WorldWideScience

Sample records for incident pump power

  1. Reactor coolant pump transportation incident

    International Nuclear Information System (INIS)

    Noce, D.

    1992-01-01

    This paper reports on an incident, which occurred on August 27, 1991, in which a Reactor Coolant Pump motor en route from Surry Power Station to Westinghouse repair facilities struck the overpass at the junction of Interstate 64 and Jefferson Avenue in Newport News, Virginia. The transport container that housed the reactor coolant pump motor failed to clear the overpass. The force of the impact dislodged the container and motor from the truck bed, and it landed on the acceleration land and road shoulder. Upon impact, the container broke open and exposed the reactor coolant pump motor. Incidental radioactively contaminated water that remained in the motor coolers drained onto the road, contaminating the aggregate as well as the underlying gravel

  2. Main pumps lost incident in the nuclear power plant Atucha I. Modelling with RELAP5/MOD3.2

    International Nuclear Information System (INIS)

    Ventura, M.A.; Rosso, R.D.

    1998-01-01

    Time evolution of natural circulation in the nuclear power plant Atucha I (CNA-I), in a main pumps lost incident because of the lost of external power feed, is analyzed. It leads to a strong stop transient, without an important blow down, from a forced nominal flow to a natural circulation one. The results are obtained from RELAP5/MOD3.2 code's modeling. The study is based on the refrigeration conditions analysis, during the first minutes of the reactor out of service. Previously to the transient, work had been done to obtain the plant steady state, with design parameters in operation conditions at 100 % of power. The object is that the actual plant state would be represented. In this way, each plant part (steam generators, reactor, pressurizer, pumps) had been modeled in separated form with the appropriate boundary conditions, to be used in the whole circuit simulation. The developed model, had been validated making use of the comparison between the values obtained to the principal thermodynamic parameters with the plant recorded values, in the same incident. The results are satisfactory in a way. On the other hand, it has suggested some modeling changes. The RELAP5/MOD3.2 capability to model the thermodynamic phenomena in a PHWR plant has been verified when, according to the mentioned incident, the flow pass from a nominal forced flow, to one which is governed by natural circulation, still with the CNA-I untypical design conditions. (author) [es

  3. Pumps for nuclear power stations

    International Nuclear Information System (INIS)

    Ogura, Shiro

    1979-01-01

    16 nuclear power plants are in commercial operation in Japan, and nuclear power generation holds the most important position among various substitute energies. Hereafter also, it is expected that the construction of nuclear power stations will continue because other advantageous energy sources are not found. In this paper, the outline of the pumps used for BWR plants is described. Nuclear power stations tend to be large scale to reduce the construction cost per unit power output, therefore the pumps used are those of large capacity. The conditions to be taken in consideration are high temperature, high pressure, radioactive fluids, high reliability, hydrodynamic performances, aseismatic design, relevant laws and regulations, and quality assurance. Pumps are used for reactor recirculation system, control rod driving hydraulic system, boric acid solution injecting system, reactor coolant purifying system, fuel pool cooling and purifying system, residual heat removing system, low pressure and high pressure core spraying systems, and reactor isolation cooling system, for condensate, feed water, drain and circulating water systems of turbines, for fresh water, sea water, make-up water and fire fighting services, and for radioactive waste treating system. The problems of the pumps used for nuclear power stations are described, for example, the requirement of high reliability, the measures to radioactivity and the aseismatic design. (Kako, I.)

  4. High power diode pumped solid state lasers

    International Nuclear Information System (INIS)

    Solarz, R.; Albrecht, G.; Beach, R.; Comaskey, B.

    1992-01-01

    Although operational for over twenty years, diode pumped solid state lasers have, for most of their existence, been limited to individual diodes pumping a tiny volume of active medium in an end pumped configuration. More recent years have witnessed the appearance of diode bars, packing around 100 diodes in a 1 cm bar which have enabled end and side pumped small solid state lasers at the few Watt level of output. This paper describes the subsequent development of how proper cooling and stacking of bars enables the fabrication of multi kill average power diode pump arrays with irradiances of 1 kw/cm peak and 250 W/cm 2 average pump power. Since typical conversion efficiencies from the diode light to the pumped laser output light are of order 30% or more, kW average power diode pumped solid state lasers now are possible

  5. Pumps in nuclear power plants

    International Nuclear Information System (INIS)

    Kim, J.H.

    1991-01-01

    This paper reports that pumps play an important role in nuclear plant operation. For instance, reactor coolant pumps (RCPs) should provide adequate cooling for reactor core in both normal operation and transient or accident conditions. Pumps such as Low Pressure Safety Injection (LPSI) pump in the Emergency Core Cooling System (ECCS) play a crucial role during an accident, and their reliability is of paramount importance. Some key issues involved with pumps in nuclear plant system include the performance of RCP under two-phase flow conditions, piping vibration due to pump operating in two-phase flows, and reliability of LPSI pumps

  6. Scavenged body heat powered infusion pump

    International Nuclear Information System (INIS)

    Bell, Alexander; Ehringer, William D; McNamara, Shamus

    2013-01-01

    An infusion pump powered by body heat is investigated in this paper, with the goal of addressing the needs of dermal wound healing. The infusion pump incorporates a Knudsen gas pump, a type of thermally driven pump, to pneumatic push the pharmaceutical agent from a reservoir. Two designs are considered: an integrated pump and reservoir, and a design with cascaded pump and reservoir. Thermal models are developed for both pumps, and the simulations agree well with the experimental results. The integrated pump and reservoir design uses hydrophobic materials to prevent a flow from occurring unless the infusion pump is placed on a human body. Flow rates in the µL min −1 range for the integrated pump and reservoir, and approximately 70 µL min −1 for the cascaded pump were obtained. The dynamic behavior of the cascaded pump is described based on the thermal models. Multiple copies of the cascaded pump are easily made in series or parallel, to increase either the pressure or the flow rate. The flow rate of multiple pumps in series does not change, and the pressure of multiple pumps in parallel does not change. (paper)

  7. Circulating water pumps for nuclear power stations

    International Nuclear Information System (INIS)

    Satoh, Hiroshi; Ohmori, Tsuneaki

    1979-01-01

    Shortly, the nuclear power station with unit power output of 1100 MW will begin the operation, and the circulating water pumps manufactured recently are those of 2.4 to 4 m bore, 840 to 2170 m 3 /min discharge and 2100 to 5100 kW driving power. The circulating water pumps are one of important auxiliary machines, because if they fail, power generation capacity lowers immediately. Enormous quantity of cooling water is required to cool condensers, therefore in Japan, sea water is usually used. As siphon is formed in circulating water pipes, the total head of the pumps is not very high. The discharge of the pumps is determined so as to keep the temperature rise of discharged water lower than 7 deg. C. The quantity of cooling water for nuclear power generation is about 50% more as compared with thermal power generation because of the difference in steam conditions. The total head of the pumps is normally from 8 to 15 m. The circulating water pumps rarely stop after they started the operation, therefore it is economical to determine the motor power so that it can withstand 10% overload for a short period, instead of large power. At present, vertical shaft, oblique flow circulating water pumps are usually employed. Recently, movable blade pumps are adopted. The installation, construction and materials of the pumps and the problems are described. (Kako, I.)

  8. Nuclear power/water pumping-up composite power plant

    International Nuclear Information System (INIS)

    Okamura, Kiyoshi.

    1995-01-01

    In a nuclear power/water pumping-up composite power plant, a reversible pump for pumping-up power generation connected to a steam turbine is connected to an upper water reservoir and a lower water reservoir. A pumping-up steam turbine for driving the turbine power generator, a hydraulic pump for driving water power generator by water flowing from the upper water reservoir and a steam turbine for driving the pumping-up pump by steams from a nuclear reactor are disposed. When power demand is small during night, the steam turbine is rotated by steams of the reactor, to pump up the water in the lower water reservoir to the upper water reservoir by the reversible pump. Upon peak of power demand during day time, power is generated by the steams of the reactor, as well as the reversible pump is rotated by the flowing water from the upper water reservoir to conduct hydraulic power generation. Alternatively, hydraulic power generation is conducted by flowing water from the upper reservoir. Since the number of energy conversion steps in the combination of nuclear power generation and pumping-up power generation is reduced, energy loss is reduced and utilization efficiency can be improved. (N.H.)

  9. Power supplyer for reactor coolant recycling pump

    International Nuclear Information System (INIS)

    Nara, Hiroshi; Okinaka, Yo.

    1991-01-01

    The present invention concerns a variable voltage/variable frequency static power source (static power source) used as a power source for a coolants recycling pump motor of a nuclear power plant. That is, during lower power operation such as start up or shutdown in which stoppage of the power source gives less effect to a reactor core, power is supplied from a power system, a main power generator connected thereto or a high voltage bus in the plant or a common high voltage bus to the static power source. However, during rated power operation, power is supplied from the output of an axially power generator connected with a main power generator having an extremely great inertia moment to the static power device. With such a constitution, the static power device is not stopped by the lowering of the voltage due to a thunderbolt falling accident or the like to a power-distribution line suddenly occurred in the power system. Accordingly, reactor core flowrate is free from rapid decrease caused by the reduction of rotation speed of the recycling pump. Accordingly, disadvantgages upon operation control in the reactor core is not caused. (I.S.)

  10. improvement of hydroelectric power generation using pumped

    African Journals Online (AJOL)

    HOD

    1, 4 DEPARTMENT OF SYSTEMS ENGINEERING, UNIVERSITY OF LAGOS, AKOKA, YABA, ... pumped storage system for generating hydroelectric power all year round. ... Power supply situation in Nigeria has no doubt ..... (objective functions), criteria for evaluation of control .... adsen H “Para eter esti ation in distributed.

  11. Solar-powered turbocompressor heat pump system

    Science.gov (United States)

    Landerman, A.M.; Biancardi, F.R.; Melikian, G.; Meader, M.D.; Kepler, C.E.; Anderson, T.J.; Sitler, J.W.

    1982-08-12

    The turbocompressor comprises a power turbine and a compressor turbine having respective rotors and on a common shaft, rotatably supported by bearings. A first working fluid is supplied by a power loop and is expanded in the turbine. A second working fluid is compressed in the turbine and is circulated in a heat pump loop. A lubricant is mixed with the second working fluid but is excluded from the first working fluid. The bearings are cooled and lubricated by a system which circulates the second working fluid and the intermixed lubricant through the bearings. Such system includes a pump, a thermostatic expansion valve for expanding the working fluid into the space between the bearings, and a return conduit system for withdrawing the expanded working fluid after it passes through the bearings and for returning the working fluid to the evaporator. A shaft seal excludes the lubricant from the power turbine. The power loop includes a float operable by liquid working fluid in the condenser for controlling a recirculation valve so as to maintain a minimum liquid level in the condenser, while causing a feed pump to pump most of the working fluid into the vapor generator. The heat pump compressor loop includes a float in the condenser for operating and expansion valve to maintain a minimum liquid working fluid level in the condenser while causing most of the working fluid to be expanded into the evaporator.

  12. Threshold pump power of a solar-pumped dye laser

    Science.gov (United States)

    Lee, Ja H.; Kim, Kyung C.; Kim, Kyong H.

    1988-01-01

    Threshold solar power for dye laser pumping has been determined by measuring the gain of a rhodamine 6G dye laser amplifier at various solar-simulated irradiances on an amplifier cell. The measured threshold was 20,000 solar constants (2.7 kW/sq cm) for the dye volume of 2 x 5 x 40 cu mm and the optimum dye concentration of 0.001 M. The threshold is about one-third of that achievable with a high-intensity solar concentrator.

  13. Pumped Storage Hydro Power Plant Cierny Vah

    International Nuclear Information System (INIS)

    Regula, E.

    1998-01-01

    In this leaflet the pump-storage power plant Cierny Vah is presented. A Cierny Vah pumped storage power plant (PSP) has been designed and built for providing the reliable and quality electric energy supply and for covering load changes of an electrification system. (ES). It is mainly the pumped storage hydro power plants plants which in our conditions are the sources operatively covering the sudden changes of the ES load from the ecological, economic but mainly from the operational point of view. The electric energy generation volume is not the primary standpoint but especially their control functions in the ES. During the building of the Cierny Vah PSP the peak operation with the daily accumulation, participation in frequency control and output in ES and the compensation function in ES were to be its main tasks. After putting it into operation by especially after its becoming independent of the Slovak ES in 1994 the static functions (energy generation from pumping, balance output reserves, daily control, ...) gave way to dynamic functions which gained greater importance. After interconnection of the ES with the UCPTE West European Association in which there are besides other things, the strict criteria for observing balance outputs, the main functions of PSPs are as follows: (1) Dynamic services for ES; (2) Dispatching reserve for the fall out of the greatest ES block; (3) Observing the foreign cooperation balance agreed; (4) Compensation of peaks and also of sudden daily load diagram reductions. Technical parameters of the upper and lower reservoir are described. The hydro power plant is a body lower reservoir. In it there are six vertical pumping aggregates in the three machine layout: the motor-generator - the turbine - the pump. Between the turbine and the pump there is a hydraulically controlled claw clutch engaging at rest and disengaging also during the aggregate operation. During pumping air is involved inside the turbine. The Francis turbines have a

  14. Experimental investigation of solar powered diaphragm and helical pumps

    Science.gov (United States)

    For several years, many types of solar powered water pumping systems were evaluated, and in this paper, diaphragm and helical solar photovoltaic (PV) powered water pumping systems are discussed. Data were collected on diaphragm and helical pumps which were powered by different solar PV arrays at mul...

  15. Performance of a small wind powered water pumping system

    Science.gov (United States)

    Lorentz helical pumps (Henstedt-Ulzburg, Germany) have been powered by solar energy for remote water pumping applications for many years, but from October 2005 to March 2008 a Lorentz helical pump was powered by wind energy at the USDA-ARS Conservation and Production Research Laboratory (CPRL) near ...

  16. Side-pumped Nd:YVO4 cw laser with grazing-incidence small angle configuration

    International Nuclear Information System (INIS)

    Camargo, Fabiola de Almeida

    2006-01-01

    Within the existing variety of laser cavity geometries and gain materials there is one combination that is particularly interesting because of its reduced complexity and high efficiency: the edge-pumped slab-laser using grazing-incidence geometry and a gain media with a very high pump absorption cross-section. In this work we studied a diode side-pumped Nd:YVO 4 cw laser. We describe a single and a multiple bounce laser configurations. We demonstrate 22 W of multimode output power for 35 watts of pump power with a single pass through the gain media. A high optical-to-optical conversion efficiency of 63% and a slope efficiency of 74% with a very compact and simple Nd:YVO 4 cavity that uses joint stability zones was achieved. The beam quality was M 2 = 26 x 11 in the horizontal and vertical direction, respectively. With a double pass configuration we achieved 17 watts with a better beam quality of M 2 = 3,4 x 3,7, in the horizontal and vertical direction, respectively. (author)

  17. CFD research on runaway transient of pumped storage power station caused by pumping power failure

    International Nuclear Information System (INIS)

    Zhang, L G; Zhou, D Q

    2013-01-01

    To study runaway transient of pumped storage power station caused by pumping power failure, three dimensional unsteady numerical simulations were executed on geometrical model of the whole flow system. Through numerical calculation, the changeable flow configuration and variation law of some parameters such as unit rotate speed,flow rate and static pressure of measurement points were obtained and compared with experimental data. Numerical results show that runaway speed agrees well with experimental date and its error was 3.7%. The unit undergoes pump condition, brake condition, turbine condition and runaway condition with flow characteristic changing violently. In runaway condition, static pressure in passage pulses very strongly which frequency is related to runaway speed

  18. Pumping slots: impedances and power losses

    Energy Technology Data Exchange (ETDEWEB)

    Kurennoy, S [Maryland Univ., College Park, MD (United States). Dept. of Physics

    1996-08-01

    Contributions of pumping slots to the beam coupling impedances and power losses in a B-factory ring are considered. While their leading contribution is to the inductive impedance, for high-intensity machines with short bunches like e{sup +}e{sup -} B-factories the real part of the impedance and related loss factors are also important. Using an analytical approach we calculate the coupling impedances and loss factors due to slots in a ring with an arbitrary cross section of the vacuum chamber. Effects of the slot tilt on the beam impedance are also considered, and restrictions on the tilt angle are derived from limitations on the impedance increase. The power leakage through the slots is discussed briefly. The results are applied to the KEK B-factory. (author)

  19. Pumped storage hydroelectric power plant Cierny Vah

    International Nuclear Information System (INIS)

    2006-01-01

    This leaflet describes the Enterprise Cierny Vah Pumped storage hydropower plants of the joint stock company Slovenske elektrarne, a.s. (Cierny Vah PSHP). Cierny Vah PSHP has been designed and built for providing the reliable and quality electric energy supply and for covering load changes of an electrification system (ES). It is mainly the pumped storage hydro power plants which in our conditions are the sources operatively covering the sudden changes of the ES load from the ecological, economic but mainly from the operational point of view. The electric energy generation volume is not the primary standpoint but especially their control functions in the ES. During the building of the Cierny Vah PSP the peak operation with the daily accumulation, participation in frequency control and output in ES and the compensation function in ES were to be its main tasks. After putting it into operation but especially after its becoming independent of the Slovak ES in 1994 the static functions (energy generation from pumping, balance output reserves, daily control,...) gave way to dynamic functions which gained greater importance (sudden load changes control of ES, immediate meeting of the daily load diagram, frequency control and outputs given in ES, etc.) After interconnection of our ES with the UCPTE West European association in which there are besides other things, the strict criteria for observing balance of outputs, the main functions of PSPs are as follows: 1. Dynamic services for ES 2. Dispatching reserve for the fall out of the greatest ES block 3. Observing the foreign cooperation balance agreed 4. Compensation of peaks and also of sudden daily load diagram reductions. All the work is divided into four parts from the building point of view: The upper reservoir is an artificial one without the natural water inflow, built by excavation and slope on an Unknown elevation more than 1.150 m above sea level. A leading slope with a gradient 1:2 and a bottom of the reservoir

  20. Nuclear power plant safety related pump issues

    Energy Technology Data Exchange (ETDEWEB)

    Colaccino, J.

    1996-12-01

    This paper summarizes of a number of pump issues raised since the Third NRC/ASME Symposium on Valve and Pump Testing in 1994. General issues discussed include revision of NRC Inspection Procedure 73756, issuance of NRC Information Notice 95-08 on ultrasonic flow meter uncertainties, relief requests for tests that are determined by the licensee to be impractical, and items in the ASME OM-1995 Code, Subsection ISTB, for pumps. The paper also discusses current pump vibration issues encountered in relief requests and plant inspections - which include smooth running pumps, absolute vibration limits, and vertical centrifugal pump vibration measurement requirements. Two pump scope issues involving boiling water reactor waterlog and reactor core isolation cooling pumps are also discussed. Where appropriate, NRC guidance is discussed.

  1. Nuclear power plant safety related pump issues

    International Nuclear Information System (INIS)

    Colaccino, J.

    1996-01-01

    This paper summarizes of a number of pump issues raised since the Third NRC/ASME Symposium on Valve and Pump Testing in 1994. General issues discussed include revision of NRC Inspection Procedure 73756, issuance of NRC Information Notice 95-08 on ultrasonic flow meter uncertainties, relief requests for tests that are determined by the licensee to be impractical, and items in the ASME OM-1995 Code, Subsection ISTB, for pumps. The paper also discusses current pump vibration issues encountered in relief requests and plant inspections - which include smooth running pumps, absolute vibration limits, and vertical centrifugal pump vibration measurement requirements. Two pump scope issues involving boiling water reactor waterlog and reactor core isolation cooling pumps are also discussed. Where appropriate, NRC guidance is discussed

  2. Combined solar photovoltaic and hydroelectric pumped storage power plant

    International Nuclear Information System (INIS)

    Gzraryan, R.V.

    2009-01-01

    Combined model of solar photovoltaic and pumped storage stations aimed at power supply for 40 rural houses are considered. The electric circuits of station and their acting regularities are developed and submitted. The both generation curve of photovoltaic station and load curve of electrical customer are considered. The power of hydraulic unit, pumping unit and photovoltaic station are calculated

  3. Design optimization of photovoltaic powered water pumping systems

    International Nuclear Information System (INIS)

    Ghoneim, A.A.

    2006-01-01

    The use of photovoltaics as the power source for pumping water is one of the most promising areas in photovoltaic applications. With the increased use of water pumping systems, more attention has been paid to their design and optimum utilization in order to achieve the most reliable and economical operation. This paper presents the results of performance optimization of a photovoltaic powered water pumping system in the Kuwait climate. The direct coupled photovoltaic water pumping system studied consists of the PV array, DC motor, centrifugal pump, a storage tank that serves a similar purpose to battery storage and a maximum power point tracker to improve the efficiency of the system. The pumped water is desired to satisfy the domestic needs of 300 persons in a remote area in Kuwait. Assuming a figure of 40 l/person/day for water consumption, a volume of 12 m 3 should be pumped daily from a deep well throughout the year. A computer simulation program is developed to determine the performance of the proposed system in the Kuwait climate. The simulation program consists of a component model for the PV array with maximum power point tracker and component models for both the DC motor and the centrifugal pump. The five parameter model is adapted to simulate the performance of amorphous silicon solar cell modules. The size of the PV array, PV array orientation and the pump-motor-hydraulic system characteristics are varied to achieve the optimum performance for the proposed system. The life cycle cost method is implemented to evaluate the economic feasibility of the optimized photovoltaic powered water pumping system. At the current prices of PV modules, the cost of the proposed photovoltaic powered water pumping system is found to be less expensive than the cost of the conventional fuel system. In addition, the expected reduction in the prices of photovoltaic modules in the near future will make photovoltaic powered water pumping systems more feasible

  4. Pump power plants for wind age; Pumpekraftverk for vindalderen

    Energy Technology Data Exchange (ETDEWEB)

    Bakken, Marte

    2010-07-01

    Power giant Sira-Kvina, Norway, prepares to expand Tonstad power station with pump options to save energy and benefit from price fluctuations in the electricity market. How pump power plant works; Consists mainly of two reservoirs at different heights. Bottom placed a turbine that can run both ways, or a pump and turbine mounted on the generator. The generator acts as an engine of pumping. When saving energy, water is pumped up to the highest magazine. The energy is extracted by letting the water run back through the turbine. Amount of energy that can be saved depends on the height difference between the magazines and magazine size, while the effect is determined by the size of the pump turbine.(AG)

  5. Solar pumped laser technology options for space power transmission

    Science.gov (United States)

    Conway, E. J.

    1986-01-01

    An overview of long-range options for in-space laser power transmission is presented. The focus is on the new technology and research status of solar-pumped lasers and their solar concentration needs. The laser options include gas photodissociation lasers, optically-pumped solid-state lasers, and blackbody-pumped transfer lasers. The paper concludes with a summary of current research thrusts.

  6. Power Consumption Optimization for Multiple Parallel Centrifugal Pumps

    DEFF Research Database (Denmark)

    Jepsen, Kasper Lund; Hansen, Leif; Mai, Christian

    2017-01-01

    Large amounts of energy is being used in a wide range of applications to transport liquid. This paper proposes a generic solution for minimizing power consumption of a generic pumping station equipped with identical variable speed pumps. The proposed solution consists of two sequential steps; fir...

  7. Tests of cooling water pumps at Dukovany nuclear power plant

    International Nuclear Information System (INIS)

    Travnicek, J.

    1986-01-01

    Tests were performed to examine the operating conditions of the 1600 BQDV cooling pumps of the main coolant circuit of unit 1 of the Dukovany nuclear power plant. For the pumps, the performance was tested in the permissible operating range, points were measured below this range and the guaranteed operating point was verified. Pump efficiency was calculated from the measured values. The discussion of the measurement of parameters has not yet been finished because the obtained values of the amount delivered and thus of the pump efficiency were not up to expectation in all detail. It was also found that for obtaining the guaranteed flow the pump impeller had to be opened to 5deg -5.5deg instead of the declared 3deg. Also tested were pump transients, including the start of the pump, its stop, the operation and failure of one of the two pumps. In these tests, pressures were also measured at the inlet and the outlet of the inner part of the TG 11 turbine condenser. It was shown that the time course and the pressure course of the processes were acceptable. In addition to these tests, pressure losses in the condenser and the cooling water flow through the feed pump electromotor cooler wre tested for the case of a failure of one of the two pumps. (E.S.)

  8. Pumping station design for a pumped-storage wind-hydro power plant

    International Nuclear Information System (INIS)

    Anagnostopoulos, John S.; Papantonis, Dimitris E.

    2007-01-01

    This work presents a numerical study of the optimum sizing and design of a pumping station unit in a hybrid wind-hydro plant. The standard design that consists of a number of identical pumps operating in parallel is examined in comparison with two other configurations, using one variable-speed pump or an additional set of smaller jockey pumps. The aim is to reduce the amount of the wind generated energy that cannot be transformed to hydraulic energy due to power operation limits of the pumps and the resulting step-wise operation of the pumping station. The plant operation for a period of one year is simulated by a comprehensive evaluation algorithm, which also performs a detailed economic analysis of the plant using dynamic evaluation methods. A preliminary study of the entire plant sizing is carried out at first using an optimization tool based on evolutionary algorithms. The performance of the three examined pumping station units is then computed and analyzed in a comparative study. The results reveal that the use of a variable-speed pump constitutes the most effective and profitable solution, and its superiority is more pronounced for less dispersed wind power potential

  9. Solar-pumped lasers for space power transmission

    Science.gov (United States)

    Taussig, R.; Bruzzone, C.; Nelson, L.; Quimby, D.; Christiansen, W.

    1979-01-01

    Multi-Megawatt CW solar-pumped lasers appear to be technologically feasible for space power transmission in the 1990s time frame. A new concept for a solar-pumped laser is presented which utilizes an intermediate black body cavity to provide a uniform optical pumping environment for the lasant, either CO or CO2. Reradiation losses are minimized with resulting high efficiency operation. A 1 MW output laser may weigh as little as 8000 kg including solar collector, black body cavity, laser cavity and ducts, pumps, power systems and waste heat radiator. The efficiency of such a system will be on the order of 10 to 20%. Details of the new concept, laser design, comparison to competing solar-powered lasers and applications to a laser solar power satellite (SPS) concept are presented.

  10. Design and installation package for a solar powered pump

    Science.gov (United States)

    1978-01-01

    The design and installation procedures of a solar powered pump developed by Calmac Manufacturing Company are presented. Subsystem installation, operation and maintenance requirements, subsystem performance specifications, and detailed design drawings are included.

  11. Impedance calculations for power cables to primary coolant pump motors

    International Nuclear Information System (INIS)

    Hegerhorst, K.B.

    1977-01-01

    The LOFT primary system motor generator sets are located in Room B-239 and are connected to the primary coolant pumps by means of a power cable. The calculated average impedance of this cable is 0.005323 ohms per unit resistance and 0.006025 ohms per unit reactance based on 369.6 kVA and 480 volts. The report was written to show the development of power cable parameters that are to be used in the SICLOPS (Simulation of LOFT Reactor Coolant Loop Pumping System) digital computer program as written in LTR 1142-16 and also used in the pump coastdowns for the FSAR Analysis

  12. Pumping power of nanofluids in a flowing system

    International Nuclear Information System (INIS)

    Routbort, Jules L.; Singh, Dileep; Timofeeva, Elena V.; Yu, Wenhua; France, David M.

    2011-01-01

    Nanofluids have the potential to increase thermal conductivities and heat transfer coefficients compared to their base fluids. However, the addition of nanoparticles to a fluid also increases the viscosity and therefore increases the power required to pump the fluid through the system. When the benefit of the increased heat transfer is larger than the penalty of the increased pumping power, the nanofluid has the potential for commercial viability. The pumping power for nanofluids has been considered previously for flow in straight tubes. In this study, the pumping power was measured for nanofluids flowing in a complete system including straight tubing, elbows, and expansions. The objective was to determine the significance of two-phase flow effects on system performance. Two types of nanofluids were used in this study: a water-based nanofluid containing 2.0–8.0 vol% of 40-nm alumina nanoparticles, and a 50/50 ethylene glycol/water mixture-based nanofluid containing 2.2 vol% of 29-nm SiC nanoparticles. All experiments were performed in the turbulent flow region in the entire test system simulating features typically found in heat exchanger systems. Experimental results were compared to the pumping power calculated from a mathematical model of the system to evaluate the system effects. The pumping power results were also combined with the heat transfer enhancement to evaluate the viability of the two nanofluids.

  13. 21 CFR 878.4780 - Powered suction pump.

    Science.gov (United States)

    2010-04-01

    ...) Identification. A powered suction pump is a portable, AC-powered or compressed air-powered device intended to be used to remove infectious materials from wounds or fluids from a patient's airway or respiratory support system. The device may be used during surgery in the operating room or at the patient's bedside...

  14. Water cooling thermal power measurement in a vacuum diffusion pump

    Directory of Open Access Journals (Sweden)

    Luís Henrique Cardozo Amorin

    2012-04-01

    Full Text Available Diffusion vacuum pumps are used both in industry and in laboratory science for high vacuum production. For its operation they must be refrigerated, and it is done by circulating water in open circuit. Considering that, vacuum systems stays operating by hours, the water consumption may be avoided if the diffusion vacuum pumps refrigeration were done in closed circuit. However, it is necessary to know the diffusion vacuum pump thermal power (the heat transferred to circulate water by time units to implement one of these and get in the refrigeration system dimension. In this paper the diffusion vacuum pump thermal power was obtained by measuring water flow and temperature variation and was calculated through the heat quantity variation equation time function. The thermal power value was 935,6 W, that is 397 W smaller and 35 W bigger than, respectively, the maximum and minimum diffusion pump thermal power suggested by its operation manual. This procedure have been shown useful to precisely determine the diffusion pump thermal power or of any other system that needs to be refrigerated in water closed circuit.

  15. Transient behaviour of main coolant pump in nuclear power plants

    International Nuclear Information System (INIS)

    Delja, A.

    1986-01-01

    A basic concept of PWR reactor coolant pump thermo-hydraulic modelling in transient and accident operational condition is presented. The reactor coolant pump is a component of the nuclear steam supply system which forces the coolant through the reactor and steam generator, maintaining design heat transfer condition. The pump operating conditions have strong influence on the flow and thermal behaviour of NSSS, both in the stationary and nonstationary conditions. A mathematical model of the reactor coolant pump is formed by using dimensionless homologous relations in the four-quadrant regimes: normal pump, turbine, dissipation and reversed flow. Since in some operational regimes flow of mixture, liquid and steam may occur, the model has additional correction members for two-phase homologous relations. Modular concept has been used in developing computer program. The verification is performed on the simulation loss of offsite power transient and obtained results are presented. (author)

  16. Heat pumps in combined heat and power systems

    DEFF Research Database (Denmark)

    Ommen, Torben Schmidt; Markussen, Wiebke Brix; Elmegaard, Brian

    2014-01-01

    Heat pumps have previously been proposed as a way to integrate higher amounts of renewable energy in DH (district heating) networks by integrating, e.g., wind power. The paper identifies and compares five generic configurations of heat pumps in DH systems. The operational performance...... of the considered cases. When considering a case where the heat pump is located at a CHP (combined heat and power) plant, a configuration that increases the DH return temperature proposes the lowest operation cost, as low as 12 EUR MWh-1 for a 90 °C e 40 °C DH network. Considering the volumetric heating capacity......, a third configuration is superior in all cases. Finally, the three most promising heat pump configurations are integrated in a modified PQ-diagram of the CHP plant. Each show individual advantages, and for two, also disadvantages in order to achieve flexible operation....

  17. Dynamic Performance of the Standalone Wind Power Driven Heat Pump

    OpenAIRE

    H. Li; P.E. Campana; S. Berretta; Y. Tan; J. Yan

    2016-01-01

    Reducing energy consumption and increasing use of renewable energyin the building sector arecrucial to the mitigation of climate change. Wind power driven heat pumps have been considered as a sustainable measure to supply heat for detached houses, especially those that even don’t have access to the grid. This work is to investigate the dynamic performance of a heat pump system directly driven by a wind turbine. The heat demand of a detached single family house was simulated in details. Accord...

  18. Enzyme-Powered Pumps: From Fundamentals to Applications

    Science.gov (United States)

    Ortiz-Rivera, Isamar

    Non-mechanical nano and microfluidic devices that function without the aid of an external power source, and can be tailored to meet specific needs, represent the next generation of smart devices. Recently, we have shown that surface-bound enzymes can act as pumps driving large-scale fluid flows in the presence of any substance that triggers the enzymatic reaction (e.g. substrate, co-factor, or biomarker). The fluid velocities attained in such systems depend directly on the enzymatic reaction rate and the concentration of the substance that initiates enzymatic catalysis. The use of biochemical reactions to power a micropump offers the advantages of specificity, sensitivity, and selectively, eliminating at the same time the need of an external power source, while providing biocompatibility. More importantly, these self-powered pumps overcome a significant obstacle in nano- and micro-fluidics: the need to use external pressure-driven pumps to push fluids through devices. Certainly, the development of enzyme-powered devices opens up new venues in biochemical engineering, particularly in the biomedical field. The work highlighted in this dissertation covers all the studies performed with enzyme-powered pumps, from the development of the micropump design, to the efforts invested in understanding the enzyme pump concept as a whole. The data collected to date, aims to expand our knowledge about enzyme-powered micropumps from the inside out: not only by exploring the different applications of these devices at the macroscale, but also by investigating in depth the mechanism of pump activation behind these systems. Specifically, we have focused on: (1) The general features that characterize the pumping behavior observed in enzyme-powered pumps, as well as the optimization of the device, (2) the possible mechanisms behind fluid motion, including the role of enzyme coverage and/or activity on the transduction of chemical energy into mechanical fluid flow in these devices

  19. Experimental results of wind powered pumping plant with electrical transmission

    International Nuclear Information System (INIS)

    Falchetta, M.; Prischich, D.; Benedetti, A.; Cara, G.

    1992-01-01

    A demonstrative application of deep well pumping system employing a wind powered pumping plant with an electric transmission was set-up and tested for two years at the test field of the Casaccia center of ENEA (Italian Agency for Energy, New Technologies and the Environment), near Rome. The tests permitted the evaluation of the practical performance, advantages and drawbacks of a wind pumping plant of this type, in order to permit a design optimization and a proper choice of components and of control strategies for future commercial applications. The main point of investigation was the evaluation of the effectiveness of a control scheme based on a 'permanent link' between electric generator and electric motor, avoiding any electronics and switching components, and leading to a very robust and reliable means of transferring energy to the pump at variable speed, and at low cost

  20. Improvement of hydroelectric power generation using pumped ...

    African Journals Online (AJOL)

    By principle, hydroelectric power generation relies on the law of conservation of energy where kinetic energy that resulted from the movement of the mass of water from the river is translated into electr icity, the quantum of which depends on systemic variables viz: plant efficiency, volumetric water flow through the turbine and ...

  1. Development of nonmetallic solar collector and solar-powered pump

    Science.gov (United States)

    Parker, J. C.

    1979-01-01

    Design and building of two unique components for solar heating (1. flatplate solar collector using no metal components, and 2. solar powered pump for heating and cooling systems are outlined in report. Report also discusses hardware, deliverable end items, problems encountered during fabrication and testing, and performance certification.

  2. Pumped Storage Power plants, Challenges and opportunities - Some conclusions

    International Nuclear Information System (INIS)

    Viollet, Pierre-Louis; Roult, Didier; Mathex, Bruno; Ouaabi, Aziz; Louis, Frederic; Petitjean, Alain; Capuozzo, Vincent; Mazzouji, Farid; Prestat, Bruno; Nekrassov, Andrei; Caignaert, Guy; Vidil, Roland; Guilbaud, Claude; Metais, Olivier

    2011-11-01

    This document briefly synthesizes a conference which addressed the development of pumped storage power plants in the world, and social, economic, technical and scientific challenges related to this development which is closely related to the development of intermittent renewable energies (wind and solar energy). Current developments in different countries (Germany, Portugal, Switzerland, Norway, France and China) are evoked

  3. Wind power integration in Aalborg Municipality using compression heat pumps and geothermal absorption heat pumps

    DEFF Research Database (Denmark)

    Østergaard, Poul Alberg

    2013-01-01

    -temperature geothermal resources. The analyses have also demonstrated that the municipality will still rely heavily on surrounding areas for electric load balancing assistance. With a departure in a previously elaborated 100% renewable energy scenario, this article investigates how absorption heat pumps (AHP......Aalborg Municipality, Denmark is investigating ways of switching to 100% renewable energy supply over the next 40 years. Analyses so far have demonstrated a potential for such a transition through energy savings, district heating (DH) and the use of locally available biomass, wind power and low......) and compression heat pumps (HP) for the supply of DH impact the integration of wind power. Hourly scenario-analyses made using the EnergyPLAN model reveal a boiler production and electricity excess which is higher with AHPs than with HPs whereas condensing mode power generation is increased by the application...

  4. An analytical method for defining the pump`s power optimum of a water-to-water heat pump heating system using COP

    Directory of Open Access Journals (Sweden)

    Nyers Jozsef

    2017-01-01

    Full Text Available This paper analyzes the energy efficiency of the heat pump and the complete heat pump heating system. Essentially, the maximum of the coefficient of performance of the heat pump and the heat pump heating system are investigated and determined by applying a new analytical optimization procedure. The analyzed physical system consists of the water-to-water heat pump, circulation and well pump. In the analytical optimization procedure the "first derivative equal to zero" mathematical method is applied. The objective function is the coefficient of performance of the heat pump, and the heat pump heating system. By using the analytical optimization procedure and the objective function, as the result, the local and the total energy optimum conditions with respect to the mass flow rate of hot and cold water i. e. the power of circulation or well pump are defined.

  5. Coolidge solar powered irrigation pumping project

    Science.gov (United States)

    Larson, D. L.

    1980-01-01

    A 150 kW solar thermal electric power plant which includes over 2100 square meters of parabolic trough type collectors and an organic Rankine cycle turbine engine was constructed on an irrigated farm. The plant is interconnected with the electrical utility grid. Operation is providing an evaluation of equipment performance and operating and maintenance requirements as well as the desirability of an on farm location.

  6. Solar-powered Rankine heat pump for heating and cooling

    Science.gov (United States)

    Rousseau, J.

