WorldWideScience

Sample records for incident sound waves

  1. Measuring oblique incidence sound absorption using a local plane wave assumption

    NARCIS (Netherlands)

    Kuipers, E.R.; Wijnant, Ysbrand H.; de Boer, Andries

    2014-01-01

    In this paper a method for the measurement of the oblique incidence sound absorption coefficient is presented. It is based on a local field assumption, in which the acoustic field is locally approximated by one incident- and one specularly reflected plane wave. The amplitudes of these waves can be

  2. On the sound absorption coefficient of porous asphalt pavements for oblique incident sound waves

    NARCIS (Netherlands)

    Bezemer-Krijnen, Marieke; Wijnant, Ysbrand H.; de Boer, Andries; Bekke, Dirk; Davy, J.; Don, Ch.; McMinn, T.; Dowsett, L.; Broner, N.; Burgess, M.

    2014-01-01

    A rolling tyre will radiate noise in all directions. However, conventional measurement techniques for the sound absorption of surfaces only give the absorption coefficient for normal incidence. In this paper, a measurement technique is described with which it is possible to perform in situ sound

  3. Plane waves at or near grazing incidence in the parabolic approximation. [acoustic equations of motion for sound fields

    Science.gov (United States)

    Mcaninch, G. L.; Myers, M. K.

    1980-01-01

    The parabolic approximation for the acoustic equations of motion is applied to the study of the sound field generated by a plane wave at or near grazing incidence to a finite impedance boundary. It is shown how this approximation accounts for effects neglected in the usual plane wave reflection analysis which, at grazing incidence, erroneously predicts complete cancellation of the incident field by the reflected field. Examples are presented which illustrate that the solution obtained by the parabolic approximation contains several of the physical phenomena known to occur in wave propagation near an absorbing boundary.

  4. Characteristics of surface sound pressure and absorption of a finite impedance strip for a grazing incident plane wave.

    Science.gov (United States)

    Sum, K S; Pan, J

    2007-07-01

    Distributions of sound pressure and intensity on the surface of a flat impedance strip flush-mounted on a rigid baffle are studied for a grazing incident plane wave. The distributions are obtained by superimposing the unperturbed wave (the specularly reflected wave as if the strip is rigid plus the incident wave) with the radiated wave from the surface vibration of the strip excited by the unperturbed pressure. The radiated pressure interferes with the unperturbed pressure and distorts the propagating plane wave. When the plane wave propagates in the baffle-strip-baffle direction, it encounters discontinuities in acoustical impedance at the baffle-strip and strip-baffle interfaces. The radiated pressure is highest around the baffle-strip interface, but decreases toward the strip-baffle interface where the plane wave distortion reduces accordingly. As the unperturbed and radiated waves have different magnitudes and superimpose out of phase, the surface pressure and intensity increase across the strip in the plane wave propagation direction. Therefore, the surface absorption of the strip is nonzero and nonuniform. This paper provides an understanding of the surface pressure and intensity behaviors of a finite impedance strip for a grazing incident plane wave, and of how the distributed intensity determines the sound absorption coefficient of the strip.

  5. Sound wave transmission (image)

    Science.gov (United States)

    When sounds waves reach the ear, they are translated into nerve impulses. These impulses then travel to the brain where they are interpreted by the brain as sound. The hearing mechanisms within the inner ear, can ...

  6. Sound conversion phenomena at the free surface of liquid helium. I. Calculation of the coefficients of reflection, transmission, and transformation of sound waves incident on the liquid--vapor interface of helium

    International Nuclear Information System (INIS)

    Wiechert, H.; Buchholz, F.I.

    1980-01-01

    On the basis of a set of boundary conditions describing quite generally mass and energy transport processes across the free surface of helium II, the acoustic coefficients of reflection, transmission, and transformation of first sound, second sound, and the sound wave propagating in the vapor are calculated in the case of perpendicular incidence of sound waves against the liquid--vapor phase boundary. Considering rigoroulsy the influences of the Onsager surface coefficients, the isobaric thermal expansion coefficients, and the thermal conductivities of the liquid and the vapor, we derive sets of equations from which the acoustic coefficients are determined numerically. For estimations, simple explicit formulas of the acoustic coefficients are given. It is shown that the evaporation and energy transport processes occurring at the free surface of helium II due to the incidence of sound waves may be connected with appreciable energy dissipation. The surface absorption coefficients of first, second, and gas sound waves are deduced

  7. Three-dimensional modelling of sound absorption in porous asphalt pavement for oblique incident waves

    NARCIS (Netherlands)

    Bezemer-Krijnen, Marieke; Wijnant, Ysbrand H.; de Boer, Andries; Glorieux, C.

    2015-01-01

    Sound absorption of porous asphalt pavements is an important property when reducing tyre-road noise. A hybrid model has been developed to predict the sound absorption of porous roads. This model is a combination of an analytical analysis of the sound eld and a numerical approach, including both the

  8. Modelling absorption in porous asphalt concrete for oblique incident sound waves

    NARCIS (Netherlands)

    Bezemer-Krijnen, Marieke; Wijnant, Ysbrand H.; de Boer, Andries; Sas, P; Moens, D.; Denayer, H.

    2014-01-01

    A numerical model to predict the sound absorption of porous asphalt has been developed. The approach is a combination between a microstructural approach and a finite element approach. The model used to describe the viscothermal properties of the air inside the pores of the asphalt is the low reduced

  9. Heuristic approximations for sound fields produced by spherical waves incident on locally and non-locally reacting planar surfaces.

    Science.gov (United States)

    Li, Kai Ming; Tao, Hongdan

    2014-01-01

    The classic Weyl-van der Pol (WVDP) formula is a well-known asymptotic solution for accurately predicting sound fields above a locally reacting ground surface. However, the form of the WVDP formula is inadequate for predicting sound fields in the vicinity of non-locally reacting surfaces; a correction term is often required in the formula to provide accurate numerical solutions. Even with this correction, there is a singularity in the diffraction wave term when the source is located directly above or below the receiver. This paper explores a heuristic method to remove this singularity and suggests an analytical form comparable to the WVDP formula. This improved formula offers a physically interpretable solution and allows for accurate predictions of the total sound field above locally and non-locally reacting surfaces for all geometrical configurations.

  10. Just How Does Sound Wave?

    Science.gov (United States)

    Shipman, Bob

    2006-01-01

    When children first hear the term "sound wave" perhaps they might associate it with the way a hand waves or perhaps the squiggly line image on a television monitor when sound recordings are being made. Research suggests that children tend to think sound somehow travels as a discrete package, a fast-moving invisible thing, and not something that…

  11. In situ sound absorption measurement: investigations on oblique incidence

    NARCIS (Netherlands)

    Kuipers, E.R.; Wijnant, Ysbrand H.; de Boer, Andries; Klemenz, M.

    2012-01-01

    A novel method for the measurement of sound absorption has been developed. By assuming that, in a single point, the sound field consists of an incident- and a reflected plane wave, the locally incident- and reflected intensities can be determined. To this purpose, the active intensity and the sum of

  12. Sound Waves Levitate Substrates

    Science.gov (United States)

    Lee, M. C.; Wang, T. G.

    1982-01-01

    System recently tested uses acoustic waves to levitate liquid drops, millimeter-sized glass microballoons, and other objects for coating by vapor deposition or capillary attraction. Cylindrical contactless coating/handling facility employs a cylindrical acoustic focusing radiator and a tapered reflector to generate a specially-shaped standing wave pattern. Article to be processed is captured by the acoustic force field under the reflector and moves as reflector is moved to different work stations.

  13. Ionospheric Oblique Incidence Soundings by Satellites

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The oblique incidence sweep-frequency ionospheric sounding technique uses the same principle of operation as the vertical incidence sounder. The primary difference...

  14. Vortices and sound waves in superfluids

    OpenAIRE

    Lee, Kimyeong

    1994-01-01

    We consider the dynamics of vortex strings and sound waves in superfluids in the phenomenological Landau-Ginzburg equation. We first derive the vortex equation where the velocity of a vortex is determined by the average fluid velocity and the density gradient near the vortex. We then derive the effective action for vortex strings and sound waves by the dual formulation. The effective action might be useful in calculating the emission rate of sound waves by moving vortex strings.

  15. Sound waves in hadronic matter

    Science.gov (United States)

    Wilk, Grzegorz; Włodarczyk, Zbigniew

    2018-01-01

    We argue that recent high energy CERN LHC experiments on transverse momenta distributions of produced particles provide us new, so far unnoticed and not fully appreciated, information on the underlying production processes. To this end we concentrate on the small (but persistent) log-periodic oscillations decorating the observed pT spectra and visible in the measured ratios R = σdata(pT) / σfit (pT). Because such spectra are described by quasi-power-like formulas characterised by two parameters: the power index n and scale parameter T (usually identified with temperature T), the observed logperiodic behaviour of the ratios R can originate either from suitable modifications of n or T (or both, but such a possibility is not discussed). In the first case n becomes a complex number and this can be related to scale invariance in the system, in the second the scale parameter T exhibits itself log-periodic oscillations which can be interpreted as the presence of some kind of sound waves forming in the collision system during the collision process, the wave number of which has a so-called self similar solution of the second kind. Because the first case was already widely discussed we concentrate on the second one and on its possible experimental consequences.

  16. Fundamental plasma emission involving ion sound waves

    Science.gov (United States)

    Cairns, Iver H.

    1987-01-01

    The theory for fundamental plasma emission by the three-wave processes L + or - S to T (where L, S and T denote Langmuir, ion sound and transverse waves, respectively) is developed. Kinematic constraints on the characteristics and growth lengths of waves participating in the wave processes are identified. In addition the rates, path-integrated wave temperatures, and limits on the brightness temperature of the radiation are derived.

  17. Scattering of sound waves by a compressible vortex

    Science.gov (United States)

    Colonius, Tim; Lele, Sanjiva K.; Moin, Parviz

    1991-01-01

    Scattering of plane sound waves by a compressible vortex is investigated by direct computation of the two-dimensional Navier-Stokes equations. Nonreflecting boundary conditions are utilized, and their accuracy is established by comparing results on different sized domains. Scattered waves are directly measured from the computations. The resulting amplitude and directivity pattern of the scattered waves is discussed, and compared to various theoretical predictions. For compact vortices (zero circulation), the scattered waves directly computed are in good agreement with predictions based on an acoustic analogy. Strong scattering at about + or - 30 degrees from the direction of incident wave propagation is observed. Back scattering is an order of magnitude smaller than forward scattering. For vortices with finite circulation refraction of the sound by the mean flow field outside the vortex core is found to be important in determining the amplitude and directivity of the scattered wave field.

  18. Sound transmission of a spherical sound wave through a finite plate

    Science.gov (United States)

    Liu, Bilong; Jiang, Yan; Chang, Daoqing

    2017-12-01

    For an incident plane wave on an infinite plate, a doubling of mass or frequency adds 6 dB to the sound transmission loss (TL), but for an incident spherical wave on an infinite plate, a doubling of mass or frequency adds only 3 dB to the TL. In reality, the discrepancies of the sound transmission due to plane wave and spherical wave incidence might not be so huge, since the influences resulted from the plate size and the distance between the source and the plate cannot be ignored. In this article, the sound transmission of a spherical wave through a finite plate is theoretically analyzed through the modal expansion method. The transmission losses for typical plates are illustrated and as well are compared with that of the mass laws due to normal and spherical wave incidence, respectively. The effects of parameters such as the size of the plate, the distance between the source and the plate, and the horizontal shift of the plate are investigated. An indicator for the estimation of the TL through a finite plate due to a point source is given for the potential of practical applications.

  19. Snowflake Topological Insulator for Sound Waves

    OpenAIRE

    Brendel, Christian; Peano, Vittorio; Painter, Oskar; Marquardt, Florian

    2017-01-01

    We show how the snowflake phononic crystal structure, which has been realized experimentally recently, can be turned into a topological insulator for sound waves. This idea, based purely on simple geometrical modifications, could be readily implemented on the nanoscale.

  20. Diffusion of Sound Waves in a Turbulent Atmosphere

    Science.gov (United States)

    Lyon, Richard H.

    1960-01-01

    The directional and frequency diffusion of a plane monochromatic 2 sound wave in statistically homogeneous, isotropic, and stationary turbulence is analyzed theoretically. The treatment is based on the diffusion equation for the energy density of sound waves, using the scattering cross section derived by Kraichnan for the type of turbulence assumed here. A form for the frequency-wave number spectrum of the turbulence is adopted which contains the pertinent parameters of the flow and is adapted to ease of calculation. A new approach to the evaluation of the characteristic period of the flow is suggested. This spectrum is then related to the scattering cross section. Finally, a diffusion equation is derived as a small-angle scattering approximation to the rigorous transport equation. The rate of spread of the incident wave in frequency and direction is calculated, as well as the power spectrum and autocorrelation for the wave.

  1. Nonlocal nonlinear coupling of kinetic sound waves

    Directory of Open Access Journals (Sweden)

    O. Lyubchyk

    2014-11-01

    Full Text Available We study three-wave resonant interactions among kinetic-scale oblique sound waves in the low-frequency range below the ion cyclotron frequency. The nonlinear eigenmode equation is derived in the framework of a two-fluid plasma model. Because of dispersive modifications at small wavelengths perpendicular to the background magnetic field, these waves become a decay-type mode. We found two decay channels, one into co-propagating product waves (forward decay, and another into counter-propagating product waves (reverse decay. All wavenumbers in the forward decay are similar and hence this decay is local in wavenumber space. On the contrary, the reverse decay generates waves with wavenumbers that are much larger than in the original pump waves and is therefore intrinsically nonlocal. In general, the reverse decay is significantly faster than the forward one, suggesting a nonlocal spectral transport induced by oblique sound waves. Even with low-amplitude sound waves the nonlinear interaction rate is larger than the collisionless dissipation rate. Possible applications regarding acoustic waves observed in the solar corona, solar wind, and topside ionosphere are briefly discussed.

  2. Sound waves and shock waves in high-density deuterium

    International Nuclear Information System (INIS)

    Inoue, Kazuko; Ariyasu, Tomio

    1991-01-01

    The possibility of compressing the cryogenic hollow pellet of inertial confinement nuclear fusion with multiple adiabatic shock waves is discussed, on the basis of the estimation of the properties of a high-density deuterium plasma (10 24 -10 27 cm -3 , 10 -1 -10 4 eV), such as the velocity and the attenuation constant of the adiabatic sound wave, the width of the shock wave, and the surface tension. It is found that in the course of compression the wavelength of the adiabatic sound wave and the width of the weak shock wave sometimes become comparable to or exceed the fuel shell width of the pellet, and that the surface tension is negative. These results show that it is rather difficult to compress stably the hollow pellet with successive weak shock waves. (author)

  3. Excitation of instability waves in a two-dimensional shear layer by sound

    Science.gov (United States)

    Tam, C. K. W.

    1978-01-01

    The excitation of instability waves in a plane compressible shear layer by sound waves is studied. The problem is formulated mathematically as an inhomogeneous boundary-value problem. A general solution for abitrary incident sound wave is found by first constructing the Green's function of the problem. Numerical values of the coupling constants between incident sound waves and excited instability waves for a range of flow Mach number are calculated. The effect of the angle of incidence in the case of a beam of acoustic waves is analyzed. It is found that for moderate subsonic Mach numbers a narrow beam aiming at an angle between 50 to 80 deg to the flow direction is most effective in exciting instability waves.

  4. Nonlinear wave interactions of kinetic sound waves

    Directory of Open Access Journals (Sweden)

    G. Brodin

    2015-08-01

    Full Text Available We reconsider the nonlinear resonant interaction between three electrostatic waves in a magnetized plasma. The general coupling coefficients derived from kinetic theory are reduced here to the low-frequency limit. The main contribution to the coupling coefficient we find in this way agrees with the coefficient recently presented in Annales Geophysicae. But we also deduce another contribution which sometimes can be important, and which qualitatively agrees with that of an even more recent paper. We have thus demonstrated how results derived from fluid theory can be improved and generalized by means of kinetic theory. Possible extensions of our results are outlined.

  5. Crova's Disc: A Way to Make Sound Waves "Visible."

    Science.gov (United States)

    Hastings, R. B.

    1981-01-01

    Explained are the differences between and offered are examples of longitudinal and transverse sound waves. Described is the construction of the Crova's Disc, a device used in the teaching of the propagation and properties of sound waves. (DS)

  6. Transformation of second sound into surface waves in superfluid helium

    International Nuclear Information System (INIS)

    Khalatnikov, I.M.; Kolmakov, G.V.; Pokrovsky, V.L.

    1995-01-01

    The Hamiltonian theory of superfluid liquid with a free boundary is developed. Nonlinear amplitudes of parametric Cherenkov radiation of a surface wave by second sound and the inner decay of second sound waves are found. Threshold amplitudes of second sound waves for these two processes are determined. 4 refs

  7. WAVE: Interactive Wave-based Sound Propagation for Virtual Environments.

    Science.gov (United States)

    Mehra, Ravish; Rungta, Atul; Golas, Abhinav; Ming Lin; Manocha, Dinesh

    2015-04-01

    We present an interactive wave-based sound propagation system that generates accurate, realistic sound in virtual environments for dynamic (moving) sources and listeners. We propose a novel algorithm to accurately solve the wave equation for dynamic sources and listeners using a combination of precomputation techniques and GPU-based runtime evaluation. Our system can handle large environments typically used in VR applications, compute spatial sound corresponding to listener's motion (including head tracking) and handle both omnidirectional and directional sources, all at interactive rates. As compared to prior wave-based techniques applied to large scenes with moving sources, we observe significant improvement in runtime memory. The overall sound-propagation and rendering system has been integrated with the Half-Life 2 game engine, Oculus-Rift head-mounted display, and the Xbox game controller to enable users to experience high-quality acoustic effects (e.g., amplification, diffraction low-passing, high-order scattering) and spatial audio, based on their interactions in the VR application. We provide the results of preliminary user evaluations, conducted to study the impact of wave-based acoustic effects and spatial audio on users' navigation performance in virtual environments.

  8. Testing Cosmology with Cosmic Sound Waves

    CERN Document Server

    Corasaniti, Pier Stefano

    2008-01-01

    WMAP observations have accurately determined the position of the first two peaks and dips in the CMB temperature power spectrum. These encode information on the ratio of the distance to the last scattering surface to the sound horizon at decoupling. However pre-recombination processes can contaminate this distance information. In order to assess the amplitude of these effects we use the WMAP data and evaluate the relative differences of the CMB peaks and dips multipoles. We find that the position of the first peak is largely displaced with the respect to the expected position of the sound horizon scale at decoupling. In contrast the relative spacings of the higher extrema are statistically consistent with those expected from perfect harmonic oscillations. This provides evidence for a scale dependent phase shift of the CMB oscillations which is caused by gravitational driving forces affecting the propagation of sound waves before recombination. By accounting for these effects we have performed a MCMC likelihoo...

  9. Cyclical Wave Bolt for Sound Waves in a Gas Stream

    Directory of Open Access Journals (Sweden)

    Vladimir Arabadzhi

    2017-12-01

    Full Text Available This article is devoted to the problem of blocking the propagation of sound in a gas stream. This can be useful in the problems of pipeline acoustics and the design of automotive silencers, when it is necessary to ensure the opacity of the boundary (cross section of the pipe for sound simultaneously with the free (ideally flow through this boundary. The tool for solving this problem is the rapid periodic overlapping of waveguide (gas-conducting channels in a system of parallel waveguides. The design of the proposed device assumes the following technological requirements: high mechanical rigidity of the elements, high accuracy of their manufacture and high rotor speed. Fulfillment of these conditions allows creating an effective device for blocking sound in the gas flow. Such a device may have small wave dimensions (with respect to the wavelength of sound and a small expenditure of mechanical power to push gas through it very wide frequency range of silencing.

  10. How to Use a Candle to Study Sound Waves

    Science.gov (United States)

    Carvalho, P. Simeão; Briosa, E.; Rodrigues, M.; Pereira, C.; Ataíde, M.

    2013-01-01

    It is well known that sound waves in air are longitudinal waves. Although teachers use analogies such as compressing horizontal springs to demonstrate what longitudinal waves look like, students still present some difficulty in understanding that (1) sound waves correspond to oscillations of air particles, and (2) there is no "air flow"…

  11. Standing Sound Waves in Air with DataStudio

    Science.gov (United States)

    Kraftmakher, Yaakov

    2010-01-01

    Two experiments related to standing sound waves in air are adapted for using the ScienceWorkshop data-acquisition system with the DataStudio software from PASCO scientific. First, the standing waves are created by reflection from a plane reflector. The distribution of the sound pressure along the standing wave is measured. Second, the resonance…

  12. Measurement of incident sound power using near field acoustic holography

    DEFF Research Database (Denmark)

    Jacobsen, Finn; Tiana Roig, Elisabet

    2009-01-01

    ; and it has always been regarded as impossible to measure the sound power that is incident on a wall directly. This paper examines a new method of determining this quantity from sound pressure measurements at positions on the wall using ‘statistically optimised near field acoustic holography’ (SONAH...

  13. Testing cosmology with cosmic sound waves

    International Nuclear Information System (INIS)

    Corasaniti, Pier Stefano; Melchiorri, Alessandro

    2008-01-01

    Wilkinson Microwave Anisotropy Probe (WMAP) observations have accurately determined the position of the first two peaks and dips in the cosmic microwave background (CMB) temperature power spectrum. These encode information on the ratio of the distance to the last scattering surface to the sound horizon at decoupling. However prerecombination processes can contaminate this distance information. In order to assess the amplitude of these effects, we use the WMAP data and evaluate the relative differences of the CMB peak and dip multipoles. We find that the position of the first peak is largely displaced with respect to the expected position of the sound horizon scale at decoupling. In contrast, the relative spacings of the higher extrema are statistically consistent with those expected from perfect harmonic oscillations. This provides evidence for a scale dependent phase shift of the CMB oscillations which is caused by gravitational driving forces affecting the propagation of sound waves before recombination. By accounting for these effects we have performed a Markov Chain Monte Carlo likelihood analysis of the location of WMAP extrema to constrain, in combination with recent BAO data, a constant dark energy equation of state parameter w. For a flat universe we find a strong 2σ upper limit w a of the acoustic horizon at decoupling for several cosmologies, to test their dependence on model assumptions. Although the analysis of the full CMB spectra should always be preferred, using the position of the CMB peaks and dips provides a simple and consistent method for combining CMB constraints with other data sets

  14. Viscosity and attenuation of sound wave in high density deuterium

    International Nuclear Information System (INIS)

    Inoue, Kazuko; Ariyasu, Tomio

    1985-01-01

    The penetration of low frequency sound wave into the fuel deuterium is discussed as for laser fusion. The sound velocity and the attenuation constant due to viscosity are calculated for high density (n = 10 24 -- 10 27 cm -3 , T = 10 -1 -- 10 4 eV) deuterium. The shear viscosity of free electron gas and the bulk viscosity due to ion-ion interaction mainly contribute to the attenuation of sound wave. The sound wave of the frequency below 10 10 Hz can easily penetrate through the compressed fuel deuterium of diameter 1 -- 10 3 μm. (author)

  15. Visualization of Sound Waves Using Regularly Spaced Soap Films

    Science.gov (United States)

    Elias, F.; Hutzler, S.; Ferreira, M. S.

    2007-01-01

    We describe a novel demonstration experiment for the visualization and measurement of standing sound waves in a tube. The tube is filled with equally spaced soap films whose thickness varies in response to the amplitude of the sound wave. The thickness variations are made visible based on optical interference. The distance between two antinodes is…

  16. Experiments on second-sound shock waves in superfluid helium

    International Nuclear Information System (INIS)

    Cummings, J.C.; Schmidt, D.W.; Wagner, W.J.

    1978-01-01

    The waveform and velocity of second-sound waves in superfluid helium have been studied experimentally using superconducting, thin-film probes. The second-sound waves were generated with electrical pulses through a resistive film. Variations in pulse power, pulse duration, and bath temperature were examined. As predicted theoretically, the formation of a shock was observed at the leading or trailing edge of the waves depending on bath temperature. Breakdown of the theoretical model was observed for large pulse powers. Accurate data for the acoustic second-sound speed were derived from the measurements of shock-wave velocities and are compared with previous results

  17. Temporomandibular joint sounds and disc dislocations incidence after orotracheal intubation

    Directory of Open Access Journals (Sweden)

    Estela T Rodrigues

    2009-12-01

    Full Text Available Estela T Rodrigues1, Iván C Suazo2, Antonio S Guimarães31Centro de Pós Graduação em Odontologia São Leopoldo Mandic, Campinas, Brasil; 2Department of Morphology. Universidad de Talca, Talca, Chile; 3Centro de Pós Graduação em Odontologia São Leopoldo Mandic, Campinas, BrasilAbstract: The aim of this study was to analyze the temporomandibular joint (TMJ disc displacement and articular sounds incidence after orotracheal intubation. A prospective cohort study was conducted in the Hospital Universitário do Oeste do Paraná (HUOP, in Cascavel, Brazil. 100 patients (aged 14–74 years, mean 44 years, 34 male and 66 female, in need of surgical procedure with orotracheal intubation were evaluated. The anterior disc displacement with reduction incidence and the nonclassifiable sounds incidence by the Research Diagnostic Criteria Axis I was evaluated in all patients after orotracheal intubation. The patients was evaluated one day before and until two days after the procedure. Eight percent present with anterior disc displacement with reduction and 10% presented nonclassifiable sounds after the orotracheal intubation. There was no correlation of any kind regarding gender related influence in the incidence of disc dislocations (P = 0.2591 and TMJ sounds (P = 0.487. Although anterior disc dislocations and TMJ sounds after anesthetic with orotracheal intubation presented a low incidence (8%–10%, it is recommended that the evaluation of TMJ signs and symptoms be done before the anesthetic procedure to take care with susceptible patients manipulation.Keywords: orotracheal intubation, TMJ sounds, TMJ dislocations, TMJ disorders, disc displacement, surgical procedure

  18. In situ measurements of the oblique incidence sound absorption coefficient for finite sized absorbers

    DEFF Research Database (Denmark)

    Ottink, Marco; Brunskog, Jonas; Jeong, Cheol-Ho

    2016-01-01

    for the finiteness of the absorber. A sound field model, which accounts for scattering from the finite absorber edges, assuming plane wave incidence is derived. A significant influence of the finiteness on the radiation impedance and the corresponding absorption coefficient is found. A finite surface method, which......Absorption coefficients are mostly measured in reverberation rooms or with impedance tubes. Since these methods are only suitable for measuring the random incidence and the normal incidence absorption coefficient, there exists an increasing need for absorption coefficient measurement of finite...... absorbers at oblique incidence in situ. Due to the edge diffraction effect, oblique incidence methods considering an infinite sample fail to measure the absorption coefficient at large incidence angles of finite samples. This paper aims for the development of a measurement method that accounts...

  19. [Pneumonia, when sound waves mix things up].

    Science.gov (United States)

    Wachters, C; Hildebrand, M

    2011-01-01

    A 29-year old man is admitted in our hospital for a dry cough which appeared a few weeks earlier and is now associated with a breath depending thoracic pain. As an engineer, he is realizing a thesis about the sound waves produced by coughing and is therefore frequently exposed to patients with various pulmonary infections. The chest X-ray, presents predominant pulmonary infiltrates on the periphery of the upper fields of the lungs. Blood analysis revealed a hypereosinophilia of 4.650/microl. The various bacteriological, parasitic and viral investigation tests are negative. The bronchioalveolar washing reveals more than 50% eosinophils. Exclusive pulmonary impairment and lack of autoantibody moved us to the diagnosis of chronic eosinophilic pneumonia (or Carrington syndrome). Corticosteroids were started at the dosis of 0,5 mg/kg of methyl-prednisolone. Clinical and biological features improved amazingly within 48 hours. This case report illustrates the overlap between the chronic eosinophilic pneumonia and the Churg-Strauss desease who can be considered as variants of the hypereosinophilic syndrome (HES). Therefore, the use of anti-interleukin-5 antibodies, already used in the SHE and Churg-Strauss syndrome, might be useful in this case.

  20. Propagation of sound waves in ducts

    DEFF Research Database (Denmark)

    Jacobsen, Finn

    2000-01-01

    Plane wave propagation in ducts with rigid walls, radiation from ducts, classical four-pole theory for composite duct systems, and three-dimentional waves in wave guides of various cross-sectional shape are described.......Plane wave propagation in ducts with rigid walls, radiation from ducts, classical four-pole theory for composite duct systems, and three-dimentional waves in wave guides of various cross-sectional shape are described....

  1. Synthesis of very small diameter silica nanofibers using sound waves.

    Science.gov (United States)

    Datskos, Panos; Chen, Jihua; Sharma, Jaswinder

    2014-07-14

    Silica nanofibers of an average diameter ≈30 nm and length ≈100 μm have been synthesized using an unprecedented strategy: sound waves. A new phenomenon, spinning off the nanofibers at silica rod tips, is also observed.

  2. Update on the Effects of Sound Wave on Plants

    Directory of Open Access Journals (Sweden)

    Md. Emran Khan Chowdhury

    2014-03-01

    Full Text Available Plant growth is considered the sum of cell proliferation and subsequent elongation of the cells. The continuous proliferation and elongation of plant cells are vital to the production of new organs, which have a significant impact on overall plant growth. Accordingly, the relationship between environmental stimuli, such as temperature, light, wind, and sound waves to plant growth is of great interest in studies of plant development. Sound waves can have negative or positive effects on plant growth. In this review paper we have summarized the relationship between sound waves and plant growth response. Sound waves with specific frequencies and intensities can have positive effects on various plant biological indices including seed germination, root elongation, plant height, callus growth, cell cycling, signaling transduction systems, enzymatic and hormonal activities, and gene expression.

  3. Air-borne sound generated by sea waves.

    Science.gov (United States)

    Bolin, Karl; Åbom, Mats

    2010-05-01

    This paper describes a semi-empiric model and measurements of air-borne sound generated by breaking sea waves. Measurements have been performed at the Baltic Sea. Shores with different slopes and sediment types have been investigated. Results showed that the sound pressure level increased from 60 dB at 0.4 m wave height to 78 dB at 2.0 m wave height. The 1/3 octave spectrum was dependent on the surf type. A scaling model based on the dissipated wave power and a surf similarity parameter is proposed and compared to measurements. The predictions show satisfactory agreement to the measurements.

  4. Magnetic field generation by sound waves in the solar atmosphere

    International Nuclear Information System (INIS)

    Rytuov, D.D.; Ryutova, M.P.

    1989-01-01

    The authors show that sound waves which are generated in the convective zone of the Sun excite an electric current (and a magnetic field) in the transition region from the chromosphere to the corona. The excitation of the current is connected with the absorption of part of the momentum of the waves by electrons as a result of the electron thermal conductivity. When sound waves propagate in the direction of decreasing density their leading front becomes steeper. This leads to the formation of weak shock waves and - thanks to the fast energy dissipation at the front - to a stronger magnetic field generation

  5. Analyzing Sound Waves Produced by Musical Notes & Chords.

    Science.gov (United States)

    Cassidy, Michael

    This project description is designed to show how graphing calculators and calculator-based laboratories (CBL) can be used to explore topics in the physics of sound. The activities address topics such as sound waves, musical notes, and chords. Teaching notes, calculator instructions, and blackline masters are included. (MM)

  6. Demonstrating Sound Wave Propagation with Candle Flame and Loudspeaker

    Science.gov (United States)

    Hrepic, Zdeslav; Nettles, Corey; Bonilla, Chelsea

    2013-01-01

    The motion of a candle flame in front of a loudspeaker has been suggested as a productive demonstration of the longitudinal wave nature of sound. The demonstration has been used also as a research tool to investigate students' understanding about sound. The underpinning of both applications is the expectation of a horizontal, back-and-forth…

  7. In situ measurements of the oblique incidence sound absorption coefficient for finite sized absorbers.

    Science.gov (United States)

    Ottink, Marco; Brunskog, Jonas; Jeong, Cheol-Ho; Fernandez-Grande, Efren; Trojgaard, Per; Tiana-Roig, Elisabet

    2016-01-01

    Absorption coefficients are mostly measured in reverberation rooms or with impedance tubes. Since these methods are only suitable for measuring the random incidence and the normal incidence absorption coefficient, there exists an increasing need for absorption coefficient measurement of finite absorbers at oblique incidence in situ. Due to the edge diffraction effect, oblique incidence methods considering an infinite sample fail to measure the absorption coefficient at large incidence angles of finite samples. This paper aims for the development of a measurement method that accounts for the finiteness of the absorber. A sound field model, which accounts for scattering from the finite absorber edges, assuming plane wave incidence is derived. A significant influence of the finiteness on the radiation impedance and the corresponding absorption coefficient is found. A finite surface method, which combines microphone array measurements over a finite sample with the sound field model in an inverse manner, is proposed. Besides, a temporal subtraction method, a microphone array method, impedance tube measurements, and an equivalent fluid model are used for validation. The finite surface method gives promising agreement with theory, especially at near grazing incidence. Thus, the finite surface method is proposed for further measurements at large incidence angles.

  8. The generation of a Tollmien-Schlichting wave by a sound wave

    International Nuclear Information System (INIS)

    Murdock, J.W.

    1980-01-01

    A spectral numerical method is used to study the two-dimensional unsteady flow over a flat plate in the presence of a plane sound wave propagating parallel to the flow. For s = ωx/Uinfinite > 0(1), no observable interaction or energy interchange between the sound wave and the Tollmien-Schlichting wave is present. In the region s 2 infinite = 56 x 10 -6 generates a Tollmien-Schlichting wave of the same frequency and an amplitude at the first neutral point 10 -4 times the sound-wave amplitude. (orig.)

  9. Sound waves in (2+1) dimensional holographic magnetic fluids

    International Nuclear Information System (INIS)

    Buchbinder, Evgeny I.; Buchel, Alex; Vazquez, Samuel E.

    2008-01-01

    We use the AdS/CFT correspondence to study propagation of sound waves in strongly coupled (2+1) dimensional conformal magnetic fluids. Our computation provides a nontrivial consistency check of the viscous magneto-hydrodynamics of Hartnoll-Kovtun-Mueller-Sachdev to leading order in the external field. Depending on the behavior of the magnetic field in the hydrodynamic limit, we show that it can lead to further attenuation of sound waves in the (2+1) dimensional conformal plasma, or reduce the speed of sound. We present both field theory and dual supergravity descriptions of these phenomena. While to the leading order in momenta the dispersion of the sound waves obtained from the dual supergravity description agrees with the one predicted from field theory, we find a discrepancy at higher order. This suggests that further corrections to HKMS magneto-hydrodynamics are necessary.

  10. High frequency ion sound waves associated with Langmuir waves in type III radio burst source regions

    Directory of Open Access Journals (Sweden)

    G. Thejappa

    2004-01-01

    Full Text Available Short wavelength ion sound waves (2-4kHz are detected in association with the Langmuir waves (~15-30kHz in the source regions of several local type III radio bursts. They are most probably not due to any resonant wave-wave interactions such as the electrostatic decay instability because their wavelengths are much shorter than those of Langmuir waves. The Langmuir waves occur as coherent field structures with peak intensities exceeding the Langmuir collapse thresholds. Their scale sizes are of the order of the wavelength of an ion sound wave. These Langmuir wave field characteristics indicate that the observed short wavelength ion sound waves are most probably generated during the thermalization of the burnt-out cavitons left behind by the Langmuir collapse. Moreover, the peak intensities of the observed short wavelength ion sound waves are comparable to the expected intensities of those ion sound waves radiated by the burnt-out cavitons. However, the speeds of the electron beams derived from the frequency drift of type III radio bursts are too slow to satisfy the needed adiabatic ion approximation. Therefore, some non-linear process such as the induced scattering on thermal ions most probably pumps the beam excited Langmuir waves towards the lower wavenumbers, where the adiabatic ion approximation is justified.

  11. Assessment of normal incidence absorption performance of sound absorbing materials

    Directory of Open Access Journals (Sweden)

    Farhad Forouharmajd

    2016-01-01

    Full Text Available Aims: The purpose of the present work was to consider the effect of different samples thicknesses on the acoustic absorption coefficient. Materials and Methods: An impedance tube was built with two microphones accordance to ISO-10534 and the American Society for Testing Materials-E1050 standards. For the measurement of absorption, the study was carried for 25 and 30 mm thicknesses of closed cell polyurethane foam, polystyrene, polyvinyl chloride (PVC, rubber, mineral wool, carpet, and glass samples. Measurements were performed by impedance tube and VA-lab4 software. Results: In carpet and mineral wool with more thickness, the absorption was increased but, the carpet with less thickness showed more sound absorption in the frequency range of 1500-3600 Hz. The peak of the absorption coefficient of 25 mm glass was 0.36 that the amount was reduced to 0.2 in the 30 mm thickness. Furthermore, the difference between the peak absorption of two thicknesses in polystyrene sample was equal to 0.29. In fact, polystyrene with less thickness had better sound absorption. The same situation was happened for glass in frequencies of below 4500 Hz with less thickness. Conclusion: Incident sound energy, which is not absorbed, must be reflected, transmitted, or dissipated. The porous materials had a higher absorption coefficient. Carpet and mineral wool samples had the highest absorption coefficient, but the materials such as polyurethane foam, PVC, and rubber had lower sound absorption.

  12. Sound Wave Energy Resulting from the Impact of Water Drops on the Soil Surface.

    Directory of Open Access Journals (Sweden)

    Magdalena Ryżak

    Full Text Available The splashing of water drops on a soil surface is the first step of water erosion. There have been many investigations into splashing-most are based on recording and analysing images taken with high-speed cameras, or measuring the mass of the soil moved by splashing. Here, we present a new aspect of the splash phenomenon's characterization the measurement of the sound pressure level and the sound energy of the wave that propagates in the air. The measurements were carried out for 10 consecutive water drop impacts on the soil surface. Three soils were tested (Endogleyic Umbrisol, Fluvic Endogleyic Cambisol and Haplic Chernozem with four initial moisture levels (pressure heads: 0.1 kPa, 1 kPa, 3.16 kPa and 16 kPa. We found that the values of the sound pressure and sound wave energy were dependent on the particle size distribution of the soil, less dependent on the initial pressure head, and practically the same for subsequent water drops (from the first to the tenth drop. The highest sound pressure level (and the greatest variability was for Endogleyic Umbrisol, which had the highest sand fraction content. The sound pressure for this soil increased from 29 dB to 42 dB with the next incidence of drops falling on the sample The smallest (and the lowest variability was for Fluvic Endogleyic Cambisol which had the highest clay fraction. For all experiments the sound pressure level ranged from ~27 to ~42 dB and the energy emitted in the form of sound waves was within the range of 0.14 μJ to 5.26 μJ. This was from 0.03 to 1.07% of the energy of the incident drops.

  13. Sound Wave Energy Resulting from the Impact of Water Drops on the Soil Surface.

    Science.gov (United States)

    Ryżak, Magdalena; Bieganowski, Andrzej; Korbiel, Tomasz

    2016-01-01

    The splashing of water drops on a soil surface is the first step of water erosion. There have been many investigations into splashing-most are based on recording and analysing images taken with high-speed cameras, or measuring the mass of the soil moved by splashing. Here, we present a new aspect of the splash phenomenon's characterization the measurement of the sound pressure level and the sound energy of the wave that propagates in the air. The measurements were carried out for 10 consecutive water drop impacts on the soil surface. Three soils were tested (Endogleyic Umbrisol, Fluvic Endogleyic Cambisol and Haplic Chernozem) with four initial moisture levels (pressure heads: 0.1 kPa, 1 kPa, 3.16 kPa and 16 kPa). We found that the values of the sound pressure and sound wave energy were dependent on the particle size distribution of the soil, less dependent on the initial pressure head, and practically the same for subsequent water drops (from the first to the tenth drop). The highest sound pressure level (and the greatest variability) was for Endogleyic Umbrisol, which had the highest sand fraction content. The sound pressure for this soil increased from 29 dB to 42 dB with the next incidence of drops falling on the sample The smallest (and the lowest variability) was for Fluvic Endogleyic Cambisol which had the highest clay fraction. For all experiments the sound pressure level ranged from ~27 to ~42 dB and the energy emitted in the form of sound waves was within the range of 0.14 μJ to 5.26 μJ. This was from 0.03 to 1.07% of the energy of the incident drops.

  14. Effects of internal waves on sound propagation in the shallow waters of the continental shelves

    OpenAIRE

    Ong, Ming Yi

    2016-01-01

    Approved for public release; distribution is unlimited Sound waves propagating through the oceans are refracted by internal waves. In the shallow waters of the continental shelves, an additional downward refraction of sound waves due to internal waves can cause them to interact more often with the seabed, resulting in additional energy from the sound waves being dissipated into the seabed. This study investigates how internal waves affect sound propagation on the continental shelves. It fi...

  15. Shallow water sound propagation with surface waves.

    Science.gov (United States)

    Tindle, Chris T; Deane, Grant B

    2005-05-01

    The theory of wavefront modeling in underwater acoustics is extended to allow rapid range dependence of the boundaries such as occurs in shallow water with surface waves. The theory allows for multiple reflections at surface and bottom as well as focusing and defocusing due to reflection from surface waves. The phase and amplitude of the field are calculated directly and used to model pulse propagation in the time domain. Pulse waveforms are obtained directly for all wavefront arrivals including both insonified and shadow regions near caustics. Calculated waveforms agree well with a reference solution and data obtained in a near-shore shallow water experiment with surface waves over a sloping bottom.

  16. Monograph on propagation of sound waves in curved ducts

    Science.gov (United States)

    Rostafinski, Wojciech

    1991-01-01

    After reviewing and evaluating the existing material on sound propagation in curved ducts without flow, it seems strange that, except for Lord Rayleigh in 1878, no book on acoustics has treated the case of wave motion in bends. This monograph reviews the available analytical and experimental material, nearly 30 papers published on this subject so far, and concisely summarizes what has been learned about the motion of sound in hard-wall and acoustically lined cylindrical bends.

  17. Scattering of coherent sound waves by atmospheric turbulence

    Science.gov (United States)

    Chow, P. L.; Liu, C. H.; Maestrello, L.

    1975-01-01

    An analytical study of the propagation of coherent sound waves through an atmosphere containing both mean and fluctuating flow variables is presented. The general flow problem is formulated as a time-dependent wave propagation in a half-space containing the turbulent medium. The coherent acoustic waves are analyzed by a smoothing technique, assuming that mean flow variables vary with the height only. The general equations for the coherent waves are derived, and then applied to two special cases, corresponding to uniform and shear mean flow, respectively. The results show that mean shear and turbulence introduce pronounced effects on the propagation of coherent acoustic disturbances.

  18. Second harmonic plasma emission involving ion sound waves

    Science.gov (United States)

    Cairns, Iver H.

    1987-01-01

    The theory for second harmonic plasma emission by the weak turbulence (or random phase) processes L + L + or - S to T, proceeding in two three-wave steps, L + or - S to L prime and L + L prime to T, where L, S and T denote Langmuir, ion sound and electromagnetic waves, respectively, is developed. Kinematic constraints on the characteristics and growth lengths of waves participating in the wave processes, and constraints on the characteristics of the source plasma, are derived. Limits on the brightness temperature of the radiation and the levels of the L prime and S waves are determined. Expressions for the growth rates and path-integrated wave temperatures are derived for simple models of the wave spectra and source plasma.

  19. Determining the speed of sound in the air by sound wave interference

    Science.gov (United States)

    Silva, Abel A.

    2017-07-01

    Mechanical waves propagate through material media. Sound is an example of a mechanical wave. In fluids like air, sound waves propagate through successive longitudinal perturbations of compression and decompression. Audible sound frequencies for human ears range from 20 to 20 000 Hz. In this study, the speed of sound v in the air is determined using the identification of maxima of interference from two synchronous waves at frequency f. The values of v were correct to 0 °C. The experimental average value of {\\bar{ν }}\\exp =336 +/- 4 {{m}} {{{s}}}-1 was found. It is 1.5% larger than the reference value. The standard deviation of 4 m s-1 (1.2% of {\\bar{ν }}\\exp ) is an improved value by the use of the concept of the central limit theorem. The proposed procedure to determine the speed of sound in the air aims to be an academic activity for physics classes of scientific and technological courses in college.

  20. On the propagation of sound waves in a stellar wind traversed by periodic strong shocks

    OpenAIRE

    Pijpers, F. P.

    1994-01-01

    It has been claimed that in stellar winds traversed by strong shocks the mechanism for driving the wind by sound wave pressure cannot operate because sound waves cannot propagate past the shocks. It is shown here that sound waves can propagate through shocks in one direction and that this is a sufficient condition for the sound wave pressure mechanism to work. A strong shock amplifies a sound wave passing through it and can drag the sound wave away from the star. It is immaterial for the soun...

  1. Understanding and Affecting Student Reasoning about Sound Waves.

    Science.gov (United States)

    Wittmann, Michael C.; Steinberg, Richard N.; Redish, Edward F.

    2003-01-01

    Explains the design and development of curriculum materials that ask students to think about physics from a different view. These group-learning classroom materials specifically aim to bring about improvement of student understanding of sound waves. (Contains 29 references.) (Author/SOE)

  2. Sound wave contours around wind turbine arrays

    International Nuclear Information System (INIS)

    Van Beek, A.; Van Blokland, G.J.

    1993-02-01

    Noise pollution is an important factor in selecting suitable sites for wind turbines in order to realize 1000 MW of wind power as planned by the Dutch government for the year 2000. Therefore an accurate assessment of wind turbine noise is important. The amount of noise pollution from a wind turbine depends on the wind conditions. An existing standard method to assess wind turbine noise is supplemented and adjusted. In the first part of the investigation the method was developed and applied for a solitary sound source. In the second part attention is paid to the use of the method for wind turbine arrays. It appears that the adjusted method results in a shift of the contours of the permitted noise level. In general the contours are 15-25% closer to the wind farm, which means that the minimal permitted distance between houses and wind turbine arrays can be reduced. 14 figs., 1 tab., 4 appendices, 7 refs

  3. Multiple slow waves in metaporous layers for broadband sound absorption

    International Nuclear Information System (INIS)

    Yang, Jieun; Kim, Yoon Young; Lee, Joong Seok

    2017-01-01

    Sound absorption for a broad frequency range requires sound dissipation. The mechanics of acoustic metamaterials for non-dissipative applications has been extensively studied, but sound absorption using dissipative porous metamaterials has been less explored because of the complexity resulting from the coupling of its dissipative mechanism and metamaterial behavior. We investigated broadband sound absorption by engineering dissipative metaporous layers, which absorb sound by the mechanism of multiple slow waves, and combined local and global resonance phenomena. A set of rigid partitions of varying lengths was elaborately inserted in a hard-backed porous layer of a finite thickness. An effective medium theory was used to explain the physics involved; high performance at a low-frequency range was found to be mainly due to the formation of global resonances caused by multiple slow waves over the thickness of the metaporous layer, while enhancement at a high-frequency range was attributed to the combined effects of the global resonances and the local resonances directly related to the sizes of the inserted partitions. (paper)

  4. The energy transport by the propagation of sound waves in wave guides with a moving medium

    NARCIS (Netherlands)

    le Grand, P.

    1977-01-01

    The problem of the propagation of sound waves radiated by a source in a fluid moving with subsonic velocity between two parallel walls or inside a cylindrical tube is considered in [2], The most interesting thing of this problem is that waves may occur with constant amplitude coming from infinity.

  5. Phonon gas and changes of shape of second sound wave

    Directory of Open Access Journals (Sweden)

    T. Ruggeri

    1991-05-01

    Full Text Available A generalized non linear Maxwell-Cattaneo equation is used to study shock waves propagating in a rigid heat conductor at low temperature. Taking into account the experimental values for the second sound velocity, the existence of a critical temperature characteristic of the materials and separating two families of shocks, the “hot” and the “cold” ones, is proved both numerically and analytically. Finally a possible explanation of the distortion of the initial second sound thermal pulse during its propagation is proposed.

  6. Sound topology, duality, coherence and wave-mixing an introduction to the emerging new science of sound

    CERN Document Server

    Deymier, Pierre

    2017-01-01

    This book offers an essential introduction to the notions of sound wave topology, duality, coherence and wave-mixing, which constitute the emerging new science of sound. It includes general principles and specific examples that illuminate new non-conventional forms of sound (sound topology), unconventional quantum-like behavior of phonons (duality), radical linear and nonlinear phenomena associated with loss and its control (coherence), and exquisite effects that emerge from the interaction of sound with other physical and biological waves (wave mixing).  The book provides the reader with the foundations needed to master these complex notions through simple yet meaningful examples. General principles for unraveling and describing the topology of acoustic wave functions in the space of their Eigen values are presented. These principles are then applied to uncover intrinsic and extrinsic approaches to achieving non-conventional topologies by breaking the time revers al symmetry of acoustic waves. Symmetry brea...

  7. Spatial Statistics of Deep-Water Ambient Noise; Dispersion Relations for Sound Waves and Shear Waves

    Science.gov (United States)

    2015-09-30

    Dispersion Relations for Sound Waves and Shear Waves Michael J. Buckingham Marine Physical Laboratory , Scripps Institution of Oceanography University...dry, were all from laboratory experiments, since no in situ broadband shear-wave data were available at the time. (Since then, Megan Ballard and...Texas, 11 March 2014. 5. My graduate student, Simon Freeman, won Outstanding Student Paper Award for “Array-based hydroacoustic characterization of P, S

  8. Cylindrical sound wave generated by shock-vortex interaction

    Science.gov (United States)

    Ribner, H. S.

    1985-01-01

    The passage of a columnar vortex broadside through a shock is investigated. This has been suggested as a crude, but deterministic, model of the generation of 'shock noise' by the turbulence in supersonic jets. The vortex is decomposed by Fourier transform into plane sinusoidal shear waves disposed with radial symmetry. The plane sound waves produced by each shear wave/shock interaction are recombined in the Fourier integral. The waves possess an envelope that is essentially a growing cylindrical sound wave centered at the transmitted vortex. The pressure jump across the nominal radius R = ct attenuates with time as 1/(square root of R) and varies around the arc in an antisymmetric fashion resembling a quadrupole field. Very good agreement, except near the shock, is found with the antisymmetric component of reported interferometric measurements in a shock tube. Beyond the front r approximately equals R is a precursor of opposite sign, that decays like 1/R, generated by the 1/r potential flow around the vortex core. The present work is essentially an extension and update of an early approximate study at M = 1.25. It covers the range (R/core radius) = 10, 100, 1000, and 10,000 for M = 1.25 and (in part) for M = 1.29 and, for fixed (R/core radius) = 1000, the range M = 1.01 to infinity.

  9. Simulation of sound waves using the Lattice Boltzmann Method for fluid flow: Benchmark cases for outdoor sound propagation

    NARCIS (Netherlands)

    Salomons, E.M.; Lohman, W.J.A.; Zhou, H.

    2016-01-01

    Propagation of sound waves in air can be considered as a special case of fluid dynamics. Consequently, the lattice Boltzmann method (LBM) for fluid flow can be used for simulating sound propagation. In this article application of the LBM to sound propagation is illustrated for various cases:

  10. Simulation of Sound Waves Using the Lattice Boltzmann Method for Fluid Flow: Benchmark Cases for Outdoor Sound Propagation.

    Science.gov (United States)

    Salomons, Erik M; Lohman, Walter J A; Zhou, Han

    2016-01-01

    Propagation of sound waves in air can be considered as a special case of fluid dynamics. Consequently, the lattice Boltzmann method (LBM) for fluid flow can be used for simulating sound propagation. In this article application of the LBM to sound propagation is illustrated for various cases: free-field propagation, propagation over porous and non-porous ground, propagation over a noise barrier, and propagation in an atmosphere with wind. LBM results are compared with solutions of the equations of acoustics. It is found that the LBM works well for sound waves, but dissipation of sound waves with the LBM is generally much larger than real dissipation of sound waves in air. To circumvent this problem it is proposed here to use the LBM for assessing the excess sound level, i.e. the difference between the sound level and the free-field sound level. The effect of dissipation on the excess sound level is much smaller than the effect on the sound level, so the LBM can be used to estimate the excess sound level for a non-dissipative atmosphere, which is a useful quantity in atmospheric acoustics. To reduce dissipation in an LBM simulation two approaches are considered: i) reduction of the kinematic viscosity and ii) reduction of the lattice spacing.

  11. Effect of Intense Sound Waves on a Stationary Gas Flame

    Science.gov (United States)

    Hahnemann, H; Ehret, L

    1950-01-01

    Intense sound waves with a resonant frequency of 5000 cycles per second were imposed on a stationary propane-air flame issuing from a nozzle. In addition to a slight increase of the flame velocity, a fundamental change both in the shape of the burning zone and in the flow pattern could be observed. An attempt is made to explain the origin of the variations in the flame configuration on the basis of transition at the nozzle from jet flow to potential flow.

  12. Sound

    CERN Document Server

    Robertson, William C

    2003-01-01

    Muddled about what makes music? Stuck on the study of harmonics? Dumbfounded by how sound gets around? Now you no longer have to struggle to teach concepts you really don t grasp yourself. Sound takes an intentionally light touch to help out all those adults science teachers, parents wanting to help with homework, home-schoolers seeking necessary scientific background to teach middle school physics with confidence. The book introduces sound waves and uses that model to explain sound-related occurrences. Starting with the basics of what causes sound and how it travels, you'll learn how musical instruments work, how sound waves add and subtract, how the human ear works, and even why you can sound like a Munchkin when you inhale helium. Sound is the fourth book in the award-winning Stop Faking It! Series, published by NSTA Press. Like the other popular volumes, it is written by irreverent educator Bill Robertson, who offers this Sound recommendation: One of the coolest activities is whacking a spinning metal rod...

