 loads were modeled for analysis after the inclusion of large-scale wind turbines in the Sidrap and Jeneponto areas. The simulation and computation results show the addition of PSS devices to the system when transient disturbance occurs when the winds turbine entering the Sulbagsel electrical system is able to dampen and improve the rotor angle deviation (δ) and the rotor angle velocity (ω) towards better thus helping the system to continue operation at a new equilibrium point.

  13. Reduction of the divergence angle of an incident beam to enhance the demagnification factor of a two-stage acceleration lens in a gas ion nanobeam system of several tens of keV

    Science.gov (United States)

    Ishii, Yasuyuki; Kojima, Takuji

    2018-04-01

    The demagnification factor of a two-stage acceleration lens in a gas ion nanobeam system that produces ion beams with energies in the order of 10 keV was enhanced in this study so that a hydrogen ion beam with a diameter of 115 nm could be produced. The reduction of the divergence angle of the incident beam into the two-stage acceleration lens is the effective method for enhancing the demagnification factor. The divergence angle has been gradually reduced by firstly introducing the preacceleration electrodes to control the divergence angle, namely divergence-angle-control electrodes, and secondly replacing an anode with a modified anode that possesses a Pierce electrode, both of which were in an ion source directly connected to the lens. In this study, the divergence angle of less than 3.6 × 10-4 rad that was previously used to produce a 160-nm hydrogen ion beam with the energy of 46 keV by the above procedure was numerically determined using an ion beam extraction simulation code. The determined minimum divergence angle of the incident ion beam was calculated to be 2.0 × 10-4 rad, which was about half of the previously obtained divergence angle; this was used to experimentally form a hydrogen beam with a diameter of 115 ± 10 nm and the energy of 47 keV. The demagnification factor was estimated to be 1,739 using the newly formed hydrogen beam, which was similar to the simulation result.

  14. Broadband and wide-angle distributed Bragg reflectors based on amorphous germanium films by glancing angle deposition.

    Science.gov (United States)

    Leem, Jung Woo; Yu, Jae Su

    2012-08-27

    We fabricated the distributed Bragg reflectors (DBRs) with amorphous germanium (a-Ge) films consisted of the same materials at a center wavelength (λc) of 1.33 μm by the glancing angle deposition. Their optical reflectance properties were investigated in the infrared wavelength region of 1-1.9 μm at incident light angles (θ inc) of 8-70°, together with the theoretical analysis using a rigorous coupled-wave analysis simulation. The two alternating a-Ge films at the incident vapor flux angles of 0 and 75° were formed as the high and low refractive index materials, respectively. The a-Ge DBR with only 5 periods exhibited a normalized stop bandwidth (∆λ/λ c) of ~24.1%, maintaining high reflectance (R) values of > 99%. Even at a high θ inc of 70°, the ∆λ/λ c was ~21.9%, maintaining R values of > 85%. The a-Ge DBR with good uniformity was obtained over the area of a 2 inch Si wafer. The calculated reflectance results showed a similar tendency to the measured data.

  15. Portable mini-chamber for temperature dependent studies using small angle and wide angle x-ray scattering

    Science.gov (United States)

    Dev, Arun Singh; Kumar, Dileep; Potdar, Satish; Pandit, Pallavi; Roth, Stephan V.; Gupta, Ajay

    2018-04-01

    The present work describes the design and performance of a vacuum compatible portable mini chamber for temperature dependent GISAXS and GIWAXS studies of thin films and multilayer structures. The water cooled body of the chamber allows sample annealing up to 900 K using ultra high vacuum compatible (UHV) pyrolytic boron nitride heater, thus making it possible to study the temperature dependent evolution of structure and morphology of two-dimensional nanostructured materials. Due to its light weight and small size, the chamber is portable and can be accommodated at synchrotron facilities worldwide. A systematic illustration of the versatility of the chamber has been demonstrated at beamline P03, PETRA-III, DESY, Hamburg, Germany. Temperature dependent grazing incidence small angle x-ray scattering (GISAXS) and grazing incidence wide angle x-ray scattering (GIWAXS) measurements were performed on oblique angle deposited Co/Ag multilayer structure, which jointly revealed that the surface diffusion in Co columns in Co/Ag multilayer enhances by increasing temperature from RT to ˜573 K. This results in a morphology change from columnar tilted structure to densely packed morphological isotropic multilayer.

  16. Wind energy conversion system

    Science.gov (United States)

    Longrigg, Paul

    1987-01-01

    The wind energy conversion system includes a wind machine having a propeller connected to a generator of electric power, the propeller rotating the generator in response to force of an incident wind. The generator converts the power of the wind to electric power for use by an electric load. Circuitry for varying the duty factor of the generator output power is connected between the generator and the load to thereby alter a loading of the generator and the propeller by the electric load. Wind speed is sensed electro-optically to provide data of wind speed upwind of the propeller, to thereby permit tip speed ratio circuitry to operate the power control circuitry and thereby optimize the tip speed ratio by varying the loading of the propeller. Accordingly, the efficiency of the wind energy conversion system is maximized.

  17. Sea Kayaking Incidents in Norway 2000-2014: An Issue of Bad Weather or Poor Judgement?

    Science.gov (United States)

    Aadland, Eivind; Noer, Gunnar; Vikene, Odd Lennart

    2016-01-01

    The aims of this study were to analyse recreational sea kayaking and touring incidents in Norway with a specific focus on wind conditions and to elaborate on practical implications for the prevention of future incidents. We included 49 incidents reported by the media between 2000 and 2014. Incidents occurred in various wind conditions, but most…

  18. Model of analysis of maximum loads in wind generators produced by extreme winds

    International Nuclear Information System (INIS)

    Herrera – Sánchez, Omar; Schellong, Wolfgang; González – Fernández, Vladimir

    2010-01-01

    The use of the wind energy by means of the wind turbines in areas of high risk of occurrence of Hurricanes comes being an important challenge for the designers of wind farm at world for some years. The wind generator is not usually designed to support this type of phenomena, for this reason the areas of high incidence of tropical hurricanes of the planning are excluded, that which, in occasions disables the use of this renewable source of energy totally, either because the country is very small, or because it coincides the area of more potential fully with that of high risk. To counteract this situation, a model of analysis of maxims loads has been elaborated taken place the extreme winds in wind turbines of great behavior. This model has the advantage of determining, in a chosen place, for the installation of a wind farm, the micro-areas with higher risk of wind loads above the acceptable for the standard classes of wind turbines. (author)

  19. Wind farms production: Control and prediction

    Science.gov (United States)

    El-Fouly, Tarek Hussein Mostafa

    Wind energy resources, unlike dispatchable central station generation, produce power dependable on external irregular source and that is the incident wind speed which does not always blow when electricity is needed. This results in the variability, unpredictability, and uncertainty of wind resources. Therefore, the integration of wind facilities to utility electrical grid presents a major challenge to power system operator. Such integration has significant impact on the optimum power flow, transmission congestion, power quality issues, system stability, load dispatch, and economic analysis. Due to the irregular nature of wind power production, accurate prediction represents the major challenge to power system operators. Therefore, in this thesis two novel models are proposed for wind speed and wind power prediction. One proposed model is dedicated to short-term prediction (one-hour ahead) and the other involves medium term prediction (one-day ahead). The accuracy of the proposed models is revealed by comparing their results with the corresponding values of a reference prediction model referred to as the persistent model. Utility grid operation is not only impacted by the uncertainty of the future production of wind farms, but also by the variability of their current production and how the active and reactive power exchange with the grid is controlled. To address this particular task, a control technique for wind turbines, driven by doubly-fed induction generators (DFIGs), is developed to regulate the terminal voltage by equally sharing the generated/absorbed reactive power between the rotor-side and the gridside converters. To highlight the impact of the new developed technique in reducing the power loss in the generator set, an economic analysis is carried out. Moreover, a new aggregated model for wind farms is proposed that accounts for the irregularity of the incident wind distribution throughout the farm layout. Specifically, this model includes the wake effect

  20. Study on the wide-angle Michelson interferometer with large air gap.

    Science.gov (United States)

    Gao, Haiyang; Tang, Yuanhe; Hua, Dengxin; Liu, Hanchen

    2011-10-10

    A wide-angle Michelson interferometer with large air gap is proposed to effectively reduce the size of the glass arms and constraint on material. It provides a novel and practical instrument for ground based wind measurement of the upper atmosphere. The field widening conditions for the large air gap are calculated in theory. For the five spectral lines of 557.7 nm, 630.0 nm, 732.0 nm, 834.6 nm, and 865.7 nm, the optimal results under ideal condition are obtained with air gaps of 1.0 cm, 1.5 cm, and 2.0 cm, respectively. With the fixed optical path difference (OPD) of 7.495 cm, three pairs of glass arms are optimized. The pair with length of 1.5 cm for air gap, 5.765 cm for H-ZF12, and 2.956 cm for H-ZLaF54, has better effect of field widening than the other two pairs and its OPD variation is only within 0.30 wavelengths at incident angle of 3°. For developing a more practical wide-angle Michelson interferometer, the H-K9L glass with size of 4.445 cm is employed as the arm material of solid interferometer. The experiment for field of view of 3° is designed and the data processing and analysis for 60 images show the agreement between experimental results and theoretical simulation. The OPD variations are only within 0.27 wavelengths for image edge. The feasibility and practicality of the wide-angle Michelson interferometer with large air gap is proved by means of theory and experiment. © 2011 Optical Society of America

  1. Rotary Balance Wind Tunnel Testing for the FASER Flight Research Aircraft

    Science.gov (United States)

    Denham, Casey; Owens, D. Bruce

    2016-01-01

    Flight dynamics research was conducted to collect and analyze rotary balance wind tunnel test data in order to improve the aerodynamic simulation and modeling of a low-cost small unmanned aircraft called FASER (Free-flying Aircraft for Sub-scale Experimental Research). The impetus for using FASER was to provide risk and cost reduction for flight testing of more expensive aircraft and assist in the improvement of wind tunnel and flight test techniques, and control laws. The FASER research aircraft has the benefit of allowing wind tunnel and flight tests to be conducted on the same model, improving correlation between wind tunnel, flight, and simulation data. Prior wind tunnel tests include a static force and moment test, including power effects, and a roll and yaw damping forced oscillation test. Rotary balance testing allows for the calculation of aircraft rotary derivatives and the prediction of steady-state spins. The rotary balance wind tunnel test was conducted in the NASA Langley Research Center (LaRC) 20-Foot Vertical Spin Tunnel (VST). Rotary balance testing includes runs for a set of given angular rotation rates at a range of angles of attack and sideslip angles in order to fully characterize the aircraft rotary dynamics. Tests were performed at angles of attack from 0 to 50 degrees, sideslip angles of -5 to 10 degrees, and non-dimensional spin rates from -0.5 to 0.5. The effects of pro-spin elevator and rudder deflection and pro- and anti-spin elevator, rudder, and aileron deflection were examined. The data are presented to illustrate the functional dependence of the forces and moments on angle of attack, sideslip angle, and angular rate for the rotary contributions to the forces and moments. Further investigation is necessary to fully characterize the control effectors. The data were also used with a steady state spin prediction tool that did not predict an equilibrium spin mode.

  2. A novel folding blade of wind turbine rotor for effective power control

    International Nuclear Information System (INIS)

    Xie, Wei; Zeng, Pan; Lei, Liping

    2015-01-01

    Highlights: • A novel folding blade for wind turbine power control is proposed. • Wind tunnel experiments were conducted to analyze folding blade validity. • Folding blade is valid to control wind turbine power output. • Compared to pitch control, thrust was reduced by fold control in power regulation. • Optimum fold angles were found for wind turbine start up and aerodynamic brake. - Abstract: A concept of novel folding blade of horizontal axis wind turbine is proposed in current study. The folding blade comprises a stall regulated root blade section and a folding tip blade section with the fold axis inclined relative to blade span. By folding blade, lift force generated on the tip blade section changes and the moment arm also shortens, which leads to variations of power output. The blade folding actuation mechanism with servo motor and worm-gear reducer was designed. Wind turbine rotor control scheme and servo system with double feedback loops for blade fold angle control were proposed. In this study, a small folding blade model was tested in a wind tunnel to analyze its performance. The blade model performance was estimated in terms of rotation torque coefficient and thrust coefficient. Wind tunnel experiments were also conducted for pitch control using the same blade model in order to make a direct comparison. The power control, start up and aerodynamic brake performance of the folding blade were analyzed. According to the wind tunnel experiment results, fold angle magnitude significantly affected blade aerodynamic performance and the thrust characteristic together with the rotation torque characteristic of folding blade were revealed. The experiment results demonstrated that the folding blade was valid to control power output and had advantages in reducing thrust with maximum reduction of 51.1% compared to pitch control. Optimum fold angles of 55° and 90° were also found for start up and aerodynamic brake, respectively

  3. Floating axis wind turbines for offshore power generation—a conceptual study

    International Nuclear Information System (INIS)

    Akimoto, Hiromichi; Tanaka, Kenji; Uzawa, Kiyoshi

    2011-01-01

    The cost of energy produced by offshore wind turbines is considered to be higher than land based ones because of the difficulties in construction, operation and maintenance on offshore sites. To solve the problem, we propose a concept of a wind turbine that is specially designed for an offshore environment. In the proposed concept, a floater of revolutionary shape supports the load of the wind turbine axis. The floater rotates with the turbine and the turbine axis tilts to balance the turbine thrust, buoyancy and gravity. The tilt angle is passively adjustable to wind force. The angle is 30° at rated power. The simplicity of the system leads to further cost reduction of offshore power generation.

  4. The combined effect of wind and rain on interrill erosion processes

    International Nuclear Information System (INIS)

    Erpul, G.; Gabriels, D.; Norton, L.D.

    2004-01-01

    Wind-driven rain is described as raindrops falling through a wind field at an angle from vertical under the effects of both gravitational and drag forces. Wind-driven raindrops gain some degree of horizontal velocity and strike the soil surface with an angle deviated from vertical. Additionally, the distribution and intensity of rainfall on sloping surfaces differs depending on wind direction and velocity. The changes in raindrop trajectory and frequency with wind velocity and direction can have significant effects on rain splash detachment process. The resultant impact velocity, impact angle, and impact frequency of raindrops determine the magnitude of rain splash detachment by wind-driven rain. This differs from the detachment process by windless rain, in which a straight-line trajectory of raindrops and accordingly greatest rainfall intensity for a given rain are implicitly assumed. Wind, as well as slope and overland flow, is another possible factor capable of transporting detached particles by raindrop impact. Once soil particles are entrained in the splash droplets that have risen into the air by raindrop impact, wind velocity gradient will transport these particles. Obviously, in addition to its role in the rain splash detachment process, the wind accompanying rain is an important consideration in the rain splash transport process, which can cause a net transportation in wind direction. In wind-driven rains, wind velocity and direction is expected to affect not only rain splash detachment and transport processes but also shallow flow sediment transport induced by raindrop impacts with an angle on flow and the rain splash trajectories of soil particles within flow. Under wind-driven rain, the interrill transport process is a combined work of both rain splash sediment transport and raindrop-impacted shallow flow sediment transport. The rain splash process acts alone until runoff occurs, and net soil transport is caused by wind. As soon as runoff starts, the

  5. Improvement in torque and power transmission system of Savonius wind turbine

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, K.; Kumar, A.; Gupta, S. [Indian Inst. of Technology, Kanpur (India). Aerospace Engineering Dept.

    2006-07-01

    The Savonius vertical axis wind turbine has a simple geometry and is inexpensive to build due to its high power coefficient. However, because its torque coefficient varies widely with wind angles and even becomes negative twice in a revolution, it has not been widely commercialized. A Savonius rotor is conventionally built in 2 or 3 tiers, with 90-degree or 60-degree stagger between tiers for smoother torque. The torque coefficient versus wind angle data for multi-tier rotors can be generated by overlapping single-tier data with requisite stagger. This process ignores aerodynamic interference between tiers. The torque coefficient versus wind angle was measured in static mode and the power coefficient was measured in rotating mode of a 2-tier Savonius using a wind tunnel technique involving the brake-dynamometer principle and wind tunnel balance. A significant aerodynamic interference and lower power coefficient were observed. Static and dynamic testing procedures were described and smoke flow models and visualization were also presented. Subsequently, a discussion of the results of the testing were presented. It was concluded that there is significant aerodynamic interference between the tiers of a 2-tier model leading to reduced values of torque and power. Modification of the Savonius wind turbine by adding 20 per cent thick symmetrical airfoils results in improved torque, without significantly increasing average wake width. 3 refs., 1 tab., 13 refs.

  6. Vibrational analysis of vertical axis wind turbine blades

    Science.gov (United States)

    Kapucu, Onur

    The goal of this research is to derive a vibration model for a vertical axis wind turbine blade. This model accommodates the affects of varying relative flow angle caused by rotating the blade in the flow field, uses a simple aerodynamic model that assumes constant wind speed and constant rotation rate, and neglects the disturbance of wind due to upstream blade or post. The blade is modeled as elastic Euler-Bernoulli beam under transverse bending and twist deflections. Kinetic and potential energy equations for a rotating blade under deflections are obtained, expressed in terms of assumed modal coordinates and then plugged into Lagrangian equations where the non-conservative forces are the lift and drag forces and moments. An aeroelastic model for lift and drag forces, approximated with third degree polynomials, on the blade are obtained assuming an airfoil under variable angle of attack and airflow magnitudes. A simplified quasi-static airfoil theory is used, in which the lift and drag coefficients are not dependent on the history of the changing angle of attack. Linear terms on the resulting equations of motion will be used to conduct a numerical analysis and simulation, where numeric specifications are modified from the Sandia-17m Darrieus wind turbine by Sandia Laboratories.

  7. Telescope aperture optimization for spacebased coherent wind lidar

    Science.gov (United States)

    Ge, Xian-ying; Zhu, Jun; Cao, Qipeng; Zhang, Yinchao; Yin, Huan; Dong, Xiaojing; Wang, Chao; Zhang, Yongchao; Zhang, Ning

    2015-08-01

    Many studies have indicated that the optimum measurement approach for winds from space is a pulsed coherent wind lidar, which is an active remote sensing tool with the characteristics that high spatial and temporal resolutions, real-time detection, high mobility, facilitated control and so on. Because of the significant eye safety, efficiency, size, and lifetime advantage, 2μm wavelength solid-state laser lidar systems have attracted much attention in spacebased wind lidar plans. In this paper, the theory of coherent detection is presented and a 2μm wavelength solid-state laser lidar system is introduced, then the ideal aperture is calculated from signal-to-noise(SNR) view at orbit 400km. However, considering real application, even if the lidar hardware is perfectly aligned, the directional jitter of laser beam, the attitude change of the lidar in the long round trip time of the light from the atmosphere and other factors can bring misalignment angle. So the influence of misalignment angle is considered and calculated, and the optimum telescope diameter(0.45m) is obtained as the misalignment angle is 4 μrad. By the analysis of the optimum aperture required for spacebased coherent wind lidar system, we try to present the design guidance for the telescope.

  8. A method of directly extracting multiwave angle-domain common-image gathers

    Science.gov (United States)

    Han, Jianguang; Wang, Yun

    2017-10-01

    Angle-domain common-image gathers (ADCIGs) can provide an effective way for migration velocity analysis and amplitude versus angle analysis in oil-gas seismic exploration. On the basis of multi-component Gaussian beam prestack depth migration (GB-PSDM), an alternative method of directly extracting multiwave ADCIGs is presented in this paper. We first introduce multi-component GB-PSDM, where a wavefield separation is proceeded to obtain the separated PP- and PS-wave seismic records before migration imaging for multiwave seismic data. Then, the principle of extracting PP- and PS-ADCIGs using GB-PSDM is presented. The propagation angle can be obtained using the real-value travel time of Gaussian beam in the course of GB-PSDM, which can be used to calculate the incidence and reflection angles. Two kinds of ADCIGs can be extracted for the PS-wave, one of which is P-wave incidence ADCIGs and the other one is S-wave reflection ADCIGs. In this paper, we use the incident angle to plot the ADCIGs for both PP- and PS-waves. Finally, tests of synthetic examples show that the method introduced here is accurate and effective.

  9. Impacts of Wind Power on Power System Stability

    NARCIS (Netherlands)

    Vittal, E.; Keane, A.; Slootweg, J.G.; Kling, W.L.; Ackermann, T.

    2012-01-01

    This chapter examines how wind power will impact the stability of power systems. It focuses on the three aspects of power system stability: voltage stability, rotor angle stability and frequency stability. It completes a detailed analysis as to how wind power in power systems will impact the

  10. Kinematics of reflections in subsurface offset and angle-domain image gathers

    Science.gov (United States)

    Dafni, Raanan; Symes, William W.

    2018-05-01

    Seismic migration in the angle-domain generates multiple images of the earth's interior in which reflection takes place at different scattering-angles. Mechanically, the angle-dependent reflection is restricted to happen instantaneously and at a fixed point in space: Incident wave hits a discontinuity in the subsurface media and instantly generates a scattered wave at the same common point of interaction. Alternatively, the angle-domain image may be associated with space-shift (regarded as subsurface offset) extended migration that artificially splits the reflection geometry. Meaning that, incident and scattered waves interact at some offset distance. The geometric differences between the two approaches amount to a contradictory angle-domain behaviour, and unlike kinematic description. We present a phase space depiction of migration methods extended by the peculiar subsurface offset split and stress its profound dissimilarity. In spite of being in radical contradiction with the general physics, the subsurface offset reveals a link to some valuable angle-domain quantities, via post-migration transformations. The angle quantities are indicated by the direction normal to the subsurface offset extended image. They specifically define the local dip and scattering angles if the velocity at the split reflection coordinates is the same for incident and scattered wave pairs. Otherwise, the reflector normal is not a bisector of the opening angle, but of the corresponding slowness vectors. This evidence, together with the distinguished geometry configuration, fundamentally differentiates the angle-domain decomposition based on the subsurface offset split from the conventional decomposition at a common reflection point. An asymptotic simulation of angle-domain moveout curves in layered media exposes the notion of split versus common reflection point geometry. Traveltime inversion methods that involve the subsurface offset extended migration must accommodate the split geometry

  11. Offshore code comparison collaboration continuation within IEA Wind Task 30: Phase II results regarding a floating semisubmersible wind system

    DEFF Research Database (Denmark)

    Robertson, Amy; Jonkman, Jason M.; Vorpahl, Fabian

    2014-01-01

    Offshore wind turbines are designed and analyzed using comprehensive simulation tools (or codes) that account for the coupled dynamics of the wind inflow, aerodynamics, elasticity, and controls of the turbine, along with the incident waves, sea current, hydrodynamics, mooring dynamics, and founda......Offshore wind turbines are designed and analyzed using comprehensive simulation tools (or codes) that account for the coupled dynamics of the wind inflow, aerodynamics, elasticity, and controls of the turbine, along with the incident waves, sea current, hydrodynamics, mooring dynamics......, and foundation dynamics of the support structure. This paper describes the latest findings of the code-to-code verification activities of the Offshore Code Comparison Collaboration Continuation project, which operates under the International Energy Agency Wind Task 30. In the latest phase of the project......, participants used an assortment of simulation codes to model the coupled dynamic response of a 5-MW wind turbine installed on a floating semisubmersible in 200 m of water. Code predictions were compared from load case simulations selected to test different model features. The comparisons have resulted...

  12. The effect of pitch angle on the performance of a vertical-axis wind turbine

    NARCIS (Netherlands)

    Rezaeiha, A.; Kalkman, I.M.; Blocken, B.; Borg, R.P.; Gauci, P.; Staines, C.S.

    2016-01-01

    Wind energy is a highly promising resource to approach a sustainable built environment. Vertical axis wind turbines (VAWT) offer the advantage of omni-directional operation over horizontal axis wind turbines (HAWT). This makes them ideal for utilization in urban environments which are characterized

  13. Investigating the impact of noise incidence angle on the sound insulation of a supply air window

    DEFF Research Database (Denmark)

    Hansen, Morten B.; Tambo, Torben

    2015-01-01

    for the highest frequencies are less than the sound insulation of the same window measured in the laboratory. The aim of this paper is through simulations in the geometric acoustic simulation software ODEON, to investigate the impact of noise incidence angle on the sound insulation of the Supply Air Window......The Danish Environmental Agency introduced in 2007 a guideline “Noise from roads”, in which noise limits for open windows were introduced. This guideline has led to investigations of open windows with good sound insulation, and among one of these windows are the “Supply Air Window”. Prior sound...... insulation measurements of the Supply Air Window show a difference in the frequency range above 2 kHz, for field measurements carried out according to EN ISO 140-5 and laboratory measurements carried out according to EN ISO 10140-2. It is found that the sound insulation measured in the field setup...

  14. Metasurface-based angle-selective multichannel acoustic refractor

    Science.gov (United States)

    Liu, Bingyi; Jiang, Yongyuan

    2018-05-01

    We theoretically study the angle-selective refractions of an impedance-matched acoustic gradient-index metasurface, which is integrated with a rigid bar array of a deep subwavelength period. An interesting refraction order appears under the all-angle incidence despite the existence of a critical angle, and notably, the odevity of the phase-discretization level apparently selects the transmitted diffraction orders. We utilize the strategy of multilayered media design to realize a three-channel acoustic refractor, which shows good promise for constructing multifunctional diffractive acoustic elements for acoustic communication.

  15. Brewster angle for an E-polarized electromagnetic wave interacting with a moving dielectric medium

    International Nuclear Information System (INIS)

    Mukherjee, P.K.

    1977-01-01

    The Brewster-angle phenomena of total transmission has been investigated with reference to an E-polarized electromagnetic wave interacting with a dielectric half-space moving along the interface. Analytic conditions are derived for the existence of Brewster angles. We also discuss how the Brewster angles are modified by replacing the incident region (in which the incident electromagnetic wave is propagated) with an isotropic or a uniaxially anisotropic plasma. The Brewster angles are found to behave in a remarkably different fashion under various conditions. Numerical results for the Brewster angles, showing their dependence on the nondimensional velocity of the medium β, are presented for several values of the physical parameters

  16. Numerical Research on Effects of Turbine Outlet Flow Angle on Aerodynamic Performance of Wind-Ejector of Low-Speed Wind Turbine%涡轮出口气流角对低速风力引射器流场影响的数值研究

    Institute of Scientific and Technical Information of China (English)

    韩万龙; 颜培刚; 韩万金; 何玉荣

    2015-01-01

    为了开发先进的具有广泛适用性的低速风力涡轮,采用涡扇发动机喷管引射技术设计了双涵道风力涡轮,以新型低速引射式风力涡轮的引射混合器为研究对象,采用CFX商用软件基于RANS方程和k-Epsilon湍流模型,数值研究了涡轮出口气流角对风力引射器混合性能的影响。研究结果显示,涡轮出口气流与轴向夹角由0°增至30°,引起了波瓣后侧流向涡量迁移,最大正交涡量降低了1/3,波瓣内侧中部分离对涡与槽道吸力侧分离区汇合,风力引射器内流道总压损失从2.4%增大至5%,此夹角大于10°时外流场对称结构消失并失稳。%The turbofan engine nozzle ejector technology was adopted to design a high-efficiency low speed wind turbine with the double bypass for a broader areas in the world. The aerodynamic characteristics of the wind-ejector of the new wind turbine were numerically researched on turbine outlet flow angle changing based on Reyn⁃olds-averaged NS equations and k-Epsilon turbulence model, using commercial software CFX. Results show that,as the angle between turbine outlet flow and the rotation axis increased from 0°to 30°,the positive vorticity of the stream-wise vortice pairs migrated to the negative vorticity,the maximum normal vorticity was gradually reduced by 1/3,the separation vortex pairs adhesion of the lobes were gradually forced to mix with the separation vortices near the suction surface of the channels, the total pressure loss in the lobes of the wind-ejector in⁃creased from 2.4%to 5%, and if the angle was greater than 10° , the flow stability of the wind turbine outflow field rapidly disappeared.

  17. Parametric study on off-design aerodynamic performance of a horizontal axis wind turbine blade and proposed pitch control

    International Nuclear Information System (INIS)

    Najafian Ashrafi, Z.; Ghaderi, M.; Sedaghat, A.

    2015-01-01

    Highlights: • A pitch controlled 200 kW HAWT blade is designed with BEM for off-design conditions. • Parametric study conducted on power coefficient, axial and angular induction factors. • The optimal pitch angles were determined at off-design operating conditions. - Abstract: In this paper, a 200 kW horizontal axis wind turbine (HAWT) blade is designed using an efficient iterative algorithm based on the blade element momentum theory (BEM) on aerodynamic of wind turbines. The effects of off-design variations of wind speed are investigated on the blade performance parameters according to constant rotational speed of the rotor. The performance parameters considered are power coefficient, axial and angular induction factors, lift and drag coefficients on the blade, angle of attack and angle of relative wind. At higher or lower wind speeds than the designed rated speed, the power coefficient is reduced due to considerable changes in the angle of attacks. Therefore, proper pitch control angles were calculated to extract maximum possible power at various off-design speeds. The results showed a considerable improvement in power coefficient for the pitch controlled blade as compared with the baseline design in whole operating range. The present approach can be equally employed for determining pitch angles to design pitch control system of medium and large-scale wind turbines

  18. Mercury's radius change estimates revisited using high incidence angle MESSENGER data

    Science.gov (United States)

    Di Achille, G.; Popa, C.; Massironi, M.; Ferrari, S.; Mazzotta Epifani, E.; Zusi, M.; Cremonese, G.; Palumbo, P.

    2012-04-01

    Estimates of Mercury's radius decrease obtained using the amount of strain recorded by tectonics on the planet range from 0.5 km to 2 km. These latter figures appear too low with respect to the radius contraction (up to 5-6 km) predicted by the most accredited studies based on thermo-mechanical evolution models. For this reason, it has been suggested that there may be hidden strain accommodated by features yet unseen on Mercury. Indeed, as it has been already cautioned by previous studies, the identification of tectonic features on Mercury might be largely biased by the lighting geometry of the used basemaps. This limitation might have affected the results of the extrapolations for estimating the radius change. In this study, we mapped tectonic features at the terminator thus using images acquired at high sun incidence angle (>50°) that represents the optimal condition for their observation. In fact, images with long shadows enhance the topography and texture of the surface and are ideal to detect tectonic structures. This favorable illumination conditions allowed us to infer reliable measurements of spatial distribution (i.e. frequency, orientation, and areal density) of tectonic features which can be used to estimate the average contractional strain and planetary radius decrease. We digitized tectonic structures within a region extending for an area of about 12 million sq. km (~16% of planet's surface). More than 1300 tectonic lineaments were identified and interpreted to be compressional features (i.e. lobate scarps, wrinkle ridges, and high relief ridges) with a total length of more than 12300 km. Assuming that the extensional strain is negligible within the area, the average contractional strain calculated for the survey area is ~0.21-0.28% (~0.24% for θ=30°). This strain, extrapolated to the entire surface, corresponds to a contraction in radius of about 2.5-3.4 km (~2.9 km for θ=30°). Interestingly, the values of contractional strain and radius decrease

  19. Maximum Energy Yield Oriented Turbine Control in PMSG based Wind Farm

    OpenAIRE

    Tian, Jie; Zhou, Dao; Su, Chi; Blaabjerg, Frede; Chen, Zhe

    2017-01-01

    : In the modern power systems, with the fast integration of the wind power into the grid, it turns to develop large-scale offshore wind farms equipped with the permanent magnet synchronous generator (PMSG) wind turbine. In large-scale offshore wind farms, the wind turbine operating reliability and the wake effect in the wind farm became important issues. The pitch angle and tip speed ratio are the two degrees of freedom for the PMSG wind turbine active power control, which are also the determ...

  20. Secondary emission coefficient dependence on the angle of incidence of primary electrons on CsI and LiF layers. [0. 9 to 3 keV, mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Shabel' nikova, A E; Yasnopol' skii, N L

    1976-08-01

    The angular dependence was studied of the secondary emission coefficient sigma for CsI and LiF dielectrics which have large sigma in conditions of normal incidence of primary electrons. Measurements were taken down to the angle of 85 deg for energies of primary electrons between 0.9 and 3 keV. In the whole range of angles a nonmonotonic angular dependence sigma is observed. The dependence shows itself particularly clearly for CsI at large energies of primary electrons. Such a behaviour is due to the decrease in the depth of yield of inelastically reflected electrons and to the increase in the inelastic reflection coefficient of the substance.

  1. Near Real Time MISR Wind Observations for Numerical Weather Prediction

    Science.gov (United States)

    Mueller, K. J.; Protack, S.; Rheingans, B. E.; Hansen, E. G.; Jovanovic, V. M.; Baker, N.; Liu, J.; Val, S.

    2014-12-01

    The Multi-angle Imaging SpectroRadiometer (MISR) project, in association with the NASA Langley Atmospheric Science Data Center (ASDC), has this year adapted its original production software to generate near-real time (NRT) cloud-motion winds as well as radiance imagery from all nine MISR cameras. These products are made publicly available at the ASDC with a latency of less than 3 hours. Launched aboard the sun-synchronous Terra platform in 1999, the MISR instrument continues to acquire near-global, 275 m resolution, multi-angle imagery. During a single 7 minute overpass of any given area, MISR retrieves the stereoscopic height and horizontal motion of clouds from the multi-angle data, yielding meso-scale near-instantaneous wind vectors. The ongoing 15-year record of MISR height-resolved winds at 17.6 km resolution has been validated against independent data sources. Low-level winds dominate the sampling, and agree to within ±3 ms-1 of collocated GOES and other observations. Low-level wind observations are of particular interest to weather forecasting, where there is a dearth of observations suitable for assimilation, in part due to reliability concerns associated with winds whose heights are assigned by the infrared brightness temperature technique. MISR cloud heights, on the other hand, are generated from stereophotogrammetric pattern matching of visible radiances. MISR winds also address data gaps in the latitude bands between geostationary satellite coverage and polar orbiting instruments that obtain winds from multiple overpasses (e.g. MODIS). Observational impact studies conducted by the Naval Research Laboratory (NRL) and by the German Weather Service (Deutscher Wetterdienst) have both demonstrated forecast improvements when assimilating MISR winds. An impact assessment using the GEOS-5 system is currently in progress. To benefit air quality forecasts, the MISR project is currently investigating the feasibility of generating near-real time aerosol products.

  2. Aerodynamic load control strategy of wind turbine in microgrid

    Science.gov (United States)

    Wang, Xiangming; Liu, Heshun; Chen, Yanfei

    2017-12-01

    A control strategy is proposed in the paper to optimize the aerodynamic load of the wind turbine in micro-grid. In grid-connection mode, the wind turbine adopts a new individual variable pitch control strategy. The pitch angle of the blade is rapidly given by the controller, and the pitch angle of each blade is fine tuned by the weight coefficient distributor. In islanding mode, according to the requirements of energy storage system, a given power tracking control method based on fuzzy PID control is proposed. Simulation result shows that this control strategy can effectively improve the axial aerodynamic load of the blade under rated wind speed in grid-connection mode, and ensure the smooth operation of the micro-grid in islanding mode.

  3. Small power wind turbine (Type DARRIEUS

    Directory of Open Access Journals (Sweden)

    Marcel STERE

    2012-03-01

    Full Text Available This presentation focuses on the calculation for small vertical axis wind turbines (VAWT for an urban application. The fixed-pitch straight – bladed vertical axis wind turbine (SB-VAWT is one of the simplest types of wind turbine and accepts wind from any angle (no yaw system. This turbine is useful for moderate wind speeds (3 - 6 m/s. A case study is presented based upon the use of well documented symmetrical NACA 0012 turbine blade profile. We describe a solution for VAWT. To perform a linear static analysis in the structure, the commercial finite element analysis code ANSYS is used because of its flexibility for handling information in files written in a more or less free format.

  4. Study of wind forces on low-rise hip-roof building

    African Journals Online (AJOL)

    DR OKE

    to predict the wind loads and the flow patterns around the hip-roof building. .... various wind angle attack on the roof using CFD simulation. .... SIMPLE algorithm substitutes the flux correction equations into the discrete continuity equation to ...

  5. Angle-specific transparent conducting electrodes with metallic gratings

    Energy Technology Data Exchange (ETDEWEB)

    Rivolta, N. X. A., E-mail: nicolas.rivolta@umons.ac.be; Maes, B. [Micro- and Nanophotonic Materials Group, Faculty of Science, University of Mons, Avenue Maistriau 19, B-7000 Mons (Belgium)

    2014-08-07

    Transparent conducting electrodes, which are not made from indium tin oxide, and which display a strong angular dependence are useful for various technologies. Here, we introduce a tilted silver grating that combines a large conductance with a strong and angle-specific transmittance. When the light incidence angle matches the tilt angle of the grating, transmittance is close to the maximum along a very broadband range. We explain the behavior through simulations that show in detail the plasmonic and interference effects at play.