    1978-01-01

    The design, operation and performance of a familyy of solar heating and cooling systems are discussed. The systems feature a reversible heat pump operating with R-11 as the working fluid and using a motor-driven centrifugal compressor. In the cooling mode, solar energy provides the heat source for a Rankine power loop. The system is operational with heat source temperatures ranging from 155 to 220 F; the estimated coefficient of performance is 0.7. In the heating mode, the vapor-cycle heat pump processes solar energy collected at low temperatures (40 to 80 F). The speed of the compressor can be adjusted so that the heat pump capacity matches the load, allowing a seasonal coefficient of performance of about 8 to be attained.

  7. Designs for a TFTR full-power pumped limiter

    International Nuclear Information System (INIS)

    Budny, R.

    1986-10-01

    A pumped-limiter system which would provide increased particle control and enhance the performance of full-power discharges is being considered for TFTR. The system consists of two toroidal belts located near the Zirconium-Aluminium (ZrAl) getter panels. The limiter blades would be made of carbon/carbon composite in order to have a very thin profile, allowing a large fraction of the scrape-off flux to be pumped. Simulations of the plasma scrape-off and neutral transport indicate that the limiter pumping should reduce the recycling coefficient by 10 to 25%. Simulations of central plasma processes indicate that the lowered recycling could increase Q/sub fusion/ by more than 100%. This paper discusses the designs and the performance predictions for the system

  8. High average power diode pumped solid state lasers for CALIOPE

    International Nuclear Information System (INIS)

    Comaskey, B.; Halpin, J.; Moran, B.

    1994-07-01

    Diode pumping of solid state media offers the opportunity for very low maintenance, high efficiency, and compact laser systems. For remote sensing, such lasers may be used to pump tunable non-linear sources, or if tunable themselves, act directly or through harmonic crystals as the probe. The needs of long range remote sensing missions require laser performance in the several watts to kilowatts range. At these power performance levels, more advanced thermal management technologies are required for the diode pumps. The solid state laser design must now address a variety of issues arising from the thermal loads, including fracture limits, induced lensing and aberrations, induced birefringence, and laser cavity optical component performance degradation with average power loading. In order to highlight the design trade-offs involved in addressing the above issues, a variety of existing average power laser systems are briefly described. Included are two systems based on Spectra Diode Laboratory's water impingement cooled diode packages: a two times diffraction limited, 200 watt average power, 200 Hz multi-rod laser/amplifier by Fibertek, and TRW's 100 watt, 100 Hz, phase conjugated amplifier. The authors also present two laser systems built at Lawrence Livermore National Laboratory (LLNL) based on their more aggressive diode bar cooling package, which uses microchannel cooler technology capable of 100% duty factor operation. They then present the design of LLNL's first generation OPO pump laser for remote sensing. This system is specified to run at 100 Hz, 20 nsec pulses each with 300 mJ, less than two times diffraction limited, and with a stable single longitudinal mode. The performance of the first testbed version will be presented. The authors conclude with directions their group is pursuing to advance average power lasers. This includes average power electro-optics, low heat load lasing media, and heat capacity lasers

  9. Pumped storage power plants in Denmark. Pumpekraftvaerker i Danmark

    Energy Technology Data Exchange (ETDEWEB)

    1988-12-15

    In 1988 there are about 250 pumped storage power plants throughout the world, yet it is difficult to obtain data about them. They are usually situated in mountainous areas so that great differences in height can be obtained between the upper and lower water storage facilities. These plants consist of the power system (turbines, pumps, generators, motors, etc.) natural or artificial water storage facilities, and water routes, (in and outgoing constructions, pressure pipes, etc.). In Denmark, reversible pumping turbines are preferred, and here specific Danish products are examined (62.5MW and a 125 MW). Possible designs for water storage basins are analyzed in detail, also with regard to their comparative economic advantages. It has been considered reasonable to site this kind of power plant in Danish coastal regions, this would be the first case where the sea has been used for the lower water storage basin. Possible sites in Jutland and on the island of Als have been investigated. In a basin for a 250 MW pumped storage power plant with optimal production throughout 8 hours, a siting 60 m above sea level could cover power production for an area of about 100 hectars. Material for a dam surrounding the lower water storage system could be produced when digging out the basin. The dam should be about 20m higher than the surrounding terrain and the volume would be about 3,2 mio. m/sup 3/. The filled basin would contain 14.0 mio. m/sup 3/ water. The velocity and volume of outgoing water masses would be very considerable and would exact safety precautions to protect ships and bathers. A tentative cost benefit analysis is presented which indicates that the possible establishment of this type of power plant in Denmark could be of considerable interest. (AB). 15 refs.

  10. Efficient diode-pumped Tm:KYW 1.9-μm microchip laser with 1 W cw output power.

    Science.gov (United States)

    Gaponenko, Maxim; Kuleshov, Nikolay; Südmeyer, Thomas

    2014-05-19

    We report on a diode-pumped Tm:KYW microchip laser generating 1 W continuous-wave output power. The laser operates at a wavelength of 1.94 μm in the fundamental TEM(00) mode with 71% slope efficiency relative to the absorbed pump radiation and 59% slope efficiency relative to the incident pump radiation. The optical-to-optical laser efficiency is 43%.

  11. Efficient diode-pumped Tm:KYW 1.9-μm microchip laser with 1 W cw output power

    OpenAIRE

    Gaponenko, M. S.; Kuleshov, N. V.; Südmeyer, T.

    2014-01-01

    We report on a diode-pumped Tm:KYW microchip laser generating 1 W continuous-wave output power. The laser operates at a wavelength of 1.94 μm in the fundamental TEM00 mode with 71% slope efficiency relative to the absorbed pump radiation and 59% slope efficiency relative to the incident pump radiation. The optical-to-optical laser efficiency is 43%.

  12. Efficient high power operation of erbium 3 µm fibre laser diode-pumped at 975 nm

    NARCIS (Netherlands)

    Jackson, S.D.; King, T.A.; Pollnau, Markus

    2000-01-01

    Efficient CW operation of a 2.71 um Er,Pr:ZBLAN double-clad fibre laser pumped with a single diode laser operating at a wavelength of 975 nm is described. A maximum output power of 0.5 W and a slope efficiency of 25% (with respect to the launched pump power) were obtained. Threshold pump powers of <

  13. Power converter with maximum power point tracking MPPT for small wind-electric pumping systems

    International Nuclear Information System (INIS)

    Lara, David; Merino, Gabriel; Salazar, Lautaro

    2015-01-01

    Highlights: • We implement a wind electric pumping system of small power. • The power converter allowed to change the operating point of the electro pump. • Two control techniques were implemented in the power converter. • The control V/f variable allowed to increase the power generated by the permanent magnet generator. - Abstract: In this work, an AC–DC–AC direct-drive power converter was implemented for a wind electric pumping system consisting of a permanent magnet generator (PMG) of 1.3 kW and a peripheral single phase pump of 0.74 kW. In addition, the inverter linear V/f control scheme and the maximum power point tracking (MPPT) algorithm with variable V/f were developed. MPPT algorithm seeks to extract water in a wide range of power input using the maximum amount of wind power available. Experimental trials at different pump pressures were conducted. With a MPPT tracking system with variable V/f, a power value of 1.3 kW was obtained at a speed of 350 rpm and a maximum operating hydraulic head of 50 m. At lower operating heads pressures (between 10 and 40 m), variable V/f control increases the power generated by the PMG compared to the linear V/f control. This increase ranged between 4% and 23% depending on the operating pressure, with an average of 13%, getting close to the maximum electrical power curve of the PMG. The pump was driven at variable frequency reaching a minimum speed of 0.5 times the rated speed. Efficiency of the power converter ranges between 70% and 95% with a power factor between 0.4 and 0.85, depending on the operating pressure

  14. Sea water pumping-up power plant system combined with nuclear power plant

    International Nuclear Information System (INIS)

    Ichiki, Tadaharu; Tanaka, Masayuki.

    1991-01-01

    It is difficult to find a site suitable to construction for a sea water pumping-up power plant at a place relatively near the electric power consumption area. Then, a nuclear power plant is set at the sea bottom or the land portion of a sea shore near the power consumption area. A cavity is excavated underground or at the bottom of the sea in the vicinity of the power plant to form a lower pond, and the bottom of the sea, as an upper pond and the lower pond are connected by a water pressure pipe and a water discharge pipe. A pump water turbine is disposed therebetween, to which electric power generator is connected. In addition, an ordinary or emergency cooling facility in the nuclear power plant is constituted such that sea water in the cavity is supplied by a sea water pump. Accordingly, the sea water pumping-up plant system in combination with the nuclear power plant is constituted with no injuring from salts to animals and plants on land in the suburbs of a large city. The cost for facilities for supplying power from a remote power plant to large city areas and power loss are decreased and stable electric power can be supplied. (N.H.)

  15. Self-powered Imbibing Microfluidic Pump by Liquid Encapsulation: SIMPLE.

    Science.gov (United States)

    Kokalj, Tadej; Park, Younggeun; Vencelj, Matjaž; Jenko, Monika; Lee, Luke P

    2014-11-21

    Reliable, autonomous, internally self-powered microfluidic pumps are in critical demand for rapid point-of-care (POC) devices, integrated molecular-diagnostic platforms, and drug delivery systems. Here we report on a Self-powered Imbibing Microfluidic Pump by Liquid Encapsulation (SIMPLE), which is disposable, autonomous, easy to use and fabricate, robust, and cost efficient, as a solution for self-powered microfluidic POC devices. The imbibition pump introduces the working liquid which is sucked into a porous material (paper) upon activation. The suction of the working liquid creates a reduced pressure in the analytical channel and induces the sequential sample flow into the microfluidic circuits. It requires no external power or control and can be simply activated by a fingertip press. The flow rate can be programmed by defining the shape of utilized porous material: by using three different paper shapes with circular section angles 20°, 40° and 60°, three different volume flow rates of 0.07 μL s(-1), 0.12 μL s(-1) and 0.17 μL s(-1) are demonstrated at 200 μm × 600 μm channel cross-section. We established the SIMPLE pumping of 17 μL of sample; however, the sample volume can be increased to several hundreds of μL. To demonstrate the design, fabrication, and characterization of SIMPLE, we used a simple, robust and cheap foil-laminating fabrication technique. The SIMPLE can be integrated into hydrophilic or hydrophobic materials-based microfluidic POC devices. Since it is also applicable to large-scale manufacturing processes, we anticipate that a new chapter of a cost effective, disposable, autonomous POC diagnostic chip is addressed with this technical innovation.

  16. Using Heat Pump Energy Storages in the Power Grid

    DEFF Research Database (Denmark)

    Pedersen, Tom S.; Andersen, Palle; Nielsen, Kirsten M.

    2011-01-01

    The extensive growth of installed wind energy plants lead to increasing balancing problems in the power grid due to the nature of wind fields and diurnal variations in consumption. One way to overcome these problems is to move consumption to times where wind power otherwise cause overproduction...... and large fluctuations in prices. The paper presents a method which takes advantage of heat capacity in single-family houses using heat pumps which are anticipated to be installed in large numbers in Denmark in next decade. This type of heating gives a large time constant and it is shown possible to move...

  17. Role of pump hydro in electric power systems

    Science.gov (United States)

    Bessa, R.; Moreira, C.; Silva, B.; Filipe, J.; Fulgêncio, N.

    2017-04-01

    This paper provides an overview of the expected role that variable speed hydro power plants can have in future electric power systems characterized by a massive integration of highly variable sources. Therefore, it is discussed the development of a methodology for optimising the operation of hydropower plants under increasing contribution from new renewable energy sources, addressing the participation of a hydropower plant with variable speed pumping in reserve markets. Complementarily, it is also discussed the active role variable speed generators can have in the provision of advanced frequency regulation services.

  18. Green-diode-pumped femtosecond Ti:Sapphire laser with up to 450 mW average power.

    Science.gov (United States)

    Gürel, K; Wittwer, V J; Hoffmann, M; Saraceno, C J; Hakobyan, S; Resan, B; Rohrbacher, A; Weingarten, K; Schilt, S; Südmeyer, T

    2015-11-16

    We investigate power-scaling of green-diode-pumped Ti:Sapphire lasers in continuous-wave (CW) and mode-locked operation. In a first configuration with a total pump power of up to 2 W incident onto the crystal, we achieved a CW power of up to 440 mW and self-starting mode-locking with up to 200 mW average power in 68-fs pulses using semiconductor saturable absorber mirror (SESAM) as saturable absorber. In a second configuration with up to 3 W of pump power incident onto the crystal, we achieved up to 650 mW in CW operation and up to 450 mW in 58-fs pulses using Kerr-lens mode-locking (KLM). The shortest pulse duration was 39 fs, which was achieved at 350 mW average power using KLM. The mode-locked laser generates a pulse train at repetition rates around 400 MHz. No complex cooling system is required: neither the SESAM nor the Ti:Sapphire crystal is actively cooled, only air cooling is applied to the pump diodes using a small fan. Because of mass production for laser displays, we expect that prices for green laser diodes will become very favorable in the near future, opening the door for low-cost Ti:Sapphire lasers. This will be highly attractive for potential mass applications such as biomedical imaging and sensing.

  19. Solar Pumped High Power Solid State Laser for Space Applications

    Science.gov (United States)

    Fork, Richard L.; Laycock, Rustin L.; Green, Jason J. A.; Walker, Wesley W.; Cole, Spencer T.; Frederick, Kevin B.; Phillips, Dane J.

    2004-01-01

    Highly coherent laser light provides a nearly optimal means of transmitting power in space. The simplest most direct means of converting sunlight to coherent laser light is a solar pumped laser oscillator. A key need for broadly useful space solar power is a robust solid state laser oscillator capable of operating efficiently in near Earth space at output powers in the multi hundred kilowatt range. The principal challenges in realizing such solar pumped laser oscillators are: (1) the need to remove heat from the solid state laser material without introducing unacceptable thermal shock, thermal lensing, or thermal stress induced birefringence to a degree that improves on current removal rates by several orders of magnitude and (2) to introduce sunlight at an effective concentration (kW/sq cm of laser cross sectional area) that is several orders of magnitude higher than currently available while tolerating a pointing error of the spacecraft of several degrees. We discuss strategies for addressing these challenges. The need to remove the high densities of heat, e.g., 30 kW/cu cm, while keeping the thermal shock, thermal lensing and thermal stress induced birefringence loss sufficiently low is addressed in terms of a novel use of diamond integrated with the laser material, such as Ti:sapphire in a manner such that the waste heat is removed from the laser medium in an axial direction and in the diamond in a radial direction. We discuss means for concentrating sunlight to an effective areal density of the order of 30 kW/sq cm. The method integrates conventional imaging optics, non-imaging optics and nonlinear optics. In effect we use a method that combines some of the methods of optical pumping solid state materials and optical fiber, but also address laser media having areas sufficiently large, e.g., 1 cm diameter to handle the multi-hundred kilowatt level powers needed for space solar power.

  20. Development of Discrete Power Supply with Charge Pump Method for High Powered Sonar System

    Directory of Open Access Journals (Sweden)

    Kristian Ismail

    2012-07-01

    Full Text Available Power supply is one of the electronic devices that can provide electric energy for electronic systems or other systems. There are several types of power supplies that can be applied depend on the requirement and functions. One example is the use of power supply for sonar systems. Sonar system is a device which can be used to detect a target under water. The sonar system is an electronic circuit that requires a power supply with specific characteristics when the sonar functions as a transmitter and a receiver in the specific span time (when on and the specific lag time (when off. This paper discusses the design of power supply for high-powered sonar systems with discrete methods in which high power supply is only applied when the acoustic waves radiated under water. Charge pump was used to get the appropriate output voltage from lower input voltage. Charge pump utilized a combination of series and parallel connections of capacitors. The working mode of this power supply used the lag time as the calculation of time to charge charge pump capacitors in parallel while the span time was used for the calculation of discharging the charge pump capacitors in series.

  1. Reflux Incidence among Exclusively Breast Milk Fed Infants: Differences of Feeding at Breast versus Pumped Milk

    Directory of Open Access Journals (Sweden)

    Jennifer Yourkavitch

    2016-10-01

    Full Text Available The practice of feeding infants expressed breast milk is increasing in the United States, but the impacts on infant and maternal health are still understudied. This study examines the monthly incidence of regurgitation (gastro-esophageal reflux in exclusively breast milk fed infants from ages two to six months. Among infants whose mothers participated in the Infant Feeding Practices II Study (IFPS II; 2005–2007, data on reflux and feeding mode were collected by monthly questionnaires. A longitudinal, repeated measures analysis was used, with feeding mode lagged by one month in order to compare reflux incidence among infants fed directly at the breast to infants receiving pumped breast milk. Mothers in both feeding groups had similar characteristics, although a greater proportion feeding at least some pumped milk were primiparous. The number of exclusively breastfed infants decreased steadily between months 2 and 6, although the proportion fed at the breast remained similar over time. An association between feeding mode and reflux incidence was not found; however, the analyses were limited by a small number of reported reflux cases. More studies are needed to further explain the relationship between different feeding modes and infant reflux.

  2. Gland system, especially for nuclear power plant circulation pumps

    International Nuclear Information System (INIS)

    Skalicky, A.; Vesely, M.

    1975-01-01

    The invention claims a gland system suitable especially for the circulation pumps of nuclear power plants. The system prevents the release of the radioactive high-pressure cooling liquid in the atmosphere. The gland system consists of at least two mechanical glands arranged in series and of the closed circuit of the cooling high-pressure medium. The respective mechanical glands are linked with by-pass branches and discharge piping. The by-pass branches accommodating control manometers and flowmeters are linked with the storage reservoir with drain pipes provided with stop fittings. (Oy)

  3. Fluid circulating pump operated by same incident solar energy which heats energy collection fluid

    Science.gov (United States)

    Collins, E. R.

    1980-01-01

    The application of using a spacecraft solar powered pump terrestrially to reduce or eliminate the need for fossil fuel generated electricity for domestic solar hot water systems was investigated. A breadboard prototype model was constructed utilizing bimetals to convert thermal energy into mechanical motion by means of a toggle operated shutter mechanism. Although it did not meet expected thermal efficiency, the prototype model was sufficient to demonstrate the mechanical concept.

  4. Theoretical thermodynamic analysis of Rankine power cycle with thermal driven pump

    International Nuclear Information System (INIS)

    Lakew, Amlaku Abie; Bolland, Olav; Ladam, Yves

    2011-01-01

    Highlights: → The work is focused on theoretical aspects of thermal driven pump (TDP) Rankine cycle. → The mechanical pump is replaced by thermal driven pump. → Important parameters of thermal driven pump Rankine cycle are investigated. → TDP Rankine cycle produce more power but it requires additional low grade heat. - Abstract: A new approach to improve the performance of supercritical carbon dioxide Rankine cycle which uses low temperature heat source is presented. The mechanical pump in conventional supercritical carbon dioxide Rankine cycle is replaced by thermal driven pump. The concept of thermal driven pump is to increase the pressure of a fluid in a closed container by supplying heat. A low grade heat source is used to increase the pressure of the fluid instead of a mechanical pump, this increase the net power output and avoid the need for mechanical pump which requires regular maintenance and operational cost. The thermal driven pump considered is a shell and tube heat exchanger where the working fluid is contained in the tube, a tube diameter of 5 mm is chosen to reduce the heating time. The net power output of the Rankine cycle with thermal driven pump is compared to that of Rankine cycle with mechanical pump and it is observed that the net power output is higher when low grade thermal energy is used to pressurize the working fluid. The thermal driven pump consumes additional heat at low temperature (60 o C) to pressurize the working fluid.

  5. Online Monitoring of Large Centrifugal Pumps in Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Emmanuel, Efenji A.; Faragalla, Mohamed M.; Awwal, Arigi M.; Lee, Yong-kwan [KEPCO International Nuclear Graduate School, Ulsan (Korea, Republic of)

    2016-10-15

    Online Monitoring detects and diagnoses incipient faults, performs predictive maintenance, and can estimate the Remaining Useful Life (RUL) of Active and Passive Components before they fail. In an effort towards assisting Utility Partners to be proactive in the management of their Assets, the Electric Power Research Institute (EPRI) collaborated with the Idaho National Laboratory (INL) to develop a Fleet-Wide Prognostic and Health Monitoring (FW-PHM) Software Suite. The FW-PHM is a web based diagnostic tools and databases designed for use in commercial NPP. The AFS development process as designed by EPRI can be adapted to Large Centrifugal Pumps (LCP) in Nuclear Power Plants (NPP). For the purpose of this endeavor, the set of LCP considered are Safety Class-Motor Driven-Vertical Centrifugal Pumps for primary flow which includes Safety Injection, Containment Spray, and Residual Heat Removal. Fault Signatures of the LCP for OLM has been developed following the INCOSE V-model systems development approach. The fault types, fault features, and their detection methods and effectiveness for the LCP were established by diligently following the guidelines recommended by EPRI. An optimization of the FS for OLM has been suggested for implementation. As a way of extending this work, a Cost-Benefit Analysis between OLM and the conventional Periodic Maintenance for the LCP in NPP is proposed.

  6. Online Monitoring of Large Centrifugal Pumps in Nuclear Power Plants

    International Nuclear Information System (INIS)

    Emmanuel, Efenji A.; Faragalla, Mohamed M.; Awwal, Arigi M.; Lee, Yong-kwan

    2016-01-01

    Online Monitoring detects and diagnoses incipient faults, performs predictive maintenance, and can estimate the Remaining Useful Life (RUL) of Active and Passive Components before they fail. In an effort towards assisting Utility Partners to be proactive in the management of their Assets, the Electric Power Research Institute (EPRI) collaborated with the Idaho National Laboratory (INL) to develop a Fleet-Wide Prognostic and Health Monitoring (FW-PHM) Software Suite. The FW-PHM is a web based diagnostic tools and databases designed for use in commercial NPP. The AFS development process as designed by EPRI can be adapted to Large Centrifugal Pumps (LCP) in Nuclear Power Plants (NPP). For the purpose of this endeavor, the set of LCP considered are Safety Class-Motor Driven-Vertical Centrifugal Pumps for primary flow which includes Safety Injection, Containment Spray, and Residual Heat Removal. Fault Signatures of the LCP for OLM has been developed following the INCOSE V-model systems development approach. The fault types, fault features, and their detection methods and effectiveness for the LCP were established by diligently following the guidelines recommended by EPRI. An optimization of the FS for OLM has been suggested for implementation. As a way of extending this work, a Cost-Benefit Analysis between OLM and the conventional Periodic Maintenance for the LCP in NPP is proposed

  7. Impact Of Secondary-Primary Pumps Operating Sequence On The Electrical Power Supply System

    International Nuclear Information System (INIS)

    Suwoto; Rusdiyanto; Kiswanto

    2001-01-01

    The operating procedure of the reactor cooling system has decided that the primary cooling pump should be operated before secondary cooling pump as known primary-secondary pumps operating sequence. This decision is based on consideration that starting current of the primary pump is higher than secondary pump. Therefore, the primary-secondary pumps operating sequence can avoid the power supply system failure. However, this operating procedure has to take a consequence that in case of primary pump failure, the shutdown time period of the reaktor to be longer caused to re operate the primary pump has required that the running secondary pump should be shutted off. To solve this problem, an impact analysis of the secondary-primary pumps operating sequence on the electric power supply system was carried out to identify the revision possibility of the cooling pump operating procedure. The analysis by discussion of the measuring results of the secondary and primary pump starting current related to another electrical loads has been measured. From discussion it can be concluded that secondary-primary pumps operating sequence has no impact to failure in electric power supply system

  8. Induction generator-induction motor wind-powered pumping system

    Energy Technology Data Exchange (ETDEWEB)

    Miranda, M.S.; Lyra, R.O.C.; Silva, S.R. [CPDEE - UFMG, Belo Horizonte (Brazil)

    1997-12-31

    The energy storage matter plays an important role in wind-electric conversion systems for isolated applications. Having that in mind, two different approaches can be basically considered: either the immediate conversion of the generated electric energy, as in a water pumping system or electric energy storage for later use, as in a battery charging system. Due to some features such as no need of an external reactive power source and, sometimes, a gearbox, permanent-magnet synchronous generators have been broadly used in low rated power isolated systems. Despite that, system performance can be affected when the generator is feeding an inductive load (e.g., an induction motor) under variable-speed-variable-frequency operational conditions. Since there is no effective flux control, motor overload may occur at high wind speeds. Thus, good system performance can be obtained through additional control devices which may increase system cost. Although being rugged and cheap, induction machines always work as a reactive power drain; therefore, they demand an external reactive power source. Considering that, reactive static compensators appear as an attractive alternative to the cost x performance problem. In addition to that, different control strategies can be used so that system performance can be improved.

  9. Safety-related incidents at the Finnish nuclear power plants

    International Nuclear Information System (INIS)

    Lehtinen, P.

    1985-01-01

    This report contains detailed descriptions of operating incidents and other safety-related matters at the Finnish nuclear power plants regarded as significant by the regulatory authority, the Finnish Centre for Radiation and Nuclear Safety. In this connection, an account is given of the practical actions caused by the incidents, and their significance to reactor safety is evaluated. The main features of the incidents are also described in the general Quartely Reports, Operation of Finnish Nuclear Power Plants, which are supplemented by this report intended for experts. (author)

  10. Safety-related incidents at the Finnish nuclear power plants

    International Nuclear Information System (INIS)

    Lehtinen, P.

    1986-03-01

    This report contains detailed descriptions of operating incidents and other safety-related matters at the Finnish nuclear power plants regarded as significant by the regulatory authority, the Finnish Centre for Radiation and Nuclear Safety. In this connection, an account is given of the practical actions caused by the incidents, and their significance to reactor safety is evaluated. The main features of the incidents are also described in the general Quartely Reports, Operation of Finnish Nuclear Power Plants, which are supplemented by this report intended for experts. (author)

  11. Aging management guideline for commercial nuclear power plants-pumps

    International Nuclear Information System (INIS)

    Booker, S.; Katz, D.; Daavettila, N.; Lehnert, D.

    1994-03-01

    This Aging Management Guideline (AMG) describes recommended methods for effective detection and mitigation of age-related degradation mechanisms in BWR and PWR commercial nuclear power plant pumps important to license renewal. The intent of this AMG is to assist plant maintenance and operations personnel in maximizing the safe, useful life of these components. It also supports the documentation of effective aging management programs required under the License Renewal Rule 10 CFR Part 54. This AMG is presented in a manner that allows personnel responsible for performance analysis and maintenance to compare their plant-specific aging mechanisms (expected or already experienced) and aging management program activities to the more generic results and recommendations presented herein

  12. Aging management guideline for commercial nuclear power plants-pumps

    Energy Technology Data Exchange (ETDEWEB)

    Booker, S.; Katz, D.; Daavettila, N.; Lehnert, D. [MDC-Ogden Environmental and Energy Services, Southfield, MI (United States)

    1994-03-01

    This Aging Management Guideline (AMG) describes recommended methods for effective detection and mitigation of age-related degradation mechanisms in BWR and PWR commercial nuclear power plant pumps important to license renewal. The intent of this AMG is to assist plant maintenance and operations personnel in maximizing the safe, useful life of these components. It also supports the documentation of effective aging management programs required under the License Renewal Rule 10 CFR Part 54. This AMG is presented in a manner that allows personnel responsible for performance analysis and maintenance to compare their plant-specific aging mechanisms (expected or already experienced) and aging management program activities to the more generic results and recommendations presented herein.

  13. Short-wavelength soft-x-ray laser pumped in double-pulse single-beam non-normal incidence

    International Nuclear Information System (INIS)

    Zimmer, D.; Ros, D.; Guilbaud, O.; Habib, J.; Kazamias, S.; Zielbauer, B.; Bagnoud, V.; Ecker, B.; Aurand, B.; Kuehl, T.; Hochhaus, D. C.; Neumayer, P.

    2010-01-01

    We demonstrated a 7.36 nm Ni-like samarium soft-x-ray laser, pumped by 36 J of a neodymium:glass chirped-pulse amplification laser. Double-pulse single-beam non-normal-incidence pumping was applied for efficient soft-x-ray laser generation. In this case, the applied technique included a single-optic focusing geometry for large beam diameters, a single-pass grating compressor, traveling-wave tuning capability, and an optimized high-energy laser double pulse. This scheme has the potential for even shorter-wavelength soft-x-ray laser pumping.

  14. High-average-power diode-pumped Yb: YAG lasers

    International Nuclear Information System (INIS)

    Avizonis, P V; Beach, R; Bibeau, C M; Emanuel, M A; Harris, D G; Honea, E C; Monroe, R S; Payne, S A; Skidmore, J A; Sutton, S B

    1999-01-01

    A scaleable diode end-pumping technology for high-average-power slab and rod lasers has been under development for the past several years at Lawrence Livermore National Laboratory (LLNL). This technology has particular application to high average power Yb:YAG lasers that utilize a rod configured gain element. Previously, this rod configured approach has achieved average output powers in a single 5 cm long by 2 mm diameter Yb:YAG rod of 430 W cw and 280 W q-switched. High beam quality (M(sup 2)= 2.4) q-switched operation has also been demonstrated at over 180 W of average output power. More recently, using a dual rod configuration consisting of two, 5 cm long by 2 mm diameter laser rods with birefringence compensation, we have achieved 1080 W of cw output with an M(sup 2) value of 13.5 at an optical-to-optical conversion efficiency of 27.5%. With the same dual rod laser operated in a q-switched mode, we have also demonstrated 532 W of average power with an M(sup 2) and lt; 2.5 at 17% optical-to-optical conversion efficiency. These q-switched results were obtained at a 10 kHz repetition rate and resulted in 77 nsec pulse durations. These improved levels of operational performance have been achieved as a result of technology advancements made in several areas that will be covered in this manuscript. These enhancements to our architecture include: (1) Hollow lens ducts that enable the use of advanced cavity architectures permitting birefringence compensation and the ability to run in large aperture-filling near-diffraction-limited modes. (2) Compound laser rods with flanged-nonabsorbing-endcaps fabricated by diffusion bonding. (3) Techniques for suppressing amplified spontaneous emission (ASE) and parasitics in the polished barrel rods

  15. Dynamic analysis of a pumped-storage hydropower plant with random power load

    Science.gov (United States)

    Zhang, Hao; Chen, Diyi; Xu, Beibei; Patelli, Edoardo; Tolo, Silvia

    2018-02-01

    This paper analyzes the dynamic response of a pumped-storage hydropower plant in generating mode. Considering the elastic water column effects in the penstock, a linearized reduced order dynamic model of the pumped-storage hydropower plant is used in this paper. As the power load is always random, a set of random generator electric power output is introduced to research the dynamic behaviors of the pumped-storage hydropower plant. Then, the influences of the PI gains on the dynamic characteristics of the pumped-storage hydropower plant with the random power load are analyzed. In addition, the effects of initial power load and PI parameters on the stability of the pumped-storage hydropower plant are studied in depth. All of the above results will provide theoretical guidance for the study and analysis of the pumped-storage hydropower plant.

  16. Study of hybrid power system potential to power agricultural water pump in mountain area

    International Nuclear Information System (INIS)

    Syuhada, Ahmad; Mubarak, Amir Zaki; Maulana, M. Ilham

    2016-01-01

    As industry and Indonesian economy grow fast, there are a lot of agricultural land has changed into housing and industrial land. This causes the agricultural land moves to mountain area. In mountainous agricultural area, farmers use the water resources of small rivers in the groove of the mountain to irrigate the farmland. Farmers use their power to lift up water from the river to their land which causes inefectivity in the work of the farmers. Farmers who have capital utilize pump to raise water to their land. The only way to use pump in mountain area is by using fuel energy as there is no electricity, and the fuel price in mountain area is very expensive. Based on those reasons it is wise to consider the exploration of renewable energy available in the area such as solar energy, wind energy and hybrid energy. This study analyses the potential of the application of hybrid power plant, which is the combination of solar and wind energy, to power agricultural pump. In this research, the data of wind speed and solar radiation are collected from the measurement of BMKG SMPK Plus Sare. Related to the solar energy, the photovoltaic output power calculation is 193 W with duration of irradiation of 5 hours/day. While for the wind energy, the output power of the wind turbine is 459.84 W with blade diameter of 3 m and blow duration of 7 hours/day. The power of the pump is 558 W with 8 hours of usage, and the water capacity is 2.520 liters/hour for farmland with the area of 15 ha. Based on the analysis result, the designed system will generate electricity of 3.210 kW/year with initial investment of US$ 14,938.

  17. Study of hybrid power system potential to power agricultural water pump in mountain area

    Energy Technology Data Exchange (ETDEWEB)

    Syuhada, Ahmad, E-mail: syuhada-mech@yahoo.com; Mubarak, Amir Zaki, E-mail: amir-zaki-mubarak@yahoo.com; Maulana, M. Ilham, E-mail: mil2ana@yahoo.com [Mechanical Engineering Department, Engineering Faculty, Syiah Kuala University Jl. Syech Abdul Rauf No.7 Darussalam Banda Aceh 23111 (Indonesia)

    2016-03-29

    As industry and Indonesian economy grow fast, there are a lot of agricultural land has changed into housing and industrial land. This causes the agricultural land moves to mountain area. In mountainous agricultural area, farmers use the water resources of small rivers in the groove of the mountain to irrigate the farmland. Farmers use their power to lift up water from the river to their land which causes inefectivity in the work of the farmers. Farmers who have capital utilize pump to raise water to their land. The only way to use pump in mountain area is by using fuel energy as there is no electricity, and the fuel price in mountain area is very expensive. Based on those reasons it is wise to consider the exploration of renewable energy available in the area such as solar energy, wind energy and hybrid energy. This study analyses the potential of the application of hybrid power plant, which is the combination of solar and wind energy, to power agricultural pump. In this research, the data of wind speed and solar radiation are collected from the measurement of BMKG SMPK Plus Sare. Related to the solar energy, the photovoltaic output power calculation is 193 W with duration of irradiation of 5 hours/day. While for the wind energy, the output power of the wind turbine is 459.84 W with blade diameter of 3 m and blow duration of 7 hours/day. The power of the pump is 558 W with 8 hours of usage, and the water capacity is 2.520 liters/hour for farmland with the area of 15 ha. Based on the analysis result, the designed system will generate electricity of 3.210 kW/year with initial investment of US$ 14,938.

  18. The main pump motor remote visual check in the application of the domestic nuclear power plants

    International Nuclear Information System (INIS)

    Ge Lianwei; Yu Tao; Fang Jiang; Zhang Ting; Zhang Xingtian; Ding Youyuan

    2014-01-01

    In this paper, the Qinshan nuclear power station the first main pump motor to the successful implementation of remote visual inspection the main pump motor remote visual inspection applications. Qinshan Nuclear Power Plant Units 1 and 2 of the main pump motor inspection results show that the key components of the Qinshan Nuclear Power Plant Units 1 and 2 of the main pump rotor, stator end coils good condition, its problems for 10 years in the motor does not affect the normal use of the motor state disintegration overhaul problems tracking disintegration overhaul in 10 years. (authors)

  19. Design and research on nuclear power plant EAS jet pump

    International Nuclear Information System (INIS)

    Chen Xingjiang; Fang Xiquan; Xie Jian; Yang Bin; Wang Xueling; Qi Yanli

    2014-01-01

    The jet pump is an important part of the PWR containment spray system. It will be performed the security functions under the accident conditions, which the containment spray system adds the right amount of sodium hydroxide through the jet pump to spray water. This paper describes the principle of jet pump. And the optimum structure dimensions were calculated according to the performance parameter and requirement of the jet pump. On the basis of foreign EAS jet pump design experience, the structure dimensions were modified according to the CFD analysis and performance test. Finally, the results of CFD analysis and performance test were provided. (authors)

  20. Latest development of safeguard pumps for nuclear power stations

    International Nuclear Information System (INIS)

    Schill, J.; Fekadu, J.

    1979-01-01

    Performance testing of Residual Heat Removal (RHR) pumps and High Pressure Safety Injection (HPSI) pumps is described. RHR pump is characterised by a combination of an impeller, diffuser and has an annular pressure retaining casted casing. This casing enables a 100% radiographic examination and its geometrical pattern facilitates the use of an axi-symmetric shell model for the computer analysis. Similar considerations govern the choice of the pressure casing of the HPSI pumps. These pumps are meant for nuclear facilities and have to meet certain limiting factors which are mentioned. (M.G.B.)

  1. Experimental investigation of thermoelectric power generation versus coolant pumping power in a microchannel heat sink

    DEFF Research Database (Denmark)

    Kolaei, Alireza Rezania; Rosendahl, Lasse; Andreasen, Søren Juhl

    2012-01-01

    The coolant heat sinks in thermoelectric generators (TEG) play an important role in order to power generation in the energy systems. This paper explores the effective pumping power required for the TEGs cooling at five temperature difference of the hot and cold sides of the TEG. In addition......, the temperature distribution and the pressure drop in sample microchannels are considered at four sample coolant flow rates. The heat sink contains twenty plate-fin microchannels with hydraulic diameter equal to 0.93 mm. The experimental results show that there is a unique flow rate that gives maximum net-power...

  2. Diode pumped 1kHz high power Nd:YAG laser with excellent beam quality

    NARCIS (Netherlands)

    Godfried, Herman; Godfried, H.P; Offerhaus, Herman L.

    1997-01-01

    The design and operation of a one kilohertz diode pumped all solid-state Nd:YAG master oscillator power amplifier system with a phase conjugate mirror is presented. The setup allows high power scaling without reduction in beam quality.

  3. PUMPS

    Science.gov (United States)

    Thornton, J.D.

    1959-03-24

    A pump is described for conveving liquids, particure it is not advisable he apparatus. The to be submerged in the liquid to be pumped, a conduit extending from the high-velocity nozzle of the injector,and means for applying a pulsating prcesure to the surface of the liquid in the conduit, whereby the surface oscillates between positions in the conduit. During the positive half- cycle of an applied pulse liquid is forced through the high velocity nozzle or jet of the injector and operates in the manner of the well known water injector and pumps liquid from the main intake to the outlet of the injector. During the negative half-cycle of the pulse liquid flows in reverse through the jet but no reverse pumping action takes place.