  13. The 2011 marine heat wave in Cockburn Sound, southwest Australia

    Directory of Open Access Journals (Sweden)

    T. H. Rose

    2012-07-01

    Full Text Available Over 2000 km of Western Australian coastline experienced a significant marine heat wave in February and March 2011. Seawater temperature anomalies of +2–4 °C were recorded at a number of locations, and satellite-derived SSTs (sea surface temperatures were the highest on record. Here, we present seawater temperatures from southwestern Australia and describe, in detail, the marine climatology of Cockburn Sound, a large, multiple-use coastal embayment. We compared temperature and dissolved oxygen levels in 2011 with data from routine monitoring conducted from 2002–2010. A significant warming event, 2–4 °C in magnitude, persisted for > 8 weeks, and seawater temperatures at 10 to 20 m depth were significantly higher than those recorded in the previous 9 yr. Dissolved oxygen levels were depressed at most monitoring sites, being ~ 2 mg l−1 lower than usual in early March 2011. Ecological responses to short-term extreme events are poorly understood, but evidence from elsewhere along the Western Australian coastline suggests that the heat wave was associated with high rates of coral bleaching; fish, invertebrate and macroalgae mortalities; and algal blooms. However, there is a paucity of historical information on ecologically-sensitive habitats and taxa in Cockburn Sound, so that formal examinations of biological responses to the heat wave were not possible. The 2011 heat wave provided insights into conditions that may become more prevalent in Cockburn Sound, and elsewhere, if the intensity and frequency of short-term extreme events increases as predicted.

  14. Effect of Sound Waves on Decarburization Rate of Fe-C Melt

    Science.gov (United States)

    Komarov, Sergey V.; Sano, Masamichi

    2018-02-01

    Sound waves have the ability to propagate through a gas phase and, thus, to supply the acoustic energy from a sound generator to materials being processed. This offers an attractive tool, for example, for controlling the rates of interfacial reactions in steelmaking processes. This study investigates the kinetics of decarburization in molten Fe-C alloys, the surface of which was exposed to sound waves and Ar-O2 gas blown onto the melt surface. The main emphasis is placed on clarifying effects of sound frequency, sound pressure, and gas flow rate. A series of water model experiments and numerical simulations are also performed to explain the results of high-temperature experiments and to elucidate the mechanism of sound wave application. This is explained by two phenomena that occur simultaneously: (1) turbulization of Ar-O2 gas flow by sound wave above the melt surface and (2) motion and agitation of the melt surface when exposed to sound wave. It is found that sound waves can both accelerate and inhibit the decarburization rate depending on the Ar-O2 gas flow rate and the presence of oxide film on the melt surface. The effect of sound waves is clearly observed only at higher sound pressures on resonance frequencies, which are defined by geometrical features of the experimental setup. The resonance phenomenon makes it difficult to separate the effect of sound frequency from that of sound pressure under the present experimental conditions.

  15. Landau damping of sound waves in kinetic magnetohydrodynamics

    Science.gov (United States)

    Ramos, Jesus J.

    2017-10-01

    The Landau damping of slow sound waves propagating parallel to the magnetic field in a homogeneous, collisionless and quasineutral plasma is investigated using the kinetic magnetohydrodynamics formulation of Ref.. In this approach, the electric field is eliminated from a closed, hybrid fluid-kinetic system that ensures automatically the fulfillment of the quasineutrality condition. Considering the time evolution of a parallel-propagating sound wave spatial Fourier mode, this can be cast as a standard, second-order self-adjoint problem, with a continuum spectrum of real and positive squared frequencies. Therefore, a standard resolution of the identity with a single continuum basis of singular normal modes is guaranteed, which simplifies significantly a Van Kampen-like treatment of the Landau damping. The explicit form of such singular normal modes is obtained and they are used to derive the damped time evolution of the fluid moments of a wave packet of distribution functions in an initial value problem. As mentioned, the electric field is not used in the treatment of this problem, but it is calculated from its solution after it has been obtained.

  16. Listening to sounds from an exploding meteor and oceanic waves

    Science.gov (United States)

    Evers, L. G.; Haak, H. W.

    Low frequency sound (infrasound) measurements have been selected within the Comprehensive Nuclear-Test-Ban Treaty (CTBT) as a technique to detect and identify possible nuclear explosions. The Seismology Division of the Royal Netherlands Meteorological Institute (KNMI) operates since 1999 an experimental infrasound array of 16 micro-barometers. Here we show the rare detection and identification of an exploding meteor above Northern Germany on November 8th, 1999 with data from the Deelen Infrasound Array (DIA). At the same time, sound was radiated from the Atlantic Ocean, South of Iceland, due to the atmospheric coupling of standing ocean waves, called microbaroms. Occurring with only 0.04 Hz difference in dominant frequency, DIA proved to be able to discriminate between the physically different sources of infrasound through its unique lay-out and instruments. The explosive power of the meteor being 1.5 kT TNT is in the range of nuclear explosions and therefore relevant to the CTBT.

  17. Finite-Difference Algorithms For Computing Sound Waves

    Science.gov (United States)

    Davis, Sanford

    1993-01-01

    Governing equations considered as matrix system. Method variant of method described in "Scheme for Finite-Difference Computations of Waves" (ARC-12970). Present method begins with matrix-vector formulation of fundamental equations, involving first-order partial derivatives of primitive variables with respect to space and time. Particular matrix formulation places time and spatial coordinates on equal footing, so governing equations considered as matrix system and treated as unit. Spatial and temporal discretizations not treated separately as in other finite-difference methods, instead treated together by linking spatial-grid interval and time step via common scale factor related to speed of sound.

  18. Temperature oscillations and sound waves in hadronic matter

    Science.gov (United States)

    Wilk, G.; Włodarczyk, Z.

    2017-11-01

    Recent high energy CERN LHC experiments on transverse momenta distributions of produced particles seem to show the existence of some (small but persistent) log-periodic oscillation in the ratios R =σdata(pT) /σfit(pT). We argue that they can provide us with so far unnoticed information on the production process, which can be interpreted as the presence of some kind of sound waves formed during the collision process in the bulk of the produced high density matter.

  19. Digitizing Sound: How Can Sound Waves be Turned into Ones and Zeros?

    Science.gov (United States)

    Vick, Matthew

    2010-10-01

    From MP3 players to cell phones to computer games, we're surrounded by a constant stream of ones and zeros. Do we really need to know how this technology works? While nobody can understand everything, digital technology is increasingly making our lives a collection of "black boxes" that we can use but have no idea how they work. Pursuing scientific literacy should propel us to open up a few of these metaphorical boxes. High school physics offers opportunities to connect the curriculum to sports, art, music, and electricity, but it also offers connections to computers and digital music. Learning activities about digitizing sounds offer wonderful opportunities for technology integration and student problem solving. I used this series of lessons in high school physics after teaching about waves and sound but before optics and total internal reflection so that the concepts could be further extended when learning about fiber optics.

  20. Incident Wave Climate at the OWC Pico Plant

    DEFF Research Database (Denmark)

    Le Crom, I.; Cabrera Bermejo, H.; Pecher, Arthur

    2011-01-01

    The aim of the study is to retrieve the incident wave information that coincides with former Pico plant operation periods. The recent implementation of a directional pressure sensor for wave measurement as well as the recovery of the data gathered by a directional wave rider buoy allowed embarkin...... on the validation of two different models by using both wave measurements: a model for wave propagation (SWAN) and an Artificial Neural Network (ANN). This paper, as a first step of a comprehensive study, leads to several recommendations to improve both methodologies in future works....

  1. Jump in the amplitude of a sound wave associated with contraction of a nitrogen discharge

    International Nuclear Information System (INIS)

    Galechyan, G.A.; Mkrtchyan, A.R.; Tavakalyan, L.B.

    1993-01-01

    The use of a sound wave created by an external source and directed along the positive column of a nitrogen discharge in order to make the discharge pass to the contracted state is studied experimentally. A phenomenon involving a jump in the sound wave amplitude, caused by the discharge contraction, is observed and studied. It is established that the amplitude of the sound wave as a function of the discharge current near the jump exhibits hysteresis. It is shown that in the field of a high-intensity sound wave causing the discharge to expand eliminates the jump in the sound amplitude. The dependence of the growth time of the sound amplitude caused by the jump in this quantity on the sound wave intensity is determined. 24 refs., 4 figs., 1 tab

  2. Second sound shock waves in rotating superfluid helium

    International Nuclear Information System (INIS)

    Torczynski, J.R.

    1983-01-01

    Second sound shock waves have been used to examine the breakdown of superfluidity in bulk He II. The maximum counterflow velocity achieved in this manner was measured at a variety of temperatures and pressures. The results are found to agree with predictions of vortex nucleation theories (Langer and Fisher, 1967) in their pressure and temperature dependences although it was shown that dissipation occurred only near the heater. A simple scaling argument is suggested, assuming breakdown occurs near the heater. A vortex dynamics model of breakdown (following the method of Turner, private communication) is developed. To examine the effect of vorticity on breakdown, second sound shocks were produced in rotating helium. Experiments were performed in which the shocks propagated either along or normal to the axis of rotation, called axial and transverse cases, respectively. In both cases the decay was seen to increase monotonically with the rotation rate. Furthermore, the decay was ongoing rather than being confined to a narrow region near the heater. However, the extraordinary dissipation in the transverse case seemed to be related primarily to the arrival of secondary waves from the heater-sidewall boundary. An explanation of this difference is put forth in terms of vortex nucleation in the bulk fluid, using ideas similar to Crocco's Theorem. In order to examine the breakdown of superfluidity away from walls in nonrotation fluid, spherically converging second shocks were produced. The temperature jumps of the waves were measured, and exact numerical solutions of the two-fluid jump conditions (Moody, 1983) were used to calculate the relative velocity in each case

  3. Transmission of high frequency sound waves through a slug flow jet

    Science.gov (United States)

    Parthasarathy, S. P.; Vijayaraghavan, A.

    1980-01-01

    An analysis has been performed of sound waves which propagate in a pipe with gas flow. At the pipe exit these waves are partially reflected and the remainder are diffracted. The analysis is carried out by resolving the sound at the exit into its Fourier components and then continuing the solution, which is a combination of elementary plane waves, beyond the exit. These waves are of two types: homogeneous waves which propagate to infinity, and inhomogeneous waves with complex wave numbers which decay. The reflected waves are evaluated from the inhomogeneous waves. At the boundary of the jet, refraction of the elementary plane waves is accounted for and the far field sound is evaluated by the method of stationary phase. Comparisons of the theoretical calculations are made with experimental results and with calculations of other theories.

  4. [Experimental study on conduction of Gong tonality vibromusic sound wave in the healthy human body].

    Science.gov (United States)

    Wei, Yu-lin; Tu, Yi-wen; Liang, Tian-tian; Han, Biao; Liu, Wei

    2005-02-01

    To study the conduction of Gong tonality vibromusic sound wave along meridians in healthy human body, and investigate differences of the sensitivity of different meridians and genders to this vibromusic message. Emit the Gong tonality music signal under the water and then investigate the responses of different acupoints and control points at the tissue of the same level to the vibromusic sound wave. There were differences of sensitivity to music waves at source acupoints on the foot, sensitivity of Zusanli (ST 36) was significantly higher than its control point (P music sound wave. Gong tonality vibromusic sound wave can conduct along meridians in healthy human body, and there are differences between different meridians and different genders in the sensitivity to the music sound wave.

  5. Method of synthesizing silica nanofibers using sound waves

    Science.gov (United States)

    Sharma, Jaswinder K.; Datskos, Panos G.

    2015-09-15

    A method for synthesizing silica nanofibers using sound waves is provided. The method includes providing a solution of polyvinyl pyrrolidone, adding sodium citrate and ammonium hydroxide to form a first mixture, adding a silica-based compound to the solution to form a second mixture, and sonicating the second mixture to synthesize a plurality of silica nanofibers having an average cross-sectional diameter of less than 70 nm and having a length on the order of at least several hundred microns. The method can be performed without heating or electrospinning, and instead includes less energy intensive strategies that can be scaled up to an industrial scale. The resulting nanofibers can achieve a decreased mean diameter over conventional fibers. The decreased diameter generally increases the tensile strength of the silica nanofibers, as defects and contaminations decrease with the decreasing diameter.

  6. Method of synthesizing silica nanofibers using sound waves

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Jaswinder K.; Datskos, Panos G.

    2017-08-08

    A method for synthesizing silica nanofibers using sound waves is provided. The method includes providing a solution of polyvinyl pyrrolidone, adding sodium citrate and ammonium hydroxide to form a first mixture, adding a silica-based compound to the solution to form a second mixture, and sonicating the second mixture to synthesize a plurality of silica nanofibers having an average cross-sectional diameter of less than 70 nm and having a length on the order of at least several hundred microns. The method can be performed without heating or electrospinning, and instead includes less energy intensive strategies that can be scaled up to an industrial scale. The resulting nanofibers can achieve a decreased mean diameter over conventional fibers. The decreased diameter generally increases the tensile strength of the silica nanofibers, as defects and contaminations decrease with the decreasing diameter.

  7. Absorption of oblique incidence sound by a finite micro-perforated panel absorber.

    Science.gov (United States)

    Yang, Cheng; Cheng, Li; Pan, Jie

    2013-01-01

    In this paper, a theoretical model of a micro-perforated panel (MPP) backed by a finite cavity and flush-mounted in an infinite baffle is developed and its performance in terms of sound absorption is analyzed. The model allows an oblique incidence sound impinging upon the MPP absorber. The simplified Rayleigh integral method, thin plate theory and the acoustical impedance of the MPP are used to calculate the sound energy absorbed by the MPP's surface. Results show that the absorption coefficient of the absorber is a function of angle and frequency of the incident sound, and is controlled by the coupling between the MPP and the acoustical modes in the back cavity. In particular, grazing modes can be induced in the cavity by sound with an oblique angle of incidence, which may result in peak sound absorptions at the natural frequencies of the modes. The mechanism involved is used to explain the absorption properties of the MPP absorber for a diffuse incidence of sound.

  8. Finite-difference theory for sound propagation in a lined duct with uniform flow using the wave envelope concept

    Science.gov (United States)

    Baumeister, K. J.

    1977-01-01

    Finite difference equations are derived for sound propagation in a two dimensional, straight, soft wall duct with a uniform flow by using the wave envelope concept. This concept reduces the required number of finite difference grid points by one to two orders of magnitude depending on the length of the duct and the frequency of the sound. The governing acoustic difference equations in complex notation are derived. An exit condition is developed that allows a duct of finite length to simulate the wave propagation in an infinitely long duct. Sample calculations presented for a plane wave incident upon the acoustic liner show the numerical theory to be in good agreement with closed form analytical theory. Complete pressure and velocity printouts are given to some sample problems and can be used to debug and check future computer programs.

  9. Universal instability of dust ion-sound waves and dust-acoustic waves

    International Nuclear Information System (INIS)

    Tsytovich, V.N.; Watanabe, K.

    2002-01-01

    It is shown that the dust ion-sound waves (DISW) and the dust-acoustic waves (DAW) are universally unstable for wave numbers less than some critical wave number. The basic dusty plasma state is assumed to be quasi-neutral with balance of the plasma particle absorption on the dust particles and the ionization with the rate proportional to the electron density. An analytical expression for the critical wave numbers, for the frequencies and for the growth rates of DISW and DAW are found using the hydrodynamic description of dusty plasma components with self-consistent treatment of the dust charge variations and by taking into account the change of the ion and electron distributions in the dust charging process. Most of the previous treatment do not take into account the latter process and do not treat the basic state self-consistently. The critical lengths corresponding to these critical wave numbers can be easily achieved in the existing experiments. It is shown that at the wave numbers larger than the critical ones DISW and DAW have a large damping which was not treated previously and which can be also measured. The instabilities found in the present work on their non linear stage can lead to formation of different types of dust self-organized structures. (author)

  10. Effect of sound on gap-junction-based intercellular signaling: Calcium waves under acoustic irradiation.

    Science.gov (United States)

    Deymier, P A; Swinteck, N; Runge, K; Deymier-Black, A; Hoying, J B

    2015-01-01

    We present a previously unrecognized effect of sound waves on gap-junction-based intercellular signaling such as in biological tissues composed of endothelial cells. We suggest that sound irradiation may, through temporal and spatial modulation of cell-to-cell conductance, create intercellular calcium waves with unidirectional signal propagation associated with nonconventional topologies. Nonreciprocity in calcium wave propagation induced by sound wave irradiation is demonstrated in the case of a linear and a nonlinear reaction-diffusion model. This demonstration should be applicable to other types of gap-junction-based intercellular signals, and it is thought that it should be of help in interpreting a broad range of biological phenomena associated with the beneficial therapeutic effects of sound irradiation and possibly the harmful effects of sound waves on health.

  11. Evaluation of moving-coil loudspeaker and passive radiator parameters using normal-incidence sound transmission measurements: theoretical developments.

    Science.gov (United States)

    Leishman, Timothy W; Anderson, Brian E

    2013-07-01

    The parameters of moving-coil loudspeaker drivers are typically determined using direct electrical excitation and measurement. However, as electro-mechano-acoustical devices, their parameters should also follow from suitable mechanical or acoustical evaluations. This paper presents the theory of an acoustical method of excitation and measurement using normal-incidence sound transmission through a baffled driver as a plane-wave tube partition. Analogous circuits enable key parameters to be extracted from measurement results in terms of open and closed-circuit driver conditions. Associated tools are presented that facilitate adjacent field decompositions and derivations of sound transmission coefficients (in terms of driver parameters) directly from the circuits. The paper also clarifies the impact of nonanechoic receiving tube terminations and the specific benefits of downstream field decompositions.

  12. Uniqueness in inverse elastic scattering with finitely many incident waves

    International Nuclear Information System (INIS)

    Elschner, Johannes; Yamamoto, Masahiro

    2009-01-01

    We consider the third and fourth exterior boundary value problems of linear isotropic elasticity and present uniqueness results for the corresponding inverse scattering problems with polyhedral-type obstacles and a finite number of incident plane elastic waves. Our approach is based on a reflection principle for the Navier equation. (orig.)

  13. Morphological development of coasts at very oblique wave incidence

    DEFF Research Database (Denmark)

    Petersen, Dorthe Pia; Deigaard, Rolf; Fredsøe, Jørgen

    2003-01-01

    This study focuses on one distinct feature to be found on coasts exposed to a very oblique wave incidence, namely an accumulating spit. That is a spit where no retreat of the shoreline is going on along the spit. This requires a monotonically decreasing sediment transport capacity from the updrift...

  14. Comparison of various methods for estimating wave incident angles ...

    African Journals Online (AJOL)

    Five different methods were examined for their suitability in estimating the inshore wave incident angles on a nearshore zone with a complex topography. Visual observation provided preliminary estimates. Two frequency independent methods and one frequency dependent method based on current meter measurements ...

  15. Normal incidence sound transmission loss evaluation by upstream surface impedance measurements.

    Science.gov (United States)

    Panneton, Raymond

    2009-03-01

    A method is developed to obtain the normal incidence sound transmission loss of noise control elements used in piping systems from upstream surface impedance measurements only. The noise control element may be a small material specimen in an impedance tube, a sealing part in an automotive hollow body network, an expansion chamber, a resonator, or a muffler. The developments are based on a transfer matrix (four-pole) representation of the noise control element and on the assumption that only plane waves propagate upstream and downstream the element. No assumptions are made on its boundary conditions, dimensions, shape, and material properties (i.e., the element may be symmetrical or not along its thickness, homogeneous or not, isotropic or not). One-load and two-load procedures are also proposed to identify the transfer matrix coefficients needed to obtain the true transmission loss of the tested element. The method can be used with a classical two-microphone impedance tube setup (i.e., no additional downstream tube and downstream acoustical measurements). The method is tested on three different noise control elements: two impedance tube multilayered specimens and one expansion chamber. The results found using the developed method are validated using numerical simulations.

  16. Dynamics of unstable sound waves in a non-equilibrium medium at the nonlinear stage

    Science.gov (United States)

    Khrapov, Sergey; Khoperskov, Alexander

    2018-03-01

    A new dispersion equation is obtained for a non-equilibrium medium with an exponential relaxation model of a vibrationally excited gas. We have researched the dependencies of the pump source and the heat removal on the medium thermodynamic parameters. The boundaries of sound waves stability regions in a non-equilibrium gas have been determined. The nonlinear stage of sound waves instability development in a vibrationally excited gas has been investigated within CSPH-TVD and MUSCL numerical schemes using parallel technologies OpenMP-CUDA. We have obtained a good agreement of numerical simulation results with the linear perturbations dynamics at the initial stage of the sound waves growth caused by instability. At the nonlinear stage, the sound waves amplitude reaches the maximum value that leads to the formation of shock waves system.

  17. Molecular hydrodynamics: Vortex formation and sound wave propagation

    Science.gov (United States)

    Han, Kyeong Hwan; Kim, Changho; Talkner, Peter; Karniadakis, George Em; Lee, Eok Kyun

    2018-01-01

    In the present study, quantitative feasibility tests of the hydrodynamic description of a two-dimensional fluid at the molecular level are performed, both with respect to length and time scales. Using high-resolution fluid velocity data obtained from extensive molecular dynamics simulations, we computed the transverse and longitudinal components of the velocity field by the Helmholtz decomposition and compared them with those obtained from the linearized Navier-Stokes (LNS) equations with time-dependent transport coefficients. By investigating the vortex dynamics and the sound wave propagation in terms of these field components, we confirm the validity of the LNS description for times comparable to or larger than several mean collision times. The LNS description still reproduces the transverse velocity field accurately at smaller times, but it fails to predict characteristic patterns of molecular origin visible in the longitudinal velocity field. Based on these observations, we validate the main assumptions of the mode-coupling approach. The assumption that the velocity autocorrelation function can be expressed in terms of the fluid velocity field and the tagged particle distribution is found to be remarkably accurate even for times comparable to or smaller than the mean collision time. This suggests that the hydrodynamic-mode description remains valid down to the molecular scale.

  18. Longitudinal sound waves in a collisionless, quasineutral plasma

    Science.gov (United States)

    Ramos, J. J.

    2017-12-01

    The time evolution of slow sound waves in a homogeneous, collisionless and quasineutral plasma, in particular their Landau damping, is investigated using the kinetic-magnetohydrodynamics formulation of Ramos (J. Plasma Phys. vol. 81, 2015 p. 905810325; vol. 82, 2016 p. 905820607). In this approach, the electric field is eliminated from a closed, hybrid fluid-kinetic system that ensures automatically the fulfilment of the charge neutrality condition. Considering the time dependence of a spatial-Fourier-mode linear perturbation with wavevector parallel to the equilibrium magnetic field, this can be cast as a second-order self-adjoint problem with a continuum spectrum of real and positive squared frequencies. Therefore, a conventional resolution of the identity with a continuum basis of singular normal modes is guaranteed, which simplifies significantly a Van Kampen-like treatment of the Landau damping. The explicit form of such singular normal modes is obtained, along with their orthogonality relations. These are used to derive the damped time evolution of the fluid moments of solutions of initial-value problems, for the most general kinds of initial conditions. The non-zero parallel electric field is not used explicitly in this analysis, but it is calculated from any given solution after the later has been obtained.

  19. High-frequency sound waves to eliminate a horizon in the mixmaster universe.

    Science.gov (United States)

    Chitre, D. M.

    1972-01-01

    From the linear wave equation for small-amplitude sound waves in a curved space-time, there is derived a geodesiclike differential equation for sound rays to describe the motion of wave packets. These equations are applied in the generic, nonrotating, homogeneous closed-model universe (the 'mixmaster universe,' Bianchi type IX). As for light rays described by Doroshkevich and Novikov (DN), these sound rays can circumnavigate the universe near the singularity to remove particle horizons only for a small class of these models and in special directions. Although these results parallel those of DN, different Hamiltonian methods are used for treating the Einstein equations.

  20. Source and listener directivity for interactive wave-based sound propagation.

    Science.gov (United States)

    Mehra, Ravish; Antani, Lakulish; Kim, Sujeong; Manocha, Dinesh

    2014-04-01

    We present an approach to model dynamic, data-driven source and listener directivity for interactive wave-based sound propagation in virtual environments and computer games. Our directional source representation is expressed as a linear combination of elementary spherical harmonic (SH) sources. In the preprocessing stage, we precompute and encode the propagated sound fields due to each SH source. At runtime, we perform the SH decomposition of the varying source directivity interactively and compute the total sound field at the listener position as a weighted sum of precomputed SH sound fields. We propose a novel plane-wave decomposition approach based on higher-order derivatives of the sound field that enables dynamic HRTF-based listener directivity at runtime. We provide a generic framework to incorporate our source and listener directivity in any offline or online frequency-domain wave-based sound propagation algorithm. We have integrated our sound propagation system in Valve's Source game engine and use it to demonstrate realistic acoustic effects such as sound amplification, diffraction low-passing, scattering, localization, externalization, and spatial sound, generated by wave-based propagation of directional sources and listener in complex scenarios. We also present results from our preliminary user study.

  1. Rayleigh scattering of a cylindrical sound wave by an infinite cylinder.

    Science.gov (United States)

    Baynes, Alexander B; Godin, Oleg A

    2017-12-01

    Rayleigh scattering, in which the wavelength is large compared to the scattering object, is usually studied assuming plane incident waves. However, full Green's functions are required in a number of problems, e.g., when a scatterer is located close to the ocean surface or the seafloor. This paper considers the Green's function of the two-dimensional problem that corresponds to scattering of a cylindrical wave by an infinite cylinder embedded in a homogeneous fluid. Soft, hard, and impedance cylinders are considered. Exact solutions of the problem involve infinite series of products of Bessel functions. Here, simple, closed-form asymptotic solutions are derived, which are valid for arbitrary source and receiver locations outside the cylinder as long as its diameter is small relative to the wavelength. The scattered wave is given by the sum of fields of three linear image sources. The viability of the image source method was anticipated from known solutions of classical electrostatic problems involving a conducting cylinder. The asymptotic acoustic Green's functions are employed to investigate reception of low-frequency sound by sensors mounted on cylindrical bodies.

  2. On the interaction of waves carrying light, sound and small particles : wave-based methods for miniature laboratories and fast optical sensing

    NARCIS (Netherlands)

    van 't Oever, Jan Joannes Frederik

    2018-01-01

    The main theme of this thesis is waves: sound waves for trapping, guiding or mixing suspended particles, and light waves for making sound waves and rough surfaces visible. One of the important functions on a Lab-on-a-Chip system is suspended particle manipulation and concentration. One way to

  3. Sound generation and upstream influence due to instability waves interacting with non-uniform mean flows

    Science.gov (United States)

    Goldstein, M. E.

    1984-01-01

    Attention is given to the sound produced by artificially excited, spatially growing instability waves on subsonic shear layers. Real flows that always diverge in the downstream direction allow sound to be produced by the interaction of the instability waves with the resulting streamwise variations of the flow. The upstream influence, or feedback, can interact with the splitter plate lip to produce a downstream-propagating instability wave that may under certain conditions be the same instability wave that originally generated the upstream influence. The present treatment is restricted to very low Mach number flows, so that compressibility effects can only become important over large distances.

  4. New soliton solutions of the system of equations for the ion sound and Langmuir waves

    Directory of Open Access Journals (Sweden)

    Seyma Tuluce Demiray

    2016-11-01

    Full Text Available This study is based on new soliton solutions of the system of equations for the ion sound wave under the action of the ponderomotive force due to high-frequency field and for the Langmuir wave. The generalized Kudryashov method (GKM, which is one of the analytical methods, has been tackled for finding exact solutions of the system of equations for the ion sound wave and the Langmuir wave. By using this method, dark soliton solutions of this system of equations have been obtained. Also, by using Mathematica Release 9, some graphical simulations were designed to see the behavior of these solutions.

  5. Effective isolation of primo vessels in lymph using sound- and ultrasonic-wave stimulation.

    Science.gov (United States)

    Park, Do-Young; Lee, Hye-Rie; Rho, Min-Suk; Lee, Sang-Suk

    2014-12-01

    The effects of stimulation with sound and ultrasonic waves of a specific bandwidth on the microdissection of primo vessels in lymphatic vessels of rabbit were investigated. The primo vessels stained with alcian-blue dye injected in the lymph nodes were definitely visualized and more easily isolated by sound-wave vibration and ultrasonic stimulation applied to rabbits at various frequencies and intensities. With sound wave at 7 Hz and ultrasonic waves at 2 MHz, the probability of detecting the primo vessels was improved to 90%; however, without wave stimulation the probability of discovering primo vessels was about 50% only. Sound and ultrasonic waves at specific frequency bands should be effective for microdissection of the primo vessels in the abdominal lymph of rabbit. We suggest that oscillation of the primo vessels by sound and ultrasonic waves may be useful to visualize specific primo structure, and wave vibration can be a very supportive process for observation and isolation of the primo vessels of rabbits. Copyright © 2014. Published by Elsevier B.V.

  6. Sound Radiated by a Wave-Like Structure in a Compressible Jet

    Science.gov (United States)

    Golubev, V. V.; Prieto, A. F.; Mankbadi, R. R.; Dahl, M. D.; Hixon, R.

    2003-01-01

    This paper extends the analysis of acoustic radiation from the source model representing spatially-growing instability waves in a round jet at high speeds. Compared to previous work, a modified approach to the sound source modeling is examined that employs a set of solutions to linearized Euler equations. The sound radiation is then calculated using an integral surface method.

  7. Effect of disorder on bulk sound wave speed : A multiscale spectral analysis

    NARCIS (Netherlands)

    Shrivastava, Rohit Kumar; Luding, Stefan

    2017-01-01

    Disorder of size (polydispersity) and mass of discrete elements or particles in randomly structured media (e.g., granular matter such as soil) has numerous effects on the materials' sound propagation characteristics. The influence of disorder on energy and momentum transport, the sound wave speed

  8. On the neutron diffraction in crystals in the field of a standing sound wave

    International Nuclear Information System (INIS)

    Grigoryan, K.K.; Hayrapetyan, A.G.; Petrosyan, R.G.

    2010-01-01

    The diffraction of neutrons is considered in crystals under the influence of a standing sound wave. The scattering probability is calculated for the elastic neutron-crystal interaction, whereas the neutron-standing sound wave interaction can be either elastic and inelastic. The possibility of short-wave (high-energy) neutrons diffraction is illustrated. It is shown that the Debye-Waller factor can be changed and tuned. The analysis of conservation laws are adduced both for thermal and short-wave neutrons. The formation of a 'sublattice' is shown in the process of neutrons elastic diffraction with respect to standing sound wave. The analogous to the Kapitza-Dirac effect is considered for neutrons. The problem is solved within the frame of non-stationary S-matrix theory, where the neutron-phonon interaction is described by the Fermi pseudopotential, which is considered as a perturbation.

  9. On propagation of sound waves in Q2D conductors in a quantizing magnetic field

    CERN Document Server

    Kirichenko, O V; Galbova, O; Ivanovski, G; Krstovska, D

    2003-01-01

    The attenuation of sound waves propagating normally to the layers of a Q2D conductor is analysed at low enough temperatures when quantization of the energy of conduction electrons results in an oscillatory dependence of the sound attenuation rate on the inverse magnetic field. The sound wave decrement is found for different orientations of the magnetic field with respect to the layers. A layered conductor is shown to be most transparent in the case when the magnetic field is orthogonal to the layers.

  10. Influence of Sound Wave Stimulation on the Growth of Strawberry in Sunlight Greenhouse

    Science.gov (United States)

    Qi, Lirong; Teng, Guanghui; Hou, Tianzhen; Zhu, Baoying; Liu, Xiaona

    In this paper, we adopt the QGWA-03 plant audio apparatus to investigate the sound effects on strawberry in the leaf area, the photosynthetic characteristics and other physiological indexes. It was found that when there were no significant differences between the circumstances of the two sunlight greenhouses, the strawberry after the sound wave stimulation grew stronger than in the control and its leaf were deeper green, and shifted to an earlier time about one week to blossom and bear fruit. It was also found that the resistance of strawberry against disease and insect pest were enhanced. The experiment results show that sound wave stimulation can certainly promote the growth of plants.

  11. Prediction of sound transmission through, and radiation from, panels using a wave and finite element method.

    Science.gov (United States)

    Yang, Yi; Mace, Brian R; Kingan, Michael J

    2017-04-01

    This paper describes the extension of a wave and finite element (WFE) method to the prediction of noise transmission through, and radiation from, infinite panels. The WFE method starts with a conventional finite element model of a small segment of the panel. For a given frequency, the mass and stiffness matrices of the segment are used to form the structural dynamic stiffness matrix. The acoustic responses of the fluids surrounding the structure are modelled analytically. The dynamic stiffness matrix of the segment is post-processed using periodic structure theory, and coupled with those of the fluids. The total dynamic stiffness matrix is used to obtain the response of the medium to an incident acoustic pressure. Excitation of the structure by oblique plane waves and a diffuse sound field are considered. The response to structural excitation and the consequent radiation are determined. Since the size of the WFE model is small, computational times are small. Various example applications are presented to illustrate the approach, including a thin isotropic panel, an antisymmetric, cross-ply sandwich panel and a symmetric panel with an orthotropic core.

  12. Nonlinear interactions in superfluid dynamics: Nonstationary heat transfer due to second sound shock waves

    Science.gov (United States)

    Liepmann, H. W.; Torczynski, J. R.

    1983-01-01

    Second sound techniques were used to study superfluid helium. Second sound shock waves produced relative velocities in the bulk fluid. Maximum counterflow velocities produced in this way are found to follow the Langer-Fischer prediction for the fundamental critical velocity in its functional dependence on temperature and pressure. Comparison of successive shock and rotating experiments provides strong evidence that breakdown results in vorticity production in the flow behind the shock. Schlieren pictures have verified the planar nature of second sound shocks even after multiple reflections. The nonlinear theory of second sound was repeatedly verified in its prediction of double shocks and other nonlinear phenomena.

  13. Time Domain Simulation of Sound Waves Using Smoothed Particle Hydrodynamics Algorithm with Artificial Viscosity

    Directory of Open Access Journals (Sweden)

    Xu Li

    2015-06-01

    Full Text Available Smoothed particle hydrodynamics (SPH, as a Lagrangian, meshfree method, is supposed to be useful in solving acoustic problems, such as combustion noise, bubble acoustics, etc., and has been gradually used in sound wave computation. However, unphysical oscillations in the sound wave simulation cannot be ignored. In this paper, an artificial viscosity term is added into the standard SPH algorithm used for solving linearized acoustic wave equations. SPH algorithms with or without artificial viscosity are both built to compute sound propagation and interference in the time domain. Then, the effects of the smoothing kernel function, particle spacing and Courant number on the SPH algorithms of sound waves are discussed. After comparing SPH simulation results with theoretical solutions, it is shown that the result of the SPH algorithm with the artificial viscosity term added attains good agreement with the theoretical solution by effectively reducing unphysical oscillations. In addition, suitable computational parameters of SPH algorithms are proposed through analyzing the sound pressure errors for simulating sound waves.

  14. Second sound shock waves and critical velocities in liquid helium 2. Ph.D. Thesis

    Science.gov (United States)

    Turner, T. N.

    1979-01-01

    Large amplitude second-sound shock waves were generated and the experimental results compared to the theory of nonlinear second-sound. The structure and thickness of second-sound shock fronts are calculated and compared to experimental data. Theoretically it is shown that at T = 1.88 K, where the nonlinear wave steepening vanishes, the thickness of a very weak shock must diverge. In a region near this temperature, a finite-amplitude shock pulse evolves into an unusual double-shock configuration consisting of a front steepened, temperature raising shock followed by a temperature lowering shock. Double-shocks are experimentally verified. It is experimentally shown that very large second-sound shock waves initiate a breakdown in the superfluidity of helium 2, which is dramatically displayed as a limit to the maximum attainable shock strength. The value of the maximum shock-induced relative velocity represents a significant lower bound to the intrinsic critical velocity of helium 2.

  15. Wave field synthesis of moving virtual sound sources with complex radiation properties.

    Science.gov (United States)

    Ahrens, Jens; Spors, Sascha

    2011-11-01

    An approach to the synthesis of moving virtual sound sources with complex radiation properties in wave field synthesis is presented. The approach exploits the fact that any stationary sound source of finite spatial extent radiates spherical waves at sufficient distance. The angular dependency of the radiation properties of the source under consideration is reflected by the amplitude and phase distribution on the spherical wave fronts. The sound field emitted by a uniformly moving monopole source is derived and the far-field radiation properties of the complex virtual source under consideration are incorporated in order to derive a closed-form expression for the loudspeaker driving signal. The results are illustrated via numerical simulations of the synthesis of the sound field of a sample moving complex virtual source.

  16. Modeling linear Rayleigh wave sound fields generated by angle beam wedge transducers

    Directory of Open Access Journals (Sweden)

    Shuzeng Zhang

    2017-01-01

    Full Text Available In this study, the reciprocity theorem for elastodynamics is transformed into integral representations, and the fundamental solutions of wave motion equations are obtained using Green’s function method that yields the integral expressions of sound beams of both bulk and Rayleigh waves. In addition to this, a novel surface integral expression for propagating Rayleigh waves generated by angle beam wedge transducers along the surface is developed. Simulation results show that the magnitudes of Rayleigh wave displacements predicted by this model are not dependent on the frequencies and sizes of transducers. Moreover, they are more numerically stable than those obtained by the 3-D Rayleigh wave model. This model is also applicable to calculation of Rayleigh wave beams under the wedge when sound sources are assumed to radiate waves in the forward direction. Because the proposed model takes into account the actual calculated sound sources under the wedge, it can be applied to Rayleigh wave transducers with different wedge geometries. This work provides an effective and general tool to calculate linear Rayleigh sound fields generated by angle beam wedge transducers.

  17. Teaching about Mechanical Waves and Sound with a Tuning Fork and the Sun

    Science.gov (United States)

    Leccia, Silvio; Colantonio, Arturo; Puddu, Emanuella; Galano, Silvia; Testa, Italo

    2015-01-01

    Literature in "Physics Education" has shown that students encounter many difficulties in understanding wave propagation. Such difficulties lead to misconceptions also in understanding sound, often used as context to teach wave propagation. To address these issues, we present in this paper a module in which the students are engaged in…

  18. Quantitative calibration of sound pressure in ultrasonic standing waves using the Schlieren method.

    Science.gov (United States)

    Xu, Zheng; Chen, Hao; Yan, Xu; Qian, Menglu; Cheng, Qian

    2017-08-21

    We investigated the use of the Schlieren method to calibrate the sound pressure in an ultrasonic standing-wave field. Specifically, we derived an equation to calculate the light intensity of the diffraction fringe induced by the standing-wave field. The results indicated that the sound pressure in the standing-wave field relates to the light intensity of the diffraction fringe. Simulations and experiments were conducted to verify the theoretical calculation. We demonstrated that the ratio of the light intensity of different diffraction orders relates to the sound pressure amplitude, allowing the pressure amplitude to be calibrated with the Schlieren method. Therefore, this work presents a non-intrusive calibration method that is particularly suitable for calibrating high-frequency ultrasonic standing-wave fields.

  19. Effect of a sound wave on the stability of an argon discharge

    International Nuclear Information System (INIS)

    Galechyan, G.A.; Karapetyan, D.M.; Tavakalyan, L.B.

    1992-01-01

    The effect of a sound wave on the stability of the positive column of an argon discharge has been studied experimentally in the range of pressures from 40 to 180 torr and discharge currents from 40 to 110 mA in a tube with an interior diameter of 9.8 cm. It is shown that, depending on the intensity of the sound wave and the discharge parameters, sound can cause the positive column either to contract or to leave the contracted state. The electric field strength has been measured as a function of the sound intensity. An analogy between the effect of sound and that of longitudinal pumping of the gas on the argon discharge parameters has been established. The radial temperature of the gas has been studied in an argon discharge as a function of the sound intensity for different gas pressures. A direct relationship has been established between the sign of the detector effect produced by a sound wave in a discharge and the processes of contraction and filamentation of a discharge. 11 refs., 4 figs., 1 tab

  20. Thermal and viscous effects on sound waves: revised classical theory.

    Science.gov (United States)

    Davis, Anthony M J; Brenner, Howard

    2012-11-01

    In this paper the recently developed, bi-velocity model of fluid mechanics based on the principles of linear irreversible thermodynamics (LIT) is applied to sound propagation in gases taking account of first-order thermal and viscous dissipation effects. The results are compared and contrasted with the classical Navier-Stokes-Fourier results of Pierce for this same situation cited in his textbook. Comparisons are also made with the recent analyses of Dadzie and Reese, whose molecularly based sound propagation calculations furnish results virtually identical with the purely macroscopic LIT-based bi-velocity results below, as well as being well-supported by experimental data. Illustrative dissipative sound propagation examples involving application of the bi-velocity model to several elementary situations are also provided, showing the disjoint entropy mode and the additional, evanescent viscous mode.

  1. Oblique incidence sound absorption of porous materials covered by perforated metal and exposed to tangential airflow

    Science.gov (United States)

    Soderman, Paul T.

    1982-01-01

    The purpose of this study was to evaluate several acoustic linings that are candidate designs for the Ames 40- by 80-Foot Wind Tunnel test section. The acoustic treatment will be used to reduce wall reflections from aircraft model noise sources. The goal is not simply to attenuate sound propagating down the duct, but rather to create a semi-anechoic space in a windy environment by absorbing at least 80% of the incident acoustic energy over a wide frequency range, if possible.

  2. Intensity statistics of very high frequency sound scattered from wind-driven waves.

    Science.gov (United States)

    Walstead, Sean P; Deane, Grant B

    2016-05-01

    The interaction of vhf 100-1000 kHz underwater sound with the ocean surface is explored. The bistatic forward scatter of 300 kHz sound is measured in a wind driven wave channel. Fluctuations in arrival amplitude are described by the scintillation index (SI) which is a measure of arrival intensity variance. SI initially increases with wind speed but eventually saturates to a value of 0.5 when the root-mean-square (rms) roughness is 0.5 mm. An adjusted scintillation index (SI*) is suggested that accounts for the multiple arrivals and properly saturates to a value of 1. Fluctuations in arrival time do not saturate and increase proportionately to the dominant surface wave component. Forward scattering is modeled at frequencies ranging from 50 to 2000 kHz using the Helmholtz-Kirchhoff integral with surface wave realizations derived from wave gauge data. The amplitude and temporal statistics of the simulated scattering agree well with measured data. Intensity saturation occurs at lower wind speeds for higher frequency sound. Both measured and modeled vhf sound is characterized by many surface arrivals at saturation. Doppler shifts associated with wave motion are expected to vary rapidly for vhf sound however further analysis is required.

  3. Statistical classification of drug incidents due to look-alike sound-alike mix-ups.

    Science.gov (United States)

    Wong, Zoie Shui Yee

    2016-06-01

    It has been recognised that medication names that look or sound similar are a cause of medication errors. This study builds statistical classifiers for identifying medication incidents due to look-alike sound-alike mix-ups. A total of 227 patient safety incident advisories related to medication were obtained from the Canadian Patient Safety Institute's Global Patient Safety Alerts system. Eight feature selection strategies based on frequent terms, frequent drug terms and constituent terms were performed. Statistical text classifiers based on logistic regression, support vector machines with linear, polynomial, radial-basis and sigmoid kernels and decision tree were trained and tested. The models developed achieved an average accuracy of above 0.8 across all the model settings. The receiver operating characteristic curves indicated the classifiers performed reasonably well. The results obtained in this study suggest that statistical text classification can be a feasible method for identifying medication incidents due to look-alike sound-alike mix-ups based on a database of advisories from Global Patient Safety Alerts. © The Author(s) 2014.

  4. Sound waves in two-dimensional ducts with sinusoidal walls

    Science.gov (United States)

    Nayfeh, A. H.

    1974-01-01

    The method of multiple scales is used to analyze the wave propagation in two-dimensional hard-walled ducts with sinusoidal walls. For traveling waves, resonance occurs whenever the wall wavenumber is equal to the difference of the wavenumbers of any two duct acoustic modes. The results show that neither of these resonating modes could occur without strongly generating the other.

  5. Sound wave propagation in weakly polydisperse granular materials

    NARCIS (Netherlands)

    Mouraille, O.J.P.; Luding, Stefan

    2008-01-01

    Dynamic simulations of wave propagation are performed in dense granular media with a narrow polydisperse size-distribution and a linear contact-force law. A small perturbation is created on one side of a static packing and its propagation, for both P- and S-waves, is examined. A size variation

  6. A comparison of the Standing Wave and Two Microphone Methods in Measuring The Sound Absorption Coefficient of Wood

    OpenAIRE

    Kang, Chunwon; Matsumura, Junji; Oda, Kazuyuki

    2006-01-01

    To compare the standing wave method with two microphone transfer function method in the measuring the sound absorption properties of wood, we measured the sound absorption coefficients of beech wood experimentally in the frequency range of 50 to 1600 Hz by the standing wave method and two-microphone method. The sound absorption coefficient under a continuous frequency range can be estimated in a shorter time by the two microphone transfer function method than the standing wave method. There...

  7. Estimating the diffuseness of sound fields: A wavenumber analysis method

    DEFF Research Database (Denmark)

    Nolan, Melanie; Davy, John L.; Brunskog, Jonas

    2017-01-01

    The concept of a diffuse sound field is widely used in the analysis of sound in enclosures. The diffuse sound field is generally described as composed of plane waves with random phases, which wave number vectors are uniformly distributed over all angles of incidence. In this study, an interpretat......The concept of a diffuse sound field is widely used in the analysis of sound in enclosures. The diffuse sound field is generally described as composed of plane waves with random phases, which wave number vectors are uniformly distributed over all angles of incidence. In this study...

  8. Sound power spectrum and wave drag of a propeller in flight

    Science.gov (United States)

    Hanson, D. B.

    1989-01-01

    Theory is presented for the sound power and sound power spectrum of a single rotation propeller in forward flight. Calculations are based on the linear wave equation with sources distributed over helicoidal surfaces to represent effects of blade thickness and steady loading. Sound power is distributed continuously over frequecy, as would be expected from Doppler effects, rather than in discrete harmonics. The theory is applied to study effects of sweep and Mach number in propfans. An acoustic efficiency is defined as the ratio of radiated sound power to shaft input power. This value is the linear estimate of the effect of wave drag due to the supersonic blade section speeds. It is shown that the acoustic efficiency is somewhat less than 1 percent for a well designed propfan.

  9. Impact of internal waves on sound propagation off Bhimilipatnam, east coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Sridevi, B.; Murty, T.V.R.; Sadhuram, Y.; Rao, M.M.M.; Maneesha, K.; SujithKumar, S.; Prasanna, P.L.

    -259 Impact of internal waves on sound propagation off Bhimilipatnam, East coast of India B.Sridevi, T.V. Ramana Murty, Y. Sadhuram, M.M.M. Rao, K. Maneesha, S. Sujith Kumar and P.L. Prasanna National Institute of Oceanography, Regional center, 176... the variability of ocean environment rather than it’s mean. Oceanic changes relevant to underwater acoustics are classified into mean and fluctuating components (De Santo 1979) with the following general model of the sound velocity equation...

  10. Sensory illusions: Common mistakes in physics regarding sound, light and radio waves

    Science.gov (United States)

    Briles, T. M.; Tabor-Morris, A. E.

    2013-03-01

    Optical illusions are well known as effects that we see that are not representative of reality. Sensory illusions are similar but can involve other senses than sight, such as hearing or touch. One mistake commonly noted among instructors is that students often mis-identify radio signals as sound waves and not as part of the electromagnetic spectrum. A survey of physics students from multiple high schools highlights the frequency of this common misconception, as well as other nuances on this misunderstanding. Many students appear to conclude that, since they experience radio broadcasts as sound, then sound waves are the actual transmission of radio signals and not, as is actually true, a representation of those waves as produced by the translator box, the radio. Steps to help students identify and correct sensory illusion misconceptions are discussed. School of Education

  11. A Time-Domain Method for Separating Incident and Reflected Irregular Waves

    DEFF Research Database (Denmark)

    Frigaard, Peter; Brorsen, Michael

    of the model test. Goda and Suzuki (1976) presented a frequency method for estimation of irregular incident and reflected waves in random waves. Mansard and Funke (1980) improved this method uaing a least squares technique. In the following, a time-domain method for seperating the incident waves...

  12. Stability of nonlinear ion sound waves and solitons in plasmas

    International Nuclear Information System (INIS)

    Infeld, E.; Rowlands, G.

    1979-01-01

    Large amplitude ion acoustic waves and solitons in two component plasmas are investigated for stability. The soliton solutions are found to be stable, while the nonlinear waves are always unstable, though for a significant range of parameters they are only unstable to fully three-dimensional perturbations. The results in one dimension are compared with those obtained from the Korteweg-de Vries equation, which gives stability for non linear waves and solitons. Agreement is surprisingly good for Mach numbers less than about 1.5 A three-dimensional generalization of the Korteweg-de Vries equation is considered but this leads to stability for all non linear solutions and hence is not a good model for nonlinear waves. It is, however, reasonable in the soliton limit. (author)

  13. Tracking kidney stones with sound during shock wave lithotripsy

    Science.gov (United States)

    Kracht, Jonathan M.

    The prevalence of kidney stones has increased significantly over the past decades. One of the primary treatments for kidney stones is shock wave lithotripsy which focuses acoustic shock waves onto the stone in order to fragment it into pieces that are small enough to pass naturally. This typically requires a few thousand shock waves delivered at a rate of about 2 Hz. Although lithotripsy is the only non-invasive treatment option for kidney stories, both acute and chronic complications have been identified which could be reduced if fewer shock waves were used. One factor that could be used to reduce the number of shock waves is accounting for the motion of the stone which causes a portion of the delivered shock waves to miss the stone, yielding no therapeutic benefit. Therefore identifying when the stone is not in focus would allow tissue to be spared without affecting fragmentation. The goal of this thesis is to investigate acoustic methods to track the stone in real-time during lithotripsy in order to minimize poorly-targeted shock waves. A relatively small number of low frequency ultrasound transducers were used in pulse-echo mode and a novel optimization routine based on time-of-flight triangulation is used to determine stone location. It was shown that the accuracy of the localization may be estimated without knowing the true stone location. This method performed well in preliminary experiments but the inclusion of tissue-like aberrating layers reduced the accuracy of the localization. Therefore a hybrid imaging technique employing DORT (Decomposition of the Time Reversal Operator) and the MUSIC (Multiple Signal Classification) algorithm was developed. This method was able to localize kidney stories to within a few millimeters even in the presence of an aberrating layer. This would be sufficient accuracy for targeting lithotripter shock waves. The conclusion of this work is that tracking kidney stones with low frequency ultrasound should be effective clinically.

  14. Observation of sound focusing and defocusing due to propagating nonlinear internal waves.

    Science.gov (United States)

    Luo, J; Badiey, M; Karjadi, E A; Katsnelson, B; Tskhoidze, A; Lynch, J F; Moum, J N

    2008-09-01

    Fluctuations of the low frequency sound field in the presence of an internal solitary wave packet during the Shallow Water '06 experiment are analyzed. Acoustic, environmental, and on-board ship radar image data were collected simultaneously before, during, and after a strong internal solitary wave packet passed through the acoustic track. Preliminary analysis of the acoustic wave temporal intensity fluctuations agrees with previously observed phenomena and the existing theory of the horizontal refraction mechanism, which causes focusing and defocusing when the acoustic track is nearly parallel to the front of the internal waves [J. Acoust. Soc. Am., 122(2), pp. 747-760 (2007)].

  15. The Impact of Sound on Electroencephalographic Waves during Sleep in Patients Suffering from Tinnitus.

    Science.gov (United States)

    Pedemonte, Marisa; Testa, Martín; Díaz, Marcela; Suárez-Bagnasco, Diego

    2014-09-01

    Based on the knowledge that sensory processing continues during sleep and that a relationship exists between sleep and learning, a new strategy for treatment of idiopathic subjective tinnitus, consisted of customized sound stimulation presented during sleep, was tested. It has been previously shown that this treatment induces a sustained decrease in tinnitus intensity; however, its effect on brain activity has not yet been studied. In this work, we compared the impact of sound stimulation in tinnitus patients in the different sleep stages. Ten patients with idiopathic tinnitus were treated with sound stimulation mimicking tinnitus during sleep. Power spectra and intra- and inter-hemispheric coherence of electroencephalographic waves from frontal and temporal electrodes were measured with and without sound stimulation for each sleep stage (stages N2 with sleep spindles; N3 with slow wave sleep and REM sleep with Rapid Eye Movements). The main results found were that the largest number of changes, considering both the power spectrum and wave׳s coherence, occurred in stages N2 and N3. The delta and theta bands were the most changed, with important changes also in coherence of spindles during N2. All changes were more frequent in temporal areas. The differences between the two hemispheres do not depend, at least exclusively, on the side where the tinnitus is perceived and, hence, of the stimulated side. These results demonstrate that sound stimulation during sleep in tinnitus patients׳ influences brain activity and open an avenue for investigating the mechanism underlying tinnitus and its treatment.