  6. SAR target recognition using behaviour library of different shapes in different incidence angles and polarisations

    Science.gov (United States)

    Fallahpour, Mojtaba Behzad; Dehghani, Hamid; Jabbar Rashidi, Ali; Sheikhi, Abbas

    2018-05-01

    Target recognition is one of the most important issues in the interpretation of the synthetic aperture radar (SAR) images. Modelling, analysis, and recognition of the effects of influential parameters in the SAR can provide a better understanding of the SAR imaging systems, and therefore facilitates the interpretation of the produced images. Influential parameters in SAR images can be divided into five general categories of radar, radar platform, channel, imaging region, and processing section, each of which has different physical, structural, hardware, and software sub-parameters with clear roles in the finally formed images. In this paper, for the first time, a behaviour library that includes the effects of polarisation, incidence angle, and shape of targets, as radar and imaging region sub-parameters, in the SAR images are extracted. This library shows that the created pattern for each of cylindrical, conical, and cubic shapes is unique, and due to their unique properties these types of shapes can be recognised in the SAR images. This capability is applied to data acquired with the Canadian RADARSAT1 satellite.

  7. Vacuum variable-angle far-infrared ellipsometer

    Science.gov (United States)

    Friš, Pavel; Dubroka, Adam

    2017-11-01

    We present the design and performance of a vacuum far-infrared (∼50-680 cm-1) ellipsometer with a rotating analyser. The system is based on a Fourier transform spectrometer, an in-house built ellipsometer chamber and a closed-cycle bolometer. The ellipsometer chamber is equipped with a computer controlled θ-2θ goniometer for automated measurements at various angles of incidence. We compare our measurements on SrTiO3 crystal with the results acquired above 300 cm-1 with a commercially available ellipsometer system. After the calibration of the angle of incidence and after taking into account the finite reflectivity of mirrors in the detector part we obtain a very good agreement between the data from the two instruments. The system can be supplemented with a closed-cycle He cryostat for measurements between 5 and 400 K.

  8. A Grazing-Incidence Small-Angle X-Ray Scattering View of Vertically Aligned ZnO Nano wires

    International Nuclear Information System (INIS)

    Lavcevic, M.L.; Silovic, L.; Dubcek, P.; Pavlovic, M.; Bernstorff, S.

    2013-01-01

    We report a grazing-incidence small-angle X-ray scattering study of ZnO films with vertically aligned and randomly distributed nano wires, grown through a hydrothermal growth process on nano structured ZnO seeding coatings and deposited by electron beam evaporation on silicon and glass, respectively. The comparison of the scattering patterns of seeding coatings and nano wires showed that the scattering of vertically aligned nano wires exhibited a specific feature: the dominant characteristic of their scattering patterns is the appearance of fine structure effects around the specular peak. These effects were clarified by the combined reflection and scattering phenomena, suggested for the aligned nano wires-substrate system. Furthermore, they enabled the calculation of the average gyration radius of nano wires in horizontal direction. The calculated value was in good agreement with the radii of nano wires estimated by surface electron microscopy. Therefore, the observed feature in the scattering pattern can serve as evidence of the aligned growth of nano wires.

  9. Universal shift of the Brewster angle and disorder-enhanced delocalization of p waves in stratified random media.

    Science.gov (United States)

    Lee, Kwang Jin; Kim, Kihong

    2011-10-10

    We study theoretically the propagation and the Anderson localization of p-polarized electromagnetic waves incident obliquely on randomly stratified dielectric media with weak uncorrelated Gaussian disorder. Using the invariant imbedding method, we calculate the localization length and the disorder-averaged transmittance in a numerically precise manner. We find that the localization length takes an extremely large maximum value at some critical incident angle, which we call the generalized Brewster angle. The disorder-averaged transmittance also takes a maximum very close to one at the same incident angle. Even in the presence of an arbitrarily weak disorder, the generalized Brewster angle is found to be substantially different from the ordinary Brewster angle in uniform media. It is a rapidly increasing function of the average dielectric permittivity and approaches 90° when the average relative dielectric permittivity is slightly larger than two. We make a remarkable observation that the dependence of the generalized Brewster angle on the average dielectric permittivity is universal in the sense that it is independent of the strength of disorder. We also find, surprisingly, that when the average relative dielectric permittivity is less than one and the incident angle is larger than the generalized Brewster angle, both the localization length and the disorder-averaged transmittance increase substantially as the strength of disorder increases in a wide range of the disorder parameter. In other words, the Anderson localization of incident p waves can be weakened by disorder in a certain parameter regime.

  10. Estimation of wake propagation behind the rotors of wind-powered generators

    DEFF Research Database (Denmark)

    Naumov, I. V.; Mikkelsen, Robert Flemming; Okulov, Valery

    2016-01-01

    . It is shown that the recovery of velocity of incident flow is faster than has been previously defined in the models of calculating the impact of wind electric power plants on the regional climate changes. Thus, existing wind loss calculated on the model of wake behind the wind-powered generator, adjusted......The objectives of this work are to develop the experimental model of wake behind the wind-power generator rotor to estimate its propagation distance and the impact on the average and pulsation characteristics of incident flow with the possibility of further use of these data in the calculation...... models of wind and climate changes in the regions and to determine the optimal operation of wind turbines. For experimental modeling, the laboratory model of wind-powered generator with a horizontal axis was used that operated as wind turbine in optimal mode. The kinematic characteristics of flow...

  11. Volumetric scans of wind turbine wakes performed with three simultaneous wind LiDARs under different atmospheric stability regimes

    International Nuclear Information System (INIS)

    Iungo, Giacomo Valerio; Porté-Agel, Fernando

    2014-01-01

    Aerodynamic optimization of wind farm layout is a crucial task to reduce wake effects on downstream wind turbines, thus to maximize wind power harvesting. However, downstream evolution and recovery of wind turbine wakes are strongly affected by the characteristics of the incoming atmospheric boundary layer (ABL) flow, such as wind shear and turbulence intensity, which are in turn affected by the ABL thermal stability. In order to characterize the downstream evolution of wakes produced by full-scale wind turbines under different atmospheric conditions, wind velocity measurements were performed with three wind LiDARs. The volumetric scans are performed by continuously sweeping azimuthal and elevation angles of the LiDARs in order to cover a 3D volume that includes the wind turbine wake. The minimum wake velocity deficit is then evaluated as a function of the downstream location for different atmospheric conditions. It is observed that the ABL thermal stability has a significant effect on the wake evolution, and the wake recovers faster under convective conditions

  12. Brief communication: On the influence of vertical wind shear on the combined power output of two model wind turbines in yaw

    Directory of Open Access Journals (Sweden)

    J. Schottler

    2017-08-01

    Full Text Available The effect of vertical wind shear on the total power output of two aligned model wind turbines as a function of yaw misalignment of the upstream turbine is studied experimentally. It is shown that asymmetries of the power output of the downstream turbine and the combined power of both with respect to the upstream turbine's yaw misalignment angle can be linked to the vertical wind shear of the inflow.

  13. Implications of Stably Stratified Atmospheric Boundary Layer Turbulence on the Near-Wake Structure of Wind Turbines

    Directory of Open Access Journals (Sweden)

    Kiran Bhaganagar

    2014-09-01

    Full Text Available Turbulence structure in the wake behind a full-scale horizontal-axis wind turbine under the influence of real-time atmospheric inflow conditions has been investigated using actuator-line-model based large-eddy-simulations. Precursor atmospheric boundary layer (ABL simulations have been performed to obtain mean and turbulence states of the atmosphere under stable stratification subjected to two different cooling rates. Wind turbine simulations have revealed that, in addition to wind shear and ABL turbulence, height-varying wind angle and low-level jets are ABL metrics that influence the structure of the turbine wake. Increasing stability results in shallower boundary layers with stronger wind shear, steeper vertical wind angle gradients, lower turbulence, and suppressed vertical motions. A turbulent mixing layer forms downstream of the wind turbines, the strength and size of which decreases with increasing stability. Height dependent wind angle and turbulence are the ABL metrics influencing the lateral wake expansion. Further, ABL metrics strongly impact the evolution of tip and root vortices formed behind the rotor. Two factors play an important role in wake meandering: tip vortex merging due to the mutual inductance form of instability and the corresponding instability of the turbulent mixing layer.

  14. Effect of wind turbine generator model and siting on wind power changes out of large WECS arrays

    Science.gov (United States)

    Schleuter, R. A.; Park, G. L.; Lotfalian, M.; Dorsey, J.; Shayanfar, H.

    1981-01-01

    Methods of reducing the WECS generation change through selection of the wind turbine model for each site, selection of an appropriate siting configuration, and wind array controls are discussed. An analysis of wind generation change from an echelon and a farm for passage of a thunderstorm is presented. Reduction of the wind generation change over ten minutes is shown to reduce the increase in spinning reserve, unloadable generation and load following requirements on unit commitment when significant WECS generation is present and the farm penetration constraint is satisfied. Controls on the blade pitch angle of all wind turbines in an array or a battery control are shown to reduce both the wind generation change out of an array and the effective farm penetration in anticipation of a storm so that the farm penetration constraint may be satisfied.

  15. Wind Turbine Acoustics

    Science.gov (United States)

    Hubbard, Harvey H.; Shepherd, Kevin P.

    2009-01-01

    Wind turbine generators, ranging in size from a few kilowatts to several megawatts, are producing electricity both singly and in wind power stations that encompass hundreds of machines. Many installations are in uninhabited areas far from established residences, and therefore there are no apparent environmental impacts in terms of noise. There is, however, the potential for situations in which the radiated noise can be heard by residents of adjacent neighborhoods, particularly those neighborhoods with low ambient noise levels. A widely publicized incident of this nature occurred with the operation of the experimental Mod-1 2-MW wind turbine, which is described in detail elsewhere. Pioneering studies which were conducted at the Mod-1 site on the causes and remedies of noise from wind turbines form the foundation of much of the technology described in this chapter.

  16. Computational method for the design of wind turbine blades

    Energy Technology Data Exchange (ETDEWEB)

    Vitale, A.J. [Instituto Argentino de Oceanografia, Camino La Carrindanga Km. 7.5, CC 804, B8000FWB Bahia Blanca (Argentina); Universidad Tecnologica Nacional Facultad Regional Bahia Blanca, GESE, 11 de Abril 461, B8000LMI Bahia Blanca (Argentina); Universidad Nacional del Sur, Dpto. de Ing. Electrica y de Computadoras, Av. Alem 1253, 8000 Bahia Blanca (Argentina); Rossi, A.P. [Universidad Tecnologica Nacional Facultad Regional Bahia Blanca, GESE, 11 de Abril 461, B8000LMI Bahia Blanca (Argentina); Universidad Nacional del Sur, Dpto. de Ing. Electrica y de Computadoras, Av. Alem 1253, 8000 Bahia Blanca (Argentina)

    2008-07-15

    Zeus Disenador was developed to design low-power, horizontal-axis wind turbine blades, by means of an iterative algorithm. With this software, it is possible to obtain the optimum blade shape for a wind turbine to satisfy energy requirements of an electric system with optimum rotor efficiency. The number of blades, the airfoil curves and the average wind velocity can be specified by the user. The user can also request particular edge conditions for the width of the blades and for the pitch angle. Results are provided in different windows. Two- and three-dimensional graphics show the aspect of the resultant blade. Numerical results are displayed for blade length, blade surface, pitch angle variation along the blade span, rotor angular speed, rotor efficiency and rotor output power. Software verifications were made by comparing rotor power and rotor efficiency for different designs. Results were similar to those provided by commercial wind generator manufacturers. (author)

  17. Velocity measurement of model vertical axis wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, D.A.; McWilliam, M. [Waterloo Univ., ON (Canada). Dept. of Mechanical Engineering

    2006-07-01

    An increasingly popular solution to future energy demand is wind energy. Wind turbine designs can be grouped according to their axis of rotation, either horizontal or vertical. Horizontal axis wind turbines have higher power output in a good wind regime than vertical axis turbines and are used in most commercial class designs. Vertical axis Savonius-based wind turbine designs are still widely used in some applications because of their simplistic design and low wind speed performance. There are many design variables that must be considered in order to optimize the power output in a given wind regime in a typical wind turbine design. Using particle image velocimetry, a study of the air flow around five different model vertical axis wind turbines was conducted in a closed loop wind tunnel. A standard Savonius design with two semi-circular blades overlapping, and two variations of this design, a deep blade and a shallow blade design were among the turbine models included in this study. It also evaluated alternate designs that attempt to increase the performance of the standard design by allowing compound blade curvature. Measurements were collected at a constant phase angle and also at random rotor orientations. It was found that evaluation of the flow patterns and measured velocities revealed consistent and stable flow patterns at any given phase angle. Large scale flow structures are evident in all designs such as vortices shed from blade surfaces. An important performance parameter was considered to be the ability of the flow to remain attached to the forward blade and redirect and reorient the flow to the following blade. 6 refs., 18 figs.

  18. Inner Stucture of Thin Films of Lamellar Poly(styrene-em>b>-butadiene) Diblock Copolymers as revealed by Grazing-Incidence Small-Angle Scattering

    DEFF Research Database (Denmark)

    Busch, Peter; Posselt, Dorthe; Smilgies, Detlef-Matthias

    2007-01-01

    The lamellar orientation in supported, thin films of poly(styrene-b-butadiene) (P(S-b-B)) depends on block copolymer molar mass. We have studied films from nine block copolymer samples with molar masses between 13.9 and 183 kg/mol using grazing-incidence small-angle X-ray scattering (GISAXS) and ...... quantitatively in the framework of our recently developed distorted-wave Born approximation model (Busch, P.; et al. J. Appl. Crystallogr. 2006, 39, 433). The results cannot be explained from enthalpic considerations alone but point to the importance of entropic factors....

  19. Noise emission from wind turbines in wake. Project report

    Energy Technology Data Exchange (ETDEWEB)

    Dam Madsen, K.; Plovsing, B. (DELTA, Hoersholm (Denmark)); Soerensen, Thomas (EMD International A/S, Aalborg (Denmark)); Aagaard Madsen, H.; Bertagnolio, F. (Technical Univ. of Denmark, Risoe National Lab. for Sustainable Energy, Roskilde (Denmark))

    2011-03-15

    When installing wind turbines in clusters or wind farms the inflow conditions to the wind turbines can be disturbed due to wake effects from other wind turbines. The effect of wake on noise generation from wind turbines are described in this report. The work is based on measurements carried out on a M80 2 MW wind turbine. To investigate the relationship between the far field noise levels and the surface pressure and inflow angles measured by sensors on an instrumented wind turbine blade, a parabolic measurement system (PMMS) was designed and tested as part of this project. Based on the measurement results obtained with surface pressure sensors and results from the far field measurements using the PMMS it is concluded that: The variance of surface pressure at the trailing edge (TE) agrees with the theory with regard to variation of pressure spectra with varying inflow angle (AoA) to the blade. Low frequency TE surface pressure increases with increased AoA and high frequency surface pressure decreases with increased AoA. It seems that the TE surface pressure remains almost unaltered during wake operation. Results from the surface transducers at the leading edge (LE) and the inflow angles determined from the pitot tube indicates that the inflow at LE is more turbulent in wake for the same AoA and with a low frequency characteristic, thereby giving rise to more low frequency noise generated during wake operation. The far field measurements supports that on one hand there will be produced relative more low frequency noise due to a turbulent inflow to the blade and on the other hand there will be produced less noise in the broader frequency range/high frequency range due to a lower inflow angle caused by the wind deficit in the wake. The net effect of wake on the total noise level is unresolved. As a secondary result it is seen that noise observed from a position on the ground is related to directional effects of the noise radiated from the wind turbine blade. For an

  20. Enhancement of micro-grid performance during islanding mode using storage batteries and new fuzzy logic pitch angle controller

    International Nuclear Information System (INIS)

    Kamel, Rashad M.; Chaouachi, A.; Nagasaka, Ken

    2011-01-01

    Research highlights: → Novel fuzzy pitch angle controller is proposed for smoothing wind fluctuation. → Storage batteries are used for performance improve of MG in islanding mode. → Those new techniques are compared with conventional PI pitch angle controller. -- Abstract: Power system deregulation, shortage of transmission capacities and needing to reduce green house gas have led to increase interesting in distributed generations (DGs) especially renewable sources. This study developed a complete model able to analysis and simulates in details the transient dynamic performance of the Micro-Grid (MG) during and subsequent islanding process. Wind speed fluctuations cause high fluctuations in output power of wind turbine which lead to fluctuations of frequency and voltages of the MG during the islanding mode. In this paper a new fuzzy logic pitch angle controller is proposed to smooth the output power of wind turbine to reduce MG frequency and voltage fluctuations during the islanding mode. The proposed fuzzy logic pitch controller is compared with the conventional PI pitch angle controller which usually used for wind turbine power control. Results proved the effectiveness of the proposed fuzzy controller in improvement of the MG performance. Also, this paper proposed using storage batteries technique to reduce the frequency deviation and fluctuations originated from wind power solar power fluctuations. Results indicate that the storage batteries technique is superior than fuzzy logic pitch controller in reducing frequency deviation, but with more expensive than the fuzzy controller. All models and controllers are built using Matlab (registered) Simulink (registered) environment.

  1. A new wind vane for the measurement of atmospheric turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Parker, M.J.; Heverly, M.

    1997-02-01

    A Cooperative Research and Development Agreement (CRADA) between Met One Instruments, Incorporated (Met One) and Westinghouse Savannah River Company (WSRC) was created to develop a new wind vane that more accurately measures atmospheric turbulence. Through a process that had several phases, Met One created a prototype vane that was designed to attach to the existing Model 1585 Bi-Directional Wind Vane instrument structure. The prototype contained over 20% less mass to enhance responsiveness, which was also increased through the use of a teardrop-shaped fin structure. The prototype vane can be readily manufactured for commercial retail. Tests in wind tunnel of Building 735-7A, the Meteorological Engineering Facility, indicated that the new vane has a superior starting threshold of less than 0.14 meter per second, a delay distance of 0.72 meter, and a damping ratio of 0.4. The relative accuracy of less than one degree is unchanged from the previous design. The vane bias was acceptable at 0.8 degree for the horizontal wind angle, but was slightly high at 1.4 degree for the verticle wind angle. The high value of the verticle wind angle bias can most likely be reduced to the desired less than one degree value with standard manufacturing production techniques. The durability of the prototype vane was not tested in the field but is expected to be slightly less due to the use of hollow rather than foam-filled fins. However, the loss of some durability is more than compensated with increased sensitivity at low wind speeds. Field testing of the prototype is required to test for adequacy of durability.

  2. Stratified magnetically driven accretion-disk winds and their relations to jets

    International Nuclear Information System (INIS)

    Fukumura, Keigo; Tombesi, Francesco; Kazanas, Demosthenes; Shrader, Chris; Behar, Ehud; Contopoulos, Ioannis

    2014-01-01

    We explore the poloidal structure of two-dimensional magnetohydrodynamic (MHD) winds in relation to their potential association with the X-ray warm absorbers (WAs) and the highly ionized ultra-fast outflows (UFOs) in active galactic nuclei (AGNs), in a single unifying approach. We present the density n(r, θ), ionization parameter ξ(r, θ), and velocity structure v(r, θ) of such ionized winds for typical values of their fluid-to-magnetic flux ratio, F, and specific angular momentum, H, for which wind solutions become super-Alfvénic. We explore the geometrical shape of winds for different values of these parameters and delineate the values that produce the widest and narrowest opening angles of these winds, quantities necessary in the determination of the statistics of AGN obscuration. We find that winds with smaller H show a poloidal geometry of narrower opening angles with their Alfvén surface at lower inclination angles and therefore they produce the highest line of sight (LoS) velocities for observers at higher latitudes with the respect to the disk plane. We further note a physical and spatial correlation between the X-ray WAs and UFOs that form along the same LoS to the observer but at different radii, r, and distinct values of n, ξ, and v consistent with the latest spectroscopic data of radio-quiet Seyfert galaxies. We also show that, at least in the case of 3C 111, the winds' pressure is sufficient to contain the relativistic plasma responsible for its radio emission. Stratified MHD disk winds could therefore serve as a unique means to understand and unify the diverse AGN outflows.

  3. Wind-Tunnel Investigation of the Aerodynamic Performance of Surface-Modification Cables

    Directory of Open Access Journals (Sweden)

    Hiroshi Katsuchi

    2017-12-01

    Full Text Available The wind-induced vibration of stay cables of cable-stayed bridges, which includes rain-wind-induced vibration (RWIV and dry galloping (DG, has been studied for a considerable amount of time. In general, mechanical dampers or surface modification are applied to suppress the vibration. In particular, several types of surface-modification cable, including indentation, longitudinally parallel protuberance, helical fillet, and U-shaped grooving, have been developed. Recently, a new type of aerodynamically stable cable with spiral protuberances was developed. It was confirmed that the cable has a low drag force coefficient, like an indented cable, and that it prevented the formation of water rivulets on the cable surface. In this study, the stability for RWIV of this cable was investigated with various flow angles and protuberance dimensions in a wind-tunnel test. It was found that the spiral protuberance cable is aerodynamically stable against both RWIV and DG for all test wind angles. The effects of the protuberance dimensions were also clarified. Keywords: Rain-wind-induced vibration, Dry galloping, Stay cable, Wind-tunnel test

  4. Comparative study of the behavior of wind-turbines in a wind farm

    Energy Technology Data Exchange (ETDEWEB)

    Migoya, Emilio; Crespo, Antonio; Garcia, Javier; Manuel, Fernando; Jimenez, Angel [Universidad Politecnica de Madrid (UPM), Madrid (Spain). Departamento de Ingenieria Energetica y Fluidomecanica, Laboratorio de Mecanica de Fluidos; Moreno, Fermin [Comision Nacional de la Energia, Madrid (Spain); Costa, Alexandre [Energia Eolica, Division de Energias Renovables, CIEMAT, Madrid (Spain)

    2007-10-15

    The Sotavento wind farm is an experimental wind farm which has different types of wind turbines. It is located in an area whose topography is moderately complex, and where wake effects can be significant. One of the objectives of Sotavento wind farm is to compare the performances of the different machines; particularly regarding power production, maintenance and failures. However, because of wakes and topography, the different machines are not working under identical conditions. Two linearized codes have been used to estimate topography effects: UPMORO and WAsP. For wind directions in which topography is abrupt, the non-linear flow equations have been solved with the commercial code FLUENT, although the results are only qualitatively used. For wake effects, the UPMPARK code has been applied. As a result, the incident velocity over each wind turbine is obtained, and the power production is estimated by means of the power curve of each machine. Experimental measurements give simultaneously the wind characteristics at the measuring stations, the wind velocity, at the nacelle anemometer, and the power production of each wind turbine. These experimental results are employed to validate the numerical predictions. The main objective of this work is to deduce and validate a relationship between the wind characteristics measured in the anemometers and the wind velocity and the power output in each machine. (author)

  5. A concept of external aerodynamic elements in improving the performance of natural smoke ventilation in wind conditions

    Science.gov (United States)

    Wegrzyński, Wojciech; Krajewski, Grzegorz; Kimbar, Grzegorz

    2018-01-01

    This paper is a proposal of a new device that may be used as a component of natural smoke ventilation systems - an external aerodynamic baffle used to limit the wind effect at the most adverse angle. Natural ventilation is not only affected by the external wind, but also dependent on the angle of wind attack. It has been proven, that at angles between 45° to 60° the performance of such device is the lowest. This is the reason why additional device is proposed - external baffle that could hypothetically increase the performance at chosen angles. The purpose of this paper is to explore this idea by numerical modelling of such external elements on a validated natural ventilator model, with use of ANSYS® Fluent® CFD model.

  6. Wind effects on convective heat loss from a cavity receiver for a parabolic concentrating solar collector

    Energy Technology Data Exchange (ETDEWEB)

    Ma, R.Y. [California State Polytechnic Univ., Pomoma, CA (United States). Dept. of Mechanical Engineering

    1993-09-01

    Tests were performed to determine the convective heat loss characteristics of a cavity receiver for a parabolid dish concentrating solar collector for various tilt angles and wind speeds of 0-24 mph. Natural (no wind) convective heat loss from the receiver is the highest for a horizontal receiver orientation and negligible with the reveler facing straight down. Convection from the receiver is substantially increased by the presence of side-on wind for all receiver tilt angles. For head-on wind, convective heat loss with the receiver facing straight down is approximately the same as that for side-on wind. Overall it was found that for wind speeds of 20--24 mph, convective heat loss from the receiver can be as much as three times that occurring without wind.

  7. Effect of pitch angle on power performance and aerodynamics of a vertical axis wind turbine

    NARCIS (Netherlands)

    Rezaeiha, A.; Kalkman, I.; Blocken, B.J.E.

    2017-01-01

    Due to growing interest in wind energy harvesting offshore as well as in the urban environment, vertical axis wind turbines (VAWTs) have recently received renewed interest. Their omni-directional capability makes them a very interesting option for use with the frequently varying wind directions

  8. Variable Speed Wind Turbine Based on Multiple Generators Drive-Train Configuration

    DEFF Research Database (Denmark)

    Deng, Fujin; Chen, Zhe

    2010-01-01

    A variable speed wind turbine is presented in this paper, where multiple permanent magnet synchronous generators (MPMSGs) drive-train configuration is employed in the wind turbine. A cascaded multilevel converter interface based on the MPMSGs is developed to synthesize a desired high ac sinusoidal...... output voltage, which could be directly connected to the grids. What is more, such arrangement has been made so that the output ac voltage having a selected phase angle difference among the stator windings of multiple generators. A phase angle shift strategy is proposed in this paper, which effectively...... reduce the fluctuation of the electromagnetic torque sum and results in a good performance for the MPMSGs structure. The simulation study is conducted using PSCAD/EMTDC, and the results verify the feasibility of this variable speed wind turbine based on multiple generators drive-train configuration....

  9. Design of LPV fault-tolerant controller for pitch system of wind turbine

    Science.gov (United States)

    Wu, Dinghui; Zhang, Xiaolin

    2017-07-01

    To address failures of wind turbine pitch-angle sensors, traditional wind turbine linear parameter varying (LPV) model is transformed into a double-layer convex polyhedron LPV model. On the basis of this model, when the plurality of the sensor undergoes failure and details of the failure are inconvenient to obtain, each sub-controller is designed using distributed thought and gain scheduling method. The final controller is obtained using all of the sub-controllers by a convex combination. The design method corrects the errors of the linear model, improves the linear degree of the system, and solves the problem of multiple pitch angle faults to ensure stable operation of the wind turbine.

  10. Increasing efficacy of graminicides with a forward angled spray

    DEFF Research Database (Denmark)

    Jensen, Peter Kryger

    2012-01-01

    Control of annual grass species with vertically oriented leaves in agricultural crops by application of foliar acting herbicides with conventional hydraulic sprayers can be increased using forward angled nozzles. Changing the spray angle from the normally predominantly vertical spray towards...... an angled spray increases the potential target size of vertically oriented targets. This theory was tested in field experiments from 2005 to 2009 investigating control of three different grass species and a dicotyledonous weed species at early growth stages using foliar acting herbicides. Lolium perenne...... efficacy on L. perenne at early growth stages using nozzles with different spray quality, at different driving speeds and in different wind conditions. Similarly graminicide efficacy was increased when nozzles were angled 60° forward controlling A. myosuroides. Experiments investigating control of the two...

  11. Effect of shallow angles on compressive strength of biaxial and triaxial laminates.

    Science.gov (United States)

    Jia, Hongli; Yang, Hyun-Ik

    2016-01-01

    Biaxial (BX) and triaxial (TX) composite laminates with ±45° angled plies have been widely used in wind turbine blades. As the scale of blades increases, BX and TX laminates with shallow-angled plies (i.e. off-axis ply angle shallow-angled BX and TX laminates are critical considering their locations in a wind turbine blade, and therefore in this study, the uniaxial static compression tests were conducted using BX and TX laminates with angled-plies of ±45°, ±35°, and ±25°, for the purpose of evaluation. On the other hand, Mori-Tanaka mean field homogenization method was employed to predict elastic constants of plies in BX and TX laminates involved in tests; linear regression analyses of experimentally measured ply strengths collected from various sources were then performed to estimate strengths of plies in BX and TX laminates; finally, Tsai-Wu, Hashin, and Puck failure criteria were chosen to predict compressive strengths of BX and TX laminates. Comparison between theoretical predictions and test results were carried out to illustrate the effectiveness of each criterion. The compressive strength of BX laminate decreases as ply angle increases, and the trend was successfully predicted by all three failure criteria. For TX laminates, ±35° angled plies rather than ±45° angled plies led to the lowest laminate compressive strength. Hashin and Puck criteria gave good predictions at certain ply angles for TX laminates, but Tsai-Wu criterion was able to capture the unexpected strength variation of TX laminates with ply angle. It was concluded that the transverse tensile stress in 0° plies of TX laminates, which attains its maximum when the off-axis ply angle is 35°, is the dominant factor in failure determination if using Tsai-Wu criterion. This explains the unexpected strength variation of TX laminates with ply angle, and also indicates that proper selection of ply angle is the key to fully utilizing the advantages of shallow-angled laminates.

  12. Tibial and fibular angles in homozygous sickle cell disease

    International Nuclear Information System (INIS)

    Akamaguna, A.I.; Odita, J.C.; Ugbodaga, C.I.; Okafor, L.A.

    1986-01-01

    Measurements of the tibial and fibular angles made on ankle radiographs of 34 patients with sickle cell disease were compared with those of 36 normal Nigerians. Widening of the fibular angle, which is an indication of tibiotalar slant, was demonstrated in about 79% of sickle cell disease patients. By using fibular angle measurements as an objective method of assessing subtle tibiotalar slant, it is concluded that the incidence of this deformity is much higher among sickle cell disease patients than previously reported. The mean values of tibial and fibular angles in normal Nigerians are higher than has been reported amongst Caucasians. (orig.)

  13. Influence of the incidence angle on the morphology of enamel and dentin under Er:YAG laser irradiation; Estudo da influencia da angulacao do feixe laser na morfologia de esmalte e dentina irradiados com laser de Er:YAG

    Energy Technology Data Exchange (ETDEWEB)

    Junqueira Junior, Duilio Naves

    2002-07-01

    The purpose of this study is to make an in vitro evaluation, using scanning electron microscopy, of the influence of the laser beam irradiation angle on the enamel and dentin morphology. These tissues were both irradiated by Er:YAG Laser, with the same energy parameter. Twenty-four incisive bovine teeth were used, separated in eight groups, four of enamel, and four of dentin, with three specimens in each group. Each specimen was submitted to three laser applications, varying the incidence angle, between the laser and the tooth surface, at 90, 50 and 20 degrees. The applied frequency was 2 Hz, with 20 pulses in each application. The KaVo Key Laser 3 was employed, wavelength at 2940 nm, adjustable energy from 40 to 600 mJ and repetition rate from 1 to 25 Hz. The groups were distributed according to the energy parameter as follows - enamel: 250 mJ; 300 mJ; 350 mJ and 400 mJ; dentin: 200 mJ; 250 mJ; 300 mJ and 350 mJ. The results evidenced the Laser incidence angle importance; it is an essential parameter in the protocol of utilization and it should not be disregarded. The observations of this study allow to conclude that the Laser incidence angle has direct influence on the morphological aspect of the alterations produced in enamel and dentin. (author)

  14. Phase Angle Calculation Dynamics of Type 4 Wind Turbines in RMS Simulations during Severe Voltage Dips

    DEFF Research Database (Denmark)

    Altin, Müfit; Göksu, Ömer; Sørensen, Poul Ejnar

    2016-01-01

    In order to conduct power system simulations with high shares of wind energy, standard wind turbine models, which are aimed to be generic rms models for a wide range of wind turbine types, have been developed. As a common practice of rms simulations, the power electronic interface of wind turbine...

  15. Empirical wind retrieval model based on SAR spectrum measurements

    Science.gov (United States)

    Panfilova, Maria; Karaev, Vladimir; Balandina, Galina; Kanevsky, Mikhail; Portabella, Marcos; Stoffelen, Ad

    The present paper considers polarimetric SAR wind vector applications. Remote-sensing measurements of the near-surface wind over the ocean are of great importance for the understanding of atmosphere-ocean interaction. In recent years investigations for wind vector retrieval using Synthetic Aperture Radar (SAR) data have been performed. In contrast with scatterometers, a SAR has a finer spatial resolution that makes it a more suitable microwave instrument to explore wind conditions in the marginal ice zones, coastal regions and lakes. The wind speed retrieval procedure from scatterometer data matches the measured radar backscattering signal with the geophysical model function (GMF). The GMF determines the radar cross section dependence on the wind speed and direction with respect to the azimuthal angle of the radar beam. Scatterometers provide information on wind speed and direction simultaneously due to the fact that each wind vector cell (WVC) is observed at several azimuth angles. However, SAR is not designed to be used as a high resolution scatterometer. In this case, each WVC is observed at only one single azimuth angle. That is why for wind vector determination additional information such as wind streak orientation over the sea surface is required. It is shown that the wind vector can be obtained using polarimetric SAR without additional information. The main idea is to analyze the spectrum of a homogeneous SAR image area instead of the backscattering normalized radar cross section. Preliminary numerical simulations revealed that SAR image spectral maxima positions depend on the wind vector. Thus the following method for wind speed retrieval is proposed. In the first stage of the algorithm, the SAR spectrum maxima are determined. This procedure is carried out to estimate the wind speed and direction with ambiguities separated by 180 degrees due to the SAR spectrum symmetry. The second stage of the algorithm allows us to select the correct wind direction

  16. Simulation of the Impact of New Aircraft- and Satellite-based Ocean Surface Wind Measurements on Estimates of Hurricane Intensity

    Science.gov (United States)

    Uhlhorn, Eric; Atlas, Robert; Black, Peter; Buckley, Courtney; Chen, Shuyi; El-Nimri, Salem; Hood, Robbie; Johnson, James; Jones, Linwood; Miller, Timothy; hide

    2009-01-01

    The Hurricane Imaging Radiometer (HIRAD) is a new airborne microwave remote sensor currently under development to enhance real-time hurricane ocean surface wind observations. HIRAD builds on the capabilities of the Stepped Frequency Microwave Radiometer (SFMR), which now operates on NOAA P-3, G-4, and AFRC C-130 aircraft. Unlike the SFMR, which measures wind speed and rain rate along the ground track directly beneath the aircraft, HIRAD will provide images of the surface wind and rain field over a wide swath (approximately 3 times the aircraft altitude). To demonstrate potential improvement in the measurement of peak hurricane winds, we present a set of Observing System Simulation Experiments (OSSEs) in which measurements from the new instrument as well as those from existing platforms (air, surface, and space-based) are simulated from the output of a high-resolution (approximately 1.7 km) numerical model. Simulated retrieval errors due to both instrument noise as well as model function accuracy are considered over the expected range of incidence angles, wind speeds and rain rates. Based on numerous simulated flight patterns and data source combinations, statistics are developed to describe relationships between the observed and true (from the model s perspective) peak wind speed. These results have implications for improving the estimation of hurricane intensity (as defined by the peak sustained wind anywhere in the storm), which may often go un-observed due to sampling limitations.

  17. The Design and Implementation of the Wide-Angle Michelson Interferometer to Observe Thermospheric Winds.

    Science.gov (United States)

    Ward, William Edmund

    The design and implementation of a Wide-Angle Michelson interferometer (WAMI) as a high spectral resolution device for measuring Doppler shifts and temperatures in the thermosphere is discussed in detail. A general theoretical framework is developed to describe the behavior of interferometers and is applied to the WAMI. Notions concerning the optical coupling of various surfaces within an interferometer are developed and used to investigate the effects of misalignments in the WAMI optics. In addition, these notions in combination with ideas on the polarization behavior of interferometers are used to suggest how complex multisurfaced interferometers might be developed, what features affect their behavior most strongly, and how this behavior might be controlled. Those aspects of the Michelson interferometer important to its use as a high resolution spectral device are outlined and expressions relating the physical features of the interferometer and the spectral features of the radiation passing through the instrument, to the form of the observed interference pattern are derived. The sensitivity of the WAMI to misalignments in its optical components is explored, and quantitative estimations of the effects of these misalignments made. A working WAMI with cube corners instead of plane mirrors was constructed and is described. The theoretical notions outlined above are applied to this instrument and found to account for most of its features. A general digital procedure is developed for the analysis of the observed interference fringes which permits an estimation of the amplitude, visibility and phase of the fringes. This instrument was taken to Bird, northern Manitoba as part of the ground based support for the Auroral Rocket and Image Excitation Study (ARIES) rocket campaign. Doppler shifts and linewidth variations in O(^1 D) and O(^1S) emissions in the aurora were observed during several nights and constitute the first synoptic wind measurements taken with a WAMI. The

  18. Effects of Wind on Virtual Plants in Animation

    Directory of Open Access Journals (Sweden)

    Tina L. M. Derzaph

    2013-01-01

    Full Text Available This paper presents the Growth-Flow method for animating the effect of wind on the motion and growth of virtual plant branches and leaves. The method incorporates changes to the growth rate when a plant is exposed to winds with speeds higher than a threshold. In particular, growth rate is reduced in branch elongation, increased in the branch radius, reduced in leaf length, and increased in leaf thickness. In addition, when a plant is exposed to wind for long time periods, the branch growth angle is changed to align more closely with the wind vector. The Growth-Flow method incorporates all these effects on growth and motion due to wind in one algorithm.