  4. Research of waste heat energy efficiency for absorption heat pump recycling thermal power plant circulating water

    Science.gov (United States)

    Zhang, Li; Zhang, Yu; Zhou, Liansheng; E, Zhijun; Wang, Kun; Wang, Ziyue; Li, Guohao; Qu, Bin

    2018-02-01

    The waste heat energy efficiency for absorption heat pump recycling thermal power plant circulating water has been analyzed. After the operation of heat pump, the influences on power generation and heat generation of unit were taken into account. In the light of the characteristics of heat pump in different operation stages, the energy efficiency of heat pump was evaluated comprehensively on both sides of benefits belonging to electricity and benefits belonging to heat, which adopted the method of contrast test. Thus, the reference of energy efficiency for same type projects was provided.

  5. Conceptuation of a continuously working vacuum pump train for fusion power plants

    International Nuclear Information System (INIS)

    Giegerich, Thomas; Day, Christian

    2013-01-01

    The Karlsruhe Institute of Technology (KIT) is developing a continuously working and non-cryogenic pumping solution for a demonstration power plant (DEMO). This pumping train shall cover the full operational pressure regime of a fusion reactor and is based on two pump types, namely diffusion pumps and liquid ring pumps. The whole pumping train must fulfill high safety and reliability requirements and it has to be made fully tritium compatible. In this paper, the design of a prototype pumping train and the special requirements for a DEMO machine are presented and discussed. A central feature of this pumping train is the use of a liquid metal as tritium compatible working fluid in both pump types, that leads to a pumping train which is able to cover a pressure range of 12 decades, namely from 10 −9 to 10 3 mbar. Finally, a test facility for pump testing over a wide pressure regime is described. In this facility (THESEUS), experiments with a diffusion pump have been performed and first results are presented

  6. Conceptuation of a continuously working vacuum pump train for fusion power plants

    Energy Technology Data Exchange (ETDEWEB)

    Giegerich, Thomas, E-mail: thomas.giegerich@kit.edu; Day, Christian

    2013-10-15

    The Karlsruhe Institute of Technology (KIT) is developing a continuously working and non-cryogenic pumping solution for a demonstration power plant (DEMO). This pumping train shall cover the full operational pressure regime of a fusion reactor and is based on two pump types, namely diffusion pumps and liquid ring pumps. The whole pumping train must fulfill high safety and reliability requirements and it has to be made fully tritium compatible. In this paper, the design of a prototype pumping train and the special requirements for a DEMO machine are presented and discussed. A central feature of this pumping train is the use of a liquid metal as tritium compatible working fluid in both pump types, that leads to a pumping train which is able to cover a pressure range of 12 decades, namely from 10{sup −9} to 10{sup 3} mbar. Finally, a test facility for pump testing over a wide pressure regime is described. In this facility (THESEUS), experiments with a diffusion pump have been performed and first results are presented.

  7. Comparison of Power Supply Pumping of Switch-Mode Audio Power Amplifiers with Resistive Loads and Loudspeakers as Loads

    DEFF Research Database (Denmark)

    Knott, Arnold; Petersen, Lars Press

    2013-01-01

    Power supply pumping is generated by switch-mode audio power amplifiers in half-bridge configuration, when they are driving energy back into their source. This leads in most designs to a rising rail voltage and can be destructive for either the decoupling capacitors, the rectifier diodes...... in the power supply or the power stage of the amplifier. Therefore precautions are taken by the amplifier and power supply designer to avoid those effects. Existing power supply pumping models are based on an ohmic load attached to the amplifier. This paper shows the analytical derivation of the resulting...... waveforms and extends the model to loudspeaker loads. Measurements verify, that the amount of supply pumping is reduced by a factor of 4 when comparing the nominal resistive load to a loudspeaker. A simplified and more accurate model is proposed and the influence of supply pumping on the audio performance...

  8. 1018 nm Yb-doped high-power fiber laser pumped by broadband pump sources around 915 nm with output power above 100 W

    DEFF Research Database (Denmark)

    Midilli, Yakup; Efunbajo, Oyewole Benjamin; Şimşek, Bartu

    2017-01-01

    laser were also addressed in this study. Finally, we have tested this system for high power experimentation and obtained 67% maximum optical-to-optical efficiency at an approximately 110 W output power level. To the best of our knowledge, this is the first 1018 nm ytterbium-doped all-fiber laser pumped...

  9. Measurement of incident sound power using near field acoustic holography

    DEFF Research Database (Denmark)

    Jacobsen, Finn; Tiana Roig, Elisabet

    2009-01-01

    ; and it has always been regarded as impossible to measure the sound power that is incident on a wall directly. This paper examines a new method of determining this quantity from sound pressure measurements at positions on the wall using ‘statistically optimised near field acoustic holography’ (SONAH...

  10. Variable flow controls of closed system pumps for energy savings in maritime power systems

    OpenAIRE

    Su, Chun-Lien; Liao, Chi-Hsiang; Chou, Tso-Chu; Chou, Ming-Hung; Guerrero, Josep M.

    2016-01-01

    Pumps are extensively used in maritime industries as marine vessels utilize a wide range of pumps and pumping techniques to transfer and distribute all types of air and fluids. The electrical energy consumed by the various motors accounts for about 70% of a vessel’s total power consumption, and this presents a problem in unique marine environments. Such situations are especially conducive to energy-saving strategies using variable frequency drives (VFDs) in centrifugal load service. This pape...

  11. High pumping-power fiber combiner for double-cladding fiber lasers and amplifiers

    Science.gov (United States)

    Zheng, Jinkun; Zhao, Wei; Zhao, Baoyin; Li, Zhe; Chang, Chang; Li, Gang; Gao, Qi; Ju, Pei; Gao, Wei; She, Shengfei; Wu, Peng; Hou, Chaoqi; Li, Weinan

    2018-03-01

    A high pumping-power fiber combiner for backward pumping configurations is fabricated and demonstrated by manufacturing process refinement. The pump power handling capability of every pump fiber can extend to 600 W, corresponding to the average pump coupling efficiency of 94.83%. Totally, 2.67-kW output power with the beam quality factor M2 of 1.41 was obtained, using this combiner in the fiber amplifier experimental setup. In addition, the temperature of the splicing region was less than 50.0°C in the designed combiner under the action of circulating cooling water. The experimental results prove that the designed combiner is a promising integrated all-fiber device for multikilowatt continuous-wave fiber laser with excellent beam quality.

  12. Boiler recirculation pumps for nuclear power stations - present state of development. Directions for planning, operational experience

    International Nuclear Information System (INIS)

    Mattias, H.B.

    1976-01-01

    Boiler recirculation pumps are important components of modern power stations. The development of large recirculation pumps up to a driving power of 1,500 kW was faced with some problems in meeting the plant requirements. In this paper, the present state of development is dealt with. The development problems in the fields of hydrodynamics, cavitation, corrosion and erosion are dealt with as well as the problems of the design of the casing with regard to thermodynamics and strength. Finally, operational experience with the boiler recirculation pump for 600 MW power stations will be reported on. (orig./AK) [de

  13. Design of ion-pump power supply control software system based on TCP/IP protocol

    International Nuclear Information System (INIS)

    Lin Feiyu; Huang Jijiang; Guo Yuhui; Fang Zheng; Wang Yanyu

    2009-01-01

    This paper discuss a Ion-pump Power Supply control system making use of RS232 series bus and Intranet. The system's hardware VAC800 is composed of MSP430F149 mixed-signal processors produced by TI and UA7000A network model. MSP430F149 has advantages of ultra-low-power and high-integration. The Ion-pump Power Supply control system has the characteristics of strong function, simple structure, high reliability, strong resistance of noise, no peripheral chip, etc. Visual studio 2005 is used to design the system's software. The Ion-pump Power supplier control system can remotely monitor and control Ion-pump Power Suppliers. (authors)

  14. High Power Continuous-Wave Diode-End-Pumped 1.34-μm Nd:GdVO4 Laser

    International Nuclear Information System (INIS)

    Rui, Zhou; Shuang-Chen, Ruan; Chen-Lin, Du; Jian-Quan, Yao

    2008-01-01

    A high power cw all-solid-state 1.34-μm Nd:GdVO 4 laser is experimentally demonstrated. With a diode-double-end-pumped configuration and a simple plane-parallel cavity, a maximum output power of 27.9W is obtained at incident pump power of 96 W, introducing a slope efficiency of 35.4%. To the best of our knowledge, this is the highest output power of diode-end-pumped 1.3-μm laser. With the experimental data, the thermal-stress-resistance figure of merit of Nd:GdVO 4 crystal with 0.3 at% Nd 3+ doped level is calculated to be larger than 9.94 W/cm

  15. Simultaneous Imbalance Reduction and Peak Shaving using a Field Operational Virtual Power Plant with Pumps

    NARCIS (Netherlands)

    Pruissen, O.P. van; Kok, J.K.; Eisma, A.

    2015-01-01

    The Dutch electricity infrastructure is challenged by the deployment of large numbers of heat pumps in newly-built domestic residences. An example is the apartment complex of Couperus in The Hague where 300 apartments are heated by individual heat pumps. This building was operated as a Virtual Power

  16. Influence of individual heat pumps on wind power integration – Energy system investments and operation

    International Nuclear Information System (INIS)

    Hedegaard, Karsten; Münster, Marie

    2013-01-01

    Highlights: • Individual heat pumps can significantly support the integration of wind power. • The heat pumps significantly reduce fuel consumption, CO 2 emissions, and costs. • Heat storages for the heat pumps can provide only moderate system benefits. • Main benefit of flexible heat pump operation is a lower peak/reserve capacity need. • Socio-economic feasibility only identified for some heat storages to some extent. - Abstract: Individual heat pumps are expected to constitute a significant electricity demand in future energy systems. This demand becomes flexible if investing in complementing heat storage capabilities. In this study, we analyse how the heat pumps can influence the integration of wind power by applying an energy system model that optimises both investments and operation, and covers various heat storage options. The Danish energy system by 2030 with around 50–60% wind power is used as a case study. Results show that the heat pumps, even without flexible operation, can contribute significantly to facilitating larger wind power investments and reducing system costs, fuel consumption, and CO 2 emissions. Investments in heat storages can provide only moderate system benefits in these respects. The main benefit of the flexible heat pump operation is a reduced need for peak/reserve capacity, which is also crucial for the feasibility of the heat storages. Socio-economic feasibility is identified for control equipment enabling intelligent heat storage in the building structure and in existing hot water tanks. In contrast, investments in new heat accumulation tanks are not found competitive

  17. Synchronously pumped optical parametric oscillation in periodically poled lithium niobate with 1-W average output power

    NARCIS (Netherlands)

    Graf, T.; McConnell, G.; Ferguson, A.I.; Bente, E.A.J.M.; Burns, D.; Dawson, M.D.

    1999-01-01

    We report on a rugged all-solid-state laser source of near-IR radiation in the range of 1461–1601 nm based on a high-power Nd:YVO4 laser that is mode locked by a semiconductor saturable Bragg reflector as the pump source of a synchronously pumped optical parametric oscillator with a periodically

  18. Effect of absorbed pump power on the quality of output beam from ...

    Indian Academy of Sciences (India)

    Monolithic laser; thermal lens; diode pumping; spherical aberration; M2 ... the thermal lens as a function of the absorbed pump power towards the degradation of .... abs r4 -•••. (6) where the first term a0 is a constant phase shift and its value is ...

  19. High-power diode laser bars as pump sources for fiber lasers and amplifiers (Invited Paper)

    Science.gov (United States)

    Bonati, G.; Hennig, P.; Wolff, D.; Voelckel, H.; Gabler, T.; Krause, U.; T'nnermann, A.; Reich, M.; Limpert, J.; Werner, E.; Liem, A.

    2005-04-01

    Fiber lasers are pumped by fibercoupled, multimode single chip devices at 915nm. That"s what everybody assumes when asked for the type of fiber laser pumps and it was like this for many years. Coming up as an amplifier for telecom applications, the amount of pump power needed was in the range of several watts. Highest pump powers for a limited market entered the ten watts range. This is a range of power that can be covered by highly reliable multimode chips, that have to survive up to 25 years, e.g. in submarine applications. With fiber lasers entering the power range and the application fields of rod and thin disc lasers, the amount of pump power needed raised into the area of several hundred watts. In this area of pump power, usually bar based pumps are used. This is due to the much higher cost pressure of the industrial customers compared to telecom customers. We expect more then 70% of all industrial systems to be pumped by diode laser bars. Predictions that bar based pumps survive for just a thousand hours in cw-operation and fractions of this if pulsed are wrong. Bar based pumps have to perform on full power for 10.000h on Micro channel heat sinks and 20.000h on passive heatsinks in industrial applications, and they do. We will show a variety of data, "real" long time tests and statistics from the JENOPTIK Laserdiode as well as data of thousands of bars in the field, showing that bar based pumps are not just well suitable for industrial applications on high power levels, but even showing benefits compared to chip based pumps. And it"s reasonable, that the same objectives of cost effectiveness, power and lifetime apply as well to thin disc, rod and slab lasers as to fiber lasers. Due to the pumping of fiber lasers, examples will be shown, how to utilize bars for high brightness fiber coupling. In this area, the automation is on its way to reduce the costs on the fibercoupling, similar to what had been done in the single chip business. All these efforts are

  20. Pump

    International Nuclear Information System (INIS)

    Mole, C.J.

    1983-01-01

    An electromagnetic pump for circulating liquid -metal coolant through a nuclear reactor wherein opposite walls of a pump duct serve as electrodes to transmit current radially through the liquid-metal in the ducts. A circumferential electric field is supplied to the liquid-metal by a toroidal electromagnet which has core sections interposed between the ducts. The windings of the electromagnet are composed of metal which is superconductive at low temperatures and the electromagnet is maintained at a temperature at which it is superconductive by liquid helium which is fed through the conductors which supply the excitation for the electromagnet. The walls of the ducts joining the electrodes include metal plates insulated from the electrodes backed up by insulators so that they are capable of withstanding the pressure of the liquid-metal. These composite wall structures may also be of thin metal strips of low electrical conductivity backed up by sturdy insulators. (author)

  1. Multiphysics Modeling of an Annular Linear Induction Pump With Applications to Space Nuclear Power Systems

    Science.gov (United States)

    Kilbane, J.; Polzin, K. A.

    2014-01-01

    An annular linear induction pump (ALIP) that could be used for circulating liquid-metal coolant in a fission surface power reactor system is modeled in the present work using the computational COMSOL Multiphysics package. The pump is modeled using a two-dimensional, axisymmetric geometry and solved under conditions similar to those used during experimental pump testing. Real, nonlinear, temperature-dependent material properties can be incorporated into the model for both the electrically-conducting working fluid in the pump (NaK-78) and structural components of the pump. The intricate three-phase coil configuration of the pump is implemented in the model to produce an axially-traveling magnetic wave that is qualitatively similar to the measured magnetic wave. The model qualitatively captures the expected feature of a peak in efficiency as a function of flow rate.

  2. Design of a Mechanical NaK Pump for Fission Space Power

    Science.gov (United States)

    Mireles, Omar R.; Bradley, David E.; Godfroy, Thomas

    2011-01-01

    Alkali liquid metal cooled fission reactor concepts are under development for spaceflight power requirements. One such concept utilizes a sodium-potassium eutectic (NaK) as the primary loop working fluid, which has specific pumping requirements. Traditionally, electromagnetic linear induction pumps have been used to provide the required flow and pressure head conditions for NaK systems but they can be limited in performance, efficiency, and number of available vendors. The objective of the project was to develop a mechanical NaK centrifugal pump that takes advantages of technology advances not available in previous liquid metal mechanical pump designs. This paper details the design, build, and performance test of a mechanical NaK pump developed at NASA Marshall Space Flight Center. The pump was designed to meet reactor cooling requirements using commercially available components modified for high temperature NaK service.

  3. Commercialization of PV-powered pumping systems for use in utility PV service programs. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    The project described in this report was a commercialization effort focused on cost-effective remote water pumping systems for use in utility-based photovoltaic (PV) service programs. The project combined a commercialization strategy tailored specifically for electric utilities with the development of a PV-powered pumping system that operates conventional ac pumps rather than relying on the more expensive and less reliable PV pumps on the market. By combining these two attributes, a project goal was established of creating sustained utility purchases of 250 PV-powered water pumping systems per year. The results of each of these tasks are presented in two parts contained in this Final Summary Report. The first part summarizes the results of the Photovoltaic Services Network (PSN) as a new business venture, while the second part summarizes the results of the Golden Photon system installations. Specifically, results and photographs from each of the system installations are presented in this latter part.

  4. Intensity and absorbed-power distribution in a cylindrical solar-pumped dye laser

    Science.gov (United States)

    Williams, M. D.

    1984-01-01

    The internal intensity and absorbed-power distribution of a simplified hypothetical dye laser of cylindrical geometry is calculated. Total absorbed power is also calculated and compared with laboratory measurements of lasing-threshold energy deposition in a dye cell to determine the suitability of solar radiation as a pump source or, alternatively, what modifications, if any, are necessary to the hypothetical system for solar pumping.

  5. Incidents at nuclear power plants caused by the human factor

    International Nuclear Information System (INIS)

    Mashin, V. A.

    2012-01-01

    Psychological analysis of the causes of incorrect actions by personnel is discussed as presented in the report “Methodological guidelines for analyzing the causes of incidents in the operation of nuclear power plants.” The types of incorrect actions and classification of the root causes of errors by personnel are analyzed. Recommendations are made for improvements in the psychological analysis of causes of incorrect actions by personnel.

  6. Study of a low power dissipation, miniature laser-pumped rubidium frequency standard

    Institute of Scientific and Technical Information of China (English)

    Liu Guo-Bin; Zhao Feng; Gu Si-Hong

    2009-01-01

    This paper studies a miniature low power consumption laser-pumped atom vapour cell clock scheme. Pumping 87Rb with a vertical cavity surface emitting laser diode pump and locking the laser frequency on a Doppler-broadened spectral line,it records a 5×10-11τ-1/2 (τ<500 s) frequency stability with a table-top system in a primary experiment.The study reveals that the evaluated scheme is at the level of 2.7 watts power consumption,90 cm3 volume and 10-12τ- 1/2 short-term frequency stability.

  7. Vacuum pumping of tritium in fusion power reactors

    International Nuclear Information System (INIS)

    Coffin, D.O.; Walthers, C.R.

    1979-01-01

    Compound cryopumps of three different designs will be tested with deuterium-tritium (DT) mixtures under simulated fusion reactor conditions at the Tritium Systems Test Assembly (TSTA) now being constructed at the Los Alamos Scientific Laboratory (LASL). The first of these pumps is already in operation, and its preliminary performance is presented. The supporting vacuum facility necessary to regenerate these fusion facility cryopumps is also described. The next generation of fusion system vacuum pumps may include non-cryogenic or conventional-cryogenic hybrid systems, several of which are discussed

  8. The KALPUREX-process – A new vacuum pumping process for exhaust gases in fusion power plants

    International Nuclear Information System (INIS)

    Giegerich, Thomas; Day, Christian

    2014-01-01

    Highlights: • A new vacuum pumping process for fusion power plants has been developed and is presented in this paper. • This process works continuously and non-cryogenic what leads to a strong reduction of the tritium inventory in the fuel cycle. • This pumping process is based on the use of a liquid metal (mercury) as working fluid and is called KALPUREX process. • The KALPUREX process is the technical realization of the DIR concept using a set of three vacuum pumps (metal foil pump/diffusion pump/liquid ring pump). • This paper discusses the arrangement of the pumps and also the required infrastructure for operation. - Abstract: The Karlsruhe Institute of Technology (KIT) is developing a continuously working and non-cryogenic pumping solution for torus exhaust pumping of a demonstration power plant (DEMO) including Direct Internal Recycling (DIR). This full pumping system consists of three pumps, namely a metal foil pump for gas separation, a linear diffusion pump as primary pump and a liquid ring pump as backing pump. The latter two pumps apply mercury as working fluid due to its perfect tritium compatibility. This asks for a baffle system on both sides of the pumping train to control working fluid vapour and to avoid any mercury propagation in the machine. In this paper, the arrangement of all torus pumps required for a power plant reactor as well as the corresponding infrastructure and its effect on the DEMO machine design is presented and discussed. The full pumping process is called ‘Karlsruhe liquid metal based pumping process for fusion reactor exhaust gases’ (KALPUREX process, patent pending)

  9. The KALPUREX-process – A new vacuum pumping process for exhaust gases in fusion power plants

    Energy Technology Data Exchange (ETDEWEB)

    Giegerich, Thomas, E-mail: thomas.giegerich@kit.edu; Day, Christian

    2014-10-15

    Highlights: • A new vacuum pumping process for fusion power plants has been developed and is presented in this paper. • This process works continuously and non-cryogenic what leads to a strong reduction of the tritium inventory in the fuel cycle. • This pumping process is based on the use of a liquid metal (mercury) as working fluid and is called KALPUREX process. • The KALPUREX process is the technical realization of the DIR concept using a set of three vacuum pumps (metal foil pump/diffusion pump/liquid ring pump). • This paper discusses the arrangement of the pumps and also the required infrastructure for operation. - Abstract: The Karlsruhe Institute of Technology (KIT) is developing a continuously working and non-cryogenic pumping solution for torus exhaust pumping of a demonstration power plant (DEMO) including Direct Internal Recycling (DIR). This full pumping system consists of three pumps, namely a metal foil pump for gas separation, a linear diffusion pump as primary pump and a liquid ring pump as backing pump. The latter two pumps apply mercury as working fluid due to its perfect tritium compatibility. This asks for a baffle system on both sides of the pumping train to control working fluid vapour and to avoid any mercury propagation in the machine. In this paper, the arrangement of all torus pumps required for a power plant reactor as well as the corresponding infrastructure and its effect on the DEMO machine design is presented and discussed. The full pumping process is called ‘Karlsruhe liquid metal based pumping process for fusion reactor exhaust gases’ (KALPUREX process, patent pending)

  10. High power operation of cladding pumped holmium-doped silica fibre lasers.

    Science.gov (United States)

    Hemming, Alexander; Bennetts, Shayne; Simakov, Nikita; Davidson, Alan; Haub, John; Carter, Adrian

    2013-02-25

    We report the highest power operation of a resonantly cladding-pumped, holmium-doped silica fibre laser. The cladding pumped all-glass fibre utilises a fluorine doped glass layer to provide low loss cladding guidance of the 1.95 µm pump radiation. The operation of both single mode and large-mode area fibre lasers was demonstrated, with up to 140 W of output power achieved. A slope efficiency of 59% versus launched pump power was demonstrated. The free running emission was measured to be 2.12-2.15 µm demonstrating the potential of this architecture to address the long wavelength operation of silica based fibre lasers with high efficiency.

  11. Influence of individual heat pumps on wind power integration – Energy system investments and operation

    DEFF Research Database (Denmark)

    Hedegaard, Karsten; Münster, Marie

    2013-01-01

    Individual heat pumps are expected to constitute a significant electricity demand in future energy systems. This demand becomes flexible if investing in complementing heat storage capabilities. In this study, we analyse how the heat pumps can influence the integration of wind power by applying...... an energy system model that optimises both investments and operation, and covers various heat storage options. The Danish energy system by 2030 with around 50–60% wind power is used as a case study. Results show that the heat pumps, even without flexible operation, can contribute significantly...... to facilitating larger wind power investments and reducing system costs, fuel consumption, and CO2 emissions. Investments in heat storages can provide only moderate system benefits in these respects. The main benefit of the flexible heat pump operation is a reduced need for peak/reserve capacity, which is also...

  12. Statistical analysis of nuclear power plant pump failure rate variability: some preliminary results

    International Nuclear Information System (INIS)

    Martz, H.F.; Whiteman, D.E.

    1984-02-01

    In-Plant Reliability Data System (IPRDS) pump failure data on over 60 selected pumps in four nuclear power plants are statistically analyzed using the Failure Rate Analysis Code (FRAC). A major purpose of the analysis is to determine which environmental, system, and operating factors adequately explain the variability in the failure data. Catastrophic, degraded, and incipient failure severity categories are considered for both demand-related and time-dependent failures. For catastrophic demand-related pump failures, the variability is explained by the following factors listed in their order of importance: system application, pump driver, operating mode, reactor type, pump type, and unidentified plant-specific influences. Quantitative failure rate adjustments are provided for the effects of these factors. In the case of catastrophic time-dependent pump failures, the failure rate variability is explained by three factors: reactor type, pump driver, and unidentified plant-specific influences. Finally, point and confidence interval failure rate estimates are provided for each selected pump by considering the influential factors. Both types of estimates represent an improvement over the estimates computed exclusively from the data on each pump

  13. Examination of pump failure data in the nuclear power industry

    International Nuclear Information System (INIS)

    Casada, D.

    1996-01-01

    There are several elements that are critical to any program which is used to optimize the availability and reliability of process equipment. Perhaps the most important elements are routine monitoring and predictive maintenance elements. In order to optimize equipment monitoring and predictive maintenance, it is necessary to fundamentally and thoroughly understand the principal failure modes for the equipment and the effectiveness of alternative monitoring methods. While these observations are general in nature, they are certainly true for the open-quotes heartclose quotes of fluid systems - pumps. In recent years, particularly within the last decade, the capabilities and ease of use of previously existing pump diagnostic technologies, such as vibration monitoring and oil analysis, have improved dramatically. Newer technologies, such as thermal imaging, have been found effective at detecting certain undesirable or degraded conditions, such as misalignment and overheated bearings or packing. The ASME Code and NRC regulatory requirements have been, like essentially all similar code and regulatory bodies, conservative in their adoption or endorsement of newer technologies. The requirements prescribed by the Code and endorsed by the NRC have, in their essence, changed only minimally over more than a dozen years. As a follow-on to studies of check valve failure experience in the nuclear industry that have proven useful in identifying the effectiveness of alternative monitoring methods, a study of nuclear industry pump failure data has been conducted. The results of this study, conducted for the NRC by Oak Ridge National Laboratory, are presented. The historical effectiveness of both regulatory required and voluntarily implemented pump monitoring programs are shown. The distribution of pump failures by application, affected area, and level of significance are indicated. Apparent strengths and weaknesses of alternative monitoring methods are discussed

  14. Examination of pump failure data in the nuclear power industry

    Energy Technology Data Exchange (ETDEWEB)

    Casada, D. [Oak Ridge National Lab., TN (United States)

    1996-12-01

    There are several elements that are critical to any program which is used to optimize the availability and reliability of process equipment. Perhaps the most important elements are routine monitoring and predictive maintenance elements. In order to optimize equipment monitoring and predictive maintenance, it is necessary to fundamentally and thoroughly understand the principal failure modes for the equipment and the effectiveness of alternative monitoring methods. While these observations are general in nature, they are certainly true for the {open_quotes}heart{close_quotes} of fluid systems - pumps. In recent years, particularly within the last decade, the capabilities and ease of use of previously existing pump diagnostic technologies, such as vibration monitoring and oil analysis, have improved dramatically. Newer technologies, such as thermal imaging, have been found effective at detecting certain undesirable or degraded conditions, such as misalignment and overheated bearings or packing. The ASME Code and NRC regulatory requirements have been, like essentially all similar code and regulatory bodies, conservative in their adoption or endorsement of newer technologies. The requirements prescribed by the Code and endorsed by the NRC have, in their essence, changed only minimally over more than a dozen years. As a follow-on to studies of check valve failure experience in the nuclear industry that have proven useful in identifying the effectiveness of alternative monitoring methods, a study of nuclear industry pump failure data has been conducted. The results of this study, conducted for the NRC by Oak Ridge National Laboratory, are presented. The historical effectiveness of both regulatory required and voluntarily implemented pump monitoring programs are shown. The distribution of pump failures by application, affected area, and level of significance are indicated. Apparent strengths and weaknesses of alternative monitoring methods are discussed.

  15. High-power fiber-coupled pump lasers for fiber lasers

    Science.gov (United States)

    Kasai, Yohei; Aizawa, Takuya; Tanaka, Daiichiro

    2018-02-01

    We present high-power fiber-coupled pump modules utilized effectively for ultra-high power single-mode (SM) fiber lasers. Maximum output power of 392 W was achieved at 23 A for 915 nm pump, and 394 W for 976 nm pump. Fiber core diameter is 118 μm and case temperature is 25deg. C. Polarization multiplexing technique was newly applied to our optical system. High-reliability of the laser diodes (LD) at high-power operation has been demonstrated by aging tests. Advanced package structure was developed that manages uncoupled light around input end of the fiber. 800 hours continuous drive with uncoupled light power of 100 W has been achieved.

  16. Low grade waste heat recovery using heat pumps and power cycles

    International Nuclear Information System (INIS)

    Bor, D.M. van de; Infante Ferreira, C.A.; Kiss, Anton A.

    2015-01-01

    Thermal energy represents a large part of the global energy usage and about 43% of this energy is used for industrial applications. Large amounts are lost via exhaust gases, liquid streams and cooling water while the share of low temperature waste heat is the largest. Heat pumps upgrading waste heat to process heat and cooling and power cycles converting waste heat to electricity can make a strong impact in the related industries. The potential of several alternative technologies, either for the upgrading of low temperature waste heat such as compression-resorption, vapor compression and trans-critical heat pumps, or for the conversion of this waste heat by using organic Rankine, Kalina and trilateral cycle engines, are investigated with regards to energetic and economic performance by making use of thermodynamic models. This study focuses on temperature levels of 45–60 °C as at this temperature range large amounts of heat are rejected to the environment but also investigates the temperature levels for which power cycles become competitive. The heat pumps deliver 2.5–11 times more energy value than the power cycles in this low temperature range at equal waste heat input. Heat engines become competitive with heat pumps at waste heat temperatures at 100 °C and above. - Highlights: • Application of heat pump technology for heating and cooling. • Compression resorption heat pumps operating with large glides approaching 100 K. • Compression-resorption heat pumps with wet compression. • Potential to convert Industrial waste heat to power or high grade heat. • Comparison between low temperature power cycles and heat pumps

  17. FIX-II/2032, BWR Pump Trip Experiment 2032, Simulation Mass Flow and Power Transients

    International Nuclear Information System (INIS)

    1988-01-01

    1 - Description of test facility: In the FIX-II pump trip experiments, mass flow and power transients were simulated subsequent to a total loss of power to the recirculation pumps in an internal pump boiling water reactor. The aim was to determine the initial power limit to give dryout in the fuel bundle for the specified transient. In addition, the peak cladding temperature was measured and the rewetting was studied. 2 - Description of test: Pump trip experiment 2032 was a part of test group 2, i.e. the mass flow transient was to simulate the pump coast down with a pump inertia of 11.3 kg.m -2 . The initial power in the 36-rod bundle was 4.44 MW which gave dryout after 1.4 s from the start of the flow transient. A maximum rod cladding temperature of 457 degrees C was measured. Rewetting was obtained after 7.6 s. 3 - Experimental limitations or shortcomings: No ECCS injection systems

  18. A high power picosecond Nd:YVO4 master oscillator power amplifier system pumped by 880 nm diodes

    International Nuclear Information System (INIS)

    Yan, S; Yan, X; Yu, H; Zhang, L; Guo, L; Sun, W; Hou, W; Lin, X

    2013-01-01

    We present a high power 880 nm diode-pumped passively mode-locked Nd:YVO 4 oscillator, followed by an 880 nm diode-pumped Nd:YVO 4 amplifier. In the oscillator, a maximum power of 8.7 W was obtained with a repetition rate of 63 MHz and pulse duration of 32 ps, corresponding to an optical efficiency of 36%. The beam quality factors M 2 were measured to be M x 2 =1.2 and M y 2 =1.1 9, respectively. The amplifier generated up to 19.1 W output power with the pulse width and repetition rate remaining unaltered after amplification. (paper)

  19. All-solid-state cw frequency-doubling Nd:YLiF4/LBO blue laser with 4.33 W output power at 454 nm under in-band diode pumping at 880 nm.

    Science.gov (United States)

    Lü, Yanfei; Zhang, Xihe; Cheng, Weibo; Xia, Jing

    2010-07-20

    We generated efficient blue laser output at 454 nm by intracavity frequency doubling of a continuous-wave (cw) diode-pumped Nd:YLiF(4) (Nd:YLF) laser at 908 nm based on the (4)F(3/2)-(4)I(9/2) transition. With 32.8 W of incident pump power at 880 nm and the frequency-doubling crystal LiB(3)O(5), a level as high as 4.33 W of cw output power at 454 nm is achieved, corresponding to an optical conversion efficiency of 13.2% with respect to the incident pump power. To the best of our knowledge, this is the first blue laser at 454 nm generated by intracavity frequency doubling of a diode-pumped Nd:YLF.

  20. Trouble diagnostic system for pumps used in thermal and nuclear power plant

    International Nuclear Information System (INIS)

    Amano, K.; Hayashi, M.; Takagi, M.; Katsura, H.

    1995-01-01

    Most power plants have been operated under severe conditions to meet the diversification in electricity supply and demand. Therefore, it has become an important objective to keep the pumps under maintenance and control which necessitates a more reliable diagnostic system. With this in mind, the authors set out to perform the simulation tests of abnormal operation using a model pump, and have developed the diagnostic system for pumps based on vibration and process data. The main features of the system are 1) parallel processing of data acquisition and the diagnosis and 2) guidance function for the abnormal operation. The system has been applied to an actual pump to detect a bearing damage and set up at the nuclear power plant. (author)

  1. Volume Bragg grating narrowed high-power and highly efficient cladding-pumped Raman fiber laser.

    Science.gov (United States)

    Liu, Jun; Yao, Weichao; Zhao, Chujun; Shen, Deyuan; Fan, Dianyuan

    2014-12-10

    High-power and highly efficient operation of a single-mode cladding-pumped Raman fiber laser with narrow lasing bandwidth is demonstrated. The spectral narrowing was realized by an external cavity containing a volume Bragg grating with a center wavelength of 1658 nm. A maximum output power of 10.4 W at 1658.3 nm with a spectral linewidth (FWHM) of ∼0.1  nm was obtained for the launched pump power of 18.4 W, corresponding to a slope efficiency of 109% with respect to the launched pump power. Lasing characteristics of free-running operation are also evaluated and discussed.

  2. Design of a Mechanical NaK Pump for Fission Space Power Systems

    Science.gov (United States)

    Mireles, Omar R.; Bradley, David; Godfroy, Thomas

    2010-01-01

    Alkali liquid metal cooled fission reactor concepts are under development for mid-range spaceflight power requirements. One such concept utilizes a sodium-potassium eutectic (NaK) as the primary loop working fluid. Traditionally, linear induction pumps have been used to provide the required flow and head conditions for liquid metal systems but can be limited in performance. This paper details the design, build, and check-out test of a mechanical NaK pump. The pump was designed to meet reactor cooling requirements using commercially available components modified for high temperature NaK service.

  3. New Configurations of Micro Plate-Fin Heat Sink to Reduce Coolant Pumping Power

    DEFF Research Database (Denmark)

    Kolaei, Alireza Rezania; Rosendahl, Lasse

    2012-01-01

    the optimum heat sink configuration. The particular focus of this study is to reduce the coolant mass flow rate by considering the thermal resistances of the heat sinks and, thereby, to reduce the coolant pumping power in the system. The threedimensional governing equations for the fluid flow and the heat......The thermal resistance of heat exchangers has a strong influence on the electric power produced by a thermoelectric generator (TEG). In this work, a real TEG device is applied to three configurations of micro plate-fin heat sink. The distance between certain microchannels is varied to find...... heat sink configurations reduces the coolant pumping power in the system....

  4. Considerations for surviving the loss of a main feedwater pump at full power

    International Nuclear Information System (INIS)

    Gaydos, K.A.; Calvo, R.; Conroy, P.W.; Klein, C.M.; Mellers, J.E.

    1990-01-01

    Today's economics dictate that nuclear power operational costs be contained by addressing frequently-occurring trips that might be minimized or avoided via specific upgrades. Much recent attention has focused on the significant percentage of plant trips related to feedwater flow regulation; however, another frequent feedwater-related trip stems from the loss of a single main feedwater pump while operating at high power levels, causing a plant trip on low steam generator water-level. This paper summarizes the results of several plant-specific studies that evaluate a unit's capabilities to consistently survive the loss of a main feedwater pump from full power, and outlines a methodology for analyzing this capability

  5. High-inertia hermetically sealed main coolant pump for next generation passive nuclear power plants

    International Nuclear Information System (INIS)

    Kujawski, Joseph M.; Nair, Bala R.; Vijuk, Ronald P.

    2003-01-01

    The main coolant pump for the Westinghouse AP1000 advanced passive nuclear power plant represents a significant scale-up in power, flow capacity, and physical size from its predecessor designed for the smaller AP600 power plant. More importantly, the AP1000 pump incorporates several innovative features that contribute to improved efficiency, operational reliability, and plant safety. The features include an internals design which provides the highest hydraulic efficiency achieved in commercial nuclear power plant applications. Another feature is the use of a distributed inertial mass system in the rotating assembly to develop the high rotational inertia to meet the extended system flow coastdown requirement for core heat removal in the event of loss of power to the pumps. This advanced canned motor pump also incorporates the latest development in higher operating voltage, providing plant designers with the ability to eliminate plant transformers and operate directly on the site electrical bus in many cases. The salient features of the pump design and performance data are presented in this paper. (author)

  6. Low-power photolytically pumped lasers: Final technical report

    International Nuclear Information System (INIS)

    Messing, I.; Lorents, D.C.; Eckstrom, D.J.