  16. Analytical modeling of leak induced sound wave in a power plant boiler room

    International Nuclear Information System (INIS)

    Badsar, A.; Khosravi, F.

    2005-01-01

    An exact analysis for Sound propagation by a leak situated in a power plant boiler room is outlined. The Light hill model for description of free jet behavior along with the appropriate wave field expansions, the Neumann boundary conditions for boiler walls, and the classical theory of images are employed to develop a closed-form solution in form of infinite series. The analytical results are illustrated with numerical examples in which a leak in the boiler room produces spherical sound waves. The acoustic field pressure distribution is evaluated and discussed for representative values of the parameters characterizing the system. Limiting cases involving symmetric conditions of the problem are considered

  17. Neutral gas and impurity ion flow produced by a plasma sound wave

    International Nuclear Information System (INIS)

    Ohkawa, T.; Miller, R.L.

    1993-01-01

    It is proposed to launch an ion sound wave near the divertor plate of a tokamak plasma to direct the flow of impurities and neutrals in the divertor region. By exciting the ion sound wave with a properly phased second harmonic component, nonlinear effects in the collisional drag of neutrals and impurities can be exploited to yield a time-averaged flow of both hydrogen gas and impurities towards the divertor plate. Thus impurities can be restrained from entering the plasma interior, and an increased neutral density in the divertor region can reduce recycling and enhance radiative cooling there. (Author)

  18. Dynamic of Langmuir and Ion-Sound Waves in Type 3 Solar Radio Sources

    Science.gov (United States)

    Robinson, P. A.; Willes, A. J.; Cairns, I. H.

    1993-01-01

    The evolution of Langmuir and ion-sound waves in type 3 sources is investigated, incorporating linear growth, linear damping, and nonlinear electrostatic decay. Improved estimates are obtained for the wavenumber range of growing waves and the nonlinear coupling coefficient for the decay process. The resulting prediction for the electrostatic decay threshold is consistent with the observed high-field cutoff in the Langmuir field distribution. It is shown that the conditions in the solar wind do not allow a steady state to be attained; rather, bursty linear and nonlinear interactions take place, consistent with the highly inhomogeneous and impulsive waves actually observed. Nonlinear growth is found to be fast enough to saturate the growth of the parent Langmuir waves in the available interaction time. The resulting levels of product Langmuir and ion-sound waves are estimated theoretically and shown to be consistent with in situ ISEE 3 observations of type 3 events at 1 AU. Nonlinear interactions slave the growth and decay of product sound waves to that of the product Langmuir waves. The resulting probability distribution of ion-sound field strengths is predicted to have a flat tail extending to a high-field cutoff. This prediction is consistent with statistics derived here from ISEE 3 observations. Agreement is also found between the frequencies of the observed waves and predictions for the product S waves. The competing processes of nonlinear wave collapse and quasilinear relaxation are discussed, and it is concluded that neither is responsible for the saturation of Langmuir growth. When wave and beam inhomogeneities are accounted for, arguments from quasi-linear relaxation yield an upper bound on the Langmuir fields that is too high to be relevant. Nor are the criteria for direct wave collapse of the beam-driven waves met, consistent with earlier simulation results that imply that this process is not responsible for saturation of the beam instability. Indeed, even

  19. Propagation of sound waves in tubes of noncircular cross section

    Science.gov (United States)

    Richards, W. B.

    1986-01-01

    Plane-acoustic-wave propagation in small tubes with a cross section in the shape of a flattened oval is described. Theoretical descriptions of a plane wave propagating in a tube with circular cross section and between a pair of infinite parallel plates, including viscous and thermal damping, are expressed in similar form. For a wide range of useful duct sizes, the propagation constant (whose real and imaginary parts are the amplitude attenuation rate and the wave number, respectively) is very nearly the same function of frequency for both cases if the radius of the circular tube is the same as the distance between the parallel plates. This suggests that either a circular-cross-section model or a flat-plate model can be used to calculate wave propagation in flat-oval tubing, or any other shape tubing, if its size is expressed in terms of an equivalent radius, given by g = 2 x (cross-sectional area)/(length of perimeter). Measurements of the frequency response of two sections of flat-oval tubing agree with calculations based on this idea. Flat-plate formulas are derived, the use of transmission-line matrices for calculations of plane waves in compound systems of ducts is described, and examples of computer programs written to carry out the calculations are shown.

  20. Efficient techniques for wave-based sound propagation in interactive applications

    Science.gov (United States)

    Mehra, Ravish

    Sound propagation techniques model the effect of the environment on sound waves and predict their behavior from point of emission at the source to the final point of arrival at the listener. Sound is a pressure wave produced by mechanical vibration of a surface that propagates through a medium such as air or water, and the problem of sound propagation can be formulated mathematically as a second-order partial differential equation called the wave equation. Accurate techniques based on solving the wave equation, also called the wave-based techniques, are too expensive computationally and memory-wise. Therefore, these techniques face many challenges in terms of their applicability in interactive applications including sound propagation in large environments, time-varying source and listener directivity, and high simulation cost for mid-frequencies. In this dissertation, we propose a set of efficient wave-based sound propagation techniques that solve these three challenges and enable the use of wave-based sound propagation in interactive applications. Firstly, we propose a novel equivalent source technique for interactive wave-based sound propagation in large scenes spanning hundreds of meters. It is based on the equivalent source theory used for solving radiation and scattering problems in acoustics and electromagnetics. Instead of using a volumetric or surface-based approach, this technique takes an object-centric approach to sound propagation. The proposed equivalent source technique generates realistic acoustic effects and takes orders of magnitude less runtime memory compared to prior wave-based techniques. Secondly, we present an efficient framework for handling time-varying source and listener directivity for interactive wave-based sound propagation. The source directivity is represented as a linear combination of elementary spherical harmonic sources. This spherical harmonic-based representation of source directivity can support analytical, data

  1. Measurement of the sound power incident on the walls of a reverberation room with near field acoustic holography

    DEFF Research Database (Denmark)

    Jacobsen, Finn; Tiana Roig, Elisabet

    2010-01-01

    area; and it has always been regarded as impossible to measure the sound power that is incident on a wall directly. This paper examines a new method of determining this quantity from sound pressure measurements at positions on the wall using 'statistically optimised near field acoustic holography...

  2. Analog of Optical Elements for Sound Waves in Air

    Science.gov (United States)

    Gluck, Paul; Perkalskis, Benjamin

    2009-01-01

    Optical elements manipulate light waves. They may be used to focus the light or to change the phase, the polarization, the direction, or the intensity of light. Many of these functions are often demonstrated with microwaves, since the devices normally available in teaching laboratories produce wavelengths in the centimeter range and are therefore…

  3. Softening of stressed granular packings with resonant sound waves.

    Science.gov (United States)

    Reichhardt, C J Olson; Lopatina, L M; Jia, X; Johnson, P A

    2015-08-01

    We perform numerical simulations of a two-dimensional bidisperse granular packing subjected to both a static confining pressure and a sinusoidal dynamic forcing applied by a wall on one edge of the packing. We measure the response experienced by a wall on the opposite edge of the packing and obtain the resonant frequency of the packing as the static or dynamic pressures are varied. Under increasing static pressure, the resonant frequency increases, indicating a velocity increase of elastic waves propagating through the packing. In contrast, when the dynamic amplitude is increased for fixed static pressure, the resonant frequency decreases, indicating a decrease in the wave velocity. This occurs both for compressional and for shear dynamic forcing and is in agreement with experimental results. We find that the average contact number Zc at the resonant frequency decreases with increasing dynamic amplitude, indicating that the elastic softening of the packing is associated with a reduced number of grain-grain contacts through which the elastic waves can travel. We image the excitations created in the packing and show that there are localized disturbances or soft spots that become more prevalent with increasing dynamic amplitude. Our results are in agreement with experiments on glass bead packings and earth materials such as sandstone and granite and may be relevant to the decrease in elastic wave velocities that has been observed to occur near fault zones after strong earthquakes, in surficial sediments during strong ground motion, and in structures during earthquake excitation.

  4. Horizontal ducting of sound by curved nonlinear internal gravity waves in the continental shelf areas.

    Science.gov (United States)

    Lin, Ying-Tsong; McMahon, Kara G; Lynch, James F; Siegmann, William L

    2013-01-01

    The acoustic ducting effect by curved nonlinear gravity waves in shallow water is studied through idealized models in this paper. The internal wave ducts are three-dimensional, bounded vertically by the sea surface and bottom, and horizontally by aligned wavefronts. Both normal mode and parabolic equation methods are taken to analyze the ducted sound field. Two types of horizontal acoustic modes can be found in the curved internal wave duct. One is a whispering-gallery type formed by the sound energy trapped along the outer and concave boundary of the duct, and the other is a fully bouncing type due to continual reflections from boundaries in the duct. The ducting condition depends on both internal-wave and acoustic-source parameters, and a parametric study is conducted to derive a general pattern. The parabolic equation method provides full-field modeling of the sound field, so it includes other acoustic effects caused by internal waves, such as mode coupling/scattering and horizontal Lloyd's mirror interference. Two examples are provided to present internal wave ducts with constant curvature and meandering wavefronts.

  5. Effect of disorder on bulk sound wave speed: a multiscale spectral analysis

    Science.gov (United States)

    Shrivastava, Rohit Kumar; Luding, Stefan

    2017-08-01

    Disorder of size (polydispersity) and mass of discrete elements or particles in randomly structured media (e.g., granular matter such as soil) has numerous effects on the materials' sound propagation characteristics. The influence of disorder on energy and momentum transport, the sound wave speed and its low-pass frequency-filtering characteristics is the subject of this study. The goal is understanding the connection between the particle-microscale disorder and dynamics and the system-macroscale wave propagation, which can be applied to nondestructive testing, seismic exploration of buried objects (oil, mineral, etc.) or to study the internal structure of the Earth. To isolate the longitudinal P-wave mode from shear and rotational modes, a one-dimensional system of equally sized elements or particles is used to study the effect of mass disorder alone via (direct and/or ensemble averaged) real time signals, signals in Fourier space, energy and dispersion curves. Increase in mass disorder (where disorder has been defined such that it is independent of the shape of the probability distribution of masses) decreases the sound wave speed along a granular chain. Energies associated with the eigenmodes can be used to obtain better quality dispersion relations for disordered chains; these dispersion relations confirm the decrease in pass frequency and wave speed with increasing disorder acting opposite to the wave acceleration close to the source.

  6. Effect of disorder on bulk sound wave speed: a multiscale spectral analysis

    Directory of Open Access Journals (Sweden)

    R. K. Shrivastava

    2017-08-01

    Full Text Available Disorder of size (polydispersity and mass of discrete elements or particles in randomly structured media (e.g., granular matter such as soil has numerous effects on the materials' sound propagation characteristics. The influence of disorder on energy and momentum transport, the sound wave speed and its low-pass frequency-filtering characteristics is the subject of this study. The goal is understanding the connection between the particle-microscale disorder and dynamics and the system-macroscale wave propagation, which can be applied to nondestructive testing, seismic exploration of buried objects (oil, mineral, etc. or to study the internal structure of the Earth. To isolate the longitudinal P-wave mode from shear and rotational modes, a one-dimensional system of equally sized elements or particles is used to study the effect of mass disorder alone via (direct and/or ensemble averaged real time signals, signals in Fourier space, energy and dispersion curves. Increase in mass disorder (where disorder has been defined such that it is independent of the shape of the probability distribution of masses decreases the sound wave speed along a granular chain. Energies associated with the eigenmodes can be used to obtain better quality dispersion relations for disordered chains; these dispersion relations confirm the decrease in pass frequency and wave speed with increasing disorder acting opposite to the wave acceleration close to the source.

  7. Modulations of MLT turbulence by waves observed during the WADIS sounding rocket project.

    Science.gov (United States)

    Strelnikov, Boris; Latteck, Ralph; Strelnikova, Irina; Lübken, Franz-Josef; Baumgarten, Gerd; Rapp, Markus

    2017-04-01

    The WADIS project (WAve propagation and DISsipation in the middle atmosphere) aimed at studying waves, their dissipation, and effects on trace constituents. Among other things, it addressed the question of the variability of MLT turbulence, both in time and space. A unique feature of the WADIS project was multi-point turbulence sounding applying different measurement techniques including rocket-borne ionization gauges, VHF MAARSY radar, and VHF EISCAT radar in Tromsø. The project comprised two sounding rocket campaigns conducted at the Andøya Space Center (69 °N, 16 °E). One sounding rocket was launched in summer 2013 and one in winter 2015. The joint in-situ and ground-based observations showed horizontal variability of the turbulence field in the MLT at scales from a few to 100 km. We found that the turbulence dissipation rate varied in space in a wave-like manner both horizontally and in the vertical direction. This wave-like modulation reveals the same vertical wavelengths as those seen in gravity waves. We also found that vertical mean value of radar turbulence observations reveals wave-like modulation in time domain. This time variability results in up to two orders of magnitude change of the energy dissipation values with periods of 24 h. It also shows 12 h and shorter ( hours) modulations resulting in one decade variation. In this paper we present recent measurement results of turbulence-mean flow interaction and discuss possible reasons of the observed modulations.

  8. Illustrations and Supporting Texts for Sound Standing Waves of Air Columns in Pipes in Introductory Physics Textbooks

    Science.gov (United States)

    Zeng, Liang; Smith, Chris; Poelzer, G. Herold; Rodriguez, Jennifer; Corpuz, Edgar; Yanev, George

    2014-01-01

    In our pilot studies, we found that many introductory physics textbook illustrations with supporting text for sound standing waves of air columns in open-open, open-closed, and closed-closed pipes inhibit student understanding of sound standing wave phenomena due to student misunderstanding of how air molecules move within these pipes. Based on…

  9. Numerical study of three-dimensional sound reflection from corrugated surface waves.

    Science.gov (United States)

    Choo, Youngmin; Song, H C; Seong, Woojae

    2016-10-01

    When a sound wave propagates in a water medium bounded by a smooth surface wave, reflection from a wave crest can lead to focusing and result in rapid variation of the received waveform as the surface wave moves [Tindle, Deane, and Preisig, J. Acoust. Soc. Am. 125, 66-72 (2009)]. In prior work, propagation paths have been constrained to be in a plane parallel to the direction of corrugated surface waves, i.e., a two-dimensional (2-D) propagation problem. In this paper, the azimuthal dependence of sound propagation as a three-dimensional (3-D) problem is investigated using an efficient, time-domain Helmholtz-Kirchhoff integral formulation. When the source and receiver are in the plane orthogonal to the surface wave direction, the surface wave curvature vanishes in conventional 2-D treatments and the flat surface simply moves up and down, resulting in minimal temporal variation of the reflected signal intensity. On the other hand, the 3-D propagation analysis reveals that a focusing phenomenon occurs in the reflected signal due to the surface wave curvature formed along the orthogonal plane, i.e., out-of-plane scattering.

  10. Slow-wave metamaterial open panels for efficient reduction of low-frequency sound transmission

    Science.gov (United States)

    Yang, Jieun; Lee, Joong Seok; Lee, Hyeong Rae; Kang, Yeon June; Kim, Yoon Young

    2018-02-01

    Sound transmission reduction is typically governed by the mass law, requiring thicker panels to handle lower frequencies. When open holes must be inserted in panels for heat transfer, ventilation, or other purposes, the efficient reduction of sound transmission through holey panels becomes difficult, especially in the low-frequency ranges. Here, we propose slow-wave metamaterial open panels that can dramatically lower the working frequencies of sound transmission loss. Global resonances originating from slow waves realized by multiply inserted, elaborately designed subwavelength rigid partitions between two thin holey plates contribute to sound transmission reductions at lower frequencies. Owing to the dispersive characteristics of the present metamaterial panels, local resonances that trap sound in the partitions also occur at higher frequencies, exhibiting negative effective bulk moduli and zero effective velocities. As a result, low-frequency broadened sound transmission reduction is realized efficiently in the present metamaterial panels. The theoretical model of the proposed metamaterial open panels is derived using an effective medium approach and verified by numerical and experimental investigations.

  11. Simultaneous multi-band channel sounding at mm-Wave frequencies

    DEFF Research Database (Denmark)

    Müller, Robert; Häfner, Stephan; Dupleich, Diego

    2016-01-01

    and verification of those novel technologies required an understanding of the propagation effects at mm-Wave which enabled by channel sounding measurements and analysis. Due to the variety of considered frequency bands and the necessity of spatial resolved measurements for e.g. testing of beamforming approaches...

  12. Three-in-One Resonance Tube for Harmonic Series Sound Wave Experiments

    Science.gov (United States)

    Jaafar, Rosly; Nazihah Mat Daud, Anis; Ali, Shaharudin; Kadri Ayop, Shahrul

    2017-01-01

    In this study we constructed a special three-in-one resonance tube for a harmonic series sound waves experiment. It is designed for three different experiments: both-open-end, one-closed-end and both-closed-end tubes. The resonance tube consists of a PVC conduit with a rectangular hole, rubber tube, plastic stopper with an embedded microphone and…

  13. The frequency dispersion of velocity and sound waves absorption coefficient in the electrolyte solutions

    International Nuclear Information System (INIS)

    Odinaev, S.; Dodarbekov, A.

    2001-01-01

    Present article is devoted to frequency dispersion of velocity and sound waves absorption coefficient in the electrolyte solutions. The analytical expressions for acoustic parameters in a wide range of thermodynamic parameters and frequencies change were obtained. The system of equations of generalized hydrodynamics for electrolyte solutions was constructed.

  14. Influence of crack opening and incident wave angle on second harmonic generation of Lamb waves

    Science.gov (United States)

    Yang, Yi; Ng, Ching-Tai; Kotousov, Andrei

    2018-05-01

    Techniques utilising second harmonic generation (SHG) have proven their great potential in detecting contact-type damage. However, the gap between the practical applications and laboratory studies is still quite large. The current work is aimed to bridge this gap by investigating the effects of the applied load and incident wave angle on the detectability of fatigue cracks at various lengths. Both effects are critical for practical implementations of these techniques. The present experimental study supported by three-dimensional (3D) finite element (FE) modelling has demonstrated that the applied load, which changes the crack opening and, subsequently, the contact nonlinearity, significantly affects the amplitude of the second harmonic generated by the fundamental symmetric mode (S0) of Lamb wave. This amplitude is also dependent on the length of the fatigue crack as well as the incident wave angle. The experimental and FE results correlate well, so the modelling approach can be implemented for practical design of damage monitoring systems as well as for the evaluation of the severity of the fatigue cracks.

  15. Deltas, freshwater discharge, and waves along the Young Sound, NE Greenland.

    Science.gov (United States)

    Kroon, Aart; Abermann, Jakob; Bendixen, Mette; Lund, Magnus; Sigsgaard, Charlotte; Skov, Kirstine; Hansen, Birger Ulf

    2017-02-01

    A wide range of delta morphologies occurs along the fringes of the Young Sound in Northeast Greenland due to spatial heterogeneity of delta regimes. In general, the delta regime is related to catchment and basin characteristics (geology, topography, drainage pattern, sediment availability, and bathymetry), fluvial discharges and associated sediment load, and processes by waves and currents. Main factors steering the Arctic fluvial discharges into the Young Sound are the snow and ice melt and precipitation in the catchment, and extreme events like glacier lake outburst floods (GLOFs). Waves are subordinate and only rework fringes of the delta plain forming sandy bars if the exposure and fetch are optimal. Spatial gradients and variability in driving forces (snow and precipitation) and catchment characteristics (amount of glacier coverage, sediment characteristics) as well as the strong and local influence of GLOFs in a specific catchment impede a simple upscaling of sediment fluxes from individual catchments toward a total sediment flux into the Young Sound.

  16. Sound waves induce Volkov-like states, band structure and collimation effect in graphene

    Science.gov (United States)

    Oliva-Leyva, M.; Naumis, Gerardo G.

    2016-01-01

    We find exact states of graphene quasiparticles under a time-dependent deformation (sound wave), whose propagation velocity is smaller than the Fermi velocity. To solve the corresponding effective Dirac equation, we adapt the Volkov-like solutions for relativistic fermions in a medium under a plane electromagnetic wave. The corresponding electron-deformation quasiparticle spectrum is determined by the solutions of a Mathieu equation resulting in band tongues warped in the surface of the Dirac cones. This leads to a collimation effect of electron conduction due to strain waves.

  17. Sound waves induce Volkov-like states, band structure and collimation effect in graphene.

    Science.gov (United States)

    Oliva-Leyva, M; Naumis, Gerardo G

    2016-01-20

    We find exact states of graphene quasiparticles under a time-dependent deformation (sound wave), whose propagation velocity is smaller than the Fermi velocity. To solve the corresponding effective Dirac equation, we adapt the Volkov-like solutions for relativistic fermions in a medium under a plane electromagnetic wave. The corresponding electron-deformation quasiparticle spectrum is determined by the solutions of a Mathieu equation resulting in band tongues warped in the surface of the Dirac cones. This leads to a collimation effect of electron conduction due to strain waves.

  18. The generation of sound by vorticity waves in swirling duct flows

    Science.gov (United States)

    Howe, M. S.; Liu, J. T. C.

    1977-01-01

    Swirling flow in an axisymmetric duct can support vorticity waves propagating parallel to the axis of the duct. When the cross-sectional area of the duct changes a portion of the wave energy is scattered into secondary vorticity and sound waves. Thus the swirling flow in the jet pipe of an aeroengine provides a mechanism whereby disturbances produced by unsteady combustion or turbine blading can be propagated along the pipe and subsequently scattered into aerodynamic sound. In this paper a linearized model of this process is examined for low Mach number swirling flow in a duct of infinite extent. It is shown that the amplitude of the scattered acoustic pressure waves is proportional to the product of the characteristic swirl velocity and the perturbation velocity of the vorticity wave. The sound produced in this way may therefore be of more significance than that generated by vorticity fluctuations in the absence of swirl, for which the acoustic pressure is proportional to the square of the perturbation velocity. The results of the analysis are discussed in relation to the problem of excess jet noise.

  19. Harmonic Wave Generated by Contact Acoustic Nonlinearity in Obliquely Incident Ultrasonic Wave

    Energy Technology Data Exchange (ETDEWEB)

    Yun, Dong Seok; Choi, Sung Ho; Kim, Chung Seok; Jhang, Kyung Young [Hangyang University, Seoul (Korea, Republic of)

    2012-08-15

    The objective of this study is to image the harmonic wave generated by contact acoustic nonlinearity in obliquely incident ultrasonic wave for early detection of closed cracks. A closed crack has been simulated by contacting two aluminum block specimens producing solid-solid contact interfaces and then acoustic nonlinearity has been imaged with contact pressure. Sampling phased array(SPA) and synthetic aperture focusing technique(SAFT) are used for imaging techniques. The amplitude of the fundamental frequency decreased with applying pressure. But, the amplitude of second harmonic increased with pressure and was a maximum amplitude at the simulation point of closed crack. Then, the amplitude of second harmonic decreased. As a result, harmonic imaging of contact acoustic nonlinearity is possible and it is expected to be apply for early detection of initial cracks.

  20. Dynamics of Langmuir and ion-sound waves in type III solar radio sources

    Science.gov (United States)

    Robinson, P. A.; Willes, A. J.; Cairns, I. H.

    1993-01-01

    The study traces the evolution of Langmuir and ion-sound waves in type III sources, incorporating linear growth, linear damping, and nonlinear electrostatic decay. Improved estimates are obtained for the wavenumber range of growing waves and the nonlinear coupling coefficient for the decay process. It is shown that the conditions in the solar wind do not allow a steady state to be attained; instead, bursty linear and nonlinear interactions take place, consistent with the highly inhomogeneous and impulsive waves actually observed. Nonlinear growth is found to be rapid enough to saturate the growth of the parent Langmuir waves in the available interaction time. The competing processes of nonlinear wave collapse and quasi-linear relaxation are discussed, and it is concluded that neither is responsible for the saturation of Langmuir growth.

  1. Intermittent large amplitude internal waves observed in Port Susan, Puget Sound

    Science.gov (United States)

    Harris, J. C.; Decker, L.

    2017-07-01

    A previously unreported internal tidal bore, which evolves into solitary internal wave packets, was observed in Port Susan, Puget Sound, and the timing, speed, and amplitude of the waves were measured by CTD and visual observation. Acoustic Doppler current profiler (ADCP) measurements were attempted, but unsuccessful. The waves appear to be generated with the ebb flow along the tidal flats of the Stillaguamish River, and the speed and width of the resulting waves can be predicted from second-order KdV theory. Their eventual dissipation may contribute significantly to surface mixing locally, particularly in comparison with the local dissipation due to the tides. Visually the waves appear in fair weather as a strong foam front, which is less visible the farther they propagate.

  2. Acoustic nuclear magnetic resonance due to generation of sound waves in metals

    International Nuclear Information System (INIS)

    Solovarov, N.K.

    1975-01-01

    Nuclear magnetic resonance (NMR) in a metallic plate is considered taking account of acoustic waves (AW) generated by an outer electromagnetic field. In observing the NMR in a conducting media it is suggested that only nuclear spins in a thin skin-layer, participate in the energy resonance absorption. Electromagnetic wave penetration into a sample in the presence of a constant magnetic field is followed by a direct sound generation. Acoustic NMR can be observed during interaction of excited AW with nuclear spins. Energy absorption by nuclear spins occurs over the whole volume of the sample by means of helicons and AW. In this case the NMR signal is the summarized absorption one. It is necessary to analize every time carefully the nature of the observed signal . Relative values of contributions into the NMR signal of the following mechanisms of sound absorption by the nuclear spin-system are estimated in the present paper: 1) electromagnetic absorption taking no account of sound generation; 2) the mechanism of the magnetic dipole absorption of AW, generated in the sample; 3) the mechanism of absorption of AW different from that of the magnetic dipole mechanism. The results of numerical estimates are represented graphically. The conclusions are as follows: 1) in the majority of cases it is necessary to take into account sound generation in metals in observing NMR; 2) contributions due to mechanisms diferent from the magnetic dipole mechanism of absorption of the sound, generated in the sample by the spin-system, may be significant

  3. Analysis of sound propagation in ducts using the wave envelope concept

    Science.gov (United States)

    Baumeister, K. J.

    1974-01-01

    A finite difference formulation is presented for sound propagation in a rectangular two-dimensional duct without steady flow for plane wave input. Before the difference equations are formulated, the governing Helmholtz equation is first transformed to a form whose solution does not oscillate along the length of the duct. This transformation reduces the required number of grid points by an order of magnitude, and the number of grid points becomes independent of the sound frequency. Physically, the transformed pressure represents the amplitude of the conventional sound wave. Example solutions are presented for sound propagation in a one-dimensional straight hard-wall duct and in a two-dimensional straight soft-wall duct without steady flow. The numerical solutions show evidence of the existence along the duct wall of a developing acoustic pressure diffusion boundary layer which is similar in nature to the conventional viscous flow boundary layer. In order to better illustrate this concept, the wave equation and boundary conditions are written such that the frequency no longer appears explicitly in them. The frequency effects in duct propagation can be visualized solely as an expansion and stretching of the suppressor duct.

  4. Propagation of sound wave in high density deuterium at high temperatures

    International Nuclear Information System (INIS)

    Inoue, Kazuko; Ariyasu, Tomio

    1986-01-01

    The velocity and the attenuation constant of sound wave have been calculated for high density (10 24 ∼ 10 27 /cm 3 ) deuterium at high temperatures (10 -1 ∼ 10 4 eV). This calculation was made to understand the fuel properties in inertial confinement fusion and to obtain the basic data for pellet design. The isentropic sound wave which propagates in deuterium in plasma state at temperature T i = T e , is dealt with. The velocity is derived using the modulus of bulk elasticity of the whole system and the modulus of shear elasticity due to ion-ion interaction. For the calculation of attenuation constant, the bulk and shear viscosity due to ion-ion interaction, the shear viscosity of free electron gas, and the thermal conductivity due to free electrons are considered. The condition of frequency for the existence of such isentropic sound wave is discussed. The possibility of penetration into the fuel pellet in inertial confinement fusion is also discussed. The followings have been found: (1) The sound velocity is determined mainly from the bulk elasticity. The contribution of the shear elasticity is small. The velocity ranges from 2.8 x 10 6 to 1.5 x 10 8 cm/s in the above mentioned temperature and density regions. (2) The coefficient of attenuation constant with respect to ω 2 /2ρu 3 plotted versus temperature with the parameter of density shows a minimum. At temperatures below this minimum, the attenuation comes mainly from the bulk viscosity due to ion-ion interaction and the shear viscosity due to free electron gas. At temperatures above this minimum, the sound is attenuated mainly by the thermal conductivity due to electrons. (3) The condition for the existence of such adiabatic sound wave, is satisfied with the frequency less than 10 10 Hz. But, as for the pellet design, the wave length of sound with frequency less than 10 10 Hz is longer than the diameter of pellet when compressed highly. (author)

  5. Sound waves and dynamics of superfluid Fermi gases in optical lattices

    International Nuclear Information System (INIS)

    Zhang Aixia; Xue Jukui

    2009-01-01

    The sound waves, the stability of Bloch waves, the Bloch oscillation, and the self-trapping phenomenon in interacting two-component Fermi gases throughout the BEC-BCS crossover in one-dimensional (1D), two-dimensional (2D), and three-dimensional (3D) optical lattices are discussed in detail. Within the hydrodynamical theory and by using the perturbative and tight-binding approximation, sound speed in both weak and tight 1D, 2D, 3D optical lattices, and the criteria for occurrences of instability of Bloch waves and self-trapping of Fermi gases along the whole BEC-BCS crossover in tight 1D, 2D, 3D optical lattices are obtained analytically. The results show that the sound speed, the criteria for occurrences of instability of Bloch waves and self-trapping, and the destruction of Bloch oscillation are modified dramatically by the lattice parameters (lattice dimension and lattice strength), the atom density or atom number, and the atom interaction.

  6. Transfer Matrix for Obliquely Incident Electromagnetic Waves Propagating in One Dimension Plasma Photonic Crystals

    International Nuclear Information System (INIS)

    Guo Bin

    2009-01-01

    Based on the electromagnetic theory and by using an analytical technique-the transfer matrix method, the obliquely incident electromagnetic waves propagating in one-dimension plasma photonic crystals is studied. The dispersion relations for both the P-polarization waves and S-polarization waves, depending on the plasma density, plasma thickness and period, are discussed. (basic plasma phenomena)

  7. Sound and sound sources

    DEFF Research Database (Denmark)

    Larsen, Ole Næsbye; Wahlberg, Magnus

    2017-01-01

    There is no difference in principle between the infrasonic and ultrasonic sounds, which are inaudible to humans (or other animals) and the sounds that we can hear. In all cases, sound is a wave of pressure and particle oscillations propagating through an elastic medium, such as air. This chapter...... is about the physical laws that govern how animals produce sound signals and how physical principles determine the signals’ frequency content and sound level, the nature of the sound field (sound pressure versus particle vibrations) as well as directional properties of the emitted signal. Many...... of these properties are dictated by simple physical relationships between the size of the sound emitter and the wavelength of emitted sound. The wavelengths of the signals need to be sufficiently short in relation to the size of the emitter to allow for the efficient production of propagating sound pressure waves...

  8. Sound

    CERN Document Server

    2013-01-01

    Sound has the power to soothe, excite, warn, protect, and inform. Indeed, the transmission and reception of audio signals pervade our daily lives. Readers will examine the mechanics and properties of sound and provides an overview of the "interdisciplinary science called acoustics." Also covered are functions and diseases of the human ear.

  9. Heterodyne mixing of millimetre electromagnetic waves and sub-THz sound in a semiconductor device.

    Science.gov (United States)

    Heywood, Sarah L; Glavin, Boris A; Beardsley, Ryan P; Akimov, Andrey V; Carr, Michael W; Norman, James; Norton, Philip C; Prime, Brian; Priestley, Nigel; Kent, Anthony J

    2016-08-01

    We demonstrate heterodyne mixing of a 94 GHz millimetre wave photonic signal, supplied by a Gunn diode oscillator, with coherent acoustic waves of frequency ~100 GHz, generated by pulsed laser excitation of a semiconductor surface. The mixing takes place in a millimetre wave Schottky diode, and the intermediate frequency electrical signal is in the 1-12 GHz range. The mixing process preserves all the spectral content in the acoustic signal that falls within the intermediate frequency bandwidth. Therefore this technique may find application in high-frequency acoustic spectroscopy measurements, exploiting the nanometre wavelength of sub-THz sound. The result also points the way to exploiting acoustoelectric effects in photonic devices working at sub-THz and THz frequencies, which could provide functionalities at these frequencies, e.g. acoustic wave filtering, that are currently in widespread use at lower (GHz) frequencies.

  10. Sound radiation from an infinite elastic cylinder with dual-wave propagation-intensity distributions

    Science.gov (United States)

    Fuller, C. R.

    1988-01-01

    The radiation of sound from an elastic cylindrical shell filled with fluid and supporting multiwave propagation is studied analytically. Combinations of supersonic and subsonic shell waves are considered. The radiated field is mapped by using acoustic intensity vectors evaluated at various locations. Both time averaged and instantaneous intensity are investigated. The acoustic intensity is seen to vary markedly with axial distance down the cylinder. The effect is shown to be associated with cross terms in the intensity relations, and its magnitude and location to depend upon the relative phase and amplitudes of individual waves. Subsonic shell waves are demonstrated to interact strongly with supersonic shell waves to cause a large modification in the radiated intensity distributions near the shell surface.

  11. Measured and calculated transmission losses of sound waves through a helium layer

    Science.gov (United States)

    Norum, T. D.

    1973-01-01

    An experiment was performed to measure the transmission losses of sound waves traversing an impedance layer. The sound emanated from a point source and the impedance layer was created by a low-speed helium jet. The transmission losses measured were of the order of 12 db for frequencies of the source between 4 and 12 kHz. These losses are greater than those predicted from analysis when the observer angle is less than about 35 deg, but less than those predicted for larger observer angles. The experimental results indicate that appreciable noise reductions can be realized for an observer shielded by an impedance layer, irrespective of his position relative to the source of sound.

  12. Coupling of Rayleigh-like waves with zero-sound modes in normal 3He

    International Nuclear Information System (INIS)

    Bogacz, S.A.; Ketterson, J.B.

    1985-01-01

    The Landau kinetic equation is solved in the collisionless regime for a sample of normal 3 He excited by a surface perturbation of arbitrary ω and k. The boundary condition for the nonequilibrium particle distribution is determined for the case of specular reflection of the elementary excitations at the interface. Using the above solution, the energy flux through the boundary is obtained as a function of the surface wave velocity ω/k. The absorption spectrum and its frequency derivative are calculated numerically for typical values of temperature and pressure. The spectrum displays a sharp, resonant-like maximum concentrated at the longitudinal sound velocity and a sharp maximum of the derivative concentrated at the transverse sound velocity. The energy transfer is cut off discontinuously below the Fermi velocity. An experimental measurement of the energy transfer spectrum would permit a determination of both zero-sound velocities and the Fermi velocity with spectroscopic precision

  13. Deltas, freshwater discharge, and waves along the Young Sound, NE Greenland

    DEFF Research Database (Denmark)

    Kroon, Aart; Abermann, Jakob; Bendixen, Mette

    2017-01-01

    , and bathymetry), fluvial discharges and associated sediment load, and processes by waves and currents. Main factors steering the Arctic fluvial discharges into the Young Sound are the snow and ice melt and precipitation in the catchment, and extreme events like glacier lake outburst floods (GLOFs). Waves......A wide range of delta morphologies occurs along the fringes of the Young Sound in Northeast Greenland due to spatial heterogeneity of delta regimes. In general, the delta regime is related to catchment and basin characteristics (geology, topography, drainage pattern, sediment availability...... are subordinate and only rework fringes of the delta plain forming sandy bars if the exposure and fetch are optimal. Spatial gradients and variability in driving forces (snow and precipitation) and catchment characteristics (amount of glacier coverage, sediment characteristics) as well as the strong and local...

  14. NORMAL INCIDENCE SOUND ABSORPTION COEFFICIENT OF DIRECT PIERCING CARVED WOOD PANEL WITH DAUN SIREH MOTIF USING BOUNDARY ELEMENT METHOD

    Directory of Open Access Journals (Sweden)

    Mohd Zamri Jusoh

    2013-06-01

    Full Text Available The Direct Piercing Carved Wood Panel (DPCWP installed in Masjid Abidin, Kuala Terengganu, is one example that carries much aesthetic and artistic value. The use of DPCWP in earlier mosques was envisaged to improve the intelligibility of indoor speech because the perforated panels allow some of the sound energy to pass through. In this paper, the normal incidence sound absorption coefficient of DPCWP with Daun Sireh motif, which is a form of floral pattern, is discussed. The Daun Sireh motif was chosen and investigated for 30%, 35%, 40%, and 45% perforation ratios. The simulations were conducted using BEASY Acoustic Software based on the boundary element method. The simulation results were compared with measurements obtained by using the sound intensity technique. An accompanying discussion on both the numerical and the measurement tendencies of the sound absorption characteristics of the DPCWP is provided. The results show that the DPCWP with Daun Sireh motif can act as a good sound absorber.

  15. The Impact of Sound on Electroencephalographic Waves during Sleep in Patients Suffering from Tinnitus

    Directory of Open Access Journals (Sweden)

    Marisa Pedemonte

    2014-09-01

    The main results found were that the largest number of changes, considering both the power spectrum and wave׳s coherence, occurred in stages N2 and N3. The delta and theta bands were the most changed, with important changes also in coherence of spindles during N2. All changes were more frequent in temporal areas. The differences between the two hemispheres do not depend, at least exclusively, on the side where the tinnitus is perceived and, hence, of the stimulated side. These results demonstrate that sound stimulation during sleep in tinnitus patients׳ influences brain activity and open an avenue for investigating the mechanism underlying tinnitus and its treatment.

  16. Kinetic theory for radiation interacting with sound waves in ultrarelativistic pair plasmas

    International Nuclear Information System (INIS)

    Marklund, Mattias; Shukla, Padma K.; Stenflo, Lennart

    2006-01-01

    A kinetic theory for radiation interacting with sound waves in an ultrarelativistic electron-positron plasma is developed. It is shown that the effect of a spatial spectral broadening of the electromagnetic pulse is to introduce a reduction of the growth rates for the decay and modulational instabilities. Such spectral broadening could be due to a finite pulse coherence length, or through the use of random phase filters, and would stabilize the propagation of electromagnetic pulses

  17. Excitation of a surface wave by an s-polarized electromagnetic wave incident upon a boundary of a dense magnetoactive plasma

    International Nuclear Information System (INIS)

    Dragila, R.; Vukovic, S.

    1988-01-01

    The properties of surfave waves that are associated with a boundary between a rare plasma and a dense magnetoactive plasma and that propagate along a dc magnetic field are investigated. It is shown that the presence of the magnetic field introduces symmetry in terms of the polarization of the incident electromagnetic wave that excites the surface waves. A surface wave excited by an incident p-polarized (s-polarized) electromagnetic wave leaks in the form of an s-polarized (p-polarized) electromagnetic wave. The rate of rotation of polarization is independent of the polarization of the incident wave. Because a surface wave can leak in the form of an s-polarized electromagnetic wave, it can also be pumped by such a wave, and conditions were found for excitation of a surface wave by an s-polarized incident electromagnetic wave

  18. A Discrete Constraint for Entropy Conservation and Sound Waves in Cloud-Resolving Modeling

    Science.gov (United States)

    Zeng, Xi-Ping; Tao, Wei-Kuo; Simpson, Joanne

    2003-01-01

    Ideal cloud-resolving models contain little-accumulative errors. When their domain is so large that synoptic large-scale circulations are accommodated, they can be used for the simulation of the interaction between convective clouds and the large-scale circulations. This paper sets up a framework for the models, using moist entropy as a prognostic variable and employing conservative numerical schemes. The models possess no accumulative errors of thermodynamic variables when they comply with a discrete constraint on entropy conservation and sound waves. Alternatively speaking, the discrete constraint is related to the correct representation of the large-scale convergence and advection of moist entropy. Since air density is involved in entropy conservation and sound waves, the challenge is how to compute sound waves efficiently under the constraint. To address the challenge, a compensation method is introduced on the basis of a reference isothermal atmosphere whose governing equations are solved analytically. Stability analysis and numerical experiments show that the method allows the models to integrate efficiently with a large time step.

  19. Sound Shell Model for Acoustic Gravitational Wave Production at a First-Order Phase Transition in the Early Universe.

    Science.gov (United States)

    Hindmarsh, Mark

    2018-02-16

    A model for the acoustic production of gravitational waves at a first-order phase transition is presented. The source of gravitational radiation is the sound waves generated by the explosive growth of bubbles of the stable phase. The model assumes that the sound waves are linear and that their power spectrum is determined by the characteristic form of the sound shell around the expanding bubble. The predicted power spectrum has two length scales, the average bubble separation and the sound shell width when the bubbles collide. The peak of the power spectrum is at wave numbers set by the sound shell width. For a higher wave number k, the power spectrum decreases to k^{-3}. At wave numbers below the inverse bubble separation, the power spectrum goes to k^{5}. For bubble wall speeds near the speed of sound where these two length scales are distinguished, there is an intermediate k^{1} power law. The detailed dependence of the power spectrum on the wall speed and the other parameters of the phase transition raises the possibility of their constraint or measurement at a future space-based gravitational wave observatory such as LISA.

  20. Sound Shell Model for Acoustic Gravitational Wave Production at a First-Order Phase Transition in the Early Universe

    Science.gov (United States)

    Hindmarsh, Mark

    2018-02-01

    A model for the acoustic production of gravitational waves at a first-order phase transition is presented. The source of gravitational radiation is the sound waves generated by the explosive growth of bubbles of the stable phase. The model assumes that the sound waves are linear and that their power spectrum is determined by the characteristic form of the sound shell around the expanding bubble. The predicted power spectrum has two length scales, the average bubble separation and the sound shell width when the bubbles collide. The peak of the power spectrum is at wave numbers set by the sound shell width. For a higher wave number k , the power spectrum decreases to k-3. At wave numbers below the inverse bubble separation, the power spectrum goes to k5. For bubble wall speeds near the speed of sound where these two length scales are distinguished, there is an intermediate k1 power law. The detailed dependence of the power spectrum on the wall speed and the other parameters of the phase transition raises the possibility of their constraint or measurement at a future space-based gravitational wave observatory such as LISA.

  1. Sound

    CERN Document Server

    Rivera, Andrea

    2017-01-01

    Sound is all around us. Learn how it is used in art, technology, and engineering. Five easy-to-read chapters explain the science behind sound, as well as its real-world applications. Vibrant, full-color photos, bolded glossary words, and a key stats section let readers zoom in even deeper. Aligned to Common Core Standards and correlated to state standards. Abdo Zoom is a division of ABDO.

  2. Sound waves effectively assist tobramycin in elimination of Pseudomonas aeruginosa biofilms in vitro.

    Science.gov (United States)

    Bandara, H M H N; Harb, A; Kolacny, D; Martins, P; Smyth, H D C

    2014-12-01

    Microbial biofilms are highly refractory to antimicrobials. The aim of this study was to investigate the use of low-frequency vibration therapy (20-20 kHz) on antibiotic-mediated Pseudomonas aeruginosa biofilm eradication. In screening studies, low-frequency vibrations were applied on model biofilm compositions to identify conditions in which surface standing waves were observed. Alginate surface tension and viscosity were also measured. The effect of vibration on P. aeruginosa biofilms was studied using a standard biofilm assay. Subminimal inhibitory concentrations (sub-MIC) of tobramycin (5 μg/ml) were added to biofilms 3 h prior, during, and immediately after vibration and quantitatively assessed by (2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide) reduction assay (XTT) and, qualitatively, by confocal laser scanning microscopy (CLSM). The standing waves occurred at frequencies sound waves together with antibiotics are a promising approach in eliminating pathogenic biofilms.

  3. Separation of radiated sound field components from waves scattered by a source under non-anechoic conditions

    DEFF Research Database (Denmark)

    Fernandez Grande, Efren; Jacobsen, Finn

    2010-01-01

    A method of estimating the sound field radiated by a source under non-anechoic conditions has been examined. The method uses near field acoustic holography based on a combination of pressure and particle velocity measurements in a plane near the source for separating outgoing and ingoing wave...... components. The outgoing part of the sound field is composed of both radiated and scattered waves. The method compensates for the scattered components of the outgoing field on the basis of the boundary condition of the problem, exploiting the fact that the sound field is reconstructed very close...... to the source. Thus the radiated free-field component is estimated simultaneously with solving the inverse problem of reconstructing the sound field near the source. The method is particularly suited to cases in which the overall contribution of reflected sound in the measurement plane is significant....

  4. Sound absorption in a field of a strong electromagnetic wave in a quantizied magnetic field

    International Nuclear Information System (INIS)

    Chajkovskij, I.A.

    1974-01-01

    A coefficient of sound absorption GAMMA in a semiconductor and semi-metal in the quantized magnetic field is calculated for a system exposed to a field of strong electromagnetic radiation. The cases E parallel H and E orthogonal H are considered. Along with the already known strong oscillations of sound absorption in magnetic fields, the absorption spectrum GAMMAsub(par) and GAMMAsub(orth) shows new oscillations representing a manifestation of the quasi-energetic electron spectrum in the field of a strong electromagnetic wave. The oscillation height at E parallel H is modulated by the electromagnetic field. It is shown that the ratio GAMMAsub(par)/GAMMAsub(orth) allows the determination of the effective mass of the carriers

  5. Hybrid Resonant Acoustics: Exploiting a New Class of Sound Waves for Highly Efficient Microfluidic Nebulisation

    Science.gov (United States)

    Rezk, Amgad; Yeo, Leslie

    2017-11-01

    A longstanding convention in acoustomicrofluidic manipulation-a consequence of wholesale adoption from decades long application of surface acoustic waves (SAWs) in electronics and telecommunications-has been to employ pure SAWs by eliminating wave reflections and bulk resonances in single crystal piezoelectric substrates with the assumption that this provides the most efficient way to actuate or manipulate fluid flow at microscale dimensions. Despite the many advantages of SAW microfluidics, particularly for aerosolising and hence delivering next generation macromolecular-based therapeutics via inhalation, the limitation of the SAW devices, however, lies in the input power it can sustain, thus constraining the nebulisation rates that can be generated, which has, among other things, severely hampered its practical adoption in pulmonary drug administration to date. Here, we unravel the existence of a surface reflected bulk wave (SRBW)-the first new class of sound waves to have been discovered in well over five decades-and show, quite counterintuitively, that it is possible to obtain an order-of-magnitude improvement in microfluidic manipulation efficiency through this unique hybrid combination of surface and bulk waves without increasing complexity or cost.

  6. Radiative amplification of sound waves in the winds of O and B stars

    Science.gov (United States)

    Macgregor, K. B.; Hartmann, L.; Raymond, J. C.

    1979-01-01

    The velocity perturbation associated with an outwardly propagating sound wave in a radiation-driven stellar wind gives rise to a periodic Doppler shifting of absorption lines formed in the flow. A linearized theory applicable to optically thin waves is used to show that the resulting fluctuation in the absorption-line force can cause the wave amplitude to grow. Detailed calculations of the acceleration due to a large number of lines indicate that significant amplification can occur throughout the high-velocity portion of winds in which the dominant force-producing lines have appreciable optical depths. In the particular case of the wind of Zeta Pup (O4f), it is found that the e-folding distance for wave growth is considerably shorter than the scale lengths over which the physical properties of the flow vary. A qualitative estimate of the rate at which mechanical energy due to nonlinear waves can be dissipated suggests that this mechanism may be important in heating the supersonic portion of winds of early-type stars.

  7. Radiative amplification of sound waves in the winds of O and B stars

    International Nuclear Information System (INIS)

    MacGregor, K.B.; Hartmann, L.; Raymond, J.C.

    1979-01-01

    The velocity perturbation associated with an outwardly propagating sound wave in a radiation-driven stellar wind gives rise to a periodic Doppler shifting of absorption lines formed in the flow. Using a linearized theory applicable to optically thin waves, we show that the resulting fluctuation in the absorption-line force can cause the wave amplitude to grow. Detailed calculations of the acceleration due to a large number of lines indicate that the significant amplification can occur throughout the high-velocity portion of winds in which the dominant force-producing lines have appreciable optical depths. In the particular case of the wind of zeta Pup (O4f), we find that the e-folding distance for wave growth is considerably shorter than the scale lengths over which the physical properties of the flow vary. A qualitative estimate of the rate at which mechanical energy due to nonlinear waves can be dissipated suggests that this mechanism may be important in heating the supersonic portion of winds of early-type stars

  8. Sound wave generation by a spherically symmetric outburst and AGN feedback in galaxy clusters

    Science.gov (United States)

    Tang, Xiaping; Churazov, Eugene

    2017-07-01

    We consider the evolution of an outburst in a uniform medium under spherical symmetry, having in mind active galactic nucleus feedback in the intracluster medium. For a given density and pressure of the medium, the spatial structure and energy partition at a given time tage (since the onset of the outburst) are fully determined by the total injected energy Einj and the duration tb of the outburst. We are particularly interested in the late phase evolution when the strong shock transforms into a sound wave. We studied the energy partition during such transition with different combinations of Einj and tb. For an instantaneous outburst with tb → 0, which corresponds to the extension of classic Sedov-Taylor solution with counter-pressure, the fraction of energy that can be carried away by sound waves is ≲12 per cent of Einj. As tb increases, the solution approaches the 'slow piston' limit, with the fraction of energy in sound waves approaching zero. We then repeat the simulations using radial density and temperature profiles measured in Perseus and M87/Virgo clusters. We find that the results with a uniform medium broadly reproduce an outburst in more realistic conditions once proper scaling is applied. We also develop techniques to map intrinsic properties of an outburst (Einj, tb and tage) to the observables like the Mach number of the shock and radii of the shock and ejecta. For the Perseus cluster and M87, the estimated (Einj, tb and tage) agree with numerical simulations tailored for these objects with 20-30 per cent accuracy.

  9. Observation of standing waves of electron-hole sound in a photoexcited semiconductor.

    Science.gov (United States)

    Padmanabhan, P; Young, S M; Henstridge, M; Bhowmick, S; Bhattacharya, P K; Merlin, R

    2014-07-11

    Three-dimensional multicomponent plasmas composed of species with very different masses support a new branch of charge-density fluctuations known as acoustic plasmons. Here, we report on an ultrafast optical method to generate and probe coherent states of acoustic plasmons in a slab of GaAs, which relies on strong photoexcitation to create a large population of light electrons and heavy holes. Consistent with the random-phase-approximation theory, the data reveal standing plasma waves confined to these slabs, similar to those of conventional sound but with associated velocities that are significantly larger.

  10. Surface refraction of sound waves affects calibration of three-dimensional ultrasound.

    Science.gov (United States)

    Ballhausen, Hendrik; Ballhausen, Bianca Désirée; Lachaine, Martin; Li, Minglun; Parodi, Katia; Belka, Claus; Reiner, Michael

    2015-05-27

    Three-dimensional ultrasound (3D-US) is used in planning and treatment during external beam radiotherapy. The accuracy of the technique depends not only on the achievable image quality in clinical routine, but also on technical limitations of achievable precision during calibration. Refraction of ultrasound waves is a known source for geometric distortion, but such an effect was not expected in homogenous calibration phantoms. However, in this paper we demonstrate that the discontinuity of the refraction index at the phantom surface may affect the calibration unless the ultrasound probe is perfectly perpendicular to the phantom. A calibration phantom was repeatedly scanned with a 3D-US system (Elekta Clarity) by three independent observers. The ultrasound probe was moved horizontally at a fixed angle in the sagittal plane. The resulting wedge shaped volume between probe and phantom was filled with water to couple in the ultrasound waves. Because the speed of sound in water was smaller than the speed of sound in Zerdine, the main component of the phantom, the angle of the ultrasound waves inside the phantom increased. This caused an apparent shift in the calibration features which was recorded as a function of the impeding angle. To confirm the magnitude and temperature dependence, the experiment was repeated by two of the observers with a mixture of ice and water at 0 °C and with thermalized tap water at 21 °C room temperature. During the first series of measurements, a linear dependency of the displacements dx of the calibration features on the angle α of the ultrasound probe was observed. The three observers recorded significantly nonzero (p sound of 1,402 m/s at the melting point of ice. At 21 °C, slopes of 0.11 and 0.12 mm/° were recorded in agreement with the first experiment at about room temperature. The difference to the theoretical expectation of 0.07 mm/° was not significant (p = 0.09). The surface refraction of sound waves my affect the

  11. Gravitational waves from the sound of a first order phase transition.

    Science.gov (United States)

    Hindmarsh, Mark; Huber, Stephan J; Rummukainen, Kari; Weir, David J

    2014-01-31

    We report on the first three-dimensional numerical simulations of first-order phase transitions in the early Universe to include the cosmic fluid as well as the scalar field order parameter. We calculate the gravitational wave (GW) spectrum resulting from the nucleation, expansion, and collision of bubbles of the low-temperature phase, for phase transition strengths and bubble wall velocities covering many cases of interest. We find that the compression waves in the fluid continue to be a source of GWs long after the bubbles have merged, a new effect not taken properly into account in previous modeling of the GW source. For a wide range of models, the main source of the GWs produced by a phase transition is, therefore, the sound the bubbles make.

  12. Observationally constrained modeling of sound in curved ocean internal waves: examination of deep ducting and surface ducting at short range.