  19. Impact and Penetration of Thin Aluminum 2024 Flat Panels at Oblique Angles of Incidence

    Science.gov (United States)

    Ruggeri, Charles R.; Revilock, Duane M.; Pereira, J. Michael; Emmerling, William; Queitzsch, Gilbert K., Jr.

    2015-01-01

    under more extreme conditions, using a projectile with a more complex shape and sharp contacts, impacting flat panels at oblique angles of incidence.

  20. Bayesian Estimator for Angle Recovery: Event Classification and Reconstruction in Positron Emission Tomography

    International Nuclear Information System (INIS)

    Foudray, Angela M K; Levin, Craig S

    2007-01-01

    PET at the highest level is an inverse problem: reconstruct the location of the emission (which localize biological function) from detected photons. Ideally, one would like to directly measure an annihilation photon's incident direction on the detector. In the developed algorithm, Bayesian Estimation for Angle Recovery (BEAR), we utilized the increased information gathered from localizing photon interactions in the detector and developed a Bayesian estimator for a photon's incident direction. Probability distribution functions (PDFs) were filled using an interaction energy weighted mean or center of mass (COM) reference space, which had the following computational advantages: (1) a significant reduction in the size of the data in measurement space, making further manipulation and searches faster (2) the construction of COM space does not depend on measurement location, it takes advantage of measurement symmetries, and data can be added to the training set without knowledge and recalculation of prior training data, (3) calculation of posterior probability map is fully parallelizable, it can scale to any number of processors. These PDFs were used to estimate the point spread function (PSF) in incident angle space for (i) algorithm assessment and (ii) to provide probability selection criteria for classification. The algorithm calculates both the incident θ and φ angle, with ∼16 degrees RMS in both angles, limiting the incoming direction to a narrow cone. Feature size did not improve using the BEAR algorithm as an angle filter, but the contrast ratio improved 40% on average

  1. Numerical results in a vertical wind axis turbine with relative rotating blades

    Energy Technology Data Exchange (ETDEWEB)

    Bayeul-Laine, Annie-Claude; Dockter, Aurore; Simonet, Sophie; Bois, Gerard [Arts et Metiers PARISTECH (France)

    2011-07-01

    The use of wind energy to produce electricity through wind turbines has spread world-wide. The quantity of electricity produced is affected by numerous factors such as wind speed and direction and turbine design; the aim of this paper is to assess the influence of different blades on the performance of a turbine. This study was performed on a turbine in which the blades have a rotating movement, each around its own axis and around the turbine's axis. Unsteady simulations were carried out with several blade stagger angles and one wind speed and 2 different blade geometries were used for 4 rotational speeds. Results showed that the studied turbine gave better performance than vertical axis wind turbines and that blade sketch, blade speed ratios, and blade stagger angle were important influences on the performance. This study showed that this kind of turbine has the potential to achieve good performance but that further work needs to be done.

  2. Multiple scattering in grazing-incidence X-ray diffraction: impact on lattice-constant determination in thin films

    Energy Technology Data Exchange (ETDEWEB)

    Resel, Roland, E-mail: roland.resel@tugraz.at; Bainschab, Markus; Pichler, Alexander [Graz University of Technology, Graz (Austria); Dingemans, Theo [Delft University of Technology, Delft (Netherlands); Simbrunner, Clemens [Johannes Kepler University, Linz (Austria); University of Bremen, Bremen (Germany); Stangl, Julian [Johannes Kepler University, Linz (Austria); Salzmann, Ingo [Humboldt University, Berlin (Germany)

    2016-04-20

    The use of grazing-incidence X-ray diffraction to determine the crystal structure from thin films requires accurate positions of Bragg peaks. Refraction effects and multiple scattering events have to be corrected or minimized. Dynamical scattering effects are observed in grazing-incidence X-ray diffraction experiments using an organic thin film of 2,2′:6′,2′′-ternaphthalene grown on oxidized silicon as substrate. Here, a splitting of all Bragg peaks in the out-of-plane direction (z-direction) has been observed, the magnitude of which depends both on the incidence angle of the primary beam and the out-of-plane angle of the scattered beam. The incident angle was varied between 0.09° and 0.25° for synchrotron radiation of 10.5 keV. This study reveals comparable intensities of the split peaks with a maximum for incidence angles close to the critical angle of total external reflection of the substrate. This observation is rationalized by two different scattering pathways resulting in diffraction peaks at different positions at the detector. In order to minimize the splitting, the data suggest either using incident angles well below the critical angle of total reflection or angles well above, which sufficiently attenuates the contributions from the second scattering path. This study highlights that the refraction of X-rays in (organic) thin films has to be corrected accordingly to allow for the determination of peak positions with sufficient accuracy. Based thereon, a reliable determination of the lattice constants becomes feasible, which is required for crystallographic structure solutions from thin films.

  3. A single-layer wide-angle negative-index metamaterial at visible frequencies.

    Science.gov (United States)

    Burgos, Stanley P; de Waele, Rene; Polman, Albert; Atwater, Harry A

    2010-05-01

    Metamaterials are materials with artificial electromagnetic properties defined by their sub-wavelength structure rather than their chemical composition. Negative-index materials (NIMs) are a special class of metamaterials characterized by an effective negative index that gives rise to such unusual wave behaviour as backwards phase propagation and negative refraction. These extraordinary properties lead to many interesting functions such as sub-diffraction imaging and invisibility cloaking. So far, NIMs have been realized through layering of resonant structures, such as split-ring resonators, and have been demonstrated at microwave to infrared frequencies over a narrow range of angles-of-incidence and polarization. However, resonant-element NIM designs suffer from the limitations of not being scalable to operate at visible frequencies because of intrinsic fabrication limitations, require multiple functional layers to achieve strong scattering and have refractive indices that are highly dependent on angle of incidence and polarization. Here we report a metamaterial composed of a single layer of coupled plasmonic coaxial waveguides that exhibits an effective refractive index of -2 in the blue spectral region with a figure-of-merit larger than 8. The resulting NIM refractive index is insensitive to both polarization and angle-of-incidence over a +/-50 degree angular range, yielding a wide-angle NIM at visible frequencies.

  4. Effects of finite aspect ratio on wind turbine airfoil measurements

    DEFF Research Database (Denmark)

    Kiefer, Janik; Miller, Mark A.; Hultmark, Marcus

    2016-01-01

    Wind turbines partly operate in stalled conditions within their operational cycle. To simulate these conditions, it is also necessary to obtain 2-D airfoil data in terms of lift and drag coefficients at high angles of attack. Such data has been obtained previously, but often at low aspect ratios...... and only barely past the stall point, where strong wall boundary layer influence is expected. In this study, the influence of the wall boundary layer on 2D airfoil data, especially in the post stall domain, is investigated. Here, a wind turbine airfoil is tested at different angles of attack and with two...

  5. A reward semi-Markov process with memory for wind speed modeling

    Science.gov (United States)

    Petroni, F.; D'Amico, G.; Prattico, F.

    2012-04-01

    The increasing interest in renewable energy leads scientific research to find a better way to recover most of the available energy. Particularly, the maximum energy recoverable from wind is equal to 59.3% of that available (Betz law) at a specific pitch angle and when the ratio between the wind speed in output and in input is equal to 1/3. The pitch angle is the angle formed between the airfoil of the blade of the wind turbine and the wind direction. Old turbine and a lot of that actually marketed, in fact, have always the same invariant geometry of the airfoil. This causes that wind turbines will work with an efficiency that is lower than 59.3%. New generation wind turbines, instead, have a system to variate the pitch angle by rotating the blades. This system able the wind turbines to recover, at different wind speed, always the maximum energy, working in Betz limit at different speed ratios. A powerful system control of the pitch angle allows the wind turbine to recover better the energy in transient regime. A good stochastic model for wind speed is then needed to help both the optimization of turbine design and to assist the system control to predict the value of the wind speed to positioning the blades quickly and correctly. The possibility to have synthetic data of wind speed is a powerful instrument to assist designer to verify the structures of the wind turbines or to estimate the energy recoverable from a specific site. To generate synthetic data, Markov chains of first or higher order are often used [1,2,3]. In particular in [1] is presented a comparison between a first-order Markov chain and a second-order Markov chain. A similar work, but only for the first-order Markov chain, is conduced by [2], presenting the probability transition matrix and comparing the energy spectral density and autocorrelation of real and synthetic wind speed data. A tentative to modeling and to join speed and direction of wind is presented in [3], by using two models, first

  6. H-Darrieus Wind Turbine with Blade Pitch Control

    Directory of Open Access Journals (Sweden)

    I. Paraschivoiu

    2009-01-01

    Full Text Available A procedure for computing the optimal variation of the blades' pitch angle of an H-Darrieus wind turbine that maximizes its torque at given operational conditions is proposed and presented along with the results obtained on a 7 kW prototype. The CARDAAV code, based on the “Double-Multiple Streamtube” model developed by the first author, is used to determine the performances of the straight-bladed vertical axis wind turbine. This was coupled with a genetic algorithm optimizer. The azimuthal variation of the blades' pitch angle is modeled with an analytical function whose coefficients are used as variables in the optimization process. Two types of variations were considered for the pitch angle: a simple sinusoidal one and one which is more general, relating closely the blades' pitch to the local flow conditions along their circular path. A gain of almost 30% in the annual energy production was obtained with the polynomial optimal pitch control.

  7. Metasurface Enabled Wide-Angle Fourier Lens.

    Science.gov (United States)

    Liu, Wenwei; Li, Zhancheng; Cheng, Hua; Tang, Chengchun; Li, Junjie; Zhang, Shuang; Chen, Shuqi; Tian, Jianguo

    2018-06-01

    Fourier optics, the principle of using Fourier transformation to understand the functionalities of optical elements, lies at the heart of modern optics, and it has been widely applied to optical information processing, imaging, holography, etc. While a simple thin lens is capable of resolving Fourier components of an arbitrary optical wavefront, its operation is limited to near normal light incidence, i.e., the paraxial approximation, which puts a severe constraint on the resolvable Fourier domain. As a result, high-order Fourier components are lost, resulting in extinction of high-resolution information of an image. Other high numerical aperture Fourier lenses usually suffer from the bulky size and costly designs. Here, a dielectric metasurface consisting of high-aspect-ratio silicon waveguide array is demonstrated experimentally, which is capable of performing 1D Fourier transform for a large incident angle range and a broad operating bandwidth. Thus, the device significantly expands the operational Fourier space, benefitting from the large numerical aperture and negligible angular dispersion at large incident angles. The Fourier metasurface will not only facilitate efficient manipulation of spatial spectrum of free-space optical wavefront, but also be readily integrated into micro-optical platforms due to its compact size. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. A study on projection angles for an optimal image of PNS water's view on children

    International Nuclear Information System (INIS)

    Son, Sang Hyuk; Song, Young Geun; Kim, Sung Kyu; Hong, Sang Woo; Kim, Je Bong

    2007-01-01

    This study is to calculate the proper angle for the optimal image of PNS Water's view on children, comparing and analyzing the PNS Water's projection angles between children and adults at every age. This study randomly selected 50 patients who visited the Medical Center from January to May in 2005, and examined the incidence path of central ray, taking a PNS Water's and skull trans-Lat. view in Water's filming position while attaching a lead ball mark on the Orbit, EAM, and acanthion of the patient's skull. And then, we calculated the incidence angles (angle A) of the line connected from OML and the petrous ridge to the inferior margin of maxilla on general (random) patient's skull image, following the incidence path of central ray. Finally, we analyzed two pieces of the graphs at ages, developing out the patient's ideal images at PNS Water's filming position taken by a digital camera, and calculating the angle (angle B) between OML and IP(Image Plate). The angle between OML and IP is about 43 .deg. in 4-years-old children, which is higher than 37 .deg. as age increases the angle decreases, it goes to 37 .deg. around 30 years of age. That is similar result to maxillary growth period. We can get better quality of Water's image for children when taking the PNS Water's view if we change the projection angles, considering maxillary growth for patients in every age stage

  9. Tantalum films with well-controlled roughness grown by oblique incidence deposition

    Science.gov (United States)

    Rechendorff, K.; Hovgaard, M. B.; Chevallier, J.; Foss, M.; Besenbacher, F.

    2005-08-01

    We have investigated how tantalum films with well-controlled surface roughness can be grown by e-gun evaporation with oblique angle of incidence between the evaporation flux and the surface normal. Due to a more pronounced shadowing effect the root-mean-square roughness increases from about 2 to 33 nm as grazing incidence is approached. The exponent, characterizing the scaling of the root-mean-square roughness with length scale (α), varies from 0.75 to 0.93, and a clear correlation is found between the angle of incidence and root-mean-square roughness.

  10. Ice Accretion on Wind Turbine Blades

    DEFF Research Database (Denmark)

    Hudecz, Adriána; Koss, Holger; Hansen, Martin Otto Laver

    2013-01-01

    In this paper, both experimental and numerical simulations of the effects of ice accretion on a NACA 64-618 airfoil section with 7° angle of attack are presented. The wind tunnel tests were conducted in a closed-circuit climatic wind tunnel at Force Technology in Denmark. The changes of aerodynamic...... forces were monitored as ice was building up on the airfoil for glaze, rime and mixed ice. In the first part of the numerical analysis, the resulted ice profiles of the wind tunnel tests were compared to profiles estimated by using the 2D ice accretion code TURBICE. In the second part, Ansys Fluent...... of the rime iced ice profile follows the streamlines quite well, disturbing the flow the least. The TURBICE analysis agrees fairly with the profiles produced during the wind tunnel testing....

  11. Analysis of the furling behavior of small wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Audierne, Etienne; Bergami, Leonardo; Ibarra, Humberto; Probst, Oliver [Department of Physics, Instituto Tecnologico y de Estudios Superiores de Monterrey, Eugenio Garza Sada 2501 Sur, Monterrey, NL, CP 64849 (Mexico); Elizondo, Jorge [Diseno Eolico y Solar, Monterrey, NL (Mexico)

    2010-07-15

    Furling is the dominant mechanism for over speed and power control of small wind turbines. In this paper we present a consistent model of the dynamics of gravity-controlled furling systems based on a Lagrangian formalism. The aerodynamic forces acting on tail vane and rotor have been modeled using Xfoil and blade element momentum (BEM) theory, respectively. Due to the proximity of tail vane and rotor a model of the near-wake generated by the rotor was incorporated into the model, assuming a parabolic wake shape. The different design parameters, such as lever lengths and axis tilt angles, have been studied in a systematic manner and their impact on the wind speed values for entering and leaving the furling regime have been assessed. In the first part of the study the free-stream in-flow wind speed was fixed at a given value and the system was allowed to reach stable conditions. The steady-state values of the yaw and furling angle were recorded as a function of wind speed both for increasing and decreasing wind speed and the consequences for design choices have been discussed. In the second part, a slow variation of input wind speed was superimposed on the constant wind speed signal and the dynamic response of the system was analyzed. The results of the study are thought to provide an initial roadmap for the design of furling systems. (author)

  12. Wind flow around met masts

    Energy Technology Data Exchange (ETDEWEB)

    Heraud, P.; Masson, C.; Tusch, M. [Garrad Hassan Canada Inc., Ottawa, ON (Canada)

    2010-07-01

    This PowerPoint presentation discussed the impacts of meteorological masts on the measurement of wind resources. Two types of meteorological masts are used in wind power applications, namely lattice, and tubular masts. Anemometer accuracy can be impacted by the logger as well as by the instrumentation layout. The International Electrochemical Commission (IEC) recommends that anemometers are placed at a 45 degree angle from pre-dominant winds. However, the impact of turbulent flow around meteorological masts is poorly understood. The numerical model developed in the study included mass and momentum conservation models for tubular and lattice towers. Distortion level recommendations were presented. The study showed that distortion depends on the layout, and that IEC recommendations for instrumentation layouts need to be revised. tabs., figs.

  13. Reflection of the solar wind ions at the earth's bow shock: energization

    International Nuclear Information System (INIS)

    Bonifazi, C.; Moreno, G.; Russell, C.T.

    1983-01-01

    The energies of the field-aligned proton beams observed upstream of the earth's bow shock are tested, on a statistical basis, against a simple reflection model. The comparison is carried out using both plasma and magnetic field data collected by the ISEE 2 spacecraft. The observations refer to the period from November 5 to December 20, 1977. According to this model, some of the solar wind protons incident upon the earth's shock front when reflected upstream gain energy by displacement parallel to the interplanetary electric field. The energy gained in the reflection can be described as a function of the angles between the interplanetary magnetic field, the solar wind bulk velocity, and the local shock normal. The task of finding these angles, i.e., the expected source point of the reflected ions at the earth's shock front, has been resolved using both the measured magnetic field direction and actual beam trajectory. The latter method, which takes into account the ion drift velocity, leads to a better agreement between theory and observations when far from the shock. In particular, it allows us to check the energies of the field-aligned beams even when they are observed far from the earth's bow shock (at distances up to 10-15 R/sub E/). We confirm, on a statistical basis, the test of the model recently carried out using the Los Alamos National Laboratory/Max-Planck-extraterrestrische observations on ISEE 1 and 2. We infer that reflected beams can sometimes propagate far upstream of the earth's bow shock without changing their energy properties

  14. A comparative study on omnidirectional anti-reflection SiO2 nanostructure films coating by glancing angle deposition

    Science.gov (United States)

    Prachachet, R.; Samransuksamer, B.; Horprathum, M.; Eiamchai, P.; Limwichean, S.; Chananonnawathorn, C.; Lertvanithphol, T.; Muthitamongkol, P.; Boonruang, S.; Buranasiri, P.

    2018-02-01

    Fabricated omnidirectional anti-reflection nanostructure films as a one of the promising alternative solar cell applications have attracted enormous scientific and industrial research benefits to their broadband, effective over a wide range of incident angles, lithography-free and high-throughput process. Recently, the nanostructure SiO2 film was the most inclusive study on anti-reflection with omnidirectional and broadband characteristics. In this work, the three-dimensional silicon dioxide (SiO2) nanostructured thin film with different morphologies including vertical align, slant, spiral and thin films were fabricated by electron beam evaporation with glancing angle deposition (GLAD) on the glass slide and silicon wafer substrate. The morphological of the prepared samples were characterized by field-emission scanning electron microscope (FE-SEM) and high-resolution transmission electron microscope (HRTEM). The transmission, omnidirectional and birefringence property of the nanostructure SiO2 films were investigated by UV-Vis-NIR spectrophotometer and variable angle spectroscopic ellipsometer (VASE). The spectrophotometer measurement was performed at normal incident angle and a full spectral range of 200 - 2000 nm. The angle dependent transmission measurements were investigated by rotating the specimen, with incidence angle defined relative to the surface normal of the prepared samples. This study demonstrates that the obtained SiO2 nanostructure film coated on glass slide substrate exhibits a higher transmission was 93% at normal incident angle. In addition, transmission measurement in visible wavelength and wide incident angles -80 to 80 were increased in comparison with the SiO2 thin film and glass slide substrate due to the transition in the refractive index profile from air to the nanostructure layer that improve the antireflection characteristics. The results clearly showed the enhanced omnidirectional and broadband characteristic of the three dimensional Si

  15. Angle dependence of Andreev scattering at semiconductor-superconductor interfaces

    DEFF Research Database (Denmark)

    Mortensen, Asger; Flensberg, Karsten; Jauho, Antti-Pekka

    1999-01-01

    We study the angle dependence of the Andreev scattering at a semiconductor-superconductor interface, generalizing the one-dimensional theory of Blonder, Tinkham, and Klapwijk (BTK),An increase of the momentum parallel to the interface leads to suppression of the probability of Andreev reflection...... and increase of the probability of normal reflection. We show that in the presence of a Fermi velocity mismatch between the semiconductor and the superconductor the angles of incidence and transmission are related according to the well-known Snell's law in optics. As a consequence there is a critical angle...

  16. Simulating dynamic stall in a two-dimensional vertical-axis wind turbine: Verification and validation with particle image velocimetry data

    NARCIS (Netherlands)

    Ferreira, C.J.S.; Zuijlen, van A.H.; Bijl, H.; Bussel, van G.J.W.; Kuik, van G.A.M.

    2010-01-01

    The implementation of wind energy conversion systems in the built environment has renewed the interest and the research on Vertical Axis Wind Turbines (VAWTs). The VAWT has an inherent unsteady aerodynamic behavior due to the variation of angle of attack and perceived velocity with azimuth angle.

  17. Modification of the morphology and optical properties of SnS films using glancing angle deposition technique

    Energy Technology Data Exchange (ETDEWEB)

    Sazideh, M.R., E-mail: Mohammadrezasazideh@gmail.com [Thin Film Lab., Faculty of Physics, Semnan University, Semnan, Islamic Republic of Iran (Iran, Islamic Republic of); Dizaji, H. Rezagholipour, E-mail: hrgholipour@semnan.ac.ir [Faculty of Physics, Semnan University, P.O. Box: 35195-363, Semnan, Islamic Republic of Iran (Iran, Islamic Republic of); Ehsani, M.H., E-mail: mhe_ehsani@yahoo.com [Faculty of Physics, Semnan University, P.O. Box: 35195-363, Semnan, Islamic Republic of Iran (Iran, Islamic Republic of); Moghadam, R. Zarei, E-mail: r.zarei1991@gmail.com [Thin Film Lab., Faculty of Physics, Semnan University, Semnan, Islamic Republic of Iran (Iran, Islamic Republic of)

    2017-05-31

    Highlights: • SnS thin films produced by thermal evaporation method using glancing angle deposition technique. • At α = 85° the layers show a considerable change in effective refractive index (Δn = 1.7) at near-IR spectral range. • FESEM images showed drastic changes in the structure and morphology of individual nano-plates as a function of incident angle deposition. - Abstract: Tin sulfide (SnS) films were prepared by thermal evaporation method using Glancing Angle Deposition (GLAD) technique at zero and different oblique incident flux angles (α = 45°, 55°, 65°, 75° and 85°). The physical properties of prepared films were systematically investigated. The X-ray diffraction analysis indicated that the film deposited at α = 0° formed as single phase with an orthorhombic structure. However, the layers became amorphous at α = 45°, 55°, 65°, 75° and 85°. Beside the appearance of amorphous feature in the film prepared at α higher than zero, Sn{sub 2}S{sub 3} phase was also observed. The top and cross-sectional field emission scanning electron microscope (FESEM) images of the samples showed noticeable changes in the structure and morphology of individual nano-plates as a function of incident angle. The band gap and refractive index values of the films were calculated by optical transmission measurements. The optical band-gap values were observed to increase with increasing the incident flux angle. This can be due to presence of Sn{sub 2}S{sub 3} phase observed in the samples produced at α values other than zero. The effective refractive index and porosity exhibit an opposite evolution as the incident angle α rises. At α = 85° the layers show a considerable change in effective refractive index (Δn = 1.7) at near-IR spectral range.

  18. Brief communication: Lumbar lordosis in extinct hominins: implications of the pelvic incidence.

    Science.gov (United States)

    Been, Ella; Gómez-Olivencia, Asier; Kramer, Patricia A

    2014-06-01

    Recently, interest has peaked regarding the posture of extinct hominins. Here, we present a new method of reconstructing lordosis angles of extinct hominin specimens based on pelvic morphology, more specifically the orientation of the sacrum in relation to the acetabulum (pelvic incidence). Two regression models based on the correlation between pelvic incidence and lordosis angle in living hominoids have been developed. The mean values of the calculated lordosis angles based on these models are 36°-45° for australopithecines, 45°-47° for Homo erectus, 27°-34° for the Neandertals and the Sima de los Huesos hominins, and 49°-51° for fossil H. sapiens. The newly calculated lordosis values are consistent with previously published values of extinct hominins (Been et al.: Am J Phys Anthropol 147 (2012) 64-77). If the mean values of the present nonhuman hominoids are representative of the pelvic and lumbar morphology of the last common ancestor between humans and nonhuman hominoids, then both pelvic incidence and lordosis angle dramatically increased during hominin evolution from 27° ± 5 to 22° ± 3 (respectively) in nonhuman hominoids to 54° ± 10 and 51° ± 11 in modern humans. This change to a more human-like configuration appeared early in the hominin evolution as the pelvis and spines of both australopithecines and H. erectus show a higher pelvic incidence and lordosis angle than nonhuman hominoids. The Sima de los Huesos hominins and Neandertals show a derived configuration with a low pelvic incidence and lordosis angle. Copyright © 2014 Wiley Periodicals, Inc.

  19. Control design for a pitch-regulated, variable speed wind turbine

    DEFF Research Database (Denmark)

    Hansen, M.H.; Hansen, Anca Daniela; Larsen, Torben J.

    2005-01-01

    The three different controller designs presented herein are similar and all based on PI-regulation of rotor speed and power through the collective blade pitch angle and generator moment. The aeroelastic and electrical modelling used for the time-domainanalysis of these controllers are however...... different, which makes a directly quantitative comparison difficult. But there are some observations of similar behaviours should be mentioned: • Very similar step responses in rotor speed, pitch angle, and powerare seen for simulations with steps in wind speed. • All controllers show a peak in power...... for wind speed step-up over rated wind speed, which can be almost removed by changing the parameters of the frequency converter. • Responses of rotor speed, pitchangle, and power for different simulations with turbulent inflow are similar for all three controllers. Again, there seems to be an advantage...

  20. Electromagnetic Power Harvester Using Wide-Angle and Polarization-Insensitive Metasurfaces

    Directory of Open Access Journals (Sweden)

    Xuanming Zhang

    2018-03-01

    Full Text Available A new wide-angle and polarization-insensitive metasurface (MS instead of traditional antenna is built as the primary ambient energy harvester in this paper. The MS is a two-dimensional energy harvesting array that is composed of subwavelength electrical small ring resonator that is working at 2.5 GHz (LTE/WiFi. In the case of different polarization and incidence angles, we demonstrate the metasurface can achieve high harvesting efficiency of 90%. The fabricated prototype of 9 × 9 MS energy harvesting array is measured, and the experimental results validate that the proposed MS has a good performance more than 80% of energy harvesting efficiency for arbitrary polarization and wide-angle incident waves. The good agreement of the simulation with the experiment results verifies the practicability and effectiveness of the proposed MS structure, which will provide a new source of supply in wireless sensor networks (WSN.

  1. Dielectric-based subwavelength metallic meanders for wide-angle band absorbers.

    Science.gov (United States)

    Shen, Su; Qiao, Wen; Ye, Yan; Zhou, Yun; Chen, Linsen

    2015-01-26

    We propose nano-meanders that can achieve wide-angle band absorption in visible regime. The nano-meander consists of a subwavelength dielectric grating covered by continuous ultra-thin Aluminum film (less than one tenth of the incident wavelength). The excited photonic resonant modes, such as cavity mode, surface plasmonic mode and Rayleigh-Wood anomaly, are discussed in detail. Nearly total resonant absorption due to funneling mechanism in the air nano-groove is almost invariant with large incident angle in transverse magnetic polarization. From both the structural geometry and the nanofabrication point of view, the light absorber has a very simple geometrical structure and it is easy to be integrated into complex photonic devices. The highly efficient angle-robust light absorber can be potential candidate for a range of passive and active photonic applications, including solar-energy harvesting as well as producing artificial colors on a large scale substrate.

  2. Upward lightning attachment analysis on wind turbines and correlated current parameters

    DEFF Research Database (Denmark)

    Vogel, Stephan; Ishii, M.; Saito, M.

    2017-01-01

    This work provides insight in the attachment characteristics of upward initiated lightning discharges to wind turbines and their possible consequences for the lightning protection of wind turbine blades. All discharges were recorded at the Japanese coast of the Sea of Japan which is known...... for intense upward lightning activity. 172 video recordings of lightning discharges on rotating wind turbines are analysed and attachment angle, detachment angle, and the resulting angular displacement were determined. A classification between self-initiated and other-triggered upward lightning events...... is performed by means of video analysis. The results reveal that the majority of discharges are initiated on vertical blades; however, also attachments to horizontal blades are reported. Horizontal attachment (or a slightly inclined blade state) is often related with a triggered lightning event prior...

  3. Parameters determining maximum wind velocity in a tropical cyclone

    International Nuclear Information System (INIS)

    Choudhury, A.M.

    1984-09-01

    The spiral structure of a tropical cyclone was earlier explained by a tangential velocity distribution which varies inversely as the distance from the cyclone centre outside the circle of maximum wind speed. The case has been extended in the present paper by adding a radial velocity. It has been found that a suitable combination of radial and tangential velocities can account for the spiral structure of a cyclone. This enables parametrization of the cyclone. Finally a formula has been derived relating maximum velocity in a tropical cyclone with angular momentum, radius of maximum wind speed and the spiral angle. The shapes of the spirals have been computed for various spiral angles. (author)

  4. The use of new facility by means internal balance with sting support for wide range Angle of Attack aircraft

    Science.gov (United States)

    Subagyo; Daryanto, Yanto; Risnawan, Novan

    2018-04-01

    The development of facilities for the testing of wide range angle of attack aircraft in the wind tunnel at subsonic regime has done and implemented. Development required to meet the test at an angle of attack from -20 ° to 40 °. Testing the wide range angle of attack aircraft with a wide variation of the angle of attack become important needs. This can be done simply by using the sting support-equipped by internal balance to measure the forces and moments component aerodynamics. The results of development and use on the wide range angle of attack aircraft testing are aerodynamics characteristics in the form of the coefficient three components forces and the three components of the moment. A series of test aircraft was successfully carried out and the results are shown in the form of graphs of characteristic of aerodynamics at wind speed 70 m/s.

  5. Effects of pressure angle and tip relief on the life of speed increasing gearbox: a case study.

    Science.gov (United States)

    Shanmugasundaram, Sankar; Kumaresan, Manivarma; Muthusamy, Nataraj

    2014-01-01

    This paper examines failure of helical gear in speed increasing gearbox used in the wind turbine generator (WTG). In addition, an attempt has been made to get suitable gear micro-geometry such as pressure angle and tip relief to minimize the gear failure in the wind turbines. As the gear trains in the wind turbine gearbox is prearranged with higher speed ratio and the gearboxes experience shock load due to atmospheric turbulence, gust wind speed, non-synchronization of pitching, frequent grid drops and failure of braking, the gear failure occurs either in the intermediate or high speed stage pinion. KISS soft gear calculation software was used to determine the gear specifications and analysis is carried out in ANSYS software version.11.0 for the existing and the proposed gear to evaluate the performance of bending stress tooth deflection and stiffness. The main objective of this research study is to propose suitable gear micro-geometry that is tip relief and pressure angle blend for increasing tooth strength of the helical gear used in the wind turbine for trouble free operation.

  6. An investigation of drag reduction for tractor trailer vehicles with air deflector and boattail. [wind tunnel tests

    Science.gov (United States)

    Muirhead, V. U.

    1981-01-01

    A wind tunnel investigation was conducted to determine the influence of several physical variables on the aerodynamic drag of a trailer model. The physical variables included: a cab mounted wind deflector, boattail on trailer, flow vanes on trailer front, forced transition on trailer, and decreased gap between tractor and trailer. Tests were conducted at yaw angles (relative wind angles) of 0, 5, 10, 20, and 30 degrees and Reynolds numbers of 3.58 x 10 to the 5th power 6.12 x 10 to the 5th power based upon the equivalent diameter of the vehicles. The wind deflector on top of the cab produced a calculated reduction in fuel consumption of about 5 percent of the aerodynamic portion of the fuel budget for a wind speed of 15.3 km/hr (9.5 mph) over a wind angle range of 0 deg to 180 deg and for a vehicle speed of 88.5 km/hr (55 mph). The boattail produced a calculated 7 percent to 8 percent reduction in fuel consumption under the same conditions. The decrease in gap reduced the calculated fuel consumption by about 5 percent of the aerodynamic portion of the fuel budget.

  7. Effect of substrate material selection on polychromatic integral diffraction efficiency for multilayer diffractive optics in oblique incident situation

    Science.gov (United States)

    Zhang, Bo; Cui, Qingfeng; Piao, Mingxu

    2018-05-01

    The effect of substrate material selection for multilayer diffractive optical elements (MLDOEs) on polychromatic integral diffraction efficiency (PIDE) is studied in the oblique incident situation. A mathematical model of substrate material selection is proposed to obtain the high PIDE with large incident angle. The extended expression of the microstructure heights with consideration of incident angle is deduced to calculate the PIDE difference Δ η bar(λ) for different substrate material combinations. The smaller value of Δ η bar(λ) indicates the more optimal substrate material combination in a wide incident angle range. Based on the deduced mathematical model, different MLDOEs are analyzed in visible and infrared wavebands. The results show that the three-layer DOEs can be applied in larger incident angle situation than the double-layer DOEs in visible waveband. When the two substrate materials are the same, polycarbonate (PC) is more reasonable than poly(methyl methacrylate) (PMMA) as the middle filling optical material for the three-layer DOEs. In the infrared waveband, the PIDE decreases in the LWIR are obviously smaller than that in the MWIR for the same substrate material combination, and the PIDE cannot be calculated when the incident angle larger than critical angle. The analysis results can be used to guide the hybrid optical system design with MLDOEs.

  8. Wind loads on flat plate photovoltaic array fields

    Science.gov (United States)

    Miller, R. D.; Zimmerman, D. K.

    1981-01-01

    The results of an experimental analysis (boundary layer wind tunnel test) of the aerodynamic forces resulting from winds acting on flat plate photovoltaic arrays are presented. Local pressure coefficient distributions and normal force coefficients on the arrays are shown and compared to theoretical results. Parameters that were varied when determining the aerodynamic forces included tilt angle, array separation, ground clearance, protective wind barriers, and the effect of the wind velocity profile. Recommended design wind forces and pressures are presented, which envelop the test results for winds perpendicular to the array's longitudinal axis. This wind direction produces the maximum wind loads on the arrays except at the array edge where oblique winds produce larger edge pressure loads. The arrays located at the outer boundary of an array field have a protective influence on the interior arrays of the field. A significant decrease of the array wind loads were recorded in the wind tunnel test on array panels located behind a fence and/or interior to the array field compared to the arrays on the boundary and unprotected from the wind. The magnitude of this decrease was the same whether caused by a fence or upwind arrays.

  9. Geometrically distributed one-dimensional photonic crystals for light-reflection in all angles.

    Science.gov (United States)

    Alagappan, G; Wu, P

    2009-07-06

    We demonstrate that a series of one-dimensional photonic crystals made of any dielectric materials, with the periods are distributed in a geometrical progression of a common ratio, r rc (theta,P), where rc is a structural parameter that depends on the angle of incidence, theta, and polarization, P, is capable of blocking light of any spectral range. If an omni-directional reflection is desired for all polarizations and for all incident angles smaller than thetao, then r rc (theta(o),p), where p is the polarization with the electric field parallel to the plane of incidence. We present simple and formula like expressions for rc, width of the bandgap, and minimum number of photonic crystals to achieve a perfect light reflection.

  10. Wind tower with vertical rotors

    Energy Technology Data Exchange (ETDEWEB)

    Dietz, A

    1978-08-03

    The invention concerns a wind tower with vertical rotors. A characteristic is that the useful output of the rotors is increased by the wind pressure, which is guided to the rotors at the central opening and over the whole height of the structure by duct slots in the inner cells. These duct slots start behind the front nose of the inner cell and lead via the transverse axis of the pillar at an angle into the space between the inner cells and the cell body. This measure appreciably increases the useful output of the rotors, as the rotors do not have to provide any displacement work from their output, but receive additional thrust. The wind pressure pressing from inside the rotor and accelerating from the outside produces a better outflow of the wind from the power plant pillar with only small tendency to turbulence, which appreciably improves the effect of the adjustable turbulence smoothers, which are situated below the rotors over the whole height.

  11. Estimation of the wind turbine yaw error by support vector machines

    DEFF Research Database (Denmark)

    Sheibat-Othman, Nida; Othman, Sami; Tayari, Raoaa

    2015-01-01

    Wind turbine yaw error information is of high importance in controlling wind turbine power and structural load. Normally used wind vanes are imprecise. In this work, the estimation of yaw error in wind turbines is studied using support vector machines for regression (SVR). As the methodology...... is data-based, simulated data from a high fidelity aero-elastic model is used for learning. The model simulates a variable speed horizontal-axis wind turbine composed of three blades and a full converter. Both partial load (blade angles fixed at 0 deg) and full load zones (active pitch actuators...