    1987-08-01

    We have carried out an extensive series of measurements of the time-resolved Xe 2 * emission spectra following optical pumping by a short-pulse F 2 laser at 157.6 nm. Most measurements were performed using a gated Optical Multichannel Analyzer detector; we also made measurements using a scanning monochromator fitted with a photomultiplier and using a boxcar integrator for time resolution. The two sets of results agree well and show that both the singlet and triplet emission bands are broader than expected and have center wavelengths closer together than expected. Measurements were performed both at room temperature and at elevated (140 0 C) and reduced (-27 0 C) temperatures. The broad bandwidth of the individual spectral bands was unexpected and conflicted with a previous spectral measurement using optical pumping by the Xe* resonance line from a microwave discharge lamp. Therefore, we also performed a series of spectral measurements using this type of optical pumping. We achieved good agreement with some previous results in the literature, but not with the result in question. We conclude that the present results are reliable. The results presented in this report provide the first definitive measurement of the individual excimer emissions from each of the Xe 2 (0/sub u/ + ) and Xe 2 (1/sub u/) states. From these measurements and the known ground state potential, we derived a 1/sub u/ potential that reproduces the emission band very well. However, the 1/sub u/ potential is in substantial disagreement with the recent 1/sub u/ potential derived by the Toronto group. 13 refs., 32 figs., 3 tabs

  7. Theoretical study of the effect of pump wavelength drift on mode instability in a high-power fiber amplifier

    Science.gov (United States)

    Liu, Yakun; Tao, Rumao; Su, Rongtao; Wang, Xiaolin; Ma, Pengfei; Zhang, Hanwei; Zhou, Pu; Si, Lei

    2018-04-01

    This paper presents an investigation of the effect of pump wavelength drift on the threshold of mode instability (MI) in high-power ytterbium-doped fiber lasers. By using a semi-analytical model, we study the effects of pump wavelength drift with a central pump wavelength around 976 nm and 915 nm, respectively. The influences of the pump absorption coefficient and total pump absorption are considered simultaneously. The results indicate that the effect of pump wavelength drift around 976 nm is stronger than that around 915 nm. For more efficient suppression of MI by shifting the pump wavelength, efficient absorption of pump power is required. The MI thresholds for fibers with different total pump absorptions and cladding diameters are compared. When the total pump absorption is increased, the gain saturation is enhanced, which results in the MI being mitigated more effectively and being more sensitive to pump wavelength drift. The MI threshold in gain fibers with larger inner cladding diameter is higher but more dependent upon pump wavelength. The results of this work can help in optimizing the pump wavelength and fiber parameters and suppressing MI in high-power fiber lasers.

  8. Wind power integration using individual heat pumps – Analysis of different heat storage options

    DEFF Research Database (Denmark)

    Hedegaard, Karsten; Mathiesen, Brian Vad; Lund, Henrik

    2012-01-01

    Significant installations of individual heat pumps are expected in future energy systems due to their economic competitiveness. This case study of the Danish energy system in 2020 with 50% wind power shows that individual heat pumps and heat storages can contribute to the integration of wind power....... Heat accumulation tanks and passive heat storage in the construction are investigated as two alternative storage options in terms of their ability to increase wind power utilisation and to provide cost-effective fuel savings. Results show that passive heat storage can enable equivalent to larger...... reductions in excess electricity production and fuel consumption than heat accumulation tanks. Moreover, passive heat storage is found to be significantly more cost-effective than heat accumulation tanks. In terms of reducing fuel consumption of the energy system, the installation of heat pumps is the most...

  9. Improving Reliability of High Power Quasi-CW Laser Diode Arrays for Pumping Solid State Lasers

    Science.gov (United States)

    Amzajerdian, Farzin; Meadows, Byron L.; Baker, Nathaniel R.; Barnes, Bruce W.; Baggott, Renee S.; Lockard, George E.; Singh, Upendra N.; Kavaya, Michael J.

    2005-01-01

    Most Lidar applications rely on moderate to high power solid state lasers to generate the required transmitted pulses. However, the reliability of solid state lasers, which can operate autonomously over long periods, is constrained by their laser diode pump arrays. Thermal cycling of the active regions is considered the primary reason for rapid degradation of the quasi-CW high power laser diode arrays, and the excessive temperature rise is the leading suspect in premature failure. The thermal issues of laser diode arrays are even more drastic for 2-micron solid state lasers which require considerably longer pump pulses compared to the more commonly used pump arrays for 1-micron lasers. This paper describes several advanced packaging techniques being employed for more efficient heat removal from the active regions of the laser diode bars. Experimental results for several high power laser diode array devices will be reported and their performance when operated at long pulsewidths of about 1msec will be described.

  10. A novel technology for control of variable speed pumped storage power plant

    Institute of Scientific and Technical Information of China (English)

    Seyed Mohammad Hassan Hosseini; Mohammad Reza Semsar

    2016-01-01

    Variable speed pumped storage machines are used extensively in wind power plant and pumped storage power plant. This paper presents direct torque and flux control (DTFC) of a variable speed pumped storage power plant (VSPSP). By this method both torque and flux have been applied to control the VSPSP. The comparison between VSPSP’s control strategies is studied. At the first, a wind turbine with the capacity 2.2 kW and DTFC control strategies simulated then a 250 MW VSPSP is simulated with all of its parts (including electrical, mechanical, hydraulic and its control system) by MATLAB software. In all of simulations, both converters including two-level voltage source converter (2LVSC) and three-level voltage source converter (3LVSC) are applied. The results of applying 2LVSC and 3LVSC are the rapid dynamic responses with better efficiency, reducing the total harmonic distortion (THD) and ripple of rotor torque and flux.

  11. On the Profitability of Variable Speed Pump-Storage-Power in Frequency Restoration Reserve

    Science.gov (United States)

    Filipe, Jorge; Bessa, Ricardo; Moreira, Carlos; Silva, Bernardo

    2017-04-01

    The increase penetration of renewable energy sources (RES) into the European power system has introduced a significant amount of variability and uncertainty in the generation profiles raising the needs for ancillary services as well as other tools like demand response, improved generation forecasting techniques and changes to the market design. While RES is able to replace energy produced by the traditional centralized generation, it cannot displace its capacity in terms of ancillary services provided. Therefore, centralized generation capacity must be retained to perform this function leading to over-capacity issues and underutilisation of the assets. Large-scale reversible hydro power plants represent the majority of the storage solution installed in the power system. This technology comes with high investments costs, hence the constant search for methods to increase and diversify the sources of revenue. Traditional fixed speed pump storage units typically operate in the day-ahead market to perform price arbitrage and, in some specific cases, provide downward replacement reserve (RR). Variable speed pump storage can not only participate in RR but also contribute to FRR, given their ability to control its operating point in pumping mode. This work does an extended analysis of a complete bidding strategy for Pumped Storage Power, enhancing the economic advantages of variable speed pump units in comparison with fixed ones.

  12. Certification report for the CALMAC solar powered pump

    Science.gov (United States)

    1978-01-01

    The certification of the CALMAC solar powered thermopump is presented. Each element of the specification is delineated, together with the verification, based on analysis, similarity, inspection, or testing.

  13. Maintenance experience on reactor recirculation pumps at Tarapur Atomic Power Station

    International Nuclear Information System (INIS)

    Singh, A.K.

    1995-01-01

    Reactor recirculation pumps at Tarapur Atomic Power Station (TAPS) are vertical, single stage centrifugal pumps having mechanical shaft seals and are driven by vertical mounted 3.3 kV, 3 phase, 1500 h.p. electric motors. During these years of operation TAPS has gained enough experience and expertise on the maintenance of reactor recirculation pumps which are dealt in this article. Failure of mechanical shaft seals, damage on pump carbon bearings, motor winding insulation failures and motor shaft damage have been the main areas of concern on recirculation pump. A detailed procedure step by step with component sketches has helped in eliminating errors during shaft seal assembly and installation. Pressure breakdown devices in seal assembly were rebuilt. Additional coolant water injection for shaft seal cooling was provided. These measures have helped in extending the reactor recirculation pump seal life. Pump bearing problems were mainly due to failure of anti-rotation pins and dowel pins of bearing assembly. These pins were redesigned and strengthened. Motor stator winding insulation failures were detected. Stator winding replacement program has been taken up on regular basis to avoid winding insulation failure due to aging. 3 refs., 2 tabs., 7 figs

  14. Optimal number of circulating water pumps in a nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Lin [College of Water Conservancy and Hydropower Engineering, Hohai University, Nanjing 210098, Jiangsu (China); Liu, Deyou, E-mail: liudyhhuc@163.com [College of Water Conservancy and Hydropower Engineering, Hohai University, Nanjing 210098, Jiangsu (China); Zhou, Ling, E-mail: zlhhu@163.com [College of Water Conservancy and Hydropower Engineering, Hohai University, Nanjing 210098, Jiangsu (China); Wang, Feng [School of Hydraulic, Energy and Power Engineering, Yangzhou University, Yangzhou 225009, Jiangsu (China); Wang, Pei [College of Energy and Electrical Engineering, Hohai University, Nanjing 210098, Jiangsu (China)

    2015-07-15

    Highlights: • We present a novel method to optimize the number of variable speed pumps. • The economic effect of variable speed pumps number optimization is presented. • We present a novel method to optimize the number of constant speed pumps. • The proposed pumps number optimization method is more accurate than the widely used method. - Abstract: A circulating cooling system that uses variable speed pumps (VSPs) or constant-speed pumps (CSPs) as circulating water pumps (CWPs) is optimized to improve the cycle efficiency of nuclear power plants. This study focused on the optimal number of VSPs and CSPs. A novel method is proposed to optimize the number of VSPs with varying dry-bulb temperature and relative humidity, which could help decrease operation costs by $243,310 per year. This method is also used to optimize the number of CSPs and is compared with another widely used method that optimizes the number of CSPs according to the varying condenser inlet water temperature. A comparison shows that the proposed method is more accurate than the widely used method.

  15. Optimal number of circulating water pumps in a nuclear power plant

    International Nuclear Information System (INIS)

    Xia, Lin; Liu, Deyou; Zhou, Ling; Wang, Feng; Wang, Pei

    2015-01-01

    Highlights: • We present a novel method to optimize the number of variable speed pumps. • The economic effect of variable speed pumps number optimization is presented. • We present a novel method to optimize the number of constant speed pumps. • The proposed pumps number optimization method is more accurate than the widely used method. - Abstract: A circulating cooling system that uses variable speed pumps (VSPs) or constant-speed pumps (CSPs) as circulating water pumps (CWPs) is optimized to improve the cycle efficiency of nuclear power plants. This study focused on the optimal number of VSPs and CSPs. A novel method is proposed to optimize the number of VSPs with varying dry-bulb temperature and relative humidity, which could help decrease operation costs by $243,310 per year. This method is also used to optimize the number of CSPs and is compared with another widely used method that optimizes the number of CSPs according to the varying condenser inlet water temperature. A comparison shows that the proposed method is more accurate than the widely used method

  16. Sub-100 fs high average power directly blue-diode-laser-pumped Ti:sapphire oscillator

    Science.gov (United States)

    Rohrbacher, Andreas; Markovic, Vesna; Pallmann, Wolfgang; Resan, Bojan

    2016-03-01

    Ti:sapphire oscillators are a proven technology to generate sub-100 fs (even sub-10 fs) pulses in the near infrared and are widely used in many high impact scientific fields. However, the need for a bulky, expensive and complex pump source, typically a frequency-doubled multi-watt neodymium or optically pumped semiconductor laser, represents the main obstacle to more widespread use. The recent development of blue diodes emitting over 1 W has opened up the possibility of directly diode-laser-pumped Ti:sapphire oscillators. Beside the lower cost and footprint, a direct diode pumping provides better reliability, higher efficiency and better pointing stability to name a few. The challenges that it poses are lower absorption of Ti:sapphire at available diode wavelengths and lower brightness compared to typical green pump lasers. For practical applications such as bio-medicine and nano-structuring, output powers in excess of 100 mW and sub-100 fs pulses are required. In this paper, we demonstrate a high average power directly blue-diode-laser-pumped Ti:sapphire oscillator without active cooling. The SESAM modelocking ensures reliable self-starting and robust operation. We will present two configurations emitting 460 mW in 82 fs pulses and 350 mW in 65 fs pulses, both operating at 92 MHz. The maximum obtained pulse energy reaches 5 nJ. A double-sided pumping scheme with two high power blue diode lasers was used for the output power scaling. The cavity design and the experimental results will be discussed in more details.

  17. Improved performance of high average power semiconductor arrays for applications in diode pumped solid state lasers

    International Nuclear Information System (INIS)

    Beach, R.; Emanuel, M.; Benett, W.; Freitas, B.; Ciarlo, D.; Carlson, N.; Sutton, S.; Skidmore, J.; Solarz, R.

    1994-01-01

    The average power performance capability of semiconductor diode laser arrays has improved dramatically over the past several years. These performance improvements, combined with cost reductions pursued by LLNL and others in the fabrication and packaging of diode lasers, have continued to reduce the price per average watt of laser diode radiation. Presently, we are at the point where the manufacturers of commercial high average power solid state laser systems used in material processing applications can now seriously consider the replacement of their flashlamp pumps with laser diode pump sources. Additionally, a low cost technique developed and demonstrated at LLNL for optically conditioning the output radiation of diode laser arrays has enabled a new and scalable average power diode-end-pumping architecture that can be simply implemented in diode pumped solid state laser systems (DPSSL's). This development allows the high average power DPSSL designer to look beyond the Nd ion for the first time. Along with high average power DPSSL's which are appropriate for material processing applications, low and intermediate average power DPSSL's are now realizable at low enough costs to be attractive for use in many medical, electronic, and lithographic applications

  18. Packaging of high-power bars for optical pumping and direct applications

    Science.gov (United States)

    Heinemann, Stefan; An, Haiyan; Barnowski, Tobias; Jiang, John; Negoita, Viorel; Roff, Robert; Vethake, Thilo; Boucke, Konstantin; Treusch, Georg

    2015-03-01

    Continuous cost reduction, improved reliability and modular platform guide the design of our next generation heatsink and packaging process. Power scaling from a single device effectively lowers the cost, while electrical insulation of the heatsink, low junction temperature and hard solder enable high reliability. We report on the latest results for scaling the output power of bars for optical pumping and materials processing. The epitaxial design and geometric structures are specific for the application, while packaging with minimum thermal impedance, low stress and low smile are generic features. The isolated heatsink shows a thermal impedance of 0.2 K/W and the maximum output power is limited by the requirement of a junction temperature of less than 68oC for high reliability. Low contact impedance are addressed for drive currents of 300 A. For pumping applications, bars with a fill factor of 60% are deployed emitting more than 300 W of output power with an efficiency of about 55% and 8 bars are arranged in a compact pump module emitting 2 kW of collimated power suitable for pumping disk lasers. For direct applications we target coupling kilowatts of output powers into fibers of 100 μm diameter with 0.1 NA based on dense wavelength multiplexing. Low fill factor bars with large optical waveguide and specialized coating also emit 300 W.

  19. A novel charge pump drive circuit for power MOSFETs

    International Nuclear Information System (INIS)

    Wang Songlin; Zhou Bo; Wang Hui; Guo Wangrui; Ye Qiang

    2010-01-01

    Novel improved power metal oxide semiconductor field effect transistor (MOSFET) drive circuits are introduced. An anti-deadlock block is used in the P-channel power MOSFET drive circuit to avoid deadlocks and improve the transient response. An additional charging path is added to the N-channel power MOSFET drive circuit to enhance its drive capability and improve the transient response. The entire circuit is designed in a 0.6 μm BCD process and simulated with Cadence Spectre. Compared with traditional power MOSFET drive circuits, the simulation results show that improved P-channel power MOSFET drive circuit makes the rise time reduced from 60 to 14 ns, the fall time reduced from 240 to 30 ns, and its power dissipation reduced from 2 to 1 mW, while the improved N-channel power MOSFET drive circuit makes the rise time reduced from 360 to 27 ns and its power dissipation reduced from 1.1 to 0.8 mW. (semiconductor integrated circuits)

  20. Pump Side-scattering in Ultra-powerful Backward Raman Amplifiers

    International Nuclear Information System (INIS)

    Solodov, A.A.; Malkin, V.M.; Fisch, N.J.

    2004-01-01

    Extremely large laser power might be obtained by compressing laser pulses through backward Raman amplification (BRA) in plasmas. Premature Raman backscattering of a laser pump by plasma noise might be suppressed by an appropriate detuning of the Raman resonance, even as the desired amplification of the seed persists with a high efficiency. In this paper, we analyze side-scattering of laser pumps by plasma noise in backward Raman amplifiers. Though its growth rate is smaller than that of backscattering, the side-scattering can nevertheless be dangerous, because of a longer path of side-scattered pulses in plasmas and because of an angular dependence of the Raman resonance detuning. We show that side-scattering of laser pumps by plasma noise in BRA might be suppressed to a tolerable level at all angles by an appropriate combination of two detuning mechanisms associated with plasma density gradient and pump chirp

  1. Variable flow controls of closed system pumps for energy savings in maritime power systems

    DEFF Research Database (Denmark)

    Su, Chun-Lien; Liao, Chi-Hsiang; Chou, Tso-Chu

    2016-01-01

    and field tests of a practical auxiliary boiler feed water management system on a commercial vessel. It is proved that the proposed method can maintain constant water pressure for closed system pumps and provide an efficient way to measure energy savings and maintenance benefits. The results serve......Pumps are extensively used in maritime industries as marine vessels utilize a wide range of pumps and pumping techniques to transfer and distribute all types of air and fluids. The electrical energy consumed by the various motors accounts for about 70% of a vessel’s total power consumption......, and this presents a problem in unique marine environments. Such situations are especially conducive to energy-saving strategies using variable frequency drives (VFDs) in centrifugal load service. This paper presents the design and results of applying variable frequency constant pressure technology in closed system...

  2. Self-Powered Magnetothermal Fluid Pump, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Advances in the capabilities of electronics have enabled high power density devices. However, even in light of advances in electronics efficiency figures, the...

  3. Pump power in Norway: the costs and a potential prospect; Pumpekraft i Noreg: kostnadar og utsikter til potensial

    Energy Technology Data Exchange (ETDEWEB)

    Hamnaberg, Haavard

    2011-07-01

    Pumped storage power plants have long been used to regulate the production relative variations in consumption, but there is no preliminary pumping power plant in Norway built to regulate on short terms. To increase the knowledge about the possibilities to establish a pumping power plant in Norway, NVE has therefore been made a study of how pumping power can be drawn up and what it costs to build pumped storage plant between already existing magazine. One can not just based on cost and design conclude anything about the potential for pumped storage plant in Norway, but it is a start of a work that might make it easier to assess to what extent this may be possible. (eb)

  4. Study on the Characteristics of Expander Power Output Used for Offsetting Pumping Work Consumption in Organic Rankine Cycles

    Directory of Open Access Journals (Sweden)

    Yu-Ting Wu

    2014-07-01

    Full Text Available The circulation pump in an organic Rankine cycle (ORC increases the pressure of the liquid working fluid from low condensing pressure to high evaporating pressure, and the expander utilizes the pressure difference to generate work. A portion of the expander output power is used to offset the consumed pumping work, and the rest of the expander power is exactly the net work produced by the ORC system. Because of the relatively great theoretical pumping work and very low efficiency of the circulation pump reported in previous papers, the characteristics of the expander power used for offsetting the pumping work need serious consideration. In particular, the present work examines those characteristics. It is found that the characteristics of the expander power used for offsetting the pumping work are satisfactory only under the condition that the working fluid absorbs sufficient heat in the evaporator and its specific volume at the evaporator outlet is larger than or equal to a threshold value.

  5. Incidence of Clostridium difficile infection in patients receiving high-risk antibiotics with or without a proton pump inhibitor.

    Science.gov (United States)

    Gordon, D; Young, L R; Reddy, S; Bergman, C; Young, J D

    2016-02-01

    Considering the incidence and severity of Clostridium difficile infection (CDI), risk reduction strategies are crucial. Prior studies suggest that proton pump inhibitor (PPI) use can increase the risk of CDI over antibiotics alone; however, data and guidelines have been conflicting. The aim was to compare CDI incidence in patients receiving high-risk antibiotics, comparing rates in those prescribed a PPI versus those without overlapping PPI exposure. This retrospective cohort study assessed the incidence of CDI in veterans receiving high-risk antibiotics over an approximately three-year period. High-risk antibiotics were defined as: ciprofloxacin, levofloxacin, moxifloxacin, clindamycin, ceftriaxone, cefotaxime, ceftazidime, or cefixime. We identified subjects who were prescribed any high-risk antibiotic, finding 3513 on a concomitant PPI and 6149 not taking a PPI. Of these subjects, 111 were diagnosed with CDI and met inclusion criteria. Baseline characteristics, CDI severity, length of hospitalization and antibiotic therapy prior to infection were similar in both groups. The incidence of CDI was significantly higher in patients prescribed a PPI (odds ratio: 2.2; 95% confidence interval: 1.52-3.23; P=0.0001). A strong association was found between concurrent PPI use with fluoroquinolones (P=0.005) and clindamycin (P=0.045). The use of PPIs together with high-risk antibiotics was associated with a significantly higher incidence of CDI. Our study provides further support for the CDI prevention strategy of judicious PPI use, especially in patients receiving high-risk antibiotics. Prudent avoidance of PPIs may reduce the incidence of CDI, a major cause of morbidity and mortality worldwide. Copyright © 2015 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.

  6. A long-term analysis of pumped hydro storage to firm wind power

    International Nuclear Information System (INIS)

    Foley, A.M.; Leahy, P.G.; Li, K.; McKeogh, E.J.; Morrison, A.P.

    2015-01-01

    Highlights: • This is a long term generation analysis of a high wind power system. • A high CO 2 and fossil fuel price is closest to Ireland’s EU ETS 2020 target. • New pumped storage to firm wind is limited unless strong market costs exist. • Reserve for wind power show that ancillary services are relevant for balancing. - Abstract: Although pumped hydro storage is seen as a strategic key asset by grid operators, financing it is complicated in new liberalised markets. It could be argued that the optimum generation portfolio is now determined by the economic viability of generators based on a short to medium term return on investment. This has meant that capital intensive projects such as pumped hydro storage are less attractive for wholesale electricity companies because the payback periods are too long. In tandem a significant amount of wind power has entered the generation mix, which has resulted in operating and planning integration issues due to wind’s inherent uncertain, varying spatial and temporal nature. These integration issues can be overcome using fast acting gas peaking plant or energy storage. Most analysis of wind power integration using storage to date has used stochastic optimisation for power system balancing or arbitrage modelling to examine techno-economic viability. In this research a deterministic dynamic programming long term generation expansion model is employed to optimise the generation mix, total system costs and total carbon dioxide emissions, and unlike other studies calculates reserve to firm wind power. The key finding of this study is that the incentive to build capital-intensive pumped hydro storage to firm wind power is limited unless exogenous market costs come very strongly into play. Furthermore it was demonstrated that reserve increases with increasing wind power showing the importance of ancillary services in future power systems

  7. High-power diode-pumped Nd:Lu2O3 crystal continuous-wave thin-disk laser at 1359 nm

    International Nuclear Information System (INIS)

    Li, J H; Liu, X H; Wu, J B; Zhang, X; Li, Y L

    2012-01-01

    We present for the first time, to the best of our knowledge, a 1359 nm continuous-wave (CW) Nd:Lu 2 O 3 laser based on the 4 F 5/2 – 4 F 13/2 transition. The use of a pump module with 16 passes through the crystal allowed the realization of a Nd:Lu 2 O 3 thin-disk laser with 3.52 W of CW output power. The slope efficiency with respect to the incident pump power was 21.4%, and the fluctuation of the output power was better than 3.55% in the given 2 hour. The beam quality factor M 2 is 1.14 and 1.18 for tangential direction and sagittal direction, respectively

  8. Large-area high-power VCSEL pump arrays optimized for high-energy lasers

    Science.gov (United States)

    Wang, Chad; Geske, Jonathan; Garrett, Henry; Cardellino, Terri; Talantov, Fedor; Berdin, Glen; Millenheft, David; Renner, Daniel; Klemer, Daniel

    2012-06-01

    Practical, large-area, high-power diode pumps for one micron (Nd, Yb) as well as eye-safer wavelengths (Er, Tm, Ho) are critical to the success of any high energy diode pumped solid state laser. Diode efficiency, brightness, availability and cost will determine how realizable a fielded high energy diode pumped solid state laser will be. 2-D Vertical-Cavity Surface-Emitting Laser (VCSEL) arrays are uniquely positioned to meet these requirements because of their unique properties, such as low divergence circular output beams, reduced wavelength drift with temperature, scalability to large 2-D arrays through low-cost and high-volume semiconductor photolithographic processes, high reliability, no catastrophic optical damage failure, and radiation and vacuum operation tolerance. Data will be presented on the status of FLIR-EOC's VCSEL pump arrays. Analysis of the key aspects of electrical, thermal and mechanical design that are critical to the design of a VCSEL pump array to achieve high power efficient array performance will be presented.

  9. Fault diagnosis of main coolant pump in the nuclear power station based on the principal component analysis

    International Nuclear Information System (INIS)

    Feng Junting; Xu Mi; Wang Guizeng

    2003-01-01

    The fault diagnosis method based on principal component analysis is studied. The fault character direction storeroom of fifteen parameters abnormity is built in the simulation for the main coolant pump of nuclear power station. The measuring data are analyzed, and the results show that it is feasible for the fault diagnosis system of main coolant pump in the nuclear power station

  10. Hydro-engineering structure and Liptovska Mara Pumped Storage Power Plant

    International Nuclear Information System (INIS)

    Regula, E.

    2005-01-01

    In this paper thirty years history of the Hydro-engineering structure and Liptovska Mara Pumped Storage Power Plant (PSPP) is presented. In 1975 year the Liptovska Mara PSPP was commissioned. There are 2 Kaplan turbines and 2 Derezias reversible turbines with a total installed power 198 MW. The average annual output is 134.5 GWh. As a part of this hydro-engineering structure is Besenova Small-scale power plants with 2 turbines and with installed power 4.64 MW. The average annual output consists 18.3 GWh. There up to end of 2004 year 3,620.172 MWh of electricity was produced. Environmental effects are discussed

  11. Particulars in design of the electrical part of the Kiev Pumped-Storage Electric Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Brimerberg, V P

    1976-01-01

    The Kiev Pumped-Storage Electric Power Plant is the first such installation in the Soviet Union. The power capacity of the plant is 225 MW. There are six vertical hydraulic generators: three are connected to vertical pump-turbines and operate as motor-generators; the other three are connected to vertical radial-axial hydraulic turbines and operate as generators only. Each generator is a type SVO 733/130-36 with power of 45.6 MVA. The active power load is 83.5 MW, reactive--75.1, and total--112.5 MVA. The installation can be used for 500 h/yr at maximum power, producing 110 million kWh. During the high-water period, the plant is used daily for about 100 days, covering the peak of the load schedule of the southern power system. During the low-water period the plant is used as needed. During the slack hours at night the system operates in the pump mode for about 1400 h/yr, using 160 million kWh. During the remainder of the day the generators work as synchronous compensators with a total load on each of 36,500 kvar. Electrical circuits and a cross section of the generator are given. An explanation is also given of the grounding precautions taken to ensure an equipotential field at all points of the installation where personnel may be located.

  12. Development of laser diode-pumped high average power solid-state laser for the pumping of Ti:sapphire CPA system

    Energy Technology Data Exchange (ETDEWEB)

    Maruyama, Yoichiro; Tei, Kazuyoku; Kato, Masaaki; Niwa, Yoshito; Harayama, Sayaka; Oba, Masaki; Matoba, Tohru; Arisawa, Takashi; Takuma, Hiroshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-03-01

    Laser diode pumped all solid state, high repetition frequency (PRF) and high energy Nd:YAG laser using zigzag slab crystals has been developed for the pumping source of Ti:sapphire CPA system. The pumping laser installs two main amplifiers which compose ring type amplifier configuration. The maximum amplification gain of the amplifier system is 140 and the condition of saturated amplification is achieved with this high gain. The average power of fundamental laser radiation is 250 W at the PRF of 200 Hz and the pulse duration is around 20 ns. The average power of second harmonic is 105 W at the PRF of 170 Hz and the pulse duration is about 16 ns. The beam profile of the second harmonic is near top hat and will be suitable for the pumping of Ti:sapphire laser crystal. The wall plug efficiency of the laser is 2.0 %. (author)

  13. Scalable pumping approach for extracting the maximum TEM(00) solar laser power.

    Science.gov (United States)

    Liang, Dawei; Almeida, Joana; Vistas, Cláudia R

    2014-10-20

    A scalable TEM(00) solar laser pumping approach is composed of four pairs of first-stage Fresnel lens-folding mirror collectors, four fused-silica secondary concentrators with light guides of rectangular cross-section for radiation homogenization, four hollow two-dimensional compound parabolic concentrators for further concentration of uniform radiations from the light guides to a 3 mm diameter, 76 mm length Nd:YAG rod within four V-shaped pumping cavities. An asymmetric resonator ensures an efficient large-mode matching between pump light and oscillating laser light. Laser power of 59.1 W TEM(00) is calculated by ZEMAX and LASCAD numerical analysis, revealing 20 times improvement in brightness figure of merit.

  14. Engineering bacterial efflux pumps for solar-powered bioremediation of surface waters.

    Science.gov (United States)

    Kapoor, Vikram; Wendell, David

    2013-05-08

    Antibiotics are difficult to selectively remove from surface waters by present treatment methods. Bacterial efflux pumps have evolved the ability to discriminately expel antibiotics and other noxious agents via proton and ATP driven pathways. Here, we describe light-dependent removal of antibiotics by engineering the bacterial efflux pump AcrB into a proteovesicle system. We have created a chimeric protein with the requisite proton motive force by coupling AcrB to the light-driven proton pump Delta-rhodopsin (dR) via a glycophorin A transmembrane domain. This creates a solar powered protein material capable of selectively capturing antibiotics from bulk solutions. Using environmental water and direct sunlight, our AcrB-dR vesicles removed almost twice as much antibiotic as the treatment standard, activated carbon. Altogether, the AcrB-dR system provides an effective means of extracting antibiotics from surface waters as well as potential antibiotic recovery through vesicle solubilization.

  15. Maximum power point tracking for photovoltaic solar pump based on ANFIS tuning system

    Directory of Open Access Journals (Sweden)

    S. Shabaan

    2018-05-01

    Full Text Available Solar photovoltaic (PV systems are a clean and naturally replenished energy source. PV panels have a unique point which represents the maximum available power and this point depend on the environmental conditions such as temperature and irradiance. A maximum power point tracking (MPPT is therefore necessary for maximum efficiency. In this paper, a study of MPPT for PV water pumping system based on adaptive neuro-fuzzy inference system (ANFIS is discussed. A comparison between the performance of the system with and without MPPT is carried out under varying irradiation and temperature conditions. ANFIS based controller shows fast response with high efficiency at all irradiance and temperature levels making it a powerful technique for non-linear systems as PV modules. Keywords: MPPT, ANFIS, Boost converter, PMDC pump

  16. Influence of pump power and modulation instability gain spectrum on seeded supercontinuum and rogue wave generation

    DEFF Research Database (Denmark)

    Sørensen, Simon Toft; Larsen, Casper; Møller, Uffe

    2012-01-01

    The noise properties of a supercontiuum can be significantly improved both in terms of coherence and intensity stability by modulating the input pulse with a seed. In this paper, we numerically investigate the influence of the seed wavelength, the pump power, and the modulation instability gain...... spectrum on the seeding process. The results can be clearly divided into a number of distinct dynamical regimes depending on the initial four-wave mixing process. We further demonstrate that seeding can be used to generate coherent and incoherent rogue waves, depending on the modulation instability gain...... spectrum. Finally, we show that the coherent pulse breakup afforded by seeding is washed out by turbulent solitonic dynamics when the pump power is increased to the kilowatt level. Thus our results show that seeding cannot improve the noise performance of a high power supercontinuum source....

  17. New Configurations of Micro Plate-Fin Heat Sink to Reduce Coolant Pumping Power

    Science.gov (United States)

    Rezania, A.; Rosendahl, L. A.

    2012-06-01

    The thermal resistance of heat exchangers has a strong influence on the electric power produced by a thermoelectric generator (TEG). In this work, a real TEG device is applied to three configurations of micro plate-fin heat sink. The distance between certain microchannels is varied to find the optimum heat sink configuration. The particular focus of this study is to reduce the coolant mass flow rate by considering the thermal resistances of the heat sinks and, thereby, to reduce the coolant pumping power in the system. The three-dimensional governing equations for the fluid flow and the heat transfer are solved using the finite-volume method for a wide range of pressure drop laminar flows along the heat sink. The temperature and the mass flow rate distribution in the heat sink are discussed. The results, which are in good agreement with previous computational studies, show that using suggested heat sink configurations reduces the coolant pumping power in the system.

  18. High Power Q-Switched Dual-End-Pumped Ho:YAG Laser

    Energy Technology Data Exchange (ETDEWEB)

    Xiao-Ming, Duan; Ying-Jie, Shen; Tong-Yu, Dai; Bao-Quan, Yao; Wang Yue-Zhu, E-mail: xmduan@hit.edu.cn [National Key Laboratory of Tunable Laser Technology, Harbin Institute of Technology, Harbin 150001 (China)

    2012-09-15

    We report the high power acousto-optically Q-switched operation of a dual-end-pumped Ho:YAG laser at room temperature. For the Q-swithched mode, a maximum pulse energy of 2.4 mJ and a minimum pulse width of 23 ns at the repetition rate of 10 kHz are achieved, resulting in a peak power of 104.3 kW. The beam quality factor of M{sup 2} {approx} 1.5, which is demonstrated by a knife-edge method. In addition, the Ho:YAG laser is employed as a pumping source of ZGP optical parametric oscillator, and its total average output power is 13.2 W at 3.9 {mu}m and 4.4 {mu}m with a slope efficiency of 68.4%.

  19. Solid state pump lasers with high power and high repetition rate

    International Nuclear Information System (INIS)

    Oba, Masaki; Kato, Masaaki; Arisawa, Takashi

    1995-01-01

    We built a laser diode pumped solid state green laser (LDPSSGL) rated at high repetition rate. Two laser heads are placed in one cavity with a rotator in between to design to avoid thermal lensing and thermal birefringence effect. Although average green laser power higher than 10 W was obtained at 1 kHz repetition rate with pulse width of 20-30 nsec, the beam quality was so much deteriorated that energy efficiency was as low as 2 %. Learning from this experience that high power oscillator causes a lot of thermal distortion not only in the laser rod but also in the Q-switch device, we proceeded to built a oscillator/amplifier system. A low power oscillator has a slab type crystal in the cavity. As a result spatial distribution of laser power was extremely improved. As we expect that the high repetition rate solid state laser should be CW operated Q-switch type laser from the view point of lifetime of diode lasers, a conventional arc lamp pumped CW Q-switch green YAG laser of which the repetition rate is changeable from 1 kHz to 5 kHz and the pulse width is 250-570 nsec was also tested to obtain pumping characteristics of a dye laser as a function of power, pulse width etc., and dye laser pulse width of 100-130 nsec were obtained. (author)

  20. Toward power scaling in an acetylene mid-infrared hollow-core optical fiber gas laser: effects of pressure, fiber length, and pump power

    Science.gov (United States)

    Weerasinghe, H. W. Kushan; Dadashzadeh, Neda; Thirugnanasambandam, Manasadevi P.; Debord, Benoît.; Chafer, Matthieu; Gérôme, Frédéric; Benabid, Fetah; Corwin, Kristan L.; Washburn, Brian R.

    2018-02-01

    The effect of gas pressure, fiber length, and optical pump power on an acetylene mid-infrared hollow-core optical fiber gas laser (HOFGLAS) is experimentally determined in order to scale the laser to higher powers. The absorbed optical power and threshold power are measured for different pressures providing an optimum pressure for a given fiber length. We observe a linear dependence of both absorbed pump energy and lasing threshold for the acetylene HOFGLAS, while maintaining a good mode quality with an M-squared of 1.15. The threshold and mode behavior are encouraging for scaling to higher pressures and pump powers.

  1. Assessment of load of beam-balanced pumping units by electric motor power indicators

    Directory of Open Access Journals (Sweden)

    Д. И. Шишлянников

    2017-10-01

    Full Text Available The results of experimental studies on the loading of beam-balanced pumping units (BP of sucker rod- pumping equipment (SRPE are presented. It is noted that the key factor that has the most significant effect causing the SRPE failure is the balance of the beam pumping unit, which determines the amount of specific energy consumption for the rise of reservoir fluid and the level of dynamic loads on the machine units. The urgency of using software-recording systems for estimating the loading of units of oil field pumping installations is substantiated. The principle of operation and design of the «AKD-SK» software recording system is described. The prospects of using this method for controlling the performance parameters and evaluating the technical state of the sicker rod-pumping units is proved on the basis of an analysis of the magnitude and nature of the changes in the loads of drive motors determined by the registration of the instantaneous values of the consumed power. The main provisions of the methodology for analyzing the watt-meters of drive motors of the sucker rod-pumping units are outlined. The nature of the manifestation of the main defects of submersible pumps and beam-balanced pumping units is described. The results of pilot-industrial tests of the beam-balanced pumping units equipped with advanced permanent magnet motors and intelligent control stations are presented. It is proved that the use of permanent magnet motors allows to reduce the specific energy consumption for the rise of reservoir fluid, which increases the efficiency of the SRPE.However, the presence of transient processes and generator operating modes of the permanent magnet motors results in the occurrence of significant dynamic loads, which, due to the rigid fixing of the rotor of magnet motor on the reducer shaft, negatively affect the life of the gearbox bearings. It has been shown that the lack of its own bearings in the tested motors causes a high probability

  2. Testing of an Annular Linear Induction Pump for the Fission Surface Power Technology Demonstration Unit

    Science.gov (United States)

    Polzin, K. A.; Pearson, J. B.; Webster, K.; Godfoy, T. J.; Bossard, J. A.

    2013-01-01

    Results of performance testing of an annular linear induction pump that has been designed for integration into a fission surface power technology demonstration unit are presented. The pump electromagnetically pushes liquid metal (NaK) through a specially-designed apparatus that permits quantification of pump performance over a range of operating conditions. Testing was conducted for frequencies of 40, 55, and 70 Hz, liquid metal temperatures of 125, 325, and 525 C, and input voltages from 30 to 120 V. Pump performance spanned a range of flow rates from roughly 0.3 to 3.1 L/s (4.8 to 49 gpm), and pressure heads of <1 to 104 kPa (<0.15 to 15 psi). The maximum efficiency measured during testing was 5.4%. At the technology demonstration unit operating temperature of 525 C the pump operated over a narrower envelope, with flow rates from 0.3 to 2.75 L/s (4.8 to 43.6 gpm), developed pressure heads from <1 to 55 kPa (<0.15 to 8 psi), and a maximum efficiency of 3.5%. The pump was supplied with three-phase power at 40 and 55 Hz using a variable-frequency motor drive, while power at 55 and 70 Hz was supplied using a variable-frequency power supply. Measured performance of the pump at 55 Hz using either supply exhibited good quantitative agreement. For a given temperature, the peak in efficiency occurred at different flow rates as the frequency was changed, but the maximum value of efficiency was relative insensitive within 0.3% over the frequency range tested, including a scan from 45 to 78 Hz. The objectives of the FSP technology project are as follows:5 • Develop FSP concepts that meet expected surface power requirements at reasonable cost with added benefits over other options. • Establish a nonnuclear hardware-based technical foundation for FSP design concepts to reduce overall development risk. • Reduce the cost uncertainties for FSP and establish greater credibility for flight system cost estimates. • Generate the key nonnuclear products to allow Agency

  3. Power maximization of an asynchronous wind turbine with a variable speed feeding a centrifugal pump

    International Nuclear Information System (INIS)

    Ouchbel, T.; Zouggar, S.; Elhafyani, M.L.; Seddik, M.; Oukili, M.; Aziz, A.; Kadda, F.Z.