    Science.gov (United States)

    Duda, Timothy F; Lin, Ying-Tsong; Reeder, D Benjamin

    2011-09-01

    A study of 400 Hz sound focusing and ducting effects in a packet of curved nonlinear internal waves in shallow water is presented. Sound propagation roughly along the crests of the waves is simulated with a three-dimensional parabolic equation computational code, and the results are compared to measured propagation along fixed 3 and 6 km source/receiver paths. The measurements were made on the shelf of the South China Sea northeast of Tung-Sha Island. Construction of the time-varying three-dimensional sound-speed fields used in the modeling simulations was guided by environmental data collected concurrently with the acoustic data. Computed three-dimensional propagation results compare well with field observations. The simulations allow identification of time-dependent sound forward scattering and ducting processes within the curved internal gravity waves. Strong acoustic intensity enhancement was observed during passage of high-amplitude nonlinear waves over the source/receiver paths, and is replicated in the model. The waves were typical of the region (35 m vertical displacement). Two types of ducting are found in the model, which occur asynchronously. One type is three-dimensional modal trapping in deep ducts within the wave crests (shallow thermocline zones). The second type is surface ducting within the wave troughs (deep thermocline zones). © 2011 Acoustical Society of America

  13. Illustrations and supporting texts for sound standing waves of air columns in pipes in introductory physics textbooks

    Science.gov (United States)

    Zeng, Liang; Smith, Chris; Poelzer, G. Herold; Rodriguez, Jennifer; Corpuz, Edgar; Yanev, George

    2014-12-01

    In our pilot studies, we found that many introductory physics textbook illustrations with supporting text for sound standing waves of air columns in open-open, open-closed, and closed-closed pipes inhibit student understanding of sound standing wave phenomena due to student misunderstanding of how air molecules move within these pipes. Based on the construct of meaningful learning from cognitive psychology and semiotics, a quasiexperimental study was conducted to investigate the comparative effectiveness of two alternative approaches to student understanding: a traditional textbook illustration approach versus a newly designed air molecule motion illustration approach. Thirty volunteer students from introductory physics classes were randomly assigned to two groups of 15 each. Both groups were administered a presurvey. Then, group A read the air molecule motion illustration handout, and group B read a traditional textbook illustration handout; both groups were administered postsurveys. Subsequently, the procedure was reversed: group B read the air molecule motion illustration handout and group A read the traditional textbook illustration handout. This was followed by a second postsurvey along with an exit research questionnaire. The study found that the majority of students experienced meaningful learning and stated that they understood sound standing wave phenomena significantly better using the air molecule motion illustration approach. This finding provides a method for physics education researchers to design illustrations for abstract sound standing wave concepts, for publishers to improve their illustrations with supporting text, and for instructors to facilitate deeper learning in their students on sound standing waves.

  14. Negative group velocity Lamb waves on plates and applications to the scattering of sound by shells.

    Science.gov (United States)

    Marston, Philip L

    2003-05-01

    Symmetric Lamb waves on plates exhibit anomalies for certain regions of frequency. The phase velocity appears to be double-valued [M. F. Werby and H. Uberall, J. Acoust. Soc. Am. 111, 2686-2691 (2002)] with one of the branches having a negative group velocity relative to the corresponding phase velocity. The classification of the symmetric plate modes for frequencies appearing to have a double-valued phase velocity is reviewed here. The complication of a double-valued velocity is avoided by examining mode orthogonality and the complex wave-number spectra. Various authors have noted an enhancement in the backscattering of sound by elastic shells in water that occurs for frequencies where symmetric leaky Lamb waves (generalized to case of a shell) have contra-directed group and phase velocities. The ray diagram for negative group velocity contributions to the scattering by shells [G. Kaduchak, D. H. Hughes, and P. L. Marston, J. Acoust. Soc. Am. 96, 3704-3714 (1994)] is unusual since for this type of mode the energy on the shell flows in the opposite direction of the wave vector. Circumnavigation of the shell is not required for the leaky ray to be backward directed.

  15. Resonant pressure wave setup for simultaneous sensing of longitudinal viscosity and sound velocity of liquids

    International Nuclear Information System (INIS)

    Beigelbeck, Roman; Cerimovic, Samir; Keplinger, Franz; Jakoby, Bernhard; Antlinger, Hannes; Clara, Stefan

    2013-01-01

    Increasing demands for online monitoring of liquids have not only resuted in many new devices relying on well-established sensing parameters like shear viscosity but also initiated research on alternative parameters. Recently, the longitudinal viscosity has been evaluated as a promising candidate because the devices arising enable the bulk of the liquid to be probed rather than a thin surface layer. We report on a multi-purpose sensor which allows simultaneous measurement of the sound velocity and longitudinal viscosity of liquids. The device embodiment features a cube-shaped chamber containing the sample liquid, where one boundary surface carries a flush-mounted PZT transducer. In operation, the transducer induces standing, resonant pressure waves in the liquid under test. We studied the influences of sound velocity and longitudinal viscosity on the generated pressure waves by means of the Navier–Stokes equation for adiabatic compressible liquids and exploited both parameters as the basic sensing mechanism. Furthermore, a three-port network model describing the interaction of the transducer and sample liquid was developed in order to be applied for extracting the parameters of interest from the raw measurement data. Finally, we demonstrate the device and method by carrying out and discussing test measurements on glycerol–water solutions. (paper)

  16. Adaptive wave field synthesis for broadband active sound field reproduction: signal processing.

    Science.gov (United States)

    Gauthier, Philippe-Aubert; Berry, Alain

    2008-04-01

    Sound field reproduction is a physical approach to the reproduction of the natural spatial character of hearing. It is also useful in experimental acoustics and psychoacoustics. Wave field synthesis (WFS) is a known open-loop technology which assumes that the reproduction environment is anechoic. A real reflective reproduction space thus reduces the objective accuracy of WFS. Recently, adaptive wave field synthesis (AWFS) was defined as a combination of WFS and active compensation. AWFS is based on the minimization of reproduction errors and on the penalization of departure from the WFS solution. This paper focuses on signal processing for AWFS. A classical adaptive algorithm is modified for AWFS: filtered-reference least-mean-square. This modified algorithm and the classical equivalent leaky algorithm have similar convergence properties except that the WFS solution influences the adaptation rule of the modified algorithm. The paper also introduces signal processing for independent radiation mode control of AWFS on the basis of plant decoupling. Simulation results for AWFS are introduced for free-field and reflective spaces. The two algorithms effectively reproduce the sound field and compensate for the reproduction errors at the error sensors. The independent radiation mode control allows a more flexible tuning of the algorithm.

  17. Using second-sound shock waves to probe the intrinsic critical velocity of liquid helium II

    Science.gov (United States)

    Turner, T. N.

    1983-01-01

    A critical velocity truly intrinsic to liquid helium II is experimentally sought in the bulk fluid far from the apparatus walls. Termed the 'fundamental critical velocity,' it necessarily is caused by mutual interactions which operate between the two fluid components and which are activated at large relative velocities. It is argued that flow induced by second-sound shock waves provides the ideal means by which to activate and isolate the fundamental critical velocity from other extraneous fluid-wall interactions. Experimentally it is found that large-amplitude second-sound shock waves initiate a breakdown in the superfluidity of helium II, which is dramatically manifested as a limit to the maximum attainable shock strength. This breakdown is shown to be caused by a fundamental critical velocity. Secondary effects include boiling for ambient pressures near the saturated vapor pressure or the formation of helium I boundary layers at higher ambient pressures. When compared to the intrinsic critical velocity discovered in highly restricted geometries, the shock-induced critical velocity displays a similar temperature dependence and is the same order of magnitude.

  18. CWIS Experiment On Board REXUS-16 Sounding Rocket: Investigation of the Chemical Wave in Binary Mixture

    Science.gov (United States)

    Tzevelecos, W.; Pugliese, A.; de Filippis, L.; Manzone, S.; Alfano, B.; Mancino, F.; Runge, W.; Desenfans, O.; Galand, Q.; Van Vaerenbergh, S.

    2015-09-01

    Chemical Wave in Soret Effect (CWIS) is an experiment launched in May 2014 on-board a REXUS sounding rocket from Esrange Space Center. The experiment was completely designed and assembled by students from different countries under an international collaboration between the Université libre de Bruxelles (ULB) and the University of Naples Federico II. This student program called REXUS/BEXUS allows students to perform experiments in space science applications under the supervision of the European Space Agency (ESA). The objective of the CWIS Team was to visualize the Chemical Wave (CW) during the transient of the Soret effect. The CW is a concentration front that rapidly propagates under thermal gradient in a liquid mixture, and which marks the beginning of the chemical separation phenomenon by thermodiffusion (the separation process is itself named Soret effect, but is usually analyzed statically). The selected mixture was a solution of Ethylene Glycol in Water and concentration variation due to thermal gradients was recorded using a modified Fizeau interferometer, with modifications designed to enlarge a very small region of the test cell using cylindrical squeezing. We recorded more than 100 images with the chemical information and in this paper work we will show the final results of the sounding rocket experiment.

  19. Character, distribution, and ecological significance of storm wave-induced scour in Rhode Island Sound, USA

    Science.gov (United States)

    McMullen, Katherine Y.; Poppe, Lawrence J.; Parker, Castle E.

    2015-01-01

    Multibeam bathymetry, collected during NOAA hydrographic surveys in 2008 and 2009, is coupled with USGS data from sampling and photographic stations to map the seabed morphology and composition of Rhode Island Sound along the US Atlantic coast, and to provide information on sediment transport and benthic habitats. Patchworks of scour depressions cover large areas on seaward-facing slopes and bathymetric highs in the sound. These depressions average 0.5-0.8 m deep and occur in water depths reaching as much as 42 m. They have relatively steep well-defined sides and coarser-grained floors, and vary strongly in shape, size, and configuration. Some individual scour depressions have apparently expanded to combine with adjacent depressions, forming larger eroded areas that commonly contain outliers of the original seafloor sediments. Where cobbles and scattered boulders are present on the depression floors, the muddy Holocene sands have been completely removed and the winnowed relict Pleistocene deposits exposed. Low tidal-current velocities and the lack of obstacle marks suggest that bidirectional tidal currents alone are not capable of forming these features. These depressions are formed and maintained under high-energy shelf conditions owing to repetitive cyclic loading imposed by high-amplitude, long-period, storm-driven waves that reduce the effective shear strength of the sediment, cause resuspension, and expose the suspended sediments to erosion by wind-driven and tidal currents. Because epifauna dominate on gravel floors of the depressions and infauna are prevalent in the finer-grained Holocene deposits, it is concluded that the resultant close juxtaposition of silty sand-, sand-, and gravel-dependent communities promotes regional faunal complexity. These findings expand on earlier interpretations, documenting how storm wave-induced scour produces sorted bedforms that control much of the benthic geologic and biologic diversity in Rhode Island Sound.

  20. Controlling normal incident optical waves with an integrated resonator.

    Science.gov (United States)

    Qiu, Ciyuan; Xu, Qianfan

    2011-12-19

    We show a diffraction-based coupling scheme that allows a micro-resonator to directly manipulate a free-space optical beam at normal incidence. We demonstrate a high-Q micro-gear resonator with a 1.57-um radius whose vertical transmission and reflection change 40% over a wavelength range of only 0.3 nm. Without the need to be attached to a waveguide, a dense 2D array of such resonators can be integrated on a chip for spatial light modulation and parallel bio-sensing.

  1. Reflection and transmission of full-vector X-waves normally incident on dielectric half spaces

    KAUST Repository

    Salem, Mohamed

    2011-08-01

    The reflection and transmission of full-vector X-Waves incident normally on a planar interface between two lossless dielectric half-spaces are investigated. Full-vector X-Waves are obtained by superimposing transverse electric and magnetic polarization components, which are derived from the scalar X-Wave solution. The analysis of transmission and reflection is carried out via a straightforward but yet effective method: First, the X-Wave is decomposed into vector Bessel beams via the Bessel-Fourier transform. Then, the reflection and transmission coefficients of the beams are obtained in the spectral domain. Finally, the transmitted and reflected X-Waves are obtained via the inverse Bessel-Fourier transform carried out on the X-wave spectrum weighted with the corresponding coefficient. © 2011 IEEE.

  2. Classification of biological cells using a sound wave based flow cytometer

    Science.gov (United States)

    Strohm, Eric M.; Gnyawali, Vaskar; Van De Vondervoort, Mia; Daghighi, Yasaman; Tsai, Scott S. H.; Kolios, Michael C.

    2016-03-01

    A flow cytometer that uses sound waves to determine the size of biological cells is presented. In this system, a microfluidic device made of polydimethylsiloxane (PDMS) was developed to hydrodynamically flow focus cells in a single file through a target area. Integrated into the microfluidic device was an ultrasound transducer with a 375 MHz center frequency, aligned opposite the transducer was a pulsed 532 nm laser focused into the device by a 10x objective. Each passing cell was insonfied with a high frequency ultrasound pulse, and irradiated with the laser. The resulting ultrasound and photoacoustic waves from each cell were analyzed using signal processing methods, where features in the power spectra were compared to theoretical models to calculate the cell size. Two cell lines with different size distributions were used to test the system: acute myeloid leukemia cells (AML) and melanoma cells. Over 200 cells were measured using this system. The average calculated diameter of the AML cells was 10.4 +/- 2.5 μm using ultrasound, and 11.4 +/- 2.3 μm using photoacoustics. The average diameter of the melanoma cells was 16.2 +/- 2.9 μm using ultrasound, and 18.9 +/- 3.5 μm using photoacoustics. The cell sizes calculated using ultrasound and photoacoustic methods agreed with measurements using a Coulter Counter, where the AML cells were 9.8 +/- 1.8 μm and the melanoma cells were 16.0 +/- 2.5 μm. These results demonstrate a high speed method of assessing cell size using sound waves, which is an alternative method to traditional flow cytometry techniques.

  3. Investigating the impact of noise incidence angle on the sound insulation of a supply air window

    DEFF Research Database (Denmark)

    Hansen, Morten B.; Tambo, Torben

    2015-01-01

    The Danish Environmental Agency introduced in 2007 a guideline “Noise from roads”, in which noise limits for open windows were introduced. This guideline has led to investigations of open windows with good sound insulation, and among one of these windows are the “Supply Air Window”. Prior sound i...

  4. Chaos induced by breakup of waves in a spatial epidemic model with nonlinear incidence rate

    International Nuclear Information System (INIS)

    Sun, Gui-Quan; Jin, Zhen; Liu, Quan-Xing; Li, Li

    2008-01-01

    Spatial epidemiology is the study of spatial variation in disease risk or incidence, including the spatial patterns of the population. The spread of diseases in human populations can exhibit large scale patterns, underlining the need for spatially explicit approaches. In this paper, the spatiotemporal complexity of a spatial epidemic model with nonlinear incidence rate, which includes the behavioral changes and crowding effect of the infective individuals, is investigated. Based on both theoretical analysis and computer simulations, we find out when, under the parameters which can guarantee a stable limit cycle in the non-spatial model, spiral and target waves can emerge. Moreover, two different kinds of breakup of waves are shown. Specifically, the breakup of spiral waves is from the core and the breakup of target waves is from the far-field, and both kinds of waves become irregular patterns at last. Our results reveal that the spatiotemporal chaos is induced by the breakup of waves. The results obtained confirm that diffusion can form spiral waves, target waves or spatial chaos of high population density, which enrich the findings of spatiotemporal dynamics in the epidemic model

  5. Traveling waves in a delayed SIR model with nonlocal dispersal and nonlinear incidence

    Science.gov (United States)

    Zhang, Shou-Peng; Yang, Yun-Rui; Zhou, Yong-Hui

    2018-01-01

    This paper is concerned with traveling waves of a delayed SIR model with nonlocal dispersal and a general nonlinear incidence. The existence and nonexistence of traveling waves of the system are established respectively by Schauder's fixed point theorem and two-sided Laplace transform. It is also shown that the spread speed c is influenced by the dispersal rate of the infected individuals and the delay τ.

  6. Dynamic Response of Underground Circular Lining Tunnels Subjected to Incident P Waves

    Directory of Open Access Journals (Sweden)

    Hua Xu

    2014-01-01

    Full Text Available Dynamic stress concentration in tunnels and underground structures during earthquakes often leads to serious structural damage. A series solution of wave equation for dynamic response of underground circular lining tunnels subjected to incident plane P waves is presented by Fourier-Bessel series expansion method in this paper. The deformation and stress fields of the whole medium of surrounding rock and tunnel were obtained by solving the equations of seismic wave propagation in an elastic half space. Based on the assumption of a large circular arc, a series of solutions for dynamic stress were deduced by using a wave function expansion approach for a circular lining tunnel in an elastic half space rock medium subjected to incident plane P waves. Then, the dynamic response of the circular lining tunnel was obtained by solving a series of algebraic equations after imposing its boundary conditions for displacement and stress of the circular lining tunnel. The effects of different factors on circular lining rock tunnels, including incident frequency, incident angle, buried depth, rock conditions, and lining stiffness, were derived and several application examples are presented. The results may provide a good reference for studies on the dynamic response and aseismic design of tunnels and underground structures.

  7. Plasma oscillations and sound waves in collision-dominated two-component plasmas

    International Nuclear Information System (INIS)

    Hansen, J.P.; Sjoegren, L.

    1982-01-01

    Charge, mass, and electron density fluctuation spectra of strongly correlated, fully ionized two-component plasmas within the framework of the Mori--Zwanzig memory function formalism are analyzed. All dynamical correlation functions are expressed in terms of the memory functions of the ion and electron velocity autocorrelation functions by a generalized effective field approximation which preserves the exact initial values (i.e., static correlations). The theory reduces correctly to the mean field (or collisionless Vlasov) results in the weak coupling limit, and yields charge density fluctuation spectra in good agreement with available computer simulation data, as well as reasonable estimates of the transport coefficients. The collisional damping and frequency shift of the plasma oscillation mode are sizeable, even in the long wavelength limit. The theory also predicts the propagation of well-defined sound waves in dense plasmas in thermal equilibrium

  8. Investigating the impact of noise incidence angle on the sound insulation of a supply air window

    DEFF Research Database (Denmark)

    Hansen, Morten B.; Tambo, Torben

    2015-01-01

    The Danish Environmental Agency introduced in 2007 a guideline “Noise from roads”, in which noise limits for open windows were introduced. This guideline has led to investigations of open windows with good sound insulation, and among one of these windows are the “Supply Air Window”. Prior sound i...... in the receiving room ceiling, have been simulated and show a general improvement of the sound reduction index from 500 Hz and above, and an improvement of ~3-4 dB at 2 kHz, in relation to the noise angle ofindidence.......The Danish Environmental Agency introduced in 2007 a guideline “Noise from roads”, in which noise limits for open windows were introduced. This guideline has led to investigations of open windows with good sound insulation, and among one of these windows are the “Supply Air Window”. Prior sound...... insulation measurements of the Supply Air Window show a difference in the frequency range above 2 kHz, for field measurements carried out according to EN ISO 140-5 and laboratory measurements carried out according to EN ISO 10140-2. It is found that the sound insulation measured in the field setup...

  9. Three-in-one resonance tube for harmonic series sound wave experiments

    Science.gov (United States)

    Jaafar, Rosly; Nazihah Mat Daud, Anis; Ali, Shaharudin; Kadri Ayop, Shahrul

    2017-07-01

    In this study we constructed a special three-in-one resonance tube for a harmonic series sound waves experiment. It is designed for three different experiments: both-open-end, one-closed-end and both-closed-end tubes. The resonance tube consists of a PVC conduit with a rectangular hole, rubber tube, plastic stopper with an embedded microphone and a plastic stopper. The resonance tube is utilized with visual analyser freeware to detect, display and measure the resonance frequencies for each harmonic series. The speeds of sound in air, v, are determined from the gradient of the 2(L+e) versus n fn-1 , 4(L+e) versus n fn-1 and 2L versus n fn-1 graphs for both-open-end, one-closed-end and both-closed-end tubes, respectively. The compatibility of a resonance tube for a harmonic series experiment is determined by comparing the experimental and standard values of v. The use of a resonance tube produces accurate results for v within a 1.91% error compared to its standard value. It can also be used to determine the values of end correction, e, in both-open-end and one-closed-end tubes. The special resonance tube can also be used for the values of n for a harmonic series experiment in the three types of resonance tubes: both-open-end, one-closed-end and both-closed-end tubes.

  10. Absorption of sound by tree bark

    Science.gov (United States)

    G. Reethof; L. D. Frank; O. H. McDaniel

    1976-01-01

    Laboratory tests were conducted with a standing wave tube to measure the acoustic absorption of normally incident sound by the bark of six species of trees. Twelve bark samples, 10 cm in diameter, were tested. Sound of seven frequencies between 400 and 1600 Hz was used in the measurements. Absorption was generally about 5 percent; it exceeded 10 percent for only three...

  11. Oblique incidence of semi-guided waves on rectangular slab waveguide discontinuities: A vectorial QUEP solver

    NARCIS (Netherlands)

    Hammer, Manfred

    2015-01-01

    The incidence of thin-film-guided, in-plane unguided waves at oblique angles on straight discontinuities of dielectric slab waveguides, an early problem of integrated optics, is being re-considered. The 3-D frequency domain Maxwell equations reduce to a parametrized inhomogeneous vectorial problem

  12. Dependence of ECH deposition profile on the modeling of incident wave energy

    International Nuclear Information System (INIS)

    Kritz, A.H.; Hsuan, H.; Matsuda, K.

    1986-06-01

    The ray tracing code, TORAY, is used to investigate the importance of modeling assumptions utilized in describing Electron Cyclotron Heating (ECH). In particular, we examine the dependence of the ECH deposition profile on the antenna pattern. We demonstrate that different assumptions for representing the incident wave energy by a finite number of rays lead to significantly different results for the energy deposition profile

  13. A wave-envelope of sound propagation in nonuniform circular ducts with compressible mean flows

    Science.gov (United States)

    Nayfeh, A. H.; Kaiser, J. E.; Shaker, B. S.

    1979-01-01

    An acoustic theory is developed to determine the sound transmission and attenuation through an infinite, hard-walled or lined circular duct carrying compressible, sheared, mean flows and having a variable cross section. The theory is applicable to large as well as small axial variations, as long as the mean flow does not separate. The technique is based on solving for the envelopes of the quasi-parallel acoustic modes that exist in the duct instead of solving for the actual wave, thereby reducing the computation time and the round-off error encountered in purely numerical techniques. The solution recovers the solution based on the method of multiple scales for slowly varying duct geometry. A computer program was developed based on the wave-envelope analysis for general mean flows. Results are presented for the reflection and transmission coefficients as well as the acoustic pressure distributions for a number of conditions: both straight and variable area ducts with and without liners and mean flows from very low to high subsonic speeds are considered.

  14. Third sound: the propagation of waves on the surface of superfluid helium with healing and relaxation

    International Nuclear Information System (INIS)

    Johnson, R.S.

    1984-01-01

    The propagation of surface waves - that is 'third' sound -on superfluid helium is considered. The fluid is treated as a continuum, using the two-fluid model of Landau, and incorporating the effects of healing, relaxation, thermal conductivity and Newtonian viscosity. A linear theory is developed which includes some discussion of the matching to the outer regions of the vapour. This results in a comprehensive propagation speed for linear waves, although a few properties of the flow are left undetermined at this order. A nonlinear theory is then outlined which leads to the Burgers equation in an appropriate far field, and enables the leading-order theory to be concluded. Some numerical results, for two temperatures, are presented by first recording the Helmholtz free energy as a polynomial in densities, but only the equilibrium state can be satisfactorily reproduced. The propagation speed, as a function of film thickness, is roughly estimated. The looked-for reduction in the predicted speeds is evident, but the magnitude of this reduction is too large for very thin films. However, these analytical results should prove more effective when a complete and accurate description of the Helmholtz free energy is available. (author)

  15. Radio wave propagation in the Martian polar deposits: models and implications for radar sounding.

    Science.gov (United States)

    Ilyushin, Ya. A.

    In the present study the propagation of electromagnetic waves in the northern polar ice sheet of Mars is considered Several different scenarios of the structure of the polar deposits and composition of the ice compatible with previously published observational data are proposed Both analytical and numerical simulations of ultra wide band chirp radar pulse propagating through the cap are performed Approximate approach based on the non-coherent theory of the radiative transfer in layered media has been applied to the problem of the propagation of radar pulses in the polar caps Both 1D and 2D and 3D geometry applicable to the orbital and landed radar instruments are studied The side clutter and phase distortions of the signal are also addressed analyzed The possibilities of retrieval of the geological information depending on transparency of the polar cap for radio waves are discussed If the polar cap is relatively transparent the echo from the base of the sheet should be clearly distinctive and interpretable in terms of basal topography of the cap In the case of moderate optical thickness coherent basal echo is corrupted by strong multiple scattering in the layered structure However some conclusions about basal conditions could be made from the signals for example the subglacial lakes may be detected Finally optically thick polar caps prevent any sounding of the base so only the medium itself can be characterized by GPR measurements e g the impurity content in the ice can be found Ilyushin Y A R Seu

  16. Sound generated by instability waves of supersonic flows. I Two-dimensional mixing layers. II - Axisymmetric jets

    Science.gov (United States)

    Tam, C. K. W.; Burton, D. E.

    1984-01-01

    An investigation is conducted of the phenomenon of sound generation by spatially growing instability waves in high-speed flows. It is pointed out that this process of noise generation is most effective when the flow is supersonic relative to the ambient speed of sound. The inner and outer asymptotic expansions corresponding to an excited instability wave in a two-dimensional mixing layer and its associated acoustic fields are constructed in terms of the inner and outer spatial variables. In matching the solutions, the intermediate matching principle of Van Dyke and Cole is followed. The validity of the theory is tested by applying it to an axisymmetric supersonic jet and comparing the calculated results with experimental measurements. Very favorable agreements are found both in the calculated instability-wave amplitude distribution (the inner solution) and the near pressure field level contours (the outer solution) in each case.

  17. Wave field synthesis, adaptive wave field synthesis and ambisonics using decentralized transformed control: Potential applications to sound field reproduction and active noise control

    Science.gov (United States)

    Gauthier, Philippe-Aubert; Berry, Alain; Woszczyk, Wieslaw

    2005-09-01

    Sound field reproduction finds applications in listening to prerecorded music or in synthesizing virtual acoustics. The objective is to recreate a sound field in a listening environment. Wave field synthesis (WFS) is a known open-loop technology which assumes that the reproduction environment is anechoic. Classical WFS, therefore, does not perform well in a real reproduction space such as room. Previous work has suggested that it is physically possible to reproduce a progressive wave field in-room situation using active control approaches. In this paper, a formulation of adaptive wave field synthesis (AWFS) introduces practical possibilities for an adaptive sound field reproduction combining WFS and active control (with WFS departure penalization) with a limited number of error sensors. AWFS includes WFS and closed-loop ``Ambisonics'' as limiting cases. This leads to the modification of the multichannel filtered-reference least-mean-square (FXLMS) and the filtered-error LMS (FELMS) adaptive algorithms for AWFS. Decentralization of AWFS for sound field reproduction is introduced on the basis of sources' and sensors' radiation modes. Such decoupling may lead to decentralized control of source strength distributions and may reduce computational burden of the FXLMS and the FELMS algorithms used for AWFS. [Work funded by NSERC, NATEQ, Université de Sherbrooke and VRQ.] Ultrasound/Bioresponse to

  18. About angular dependence of intensity of absent-minded radiation in approach of the strong dissipation of colliding ionic-sound waves

    International Nuclear Information System (INIS)

    Solikhov, D.K.

    2015-01-01

    Present article is devoted to angular dependence of intensity of absent-minded radiation in approach of the strong dissipation of colliding ionic-sound waves. The operation angular dependence of dimensionless of intensity of absent-minded radiation in two-dimensional field of localisation of a wave of a rating in approach of the strong dissipation of passers is ionic-sound waves is viewed. (author)

  19. Reflection and transmission of normally incident full-vector X waves on planar interfaces

    KAUST Repository

    Salem, Mohamed

    2011-12-23

    The reflection and transmission of full-vector X waves normally incident on planar half-spaces and slabs are studied. For this purpose, X waves are expanded in terms of weighted vector Bessel beams; this new decomposition and reconstruction method offers a more lucid and intuitive interpretation of the physical phenomena observed upon the reflection or transmission of X waves when compared to the conventional plane-wave decomposition technique. Using the Bessel beam expansion approach, we have characterized changes in the field shape and the intensity distribution of the transmitted and reflected full-vector X waves. We have also identified a novel longitudinal shift, which is observed when a full-vector X wave is transmitted through a dielectric slab under frustrated total reflection condition. The results of our studies presented here are valuable in understanding the behavior of full-vector X waves when they are utilized in practical applications in electromagnetics, optics, and photonics, such as trap and tweezer setups, optical lithography, and immaterial probing. © 2011 Optical Society of America.

  20. Plane Wave-Perturbative Method for Evaluating the Effective Speed of Sound in 1D Phononic Crystals

    Directory of Open Access Journals (Sweden)

    J. Flores Méndez

    2016-01-01

    Full Text Available A method for calculating the effective sound velocities for a 1D phononic crystal is presented; it is valid when the lattice constant is much smaller than the acoustic wave length; therefore, the periodic medium could be regarded as a homogeneous one. The method is based on the expansion of the displacements field into plane waves, satisfying the Bloch theorem. The expansion allows us to obtain a wave equation for the amplitude of the macroscopic displacements field. From the form of this equation we identify the effective parameters, namely, the effective sound velocities for the transverse and longitudinal macroscopic displacements in the homogenized 1D phononic crystal. As a result, the explicit expressions for the effective sound velocities in terms of the parameters of isotropic inclusions in the unit cell are obtained: mass density and elastic moduli. These expressions are used for studying the dependence of the effective, transverse and longitudinal, sound velocities for a binary 1D phononic crystal upon the inclusion filling fraction. A particular case is presented for 1D phononic crystals composed of W-Al and Polyethylene-Si, extending for a case solid-fluid.

  1. Dynamic PIV measurement of the effect of sound waves in the upper plenum of the boiling water reactor

    International Nuclear Information System (INIS)

    Kumagai, Kosuke; Someya, Satoshi; Okamoto, Koji

    2008-01-01

    In recent years, power uprating of boiling power reactors has been conducted at several existing power plants in order to improve plant economy. In one power uprated plant (117.8% uprate) in the United States, steam dryer breakages due to fatigue fracture occurred. It is conceivable that the increased steam flow passing through the branches caused a self-induced vibration with the propagation of sound waves into the steam-dome. The resonance among the structure, the flow, and the pressure fluctuation resulted in the breakages. In order to clarify the basic mechanism of the resonance, previous studies were performed by conducting a point measurement of the pressure and a phase averaged measurement of the flow, although detecting the interaction among the structure, the flow, and the pressure fluctuation by the conventional method was difficult. In a preliminary study, a dynamic Particle Image Velocimetry (PIV) system was used to investigate the effect of sound on the flow. A dynamic PIV system is the newest entrant to the field of fluid flow measurement. Its paramount advantage is the instantaneous global evaluation of conditions over a plane extended across the entire velocity field. Using the dynamic PIV system, the influence of sound waves on the flow field was measured. As a result, when two speakers were placed diagonally and sound waves were presented in the same phase, vertical motion was strongly observed compared to horizontal motion. (author)

  2. Effect of nocturnal sound reduction on the incidence of delirium in intensive care unit patients: An interrupted time series analysis.

    Science.gov (United States)

    van de Pol, Ineke; van Iterson, Mat; Maaskant, Jolanda

    2017-08-01

    Delirium in critically-ill patients is a common multifactorial disorder that is associated with various negative outcomes. It is assumed that sleep disturbances can result in an increased risk of delirium. This study hypothesized that implementing a protocol that reduces overall nocturnal sound levels improves quality of sleep and reduces the incidence of delirium in Intensive Care Unit (ICU) patients. This interrupted time series study was performed in an adult mixed medical and surgical 24-bed ICU. A pre-intervention group of 211 patients was compared with a post-intervention group of 210 patients after implementation of a nocturnal sound-reduction protocol. Primary outcome measures were incidence of delirium, measured by the Intensive Care Delirium Screening Checklist (ICDSC) and quality of sleep, measured by the Richards-Campbell Sleep Questionnaire (RCSQ). Secondary outcome measures were use of sleep-inducing medication, delirium treatment medication, and patient-perceived nocturnal noise. A significant difference in slope in the percentage of delirium was observed between the pre- and post-intervention periods (-3.7% per time period, p=0.02). Quality of sleep was unaffected (0.3 per time period, p=0.85). The post-intervention group used significantly less sleep-inducing medication (psound-reduction protocol. However, reported sleep quality did not improve. Copyright © 2017. Published by Elsevier Ltd.

  3. [The effect of low-intensity pulsed sound waves delivered by the Exogen device on Staphylococcus aureus morphology and genetics].

    Science.gov (United States)

    Ayan, Irfan; Aslan, Gönül; Cömelekoğlu, Ulkü; Yilmaz, Nejat; Colak, Mehmet

    2008-01-01

    We investigated the effect of low-intensity pulsed sound waves delivered by the Exogen device, which is recommended for the treatment of delayed union and nonunion in orthopedic surgery, on the colony number, antimicrobial susceptibility, bacterial morphology, and genetics of Staphylococcus aureus, which is a frequent pathogen in orthopedic infections. Thirty tubes containing 0.5 McFarland suspensions of S. aureus (ATCC 25923) were used. Fifteen tubes forming the test group were subjected to low-intensity sound waves by the Exogen device for 20 minutes. The remaining 15 tubes were untreated as controls. The two groups were then compared with respect to colony number, antibiotic susceptibility, and genotypic properties. The tubes were examined histologically by electron microscopy. The test tubes treated with sound waves showed a significantly lower number of bacteria colonies compared to the control tubes (psound waves may be beneficial as a prophylactic measure to prevent infections in primary orthopedic operations and as an adjuvant therapy for infected nonunions.

  4. Sound Waves Induce Neural Differentiation of Human Bone Marrow-Derived Mesenchymal Stem Cells via Ryanodine Receptor-Induced Calcium Release and Pyk2 Activation.

    Science.gov (United States)

    Choi, Yura; Park, Jeong-Eun; Jeong, Jong Seob; Park, Jung-Keug; Kim, Jongpil; Jeon, Songhee

    2016-10-01

    Mesenchymal stem cells (MSCs) have shown considerable promise as an adaptable cell source for use in tissue engineering and other therapeutic applications. The aims of this study were to develop methods to test the hypothesis that human MSCs could be differentiated using sound wave stimulation alone and to find the underlying mechanism. Human bone marrow (hBM)-MSCs were stimulated with sound waves (1 kHz, 81 dB) for 7 days and the expression of neural markers were analyzed. Sound waves induced neural differentiation of hBM-MSC at 1 kHz and 81 dB but not at 1 kHz and 100 dB. To determine the signaling pathways involved in the neural differentiation of hBM-MSCs by sound wave stimulation, we examined the Pyk2 and CREB phosphorylation. Sound wave induced an increase in the phosphorylation of Pyk2 and CREB at 45 min and 90 min, respectively, in hBM-MSCs. To find out the upstream activator of Pyk2, we examined the intracellular calcium source that was released by sound wave stimulation. When we used ryanodine as a ryanodine receptor antagonist, sound wave-induced calcium release was suppressed. Moreover, pre-treatment with a Pyk2 inhibitor, PF431396, prevented the phosphorylation of Pyk2 and suppressed sound wave-induced neural differentiation in hBM-MSCs. These results suggest that specific sound wave stimulation could be used as a neural differentiation inducer of hBM-MSCs.

  5. Prediction of Sound Waves Propagating Through a Nozzle Without/With a Shock Wave Using the Space-Time CE/SE Method

    Science.gov (United States)

    Wang, Xiao-Yen; Chang, Sin-Chung; Jorgenson, Philip C. E.

    2000-01-01

    The benchmark problems in Category 1 (Internal Propagation) of the third Computational Aeroacoustics (CAA) Work-shop sponsored by NASA Glenn Research Center are solved using the space-time conservation element and solution element (CE/SE) method. The first problem addresses the propagation of sound waves through a nearly choked transonic nozzle. The second one concerns shock-sound interaction in a supersonic nozzle. A quasi one-dimension CE/SE Euler solver for a nonuniform mesh is developed and employed to solve both problems. Numerical solutions are compared with the analytical solution for both problems. It is demonstrated that the CE/SE method is capable of solving aeroacoustic problems with/without shock waves in a simple way. Furthermore, the simple nonreflecting boundary condition used in the CE/SE method which is not based on the characteristic theory works very well.

  6. Construction Of Critical Thinking Skills Test Instrument Related The Concept On Sound Wave

    Science.gov (United States)

    Mabruroh, F.; Suhandi, A.

    2017-02-01

    This study aimed to construct test instrument of critical thinking skills of high school students related the concept on sound wave. This research using a mixed methods with sequential exploratory design, consists of: 1) a preliminary study; 2) design and review of test instruments. The form of test instruments in essay questions, consist of 18 questions that was divided into 5 indicators and 8 sub-indicators of the critical thinking skills expressed by Ennis, with questions that are qualitative and contextual. Phases of preliminary study include: a) policy studies; b) survey to the school; c) and literature studies. Phases of the design and review of test instruments consist of two steps, namely a draft design of test instruments include: a) analysis of the depth of teaching materials; b) the selection of indicators and sub-indicators of critical thinking skills; c) analysis of indicators and sub-indicators of critical thinking skills; d) implementation of indicators and sub-indicators of critical thinking skills; and e) making the descriptions about the test instrument. In the next phase of the review test instruments, consist of: a) writing about the test instrument; b) validity test by experts; and c) revision of test instruments based on the validator.

  7. Assessing student understanding of sound waves and trigonometric reasoning in a technology-rich, project-enhanced environment

    Science.gov (United States)

    Wilhelm, Jennifer Anne

    This case study examined what student content understanding could occur in an inner city Industrial Electronics classroom located at Tree High School where project-based instruction, enhanced with technology, was implemented for the first time. Students participated in a project implementation unit involving sound waves and trigonometric reasoning. The unit was designed to foster common content learning (via benchmark lessons) by all students in the class, and to help students gain a deeper conceptual understanding of a sub-set of the larger content unit (via group project research). The objective goal of the implementation design unit was to have students gain conceptual understanding of sound waves, such as what actually waves in a wave, how waves interfere with one another, and what affects the speed of a wave. This design unit also intended for students to develop trigonometric reasoning associated with sinusoidal curves and superposition of sinusoidal waves. Project criteria within this design included implementation features, such as the need for the student to have a driving research question and focus, the need for benchmark lessons to help foster and scaffold content knowledge and understanding, and the need for project milestones to complete throughout the implementation unit to allow students the time for feedback and revision. The Industrial Electronics class at Tree High School consisted of nine students who met daily during double class periods giving 100 minutes of class time per day. The class teacher had been teaching for 18 years (mathematics, physics, and computer science). He had a background in engineering and experience teaching at the college level. Benchmark activities during implementation were used to scaffold fundamental ideas and terminology needed to investigate characteristics of sound and waves. Students participating in benchmark activities analyzed motion and musical waveforms using probeware, and explored wave phenomena using waves

  8. Effect of a progressive sound wave on the profiles of spectral lines. 2: Asymmetry of faint Fraunhofer lines. [absorption spectra

    Science.gov (United States)

    Kostyk, R. I.

    1974-01-01

    The absorption coefficient profile was calculated for lines of different chemical elements in a medium with progressive sound waves. Calculations show that (1) the degree and direction of asymmetry depend on the atomic ionization potential and the potential of lower level excitation of the individual line; (2) the degree of asymmetry of a line decreases from the center toward the limb of the solar disc; and (3) turbulent motions 'suppress' the asymmetry.

  9. Sound wave generation by a spherically symmetric outburst and AGN feedback in galaxy clusters II: impact of thermal conduction.

    Science.gov (United States)

    Tang, Xiaping; Churazov, Eugene

    2018-04-01

    We analyze the impact of thermal conduction on the appearance of a shock-heated gas shell which is produced when a spherically symmetric outburst of a supermassive black hole inflates bubbles of relativistic plasma at the center of a galaxy cluster. The presence of the hot and low-density shell can be used as an ancillary indicator for a high rate of energy release during the outburst, which is required to drive strong shocks into the gas. Here we show that conduction can effectively erase such shell, unless the diffusion of electrons is heavily suppressed. We conclude that a more robust proxy to the energy release rate is the ratio between the shock radius and bubble radius. We also revisited the issue of sound waves dissipation induced by thermal conduction in a scenario, where characteristic wavelength of the sound wave is set by the total energy of the outburst. For a fiducial short outburst model, the dissipation length does not exceed the cooling radius in a typical cluster, provided that the conduction is suppressed by a factor not larger than ˜100. For quasi-continuous energy injection neither the shock-heated shell nor the outgoing sound wave are important and the role of conduction is subdominant.

  10. SOUND TRANSMISSION LOSS OF A DOUBLE-LEAF PARTITION WITH MICRO-PERFORATED PLATE INSERTION UNDER DIFFUSE FIELD INCIDENCE

    Directory of Open Access Journals (Sweden)

    A. Putra

    2013-06-01

    Full Text Available In noise control applications, a double-leaf partition has been applied widely as a lightweight structure for noise insulation, such as in car doors, train bodies, and aircraft fuselages. Unfortunately, the insulation performance deteriorates significantly at mass-air-mass resonance due to coupling between the panels and the air in the gap. This paper investigates the effect of a micro-perforated panel (MPP, inserted in the conventional double-panel partition, on sound transmission loss at troublesome resonant frequencies. It is found that the transmission loss improves at this resonance if the MPP is located at a distance of less than half that of the air gap. A mathematical model is derived for the diffuse field incidence of acoustic loading.

  11. Active room compensation for sound reinforcement using sound field separation techniques

    DEFF Research Database (Denmark)

    Heuchel, Franz Maria; Fernandez Grande, Efren; Agerkvist, Finn T.

    2018-01-01

    with the three sound separation techniques. Resonances in the entire room are reduced, although the microphone array and secondary sources are confined to a small region close to the reflecting wall. Unlike previous control methods based on the creation of a plane wave sound field, the investigated method works......This work investigates how the sound field created by a sound reinforcement system can be controlled at low frequencies. An indoor control method is proposed which actively absorbs the sound incident on a reflecting boundary using an array of secondary sources. The sound field is separated...... into incident and reflected components by a microphone array close to the secondary sources, enabling the minimization of reflected components by means of optimal signals for the secondary sources. The method is purely feed-forward and assumes constant room conditions. Three different sound field separation...

  12. Nonlinear second- and first-sound wave equations in 3He-4He mixtures

    International Nuclear Information System (INIS)

    Mohazzab, Masoud; Mulders, Norbert

    2000-01-01

    We derive nonlinear Burgers equations for first and second sound in mixtures of 3 He- 4 He, using a reductive perturbation method and obtain expressions for the nonlinear and dissipation coefficients. We further find a diffusion equation for a coupled temperature-concentration mode. The amplitude of first (second) sound generated from second (first) sound in mixtures is also derived. Our derivation includes the dependence of thermodynamical quantities on temperature, pressure, and 3 He concentration, and is valid up to a first order in terms of the isobaric expansion coefficient. We show that close to the λ line the nonlinearity of second sound in mixtures is enhanced as compared with pure 4 He

  13. Channel Sounding System for MM-Wave Bands and Characterization of Indoor Propagation at 28 GHz

    DEFF Research Database (Denmark)

    Hejselbæk, Johannes; Ji, Yilin; Fan, Wei

    2017-01-01

    The aim of this work is to present a vector network analyzer (VNA) based channel sounding sys- tem capable of performing measurements in the range from 2 to 50 GHz. Further, this paper describes an indoor measurement campaign performed at 26 to 30 GHz. The sounding system is capable of receiving ...

  14. A Simple Experiment to Explore Standing Waves in a Flexible Corrugated Sound Tube

    Science.gov (United States)

    Amorim, Maria Eva; Sousa, Teresa Delmira; Carvalho, P. Simeao; Sousa, Adriano Sampaioe

    2011-01-01

    Sound tubes, pipes, and singing rods are used as musical instruments and as toys to perform amusing experiments. In particular, corrugated tubes present unique characteristics with respect to the sounds they can produce; that is why they have been studied so intensively, both at theoretical and experimental levels. Experimental studies usually…

  15. Combined effect of pulsed electromagnetic field and sound wave on In vitro and In vivo neural differentiation of human mesenchymal stem cells.

    Science.gov (United States)

    Choi, Yun-Kyong; Urnukhsaikhan, Enerelt; Yoon, Hee-Hoon; Seo, Young-Kwon; Cho, Hyunjin; Jeong, Jong-Seob; Kim, Soo-Chan; Park, Jung-Keug

    2017-01-01

    Biophysical wave stimulus has been used as an effective tool to promote cellular maturation and differentiation in the construction of engineered tissue. Pulsed electromagnetic fields (PEMFs) and sound waves have been selected as effective stimuli that can promote neural differentiation. The aim of this study was to investigate the synergistic effect of PEMFs and sound waves on the neural differentiation potential in vitro and in vivo using human bone marrow mesenchymal stem cells (hBM-MSCs). In vitro, neural-related genes in hBM-MSCs were accelerated by the combined exposure to both waves more than by individual exposure to PEMFs or sound waves. The combined wave also up-regulated the expression of neural and synaptic-related proteins in a three-dimensional (3-D) culture system through the phosphorylation of extracellular signal-related kinase. In a mouse model of photochemically induced ischemia, exposure to the combined wave reduced the infarction volume and improved post-injury behavioral activity. These results indicate that a combined stimulus of biophysical waves, PEMFs and sound can enhance and possibly affect the differentiation of MSCs into neural cells. Our study is meaningful for highlighting the potential of combined wave for neurogenic effects and providing new therapeutic approaches for neural cell therapy. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 33:201-211, 2017. © 2016 American Institute of Chemical Engineers.

  16. Sound Propagation in a Duct with Wall Corrugations Having Square-Wave Profiles

    Directory of Open Access Journals (Sweden)

    Muhammad A. Hawwa

    2015-01-01

    Full Text Available Acoustic wave propagation in ducts with rigid walls having square-wave wall corrugations is considered in the context of a perturbation formulation. Using the ratio of wall corrugation amplitude to the mean duct half width, a small parameter is defined and a two levels of approximations are obtained. The first-order solution produces an analytical description of the pressure field inside the duct. The second-order solution yields an analytical estimate of the phase speed of waves transmitting through the duct. The effect of wall corrugation density on acoustic impedance and wave speeds is highlighted. The analysis reveals that waves propagating in a duct with square-wave wall corrugation are slower than waves propagating in a duct with sinusoidal wave corrugation having the same corrugation wavelength.

  17. Controlling sound with acoustic metamaterials

    DEFF Research Database (Denmark)

    Cummer, Steven A. ; Christensen, Johan; Alù, Andrea

    2016-01-01

    Acoustic metamaterials can manipulate and control sound waves in ways that are not possible in conventional materials. Metamaterials with zero, or even negative, refractive index for sound offer new possibilities for acoustic imaging and for the control of sound at subwavelength scales....... The combination of transformation acoustics theory and highly anisotropic acoustic metamaterials enables precise control over the deformation of sound fields, which can be used, for example, to hide or cloak objects from incident acoustic energy. Active acoustic metamaterials use external control to create......-scale metamaterial structures and converting laboratory experiments into useful devices. In this Review, we outline the designs and properties of materials with unusual acoustic parameters (for example, negative refractive index), discuss examples of extreme manipulation of sound and, finally, provide an overview...

  18. A forward-advancing wave expansion method for numerical solution of large-scale sound propagation problems

    Science.gov (United States)

    Rolla, L. Barrera; Rice, H. J.

    2006-09-01

    In this paper a "forward-advancing" field discretization method suitable for solving the Helmholtz equation in large-scale problems is proposed. The forward wave expansion method (FWEM) is derived from a highly efficient discretization procedure based on interpolation of wave functions known as the wave expansion method (WEM). The FWEM computes the propagated sound field by means of an exclusively forward advancing solution, neglecting the backscattered field. It is thus analogous to methods such as the (one way) parabolic equation method (PEM) (usually discretized using standard finite difference or finite element methods). These techniques do not require the inversion of large system matrices and thus enable the solution of large-scale acoustic problems where backscatter is not of interest. Calculations using FWEM are presented for two propagation problems and comparisons to data computed with analytical and theoretical solutions and show this forward approximation to be highly accurate. Examples of sound propagation over a screen in upwind and downwind refracting atmospheric conditions at low nodal spacings (0.2 per wavelength in the propagation direction) are also included to demonstrate the flexibility and efficiency of the method.

  19. Resonant behaviour of MHD waves on magnetic flux tubes. I - Connection formulae at the resonant surfaces. II - Absorption of sound waves by sunspots

    Science.gov (United States)

    Sakurai, Takashi; Goossens, Marcel; Hollweg, Joseph V.

    1991-01-01

    The present method of addressing the resonance problems that emerge in such MHD phenomena as the resonant absorption of waves at the Alfven resonance point avoids solving the fourth-order differential equation of dissipative MHD by recourse to connection formulae across the dissipation layer. In the second part of this investigation, the absorption of solar 5-min oscillations by sunspots is interpreted as the resonant absorption of sounds by a magnetic cylinder. The absorption coefficient is interpreted (1) analytically, under certain simplifying assumptions, and numerically, under more general conditions. The observed absorption coefficient magnitude is explained over suitable parameter ranges.

  20. The influence of inhomogeneous temperature distribution on the amplification of sound waves in non-equilibrium gas media

    Science.gov (United States)

    Suleimenov, I.; Aushev, V.; Adamov, T.; Vasiliev, I.

    Modern investigations show that the effect of acoustic and acoustic-gravity waves amplification strongly influence on the temperature balance in atmosphere. These waves may be amplified due to the transformation of energy of chemically active (or ionized) components into the energy of wave motion, i.e. the nature of the effect is the same as the amplification of sound in other non-equilibrium gas media (for example, in gas discharge plasma). Recently Jiyao Xu (1999) reported that the theory of such waves might be developed in the same way as the theory of acoustic-gravity waves. It is shown that the influence of inhomogeneous altitude distribution of temperature should be taken into account for the correct interpretation of temperature balance in the atmosphere. In other words, the self-agreed problem have to be solved: transformation of chemical energy into energy of wave motion change the vertical profile of the atmosphere temperature, but the profile of the temperature itself determine the amplification coefficient of the wave. The results of analytical solution of the problem are reported. We show that the sign of temperature gradient strongly influence on the behavior of amplified acoustic and acoustic-gravity waves. The regime of amplification is stable when the second derivative of the temperature is negative (temperature has minimum at some point). In other words the stable channel of amplification of the waves may exist, for example, in the tube when the temperature of the walls is higher than the temperature of the gas at the axe. The different instabilities appear in the opposite case when the temperature in the reference point has a maximum. In particular, it means that the amplification of acoustic waves in gas discharge tubes cannot be stable. Moreover, our results show that self-generation of acoustic-gravity in middle atmosphere due to photochemical reactions cannot be stable process too. This conclusion is in accordance with known experimental

  1. Bottom attenuation estimation using sound intensity fluctuations due to mode coupling by nonlinear internal waves in shallow water.

    Science.gov (United States)

    Grigorev, Valery A; Katsnelson, Boris G; Lynch, James F

    2016-11-01

    Analyses of fluctuations of low frequency signals (300 ± 30 Hz) propagating in shallow water in the presence of nonlinear internal waves (NIWs) in the Shallow Water 2006 experiment are carried out. Signals were received by a vertical line array at a distance of ∼20 km from the source. A NIW train was moving totally inside of the acoustic track, and the angle between the wave front of the NIW and the acoustic track in the horizontal plane was ∼10°. It is shown that the spectrum of the sound intensity fluctuations contains peaks corresponding to the coupling of pairs of propagating modes. Analysis of spectra at different hydrophone depths, and also summed over depth allows the authors to estimate attenuation in the bottom sediments.

  2. Evidence for two-dimensional solitary sound waves in a lipid controlled interface and its implications for biological signalling.

    Science.gov (United States)

    Shrivastava, Shamit; Schneider, Matthias F

    2014-08-06

    Biological membranes by virtue of their elastic properties should be capable of propagating localized perturbations analogous to sound waves. However, the existence and the possible role of such waves in communication in biology remain unexplored. Here, we report the first observations of two-dimensional solitary elastic pulses in lipid interfaces, excited mechanically and detected by FRET. We demonstrate that the nonlinearity near a maximum in the susceptibility of the lipid monolayer results in solitary pulses that also have a threshold for excitation. These experiments clearly demonstrate that the state of the interface regulates the propagation of pulses both qualitatively and quantitatively. Finally, we elaborate on the striking similarity of the observed phenomenon to nerve pulse propagation and a thermodynamic basis of cell signalling in general. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  3. Heterodyne mixing of millimetre electromagnetic waves and sub-THz sound in a semiconductor device

    OpenAIRE

    Heywood, Sarah L.; Glavin, Boris A.; Beardsley, R.P.; Akimov, Andrey V.; Carr, Michael W.; Norman, James; Norton, Philip C.; Prime, Brian; Priestley, Nigel; Kent, Anthony J.

    2016-01-01

    We demonstrate heterodyne mixing of a 94 GHz millimetre wave photonic signal, supplied by a Gunn diode oscillator, with coherent acoustic waves of frequency ~ 100 GHz, generated by pulsed laser excitation of a semiconductor surface. The mixing takes place in a millimetre wave Schottky diode, and the intermediate frequency electrical signal is in the 1 – 12 GHz range. The mixing process preserves all the spectral content in the acoustic signal that falls within the intermediate frequency bandw...