  12. Wear Resistance Performance of Conventional and Non-Conventional Wind Turbine Blades with TiN Nano-Coating

    Directory of Open Access Journals (Sweden)

    Muhammad Hasibul Hasan

    2017-09-01

    Full Text Available Efficiency and durability are critical issues that affect widely-adopted aerofoil-power generator as a sustainable source of electrical power. Even though high wind power density can be achieved; installing wind turbines in desert condition has difficulties including thermal variation, high turbulence and sand storms. Sand blasting on turbine blade surface at high velocities causes erosion resulting turbine efficiency drop. Damage-induced erosion phenomena and aeroelastic performance of the blades needed to be investigated. Suitable coating may prevent erosion to a great extent. A numerical investigation of erosion on NACA 4412 wind turbine blade has been performed using commercial computational fluid dynamics software ANSYS FLUENT 14.5 release. Discrete phase model (DPM has been used for modelling multi-phase flow of air and sand particles over the turbine blade. Governing equations have been solved by finite volume method (FVM. Conventional 30-70% glass fibre resin and non-conventional jute fibre composite have been used as turbine blade material. Sand particles of  diameter have been injected from 20, 30, 45, 60 and 90 degree angles at 500C temperature. Erosion rate, wall shear stress and strain rate have been calculated for different wind velocities and impingement angles. Simulation results for higher velocities deviate from the results observed at lower wind velocities. In simulation, erosion rate is highest for impingement angle at low wind velocities, which has been validated by experiment with a mean absolute error (MAE of 5.56%. Erosion rate and wall shear stress are higher on jute composite fibre than glass fibre resin. Developed shear stress on wind turbine blade surface is highest for  impingement angle at all velocities. On the other hand, exerted pressure on turbine blade surface is found highest for 9  angle of attack. Experimental results, with or without Titanium nitride(TiN nano-coating, also revealed that surface roughness

  13. Transient effects in SIMS analysis of Si with Cs sup + at high incidence angles Secondary ion yield variations

    CERN Document Server

    Heide, P A W

    2002-01-01

    Secondary ion mass spectrometry (SIMS) depth profile analysis of Si wafers using 1 keV Cs sup + primary ions at large incidence angles (80 deg. ) is plagued by unusually strong transient effects (variations in both sputter and ion yields). Analysis of a native oxide terminated Si wafer with and without the aid of an O sub 2 leak, and an Ar sup + pre-sputtered wafer revealed correlations between the implanted Cs content and various secondary ion intensities consistent with that expected from a resonance charge transfer process (that assumed by the electron tunneling model). Cs concentrations were defined through X-ray photoelectron spectroscopy of the sputtered surface from SIMS profiles terminated within the transient region. These scaled with the surface roughening occurring under these conditions and can be explained as resulting from the associated drop in sputter rates. An O induced transient effect from the native oxide was also identified. Characterization of these effects allowed the reconstruction of ...

  14. Angle resolved electron spectroscopy of spontaneous ionization processes occurring in doubly charged ion-surface collisions at grazing incidence

    International Nuclear Information System (INIS)

    Wouters, P.A.A.F.; Emmichoven, P.A.Z. van; Niehaus, A.

    1989-01-01

    The experimental setup used to measure electron spectra at well defined detection angles for grazing incidence doubly charged ion-surface collisions at keV-energies is described. Electron spectra are reported for the rare gas ions colliding with a Cu(110)-surface. The spectra are analyzed in terms of various spontaneous ionization processes using a newly developed model. It is found that double capture followed by atomic auto-ionization on the incoming trajectory and Auger-capture processes in which the first and second hole in the doubly charged projectiles are successively filled are the main processes contributing to the electron spectra. From a comparison of model calculations with measured spectra it is concluded that the metal electrons cannot adapt adiabatically to the sudden changes of the charge state of the projectile in front of the surface. A parameter characterizing the partly diabatic behavior is determined. The variation of spectra upon adsorption of a monolayer of oxygen on the surface is reported and discussed. (author)

  15. Impact of Wind Power Plants with Full Converter Wind Turbines on Power System Small-Signal Stability

    DEFF Research Database (Denmark)

    Knüppel, Thyge; Nygaard Nielsen, Jørgen; Dixon, Andrew

    Wind power is being developed in power systems all around the world, and already today wind power covers more than 20 % of the electricity consumption in some countries. As the size of each wind power plant (WPP) increases and as the levels of penetration reaches certain magnitudes, the inclusion...... of the dynamic properties of the WPPs in the power system stability studies become important. The work presented in this report deal with the impact of WPPs based on full converter wind turbines (WTs) on the power system small-signal rotor angle stability. During small disturbances in the power system, the rotor...... speed of the synchronous machines will eventually return to its steady state if the power system is small-signal stable. The dynamic properties of a WPP are fundamentally dierent from those of a synchronous machine, and the interaction of WPPs with the synchronous machines in power system oscillations...

  16. Novel investigation of the different Omni-direction-guide-vane angles effects on the urban vertical axis wind turbine output power via three-dimensional numerical simulation

    International Nuclear Information System (INIS)

    Shahizare, B.; Nik-Ghazali, N.; Chong, W.T.; Tabatabaeikia, S.; Izadyar, Nima; Esmaeilzadeh, Alireza

    2016-01-01

    Highlights: • Investigation of the Omni-direction-guide-vane impacts on the VAWT performance. • Obtain the best position of the guide vane angles in order to achieve the maximum performance. • Validation of the 3D computational fluid dynamics with experimental data. • Acquire the optimal Omni-direction-guide-vane based on numerical simulation results. - Abstract: The aim of this study is to present the effects of different Omni-direction-guide-vane (ODGV) angles on the performance of the vertical axis wind turbine (VAWT). For this purpose, five different straight-bladed VAWTs have been simulated via three-dimensional (3D) computational fluid dynamics (CFD). Hence, the VAWT without ODGV covering, were simulated and validated via CFD and experimental fluid dynamics (EFD) data, respectively in the first step. Indeed, grid and time step independency test as well as the effect of domain size, have been conducted and a suitable agreement was found based on comparison of the CFD and EFD results. In the next step, the VAWT was shrouded by ODGV cover and the whole system was simulated for 52 angles of the ODGV in four different tip speed ratios (TSR), to investigate the impact of guide vanes angles on the VAWT performance. Results of this study indicated that output power of the VAWT with α = 20° and β = 55° ODGV guide vanes, was improved 40.9%, 36.5%, 35.3% and 33.2%, respectively in four different TSR including 0.745, 1.091, 1.901 and 2.53.

  17. Innovative Design of a Darrieus Straight Bladed Vertical Axis Wind Turbine by using Multi Element Airfoil

    DEFF Research Database (Denmark)

    Chougle, Prasad Devendra

    . Mainly, there is the horizontal axis wind turbine (HAWT) and vertical axis wind turbine (VAWT). HAWTs are more popular than VAWTs due to failure of VAWT commercialization during the late of 1980s on a large scale. However, in recent research work it has been documented that VAWTs are more economical......, and the wind tunnel testing of double-element airfoil is performed. It is found that the aerodynamic characteristics of the airfoil increased considerably by delaying the angle of stall. These two facts are very suitable for vertical axis wind turbine since they operate in a larger range of angle of attack......, ±40_, compared to the horizontal axis wind turbines which operate in the range of attack, ±15_. A new design of vertical axis wind turbine is then proposed, and aerodynamic performance is evaluated based on double multiple stream tube methods. The performance parameters are almost doubled compared...

  18. Control of Angular Intervals for Angle-Multiplexed Holographic Memory

    Science.gov (United States)

    Kinoshita, Nobuhiro; Muroi, Tetsuhiko; Ishii, Norihiko; Kamijo, Koji; Shimidzu, Naoki

    2009-03-01

    In angle-multiplexed holographic memory, the full width at half maximum of the Bragg selectivity curves is dependent on the angle formed between the medium and incident laser beams. This indicates the possibility of high density and high multiplexing number by varying the angular intervals between adjacent holograms. We propose an angular interval scheduling for closely stacking holograms into medium even when the angle range is limited. We obtained bit error rates of the order of 10-4 under the following conditions: medium thickness of 1 mm, laser beam wavelength of 532 nm, and angular multiplexing number of 300.

  19. Note: Comparison of grazing incidence small angle x-ray scattering of a titania sponge structure at the beamlines BW4 (DORIS III) and P03 (PETRA III)

    International Nuclear Information System (INIS)

    Rawolle, M.; Körstgens, V.; Ruderer, M. A.; Metwalli, E.; Guo, S.; Müller-Buschbaum, P.; Herzog, G.; Benecke, G.; Schwartzkopf, M.; Buffet, A.; Perlich, J.; Roth, S. V.

    2012-01-01

    Grazing incidence small angle x-ray scattering (GISAXS) is a powerful technique for morphology investigation of nanostructured thin films. GISAXS measurements at the newly installed P03 beamline at the storage ring PETRA III in Hamburg, Germany, are compared to the GISAXS data from the beamline BW4 at the storage ring DORIS III, which had been used extensively for GISAXS investigations in the past. As an example, a titania thin film sponge structure is investigated. Compared to BW4, at beamline P03 the resolution of larger structures is slightly improved and a higher incident flux leads to a factor of 750 in scattered intensity. Therefore, the acquisition time in GISAXS geometry is reduced significantly at beamline P03.

  20. Pulsar wind model for the spin-down behavior of intermittent pulsars

    Energy Technology Data Exchange (ETDEWEB)

    Li, L.; Tong, H.; Yan, W. M.; Yuan, J. P.; Wang, N. [Xinjiang Astronomical Observatory, Chinese Academy of Sciences, Urumqi, Xinjiang 830011 (China); Xu, R. X., E-mail: tonghao@xao.ac.cn [School of Physics, Peking University, Beijing (China)

    2014-06-10

    Intermittent pulsars are part-time radio pulsars. They have higher slow down rates in the on state (radio-loud) than in the off state (radio-quiet). This gives evidence that particle wind may play an important role in pulsar spindown. The effect of particle acceleration is included in modeling the rotational energy loss rate of the neutron star. Applying the pulsar wind model to the three intermittent pulsars (PSR B1931+24, PSR J1841–0500, and PSR J1832+0029) allows their magnetic fields and inclination angles to be calculated simultaneously. The theoretical braking indices of intermittent pulsars are also given. In the pulsar wind model, the density of the particle wind can always be the Goldreich-Julian density. This may ensure that different on states of intermittent pulsars are stable. The duty cycle of particle wind can be determined from timing observations. It is consistent with the duty cycle of the on state. Inclination angle and braking index observations of intermittent pulsars may help to test different models of particle acceleration. At present, the inverse Compton scattering induced space charge limited flow with field saturation model can be ruled out.

  1. Development of glancing-incidence and glancing-take-off X-ray fluorescence apparatus for surface and thin-film analyses

    International Nuclear Information System (INIS)

    Tsuji, Kouichi; Wagatsuma, Kazuaki; Yamada, Takashi; Utaka, Tadashi

    1997-01-01

    We have studied X-ray fluorescence analysis under glancing incidence and glancing take-off conditions. Recently, we have developed a third apparatus for detecting glancing-incidence and take-off X-ray fluorescence, which makes it possible to measure the incident-angle dependence, the take-off-angle dependence. X-ray reflectivity, and X-ray diffraction. Primarily, we have measured the take-off angular dependence of X-ray fluorescence using this apparatus. Glancing take-off X-ray fluorescence has some advantages in comparison with glancing-incidence X-ray fluorescence. The surface density and the absolute angles were determined by analysing the take-off angle dependence of the fluorescent X-rays emitted from identical atoms with the aid of the reciprocity theorem. (Author)

  2. Wind and load variability in the Nordic countries

    DEFF Research Database (Denmark)

    Holttinen, Hannele; Rissanen, Simo; Larsén, Xiaoli Guo

    the three years analysed in this publication there were few storm incidents and they did not produce dramatic wind power ramps in the Nordic region. Wind and load variations are not correlated between the countries, which is beneficial from the viewpoint of wind integration. The smoothing effect is shown......This publication analysed the variability of wind production and load in Denmark, Finland, Sweden, and the Nordic region as a whole, based on real data measured from large-scale wind power during 2009–2011. The Nordic-wide wind power time series was scaled up such that Sweden had same amount...... of wind power production than Denmark, and Finland and Norway only 50% of the wind power production in Denmark. Wind power production in Denmark and Sweden is somewhat correlated (coefficient 0.7) but less correlation is found between the other countries. The variations from one hour to the next are only...

  3. Gravity effects on wind-induced flutter of leaves

    Science.gov (United States)

    Clemmer, Nickalaus; Kopperstad, Karsten; Solano, Tomas; Shoele, Kourosh; Ordonez, Juan

    2017-11-01

    Wind-Induced flutter of leaves depends on both wind velocity and the gravity. To study the gravitational effects on the oscillatory behavior of leaves in the wind, a wind tunnel that can be tilted about the center of the test section is created. This unique rotation capability allows systematic investigation of gravitational effects on the fluttering response of leaves. The flow-induced vibration will be studied for three different leaves at several different tilting angles including the wind travels horizontally, vertically downward and vertically upward. In each situation, the long axis of a leaf is placed parallel to the wind direction and its response is studied at different flow speed. Oscillation of the leaf is recorded via high-speed camera at each of setup, and the effect of the gravity on stabilizing or destabilizing the fluttering response is investigated. Summer REU student at Florida State University.

  4. Optimum Operational Parameters for Yawed Wind Turbines

    Directory of Open Access Journals (Sweden)

    David A. Peters

    2011-01-01

    Full Text Available A set of systematical optimum operational parameters for wind turbines under various wind directions is derived by using combined momentum-energy and blade-element-energy concepts. The derivations are solved numerically by fixing some parameters at practical values. Then, the interactions between the produced power and the influential factors of it are generated in the figures. It is shown that the maximum power produced is strongly affected by the wind direction, the tip speed, the pitch angle of the rotor, and the drag coefficient, which are specifically indicated by figures. It also turns out that the maximum power can take place at two different optimum tip speeds in some cases. The equations derived herein can also be used in the modeling of tethered wind turbines which can keep aloft and deliver energy.

  5. Heat transfer measurements on an incidence-tolerant low pressure turbine blade in a high speed linear cascade at low to moderate Reynolds numbers

    Science.gov (United States)

    Moualeu, Leolein Patrick Gouemeni

    Runway-independent aircraft are expected to be the future for short-haul flights by improving air transportation and reducing area congestion encountered in airports. The Vehicle Systems Program of NASA identified a Large Civil Tilt-Rotor, equipped with variable-speed power-turbine engines, as the best concept. At cruise altitude, the engine rotor-speed will be reduced by as much as the 50% of take-off speed. The large incidence variation in the low pressure turbine associated with the change in speed can be detrimental to the engine performance. Low pressure turbine blades in cruise altitude are more predisposed to develop regions of boundary layer separation. Typical phenomenon such as impinging wakes on downstream blades and mainstream turbulences enhance the complexity of the flow in low pressure turbines. It is therefore important to be able to understand the flow behavior to accurately predict the losses. Research facilities are seldom able to experimentally reproduce low Reynolds numbers at relevant engine Mach number. Having large incidence swing as an additional parameter in the investigation of the boundary layer development, on a low pressure turbine blade, makes this topic unique and as a consequence requires a unique facility to conduct the experimental research. The compressible flow wind tunnel facility at the University of North Dakota had been updated to perform steady state experiments on a modular-cascade, designed to replicate a large variation of the incidence angles. The high speed and low Reynolds number facility maintained a sealed and closed loop configuration for each incidence angle. The updated facility is capable to produce experimental Reynolds numbers as low as 45,000 and as high as 570,000 at an exit Mach number of 0.72. Pressure and surface temperature measurements were performed at these low pressure turbine conditions. The present thesis investigates the boundary layer development on the surface of an Incidence-tolerant blade. The

  6. Note: Optimization of magnifying a polarization angle with Littrow layout blazed gratings.

    Science.gov (United States)

    Sasao, H; Arakawa, H; Imazawa, R; Kawano, Y; Itami, K; Kubo, H

    2017-03-01

    Magnification of a polarization angle with Littrow layout gratings has been developed. High magnification with a factor of 7.7 using two gratings in Littrow layout was experimentally proved. The magnification range was investigated by calculation at a wavelength of 10.6 μm. The method can be applied for a high magnification factor >30. Larger groove numbers and smaller blaze angles are suitable for the large magnification. Statistical fluctuation of the diffracted polarization angle is compared with that of the incident polarization angle.

  7. THE CHARACTERISTICS OF THE OPERATING PARAMETERS OF THE VERTICAL AXIS WIND TURBINE FOR THE SELECTED WIND SPEED

    Directory of Open Access Journals (Sweden)

    Zbigniew Czyż

    2017-03-01

    Full Text Available The article presents the results of examining a wind turbine on the vertical axis of rotation. The study was conducted in an open circuit wind tunnel Gunt HM 170 in the laboratory of the Department of Thermodynamics, Fluid Mechanics and Aviation Propulsion Systems in Lublin University of Technology. The subject of research was a rotor based on the patent PL 219985. The research object in the form of rotor consists of blades capable of altering the surface of the active area (receiving kinetic energy of the wind. The study was performed on appropriately scaled and geometrically similar models with maintaining, relevant to the type of research, the criterion numbers. Research objects in the form of rotors with different angles of divergence of blades were made using a 3D powder printer ZPrinter® 450. The results of the research conducted were carried out at the selected flow velocity of 6.5 m/s for three angles of divergence, ie. 30°, 60°, and 90° at variable rotational speed. The applied research station allows braking of the turbine to the required speed, recording velocity and torque, which allows to obtain characteristics of torque and power as a function of rotor speed.

  8. Wind tunnel experimental study on the effect of PAM on soil wind erosion control.

    Science.gov (United States)

    He, Ji-Jun; Cai, Qiang-Guo; Tang, Ze-Jun

    2008-10-01

    In recent years, high-molecular-weight anionic polyacrylamide (PAM) have been widely tested on a variety of soils, primarily in water erosion control. However, little information is available regarding the effectiveness of PAM on preventing soil loss from wind erosion. The research adopted room wind tunnel experiment, two kinds of soils were used which were from the agro-pastoral area of Inner Mongolia, the northwest of China, the clay content of soils were 22.0 and 13.7%, respectively. For these tests, all the treatments were performed under the condition of wind velocity of 14 m s(-1) and a blown angle of 8.75%, according to the actual situation of experimented area. The study results indicated that using PAM on the soil surface could enhance the capability of avoiding the wind erosion, at the same time, the effect of controlling wind soil erosion with 4 g m(-2) PAM was better than 2 g m(-2) PAM's. Economically, the 2 g m(-2) PAM used in soil surface can control wind erosion effectively in this region. The prophase PAM accumulated in soil could not improve the capability of avoiding the wind erosion, owing to the degradation of PAM in the soil and the continual tillage year after year. The texture of soil is a main factor influencing the capability of soil avoiding wind erosion. Soil with higher clay content has the higher capability of preventing soil from wind erosion than one with the opposite one under the together action of PAM and water.

  9. Evanescent-wave coupled right angled buried waveguide: Applications in carbon nanotube mode-locking

    International Nuclear Information System (INIS)

    Mary, R.; Thomson, R. R.; Kar, A. K.; Brown, G.; Beecher, S. J.; Popa, D.; Sun, Z.; Torrisi, F.; Hasan, T.; Milana, S.; Bonaccorso, F.; Ferrari, A. C.

    2013-01-01

    We present an evanescent-field device based on a right-angled waveguide. This consists of orthogonal waveguides, with their points of intersection lying along an angled facet of the chip. Light guided along one waveguide is incident at the angled dielectric-air facet at an angle exceeding the critical angle, so that the totally internally reflected light is coupled into the second waveguide. By depositing a nanotube film on the angled surface, the chip is then used to mode-lock an Erbium doped fiber ring laser with a repetition rate of 26 MHz, and pulse duration of 800 fs

  10. Color change mechanism of niobium oxide thin film with incidental light angle and applied voltage

    Energy Technology Data Exchange (ETDEWEB)

    Komatsu, Isao [Course of Information Science and Technology, Graduate School of Science and Technology, Tokai University (Japan); Aoki, Hayata [Course of Electro Photo Optics, Graduate School of Engineering, Tokai University (Japan); Ebisawa, Mizue [Tokyo Metropolitan Industrial Technology Research Institute (Japan); Kuroda, Akihiro [Department of Optical and Imaging Science & Technology, Faculty of Engineering, Tokai University (Japan); Kuroda Consulting Incorporated (Japan); Kuroda, Koichi [Kuroda Consulting Incorporated (Japan); Maeda, Shuichi [Course of Information Science and Technology, Graduate School of Science and Technology, Tokai University (Japan); Course of Electro Photo Optics, Graduate School of Engineering, Tokai University (Japan); Department of Optical and Imaging Science & Technology, Faculty of Engineering, Tokai University (Japan)

    2016-03-31

    Niobium oxide thin layers made by the anodization process showed coloration owing to thin film interference. The reflection spectra depended on both the applied voltage and incident light angle. Large color differences were observed at incident light angles between 5° and 70°, when the applied voltage was over 60 V. In this study, we explored the cause of these results using ellipsometry and goniophotometry to understand the transition of optical constants and the reflection spectra with applied voltage. Finally, we concluded that the coloration of the reflection spectra, which included only a first-order interference peak, exhibits a smaller change because the first order interference peak has a wider half value width than higher order interference peaks. - Highlights: • We investigated color change of Nb{sub 2}O{sub 5} oxide thin layers with incidental light angle. • The reflection spectra shift to lower wavelength region with increasing incident light angle. • The reflection spectra shift to higher wavelength region with increasing applied voltage. • First-order interference has wider half value width, and exhibits small color change.

  11. Irregular Winding of Pre-preg Fibres Aimed at the Local Improvement of Flexural Properties

    Directory of Open Access Journals (Sweden)

    Petr Kulhavy

    2017-12-01

    Full Text Available The main undisputed benefit of using long fibre composite materials, whose properties could be targeted for a particular application, lies in the efficient utilisation of material. Using a method of pre-impregnated fibre winding, a rod with a reinforced middle part was created through the local adjustment of the winding angle in order to increase the local bending stiffness. The aim of our work was to describe, experimentally and subsequently using appropriate numerical models, the behaviour of two composite rods, one with a locally variable winding angle and the other with a constant winding angle. The difference in the mechanical behaviour of both structures was clearly evident during the experiment. By using a suitable composite pre-processor and by choosing some multiple element sets, it was also possible to accurately simulate the real behaviour of such components, which actually have several regions, each with different mechanical parameters. Together with the expected different flexural strength, a traditional three-point bending test also explored the different shape of the resulting deformation in the two compared parts. Differences in the maximum strength and the mode of fi nal deformations were also identified.

  12. Nano-ADEPT Aeroloads Wind Tunnel Test

    Science.gov (United States)

    Smith, Brandon; Yount, Bryan; Kruger, Carl; Brivkalns, Chad; Makino, Alberto; Cassell, Alan; Zarchi, Kerry; McDaniel, Ryan; Ross, James; Wercinski, Paul; hide

    2016-01-01

    A wind tunnel test of the Adaptable Deployable Entry and Placement Technology (ADEPT) was conducted in April 2015 at the US Army's 7 by10 Foot Wind Tunnel located at NASA Ames Research Center. Key geometric features of the fabric test article were a 0.7 meter deployed base diameter, a 70 degree half-angle forebody cone angle, eight ribs, and a nose-to-base radius ratio of 0.7. The primary objective of this wind tunnel test was to obtain static deflected shape and pressure distributions while varying pretension at dynamic pressures and angles of attack relevant to entry conditions at Earth, Mars, and Venus. Other objectives included obtaining aerodynamic force and moment data and determining the presence and magnitude of any dynamic aeroelastic behavior (buzz/flutter) in the fabric trailing edge. All instrumentation systems worked as planned and a rich data set was obtained. This paper describes the test articles, instrumentation systems, data products, and test results. Four notable conclusions are drawn. First, test data support adopting a pre-tension lower bound of 10 foot pounds per inch for Nano-ADEPT mission applications in order to minimize the impact of static deflection. Second, test results indicate that the fabric conditioning process needs to be reevaluated. Third, no flutter/buzz of the fabric was observed for any test condition and should also not occur at hypersonic speeds. Fourth, translating one of the gores caused ADEPT to generate lift without the need for a center of gravity offset. At hypersonic speeds, the lift generated by actuating ADEPT gores could be used for vehicle control.

  13. Performance of a 3 kW wind turbine generator with variable pitch control system

    International Nuclear Information System (INIS)

    Nagai, Baku M.; Ameku, Kazumasa; Roy, Jitendro Nath

    2009-01-01

    A prototype 3 kW horizontal upwind type wind turbine generator of 4 m in diameter has been designed and examined under real wind conditions. The machine was designed based on the concept that even small wind turbines should have a variable pitch control system just as large wind turbines, especially in Japan where typhoons occur at least once a year. A characteristic of the machine is the use of a worm and gear system with a stepping motor installed in the center of the hub, and the rotational main shaft. The machine is constructed with no mechanical breaking system so as to avoid damage from strong winds. In a storm, the wind turbine is slowed down by adjusting the pitch angle and the maximum electrical load. Usually the machine is controlled at several stages depending on the rotational speed of the blades. Two control methods have been applied: the variable pitch angle, and regulation of the generator field current. The characteristics of the generator under each rotational speed and field current are first investigated in the laboratory. This paper describes the performances of the wind turbine in terms of the functions of wind turbine rotational speed, generated outputs, and its stability for wind speed changes. The expected performances of the machine have been confirmed under real wind conditions and compared with numerical simulation results. The wind turbine showed a power coefficient of 0.257 under the average wind speed of 7.3 m/s.

  14. Repetitive model predictive approach to individual pitch control of wind turbines

    DEFF Research Database (Denmark)

    Adegas, Fabiano Daher; Stoustrup, Jakob; Odgaard, Peter Fogh

    2011-01-01

    prediction. As a consequence, individual pitch feed-forward control action is generated by the controller, taking ”future” wind disturbance into account. Information about the estimated wind spatial distribution one blade experience can be used in the prediction model to better control the next passing blade......Wind turbines are inherently exposed to nonuniform wind fields with of wind shear, tower shadow, and possible wake contributions. Asymmetrical aerodynamic rotor loads are a consequence of such periodic, repetitive wind disturbances experienced by the blades. A controller may estimate and use...... this peculiar disturbance pattern to better attenuate loads and regulate power by controlling the blade pitch angles individually. A novel model predictive (MPC) approach for individual pitch control of wind turbines is proposed in this paper. A repetitive wind disturbance model is incorporated into the MPC...

  15. A fuzzy logic pitch angle controller for power system stabilization

    Energy Technology Data Exchange (ETDEWEB)

    Jauch, Clemens; Cronin, Tom; Sorensen, Poul [Wind Energy Department, Riso National Laboratory, PO Box 49, DK-4000 Roskilde, (Denmark); Jensen, Birgitte Bak [Institute of Energy Technology, Aalborg University, Pontoppidanstraede 101, DK-9220 Aalborg East, (Denmark)

    2006-07-12

    In this article the design of a fuzzy logic pitch angle controller for a fixed speed, active-stall wind turbine, which is used for power system stabilization, is presented. The system to be controlled, which is the wind turbine and the power system to which the turbine is connected, is described. The advantages of fuzzy logic control when applied to large-signal control of active-stall wind turbines are outlined. The general steps of the design process for a fuzzy logic controller, including definition of the controller inputs, set-up of the fuzzy rules and the method of defuzzification, are described. The performance of the controller is assessed by simulation, where the wind turbine's task is to dampen power system oscillations. In the scenario simulated for this work, the wind turbine has to ride through a transient short-circuit fault and subsequently contribute to the damping of the grid frequency oscillations that are caused by the transient fault. It is concluded that the fuzzy logic controller enables the wind turbine to dampen power system oscillations. It is also concluded that, owing to the inherent non-linearities in a wind turbine and the unpredictability of the whole system, the fuzzy logic controller is very suitable for this application. (Author).

  16. Wind-power plant

    Energy Technology Data Exchange (ETDEWEB)

    Kling, A

    1976-08-26

    The invention is concerned with a wind-power plant whose rotor axis is pivoted in the supporting structure and swingable around an axis of tilt, forming an angle with the rotor axis and the vertical axis, and allowing precession of the rotor. On changes of wind direction an electric positioning device is moving the rotor axis into the new direction in such a way that no precession forces are exerted on the supporting structure and this one may very easily be held. Instead of one rotor, also a type with two coaxial, co-planar countercurrent rotors may be used. Each of the two countercurrent rotors is carrying a number of magnetic poles, distributed all over the circumference, acting together with the magnetic poles of the other rotor. At least the poles of one rotor have electric line windings being connected by leads with a collector so that the two rotors form the two parts of a power generator being each rotatable with respect to the other ('stator' and 'rotor').

  17. Prediction and analysis of infra and low-frequency noise of upwind horizontal axis wind turbine using statistical wind speed model

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Gwang-Se; Cheong, Cheolung, E-mail: ccheong@pusan.ac.kr [School of Mechanical Engineering, Pusan National University, Busan, 609-745, Rep. of Korea (Korea, Republic of)

    2014-12-15

    Despite increasing concern about low-frequency noise of modern large horizontal-axis wind turbines (HAWTs), few studies have focused on its origin or its prediction methods. In this paper, infra- and low-frequency (the ILF) wind turbine noise are closely examined and an efficient method is developed for its prediction. Although most previous studies have assumed that the ILF noise consists primarily of blade passing frequency (BPF) noise components, these tonal noise components are seldom identified in the measured noise spectrum, except for the case of downwind wind turbines. In reality, since modern HAWTs are very large, during rotation, a single blade of the turbine experiences inflow with variation in wind speed in time as well as in space, breaking periodic perturbations of the BPF. Consequently, this transforms acoustic contributions at the BPF harmonics into broadband noise components. In this study, the ILF noise of wind turbines is predicted by combining Lowson’s acoustic analogy with the stochastic wind model, which is employed to reproduce realistic wind speed conditions. In order to predict the effects of these wind conditions on pressure variation on the blade surface, unsteadiness in the incident wind speed is incorporated into the XFOIL code by varying incident flow velocities on each blade section, which depend on the azimuthal locations of the rotating blade. The calculated surface pressure distribution is subsequently used to predict acoustic pressure at an observing location by using Lowson’s analogy. These predictions are compared with measured data, which ensures that the present method can reproduce the broadband characteristics of the measured low-frequency noise spectrum. Further investigations are carried out to characterize the IFL noise in terms of pressure loading on blade surface, narrow-band noise spectrum and noise maps around the turbine.

  18. Prediction and analysis of infra and low-frequency noise of upwind horizontal axis wind turbine using statistical wind speed model

    Directory of Open Access Journals (Sweden)

    Gwang-Se Lee

    2014-12-01

    Full Text Available Despite increasing concern about low-frequency noise of modern large horizontal-axis wind turbines (HAWTs, few studies have focused on its origin or its prediction methods. In this paper, infra- and low-frequency (the ILF wind turbine noise are closely examined and an efficient method is developed for its prediction. Although most previous studies have assumed that the ILF noise consists primarily of blade passing frequency (BPF noise components, these tonal noise components are seldom identified in the measured noise spectrum, except for the case of downwind wind turbines. In reality, since modern HAWTs are very large, during rotation, a single blade of the turbine experiences inflow with variation in wind speed in time as well as in space, breaking periodic perturbations of the BPF. Consequently, this transforms acoustic contributions at the BPF harmonics into broadband noise components. In this study, the ILF noise of wind turbines is predicted by combining Lowson’s acoustic analogy with the stochastic wind model, which is employed to reproduce realistic wind speed conditions. In order to predict the effects of these wind conditions on pressure variation on the blade surface, unsteadiness in the incident wind speed is incorporated into the XFOIL code by varying incident flow velocities on each blade section, which depend on the azimuthal locations of the rotating blade. The calculated surface pressure distribution is subsequently used to predict acoustic pressure at an observing location by using Lowson’s analogy. These predictions are compared with measured data, which ensures that the present method can reproduce the broadband characteristics of the measured low-frequency noise spectrum. Further investigations are carried out to characterize the IFL noise in terms of pressure loading on blade surface, narrow-band noise spectrum and noise maps around the turbine.

  19. A neuro-fuzzy controlling algorithm for wind turbine

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Li [Tampere Univ. of Technology (Finland); Eriksson, J T [Tampere Univ. of Technology (Finland)

    1996-12-31

    The wind turbine control system is stochastic and nonlinear, offering a demanding field for different control methods. An improved and efficient controller will have great impact on the cost-effectiveness of the technology. In this article, a design method for a self-organizing fuzzy controller is discussed, which combines two popular computational intelligence techniques, neural networks and fuzzy logic. Based on acquisited dynamic parameters of the wind, it can effectively predict wind changes in speed and direction. Maximum power can always be extracted from the kinetic energy of the wind. Based on the stimulating experiments applying nonlinear dynamics to a `Variable Speed Fixed Angle` wind turbine, it is demonstrated that the proposed control model 3rd learning algorithm provide a predictable, stable and accurate performance. The robustness of the controller to system parameter variations and measurement disturbances is also discussed. (author)

  20. A neuro-fuzzy controlling algorithm for wind turbine

    Energy Technology Data Exchange (ETDEWEB)

    Li Lin [Tampere Univ. of Technology (Finland); Eriksson, J.T. [Tampere Univ. of Technology (Finland)

    1995-12-31

    The wind turbine control system is stochastic and nonlinear, offering a demanding field for different control methods. An improved and efficient controller will have great impact on the cost-effectiveness of the technology. In this article, a design method for a self-organizing fuzzy controller is discussed, which combines two popular computational intelligence techniques, neural networks and fuzzy logic. Based on acquisited dynamic parameters of the wind, it can effectively predict wind changes in speed and direction. Maximum power can always be extracted from the kinetic energy of the wind. Based on the stimulating experiments applying nonlinear dynamics to a `Variable Speed Fixed Angle` wind turbine, it is demonstrated that the proposed control model 3rd learning algorithm provide a predictable, stable and accurate performance. The robustness of the controller to system parameter variations and measurement disturbances is also discussed. (author)

  1. WAMDII: The Wide Angle Michelson Doppler Imaging Interferometer

    Science.gov (United States)

    1992-01-01

    As part of an effort to learn more about the upper atmosphere and how it is linked to the weather experienced each day, NASA and NRCC are jointly sponsoring the Wide Angle Michelson Doppler Imaging Interferometer (WAMDII) Mission. WAMDII will measure atmospheric temperature and wind speed in the upper atmosphere. In addition to providing data on the upper atmosphere, the wind speed and temperature readings WAMDII takes will also be highly useful in developing and updating computer simulated models of the upper atmosphere. These models are used in the design and testing of equipment and software for Shuttles, satellites, and reentry vehicles. In making its wind speed and temperature measurements, WAMDII examines the Earth's airglow, a faint photochemical luminescence caused by the influx of solar ultraviolet energy into the upper atmosphere. During periods of high solar flare activity, the amount of this UV energy entering the upper atmosphere increases, and this increase may effect airglow emissions.

  2. Assessment of solar and wind energy potentials for three free economic and industrial zones of Iran

    International Nuclear Information System (INIS)

    Mohammadi, Kasra; Mostafaeipour, Ali; Sabzpooshani, Majid

    2014-01-01

    This paper aims to evaluate the potential of renewable energy sources of solar and wind in three free economic and industrial zones of Chabahar, Kish and Salafchegan in Iran. Feasibility of harnessing solar energy was investigated by using key solar parameters like monthly mean global, beam and diffuse solar radiation as well as clearness index. It was found that all locations had great potentials for utilizing different solar energy systems. Additionally, the monthly, seasonal, semi-yearly and yearly optimum tilt angles of south-facing solar surfaces were determined. For all zones, adjusting the tilt angle twice a year or in other words, the semi-yearly tilt adjustment for two periods of warm (April–September) and cold (October–March) were highly recommended, since it offers almost the same level of annual solar energy gain (SEG) as those of monthly and seasonal adjustments. Weibull Distribution Function (WDF) was performed for analyzing the wind potentials at different heights. It was found that Chabahar was not suitable for wind energy development, but Kish and Salafchegan with yearly wind powers of 111.28 W/m 2 and 114.34 W/m 2 , respectively ranked in class 2 which are considered marginal for wind power development. Three different wind turbine models were proposed for Kish and Salafchegan. - Highlights: • Feasibility of solar and wind energy for three locations of Iran was investigated. • All locations were suitable for solar energy utilization. • The optimum tilt angles of solar surfaces were determined. • Chabahar was unsuitable, but Kish and Salafchegan were marginal for wind purpose

  3. Evaluating Tilt for Wind Farms: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Annoni, Jennifer; Scholbrock, Andrew; Churchfield, Matthew; Fleming, Paul

    2017-06-29

    The objective of this work is to demonstrate the feasibility of tilt in a wind plant. Tilt control, much like other wind plant control strategies, has the potential to improve the performance of a wind plant. Tilt control uses the tilt angle of the turbine to direct the wake above or below the downstream turbines. This paper presents a study of tilt in two- and threeturbine arrays. Specifically, the authors show that the power production of a two-turbine array can be increased by tilting turbines in a specific orientation. When adding more turbines, as is shown with the three-turbine array, the overall percentage of power gain increases. This outcome deviates from some of the results seen in typical wind plant control strategies. Finally, we discuss the impact this type of control strategy has on the aerodynamics in a wind plant. This analysis demonstrates that a good understanding of wake characteristics is necessary to improve the plant's performance. A tilt strategy such as the one presented in this paper may have implications for future control/optimization studies including optimization of hub heights in a wind plant and analysis of deep array effects.