    2014-01-01

    Highlights: • The pumping system studied contain a WT, a SEIG, an IM and a CP. • The system must ensure the water pumping in optimum conditions despite the wind speed. • A steady state study and a practical testing are performed to resolve the control law. • A MPPT is proposed on the basis of static converter SVC. - Abstract: This article focuses on the study of a pumping system compound of a wind turbine, a self-excited induction generator (SEIG), an induction motor (IM), and a centrifugal pump (CP), which aims to ensure the water pumping in optimum conditions regardless the wind speed. As a first step, a study in the steady and dynamic state to determine the control law is examined. As a second step, and so as to achieve a maximum energy flow we have proposed a Maximum Power Point Tracking (MPPT) algorithm based on a static converter SVC. As a final step, experimental and simulation results are discussed to show the reliability of the system proposed

  4. Electromagnetically powered electrolytic pump and thermo-responsive valve for drug delivery

    KAUST Repository

    Yi, Ying; Zaher, Amir; Yassine, Omar; Buttner, Ulrich; Kosel, Jü rgen; Foulds, Ian G.

    2015-01-01

    A novel drug delivery device is presented, implementing an electrolytic pump and a thermo-responsive valve. The device is remotely operated by an AC electromagnetic field (40.5∼58.5 mT, 450 kHz) that provides the power for the pump and the valve. It is suitable for long-term therapy applications, which use a solid drug in reservoir (SDR) approach and avoids unwanted drug diffusion. When the electromagnetic field is on, the electrolytic pump drives the drug towards the valve. The valve is made of a magnetic composite consisting of a smart hydrogel: Poly (N-Isopropylacrylamide) (PNIPAm) and iron powder. The heat generated in the iron powder via magnetic losses causes the PNIPAm to shrink, allowing the drug to flow past it. When the electromagnetic field is off, the PNIPAm swells, sealing the outlet. In the meantime, the bubbles generated by electrolysis recombine into water, causing a pressure reduction in the pumping chamber. This draws fresh fluid from outside the pump into the drug reservoir before the valve is fully sealed. The recombination can be accelerated by a platinum (Pt) coated catalytic reformer, allowing more fluid to flow back to the drug reservoir and dissolve the drug. By repeatedly turning on and off the magnetic field, the drug solution can be delivered cyclically. © 2015 IEEE.

  5. Electromagnetically powered electrolytic pump and thermo-responsive valve for drug delivery

    KAUST Repository

    Yi, Ying

    2015-04-01

    A novel drug delivery device is presented, implementing an electrolytic pump and a thermo-responsive valve. The device is remotely operated by an AC electromagnetic field (40.5∼58.5 mT, 450 kHz) that provides the power for the pump and the valve. It is suitable for long-term therapy applications, which use a solid drug in reservoir (SDR) approach and avoids unwanted drug diffusion. When the electromagnetic field is on, the electrolytic pump drives the drug towards the valve. The valve is made of a magnetic composite consisting of a smart hydrogel: Poly (N-Isopropylacrylamide) (PNIPAm) and iron powder. The heat generated in the iron powder via magnetic losses causes the PNIPAm to shrink, allowing the drug to flow past it. When the electromagnetic field is off, the PNIPAm swells, sealing the outlet. In the meantime, the bubbles generated by electrolysis recombine into water, causing a pressure reduction in the pumping chamber. This draws fresh fluid from outside the pump into the drug reservoir before the valve is fully sealed. The recombination can be accelerated by a platinum (Pt) coated catalytic reformer, allowing more fluid to flow back to the drug reservoir and dissolve the drug. By repeatedly turning on and off the magnetic field, the drug solution can be delivered cyclically. © 2015 IEEE.

  6. Analytical analysis of heat transfer and pumping power of laminar nanofluid developing flow in microchannels

    International Nuclear Information System (INIS)

    Mital, Manu

    2013-01-01

    Thermal management issues are limiting barriers to high density electronics packaging and miniaturization. Liquid cooling using micro and mini channels is an attractive alternative to large and bulky aluminum or copper heat sinks. These channels can be integrated directly into a chip or a heat spreader, and cooling can be further enhanced using nanofluids (liquid solutions with dispersed nanometer-sized particles) due to their enhanced heat transfer effects reported in literature. The goals of this study are to evaluate heat transfer improvement of a nanofluid heat sink with developing laminar flow forced convection, taking into account the pumping power penalty. The phrase heat transfer enhancement ratio (HTR) is used to denote the ratio of average heat transfer coefficient of nanofluid to water at the same pumping power. The proposed model uses semi-empirical correlations to calculate nanofluid thermophysical properties. The predictions of the model are found to be in good agreement with experimental studies. The validated model is used to identify important design variables (Reynolds number, volume fraction and particle size) related to thermal and flow characteristics of the microchannel heat sink with nanofluids. Statistical analysis of the model showed that the volume fraction is the most significant factor impacting the HTR, followed by the particle diameter. The impact of the Reynolds number and other interaction terms is relatively weak. The HTR is maximized at smallest possible particle diameter (since smaller particles improve heat transfer but do not impact pumping power). Then, for a given Reynolds number, an optimal value of volume fraction can be obtained to maximize HTR. The overall aim is to present results that would be useful for understanding and optimal design of microchannel heat sinks with nanofluid flow. - Highlights: ► Validated model is used to investigate heat transfer and pumping power in nanofluids. ► Particles improve heat transfer

  7. High-power diode-side-pumped intracavity-frequency-doubled continuous wave 532 nm laser

    International Nuclear Information System (INIS)

    Zhang Yuping; Zhang Huiyun; Zhong Kai; Li Xifu; Wang Peng; Yao Jianquan

    2007-01-01

    An efficient and high-power diode-side-pumped cw 532 nm green laser based on a V-shaped cavity geometry, and capable of generating 22.7 W green radiation with optical conversion efficiency of 8.31%, has been demonstrated. The laser is operated with rms noise amplitude of less than 1% and with M 2 -parameter of about 6.45 at the top of the output power. This laser has the potential for scaling to much higher output power. (authors)

  8. Power deposition to the pump limiters in Tore-Supra with ohmic plasmas

    International Nuclear Information System (INIS)

    Guilhem, D.; Chatelier, M.; Chappuis Fleury, I.; Klepper, C.

    1990-01-01

    The modification of power scrape-off-length, λq, and power deposition are studied both with the horizontal limiter alone and with the full set of 7 pump limiters for 1MW ohmic plasmas in TORE-SUPRA. By making spatially resolved infrared surface temperature measurements during the plasma discharge, the magnitude and distribution of the energy flux can be derived. For comparison, the surface temperature of the horizontal pump limiter is calculated with a finite element code using a 3D description of the field lines, an exponential scrape-off-layer, and the pump limiter geometry. From comparison of the infrared images of the limiter we derived that the λq for power deposition was slightly less than 9 mm (±1mm) which is in agreement with the predicted design value of 10 mm. For an 8 seconds discharge, the maximum surface temperature on the horizontal limiter is 450 0 C. Inserting the 7 limiters does not modify λq (which becomes 10 mm). The power is shared by all the limiters and the maximum surface temperature on the horizontal limiter decreased to 320 0 C. These λq values have been independently measured by the integrated energy deposition on the horizontal limiter and other internal structures 5 cm into the scrape-off layer. These values agree with the infrared measurements in the two cases

  9. Side-pumped Nd:YVO{sub 4} cw laser with grazing-incidence small angle configuration; Laser de Nd:YVO{sub 4} bombeado transversalmente em configuracao com angulo rasante interno

    Energy Technology Data Exchange (ETDEWEB)

    Camargo, Fabiola de Almeida

    2006-07-01

    Within the existing variety of laser cavity geometries and gain materials there is one combination that is particularly interesting because of its reduced complexity and high efficiency: the edge-pumped slab-laser using grazing-incidence geometry and a gain media with a very high pump absorption cross-section. In this work we studied a diode side-pumped Nd:YVO{sub 4} cw laser. We describe a single and a multiple bounce laser configurations. We demonstrate 22 W of multimode output power for 35 watts of pump power with a single pass through the gain media. A high optical-to-optical conversion efficiency of 63% and a slope efficiency of 74% with a very compact and simple Nd:YVO{sub 4} cavity that uses joint stability zones was achieved. The beam quality was M{sup 2} = 26 x 11 in the horizontal and vertical direction, respectively. With a double pass configuration we achieved 17 watts with a better beam quality of M{sup 2} = 3,4 x 3,7, in the horizontal and vertical direction, respectively. (author)

  10. Towards shorter wavelength x-ray lasers using a high power, short pulse pump laser

    International Nuclear Information System (INIS)

    Tighe, W.; Krushelnick, K.; Valeo, E.; Suckewer, S.

    1991-05-01

    A near-terawatt, KrF* laser system, focussable to power densities >10 18 W/cm 2 has been constructed for use as a pump laser in various schemes aimed at the development of x-ray lasing below 5nm. The laser system along with output characteristics such as the pulse duration, the focal spot size, and the percentage of amplified spontaneous emission (ASE) emitted along with the laser pulse will be presented. Schemes intended to lead to shorter wavelength x-ray emission will be described. The resultant requirements on the pump laser characteristics and the target design will be outlined. Results from recent solid target experiments and two-laser experiments, showing the interaction of a high-power, short pulse laser with a preformed plasma, will be presented. 13 refs., 5 figs

  11. Pump and Flow Control Subassembly of Thermal Control Subsystem for Photovoltaic Power Module

    Science.gov (United States)

    Motil, Brian; Santen, Mark A.

    1993-01-01

    The pump and flow control subassembly (PFCS) is an orbital replacement unit (ORU) on the Space Station Freedom photovoltaic power module (PVM). The PFCS pumps liquid ammonia at a constant rate of approximately 1170 kg/hr while providing temperature control by flow regulation between the radiator and the bypass loop. Also, housed within the ORU is an accumulator to compensate for fluid volumetric changes as well as the electronics and firmware for monitoring and control of the photovoltaic thermal control system (PVTCS). Major electronic functions include signal conditioning, data interfacing and motor control. This paper will provide a description of each major component within the PFCS along with performance test data. In addition, this paper will discuss the flow control algorithm and describe how the nickel hydrogen batteries and associated power electronics will be thermally controlled through regulation of coolant flow to the radiator.

  12. Electric power conservation while using pumping systems; Conservacion de Energia Electrica en Sistemas de Bombeo

    Energy Technology Data Exchange (ETDEWEB)

    Nambiar, P

    2007-01-15

    The pumping systems provide about 20 to 25 percent of energy which is necessary worldwide: it is fruitful to understand how to use electric power efficiently, to achieve the reduction regarding expenses a pumping system implies.It is essential to possess a better knowledge about the pumping system and its applications, in order to be able to use energy responsibly. If people do not how to operate this kind of systems properly, they will use inadequate equipment that will cause an energy waste. In addition it is important to know: alternative methods to meet variable demands, an adapted system to pump water requirements in order to ensure the pump work in its pumping point, and the life cycle system cost for the energy saving in the long term. [Spanish] En promedio del 20 al 25% de la energia necesaria en el mundo proviene de los sistemas de bombeo, por tal razon es importante saber como utilizar la energia electrica con eficiencia para asi lograr reducir los gastos que este tipo de sistemas implican. Para poder hacer un buen uso de la energia, es necesario que se tenga un conocimiento mayor del sistema de bombeo y aplicacion, ya que la ignorancia sobre esto exige el uso de aparatos que contribuyen al desperdicio de la energia; por otro lado tambien es esencial conocer metodos alternos para demandas variables, tener un sistema que se adapte a las necesidades de bombeo del agua para asegurarse de que cada bomba trabaje cerca de su punto de bombeo y finalmente conocer el costo del ciclo de vida del sistema para el ahorro de energia a largo plazo.

  13. Analytical study of nonlinear phase shift through stimulated Brillouin scattering in single mode fiber with the pump power recycling technique

    International Nuclear Information System (INIS)

    Al-Asadi, H A; Mahdi, M A; Bakar, A A A; Adikan, F R Mahamd

    2011-01-01

    We present a theoretical study of nonlinear phase shift through stimulated Brillouin scattering in single mode optical fiber. Analytical expressions describing the nonlinear phase shift for the pump and Stokes waves in the pump power recycling technique have been derived. The dependence of the nonlinear phase shift on the optical fiber length, the reflectivity of the optical mirror and the frequency detuning coefficient have been analyzed for different input pump power values. We found that with the recycling pump technique, the nonlinear phase shift due to stimulated Brillouin scattering reduced to less than 0.1 rad for 5 km optical fiber length and 0.65 reflectivity of the optical mirror, respectively, at an input pump power equal to 30 mW

  14. Application of sorption heat pumps for increasing of new power sources efficiency

    Science.gov (United States)

    Vasiliev, L.; Filatova, O.; Tsitovich, A.

    2010-07-01

    In the 21st century the way to increase the efficiency of new sources of energy is directly related with extended exploration of renewable energy. This modern tendency ensures the fuel economy needs to be realized with nature protection. The increasing of new power sources efficiency (cogeneration, trigeneration systems, fuel cells, photovoltaic systems) can be performed by application of solid sorption heat pumps, regrigerators, heat and cold accumulators, heat transformers, natural gas and hydrogen storage systems and efficient heat exchangers.

  15. Performance Evaluation Criterion at Equal Pumping Power for Enhanced Performance Heat Transfer Surfaces

    Directory of Open Access Journals (Sweden)

    Rajendra Karwa

    2013-01-01

    Full Text Available The existing equations for the thermal performance evaluation, at equal pumping power for the artificially roughened and smooth surfaced multitube and rectangular duct heat exchangers, have been critically reviewed because the literature survey indicates that a large number of researchers have not interpreted these equations correctly. Three of the most widely used equations have been restated with clearly defined constraints and conditions for their application. Two new equations have been developed for the design constraints not covered earlier.

  16. SLIPPER PERFORMANCE INVESTIGATION IN AXIAL PISTON PUMPS AND MOTORS-FLOW AND VISCOUS POWER LOSSES

    Directory of Open Access Journals (Sweden)

    A. Osman KURBAN

    1997-01-01

    Full Text Available In this study, the slippers being the most effective on the performance of swash plate type axial piston pumps and motors, which is a good example of hydrodynamic-hydrostatic bearing applications, have been investigated. With respect to this, having derived the viscous moment loss, viscous flow leakage loss and power loss equations, the variations of these parameters under different operating conditions have been examined experimentally.

  17. A ZnGeP{sub 2} Optical Parametric Oscillator with Mid-IR Output Power 3 W Pumped by a Tm, Ho:GdVO{sub 4} Laser

    Energy Technology Data Exchange (ETDEWEB)

    Bao-Quan, Yao; Guo-Li, Zhu; You-Lun, Ju; Yue-Zhu, Wang [National Key Laboratory of Tunable Laser Technology, Harbin Institute of Technology, Harbin 150080 (China)

    2009-02-15

    We report an efficient mid-infrared optical parametric oscillator (OPO) pumped by a pulsed Tm,Ho-codoped GdVO4 laser. The 10-W Tm,Ho:GdVO4 laser pumped by a 801 nm diode produces 20ns pulses with a repetition rate of 10kHz at wavelength of 2.048 {mu}m. The ZnGeP{sub 2} (ZGP) OPO produces 15-ns pulses in the spectral regions 3.65-3.8 {mu}m and 4.45-4.65 {mu}m simultaneously. More than 3 W of mid-IR output power can be generated with a total OPO slope efficiency greater than 58% corresponding to incident 2 {mu}m pump power. The diode laser pump to mid-IR optical conversion efficiency is about 12%.

  18. Cladding For Transversely-Pumped Laser Rod

    Science.gov (United States)

    Byer, Robert L.; Fan, Tso Yee

    1989-01-01

    Combination of suitable dimensioning and cladding of neodymium:yttrium aluminum garnet of similar solid-state laser provides for more efficient utilization of transversely-incident pump light from diode lasers. New design overcomes some of limitations of longitudinal- and older transverse-pumping concepts and promotes operation at higher output powers in TEM00 mode.

  19. Combined heat and power considered as a virtual steam cycle heat pump

    International Nuclear Information System (INIS)

    Lowe, Robert

    2011-01-01

    The first aim of this paper is to shed light on the thermodynamic reasons for the practical pursuit of low temperature operation by engineers involved in the design and the operation of combined heat and power (CHP) and district heating (DH) systems. The paper shows that the steam cycle of a combined heat and power generator is thermodynamically equivalent to a conventional steam cycle generator plus an additional virtual steam cycle heat pump. This apparently novel conceptualisation leads directly to (i) the observed sensitivity of coefficient of performance of CHP to supply and return temperatures in associated DH systems, and (ii) the conclusion that the performance of CHP will tend to be significantly higher than real heat pumps operating at similar temperatures. The second aim, which is pursued more qualitatively, is to show that the thermodynamic performance advantages of CHP are consistent with the goal of deep, long-term decarbonisation of industrialised economies. As an example, estimates are presented, which suggest that CHP based on combined-cycle gas turbines with carbon capture and storage has the potential to reduce the carbon intensity of delivered heat by a factor of ∼30, compared with a base case of natural gas-fired condensing boilers. - Highlights: → Large-scale CHP systems are thermodynamically equivalent to virtual steam cycle heat pumps. → COPs of such virtual heat pumps are necessarily better than the Carnot limit for real heat pumps. → COPs can approach 9 for plant matched to district heating systems with flow temperatures of 90 deg. C. → CHP combined with CCGT and CCS can reduce the carbon intensity of delivered heat ∼30-fold.

  20. Wavefront improvement in an end-pumped high-power Nd:YAG zigzag slab laser.

    Science.gov (United States)

    Shin, Jae Sung; Cha, Yong-Ho; Lim, Gwon; Kim, Yonghee; Kwon, Seong-Ouk; Cha, Byung Heon; Lee, Hyeon Cheor; Kim, Sangin; Koh, Kwang Uoong; Kim, Hyun Tae

    2017-08-07

    Techniques for wavefront improvement in an end-pumped Nd:YAG zigzag slab laser amplifier were proposed and demonstrated experimentally. First, a study on the contact materials was conducted to improve the heat transfer between the slab and cooling blocks and to increase the cooling uniformity. Among many attempts, only the use of silicon oil showed an improvement in the wavefront. Thus, the appropriate silicone oil was applied to the amplifier as a contact material. In addition, the wavefront compensation method using a glass rod array was also applied to the amplifier. A very low wavefront distortion was obtained through the use of a silicone-oil contact and glass rod array. The variance of the optical path difference for the entire beam height was 3.87 μm at a pump power of 10.6 kW, and that for the 80% section was 1.69 μm. The output power from the oscillator was 3.88 kW, which means the maximum output extracted from the amplifier at a pump power of 10.6 kW.

  1. High efficiency-large capacity circulating water pump for Hamaoka Nuclear Power Station unit No.3

    International Nuclear Information System (INIS)

    Ito, Akihiko; Sasamuro, Takemi; Takeda, Hirohisa.

    1988-01-01

    No.3 plant in the Hamaoka Nuclear Power Station, Chube Electric Power Co., Inc. is the latest plant of 1100 MW class BWR type, which began the commercial operation in August, 1987. The seawater intake and discharge system of this plant is composed of the channel exceeding 2 km in the total length from the intake tower to the discharge port. The circulating water pump installed in this system has the capacity of 1620 m 3 /min and the total head of 16.5 m, which are the largest in the world. It attained the efficiency as high as more than 90%. Three pumps supply seawater to three-body condensers. The design of the impeller and the casing for obtaining high efficiency, the structural design for facilitating maintenance, the manufacture of a model pump and the performance test using it and so on are reported. The most important item in the manufacture was the form of the onebody impeller weighing 4.5t. The confirmation of the performance of the actual machines was carried out as a part of the synthetic function confirmation test at the power station, and the flow rate was measured with Pitot tubes and ultrasonic flowmeters. (Kako, I.)

  2. Wind Turbines and Heat Pumps. Balancing wind power fluctuations using flexible demand

    International Nuclear Information System (INIS)

    Warmer, C.J.; Hommelberg, M.P.F.; Kamphuis, I.G.; Derszi, Z.; Kok, J.K.

    2007-01-01

    In order to overcome portfolio imbalance for traders of variable power from wind we have built an 'Imbalance Reduction System' (IRS) and performed a real-world field test with it, in which imbalance is minimized within a real-time electricity market portfolio, consisting of wind power and industrial and residential consumers and producers (Combined Heat and Power for district heating; residential heat pumps; industrial cold store; emergency generators). IRS uses the PowerMatcher concept, a coordination system for supply and demand of electricity in a which multi-agent system is combined with microeconomic principles. IRS appears to offer opportunities for embedding less predictable generators such as wind power more smoothly in the portfolio. We describe the context and operation of the Imbalance Reduction System and discuss a number of results from the performed field test. Also we introduce a business model for the balance responsible party, based on the e3-value method

  3. Accidents and Incidents Related to Intravenous Drug Administration: A Pre-Post Study Following Implementation of Smart Pumps in a Teaching Hospital.

    Science.gov (United States)

    Guérin, Aurélie; Tourel, Julien; Delage, Emmanuelle; Duval, Stéphanie; David, Marie-Johanne; Lebel, Denis; Bussières, Jean-François

    2015-08-01

    Smart pumps are expected to prevent and reduce medication errors. The implementation of smart pumps requires a significant effort and collaboration of physicians, nurses, pharmacists, and other stakeholders. The main objective of this study was to evaluate the impact of new smart pumps on reported drug-related accidents and incidents (AIs). This is a descriptive retrospective pre-post study conducted at a women's and pediatric hospital with 500 beds. A strong multidisciplinary team (nurse, pharmacist, pharmacy resident, physician, biomedical technician, information technology technician, patient safety officer, manager) was involved in the planning, implementation, and monitoring technology implementation. A total of 1045 smart pumps were implemented in 2011 in our hospital. The reported number of AIs related to intravenous drug administration (AIIV) before and after the implementation of 1045 smart pumps were collected. A total of 2911 AI events related to medications, devices, and equipment were self-reported by clinical staff in the pre-phase (Y0), 3523 in the post-phase (Y1), and 2788 in the post-phase (Y2). The total AIIV increased from 1432 in Y0 to 1834 in Y1 and decreased to 1389 in Y2. We observed no risk reduction associated with the implementation of smart pumps in a 500 bed mother-child hospital. Further studies are required to explore the details of the potential risk reduction associated with the use of smart pumps.

  4. Analysis of data from water lift powered by solar energy pump

    Energy Technology Data Exchange (ETDEWEB)

    Oyama, Paulo Takashi [Universidade Estadual do Oeste do Parana (UNIOESTE), Cascavel, PR (Brazil); Ricieri, Reinaldo Prandini [Universidade Estadual do Oeste do Parana (UNIOESTE), Cascavel, PR (Brazil). Dept. de Engenharia Agricola], E-mail: ricieri@unioeste.br; Halmeman, Maria Cristina Rodrigues [Universidade Estadual Paulista (UNESP), Botucatu, SP (Brazil); Gnoatto, Estor; Kavanagh; Brenneisen, Paulo Job [Universidade Tecnologica Federal do Parana (UTFPR), Medianeira, PR (Brazil)], Emails: gnoatto@utfpr.edu.br, kavanagh@utfpr.edu.br, brenneisen@utfpr.edu.br

    2008-07-01

    Due to the high costs to install electricity in remote locations, away from the regular urban electrical installations, photovoltaic solar energy has ample application in public illumination, water pumping, health services offices, etc. With the purpose to contribute to a better use of this kind of energy, this project aimed in analyzing the outflow and efficiency of a motor pump powered by photovoltaic panels, the irradiation necessary to activate it for water lift, collecting data at every 6- meter height, ranging from 6,2 to 18,2 meters. This study is part of a development project of the Universidade Tecnologica Federal do Parana (UTFPR), by making use of photovoltaic panels, motor pump, pyranometers, thermocouple type K, pressure transducer and outflow transducer. The data show a maximum average outflow of 584,299 Lh{sup -1} and maximum efficiency of 23,338% for a lift of 18,2 m. There is also the need of irradiation for the activation of the motor pump proportional to the height of the lift, in a polynomial dependence of the third order. (author)

  5. Reducing Pumping Power in Hydronic Heating and Cooling Systems with Microencapsulated Phase Change Material Slurries

    Science.gov (United States)

    Karas, Kristoffer Jason

    Phase change materials (PCMs) are being used increasingly in a variety of thermal transfer and thermal storage applications. This thesis presents the results of a laboratory study into the feasibility of improving the performance of hydronic heating and cooling systems by adding microcapsules filled with a PCM to the water used as heat transport media in these systems. Microencapsulated PCMs (MPCMs) increase the heat carrying capacity of heat transport liquids by absorbing or releasing heat at a constant temperature through a change of phase. Three sequences of tests and their results are presented: 1) Thermal cycling tests conducted to determine the melting temperatures and extent of supercooling associated with the MPCMs tested. 2) Hydronic performance tests in which MPCM slurries were pumped through a fin-and-tube, air-to-liquid heat exchanger and their thermal transfer performance compared against that of ordinary water. 3) Mechanical stability tests in which MPCM slurries were pumped in a continuous loop in order to gauge the extent of rupture due to pumping. It is shown that slurries consisting of water and MPCMs ˜ 14-24 mum in diameter improve thermal performance and offer the potential for power savings in the form of reduced pumping requirements. In addition, it is shown that while slurries of MPCMs 2-5 mum in diameter appear to exhibit better mechanical stability than slurries of larger diameter MPCMs, the smaller MPCMs appear to reduce the thermal performance of air-to-liquid heat exchangers.

  6. Optimization of geometry of annular seat valves suitable for Digital Displacement fluid power pumps/motors

    DEFF Research Database (Denmark)

    Rømer, Daniel; Johansen, Per; Pedersen, Henrik C.

    2013-01-01

    Digital Displacement Fluid Power is an upcoming technology setting new standards for the achievable efficiency of fluid power pumps and motors. The core element of the Digital Displacement technology is high performance electronically controlled seat valves, which must exhibit very low flow...... work an annular seat valve suitable for use in Digital Displacement units is considered, and the ring geometry is optimized using finite element analysis including non-linear material behaviour, contact elements and fluid pressure penetrating load, closely reflecting the actual load of the seat valve...

  7. High-resolution multiphoton microscopy with a low-power continuous wave laser pump.

    Science.gov (United States)

    Chen, Xiang-Dong; Li, Shen; Du, Bo; Dong, Yang; Wang, Ze-Hao; Guo, Guang-Can; Sun, Fang-Wen

    2018-02-15

    Multiphoton microscopy (MPM) has been widely used for three-dimensional biological imaging. Here, based on the photon-induced charge state conversion process, we demonstrated a low-power high-resolution MPM with a nitrogen vacancy (NV) center in diamond. Continuous wave green and orange lasers were used to pump and detect the two-photon charge state conversion, respectively. The power of the laser for multiphoton excitation was 40 μW. Both the axial and lateral resolutions were improved approximately 1.5 times compared with confocal microscopy. The results can be used to improve the resolution of the NV center-based quantum sensing and biological imaging.

  8. Wind power integration with heat pumps, heat storages, and electric vehicles - Energy systems analysis and modelling

    Energy Technology Data Exchange (ETDEWEB)

    Hedegaard, K.

    2013-09-15

    This PhD investigates to which extent heat pumps, heat storages, and electric vehicles can support the integration of wind power. Considering the gaps in existing research, the main focus is put on individual heat pumps in the residential sector (one-family houses) and the possibilities for flexible operation, using the heat storage options available. Several energy systems analyses are performed using the energy system models, Balmorel, developed at the former TSO, ElkraftSystem, and, EnergyPLAN, developed at Aalborg University. The Danish energy system towards 2030, with wind power penetrations of up to 60 %, is used as a case study in most of the analyses. Both models have been developed further, resulting in an improved representation of individual heat pumps and heat storages. An extensive model add-on for Balmorel renders it possible to optimise investment and operation of individual heat pumps and different types of heat storages, in integration with the energy system. Total costs of the energy system are minimised in the optimisation. The add-on incorporates thermal building dynamics and covers various different heat storage options: intelligent heat storage in the building structure for houses with radiator heating and floor heating, respectively, heat accumulation tanks on the space heating circuit, as well as hot water tanks. In EnergyPLAN, some of the heat storage options have been modelled in a technical optimisation that minimises fuel consumption of the energy system and utilises as much wind power as possible. The energy systems analyses reveal that in terms of supporting wind power integration, the installation of individual heat pumps is an important step, while adding heat storages to the heat pumps is less influential. When equipping the heat pumps with heat storages, only moderate system benefits can be gained. Hereof, the main system benefit is that the need for peak/reserve capacity investments can be reduced through peak load shaving; in

  9. Modeling and Performance Improvement of the Constant Power Regulator Systems in Variable Displacement Axial Piston Pump

    Science.gov (United States)

    Park, Sung Hwan; Lee, Ji Min; Kim, Jong Shik

    2013-01-01

    An irregular performance of a mechanical-type constant power regulator is considered. In order to find the cause of an irregular discharge flow at the cut-off pressure area, modeling and numerical simulations are performed to observe dynamic behavior of internal parts of the constant power regulator system for a swashplate-type axial piston pump. The commercial numerical simulation software AMESim is applied to model the mechanical-type regulator with hydraulic pump and simulate the performance of it. The validity of the simulation model of the constant power regulator system is verified by comparing simulation results with experiments. In order to find the cause of the irregular performance of the mechanical-type constant power regulator system, the behavior of main components such as the spool, sleeve, and counterbalance piston is investigated using computer simulation. The shape modification of the counterbalance piston is proposed to improve the undesirable performance of the mechanical-type constant power regulator. The performance improvement is verified by computer simulation using AMESim software. PMID:24282389

  10. Modeling and Performance Improvement of the Constant Power Regulator Systems in Variable Displacement Axial Piston Pump

    Directory of Open Access Journals (Sweden)

    Sung Hwan Park

    2013-01-01

    Full Text Available An irregular performance of a mechanical-type constant power regulator is considered. In order to find the cause of an irregular discharge flow at the cut-off pressure area, modeling and numerical simulations are performed to observe dynamic behavior of internal parts of the constant power regulator system for a swashplate-type axial piston pump. The commercial numerical simulation software AMESim is applied to model the mechanical-type regulator with hydraulic pump and simulate the performance of it. The validity of the simulation model of the constant power regulator system is verified by comparing simulation results with experiments. In order to find the cause of the irregular performance of the mechanical-type constant power regulator system, the behavior of main components such as the spool, sleeve, and counterbalance piston is investigated using computer simulation. The shape modification of the counterbalance piston is proposed to improve the undesirable performance of the mechanical-type constant power regulator. The performance improvement is verified by computer simulation using AMESim software.

  11. Modeling and performance improvement of the constant power regulator systems in variable displacement axial piston pump.

    Science.gov (United States)

    Park, Sung Hwan; Lee, Ji Min; Kim, Jong Shik

    2013-01-01

    An irregular performance of a mechanical-type constant power regulator is considered. In order to find the cause of an irregular discharge flow at the cut-off pressure area, modeling and numerical simulations are performed to observe dynamic behavior of internal parts of the constant power regulator system for a swashplate-type axial piston pump. The commercial numerical simulation software AMESim is applied to model the mechanical-type regulator with hydraulic pump and simulate the performance of it. The validity of the simulation model of the constant power regulator system is verified by comparing simulation results with experiments. In order to find the cause of the irregular performance of the mechanical-type constant power regulator system, the behavior of main components such as the spool, sleeve, and counterbalance piston is investigated using computer simulation. The shape modification of the counterbalance piston is proposed to improve the undesirable performance of the mechanical-type constant power regulator. The performance improvement is verified by computer simulation using AMESim software.

  12. Power flow control based solely on slow feedback loop for heart pump applications.

    Science.gov (United States)

    Wang, Bob; Hu, Aiguo Patrick; Budgett, David

    2012-06-01

    This paper proposes a new control method for regulating power flow via transcutaneous energy transfer (TET) for implantable heart pumps. Previous work on power flow controller requires a fast feedback loop that needs additional switching devices and resonant capacitors to be added to the primary converter. The proposed power flow controller eliminates these additional components, and it relies solely on a slow feedback loop to directly drive the primary converter to meet the heart pump power demand and ensure zero voltage switching. A controlled change in switching frequency varies the resonant tank shorting period of a current-fed push-pull resonant converter, thus changing the magnitude of the primary resonant voltage, as well as the tuning between primary and secondary resonant tanks. The proposed controller has been implemented successfully using an analogue circuit and has reached an end-to-end power efficiency of 79.6% at 10 W with a switching frequency regulation range of 149.3 kHz to 182.2 kHz.

  13. On modelling, simulation and measurement of fluid power pumps and pipelines

    International Nuclear Information System (INIS)

    Weddfelt, K.

    1992-01-01

    Pressure ripple in fluid power systems is often considered to be a nuisance. It is a major reason for vibrations and noise emission but can also cause functional problems, in extreme causes even fatigue and breakdown of pipes and connections. In order to examine this problem both the sources of pressure ripple and its transmission properties must be considered. A major source of pressure ripple in fluid power systems is positive displacement pumps, a component which is actually a source of flow ripple. A positive displacement pump can be characterized and modelled as a flow source with an internal source impedance. Special measurement techniques must be developed in order to determine these source properties experimentally. Pressure and flow ripple propagate through the pipeline of a fluid power system as waves. When the impedance of the system changes, part of the energy in the wave is being transmitted while the remaining part is reflected. Therefore, the mechanism for standing waves to occur is present, causing resonances and possibly very large pressure pulsations at certain frequencies. Destructive interference between these waves can be used to design so-called reactive attenuators, similar to an automobile muffler, which can be used to acoustically separate the source of flow ripple from the rest of the fluid power system. A mathematical model of wave transmission in pipelines is of fundamental importance to the design of acoustical sound systems. It is of equal importance when modelling and measuring the source characteristics of fluid power pumps. Such a mathematical model must include the transmission and reflection of waves as well as the frequency-dependent losses from viscous friction in the fluid. (au)

  14. High power diode pumped solid state (DPSS) laser systems active media robust modeling and analysis

    Science.gov (United States)

    Kashef, Tamer M.; Mokhtar, Ayman M.; Ghoniemy, Samy A.

    2018-02-01

    Diode side-pumped solid-state lasers have the potential to yield high quality laser beams with high efficiency and reliability. This paper summarizes the results of simulation of the most predominant active media that are used in high power diode pumped solid-state (DPSS) laser systems. Nd:YAG, Nd:glass, and Nd:YLF rods laser systems were simulated using the special finite element analysis software program LASCAD. A performance trade off analysis for Nd:YAG, Nd:glass, and Nd:YLF rods was performed in order to predict the system optimized parameters and to investigate thermally induced thermal fracture that may occur due to heat load and mechanical stress. The simulation results showed that at the optimized values Nd:YAG rod achieved the highest output power of 175W with 43% efficiency and heat load of 1.873W/mm3. A negligible changes in laser output power, heat load, stress, and temperature distributions were observed when the Nd:YAG rod length was increased from 72 to 80mm. Simulation of Nd:glass at different rod diameters at the same pumping conditions showed better results for mechanical stress and thermal load than that of Nd:YAG and Nd:YLF which makes it very suitable for high power laser applications especially for large rod diameters. For large rod diameters Nd:YLF is mechanically weaker and softer crystal compared to Nd:YAG and Nd:glass due to its poor thermomechanical properties which limits its usage to only low to medium power systems.

  15. Startup of Pumping Units in Process Water Supplies with Cooling Towers at Thermal and Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Berlin, V. V., E-mail: vberlin@rinet.ru; Murav’ev, O. A., E-mail: muraviov1954@mail.ru; Golubev, A. V., E-mail: electronik@inbox.ru [National Research University “Moscow State University of Civil Engineering,” (Russian Federation)

    2017-03-15

    Aspects of the startup of pumping units in the cooling and process water supply systems for thermal and nuclear power plants with cooling towers, the startup stages, and the limits imposed on the extreme parameters during transients are discussed.

  16. Possible efficiency improvement by application of various operating regimes for the cooling water pump station at thermal power plant - Bitola

    Directory of Open Access Journals (Sweden)

    Mijakovski Vladimir

    2012-01-01

    Full Text Available Thermal power plant (TPP - Bitola is the largest electricity producer in the Republic of Macedonia with installed capacity of 691 MW. It is a lignite fired power plant, in operation since 1982. Most of the installed equipment is of Russian origin. Power plant's cold end comprised of a condenser, pump station and cooling tower is depicted in the article. Possible way to raise the efficiency of the cold end by changing the operating characteristics of the pumps is presented in the article. Diagramic and tabular presentation of the working characteristics of the pumps (two pumps working in paralel for one block with the pipeline, as well as engaged power for their operation are also presented in this article.

  17. Development of solar concentrators for high-power solar-pumped lasers.

    Science.gov (United States)

    Dinh, T H; Ohkubo, T; Yabe, T

    2014-04-20

    We have developed unique solar concentrators for solar-pumped solid-state lasers to improve both efficiency and laser output power. Natural sunlight is collected by a primary concentrator which is a 2  m×2  m Fresnel lens, and confined by a cone-shaped hybrid concentrator. Such solar power is coupled to a laser rod by a cylinder with coolant surrounding it that is called a liquid light-guide lens (LLGL). Performance of the cylindrical LLGL has been characterized analytically and experimentally. Since a 14 mm diameter LLGL generates efficient and uniform pumping along a Nd:YAG rod that is 6 mm in diameter and 100 mm in length, 120 W cw laser output is achieved with beam quality factor M2 of 137 and overall slope efficiency of 4.3%. The collection efficiency is 30.0  W/m2, which is 1.5 times larger than the previous record. The overall conversion efficiency is more than 3.2%, which can be comparable to a commercial lamp-pumped solid-state laser. The concept of the light-guide lens can be applied for concentrator photovoltaics or other solar energy optics.