  4. Space-Borne Radio-Sounding Investigations Facilitated by the Virtual Wave Observatory (VWO)

    Science.gov (United States)

    Benson, Robert F.; Fung, Shing F.; Bilitza,Dieter; Garcia, Leonard N.; Shao, Xi; Galkin, Ivan A.

    2011-01-01

    The goal of the Virtual Wave Observatory (VWO) is to provide userfriendly access to heliophysics wave data. While the VWO initially emphasized the vast quantity of wave data obtained from passive receivers, the VWO infrastructure can also be used to access active sounder data sets. Here we use examples from some half-million Alouette-2, ISIS-1, and ISIS-2 digital topside-sounder ionograms to demonstrate the desirability of such access to the actual ionograms for investigations of both natural and sounder-stimulated plasma-wave phenomena. By this demonstration, we wish to encourage investigators to make other valuable space-borne sounder data sets accessible via the VWO.

  5. Mid-frequency sound propagation through internal waves at short range with synoptic oceanographic observations.

    Science.gov (United States)

    Rouseff, Daniel; Tang, Dajun; Williams, Kevin L; Wang, Zhongkang; Moum, James N

    2008-09-01

    Preliminary results are presented from an analysis of mid-frequency acoustic transmission data collected at range 550 m during the Shallow Water 2006 Experiment. The acoustic data were collected on a vertical array immediately before, during, and after the passage of a nonlinear internal wave on 18 August, 2006. Using oceanographic data collected at a nearby location, a plane-wave model for the nonlinear internal wave's position as a function of time is developed. Experimental results show a new acoustic path is generated as the internal wave passes above the acoustic source.

  6. Analysis of TLM Air-vent Model Applicability to EMC Problems for Normal Incident Plane Wave

    Directory of Open Access Journals (Sweden)

    N. J. Nešić

    2016-11-01

    Full Text Available In this paper, the shielding properties related to a protective metal enclosure with airflow aperture arrays are numerically analyzed. As a numerical model, a TLM method, either in a conventional form based on fine mesh to describe apertures presence or enhanced with the compact air-vent model is employed. The main focus in the paper is on examining the limits of applying the compact air-vent model for EMC problems solving. Namely, various values for the distance between neighboring apertures in the TLM air-vent models as well as the air-vent thicknesses are analyzed. Specifically, the analyses are conducted for a normal incident plane wave, vertically and horizontally polarized.

  7. Comparative study of different analytical approaches for modelling the transmission of sound waves through turbomachinery stators

    NARCIS (Netherlands)

    Behn, Maximilian; Tapken, Ulf; Puttkammer, Peter; Hagmeijer, Rob; Thouault, Nicolas

    2016-01-01

    The present study is dealing with the analytical modelling of sound transmission through turbomachinery stators. Two-dimensional cascade models are applied in combination with a newly proposed impedance model to account for the effect of flow deflection on the propagation of acoustic modes in

  8. A study of the electric response of He II at the excitation of second sound waves

    Czech Academy of Sciences Publication Activity Database

    Chagovets, Tymofiy

    2016-01-01

    Roč. 42, č. 3 (2016), s. 230-235 ISSN 1063-777X R&D Projects: GA ČR GP13-03806P Institutional support: RVO:68378271 Keywords : superfluid helium * electric response * second sound * ions in He II Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.804, year: 2016

  9. On experimental determination of the random-incidence response of microphones

    DEFF Research Database (Denmark)

    Barrera Figueroa, Salvador; Rasmussen, Knud; Jacobsen, Finn

    2007-01-01

    The random-incidence sensitivity of a microphone is defined as the ratio of the output voltage to the sound pressure that would exist at the position of the acoustic center of the microphone in the absence of the microphone in a sound field with incident plane waves coming from all directions. Th...

  10. A finite element propagation model for extracting normal incidence impedance in nonprogressive acoustic wave fields

    Science.gov (United States)

    Watson, Willie R.; Jones, Michael G.; Tanner, Sharon E.; Parrott, Tony L.

    1995-01-01

    A propagation model method for extracting the normal incidence impedance of an acoustic material installed as a finite length segment in a wall of a duct carrying a nonprogressive wave field is presented. The method recasts the determination of the unknown impedance as the minimization of the normalized wall pressure error function. A finite element propagation model is combined with a coarse/fine grid impedance plane search technique to extract the impedance of the material. Results are presented for three different materials for which the impedance is known. For each material, the input data required for the prediction scheme was computed from modal theory and then contaminated by random error. The finite element method reproduces the known impedance of each material almost exactly for random errors typical of those found in many measurement environments. Thus, the method developed here provides a means for determining the impedance of materials in a nonprogressirve wave environment such as that usually encountered in a commercial aircraft engine and most laboratory settings.

  11. Topological events in polarization resolved angular patterns of nematic liquid crystal cells at varying ellipticity of incident wave

    OpenAIRE

    Kiselev, Alexei D.; Vovk, Roman G.

    2008-01-01

    We study the angular structure of polarization of light transmitted through a nematic liquid crystal (NLC) cell by analyzing the polarization state as a function of the incidence angles and the polarization of the incident wave. The polarization resolved angular patterns emerging after the NLC cell illuminated by the convergent light beam are described in terms of the polarization singularities such as C-points (points of circular polarization) and L-lines (lines of linear polarization). For ...

  12. SOUND TRANSMISSION LOSS OF A DOUBLE-LEAF SOLID-MICROPERFORATED PARTITION UNDER NORMAL INCIDENCE OF ACOUSTIC LOADING

    Directory of Open Access Journals (Sweden)

    Ahmad Yusuf Ismail

    2011-12-01

    Full Text Available 0 0 1 332 1894 International Islamic University 15 4 2222 14.0 Normal 0 false false false EN-US JA X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin:0cm; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Times New Roman";} The micro-perforated panel (MPP is recently well-known as an alternative ‘green‘ sound absorber replacing the conventional porous materials. Constructed from a solid panel which provides a non-abrassive structure and also an optically attractive surface, there gives a feasibility to implement such a panel inside a vehicle cabin. This paper is the preliminary study to investigate the sound transmission loss (TL of a solid panel coupled with a micro-perforated panel to form a doube-leaf partition which is already known as a lightweigth stucture for noise insulation in vehicles and buildings. The mathematical model for the TL subjected to normal incidence of acoustic excitation is derived. The results show that its performance substantially improves at the troublesome frequency of mass-air-mass resonance which occurs in the conventional double-leaf solid partition. This is important particularly for the noise source predominant at low frequencies. This can also be controlled by tuning the hole size and number as well as the air gap between the panels.  ABSTRAK: Panel bertebuk mikro (micro-perforated panel (MPP kebelakangan ini dikenali sebagai alternatif penyerap bunyi yang mesra alam menggantikan bahan berliang lazim. Dibina daripada satu panel padu yang memberikan satu struktur tak lelas dan juga satu permukaan yang menarik, ia memberikan kemungkinan penggunaan panel tersebut di dalam kabin kenderaan. Tesis ini merupakan kajian permulaan dalam mengkaji hilang pancaran bunyi

  13. Dynamic acoustics for the STAR-100. [computer algorithms for time dependent sound waves in jet

    Science.gov (United States)

    Bayliss, A.; Turkel, E.

    1979-01-01

    An algorithm is described to compute time dependent acoustic waves in a jet. The method differs from previous methods in that no harmonic time dependence is assumed, thus permitting the study of nonharmonic acoustical behavior. Large grids are required to resolve the acoustic waves. Since the problem is nonstiff, explicit high order schemes can be used. These have been adapted to the STAR-100 with great efficiencies and permitted the efficient solution of problems which would not be feasible on a scalar machine.

  14. Smart Sound Processing for Defect Sizing in Pipelines Using EMAT Actuator Based Multi-Frequency Lamb Waves

    Directory of Open Access Journals (Sweden)

    Joaquín García-Gómez

    2018-03-01

    Full Text Available Pipeline inspection is a topic of particular interest to the companies. Especially important is the defect sizing, which allows them to avoid subsequent costly repairs in their equipment. A solution for this issue is using ultrasonic waves sensed through Electro-Magnetic Acoustic Transducer (EMAT actuators. The main advantage of this technology is the absence of the need to have direct contact with the surface of the material under investigation, which must be a conductive one. Specifically interesting is the meander-line-coil based Lamb wave generation, since the directivity of the waves allows a study based in the circumferential wrap-around received signal. However, the variety of defect sizes changes the behavior of the signal when it passes through the pipeline. Because of that, it is necessary to apply advanced techniques based on Smart Sound Processing (SSP. These methods involve extracting useful information from the signals sensed with EMAT at different frequencies to obtain nonlinear estimations of the depth of the defect, and to select the features that better estimate the profile of the pipeline. The proposed technique has been tested using both simulated and real signals in steel pipelines, obtaining good results in terms of Root Mean Square Error (RMSE.

  15. Smart Sound Processing for Defect Sizing in Pipelines Using EMAT Actuator Based Multi-Frequency Lamb Waves.

    Science.gov (United States)

    García-Gómez, Joaquín; Gil-Pita, Roberto; Rosa-Zurera, Manuel; Romero-Camacho, Antonio; Jiménez-Garrido, Jesús Antonio; García-Benavides, Víctor

    2018-03-07

    Pipeline inspection is a topic of particular interest to the companies. Especially important is the defect sizing, which allows them to avoid subsequent costly repairs in their equipment. A solution for this issue is using ultrasonic waves sensed through Electro-Magnetic Acoustic Transducer (EMAT) actuators. The main advantage of this technology is the absence of the need to have direct contact with the surface of the material under investigation, which must be a conductive one. Specifically interesting is the meander-line-coil based Lamb wave generation, since the directivity of the waves allows a study based in the circumferential wrap-around received signal. However, the variety of defect sizes changes the behavior of the signal when it passes through the pipeline. Because of that, it is necessary to apply advanced techniques based on Smart Sound Processing (SSP). These methods involve extracting useful information from the signals sensed with EMAT at different frequencies to obtain nonlinear estimations of the depth of the defect, and to select the features that better estimate the profile of the pipeline. The proposed technique has been tested using both simulated and real signals in steel pipelines, obtaining good results in terms of Root Mean Square Error (RMSE).

  16. Imaging the Moho beneath Sedimentary Basins: A Comparative Study of Virtual Deep Seismic Sounding (VDSS) and P Wave Receiver Functions (PRF)

    Science.gov (United States)

    Liu, T.; Klemperer, S. L.; Yu, C.; Ning, J.

    2017-12-01

    In the past decades, P wave receiver functions (PRF) have been routinely used to image the Moho, although it is well known that PRFs are susceptible to contamination from sedimentary multiples. Recently, Virtual Deep Seismic Sounding (VDSS) emerged as a novel method to image the Moho. However, despite successful applications of VDSS on multiple datasets from different areas, how sedimentary basins affect the waveforms of post-critical SsPmp, the Moho reflection phase used in VDSS, is not widely understood. Here, motivated by a dataset collected in the Ordos plateau, which shows distinct effects of sedimentary basins on SsPmp and Pms waveforms, we use synthetic seismograms to study the effects of sedimentary basins on SsPmp and Pms, the phases used in VDSS and PRF respectively. The results show that when the sedimentary thickness is on the same order of magnitude as the dominant wavelength of the incident S wave, SsPmp amplitude decreases significantly with S velocity of the sedimentary layer, whereas increasing sedimentary thickness has little effect in SsPmp amplitude. Our explanation is that the low S velocity layer at the virtual source reduces the incident angle of S wave at the free surface, thus decreases the S-to-P reflection coefficient at the virtual source. In addition, transmission loss associated with the bottom of sedimentary basins also contributes to reducing SsPmp amplitude. This explains not only our observations from the Ordos plateau, but also observations from other areas where post-critical SsPmp is expected to be observable, but instead is too weak to be identified. As for Pms, we observe that increasing sedimentary thickness and decreasing sedimentary velocities both can cause interference between sedimentary multiples and Pms, rendering the Moho depths inferred from Pms arrival times unreliable. The reason is that although Pms amplitude does not vary with sedimentary thickness or velocities, as sedimentary velocities decrease and thickness

  17. Reflection and transformation of acoustic waves at the interface in superfluid 3He-A

    International Nuclear Information System (INIS)

    Kekutiya, Sh.E.; Chkhaidze, N.D.

    1997-01-01

    Reflection and transformation of acoustic waves in 3 He-A and 3 He-A 1 are considered for two cases: (1) at the boundary with a solid impermeable wall at an arbitrary angle of incidence of a wave and (2) for normal incidence of waves on the interface between a free liquid and a system of periodic plane-parallel capillaries filling the semi-space. For the first case we have calculated the reflection coefficients of the first and the second sounds and spin and spin-temperature waves as well as the coefficients of transformation of these waves into each other. It is shown that the longitudinal wave undergoes no transformation into other waves, there occurs instead its complete reflection from the solid wall. The angle of incidence at which the energy attenuation coefficient of the first sound is maximum, and the interval of angles corresponding to the attenuation and the total interval reflection of the second sound are estimated. For the second case we have obtained: the coefficients of excitation of the fourth sound and the magneto-acoustic wave by the first and the second sounds; the reflection coefficients for the first and the second sounds and the longitudinal spin wave; the coefficient of transformation of the first sound into the second one and vice versa; the coefficient of reflection of the fourth sound from the capillary system - free liquid interface; the coefficient of excitation of longitudinal spin wave in free helium by the same wave in a capillary

  18. Wave motion as inquiry the physics and applications of light and sound

    CERN Document Server

    Espinoza, Fernando

    2017-01-01

    This undergraduate textbook on the physics of wave motion in optics and acoustics avoids presenting the topic abstractly in order to emphasize real-world examples. While providing the needed scientific context, Dr. Espinoza also relies on students' own experience to guide their learning. The book's exercises and labs strongly emphasize this inquiry-based approach. A strength of inquiry-based courses is that the students maintain a higher level of engagement when they are studying a topic that they have an internal motivation to know, rather than solely following the directives of a professor. "Wave Motion" takes those threads of engagement and interest and weaves them into a coherent picture of wave phenomena. It demystifies key components of life around us--in music, in technology, and indeed in everything we perceive--even for those without a strong math background, who might otherwise have trouble approaching the subject matter.

  19. Demonstration comparing sound wave attenuation inside pipes containing bubbly water and water droplet fog.

    Science.gov (United States)

    Leighton, Timothy G; Jiang, Jian; Baik, Kyungmin

    2012-03-01

    This paper describes a demonstration and explanation of sound absorption in water due to bubbles, and in air due to a fog of water droplets. It is suitable for 10-12 year olds, but the paper indicates where further exploration of the simplifications in the explanations provided for that age range would allow the demonstration to be used for undergraduate and Masters-level teaching. Applications to submarines, the space shuttle, and neutron generators are described. The demonstration is designed for transportation in a family-sized car. © 2012 Acoustical Society of America

  20. Propagation of sound waves through a linear shear layer: A closed form solution

    Science.gov (United States)

    Scott, J. N.

    1978-01-01

    Closed form solutions are presented for sound propagation from a line source in or near a shear layer. The analysis was exact for all frequencies and was developed assuming a linear velocity profile in the shear layer. This assumption allowed the solution to be expressed in terms of parabolic cyclinder functions. The solution is presented for a line monopole source first embedded in the uniform flow and then in the shear layer. Solutions are also discussed for certain types of dipole and quadrupole sources. Asymptotic expansions of the exact solutions for small and large values of Strouhal number gave expressions which correspond to solutions previously obtained for these limiting cases.

  1. Propagation of sound waves through a linear shear layer - A closed form solution

    Science.gov (United States)

    Scott, J. N.

    1978-01-01

    Closed form solutions are presented for sound propagation from a line source in or near a shear layer. The analysis is exact for all frequencies and is developed assuming a linear velocity profile in the shear layer. This assumption allows the solution to be expressed in terms of parabolic cylinder functions. The solution is presented for a line monopole source first embedded in the uniform flow and then in the shear layer. Solutions are also discussed for certain types of dipole and quadrupole sources. Asymptotic expansions of the exact solutions for small and large values of Strouhal number give expressions which correspond to solutions previously obtained for these limiting cases.

  2. Dynamic Viscoelastic Effects on Sound Wave Diffraction by Spherical and Cylindrical Shells Submerged in and Filled with Viscous Compressible Fluids

    Directory of Open Access Journals (Sweden)

    Seyyed M. Hasheminejad

    2003-01-01

    Full Text Available An analysis for sound scattering by fluid-filled spherical and cylindrical viscoelastic shells immersed in viscous fluids is outlined. The dynamic viscoelastic properties of the scatterer and the viscosity of the surrounding and core fluids are rigorously taken into account in the solution of the acoustic scattering problem. The novel features of Havriliak-Negami model for viscoelastic material dynamic behaviour description along with the appropriate wave-harmonic field expansions and the pertinent boundary conditions are employed to develop a closed-form solution in form of infinite series. Subsequently, the associated acoustic field quantities such as the scattered far-field pressure directivity pattern, form function amplitude, transmitted intensity ratio, and acoustic force magnitude are evaluated for given sets of medium physical properties. Numerical results clearly indicate that in addition to the traditional fluid viscosity-related mechanisms, the dynamic viscoelastic properties of the shell material as well as its thickness can be of major significance in sound scattering. Limiting cases are examined and fair agreements with well-known solutions are established.

  3. Sound a very short introduction

    CERN Document Server

    Goldsmith, Mike

    2015-01-01

    Sound is integral to how we experience the world, in the form of noise as well as music. But what is sound? What is the physical basis of pitch and harmony? And how are sound waves exploited in musical instruments? Sound: A Very Short Introduction looks at the science of sound and the behaviour of sound waves with their different frequencies. It also explores sound in different contexts, covering the audible and inaudible, sound underground and underwater, acoustic and electronic sound, and hearing in humans and animals. It concludes with the problem of sound out of place—noise and its reduction.

  4. The Sound of Science

    Science.gov (United States)

    Merwade, Venkatesh; Eichinger, David; Harriger, Bradley; Doherty, Erin; Habben, Ryan

    2014-01-01

    While the science of sound can be taught by explaining the concept of sound waves and vibrations, the authors of this article focused their efforts on creating a more engaging way to teach the science of sound--through engineering design. In this article they share the experience of teaching sound to third graders through an engineering challenge…

  5. Ultrawideband VNA Based Channel Sounding System for Centimetre and Millimetre Wave Bands

    DEFF Research Database (Denmark)

    Hejselbæk, Johannes; Fan, Wei; Pedersen, Gert F.

    2016-01-01

    Channel characterization of multipath channels at centimetre and millimetre wave bands is of interest from both academia and industry, especially for the frequency bands that are under consideration for 5G mobile communication systems. In this paper, we first demonstrate the limitations of an exi......Channel characterization of multipath channels at centimetre and millimetre wave bands is of interest from both academia and industry, especially for the frequency bands that are under consideration for 5G mobile communication systems. In this paper, we first demonstrate the limitations...... utilizing the proposed setup equipped with rotational directive horn antennas, with a focus on multi-band power-angle-delay profiles, was performed. The measured frequency bands are 18 - 20 GHz, 25 - 27 GHz, 28 - 30 GHz and 38 - 40 GHz....

  6. NON DESTRUCTIVE EVALUATION OF WOOD MECHANICAL PROPERTIES THROUGH ULTRASONIC SOUND WAVES - PHYSICAL FOUNDATIONS AND EXPERIMENTAL RESULTS

    Directory of Open Access Journals (Sweden)

    Edgar Vladimiro Mantilla Carrasco

    2003-07-01

    Full Text Available The propagation of ultra-sonic waves in wood can be described throughfundamental physical relationships (known as equation of Christoffel, established for aanisotropic solid, among the phase speed, the density and the elastic constants of the wood.However, differently of other solids, the propagation of ultra-sonic waves in wood constitutesa phenomenon of considerable complexity. The propagation constants, the speed (of phase andof group and the absorption coefficients, are significantly affected, not only by theheterogeneity of the chemical composition, by its microstructure, by the irregularity in theanatomical elements disposition, inherent to the biological nature of the wood, but also by itshygroscopic nature. The sensibility of the group speed or of ultrasonic pulse propagation,along the wood, to factors that determine their mechanical characteristics, indicated that ispossible to establish statistical correlations between speed and wood mechanical properties

  7. The radiation of sound by the instability waves of a compressible plane turbulent shear layer

    Science.gov (United States)

    Tam, C. K. W.; Morris, P. J.

    1980-01-01

    The problem of acoustic radiation generated by instability waves of a compressible plane turbulent shear layer is solved. The solution provided is valid up to the acoustic far-field region. It represents a significant improvement over the solution obtained by classical hydrodynamic-stability theory which is essentially a local solution with the acoustic radiation suppressed. The basic instability-wave solution which is valid in the shear layer and the near-field region is constructed in terms of an asymptotic expansion using the method of multiple scales. This solution accounts for the effects of the slightly divergent mean flow. It is shown that the multiple-scales asymptotic expansion is not uniformly valid far from the shear layer. Continuation of this solution into the entire upper half-plane is described. The extended solution enables the near- and far-field pressure fluctuations associated with the instability wave to be determined. Numerical results show that the directivity pattern of acoustic radiation into the stationary medium peaks at 20 degrees to the axis of the shear layer in the downstream direction for supersonic flows. This agrees qualitatively with the observed noise-directivity patterns of supersonic jets.

  8. High-speed helicopter rotor noise - Shock waves as a potent source of sound

    Science.gov (United States)

    Farassat, F.; Lee, Yung-Jang; Tadghighi, H.; Holz, R.

    1991-01-01

    In this paper we discuss the problem of high speed rotor noise prediction. In particular, we propose that from the point of view of the acoustic analogy, shocks around rotating blades are sources of sound. We show that, although for a wing at uniform steady rectilinear motion with shocks the volume quadrupole and shock sources cancel in the far field to the order of 1/r, this cannot happen for rotating blades. In this case, some cancellation between volume quadrupoles and shock sources occurs, yet the remaining shock noise contribution is still potent. A formula for shock noise prediction is presented based on mapping the deformable shock surface to a time independent region. The resulting equation is similar to Formulation 1A of Langley. Shock noise prediction for a hovering model rotor for which experimental noise data exist is presented. The comparison of measured and predicted acoustic data shows good agreement.

  9. New theory on the reverberation of rooms. [considering sound wave travel time

    Science.gov (United States)

    Pujolle, J.

    1974-01-01

    The inadequacy of the various theories which have been proposed for finding the reverberation time of rooms can be explained by an attempt to examine what might occur at a listening point when image sources of determined acoustic power are added to the actual source. The number and locations of the image sources are stipulated. The intensity of sound at the listening point can be calculated by means of approximations whose conditions for validity are given. This leads to the proposal of a new expression for the reverberation time, yielding results which fall between those obtained through use of the Eyring and Millington formulae; these results are made to depend on the shape of the room by means of a new definition of the mean free path.

  10. Possibility to sound the atmospheric ozone by a radiosonde equipped with two temperature sensors, sensitive and non-sensitive to the long wave radiation

    Science.gov (United States)

    Kitaoka, T.; Sumi, T.

    1994-01-01

    The sensitiveness of white coated thermistor sensors and non-sensitiveness of the gold coated over white thermistor sensors (which have been manufactured by a vacuum evaporation process) to long wave radiation were ascertained by some simple experiments in-room and also by analyses of some results of experimental soundings. From results of analyses on the temperature discrepancies caused by long wave radiation, the possibility to sound the atmospheric ozone partial pressure by a radiosonde equipped with two kinds of sensors, sensitive and non-sensitive to the long wave radiation was suggested, and the test results of the newly developed software for the deduction of ozone partial pressure in upper layers was also shown. However, it was found that the following is the necessary condition to realize the purpose. The sounding should be made by a radiosonde equipped with three sensors, instead of two, one being non-sensitive to the long wave radiation perfectly, and the other two also non-sensitive partially to the downward one, with two different angles of exposure upward. It is essential for the realization of the purpose to get two different values of temperature discrepancies simultaneously observed by the three sensors mentioned above and to avoid the troublesome effects of the upward long wave radiation.

  11. Intensity fluctuations of midfrequency sound signals passing through moving nonlinear internal waves.

    Science.gov (United States)

    Katsnelson, Boris; Grigorev, Valery; Lynch, James F

    2008-09-01

    The fluctuations of intensity of broadband pulses in the midfrequency range (2-4.5 kHz) propagating in shallow water in the presence of intense internal waves moving approximately along the acoustic track are considered. These pulses were received by two separate single hydrophones placed at different distances from the source (approximately 4 and approximately 12 km) and in different directions. It is shown that the frequency spectra of the fluctuations for these hydrophones have different predominating frequencies corresponding with the directions of the acoustic track. Comparisons of experimental results with theoretical estimates demonstrate good consistency.

  12. A Variational Formulation for the Finite Element Analysis of Sound Wave Propagation in a Spherical Shell

    Science.gov (United States)

    Lebiedzik, Catherine

    1995-01-01

    Development of design tools to furnish optimal acoustic environments for lightweight aircraft demands the ability to simulate the acoustic system on a workstation. In order to form an effective mathematical model of the phenomena at hand, we have begun by studying the propagation of acoustic waves inside closed spherical shells. Using a fully-coupled fluid-structure interaction model based upon variational principles, we have written a finite element analysis program and are in the process of examining several test cases. Future investigations are planned to increase model accuracy by incorporating non-linear and viscous effects.

  13. Sound Design in Virtual Reality Concert Experiences using a Wave Field Synthesis Approach

    DEFF Research Database (Denmark)

    Lind, Rasmus Bloustrød; Milesen, Victor; Smed, Dina Madsen

    2017-01-01

    In this paper we propose an experiment that evaluates the influence of audience noise on the feeling of presence and the perceived quality in a virtual reality concert experience delivered using Wave Field Synthesis. A 360 degree video of a live rock concert from a local band was recorded. Single...... with 30 participants we found that audience noise does not have a significant impact on presence. However, qualitative evaluations show that the naturalness of the sonic experience delivered through wavefield synthesis had a positive impact on the participants....

  14. Ionospheric disturbances caused by long period sound waves generated by Saturn-Apollo launches

    Science.gov (United States)

    Rao, G. L.

    1972-01-01

    Wavelike disturbances were observed in the ionosphere following several nuclear explosions in early 1960's. Supersonic shock waves within the atmosphere generated by large rockets can cause ionospheric electron density perturbations. A CW phase path Doppler array in the New York area was operated during the Saturn-Apollo 12 and 13 launches and recorded Doppler frequency fluctuations due to rocket launchings. Cross correlation and power spectral analyses of the phase path-path Doppler frequency variation records showed that the phase velocities of the signal arrivals were from south of the array with 700 - 800 m/sec corresponding to periods in the range of 2 to 4 minutes. Ionograms taken every 60 seconds from Wallops Islands showed clearly ionospheric disturbances due to rockets. The group velocities were estimated to be of the order of 450 m/sec 1 obtained from the earliest visible disturbances seen on CW phase path Doppler records and ionograms together with the rocket trajectory data.

  15. Effect of nocturnal sound reduction on the incidence of delirium in intensive care unit patients: An interrupted time series analysis

    NARCIS (Netherlands)

    van de Pol, Ineke; van Iterson, Mat; Maaskant, Jolanda

    2017-01-01

    Delirium in critically-ill patients is a common multifactorial disorder that is associated with various negative outcomes. It is assumed that sleep disturbances can result in an increased risk of delirium. This study hypothesized that implementing a protocol that reduces overall nocturnal sound

  16. T-wave observations on ocean-bottom seismometers offshore eastern Taiwan: effects of ocean sound speed perturbations and seafloor topography

    Science.gov (United States)

    Lin, C.; Chuang, Y. L.; Liu, R.; Huang, C.; Chen, C.; Kuo, B.

    2013-12-01

    T waves excited by earthquakes propagate along the SOFAR channel with low transmission loss, and therefore can be recorded on land-based seismic stations and hydrophones located thousands of kilometers away from earthquake epicenters. Early T-wave observations are mostly based on recordings by land-based stations due to the mechanics of the energy conversion of acoustic waves into seismic phases. Recently, T-wave signals have also been detected by ocean-bottom seismometers (OBS) at deep ocean basin offshore eastern Taiwan, raising the question of how deep ocean environment affects the generation and propagation of T waves. In this study, we examined the seismic waveform data recorded at 31 OBSs deployed in Okinawa Trough and Huatung Basin from 2006 to 2012. During this time period, there are 440 regional earthquakes with magnitude larger than 5 in the Western Pacific Ocean. A total of 68 T-wave events are identified using the criteria that significant energy in the dominant frequency of ~2-10 Hz and time duration longer than 100 seconds. Most of these events were generated by shallow-depth (less than 50 km) earthquakes, with only one exception by deep source of 225 km. Among these 68 events, 19 events were recorded on 3 OBSs located at 4500-m depth of Huatung Basin, where the depth of minimum sound speed is around 1100 m. To understand how acoustic energy scatters from the SOFAR channel into the ocean bottom, we apply the acoustic parabolic equation (PE) theory to simulate acoustic propagation in the presence of ocean sound speed perturbations. The simulations indicate that sound speed perturbations indeed affect the acoustic propagation pattern, part of which may then reach deep ocean regions. We further take into account possible effects of seafloor topography on generating scattered and surface waves along the ocean-crust interface.

  17. Scattering Cross Section of Sound Waves by the Modal Element Method

    Science.gov (United States)

    Baumeister, Kenneth J.; Kreider, Kevin L.

    1994-01-01

    #he modal element method has been employed to determine the scattered field from a plane acoustic wave impinging on a two dimensional body. In the modal element method, the scattering body is represented by finite elements, which are coupled to an eigenfunction expansion representing the acoustic pressure in the infinite computational domain surrounding the body. The present paper extends the previous work by developing the algorithm necessary to calculate the acoustics scattering cross section by the modal element method. The scattering cross section is the acoustical equivalent to the Radar Cross Section (RCS) in electromagnetic theory. Since the scattering cross section is evaluated at infinite distance from the body, an asymptotic approximation is used in conjunction with the standard modal element method. For validation, the scattering cross section of the rigid circular cylinder is computed for the frequency range 0.1 is less than or equal to ka is less than or equal to 100. Results show excellent agreement with the analytic solution.

  18. Experimental study on incident wave speed and the mechanisms of deflagration-to-detonation transition in a bent geometry

    Science.gov (United States)

    Li, L.; Li, J.; Teo, C. J.; Chang, P. H.; Khoo, B. C.

    2018-03-01

    The study of deflagration-to-detonation transition (DDT) in bent tubes is important with many potential applications including fuel pipeline and mine tunnel designs for explosion prevention and detonation engines for propulsion. The aim of this study is to exploit low-speed incident shock waves for DDT using an S-shaped geometry and investigate its effectiveness as a DDT enhancement device. Experiments were conducted in a valveless detonation chamber using ethylene-air mixture at room temperature and pressure (303 K, 1 bar). High-speed Schlieren photography was employed to keep track of the wave dynamic evolution. Results showed that waves with velocity as low as 500 m/s can experience a successful DDT process through this S-shaped geometry. To better understand the mechanism, clear images of local explosion processes were captured in either the first curved section or the second curved section depending on the inlet wave velocity, thus proving that this S-shaped tube can act as a two-stage device for DDT. Owing to the curved wall structure, the passing wave was observed to undergo a continuous compression phase which could ignite the local unburnt mixture and finally lead to a local explosion and a detonation transition. Additionally, the phenomenon of shock-vortex interaction near the wave diffraction region was also found to play an important role in the whole process. It was recorded that this interaction could not only result in local head-on reflection of the reflected wave on the wall that could ignite the local mixture, and it could also contribute to the recoupling of the shock-flame complex when a detonation wave is successfully formed in the first curved section.

  19. Second Sound

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 4; Issue 6. Second Sound - The Role of Elastic Waves. R Srinivasan. General Article Volume 4 Issue 6 June 1999 pp 15-19. Fulltext. Click here to view fulltext PDF. Permanent link: http://www.ias.ac.in/article/fulltext/reso/004/06/0015-0019 ...

  20. Second Sound

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 4; Issue 3. Second Sound - Waves of Entropy and Temperature. R Srinivasan. General Article Volume 4 Issue 3 March 1999 pp 16-24. Fulltext. Click here to view fulltext PDF. Permanent link: http://www.ias.ac.in/article/fulltext/reso/004/03/0016-0024 ...

  1. Second Sound

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 4; Issue 6. Second Sound - The Role of Elastic Waves. R Srinivasan. General Article Volume 4 Issue 6 June 1999 pp 15-19. Fulltext. Click here to view fulltext PDF. Permanent link: https://www.ias.ac.in/article/fulltext/reso/004/06/0015-0019 ...

  2. Measurement of the absorption coefficient of acoustical materials using the sound intensity method

    Science.gov (United States)

    Atwal, Mahabir S.; Crocker, Malcolm J.

    1987-01-01

    In this study the possibility of using the two-microphone sound intensity technique to measure the normal incidence and the random incidence sound absorption coefficient was investigated. The normal incidence absorption coefficient was determined by measuring the intensity incidence on the sample and the intensity reflected by the sample placed in an anechoic chamber. The random incidence absorption coefficient was determined by measuring the intensity incident on the sample and the intensity reflected by the sample placed in a reverberation chamber. Absorption coefficient results obtained by the sound intensity technique were compared with standard techniques, namely the reverberation chamber and the standing wave tube. The major advantages of using the sound intensity technique are that it permits 'in situ' measurements and the absorption coefficient for a large range of frequencies can be obtained from a single measurement.

  3. The Textile Form of Sound

    DEFF Research Database (Denmark)

    Bendixen, Cecilie

    of sound. This issue is a part of a Ph.D. study at The Danish Design School in Copenhagen. Sound diffusion in architecture is a complex phenomenon. From the sound source the sound spreads in all directions as a sphere of wave fronts. When the sound is reflected from room boundaries or furniture, complex......Sound is a part of architecture, and sound is complex. Upon this, sound is invisible. How is it then possible to design visual objects that interact with the sound? This paper addresses the problem of how to get access to the complexity of sound and how to make textile material revealing the form...

  4. Design and Calibration Tests of an Active Sound Intensity Probe

    Directory of Open Access Journals (Sweden)

    Thomas Kletschkowski

    2008-01-01

    Full Text Available The paper presents an active sound intensity probe that can be used for sound source localization in standing wave fields. The probe consists of a sound hard tube that is terminated by a loudspeaker and an integrated pair of microphones. The microphones are used to decompose the standing wave field inside the tube into its incident and reflected part. The latter is cancelled by an adaptive controller that calculates proper driving signals for the loudspeaker. If the open end of the actively controlled tube is placed close to a vibrating surface, the radiated sound intensity can be determined by measuring the cross spectral density between the two microphones. A one-dimensional free field can be realized effectively, as first experiments performed on a simplified test bed have shown. Further tests proved that a prototype of the novel sound intensity probe can be calibrated.

  5. A survey of elementary plasma instabilities and ECH wave noise properties relevant to plasma sounding by means of particle in cell simulations

    International Nuclear Information System (INIS)

    Dieckmann, M.E.

    1999-01-01

    In this work the emission of high amplitude wave packets into a plasma is examined. The plasma is modelled by an 1 1/2D electromagnetic and relativistic particle in cell code. The antenna is modelled by applying forced electrostatic field oscillations to a subset of the simulation grid cells. The emitted wave packets are followed in space and time. It is investigated how the wave packets are affected by instabilities. The detected instabilities affecting ECH waves have been identified as wave decay, nonlinear damping due to trapping and modulational instabilities. These instabilities have been discussed with hindsight to the plasma sounding experiment. A plasma sounder is an experiment emitting short wave packets into the ambient plasma and then it listens to the response. The assumption that the emitted waves are linear waves then allows to determine the plasma magnetic field strength, the electron density and possibly the electron thermal velocity from the response spectrum. The impact of the non-linear instabilities on the plasma wave response spectrum provided by a sounder have been predicted in this work and the predictions have been shown to match a wide range of experimental observations. A dependence of the instabilities on the simulation noise levels, for example the dependence of the wave interaction time in a wave decay on the noise electric field amplitudes, required it to investigate the simulation noise properties (spectral distribution) and to compare it to real plasma thermal noise. It has also been examined how a finite length antenna would filter the simulation noise. (author)

  6. Convolution and non convolution Perfectly Matched Layer techniques optimized at grazing incidence for high-order wave propagation modelling

    Science.gov (United States)

    Martin, Roland; Komatitsch, Dimitri; Bruthiaux, Emilien; Gedney, Stephen D.

    2010-05-01

    We present and discuss here two different unsplit formulations of the frequency shift PML based on convolution or non convolution integrations of auxiliary memory variables. Indeed, the Perfectly Matched Layer absorbing boundary condition has proven to be very efficient from a numerical point of view for the elastic wave equation to absorb both body waves with non-grazing incidence and surface waves. However, at grazing incidence the classical discrete Perfectly Matched Layer method suffers from large spurious reflections that make it less efficient for instance in the case of very thin mesh slices, in the case of sources located very close to the edge of the mesh, and/or in the case of receivers located at very large offset. In [1] we improve the Perfectly Matched Layer at grazing incidence for the seismic wave equation based on an unsplit convolution technique. This improved PML has a cost that is similar in terms of memory storage to that of the classical PML. We illustrate the efficiency of this improved Convolutional Perfectly Matched Layer based on numerical benchmarks using a staggered finite-difference method on a very thin mesh slice for an isotropic material and show that results are significantly improved compared with the classical Perfectly Matched Layer technique. We also show that, as the classical model, the technique is intrinsically unstable in the case of some anisotropic materials. In this case, retaining an idea of [2], this has been stabilized by adding correction terms adequately along any coordinate axis [3]. More specifically this has been applied to the spectral-element method based on a hybrid first/second order time integration scheme in which the Newmark time marching scheme allows us to match perfectly at the base of the absorbing layer a velocity-stress formulation in the PML and a second order displacement formulation in the inner computational domain.Our CPML unsplit formulation has the advantage to reduce the memory storage of CPML

  7. Two melts phase separation in the liquid Sb-Sb2S3 system: critical sound wave propagation and metal-non-metal transition

    Directory of Open Access Journals (Sweden)

    Kakimuma F.

    2011-05-01

    Full Text Available The sound velocity and magnetic susceptibility as a function of temperature and composition were measured to investigate critical sound wave propagation and metal-non-metal transition in the liquid Sb-Sb2S3 system. The sound velocity in a homogeneous alloy around 60 at.% of Sb decreases very rapidly and the rate of decrease increases as the two melts phase is approached, which is the typical temperature dependence of the sound velocity in a liquid with a miscibility gap. Below the critical point, the sound velocity was measured along the phase boundary. Using those data, the phase boundary was precisely determined. The critical point is located at 901±2°C and 41.5 ±0.5 at.% S, and the critical exponent of the phase boundary is about 1/3. On the other hand, the magnetic susceptibility as a function of temperature and composition indicates that the electronic state is metallic in liquid Sb and non-metallic in molten Sb2Se3, and crossover form the metallic to non-metallic state occurs around the critical composition.

  8. Tone-burst technique measures high-intensity sound absorption

    Science.gov (United States)

    Powell, J. G.; Van Houten, J. J.

    1971-01-01

    Tone-burst technique, in which narrow-bandwidth, short-duration sonic pulse is propagated down a standing-wave tube, measures sound absorbing capacity of materials used in jet engine noise abatement. Technique eliminates effects of tube losses and yields normal-incidence absorption coefficient of specimen.

  9. Broadcast sound technology

    CERN Document Server

    Talbot-Smith, Michael

    1990-01-01

    Broadcast Sound Technology provides an explanation of the underlying principles of modern audio technology. Organized into 21 chapters, the book first describes the basic sound; behavior of sound waves; aspects of hearing, harming, and charming the ear; room acoustics; reverberation; microphones; phantom power; loudspeakers; basic stereo; and monitoring of audio signal. Subsequent chapters explore the processing of audio signal, sockets, sound desks, and digital audio. Analogue and digital tape recording and reproduction, as well as noise reduction, are also explained.

  10. The effect of oblique angle of sound incidence, realistic edge conditions, curvature and in-plane panel stresses on the noise reduction characteristics of general aviation type panels

    Science.gov (United States)

    Grosveld, F.; Lameris, J.; Dunn, D.

    1979-01-01

    Experiments and a theoretical analysis were conducted to predict the noise reduction of inclined and curved panels. These predictions are compared to the experimental results with reasonable agreement between theory and experiment for panels under an oblique angle of sound incidence. Theoretical as well as experimental results indicate a big increase in noise reduction when a flat test panel is curved. Further curving the panel slightly decreases the noise reduction. Riveted flat panels are shown to give a higher noise reduction in the stiffness-controlled frequency region, while bonded panels are superior in this region when the test panel is curved. Experimentally measured noise reduction characteristics of flat aluminum panels with uniaxial in-plane stresses are presented and discussed. These test results indicate an important improvement in the noise reduction of these panels in the frequency range below the fundamental panel/cavity frequency.

  11. Sound beam manipulation based on temperature gradients

    Energy Technology Data Exchange (ETDEWEB)

    Qian, Feng [Key Laboratory of Modern Acoustics, Institute of Acoustics and School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093 (China); School of Physics & Electronic Engineering, Changshu Institute of Technology, Changshu 215500 (China); Quan, Li; Liu, Xiaozhou, E-mail: xzliu@nju.edu.cn; Gong, Xiufen [Key Laboratory of Modern Acoustics, Institute of Acoustics and School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093 (China)

    2015-10-28

    Previous research with temperature gradients has shown the feasibility of controlling airborne sound propagation. Here, we present a temperature gradients based airborne sound manipulation schemes: a cylindrical acoustic omnidirectional absorber (AOA). The proposed AOA has high absorption performance which can almost completely absorb the incident wave. Geometric acoustics is used to obtain the refractive index distributions with different radii, which is then utilized to deduce the desired temperature gradients. Since resonant units are not applied in the scheme, its working bandwidth is expected to be broadband. The scheme is temperature-tuned and easy to realize, which is of potential interest to fields such as noise control or acoustic cloaking.

  12. Sound beam manipulation based on temperature gradients

    International Nuclear Information System (INIS)

    Qian, Feng; Quan, Li; Liu, Xiaozhou; Gong, Xiufen

    2015-01-01

    Previous research with temperature gradients has shown the feasibility of controlling airborne sound propagation. Here, we present a temperature gradients based airborne sound manipulation schemes: a cylindrical acoustic omnidirectional absorber (AOA). The proposed AOA has high absorption performance which can almost completely absorb the incident wave. Geometric acoustics is used to obtain the refractive index distributions with different radii, which is then utilized to deduce the desired temperature gradients. Since resonant units are not applied in the scheme, its working bandwidth is expected to be broadband. The scheme is temperature-tuned and easy to realize, which is of potential interest to fields such as noise control or acoustic cloaking

  13. Standing-wave effects in grazing-incidence x-ray diffraction from polycrystalline multilayers

    Czech Academy of Sciences Publication Activity Database

    Krčmář, J.; Holý, V.; Horák, L.; Metzger, T. H.; Sobota, Jaroslav

    2008-01-01

    Roč. 103, č. 3 (2008), 033504:1-7 ISSN 0021-8979 Institutional research plan: CEZ:AV0Z20650511 Keywords : acoustic wave interference * carbon * crystallites * interface structure * nickel * optical multilayers * superlattices * X-ray diffraction Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.201, year: 2008

  14. The Textile Form of Sound

    DEFF Research Database (Denmark)

    Bendixen, Cecilie

    three-dimensional geometries of interfering spheres are created. Textiles are generally a very good sound dampening material. To dampen the sound most effective it should be placed where the sound energy is highest. To find these invisible spots of energy and to reveal the geometry of them, two......Sound is a part of architecture, and sound is complex. Upon this, sound is invisible. How is it then possible to design visual objects that interact with the sound? This paper addresses the problem of how to get access to the complexity of sound and how to make textile material revealing the form...... of sound. This issue is a part of a Ph.D. study at The Danish Design School in Copenhagen. Sound diffusion in architecture is a complex phenomenon. From the sound source the sound spreads in all directions as a sphere of wave fronts. When the sound is reflected from room boundaries or furniture, complex...

  15. Propagation of gravity waves and spread F in the low-latitude ionosphere over Tucumán, Argentina, by continuous Doppler sounding: First results

    Czech Academy of Sciences Publication Activity Database

    Chum, Jaroslav; Bonomi, F. A. M.; Fišer, Jiří; Cabrera, M. A.; Ezquer, R. G.; Burešová, Dalia; Laštovička, Jan; Baše, Jiří; Hruška, František; Molina, M. G.; Ise, J. E.; Cangemi, J. I.; Šindelářová, Tereza

    2014-01-01

    Roč. 119, č. 8 (2014), s. 6954-6965 ISSN 2169-9380 R&D Projects: GA ČR(CZ) GAP209/12/2440; GA ČR GP13-09778P Institutional support: RVO:68378289 Keywords : low latitude ionosphere * Ionospheric irregularities * equatorial spread F * gravity waves * scintillation * remote sensing * Doppler sounding Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 3.426, year : 2014 http://onlinelibrary.wiley.com/doi/10.1002/2014JA020184/abstract

  16. Arterial wave reflections and incident cardiovascular events and heart failure: MESA (Multiethnic Study of Atherosclerosis).

    Science.gov (United States)

    Chirinos, Julio A; Kips, Jan G; Jacobs, David R; Brumback, Lyndia; Duprez, Daniel A; Kronmal, Richard; Bluemke, David A; Townsend, Raymond R; Vermeersch, Sebastian; Segers, Patrick

    2012-11-20

    This study sought to assess the relationship between central pressure profiles and cardiovascular events (CVEs) in a large community-based sample. Experimental and physiologic data mechanistically implicate wave reflections in the pathogenesis of left ventricular failure and cardiovascular disease, but their association with these outcomes in the general population is unclear. Aortic pressure waveforms were derived from a generalized transfer function applied to the radial pressure waveform recorded noninvasively from 5,960 participants in the Multiethnic Study of Atherosclerosis. The central pressure waveform was separated into forward and reflected waves using a physiologic flow waveform. Reflection magnitude (RM = [Reflected/Forward wave amplitude] × 100), augmentation index ([Second/First systolic peak] × 100) and pulse pressure amplification ([Radial/aortic pulse pressure] × 100) were assessed as predictors of CVEs and congestive heart failure (CHF) during a median follow-up of 7.61 years. After adjustment for established risk factors, aortic AIx independently predicted hard CVEs (hazard ratio [HR] per 10% increase: 1.08; 95% confidence interval [CI]: 1.01 to 1.14; p = 0.016), whereas PPA independently predicted all CVEs (HR per 10% increase: 0.82; 95% CI: 0.70 to 0.96; p = 0.012). RM was independently predictive of all CVEs (HR per 10% increase: 1.34; 95% CI: 1.08 to 1.67; p = 0.009) and hard CVEs (HR per 10% increase: 1.46; 95% CI: 1.12 to 1.90; p = 0.006) and was strongly predictive of new-onset CHF (HR per 10% increase: 2.69; 95% CI: 1.79 to 4.04; p < 0.0001), comparing favorably to other risk factors for CHF as per various measures of model performance, reclassification, and discrimination. In a fully adjusted model, compared to nonhypertensive subjects with low RM, the HRs (95% CI) for hypertensive subjects with low RM, nonhypertensive subjects with high RM, and hypertensive subjects with high RM were 1.81 (0.85 to 3.86), 2.16 (1.07 to 5.01), and 3

  17. Measurement of the absorption coefficient using the sound-intensity technique

    Science.gov (United States)

    Atwal, M.; Bernhard, R.

    1984-01-01

    The possibility of using the sound intensity technique to measure the absorption coefficient of a material is investigated. This technique measures the absorption coefficient by measuring the intensity incident on the sample and the net intensity reflected by the sample. Results obtained by this technique are compared with the standard techniques of measuring the change in the reverberation time and the standing wave ratio in a tube, thereby, calculating the random incident and the normal incident adsorption coefficient.

  18. Ultrathin metasurface with high absorptance for waterborne sound

    KAUST Repository

    Mei, Jun

    2018-01-12

    We present a design for an acoustic metasurface which can efficiently absorb low-frequency sound energy in water. The metasurface has a simple structure and consists of only two common materials: i.e., water and silicone rubber. The optimized material and geometrical parameters of the designed metasurface are determined by an analytic formula in conjunction with an iterative process based on the retrieval method. Although the metasurface is as thin as 0.15 of the wavelength, it can absorb 99.7% of the normally incident sound wave energy. Furthermore, the metasurface maintains a substantially high absorptance over a relatively broad bandwidth, and also works well for oblique incidence with an incident angle of up to 50°. Potential applications in the field of underwater sound isolation are expected.

  19. Ultrathin metasurface with high absorptance for waterborne sound

    Science.gov (United States)

    Mei, Jun; Zhang, Xiujuan; Wu, Ying

    2018-03-01

    We present a design for an acoustic metasurface which can efficiently absorb low-frequency sound energy in water. The metasurface has a simple structure and consists of only two common materials: i.e., water and silicone rubber. The optimized material and geometrical parameters of the designed metasurface are determined by an analytic formula in conjunction with an iterative process based on the retrieval method. Although the metasurface is as thin as 0.15 of the wavelength, it can absorb 99.7% of the normally incident sound wave energy. Furthermore, the metasurface maintains a substantially high absorptance over a relatively broad bandwidth, and also works well for oblique incidence with an incident angle of up to 50°. Potential applications in the field of underwater sound isolation are expected.

  20. Sound Hole Sound

    OpenAIRE

    Politzer, David

    2015-01-01

    The volume of air that goes in and out of a musical instrument's sound hole is related to the sound hole's contribution to the volume of the sound. Helmholtz's result for the simplest case of steady flow through an elliptical hole is reviewed. Measurements on multiple holes in sound box geometries and scales relevant to real musical instruments demonstrate the importance of a variety of effects. Electric capacitance of single flat plates is a mathematically identical problem, offering an alte...

  1. Peculiarities of the Self-Action of Inclined Wave Beams Incident on a Discrete System of Optical Fibers

    Science.gov (United States)

    Litvak, A. G.; Mironov, V. A.; Skobelev, S. A.; Smirnov, L. A.

    2018-01-01

    Based on a discrete nonlinear Schrödinger equation (DNSE), we studied analytically and numerically the peculiarities of the self-action of one-dimensional quasi-optic wave beams injected into a spatially inhomogeneous medium consisting of a set of equidistant mutually coupled optical fibers. A variational approach allowing the prediction of the global evolution of localized fields with the initially plane phase front was developed. The self-consistent equations are obtained for the main parameters of such beams (the position of the center of mass, the effective width, and linear and quadratic phase-front corrections) in the aberrationless approximation. The case of radiation incident on a periodic system of nonlinear optical fibers at an angle to the axis oriented along them is analyzed in detail. It is shown that for the radiation power exceeding a critical value, the self-focusing of the wave field is observed, which is accompanied by the shift of the intensity maximum followed by the concentration of the main part of radiation only in one of the structural elements of the array under study. In this case, the beams propagate along paths considerably different from linear and the direction of their propagation changes compared to the initial direction. Asymptotic expressions are found that allow us to estimate the self-focusing length and to determine quite accurately the final position of a point with the maximum field amplitude after radiation trapping a channel. The results of the qualitative study of the possible self-channeling regimes for wave beams in a system of weakly coupled optical fibers in the aberrationless approximation are compared with the results of direct numerical simulations within the DNSE framework.

  2. The contribution of a lateral wave in simulating low-frequency sound fields in an irregular waveguide with a liquid bottom

    Science.gov (United States)

    Gulin, O. É.

    2010-09-01

    For a two-dimensional irregular waveguide with a bottom in the form of a liquid half-space simulating the coastal zone of a sea shelf, we present calculations on sound propagation at certain low frequencies taking into account the contribution of the integral over the Pekeris branch cut approximated according to the Zavadsky-Krupin technique. Calculations were conducted on the basis of causal matrix equations for the modes obtained in previous studies and that are equivalent to the equations of the cross section method. It is shown how, with a lowering of sound frequency, there is an increase in the contribution to the full field of the branch-line integral corresponding to a lateral wave. Features of transformation of the first propagating mode are established as the section of the cutoff is passed; in such a situation, we have an idea of the wave pattern of the exposure region of the waveguide beyond this section, where propagating modes are absent. As earlier, we perform a comparative analysis of the curves of losses during propagation, corresponding to the solution of exact equations and the description of approximating one-way propagation when allowing for and ignoring coupling of modes.

  3. Grazing Incidence X-Ray Fluorescence of periodic structures – a comparison between X-ray Standing Waves and Geometrical Optics calculations.

    OpenAIRE

    Reinhardt Falk; Nowak Stanislaw H.; Beckhoff Burkhard; Dousse Jean-Claude; Schoengen Max

    2014-01-01

    Grazing incidence X-ray fluorescence spectra of nano-scaled periodic line structures were recorded at the four crystal monochromator beamline in the laboratory of the Physikalisch-Technische Bundesanstalt at the synchrotron radiation facility BESSY II. For different tilt angles between the lines and the plane of incidence of the monochromatic synchrotron radiation, spectral features are observed which can be understood and explained with calculations of the emerging X-ray standing wave (XSW) ...