  4. Saturation of ionization signal in TMP and TMS at different angles and electric fields

    International Nuclear Information System (INIS)

    Aubert, B.; Colas, J.; Ghez, Ph.; Lacotte, J.C.; Mansoulie, B.; Teiger, J.

    1989-09-01

    The saturation of ionization signal is measured for various electric fields and incidence angles in a double gap TMP chamber and a single gap TMS chamber with ionizing particles in the range 1.5 - 12 MeV/cm. Birks' constant Kb in TMP is found to be high (greater than 0.1 cm/MeV) for normal incidence for electric fields in the range 4.8 to 12 kV/cm but decreases by almost a factor 3 at 50 0 . The same behaviour (large Kb and variation with incidence angle) is observed in TMS which exhibits also a Kb decrease of about a factor 2 when the electric field is increased from 10 to 40 kV/cm

  5. Full-angle Negative Reflection with An Ultrathin Acoustic Gradient Metasurface: Floquet-Bloch Modes Perspective and Experimental Verification

    KAUST Repository

    Liu, Bingyi

    2017-07-01

    Metasurface with gradient phase response offers new alternative for steering the propagation of waves. Conventional Snell\\'s law has been revised by taking the contribution of local phase gradient into account. However, the requirement of momentum matching along the metasurface sets its nontrivial beam manipulation functionality within a limited-angle incidence. In this work, we theoretically and experimentally demonstrate that the acoustic gradient metasurface supports the negative reflection for full-angle incidence. The mode expansion theory is developed to help understand how the gradient metasurface tailors the incident beams, and the full-angle negative reflection occurs when the first negative order Floquet-Bloch mode dominates. The coiling-up space structures are utilized to build desired acoustic gradient metasurface and the full-angle negative reflections have been perfectly verified by experimental measurements. Our work offers the Floquet-Bloch modes perspective for qualitatively understanding the reflection behaviors of the acoustic gradient metasurface and enables a new degree of the acoustic wave manipulating.

  6. Vertical Wind Tunnel for Prediction of Rocket Flight Dynamics

    Directory of Open Access Journals (Sweden)

    Hoani Bryson

    2016-03-01

    Full Text Available A customized vertical wind tunnel has been built by the University of Canterbury Rocketry group (UC Rocketry. This wind tunnel has been critical for the success of UC Rocketry as it allows the optimization of avionics and control systems before flight. This paper outlines the construction of the wind tunnel and includes an analysis of flow quality including swirl. A minimal modelling methodology for roll dynamics is developed that can extrapolate wind tunnel behavior at low wind speeds to much higher velocities encountered during flight. The models were shown to capture the roll flight dynamics in two rocket launches with mean roll angle errors varying from 0.26° to 1.5° across the flight data. The identified model parameters showed consistent and predictable variations over both wind tunnel tests and flight, including canard–fin interaction behavior. These results demonstrate that the vertical wind tunnel is an important tool for the modelling and control of sounding rockets.

  7. Intelligent control for large-scale variable speed variable pitch wind turbines

    Institute of Scientific and Technical Information of China (English)

    Xinfang ZHANG; Daping XU; Yibing LIU

    2004-01-01

    Large-scale wind turbine generator systems have strong nonlinear multivariable characteristics with many uncertain factors and disturbances.Automatic control is crucial for the efficiency and reliability of wind turbines.On the basis of simplified and proper model of variable speed variable pitch wind turbines,the effective wind speed is estimated using extended Kalman filter.Intelligent control schemes proposed in the paper include two loops which operate in synchronism with each other.At below-rated wind speed,the inner loop adopts adaptive fuzzy control based on variable universe for generator torque regulation to realize maximum wind energy capture.At above-rated wind speed, a controller based on least square support vector machine is proposed to adjust pitch angle and keep rated output power.The simulation shows the effectiveness of the intelligent control.

  8. TRNSYS HYBRID wind diesel PV simulator

    Energy Technology Data Exchange (ETDEWEB)

    Quinlan, P.J.A.; Mitchell, J.W.; Klein, S.A.; Beckman, W.A.; Blair, N.J. [Univ. of Wisconsin, Madison, WI (United States)

    1996-12-31

    The Solar Energy Laboratory (SEL) has developed a wind diesel PV hybrid systems simulator, UW-HYBRID 1.0, an application of the TRNSYS 14.2 time-series simulation environment. An AC/DC bus links up to five diesels and wind turbine models, along with PV modules, a battery bank, and an AC/DC converter. Multiple units can be selected. PV system simulations include solar angle and peak power tracking options. Weather data are Typical Meteorological Year data, parametrically generated synthesized data, or external data files. PV performance simulations rely on long-standing SEL-developed algorithms. Loads data are read as scalable time series. Diesel simulations include estimated fuel-use and waste heat output, and are dispatched using a least-cost of fuel strategy. Wind system simulations include varying air density, wind shear and wake effects. Time step duration is user-selectable. UW-HYBRID 1.0 runs in Windows{reg_sign}, with TRNSED providing a customizable user interface. 12 refs., 6 figs.

  9. A Wind Farm Controller for Load and Power Optimization in a Farm

    DEFF Research Database (Denmark)

    Soleimanzadeh, Maryam; Brand, Arno; Wisniewski, Rafal

    2011-01-01

    This paper describes the design procedure of an optimal wind farm controller. The controller optimizes the structural load and power production simultaneously, on the basis of an analytical wind farm model. The farm model delivers maps of wind, loads and energy in the wind farm. Moreover, the model...... computes the wind speed at the turbines, turbine bending moments and aerodynamic power and torque. The optimal control problem is formulated based on the model for two different wind directions. The controller determines the reference signals for each individual wind turbine controller in two scenarios...... based on low and high wind speed. In low wind speed, the reference signals for rotor speed are adjusted, taking the trade-off between power maximization and load minimization into account. In high wind speed, the power and pitch angle reference signals are determined while structural loads are minimized....

  10. Icing Problems of Wind Turbine Blades in Cold Climates

    DEFF Research Database (Denmark)

    Hudecz, Adriána

    Climatic Wind Tunnel located at FORCE Technology. The aerodynamic forces acting on the blade during ice accretion for different angles of attack at various air temperatures were measured along with the mass of ice and the final ice shape. For all three types of ice accretion, glaze, mixed and rime ice...... and on the aerodynamic characteristics of the airfoil. The trend of the reduction of lift coefficients agrees quite well with the wind tunnel test results, although based on the measured and the numerical lift coefficients of the clean airfoil, the presence of the wind tunnel walls had significant influence...

  11. Echo signal from rough planar interfaces influence of roughness, angle, range and transducer type

    DEFF Research Database (Denmark)

    Wilhjelm, Jens E.; Pedersen, P.C.; Jacobsen, S.M.

    1998-01-01

    The received electrical signal from a pulse-echo system insonifying a planar acoustical interface was measured for varying degrees of rms roughness (0-0.16 mm), angle of incidence (typically +/-7°) and range to the transducer. A planar and a focused 5 MHz transducer was used. When insonifying...... a smooth interface, the normalized spectrum of the received signals for a planar transducer exhibits an increasing number of nulls with increased angle of insonification, as predicted from numerical modeling while the dependence on insonification angle for the focused transducer was smaller and the null...... pattern was much less distinct. For the planar transducer and for the focused transducer with the interface located at the geometrical point of focus, the energy of the received signal as a function of incident angle was approximately Gaussian with maximum at 0°. For the smooth interface, the -3 dB width...

  12. Test of the Angle Detecting Inclined Sensor (ADIS) Technique for Measuring Space Radiation

    Science.gov (United States)

    Connell, J. J.; Lopate, C.; McLaughlin, K. R.

    2009-12-01

    In February 2008 we exposed an Angle Detecting Inclined Sensor (ADIS) prototype to beams of 150 MeV/u 78Kr and fragments at the National Superconducting Cyclotron Laboratory's (NSCL) Coupled Cyclotron Facility (CCF). ADIS is a highly innovative and uniquely simple detector configuration used to determine the angles of incidence of heavy ions in energetic charged particle instruments. Corrections for angle of incidence are required for good charge and mass separation. An ADIS instrument is under development to fly on the GOES-R series of weather satellites. The prototype tested consisted of three ADIS detectors, two of which were inclined at an angle to the telescope axis, forming the initial detectors in a five-detector telescope stack. By comparing the signals from the ADIS detectors, the angle of incidence may be determined and a pathlength correction applied to charge and mass determinations. Thus, ADIS replaces complex position sensing detectors with a system of simple, reliable and robust Si detectors. Accelerator data were taken at multiple angles to both primary and secondary beams with a spread of energies. This test instrument represents an improvement over the previous ADIS prototype in that it used oval inclined detectors and a much lower-mass support structure, thus reducing the number of events passing through dead material. These data show a charge peak resolution of 0.18 ± 0.01 e at Br (Z = 35), excellent for such a simple instrument. We will present the results of this test. The ADIS instrument development project was partially funded by NASA under the Living With a Star (LWS) Targeted Research and Technology program (grant NAG5-12493).

  13. Nonlinear Feedforward Control for Wind Disturbance Rejection on Autonomous Helicopter

    DEFF Research Database (Denmark)

    Bisgaard, Morten; la Cour-Harbo, Anders; A. Danapalasingam, Kumeresan

    2010-01-01

    for the purpose. The model is inverted for the calculation of rotor collective and cyclic pitch angles given the wind disturbance. The control strategy is then applied on a small helicopter in a controlled wind environment and flight tests demonstrates the effectiveness and advantage of the feedforward controller.......This paper presents the design and verification of a model based nonlinear feedforward controller for wind disturbance rejection on autonomous helicopters. The feedforward control is based on a helicopter model that is derived using a number of carefully chosen simplifications to make it suitable...

  14. Flow separation on wind turbines blades

    Science.gov (United States)

    Corten, G. P.

    2001-01-01

    In the year 2000, 15GW of wind power was installed throughout the world, producing 100PJ of energy annually. This contributes to the total electricity demand by only 0.2%. Both the installed power and the generated energy are increasing by 30% per year world-wide. If the airflow over wind turbine blades could be controlled fully, the generation efficiency and thus the energy production would increase by 9%. Power Control To avoid damage to wind turbines, they are cut out above 10 Beaufort (25 m/s) on the wind speed scale. A turbine could be designed in such a way that it converts as much power as possible in all wind speeds, but then it would have to be to heavy. The high costs of such a design would not be compensated by the extra production in high winds, since such winds are rare. Therefore turbines usually reach maximum power at a much lower wind speed: the rated wind speed, which occurs at about 6 Beaufort (12.5 m/s). Above this rated speed, the power intake is kept constant by a control mechanism. Two different mechanisms are commonly used. Active pitch control, where the blades pitch to vane if the turbine maximum is exceeded or, passive stall control, where the power control is an implicit property of the rotor. Stall Control The flow over airfoils is called "attached" when it flows over the surface from the leading edge to the trailing edge. However, when the angle of attack of the flow exceeds a certain critical angle, the flow does not reach the trailing edge, but leaves the surface at the separation line. Beyond this line the flow direction is reversed, i.e. it flows from the trailing edge backward to the separation line. A blade section extracts much less energy from the flow when it separates. This property is used for stall control. Stall controlled rotors always operate at a constant rotation speed. The angle of attack of the flow incident to the blades is determined by the blade speed and the wind speed. Since the latter is variable, it determines

  15. DETAILED FIT OF 'CRITICAL BALANCE' THEORY TO SOLAR WIND TURBULENCE MEASUREMENTS

    International Nuclear Information System (INIS)

    Forman, Miriam A.; Wicks, Robert T.; Horbury, Timothy S.

    2011-01-01

    We derive the reduced spectrum of turbulent magnetic fluctuations at different frequencies f which would be observed by a single spacecraft in the solar wind when the magnetic field was at an angle θ B to the solar wind flow, if the wavevector spectrum in the solar wind frame were in anisotropic 'critical balance' (CB) as proposed by Goldreich and Sridhar in 1995 (GS95). The anisotropic power spectrum in the inertial range, P(f, θ B ), is scaled onto one curve with f- 5/3 behavior at θ B near 90 0 and f -2 behavior at small θ B . The transition between the two limiting spectra depends on the form of the GS95 wavevector spectrum and the CB scaling parameter L. Using wavelet analysis of Ulysses magnetic field data in three 30-day periods in the high-latitude solar wind in 1995, we verify that the scaling of power with angle and frequency is qualitatively consistent with GS95 theory. However, the scale length L required to fit the observed P(f, θ B ) to the original CB theory is rather less than the scale predicted by that theory for the solar wind. Part, possibly all, of this discrepancy is removed when the GS95 theory modified for imbalanced turbulence is used.

  16. IDENTIFICATION OF WIND LOAD APPLIED TO THREE-DIMENSIONAL STRUCTURES BY VIRTUE OF ITS SIMULATION IN THE WIND TUNNEL

    Directory of Open Access Journals (Sweden)

    Doroshenko Sergey Aleksandrovich

    2012-10-01

    Full Text Available The authors discuss wind loads applied to a set of two buildings. The wind load is simulated with the help of the wind tunnel. In the Russian Federation, special attention is driven to the aerodynamics of high-rise buildings and structures. According to the Russian norms, identification of aerodynamic coefficients for high-rise buildings, as well as the influence of adjacent buildings and structures, is performed on the basis of models of structures exposed to wind impacts simulated in the wind tunnel. This article deals with the results of the wind tunnel test of buildings. The simulation was carried out with the involvement of a model of two twenty-three storied buildings. The experiment was held in a wind tunnel of the closed type at in the Institute of Mechanics of Moscow State University. Data were compared at the zero speed before and after the experiment. LabView software was used to process the output data. Graphs and tables were developed in the Microsoft Excel package. GoogleSketchUp software was used as a visualization tool. The three-dimensional flow formed in the wind tunnel can't be adequately described by solving the two-dimensional problem. The aerodynamic experiment technique is used to analyze the results for eighteen angles of the wind attack.

  17. Optimization design of blade shapes for wind turbines

    DEFF Research Database (Denmark)

    Chen, Jin; Wang, Xudong; Shen, Wen Zhong

    2010-01-01

    For the optimization design of wind turbines, the new normal and tangential induced factors of wind turbines are given considering the tip loss of the normal and tangential forces based on the blade element momentum theory and traditional aerodynamic model. The cost model of the wind turbines...... and the optimization design model are developed. In the optimization model, the objective is the minimum cost of energy and the design variables are the chord length, twist angle and the relative thickness. Finally, the optimization is carried out for a 2 MW blade by using this optimization design model....... The performance of blades is validated through the comparison and analysis of the results. The reduced cost shows that the optimization model is good enough for the design of wind turbines. The results give a proof for the design and research on the blades of large scale wind turbines and also establish...

  18. A wind-tunnel investigation of wind-turbine wakes in different yawed and loading conditions

    Science.gov (United States)

    Bastankhah, Majid; Porté-Agel, Fernando

    2015-04-01

    Wind-turbine wakes have negative effects on wind-farm performance. They are associated with: (a) the velocity deficit, which reduces the generated power of downwind turbines; and (b) the turbulence level, which increases the fatigue loads on downwind turbines. Controlling the yaw angle of turbines can potentially improve the performance of wind farms by deflecting the wake away from downwind turbines. However, except for few studies, wakes of yawed turbines still suffer from the lack of systematic research. To fill this research gap, we performed wind-tunnel experiments in the recirculating boundary-layer wind tunnel at the WIRE Laboratory of EPFL to better understand the wakes of yawed turbines. High-resolution stereoscopic particle image-velocimetry (S-PIV) was used to measure three velocity components in a horizontal plane located downwind of a horizontal-axis, three-blade model turbine. A servo-controller was connected to the DC generator of the turbine, which allowed us to apply different loadings. The power and thrust coefficients of the turbine were also measured for each case. These power and thrust measurements together with the highly-resolved flow measurements enabled us to study different wake characteristics such as the energy entrainment from the outer flow into the wake, the wake deflection and the helicoidal tip vortices for yawed turbines.

  19. Small Angle X-Ray Scattering Detector

    Energy Technology Data Exchange (ETDEWEB)

    Hessler, Jan P.

    2004-06-15

    A detector for time-resolved small-angle x-ray scattering includes a nearly constant diameter, evacuated linear tube having an end plate detector with a first fluorescent screen and concentric rings of first fiber optic bundles for low angle scattering detection and an annular detector having a second fluorescent screen and second fiber optic bundles concentrically disposed about the tube for higher angle scattering detection. With the scattering source, i.e., the specimen under investigation, located outside of the evacuated tube on the tube's longitudinal axis, scattered x-rays are detected by the fiber optic bundles, to each of which is coupled a respective photodetector, to provide a measurement resolution, i.e., dq/q, where q is the momentum transferred from an incident x-ray to an x-ray scattering specimen, of 2% over two (2) orders of magnitude in reciprocal space, i.e., qmax/qmin approx=lO0.

  20. Angle sensitive single photon avalanche diode

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Changhyuk, E-mail: cl678@cornell.edu; Johnson, Ben, E-mail: bcj25@cornell.edu; Molnar, Alyosha, E-mail: am699@cornell.edu [Electrical and Computer Engineering, Cornell University, Ithaca, New York 14850 (United States)

    2015-06-08

    An ideal light sensor would provide exact information on intensity, timing, location, and angle of incoming photons. Single photon avalanche diodes (SPADs) provide such desired high (single photon) sensitivity with precise time information and can be implemented at a pixel-scale to form an array to extract spatial information. Furthermore, recent work has demonstrated photodiode-based structures (combined with micro-lenses or diffraction gratings) that are capable of encoding both spatial and angular information of incident light. In this letter, we describe the implementation of such a grating structure on SPADs to realize a pixel-scale angle-sensitive single photon avalanche diode (A-SPAD) built in a standard CMOS process. While the underlying SPAD structure provides high sensitivity, the time information of the two layers of diffraction gratings above offers angle-sensitivity. Such a unique combination of SPAD and diffraction gratings expands the sensing dimensions to pave a path towards lens-less 3-D imaging and light-field time-of-flight imaging.

  1. Adjoint Airfoil Optimization of Darrieus-Type Vertical Axis Wind Turbine

    Science.gov (United States)

    Fuchs, Roman; Nordborg, Henrik

    2012-11-01

    We present the feasibility of using an adjoint solver to optimize the torque of a Darrieus-type vertical axis wind turbine (VAWT). We start with a 2D cross section of a symmetrical airfoil and restrict us to low solidity ratios to minimize blade vortex interactions. The adjoint solver of the ANSYS FLUENT software package computes the sensitivities of airfoil surface forces based on a steady flow field. Hence, we find the torque of a full revolution using a weighted average of the sensitivities at different wind speeds and angles of attack. The weights are computed analytically, and the range of angles of attack is given by the tip speed ratio. Then the airfoil geometry is evolved, and the proposed methodology is evaluated by transient simulations.

  2. Determination of angle of light deflection in higher-derivative gravity theories

    Science.gov (United States)

    Xu, Chenmei; Yang, Yisong

    2018-03-01

    Gravitational light deflection is known as one of three classical tests of general relativity and the angle of deflection may be computed explicitly using approximate or exact solutions describing the gravitational force generated from a point mass. In various generalized gravity theories, however, such explicit determination is often impossible due to the difficulty in obtaining an exact expression for the deflection angle. In this work, we present some highly effective globally convergent iterative methods to determine the angle of semiclassical gravitational deflection in higher- and infinite-derivative formalisms of quantum gravity theories. We also establish the universal properties that the deflection angle always stays below the classical Einstein angle and is a strictly decreasing function of the incident photon energy, in these formalisms.

  3. Study on optimal design of wind turbine blade airfoil and its application

    International Nuclear Information System (INIS)

    Sun, Min Young; Kim, Dong Yong; Lim, Jae Kyoo

    2012-01-01

    This study was carried out with two goals. One was the development of a model of a wind turbine blade airfoil and the other was the application of the folding blade. In general, in large sized (MW) wind turbines, damage is prevented in small wind turbines since equipment costs and maintenance costs are high, and therefore, the blade will cause serious damage. The wind turbine proposed in this study does not require maintenance, and the blades do not break during high winds because they are folded in accordance with changes in the wind speed. But generators are not cut out, while maintaining a constant angle will continue to produce. The focus of this study, the wind turbine is continued by folding blade system in strong winds and gusts without stopping production

  4. Study on optimal design of wind turbine blade airfoil and its application

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Min Young; Kim, Dong Yong; Lim, Jae Kyoo [Chonbuk Nat' l Univ., Jeonju (Korea, Republic of)

    2012-05-15

    This study was carried out with two goals. One was the development of a model of a wind turbine blade airfoil and the other was the application of the folding blade. In general, in large sized (MW) wind turbines, damage is prevented in small wind turbines since equipment costs and maintenance costs are high, and therefore, the blade will cause serious damage. The wind turbine proposed in this study does not require maintenance, and the blades do not break during high winds because they are folded in accordance with changes in the wind speed. But generators are not cut out, while maintaining a constant angle will continue to produce. The focus of this study, the wind turbine is continued by folding blade system in strong winds and gusts without stopping production.

  5. An angled nano-tunnel fabricated on poly(methyl methacrylate) by a focused ion beam

    International Nuclear Information System (INIS)

    Her, Eun Kyu; Chung, Hee-Suk; Oh, Kyu Hwan; Moon, Myoung-Woon

    2009-01-01

    Angled nano-scale tunnels with high aspect ratio were fabricated on poly(methyl methacrylate) (PMMA) using a focused ion beam (FIB). The fabrication parameters such as ion fluence, incidence angle, and acceleration voltage of the Ga + ion beam were first studied on the PMMA surface to explore the formation of the nano-scale configurations such as nano-holes and cones with diameter in the range of 50-150 nm at an ion beam acceleration voltage of 5-20 kV. It was also found that the PMMA surface exposed to FIB was changed into an amorphous graphitic structure. Angled nano-scale tunnels were fabricated with high aspect ratio of 700-1500 nm in depth and 60 nm in mean diameter at an ion beam acceleration voltage of 5 kV and under a specific ion beam current. The angle of the nano-tunnels was found to follow the incident angle of the ion beam tilted from 0 0 to 85 0 , which has the potential for creating a mold for anisotropic adhesives by mimicking the hairs on a gecko's feet.

  6. An integrated control method for a wind farm to reduce frequency deviations in a small power system

    International Nuclear Information System (INIS)

    Kaneko, Toshiaki; Uehara, Akie; Senjyu, Tomonobu; Yona, Atsushi; Urasaki, Naomitsu

    2011-01-01

    Output power of wind turbine generator (WTG) is not constant and fluctuates due to wind speed changes. To reduce the adverse effects of the power system introducing WTGs, there are several published reports on output power control of WTGs detailing various researches based on pitch angle control, variable speed wind turbines, energy storage systems, and so on. In this context, this paper presents an integrated control method for a WF to reduce frequency deviations in a small power system. In this study, the WF achieves the frequency control with two control schemes: load estimation and short-term ahead wind speed prediction. For load estimation in the small power system, a minimal-order observer is used as disturbance observer. The estimated load is utilized to determine the output power command of the WF. To regulate the output power command of the WF according to wind speed changing, short-term ahead wind speed is predicted by using least-squares method. The predicted wind speed adjusts the output power command of the WF as a multiplying factor with fuzzy reasoning. By means of the proposed method, the WF can operate according to the wind and load conditions. In the WF system, each output power of the WTGs is controlled by regulating each pitch angle. For increasing acquisition power of the WF, a dispatch control method also is proposed. In the pitch angle control system of each WTG, generalized predictive control (GPC) is applied to enhance the control performance. Effectiveness of the proposed method is verified by the numerical simulations.

  7. Optimizing Inductor Winding Geometry for Lowest DC-Resistance using LiveLink between COMSOL and MATLAB

    DEFF Research Database (Denmark)

    Schneider, Henrik; Andersen, Thomas; Mønster, Jakob Døllner

    2013-01-01

    An optimization routine is presented to optimize a hybrid winding geometry for a toroid inductor in terms of the DC resistance. The hybrid winding geometry consist of bended foil pieces connected through traces in a printed circuit board. MATLAB is used to create a graphical user interface...... that visually plots the winding using input parameters such as core dimensions, number of turns, clearance between windings, and the winding angle of each segment of the winding. COMSOL LiveLink is used to import the winding geometry from MATLAB and create a 2D finite element model to simulate the DC...

  8. System for the Automatic Estimation of the Tilt Angle of a Flat Solar Collector

    Directory of Open Access Journals (Sweden)

    Jorge Fonseca-Campos

    2017-08-01

    Full Text Available In this work, a compact system for the automatic estimation of the tilt angle at any location of the world is presented. The system components are one computer, one GPS receiver and one Python program. The tilt angle is calculated through the maximization of the flux of direct radiation incident upon a flat solar collector. An estimation of the adjustments of this angle at different time periods are obtained. This angle is calculated in steps of six minutes during a whole year. Daily, monthly, biannually and yearly averages of this value are obtained. A comparison of the energetic gain when the tilt angle changes at the different time periods is made as well. Because, the algorithm doesn’t receive as an input the solar radiation incident upon a surface at the location of the calculation, a comparison was made between the results obtained and the results reported for the monthly tilt angle of 22 different places. The root mean square error obtained with this comparison was between 1.5 and 9.5 degrees. The monthly tilt angle estimated deviated in average for less than 6.3° with respect to the values reported for the different locations. Finally, the application of a correction factor in the monthly estimated angles is proposed, which might increase the collected energy.

  9. Analyzing the Influence of the Angles of Incidence and Rotation on MBU Events Induced by Low LET Heavy Ions in a 28-nm SRAM-Based FPGA

    Science.gov (United States)

    Tonfat, Jorge; Kastensmidt, Fernanda Lima; Artola, Laurent; Hubert, Guillaume; Medina, Nilberto H.; Added, Nemitala; Aguiar, Vitor A. P.; Aguirre, Fernando; Macchione, Eduardo L. A.; Silveira, Marcilei A. G.

    2017-08-01

    This paper shows the impact of low linear energy transfer heavy ions on the reliability of 28-nm Bulk static random access memory (RAM) cells from Artix-7 field-programmable gate array. Irradiation tests on the ground showed significant differences in the multiple bit upset cross section of configuration RAM and block RAM memory cells under various angles of incidence and rotation of the device. Experimental data are analyzed at transistor level by using the single-event effect prediction tool called multiscale single-event phenomenon prediction platform coupled with SPICE simulations.

  10. Lightning hazard reduction at wind farms

    Energy Technology Data Exchange (ETDEWEB)

    Kithil, R. [National Lightning Safety Institute, Louisville, CO (United States)

    1997-12-31

    The USA wind farm industry (WFI) largely is centered in low-lightning areas of the State of California. While some evidence of lightning incidents is reported here, the problem is not regarded as serious by most participants. The USA WFI now is moving eastward, into higher areas of lightning activity. The European WFI has had many years experience with lightning problems. One 1995 German study estimated that 80% of wind turbine insurance claims paid for damage compensation were caused by lightning strikes. The European and USA WFI have not adopted site criteria, design fundamentals, or certification techniques aimed at lightning safety. Sufficient evidence about lightning at wind farms is available to confirm that serious potential problems exist.

  11. Growth and properties of the CuInS2 thin films produced by glancing angle deposition

    International Nuclear Information System (INIS)

    Akkari, F. Chaffar; Kanzari, M.; Rezig, B.

    2008-01-01

    We use the glancing angle deposition technique (GLAD) to grow CuInS 2 thin films by a vacuum thermal method onto glass substrates. During deposition, the substrate temperature was maintained at 200 deg. C. Due to shadowing effect the oblique angle deposition technique can produce nanorods tilted toward the incident deposition flux. The evaporated atoms arrive at the growing interface at a fixed angle θ measured from the substrate normal. The substrate is rotated with rotational speed ω fixed at 0.033 rev s -1 . We show that the use of this growth technique leads to an improvement in the optical properties of the films. Indeed high absorption coefficients (10 5 -3.10 5 cm -1 ) in the visible range and near-IR spectral range are reached. In the case of the absence of the substrate rotation, scanning electron microscopy pictures show that the structure of the resulting film consists of nanocolumns that are progressively inclined towards the evaporation source as the incident angle was increased. If a rapid azimuthal rotation accompanies the substrate tilt, the resulting nanostructure is composed of an array of pillars normal to the substrate. The surface morphology show an improvement without presence of secondary phases for higher incident angles (θ > 60 deg.)

  12. Large wind ripples on Mars: A record of atmospheric evolution

    Science.gov (United States)

    Lapotre, M G; Ewing, R C; Lamb, M P; Fischer, W W; Grotzinger, J P; Rubin, D M; Lewis, K W; Ballard, M; Day, Mitch D.; Gupta, S.; Banham, S G; Bridges, N T; Des Marais, D J; Fraeman, A A; Grant, J A; Herkenhoff, Kenneth E.; Ming, D W; Mischna, M A; Rice, M S; Sumner, D A; Vasavada, A R; Yingst, R A

    2016-01-01

    Wind blowing over sand on Earth produces decimeter-wavelength ripples and hundred-meter– to kilometer-wavelength dunes: bedforms of two distinct size modes. Observations from the Mars Science Laboratory Curiosity rover and the Mars Reconnaissance Orbiter reveal that Mars hosts a third stable wind-driven bedform, with meter-scale wavelengths. These bedforms are spatially uniform in size and typically have asymmetric profiles with angle-of-repose lee slopes and sinuous crest lines, making them unlike terrestrial wind ripples. Rather, these structures resemble fluid-drag ripples, which on Earth include water-worked current ripples, but on Mars instead form by wind because of the higher kinematic viscosity of the low-density atmosphere. A reevaluation of the wind-deposited strata in the Burns formation (about 3.7 billion years old or younger) identifies potential wind-drag ripple stratification formed under a thin atmosphere.

  13. Large wind ripples on Mars: A record of atmospheric evolution

    Science.gov (United States)

    Lapotre, M. G. A.; Ewing, R. C.; Lamb, M. P.; Fischer, W. W.; Grotzinger, J. P.; Rubin, D. M.; Lewis, K. W.; Ballard, M. J.; Day, M.; Gupta, S.; Banham, S. G.; Bridges, N. T.; Des Marais, D. J.; Fraeman, A. A.; Grant, J. A.; Herkenhoff, K. E.; Ming, D. W.; Mischna, M. A.; Rice, M. S.; Sumner, D. A.; Vasavada, A. R.; Yingst, R. A.

    2016-07-01

    Wind blowing over sand on Earth produces decimeter-wavelength ripples and hundred-meter- to kilometer-wavelength dunes: bedforms of two distinct size modes. Observations from the Mars Science Laboratory Curiosity rover and the Mars Reconnaissance Orbiter reveal that Mars hosts a third stable wind-driven bedform, with meter-scale wavelengths. These bedforms are spatially uniform in size and typically have asymmetric profiles with angle-of-repose lee slopes and sinuous crest lines, making them unlike terrestrial wind ripples. Rather, these structures resemble fluid-drag ripples, which on Earth include water-worked current ripples, but on Mars instead form by wind because of the higher kinematic viscosity of the low-density atmosphere. A reevaluation of the wind-deposited strata in the Burns formation (about 3.7 billion years old or younger) identifies potential wind-drag ripple stratification formed under a thin atmosphere.

  14. Proper surface channelling of low energy argon ions incident on a nickel (110) crystal

    International Nuclear Information System (INIS)

    Evdokimov, I.N.; Berg, J.A. van den; Armour, D.G.

    1979-01-01

    The scattering behaviour of 6 keV argon ions from a nickel (110) surface has been investigated for specular reflection under grazing incidence conditions. The occurrence of an anomalously high energy loss has been confirmed and the transition from chain scattering at large scattering angles to a distinctly different type of scattering at small angles has been investigated. The characteristics of the low angle scattering phenomena, which dominate the observed spectra at scattering angles below about 18 0 , may be explained in terms of a surface hyperchannelling model in which the incident ions are confined to move within the shallow 'potential valleys' between two atomic rows in the surface. The critical angle for occurrence of this phenomena which is distinctly different from surface semichannelling has been evaluated with Lindhard's standard string potential. The experimentally measured critical angles are in good agreement with the calculated ones. (author)

  15. An investigation of the effects of droplet impact angle in thermal spray deposition

    International Nuclear Information System (INIS)

    Smith, M.F.; Neiser, R.A.; Dykhuizen, R.C.

    1994-01-01

    It is widely held that spraying at off-normal angles can influence deposition efficiency and the properties of the deposited material. However, little quantitative information on such effects has been published. This paper reports on a series of experiments to investigate the angular dependence of deposition efficiency, surface roughness, and porosity for several thermal spray materials and processes at incidence angles ranging from 90 degree to 30 degree relative to the substrate surface. At incidence angles from 90 degree out to 60 degree, the observed changes were small and often statistically insignificant. Some significant changes began to appear at 45 degree, and at 30 degree significant changes were observed for nearly all materials and processes: deposition efficiency decreased while surface roughness and porosity increased. It is proposed that droplet splashing may cause some of the observed effects

  16. Laser warning receiver to identify the wavelength and angle of arrival of incident laser light

    Science.gov (United States)

    Sinclair; Michael B.; Sweatt, William C.

    2010-03-23

    A laser warning receiver is disclosed which has up to hundreds of individual optical channels each optically oriented to receive laser light from a different angle of arrival. Each optical channel has an optical wedge to define the angle of arrival, and a lens to focus the laser light onto a multi-wavelength photodetector for that channel. Each multi-wavelength photodetector has a number of semiconductor layers which are located in a multi-dielectric stack that concentrates the laser light into one of the semiconductor layers according to wavelength. An electrical signal from the multi-wavelength photodetector can be processed to determine both the angle of arrival and the wavelength of the laser light.

  17. Angle-dependent bandgap engineering in gated graphene superlattices

    Energy Technology Data Exchange (ETDEWEB)

    García-Cervantes, H.; Sotolongo-Costa, O. [Centro de Investigación en Ciencias, IICBA, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, 62209 Cuernavaca, Morelos, México (Mexico); Gaggero-Sager, L. M. [CIICAp, IICBA, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, 62209 Cuernavaca, Morelos, México (Mexico); Naumis, G. G. [Instituto Física, Depto. de Física-Química, Universidad Nacional Autónoma de México (UNAM). Apdo. Postal 20-364, 01000, México D.F., México (Mexico); Rodríguez-Vargas, I., E-mail: isaac@fisica.uaz.edu.mx [Centro de Investigación en Ciencias, IICBA, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, 62209 Cuernavaca, Morelos, México (Mexico); Unidad Académica de Física, Universidad Autónoma de Zacatecas, Calzada Solidaridad Esquina Con Paseo La Bufa S/N, 98060 Zacatecas, Zac., México (Mexico)

    2016-03-15

    Graphene Superlattices (GSs) have attracted a lot of attention due to its peculiar properties as well as its possible technological implications. Among these characteristics we can mention: the extra Dirac points in the dispersion relation and the highly anisotropic propagation of the charge carriers. However, despite the intense research that is carried out in GSs, so far there is no report about the angular dependence of the Transmission Gap (TG) in GSs. Here, we report the dependence of TG as a function of the angle of the incident Dirac electrons in a rather simple Electrostatic GS (EGS). Our results show that the angular dependence of the TG is intricate, since for moderated angles the dependence is parabolic, while for large angles an exponential dependence is registered. We also find that the TG can be modulated from meV to eV, by changing the structural parameters of the GS. These characteristics open the possibility for an angle-dependent bandgap engineering in graphene.

  18. Angle-dependent bandgap engineering in gated graphene superlattices

    International Nuclear Information System (INIS)

    García-Cervantes, H.; Sotolongo-Costa, O.; Gaggero-Sager, L. M.; Naumis, G. G.; Rodríguez-Vargas, I.

    2016-01-01

    Graphene Superlattices (GSs) have attracted a lot of attention due to its peculiar properties as well as its possible technological implications. Among these characteristics we can mention: the extra Dirac points in the dispersion relation and the highly anisotropic propagation of the charge carriers. However, despite the intense research that is carried out in GSs, so far there is no report about the angular dependence of the Transmission Gap (TG) in GSs. Here, we report the dependence of TG as a function of the angle of the incident Dirac electrons in a rather simple Electrostatic GS (EGS). Our results show that the angular dependence of the TG is intricate, since for moderated angles the dependence is parabolic, while for large angles an exponential dependence is registered. We also find that the TG can be modulated from meV to eV, by changing the structural parameters of the GS. These characteristics open the possibility for an angle-dependent bandgap engineering in graphene.