  18. Aerosol core nuclear reactor for space-based high energy/power nuclear-pumped lasers

    International Nuclear Information System (INIS)

    Prelas, M.A.; Boody, F.P.; Zediker, M.S.

    1987-01-01

    An aerosol core reactor concept can overcome the efficiency and/or chemical activity problems of other fuel-reactant interface concepts. In the design of a laser using the nuclear energy for a photon-intermediate pumping scheme, several features of the aerosol core reactor concept are attractive. First, the photon-intermediate pumping concept coupled with photon concentration methods and the aerosol fuel can provide the high power densities required to drive high energy/power lasers efficiently (about 25 to 100 kW/cu cm). Secondly, the intermediate photons should have relatively large mean free paths in the aerosol fuel which will allow the concept to scale more favorably. Finally, the aerosol core reactor concept can use materials which should allow the system to operate at high temperatures. An excimer laser pumped by the photons created in the fluorescer driven by a self-critical aerosol core reactor would have reasonable dimensions (finite cylinder of height 245 cm and radius of 245 cm), reasonable laser energy (1 MJ in approximately a 1 millisecond pulse), and reasonable mass (21 kg uranium, 8280 kg moderator, 460 kg fluorescer, 450 kg laser medium, and 3233 kg reflector). 12 references

  19. Characterization of high power flashlamps and application to Nd:glass laser pumping

    International Nuclear Information System (INIS)

    Powell, H.T.; Erlandson, A.C.; Jancaitis, K.S.

    1986-01-01

    Detailed spectral and temporal measurements of the output radiation from Xe flashlamps are reported together with their use in predicting the pumping efficiency of Nd-doped laser glass. We have made absolute spectral-intensity measurements for 0.5, 1.5, and 4.2-cm-bore flashlamps for input powers ranging from 5 to 90 kW/cm 2 and pulselengths of 600 μs. Under quasi-stationary conditions these flashlamps emit essentially identical spectra when excited at equal input power per unit-area of the bore. This behavior is characteristic of an optically-thick radiator although it is not completely clear why flashlamps should behave this way. A simple model is also described which accounts for the transient response of flashlamps by characterizing the output spectra and radiation efficiencies in terms of the radiant output power rather than the electrical input power. 23 refs., 16 figs

  20. Optimization of reactor power by taking into consideration temperature increase in a reactor pumped 3He-Xe laser

    International Nuclear Information System (INIS)

    Cetin, Fuesun

    2009-01-01

    In nuclear pumped lasers, gas parameters are optimized in a manner such that output power is increased for constructing a high power laser. Since output power increases with the increase of energy deposited in the gas, high output power requires high pumping power. However, the high energy loading results in elevated gas temperature. Temperature increase of this magnitude can detrimentally influence the laser gain and efficiency, since it negatively impacts several important laser kinetic.processes. This fact may cause laser output to abruptly terminate before the peak of the pump pulse [1-3]. A nuclear pumped laser using a volumetric energy source through the 3 He(n, p) 3 H reaction has here been considered. It is assumed that TRIGA Mark II Reactor at Istanbul Technical University is used for nuclear pumping as the neutron source. In the previous papers, the optimal parameters for improving both output power and optical homogeneity were determined [4-5]. Spatial and temporal variations of gas temperature during pumping pulse for maximum peak power (1200 MW) were determined for various operating pressures in Ref. [6]. It was seen that gas temperature reaches up to 1000 0 K near the peak of the pumping pulse for the initial pressures of 1-4 atm. This means that laser output may terminate before the peak of the pump pulse due to overheating of laser gas. Under these conditions, a question arises about a further optimisation taking into consideration gas temperature. This question has been examined in this study. Experimental results (Batyrbekov et al, 1989) showed that temperature rise up to 650 C had no influence on Xe laser characteristics [ 7]. Therefore, It has here been assumed that the lasing will terminate when gas temperature reaches 1000 0 K for a Xe-laser with 3 He buffer gas. Under these conditions optimum reactor power is investigated by taking into consideration lasing duration also. (orig.)

  1. Pulse forming networks for fast pumping of high power electron-beam-controlled CO2 lasers

    International Nuclear Information System (INIS)

    Riepe, K.B.

    1975-01-01

    The transverse electric discharge is a widely used technique for pumping CO 2 lasers at high pressures for the generation, simply and efficiently, of very high power laser pulses. The development of the electron-beam-controlled discharge has allowed the application of the transverse discharge to large aperture, very high energy systems. LASL is now in the process of assembly and checkout of a CO 2 laser which is designed to generate a one nanosecond pulse containing 10 kilojoules, for use in laser fusion experiments. The front end of this laser consists of a set of preamplifiers and a mode locked oscillator with electro-optic single pulse switchout. The final amplifier stage consists of four parallel modules, each one consisting of a two-sided electron gun, and two 35 x 35 x 200 cm gas pumping regions operating at a pressure of 1800 torr with a 3/ 1 / 4 /1 (He/N 2 /CO 2 ) laser mix. (auth)

  2. Mechanical damage due to corrosion of parts of pump technology and valves of LWR power installations

    International Nuclear Information System (INIS)

    Hron, J.; Krumpl, M.

    1986-01-01

    Two types are described of uneven corrosion of austenitic chromium-nickel steel: pitting and slit corrosion. The occurrence of slit corrosion is typical of parts of pumping technology and valves. The corrosion damage of austenitic chromium-nickel steels spreads as intergranular, transgranular or mixed corrosion. In nuclear power facilities with LWR's, intergranular corrosion is due to chlorides and sulphur compounds while transgranular corrosion is due to the presence of dissolved oxygen and chlorides. In mechanically stressed parts, stress corrosion takes place. The recommended procedures are discussed of reducing the corrosion-mechanical damage of pumping equipment of light water reactors during design, production and assembly. During the service of the equipment, corrosion cracks are detected using nondestructive methods and surface cracks are repaired by grinding and welding. (E.S.)

  3. Power supply for pumping systems in northern Chile: Photovoltaics as alternative to grid extension and diesel engines

    International Nuclear Information System (INIS)

    Chueco-Fernandez, Francisco J.; Bayod-Rujula, Angel A.

    2010-01-01

    This paper examines and compares the cost-effectiveness to energize pumping systems in remote areas on northern Chile by means of photovoltaic systems, diesel engines and grid extension. Variables such as the distance to the power grid, the voltage grid, the prices of electricity and fuel, and the required investments, are taken into account. The comparison is made for wide range of variable values, distances and pumping requirements. The results obtained are useful for choosing the best alternative for the power supply of pumping systems in wells in Northern Chile. (author)

  4. A durable, non power consumptive, simple seal for rotary blood pumps.

    Science.gov (United States)

    Mitamura, Y; Sekine, K; Asakawa, M; Yozu, R; Kawada, S; Okamoto, E

    2001-01-01

    One of the key technologic requirements for rotary blood pumps is the sealing of the motor shaft. A mechanical seal, a journal bearing, magnetic coupling, and magnetic suspension have been developed, but they have drawbacks such as wear, thrombus formation, and power consumption. A magnetic fluid seal was developed for an axial flow pump. A magnetic fluid seal is durable, simple, and non power consumptive. Long-term experiments and finite element modeling (FEM) analyses confirmed these advantages. The seal body was composed of a Ned-Fe magnet and two pole pieces; the seal was formed by injecting ferrofluid into the gap (50 microm) between the pole pieces and the motor shaft. To contain the ferrofluid in the seal and to minimize the possibility of ferrofluid making contact with blood, a shield with a small cavity was attached to the pole piece. While submerged in blood, the sealing pressure of the seal was measured and found to be 188 mm Hg with ferrofluid LS-40 (saturated magnetization, 24.3 kA/m) at a motor speed of 10,000 rpm and 225 mm Hg under static conditions. The magnetic fluid seals performed perfectly at a pressure of 100 mm Hg for 594 + days in a static condition, and 51, 39+, and 34+ days at a motor speed of 8,000 rpm. FEM analyses indicated a theoretical sealing pressure of 260 mm Hg. The state of the magnetic fluid in the seal in water was observed with a microscope. Neither splashing of magnetic fluid nor mixing of the magnetic fluid and water was observed. The specially designed magnetic fluid seal for keeping liquids out is useful for axial flow blood pumps. The magnetic fluid seal was incorporated into an intracardiac axial flow pump.

  5. Mechanical seals qualification procedure of the main pumps of nuclear power plants in France

    International Nuclear Information System (INIS)

    Buchdahl, D.; Martin, R.; Girault, J.M.

    1992-12-01

    Many important pumps in the nuclear power plants are equipped with mechanical seals. The good behaviour and reliability of mechanical seals depend specially on the quality and the stability of an interface of several microns. Peripheral speed reaches 50 m/s and pressure 5 MPa, shaft diameter may be 200 mm. Any failure of the mechanical seals may stop the production of electricity or may compromise nuclear safety. As far back as 1970, EDF has conducted qualification actions for the most important mechanical seals in terms of availability and safety. A qualification of mechanical seals needs three steps: - constructor test (tuning) at normal conditions, -qualification test on test rig at EDF/DER (semi-industrial) at normal, exceptional and incidental conditions lasting about 1500 h, - industrial qualification test in nuclear power station over one year. Several supplying sources are absolutely necessary. Any pump may receive mechanical seals from at least two different suppliers. A compromise had to be found to restrict the suppliers' number down to three. This choice concerned three high technology suppliers. A consistent modification procedure had been developed (references file procedure). For each power plant series, about ten types of mechanical seals are concerned. The selection criteria are the higher loads factors P, Vg or the safety related importance. This expensive approach is useful for EDF, many functional failures have been detected before the serial mechanical seals installation in the power plants. (authors). 1 annexe

  6. Reduction of light oil usage as power fluid for jet pumping in deep heavy oil reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Chen, S.; Li, H.; Yang, D. [Society of Petroleum Engineers, Canadian Section, Calgary, AB (Canada)]|[Regina Univ., SK (Canada); Zhang, Q. [China Univ. of Petroleum, Dongying, Shandong (China); He, J. [China National Petroleum Corp., Haidan District, Beijing (China). PetroChina Tarim Oilfield Co.

    2008-10-15

    In deep heavy oil reservoirs, reservoir fluid can flow more easily in the formation as well as around the bottomhole. However, during its path along the production string, viscosity of the reservoir fluid increases dramatically due to heat loss and release of the dissolved gas, resulting in significant pressure drop along the wellbore. Artificial lifting methods need to be adopted to pump the reservoir fluids to the surface. This paper discussed the development of a new technique for reducing the amount of light oil used for jet pumping in deep heavy oil wells. Two approaches were discussed. Approach A uses the light oil as a power fluid first to obtain produced fluid with lower viscosity, and then the produced fluid is reinjected into the well as a power fluid. The process continues until the viscosity of the produced fluid is too high to be utilized. Approach B combines a portion of the produced fluid with the light oil at a reasonable ratio and then the produced fluid-light oil mixture is used as the power fluid for deep heavy oil well production. The viscosity of the blended power fluid continue to increase and eventually reach equilibrium. The paper presented the detailed processes of both approaches in order to indicate how to apply them in field applications. Theoretic models were also developed and presented to determine the key parameters in the field operations. A field case was also presented and a comparison and analysis between the two approaches were discussed. It was concluded from the field applications that, with a certain amount of light oil, the amount of reservoir fluid produced by using the new technique could be 3 times higher than that of the conventional jet pumping method. 17 refs., 3 tabs., 6 figs.

  7. Solar Pumped Solid State Lasers for Space Solar Power: Experimental Path

    Science.gov (United States)

    Fork, Richard L.; Carrington, Connie K.; Walker, Wesley W.; Cole, Spencer T.; Green, Jason J. A.; Laycock, Rustin L.

    2003-01-01

    We outline an experimentally based strategy designed to lead to solar pumped solid state laser oscillators useful for space solar power. Our method involves solar pumping a novel solid state gain element specifically designed to provide efficient conversion of sunlight in space to coherent laser light. Kilowatt and higher average power is sought from each gain element. Multiple such modular gain elements can be used to accumulate total average power of interest for power beaming in space, e.g., 100 kilowatts and more. Where desirable the high average power can also be produced as a train of pulses having high peak power (e.g., greater than 10(exp 10 watts). The modular nature of the basic gain element supports an experimental strategy in which the core technology can be validated by experiments on a single gain element. We propose to do this experimental validation both in terrestrial locations and also on a smaller scale in space. We describe a terrestrial experiment that includes diagnostics and the option of locating the laser beam path in vacuum environment. We describe a space based experiment designed to be compatible with the Japanese Experimental Module (JEM) on the International Space Station (ISS). We anticipate the gain elements will be based on low temperature (approx. 100 degrees Kelvin) operation of high thermal conductivity (k approx. 100 W/cm-K) diamond and sapphire (k approx. 4 W/cm-K). The basic gain element will be formed by sequences of thin alternating layers of diamond and Ti:sapphire with special attention given to the material interfaces. We anticipate this strategy will lead to a particularly simple, robust, and easily maintained low mass modelocked multi-element laser oscillator useful for space solar power.

  8. On the Potential of Hydrogen-Powered Hydraulic Pumps for Soft Robotics.

    Science.gov (United States)

    Desbiens, Alexandre B; Bigué, Jean-Philippe Lucking; Véronneau, Catherine; Masson, Patrice; Iagnemma, Karl; Plante, Jean-Sébastien

    2017-12-01

    To perform untethered operations, soft robots require mesoscale power units (10-1000 W) with high energy densities. In this perspective, air-breathing combustion offers an interesting alternative to battery-powered systems, provided sufficient overall energy conversion efficiency can be reached. Implementing efficient air-breathing combustion in mesoscale soft robots is notoriously difficult, however, as it requires optimization of very small combustion actuators and simultaneous minimization of fluidic (e.g., hydraulic) losses, which are both inversely impacted by actuations speeds. To overcome such challenges, this article proposes and evaluates the potential of hydrogen-powered, hydraulic free-piston pump architecture. Experimental data, taken from two combustion-driven prototypes, reveal (1) the fundamental role of using hydrogen as the source of fuel to reduce heat losses, (2) the significant impact of compression ratio, equivalence ratio, and surface-to-volume ratio on energy conversion efficiency, and (3) the importance of load matching between combustion and fluidic transmission. In this work, a small-bore combustion actuator demonstrated a 20% efficiency and a net mean output power of 26 W, while a big-bore combustion actuator reached a substantially higher efficiency of 35% and a net mean output power of 197 W. Using the small-bore combustion actuator, the hydrogen-powered, hydraulic free-piston pump provided a 4.6% overall efficiency for a 2.34 W net mean output power, thus underlying the potential of the approach for mesoscale soft robotic applications.

  9. A 50-kW Module Power Station of Directly Solar-Pumped Iodine Laser

    Science.gov (United States)

    Choi, S. H.; Lee, J. H.; Meador, W. E.; Conway, E. J.

    1997-01-01

    The conceptual design of a 50 kW Directly Solar-Pumped Iodine Laser (DSPIL) module was developed for a space-based power station which transmits its coherent-beam power to users such as the moon, Martian rovers, or other satellites with large (greater than 25 kW) electric power requirements. Integration of multiple modules would provide an amount of power that exceeds the power of a single module by combining and directing the coherent beams to the user's receiver. The model developed for the DSPIL system conservatively predicts the laser output power (50 kW) that appears much less than the laser output (93 kW) obtained from the gain volume ratio extrapolation of experimental data. The difference in laser outputs may be attributed to reflector configurations adopted in both design and experiment. Even though the photon absorption by multiple reflections in experimental cavity setup was more efficient, the maximum secondary absorption amounts to be only 24.7 percent of the primary. However, the gain volume ratio shows 86 percent more power output than theoretical estimation that is roughly 60 percent more than the contribution by the secondary absorption. Such a difference indicates that the theoretical model adopted in the study underestimates the overall performance of the DSPIL. This fact may tolerate more flexible and radical selection of design parameters than used in this design study. The design achieves an overall specific power of approximately 5 W/kg and total mass of 10 metric tons.

  10. Wind power integration with heat pumps, heat storages, and electric vehicles – Energy systems analysis and modelling

    DEFF Research Database (Denmark)

    Hedegaard, Karsten

    The fluctuating and only partly predictable nature of wind challenges an effective integration of large wind power penetrations. This PhD thesis investigates to which extent heat pumps, heat storages, and electric vehicles can support the integration of wind power. Considering the gaps in existing...... in an energy system context. Energy systems analyses reveal that the heat pumps can even without flexible operation contribute significantly to facilitating larger wind power investments and reducing system costs, fuel consumption, and CO2 emissions. When equipping the heat pumps with heat storages, only...... moderate additional benefits are achieved. Hereof, the main benefit is that the need for investing in peak/reserve capacities can be reduced through peak load shaving. It is more important to ensure flexible operation of electric vehicles than of individual heat pumps, due to differences in the load...

  11. Resonantly cladding-pumped Yb-free Er-doped LMA fiber laser with record high power and efficiency.

    Science.gov (United States)

    Zhang, Jun; Fromzel, Viktor; Dubinskii, Mark

    2011-03-14

    We report the results of our power scaling experiments with resonantly cladding-pumped Er-doped eye-safe large mode area (LMA) fiber laser. While using commercial off-the-shelf LMA fiber we achieved over 88 W of continuous-wave (CW) single transverse mode power at ~1590 nm while pumping at 1532.5 nm. Maximum observed optical-to-optical efficiency was 69%. This result presents, to the best of our knowledge, the highest power reported from resonantly-pumped Yb-free Er-doped LMA fiber laser, as well as the highest efficiency ever reported for any cladding-pumped Er-doped laser, either Yb-co-doped or Yb-free.

  12. Fuzzy sliding mode control for maximum power point tracking of a photovoltaic pumping system

    Directory of Open Access Journals (Sweden)

    Sabah Miqoi

    2017-03-01

    Full Text Available In this paper a new maximum power point tracking method based on fuzzy sliding mode control is proposed, and employed in a PV water pumping system based on a DC-DC boost converter, to produce maximum power from the solar panel hence more speed in the DC motor and more water quantity. This method combines two different tracking techniques sliding mode control and fuzzy logic; our controller is based on sliding mode control, then to give better stability and enhance the power production a fuzzy logic technique was added. System modeling, sliding method definition and the new control method presentation are represented in this paper. The results of the simulation that are compared to both sliding mode controller and perturbation and observation method demonstrate effectiveness and robustness of the proposed controller.

  13. High-power, cladding-pumped all-fiber laser with selective transverse mode generation property.

    Science.gov (United States)

    Li, Lei; Wang, Meng; Liu, Tong; Leng, Jinyong; Zhou, Pu; Chen, Jinbao

    2017-06-10

    We demonstrate, to the best of our knowledge, the first cladding-pumped all-fiber oscillator configuration with selective transverse mode generation based on a mode-selective fiber Bragg grating pair. Operating in the second-order (LP 11 ) mode, maximum output power of 4.2 W is obtained with slope efficiency of about 38%. This is the highest reported output power of single higher-order transverse mode generation in an all-fiber configuration. The intensity distribution profile and spectral evolution have also been investigated in this paper. Our work suggests the potential of realizing higher power with selective transverse mode operation based on a mode-selective fiber Bragg grating pair.

  14. Decreasing incidence of peptic ulcer complications after the introduction of the proton pump inhibitors, a study of the Swedish population from 1974–2002

    Directory of Open Access Journals (Sweden)

    Ranstam Jonas

    2009-04-01

    Full Text Available Abstract Background Despite a decreasing incidence of peptic ulcer disease, most previous studies report a stabile incidence of ulcer complications. We wanted to investigate the incidence of peptic ulcer complications in Sweden before and after the introduction of the proton pump inhibitors (PPI in 1988 and compare these data to the sales of non-steroid anti-inflammatory drugs (NSAID and acetylsalicylic acid (ASA. Methods All cases of gastric and duodenal ulcer complications diagnosed in Sweden from 1974 to 2002 were identified using the National hospital discharge register. Information on sales of ASA/NSAID was obtained from the National prescription survey. Results When comparing the time-periods before and after 1988 we found a significantly lower incidence of peptic ulcer complications during the later period for both sexes (p Conclusion When comparing the periods before and after the introduction of the proton pump inhibitors we found a significant decrease in the incidence of peptic ulcer complications in the Swedish population after 1988 when PPI were introduced on the market. The cause of this decrease is most likely multifactorial, including smoking habits, NSAID consumption, prevalence of Helicobacter pylori and the introduction of PPI. Sales of prescribed NSAID/ASA increased, especially in middle-aged and elderly women. This fact seems to have had little effect on the incidence of peptic ulcer complications.

  15. The introduction of wind powered pumped storage Systems in Greek isolated systems. Experiences and perspectives

    International Nuclear Information System (INIS)

    Katsaprakakis, Dimitris Al.; Christakis, Dimitris G.

    2009-01-01

    Full text: In the present paper, the experiences gained from the study of Wind Powered Pumped Storage Systems (WP-PSS), introduced in Greek isolated power production systems, are presented. The presented systems were studied in the frames of either research or development projects, financed by the public or private sector. Two main categories of WP-PSS are presented: The introduction of WP-PSS for power peak saving. The construction and the operation framework of these systems are fully defined in the relevant Greek laws. These systems were studied in the frames of individual development projects. The introduction of WPPSS aiming at the maximisation of wind power. These systems are not yet fully defined in the Greek legislation and were studied in the frames of research works. More than ten WP-PSS have been technically and economically studied so far. Each one of them has been introduced in a Greek isolated insular power system, integrated according to the to the specific design parameters of the examined insular system (power demand, wind potential, land morphology, etc). All the accomplished studies may be considered as parts of one long-time unified project, aiming at the investigation of the prerequisites for the maximisation of the Renewable Energy Sources (R.E.S.) exploitation in Greece. The general conclusions arisen from the so far accomplished work are: The R.E.S. penetration percentage in the Greek insular systems may exceed 80% of the annual energy demand, by introducing pumped storage systems as storage device. The electricity production cost is minimized, even in the isolated systems of small size. The corresponding investments exhibit very good economical indexes, regardless the possible availability of initial capitals subsidy. In case of initial capitals subsidy availability, the investments exhibit quite attractive economical indexes. The dynamic security of the proposed systems (author)

  16. A practical approach for implementing risk-based inservice testing of pumps at nuclear power plants

    International Nuclear Information System (INIS)

    Hartley, R.S.; Maret, D.; Seniuk, P.; Smith, L.

    1996-01-01

    The American Society of Mechanical Engineers (ASME) Center for Research and Technology Development's (CRTD) Research Task Force on Risk-Based Inservice Testing has developed guidelines for risk-based inservice testing (IST) of pumps and valves. These guidelines are intended to help the ASME Operation and Maintenance (OM) Committee to enhance plant safety while focussing appropriate testing resources on critical components. This paper describes a practical approach for implementing those guidelines for pumps at nuclear power plants. The approach, as described in this paper, relies on input, direction, and assistance from several entities such as the ASME Code Committees, United States Nuclear Regulatory Commission (NRC), and the National Laboratories, as well as industry groups and personnel with applicable expertise. Key parts of the risk-based IST process that are addressed here include: identification of important failure modes, identification of significant failure causes, assessing the effectiveness of testing and maintenance activities, development of alternative testing and maintenance strategies, and assessing the effectiveness of alternative testing strategies with present ASME Code requirements. Finally, the paper suggests a method of implementing this process into the ASME OM Code for pump testing

  17. A practical approach for implementing risk-based inservice testing of pumps at nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Hartley, R.S. [Idaho National Engineering Lab., Idaho Falls, ID (United States); Maret, D.; Seniuk, P.; Smith, L.

    1996-12-01

    The American Society of Mechanical Engineers (ASME) Center for Research and Technology Development`s (CRTD) Research Task Force on Risk-Based Inservice Testing has developed guidelines for risk-based inservice testing (IST) of pumps and valves. These guidelines are intended to help the ASME Operation and Maintenance (OM) Committee to enhance plant safety while focussing appropriate testing resources on critical components. This paper describes a practical approach for implementing those guidelines for pumps at nuclear power plants. The approach, as described in this paper, relies on input, direction, and assistance from several entities such as the ASME Code Committees, United States Nuclear Regulatory Commission (NRC), and the National Laboratories, as well as industry groups and personnel with applicable expertise. Key parts of the risk-based IST process that are addressed here include: identification of important failure modes, identification of significant failure causes, assessing the effectiveness of testing and maintenance activities, development of alternative testing and maintenance strategies, and assessing the effectiveness of alternative testing strategies with present ASME Code requirements. Finally, the paper suggests a method of implementing this process into the ASME OM Code for pump testing.

  18. Wavelength switchable high-power diode-side-pumped rod Tm:YAG Laser around 2µm.

    Science.gov (United States)

    Wang, Caili; Du, Shifeng; Niu, Yanxiong; Wang, Zhichao; Zhang, Chao; Bian, Qi; Guo, Chuan; Xu, Jialin; Bo, Yong; Peng, Qinjun; Cui, Dafu; Zhang, Jingyuan; Lei, Wenqiang; Xu, Zuyan

    2013-03-25

    We report a high-power diode-side-pumped rod Tm:YAG laser operated at either 2.07 or 2.02 µm depending on the transmission of pumped output coupler. The laser yields 115W of continuous-wave output power at 2.07 µm with 5% output coupling, which is the highest output power for all solid-state 2.07 μm cw rod Tm:YAG laser reported so far. With an output coupler of 10% transmission, the center wavelength of the laser is switched to 2.02 μm with an output power of 77.1 W. This is the first observation of high-power wavelength switchable diode-side-pumped rod Tm:YAG laser around 2 µm.

  19. Failure analysis of motor bearing of sea water pump in nuclear power plant

    International Nuclear Information System (INIS)

    Bian Chunhua; Zhang Wei

    2015-01-01

    The motor bearing of sea water pump in Qinshan Phase II Nuclear Power plant broke after only one year's using. This paper introduces failure analysis process of the motor bearing. Chemical composition analysis, metallic phase analysis, micrographic examination, and hardness analysis, dimension analysis of each part of the bearing, as well as the high temperature and low temperature performance analysis of lubricating grease are performed. According to the analysis above mentioned, the failure mode of the bearing is wearing, and the reason of wearing is inappropriate installation of the bearing. (authors)

  20. A feasible system integrating combined heating and power system with ground-source heat pump

    International Nuclear Information System (INIS)

    Li, HongQiang; Kang, ShuShuo; Yu, Zhun; Cai, Bo; Zhang, GuoQiang

    2014-01-01

    A system integrating CHP (combined heating and power) subsystem based on natural gas and GSHP (ground-source heat pump subsystem) in series is proposed. By help of simulation software-Aspen Plus, the energy performance of a typical CHP and GSHP-S (S refers to ‘in series’) system was analyzed. The results show that the system can make a better use of waste heat in flue gas from CHP (combined heating and power subsystem). The total system energy efficiency is 123% and the COP (coefficient of performance) of GSHP (ground-source heat pump) subsystem is 5.3. A referenced CHP and GSHP-P (P refers to ‘in parallel’) system is used for comparison; its total system energy efficiency and COP of GSHP subsystem are 118.6% and 3.5 respectively. Compared with CHP and GSHP-P system with different operating parameters, the CHP and GSHP-S system can increase total system energy efficiency by 0.8–34.7%, with related output ratio of heat to power (R) from 1.9 to 18.3. Furthermore, the COP of GSHP subsystem can be increased between the range 3.6 and 6, which is much higher than that in conventional CHP and GSHP-P system. This study will be helpful for other efficient GSHP systems integrating if there is waste heat or other heat resources with low temperature. - Highlights: • CHP system based on natural gas and ground source heat pump. • The new system can make a better utilization of waste heat in flue gas by a special way. • The proposed system can realize energy saving potential from 0.8 to 34.7%. • The coefficient of performance of ground source heat pump subsystem is significantly improved from 3.5 to 3.6–6. • Warm water temperature and percentage of flue gas used to reheat are key parameters

  1. Feasibility study of a Green Power Plant. Final report. [Offshore pumped hydro storage

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-03-15

    This project is a technical evaluation and a feasibility study of a concept called the Green Power Plant (GPP), developed by Seahorn Energy Aps. The Green Power Plant is an offshore pumped hydro storage facility constructed from prefabricated elements and with integrated renewable energy production. Pumped hydro storage is a known technology with a proven roundtrip energy storage efficiency of 80%. The focus of the GPP project is on simplifying and industrializing the construction of the reservoir wall, thereby achieving a cost efficient solution. The reservoir structure is dependent on the site on which the reservoir is established, thus Kriegers Flak in the Baltic Sea has been chosen as basis for the technical evaluation. As soil conditions vary, the technical evaluations have been based on a general soil profile. A water depth of 25m has been chosen as basis for the evaluation. A reservoir with a diameter of 2 km has been evaluated as baseline scenario. Feasibility of the GPP was evaluated based on the cost and income estimates. For the baseline scenario an internal rate of return of 6.6% was found for a period of 35 years. A sensitivity analysis reveals internal rates of return over 35 years varying from 4.9% to 10.9%. Especially larger reservoir diameters increase profitability of the GPP. The results from this project will be utilized in raising funds for further development of the GPP concept. Seahorn Energy Aps aims at optimizing the wind turbine integration, the steel pile wall structure and the pump-turbine integration in a future project towards construction of a demonstration facility. (LN)

  2. A new self-scheduling strategy for integrated operation of wind and pumped-storage power plants in power markets

    International Nuclear Information System (INIS)

    Varkani, Ali Karimi; Daraeepour, Ali; Monsef, Hassan

    2011-01-01

    Highlights: → A strategy for integrated operation of wind and pumped-storage plants is proposed. → Participation of both plants in energy and ancillary service markets is modeled. → The uncertainty of wind production is modeled by a novel probabilistic function. → The proposed strategy is tested on a real case in the Spanish electricity market. -- Abstract: Competitive structure of power markets causes various challenges for wind resources to participate in these markets. Indeed, production uncertainty is the main cause of their low income. Thus, they are usually supported by system operators, which is in contrast with the competitive paradigm of power markets. In this paper, a new strategy for increasing the profits of wind resources is proposed. In the suggested strategy, a Generation Company (GenCo), who owns both wind and pumped-storage plants, self-schedules the integrated operation of them regarding the uncertainty of wind power generation. For presenting an integrated self-schedule and obtaining a real added value of the strategy, participation of the GenCo in energy and ancillary service markets is modeled. The self-scheduling strategy is based on stochastic programming techniques. Outputs of the problem include generation offers in day-ahead energy market and ancillary service markets, including spinning and regulation reserve markets. A Neural Network (NN) based technique is used for modeling the uncertainty of wind power production. The proposed strategy is tested on a real wind farm in mainland, Spain. Moreover, added value of the strategy is presented in different conditions of the market.

  3. Analysis of the noise of the jet pumps of the Unit 2 of the Laguna Verde nuclear power plant

    International Nuclear Information System (INIS)

    Castillo D, R.; Ortiz V, J.; Ruiz E, J.A.; Calleros M, G.

    2004-01-01

    The use of the analysis of noise for the detection of badly functioning of the components of a BWR it is a powerful tool in the determination of abnormal conditions of operation, during the life of a nuclear plant of power. From the eighties, some nuclear reactors have presented problems related with the jet pumps and the knots of the recirculation. The Regulatory Commission of the United States, in the I E bulletin 80-07, recommended to carry out a periodic supervision of the pressure drop of the jet pumps, to prevent structural failures. In this work, methods of analysis of noise are used for the detection of abnormal conditions of operation of the jet pumps of a BWR. Signals are analysed to low and high frequency of pressure drop with the NOISE software that is in development. The obtained results show the behavior of the jet pumps of jet 6 and 11 before and after a partial blockade in their throats where the pump 6 return to their condition of previous operation and the pump 11 present a new fall of pressure, inside the limit them permissible of operation. The methodology of the analysis of noise demonstrated to be an useful tool for the badly functioning detection, and you could apply to create a database to supervise the dynamic behavior of the jet pumps of an BWR. (Author)

  4. Cancer incidence in the environment of nuclear power plants

    International Nuclear Information System (INIS)

    Heller, W.

    2008-01-01

    An epidemiological study of cancer in children in the environment of nuclear power plants has been written on behalf of the German Federal Ministry for the Environment, Nature Conservation, and Nuclear Safety (BMU) and the Federal Office for Radiation Protection (BfS). The study is a case controlled study based on the German Register of Cancer in Children. The most important outcome of the study is the finding that a connection can be observed in Germany between the proximity to a nuclear power plant of the place of living and the risk of a child to develop cancer in the 5 th year of life. The magnitude of this risk was calculated to be approximately 0.2%, i.e., out of a total of 13,373 cases of cancer, 29 would be attributable to living within the 5 km zone around a nuclear power plant. This finding demands an explanation. The study proper cannot serve as a material witness because it had not been designed to establish cause and effect relations between the risk and potential origins. The expert consultants frankly state that current knowledge about radiation biology and epidemiology in principle does not allow the ionizing radiation emitted by German nuclear power plants in normal operation to be interpreted as the cause. Whether confounders, selection or chance play a role in the observed and documented finding cannot be explained for good by the study. However, although representing an honorable acquittal, the study produces a different effect in the public mind. What is remembered is the link between nuclear power plants and cancer in children. (orig.)

  5. The internal flow pattern analysis of a tidal power turbine operating on bidirectional generation-pumping

    International Nuclear Information System (INIS)

    Luo, Y Y; Xiao, Y X; Wang, Z W

    2013-01-01

    Using tidal energy can reduce environment pollution, save conventional energy and improve energy structure, hence it presents great advantage and is developing potential. Influenced by flood tide and low tide, a fully functional tidal power station needs to experience six operating modes, including bidirectional generation, pumping and sluice; the internal unsteady flow pattern and dynamic characters are very complicated. Based on a bidirectional tidal generator unit, three-dimensional unsteady flows in the flow path were calculated for four typical operating conditions with the pressure pulsation characteristics analyzed. According to the numerical results, the internal flow characteristics in the flow path were discussed. The influence of gravity to the hydraulic performance and flow characteristics were analysed. The results provide a theoretical analysis method of the hydraulic optimization design of the same type unit as well as a direction for stable operation and optimal scheduling of existing tidal power unit

  6. Development of high power pumping system for capillary discharge EUV laser

    International Nuclear Information System (INIS)

    Sakai, Yusuke; Komatsu, Takanori; Watanabe, Masato; Okino, Akitoshi; Hotta, Eiki

    2008-01-01

    Development of high power pumping system for capillary discharge soft X-ray laser is reported. The pulsed power system consists of a 2.2 μF LC generator, a 2:54 step-up transformer and a 3 nF water capacitor. Taking advantage of high efficiency configuration, step-up ratio of water capacitor voltage to LC generator initial voltage is about 40 times. Consequently, obtained water capacitor voltage reaches about 450 kV when LC generator was charged to 12.5 kV. As a consequent, possibility of charging a water capacitor to 1 MV is demonstrated. With this extremely compact system, discharge current could be increased to nearly 100 kA through moderately long capillary, which leads to generation of high-density and high-temperature plasma column in order to realize EUV laser. (author)

  7. Application of nuclear pumped laser to an optical self-powered neutron detector

    Science.gov (United States)

    Yamanaka, N.; Takahashi, H.; Iguchi, T.; Nakazawa, M.; Kakuta, T.; Yamagishi, H.; Katagiri, M.

    1996-05-01

    A Nuclear Pumped Laser (NPL) using 3He/Ne/Ar gas mixture is investigated for a purpose of applying to an optical self-powered neutron detector. Reactor experiments and simulations on lasing mechanism have been made to estimate the best gas pressure and mixture ratios on the threshold input power density (or thermal neutron flux) in 3He/Ne/Ar mixture. Calculational results show that the best mixture pressure is 3He/Ne/Ar=2280/60/100 Torr and thermal neutron flux threshold 5×1012 n/cm2 sec, while the reactor experiments made in the research reactor ``YAYOI'' of the University of Tokyo and ``JRR-4'' of JAERI also demonstrate that excitational efficiency is maximized in a similar gas mixture predicted by the calculation.

  8. Optimal operation of a pumped-storage hydro plant that compensates the imbalances of a wind power producer

    OpenAIRE

    Duque, Álvaro Jaramillo; Castronuovo, Edgardo D.; Sánchez, Ismael; Usaola, Julio

    2011-01-01

    The participation of wind energy in electricity markets requires providing a forecast for future energy production of a wind generator, whose value will be its scheduled energy. Deviations from this schedule because of prediction errors could imply the payment of imbalance costs. In order to decrease these costs, a joint operation between a wind farm and a hydro-pump plant is proposed; the hydro-pump plant changes its production to compensate wind power prediction errors. In order to optimize...

  9. Analysis of human factors in incidents reported by Swiss nuclear power plants to the inspectorate

    International Nuclear Information System (INIS)

    Alder, H.P.; Hausmann, W.

    1997-01-01

    197 reported incidents in Swiss Nuclear Power Plants were analyzed by a team of the Swiss Federal Nuclear Safety Inspectorate (HSK) using the OECD/NEA Incident Reporting System. The following conclusions could be drawn from this exercise. While the observed cause reported by the plant was ''technical failure'' in about 90% of the incidents, the HSK-Team identified for more than 60% of the incidents ''human factors'' as the root cause. When analyzing this root cause further it was shown that only a smaller contribution came from the side of the operators and the more important shares were caused by plant maintenance, vendors/constructors and plant management with procedural and organizational deficiencies. These findings demonstrate that root cause analysis of incidents by the IRS-Code is a most useful tool to analyze incidents and to find weak points in plant performance. (author). 5 tabs

  10. THERMAL POWER LOSS COMPENSATION IN THE PRODUCTION OF COOKED AND DRIED GRAINS WITH HEAT PUMPS USING

    Directory of Open Access Journals (Sweden)

    S. A. Shevtsov

    2015-01-01

    Full Text Available Using scientificand practical experience and analysis of recent innovative activity on modernization of food concentrates production, a new variant of the energy-efficient processing of cereal crops using superheated steam and direct involvement in the cooking and drying process waste energy using the vapor compression heat pump was suggested. A method for production of cereal concentrates, which is realized using microprocessor control of technological parameters. According to the information on the processes of cereals washing, cooking, drying and cooling microprocessor provides regime parameters control under the restrictions due to both yield of cooked and dried cereal of high quality and economic feasibility. At the same time the amount of moisture is continuously determined in the recirculation loop formed by the evaporation from the cereals in the drying process. To implement the proposed method of cooked and dried cereals production it is offered to use refrigerationand compressor unit operating in a heat pump mode. The refrigerant to be used is khladon 12V1 CF2ClBr with a boiling point in the evaporator of 4°C and the condensing temperature of 153.7 °C. The use of the heat pump in the heat supply system of cooked and dried cereals production instead of electric heaters will reduce power costs by 1.72 times. The proposed method for the production and control of technological parameters in the field of the product acceptable technological properties will provide high quality cooked and dried cereals; an increase in thermal efficiency by making full use of the waste heat of superheated steam; the reduction of specific energy consumption by 25-30 %; the creation of waste-free and environmentally friendly technologies for cereal production.