  4. Thermal infrared sounding observations of lower atmospheric variances at Mars and their implications for gravity wave activity: a preliminary examination

    Science.gov (United States)

    Heavens, N. G.

    2017-12-01

    It has been recognized for over two decades that the mesoscale statistical variance observed by Earth-observing satellites at temperature-sensitive frequencies above the instrumental noise floor is a measure of gravity wave activity. These types of observation have been made by a variety of satellite instruments have been an important validation tool for gravity wave parameterizations in global and mesoscale models. At Mars, the importance of topographic and non-topographic sources of gravity waves for the general circulation is now widely recognized and the target of recent modeling efforts. However, despite several ingenious studies, gravity wave activity near hypothetical lower atmospheric sources has been poorly and unsystematically characterized, partly because of the difficulty of separating the gravity wave activity from baroclinic wave activity and the thermal tides. Here will be presented a preliminary analysis of calibrated radiance variance at 15.4 microns (635-665 cm-1) from nadir, off-nadir, and limb observations by the Mars Climate Sounder on board Mars Reconnaissance Orbiter. The overarching methodology follows Wu and Waters (1996, 1997). Nadir, off-nadir, and lowest detector limb observations should sample variability with vertical weighting functions centered high in the lower atmosphere (20-30 km altitude) and full width half maximum (FWHM) 20 km but be sensitive to gravity waves with different horizontal wavelengths and slightly different vertical wavelengths. This work is supported by NASA's Mars Data Analysis Program (NNX14AM32G). References Wu, D.L. and J.W. Waters, 1996, Satellite observations of atmospheric variances: A possible indication of gravity waves, GRL, 23, 3631-3634. Wu D.L. and J.W. Waters, 1997, Observations of Gravity Waves with the UARS Microwave Limb Sounder. In: Hamilton K. (eds) Gravity Wave Processes. NATO ASI Series (Series I: Environmental Change), vol 50. Springer, Berlin, Heidelberg.

  5. Research on the FDTD method of scattering effects of obliquely incident electromagnetic waves in time-varying plasma sheath on collision and plasma frequencies

    Science.gov (United States)

    Chen, Wei; Guo, Li-xin; Li, Jiang-ting

    2017-04-01

    This study analyzes the scattering characteristics of obliquely incident electromagnetic (EM) waves in a time-varying plasma sheath. The finite-difference time-domain algorithm is applied. According to the empirical formula of the collision frequency in a plasma sheath, the plasma frequency, temperature, and pressure are assumed to vary with time in the form of exponential rise. Some scattering problems of EM waves are discussed by calculating the radar cross section (RCS) of the time-varying plasma. The laws of the RCS varying with time are summarized at the L and S wave bands.

  6. Sound Visualization and Holography

    Science.gov (United States)

    Kock, Winston E.

    1975-01-01

    Describes liquid surface holograms including their application to medicine. Discusses interference and diffraction phenomena using sound wave scanning techniques. Compares focussing by zone plate to holographic image development. (GH)

  7. Breaking the Sound Barrier

    Science.gov (United States)

    Brown, Tom; Boehringer, Kim

    2007-01-01

    Students in a fourth-grade class participated in a series of dynamic sound learning centers followed by a dramatic capstone event--an exploration of the amazing Trashcan Whoosh Waves. It's a notoriously difficult subject to teach, but this hands-on, exploratory approach ignited student interest in sound, promoted language acquisition, and built…

  8. Infrasonic sounds excited by seismic waves of the 2011 Tohoku-oki earthquake as visualized in ionograms

    Science.gov (United States)

    Maruyama, Takashi; Shinagawa, Hiroyuki

    2014-05-01

    After the M 9.0 Tohoku-oki earthquake in 2011, strong deformation of ionogram echo traces, forming multiple cusp signatures (MCSs), were observed at three stations 790-1880 km from the epicenter. The vertical structure of the ionospheric disturbances was determined by true height analysis and compared with broadband seismograph records at stations close to the ionosondes. These ionospheric disturbances were caused by vertically propagating acoustic waves excited by the up/down ground motion of seismic waves. Numerical simulations have shown that acoustic waves with a period of 15-40 s and amplitude of order 1 mm/s at the ground level were sufficient to create MCSs as sharp as those observed. These acoustic wave parameters are consistent with the seismic records if the motion of the air mass on the ground level is assumed to be the same as the ground motion. The travel time diagram of the seismic records along the line connecting the epicenter and ionosondes showed that the first MCS ionogram detected at each station was caused by P waves, while the others were caused by Rayleigh waves.

  9. Optical reflection and waveguiding of sound by photo-thermally induced barriers.

    Science.gov (United States)

    Cullum, Brian M; Holthoff, Ellen L; Pellegrino, Paul M

    2017-09-18

    Control and manipulation of sound is of critical importance to many different scientific and engineering fields, requiring the design of rigid physical structures with precise geometries and material properties for the desired acoustics. In this work, we demonstrate the ability to manipulate the direction and magnitude of sound waves traveling in air using laser light, without the need for physical interfaces associated with different materials. Efficient reflection of sound waves off of transient, optically generated, abrupt air density barriers is demonstrated, with acoustic reflections greater than 25% of the incident acoustic wave amplitude. Implementation of multiple barriers, can result in complete suppress the transmission of incident acoustic signals as great as 70 dB. Additionally, shaping the laser beam acoustic waveguides can be generated with dramatically reduced transmission losses.

  10. A sound future for acoustic metamaterials.

    Science.gov (United States)

    Cummer, Steven

    2017-05-01

    The field of acoustic metamaterials borrowed ideas from electromagnetics and optics to create engineered structures that exhibit desired fluid or fluid-like properties for the propagation of sound. These metamaterials offer the possibility of manipulating and controlling sound waves in ways that are challenging or impossible with conventional materials. Metamaterials with zero, or negative, refractive index for sound offer new possibilities for acoustic imaging and for the control of sound at subwavelength scales. The combination of transformation acoustics theory and highly anisotropic acoustic metamaterials enables precise control over the deformation of sound fields, which can be used, for example, to hide or cloak objects from incident acoustic energy. And active acoustic metamaterials use external control and power to create effective material properties that are fundamentally not possible with passive structures. Challenges remain, including the development of efficient techniques for fabricating large-scale metamaterial structures and, critically, converting exciting laboratory experiments into practically useful devices. In this presentation, I will outline the recent history of the field, describe some of the designs and properties of materials with unusual acoustic parameters, discuss examples of extreme manipulation of sound, and finally, provide a personal perspective on future directions in the field.

  11. Analytical modelling for predicting the sound field of planar acoustic metasurface

    Science.gov (United States)

    Zhou, Jie; Zhang, Xin; Fang, Yi

    2018-01-01

    An analytical model is built to predict the acoustic fields of acoustic metasurfaces. The acoustic fields are investigated for a Gaussian sound beam incident on the acoustic metasurfaces. The Gaussian sound beam is decomposed into a set of discrete elementary plane waves. The diffraction caused by the acoustic metasurfaces can be obtained using this analytical model, which is validated with the numerical simulations for the different incident angles of the Gaussian sound beam. This model overcomes the limitation of the method based on the generalised Snell's law which can only predict the direction of a specific diffracted order. Actually, this analytical model can be also used to predict the sound fields of acoustic metasurfaces under any incident sound if its Fourier transforms exist. This conclusion is demonstrated by studying the sound field for a point sound source incident on the acoustic metasurface. The acoustic admittances of acoustic metasurfaces are required in the calculation of the analytical model. Therefore, a numerical method for obtaining the effective acoustic admittances is proposed for the structurally complex metasurfaces without the analytical expressions of material properties, such as equivalent density and sound speed.

  12. On the second-order homogenization of wave motion in periodic media and the sound of a chessboard

    Science.gov (United States)

    Wautier, Antoine; Guzina, Bojan B.

    2015-05-01

    The goal of this study is to better understand the mathematical structure and ramifications of the second-order homogenization of low-frequency wave motion in periodic solids. To this end, multiple-scales asymptotic approach is applied to the scalar wave equation (describing anti-plane shear motion) in one and two spatial dimensions. In contrast to previous studies where the second-order homogenization has lead to the introduction of a single fourth-order derivative in the governing equation, present investigation demonstrates that such (asymptotic) approach results in a family of field equations uniting spatial, temporal, and mixed fourth-order derivatives - that jointly control incipient wave dispersion. Given the consequent freedom in selecting the affiliated lengthscale parameters, the notion of an optimal asymptotic model is next considered in a one-dimensional setting via its ability to capture the salient features of wave propagation within the first Brillouin zone, including the onset and magnitude of the phononic band gap. In the context of two-dimensional wave propagation, on the other hand, the asymptotic analysis is first established in a general setting, exposing the constant shear modulus as sufficient condition under which the second-order approximation of a bi-periodic elastic solid is both isotropic and limited to even-order derivatives. On adopting a chessboard-like periodic structure (with contrasts in both modulus and mass density) as a testbed for in-depth analytical treatment, it is next shown that the second-order approximation of germane wave motion is governed by a family fourth-order differential equations that: (i) entail exclusively even-order derivatives and homogenization coefficients that depend explicitly on the contrast in mass density; (ii) describe anisotropic wave dispersion characterized by the "sin4 θ +cos4 θ" term, and (iii) include the asymptotic model for a square lattice of circular inclusions as degenerate case. For

  13. Defining a relationship between incident wave parameters and morphologic evolution of shoals on ebb tidal deltas using long term X-band radar observation from RIOS

    Science.gov (United States)

    Humberston, J. L.; McNinch, J.; Lippmann, T. C.

    2016-12-01

    The morphology of tidal inlet ebb-shoals varies dynamically over time, particularly in response to large wave events. Understanding which wave qualities most influence shoals' evolution would support advancements in sediment bypassing models as well as targeted maintenance dredging for hydrographic purposes. Unfortunately, shallow and rapidly changing bathymetry, turbid waters and ambiguous wave speeds resulting from multiple shoaling and de-shoaling areas limits many traditional surveying techniques from obtaining the spatial and temporal resolution necessary to effectively characterize shoal development. The Radar Inlet Observing System (RIOS) is a uniquely designed mobile X-band radar system that can be deployed to inlet environments and, using roof-mounted solar panels and an automatically triggered highly efficient diesel generator, run automated hourly collections and wirelessly stream data for up to several months at a time in nearly all weather and water conditions. During 2015 and early 2016, RIOS was deployed to St. Augustine Inlet, FL., New River Inlet, N.C., and Oregon Inlet, N.C. for periods of one to six months to allow for measureable shoal evolution. During deployments, ten minute collections (at 1 Hz) were conducted every hour and the data gridded to a 5m alongshore/cross-shore grid. Raw intensity returns were time-averaged and analyzed to define three metrics of shoal evolution: movement direction, movement velocity and inferred bathymetry. For each location and time period, wave frequencies, wave directions and significant wave heights were collected from the nearest wave-buoy. Time lapse videos of shoal positions were inspected and used in concert with cross-correlations values from each pair of shoal and wave parameters to determine the incident wave qualities most strongly relating to shoal evolution. Preliminary results suggest wave height, more than frequency, controls shoal movement. Wave direction and size collaboratively appear to direct

  14. Electric Field Observations of Plasma Convection, Shear, Alfven Waves, and other Phenomena Observed on Sounding Rockets in the Cusp and Boundary Layer

    Science.gov (United States)

    Pfaff, R. F.

    2009-01-01

    On December 14,2002, a NASA Black Brant X sounding rocket was launched equatorward from Ny Alesund, Spitzbergen (79 N) into the dayside cusp and subsequently cut across the open/closed field line boundary, reaching an apogee of771 km. The launch occurred during Bz negative conditions with strong By negative that was changing during the flight. SuperDarn (CUTLASS) radar and subsequent model patterns reveal a strong westward/poleward convection, indicating that the rocket traversed a rotational reversal in the afternoon merging cell. The payload returned DC electric and magnetic fields, plasma waves, energetic particle, suprathermal electron and ion, and thermal plasma data. We provide an overview of the main observations and focus on the DC electric field results, comparing the measured E x B plasma drifts in detail with the CUTLASS radar observations of plasma drifts gathered simultaneously in the same volume. The in situ DC electric fields reveal steady poleward flows within the cusp with strong shears at the interface of the closed/open field lines and within the boundary layer. We use the observations to discuss ionospheric signatures of the open/closed character of the cusp/low latitude boundary layer as a function of the IMF. The electric field and plasma density data also reveal the presence of very strong plasma irregularities with a large range of scales (10 m to 10 km) that exist within the open field line cusp region yet disappear when the payload was equatorward of the cusp on closed field lines. These intense low frequency wave observations are consistent with strong scintillations observed on the ground at Ny Alesund during the flight. We present detailed wave characteristics and discuss them in terms of Alfven waves and static irregularities that pervade the cusp region at all altitudes.

  15. Spatial filtering of audible sound with acoustic landscapes

    Science.gov (United States)

    Wang, Shuping; Tao, Jiancheng; Qiu, Xiaojun; Cheng, Jianchun

    2017-07-01

    Acoustic metasurfaces manipulate waves with specially designed structures and achieve properties that natural materials cannot offer. Similar surfaces work in audio frequency range as well and lead to marvelous acoustic phenomena that can be perceived by human ears. Being intrigued by the famous Maoshan Bugle phenomenon, we investigate large scale metasurfaces consisting of periodic steps of sizes comparable to the wavelength of audio frequency in both time and space domains. We propose a theoretical method to calculate the scattered sound field and find that periodic corrugated surfaces work as spatial filters and the frequency selective character can only be observed at the same side as the incident wave. The Maoshan Bugle phenomenon can be well explained with the method. Finally, we demonstrate that the proposed method can be used to design acoustical landscapes, which transform impulsive sound into famous trumpet solos or other melodious sound.

  16. Measuring sound absorption: considerations on the measurement of the active acoustic power

    NARCIS (Netherlands)

    Kuipers, E.R.; Wijnant, Ysbrand H.; de Boer, Andries

    2014-01-01

    Using a local plane wave assumption, one can determine the normal incidence sound absorption coefficient of a surface by measuring the acoustic pressure and the particle velocity normal to that surface. As the measurement surface lies in front of the material surface, the measured active and

  17. Application of a finite element method for computing grazing incidence wave structure in an impedance tube - Comparison with experiment. [for duct liner aeroacoustic design

    Science.gov (United States)

    Lester, H. C.; Parrott, T. L.

    1979-01-01

    The acoustic performance of a liner specimen, in a grazing incidence impedance tube, is analyzed using a finite element method. The liner specimen was designed to be a locally reacting, two-degree-of-freedom type with the resistance and reactance provided by perforated facesheets and compartmented cavities. Measured and calculated wave structures are compared for both normal and grazing incidence from 0.3 to 1.2 kHz. A finite element algorithm was incorporated into an optimization loop in order to predict liner grazing incidence impedance from measured SWR and null position data. Results suggest that extended reaction effects may have been responsible for differences between normal and grazing incidence impedance estimates.

  18. Ion heating, burnout of the high-frequency field, and ion sound generation under the development of a modulation instability of an intense Langmuir wave in a plasma

    Science.gov (United States)

    Kirichok, A. V.; Kuklin, V. M.; Pryimak, A. V.; Zagorodny, A. G.

    2015-09-01

    The development of one-dimensional parametric instabilities of intense long plasma waves is considered in terms of the so-called hybrid models, with electrons being treated as a fluid and ions being regarded as particles. The analysis is performed for both cases when the average plasma field energy is lower (Zakharov's hybrid model—ZHM) or greater (Silin's hybrid model—SHM) than the plasma thermal energy. The efficiency of energy transfer to ions and to ion perturbations under the development of the instability is considered for various values of electron-to-ion mass ratios. The energy of low-frequency oscillations (ion-sound waves) is found to be much lower than the final ion kinetic energy. We also discuss the influence of the changes in the damping rate of the high-frequency (HF) field on the instability development. The decrease of the absorption of the HF field inhibits the HF field burnout within plasma density cavities and gives rise to the broadening of the HF spectrum. At the same time, the ion velocity distribution tends to the normal distribution in both ZHM and SHM.

  19. Acoustic metacages for sound shielding with steady air flow

    Science.gov (United States)

    Shen, Chen; Xie, Yangbo; Li, Junfei; Cummer, Steven A.; Jing, Yun

    2018-03-01

    Conventional sound shielding structures typically prevent fluid transport between the exterior and interior. A design of a two-dimensional acoustic metacage with subwavelength thickness which can shield acoustic waves from all directions while allowing steady fluid flow is presented in this paper. The structure is designed based on acoustic gradient-index metasurfaces composed of open channels and shunted Helmholtz resonators. In-plane sound at an arbitrary angle of incidence is reflected due to the strong parallel momentum on the metacage surface, which leads to low sound transmission through the metacage. The performance of the proposed metacage is verified by numerical simulations and measurements on a three-dimensional printed prototype. The acoustic metacage has potential applications in sound insulation where steady fluid flow is necessary or advantageous.

  20. Sound field reconstruciton using a spherical microphone array

    DEFF Research Database (Denmark)

    Fernandez Grande, Efren

    2016-01-01

    measurement area consisting of an array of spheres, and the sound field at any point of the source-free domain can be estimated, not being restricted to spherical surfaces. Because it is formulated as an elementary wave model, it allows for diverse solution strategies (least squares, ℓ1-norm minimization, etc...... can reconstruct the total sound field, or only the incident part, i.e., the scattering introduced by the sphere can be removed, making the array virtually transparent. The method makes it possible to use sequential measurements: different measurement positions can be combined, providing an extended...

  1. Extraordinary absorption of sound in porous lamella-crystals.

    Science.gov (United States)

    Christensen, J; Romero-García, V; Picó, R; Cebrecos, A; de Abajo, F J García; Mortensen, N A; Willatzen, M; Sánchez-Morcillo, V J

    2014-04-14

    We present the design of a structured material supporting complete absorption of sound with a broadband response and functional for any direction of incident radiation. The structure which is fabricated out of porous lamellas is arranged into a low-density crystal and backed by a reflecting support. Experimental measurements show that strong all-angle sound absorption with almost zero reflectance takes place for a frequency range exceeding two octaves. We demonstrate that lowering the crystal filling fraction increases the wave interaction time and is responsible for the enhancement of intrinsic material dissipation, making the system more absorptive with less material.

  2. Extraordinary absorption of sound in porous lamella-crystals

    DEFF Research Database (Denmark)

    Christensen, Johan; Romero-García, V.; Picó, R.

    2014-01-01

    We present the design of a structured material supporting complete absorption of sound with a broadband response and functional for any direction of incident radiation. The structure which is fabricated out of porous lamellas is arranged into a low-density crystal and backed by a reflecting support....... Experimental measurements show that strong all-angle sound absorption with almost zero reflectance takes place for a frequency range exceeding two octaves. We demonstrate that lowering the crystal filling fraction increases the wave interaction time and is responsible for the enhancement of intrinsic material...... dissipation, making the system more absorptive with less material....

  3. Broadband omnidirectional invisibility for sound in three dimensions

    OpenAIRE

    Kan, Weiwei; Liang, Bin; Li, Ruiqi; Jiang, Xue; Zou, Xin-ye; Yin, Lei-lei; Cheng, Jianchun

    2014-01-01

    Acoustic cloaks that make object undetectable to sound waves have potential applications in a variety of scenarios and have received increasing interests recently. However, the experimental realization of a three-dimensional (3D) acoustic cloak that works within broad ranges of operating frequency and incident angle still remains a challenge despite the paramount importance for the practical application of cloaking devices. Here we report the design and experimental demonstration of the first...

  4. Gravitational Waves

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Jonah Maxwell [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-10-18

    This report has slides on Gravitational Waves; Pound and Rebka: A Shocking Fact; Light is a Ruler; Gravity is the Curvature of Spacetime; Gravitational Waves Made Simple; How a Gravitational Wave Affects Stuff Here; LIGO; This Detection: Neutron Stars; What the Gravitational Wave Looks Like; The Sound of Merging Neutron Stars; Neutron Star Mergers: More than GWs; The Radioactive Cloud; The Kilonova; and finally Summary, Multimessenger Astronomy.

  5. Wave

    DEFF Research Database (Denmark)

    Ibsen, Lars Bo

    2008-01-01

    Estimates for the amount of potential wave energy in the world range from 1-10 TW. The World Energy Council estimates that a potential 2TW of energy is available from the world’s oceans, which is the equivalent of twice the world’s electricity production. Whilst the recoverable resource is many...

  6. Foley Sounds vs Real Sounds

    DEFF Research Database (Denmark)

    Trento, Stefano; Götzen, Amalia De

    2011-01-01

    This paper is an initial attempt to study the world of sound effects for motion pictures, also known as Foley sounds. Throughout several audio and audio-video tests we have compared both Foley and real sounds originated by an identical action. The main purpose was to evaluate if sound effects are...... applications of sound design such as advertisement or soundtracks for movies....

  7. Waveform analysis of sound

    CERN Document Server

    Tohyama, Mikio

    2015-01-01

    What is this sound? What does that sound indicate? These are two questions frequently heard in daily conversation. Sound results from the vibrations of elastic media and in daily life provides informative signals of events happening in the surrounding environment. In interpreting auditory sensations, the human ear seems particularly good at extracting the signal signatures from sound waves. Although exploring auditory processing schemes may be beyond our capabilities, source signature analysis is a very attractive area in which signal-processing schemes can be developed using mathematical expressions. This book is inspired by such processing schemes and is oriented to signature analysis of waveforms. Most of the examples in the book are taken from data of sound and vibrations; however, the methods and theories are mostly formulated using mathematical expressions rather than by acoustical interpretation. This book might therefore be attractive and informative for scientists, engineers, researchers, and graduat...

  8. Gyrokinetic analysis of low-n shear Alfvén and ion sound wave spectra in a high-beta tokamak plasma

    Science.gov (United States)

    Bierwage, Andreas; Lauber, Philipp

    2017-11-01

    Using the linear gyrokinetic code LIGKA, we study the structure of the continuous spectra Ω(ρ) = ω(ρ) + iγ(ρ) of shear Alfvén waves (SAW) and ion sound waves (ISW) in a high-beta JT-60U tokamak plasma and look for evidence of Alfvén acoustic couplings or mode conversion. Here, Ω is the complex local eigenfrequency, ρ is a radial coordinate, and we consider waves with low toroidal mode number n=3 . We focus on the frequency range ω_BAE ≲ ω ≲ ω_TAE between the beta-induced and toroidicity-induced Alfvén frequency gaps. The real frequencies ω(ρ) of the gyrokinetic ISW continua are remarkably similar to MHD results. The kinetic damping rates are of order -γ/ω ∼ 30% for T_e/Ti ≈ 1.7 , and reduce to 15% when the temperature ratio is raised to T_e/Ti ≈ 4.8 . It is shown that SAW and ISW continua can be simultaneously excited with an antenna and that the global response of the ISWs is significantly enhanced when the on-axis beta value is raised from β0 = 1.7% to 3.6% while keeping T_e/Ti > 1 . In contrast, when the ion temperature is increased such that T_e/Ti ≈ 0.4 , ISW branches become undetectable in spite of higher β0 . At the same time, a large part of the SAW continuum is locally destabilized by ion temperature gradients and a set of discrete global modes was found, some of which are weakly damped or unstable and interpreted as kinetic beta-induced Alfvén eigenmodes. It is estimated that the kinetic damping of such low-n Alfvénic modes contributes much more to the anomalous bulk ion heating than the excitation of nearby ISW continua, so that Alfvén acoustic couplings in the frequency band ω_BAE ≲ ω ≲ ω_TAE are irrelevant within the scope of the model used.

  9. Estimation of surface impedance at oblique incidence based on sparse array processing

    DEFF Research Database (Denmark)

    Richard, Antoine Philippe André; Fernandez Grande, Efren; Brunskog, Jonas

    2017-01-01

    on spherical array measurements. The sound field measured by the array is mainly composed of an incident and a reflected wave, so it can be represented as a spatially sparse problem. This makes it possible to use compressive sensing in order to enhance the resolution and the quality of the estimation...

  10. Transcranial sound field characterization.

    Science.gov (United States)

    Hölscher, Thilo; Wilkening, Wilko G; Molkenstruck, Sven; Voit, Heinz; Koch, Christian

    2008-06-01

    In the scope of therapeutic ultrasound applications in the adult brain, such as sonothrombolysis in stroke, a better understanding of the intracranial acoustic properties during insonation through the temporal bone is warranted. Innovative ultrasound imaging techniques, like transcranial duplex sonography, may open new avenues to apply ultrasound for therapeutic purposes and to visually monitor the effect using the same device. The aim was to study the transcranial sound field aberrations and the changes of acoustic parameters, using a high-end duplex machine. Six cadaver skulls were insonated through the temporal bone window, using a diagnostic duplex ultrasound device. The measurements were done in a water tank, using a needle hydrophone to assess and compute acoustic parameters, such as peak intensity, peak-to-peak, peak-positive, peak-negative acoustic pressure, beam area etc. in a 2-D plane. It could be shown that the absorption and wavefront distortion effects of the temporal bone are variable among different skulls. Because of signal absorption of the bone, the mechanical index of the incident ultrasound wave drops by a factor > or =10 in most cases. However, the beam area might be increased by a factor of almost 4, because of phase aberration (i.e., defocusing). (

  11. New acoustical technology of sound absorption based on reverse horn

    Science.gov (United States)

    Zhang, Yong Yan; Wu, Jiu Hui; Cao, Song Hua; Cao, Pei; Zhao, Zi Ting

    2016-12-01

    In this paper, a novel reverse horn’s sound-absorption mechanism and acoustic energy focusing mechanism for low-frequency broadband are presented. Due to the alternation of the reverse horn’s thickness, the amplitude of the acoustic pressure propagated in the structure changes, which results in growing energy focused in the edge and in the reverse horn’s tip when the characteristic length is equal to or less than a wavelength and the incident wave is compressed. There are two kinds of methods adopted to realize energy dissipation. On the one hand, sound-absorbing materials are added in incident direction in order to overcome the badness of the reverse horn’s absorption in high frequency and improve the overall high-frequency and low-frequency sound-absorption coefficients; on the other hand, adding mass and film in its tip could result in mechanical energy converting into heat energy due to the coupled vibration of mass and the film. Thus, the reverse horn with film in the tip could realize better sound absorption for low-frequency broadband. These excellent properties could have potential applications in the one-dimensional absorption wedge and for the control of acoustic wave.

  12. Study of molecule-metal interfaces by means of the normal incidence X-ray standing wave technique

    International Nuclear Information System (INIS)

    Mercurio, Giuseppe

    2012-01-01

    Functional surfaces based on monolayers of organic molecules are currently subject of an intense research effort due to their applications in molecular electronics, sensing and catalysis. Because of the strong dependence of organic based devices on the local properties of the molecule-metal interface, a direct investigation of the interface chemistry is of paramount importance. In this context, the bonding distance, measured by means of the normal incidence X-ray standing wave technique (NIXSW), provides a direct access to the molecule-metal interactions. At the same time, NIXSW adsorption heights are used to benchmark different density functional theory (DFT) schemes and determine the ones with predictive power for similar systems. This work investigates the geometric and chemical properties of different molecule/metal interfaces, relevant to molecular electronics and functional surfaces applications, primarily by means of the NIXSW technique. All NIXSW data are analyzed with the newly developed open source program Torricelli, which is thoroughly documented in the thesis. In order to elucidate the role played by the substrate within molecule/metal interfaces, the prototype organic molecule 3,4,9,10-perylene-tetracarboxylic-dianhydride (PTCDA) is explored on the Ag(110) surface. The molecule results more distorted and at smaller bonding distances on the more reactive Ag(110) surface, in comparison with the Ag(100), the Ag(111) and Au(111) substrates. This conclusion follows from the detailed molecular adsorption geometry obtained from the differential analysis of nonequivalent carbon and oxygen species (including a careful error analysis). Subsequently, the chemisorptive PTCDA/Ag(110) interaction is tuned by the co-deposition of an external alkali metal, namely K. As a consequence, the functional groups of PTCDA unbind from the surface, which, in turn, undergoes major reconstruction. In fact, the resulting nanopatterned surface consists of alternated up and down

  13. Sound absorption property of openpore aluminum foams

    OpenAIRE

    WANG Fang; WANG Lu-cai; WU Jian-guo

    2007-01-01

    This paper presents a study on sound absorption property of aluminum foam by evaluating its sound absorption coefficients using standing wave tube method. Experimental results showed that the average values of sound absorption coefficients (over the test frequency range) are all above 0.4, which indicate very good sound absorption property of the aluminum foams. The sound absorption coefficient is affected by frequency and pore structure, and reaches its maximum value at around 1 000 Hz. With...

  14. Analytic approximation to the scattering of antiplane shear waves by free surfaces of arbitrary shape via superposition of incident, reflected and diffracted rays

    Science.gov (United States)

    Jaramillo, Juan; Gomez, Juan; Saenz, Mario; Vergara, Juan

    2013-03-01

    The scattering induced by surface topographies of arbitrary shapes, submitted to horizontally polarized shear waves (SH) is studied analytically. In particular, we propose an analysis technique based on a representation of the scattered field like the superposition of incident, reflected and diffracted rays. The diffraction contribution is the result of the interaction of the incident and reflected waves, with the geometric singularities present in the surface topography. This splitting of the solution into different terms, makes the difference between our method and alternative numerical/analytical approaches, where the complete field is described by a single term. The contribution from the incident and reflected fields is considered using standard techniques, while the diffracted field is obtained using the idea of a ray as was introduced by the geometrical theory of diffraction. Our final solution however, is an approximation in the sense that, surface-diffracted rays are neglected while we retain the contribution from corner-diffracted rays and its further diffraction. These surface rays are only present when the problem has smooth boundaries combined with shadow zones, which is far from being the typical scenario in far-field earthquake engineering. The proposed technique was tested in the study of a combined hill-canyon topography and the results were compared with those of a boundary element algorithm. After considering only secondary sources of diffraction, a difference of 0.09 per cent (with respect to the incident field amplitude) was observed. The proposed analysis technique can be used in the interpretation of numerical and experimental results and in the preliminary prediction of the response in complex topographies.

  15. Wave turbulence

    Science.gov (United States)

    Nazarenko, Sergey

    2015-07-01

    Wave turbulence is the statistical mechanics of random waves with a broadband spectrum interacting via non-linearity. To understand its difference from non-random well-tuned coherent waves, one could compare the sound of thunder to a piece of classical music. Wave turbulence is surprisingly common and important in a great variety of physical settings, starting with the most familiar ocean waves to waves at quantum scales or to much longer waves in astrophysics. We will provide a basic overview of the wave turbulence ideas, approaches and main results emphasising the physics of the phenomena and using qualitative descriptions avoiding, whenever possible, involved mathematical derivations. In particular, dimensional analysis will be used for obtaining the key scaling solutions in wave turbulence - Kolmogorov-Zakharov (KZ) spectra.

  16. Metasurface for Water-to-Air Sound Transmission

    Science.gov (United States)

    Bok, Eun; Park, Jong Jin; Choi, Haejin; Han, Chung Kyu; Wright, Oliver B.; Lee, Sam H.

    2018-01-01

    Effective transmission of sound from water to air is crucial for the enhancement of the detection sensitivity of underwater sound. However, only 0.1% of the acoustic energy is naturally transmitted at such a boundary. At audio frequencies, quarter-wave plates or multilayered antireflection coatings are too bulky for practical use for such enhancement. Here we present an acoustic metasurface of a thickness of only ˜λ /100 , where λ is the wavelength in air, consisting of an array of meta-atoms that each contain a set of membranes and an air-filled cavity. We experimentally demonstrate that such a meta-atom increases the transmission of sound at ˜700 Hz by 2 orders of magnitude, allowing about 30% of the incident acoustic power from water to be transmitted into air. Applications include underwater sonic sensing and communication.

  17. Sounds of Space

    Science.gov (United States)

    Gurnett, D. A.

    2005-12-01

    Starting in the early 1960s, spacecraft-borne plasma wave instruments revealed that space is filled with an astonishing variety of radio and plasma wave sounds, which have come to be called "sounds of space." For over forty years these sounds have been collected and played to a wide variety of audiences, often as the result of press conferences or press releases involving various NASA projects for which the University of Iowa has provided plasma wave instruments. This activity has led to many interviews on local and national radio programs, and occasionally on programs haviang world-wide coverage, such as the BBC. As a result of this media coverage, we have been approached many times by composers requesting copies of our space sounds for use in their various projects, many of which involve electronic synthesis of music. One of these collaborations led to "Sun Rings," which is a musical event produced by the Kronos Quartet that has played to large audiences all over the world. With the availability of modern computer graphic techniques we have recently been attempting to integrate some of these sound of space into an educational audio/video web site that illustrates the scientific principles involved in the origin of space plasma waves. Typically I try to emphasize that a substantial gas pressure exists everywhere in space in the form of an ionized gas called a plasma, and that this plasma can lead to a wide variety of wave phenomenon. Examples of some of this audio/video material will be presented.

  18. Breath sounds

    Science.gov (United States)

    ... described as moist, dry, fine, and coarse. Rhonchi. Sounds that resemble snoring. They occur when air is blocked or air flow becomes rough through the large airways. Stridor. Wheeze-like sound heard when a person breathes. Usually it is ...

  19. Imagining Sound

    DEFF Research Database (Denmark)

    Grimshaw, Mark; Garner, Tom Alexander

    2014-01-01

    We make the case in this essay that sound that is imagined is both a perception and as much a sound as that perceived through external stimulation. To argue this, we look at the evidence from auditory science, neuroscience, and philosophy, briefly present some new conceptual thinking on sound...... that accounts for this view, and then use this to look at what the future might hold in the context of imagining sound and developing technology....

  20. Sound transmission loss characteristics of sandwich panels with a truss lattice core.

    Science.gov (United States)

    Ehsan Moosavimehr, S; Srikantha Phani, A

    2017-04-01

    Sandwich panels are extensively used in constructional, naval, and aerospace structures due to the high stiffness and strength-to-weight ratios. In contrast, the sound transmission properties are adversely influenced by the low effective mass. Phase velocity matching of structural waves propagating within the panel and the incident pressure waves from the fluid medium leads to coincidence effects resulting in reduced impedance and high sound transmission. Truss-like lattice cores with porous microarchitecture and reduced inter panel connectivity offer the potential to satisfy the conflicting structural and vibroacoustic response requirements. This study combines Bloch-wave analysis and the finite element method to understand wave propagation and hence sound transmission in sandwich panels with a truss lattice core. Three dimensional coupled fluid-structure finite element simulations are conducted to compare the performance of a representative set of lattice core topologies. Potential advantages of sandwich structures with a lattice core are identified. The significance of partial band gaps is evident in the sound transmission loss characteristics of the panels studied. This work demonstrates that, even without optimization, significant enhancements in sound transmission loss performance can be achieved in truss lattice core sandwich panels compared to a traditional sandwich panel employing a honeycomb core under constant mass constraint.

  1. On the role of sound in the strong Langmuir turbulence

    International Nuclear Information System (INIS)

    Malkin, V.M.

    1989-01-01

    The main directions in the precision of the theory of strong Langmuir turbulence caused by the necessity of account of sound waves in plasma are preseted. In particular the effect of conversion of short-wave modulations in Langmuir waves induced by sound waves, are briefly described. 8 refs

  2. Numerical Study on Dynamic Response of a Horizontal Layered-Structure Rock Slope under a Normally Incident Sv Wave

    Directory of Open Access Journals (Sweden)

    Zhifa Zhan

    2017-07-01

    Full Text Available Several post-earthquake investigations have indicated that the slope structure plays a leading role in the stability of rock slopes under dynamic loads. In this paper, the dynamic response of a horizontal layered-structure rock slope under harmonic Sv wave is studied by making use of the Fast Lagrangian Analysis of Continua method (FLAC. The suitability of FLAC for studying wave transmission across rock joints is validated through comparison with analytical solutions. After parametric studies on Sv wave transmission across the horizontal layered-structure rock slope, it is found that the acceleration amplification coefficient η, which is defined as the ratio of the acceleration at the monitoring point to the value at the toe, wavily increases with an increase of the height along the slope surface. Meanwhile, the fluctuation weakens with normalized joint stiffness K increasing and enhances with normalized joint spacing ξ increasing. The acceleration amplification coefficient of the slope crest ηcrest does not monotonously increase with the increase of ξ, but decreases with the increase of K. Additionally, ηcrest is more sensitive to ξ compared to K. From the contour figures, it can also be found that the contour figures of η take on rhythm, and the effects of ξ on the acceleration amplification coefficient are more obvious compared to the effects on K.

  3. Fluid Sounds

    DEFF Research Database (Denmark)

    and in architectural design. Aesthetics, psychoacoustics, perception, and cognition are all present in this expanding field embracing such categories as soundscape composition, sound art, sonic art, sound design, sound studies and auditory culture. Of greatest significance to the overall field is the investigation...... of sound, site and the social, and how the spatial, the visual, and the bodily interact in sonic environments, how they are constructed and how they are entangled in other practices. With the Seismograf special issue Fluid Sounds, we bring this knowledge into the dissemination of audio research itself...

  4. Science of music discovering sound

    CERN Document Server

    Kenney, Karen Latchana

    2016-01-01

    In this engaging title, young readers learn about the form of energy that is sound! Sound waves and their wavelengths are discussed, as are the vibrations of molecules, acoustics, and how the ear interprets sound. These properties are illustrated by the making and hearing of music. Colorful infographics make decibels, amplitude, frequency, and ear anatomy easily accessible, and prominent contributors such as Ludwig van Beethoven are featured. A fun experiment with vibrations brings the science of sound to life! Aligned to Common Core Standards and correlated to state standards. Checkerboard Library is an imprint of Abdo Publishing, a division of ABDO.

  5. Waves in inhomogeneous media

    NARCIS (Netherlands)

    Gerritsen, S.

    2007-01-01

    In this thesis we study wave propagation in inhomogeneous media. Examples of the classical (massless) waves we consider are acoustic waves (sound) and electromagnetic waves (light, for example). Interaction with inhomogeneities embedded in a reference medium alter the propagation direction, velocity

  6. Handbook for sound engineers

    CERN Document Server

    Ballou, Glen

    2013-01-01

    Handbook for Sound Engineers is the most comprehensive reference available for audio engineers. All audio topics are explored: if you work on anything related to audio you should not be without this book! The 4th edition of this trusted reference has been updated to reflect changes in the industry since the publication of the 3rd edition in 2002 -- including new technologies like software-based recording systems such as Pro Tools and Sound Forge; digital recording using MP3, wave files and others; mobile audio devices such as iPods and MP3 players. Over 40 topic

  7. Sound transmission through an acoustic porous metasurface with periodic structures

    Science.gov (United States)

    Fang, Yi; Zhang, Xin; Zhou, Jie

    2017-04-01

    We report an analytical, numerical, and experimental study of sound transmission through a metasurface fabricated by porous materials, detailing systematically the factors that influence acoustic properties. The design of the metasurface is composed of four elements with varying properties, which are aligned in a periodic manner. The structures are carefully designed to form a uniform phase shift profile in one period. It is able to refract an incidence wave in an anomalous yet controllable way. A good agreement of refraction behavior between simulated and experimental results is achieved by the study. Furthermore, we systemically summarize the relationships between the refraction and the incidence angles for structures with various ratios of wavelengths and period lengths. Remarkably, the study proves that the propagation directions and the number of refracted waves are only affected by period lengths at a specified frequency. The phase shift profile only has an influence on energy distribution in the refraction region. The study suggests that a careful design of phase shift profile plays an important role in controlling sound energy distribution of the periodic structure, which is vital for applying this kind of porous metasurface in sound absorption and isolation in the future.

  8. Cancer incidence and mortality among persons having been exposed to ionizing waves in a school in Val-de-Marne

    International Nuclear Information System (INIS)

    Germonneau, P.; Castor, C.

    2005-01-01

    The Marie Curie School of Nogent-Sur-Marne (Val-de-Marne, France) was built in 1969 on the site of a former radium extracting plant. Due to remaining radioactive waste in the subsoil, school staff and students who attended the school have been exposed to radiation. A retrospective cohort study was conducted on the 3,403 persons who had attended the school regularly until it closed down in 1998. The national health insurance register was used to trace people. Incidence of cancers, leukaemia and mortality were analysed. In the population of the pupils a significant excess risk for leukaemia was observed (Standardized Incidence Ratio = 4.6 IC 95% [1.66 - 9.89]). These results are not conclusive because of the high proportion of those who could not be traced and were lost to any opportunity for follow-up (42%), and because of preferential recruitment due to a bias generated by the query of the records being centered on searching specifically for those who were sick. The difficulties met by the authors justify that when faced with similar problems in the future, greater attention should be paid to the feasibility study before any involvement or action. (authors)

  9. Modern approaches to investigation of thin films and monolayers: X-ray reflectivity, grazing-incidence X-ray scattering and X-ray standing waves

    Science.gov (United States)

    Shcherbina, M. A.; Chvalun, S. N.; Ponomarenko, S. A.; Kovalchuk, M. V.

    2014-12-01

    The review concerns modern experimental methods of structure determination of thin films of different nature. The methods are based on total reflection of X-rays from the surface and include X-ray reflectivity, grazing-incidence X-ray scattering and X-ray standing waves. Their potential is exemplified by the investigations of various organic macromolecular systems that exhibit the properties of semiconductors and are thought to be promising as thin-film transistors, light-emitting diodes and photovoltaic cells. It is shown that combination of the title methods enable high-precision investigations of the structure of thin-film materials and structure formation in them, i.e., it is possible to obtain information necessary for improvement of the operating efficiency of elements of organic electronic devices. The bibliography includes 92 references.

  10. Modeling ionospheric disturbance features in quasi-vertically incident ionograms using 3-D magnetoionic ray tracing and atmospheric gravity waves

    Science.gov (United States)

    Cervera, M. A.; Harris, T. J.

    2014-01-01

    The Defence Science and Technology Organisation (DSTO) has initiated an experimental program, Spatial Ionospheric Correlation Experiment, utilizing state-of-the-art DSTO-designed high frequency digital receivers. This program seeks to understand ionospheric disturbances at scales < 150 km and temporal resolutions under 1 min through the simultaneous observation and recording of multiple quasi-vertical ionograms (QVI) with closely spaced ionospheric control points. A detailed description of and results from the first campaign conducted in February 2008 were presented by Harris et al. (2012). In this paper we employ a 3-D magnetoionic Hamiltonian ray tracing engine, developed by DSTO, to (1) model the various disturbance features observed on both the O and X polarization modes in our QVI data and (2) understand how they are produced. The ionospheric disturbances which produce the observed features were modeled by perturbing the ionosphere with atmospheric gravity waves.

  11. Sound absorption property of openpore aluminum foams

    Directory of Open Access Journals (Sweden)

    WANG Fang

    2007-02-01

    Full Text Available This paper presents a study on sound absorption property of aluminum foam by evaluating its sound absorption coefficients using standing wave tube method. Experimental results showed that the average values of sound absorption coefficients (over the test frequency range are all above 0.4, which indicate very good sound absorption property of the aluminum foams. The sound absorption coefficient is affected by frequency and pore structure, and reaches its maximum value at around 1 000 Hz. With the increase of porosity and decrease of cell diameter, the sound absorption coefficient values increase.

  12. Orbital effects of a monochromatic plane gravitational wave with ultra-low frequency incident on a gravitationally bound two-body system

    Directory of Open Access Journals (Sweden)

    Lorenzo Iorio

    2014-09-01

    Full Text Available We analytically compute the long-term orbital variations of a test particle orbiting a central body acted upon by an incident monochromatic plane gravitational wave. We assume that the characteristic size of the perturbed two-body system is much smaller than the wavelength of the wave. Moreover, we also suppose that the wave's frequency νg is much smaller than the particle's orbital one nb. We make neither a priori assumptions about the direction of the wavevector kˆ nor on the orbital configuration of the particle. While the semi-major axis a is left unaffected, the eccentricity e, the inclination I, the longitude of the ascending node Ω, the longitude of pericenter ϖ and the mean anomaly ℳ undergo non-vanishing long-term changes of the form dΨ/dt=F(Kij;e,I,Ω,ω,Ψ=e,I,Ω,ϖ,M, where Kij, i,j=1,2,3 are the coefficients of the tidal matrix K. Thus, in addition to the variations of its orientation in space, the shape of the orbit would be altered as well. Strictly speaking, such effects are not secular trends because of the slow modulation introduced by K and by the orbital elements themselves: they exhibit peculiar long-term temporal patterns which would be potentially of help for their detection in multidecadal analyses of extended data records of planetary observations of various kinds. In particular, they could be useful in performing independent tests of the inflation-driven ultra-low gravitational waves whose imprint may have been indirectly detected in the Cosmic Microwave Background by the Earth-based experiment BICEP2. Our calculation holds, in general, for any gravitationally bound two-body system whose orbital frequency nb is much larger than the frequency νg of the external wave, like, e.g., extrasolar planets and the stars orbiting the Galactic black hole. It is also valid for a generic perturbation of tidal type with constant coefficients over timescales of the order of the orbital period of the perturbed particle.

  13. Unsound Sound

    DEFF Research Database (Denmark)

    Knakkergaard, Martin

    2016-01-01

    This article discusses the change in premise that digitally produced sound brings about and how digital technologies more generally have changed our relationship to the musical artifact, not simply in degree but in kind. It demonstrates how our acoustical conceptions are thoroughly challenged...... by the digital production of sound and, by questioning the ontological basis for digital sound, turns our understanding of the core term substance upside down....

  14. Sound Absorbers

    Science.gov (United States)

    Fuchs, H. V.; Möser, M.

    Sound absorption indicates the transformation of sound energy into heat. It is, for instance, employed to design the acoustics in rooms. The noise emitted by machinery and plants shall be reduced before arriving at a workplace; auditoria such as lecture rooms or concert halls require a certain reverberation time. Such design goals are realised by installing absorbing components at the walls with well-defined absorption characteristics, which are adjusted for corresponding demands. Sound absorbers also play an important role in acoustic capsules, ducts and screens to avoid sound immission from noise intensive environments into the neighbourhood.

  15. Sound absorption characteristics of tree bark and forest floor

    Science.gov (United States)

    G. Reethof; O. H. McDaniel; G. M. Heisler

    1977-01-01

    Results of basic research on absorption of sound by tree bark and forest floors are presented. Amount of sound absorption by tree bark was determined by laboratory experiments with bark samples in a standing-wave tube. A modified portable standing-wave tube was used to measure absorption of sound by forest floors with different moisture contents, with and without leaf...

  16. A wavenumber approach to analysing the active control of plane waves with arrays of secondary sources

    Science.gov (United States)

    Elliott, Stephen J.; Cheer, Jordan; Bhan, Lam; Shi, Chuang; Gan, Woon-Seng

    2018-04-01

    The active control of an incident sound field with an array of secondary sources is a fundamental problem in active control. In this paper the optimal performance of an infinite array of secondary sources in controlling a plane incident sound wave is first considered in free space. An analytic solution for normal incidence plane waves is presented, indicating a clear cut-off frequency for good performance, when the separation distance between the uniformly-spaced sources is equal to a wavelength. The extent of the near field pressure close to the source array is also quantified, since this determines the positions of the error microphones in a practical arrangement. The theory is also extended to oblique incident waves. This result is then compared with numerical simulations of controlling the sound power radiated through an open aperture in a rigid wall, subject to an incident plane wave, using an array of secondary sources in the aperture. In this case the diffraction through the aperture becomes important when its size is compatible with the acoustic wavelength, in which case only a few sources are necessary for good control. When the size of the aperture is large compared to the wavelength, and diffraction is less important but more secondary sources need to be used for good control, the results then become similar to those for the free field problem with an infinite source array.

  17. Sound generator

    NARCIS (Netherlands)

    Berkhoff, Arthur P.

    2008-01-01

    A sound generator, particularly a loudspeaker, configured to emit sound, comprising a rigid element (2) enclosing a plurality of air compartments (3), wherein the rigid element (2) has a back side (B) comprising apertures (4), and a front side (F) that is closed, wherein the generator is provided

  18. Sound generator

    NARCIS (Netherlands)

    Berkhoff, Arthur P.

    2010-01-01

    A sound generator, particularly a loudspeaker, configured to emit sound, comprising a rigid element (2) enclosing a plurality of air compartments (3), wherein the rigid element (2) has a back side (B) comprising apertures (4), and a front side (F) that is closed, wherein the generator is provided

  19. Sound generator

    NARCIS (Netherlands)

    Berkhoff, Arthur P.

    2007-01-01

    A sound generator, particularly a loudspeaker, configured to emit sound, comprising a rigid element (2) enclosing a plurality of air compartments (3), wherein the rigid element (2) has a back side (B) comprising apertures (4), and a front side (F) that is closed, wherein the generator is provided

  20. Measurements of the speed of sound and the absorption coefficient for ion exchange resin embedded in concrete and bitumen using ultrasonic waves at around 0.1 MHz

    International Nuclear Information System (INIS)

    Sjoeblom, R.

    1981-01-01

    Ultrasonic measurements have been carried out on concrete and bitumen containing ion exchange resin. The speed and absorption of sound was determined for different amounts of resin, different times after preparation of the samples, and for different temperatures. The absorption data indicate that it should be possible to use the technique on full-scale waste products. The data also indicate that the velocity of sound is sensitive to several parameters of interest in radioactive waste treatment and storage. The technique may also be used to gain information on the internal disposition of a waste package. (Auth.)

  1. Sound knowledge

    DEFF Research Database (Denmark)

    Kauffmann, Lene Teglhus

    of the research is to investigate what is considered to ‘work as evidence’ in health promotion and how the ‘evidence discourse’ influences social practices in policymaking and in research. From investigating knowledge practices in the field of health promotion, I develop the concept of sound knowledge...... making, which I call ‘sound knowledge’. Sound knowledge is an approach to knowledge that takes the reflexive considerations of actors in policymaking processes as well as in research about what knowledge is into account. Seeing knowledge as sound makes connections between different ideas, concepts...... and ideologies explicit. Furthermore, in relation to an anthropology of knowledge, sound knowledge also offers a reconsideration of the way anthropologists study knowledge, as it specifies that studying knowledge for anthropologists means studying what people consider as knowledge, in what circumstances...

  2. Numerical and Physical Modeling of the Response of Resonator Liners to Intense Sound and Grazing Flow

    Science.gov (United States)

    Hersh, Alan S.; Tam, Christopher

    2009-01-01

    Two significant advances have been made in the application of computational aeroacoustics methodology to acoustic liner technology. The first is that temperature effects for discrete sound are not the same as for broadband noise. For discrete sound, the normalized resistance appears to be insensitive to temperature except at high SPL. However, reactance is lower, significantly lower in absolute value, at high temperature. The second is the numerical investigation the acoustic performance of a liner by direct numerical simulation. Liner impedance is affected by the non-uniformity of the incident sound waves. This identifies the importance of pressure gradient. Preliminary design one and two-dimensional impedance models were developed to design sound absorbing liners in the presence of intense sound and grazing flow. The two-dimensional model offers the potential to empirically determine incident sound pressure face-plate distance from resonator orifices. This represents an important initial step in improving our understanding of how to effectively use the Dean Two-Microphone impedance measurement method.

  3. Recent simulation techniques of viscous and thermal losses of sound waves in fluids and their applications in the micro-scale

    DEFF Research Database (Denmark)

    Cutanda Henriquez, Vicente

    2015-01-01

    In classical acoustics small devices in the scale of micrometers such as transducers, couplers or hearing aids are designed b experimentation. In the last 15 years or so, new numerical tools based on the Finite Element Method (FEM) and the Boundary Element Method describe sound fields with viscous...

  4. Sound Zones

    DEFF Research Database (Denmark)

    Møller, Martin Bo; Olsen, Martin

    2017-01-01

    Sound zones, i.e. spatially confined regions of individual audio content, can be created by appropriate filtering of the desired audio signals reproduced by an array of loudspeakers. The challenge of designing filters for sound zones is twofold: First, the filtered responses should generate...... an acoustic separation between the control regions. Secondly, the pre- and post-ringing as well as spectral deterioration introduced by the filters should be minimized. The tradeoff between acoustic separation and filter ringing is the focus of this paper. A weighted L2-norm penalty is introduced in the sound...

  5. Self-collimated slow sound in sonic crystals

    International Nuclear Information System (INIS)

    Kaya, Olgun Adem; Cicek, Ahmet; Ulug, Bulent

    2012-01-01

    Self-collimated slow-sound propagation in a two-dimensional rectangular sonic crystal composed of elliptical scatterers in air is numerically demonstrated. The group velocity at the centre and the edges of the fourth acoustic band is reduced to 45 m s -1 and 30 m s -1 , corresponding to 1/8 and 1/12 of the speed of sound in air, respectively. Elimination of omni-directional reflections encountered in linear waveguides and the reduction of group-velocity dispersion at the mid-band frequencies lead to preservation of pulse shape and amplitude upon traversal of the sonic crystal. Wave transmission is increased from approximately -20 to -2.5 dB, with almost an order of magnitude enhancement, via injector layers optimized through a pattern search algorithm. Self-collimating performance of the system is not degraded under oblique incidence, except for pulse broadening due to increased effective source width.