  19. Self-Powered Wind Sensor System for Detecting Wind Speed and Direction Based on a Triboelectric Nanogenerator.

    Science.gov (United States)

    Wang, Jiyu; Ding, Wenbo; Pan, Lun; Wu, Changsheng; Yu, Hua; Yang, Lijun; Liao, Ruijin; Wang, Zhong Lin

    2018-04-24

    The development of the Internet of Things has brought new challenges to the corresponding distributed sensor systems. Self-powered sensors that can perceive and respond to environmental stimuli without an external power supply are highly desirable. In this paper, a self-powered wind sensor system based on an anemometer triboelectric nanogenerator (a-TENG, free-standing mode) and a wind vane triboelectric nanogenerator (v-TENG, single-electrode mode) is proposed for simultaneously detecting wind speed and direction. A soft friction mode is adopted instead of a typical rigid friction for largely enhancing the output performance of the TENG. The design parameters including size, unit central angle, and applied materials are optimized to enhance sensitivity, resolution, and wide measurement scale. The optimized a-TENG could deliver an open-circuit voltage of 88 V and short-circuit current of 6.3 μA, corresponding to a maximum power output of 0.47 mW (wind speed of 6.0 m/s), which is capable of driving electronics for data transmission and storage. The current peak value of the a-TENG signal is used for analyzing wind speed for less energy consumption. Moreover, the output characteristics of a v-TENG are further explored, with six actual operation situations, and the v-TENG delivers fast response to the incoming wind and accurately outputs the wind direction data. As a wind sensor system, wind speed ranging from 2.7 to 8.0 m/s can be well detected (consistent with a commercial sensor) and eight regular directions can be monitored. Therefore, the fabricated wind sensor system has great potential in wireless environmental monitoring applications.

  20. Near IR Scanning Angle Total Internal Reflection Raman Spectroscopy at Smooth Gold Films

    Energy Technology Data Exchange (ETDEWEB)

    McKee, Kristopher; Meyer, Matthew; Smith, Emily

    2012-04-13

    Total internal reflection (TIR) Raman and reflectivity spectra were collected for nonresonant analytes as a function of incident angle at sapphire or sapphire/smooth 50 nm gold interfaces using 785 nm excitation. For both interfaces, the Raman signal as a function of incident angle is well-modeled by the calculated interfacial mean square electric field (MSEF) relative to the incident field times the thickness of the layer being probed in the Raman measurement (D{sub RS}). The Raman scatter was reproducibly enhanced at the interface containing a gold film relative to the sapphire interface by a factor of 4.3–4.6 for aqueous pyridine or 2.2–3.7 for neat nitrobenzene, depending on the analyzed vibrational mode. The mechanism for the increased Raman signal is the enhanced MSEF at incident angles where propagating surface plasmons are excited in the metal film. The background from the TIR prism was reduced by 89–95% with the addition of the gold film, and the percent relative uncertainty in peak area was reduced from 15 to 1.7% for the 1347 cm–1 mode of nitrobenzene. Single monolayers of benzenethiol (S/N = 6.8) and 4-mercaptopyridine (S/N = 16.5) on gold films were measured by TIR Raman spectroscopy with 785 nm excitation (210 mW) without resonant enhancement in 1 min.

  1. Optical measurements of winds in the lower thermosphere

    International Nuclear Information System (INIS)

    Wiens, R.H.; Shepherd, G.G.; Gault, W.A.; Kosteniuk, P.R.

    1988-01-01

    WAMDII, the wide-angle Michelson Doppler imaging interferometer, was used to measure the neutral wind in the lower thermosphere by the Doppler shift of the O I 557-nm line. Observations were made at Saskatoon (60.5 degree N invariant) around the spring equinox of 1985 with WAMDII coupled to an all-sky lens. With dopplergrams averaged over 3 to 30 min, no evidence was found for persistent highly localized winds on either of the two nights studied, one viewing only aurora and one viewing only airglow. The nocturnal variation was determined for both nights using average horizontal wind for the whole all-sky image. The pattern for the auroral case shows winds parallel to the aurora orientation in the evening but substantial crosswinds near midnight. High latitude general circulation models seem to represent this case better than local auroral generation models. The airglow case showed eastward winds in the morning sector

  2. SWIMS: a small-angle multiple scattering computer code

    International Nuclear Information System (INIS)

    Sayer, R.O.

    1976-07-01

    SWIMS (Sigmund and WInterbon Multiple Scattering) is a computer code for calculation of the angular dispersion of ion beams that undergo small-angle, incoherent multiple scattering by gaseous or solid media. The code uses the tabulated angular distributions of Sigmund and Winterbon for a Thomas-Fermi screened Coulomb potential. The fraction of the incident beam scattered into a cone defined by the polar angle α is computed as a function of α for reduced thicknesses over the range 0.01 less than or equal to tau less than or equal to 10.0. 1 figure, 2 tables

  3. Growth characteristics of inclined columns produced by Glancing Angle Deposition (GLAD) and colloidal lithography

    DEFF Research Database (Denmark)

    Foss, Morten; Besenbacher, Flemming; Sutherland, Duncan S

    2011-01-01

    Nanocolumns were produced by performing Glancing Angle Deposition (GLAD) onto self-assembled template arrays consisting of platinum coated polystyrene spheres. By varying the angle of incidence (θ = 35°, 10° and 5°) and the deposited surface mass density it was possible to control the shape of th...

  4. Progressive innovations in applying of wind energy

    International Nuclear Information System (INIS)

    Yershina, Ainakul K.; Yershin, Chingiz Sh.

    2013-01-01

    The article presents the current design of a laboratory model, the so-called model of vertical-axis wind turbine component. Construction work carried out, and then made a valid laboratory model of cross-sectional area S = 0,64 m 2 , which can operate as a conventional Darya, and in the mode of our constructive solutions. The tower that supports the wind turbine installed in the vertical position of the shaft 2, each of which is connected with only one blade and working with their current generator. The shafts are separated by a bearing and can operate autonomously, independently of each other. The mechanical energy of rotation is transferred to two different power generators, ie Each shaft works on his generator. Electricity generated by them is summarized. Thus, the feature of this design is the increased removal of wind energy in two independent working trees with the same swept area. Therefore, effective value of wind energy usage efficiency may be increased to 0.7 in case of high production culture.Vertical - axis turbine component has a special lock that supports the angle between the furs 180 °. Key words: wind turbine Darrieus, shaft, generator current, power, wind speed, blade

  5. Progressive innovations in applying of wind energy

    Energy Technology Data Exchange (ETDEWEB)

    Yershina, Ainakul K. [Kazakh State Women Pedogogical University, Almaty (Kazakhstan); Yershin, Chingiz Sh. [Kazakh Natio nal University named by al - Farabi, Almaty (Kazakhstan)

    2013-07-01

    The article presents the current design of a laboratory model, the so-called model of vertical-axis wind turbine component. Construction work carried out, and then made a valid laboratory model of cross-sectional area S = 0,64 m{sup 2} , which can operate as a conventional Darya, and in the mode of our constructive solutions. The tower that supports the wind turbine installed in the vertical position of the shaft 2, each of which is connected with only one blade and working with their current generator. The shafts are separated by a bearing and can operate autonomously, independently of each other. The mechanical energy of rotation is transferred to two different power generators, ie Each shaft works on his generator. Electricity generated by them is summarized. Thus, the feature of this design is the increased removal of wind energy in two independent working trees with the same swept area. Therefore, effective value of wind energy usage efficiency may be increased to 0.7 in case of high production culture.Vertical - axis turbine component has a special lock that supports the angle between the furs 180 °. Key words: wind turbine Darrieus, shaft, generator current, power, wind speed, blade.

  6. Broadband and Broad-angle Polarization-independent Metasurface for Radar Cross Section Reduction.

    Science.gov (United States)

    Sun, Hengyi; Gu, Changqing; Chen, Xinlei; Li, Zhuo; Liu, Liangliang; Xu, Bingzheng; Zhou, Zicheng

    2017-01-20

    In this work, a broadband and broad-angle polarization-independent random coding metasurface structure is proposed for radar cross section (RCS) reduction. An efficient genetic algorithm is utilized to obtain the optimal layout of the unit cells of the metasurface to get a uniform backscattering under normal incidence. Excellent agreement between the simulation and experimental results show that the proposed metasurface structure can significantly reduce the radar cross section more than 10 dB from 17 GHz to 42 GHz when the angle of incident waves varies from 10° to 50°. The proposed coding metasurface provides an efficient scheme to reduce the scattering of the electromagnetic waves.

  7. Determinants of developing widened spatial QRS-T angle in HIV-infected individuals

    DEFF Research Database (Denmark)

    Dawood, Farah Z; Roediger, Mollie P; Grandits, Greg

    2014-01-01

    BACKGROUND: A widened electrocardiographic spatial QRS-T angle has been shown to be predictive of cardiovascular disease in HIV-infected individuals. However, determinants and risk factors of developing widened QRS-T angle over time in this population remain unknown. METHODS AND RESULTS: Spatial...... QRS-T angle was automatically measured from standard electrocardiogram of 1444 HIV-infected individuals without baseline widened spatial QRS-T angle from the Strategies for Management of Antiretroviral Therapy [SMART], a clinical trial comparing two antiretroviral treatment strategies [Drug...... Conservation (DC) vs. Viral Suppression (VS)]. Conditional logistic regression analysis was used to examine the association between baseline characteristics and incident widened spatial QRS-T angle (a new angle>93° in males and>74° in females). During 2544 person-years of follow-up, 199 participants developed...

  8. State-Space Modeling and Performance Analysis of Variable-Speed Wind Turbine Based on a Model Predictive Control Approach

    Directory of Open Access Journals (Sweden)

    H. Bassi

    2017-04-01

    Full Text Available Advancements in wind energy technologies have led wind turbines from fixed speed to variable speed operation. This paper introduces an innovative version of a variable-speed wind turbine based on a model predictive control (MPC approach. The proposed approach provides maximum power point tracking (MPPT, whose main objective is to capture the maximum wind energy in spite of the variable nature of the wind’s speed. The proposed MPC approach also reduces the constraints of the two main functional parts of the wind turbine: the full load and partial load segments. The pitch angle for full load and the rotating force for the partial load have been fixed concurrently in order to balance power generation as well as to reduce the operations of the pitch angle. A mathematical analysis of the proposed system using state-space approach is introduced. The simulation results using MATLAB/SIMULINK show that the performance of the wind turbine with the MPC approach is improved compared to the traditional PID controller in both low and high wind speeds.

  9. Analysis of the Flicker Level Produced by a Fixed-Speed Wind Turbine

    Science.gov (United States)

    Suppioni, Vinicius; P. Grilo, Ahda

    2013-10-01

    In this article, the analysis of the flicker emission during continuous operation of a mid-scale fixed-speed wind turbine connected to a distribution system is presented. Flicker emission is investigated based on simulation results, and the dependence of flicker emission on short-circuit capacity, grid impedance angle, mean wind speed, and wind turbulence is analyzed. The simulations were conducted in different programs in order to provide a more realistic wind emulation and detailed model of mechanical and electrical components of the wind turbine. Such aim is accomplished by using FAST (Fatigue, Aerodynamics, Structures, and Turbulence) to simulate the mechanical parts of the wind turbine, Simulink/MatLab to simulate the electrical system, and TurbSim to obtain the wind model. The results show that, even for a small wind generator, the flicker level can limit the wind power capacity installed in a distribution system.

  10. On the aerodynamics of variable-geometry oval-trajectory Darrieus wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Ponta, F.L.; Seminara, J.J.; Otero, A.D. [College of Engineering, University of Buenos Aires, Paseo Colon 850, Buenos Aires C1063ACV (Argentina)

    2007-01-15

    A new computational model for the aerodynamics of vertical-axis wind turbines is introduced. It is based on the double-multiple streamtube concept and it incorporates the capacity of dealing with rotors whose blades follow oval-trajectories at variable setting-angles. We applied this model to the study of the aerodynamics of an innovative concept in extra-large wind-power plants: the VGOT (variable-geometry oval-trajectory) Darrieus wind turbine. Due to the especial geometric characteristics of the VGOT Darrieus, it was necessary to propose three new non-dimensional parameters to quantify its performance under different wind-conditions: the equivalent power coefficient, the equivalent solidity coefficient and the trajectory efficiency. We show some numerical results testing several rotor configurations working under different wind scenarios. (author)

  11. Advanced Offshore Wind Turbine/Foundation Concept for the Great Lakes

    Energy Technology Data Exchange (ETDEWEB)

    Afjeh, Abdollah A. [Univ. of Toledo, OH (United States); Windpower, Nautica [Nautica Windpower, Olmsted Falls, OH (United States); Marrone, Joseph [OCC COWI, Vancouver (Canada); Wagner, Thomas [Nautica Windpower, Olmsted Falls, OH (United States)

    2013-08-29

    was developed and implemented in FAST to extend its capability for ice load modeling.Both upwind and downwind 2-bladed rotor wind turbine designs were developed and studied. The new rotor blade uses a new twist angle distribution design and a new pitch control algorithm compared with the baseline model. The coning and tilt angles were selected for both the upwind and downwind configurations to maximize the annual energy production. The risk of blade-tower impact is greater for the downwind design, particularly under a power grid fault; however, this risk was effectively reduced by adjusting the tilt angle for the downwind configuration.

  12. Characterization and Impact of Low Frequency Wind Turbine Noise Emissions

    Science.gov (United States)

    Finch, James

    Wind turbine noise is a complex issue that requires due diligence to minimize any potential impact on quality of life. This study enhances existing knowledge of wind turbine noise through focused analyses of downwind sound propagation, directionality, and the low frequency component of the noise. Measurements were conducted at four wind speeds according to a design of experiments at incremental distances and angles. Wind turbine noise is shown to be highly directional, while downwind sound propagation is spherical with limited ground absorption. The noise is found to have a significant low frequency component that is largely independent of wind speed over the 20-250 Hz range. The generated low frequency noise is shown to be audible above 40 Hz at the MOE setback distance of 550 m. Infrasound levels exhibit higher dependency on wind speed, but remain below audible levels up to 15 m/s.

  13. Offshore Code Comparison Collaboration within IEA Wind Task 23: Phase IV Results Regarding Floating Wind Turbine Modeling; Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Jonkman, J.; Larsen, T.; Hansen, A.; Nygaard, T.; Maus, K.; Karimirad, M.; Gao, Z.; Moan, T.; Fylling, I.

    2010-04-01

    Offshore wind turbines are designed and analyzed using comprehensive simulation codes that account for the coupled dynamics of the wind inflow, aerodynamics, elasticity, and controls of the turbine, along with the incident waves, sea current, hydrodynamics, and foundation dynamics of the support structure. This paper describes the latest findings of the code-to-code verification activities of the Offshore Code Comparison Collaboration, which operates under Subtask 2 of the International Energy Agency Wind Task 23. In the latest phase of the project, participants used an assortment of codes to model the coupled dynamic response of a 5-MW wind turbine installed on a floating spar buoy in 320 m of water. Code predictions were compared from load-case simulations selected to test different model features. The comparisons have resulted in a greater understanding of offshore floating wind turbine dynamics and modeling techniques, and better knowledge of the validity of various approximations. The lessons learned from this exercise have improved the participants' codes, thus improving the standard of offshore wind turbine modeling.

  14. Large wind ripples on Mars: A record of atmospheric evolution

    OpenAIRE

    Lapotre, M. G. A.; Ewing, R. C.; Lamb, M. P.; Fischer, W. W.; Grotzinger, J. P.; Rubin, D. M.; Lewis, K. W.; Ballard, M. J.; Daybell, M.; Gupta, S.; Banham, S. G.; Bridges, N. T.; Des Marais, D. J.; Fraeman, A. A.; Grant, J. A.

    2016-01-01

    Wind blowing over sand on Earth produces decimeter-wavelength ripples and hundred-meter– to kilometer-wavelength dunes: bedforms of two distinct size modes. Observations from the Mars Science Laboratory Curiosity rover and the Mars Reconnaissance Orbiter reveal that Mars hosts a third stable wind-driven bedform, with meter-scale wavelengths. These bedforms are spatially uniform in size and typically have asymmetric profiles with angle-of-repose lee slopes and sinuous crest lines, making them ...

  15. Study of the incident pion deflection in passing through atomic nucleus

    International Nuclear Information System (INIS)

    Strugalski, Z.; Pawlak, T.; Pluta, J.

    1982-01-01

    Pion-xenon nucleus collision events at 3.5 GeV/c momentum are studied in which the incident pion is deflected only, without particle production; the deflection is accompanied by emission of nucleons. The multiplicity of the protons emitted is a measure of the nuclear matter layer thickness passed by the pion. It can be concluded that: a) a definite simple relation exists between the pion deflection angle and the thickness of the nuclear matter layer traversed by this pion; b) the deflection angle of the incident pion increases in a definite manner with increasing the thickness of the nuclear matter layer traversed by this pion; c) the average kinetic energy, average longitudinal momentum and average transverse momentum of the protons emitted do not depend on the pion deflection angle

  16. Experiments on the Performance of Small Horizontal Axis Wind Turbine with Passive Pitch Control by Disk Pulley

    Directory of Open Access Journals (Sweden)

    Yu-Jen Chen

    2016-05-01

    Full Text Available The present work is to design a passive pitch-control mechanism for small horizontal axis wind turbine (HAWT to generate stable power at high wind speeds. The mechanism uses a disk pulley as an actuator to passively adjust the pitch angle of blades by centrifugal force. For this design, aerodynamic braking is caused by the adjustment of pitch angles at high wind speeds. As a marked advantage, this does not require mechanical brakes that would incur electrical burn-out and structural failure under high speed rotation. This can ensure the survival of blades and generator in sever operation environments. In this paper, the analysis uses blade element momentum theory (BEMT to develop graphical user interface software to facilitate the performance assessment of the small-scale HAWT using passive pitch control (PPC. For verification, the HAWT system was tested in a full-scale wind tunnel for its aerodynamic performance. At low wind speeds, this system performed the same as usual, yet at high wind speeds, the equipped PPC system can effectively reduce the rotational speed to generate stable power.

  17. Nova-driven winds in globular clusters

    International Nuclear Information System (INIS)

    Scott, E.H.; Durisen, R.H.

    1978-01-01

    Recent sensitive searches for Hα emission from ionized intracluster gas in globular clusters have set upper limits that conflict with theoretical predictions. We suggest that nova outbursts heat the gas, producing winds that resolve this discrepancy. The incidence of novae in globular clusters, the conversion of kinetic energy of the nova shell to thermal energy of the intracluster gas, and the characteristics of the resultant winds are discussed. Calculated emission from the nova-driven models does not conflict with any observations to date. Some suggestions are made concerning the most promising approaches for future detection of intracluster gas on the basis of these models. The possible relationship of nova-driven winds of globular cluster X-ray sources is also considered

  18. Reconsidering the Capacity Credit of Wind Power: Application of Cumulative Prospect Theory

    NARCIS (Netherlands)

    Wilton, E.; Delarue, E.; D'haeseleer, W.; Sark, W.G.J.H.M. van

    2014-01-01

    The capacity credit is often erroneously considered to be a time-invariant quantity. A multi-year analysis of the incident wind profile of various potential wind sites uncovered that there exist large differences between annual capacity credit figures. The uniformity of these capacity credit

  19. Reconsidering the capacity credit of wind power : Application of cumulative prospect theory

    NARCIS (Netherlands)

    Wilton, Edgar; Delarue, Erik; D'haeseleer, William; van Sark, Wilfried

    The capacity credit is often erroneously considered to be a time-invariant quantity. A multi-year analysis of the incident wind profile of various potential wind sites uncovered that there exist large differences between annual capacity credit figures. The uniformity of these capacity credit figures

  20. A New Method for Horizontal Axis Wind Turbine (HAWT Blade Optimization

    Directory of Open Access Journals (Sweden)

    Mohammadreza Mohammadi

    2016-02-01

    Full Text Available Iran has a great potential for wind energy. This paper introduces optimization of 7 wind turbine blades for small and medium scales in a determined wind condition of Zabol site, Iran, where the average wind speed is considered 7 m /s. Considered wind turbines are 3 bladed and radius of 7 case study turbine blades are 4.5 m, 6.5 m, 8 m, 9 m, 10 m, 15.5 m and 20 m. As the first step, an initial design is performed using one airfoil (NACA 63-215 across the blade. In the next step, every blade is divided into three sections, while the 20 % of first part of the blade is considered as root, the 5% of last the part is considered as tip and the rest of the blade as mid part. Providing necessary input data, suitable airfoils for wind turbines including 43 airfoils are extracted and their experimental data are entered in optimization process. Three variables in this optimization problem would be airfoil type, attack angle and chord, where the objective function is maximum output torque. A MATLAB code was written for design and optimization of the blade, which was validated with a previous experimental work. In addition, a comparison was made to show the effect of optimization with two variables (airfoil type and attack angle versus optimization with three variables (airfoil type, attack angle and chord on output torque increase. Results of this research shows a dramatic increase in comparison to initial designed blade with one airfoil where two variable optimization causes 7.7% to 22.27 % enhancement and three variable optimization causes 17.91% up to 24.48% rise in output torque .Article History: Received Oct 15, 2015; Received in revised form January 2, 2016; Accepted January 14, 2016; Available online How to Cite This Article: Mohammadi, M., Mohammadi, A. and Farahat, S. (2016 A New Method for Horizontal Axis Wind Turbine (HAWT Blade Optimization. Int. Journal of Renewable Energy Development, 5(1,1-8. http://dx.doi.org/10.14710/ijred.5.1.1-8

  1. Maximum dose angle for oblique incidence on primary beam protective barriers in the design of medical radiation therapy facilities

    International Nuclear Information System (INIS)

    Fondevila, Damian; Arbiser, Silvio; Sansogne, Rosana; Brunetto, Monica; Dosoretz, Bernardo

    2008-01-01

    Primary barrier determinations for the shielding of medical radiation therapy facilities are generally made assuming normal beam incidence on the barrier, since this is geometrically the most unfavorable condition for that shielding barrier whenever the occupation line is allowed to run along the barrier. However, when the occupation line (for example, the wall of an adjacent building) runs perpendicular to the barrier (especially roof barrier), then two opposing factors come in to play: increasing obliquity angle with respect to the barrier increases the attenuation, while the distance to the calculation point decreases, hence, increasing the dose. As a result, there exists an angle (α max ) for which the equivalent dose results in a maximum, constituting the most unfavorable geometric condition for that shielding barrier. Based on the usual NCRP Report No. 151 model, this article presents a simple formula for obtaining α max , which is a function of the thickness of the barrier (t E ) and the equilibrium tenth-value layer (TVL e ) of the shielding material for the nominal energy of the beam. It can be seen that α max increases for increasing TVL e (hence, beam energy) and decreases for increasing t E , with a range of variation that goes from 13 to 40 deg for concrete barriers thicknesses in the range of 50-300 cm and most commercially available teletherapy machines. This parameter has not been calculated in the existing literature for radiotherapy facilities design and has practical applications, as in calculating the required unoccupied roof shielding for the protection of a nearby building located in the plane of the primary beam rotation

  2. Maximum dose angle for oblique incidence on primary beam protective barriers in the design of medical radiation therapy facilities.

    Science.gov (United States)

    Fondevila, Damián; Arbiser, Silvio; Sansogne, Rosana; Brunetto, Mónica; Dosoretz, Bernardo

    2008-05-01

    Primary barrier determinations for the shielding of medical radiation therapy facilities are generally made assuming normal beam incidence on the barrier, since this is geometrically the most unfavorable condition for that shielding barrier whenever the occupation line is allowed to run along the barrier. However, when the occupation line (for example, the wall of an adjacent building) runs perpendicular to the barrier (especially roof barrier), then two opposing factors come in to play: increasing obliquity angle with respect to the barrier increases the attenuation, while the distance to the calculation point decreases, hence, increasing the dose. As a result, there exists an angle (alpha(max)) for which the equivalent dose results in a maximum, constituting the most unfavorable geometric condition for that shielding barrier. Based on the usual NCRP Report No. 151 model, this article presents a simple formula for obtaining alpha(max), which is a function of the thickness of the barrier (t(E)) and the equilibrium tenth-value layer (TVL(e)) of the shielding material for the nominal energy of the beam. It can be seen that alpha(max) increases for increasing TVL(e) (hence, beam energy) and decreases for increasing t(E), with a range of variation that goes from 13 to 40 deg for concrete barriers thicknesses in the range of 50-300 cm and most commercially available teletherapy machines. This parameter has not been calculated in the existing literature for radiotherapy facilities design and has practical applications, as in calculating the required unoccupied roof shielding for the protection of a nearby building located in the plane of the primary beam rotation.

  3. Errors in second moments estimated from monostatic Doppler sodar winds. II. Application to field measurements

    DEFF Research Database (Denmark)

    Gaynor, J. E.; Kristensen, Leif

    1986-01-01

    Observatory tower. The approximate magnitude of the error due to spatial and temporal pulse volume separation is presented as a function of mean wind angle relative to the sodar configuration and for several antenna pulsing orders. Sodar-derived standard deviations of the lateral wind component, before...

  4. Aerodynamic shape optimization of non-straight small wind turbine blades

    International Nuclear Information System (INIS)

    Shen, Xin; Yang, Hong; Chen, Jinge; Zhu, Xiaocheng; Du, Zhaohui

    2016-01-01

    Graphical abstract: Small wind turbine blades with 3D stacking lines (sweep and bend) have been considered and analyzed with an optimization code based on the lifting surface method. The results indicated that the power capture and the rotor thrust can be improved with these more complex geometries. The starting behavior of the small wind turbines can be improved by the optimization of the blade chord and twist angle distribution. - Highlights: • The small wind turbine blade was optimized with non-straight shape. • Lifting surface method with free wake was used for aerodyanmic performace evaluation. • The non-straight shape can be used to increase energy production and decrease the thrust. • The energy production should be sacrificed in order to increase the starting behavior. - Abstract: Small wind turbines usually operate in sub-optimal wind conditions in order to satisfy the demand where it is needed. The aerodynamic performance of small horizontal axis wind turbines highly depends on the geometry. In the present study, the geometry of wind turbine blades are optimized not only in terms of the distribution of the chord and twist angle but also with 3-dimensional stacking line. As the blade with 3-dimensional stacking line is given sweep in the plan of rotation and dihedral in the plan containing the blade and rotor axis, the common used blade element momentum method can no longer provide accurate aerodynamic performance solution. A lifting surface method with free wake model is used as the aerodynamic model in the present work. The annual energy production and the starting performance are selected as optimization objective. The starting performance is evaluated based on blade element method. The optimization of the geometry of the non-straight wind turbine blades is carried out by using a micro-genetic algorithm. Results show that the wind turbine blades with properly designed 3-dimensional stacking line can increase the annual energy production and have

  5. Accurate Molecular Orientation Analysis Using Infrared p-Polarized Multiple-Angle Incidence Resolution Spectrometry (pMAIRS) Considering the Refractive Index of the Thin Film Sample.

    Science.gov (United States)

    Shioya, Nobutaka; Shimoaka, Takafumi; Murdey, Richard; Hasegawa, Takeshi

    2017-06-01

    Infrared (IR) p-polarized multiple-angle incidence resolution spectrometry (pMAIRS) is a powerful tool for analyzing the molecular orientation in an organic thin film. In particular, pMAIRS works powerfully for a thin film with a highly rough surface irrespective of degree of the crystallinity. Recently, the optimal experimental condition has comprehensively been revealed, with which the accuracy of the analytical results has largely been improved. Regardless, some unresolved matters still remain. A structurally isotropic sample, for example, yields different peak intensities in the in-plane and out-of-plane spectra. In the present study, this effect is shown to be due to the refractive index of the sample film and a correction factor has been developed using rigorous theoretical methods. As a result, with the use of the correction factor, organic materials having atypical refractive indices such as perfluoroalkyl compounds ( n = 1.35) and fullerene ( n = 1.83) can be analyzed with high accuracy comparable to a compound having a normal refractive index of approximately 1.55. With this improved technique, we are also ready for discriminating an isotropic structure from an oriented sample having the magic angle of 54.7°.

  6. Large fog collectors: New strategies for collection efficiency and structural response to wind pressure

    Science.gov (United States)

    Holmes, Robert; Rivera, Juan de Dios; de la Jara, Emilio

    2015-01-01

    Most studies of large fog collectors (LFC) have focused on the collection efficiency, the amount of water collected, or economic and social aspects, but have not addressed the effects of strong winds on the system. Wind pressure is directly related to fog water collection efficiency but on the other hand may cause serious damage on the structure of LFCs. This study focuses in the effects of wind pressure on the components of the LFC as an integral system, and the ways to face strong winds with no significant damage. For this purpose we analysed cases of mechanical failure of LFCs both in our experimental station at Peña Blanca in Chile and elsewhere. The effects of wind pressure can be described as a sequence of physical processes, starting with the mesh deformation as a way of adapting to the induced stresses. For a big enough pressure, local stress concentrations generate a progressive rupture of the mesh. In cases where the mesh is sufficiently strong the wind force causes the partial or total collapse of the structure. Usually the weakest part is the mesh, especially close to where it is attached to the structure. The way the mesh is attached to the frame or cable of the structure is particularly important since it can induce significant stress concentrations. Mesh failure before the structure failure may be considered as a mechanical fuse, since it is cheaper to repair. However, more practical mechanical fuses can be conceived. In relation to structural performance and water collection efficiency, we propose a new design strategy that considers a three-dimensional spatial display of the collection screen, oblique incidence angle of wind on mesh and small mesh area between the supporting frame. The proposed design strategies consider both the wind pressure on mesh and structure and the collection efficiency as an integral solution for the LFC. These new design strategies are the final output of this research. Applying these strategies a multi-funnel LFC is

  7. CFD and Experimental Studies on Wind Turbines in Complex Terrain by Improved Actuator Disk Method

    Science.gov (United States)

    Liu, Xin; Yan, Shu; Mu, Yanfei; Chen, Xinming; Shi, Shaoping

    2017-05-01

    In this paper, an onshore wind farm in mountainous area of southwest China was investigated through numerical and experimental methods. An improved actuator disk method, taking rotor data (i.e. blade geometry information, attack angle, blade pitch angle) into account, was carried out to investigate the flow characteristic of the wind farm, especially the wake developing behind the wind turbines. Comparing to the classic AD method and the situ measurements, the improved AD shows better agreements with the measurements. The turbine power was automatically predicted in CFD by blade element method, which agreed well with the measurement results. The study proved that the steady CFD simulation with improved actuator disk method was able to evaluate wind resource well and give good balance between computing efficiency and accuracy, in contrary to much more expensive computation methods such as actuator-line/actuator-surface transient model, or less accurate methods such as linear velocity reduction wake model.

  8. Calculation and characteristics analysis of blade pitch loads for large scale wind turbines

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Based on the electric pitch system of large scale horizontal-axis wind turbines,the blade pitch loads coming mainly from centrifugal force,aerodynamic force and gravity are analyzed,and the calculation models for them are established in this paper.For illustration,a 1.2 MW wind turbine is introduced as a practical sample,and its blade pitch loads from centrifugal force,aerodynamic force and gravity are calculated and analyzed separately and synthetically.The research results showed that in the process of rotor rotating 360o,the fluctuation of blade pitch loads is similar to cosine curve when the rotor rotational speed,in-flow wind speed and pitch angle are constant.Furthermore,the amplitude of blade pitch load presents quite a difference at a different pitch angle.The ways of calculation for blade pitch loads are of the universality,and are helpful for further research of the individual pitch control system.

  9. Phasor measurement of wind power plant operation in Eastern Denmark

    DEFF Research Database (Denmark)

    Rasmussen, Joana; Nielsen, Arne Hejde

    2007-01-01

    Four Phasor Measurement Units (PMUs) record continuously voltage and current phasors in the 400 kV and 132 kV transmission system of Eastern Denmark. The abstract evaluates the unique concept for power system monitoring using PMUs. It focuses on utilization of synchronized phasor measurements from...... Nysted off-shore wind farm during a severe storm in 2005. The wind speeds during the event were so high, that Nysted offshore wind farm as well as a significant amount of on-land wind production in Denmark was disconnected from the grid. The PMU analysis illustrates that PMUs complement the traditional...... measurements from a traditional SCADA system. The case reveals the close relation between voltages, power flows and voltage phase angles over a wide area....

  10. Scaling behavior of the surface roughness of platinum films grown by oblique angle deposition

    Science.gov (United States)

    Dolatshahi-Pirouz, A.; Hovgaard, M. B.; Rechendorff, K.; Chevallier, J.; Foss, M.; Besenbacher, F.

    2008-03-01

    Thin platinum films with well-controlled rough surface morphologies are grown by e-gun evaporation at an oblique angle of incidence between the deposition flux and the substrate normal. Atomic force microscopy is used to determine the root-mean-square value w of the surface roughness on the respective surfaces. From the scaling behavior of w , we find that while the roughness exponent α remains nearly unchanged at about 0.90, the growth exponent β changes from 0.49±0.04 to 0.26±0.01 as the deposition angle approaches grazing incidence. The values of the growth exponent β indicate that the film growth is influenced by both surface diffusion and shadowing effects, while the observed change from 0.49 to 0.26 can be attributed to differences in the relative importance of diffusion and shadowing with the deposition angle.

  11. Blindness following bleb-related infection in open angle glaucoma.

    Science.gov (United States)

    Yamada, Hiroki; Sawada, Akira; Kuwayama, Yasuaki; Yamamoto, Tetsuya

    2014-11-01

    To estimate the risk of blindness following bleb-related infection after trabeculectomy with mitomycin C in open angle glaucoma, utilizing data obtained from two prospective multicenter studies. The incidence of bleb-related infection in open angle glaucoma after the first or second glaucoma surgery was calculated using a Kaplan-Meier analysis and data from the Collaborative Bleb-related Infection Incidence and Treatment Study (CBIITS). The rate of blindness following bleb-related infection was calculated using data from the Japan Glaucoma Society Survey of Bleb-related Infection (JGSSBI). Finally, the rate of blindness following bleb-related infection after filtering surgery was estimated based on the above two data sets. Blindness was defined as an eye with a visual acuity of 0.04 or less. The incidences of development of bleb-related infection at 5 years were 2.6 ± 0.7 % (calculated cumulative incidence ± standard error) for all infections and 0.9 ± 0.4 % for endophthalmitis in all cases in the CBIITS data. The rates of blindness in the JGSSBI data were 14 % for the total cases with bleb-related infection and 30 % for the endophthalmitis subgroup. The rate of blindness developing within 5 years following trabeculectomy was estimated to be approximately 0.24-0.36 %. The rate of blindness following bleb-related infection within 5 years after trabeculectomy is considerable and thus careful consideration must be given to the indication for trabeculectomy and the selection of surgical techniques.

  12. Tuning for optimal performance in angle control, uniformity, and energy purity

    International Nuclear Information System (INIS)

    Liebert, Reuel B.; Olson, Joseph C.; Arevalo, Edwin A.; Downey, Daniel F.

    2005-01-01

    Advances in reducing the sizes of device structures and line widths place increasing demands on the accuracy of dopant placement and the control of dopant motion during activation anneals. Serial process high current ion implantation systems seek to produce beams in which the angles are controlled to high precision avoiding the angles introduced by conical structures used for holding wafers on spinning discs in batch systems. However, ion optical corrections and control of incident beam angle, dose uniformity, high throughput and energy purity often present apparently contradictory requirements in machine design. Data is presented to illustrate that tuning procedures can be used to simultaneously optimize angle purity in both x and y planes as well as control energy purity and dose uniformity

  13. LONG-TERM TRENDS IN THE SOLAR WIND PROTON MEASUREMENTS

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, Heather A.; McComas, David J. [Southwest Research Institute, San Antonio, TX (United States); DeForest, Craig E. [Southwest Research Institute, Boulder, CO (United States)

    2016-11-20

    We examine the long-term time evolution (1965–2015) of the relationships between solar wind proton temperature ( T {sub p}) and speed ( V {sub p}) and between the proton density ( n {sub p}) and speed using OMNI solar wind observations taken near Earth. We find a long-term decrease in the proton temperature–speed ( T {sub p}– V {sub p}) slope that lasted from 1972 to 2010, but has been trending upward since 2010. Since the solar wind proton density–speed ( n {sub p}– V {sub p}) relationship is not linear like the T {sub p}– V {sub p} relationship, we perform power-law fits for n {sub p}– V {sub p}. The exponent (steepness in the n {sub p}– V {sub p} relationship) is correlated with the solar cycle. This exponent has a stronger correlation with current sheet tilt angle than with sunspot number because the sunspot number maxima vary considerably from cycle to cycle and the tilt angle maxima do not. To understand this finding, we examined the average n {sub p} for different speed ranges, and found that for the slow wind n {sub p} is highly correlated with the sunspot number, with a lag of approximately four years. The fast wind n {sub p} variation was less, but in phase with the cycle. This phase difference may contribute to the n {sub p}– V {sub p} exponent correlation with the solar cycle. These long-term trends are important since empirical formulas based on fits to T {sub p} and V {sub p} data are commonly used to identify interplanetary coronal mass ejections, but these formulas do not include any time dependence. Changes in the solar wind density over a solar cycle will create corresponding changes in the near-Earth space environment and the overall extent of the heliosphere.