  11. Hardware and software system for monitoring oil pump operation in power high-voltage transformers

    Directory of Open Access Journals (Sweden)

    Михайло Дмитрович Дяченко

    2017-07-01

    Full Text Available The article considers the basic prerequisites for the creation of an automated monitoring system for oil pumps of high-voltage transformers. This is due to the fact that the long operation of oil pumps results in deterioration and destruction of bearings, rubbing of the rotor, breakage and damage to the impeller, leakage, etc., which inevitably causes a significant decrease in the insulating properties of the transformer oil and leads to expenditures for its further recovery. False triggerings of gas protection sometimes occur. Continuous operation of the electric motor also requires additional equipment to protect the motor itself from various emergency situations, such as a short in the stator winding, a housing breakdown, an incomplete phase mode, etc. The use of stationary systems provides: diagnosing defects at an early stage of their development, increasing the reliability and longevity of the equipment components, increasing the overhaul period, decreasing the number of emergency stops, and adjusting the schedule of preventative maintenance. The basic principles of identification of the damaged part of the oil pump are given, the hardware and algorithmic solutions are considered in the work. The full-scale tests of the model sample on the power transformer of the high-voltage substation confirmed the assumption of the possibility of detecting the damaged unit separating it from the rest connected in one mechanical structure. A detailed analysis of the operation of each of the units is carried out by means of the general substation switchboard and displayed as graphs, diagrams and text messages. When the limit values of vibration are reached, faults in the operation of the unit are detected, the overlimit current values, a warning alarm is activated, and the command to disconnect the damaged unit is issued. The optimal solution for the organization of the information collection system using the principle of sensor networks, but combined

  12. Energy Management of a Hybrid-Power Gas Engine-Driven Heat Pump

    Directory of Open Access Journals (Sweden)

    Qingkun Meng

    2015-10-01

    Full Text Available The hybrid-power gas engine-driven heat pump (HPGHP combines hybrid power technology with a gas engine heat pump. The engine in the power system is capable of operating constantly with high thermal efficiency and low emissions during different operating modes. In this paper, the mathematical models of various components is established, including the engine thermal efficiency map and the motor efficiency map. The comprehensive charging/discharging efficiency model and energy management optimization strategy model which is proposed to maximize the efficiency of instantaneous HPGHP system are established. Then, different charging/discharging torque limits are obtained. Finally, a novel gas engine economical zone control strategy which combined with the SOC of battery in real time is put forward. The main operating parameters of HPGHP system under energy management are simulated by Matlab/Simulink and validated by experimental data, such as engine and motor operating torque, fuel consumption rate and comprehensive efficiency, etc. The results show that during 3600 s’ run-time, the SOC value of battery packs varies between 0.58 and 0.705, the fuel consumption rate reaches minimum values of approximately 291.3 g/(kW h when the compressor speed is nearly 1550 rpm in mode D, the engine thermal efficiency and comprehensive efficiency reach maximum values of approximately 0.2727 and 0.2648 when the compressor speed is 1575 rpm and 1475 rpm, respectively, in mode D. In general, the motor efficiency can be maintained above 0.85 in either mode.

  13. Cancer incidence in the vicinity of nuclear power plants in Taiwan: a population-based study.

    Science.gov (United States)

    Wang, Shiow-Ing; Yaung, Chih-Liang; Lee, Long-Teng; Chiou, Shang-Jyh

    2016-01-01

    Numerous antinuclear demonstrations reveal that the public is anxious about the potential health effects caused by nuclear power plants. The purpose of this study is to address the question "Is there a higher cancer incidence rate in the vicinity of nuclear power plants in Taiwan?" The Taiwan Cancer Registry database from 1979 to 2003 was used to compare the standardized incidence rate of the top four cancers with strong evidence for radiation risks between the "plant-vicinity" with those "non-plant-vicinity" groups. All cancer sites, five-leading cancers in Taiwan, and gender-specific cancers were also studied. We also adopted different observation time to compare the incidence rate of cancers between two groups to explore the impact of the observation period. The incidences of leukemia, thyroid, lung, and breast cancer were not significantly different between two groups, but cervix uteri cancer showed higher incidence rates in the plant-vicinity group. The incidence of cervical cancer was not consistently associated with the duration of plant operation, according to a multiyear period comparison. Although there was higher incidence in cervix cancer in the plant-vicinity group, our findings did not provide the crucial evidence that nuclear power plants were the causal factor for some cancers with strong evidence for radiation risks.

  14. Passively mode-locked high power Nd:GdVO4 laser with direct in-band pumping at 912 nm

    Science.gov (United States)

    Nadimi, Mohammad; Waritanant, Tanant; Major, Arkady

    2018-01-01

    We report on the first semiconductor saturable absorber mirror mode-locked Nd:GdVO4 laser directly diode-pumped at 912 nm. The laser generated 10.14 W of averaged output power at 1063 nm with the pulse width of 16 ps at the repetition rate of 85.2 MHz. The optical-to-optical efficiency and slope efficiency in the mode-locked regime were calculated to be 49.6% and 67.4% with respect to the absorbed pump power, respectively. Due to the low quantum defect pumping the output power was limited only by the available pump power.

  15. Apparatus for servicing an eleongated suspended pump motor in an electric power plant with limited access

    International Nuclear Information System (INIS)

    Chavez, R.; Johnson, F.T.; Ekeroth, D.E.; Matusz, J.M.

    1994-01-01

    Elongated coolant pump motors suspended under steam generators within containment in a power plant with limited access space, are removed and replaced by an upright elongated maintenance cart with an elongated opening along one side in which the motor is received. Rollers support the cart for conveying the elongated motor in an upright position out from under the steam generator and onto an elevator. The elevator is lowered to transfer support of the cart and motor through trunnions to saddles straddling the elevator for rotation of the cart to a generally horizontal position. The elevator then raises the horizontally disposed cart carrying the motor to a higher floor where it is rolled off the elevator on rollers and out through the auxiliary equipment hatch. The cart includes a top V-shaped collar for supporting the motor, and a further lower support cradle operative when the cart is horizontal. Jacks support the motor during unbolting from the pump casing and lower it onto the cart. (Author)

  16. Childhood leukaemia incidence below the age of 5 years near French nuclear power plants

    International Nuclear Information System (INIS)

    Laurier, D; Hemon, D; Clavel, J

    2008-01-01

    A recent study indicated an excess risk of leukaemia among children under the age of 5 years living in the vicinity of nuclear power plants in Germany. We present results relating to the incidence of childhood leukaemia in the vicinity of nuclear power plants in France for the same age range. These results do not indicate an excess risk of leukaemia in young children living near French nuclear power plants. (note)

  17. A high-power diode-laser-pumped CW Nd:YAG laser using a stable-unstable resonator

    International Nuclear Information System (INIS)

    Mudge, M.; Ostermeyer, P.; Veitch, J.; Munch, J.; Hamilton, M.W.

    2000-01-01

    Full text: The design and operation of a power-scalable diode-laser-pumped CW Nd:YAG zigzag slab laser that uses a stable-unstable resonator with a graded reflectivity mirror as an output coupler is described. We demonstrate control of the thermal lens strength in the unstable plane and weak thermal lensing in the stable plane that is independent of pump power, vital for efficient scalability. This enabled CW operation of the stable-unstable resonator with excellent near- and far-field beam quality

  18. The Fukushima Nuclear Power Station incident and marine pollution

    International Nuclear Information System (INIS)

    Chang Yenchiang; Zhao Yue

    2012-01-01

    Based on the facts relating to the radioactive wastewater discharged by the Fukushima Nuclear Power Station in Japan, this paper intends to explore the international legal obligations for Japan from three perspectives, namely, the immediate notification, the prevention of transboundary harm and the prevention of dumping. Furthermore, this article defines and compares two types of international legal liabilities, the traditional state responsibility and the responsibility for transboundary harm. Through comparison, the international legal liability of Japan is discussed. After detailed analysis, the conclusion is that Japan should be responsible for the obligation of immediate notification and since Japan unilaterally discharge the wastes without prior specific permits of other contracting countries, it should also be responsible for the violation of prevention of dumping. Since so far, no material injury has emerged and there would appear to be no culpability as regards the prevention of transboundary harm. Finally, this paper stresses the necessity to develop a worldwide agreement concerning the liability for transboundary harm and to establish an institutional framework for the enforcement of a state’s obligations, and also the great significance of international cooperation between nations and organisations in relation to marine environmental protection.

  19. Vertical axis wind turbine power regulation through centrifugally pumped lift spoiling

    Science.gov (United States)

    Klimas, P. C.; Sladky, J. F., Jr.

    This paper describes an approach for lowering the rated windspeeds of Darrieus-type vertical axis wind turbines (VAWTs) whose blades are hollow aluminum extrusions. The blades, which when rotating act as centrifugal pumps, are fitted with a series of small perforations distributed along a portion of the blades' span. By valving the ends of the hollow blades, flow into the blade ends and out of the perforations may be controlled. This flow can induce premature aerodynamic stall on the blade elements, thereby reducing both the rated power of the turbine and its cost-of-energy. The concept has been proven on the Sandia National Laboratories 5-m diameter research VAWT and force balance and flow visualization wind tunnel tests have been conducted using a blade section designed for the VAWT application.

  20. Wind-power turns up the heat - Minergie, heat pumps and wind; Windstrom heizt ein

    Energy Technology Data Exchange (ETDEWEB)

    Gutknecht, B.

    2003-07-01

    This short article discusses the advantages of using wind energy to provide lighting as well as power for the heat pumps often used in houses built to the Swiss Minergie low-energy consumption standard. The extra costs caused by purchase of wind-generated electrical energy instead of 'normal' electricity are, according to the author, low in comparison with other costs incurred by the inhabitants for such things as, for example, pocket money, internet connections and other amenities. A sample calculation for an average Minergie house is presented. The article is rounded off by a collection of facts on wind energy in general and its use in Switzerland in particular.

  1. High power uv metal vapor ion lasers pumped by thermal energy charge exchange

    International Nuclear Information System (INIS)

    Kan, T.

    1975-01-01

    The requirement for efficient and scalable laser sources for laser isotope separation (LIS) has recently been brought into sharp focus. The lack of suitable coherent sources is particularly severe in the uv, a spectral region of interest for more efficient and advanced isotope separation schemes. This report explores the general class of metal vapor ion lasers pumped by thermal energy charge exchange (TECX) as possible scalable coherent sources for LIS with the following potential characteristics: (1) availability of discrete wavelengths spanning the wavelength region between 2000 A less than lambda less than 8000 A, (2) pulsed or cw operation in the multi-kilowatt average power levels, (3) overall device efficiencies approaching one percent, and (4) the engineering of practical laser devices using relatively benign electron beam technology. (U.S.)

  2. A Multiobjective Robust Scheduling Optimization Mode for Multienergy Hybrid System Integrated by Wind Power, Solar Photovoltaic Power, and Pumped Storage Power

    Directory of Open Access Journals (Sweden)

    Lihui Zhang

    2017-01-01

    Full Text Available Wind power plant (WPP, photovoltaic generators (PV, cell-gas turbine (CGT, and pumped storage power station (PHSP are integrated into multienergy hybrid system (MEHS. Firstly, this paper presents MEHS structure and constructs a scheduling model with the objective functions of maximum economic benefit and minimum power output fluctuation. Secondly, in order to relieve the uncertainty influence of WPP and PV on system, robust stochastic theory is introduced to describe uncertainty and propose a multiobjective stochastic scheduling optimization mode by transforming constraint conditions with uncertain variables. Finally, a 9.6 MW WPP, a 6.5 MW PV, three CGT units, and an upper reservoir with 10 MW·h equivalent capacity are chosen as simulation system. The results show MEHS system can achieve the best operation result by using the multienergy hybrid generation characteristic. PHSP could shave peak and fill valley of load curve by optimizing pumping storage and inflowing generating behaviors based on the load supply and demand status and the available power of WPP and PV. Robust coefficients can relieve the uncertainty of WPP and PV and provide flexible scheduling decision tools for decision-makers with different risk attitudes by setting different robust coefficients, which could maximize economic benefits and minimize operation risks at the same time.

  3. Analog Fixed Maximum Power Point Control for a PWM Step-downConverter for Water Pumping Installations

    DEFF Research Database (Denmark)

    Beltran, H.; Perez, E.; Chen, Zhe

    2009-01-01

    This paper describes a Fixed Maximum Power Point analog control used in a step-down Pulse Width Modulated power converter. The DC/DC converter drives a DC motor used in small water pumping installations, without any electric storage device. The power supply is provided by PV panels working around....... The proposed Optimal Power Point fix voltage control system is analyzed in comparison to other complex controls....... their maximum power point, with a fixed operating voltage value. The control circuit implementation is not only simple and cheap, but also robust and reliable. System protections and adjustments are also proposed. Simulations and hardware are reported in the paper for a 150W water pumping application system...

  4. Survey of reportable incidents in nuclear power plants in Germany in the year 1992

    International Nuclear Information System (INIS)

    1993-01-01

    In 1992, 223 reportable incidents in German nuclear power plant have been reported. There was no radioactivity release exceeding the maximum permissible limits, and there were no hazardous effects on the population or the environment. There was no incident belonging to category S of the official event scale, requiring urgent notification, while there were two incidents requiring immediate notification. All other incidents reported belonged to category N, the lowest on the scale, requiring normal notification. 216 incidents belonged to category 0 of the INES scale, and 7 to INES category 1 (disturbance). The tabulated survey of the report lists the various events and their position on the INES scale. The reportable events have been analysed thoroughly from various viewpoints, but no systematic pattern of weak points could be detected. (orig./HP) [de

  5. Water-Related Power Plant Curtailments: An Overview of Incidents and Contributing Factors

    Energy Technology Data Exchange (ETDEWEB)

    McCall, James [National Renewable Energy Lab. (NREL), Golden, CO (United States); Macknick, Jordan [National Renewable Energy Lab. (NREL), Golden, CO (United States); Macknick, Jordan [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-12-01

    Water temperatures and water availability can affect the reliable operations of power plants in the United States. Data on water-related impacts on the energy sector are not consolidated and are reported by multiple agencies. This study provides an overview of historical incidents where water resources have affected power plant operations, discusses the various data sources providing information, and creates a publicly available and open access database that contains consolidated information about water-related power plant curtailment and shut-down incidents. Power plants can be affected by water resources if incoming water temperatures are too high, water discharge temperatures are too high, or if there is not enough water available to operate. Changes in climate have the potential to exacerbate uncertainty over water resource availability and temperature. Power plant impacts from water resources include curtailment of generation, plant shut-downs, and requests for regulatory variances. In addition, many power plants have developed adaptation approaches to reducing the potential risks of water-related issues by investing in new technologies or developing and implementing plans to undertake during droughts or heatwaves. This study identifies 42 incidents of water-related power plant issues from 2000-2015, drawing from a variety of different datasets. These incidents occur throughout the U.S., and affect coal and nuclear plants that use once-through, recirculating, and pond cooling systems. In addition, water temperature violations reported to the Environmental Protection Agency are also considered, with 35 temperature violations noted from 2012-2015. In addition to providing some background information on incidents, this effort has also created an open access database on the Open Energy Information platform that contains information about water-related power plant issues that can be updated by users.

  6. James A. FitzPatrick Nuclear Power Plant recirculation pumps vibration system installation and performance since July 7, 1990

    International Nuclear Information System (INIS)

    Lefter, J.

    1992-01-01

    James A. FitzPatrick recirculation pumps are vertical units consisting of General Electric 5,300 hp variable speed motors driving Byron Jackson Pumps. Speed range is from 400 rpm at 20% reactor power to 1,480 rpm at 100% power. Full speed pump output is 42,500 gpm at 530 ft. head. This paper describes the vibration monitoring system. The design of this vibration monitoring system took about five months and was installed during plant refueling outage between February and May 1990. The objectives of this project were as follows: (1) document and assess the mechanical condition of each RRP during plant startup normal operation and shutdown; (2) identify any areas of operation that might be harmful to the unit; (3) perform impact testing of the proximity probe brackets to determine if any bracket resonances existed in the 0 to 20 times operating speed region (0 to 20X); (4) define and recommend Acceptance Regions in the TDM system

  7. Feasibility study and economic analysis of pumped hydro storage and battery storage for a renewable energy powered island

    International Nuclear Information System (INIS)

    Ma, Tao; Yang, Hongxing; Lu, Lin

    2014-01-01

    Highlights: • Batteries and pumped hydro storage schemes are examined. • Sizing procedure for each option is investigated in detail. • The two schemes are compared in terms of life cycle cost and technical viability. • Sensitivity analyses are conducted on five key input parameters. - Abstract: This study examined and compared two energy storage technologies, i.e. batteries and pumped hydro storage (PHS), for the renewable energy powered microgrid power supply system on a remote island in Hong Kong. The problems of energy storage for off-grid renewable energy were analyzed. The sizing methods and economic models were developed, and finally applied in the real project (case study). The results provide the most suitable energy storage scheme for local decision-makers. The two storage schemes were further divided into 4 options. Accordingly, the life-cycle costs (LCC), levelized costs for the renewable energy storage system (LCRES) and the LCC ratios between all options were calculated and compared. It was found that the employment of conventional battery (Option 2) had a higher LCC value than the advanced deep cycle battery (Option 1), indicating that using deep cycle batteries is more suitable for a standalone renewable power supply system. The pumped storage combined with battery bank option (Option 3) had only 55% LCC of that of Option 1, making this combined option more cost-competitive than the sole battery option. The economic benefit of pumped storage is even more significant in the case of purely pumped storage with a hydraulic controller (Option 4), with the lowest LCC among all options at 29–48% of Option 1. Sensitivity analysis demonstrates that PHS is even more cost competitive by controlling some adjustments such as increasing energy storage capacity and days of autonomy. Therefore, the renewable energy system coupled with pumped storage presents technically feasible opportunities and practical potential for continuous power supply in remote

  8. Study on actions for social acceptance of a nuclear power plant incident/accident

    International Nuclear Information System (INIS)

    Kotani, Fumio; Tsukada, Tetsuya; Hiramoto, Mitsuru; Nishimura, Naoyuki

    1998-01-01

    When an incident/accident has occurred, dealing technically with it in an appropriate way is essential for social acceptance. One of the most important actions that are expected from the plant representative is to provide, without delay, each of the concerned authorities and organizations with full information concerning the incident/accident, while necessary technical measures are being implemented. While the importance of socially dealing with the incident/accident is widely recognized, up to now there have been no attempts to study previous incidents/accidents cases from the social sciences viewpoint. Therefore, in the present study is a case study of the incident/accident that occurred in 1991 at the No.2 Unit of the Mihama Nuclear Plant of Kansai Power Co., Ltd.. The data used in the present study is based on intensive interview of the staff involved in this incident/accident. The purpose of the study was to shed light on the conditions necessary for maintaining and improving the skill of the plant representative when dealing with social response in case of an incident/accident. The results of the present study has led to a fuller recognition of the importance of the following factors: On the personal level: 1) recognition of personal accountability, 2) complete disclosure of information concerning the incident/accident. On the organizational level: 1) acceptance of different approaches and viewpoints, 2) promoting risk-taking behavior, 3) top management's vision and commitment to providing a social response. (author)

  9. Heat transfer enhancement and pumping power optimization using CuO-water nanofluid through rectangular corrugated pipe

    Science.gov (United States)

    Salehin, Musfequs; Ehsan, Mohammad Monjurul; Islam, A. K. M. Sadrul

    2017-06-01

    Heat transfer enhancement by corrugation in fluid domain is a popular method. The rate of improvement is more when it is used highly thermal conductive fluid as heating or cooling medium. In this present study, heat transfer augmentation was investigated numerically by implementing corrugation in the fluid domain and nanofluid as the base fluid in the turbulent forced convection regime. Finite volume method (FVM) was applied to solve the continuity, momentum and energy equations. All the numerical simulations were considered for single phase flow. A rectangle corrugated pipe with 5000 W/m2 constant heat flux subjected to the corrugated wall was considered as the fluid domain. In the range of Reynolds number 15000 to 40000, thermo-physical and hydrodynamic behavior was investigated by using CuO-water nanofluid from 1% to 5% volume fraction as the base fluid through the corrugated fluid domain. Corrugation justification was performed by changing the amplitude of the corrugation and the corrugation wave length for obtaining the increased heat transfer rate with minimum pumping power. For using CuO-water nanofluid, augmentation was also found more in the rectangle corrugated pipe both in heat transfer and pumping power requirement with the increase of Reynolds number and the volume fraction of nanofluid. For the increased pumping power, optimization of pumping power by using nanofluid was also performed for economic finding.

  10. Power and energy scaling of a diode-end-pumped Nd:YLF laser through gain optimization

    CSIR Research Space (South Africa)

    Bollig, C

    2010-06-01

    Full Text Available An end-pumped Nd:YLF laser was demonstrated, which delivered 60.3 W continuous-wave and more than 52 W Q-switched average power for all repetition rates from 5 to 30 kHz. To achieve this, an analytical solution to estimate and optimize...

  11. Combined wide pump tuning and high power of a continuous-wave, singly resonant optical parametric oscillator

    NARCIS (Netherlands)

    Herpen, M.M.J.W. van; Bisson, S.E.; Ngai, A.K.Y.; Harren, F.J.M.

    2004-01-01

    A new singly resonant, single-frequency optical parametric oscillator (OPO) has been developed for the 2.6-4.7 mum infrared wavelength region, using a high power (>20 W), widely tunable (1024-1034 nm) Yb:YAG pump source. With the OPO frequency stabilized with an intracavity etalon, the OPO achieved

  12. Advancements in high-power high-brightness laser bars and single emitters for pumping and direct diode application

    Science.gov (United States)

    An, Haiyan; Jiang, Ching-Long J.; Xiong, Yihan; Zhang, Qiang; Inyang, Aloysius; Felder, Jason; Lewin, Alexander; Roff, Robert; Heinemann, Stefan; Schmidt, Berthold; Treusch, Georg

    2015-03-01

    We have continuously optimized high fill factor bar and packaging design to increase power and efficiency for thin disc laser system pump application. On the other hand, low fill factor bars packaged on the same direct copper bonded (DCB) cooling platform are used to build multi-kilowatt direct diode laser systems. We have also optimized the single emitter designs for fiber laser pump applications. In this paper, we will give an overview of our recent advances in high power high brightness laser bars and single emitters for pumping and direct diode application. We will present 300W bar development results for our next generation thin disk laser pump source. We will also show recent improvements on slow axis beam quality of low fill factor bar and its application on performance improvement of 4-5 kW TruDiode laser system with BPP of 30 mm*mrad from a 600 μm fiber. Performance and reliability results of single emitter for multiemitter fiber laser pump source will be presented as well.

  13. Fixed-speed and Variable-speed Pumped Storage Dispatch Model in Power Systems with High Renewable Penetration

    Directory of Open Access Journals (Sweden)

    Yuan Bo

    2018-01-01

    Full Text Available According to different operating characteristics of pumped storage fixed speed unit and variable speed unit, a joint dispatching model of pumped storage unit and other types of units based on mixed integer linear optimization is constructed. The model takes into account the operating conditions, reservoir capacity, cycle type and other pumped storage unit constraints, but also consider the frequent start and stop and the stability of the operation of the unit caused by the loss. Using the Cplex solver to solve the model, the empirical example of the provincial power grid shows that the model can effectively arrange the pumping storage speed and the dispatching operation of the variable speed unit under the precondition of economic life of the unit, and give full play to the function of peak shaving and accommodating new energy. Because of its more flexible regulation characteristics of power generation and pumping conditions, the variable speed unit can better improve the operating conditions of other units in the system and promote the new energy dissipation.

  14. Fixed-speed and Variable-speed Pumped Storage Dispatch Model in Power Systems with High Renewable Penetration

    Science.gov (United States)

    Yuan, Bo; Zong, Jin; Xu, Zhicheng

    2018-06-01

    According to different operating characteristics of pumped storage fixed speed unit and variable speed unit, a joint dispatching model of pumped storage unit and other types of units based on mixed integer linear optimization is constructed. The model takes into account the operating conditions, reservoir capacity, cycle type and other pumped storage unit constraints, but also consider the frequent start and stop and the stability of the operation of the unit caused by the loss. Using the Cplex solver to solve the model, the empirical example of the provincial power grid shows that the model can effectively arrange the pumping storage speed and the dispatching operation of the variable speed unit under the precondition of economic life of the unit, and give full play to the function of peak shaving and accommodating new energy. Because of its more flexible regulation characteristics of power generation and pumping conditions, the variable speed unit can better improve the operating conditions of other units in the system and promote the new energy dissipation.

  15. Individual dual-emitting CdS multi-branched nanowire arrays under various pumping powers

    Science.gov (United States)

    Guo, S.; Zhao, F. Y.; Li, Y.; Song, G. L.; Li, A.; Chai, K.; Liang, L.; Ma, Z.; Weller, D.; Liu, R. B.

    2016-10-01

    High-quality Tin doped Cadmium Sulfide (CdS) comb-like nanostructures have been synthesized by a simple in situ seeding chemical vapor deposition process. The color-tunable dual emission of these comb-like nanostructures is demonstrated by changing the excitation power intensity. In fact, the color-tunable emission is in principal due to the variation of the dual emission intensity, which is proven by photoluminescence spectra and real color photoluminescence charge-coupled device images. Especially for different parts in the nano comb, the emission color can be varied even under the same pumping power. This is mainly due to the difference in local structure. By comparison, the color variation was not observed in pure CdS multi-branched nanostructures. The lifetime results demonstrate that the green emission originate from the recombination of free excitons. The origin of red emission is from the recombination of the dopant-induced intrinsic or extrinsic defect states. These findings provide potential applications of laser assisted anti-counterfeit label and micro-size monitors.

  16. The selection of flying roller as an effort to increase the power of scooter-matic as the main power of centrifugal pump for fire fighter motor cycle

    Science.gov (United States)

    Hadi Sutrisno, Himawan

    2018-03-01

    In densely populated settlements, fires often occur and cause losses. In some instances, the process of the occurrence of fires takes place so quickly that to reduce and avoid the occurrence of a fire disaster effort is required in accordance with the existing environmental condition. Fire fighter motorcycle by using motorcycle scooter-matic is considered suitable as one alternative to combating fire hazard in densely populated residential settlements. The use of motorcycle engines as the driving force of the pump often leads to unstable and not optimum power. Thus, the water spray on the centrifugal pump also becomes not maximum. To increase the engine power at scooter-matic engine idle rotation (700-2000 rpm), then the flying roller replacement with certain mass weight becomes an option. By selecting a 10 to 14 gram flying roller mass, the power analysis using a dynotest engine produces several variations. Of the calculation, the mass of a 14 gram flying roller provides a significant increase in motor power on the upper rotation. Meanwhile, on the lower power rotation using a flying roller with a mass of 10 grams provides an increase in power compared to a standard flying roller on a scooter matic motor engine. As a reference to the use of scooter-matic motor power as the pump power, the result of use of the flying roller with a mass of 10 grams becomes the best option.

  17. Sodium pumping: pump problems

    International Nuclear Information System (INIS)

    Guer, M.; Guiton, P.

    Information on sodium pumps for LMFBR type reactors is presented concerning ring pump design, pool reactor pump design, secondary pumps, sodium bearings, swivel joints of the oscillating annulus, and thermal shock loads

  18. A metal foil vacuum pump for the fuel cycle of fusion power plants

    Energy Technology Data Exchange (ETDEWEB)

    Giegerich, Thomas; Day, Christian [Karlsruher Institut fuer Technologie (KIT), Institut fuer Technische Physik (ITEP), Eggenstein-Leopoldshafen (Germany)

    2013-07-01

    At KIT Karlsruhe, a new vacuum pump based on the physical principle of superpermeation is under development. This metal foil pump shall be used in the fuel cycle of a fusion reactors and forms the central part of the Direct Internal Recycling concept (DIR), a shortcut between the machine exhaust pumping and the fuelling systems. This vacuum pump simplifies the fusion fuel cycle dramatically and provides two major functions simultaneously: A separating and pumping function. It separates a hydrogen isotopes and impurities containing gas flow sharply into a pure H-isotopes flow that is also being compressed. The remaining impurity enriched gas flow passes the pump without being pumped. For superpermeability, a source of molecular hydrogen is needed. This can be achieved by different methods inside of the pump. Most important are plasma based or hot rod (atomizer) based methods. In this talk, the physical working principle and the modeling of this pump is presented and the development towards a technical separator pumping module is shown up.

  19. Optimal Operation and Value Evaluation of Pumped Storage Power Plants Considering Spot Market Trading and Uncertainty of Bilateral Demand

    Science.gov (United States)

    Takahashi, Kenta; Hara, Ryoichi; Kita, Hiroyuki; Hasegawa, Jun

    In recent years, as the deregulation in electric power industry has advanced in many countries, a spot market trading of electricity has been done. Generation companies are allowed to purchase the electricity through the electric power market and supply electric power for their bilateral customers. Under this circumstance, it is important for the generation companies to procure the required electricity with cheaper cost to increase their profit. The market price is volatile since it is determined by bidding between buyer and seller. The pumped storage power plant, one of the storage facilities is promising against such volatile market price since it can produce a profit by purchasing electricity with lower-price and selling it with higher-price. This paper discusses the optimal operation of the pumped storage power plants considering bidding strategy to an uncertain spot market. The volatilities in market price and demand are represented by the Vasicek model in our estimation. This paper also discusses the allocation of operational reserve to the pumped storage power plant.

  20. Modeling time to recovery and initiating event frequency for loss of off-site power incidents at nuclear power plants

    International Nuclear Information System (INIS)

    Iman, R.L.; Hora, S.C.

    1988-01-01

    Industry data representing the time to recovery of loss of off-site power at nuclear power plants for 63 incidents caused by plant-centered losses, grid losses, or severe weather losses are fit with exponential, lognormal, gamma and Weibull probability models. A Bayesian analysis is used to compare the adequacy of each of these models and to provide uncertainty bounds on each of the fitted models. A composite model that combines the probability models fitted to each of the three sources of data is presented as a method for predicting the time to recovery of loss of off-site power. The composite model is very general and can be made site specific by making adjustments on the models used, such as might occur due to the type of switchyard configuration or type of grid, and by adjusting the weights on the individual models, such as might occur with weather conditions existing at a particular plant. Adjustments in the composite model are shown for different models used for switchyard configuration and for different weights due to weather. Bayesian approaches are also presented for modeling the frequency of initiating events leading to loss of off-site power. One Bayesian model assumes that all plants share a common incidence rate for loss of off-site power, while the other Bayesian approach models the incidence rate for each plant relative to the incidence rates of all other plants. Combining the Bayesian models for the frequency of the initiating events with the composite Bayesian model for recovery provides the necessary vehicle for a complete model that incorporates uncertainty into a probabilistic risk assessment

  1. Multi-Fresnel lenses pumping approach for improving high-power Nd:YAG solar laser beam quality.

    Science.gov (United States)

    Liang, Dawei; Almeida, Joana

    2013-07-20

    To significantly improve the present-day high-power solar laser beam quality, a three-stage multi-Fresnel lenses approach is proposed for side-pumping either a Nd:YAG single-crystal or a core-doped Sm(3+)Nd:YAG ceramic rod. Optimum pumping and laser beam parameters are found through ZEMAX and LASCAD numerical analysis. The proposed scheme offers a uniform absorption profile along the rod. 167 W laser power can be achieved, corresponding to 29.3 W/m(2) collection efficiency. High brightness figure of merit of 8.34 W is expected for the core-doped rod within a convex-concave resonator, which is 1300 times higher than that of the most-recent high-power solar laser.

  2. Power consumption analysis of pump station control systems based on fuzzy controllers with discrete terms in iThink software

    Science.gov (United States)

    Muravyova, E. A.; Bondarev, A. V.; Sharipov, M. I.; Galiaskarova, G. R.; Kubryak, A. I.

    2018-03-01

    In this article, power consumption of pumping station control systems is discussed. To study the issue, two simulation models of oil level control in the iThink software have been developed, using a frequency converter only and using a frequency converter and a fuzzy controller. A simulation of the oil-level control was carried out in a graphic form, and plots of pumps power consumption were obtained. Based on the initial and obtained data, the efficiency of the considered control systems has been compared, and also the power consumption of the systems was shown graphically using a frequency converter only and using a frequency converter and a fuzzy controller. The models analysis has shown that it is more economical and safe to use a control circuit with a frequency converter and a fuzzy controller.

  3. A contribution to water hammer analysis in pumped-storage power plants; Ein Beitrag zur Druckstossberechnung von Pumpspeicheranlagen

    Energy Technology Data Exchange (ETDEWEB)

    Hoeller, Stefan; Jaberg, Helmut [TU Graz (Austria). Inst. fuer Hydraulische Stroemungsmaschinen

    2013-03-01

    The operation of pumped-storage power plants induces a highly transient fluid flow in the penstock of high head water power plants. In the planning phase a reliable prediction of the transient plant behaviour in unsteady load cases such as e.g. machine start or switching load cases is necessary. Numerical simulation methods provide a tool to calculate the occurring pressure pulsations or mass oscillations as well as for the optimization of the transient behaviour. Commercial software-packages for water hammer simulations usually do not provide numerical models for a realistic calculation of complex components like surge tanks, turbines or emergency closing valves in a high head water power plant. But especially these components need to be modelled correctly in order to get a significant and reliable solution. This article shows the practice ofthe development of a custom-designed numerical model on the example of a pump turbine. (orig.)

  4. Effects of a power and photon energy of incident light on near-field etching properties

    Science.gov (United States)

    Yatsui, T.; Saito, H.; Nishioka, K.; Leuschel, B.; Soppera, O.; Nobusada, K.

    2017-12-01

    We developed a near-field etching technique for realizing an ultra-flat surfaces of various materials and structures. To elucidate the near-field etching properties, we have investigated the effects of power and the photon energy of the incident light. First, we established theoretically that an optical near-field with photon energy lower than the absorption edge of the molecules can induce molecular vibrations. We used nanodiamonds to study the power dependence of the near-field etching properties. From the topological changes of the nanodiamonds, we confirmed the linear-dependence of the etching volume with the incident power. Furthermore, we studied the photon energy dependence using TiO2 nanostriped structures, which revealed that a lower photon energy results in a lower etching rate.

  5. WiFi Data Acquisition System Applied to a Photovoltaic Powered Water Pumping Plant

    Directory of Open Access Journals (Sweden)

    Sandro César Silveira JUCÁ

    2015-02-01

    Full Text Available The present paper describes how to design and assemble a low cost online monitoring and WiFi data acquisition system using free software applied to microgeneration based on renewable energy sources. The development of online monitoring systems for microgeneration plants based on renewable energy sources is becoming more important, considering that monitoring and data acquisition systems are applicable in stages of the microgeneration process. The monitoring and data acquisition WiFi system was developed using an embedded WiFi modem (Wifly coupled to a microcontrolled board based on the free tool SanUSB. This monitoring system was applied to a photovoltaic (PV water pumping plant without batteries, so as the control system and the wireless communication with the online server, which is also autonomous and powered by PV panel. The free software for online monitoring and WiFi data acquisition allows the analysis of stored data and charts through mobile devices as notebooks, tablets and smartphones.

  6. Experimental Research and Control Strategy of Pumped Storage Units Dispatching in the Taiwan Power System Considering Transmission Line Limits

    Directory of Open Access Journals (Sweden)

    Ming-Tse Kuo

    2013-07-01

    Full Text Available Taiwan’s power system is isolated and not supported by other interconnected systems. Consequently, the system frequency immediately reflects changes in the system loads. Pumped storage units are crucial for controlling power frequency. These units provide main or auxiliary capacities, reducing the allocation of frequency-regulating reserve (FRR and further reducing generation costs in system operations. Taiwan’s Longmen Nuclear Power Plant is set to be converted for commercial operations, which will significantly alter the spinning reserves in the power system. Thus, this study proposes a safe and economic pumped storage unit dispatch strategy. This strategy is used to determine the optimal FRR capacity and 1-min recovery frequency in a generator failure occurrence at the Longmen Power Plant. In addition, this study considered transmission capacity constraints and conducted power flow analysis of the power systems in Northern, Central, and Southern Taiwan. The results indicated that, in the event of a failure at Longmen Power Plant, the proposed strategy can not only recover the system frequency to an acceptable range to prevent underfrequency load-shedding, but can also mitigate transmission line overloading.

  7. High-power pulsed and CW diode-pumped mode-locked Nd:YAG lasers

    Science.gov (United States)

    Marshall, Larry R.; Hays, A. D.; Kaz, Alex; Kasinski, Jeff; Burnham, R. L.

    1991-01-01

    The operation of both pulsed and CW diode-pumped mode-locked Nd:YAG lasers are presented. The pulsed laser produced 1.0 mJ with pulsewidths of 90 psec at 20 Hz. The CW pumped laser produced 6 W output at 1.064 microns and 3 W output at 532 nm.

  8. Development of high-power optically-pumped far-infrared lasers for plasma diagnostics

    International Nuclear Information System (INIS)

    Yamanaka, Masanobu; Yamanaka, Tatsuhiko; Mitsuishi, Akiyoshi; Fujita, Shigeru; Tsunawaki, Yoshiaki.

    1982-01-01

    The activities for developing an over 0.1-MW optically-pumped 385-μm D 2 O laser and a CW optically-pumped 382.9-μm CH 2 F 2 laser as local oscillator for measurement of ion temperature in Tokamaks are described. (author)

  9. Operation diagnostics of the reactor coolant pumps in the Jaslovske Bohunice nuclear power plant, CSSR

    International Nuclear Information System (INIS)

    Bahna, J.; Jaros, I.; Oksa, G.