  6. Sound trapping and dredging barriers.

    Science.gov (United States)

    Wang, Xu; Wang, Xiaonan; Yu, Wuzhou; Jiang, Zaixiu; Mao, Dongxing

    2017-06-01

    When sound barriers are installed on both sides of a noise source, degradation in performance is observed. Barriers having negative-phase-gradient surfaces successfully eliminate this drawback by trapping sound energy in between the barriers. In contrast, barriers can also be designed to "dredge" the energy flux out. An extended model considering higher-order diffractions, which resulted from the interplay of the induced surface wave and barrier surface periodicity, is presented. It is found that the sound dredging barriers provide a remarkable enhancement over the trapping ones, and hence have the potential to be widely used in noise control engineering.

  7. General analytical approach for sound transmission loss analysis through a thick metamaterial plate

    International Nuclear Information System (INIS)

    Oudich, Mourad; Zhou, Xiaoming; Badreddine Assouar, M.

    2014-01-01

    We report theoretically and numerically on the sound transmission loss performance through a thick plate-type acoustic metamaterial made of spring-mass resonators attached to the surface of a homogeneous elastic plate. Two general analytical approaches based on plane wave expansion were developed to calculate both the sound transmission loss through the metamaterial plate (thick and thin) and its band structure. The first one can be applied to thick plate systems to study the sound transmission for any normal or oblique incident sound pressure. The second approach gives the metamaterial dispersion behavior to describe the vibrational motions of the plate, which helps to understand the physics behind sound radiation through air by the structure. Computed results show that high sound transmission loss up to 72 dB at 2 kHz is reached with a thick metamaterial plate while only 23 dB can be obtained for a simple homogeneous plate with the same thickness. Such plate-type acoustic metamaterial can be a very effective solution for high performance sound insulation and structural vibration shielding in the very low-frequency range

  8. Sound intensity

    DEFF Research Database (Denmark)

    Crocker, Malcolm J.; Jacobsen, Finn

    1998-01-01

    This chapter is an overview, intended for readers with no special knowledge about this particular topic. The chapter deals with all aspects of sound intensity and its measurement from the fundamental theoretical background to practical applications of the measurement technique.......This chapter is an overview, intended for readers with no special knowledge about this particular topic. The chapter deals with all aspects of sound intensity and its measurement from the fundamental theoretical background to practical applications of the measurement technique....

  9. Sound Intensity

    DEFF Research Database (Denmark)

    Crocker, M.J.; Jacobsen, Finn

    1997-01-01

    This chapter is an overview, intended for readers with no special knowledge about this particular topic. The chapter deals with all aspects of sound intensity and its measurement from the fundamental theoretical background to practical applications of the measurement technique.......This chapter is an overview, intended for readers with no special knowledge about this particular topic. The chapter deals with all aspects of sound intensity and its measurement from the fundamental theoretical background to practical applications of the measurement technique....

  10. A Brief Review of Anthropogenic Sound in the Oceans

    OpenAIRE

    Studds, Gerry E; Wright, Andrew J

    2007-01-01

    Sound in the oceans is generated by a variety of natural sources, such as breaking waves, rain, and marine animals, as well as a variety of human-produced sources, such as ships, sonars and seismic signals. This overview will begin with a quick review of some basic properties of sound waves with particular reference to differences between the behaviours of these waves underwater versus in air. A basic understanding of the physics of underwater sound is critical to understanding how marine ani...

  11. Structure of ultrathin films of Co on Cu(111) from normal-incidence x-ray standing wave and medium-energy ion scattering measurements

    International Nuclear Information System (INIS)

    Butterfield, M.T.; Crapper, M.D.; Noakes, T.C.Q.; Bailey, P.; Jackson, G.J.; Woodruff, D.P.

    2000-01-01

    Applications of the techniques of normal-incidence x-ray standing wave (NIXSW) and medium-energy ion scattering (MEIS) to the elucidation of the structure of an ultrathin metallic film, Co on Cu(111), are reported. NIXSW and MEIS are shown to yield valuable and complementary information on the structure of such systems, yielding both the local stacking sequence and the global site distribution. For the thinnest films of nominally two layers, the first layer is of entirely fcc registry with respect to the substrate, but in the outermost layer there is significant occupation of hcp local sites. For films up to 8 monolayers (ML) thick, the interlayer spacing of the Co layers is 0.058±0.006 Aa smaller than the Cu substrate (111) layer spacing. With increasing coverage, the coherent fraction of the (1(bar sign)11) NIXSW decreases rapidly, indicating that the film does not grow in a fcc continuation beyond two layers. For films in this thickness range, hcp-type stacking dominates fcc twinning by a ratio of 2:1. The variation of the (1(bar sign)11) NIXSW coherent fraction with thickness shows that the twinning occurs close to the Co/Cu interface. For thicker films of around 20 ML deposited at room temperature, medium-energy ion scattering measurements reveal a largely disordered structure. Upon annealing to 300 deg. C the 20-ML films order into a hcp structure

  12. Second sound tracking system

    Science.gov (United States)

    Yang, Jihee; Ihas, Gary G.; Ekdahl, Dan

    2017-10-01

    It is common that a physical system resonates at a particular frequency, whose frequency depends on physical parameters which may change in time. Often, one would like to automatically track this signal as the frequency changes, measuring, for example, its amplitude. In scientific research, one would also like to utilize the standard methods, such as lock-in amplifiers, to improve the signal to noise ratio. We present a complete He ii second sound system that uses positive feedback to generate a sinusoidal signal of constant amplitude via automatic gain control. This signal is used to produce temperature/entropy waves (second sound) in superfluid helium-4 (He ii). A lock-in amplifier limits the oscillation to a desirable frequency and demodulates the received sound signal. Using this tracking system, a second sound signal probed turbulent decay in He ii. We present results showing that the tracking system is more reliable than those of a conventional fixed frequency method; there is less correlation with temperature (frequency) fluctuation when the tracking system is used.

  13. Suppression of sound radiation to far field of near-field acoustic communication system using evanescent sound field

    OpenAIRE

    Fujii, Ayaka; Wakatsuki, Naoto; Mizutani, Koichi

    2016-01-01

    A method of suppressing sound radiation to the far field of a near-field acoustic communication system using an evanescent sound field is proposed. The amplitude of the evanescent sound field generated from an infinite vibrating plate attenuates exponentially with increasing a distance from the surface of the vibrating plate. However, a discontinuity of the sound field exists at the edge of the finite vibrating plate in practice, which broadens the wavenumber spectrum. A sound wave radiates o...

  14. Calculation of sound propagation in fibrous materials

    DEFF Research Database (Denmark)

    Tarnow, Viggo

    1996-01-01

    Calculations of attenuation and velocity of audible sound waves in glass wools are presented. The calculations use only the diameters of fibres and the mass density of glass wools as parameters. The calculations are compared with measurements....

  15. Sound field separation with sound pressure and particle velocity measurements

    DEFF Research Database (Denmark)

    Fernandez Grande, Efren; Jacobsen, Finn; Leclère, Quentin

    2012-01-01

    separation techniques make it possible to distinguish between outgoing and incoming waves from the two sides, and thus NAH can be applied. In this paper, a separation method based on the measurement of the particle velocity in two layers and another method based on the measurement of the pressure...... and the velocity in a single layer are proposed. The two methods use an equivalent source formulation with separate transfer matrices for the outgoing and incoming waves, so that the sound from the two sides of the array can be modeled independently. A weighting scheme is proposed to account for the distance......In conventional near-field acoustic holography (NAH) it is not possible to distinguish between sound from the two sides of the array, thus, it is a requirement that all the sources are confined to only one side and radiate into a free field. When this requirement cannot be fulfilled, sound field...

  16. Sound settlements

    DEFF Research Database (Denmark)

    Duelund Mortensen, Peder

    2013-01-01

    Præsentation af projektresultater fra Interreg forskningen Sound Settlements om udvikling af bæredygtighed i det almene boligbyggerier i København, Malmø, Helsingborg og Lund samt europæiske eksempler på best practice......Præsentation af projektresultater fra Interreg forskningen Sound Settlements om udvikling af bæredygtighed i det almene boligbyggerier i København, Malmø, Helsingborg og Lund samt europæiske eksempler på best practice...

  17. Sound Settlements

    DEFF Research Database (Denmark)

    Mortensen, Peder Duelund; Hornyanszky, Elisabeth Dalholm; Larsen, Jacob Norvig

    2013-01-01

    Præsentation af projektresultater fra Interreg forskningen Sound Settlements om udvikling af bæredygtighed i det almene boligbyggerier i København, Malmø, Helsingborg og Lund samt europæiske eksempler på best practice......Præsentation af projektresultater fra Interreg forskningen Sound Settlements om udvikling af bæredygtighed i det almene boligbyggerier i København, Malmø, Helsingborg og Lund samt europæiske eksempler på best practice...

  18. Acoustic wave science realized by metamaterials.

    Science.gov (United States)

    Lee, Dongwoo; Nguyen, Duc Minh; Rho, Junsuk

    2017-01-01

    Artificially structured materials with unit cells at sub-wavelength scale, known as metamaterials, have been widely used to precisely control and manipulate waves thanks to their unconventional properties which cannot be found in nature. In fact, the field of acoustic metamaterials has been much developed over the past 15 years and still keeps developing. Here, we present a topical review of metamaterials in acoustic wave science. Particular attention is given to fundamental principles of acoustic metamaterials for realizing the extraordinary acoustic properties such as negative, near-zero and approaching-infinity parameters. Realization of acoustic cloaking phenomenon which is invisible from incident sound waves is also introduced by various approaches. Finally, acoustic lenses are discussed not only for sub-diffraction imaging but also for applications based on gradient index (GRIN) lens.

  19. Waves in strong centrifugal fields: dissipationless gas

    Science.gov (United States)

    Bogovalov, S. V.; Kislov, V. A.; Tronin, I. V.

    2015-04-01

    Linear waves are investigated in a rotating gas under the condition of strong centrifugal acceleration of the order 106 g realized in gas centrifuges for separation of uranium isotopes. Sound waves split into three families of the waves under these conditions. Dispersion equations are obtained. The characteristics of the waves strongly differ from the conventional sound waves on polarization, velocity of propagation and distribution of energy of the waves in space for two families having frequencies above and below the frequency of the conventional sound waves. The energy of these waves is localized in rarefied region of the gas. The waves of the third family were not specified before. They propagate exactly along the rotational axis with the conventional sound velocity. These waves are polarized only along the rotational axis. Radial and azimuthal motions are not excited. Energy of the waves is concentrated near the wall of the rotor where the density of the gas is largest.

  20. Sound absorption coefficient of coal bottom ash concrete for railway application

    Science.gov (United States)

    Ramzi Hannan, N. I. R.; Shahidan, S.; Maarof, Z.; Ali, N.; Abdullah, S. R.; Ibrahim, M. H. Wan

    2017-11-01

    A porous concrete able to reduce the sound wave that pass through it. When a sound waves strike a material, a portion of the sound energy was reflected back and another portion of the sound energy was absorbed by the material while the rest was transmitted. The larger portion of the sound wave being absorbed, the lower the noise level able to be lowered. This study is to investigate the sound absorption coefficient of coal bottom ash (CBA) concrete compared to the sound absorption coefficient of normal concrete by carried out the impedance tube test. Hence, this paper presents the result of the impedance tube test of the CBA concrete and normal concrete.

  1. Second Sound

    Indian Academy of Sciences (India)

    as a function of q is called adispersion curve. Landau postulated. R Srinivasan is a Visiting. Professor at the Raman. Research Institute after retiring as .... Second sound was seen in solid 4He crystals by Ackermann and others in 1966. 4He will not solidify even at absolute zero of temperature unless one applies a pressure ...

  2. Sound engineer

    CERN Document Server

    Mara, Wil

    2015-01-01

    "Readers will learn what it takes to succeed as a sound engineer. The book also explains the necessary educational steps, useful character traits, potential hazards, and daily job tasks related to this career. Sidebars include thought-provoking trivia. Questions in the backmatter ask for text-dependent analysis. Photos, a glossary, and additional resources are included."-- Provided by publisher.

  3. Sound Settlements

    DEFF Research Database (Denmark)

    Mortensen, Peder Duelund; Hornyanszky, Elisabeth Dalholm; Larsen, Jacob Norvig

    2013-01-01

    Præsentation af projektresultater fra Interreg forskningen Sound Settlements om udvikling af bæredygtighed i det almene boligbyggerier i København, Malmø, Helsingborg og Lund samt europæiske eksempler på best practice...

  4. Focusing of Finite-Amplitude Cylindrical and Spherical Sound Waves in a Viscous and Heat-Conducting Medium. Ph.D. Thesis

    Science.gov (United States)

    Chu, T.

    1971-01-01

    The focusing of acoustic pulses is studied analytically by considering the region of study in three parts: the converging, interaction and diverging regions. First, the linear problem of a pulse of infinitesimal amplitude is studied. For the spherical case, the expected phase change as a result of focusing is verified. The nonlinear case of finite-amplitude pulses leads to the development of M-waves, as determined by applying the method of matched-asymptotic expansions to Burges equation.

  5. Underwater sound scattering and absorption by a coated infinite plate with attached periodically located inhomogeneities.

    Science.gov (United States)

    Zhang, Yanni; Huang, Hai; Zheng, Jing; Pan, Jie

    2015-11-01

    This paper extends previous work of Zhang and Pan [J. Acoust. Soc. Am. 133(4), 2082-2096 (2013)] on sound scattering and absorption by an underwater coated plate with a single attached distributed-inhomogeneity to that with periodically located distributed-inhomogeneities. A comparison is made among cases of a plate without inhomogeneities, a plate with inhomogeneities, and one with inhomogeneities ignoring the mutual coupling. Results show that coupling of the structural waves scattered by the inhomogeneities plays an important role in modifying the sound absorption and scattering of surface sound pressure, especially at low frequencies and/or the resonance frequencies of the trapped modes of the plate. The sound absorption of the plate is dependent on the distance between the adjacent inhomogeneities, the length of the inhomogeneity, and the angle of the incident sound. On the surface of the inhomogeneities, the scattered/total sound pressure is generally enhanced. On the surface in between the inhomogeneities, the pressure is also enhanced at low frequencies but is nearly unchanged at higher frequencies. Results also show that the coupling-induced variation of scattered/total pressure is significant only at the resonance frequencies of the global modes and trapped modes. The surface normal velocity is presented to explain the coupling-induced variations in the vibration and pressure fields.

  6. An investigation into sound transmission loss by polypropylene needle-punched nonwovens

    Directory of Open Access Journals (Sweden)

    Kazem Ghorbani

    2016-06-01

    Full Text Available In this work, the effects of variables such as initial carded web mass, needle penetration depth, punch density, and the frequency of incident sound wave on transmission of sound through polypropylene needle-punched nonwovens were investigated. Fibrous carded webs using commercially available 17 dtex, 90 mm staple length polypropylene fibers were prepared with different mass per unit area using carding machine. Samples were needled at various punch-densities and needle penetration depths were produced. Design points of experiments were set up using Taguchi experimental design method. Sound transmission loss (STL of needled samples was measured using an impedance tube equipped with four microphones. Minitab software was used to analyze the sound transmission ability of the samples. Results indicated that all of the considered controllable factor have significant effects on STL values determined for the needled nonwovens. Also, initial carded web mass was found to be the most influential factor affecting sound transmission through the samples. It was concluded that an increase in thickness of the samples as well as mass per unit area of nonwovens results in higher sound transmission loss by the samples.

  7. Sound localization and occupational noise

    Directory of Open Access Journals (Sweden)

    Pedro de Lemos Menezes

    2014-02-01

    Full Text Available OBJECTIVE: The aim of this study was to determine the effects of occupational noise on sound localization in different spatial planes and frequencies among normal hearing firefighters. METHOD: A total of 29 adults with pure-tone hearing thresholds below 25 dB took part in the study. The participants were divided into a group of 19 firefighters exposed to occupational noise and a control group of 10 adults who were not exposed to such noise. All subjects were assigned a sound localization task involving 117 stimuli from 13 sound sources that were spatially distributed in horizontal, vertical, midsagittal and transverse planes. The three stimuli, which were square waves with fundamental frequencies of 500, 2,000 and 4,000 Hz, were presented at a sound level of 70 dB and were randomly repeated three times from each sound source. The angle between the speaker's axis in the same plane was 45°, and the distance to the subject was 1 m. RESULT: The results demonstrate that the sound localization ability of the firefighters was significantly lower (p<0.01 than that of the control group. CONCLUSION: Exposure to occupational noise, even when not resulting in hearing loss, may lead to a diminished ability to locate a sound source.

  8. Sound Clocks and Sonic Relativity

    Science.gov (United States)

    Todd, Scott L.; Menicucci, Nicolas C.

    2017-10-01

    Sound propagation within certain non-relativistic condensed matter models obeys a relativistic wave equation despite such systems admitting entirely non-relativistic descriptions. A natural question that arises upon consideration of this is, "do devices exist that will experience the relativity in these systems?" We describe a thought experiment in which `acoustic observers' possess devices called sound clocks that can be connected to form chains. Careful investigation shows that appropriately constructed chains of stationary and moving sound clocks are perceived by observers on the other chain as undergoing the relativistic phenomena of length contraction and time dilation by the Lorentz factor, γ , with c the speed of sound. Sound clocks within moving chains actually tick less frequently than stationary ones and must be separated by a shorter distance than when stationary to satisfy simultaneity conditions. Stationary sound clocks appear to be length contracted and time dilated to moving observers due to their misunderstanding of their own state of motion with respect to the laboratory. Observers restricted to using sound clocks describe a universe kinematically consistent with the theory of special relativity, despite the preferred frame of their universe in the laboratory. Such devices show promise in further probing analogue relativity models, for example in investigating phenomena that require careful consideration of the proper time elapsed for observers.

  9. PREFACE: Aerodynamic sound Aerodynamic sound

    Science.gov (United States)

    Akishita, Sadao

    2010-02-01

    The modern theory of aerodynamic sound originates from Lighthill's two papers in 1952 and 1954, as is well known. I have heard that Lighthill was motivated in writing the papers by the jet-noise emitted by the newly commercialized jet-engined airplanes at that time. The technology of aerodynamic sound is destined for environmental problems. Therefore the theory should always be applied to newly emerged public nuisances. This issue of Fluid Dynamics Research (FDR) reflects problems of environmental sound in present Japanese technology. The Japanese community studying aerodynamic sound has held an annual symposium since 29 years ago when the late Professor S Kotake and Professor S Kaji of Teikyo University organized the symposium. Most of the Japanese authors in this issue are members of the annual symposium. I should note the contribution of the two professors cited above in establishing the Japanese community of aerodynamic sound research. It is my pleasure to present the publication in this issue of ten papers discussed at the annual symposium. I would like to express many thanks to the Editorial Board of FDR for giving us the chance to contribute these papers. We have a review paper by T Suzuki on the study of jet noise, which continues to be important nowadays, and is expected to reform the theoretical model of generating mechanisms. Professor M S Howe and R S McGowan contribute an analytical paper, a valuable study in today's fluid dynamics research. They apply hydrodynamics to solve the compressible flow generated in the vocal cords of the human body. Experimental study continues to be the main methodology in aerodynamic sound, and it is expected to explore new horizons. H Fujita's study on the Aeolian tone provides a new viewpoint on major, longstanding sound problems. The paper by M Nishimura and T Goto on textile fabrics describes new technology for the effective reduction of bluff-body noise. The paper by T Sueki et al also reports new technology for the

  10. Vibro-acoustic response and sound transmission loss analysis of functionally graded plates

    Science.gov (United States)

    Chandra, N.; Raja, S.; Nagendra Gopal, K. V.

    2014-10-01

    This paper presents analytical studies on the vibro-acoustic and sound transmission loss characteristics of functionally graded material (FGM) plates using a simple first-order shear deformation theory. The material properties of the plate are assumed to vary according to power law distribution of the constituent materials in terms of volume fraction. The sound radiation due to sinusoidally varying point load, uniformly distributed load and obliquely incident sound wave is computed by solving the Rayleigh integral with a primitive numerical scheme. Displacement, velocity, acceleration, radiated sound power level, radiated sound pressure level and radiation efficiency of FGM plate for varying power law index are examined. The sound transmission loss of the FGM plate for several incidence angles and varying power law index is studied in detail. It has been found that, for the plate being considered, the sound power level increases monotonically with increase in power law index at lower frequency range (0-500 Hz) and a non-monotonic trend is appeared towards higher frequencies for both point and distributed force excitations. Increased vibration and acoustic response is observed for ceramic-rich FGM plate at higher frequency band; whereas a similar trend is seen for metal-rich FGM plate at lower frequency band. The dBA values are found to be decreasing with increase in power law index. The radiation efficiency of ceramic-rich FGM plate is noticed to be higher than that of metal and metal-rich FGM plates. The transmission loss below the first resonance frequency is high for ceramic-rich FGM plate and low for metal-rich FGM plate and further depends on the specific material property. The study has found that increased transmission loss can be achieved at higher frequencies with metal-rich FGM plates.

  11. The Sound Attenuation Coefficient Optimization in Case of a Three Parameter Impedance Model for a Rectangular 3D Straight Lined Duct of Finite Dimensions

    Directory of Open Access Journals (Sweden)

    Stefan BALINT

    2015-09-01

    Full Text Available A method for the minimization of the ratio of the sound pressure level at the exit to that at the entrance is presented for a rectangular 3D straight lined duct carrying a uniform gas flow. The duct dimensions, the incident sound wave as well as the frequency of the sound wave propagation are assumed to be known. It is assumed also that the liner impedance model is the mass-spring–damper model. The idea is to compute the considered ratio for a large number of combinations of the values of the inertance, resistance and stiffness of the liner and, by fitting the obtained data, to establish a formula for the dependence of the ratio in discussion on these three parameters of the liner. Using the obtained formula, the minimum value of the ratio, as well as the values of the inertance, resistance and stiffness, for which the minimum is obtained, are found.

  12. Design parameters of stainless steel plates for maximizing high frequency ultrasound wave transmission.

    Science.gov (United States)

    Michaud, Mark; Leong, Thomas; Swiergon, Piotr; Juliano, Pablo; Knoerzer, Kai

    2015-09-01

    This work validated, in a higher frequency range, the theoretical predictions made by Boyle around 1930, which state that the optimal transmission of sound pressure through a metal plate occurs when the plate thickness equals a multiple of half the wavelength of the sound wave. Several reactor design parameters influencing the transmission of high frequency ultrasonic waves through a stainless steel plate were examined. The transmission properties of steel plates of various thicknesses (1-7 mm) were studied for frequencies ranging from 400 kHz to 2 MHz and at different distances between plates and transducers. It was shown that transmission of sound pressure through a steel plate showed high dependence of the thickness of the plate to the frequency of the sound wave (thickness ratio). Maximum sound pressure transmission of ∼ 60% of the incident pressure was observed when the ratio of the plate thickness to the applied frequency was a multiple of a half wavelength (2 MHz, 6mm stainless steel plate). In contrast, minimal sound pressure transmission (∼ 10-20%) was measured for thickness ratios that were not a multiple of a half wavelength. Furthermore, the attenuation of the sound pressure in the transmission region was also investigated. As expected, it was confirmed that higher frequencies have more pronounced sound pressure attenuation than lower frequencies. The spatial distribution of the sound pressure transmitted through the plate characterized by sonochemiluminescence measurements using luminol emission, supports the validity of the pressure measurements in this study. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Anisotropy and sound propagation in glass wool

    DEFF Research Database (Denmark)

    Tarnow, Viggo

    1999-01-01

    will be considered. The computations are based on the geometry of the glass wool that is decribed by the density of fibers and their diameters. The air drags viscously on the fibers, and movements of the fiber skeleton are important at low frequencies. Propagation of elastic waves in the skeleton is computed...... by regarding it as a continuous medium described by its elastic moduli and mass density. The computed attenuation of sound waves, for frequencies 50–5000 Hz, will be compared with experimental results for glass wool with fiber diameters of 6.8 micrometers, mass density of 15 and 30 kg/m3, and elastic moduli......Sound propagation in glass wool is studied theoretically and experimentally. Theoretical computation of attenuation and phase velocity for plane, harmonic waves will be presented. Glass wool is a highly anisotropic material, and sound waves propagating in different directions in the material...

  14. Sound pulse broadening in stressed granular media.

    Science.gov (United States)

    Langlois, Vincent; Jia, Xiaoping

    2015-02-01

    The pulse broadening and decay of coherent sound waves propagating in disordered granular media are investigated. We find that the pulse width of these compressional waves is broadened when the disorder is increased by mixing the beads made of different materials. To identify the responsible mechanism for the pulse broadening, we also perform the acoustic attenuation measurement by spectral analysis and the numerical simulation of pulsed sound wave propagation along one-dimensional disordered elastic chains. The qualitative agreement between experiment and simulation reveals a dominant mechanism by scattering attenuation at the high-frequency range, which is consistent with theoretical models of sound wave scattering in strongly random media via a correlation length.

  15. Statistics of natural binaural sounds.

    Directory of Open Access Journals (Sweden)

    Wiktor Młynarski

    Full Text Available Binaural sound localization is usually considered a discrimination task, where interaural phase (IPD and level (ILD disparities at narrowly tuned frequency channels are utilized to identify a position of a sound source. In natural conditions however, binaural circuits are exposed to a stimulation by sound waves originating from multiple, often moving and overlapping sources. Therefore statistics of binaural cues depend on acoustic properties and the spatial configuration of the environment. Distribution of cues encountered naturally and their dependence on physical properties of an auditory scene have not been studied before. In the present work we analyzed statistics of naturally encountered binaural sounds. We performed binaural recordings of three auditory scenes with varying spatial configuration and analyzed empirical cue distributions from each scene. We have found that certain properties such as the spread of IPD distributions as well as an overall shape of ILD distributions do not vary strongly between different auditory scenes. Moreover, we found that ILD distributions vary much weaker across frequency channels and IPDs often attain much higher values, than can be predicted from head filtering properties. In order to understand the complexity of the binaural hearing task in the natural environment, sound waveforms were analyzed by performing Independent Component Analysis (ICA. Properties of learned basis functions indicate that in natural conditions soundwaves in each ear are predominantly generated by independent sources. This implies that the real-world sound localization must rely on mechanisms more complex than a mere cue extraction.

  16. Bulk damping of sound in superfluid 3He--4He under stagnation of the normal component

    International Nuclear Information System (INIS)

    Karchava, T.A.; Sanikidze, D.G.; Chkhaidze, N.D.

    1983-01-01

    The propagation of waves in superfluid 3 He-- 4 He solutions is considered under partial stagnation of the normal component. The wave processes in capillaries are presented as a superposition of the first sound, second sound, and viscous and diffusion waves. The damping coefficients are calculated for the modified first sound and for the thermal wave in superfluid 3 He-- 4 He solutions and related to the viscosity, thermal conductivity, diffusion, barodiffusion, and thermodiffusion coefficients

  17. Second Sound

    Indian Academy of Sciences (India)

    We all know that in a fluid (liquid or gas), pressure or density waves can be propagated. ... fluctuations in the gas. Such density fluctuations .... LHel1. Figure 2. Two cylinders connected at the bottom with a wide bore tube. The two cylinders are filled with. LHe II. If a temperature gradient is established between the tubesl the ...

  18. PULSAR.MAKING VISIBLE THE SOUND OF STARS

    OpenAIRE

    Lega, Ferran

    2015-01-01

    [EN] Pulsar, making visible the sound of stars is a comunication based on a sound Installation raised as a site-specific project to show the hidden abilities of sound to generate images and patterns on the matter, using the acoustic science of cymatics. The objective of this communication will show people how through abstract and intangible sounds from celestial orbs of cosmos (radio waves generated by electromagnetic pulses from the rotation of neutrón stars), we can create ar...

  19. Hybrid waste filler filled bio-polymer foam composites for sound absorbent materials

    Science.gov (United States)

    Rus, Anika Zafiah M.; Azahari, M. Shafiq M.; Kormin, Shaharuddin; Soon, Leong Bong; Zaliran, M. Taufiq; Ahraz Sadrina M. F., L.

    2017-09-01

    Sound absorption materials are one of the major requirements in many industries with regards to the sound insulation developed should be efficient to reduce sound. This is also important to contribute in economically ways of producing sound absorbing materials which is cheaper and user friendly. Thus, in this research, the sound absorbent properties of bio-polymer foam filled with hybrid fillers of wood dust and waste tire rubber has been investigated. Waste cooking oil from crisp industries was converted into bio-monomer, filled with different proportion ratio of fillers and fabricated into bio-polymer foam composite. Two fabrication methods is applied which is the Close Mold Method (CMM) and Open Mold Method (OMM). A total of four bio-polymer foam composite samples were produce for each method used. The percentage of hybrid fillers; mixture of wood dust and waste tire rubber of 2.5 %, 5.0%, 7.5% and 10% weight to weight ration with bio-monomer. The sound absorption of the bio-polymer foam composites samples were tested by using the impedance tube test according to the ASTM E-1050 and Scanning Electron Microscope to determine the morphology and porosity of the samples. The sound absorption coefficient (α) at different frequency range revealed that the polymer foam of 10.0 % hybrid fillers shows highest α of 0.963. The highest hybrid filler loading contributing to smallest pore sizes but highest interconnected pores. This also revealed that when highly porous material is exposed to incident sound waves, the air molecules at the surface of the material and within the pores of the material are forced to vibrate and loses some of their original energy. This is concluded that the suitability of bio-polymer foam filled with hybrid fillers to be used in acoustic application of automotive components such as dashboards, door panels, cushion and etc.

  20. Sound propagation in and low frequency noise absorption by helium-filled porous material.

    Science.gov (United States)

    Choy, Y S; Huang, Lixi; Wang, Chunqi

    2009-12-01

    Low-frequency noise is difficult to deal with by traditional porous material due to its inherent high acoustic impedance. This study seeks to extend the effective range of sound absorption to lower frequencies by filling a low density gas, such as helium, in the porous material. Compared with conventional air-filled absorption material, the helium-filled porous material has a much reduced characteristic impedance; hence, a good impedance matching with pure air becomes more feasible at low frequencies. The acoustic properties of a series of helium-filled porous materials are investigated with a specially designed test rig. The characteristic of the sound propagation in a helium-filled porous material is established and validated experimentally. Based on the measured acoustic properties, the sound absorption performance of a helium-filled absorber (HA) of finite thickness is studied numerically as well as experimentally. For a random incidence field, the HA is found to perform much better than the air-filled absorber at low frequencies. The main advantage of HA lies in the middle range of oblique incidence angles where wave refraction in the absorber enhances sound absorption. The advantage of HA as duct lining is demonstrated both numerically and experimentally.

  1. One pot synthesis of nanosized anion doped TiO2: Effect of irradiation of sound waves on surface morphology and optical properties

    Science.gov (United States)

    Sharotri, Nidhi; Sud, Dhiraj

    2015-08-01

    Commercialization of AOP's for remediation of pollutants from environmental matrix required the process to be operated by solar light. Semiconductor TiO2 has emerged as an effective and preferred photocatalyst in the field of environmental photocatalysis due to its; (i) biological and chemical inertness (ii) resistance to chemical and photo corrosion, (iii) can absorb natural UV light due to appropriate energetic separation between its valence and conduction band. However, unfortunately the optical band gap of TiO2 (3.0-3.23 eV) with absorption cut off ˜ 380 nm, enables it to harness only a small fraction (˜ 5%) of the entire solar spectrum. One of the current areas of research is modification of TiO2 photocatalyst. In present paper one pot greener synthesis from titanium isopropoxide and hydroxylamine hydrochloride has been used as titanium and nitrogen precursor under ultrasonic waves. The as synthesized TiO2 nanomaterials were dried at 100°C and further calcinated at different temperatures. The effect of reaction parameters such as ultrasonication time on the yield, surface morphology, spectroscopic data and optical properties was also investigated. The results confirm that the anatase phase is a main phase with a crystallite size of 35-77 nm and the calculated band gap of nanomaterials varies from 2.10-3.1 eV.

  2. One pot synthesis of nanosized anion doped TiO2: Effect of irradiation of sound waves on surface morphology and optical properties

    International Nuclear Information System (INIS)

    Sharotri, Nidhi; Sud, Dhiraj

    2015-01-01

    Commercialization of AOP’s for remediation of pollutants from environmental matrix required the process to be operated by solar light. Semiconductor TiO 2 has emerged as an effective and preferred photocatalyst in the field of environmental photocatalysis due to its; (i) biological and chemical inertness (ii) resistance to chemical and photo corrosion, (iii) can absorb natural UV light due to appropriate energetic separation between its valence and conduction band. However, unfortunately the optical band gap of TiO 2 (3.0-3.23 eV) with absorption cut off ∼ 380 nm, enables it to harness only a small fraction (∼ 5%) of the entire solar spectrum. One of the current areas of research is modification of TiO 2 photocatalyst. In present paper one pot greener synthesis from titanium isopropoxide and hydroxylamine hydrochloride has been used as titanium and nitrogen precursor under ultrasonic waves. The as synthesized TiO 2 nanomaterials were dried at 100°C and further calcinated at different temperatures. The effect of reaction parameters such as ultrasonication time on the yield, surface morphology, spectroscopic data and optical properties was also investigated. The results confirm that the anatase phase is a main phase with a crystallite size of 35-77 nm and the calculated band gap of nanomaterials varies from 2.10-3.1 eV

  3. The vibroacoustic response and sound absorption performance of multilayer, microperforated rib-stiffened plates

    Science.gov (United States)

    Zhou, Haian; Wang, Xiaoming; Wu, Huayong; Meng, Jianbing

    2017-10-01

    The vibroacoustic response and sound absorption performance of a structure composed of multilayer plates and one rigid back wall are theoretically analyzed. In this structure, all plates are two-dimensional, microperforated, and periodically rib-stiffened. To investigate such a structural system, semianalytical models of one-layer and multilayer plate structures considering the vibration effects are first developed. Then approaches of the space harmonic method and Fourier transforms are applied to a one-layer plate, and finally the cascade connection method is utilized for a multilayer plate structure. Based on fundamental acoustic formulas, the vibroacoustic responses of microperforated stiffened plates are expressed as functions of a series of harmonic amplitudes of plate displacement, which are then solved by employing the numerical truncation method. Applying the inverse Fourier transform, wave propagation, and linear addition properties, the equations of the sound pressures and absorption coefficients for the one-layer and multilayer stiffened plates in physical space are finally derived. Using numerical examples, the effects of the most important physical parameters—for example, the perforation ratio of the plate, sound incident angles, and periodical rib spacing—on sound absorption performance are examined. Numerical results indicate that the sound absorption performance of the studied structure is effectively enhanced by the flexural vibration of the plate in water. Finally, the proposed approaches are validated by comparing the results of stiffened plates of the present work with solutions from previous studies.

  4. Measuring sound absorption properties of porous materials using a calibrated volume velocity source

    International Nuclear Information System (INIS)

    Arenas, Jorge P; Darmendrail, Luis

    2013-01-01

    Measurement of acoustic properties of sound-absorbing materials has been the source of much investigation that has produced practical measuring methods. In particular, the measurement of the normal incidence sound absorption coefficient is commonly done using a well-known configuration of a tube carrying a plane wave. The sound-absorbing coefficient is calculated from the surface impedance measured on a sample of material. Therefore, a direct measurement of the impedance requires knowing the ratio between the sound pressure and the volume velocity. However, the measurement of volume velocity is not straightforward in practice and many methods have been proposed including complex transducers, laser vibrometry, accelerometers and calibrated volume velocity sources. In this paper, a device to directly measure the acoustic impedance of a sample of sound-absorbing material is presented. The device uses an internal microphone in a small cavity sealed by a loudspeaker and a second microphone mounted in front of this source. The calibration process of the device and the limitations of the method are also discussed and measurement examples are presented. The accuracy of the device was assessed by direct comparison with the standardized method. The proposed measurement method was tested successfully with various types of commercial acoustic porous materials. (paper)

  5. Effect of perforation on the sound transmission through a double-walled cylindrical shell

    Science.gov (United States)

    Zhang, Qunlin; Mao, Yijun; Qi, Datong

    2017-12-01

    An analytical model is developed to study the sound transmission loss through a general double-walled cylindrical shell system with one or two walls perforated, which is excited by a plane wave in the presence of external mean flow. The shell motion is governed by the classical Donnell's thin shell theory, and the mean particle velocity model is employed to describe boundary conditions at interfaces between the shells and fluid media. In contrast to the conventional solid double-walled shell system, numerical results show that perforating the inner shell in the transmission side improves sound insulation performance over a wide frequency band, and removes fluctuation of sound transmission loss with frequency at mid-frequencies in the absence of external flow. Both the incidence and azimuthal angles have nearly negligible effect on the sound transmission loss over the low and middle frequency range when perforating the inner shell. Width of the frequency band with continuous sound transmission loss can be tuned by the perforation ratio.

  6. Conversion from surface wave to surface wave on reflection

    DEFF Research Database (Denmark)

    Novitsky, Andrey

    2010-01-01

    can be transmitted without changing its direction (nevertheless the amplitude varies). For other media parameters, only normally incident surface waves can be converted to surface waves. We propose applications of the predicted conversion as a beam splitter and polarization filter for surface waves.......We discuss the reflection and transmission of an incident surface wave to a pure surface wave state at another interface. This is allowed only for special media parameters: at least one of the media must be magnetic. We found such material characteristics that the obliquely incident surface wave...

  7. External mean flow influence on sound transmission through finite clamped double-wall sandwich panels

    Science.gov (United States)

    Liu, Yu; Catalan, Jean-Cédric

    2017-09-01

    This paper studies the influence of an external mean flow on the sound transmission through finite clamped double-wall sandwich panels lined with poroelastic materials. Biot's theory is employed to describe wave propagation in poroelastic materials and various configurations of coupling the poroelastic layer to the facing plates are considered. The clamped boundary of finite panels are dealt with by the modal superposition theory and the weighted residual (Garlekin) method, leading to a matrix equation solution for the sound transmission loss (STL) through the structure. The theoretical model is validated against existing theories of infinite sandwich panels with and without an external flow. The numerical results of a single incident wave show that the external mean flow has significant effects on the STL which are coupled with the clamped boundary effect dominating in the low-frequency range. The external mean flow also influences considerably the limiting incidence angle of the panel system and the effect of the incidence angle on the STL. However, the influences of the azimuthal angle and the external flow orientation are negligible.

  8. Sound Search Engine Concept

    DEFF Research Database (Denmark)

    2006-01-01

    Sound search is provided by the major search engines, however, indexing is text based, not sound based. We will establish a dedicated sound search services with based on sound feature indexing. The current demo shows the concept of the sound search engine. The first engine will be realased June...

  9. Reconstruction of sound fields with a spherical microphone array

    DEFF Research Database (Denmark)

    Fernandez Grande, Efren; Walton, Tim

    2014-01-01

    Spherical microphone arrays are very well suited for sound field measurements in enclosures or interior spaces, and generally in acoustic environments where sound waves impinge on the array from multiple directions. Because of their directional properties, they make it possible to resolve sound...... waves traveling in any direction. In particular, rigid sphere microphone arrays are robust, and have the favorable property that the scattering introduced by the array can be compensated for - making the array virtually transparent. This study examines a recently proposed sound field reconstruction...... method based on a point source expansion, i.e. equivalent source method, using a rigid spherical array. The study examines the capability of the method to distinguish between sound waves arriving from different directions (i.e., as a sound field separation method). This is representative of the potential...

  10. Nearshore and Surf-Zone Morphodynamics: A Global Environmental Model for Predicting Hazards and Changes. Appendix 4. Morphodynamic Responses of an Energetic Beach to Temporal Variations in Wave Steepness, Tide Range, and Incident Wave Groupiness.

    Science.gov (United States)

    1985-12-31

    We reviewed the existing techniques for quantifying the degree of wave groupiness, including those used by Goda (1970), Funke and Mansard (1979), and...Thompson (1982). The method proposed by Funke and Mansard (1979) was based on a smoothed instantaneous wave energy history, which is merely a squared...1979. Some properties of surf beat. J. Oceanographical Society of Japan, 35:9-25. Funke, E.R. and Mansard , E.P.D., 1979. On the synthesis of realistic

  11. NASA Space Sounds API

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA has released a series of space sounds via sound cloud. We have abstracted away some of the hassle in accessing these sounds, so that developers can play with...

  12. Sound absorption by Menger sponge fractal.

    Science.gov (United States)

    Kawabe, Tetsuji; Miyazaki, Takatsuna; Oka, Daisuke; Koyanagi, Sin'ichiro; Hinokidani, Atsushi

    2009-05-01

    For the purpose of investigation on acoustic properties of fractals, the sound absorption coefficients are experimentally measured by using the Menger sponge which is one of typical three-dimensional fractals. From the two-microphone measurement, the frequency range of effectively absorbing sound waves is shown to broaden with degree of fractality, which comes from the fractal property of the homothetic character. It is shown that experimental features are qualitatively explained by an electrical equivalent circuit model for the Menger sponge.

  13. Third sound dissipation at a point contact

    International Nuclear Information System (INIS)

    Ellis, F M; Eddinger, J D

    2009-01-01

    Third sound on a planar geometry at low temperatures is characterized by a rapidly diminishing thermal dissipation. Direct mechanical dissipation is limited to that associated with defects in the system. This includes interaction with pinned vortices, critical flow at surface defect sites, and unintentional acoustic coupling. Dissipation of this latter type is possible in the parallel plate geometry of capacitively detected third sound. We calculate the coupling of a third sound wave across a contacting bridge to a parallel plane, and investigate the energy transfer out of the wave and flow properties of the film in the vicinity of the contact. The presence of various mirror waves on the contacting plane is also considered. Experimental dissipation is observed in both geometries and it is shown that a single contact is capable of accounting for the dissipation as well as an unusually low observed critical velocity.

  14. Electromagnetic wave matching device

    International Nuclear Information System (INIS)

    Hirata, Yosuke; Mitsunaka, Yoshika; Hayashi, Ken-ichi; Ito, Yasuyuki.

    1997-01-01

    The present invention provides an electromagnetic wave matching capable of reducing a cost for the transmission system in a system of using electromagnetic waves for plasma heating of a thermonuclear reactor. Namely, incident electromagnetic waves are reflected by using a plurality of phase correction mirrors. The reflected electromagnetic waves are connected to an external transmission system through an exit. The phase correction mirrors have such a shape to receive a plurality of beam-like electromagnetic waves and output electromagnetic waves by the number different from the number of the received electromagnetic wave beams having a predetermined distribution. Further, at least two of the phase correction mirrors have such a shape to change the phase of the electromagnetic waves beams incident to the reflection surface of the phase correction mirrors by a predetermined amount corresponding to the position of the reflection surface. Then, the cost for transmission system can greatly be reduced. (I.S.)

  15. Transmission of Sound Through Double-Plate Panel Structures

    DEFF Research Database (Denmark)

    Dickow, Kristoffer Ahrens; Domadiya, Parthkumar Gandalal; Andersen, Lars

    2011-01-01

    In the present paper, a finite-element model of a single-stud double-plate panel structure is implemented to investigate the transmission of diffuse incident sound waves through typical simple lightweight constructions. A parameter study of the effect of including the internal acoustic medium...... the fluid continuum elements are replaced by a simple spring connection between the two plates. The investigations are performed as parameter studies focusing on the effect of changes in the model. A fully coupled analysis is performed in which solid continuum finite elements are adopted for the structure......, whereas the acoustic medium is discretized into fluid continuum elements. The computations are carried out in frequency domain in the range below 2 kHz and the load acts as an approximated diffuse field on one side of the panel. The results show that if some of the studs are free to bend, the transmission...

  16. Evaluation and comparison of the Minnesota Code and Novacode for electrocardiographic Q-ST wave abnormalities for the independent prediction of incident coronary heart disease and total mortality (from the Women's Health Initiative).

    Science.gov (United States)

    Zhang, Zhu-ming; Prineas, Ronald J; Eaton, Charles B

    2010-07-01

    Electrocardiographic (ECG) Q- and ST-T-wave abnormalities predict coronary heart disease (CHD) and total mortality. No comparison has been made of the classification of these abnormalities by the 2 most widely used ECG coding systems for epidemiologic studies-the Minnesota Code (MC) and Novacode (NC). We evaluated 12-lead electrocardiograms from 64,597 participants (49 to 79 years old, 82% non-Hispanic white) in the Women's Health Initiative clinical trial in 1993 to 1998, with a maximum of 11 years of follow-up. We used MC and NC criteria to identify Q-wave, ST-segment, and T-wave abnormalities for comparison. In total, 3,322 participants (5.1%) died during an average 8-year follow-up, and 1,314 had incident CHD in the baseline cardiovascular disease-free group. Independently, ECG myocardial infarction criteria by the MC or NC were generally equivalent and were strong predictors for CHD death and total mortality (hazard ratio 1.62, 95% confidence interval 1.05 to 2.51 for CHD death; hazard ratio 1.36, 95% confidence interval 1.09 to 1.71 for total mortality) in a multivariable analytic model. Electrocardiograms with major ST-T abnormalities by the MC or NC coding system were stronger in predicting CHD deaths and total mortality than was the presence of Q waves alone. In conclusion, the ECG classification systems for myocardial infarction/ischemia abnormalities from the MC and NC are valuable and useful in clinical trials and epidemiologic studies. ST-T abnormalities are stronger predictors for CHD events and total mortality than isolated Q-wave abnormalities. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  17. Sound Ecologies

    Directory of Open Access Journals (Sweden)

    Michelle Duffy

    2010-02-01

    Full Text Available Discussions about what constitutes ‘the rural’ invariably focus on notions of spatial location – of inhabiting spaces apart from that of the metropolitan. Deeply embedded in our images of what it means to be Australian, nonetheless our intellectual framing of ‘the rural’ as something outback and beyond has significant implications for our relations with these spaces. The relatively recent phenomenon of sea- and tree-changes has struck many unawares, and not simply because a good latté is so hard to find. Although a frivolous remark, such an apparent lack does shift our focus to a bodily scale of the rural; how is rural place re/made through our experiences of it? This article originates out of on-going research that explores the practice of listening and sound and the ways in which the body can draw attention to the intuitive, emotional, and psychoanalytical processes of subjectivity and place-making. Drawing on Nigel Thrift’s concept of an ecology of place, I suggest that contemporary heightened concerns with regards to loss and lack in rural Australia has led to a nascent emotional economy – one in which individual and intimate connections to the rural require a rethinking of how we live community and belonging. In such a terrain, what does it mean to be rural?

  18. Sound ecologies

    Directory of Open Access Journals (Sweden)

    Duffy, Michelle

    2010-01-01

    Full Text Available Discussions about what constitutes ‘the rural’ invariably focus on notions of spatial location – of inhabiting spaces apart from that of the metropolitan. Deeply embedded in our images of what it means to be Australian, nonetheless our intellectual framing of ‘the rural’ as something outback and beyond has significant implications for our relations with these spaces. The relatively recent phenomenon of sea- and tree-changes has struck many unawares, and not simply because a good latté is so hard to find. Although a frivolous remark, such an apparent lack does shift our focus to a bodily scale of the rural; how is rural place re/made through our experiences of it? This article originates out of on-going research that explores the practice of listening and sound and the ways in which the body can draw attention to the intuitive, emotional, and psychoanalytical processes of subjectivity and place-making. Drawing on Nigel Thrift’s concept of an ecology of place, I suggest that contemporary heightened concerns with regards to loss and lack in rural Australia has led to a nascent emotional economy – one in which individual and intimate connections to the rural require a rethinking of how we live community and belonging. In such a terrain, what does it mean to be rural?

  19. Subwavelength sound screening by coupling space-coiled Fabry-Perot resonators

    Science.gov (United States)

    Elayouch, A.; Addouche, M.; Farhat, M.; Khelif, A.

    2017-08-01

    We explore broadband and omnidirectional low frequency sound screening based on locally resonant acoustic metamaterials. We show that the coupling of different resonant modes supported by Fabry-Perot cavities can efficiently generate asymmetric lineshapes in the transmission spectrum, leading to a broadband sound opacity. The Fabry-Perot cavities are space-coiled in order to shift the resonant modes under the diffraction edge, which guaranty the opacity band for all incident angles. Indeed, the deep subwavelength feature of the cavities leads to avoid diffraction that have been proved to be the main limitation of omnidirectional capabilities of locally resonant perforated plates. We experimentally reach an attenuation of few tens of dB at low frequency, with a metamaterial thickness fifteen times smaller than the wavelength (λ / 15) . The proposed design can be considered as a new building block for acoustic metasurfaces having a high level of manipulation of acoustic waves.

  20. Active control of sound transmission/radiation from elastic plates by vibration inputs. I - Analysis

    Science.gov (United States)

    Fuller, C. R.

    1990-01-01

    Active control of sound radiation from vibrating plates by oscillating forces applied directly to the structure is analytically studied. The model consists of a plane acoustic wave incident on a clamped elastic circular thin plate. Control is achieved by point forces, and quadratic optimization is used to calculate the optimal control gains necessary to minimize a cost function proportional to the radiated acoustic power (the transmitted field). The results show that global attenuation of broadband radiated sound levels for low to mid-range frequencies can be achieved with one or two control forces, irrespective of whether the system is on or off resonance. The efficiency of the control strategy is demonstrated to be related to the nature of the coupling between the plate modes of response and the radiated field.

  1. A study of temporomandibular joint sounds. Part 2. Acoustic characteristics of joint sounds.

    Science.gov (United States)

    Motoyoshi, M; Matsumoto, Y; Ohnuma, M; Arimoto, M; Takahashi, K; Namura, S

    1995-03-01

    In an attempt to gain a better understanding of temporomandibular joint (TMJ) sounds, we recorded joint sounds from 14 non-orthodontically treated dental students, analyzed the acoustic characteristics of the TMJ sounds, and correlated the sound characteristics with axiographic features, morphologic observations of X-ray images and clinical history. The group with a low peak frequency (distance between the opening and closing curves, and a low rate of TMJ transformation. For the closing click, the history of subjective joint sounds tended to be longer when the duration of the wave was short. Acoustic analysis of TMJ sounds could be an aid to the differential diagnosis of temporomandibular disorders, although it is difficult to deduce the clinical history and internal deformities of the TMJ based solely on acoustic characteristics.

  2. Spatially extended sound equalization in rectangular rooms

    DEFF Research Database (Denmark)

    Santillan, Arturo Orozco

    2001-01-01

    of broadband signals can be achieved by the simulation of a traveling plane wave using FIR filters. The optimal solution has been calculated following the traditional least-squares approximation, where a modeling delay has been applied to minimize reverberation. An advantage of the method is that the sound......The results of a theoretical study on global sound equalization in rectangular rooms at low frequencies are presented. The zone where sound equalization can be obtained is a continuous three-dimensional region that occupies almost the complete volume of the room. It is proved that the equalization...

  3. Sound absorption study of raw and expanded particulate vermiculites

    Science.gov (United States)

    Vašina, Martin; Plachá, Daniela; Mikeska, Marcel; Hružík, Lumír; Martynková, Gražyna Simha

    2016-12-01

    Expanded and raw vermiculite minerals were studied for their ability to absorb sound. Phase and structural characterization of the investigated vermiculites was found similar for both types, while morphology and surface properties vary. Sound waves reflect in wedge-like structure and get minimized, and later are absorbed totally. We found that thanks to porous character of expanded vermiculite the principle of absorption of sound into layered vermiculite morphology is analogous to principle of sound minimization in "anechoic chambers." It was found in this study that the best sound damping properties of the investigated vermiculites were in general obtained at higher powder bed heights and higher excitation frequencies.

  4. Beyond Chemical Triggers: Evidence for Sound-Evoked Physiological Reactions in Plants

    Science.gov (United States)

    Jung, Jihye; Kim, Seon-Kyu; Kim, Joo Y.; Jeong, Mi-Jeong; Ryu, Choong-Min

    2018-01-01

    Sound is ubiquitous in nature. Recent evidence supports the notion that naturally occurring and artificially generated sound waves contribute to plant robustness. New information is emerging about the responses of plants to sound and the associated downstream signaling pathways. Here, beyond chemical triggers which can improve plant health by enhancing plant growth and resistance, we provide an overview of the latest findings, limitations, and potential applications of sound wave treatment as a physical trigger to modulate physiological traits and to confer an adaptive advantage in plants. We believe that sound wave treatment is a new trigger to help protect plants against unfavorable conditions and to maintain plant fitness. PMID:29441077

  5. Urban Sound Ecologies

    DEFF Research Database (Denmark)

    Groth, Sanne Krogh; Samson, Kristine

    2013-01-01

    Within recent years, there has been a renewed focus on sound in urban environments. From sound installations in public space to sound festivals in alternative settings, we find a common interest in sound art relating to the urban environment. Artworks or interventions presented in such contexts s...

  6. Sound reproduction system

    NARCIS (Netherlands)

    Boone, M.M.; De Vries, D.; Horbach, U.

    2002-01-01

    Arrangement of a sound reproduction system (1), including at least one input (2), a sound field generator (4), a loudspeaker panel (10); the at least one input (2) connected to the sound filed generator (4), and the sound filed (4) connected to the loudspeaker panel (10); the at least one input (2)

  7. Snell's Law for Spin Waves

    Science.gov (United States)

    Stigloher, J.; Decker, M.; Körner, H. S.; Tanabe, K.; Moriyama, T.; Taniguchi, T.; Hata, H.; Madami, M.; Gubbiotti, G.; Kobayashi, K.; Ono, T.; Back, C. H.