  14. The influence of the oblique incident X-ray that affected the image quality of the X-ray CCD sensor

    International Nuclear Information System (INIS)

    Suzuki, Yosuke; Matsumoto, Nobue; Morita, Hiroshi; Ohkawa, Hiromitsu

    1998-01-01

    The influence of the oblique incident X-ray that affected the image quality of the X-ray CCD sensor was examined and its correction was investigated. CDR was adopted in this study and evaluated image quality, by measuring MTF. The oblique projection was clinically permissible to about an oblique incident angle of 40 degrees although it exerts an influence on the magnifying power and density. The estimation of the oblique entrance direction and oblique incident angle was possible, by developing an oblique incident correction marker. When an oblique incident angle of θ degrees was measured, a correction is possible, by compressing the image cos (θ) times perpendicular to the rotational axis of CCD sensor. There was small decline of MTF, in the image where a correction for the influence of oblique incidence was made. By observation of the digital subtracted picture of the image after correction of oblique projection and that of normal, the resemblance in the two images indicated that this correction method was reasonable. (author)

  15. Flicker Mitigation by Individual Pitch Control of Variable Speed Wind Turbines With DFIG

    DEFF Research Database (Denmark)

    Zhang, Yunqian; Chen, Zhe; Hu, Weihao

    2014-01-01

    generatorto investigate the flicker emission and mitigation issues. An individual pitch control (IPC) strategy is proposed to reduce the flicker emission at different wind speed conditions. The IPC scheme is proposed and the individual pitch controller is designed according to the generator active power...... and the azimuth angle of the wind turbine. The simulations are performed on the NREL (National Renewable Energy Laboratory) 1.5-MW upwind reference wind turbine model. Simulation results show that damping the generator active power by IPC is an effective means for flicker mitigation of variable speed wind......Due to the wind speed variation, wind shear and tower shadow effects, grid connected wind turbines are the sources of power fluctuations which may produce flicker during continuous operation. This paper presents a model of an MW-level variable-speed wind turbine with a doubly fed induction...

  16. Magic-Angle-Spinning NMR Magnet Development: Field Analysis and Prototypes

    Science.gov (United States)

    Voccio, John; Hahn, Seungyong; Park, Dong Keun; Ling, Jiayin; Kim, Youngjae; Bascuñán, Juan; Iwasa, Yukikazu

    2013-01-01

    We are currently working on a program to complete a 1.5 T/75 mm RT bore magic-angle-spinning nuclear magnetic resonance magnet. The magic-angle-spinning magnet comprises a z-axis 0.866-T solenoid and an x-axis 1.225-T dipole, each to be wound with NbTi wire and operated at 4.2 K in persistent mode. A combination of the fields creates a 1.5-T field pointed at 54.74 degrees (magic angle) from the rotation (z) axis. In the first year of this 3-year program, we have completed magnetic analysis and design of both coils. Also, using a winding machine of our own design and fabrication, we have wound several prototype dipole coils with NbTi wire. As part of this development, we have repeatedly made successful persistent NbTi-NbTi joints with this multifilamentary NbTi wire. PMID:24058275

  17. Solar wind modulation of the Martian ionosphere observed by Mars Global Surveyor

    Directory of Open Access Journals (Sweden)

    J.-S. Wang

    2004-06-01

    Full Text Available Electron density profiles in the Martian ionosphere observed by the radio occultation experiment on board Mars Global Surveyor have been analyzed to determine if the densities are influenced by the solar wind. Evidence is presented that the altitude of the maximum ionospheric electron density shows a positive correlation to the energetic proton flux in the solar wind. The solar wind modulation of the Martian ionosphere can be attributed to heating of the neutral atmosphere by the solar wind energetic proton precipitation. The modulation is observed to be most prominent at high solar zenith angles. It is argued that this is consistent with the proposed modulation mechanism.

  18. Proportional resonant individual pitch control for mitigation of wind turbines loads

    DEFF Research Database (Denmark)

    Zhang, Yunqian; Chen, Zhe; Cheng, Ming

    2013-01-01

    attenuation. The individual pitch control (IPC) is a promising way to reduce the wind turbine loads. This study presents a proportional resonant (PR) IPC, which does not need the measurement of blade azimuth angle and multiple complex Coleman transformations between rotational coordinate frame and stationary...... coordinate frame. The new strategy can attenuate the 1p and higher harmonics on the wind turbine blades as well as 3p on the hub without any filters. The wind turbine code fatigue, aerodynamics, structures and turbulence is applied to a doubly fed induction generator-based wind power generation system....... The simulations are performed on the National Renewable Energy Laboratory 1.5 MW upwind reference wind turbine model. The simulation results are presented and discussed to demonstrate the capability and effectiveness of the proposed PR IPC method....

  19. Structural Load Analysis of a Wind Turbine under Pitch Actuator and Controller Faults

    International Nuclear Information System (INIS)

    Etemaddar, Mahmoud; Gao, Zhen; Moan, Torgeir

    2014-01-01

    In this paper, we investigate the characteristics of a wind turbine under blade pitch angle and shaft speed sensor faults as well as pitch actuator faults. A land-based NREL 5MW variable speed pitch reg- ulated wind turbine is considered as a reference. The conventional collective blade pitch angle controller strategy with independent pitch actuators control is used for load reduction. The wind turbine class is IEC-BII. The main purpose is to investigate the severity of end effects on structural loads and responses and consequently identify the high-risk components according to the type and amplitude of fault using a servo-aero-elastic simulation code, HAWC2. Both transient and steady state effects of faults are studied. Such information is useful for wind turbine fault detection and identification as well as system reliability analysis. Results show the effects of faults on wind turbine power output and responses. Pitch sensor faults mainly affects the vibration of shaft main bearing, while generator power and aerodynamic thrust are not changed significantly, due to independent pitch actuator control of three blades. Shaft speed sensor faults can seriously affect the generator power and aerodynamic thrust. Pitch actuator faults can result in fully pitching of the blade, and consequently rotor stops due to negative aerodynamic torque

  20. Effect of Wind Flow on Convective Heat Losses from Scheffler Solar Concentrator Receivers

    Science.gov (United States)

    Nene, Anita Arvind; Ramachandran, S.; Suyambazhahan, S.

    2018-05-01

    Receiver is an important element of solar concentrator system. In a Scheffler concentrator, solar rays get concentrated at focus of parabolic dish. While radiation losses are more predictable and calculable since strongly related to receiver temperature, convective looses are difficult to estimate in view of additional factors such as wind flow direction, speed, receiver geometry, prior to current work. Experimental investigation was carried out on two geometries of receiver namely cylindrical and conical with 2.7 m2 Scheffler to find optimum condition of tilt to provide best efficiency. Experimental results showed that as compared to cylindrical receiver, conical receiver gave maximum efficiency at 45° tilt angle. However effect of additional factors like wind speed, wind direction on especially convective losses could not be separately seen. The current work was undertaken to investigate further the same two geometries using computation fluid dynamics using FLUENT to compute convective losses considering all variables such at tilt angle of receiver, wind velocity and wind direction. For cylindrical receiver, directional heat transfer coefficient (HTC) is remarkably high to tilt condition meaning this geometry is critical to tilt leading to higher convective heat losses. For conical receiver, directional average HTC is remarkably less to tilt condition leading to lower convective heat loss.

  1. The anterior chamber angle width in adults in a tertiary eye hospital ...

    African Journals Online (AJOL)

    2011-03-25

    Mar 25, 2011 ... had visual acuity assessment, visual field analysis, ophthalmoscopy, intraocular pressure measurement, ... Peripheral anterior synechiae were observed in three eyes. ..... The high incidence of narrow angles with the near.

  2. A study of angle dependent surface plasmon polaritons in nano-hole array structures

    Energy Technology Data Exchange (ETDEWEB)

    Balakrishnan, Shankar [Department of Physics and Astronomy, University of Western Ontario, London, Ontario N6A 3K7 (Canada); Lawson Health Research Institute, St. Joseph' s Health Care, London, Ontario N6A 4V2 (Canada); Najiminaini, Mohamadreza; Carson, Jeffrey J. L. [Lawson Health Research Institute, St. Joseph' s Health Care, London, Ontario N6A 4V2 (Canada); Department of Medical Biophysics, University of Western Ontario, London, Ontario N6A 3K7 (Canada); Singh, Mahi R. [Department of Physics and Astronomy, University of Western Ontario, London, Ontario N6A 3K7 (Canada)

    2016-07-21

    We report that the light-matter interaction in metallic nano-hole array structures possess a subwavelength hole radius and periodicity. The transmission coefficient for nano-hole array structures was measured for different angles of incidence of light. Each measured transmission spectrum had several peaks due to surface plasmon polaritons. A theory of the transmission coefficient was developed based on the quantum density matrix method. It was found that the location of the surface plasmon polariton and the heights of the spectral peaks were dependent on the angle of incidence of light. Good agreement was observed between the experimental and theoretical results. This property of these structures has opened up new possibilities for sensing applications.

  3. Survival probability in small angle scattering of low energy alkali ions from alkali covered metal surfaces

    International Nuclear Information System (INIS)

    Neskovic, N.; Ciric, D.; Perovic, B.

    1982-01-01

    The survival probability in small angle scattering of low energy alkali ions from alkali covered metal surfaces is considered. The model is based on the momentum approximation. The projectiles are K + ions and the target is the (001)Ni+K surface. The incident energy is 100 eV and the incident angle 5 0 . The interaction potential of the projectile and the target consists of the Born-Mayer, the dipole and the image charge potentials. The transition probability function corresponds to the resonant electron transition to the 4s projectile energy level. (orig.)

  4. X-ray diffraction at Bragg angles around π/2

    International Nuclear Information System (INIS)

    Mayolo, C.M.G. de.

    1991-01-01

    X-ray diffraction at Bragg angles around π/2 is studied from the theoretical and experimental points of view. The proposed corrections to the dynamical theory in the θ β ≅ π/2 cases, has been reviewed showing the equivalence between two formalisms leading to a corrected expression for the dependence of the angular parameter y with the angle of incidence. An expression for y valid in the conventional and θ β ≅ π/2 cases has been obtained. A general expression for Bragg law and for energy resolution after a Bragg diffraction was also deduced. (author)

  5. Grazing Incidence X-ray Scattering and Diffraction

    Indian Academy of Sciences (India)

    IAS Admin

    several materials as a function of angle of incidence, αi with X-rays of wavelength ..... are several advantages of using this formulation for the description of surface ..... print of the surface (as shown at the botton of Figure. 5). A Soller collimator ...

  6. Surface Plasmon Polariton Resonance of Gold, Silver, and Copper Studied in the Kretschmann Geometry: Dependence on Wavelength, Angle of Incidence, and Film Thickness

    Science.gov (United States)

    Takagi, Kentaro; Nair, Selvakumar V.; Watanabe, Ryosuke; Seto, Keisuke; Kobayashi, Takayoshi; Tokunaga, Eiji

    2017-12-01

    Surface plasmon polariton (SPP) resonance spectra for noble metals (Au, Ag, and Cu) were comprehensively studied in the Kretschmann attenuated total reflection (ATR) geometry, in the wavelength (λ) range from 300 to 1000 nm with the angle of incidence (θ) ranging from 45 to 60° and the film thickness (d) ranging from 41 to 76 nm. The experimental plasmon resonance spectra were reproduced by a calculation that included the broadening effects as follows: (1) the imaginary part of the bulk dielectric constant, (2) the thickness-dependent radiative coupling of the SPP at the metal-air interface to the prism, (3) the lack of conservation of the wavevector parallel to the interface kx(k||) caused by the surface roughness, (4) scanning λ at a fixed θ (changing both energy and kx at the same time) over the SPP dispersion relation. For Au and Ag, the experimental results were in good agreement with the calculated results using the bulk dielectric constants, showing no film thickness dependence of the plasmon resonance energy. A method to extract the true width of the plasmon resonance from raw ATR spectra is proposed and the results are rigorously compared with those expected from the bulk dielectric function given in the literature. For Au and Ag, the width increases with energy, in agreement with that expected from the relaxation of bulk free electrons including the electron-electron interaction, but there is clear evidence of extra broadening, which is more significant for thinner films, possibly due to relaxation pathways intrinsic to plasmons near the interface. For Cu, the visibility of the plasmon resonance critically depends on the evaporation conditions, and low pressures and fast deposition rates are required. Otherwise, scattering from the surface roughness causes considerable broadening of the plasmon resonance, resulting in an apparently fixed resonance energy without clear incident angle dependence. For Cu, the observed plasmon dispersion agrees well with

  7. Diamagnetic effect in the foremoon solar wind observed by Kaguya

    Science.gov (United States)

    Nishino, Masaki N.; Saito, Yoshifumi; Tsunakawa, Hideo; Miyake, Yohei; Harada, Yuki; Yokota, Shoichiro; Takahashi, Futoshi; Matsushima, Masaki; Shibuya, Hidetoshi; Shimizu, Hisayoshi

    2017-04-01

    Direct interaction between the lunar surface and incident solar wind is one of the crucial phenomena of the planetary plasma sciences. Recent observations by lunar orbiters revealed that strength of the interplanetary magnetic field (IMF) at spacecraft altitude often increases over crustal magnetic fields on the dayside. In addition, variations of the IMF on the lunar night side have been reported in the viewpoint of diamagnetic effect around the lunar wake. However, few studies have been performed for the IMF over non-magnetized regions on the dayside. Here we show an event where strength of the IMF decreases at 100 km altitude on the lunar dayside (i.e. in the foremoon solar wind) when the IMF is almost parallel to the incident solar wind flow, comparing the upstream solar wind data from ACE with Kaguya magnetometer data. The lunar surface below the Kaguya orbit is not magnetized (or very weakly magnetized), and the sunward-travelling protons show signatures of those back-scattered at the lunar surface. We find that the decrease in the magnetic pressure is compensated by the thermal pressure of the back-scattered protons. In other words, the IMF strength in the foremoon solar wind decreases by diamagnetic effect of sunward-travelling protons back-scattered at the lunar dayside surface. Such an effect would be prominent in the high-beta solar wind, and may be ubiquitous in the environment where planetary surface directly interacts with surrounding space plasma.

  8. MAGNETOHYDRODYNAMIC ACCRETION DISK WINDS AS X-RAY ABSORBERS IN ACTIVE GALACTIC NUCLEI

    International Nuclear Information System (INIS)

    Fukumura, Keigo; Kazanas, Demosthenes; Behar, Ehud; Contopoulos, Ioannis

    2010-01-01

    We present the two-dimensional ionization structure of self-similar magnetohydrodynamic winds off accretion disks around and irradiated by a central X-ray point source. On the basis of earlier observational clues and theoretical arguments, we focus our attention on a subset of these winds, namely those with radial density dependence n(r) ∝ 1/r (r is the spherical radial coordinate). We employ the photoionization code XSTAR to compute the ionic abundances of a large number of ions of different elements and then compile their line-of-sight (LOS) absorption columns. We focus our attention on the distribution of the column density of the various ions as a function of the ionization parameter ξ (or equivalently r) and the angle θ. Particular attention is paid to the absorption measure distribution (AMD), namely their hydrogen-equivalent column per logarithmic ξ interval, dN H /dlog ξ, which provides a measure of the winds' radial density profiles. For the chosen density profile n(r) ∝ 1/r, the AMD is found to be independent of ξ, in good agreement with its behavior inferred from the X-ray spectra of several active galactic nuclei (AGNs). For the specific wind structure and X-ray spectrum, we also compute detailed absorption line profiles for a number of ions to obtain their LOS velocities, v ∼ 100-300 km s -1 (at log ξ ∼ 2-3) for Fe XVII and v ∼ 1000-4000 km s -1 (at log ξ ∼ 4-5) for Fe XXV, in good agreement with the observation. Our models describe the X-ray absorption properties of these winds with only two parameters, namely the mass-accretion rate m-dot and the LOS angle θ. The probability of obscuration of the X-ray ionizing source in these winds decreases with increasing m-dot and increases steeply with the LOS inclination angle θ. As such, we concur with previous authors that these wind configurations, viewed globally, incorporate all the requisite properties of the parsec scale 'torii' invoked in AGN unification schemes. We indicate that a

  9. Performance Investigation of A Mix Wind Turbine Using A Clutch Mechanism At Low Wind Speed Condition

    Science.gov (United States)

    Jamanun, M. J.; Misaran, M. S.; Rahman, M.; Muzammil, W. K.

    2017-07-01

    Wind energy is one of the methods that generates energy from sustainable resources. This technology has gained prominence in this era because it produces no harmful product to the society. There is two fundamental type of wind turbine are generally used this day which is Horizontal axis wind turbine (HAWT) and Vertical axis wind turbine (VAWT). The VAWT technology is more preferable compare to HAWT because it gives better efficiency and cost effectiveness as a whole. However, VAWT is known to have distinct disadvantage compared to HAWT; self-start ability and efficiency at low wind speed condition. Different solution has been proposed to solve these issues which includes custom design blades, variable angle of attack mechanism and mix wind turbine. A new type of clutch device was successfully developed in UMS to be used in a mix Savonius-Darrieus wind turbine configuration. The clutch system which barely audible when in operation compared to a ratchet clutch system interconnects the Savonius and Darrieus rotor; allowing the turbine to self-start at low wind speed condition as opposed to a standalone Darrieus turbine. The Savonius height were varied at three different size in order to understand the effect of the Savonius rotor to the mix wind turbine performance. The experimental result shows that the fabricated Savonius rotor show that the height of the Savonius rotor affecting the RPM for the turbine. The swept area (SA), aspect ratio (AR) and tip speed ratio (TSR) also calculated in this paper. The highest RPM recorded in this study is 90 RPM for Savonius rotor 0.22-meter height at 2.75 m/s. The Savonius rotor 0.22-meter also give the highest TSR for each range of speed from 0.75 m/s, 1.75 m/s and 2.75 m/s where it gives 1.03 TSR, 0.76 TSR, and 0.55 TSR.

  10. Study of sea-surface slope distribution and its effect on radar backscatter based on Global Precipitation Measurement Ku-band precipitation radar measurements

    Science.gov (United States)

    Yan, Qiushuang; Zhang, Jie; Fan, Chenqing; Wang, Jing; Meng, Junmin

    2018-01-01

    The collocated normalized radar backscattering cross-section measurements from the Global Precipitation Measurement (GPM) Ku-band precipitation radar (KuPR) and the winds from the moored buoys are used to study the effect of different sea-surface slope probability density functions (PDFs), including the Gaussian PDF, the Gram-Charlier PDF, and the Liu PDF, on the geometrical optics (GO) model predictions of the radar backscatter at low incidence angles (0 deg to 18 deg) at different sea states. First, the peakedness coefficient in the Liu distribution is determined using the collocations at the normal incidence angle, and the results indicate that the peakedness coefficient is a nonlinear function of the wind speed. Then, the performance of the modified Liu distribution, i.e., Liu distribution using the obtained peakedness coefficient estimate; the Gaussian distribution; and the Gram-Charlier distribution is analyzed. The results show that the GO model predictions with the modified Liu distribution agree best with the KuPR measurements, followed by the predictions with the Gaussian distribution, while the predictions with the Gram-Charlier distribution have larger differences as the total or the slick filtered, not the radar filtered, probability density is included in the distribution. The best-performing distribution changes with incidence angle and changes with wind speed.

  11. Complete 360° circumferential SSOCT gonioscopy of the iridocorneal angle

    Science.gov (United States)

    McNabb, Ryan P.; Kuo, Anthony N.; Izatt, Joseph A.

    2014-02-01

    The ocular iridocorneal angle is generally an optically inaccessible area when viewed directly through the cornea due to the high angle of incidence required and the large index of refraction difference between air and cornea (nair = 1.000 and ncornea = 1.376) resulting in total internal reflection. Gonioscopy allows for viewing of the angle by removing the aircornea interface through the use of a special contact lens on the eye. Gonioscopy is used clinically to visualize the angle directly but only en face. Optical coherence tomography (OCT) has been used to image the angle and deeper structures via an external approach. Typically, this imaging technique is performed by utilizing a conventional anterior segment OCT scanning system. However, instead of imaging the apex of the cornea, either the scanner or the subject is tilted such that the corneoscleral limbus is orthogonal to the optical axis of the scanner requiring multiple volumes to obtain complete circumferential coverage of the ocular angle. We developed a novel gonioscopic OCT (GOCT) system that images the entire ocular angle within a single volume via an "internal" approach through the use of a custom radially symmetric gonioscopic contact lens. We present, to our knowledge, the first complete 360° circumferential volumes of the iridocorneal angle from a direct, internal approach.

  12. Design and optimize of 3-axis filament winding machine

    Science.gov (United States)

    Quanjin, Ma; Rejab, M. R. M.; Idris, M. S.; Bachtiar, B.; Siregar, J. P.; Harith, M. N.

    2017-10-01

    Filament winding technique is developed as the primary process for composite cylindrical structures fabrication at low cost. Fibres are wound on a rotating mandrel by a filament winding machine where resin impregnated fibres pass through a pay-out eye. This paper aims to develop and optimize a 3-axis, lightweight, practical, efficient, portable filament winding machine to satisfy the customer demand, which can fabricate pipes and round shape cylinders with resins. There are 3 main units on the 3-axis filament winding machine, which are the rotary unit, the delivery unit and control system unit. Comparison with previous existing filament winding machines in the factory, it has 3 degrees of freedom and can fabricate more complex shape specimens based on the mandrel shape and particular control system. The machine has been designed and fabricated on 3 axes movements with control system. The x-axis is for movement of the carriage, the y-axis is the rotation of mandrel and the z-axis is the movement of the pay-out eye. Cylindrical specimens with different dimensions and winding angles were produced. 3-axis automated filament winding machine has been successfully designed with simple control system.

  13. Prediction of unsteady airfoil flows at large angles of incidence

    Science.gov (United States)

    Cebeci, Tuncer; Jang, H. M.; Chen, H. H.

    1992-01-01

    The effect of the unsteady motion of an airfoil on its stall behavior is of considerable interest to many practical applications including the blades of helicopter rotors and of axial compressors and turbines. Experiments with oscillating airfoils, for example, have shown that the flow can remain attached for angles of attack greater than those which would cause stall to occur in a stationary system. This result appears to stem from the formation of a vortex close to the surface of the airfoil which continues to provide lift. It is also evident that the onset of dynamic stall depends strongly on the airfoil section, and as a result, great care is required in the development of a calculation method which will accurately predict this behavior.

  14. Analyses of the mechanisms of amplitude modulation of aero-acoustic wind turbine sound

    DEFF Research Database (Denmark)

    Fischer, Andreas; Aagaard Madsen, Helge; Kragh, Knud Abildgaard

    2014-01-01

    This paper explores the source mechanism which cause amplitude modulation of the emitted sound of a wind turbine at large distances from the turbine, named as other amplitude modulation. Measurements of the fluctuating surface pressure on a 2.3MW wind turbine showed a considerable variation over...... give further evidence that transient stall is a main mechanism to cause other amplitude modulation. Wind shear was identified as a critical condition to cause angle of attack variations. Dierent control strategies to mitigate other amplitude modulation were proposed....

  15. Statistical Validation of Calibrated Wind Data Collected From NOAA's Hurricane Hunter Aircraft

    Science.gov (United States)

    Graham, K.; Sears, I. T.; Holmes, M.; Henning, R. G.; Damiano, A. B.; Parrish, J. R.; Flaherty, P. T.

    2015-12-01

    Obtaining accurate in situ meteorological measurements from the NOAA G-IV Hurricane Hunter Aircraft currently requires annual wind calibration flights. This project attempts to demonstrate whether an alternate method to wind calibration flights can be implemented using data collected from many previous hurricane, winter storm, and surveying flights. Wind derivations require using airplane attack and slip angles, airplane pitch, pressure differentials, dynamic pressures, ground speeds, true air speeds, and several other variables measured by instruments on the aircraft. Through the use of linear regression models, future wind measurements may be fit to past statistical models. This method of wind calibration could replace the need for annual wind calibration flights, decreasing NOAA expenses and providing more accurate data. This would help to ensure all data users have reliable data and ultimately contribute to NOAA's goal of building of a Weather Ready Nation.

  16. Competing Wind Energy Discourses, Contested Landscapes

    Directory of Open Access Journals (Sweden)

    Antje Otto

    2014-10-01

    Full Text Available The impairment of landscapes is a concern constantly raised against wind energy developments in Germany as in other countries. Often, landscapes or landscape types are treated in the literature as essentialist or at least as uncontested categories. We analyse two examples of local controversies about wind energy, in which “landscape” is employed by supporters and opponents alike, from a poststructuralist and discourse theoretical angle. The aim is to identify and compare landscape constructs produced in the micro discourses of wind energy objectors and proponents at local level (a within each case, (b between the two cases and (c with landscape constructs that were previously found in macro discourses. One major finding is that several different landscapes can exist at one and the same place. Furthermore there seems to be a relatively stable set of competing landscape concepts which is reproduced in specific controversies. The paper concludes by highlighting practical consequences and by identifying promising avenues of further research.

  17. Faults in the Collection Grid of Offshore Wind Farms

    DEFF Research Database (Denmark)

    Lunow, Morten Erlandsson; Holbøll, Joachim; Henriksen, Mogens

    2008-01-01

    This paper deals with transient conditions in the collection grid of offshore wind farms under different faults. A model of a standard wind farm was established in two versions, with a floating and a grounded collection grid respectively. Line to ground faults and three-phase to ground faults were...... applied at critical points at worst-case phase angle and the results compared. The simulations show that it is better with a grounded collection grid, since lack of a ground reference will prevent the system from recovering after a line to ground fault....

  18. Auto-calibrated scanning-angle prism-type total internal reflection microscopy for nanometer-precision axial position determination and optional variable-illumination-depth pseudo total internal reflection microscopy

    Science.gov (United States)

    Fang, Ning; Sun, Wei

    2015-04-21

    A method, apparatus, and system for improved VA-TIRFM microscopy. The method comprises automatically controlled calibration of one or more laser sources by precise control of presentation of each laser relative a sample for small incremental changes of incident angle over a range of critical TIR angles. The calibration then allows precise scanning of the sample for any of those calibrated angles for higher and more accurate resolution, and better reconstruction of the scans for super resolution reconstruction of the sample. Optionally the system can be controlled for incident angles of the excitation laser at sub-critical angles for pseudo TIRFM. Optionally both above-critical angle and sub critical angle measurements can be accomplished with the same system.

  19. An All-Fiber, Modular, Compact Wind Lidar for Wind Sensing and Wake Vortex Applications

    Science.gov (United States)

    Prasad, Narasimha S.; Sibell, Russ; Vetorino, Steve; Higgins, Richard; Tracy, Allen

    2015-01-01

    This paper discusses an innovative, compact and eyesafe coherent lidar system developed for wind and wake vortex sensing applications. With an innovative all-fiber and modular transceiver architecture, the wind lidar system has reduced size, weight and power requirements, and provides enhanced performance along with operational elegance. This all-fiber architecture is developed around fiber seed laser coupled to uniquely configured fiber amplifier modules. The innovative features of this lidar system, besides its all fiber architecture, include pulsewidth agility and user programmable 3D hemispherical scanner unit. Operating at a wavelength of 1.5457 microns and with a PRF of up to 20 KHz, the lidar transmitter system is designed as a Class 1 system with dimensions of 30"(W) x 46"(L) x 60"(H). With an operational range exceeding 10 km, the wind lidar is configured to measure wind velocities of greater than 120 m/s with an accuracy of +/- 0.2 m/s and allow range resolution of less than 15 m. The dynamical configuration capability of transmitted pulsewidths from 50 ns to 400 ns allows high resolution wake vortex measurements. The scanner uses innovative liquid metal slip ring and is built using 3D printer technology with light weight nylon. As such, it provides continuous 360 degree azimuth and 180 degree elevation scan angles with an incremental motion of 0.001 degree. The lidar system is air cooled and requires 110 V for its operation. This compact and modular lidar system is anticipated to provide mobility, reliability, and ease of field deployment for wind and wake vortex measurements. Currently, this wind lidar is undergoing validation tests under various atmospheric conditions. Preliminary results of these field measurements of wind characteristics that were recently carried out in Colorado are discussed.

  20. All-Fiber Airborne Coherent Doppler Lidar to Measure Wind Profiles

    Directory of Open Access Journals (Sweden)

    Liu Jiqiao

    2016-01-01

    Full Text Available An all-fiber airborne pulsed coherent Doppler lidar (CDL prototype at 1.54μm is developed to measure wind profiles in the lower troposphere layer. The all-fiber single frequency pulsed laser is operated with pulse energy of 300μJ, pulse width of 400ns and pulse repetition rate of 10kHz. To the best of our knowledge, it is the highest pulse energy of all-fiber eye-safe single frequency laser that is used in airborne coherent wind lidar. The telescope optical diameter of monostatic lidar is 100 mm. Velocity-Azimuth-Display (VAD scanning is implemented with 20 degrees elevation angle in 8 different azimuths. Real-time signal processing board is developed to acquire and process the heterodyne mixing signal with 10000 pulses spectra accumulated every second. Wind profiles are obtained every 20 seconds. Several experiments are implemented to evaluate the performance of the lidar. We have carried out airborne wind lidar experiments successfully, and the wind profiles are compared with aerological theodolite and ground based wind lidar. Wind speed standard error of less than 0.4m/s is shown between airborne wind lidar and balloon aerological theodolite.

  1. Characterization of the unsteady flow in the nacelle region of a modern wind turbine

    DEFF Research Database (Denmark)

    Zahle, Frederik; Sørensen, Niels N.

    2011-01-01

    A three-dimensional Navier–Stokes solver has been used to investigate the flow in the nacelle region of a wind turbine where anemometers are typically placed to measure the flow speed and the turbine yaw angle. A 500 kW turbine was modelled with rotor and nacelle geometry in order to capture...... the complex separated flow in the blade root region of the rotor. A number of steady state and unsteady simulations were carried out for wind speeds ranging from 6 m s−1 to 16 m s−1 as well as two yaw and tilt angles. The flow in the nacelle region was found to be highly unsteady, dominated by unsteady vortex...... anemometry showed significant dependence on both yaw and tilt angles with yaw errors of up to 10 degrees when operating in a tilted inflow. Copyright © 2010 John Wiley & Sons, Ltd....

  2. Absence of the strahl during times of slow wind

    Directory of Open Access Journals (Sweden)

    C. Gurgiolo

    2017-01-01

    Full Text Available It is not uncommon during periods when the solar wind speed is less than 425 km s−1 to observe near 1 AU no evidence of a strahl population in either the electron solar wind or within the foreshock. Estimating the fluid flow within each energy step returned from the Plasma Electron And Current Experiment (PEACE on board Cluster-2 often finds that in slow wind the GSE spherical flow angles in energies above where there is a clear core/halo signature are often close to radial with no evidence of a field-aligned flow. This signifies the lack of a strahl presence in the electron velocity distribution function (eVDF. When there is no obvious strahl signature in the data, the electrons above the core/halo in energy appear to be unstructured and smeared in angle. This can either be interpreted as due to statistical noise in low counting rate situations or the result of intense scattering. Regions where the strahl is seen and not seen are often separated by a very thin boundary layer. These transitions in the spacecraft frame of reference can be quite rapid, generally occurring within one to two spins (4–8 s.

  3. Characterization of the wind loads and flow fields around a gable-roof building model in tornado-like winds

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Hui; Yang, Zifeng; Sarkar, Partha [Iowa State University, Department of Aerospace Engineering, Ames, IA (United States); Haan, Fred [Iowa State University, Department of Aerospace Engineering, Ames, IA (United States); Rose-Hulman Institute of Technology, Department of Mechanical Engineering, Terre Haute, IN (United States)

    2011-09-15

    An experimental study was conducted to quantify the characteristics of a tornado-like vortex and to reveal the dynamics of the flow-structure interactions between a low-rise, gable-roof building model and swirling, turbulent tornado-like winds. The experimental work was conducted by using a large-scale tornado simulator located in the Aerospace Engineering Department of Iowa State University. In addition to measuring the pressure distributions and resultant wind loads acting on the building model, a digital Particle Image Velocimetry system was used to conduct detailed flow field measurements to quantify the evolution of the unsteady vortices and turbulent flow structures around the gable-roof building model in tornado-like winds. The effects of important parameters, such as the distance between the centers of the tornado-like vortex and the test model and the orientation angles of the building model related to the tornado-like vortex, on the evolutions of the wake vortices and turbulent flow structures around the gable-roof building model as well as the wind loads induced by the tornado-like vortex were assessed quantitatively. The detailed flow field measurements were correlated with the surface pressure and wind load measurements to elucidate the underlying physics to gain further insight into flow-structure interactions between the gable-roof building model and tornado-like winds in order to provide more accurate prediction of wind damage potential to built structures. (orig.)

  4. RANS study of unsteady flow around a profile blade : application to stall of horizontal axis wind turbine

    Energy Technology Data Exchange (ETDEWEB)

    Belkheir, N. [Khemis Miliana Univ., Ain Defla (Algeria); Dizene, R. [Univ. des Sciences et de la Technologie Houari Boumediene, Algiers (Algeria). Laboratoire de Mecanique Avancee; Khelladi, S.; Massouh, F.; Dobrev, I. [Arts et Metiers Paris Tech., Paris (France)

    2010-07-01

    The shape of an airfoil is designed to achieve the best aerodynamic performance. An aerofoil section undergoes dynamic stall when subjected to any form of unsteady angle of pitch. The study of a horizontal-axis wind turbine (HAWT) under wind operating conditions is complex because it is subject to instantaneous speed and wind direction variation. When turbine blades are driven into a dynamic stall, the lift coefficient drops suddenly resulting in a degradation in aerodynamic performance. This study presented steady and unsteady wind load predictions over an oscillating S809 airfoil tested in a subsonic wind tunnel. A model of sinusoidal pitch oscillations was used. The values for the angles of attack in steady state ranged from -20 to +40 degrees. The model considered 3 frequencies and 2 amplitudes. The two-dimensional numerical model simulated the instantaneous change of wind direction with respect to the turbine blade. Results were compared with data measurements of S809 aerofoil. Reasonable deviations were obtained between the predicted and experimental results for pitch oscillations. The URANS approach was used to predict the stall while the software FLUENT was used for the numerical solution. It was concluded that the behaviour of the unsteady flow in the wind farm must be considered in order to obtain an accurate estimate of the wind turbine aerodynamic load. 12 refs., 5 figs.

  5. Flicker Study on Variable Speed Wind Turbines with Permanent Magnet Synchronous Generator

    DEFF Research Database (Denmark)

    Hu, Weihao; Chen, Zhe; Wang, Yue

    2008-01-01

    capacity, grid impedance angle) are analyzed. Flicker mitigation is realized by output reactive power control of the variable speed wind turbines with PMSG. Simulation results show the output reactive power control is an effective measure to mitigate the flicker during continuous operation of grid......Grid connected wind turbines are fluctuating power sources that may produce flicker during continuous operation. This paper presents a simulation model of a MW-level variable speed wind turbines with a permanent magnet synchronous generator (PMSG) and a full-scale converter developed...... in the simulation tool of PSCAD/EMTDC. Flicker emission of this system is investigated during continuous operation. The dependence of flicker emission on wind characteristics (mean speed, turbulence intensity), 3p torque oscillations due to wind shear and tower shadow effects and grid conditions (short circuit...

  6. Aerodynamic characteristics of wind turbine blade airfoils at high angles-of-attack

    NARCIS (Netherlands)

    Timmer, W.A.

    2010-01-01

    Airfoil characteristics at deep stall angles were investigated. It appeared that the maximum drag coefficient as a function of the airfoil upwind y/c ordinate at x/c=0.0125 can be approximated by a straight line. The lift-drag ratios in deep stall of a number of airfoils with moderate lower surface

  7. Sensitivity determination of CR-39 from Normal and inclined incidence

    International Nuclear Information System (INIS)

    Abou, A.A.; El-Kheir, A.A.; Daas, A.F.; Awwad, Z.; Reda, A.M.

    2000-01-01

    An experimental study have been carried out on alpha- particle track opening (Major and minor axes) using alpha-particles of different energies incident with different angels in addition to the normal incidence. The sensitivity of CR-39 in present work is determined for each of normal and inclined incidence. The results indicated a difference in the sensitivity according to angle of incidence. The variation of alpha- particle tracks (major and minor axes) are calculated and compared with our measured values. Also, it is found that the sensitivity of CR-39 detector is change due to the storage time at room temperature

  8. Propagation of partially coherent fields through planar dielectric boundaries using angle-impact Wigner functions I. Two dimensions.

    Science.gov (United States)

    Petruccelli, Jonathan C; Alonso, Miguel A

    2007-09-01

    We examine the angle-impact Wigner function (AIW) as a computational tool for the propagation of nonparaxial quasi-monochromatic light of any degree of coherence past a planar boundary between two homogeneous media. The AIWs of the reflected and transmitted fields in two dimensions are shown to be given by a simple ray-optical transformation of the incident AIW plus a series of corrections in the form of differential operators. The radiometric and leading six correction terms are studied for Gaussian Schell-model fields of varying transverse width, transverse coherence, and angle of incidence.

  9. Effect of oblique incidence on silver nanomaterials fabricated in water via ultrafast laser ablation for photonics and explosives detection

    Energy Technology Data Exchange (ETDEWEB)

    Krishna Podagatlapalli, G. [Advanced Center of Research in High Energy Materials (ACRHEM), University of Hyderabad, Prof. C. R. Rao Road, Hyderabad 500046 (India); Hamad, Syed [School of Physics, University of Hyderabad, Prof. C. R. Rao Road, Hyderabad 500046 (India); Ahamad Mohiddon, Md. [Centre for Nanotechnology University of Hyderabad, Prof. C. R. Rao Road, Hyderabad 500046 (India); Venugopal Rao, S., E-mail: svrsp@uohyd.ernet.in [Advanced Center of Research in High Energy Materials (ACRHEM), University of Hyderabad, Prof. C. R. Rao Road, Hyderabad 500046 (India)

    2014-06-01

    Highlights: •Effect of non-zero angle of incidence on ps ablation of Ag investigated. •Ag colloids were evaluated by TEM, UV–vis absorption spectra and fs-DFWM. •30° incident angle provided Ag NPs of small size with higher yields. •FESEM, AFM, Raman data revealed the fabrication of Ag nanostructures. •Utility of Ag nanostructures surfaces for multiple SERS studies demonstrated. -- Abstract: Picosecond (ps) laser ablation of silver (Ag) substrate submerged in double distilled water was performed at 800 nm for different angles of incidence of 5°, 15°, 30° and 45°. Prepared colloidal solutions were characterized through transmission electron microscopy, UV absorption spectroscopy to explore their morphologies and surface plasmon resonance (SPR) properties. Third order nonlinear optical (NLO) characterization of colloids was performed using degenerate four wave mixing (DFWM) technique with ∼40 fs laser pulses at 800 nm and the NLO coefficients were obtained. Detailed analysis of the data obtained from colloidal solutions suggested that superior results in terms of yield, sizes of the NPs, SPR peak position were achieved for ablation performed at 30° incident angle. Surface enhanced Raman spectra (SERS) of Rhodamine 6G from nanostructured substrates were investigated using excitation wavelengths of 532 and 785 nm. In both the cases substrates prepared at 30° incident angle exhibited superior enhancement in the Raman signatures with a best enhancement factor achieved being >10{sup 8}. SERS of an explosive molecule 5-amino, 3-nitro, -1H-1,2,4-nitrozole (ANTA) was also demonstrated from these nanostructured substrates. Multiple usage of Ag nanostructures for SERS studies revealed that structures prepared at 30° incident angle provided superior performance amongst all.

  10. Active and Passive Hybrid Sensor

    Science.gov (United States)

    Carswell, James R.

    2010-01-01

    A hybrid ocean wind sensor (HOWS) can map ocean vector wind in low to hurricane-level winds, and non-precipitating and precipitating conditions. It can acquire active and passive measurements through a single aperture at two wavelengths, two polarizations, and multiple incidence angles. Its low profile, compact geometry, and low power consumption permits installation on air craft platforms, including high-altitude unmanned aerial vehicles (UAVs).

  11. The incidence angle influence on the structure of secondary-emission characteristics of single crystals

    International Nuclear Information System (INIS)

    Gasanov, E.R.; Aliyev, B.Z.

    2012-01-01

    Full text : The dependences of Wand MO single crystals in different atom planes have been studied in this work. It is revealed that maximums are added to each dependency and also minimums of first and second degree. This fact is explained by diffraction dynamic theory. It is established that electron diffraction oriented not perpendicularly to crystal surface is the reason of appearance of second order structure on studied secondary-emission characteristics. In the present work being the continuation and development of SEE investigations of high-melting metal single crystals begun earlier by authors, the structure dependence of SEE main characteristics of angle has been studied. This angle has been chosen because as it is mentioned before the bad repeatability in different experiments for it is observed

  12. Validation of the Actuator Line Model for Simulating Flows past Yawed Wind Turbine Rotors

    DEFF Research Database (Denmark)

    Shen, Wen Zhong; Zhu, Wei Jun; Yang, Hua

    2015-01-01

    The Actuator Line/Navier-Stokes model is validated against wind tunnel measurements for flows past the yawed MEXICO rotor and past the yawed NREL Phase VI rotor. The MEXICO rotor is operated at a rotational speed of 424 rpm, a pitch angle of −2.3˚, wind speeds of 10, 15, 24 m/s and yaw angles of 15......˚, 30˚ and 45˚. The computed loads as well as the velocity field behind the yawed MEXICO rotor are compared to the detailed pressure and PIV measurements which were carried out in the EU funded MEXICO project. For the NREL Phase VI rotor, computations were carried out at a rotational speed of 90.2 rpm...

  13. Comparison of Flight Measured, Predicted and Wind Tunnel Measured Winglet Characteristics on a KC-135 Aircraft

    Science.gov (United States)

    Dodson, R. O., Jr.

    1982-01-01

    One of the objectives of the KC-135 Winglet Flight Research and Demonstration Program was to obtain experimental flight test data to verify the theoretical and wind tunnel winglet aerodynamic performance prediction methods. Good agreement between analytic, wind tunnel and flight test performance was obtained when the known differences between the tests and analyses were accounted for. The flight test measured fuel mileage improvements for a 0.78 Mach number was 3.1 percent at 8 x 10(5) pounds W/delta and 5.5 percent at 1.05 x 10(6) pounds W/delta. Correcting the flight measured data for surface pressure differences between wind tunnel and flight resulted in a fuel mileage improvement of 4.4 percent at 8 x 10(5) pounds W/delta and 7.2 percent at 1.05 x 10(6) pounds W/delta. The performance improvement obtained was within the wind tunnel test data obtained from two different wind tunnel models. The buffet boundary data obtained for the baseline configuration was in good agreement with previous established data. Buffet data for the 15 deg cant/-4 deg incidence configuration showed a slight improvement, while the 15 deg cant/-2 deg incidence and 0 deg cant/-4 deg incidence data showed a slight deterioration.

  14. Aerodynamic behavior of an airfoil with morphing trailing edge for wind turbine applications

    Science.gov (United States)

    Wolff, T.; Ernst, B.; Seume, J. R.

    2014-06-01

    The length of wind turbine rotor blades has been increased during the last decades. Higher stresses arise especially at the blade root because of the longer lever arm. One way to reduce unsteady blade-root stresses caused by turbulence, gusts, or wind shear is to actively control the lift in the blade tip region. One promising method involves airfoils with morphing trailing edges to control the lift and consequently the loads acting on the blade. In the present study, the steady and unsteady behavior of an airfoil with a morphing trailing edge is investigated. Two-dimensional Reynolds-Averaged Navier-Stokes (RANS) simulations are performed for a typical thin wind turbine airfoil with a morphing trailing edge. Steady-state simulations are used to design optimal geometry, size, and deflection angles of the morphing trailing edge. The resulting steady aerodynamic coefficients are then analyzed at different angles of attack in order to determine the effectiveness of the morphing trailing edge. In order to investigate the unsteady aerodynamic behavior of the optimal morphing trailing edge, time- resolved RANS-simulations are performed using a deformable grid. In order to analyze the phase shift between the variable trailing edge deflection and the dynamic lift coefficient, the trailing edge is deflected at four different reduced frequencies for each different angle of attack. As expected, a phase shift between the deflection and the lift occurs. While deflecting the trailing edge at angles of attack near stall, additionally an overshoot above and beyond the steady lift coefficient is observed and evaluated.

  15. Aerodynamic behavior of an airfoil with morphing trailing edge for wind turbine applications

    International Nuclear Information System (INIS)

    Wolff, T; Ernst, B; Seume, J R

    2014-01-01

    The length of wind turbine rotor blades has been increased during the last decades. Higher stresses arise especially at the blade root because of the longer lever arm. One way to reduce unsteady blade-root stresses caused by turbulence, gusts, or wind shear is to actively control the lift in the blade tip region. One promising method involves airfoils with morphing trailing edges to control the lift and consequently the loads acting on the blade. In the present study, the steady and unsteady behavior of an airfoil with a morphing trailing edge is investigated. Two-dimensional Reynolds-Averaged Navier-Stokes (RANS) simulations are performed for a typical thin wind turbine airfoil with a morphing trailing edge. Steady-state simulations are used to design optimal geometry, size, and deflection angles of the morphing trailing edge. The resulting steady aerodynamic coefficients are then analyzed at different angles of attack in order to determine the effectiveness of the morphing trailing edge. In order to investigate the unsteady aerodynamic behavior of the optimal morphing trailing edge, time- resolved RANS-simulations are performed using a deformable grid. In order to analyze the phase shift between the variable trailing edge deflection and the dynamic lift coefficient, the trailing edge is deflected at four different reduced frequencies for each different angle of attack. As expected, a phase shift between the deflection and the lift occurs. While deflecting the trailing edge at angles of attack near stall, additionally an overshoot above and beyond the steady lift coefficient is observed and evaluated

  16. Physical interpretation of the angle-dependent magnetic helicity spectrum in the solar wind: The nature of turbulent fluctuations near the proton gyroradius scale

    Energy Technology Data Exchange (ETDEWEB)

    Klein, Kristopher G.; Howes, Gregory G. [Department of Physics and Astronomy, University of Iowa, Iowa City, IA 52242 (United States); TenBarge, Jason M. [IREAP, University of Maryland, College Park, MD 20742 (United States); Podesta, John J., E-mail: kristopher-klein@uiowa.edu [Center for Space Plasma Physics, Space Science Institute, Boulder, CO 80301 (United States)

    2014-04-20

    Motivated by recent observations of distinct parallel and perpendicular signatures in magnetic helicity measurements segregated by wave period and angle between the local magnetic field and the solar wind velocity, this paper undertakes a comparison of three intervals of Ulysses data with synthetic time series generated from a physically motivated turbulence model. From these comparisons, it is hypothesized that the observed signatures result from a perpendicular cascade of Alfvénic fluctuations and a local, non-turbulent population of ion-cyclotron or whistler waves generated by temperature anisotropy instabilities. By constraining the model's free parameters through comparison to in situ data, it is found that, on average, ∼95% of the power near dissipative scales is contained in a perpendicular Alfvénic cascade and that the parallel fluctuations are propagating nearly unidirectionally. The effects of aliasing on magnetic helicity measurements are considered and shown to be significant near the Nyquist frequency.

  17. Physical interpretation of the angle-dependent magnetic helicity spectrum in the solar wind: The nature of turbulent fluctuations near the proton gyroradius scale

    International Nuclear Information System (INIS)

    Klein, Kristopher G.; Howes, Gregory G.; TenBarge, Jason M.; Podesta, John J.

    2014-01-01

    Motivated by recent observations of distinct parallel and perpendicular signatures in magnetic helicity measurements segregated by wave period and angle between the local magnetic field and the solar wind velocity, this paper undertakes a comparison of three intervals of Ulysses data with synthetic time series generated from a physically motivated turbulence model. From these comparisons, it is hypothesized that the observed signatures result from a perpendicular cascade of Alfvénic fluctuations and a local, non-turbulent population of ion-cyclotron or whistler waves generated by temperature anisotropy instabilities. By constraining the model's free parameters through comparison to in situ data, it is found that, on average, ∼95% of the power near dissipative scales is contained in a perpendicular Alfvénic cascade and that the parallel fluctuations are propagating nearly unidirectionally. The effects of aliasing on magnetic helicity measurements are considered and shown to be significant near the Nyquist frequency.

  18. RITD – Wind tunnel testing

    Science.gov (United States)

    Haukka, Harri; Harri, Ari-Matti; Aleksashkin, Sergei; Koryanov, Valeri; Schmidt, Walter; Heilimo, Jyri; Finchenko, Valeri; Martynov, Maxim; Ponomarenko, Andrey; Kazakovtsev, Victor; Arruego, Ignazio

    2015-04-01

    An atmospheric re-entry and descent and landing system (EDLS) concept based on inflatable hypersonic decelerator techniques is highly promising for the Earth re-entry missions. We developed such EDLS for the Earth re-entry utilizing a concept that was originally developed for Mars. This EU-funded project is called RITD - Re-entry: Inflatable Technology Development - and it was to assess the bene¬fits of this technology when deploying small payloads from low Earth orbits to the surface of the Earth with modest costs. The principal goal was to assess and develope a preliminary EDLS design for the entire relevant range of aerodynamic regimes expected to be encountered in Earth's atmosphere during entry, descent and landing. The RITD entry and descent system utilizes an inflatable hypersonic decelerator. Development of such system requires a combination of wind tunnel tests and numerical simulations. This included wind tunnel tests both in transsonic and subsonic regimes. The principal aim of the wind tunnel tests was the determination of the RITD damping factors in the Earth atmosphere and recalculation of the results for the case of the vehicle descent in the Mars atmosphere. The RITD mock-up model used in the tests was in scale of 1:15 of the real-size vehicle as the dimensions were (midsection) diameter of 74.2 mm and length of 42 mm. For wind tunnel testing purposes the frontal part of the mock-up model body was manufactured by using a PolyJet 3D printing technology based on the light curing of liquid resin. The tail part of the mock-up model body was manufactured of M1 grade copper. The structure of the mock-up model placed th center of gravity in the same position as that of the real-size RITD. The wind tunnel test program included the defining of the damping factor at seven values of Mach numbers 0.85; 0.95; 1.10; 1.20; 1.25; 1.30 and 1.55 with the angle of attack ranging from 0 degree to 40 degrees with the step of 5 degrees. The damping characteristics of

  19. Energy optimization for a wind DFIG with flywheel energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Hamzaoui, Ihssen, E-mail: hamzaoui-ihssen2000@yahoo.fr [Laboratory of Instrumentation, Faculty of Electronics and Computer, University of Sciences and Technology Houari Boumediene, BP 32 El-Alia 16111 Bab-Ezzouar (Algeria); Laboratory of Instrumentation, Faculty of Electronics and Computer, University of Khemis Miliana, Ain Defla (Algeria); Bouchafaa, Farid, E-mail: fbouchafa@gmail.com [Laboratory of Instrumentation, Faculty of Electronics and Computer, University of Sciences and Technology Houari Boumediene, BP 32 El-Alia 16111 Bab-Ezzouar (Algeria)

    2016-07-25

    The type of distributed generation unit that is the subject of this paper relates to renewable energy sources, especially wind power. The wind generator used is based on a double fed induction Generator (DFIG). The stator of the DFIG is connected directly to the network and the rotor is connected to the network through the power converter with three levels. The objective of this work is to study the association a Flywheel Energy Storage System (FESS) in wind generator. This system is used to improve the quality of electricity provided by wind generator. It is composed of a flywheel; an induction machine (IM) and a power electronic converter. A maximum power tracking technique « Maximum Power Point Tracking » (MPPT) and a strategy for controlling the pitch angle is presented. The model of the complete system is developed in Matlab/Simulink environment / to analyze the results from simulation the integration of wind chain to networks.

  20. Aerodynamic analysis of S series wind turbine airfoils by using X foil technique

    International Nuclear Information System (INIS)

    Zaheer, M.A.; Munir, M.A.; Zahid, I.; Rizwan, M.

    2015-01-01

    In order to attain supreme energy from wind turbine economically, blade profile enactment must be acquired. For extracting extreme power from wind, it is necessary to develop rotor models of wind turbine which have high rotation rates and power coefficients. Maximum power can also be haul out by using suitable airfoils at root and tip sections of wind turbine blades. In this research four different S-series airfoils have been selected to study their behavior for maximum power extraction from wind. The wind conditions during the research were scertained from the wind speeds over Kallar Kahar Pakistan. In order to study the wind turbine operation, the extremely important parameters are lift and drag forces. Therefore an endeavor to study lift force and drag force at various sections of wind turbine blade is shown in current research. In order to acquire the utmost power from wind turbine, highest value of sliding ratio is prerequisite. At various wind speeds, performance of several blade profiles was analyzed and for every wind speed, the appropriate blade profile is ascertained grounded on the utmost sliding ratio. For every airfoil, prime angle of attack is resolute at numerous wind speeds. (author)

  1. Heat and Flux. Enabling the Wind Turbine Controller

    Energy Technology Data Exchange (ETDEWEB)

    Schaak, P. [ECN Wind Energy, Petten (Netherlands)

    2006-09-15

    In the years 1999-2003 ECN invented and patented the technique 'Heat and Flux'. The idea behind Heat and Flux is that tuning turbines at the windward side of a wind farm more transparent than usual, i.e. realising an axial induction factor below the Lanchester-Betz optimum of 1/3, should raise net farm production and lower mechanical turbine loading without causing draw-backs. For scaled farms in a boundary layer wind tunnel this hypothesis has been proved in previous projects. To enable alternative turbine transparencies, the wind turbine controller must support the additional control aim 'desired transparency'. During this study we have determined a general method to design a transparency control algorithm. This method has been implemented in ECN's 'Control Tool' for designing wind turbine control algorithms. The aero-elastic wind turbine code Phatas has been used to verify the resulting control algorithm. Heat and Flux does not fundamentally change the control of horizontal axis variable speed wind turbines. The axial induction can be reduced by an offset on blade pitch or generator torque. Weighing reliability against performance profits, it appeared to be advisable to adapt only blade angle control.

  2. Neighborhood Effects in Wind Farm Performance: A Regression Approach

    Directory of Open Access Journals (Sweden)

    Matthias Ritter

    2017-03-01

    Full Text Available The optimization of turbine density in wind farms entails a trade-off between the usage of scarce, expensive land and power losses through turbine wake effects. A quantification and prediction of the wake effect, however, is challenging because of the complex aerodynamic nature of the interdependencies of turbines. In this paper, we propose a parsimonious data driven regression wake model that can be used to predict production losses of existing and potential wind farms. Motivated by simple engineering wake models, the predicting variables are wind speed, the turbine alignment angle, and distance. By utilizing data from two wind farms in Germany, we show that our models can compete with the standard Jensen model in predicting wake effect losses. A scenario analysis reveals that a distance between turbines can be reduced by up to three times the rotor size, without entailing substantial production losses. In contrast, an unfavorable configuration of turbines with respect to the main wind direction can result in production losses that are much higher than in an optimal case.

  3. An Innovative Approach To Making Ultra Light Weight Wind Turbine Blades

    Directory of Open Access Journals (Sweden)

    Suhail Zaki Farooqui

    2012-04-01

    Full Text Available An innovative mould free method for the fabrication of ultimate light weight small wind turbine blades made out of composites has been suggested in this paper. The method has been practically applied with very satisfactory results. The method is low cost and is specifically suitable for individual small wind turbine makers. The airfoils used are simple to shape and possess good Cl/Cd characteristics. The blades are crafted using galvanized iron sheets, aluminum pipes, hard paper and fiberglass. A computer program is included with tip correction features to design the blades at the required power rating, wind speed, tip speed ratio and the chosen constant angle of attack. Results of the program run for designing 250 and 500 watt wind turbine blades at 8 m/s wind speed and tip speed ratios of 5.5 are tabulated. Performance results of the blades thus produced are also discussed.

  4. Quaternion-Based Conversion Formulas for Kinematic Attitude of Floating Offshore Wind Turbines (FOWT)

    Science.gov (United States)

    Li, Yugang; Fu, Gaoyong

    2018-01-01

    A floater allowing large-angle motion supporting a large payload (wind turbine and nacelle) with large aerodynamic loads high above the water surface is a great challenge because of the raised center of gravity and large overturning moment. In this paper, the conversion formulas between Euler angles and quaternions were derived, the research offered an efficient methodology without singularity to compute large-angle rigid body rotations of a FOWT, which laid the foundation for quaternion-based attitude kinematic model introduced to describe the dynamic response of the FOWT system and further solution.

  5. Analysis and test results for a two-bladed, passive cycle pitch, horizontal-axis wind turbine in free and controlled yaw

    Energy Technology Data Exchange (ETDEWEB)

    Holenemser, K.H. [Washington Univ., St. Louis, MO (United States)

    1995-10-01

    This report surveys the analysis and tests performed at Washington University in St. Louis, Missouri, on a horizontal-axis, two-laded wind turbine with teeter hub. The introduction is a brief account of results obtained during the 5-year period ending December 1985. The wind tunnel model and the test turbine (7.6 m [25 ft.] in diameter) at Washington University`s Tyson Research Center had a 67{degree} delta-three angle of the teeter axis. The introduction explains why this configuration was selected and named the passive cycle pitch (PCP) wind turbine. Through the analysis was not limited to the PCP rotor, all tests, including those done from 1986 to 1994, wee conducted with the same teetered wind rotor. The blades are rather stiff and have only a small elastic coning angle and no precone.

  6. Characteristics of Wind Velocity and Temperature Change Near an Escarpment-Shaped Road Embankment

    Directory of Open Access Journals (Sweden)

    Young-Moon Kim

    2014-01-01

    Full Text Available Artificial structures such as embankments built during the construction of highways influence the surrounding airflow. Various types of damage can occur due to changes in the wind velocity and temperature around highway embankments. However, no study has accurately measured micrometeorological changes (wind velocity and temperature due to embankments. This study conducted a wind tunnel test and field measurement to identify changes in wind velocity and temperature before and after the construction of embankments around roads. Changes in wind velocity around an embankment after its construction were found to be influenced by the surrounding wind velocity, wind angle, and the level difference and distance from the embankment. When the level difference from the embankment was large and the distance was up to 3H, the degree of wind velocity declines was found to be large. In changes in reference wind velocities around the embankment, wind velocity increases were not proportional to the rate at which wind velocities declined. The construction of the embankment influenced surrounding temperatures. The degree of temperature change was large in locations with large level differences from the embankment at daybreak and during evening hours when wind velocity changes were small.

  7. ADDJUST - An automated system for steering Centaur launch vehicles in measured winds

    Science.gov (United States)

    Swanson, D. C.

    1977-01-01

    ADDJUST (Automatic Determination and Dissemination of Just-Updated Steering Terms) is an automated computer and communication system designed to provide Atlas/Centaur and Titan/Centaur launch vehicles with booster-phase steering data on launch day. Wind soundings are first obtained, from which a smoothed wind velocity vs altitude relationship is established. Design for conditions at the end of the boost phase with initial pitch and yaw maneuvers, followed by zero total angle of attack through the filtered wind establishes the required vehicle attitude as a function of altitude. Polynomial coefficients for pitch and yaw attitude vs altitude are determined and are transmitted for validation and loading into the Centaur airborne computer. The system has enabled 14 consecutive launches without a flight wind delay.

  8. Contribution of Strong Discontinuities to the Power Spectrum of the Solar Wind

    International Nuclear Information System (INIS)

    Borovsky, Joseph E.

    2010-01-01

    Eight and a half years of magnetic field measurements (2 22 samples) from the ACE spacecraft in the solar wind at 1 A.U. are analyzed. Strong (large-rotation-angle) discontinuities in the solar wind are collected and measured. An artificial time series is created that preserves the timing and amplitudes of the discontinuities. The power spectral density of the discontinuity series is calculated and compared with the power spectral density of the solar-wind magnetic field. The strong discontinuities produce a power-law spectrum in the ''inertial subrange'' with a spectral index near the Kolmogorov -5/3 index. The discontinuity spectrum contains about half of the power of the full solar-wind magnetic field over this ''inertial subrange.'' Warnings are issued about the significant contribution of discontinuities to the spectrum of the solar wind, complicating interpretation of spectral power and spectral indices.

  9. Aeroservoelastic analysis of storm-ride-through control strategies for wind turbines

    DEFF Research Database (Denmark)

    Tibaldi, Carlo; Hansen, Morten Hartvig

    2016-01-01

    An investigation of a control strategy to allow wind turbines to operate at high wind speeds by derating the rotor speed and generator torque set-points is presented. The investigation analyzes the wind turbine aeroservoelastic behavior in the above rated operational range by computing the aerody......An investigation of a control strategy to allow wind turbines to operate at high wind speeds by derating the rotor speed and generator torque set-points is presented. The investigation analyzes the wind turbine aeroservoelastic behavior in the above rated operational range by computing...... the aerodynamic gains and closed-loop eigenvalue solutions using a high-delity linear model. A simple strategy to reduce the reference rotor speed based on a pitch angle feedback is presented and analyzed. It is shown that high aerodynamic gains for operation at high wind speeds requires special handling...... in the scheduling of the controller gains. The computed closed-loop modal frequencies and damping ratios show how most turbine modes become less damped as the rotor speed is derated, and at very high winds the frequency and damping of the first drivetrain torsion mode are significantly reduced. Possible resonance...

  10. Hypersonic Wind-Tunnel Measurements of Boundary-Layer Pressure Fluctuations

    Science.gov (United States)

    2009-08-01

    Fluctuation Cone The Pressure-Fluctuation Cone was used for all wind-tunnel tests (Figure 3.7). The model is a 7◦ half-angle stainless - steel cone. It...analysis as a medium for fault detection: A review. Journal of Tribology , 130, January 2008. [80] L. M. Mack. Boundary layer linear stability theory. In

  11. VLTI-AMBER Velocity-Resolved Aperture-Synthesis Imaging of Eta Carinae with a Spectral Resolution of 12 000: Studies of the Primary Star Wind and Innermost Wind-Wind Collision Zone

    Science.gov (United States)

    Weigelt, G.; Hofmann, K.-H.; Schertl, D.; Clementel, N.; Corcoran, M. F.; Damineli, A.; de Wit, W.-J.; Grellmann, R.; Groh, J.; Guieu, S.; hide

    2016-01-01

    The mass loss from massive stars is not understood well. Eta Carinae is a unique object for studying the massive stellar wind during the luminous blue variable phase. It is also an eccentric binary with a period of 5.54 yr. The nature of both stars is uncertain, although we know from X-ray studies that there is a wind-wind collision whose properties change with orbital phase. Aims. We want to investigate the structure and kinematics of Car's primary star wind and wind-wind collision zone with a high spatial resolution of approx.6 mas (approx.14 au) and high spectral resolution of R = 12 000. Methods. Observations of Car were carried out with the ESO Very Large Telescope Interferometer (VLTI) and the AMBER instrument between approximately five and seven months before the August 2014 periastron passage. Velocity-resolved aperture-synthesis images were reconstructed from the spectrally dispersed interferograms. Interferometric studies can provide information on the binary orbit, the primary wind, and the wind collision. Results. We present velocity-resolved aperture-synthesis images reconstructed in more than 100 di erent spectral channels distributed across the Br(gamma) 2.166 micron emission line. The intensity distribution of the images strongly depends on wavelength. At wavelengths corresponding to radial velocities of approximately -140 to -376 km/s measured relative to line center, the intensity distribution has a fan-shaped structure. At the velocity of -277 km/s, the position angle of the symmetry axis of the fan is 126. The fan-shaped structure extends approximately 8.0 mas (approx.18:8 au) to the southeast and 5.8 mas (approx.13:6 au) to the northwest, measured along the symmetry axis at the 16% intensity contour. The shape of the intensity distributions suggests that the obtained images are the first direct images of the innermost wind-wind collision zone. Therefore, the observations provide velocity-dependent image structures that can be used to test three

  12. Flexible fault ride through strategy for wind farm clusters in power systems with high wind power penetration

    International Nuclear Information System (INIS)

    Wang, Songyan; Chen, Ning; Yu, Daren; Foley, Aoife; Zhu, Lingzhi; Li, Kang; Yu, Jilai

    2015-01-01

    Highlights: • A flexible fault ride through strategy is proposed. • The strategy comprises of grid code requirements and power restrictions. • Slight faults and moderate faults are the main defending objectives. • Temporary overloading capability of the doubly fed induction generator is considered. - Abstract: This paper investigates a flexible fault ride through strategy for power systems in China with high wind power penetration. The strategy comprises of adaptive fault ride through requirements and maximum power restrictions of the wind farms with weak fault ride through capabilities. The slight faults and moderate faults with high probability are the main defending objective of the strategy. The adaptive fault ride through requirement in the strategy consists of two sub fault ride through requirements, a temporary slight voltage ride through requirement corresponding to a slight fault incident, with a moderate voltage ride through requirement corresponding to a moderate fault. The temporary overloading capability of the wind farm is reflected in both requirements to enhance the capability to defend slight faults and to avoid tripping when the crowbar is disconnected after moderate faults are cleared. For those wind farms that cannot meet the adaptive fault ride through requirement, restrictions are put on the maximum power output. Simulation results show that the flexible fault ride through strategy increases the fault ride through capability of the wind farm clusters and reduces the wind power curtailment during faults

  13. Forecast skill of synoptic conditions associated with Santa Ana winds in Southern California

    Science.gov (United States)

    Charles Jones; Francis Fujioka; Leila M.V. Carvalho

    2010-01-01

    Santa Ana winds (SAW) are synoptically driven mesoscale winds observed in Southern California usually during late fall and winter. Because of the complex topography of the region, SAW episodes can sometimes be extremely intense and pose significant environmental hazards, especially during wildfire incidents. A simple set of criteria was used to identify synoptic-scale...

  14. Selection of References in Wind Turbine Model Predictive Control Design

    DEFF Research Database (Denmark)

    Odgaard, Peter Fogh; Hovgaard, Tobias

    2015-01-01

    a model predictive controller for a wind turbine. One of the important aspects for a tracking control problem is how to setup the optimal reference tracking problem, as it might be relevant to track, e.g., the three concurrent references: optimal pitch angle, optimal rotational speed, and optimal power......Lowering the cost of energy is one of the major focus areas in the wind turbine industry. Recent research has indicated that wind turbine controllers based on model predictive control methods can be useful in obtaining this objective. A number of design considerations have to be made when designing....... The importance if the individual references differ depending in particular on the wind speed. In this paper we investigate the performance of a reference tracking model predictive controller with two different setups of the used optimal reference signals. The controllers are evaluated using an industrial high...

  15. Wind Tunnel Measurements of Shuttle Orbiter Global Heating with Comparisons to Flight

    Science.gov (United States)

    Berry, Scott A.; Merski, N. Ronald; Blanchard, Robert C.

    2002-01-01

    An aerothermodynamic database of global heating images was acquired of the Shuttle Orbiter in the NASA Langley Research Center 20-Inch Mach 6 Air Tunnel. These results were obtained for comparison to the global infrared images of the Orbiter in flight from the infrared sensing aeroheating flight experiment (ISAFE). The most recent ISAFE results from STS-103, consisted of port side images, at hypersonic conditions, of the surface features that result from the strake vortex scrubbing along the side of the vehicle. The wind tunnel results were obtained with the phosphor thermography system, which also provides global information and thus is ideally suited for comparison to the global flight results. The aerothermodynamic database includes both windward and port side heating images of the Orbiter for a range of angles of attack (20 to 40 deg), freestream unit Reynolds number (1 x 10(exp 6))/ft to 8 x 10(exp 6)/ft, body flap deflections (0, 5, and 10 deg), speed brake deflections (0 and 45 deg), as well as with boundary layer trips for forced transition to turbulence heating results. Sample global wind tunnel heat transfer images were extrapolated to flight conditions for comparison to Orbiter flight data. A windward laminar case for an angle of attack of 40 deg was extrapolated to Mach 11.6 flight conditions for comparison to STS-2 flight thermocouple results. A portside wind tunnel image for an angle of attack of 25 deg was extrapolated for Mach 5 flight conditions for comparison to STS-103 global surface temperatures. The comparisons showed excellent qualitative agreement, however the extrapolated wind tunnel results over-predicted the flight surface temperatures on the order of 5% on the windward surface and slightly higher on the portside.

  16. Reduction mechanism of dynamic loads on down wind rotor; Furyoku hatsuden system down wind rotor no doteki kaju no keigen kiko ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Seki, K; Shimizu, Y; Yasui, T [Tokai University, Tokyo (Japan)

    1997-11-25

    Dynamic force on blades in a large wind mill changes with rotational speed for various reasons, such as wind shear that causes vertical distribution of wind velocity or titling angle. Therefore, a 2-blade system on a teetered hub is a practical selection for the coned, down-wind type. Use of teetered axis greatly reduces bending moment in the flap direction and that at the axis of rotation. An attempt was made to understand dynamic loads by inertial force resulting from oscillation of the blade rotating on the teetered axis, and thereby to avoid them. The in-plane load can be diminished to zero when the teetered axis is coincided with the center of gravity, but generally cannot be avoided when the blade is strained significantly, except it is operated at the rated condition. The in-plane load and bending moment can be avoided, when rotational freedom is given around the y axis. Dynamic load on a down-wind rotor can be avoided by use of universal joint. 3 refs., 6 figs.

  17. Ion desorption from solid surfaces under slow (KeV) and fast (MeV) ion sputtering. Influence of the charge state and of the incidence angle on the input channel

    International Nuclear Information System (INIS)

    Joret, H.

    1990-06-01

    Solid surfaces of organic and inorganic materials have been bombarded by fast heavy ions (several MeV). It is shown that the charge state of the projectile has a strong influence on the atomic and molecular ion desorption yield. Experimental studies proved that molecular ions can be emitted intact from deep layers underneath the surface (volume emission) with the existence of a crater emission. On the other hand light ions like H(+), H(+)-2, H(+)-3 are emitted from the surface of the solid in a time around 10 -16 second. The H(+) depends on the incident charge state g-i. When using slow ions (keV) the same dependence was observed for the first time and compared to the fast ion results. The equilibrum charge state of fast ions passing through solids was measured. The influence of the angle of incidence was investigated. Langmuir-Blodgett films of fatty acid were used. A geometrical model is developed for the 50 angstroms layer [fr

  18. Numerical investigation of optimal yaw misalignment and collective pitch angle for load imbalance reduction of rigid and flexible HAWT blades under sheared inflow

    International Nuclear Information System (INIS)

    Jeong, Min-Soo; Cha, Myung-Chan; Kim, Sang-Woo; Lee, In

    2015-01-01

    Wind shear can strongly influence the cyclic loading on horizontal axis wind turbine blades. These load fluctuation causes a variation of power output and introduces fatigue load. Thus, individual pitch controllers have been developed that are focused on the load alleviations, however, comes at a price of actuator requirements for control. Moreover, these controllers are unable to apply to already existing wind turbines with active yaw and collective pitch control system. Therefore, the investigations for minimizing load imbalance through the adjustments of yaw misalignment and collective pitch angle are implemented for the rigid and flexible blades under the sheared inflow. By applying the optimization process based on a sequential quadratic programming approach, the optimal yaw and pitch angle can be estimated. Then, the numerical simulations for predicting the performance are performed. The results showed that the fluctuation range of the root flapwise bending moment for the rigid blades can be reduced by 84.5%, whereas the vibratory bending moment for the flexible blades can be reduced by up to approximately 82.4% in the best case. Therefore, the magnitudes of load imbalance can be minimized by the adjustment of the optimal yaw misalignment and collective pitch angle without any power loss. - Highlights: • We propose a novel method for the reduction of load imbalance under sheared inflow. • We estimate optimal yaw misalignment and collective pitch angle through optimization. • Numerical results of performance are predicted for rigid and flexible blades. • By applying optimal angles, load variations are reduced without any power loss

  19. Retrieving 3D Wind Field from Phased Array Radar Rapid Scans

    Directory of Open Access Journals (Sweden)

    Xiaobin Qiu

    2013-01-01

    Full Text Available The previous two-dimensional simple adjoint method for retrieving horizontal wind field from a time sequence of single-Doppler scans of reflectivity and/or radial velocity is further developed into a new method to retrieve both horizontal and vertical winds at high temporal and spatial resolutions. This new method performs two steps. First, the horizontal wind field is retrieved on the conical surface at each tilt (elevation angle of radar scan. Second, the vertical velocity field is retrieved in a vertical cross-section along the radar beam with the horizontal velocity given from the first step. The method is applied to phased array radar (PAR rapid scans of the storm winds and reflectivity in a strong microburst event and is shown to be able to retrieve the three-dimensional wind field around a targeted downdraft within the storm that subsequently produced a damaging microburst. The method is computationally very efficient and can be used for real-time applications with PAR rapid scans.

  20. Wind turbine power coefficient estimation by soft computing methodologies: Comparative study

    International Nuclear Information System (INIS)

    Shamshirband, Shahaboddin; Petković, Dalibor; Saboohi, Hadi; Anuar, Nor Badrul; Inayat, Irum; Akib, Shatirah; Ćojbašić, Žarko; Nikolić, Vlastimir; Mat Kiah, Miss Laiha; Gani, Abdullah

    2014-01-01

    Highlights: • Variable speed operation of wind turbine to increase power generation. • Changeability and fluctuation of wind has to be accounted. • To build an effective prediction model of wind turbine power coefficient. • The impact of the variation in the blade pitch angle and tip speed ratio. • Support vector regression methodology application as predictive methodology. - Abstract: Wind energy has become a large contender of traditional fossil fuel energy, particularly with the successful operation of multi-megawatt sized wind turbines. However, reasonable wind speed is not adequately sustainable everywhere to build an economical wind farm. In wind energy conversion systems, one of the operational problems is the changeability and fluctuation of wind. In most cases, wind speed can vacillate rapidly. Hence, quality of produced energy becomes an important problem in wind energy conversion plants. Several control techniques have been applied to improve the quality of power generated from wind turbines. In this study, the polynomial and radial basis function (RBF) are applied as the kernel function of support vector regression (SVR) to estimate optimal power coefficient value of the wind turbines. Instead of minimizing the observed training error, SVR p oly and SVR r bf attempt to minimize the generalization error bound so as to achieve generalized performance. The experimental results show that an improvement in predictive accuracy and capability of generalization can be achieved by the SVR approach in compare to other soft computing methodologies