    2016-07-01

    We report the experimental observation of Snell's law for magnetostatic spin waves in thin ferromagnetic Permalloy films by imaging incident, refracted, and reflected waves. We use a thickness step as the interface between two media with different dispersion relations. Since the dispersion relation for magnetostatic waves in thin ferromagnetic films is anisotropic, deviations from the isotropic Snell's law known in optics are observed for incidence angles larger than 25 ° with respect to the interface normal between the two magnetic media. Furthermore, we can show that the thickness step modifies the wavelength and the amplitude of the incident waves. Our findings open up a new way of spin wave steering for magnonic applications.

  8. Directional sound radiation from substation transformers

    International Nuclear Information System (INIS)

    Maybee, N.

    2009-01-01

    This paper presented the results of a study in which acoustical measurements at two substations were analyzed to investigate the directional behaviour of typical arrays having 2 or 3 transformers. Substation transformers produce a characteristic humming sound that is caused primarily by vibration of the core at twice the frequency of the power supply. The humming noise radiates predominantly from the tank enclosing the core. The main components of the sound are harmonics of 120 Hz. Sound pressure level data were obtained for various directions and distances from the arrays, ranging from 0.5 m to over 100 m. The measured sound pressure levels of the transformer tones displayed substantial positive and negative excursions from the calculated average values for many distances and directions. The results support the concept that the directional effects are associated with constructive and destructive interference of tonal sound waves emanating from different parts of the array. Significant variations in the directional sound pattern can occur in the near field of a single transformer or an array, and the extent of the near field is significantly larger than the scale of the array. Based on typical dimensions for substation sites, the distance to the far field may be much beyond the substation boundary and beyond typical setbacks to the closest dwellings. As such, the directional sound radiation produced by transformer arrays introduces additional uncertainty in the prediction of substation sound levels at dwellings within a few hundred meters of a substation site. 4 refs., 4 figs.

  9. Little Sounds

    Directory of Open Access Journals (Sweden)

    Baker M. Bani-Khair

    2017-10-01

    Full Text Available The Spider and the Fly   You little spider, To death you aspire... Or seeking a web wider, To death all walking, No escape you all fighters… Weak and fragile in shape and might, Whatever you see in the horizon, That is destiny whatever sight. And tomorrow the spring comes, And the flowers bloom, And the grasshopper leaps high, And the frogs happily cry, And the flies smile nearby, To that end, The spider has a plot, To catch the flies by his net, A mosquito has fallen down in his net, Begging him to set her free, Out of that prison, To her freedom she aspires, Begging...Imploring...crying,  That is all what she requires, But the spider vows never let her free, His power he admires, Turning blind to light, And with his teeth he shall bite, Leaving her in desperate might, Unable to move from site to site, Tied up with strings in white, Wrapped up like a dead man, Waiting for his grave at night,   The mosquito says, Oh little spider, A stronger you are than me in power, But listen to my words before death hour, Today is mine and tomorrow is yours, No escape from death... Whatever the color of your flower…     Little sounds The Ant The ant is a little creature with a ferocious soul, Looking and looking for more and more, You can simply crush it like dead mold, Or you can simply leave it alone, I wonder how strong and strong they are! Working day and night in a small hole, Their motto is work or whatever you call… A big boon they have and joy in fall, Because they found what they store, A lesson to learn and memorize all in all, Work is something that you should not ignore!   The butterfly: I’m the butterfly Beautiful like a blue clear sky, Or sometimes look like snow, Different in colors, shapes and might, But something to know that we always die, So fragile, weak and thin, Lighter than a glimpse and delicate as light, Something to know for sure… Whatever you have in life and all these fields, You are not happier than a butterfly

  10. Sound Attenuation in Quark Matter Due to Pairing Fluctuations

    Directory of Open Access Journals (Sweden)

    Kerbikov Boris

    2016-01-01

    Full Text Available The sound wave in dense quark matter is subject to strong absorption due to diquark field fluctuations above Tc. The result is another facet of Mandelshtam-Leontovich slow relaxation time theory.

  11. Frequency and wavelength prediction of ultrasonic induced liquid surface waves.

    Science.gov (United States)

    Mahravan, Ehsan; Naderan, Hamid; Damangir, Ebrahim

    2016-12-01

    A theoretical investigation of parametric excitation of liquid free surface by a high frequency sound wave is preformed, using potential flow theory. Pressure and velocity distributions, resembling the sound wave, are applied to the free surface of the liquid. It is found that for impinging wave two distinct capillary frequencies will be excited: One of them is the same as the frequency of the sound wave, and the other is equal to the natural frequency corresponding to a wavenumber equal to the horizontal wavenumber of the sound wave. When the wave propagates in vertical direction, mathematical formulation leads to an equation, which has resonance frequency equal to half of the excitation frequency. This can explain an important contradiction between the frequency and the wavelength of capillary waves in the two cases of normal and inclined interaction of the sound wave and the free surface of the liquid. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. The screening of sound in a subsonic flow by a cylindrical airbubble layer and a semi-infinite tube

    NARCIS (Netherlands)

    Grand, Pieter le

    1971-01-01

    The problem here under discussion lies in the field of sound waves in layered media. The presence of a layer with a velocity of sound less than that of the surroundings will enable sound waves to travel along great distances. In this domain many investigations have been made e. g. in connection with

  13. Sparse representation of Gravitational Sound

    Science.gov (United States)

    Rebollo-Neira, Laura; Plastino, A.

    2018-03-01

    Gravitational Sound clips produced by the Laser Interferometer Gravitational-Wave Observatory (LIGO) and the Massachusetts Institute of Technology (MIT) are considered within the particular context of data reduction. We advance a procedure to this effect and show that these types of signals can be approximated with high quality using significantly fewer elementary components than those required within the standard orthogonal basis framework. Furthermore, a local measure sparsity is shown to render meaningful information about the variation of a signal along time, by generating a set of local sparsity values which is much smaller than the dimension of the signal. This point is further illustrated by recourse to a more complex signal, generated by Milde Science Communication to divulge Gravitational Sound in the form of a ring tone.

  14. Sound field control for a low-frequency test facility

    DEFF Research Database (Denmark)

    Pedersen, Christian Sejer; Møller, Henrik

    2013-01-01

    The two largest problems in controlling the reproduction of low-frequency sound for psychoacoustic experiments is the effect of the room due to standing waves and the relatively large sound pressure levels needed. Anechoic rooms are limited downward in frequency and distortion may be a problem even...

  15. Elastic and piezoelectric properties, sound velocity and Debye ...

    Indian Academy of Sciences (India)

    As shown in figure 3, both the direct and the converse piezoelectric coefficients decrease gradually with increasing hydrostatic pressure. 3.4 Sound velocity and Debye temperature. Sound velocities in an anisotropic material are strongly dependent on the propagation directions. Two types of waves, longitudinal and shear ...

  16. Sound Recordings and the Library. Occasional Papers Number 179.

    Science.gov (United States)

    Almquist, Sharon G.

    The basic concept that sound waves could be traced or recorded on a solid object was developed separately by Leon Scott, Charles Cros, and Thomas Alva Edison between 1857 and 1877 and, by 1890, the foundation of the present-day commercial record industry was established. Although cylinders were the first sound recordings to be sold commercially,…

  17. Measuring the Speed of Sound through Gases Using Nitrocellulose

    Science.gov (United States)

    Molek, Karen Sinclair; Reyes, Karl A.; Burnette, Brandon A.; Stepherson, Jacob R.

    2015-01-01

    Measuring the heat capacity ratios, ?, of gases either through adiabatic expansion or sound velocity is a well established physical chemistry experiment. The most accurate experiments depend on an exact determination of sound origin, which necessitates the use of lasers or a wave generator, where time zero is based on an electrical trigger. Other…

  18. Generation of sound zones in 2.5 dimensions

    DEFF Research Database (Denmark)

    Jacobsen, Finn; Olsen, Martin; Møller, Martin

    2011-01-01

    Amethod for generating sound zones with different acoustic properties in a room is presented. The method is an extension of the two-dimensional multi-zone sound field synthesis technique recently developed by Wu and Abhayapala; the goal is, for example, to generate a plane wave that propagates in...

  19. Demonstrating Sound with Music Production Software

    Science.gov (United States)

    Keeports, David

    2010-01-01

    Readily available software designed for the production of music can be adapted easily to the physics classroom. Programs such as Apple's GarageBand access large libraries of recorded sound waves that can be heard and displayed both before and after alterations. Tools such as real-time spectral analysers, digital effects, and audio file editors…

  20. Spatially extended sound equalization in rectangular rooms

    DEFF Research Database (Denmark)

    Santillan, Arturo Orozco

    2001-01-01

    of broadband signals can be achieved by the simulation of a traveling plane wave using FIR filters. The optimal solution has been calculated following the traditional least-squares approximation, where a modeling delay has been applied to minimize reverberation. An advantage of the method is that the sound...

  1. Sound absorption and reflection with coupled tubes

    NARCIS (Netherlands)

    van der Eerden, F.J.M.

    2000-01-01

    This paper describes a special sound absorbing technique with an accompanying efficient numerical design tool. As a basis pressure waves in a single narrow tube or pore are considered. In such a tube the viscosity and the thermal conductivity of the air, or any other fluid, can have a significant

  2. Topology optimized cloak for airborne sound

    DEFF Research Database (Denmark)

    Andkjær, Jacob Anders; Sigmund, Ole

    2013-01-01

    Directional acoustic cloaks that conceal an aluminum cylinder for airborne sound waves are presented in this paper. Subwavelength cylindrical aluminum inclusions in air constitute the cloak design to aid practical realizations. The positions and radii of the subwavelength cylinders are determined...

  3. Earthquake Early Warning Management based on Client-Server using Primary Wave data from Vibrating Sensor

    Science.gov (United States)

    Laumal, F. E.; Nope, K. B. N.; Peli, Y. S.

    2018-01-01

    Early warning is a warning mechanism before an actual incident occurs, can be implemented on natural events such as tsunamis or earthquakes. Earthquakes are classified in tectonic and volcanic types depend on the source and nature. The tremor in the form of energy propagates in all directions as Primary and Secondary waves. Primary wave as initial earthquake vibrations propagates longitudinally, while the secondary wave propagates like as a sinusoidal wave after Primary, destructive and as a real earthquake. To process the primary vibration data captured by the earthquake sensor, a network management required client computer to receives primary data from sensors, authenticate and forward to a server computer to set up an early warning system. With the water propagation concept, a method of early warning system has been determined in which some sensors are located on the same line, sending initial vibrations as primary data on the same scale and the server recommended to the alarm sound as an early warning.

  4. Topological Phases of Sound and Light

    Directory of Open Access Journals (Sweden)

    V. Peano

    2015-07-01

    Full Text Available Topological states of matter are particularly robust, since they exploit global features of a material’s band structure. Topological states have already been observed for electrons, atoms, and photons. It is an outstanding challenge to create a Chern insulator of sound waves in the solid state. In this work, we propose an implementation based on cavity optomechanics in a photonic crystal. The topological properties of the sound waves can be wholly tuned in situ by adjusting the amplitude and frequency of a driving laser that controls the optomechanical interaction between light and sound. The resulting chiral, topologically protected phonon transport can be probed completely optically. Moreover, we identify a regime of strong mixing between photon and phonon excitations, which gives rise to a large set of different topological phases and offers an example of a Chern insulator produced from the interaction between two physically distinct particle species, photons and phonons.

  5. Thin Fresnel zone plate lenses for focusing underwater sound

    Energy Technology Data Exchange (ETDEWEB)

    Calvo, David C., E-mail: david.calvo@nrl.navy.mil; Thangawng, Abel L.; Nicholas, Michael; Layman, Christopher N. [Acoustics Division, Naval Research Laboratory, Washington, DC 20375 (United States)

    2015-07-06

    A Fresnel zone plate (FZP) lens of the Soret type creates a focus by constructive interference of waves diffracted through open annular zones in an opaque screen. For underwater sound below MHz frequencies, a large FZP that blocks sound using high-impedance, dense materials would have practical disadvantages. We experimentally and numerically investigate an alternative approach of creating a FZP with thin (0.4λ) acoustically opaque zones made of soft silicone rubber foam attached to a thin (0.1λ) transparent rubber substrate. An ultra-thin (0.0068λ) FZP that achieves higher gain is also proposed and simulated which uses low-volume fraction, bubble-like resonant air ring cavities to construct opaque zones. Laboratory measurements at 200 kHz indicate that the rubber foam can be accurately modeled as a lossy fluid with an acoustic impedance approximately 1/10 that of water. Measured focal gains up to 20 dB agree with theoretical predictions for normal and oblique incidence. The measured focal radius of 0.68λ (peak-to-null) agrees with the Rayleigh diffraction limit prediction of 0.61 λ/NA (NA = 0.88) for a low-aberration lens.

  6. Thin Fresnel zone plate lenses for focusing underwater sound

    Science.gov (United States)

    Calvo, David C.; Thangawng, Abel L.; Nicholas, Michael; Layman, Christopher N.

    2015-07-01

    A Fresnel zone plate (FZP) lens of the Soret type creates a focus by constructive interference of waves diffracted through open annular zones in an opaque screen. For underwater sound below MHz frequencies, a large FZP that blocks sound using high-impedance, dense materials would have practical disadvantages. We experimentally and numerically investigate an alternative approach of creating a FZP with thin (0.4λ) acoustically opaque zones made of soft silicone rubber foam attached to a thin (0.1λ) transparent rubber substrate. An ultra-thin (0.0068λ) FZP that achieves higher gain is also proposed and simulated which uses low-volume fraction, bubble-like resonant air ring cavities to construct opaque zones. Laboratory measurements at 200 kHz indicate that the rubber foam can be accurately modeled as a lossy fluid with an acoustic impedance approximately 1/10 that of water. Measured focal gains up to 20 dB agree with theoretical predictions for normal and oblique incidence. The measured focal radius of 0.68λ (peak-to-null) agrees with the Rayleigh diffraction limit prediction of 0.61 λ/NA (NA = 0.88) for a low-aberration lens.

  7. Thin Fresnel zone plate lenses for focusing underwater sound

    International Nuclear Information System (INIS)

    Calvo, David C.; Thangawng, Abel L.; Nicholas, Michael; Layman, Christopher N.

    2015-01-01

    A Fresnel zone plate (FZP) lens of the Soret type creates a focus by constructive interference of waves diffracted through open annular zones in an opaque screen. For underwater sound below MHz frequencies, a large FZP that blocks sound using high-impedance, dense materials would have practical disadvantages. We experimentally and numerically investigate an alternative approach of creating a FZP with thin (0.4λ) acoustically opaque zones made of soft silicone rubber foam attached to a thin (0.1λ) transparent rubber substrate. An ultra-thin (0.0068λ) FZP that achieves higher gain is also proposed and simulated which uses low-volume fraction, bubble-like resonant air ring cavities to construct opaque zones. Laboratory measurements at 200 kHz indicate that the rubber foam can be accurately modeled as a lossy fluid with an acoustic impedance approximately 1/10 that of water. Measured focal gains up to 20 dB agree with theoretical predictions for normal and oblique incidence. The measured focal radius of 0.68λ (peak-to-null) agrees with the Rayleigh diffraction limit prediction of 0.61 λ/NA (NA = 0.88) for a low-aberration lens

  8. Synthesized size-sound sound symbolism

    NARCIS (Netherlands)

    Lockwood, G.F.; Hagoort, P.; Dingemanse, M.; Papafragou, A.; Grodner, D.; Mirman, D.; Trueswell, J.

    2016-01-01

    Studies of sound symbolism have shown that people can associate sound and meaning in consistent ways when presented with maximally contrastive stimulus pairs of nonwords such as bouba/kiki (rounded/sharp) or mil/mal (small/big). Recent work has shown the effect extends to antonymic words from

  9. Dissipation in vibrating superleak second sound transducers

    International Nuclear Information System (INIS)

    Giordano, N.

    1985-01-01

    We have performed an experimental study of the generation and detection of second sound in 4 He using vibrating superleak second sound transducers. At temperatures well below T/sub lambda/ and for low driving amplitudes, the magnitude of the generated second sound wave is proportional to the drive amplitude. However, near T/sub lambda/ and for high drive amplitudes this is no longer the case--instead, the second sound amplitude saturates. In this regime we also find that overtones of the drive frequency are generated. Our results suggest that this behavior is due to critical velocity effects in the pores of the superleak in the generator transducer. This type of measurement may prove to be a useful way in which to study critical velocity effects in confined geometries

  10. Effect of direction on loudness for wideband and reverberant sounds

    DEFF Research Database (Denmark)

    Sivonen, Ville Pekka; Ellermeier, Wolfgang

    2006-01-01

    presented to the listeners via individual binaural synthesis. The results confirm that loudness depends on sound incidence angle, as it does for narrow-band, anechoic sounds. The directional effects, however, were attenuated with the wideband and reverberant stimuli used in the present investigation....

  11. Fascinating World of Shock Waves

    Indian Academy of Sciences (India)

    Srimath

    travelling at supersonic speeds (more than the sound speed at local temperature) then one can see a shock wave around the body as shown in Figure 1. Dissipation of energy, rapid changes in velocity, presure, temperature and flow turning are some of the features associated with shock waves. Obviously the word 'shock.

  12. Electromagnetic wave matching device

    International Nuclear Information System (INIS)

    Hirata, Yosuke; Mitsunaka, Yoshika; Hayashi, Ken-ichi; Ito, Yasuyuki.

    1997-01-01

    The present invention provides a matching device capable of increasing an efficiency of combining beams of electromagnetic waves outputted from an output window of a gyrotron which is expected for plasma heating of a thermonuclear reactor and an electromagnetic wave transmission system as high as possible. Namely, an electromagnetic wave matching device reflects beams of electromagnetic waves incident from an inlet by a plurality of phase correction mirrors and combines them to an external transmission system through an exit. In this case, the phase correction mirrors change the phase of the beams of electromagnetic waves incident to the phase correction mirrors by a predetermined amount corresponding to the position of the reflection mirrors. Then, the beams of electromagnetic waves outputted, for example, from a gyrotron can properly be shaped as desired for the intensity and the phase. As a result, combination efficiency with the transmission system can be increased. (I.S.)

  13. Making fictions sound real

    DEFF Research Database (Denmark)

    Langkjær, Birger

    2010-01-01

    of sounds. Apart from an account of the kinds of sounds that typically appear in a specific genre, a genre analysis of sound may also benefit from a functionalist approach that focuses on how sounds can make both realist and non-realist aspects of genres sound real to audiences.......This article examines the role that sound plays in making fictions perceptually real to film audiences, whether these fictions are realist or non-realist in content and narrative form. I will argue that some aspects of film sound practices and the kind of experiences they trigger are related...... to basic rules of human perception, whereas others are more properly explained in relation to how aesthetic devices, including sound, are used to characterise the fiction and thereby make it perceptually real to its audience. Finally, I will argue that not all genres can be defined by a simple taxonomy...

  14. Making fictions sound real

    DEFF Research Database (Denmark)

    Langkjær, Birger

    2010-01-01

    This article examines the role that sound plays in making fictions perceptually real to film audiences, whether these fictions are realist or non-realist in content and narrative form. I will argue that some aspects of film sound practices and the kind of experiences they trigger are related...... to basic rules of human perception, whereas others are more properly explained in relation to how aesthetic devices, including sound, are used to characterise the fiction and thereby make it perceptually real to its audience. Finally, I will argue that not all genres can be defined by a simple taxonomy...... of sounds. Apart from an account of the kinds of sounds that typically appear in a specific genre, a genre analysis of sound may also benefit from a functionalist approach that focuses on how sounds can make both realist and non-realist aspects of genres sound real to audiences....

  15. Mode Identification of Guided Ultrasonic Wave using Time- Frequency Algorithm

    International Nuclear Information System (INIS)

    Yoon, Byung Sik; Yang, Seung Han; Cho, Yong Sang; Kim, Yong Sik; Lee, Hee Jong

    2007-01-01

    The ultrasonic guided waves are waves whose propagation characteristics depend on structural thickness and shape such as those in plates, tubes, rods, and embedded layers. If the angle of incidence or the frequency of sound is adjusted properly, the reflected and refracted energy within the structure will constructively interfere, thereby launching the guided wave. Because these waves penetrate the entire thickness of the tube and propagate parallel to the surface, a large portion of the material can be examined from a single transducer location. The guided ultrasonic wave has various merits like above. But various kind of modes are propagating through the entire thickness, so we don't know the which mode is received. Most of applications are limited from mode selection and mode identification. So the mode identification is very important process for guided ultrasonic inspection application. In this study, various time-frequency analysis methodologies are developed and compared for mode identification tool of guided ultrasonic signal. For this study, a high power tone-burst ultrasonic system set up for the generation and receive of guided waves. And artificial notches were fabricated on the Aluminum plate for the experiment on the mode identification

  16. An Antropologist of Sound

    DEFF Research Database (Denmark)

    Groth, Sanne Krogh

    2015-01-01

    PROFESSOR PORTRAIT: Sanne Krogh Groth met Holger Schulze, newly appointed professor in Musicology at the Department for Arts and Cultural Studies, University of Copenhagen, to a talk about anthropology of sound, sound studies, musical canons and ideology.......PROFESSOR PORTRAIT: Sanne Krogh Groth met Holger Schulze, newly appointed professor in Musicology at the Department for Arts and Cultural Studies, University of Copenhagen, to a talk about anthropology of sound, sound studies, musical canons and ideology....

  17. Propagation of sound

    DEFF Research Database (Denmark)

    Wahlberg, Magnus; Larsen, Ole Næsbye

    2017-01-01

    properties can be modified by sound absorption, refraction, and interference from multi paths caused by reflections.The path from the source to the receiver may be bent due to refraction. Besides geometrical attenuation, the ground effect and turbulence are the most important mechanisms to influence...... communication sounds for airborne acoustics and bottom and surface effects for underwater sounds. Refraction becomes very important close to shadow zones. For echolocation signals, geometric attenuation and sound absorption have the largest effects on the signals....

  18. Form Follows Sound

    OpenAIRE

    Caramiaux, Baptiste; Altavilla, Alessandro; Pobiner, Scott G.; Tanaka, Atau

    2015-01-01

    Sonic interaction is the continuous relationship between user actions and sound, mediated by some technology. Because interaction with sound may be task oriented or experience-based it is important to understand the nature of action-sound relationships in order to design rich sonic interactions. We propose a participatory approach to sonic interaction design that first considers the affordances of sounds in order to imagine embodied interaction, and based on this, generates interaction models...

  19. Floquet topological insulators for sound

    Science.gov (United States)

    Fleury, Romain; Khanikaev, Alexander B.; Alù, Andrea

    2016-06-01

    The unique conduction properties of condensed matter systems with topological order have recently inspired a quest for the similar effects in classical wave phenomena. Acoustic topological insulators, in particular, hold the promise to revolutionize our ability to control sound, allowing for large isolation in the bulk and broadband one-way transport along their edges, with topological immunity against structural defects and disorder. So far, these fascinating properties have been obtained relying on moving media, which may introduce noise and absorption losses, hindering the practical potential of topological acoustics. Here we overcome these limitations by modulating in time the acoustic properties of a lattice of resonators, introducing the concept of acoustic Floquet topological insulators. We show that acoustic waves provide a fertile ground to apply the anomalous physics of Floquet topological insulators, and demonstrate their relevance for a wide range of acoustic applications, including broadband acoustic isolation and topologically protected, nonreciprocal acoustic emitters.

  20. Modelling Hyperboloid Sound Scattering

    DEFF Research Database (Denmark)

    Burry, Jane; Davis, Daniel; Peters, Brady

    2011-01-01

    The Responsive Acoustic Surfaces workshop project described here sought new understandings about the interaction between geometry and sound in the arena of sound scattering. This paper reports on the challenges associated with modelling, simulating, fabricating and measuring this phenomenon using...... both physical and digital models at three distinct scales. The results suggest hyperboloid geometry, while difficult to fabricate, facilitates sound scattering....

  1. Abnormal sound detection device

    International Nuclear Information System (INIS)

    Yamada, Izumi; Matsui, Yuji.

    1995-01-01

    Only components synchronized with rotation of pumps are sampled from detected acoustic sounds, to judge the presence or absence of abnormality based on the magnitude of the synchronized components. A synchronized component sampling means can remove resonance sounds and other acoustic sounds generated at a synchronously with the rotation based on the knowledge that generated acoustic components in a normal state are a sort of resonance sounds and are not precisely synchronized with the number of rotation. On the other hand, abnormal sounds of a rotating body are often caused by compulsory force accompanying the rotation as a generation source, and the abnormal sounds can be detected by extracting only the rotation-synchronized components. Since components of normal acoustic sounds generated at present are discriminated from the detected sounds, reduction of the abnormal sounds due to a signal processing can be avoided and, as a result, abnormal sound detection sensitivity can be improved. Further, since it is adapted to discriminate the occurrence of the abnormal sound from the actually detected sounds, the other frequency components which are forecast but not generated actually are not removed, so that it is further effective for the improvement of detection sensitivity. (N.H.)

  2. Sound Radiation of Cylindrical Shells

    Directory of Open Access Journals (Sweden)

    B Alzahabi

    2016-09-01

    Full Text Available The acoustic signature of submarines is very critical in such high performance structure. Submarines are not only required to sustain very high dynamic loadings at all time, but also being able maneuver and perform their functions under sea without being detected by sonar systems. Submarines rely on low acoustic signature level to remain undetected. Reduction of sound radiation is most efficiently achieved at the design stage. Acoustic signatures may be determined by considering operational scenarios, and modal characteristics. The acoustic signature of submarines is generally of two categories; broadband which has a continuous spectrum; and a tonal noise which has discrete frequencies. The nature of sound radiation of submarine is fiction of its speed. At low speed the acoustic signature is dominated by tonal noise, while at high speed, the acoustic signature is mainly dominated by broadband noise. Submarine hulls are mainly constructed of circular cylindrical shells. Unlike that of simpler structures such as beams and plates, the modal spectrum of cylindrical shell exhibits very unique characteristics. Mode crossing, the uniqueness of modal spectrum, and the redundancy of modal constraints are just to name a few. In cylindrical shells, the lowest natural frequency is not necessarily associated with the lowest wave index. In fact, the natural frequencies do not fall in ascending order of the wave index either. Solution of the vibration problem of cylindrical shells also indicates repeated natural frequencies. These modes are referred to as double peak frequencies. Mode shapes associated with each one of the natural frequencies are usually a combination of Radial (flexural, Longitudinal (axial, and Circumferential (torsional modes. In this paper, the wave equation will be set up in terms of the pressure fluctuations, p(x, t. It will be demonstrated that the noise radiation is a fluctuating pressure wave.

  3. The first-to-zero-sound transition in non-superfluid liquid 4He

    International Nuclear Information System (INIS)

    Woods, A.D.B.; Svensson, E.C.; Martel, P.

    1976-01-01

    Neutron inelastic scattering from 4 He at T=2.3 K shows that for Q -1 'sound-wave' excitations propagate with the characteristics of ordinary or first sound while for Q > approximately 3nm -1 they propagate with the characteristics of zero sound. (Auth.)

  4. Second Sound in Systems of One-Dimensional Fermions

    Science.gov (United States)

    Matveev, K. A.; Andreev, A. V.

    2017-12-01

    We study sound in Galilean invariant systems of one-dimensional fermions. At low temperatures, we find a broad range of frequencies in which in addition to the waves of density there is a second sound corresponding to the ballistic propagation of heat in the system. The damping of the second sound mode is weak, provided the frequency is large compared to a relaxation rate that is exponentially small at low temperatures. At lower frequencies, the second sound mode is damped, and the propagation of heat is diffusive.

  5. Waves in Strong Centrifugal Field

    Science.gov (United States)

    Bogovalov, S. V.; Kislov, V. A.; Tronin, I. V.

    Dynamics of waves generated by scopes in gas centrifuges (GC) for isotope separation is considered. The centrifugal acceleration in the GC reaches values of the order of 106g. The centrifugal and Coriolis forces modify essentially the conventional sound waves. Three families of the waves with different polarization and dispersion exist in these conditions. Dynamics of the flow in the model GC Iguasu is investigated numerically. Comparison of the results of the numerical modeling of the wave dynamics with the analytical predictions is performed. New phenomena of the resonances in the GC is found. The resonances occur for the waves polarized along the rotational axis having the smallest dumping due to the viscosity.

  6. Sound oscillation of dropwise cluster

    Energy Technology Data Exchange (ETDEWEB)

    Shavlov, A.V., E-mail: shavlov@ikz.ru [Institute of the Earth Cryosphere, RAS Siberian Branch, P.O. 1230, 625000 Tyumen (Russian Federation); Dzhumandzhi, V.A.; Romanyuk, S.N. [Institute of the Earth Cryosphere, RAS Siberian Branch, P.O. 1230, 625000 Tyumen (Russian Federation)

    2012-06-04

    There was registered sound oscillation of a dropwise cluster formed over the warmed-up water surface. We have calculated the electrical charge of drops on the basis of experimental data on ion-sound oscillation. It was demonstrated that the charge is proportional to surface area of the drops and does not depend on intensity of their evaporation (condensation) in the range of 60–100 °C. The charge of drops reaches 10{sup 2}–10{sup 3} units of elementary charge and coincides on magnitude order with the literary value of a charge calculated by another method. -- Highlights: ► The present investigation registered short-wave sound oscillations of water drops in a dropwise cluster in the range of 60–100 °C. ► We have found autocorrelation functions and Fourier transforms of time series of interdroplet distance; defined oscillation frequencies. ► Calculated electrical charge of drops and specified that the charge is proportional to the drop surface area.

  7. Sound oscillation of dropwise cluster

    International Nuclear Information System (INIS)

    Shavlov, A.V.; Dzhumandzhi, V.A.; Romanyuk, S.N.

    2012-01-01

    There was registered sound oscillation of a dropwise cluster formed over the warmed-up water surface. We have calculated the electrical charge of drops on the basis of experimental data on ion-sound oscillation. It was demonstrated that the charge is proportional to surface area of the drops and does not depend on intensity of their evaporation (condensation) in the range of 60–100 °C. The charge of drops reaches 10 2 –10 3 units of elementary charge and coincides on magnitude order with the literary value of a charge calculated by another method. -- Highlights: ► The present investigation registered short-wave sound oscillations of water drops in a dropwise cluster in the range of 60–100 °C. ► We have found autocorrelation functions and Fourier transforms of time series of interdroplet distance; defined oscillation frequencies. ► Calculated electrical charge of drops and specified that the charge is proportional to the drop surface area.

  8. Wheelchair incidents

    NARCIS (Netherlands)

    Drongelen AW van; Roszek B; Hilbers-Modderman ESM; Kallewaard M; Wassenaar C; LGM

    2002-01-01

    This RIVM study was performed to gain insight into wheelchair-related incidents with powered and manual wheelchairs reported to the USA FDA, the British MDA and the Dutch Center for Quality and Usability Research of Technical Aids (KBOH). The data in the databases do not indicate that incidents with

  9. 78 FR 13869 - Puget Sound Energy, Inc.; Puget Sound Energy, Inc.; Puget Sound Energy, Inc.; Puget Sound Energy...

    Science.gov (United States)

    2013-03-01

    ...-123-LNG; 12-128-NG; 12-148-NG; 12- 158-NG] Puget Sound Energy, Inc.; Puget Sound Energy, Inc.; Puget Sound Energy, Inc.; Puget Sound Energy, Inc.; Puget Sound Energy, Inc.; CE FLNG, LLC; Consolidated...-NG Puget Sound Energy, Inc Order granting long- term authority to import/export natural gas from/to...

  10. Measurement of absorption with a p-u sound intensity probe in an impedance tube

    DEFF Research Database (Denmark)

    Liu, Yang; Jacobsen, Finn

    2005-01-01

    An alternative method of measuring the normal-incidence sound absorption of a sample of material in an impedance tube is examined. The method is based on measurement of the sound pressure and the normal component of the particle velocity using a "p-u" sound intensity probe. This technique...

  11. Grazing Incidence X-ray Scattering and Diffraction

    Indian Academy of Sciences (India)

    IAS Admin

    tion between the incident plane wave and the medium is sufficiently weak, then the first Born approximation, can be applied. In this approximation, the scattered wave function ψ(r ) can be assumed to be the same as the incident plane wave and hence the scattering amplitude takes a simpler form f(kf ,ki) = ∫ dr ϱ(r )e iq.r.

  12. Third sound in a restricted geometry

    International Nuclear Information System (INIS)

    Brouwer, P.W.; Draisma, W.A.; Pinkse, P.W.H.; Beelen, H. van; Jochemsen, R.; Frossati, G.

    1992-01-01

    Bergman's general treatment of third sound waves has been extended to a (restricted) parallel plate geometry. In a parallel plate geometry two independent third sound modes can propagate: a symmetric and an antisymmetric one. Calculations show that at temperatures below 1 K the antisymmetric mode carries the most important part of the temperature amplitude. Because of the relatively strong substrate influence the temperature amplitude of the symmetric mode is suppressed. The ΔT/Δh versus T measurements by Laheurte et al. and of the ΔT/Δh versus ω measurements by Ellis et al. are explained. 7 refs., 2 figs

  13. Binaural loudness for artificial-head measurements in directional sound fields

    DEFF Research Database (Denmark)

    Sivonen, Ville Pekka; Ellermeier, Wolfgang

    2008-01-01

    by using head-related transfer functions measured for an artificial head. The results, which exhibited marked individual differences, show that loudness depends on the direction from which a sound reaches the listener. The average results suggest a relatively simple rule for combining the two signals......The effect of the sound incidence angle on loudness was investigated for fifteen listeners who matched the loudness of sounds coming from five different incidence angles in the horizontal plane to that of the same sound with frontal incidence. The stimuli were presented via binaural synthesis...

  14. Computer-based detection and analysis of heart sound and murmur.

    Science.gov (United States)

    El-Segaier, M; Lilja, O; Lukkarinen, S; Sörnmo, L; Sepponen, R; Pesonen, E

    2005-07-01

    To develop a digital algorithm that detects first and second heart sounds, defines the systole and diastole, and characterises the systolic murmur. Heart sounds were recorded in 300 children with a cardiac murmur, using an electronic stethoscope. A Digital algorithm was developed for detection of first and second heart sounds. R-waves and T-waves in the electrocardiography were used as references for detection. The sound signal analysis was carried out using the short-time Fourier transform. The first heart sound detection rate, with reference to the R-wave, was 100% within 0.05-0.2R-R interval. The second heart sound detection rate between the end of the T-wave and the 0.6R-R interval was 97%. The systolic and diastolic phases of the cardiac cycle could be identified. Because of the overlap between heart sounds and murmur a systolic segment between the first and second heart sounds (20-70%) was selected for murmur analysis. The maximum intensity of the systolic murmur, its average frequency, and the mean spectral power were quantified. The frequency at the point with the highest sound intensity in the spectrum and its time from the first heart sound, the highest frequency, and frequency range were also determined. This method will serve as the foundation for computer-based detection of heart sounds and the characterisation of cardiac murmurs.

  15. Sound Insulation between Dwellings

    DEFF Research Database (Denmark)

    Rasmussen, Birgit

    2011-01-01

    Regulatory sound insulation requirements for dwellings exist in more than 30 countries in Europe. In some countries, requirements have existed since the 1950s. Findings from comparative studies show that sound insulation descriptors and requirements represent a high degree of diversity...... and initiate – where needed – improvement of sound insulation of new and existing dwellings in Europe to the benefit of the inhabitants and the society. A European COST Action TU0901 "Integrating and Harmonizing Sound Insulation Aspects in Sustainable Urban Housing Constructions", has been established and runs...... 2009-2013. The main objectives of TU0901 are to prepare proposals for harmonized sound insulation descriptors and for a European sound classification scheme with a number of quality classes for dwellings. Findings from the studies provide input for the discussions in COST TU0901. Data collected from 24...

  16. Sound absorption of snow

    OpenAIRE

    Maysenhölder, W.; Schneebeli, M.; Zhou, X.; Zhang, T.; Heggli, M.

    2008-01-01

    Recently fallen snow possesses good sound-absorbing properties. This fact is well-known and confirmed by measurements. Is the filigree structure of snowflakes decisive? In principle we know that the sound-absorbing capacity of a porous material is dependent on its structure. But until now the question as to which structural characteristics are significant has been insufficiently answered. Detailed investigations of snow are to explain this fact by precise measurements of the sound absorption,...

  17. SOUND-SPEED TOMOGRAPHY USING FIRST-ARRIVAL TRANSMISSION ULTRASOUND FOR A RING ARRAY

    Energy Technology Data Exchange (ETDEWEB)

    HUANG, LIANJIE [Los Alamos National Laboratory; QUAN, YOULI [Los Alamos National Laboratory

    2007-01-31

    Sound-speed tomography images can be used for cancer detection and diagnosis. Tumors have generally higher sound speeds than the surrounding tissue. Quality and resolution of tomography images are primarily determined by the insonification/illumination aperture of ultrasound and the capability of the tomography method for accurately handling heterogeneous nature of the breast. We investigate the capability of an efficient time-of-flight tomography method using transmission ultrasound from a ring array for reconstructing sound-speed images of the breast. The method uses first arrival times of transmitted ultrasonic signals emerging from non-beamforming ultrasound transducers located around a ring. It properly accounts for ray bending within the breast by solving the eikonal equation using a finite-difference scheme. We test and validate the time-of-flight transmission tomography method using synthetic data for numerical breast phantoms containing various objects. In our simulation, the objects are immersed in water within a ring array. Two-dimensional synthetic data are generated using a finite-difference scheme to solve acoustic-wave equation in heterogeneous media. We study the reconstruction accuracy of the tomography method for objects with different sizes and shapes as well as different perturbations from the surrounding medium. In addition, we also address some specific data processing issues related to the tomography. Our tomography results demonstrate that the first-arrival transmission tomography method can accurately reconstruct objects larger than approximately five wavelengths of the incident ultrasound using a ring array.

  18. Numerical simulation of the supersonic boundary layer interaction with arbitrary oriented acoustic waves

    Science.gov (United States)

    Semenov, A. N.; Gaponov, S. A.

    2017-10-01

    Based the direct numerical simulation in the paper the supersonic flow around of the infinitely thin plate, which was perturbed by the acoustic wave, was investigated. Calculations carried out in the case of small perturbations at the Mach number M=2 and Reynold's numbers Resound wave more efficiently if the plate is irradiated from above. At the fixed Reynolds's number and frequency there are critical values of the sliding and incidence angles (χ, φ) at which the disturbances excited by a sound wave are maxima. At M=2 it takes place at χ≈ φ ≈30°. The excitation efficiency of perturbations in the boundary layer increases with the Mach number, and it decreases with a frequency.

  19. Sound analysis of a cup drum

    International Nuclear Information System (INIS)

    Kim, Kun ho

    2012-01-01

    The International Young Physicists’ Tournament (IYPT) is a worldwide tournament that evaluates a high-school student's ability to solve various physics conundrums that have not been fully resolved in the past. The research presented here is my solution to the cup drum problem. The physics behind a cup drum has never been explored or modelled. A cup drum is a musical instrument that can generate different frequencies and amplitudes depending on the location of a cup held upside-down over, on or under a water surface. The tapping sound of a cup drum can be divided into two components: standing waves and plate vibration. By individually researching the nature of these two sounds, I arrived at conclusions that could accurately predict the frequencies in most cases. When the drum is very close to the surface, qualitative explanations are given. In addition, I examined the trend of the tapping sound amplitude at various distances and qualitatively explained the experimental results. (paper)

  20. Sound transmission in porcine thorax through airway insonification.

    Science.gov (United States)

    Peng, Ying; Dai, Zoujun; Mansy, Hansen A; Henry, Brian M; Sandler, Richard H; Balk, Robert A; Royston, Thomas J

    2016-04-01

    Many pulmonary injuries and pathologies may lead to structural and functional changes in the lungs resulting in measurable sound transmission changes on the chest surface. Additionally, noninvasive imaging of externally driven mechanical wave motion in the chest (e.g., using magnetic resonance elastography) can provide information about lung structural property changes and, hence, may be of diagnostic value. In the present study, a comprehensive computational simulation (in silico) model was developed to simulate sound wave propagation in the airways, lung, and chest wall under normal and pneumothorax conditions. Experiments were carried out to validate the model. Here, sound waves with frequency content from 50 to 700 Hz were introduced into airways of five porcine subjects via an endotracheal tube, and transmitted waves were measured by scanning laser Doppler vibrometry at the chest wall surface. The computational model predictions of decreased sound transmission with pneumothorax were consistent with experimental measurements. The in silico model can also be used to visualize wave propagation inside and on the chest wall surface for other pulmonary pathologies, which may help in developing and interpreting diagnostic procedures that utilize sound and vibration.

  1. Understanding "Human" Waves: Exploiting the Physics in a Viral Video

    Science.gov (United States)

    Ferrer-Roca, Chantal

    2018-01-01

    Waves are a relevant part of physics that students find difficult to grasp, even in those cases in which wave propagation kinematics can be visualized. This may hinder a proper understanding of sound, light or quantum physics phenomena that are explained using a wave model. So-called "human" waves, choreographed by people, have proved to…

  2. Simulation study of acoustic wave propagation in ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Mohite-Patil, T.B.; Saran, A.K.; Sawant, S.R.; Chile, R.H.; Mohite-Patil, T.T.

    Many reports are available on the sound attenuation and speed in the deep ocean, as a function of different ingredients of sea. The absorption and speed of sound waves are related to the change in sound speed, depth, salinity, temperature, PH...

  3. Incidents analysis

    International Nuclear Information System (INIS)

    Francois, P.

    1996-01-01

    We undertook a study programme at the end of 1991. To start with, we performed some exploratory studies aimed at learning some preliminary lessons on this type of analysis: Assessment of the interest of probabilistic incident analysis; possibility of using PSA scenarios; skills and resources required. At the same time, EPN created a working group whose assignment was to define a new approach for analysis of incidents on NPPs. This working group gave thought to both aspects of Operating Feedback that EPN wished to improve: Analysis of significant incidents; analysis of potential consequences. We took part in the work of this group, and for the second aspects, we proposed a method based on an adaptation of the event-tree method in order to establish a link between existing PSA models and actual incidents. Since PSA provides an exhaustive database of accident scenarios applicable to the two most common types of units in France, they are obviously of interest for this sort of analysis. With this method we performed some incident analyses, and at the same time explores some methods employed abroad, particularly ASP (Accident Sequence Precursor, a method used by the NRC). Early in 1994 EDF began a systematic analysis programme. The first, transient phase will set up methods and an organizational structure. 7 figs

  4. Nonlinear internal wave effects on acoustic propagation and scattering

    Science.gov (United States)

    McMahon, Kara Grace

    Experimental observations and theoretical studies show that nonlinear internal waves occur widely in shallow water and cause acoustic propagation effects including ducting and mode coupling. Horizontal ducting results when acoustic modes travel between internal wave fronts that form waveguide boundaries. For small grazing angles between a mode trajectory and a front, an interference pattern may arise that is a horizontal Lloyd mirror pattern. An analytic description for this feature is provided, along with comparisons between results from the formulated model predicting a horizontal Lloyd mirror pattern and an adiabatic mode parabolic equation. Different waveguide models are considered, including boxcar and jump sound speed profiles where change in sound speed is assumed 12 m/s. Modifications to the model are made to include multiple and moving fronts. The focus of this analysis is on different front locations relative to the source, as well as on the number of fronts and their curvatures and speeds. Curvature influences mode incidence angles and thereby changes the interference patterns. For sources oriented so that the front appears concave, the areas with interference patterns shrink as curvature increases, while convexly oriented fronts cause patterns to expand. Curvature also influence how energy is distributed in the internal wave duct. For certain curvatures and duct widths energy forms a whispering gallery or becomes fully ducted. Angular constraints which indicate when to expect these phenomena are presented. Results are compared to propagation calculations and were found to agree in most examples. In some cases trailing internal waves are present in the duct and disturb horizontal propagation. This type of propagation is characterized as a scattering process as a result of broken internal wave fronts between the lead waves. Traditionally this is handled in regimes where adiabatic normal modes are valid using sound speed perturbations to describe energy

  5. Analysis of Waves

    DEFF Research Database (Denmark)

    Frigaard, Peter; Andersen, Thomas Lykke

    The present book describes the most important aspects of wave analysis techniques applied to physical model tests. Moreover, the book serves as technical documentation for the wave analysis software WaveLab 3, cf. Aalborg University (2012). In that respect it should be mentioned that supplementary...... to the present technical documentation exists also the online help document describing the WaveLab software in detail including all the inputs and output fields. In addition to the two main authors also Tue Hald, Jacob Helm-Petersen and Morten Møller Jakobsen have contributed to the note. Their input is highly...... acknowledged. The outline of the book is as follows: • Chapter 2 and 3 describes analysis of waves in time and frequency domain. • Chapter 4 and 5 describes the separation of incident and reflected waves for the two-dimensional case. • Chapter 6 describes the estimation of the directional spectra which also...

  6. Measurement of sound propagation in glass wool

    DEFF Research Database (Denmark)

    Tarnow, Viggo

    1995-01-01

    A new acoustic method for directly measuring the flow resistance, and the compressibility of fibrous materials such as glass wool, is given. Measured results for monochromatic sound in glass wool are presented and compared with theoretically calculated results. The agreement between experimental...... results and theory is good. Results of measurements of characteristic impedance, attenuation, and phase shift for plane monochromatic traveling waves are presented and compared with theoretically calculated ones. Good agreement between experimental and theoretical results was found....

  7. Interactive physically-based sound simulation

    Science.gov (United States)

    Raghuvanshi, Nikunj

    behind obstructions, reverberation, scattering from complex geometry and sound focusing. This is enabled by a novel compact representation that takes a thousand times less memory than a direct scheme, thus reducing memory footprints to fit within available main memory. To the best of my knowledge, this is the only technique and system in existence to demonstrate auralization of physical wave-based effects in real-time on large, complex 3D scenes.

  8. The sounds of nanotechnology

    Science.gov (United States)

    Campbell, Norah; Deane, Cormac; Murphy, Padraig

    2017-07-01

    Public perceptions of nanotechnology are shaped by sound in surprising ways. Our analysis of the audiovisual techniques employed by nanotechnology stakeholders shows that well-chosen sounds can help to win public trust, create value and convey the weird reality of objects on the nanoscale.

  9. Poetry Pages. Sound Effects.

    Science.gov (United States)

    Fina, Allan de

    1992-01-01

    Explains how elementary teachers can help students understand onomatopoeia, suggesting that they define onomatopoeia, share examples of it, read poems and have students discuss onomatopoeic words, act out common household sounds, write about sound effects, and create choral readings of onomatopoeic poems. Two appropriate poems are included. (SM)

  10. Sound propagation in cities

    NARCIS (Netherlands)

    Salomons, E.; Polinder, H.; Lohman, W.; Zhou, H.; Borst, H.

    2009-01-01

    A new engineering model for sound propagation in cities is presented. The model is based on numerical and experimental studies of sound propagation between street canyons. Multiple reflections in the source canyon and the receiver canyon are taken into account in an efficient way, while weak

  11. OMNIDIRECTIONAL SOUND SOURCE

    DEFF Research Database (Denmark)

    1996-01-01

    A sound source comprising a loudspeaker (6) and a hollow coupler (4) with an open inlet which communicates with and is closed by the loudspeaker (6) and an open outlet, said coupler (4) comprising rigid walls which cannot respond to the sound pressures produced by the loudspeaker (6). According...

  12. Notes on Sound

    Directory of Open Access Journals (Sweden)

    Bonnie Jones

    2012-08-01

    Full Text Available Bonnie Jones creates improvised and composed text-sound performances that explore the fluidity and function of electronic noise (field recordings, circuit bending and text (poetry, found, spoken. She is interested in how people perceive, “read” and interact with these sounds and texts given our current technological moment.

  13. Short term wave forecasting, using digital filters, for improved control of Wave Energy Converters

    DEFF Research Database (Denmark)

    Tedd, James; Frigaard, Peter

    2007-01-01

    This paper presents a Digital Filter method for real time prediction of waves incident upon a Wave Energy device. The method transforms waves measured at a point ahead of the device, to expected waves incident on the device. The relationship between these incident waves and power capture is derived...... experimentally. Results are shown form measurements taken on the Wave Dragon prototype device, a floating overtopping device situated in Northern Denmark. In this case the method is able to accurately predict the surface elevation at the device 11.2 seconds before the measurement is made. This is sufficient...

  14. Strain Imaging Using Terahertz Waves and Metamaterials

    Science.gov (United States)

    2016-11-01

    polarization of incident EM waves by favoring the transmission of waves of a particular polarization. The interaction of some materials with incident...polarization of the waves after they have passed through the test material or object. Using the measured transmission intensity values, the...resolution. Shorter wavelength EM waves , such as visual light , have poor penetration ability but produce high-resolution images. However, the

  15. InfoSound

    DEFF Research Database (Denmark)

    Sonnenwald, Diane H.; Gopinath, B.; Haberman, Gary O.

    1990-01-01

    The authors explore ways to enhance users' comprehension of complex applications using music and sound effects to present application-program events that are difficult to detect visually. A prototype system, Infosound, allows developers to create and store musical sequences and sound effects...... with application events, and have real-time, continuous auditory control of sounds during application execution. InfoSound has been used to create auditory interfaces for two applications: a telephone network service simulation and a parallel computation simulation. The auditory interfaces in these applications...... helped users detect rapid, multiple-event sequences that were difficult to visually detect using text and graphical interfaces. The authors describe the architecture of InfoSound, the use of the system, and the lessons learned....

  16. Sound classification of dwellings

    DEFF Research Database (Denmark)

    Rasmussen, Birgit

    2012-01-01

    National schemes for sound classification of dwellings exist in more than ten countries in Europe, typically published as national standards. The schemes define quality classes reflecting different levels of acoustical comfort. Main criteria concern airborne and impact sound insulation between...... dwellings, facade sound insulation and installation noise. The schemes have been developed, implemented and revised gradually since the early 1990s. However, due to lack of coordination between countries, there are significant discrepancies, and new standards and revisions continue to increase the diversity...... is needed, and a European COST Action TU0901 "Integrating and Harmonizing Sound Insulation Aspects in Sustainable Urban Housing Constructions", has been established and runs 2009-2013, one of the main objectives being to prepare a proposal for a European sound classification scheme with a number of quality...

  17. Mechanisms of elastic wave generation in solids by ion impact

    International Nuclear Information System (INIS)

    Deemer, B.; Murphy, J.; Claytor, T.

    1990-01-01

    This study is directed at understanding the mechanisms of acoustic signal generation by modulated beams of energetic ions as a function of ion energy. Interaction of ions with solids initiates a range of processes including sputtering, ion implantation, ionization, both internal and external, as well as thermal deposition in the solid. Accumulated internal stress also occurs by generation of dislocations resulting from, inelastic nuclear scattering of the incident ion beam. With respect to elastic wave generation, two potential mechanisms are thermoelastic induced stress and momentum transfer. The latter process includes contributions of momentum transfer from the incident beam and from ions ejected via sputtering. Other aspects of the generation process include the potential for shock wave generation since the mean particle velocity for a wide range of ion energies exceeds the velocity of sound in solids. This study seeks to distinguish the contribution of these mechanisms by studying the signature, angular distribution and energy dependence of the elastic wave response in the time domain and to use this information to understand technologically important processes such as implantation and sputtering

  18. Acoustics waves and oscillations

    CERN Document Server

    Sen, S.N.

    2013-01-01

    Parameters of acoustics presented in a logical and lucid style Physical principles discussed with mathematical formulations Importance of ultrasonic waves highlighted Dispersion of ultrasonic waves in viscous liquids explained This book presents the theory of waves and oscillations and various applications of acoustics in a logical and simple form. The physical principles have been explained with necessary mathematical formulation and supported by experimental layout wherever possible. Incorporating the classical view point all aspects of acoustic waves and oscillations have been discussed together with detailed elaboration of modern technological applications of sound. A separate chapter on ultrasonics emphasizes the importance of this branch of science in fundamental and applied research. In this edition a new chapter ''Hypersonic Velocity in Viscous Liquids as revealed from Brillouin Spectra'' has been added. The book is expected to present to its readers a comprehensive presentation of the subject matter...

  19. Ultrasonic waves in classical gases

    Science.gov (United States)

    Magner, A. G.; Gorenstein, M. I.; Grygoriev, U. V.

    2017-12-01

    The velocity and absorption coefficient for the plane sound waves in a classical gas are obtained by solving the Boltzmann kinetic equation, which describes the reaction of the single-particle distribution function to a periodic external field. Within the linear response theory, the nonperturbative dispersion equation valid for all sound frequencies is derived and solved numerically. The results are in agreement with the approximate analytical solutions found for both the frequent- and rare-collision regimes. These results are also in qualitative agreement with the experimental data for ultrasonic waves in dilute gases.

  20. Einstein contra Aristotle: The sound from the heavens

    Science.gov (United States)

    Neves, J. C. S.

    2017-09-01

    In "On the Heavens" Aristotle criticizes the Pythagorean point of view which claims the existence of a cosmic music and a cosmic sound. According to the Pythagorean argument, there exists a cosmic music produced by stars and planets. These celestial bodies generate sound in its movements, and the music appears due to the cosmic harmony. For Aristotle, there is no sound produced by celestial bodies. Then, there is no music as well. However, recently, LIGO (Laser Interferometer Gravitational-Waves Observatory) has detected the gravitational waves predicted by Einstein. In some sense, a sound originated from black holes has been heard. That is, Einstein or the General Relativity and LIGO appear to be with the Pythagoreanism and against the master of the Lyceum.