    1990-01-01

    The state of the art of the materials basis, the diagnostics methods used, organization of data collection and processing, and some results of routine and specific investigations concerned with diagnosis of the reactor coolant pump in the Jaslovske Bohunice NPP V-1 are presented. Some information is given about the reactor coolant pump monitor developed in the VUJE. (author)

  10. High-power diode-side-pumped rod Tm:YAG laser at 2.07 μm.

    Science.gov (United States)

    Wang, Caili; Niu, Yanxiong; Du, Shifeng; Zhang, Chao; Wang, Zhichao; Li, Fangqin; Xu, Jialin; Bo, Yong; Peng, Qinjun; Cui, Dafu; Zhang, Jingyuan; Xu, Zuyan

    2013-11-01

    We report a high-power diode-laser (LD) side-pumped rod Tm:YAG laser of around 2 μm. The laser was water-cooled at 8°C and yielded a maximum output power of 267 W at 2.07 μm, which is the highest output power for an all solid-state cw 2.07 μm rod Tm:YAG laser reported as far as we know. The corresponding optical-optical conversion efficiency was 20.7%, and the slope efficiency was about 29.8%, respectively.

  11. Two-Step Multi-Physics Analysis of an Annular Linear Induction Pump for Fission Power Systems

    Science.gov (United States)

    Geng, Steven M.; Reid, Terry V.

    2016-01-01

    One of the key technologies associated with fission power systems (FPS) is the annular linear induction pump (ALIP). ALIPs are used to circulate liquid-metal fluid for transporting thermal energy from the nuclear reactor to the power conversion device. ALIPs designed and built to date for FPS project applications have not performed up to expectations. A unique, two-step approach was taken toward the multi-physics examination of an ALIP using ANSYS Maxwell 3D and Fluent. This multi-physics approach was developed so that engineers could investigate design variations that might improve pump performance. Of interest was to determine if simple geometric modifications could be made to the ALIP components with the goal of increasing the Lorentz forces acting on the liquid-metal fluid, which in turn would increase pumping capacity. The multi-physics model first calculates the Lorentz forces acting on the liquid metal fluid in the ALIP annulus. These forces are then used in a computational fluid dynamics simulation as (a) internal boundary conditions and (b) source functions in the momentum equations within the Navier-Stokes equations. The end result of the two-step analysis is a predicted pump pressure rise that can be compared with experimental data.

  12. Solar Pumping : The Basics

    OpenAIRE

    World Bank Group

    2018-01-01

    Solar photovoltaic water pumping (SWP) uses energy from solar photovoltaic (PV) panels to power an electric water pump. The entire process, from sunlight to stored energy, is elegant and simple. Over last seven years, the technology and price of solar pumping have evolved dramatically and hence the opportunities it presents. Solar pumping is most competitive in regions with high solar inso...

  13. Modern methods of high-pressure fuel pump common rail power system diagnostics

    Directory of Open Access Journals (Sweden)

    Kyshchun В.

    2016-08-01

    Full Text Available We've considered high pressure fuel pumps design features and equipment for their diagnosis. It was noted that the reliability of the fuel elements Common Rail system primarily provide precision parts of the fuel equipment. As a consequence, the aim of study was comparative analysis and laborious of modern methods of the high pressure fuel pump diagnosing. In particular, the definition of a technical condition of the fuel pump was carried out using a special stand and by measuring the fuel pressure and duty cycle of the pressure regulator signal. As an object of our research we've chosen Bosch № 0445010008 fuel pump (from Mercedes Benz E320cdi in which the plunger pairs were changed alternately with different technical conditions. Preliminary fuel pump parameters were determined by hydraulic testing. Based on conducted experiments we've found out that fuel pressure measurement change method and the duty cycle of the pressure regulator signal at the starting and full load modes less laborious compared to the definition of a technical condition of the pump on the stand. The results of both methods of diagnosing confirmed identity of the fuel pumps.

  14. Investigation of thermal behaviour, pressure drop, and pumping power in a Cu nanofluid-filled solar flat-plate collector

    Directory of Open Access Journals (Sweden)

    Shamshirgaran S. Reza

    2017-01-01

    Full Text Available The evaluations of the performance of solar flat-plate collectors are reported in the literature. A computer program developed by MATLAB has been applied for modelling the performance of a solar collector under steady state laminar conditions. Results demonstrate that Cu-water nanofluid would be capable of boosting the thermal efficiency of the collector by 2.4% at 4% volume concentration in the case of using Cunanofluid instead of just water as the working fluid. It is noteworthy that, dispersing the nanoparticles into the water results in a higher pressure drop and, therefore, a higher power consumption for pumping the nanofluid within the collector. It has been estimated for the collector understudy, that the increase in the pressure drop and pumping power to be around 30%.

  15. A power management system for energy harvesting and wireless sensor networks application based on a novel charge pump circuit

    Science.gov (United States)

    Aloulou, R.; De Peslouan, P.-O. Lucas; Mnif, H.; Alicalapa, F.; Luk, J. D. Lan Sun; Loulou, M.

    2016-05-01

    Energy Harvesting circuits are developed as an alternative solution to supply energy to autonomous sensor nodes in Wireless Sensor Networks. In this context, this paper presents a micro-power management system for multi energy sources based on a novel design of charge pump circuit to allow the total autonomy of self-powered sensors. This work proposes a low-voltage and high performance charge pump (CP) suitable for implementation in standard complementary metal oxide semiconductor (CMOS) technologies. The CP design was implemented using Cadence Virtuoso with AMS 0.35μm CMOS technology parameters. Its active area is 0.112 mm2. Consistent results were obtained between the measured findings of the chip testing and the simulation results. The circuit can operate with an 800 mV supply and generate a boosted output voltage of 2.835 V with 1 MHz as frequency.

  16. 885-nm laser diode array pumped ceramic Nd:YAG master oscillator power amplifier system

    Science.gov (United States)

    Yu, Anthony W.; Li, Steven X.; Stephen, Mark A.; Seas, Antonios; Troupaki, Elisavet; Vasilyev, Aleksey; Conley, Heather; Filemyr, Tim; Kirchner, Cynthia; Rosanova, Alberto

    2010-04-01

    The objective of this effort is to develop more reliable, higher efficiency diode pumped Nd:YAG laser systems for space applications by leveraging technology investments from the DoD and other commercial industries. Our goal is to design, build, test and demonstrate the effectiveness of combining 885 nm laser pump diodes and the use of ceramic Nd:YAG for future flight missions. The significant reduction in thermal loading on the gain medium by the use of 885 nm pump lasers will improve system efficiency.

  17. Potential association between the recent increase in campylobacteriosis incidence in the Netherlands and proton-pump inhibitor use - an ecological study.

    Science.gov (United States)

    Bouwknegt, M; van Pelt, W; Kubbinga, M E; Weda, M; Havelaar, A H

    2014-08-14

    The Netherlands saw an unexplained increase in campylobacteriosis incidence between 2003 and 2011, following a period of continuous decrease. We conducted an ecological study and found a statistical association between campylobacteriosis incidence and the annual number of prescriptions for proton pump inhibitors (PPIs), controlling for the patient's age, fresh and frozen chicken purchases (with or without correction for campylobacter prevalence in fresh poultry meat). The effect of PPIs was larger in the young than in the elderly. However, the counterfactual population-attributable fraction for PPIs was largest for the elderly (ca 45% in 2011) and increased at population level from 8% in 2004 to 27% in 2011. Using the regression model and updated covariate values, we predicted a trend break for 2012, largely due to a decreased number of PPI prescriptions, that was subsequently confirmed by surveillance data. Although causality was not shown, the biological mechanism, age effect and trend-break prediction suggest a substantial impact of PPI use on campylobacteriosis incidence in the Netherlands. We chose the ecological study design to pilot whether it is worthwhile to further pursue the effect of PPI on campylobacteriosis and other gastrointestinal pathogens in prospective cohort studies. We now provide strong arguments to do so.

  18. Gain measurement in a CW medium-power diode pumped Nd:YAG laser amplifier by ASE analysis

    International Nuclear Information System (INIS)

    Razzaghi, D; Hajiesmaeilbaigi, F; Ruzbehani, M

    2014-01-01

    Using the relation between amplified spontaneous emission intensity and gain, a set of formulas is derived for gain evaluation by comparing fluorescence yield in two different lengths of the active medium. Experimental measurements are carried out and gain is calculated by solving the derived formula. For comparison, measurements are also carried out using the probe beam method, which shows good agreement between the two methods in a typical CW medium-power diode pumped Nd:YAG amplifier. (paper)

  19. Air temperature determination inside residual heat removal pump room of Angra-1 nuclear power plant after a design basic accident

    International Nuclear Information System (INIS)

    Siniscalchi, Marcio Rezende

    2005-01-01

    This work develops heat transfer theoretical models for determination of air temperature inside the Residual Heat Removal Pump Room of Angra 1 Nuclear Power Plant after a Design Basis Accident without forced ventilation. Two models had been developed. The differential equations are solved by analytical methods. A software in FORTRAN language are developed for simulations of temperature inside rooms for different geometries and materials. (author)

  20. Trend evaluation of incident and failure data from japanese nuclear power plants

    International Nuclear Information System (INIS)

    Kondo, S.; Hada, M.; Mikami, Y.

    1990-01-01

    Major incident and failure at nuclear power plants in Japan have to be reported to the regulatory agency i.e. Ministry of International Trade and Industry (MITI). Nuclear Power Safety Information Research Center (NUSIRC) has established a system for the collection, classification and analysis of this report under the contract to MITI. In this paper, the authors give several results of trend analyses of the incidents related to electric and instrumentation and control (I and C) systems reported, especially, the trend of the contribution of troubles in I and C system to the operation states, analysis of dominant contributors to the failure of I and C systems. Also, the relations of failure frequency of these systems with the plant age and effect of periodic inspections of it are discussed in some detail

  1. Nuclear power plant operating experiences from the IAEA / Nea incident reporting system 2002-2005

    International Nuclear Information System (INIS)

    2006-01-01

    The Incident Reporting System (IRS) is an essential element of the international operating experience feedback system for nuclear power plants. The IRS is jointly operated and managed by the Nuclear Energy Agency (NEA), a semi-autonomous body within the Organisation for Economic Co-operation and Development (OECD), and the International Atomic Energy Agency (IAEA), a specialized agency within the United Nations System. (author)

  2. Soft energy/seawater pumped-storage power plant in Okinawa; Sofuto energy/Okinawa kaisui yosui hatsuden

    Energy Technology Data Exchange (ETDEWEB)

    Tsutsui, S. [Univ. of Ryukyus, Okinawa (Japan). Faculty of Engineering

    1995-11-15

    A demonstration seawater pumped-storage power plant which is the first one in the world is under construction in the northern area of Okinawa. The pumped-storage power generation is an electricity recycling system in which the surplus electricity during the night is utilized to pump up water to an upper reservoir to discharge water for power generation during the daytime when demand for electricity increases. It is scheduled that main civil engineering structures are constructed during the year of 1995 to be subjected to trial operation in the following year. Countermeasures to be taken for natural environmental protection during the plant construction are introduced. Countermeasures are devised for environment assessment, muddy water treatment, and prevention of seawater at the upper reservoir. Salinity in the atmosphere is to be measured during the construction work and the demonstration test to evaluate the effects of scattering of salt from the upper reservoir into the atmosphere on the vegetation in the peripheral area and the salt-resistance of vegetation. Sufficient consideration is given to the protection of the existing vegetation and coral, and to the protection of small living creatures. Participants in the construction work are requested to report, for the purpose of taking proper steps, sites, peripheral conditions, and others when precious animals are found. 9 figs., 1 tab.

  3. Investigations on the potential of a low power diode pumped Er:YAG laser system for oral surgery

    Science.gov (United States)

    Stock, Karl; Wurm, Holger; Hausladen, Florian; Wagner, Sophia; Hibst, Raimund

    2015-02-01

    Flash lamp pumped Er:YAG-lasers are used in clinical practice for dental applications successfully. As an alternative, several diode pumped Er:YAG laser systems (Pantec Engineering AG) become available, with mean laser power of 2W, 15W, and 30W. The aim of the presented study is to investigate the potential of the 2W Er:YAG laser system for oral surgery. At first an appropriate experimental set-up was realized with a beam delivery and both, a focusing unit for non-contact tissue cutting and a fiber tip for tissue cutting in contact mode. In order to produce reproducible cuts, the samples (porcine gingiva) were moved by a computer controlled translation stage. On the fresh samples cutting depth and quality were determined by light microscopy. Afterwards histological sections were prepared and microscopically analyzed regarding cutting depth and thermal damage zone. The experiments show that low laser power ≤ 2W is sufficient to perform efficient oral soft tissue cutting with cut depth up to 2mm (sample movement 2mm/s). The width of the thermal damage zone can be controlled by the irradiation parameters within a range of about 50μm to 110μm. In general, thermal injury is more pronounced using fiber tips in contact mode compared to the focused laser beam. In conclusion the results reveal that even the low power diode pumped Er:YAG laser is an appropriate tool for oral surgery.

  4. A Takagi-Sugeno fuzzy power-distribution method for a prototypical advanced reactor considering pump degradation

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Yue [Institute of Nuclear and New Energy Technology, Tsinghua University, Collaborative Innovation Center of Advanced Nuclear Energy Technology, Key Laboratory of Advanced Reactor Engineering and Safety of Ministry of Education, Beijing (China); Coble, Jamie [Dept. of Nuclear Engineering, University of Tennessee, Knoxville (United States)

    2017-08-15

    Advanced reactor designs often feature longer operating cycles between refueling and new concepts of operation beyond traditional baseload electricity production. Owing to this increased complexity, traditional proportional–integral control may not be sufficient across all potential operating regimes. The prototypical advanced reactor (PAR) design features two independent reactor modules, each connected to a single dedicated steam generator that feeds a common balance of plant for electricity generation and process heat applications. In the current research, the PAR is expected to operate in a load-following manner to produce electricity to meet grid demand over a 24-hour period. Over the operational lifetime of the PAR system, primary and intermediate sodium pumps are expected to degrade in performance. The independent operation of the two reactor modules in the PAR may allow the system to continue operating under degraded pump performance by shifting the power production between reactor modules in order to meet overall load demands. This paper proposes a Takagi–Sugeno (T–S) fuzzy logic-based power distribution system. Two T–S fuzzy power distribution controllers have been designed and tested. Simulation shows that the devised T–S fuzzy controllers provide improved performance over traditional controls during daily load-following operation under different levels of pump degradation.

  5. A Takagi–Sugeno fuzzy power-distribution method for a prototypical advanced reactor considering pump degradation

    Directory of Open Access Journals (Sweden)

    Yue Yuan

    2017-08-01

    Full Text Available Advanced reactor designs often feature longer operating cycles between refueling and new concepts of operation beyond traditional baseload electricity production. Owing to this increased complexity, traditional proportional–integral control may not be sufficient across all potential operating regimes. The prototypical advanced reactor (PAR design features two independent reactor modules, each connected to a single dedicated steam generator that feeds a common balance of plant for electricity generation and process heat applications. In the current research, the PAR is expected to operate in a load-following manner to produce electricity to meet grid demand over a 24-hour period. Over the operational lifetime of the PAR system, primary and intermediate sodium pumps are expected to degrade in performance. The independent operation of the two reactor modules in the PAR may allow the system to continue operating under degraded pump performance by shifting the power production between reactor modules in order to meet overall load demands. This paper proposes a Takagi–Sugeno (T–S fuzzy logic-based power distribution system. Two T–S fuzzy power distribution controllers have been designed and tested. Simulation shows that the devised T–S fuzzy controllers provide improved performance over traditional controls during daily load-following operation under different levels of pump degradation.

  6. Mechanical design and modeling of a single-piston pump for the novel power take-off system of a wave energy converter

    NARCIS (Netherlands)

    Vakis, Antonis I.; Anagnostopoulos, John S.

    2016-01-01

    A multi-pump, multi-piston power take-off wave energy converter ((MPPTO)-P-2 WEC) has been proposed for use with a novel renewable energy harvester termed the Ocean Grazer. The (MPPTO)-P-2 WEC utilizes wave motion to pump via buoys connected to pistons working fluid within a closed circuit and store

  7. Feasibility study of a wind powered water pumping system for rural Ethiopia

    Directory of Open Access Journals (Sweden)

    Misrak Girma

    2015-12-01

    Full Text Available Water is the primary source of life for mankind and one of the most basic necessities for rural development. Most of the rural areas of Ethiopia do not have access to potable water. Is some regions of the country access potable water is available through use of manual pumping and Diesel engine. In this research, wind water pump is designed to supply drinking water for three selected rural locations in Ethiopia. The design results show that a 5.7 m diameter windmill is required for pumping water from borehole through a total head of 75, 66 and 44 m for Siyadberand Wayu, Adami Tulu and East Enderta to meet the daily water demand of 10, 12 and 15 m3, respectively. The simulation for performance of the selected wind pump is conducted using MATLAB software and the result showed that monthly water discharge is proportional to the monthly average wind speed at the peak monthly discharge of 685 m3 in June, 888 m3 in May and 1203 m3 in March for Siyadberand Wayu, Adami Tulu and East Enderta sites, respectively. An economic comparison is conducted, using life cycle cost analysis, for wind mill and Diesel water pumping systems and the results show that windmill water pumping systems are more feasible than Diesel based systems.

  8. Magnetic Pumping as a Source of Particle Heating and Power-law Distributions in the Solar Wind

    Science.gov (United States)

    Lichko, E.; Egedal, J.; Daughton, W.; Kasper, J.

    2017-12-01

    Based on the rate of expansion of the solar wind, the plasma should cool rapidly as a function of distance to the Sun. Observations show this is not the case. In this work, a magnetic pumping model is developed as a possible explanation for the heating and the generation of power-law distribution functions observed in the solar wind plasma. Most previous studies in this area focus on the role that the dissipation of turbulent energy on microscopic kinetic scales plays in the overall heating of the plasma. However, with magnetic pumping, particles are energized by the largest-scale turbulent fluctuations, thus bypassing the energy cascade. In contrast to other models, we include the pressure anisotropy term, providing a channel for the large-scale fluctuations to heat the plasma directly. A complete set of coupled differential equations describing the evolution, and energization, of the distribution function are derived, as well as an approximate closed-form solution. Numerical simulations using the VPIC kinetic code are applied to verify the model’s analytical predictions. The results of the model for realistic solar wind scenario are computed, where thermal streaming of particles are important for generating a phase shift between the magnetic perturbations and the pressure anisotropy. In turn, averaged over a pump cycle, the phase shift permits mechanical work to be converted directly to heat in the plasma. The results of this scenario show that magnetic pumping may account for a significant portion of the solar wind energization.

  9. Flue gas recovery system for natural gas combined heat and power plant with distributed peak-shaving heat pumps

    International Nuclear Information System (INIS)

    Zhao, Xiling; Fu, Lin; Wang, Xiaoyin; Sun, Tao; Wang, Jingyi; Zhang, Shigang

    2017-01-01

    Highlights: • A flue gas recovery system with distributed peak-shaving heat pumps is proposed. • The system can improve network transmission and distribution capacity. • The system is advantageous in energy saving, emission reduction and economic benefits. - Abstract: District heating systems use distributed heat pump peak-shaving technology to adjust heat in secondary networks of substations. This technology simultaneously adjusts the heat of the secondary network and reduces the return-water temperature of the primary network by using the heat pump principle. When optimized, low temperature return-water is able to recycle more waste heat, thereby further improving the heating efficiency of the system. This paper introduces a flue gas recovery system for a natural gas combined heat and power plant with distributed peak-shaving heat pumps. A pilot system comprising a set of two 9F gas-steam combined cycle-back pressure heating units was used to analyse the system configuration and key parameters. The proposed system improved the network transmission and distribution capacity, increased heating capacity, and reduced heating energy consumption without compromising heating safety issues. As such, the proposed system is advantageous in terms of energy saving, emission reduction, and economic benefits.

  10. Survey of reportable incidents in nuclear power plants of the Federal Republic of Germany in the year 1991

    International Nuclear Information System (INIS)

    1992-01-01

    In 1991, there were 249 reportable nuclear power plant incidents in Germany (old and new federal Laender). The report comprehensively lists all these incidents. There was no release of radioactivity exceeding the maximum permissible limits, and there were no effects on man or the environment. There were no incidents of reporting category S (Urgent notification), and ten belonging to category E (immediate notification). The six incidents reported in the first half of 1991 from nuclear power plants in the new federal Laender all belonged to category AE 3, which is the lowest. (orig./DG) [de

  11. Cancer incidence in northern Sweden before and after the Chernobyl nuclear power plant accident.

    Science.gov (United States)

    Alinaghizadeh, Hassan; Tondel, Martin; Walinder, Robert

    2014-08-01

    Sweden received about 5 % of the total release of (137)Cs from the Chernobyl nuclear power plant accident in 1986. The distribution of the fallout mainly affected northern Sweden, where some parts of the population could have received an estimated annual effective dose of 1-2 mSv per year. It is disputed whether an increased incidence of cancer can be detected in epidemiological studies after the Chernobyl nuclear power plant accident outside the former Union of Soviet Socialist Republics. In the present paper, a possible exposure-response pattern between deposition of (137)Cs and cancer incidence after the Chernobyl nuclear power plant accident was investigated in the nine northernmost counties of Sweden (2.2 million inhabitants in 1986). The activity of (137)Cs from the fallout maps at 1986 was used as a proxy for the received dose of ionizing radiation. Diagnoses of cancer (ICD-7 code 140-209) from 1980 to 2009 were received from the Swedish Cancer Registry (273,222 cases). Age-adjusted incidence rate ratios, stratified by gender, were calculated with Poisson regression in two closed cohorts of the population in the nine counties 1980 and 1986, respectively. The follow-up periods were 1980-1985 and 1986-2009, respectively. The average surface-weighted deposition of (137)Cs at three geographical levels; county (n = 9), municipality (n = 95) and parish level (n = 612) was applied for the two cohorts to study the pre- and the post-Chernobyl periods separately. To analyze time trends, the age-standardized total cancer incidence was calculated for the general Swedish population and the population in the nine counties. Joinpoint regression was used to compare the average annual percent change in the general population and the study population within each gender. No obvious exposure-response pattern was seen in the age-adjusted total cancer incidence rate ratios. A spurious association between fallout and cancer incidence was present, where areas with the

  12. Cancer incidence in northern Sweden before and after the Chernobyl nuclear power plant accident

    International Nuclear Information System (INIS)

    Alinaghizadeh, Hassan; Tondel, Martin; Walinder, Robert

    2014-01-01

    Sweden received about 5 % of the total release of "1"3"7Cs from the Chernobyl nuclear power plant accident in 1986. The distribution of the fallout mainly affected northern Sweden, where some parts of the population could have received an estimated annual effective dose of 1-2 mSv per year. It is disputed whether an increased incidence of cancer can be detected in epidemiological studies after the Chernobyl nuclear power plant accident outside the former Union of Soviet Socialist Republics. In the present paper, a possible exposure-response pattern between deposition of "1"3"7Cs and cancer incidence after the Chernobyl nuclear power plant accident was investigated in the nine northernmost counties of Sweden (2.2 million inhabitants in 1986). The activity of "1"3"7Cs from the fallout maps at 1986 was used as a proxy for the received dose of ionizing radiation. Diagnoses of cancer (ICD-7 code 140-209) from 1980 to 2009 were received from the Swedish Cancer Registry (273,222 cases). Age-adjusted incidence rate ratios, stratified by gender, were calculated with Poisson regression in two closed cohorts of the population in the nine counties 1980 and 1986, respectively. The follow-up periods were 1980-1985 and 1986-2009, respectively. The average surface-weighted deposition of "1"3"7Cs at three geographical levels; county (n = 9), municipality (n = 95) and parish level (n = 612) was applied for the two cohorts to study the pre- and the post-Chernobyl periods separately. To analyze time trends, the age-standardized total cancer incidence was calculated for the general Swedish population and the population in the nine counties. Joinpoint regression was used to compare the average annual percent change in the general population and the study population within each gender. No obvious exposure-response pattern was seen in the age-adjusted total cancer incidence rate ratios. A spurious association between fallout and cancer incidence was present, where areas with the lowest

  13. Cancer incidence in northern Sweden before and after the Chernobyl nuclear power plant accident

    Energy Technology Data Exchange (ETDEWEB)

    Alinaghizadeh, Hassan; Tondel, Martin; Walinder, Robert [Uppsala University, Occupational and Environmental Medicine, Department of Medical Sciences, Uppsala (Sweden)

    2014-08-15

    Sweden received about 5 % of the total release of {sup 137}Cs from the Chernobyl nuclear power plant accident in 1986. The distribution of the fallout mainly affected northern Sweden, where some parts of the population could have received an estimated annual effective dose of 1-2 mSv per year. It is disputed whether an increased incidence of cancer can be detected in epidemiological studies after the Chernobyl nuclear power plant accident outside the former Union of Soviet Socialist Republics. In the present paper, a possible exposure-response pattern between deposition of {sup 137}Cs and cancer incidence after the Chernobyl nuclear power plant accident was investigated in the nine northernmost counties of Sweden (2.2 million inhabitants in 1986). The activity of {sup 137}Cs from the fallout maps at 1986 was used as a proxy for the received dose of ionizing radiation. Diagnoses of cancer (ICD-7 code 140-209) from 1980 to 2009 were received from the Swedish Cancer Registry (273,222 cases). Age-adjusted incidence rate ratios, stratified by gender, were calculated with Poisson regression in two closed cohorts of the population in the nine counties 1980 and 1986, respectively. The follow-up periods were 1980-1985 and 1986-2009, respectively. The average surface-weighted deposition of {sup 137}Cs at three geographical levels; county (n = 9), municipality (n = 95) and parish level (n = 612) was applied for the two cohorts to study the pre- and the post-Chernobyl periods separately. To analyze time trends, the age-standardized total cancer incidence was calculated for the general Swedish population and the population in the nine counties. Joinpoint regression was used to compare the average annual percent change in the general population and the study population within each gender. No obvious exposure-response pattern was seen in the age-adjusted total cancer incidence rate ratios. A spurious association between fallout and cancer incidence was present, where areas with

  14. Thermal characteristics of an end-pumped high-power ytterbium-sensitized erbium-doped fiber laser under natural convection.

    Science.gov (United States)

    Jeong, Y; Baek, S; Dupriez, P; Maran, J-N; Sahu, J K; Nilsson, J; Lee, B

    2008-11-24

    We investigate the thermal characteristics of a polymer-clad fiber laser under natural convection when it is strongly pumped up to the damage point of the fiber. For this, we utilize a temperature sensing technique based on a fiber Bragg grating sensor array. We have measured the longitudinal temperature distribution of a 2.4-m length ytterbium-sensitized erbium-doped fiber laser that was end-pumped at approximately 975 nm. The measured temperature distribution decreases exponentially, approximately, decaying away from the pump-launch end. We attribute this to the heat dissipation of absorbed pump power. The maximum temperature difference between the fiber ends was approximately 190 K at the maximum pump power of 60.8 W. From this, we estimate that the core temperature reached approximately 236 degrees C.

  15. Severity scale for incidents and accidents in French nuclear power plant

    International Nuclear Information System (INIS)

    Dupuis, M.C.; Guimbail, H.; Debes, M.; Roels, C.

    1988-10-01

    All countries operating nuclear power stations have developed systems for declaring and analyzing incidents occurring when the stations are in service. These systems, are inevitably extensive and complex, as the search for perfection in terms of operating safety leads not only to identification and analysis of incidents which are evidenced by their consequences, but also to identification of all those other incidents which have not had repercussions, but which nevertheless constitute precursor events for more serious situations. For example in France, a system based on safety significance criteria has been in service since the early 1980s, and is applied and operated by EDF and the safety authorities. While experts obtain maximum benefit from this system, public opinion and the relay points constituted by the media are somewhat at a loss, being unable to discriminate in the mass of non-hierarchized information which may come their way, between what is genuinely important and what is less important or even totally unimportant. For this reason, the CSSIN recommended examination of a severity scale, simple to understand and easy to use, which could be employed to classify all incidents and which could become, in due course, as familiar to all of us as the Richter seismic scale is today. We will now examine the composition of this scale, applied on an experimental basis by the Minister for Industry for a period of about one and a half years, as from 20th April 1988

  16. Pumped storage

    International Nuclear Information System (INIS)

    Strauss, P.L.

    1991-01-01

    The privately financed 1,000 MW Rocky Point Pumped Storage Project located in central Colorado, USA, will be one of the world's highest head, 2,350 feet reversible pump/turbine projects. The project will offer an economical supply of peaking power and spinning reserve power to Colorado and other southwestern states. This paper describes how the project will be made compatible with the environmental conditions in the project area and the type of terrestrial mitigation measures that are being proposed for those situations where the project impacts the environment, either temporarily or permanently

  17. On the application of nonhomogeneous Poisson process to the reliability analysis of service water pumps of nuclear power plants

    International Nuclear Information System (INIS)

    Cruz Saldanha, Pedro Luiz da.

    1995-12-01

    The purpose of this study is to evaluate the nonhomogeneous Poisson process as a model to rate of occurrence of failures when it is not constant, and the times between failures are not independent nor identically distributed. To this evaluation, an analyse of reliability of service water pumps of a typical nuclear power plant is made considering the model discussed in the last paragraph, as long as the pumps are effectively repairable components. Standard statistical techniques, such as maximum likelihood and linear regression, are applied to estimate parameters of nonhomogeneous Poisson process model. As a conclusion of the study, the nonhomogeneous Poisson process is adequate to model rate of occurrence of failures that are function of time, and can be used where the aging mechanisms are present in operation of repairable systems. (author). 72 refs., 45 figs., 21 tabs

  18. Cladding-pumped 70-kW-peak-power 2-ns-pulse Er-doped fiber amplifier

    Science.gov (United States)

    Khudyakov, M. M.; Bubnov, M. M.; Senatorov, A. K.; Lipatov, D. S.; Guryanov, A. N.; Rybaltovsky, A. A.; Butov, O. V.; Kotov, L. V.; Likhachev, M. E.

    2018-02-01

    An all-fiber pulsed erbium laser with pulse width of 2.4 ns working in a MOPA configuration has been created. Cladding pumped double clad erbium doped large mode area fiber was used in the final stage amplifier. Peculiarity of the current work is utilization of custom-made multimode diode wavelength stabilized at 981+/-0.5 nm - wavelength of maximum absorption by Er ions. It allowed us to shorten Er-doped fiber down to 1.7 m and keep a reasonably high pump-to signal conversion efficiency of 8.4%. The record output peak power for all-fiber amplifiers of 84 kW was achieved within 1555.9+/-0.15 nm spectral range.

  19. Damage of reactor recirculation pump of No.3 plant in Fukushima No.2 Nuclear Power Station, Tokyo Electric Power Co., Inc

    International Nuclear Information System (INIS)

    1990-01-01

    No.3 plant in Fukushima No.2 Nuclear Power Station is a BWR plant with the rated output of 1100 MW, and as for the damage of its reactor recirculation pump, the investigation of the cause and the examination of countermeasures are advanced by the special committee. It is presumed that the submerged bearing ring of this pump caused the fatigue fracture due to the insufficient penetration in the fillet-welded part. The ring broke into pieces, and the main disk of the impeller was broken by the wear due to the pieces. Further, the damage of washers and the falling-off of bolts occurred. The metallic particles generated by wear were about 30 kg, and it is presumed that several kg of them adhered to fuel. Hereafter, the investigation of the cause will be continued, and the countermeasures for preventing the recurrence are examined. On January 1, 1989, the vibration of the pump increased, and the alarm was issued. However, the operation was continued carefully. On January 6, the vibration increased again, and on January 7, the reactor was stopped. The third regular inspection was begun on the same day, and the damage of the pump was found. (K.I.)

  20. A novel static frequency converter based on multilevel cascaded H-bridge used for the startup of synchronous motor in pumped-storage power station

    Energy Technology Data Exchange (ETDEWEB)

    Wang Feng, E-mail: sjtuwfeng@hotmail.co [Key Lab of Control of Power Transmission and Transformation, Ministry of Education, Department of Electrical Engineering, Shanghai Jiaotong University, Minhang District, Shanghai 200240 (China); Jiang Jianguo, E-mail: jiang@sjtu.edu.c [Key Lab of Control of Power Transmission and Transformation, Ministry of Education, Department of Electrical Engineering, Shanghai Jiaotong University, Minhang District, Shanghai 200240 (China)

    2011-05-15

    Research highlights: {yields} A novel Static Frequency Converter (SFC) based on multilevel cascaded H-bridge (CHB) topology is proposed and used for the reversible pump-generating units in pumped-storage power station. {yields} The novel SFC based on CHB has compact configuration, low current harmonic distortion and fast speed response. {yields} Rotor position and Grid connection are realized successfully by the novel SFC. -- Abstract: A novel static frequency converter (SFC) is proposed and is used firstly to start the reversible pump-generating units in pumped-storage power station. Multilevel cascaded H-bridge (CHB) topology and Insulated Gate Bipolar Transistor (IGBT) are applied in the novel SFC. In comparison with the conventional SFC adopting load-commutated inverter (LCI) which is composed of silicon-controlled rectifier (SCR), the novel one has plenty of advantages such as compact configuration, low current harmonic distortion and fast speed response, and these advantages have been verified during 2-year operation at Xiang Hong Dian Pumped-storage power station in China. This application shows that the novel SFC greatly enhances the reliability and success rate of connecting to grid for starting up the pump-generating units. The principle, characteristic and performance of the novel SFC are described in this paper, and some key issues related to the startup of the units of the pumped-storage power station are also presented.

  1. Optimal Placement of A Heat Pump in An Integrated Power and Heat Energy System

    DEFF Research Database (Denmark)

    Klyapovskiy, Sergey; You, Shi; Bindner, Henrik W.

    2017-01-01

    With the present trend towards Smart Grids and Smart Energy Systems it is important to look for the opportunities for integrated development between different energy sectors, such as electricity, heating, gas and transportation. This paper investigates the problem of optimal placement of a heat...... pump – a component that links electric and heating utilities together. The system used to demonstrate the integrated planning approach has two neighboring 10kV feeders and several distribution substations with loads that require central heating from the heat pump. The optimal location is found...

  2. Performance of Wind Pump Prototype

    African Journals Online (AJOL)

    Mulu

    Mekelle University, Mekelle, Ethiopia (*mul_at@yahoo.com). ABSTRACT. A wind ... balanced rotor power and reciprocating pump, hence did not consider the effect of pump size. ... Keywords: Wind pump, Windmill, Performance testing, Pump efficiency, Pump discharge, ... Unfortunately, in rural places, where the houses are.

  3. Optimal bidding in Turkey day ahead electricity market for wind energy and pumped storage hydro power plant

    Directory of Open Access Journals (Sweden)

    Ceyhun Yıldız

    2016-10-01

    Full Text Available In electrical grid; when the demand power increases energy prices increase, when the demand decreases energy prices decrease. For this reason; to increase the total daily income, it is required to shift generations to the hours that high demand power values occurred. Wind Power Plants (WPP have unstable and uncontrollable generation characteristic. For this reason, energy storage systems are needed to shift the generations of WPPs in time scale. In this study, four wind power plants (WPP which are tied to the Turkish interconnected grid and a pumped hydro storage power plant (PSPP that meets the energy storage requirement of these power plants are investigated in Turkey day ahead energy market. An optimization algorithm is developed using linear programming technique to maximize the day ahead market bids of these plants which are going to generate power together. When incomes and generations of the plants that are operated with optimization strategy is analyzed, it is seen that annual income increased by 2.737% compared with WPPs ‘s alone operation and generations are substantially shifted to the high demand power occurred hours.

  4. Kilowatt average power 100 J-level diode pumped solid state laser

    Czech Academy of Sciences Publication Activity Database

    Mason, P.; Divoký, Martin; Ertel, K.; Pilař, Jan; Butcher, T.; Hanuš, Martin; Banerjee, S.; Phillips, J.; Smith, J.; De Vido, M.; Lucianetti, Antonio; Hernandez-Gomez, C.; Edwards, C.; Mocek, Tomáš; Collier, J.

    2017-01-01

    Roč. 4, č. 4 (2017), s. 438-439 ISSN 2334-2536 R&D Projects: GA MŠk LO1602; GA MŠk LM2015086 Institutional support: RVO:68378271 Keywords : diode-pumped * solid state * laser Subject RIV: BH - Optics, Masers, Lasers OBOR OECD: Optics (including laser optics and quantum optics) Impact factor: 7.727, year: 2016

  5. Forklift safety a practical guide to preventing powered industrial truck incidents and injuries

    CERN Document Server

    Swartz, George

    1999-01-01

    Written for the more than 1.5 million powered industrial truck operators and supervisors in general industry, as well as those in the construction and marine industries, this Second Edition provides an updated guide to training operators in safety and complying with OSHA's 1999 forklift standard. This edition of Forklift Safety includes a new chapter devoted to the new OSHA 1910.178 standard and new information regarding dock safety, narrow aisle trucks, off-dock incidents, tip-over safety, pallet safety, and carbon monoxide.

  6. Feasibility study for the partial conversion of a hydropower plant into a pumped-storage power plant: a case study of hydroelectric power plant La Barca (Asturias, Spain

    Directory of Open Access Journals (Sweden)

    E. Antuña Yudego

    2017-01-01

    Full Text Available Renewable energy sources have reported an unprecedented increase of global installed renewable power capacity. Against the advantages provided by this renewable power generation technology it should be taken into account an important issue: these intermittent energy sources supply a fluctuating output which is difficult to manage. Pumped-storage hydro power plants reappear in these circumstances as an efficient form of energy storage which allows to use reserves when necessary, enabling power generation output to cover continuously this energy demand. The present paper shows a simplified feasibility study of the partial conversion of hydropower plant La Barca, in Asturias, into a reversible storage through the development of an algorithm to simulate its operation according to electricity market prices. For this purpose, the operation in the deviation management market is considered and the technical modifications required for the conversion are shown. The estimation of costs and incomes present a feasible scenario.

  7. Designing and Manufacturing a Noise Controlling Silencer for the Cooling Tower Pump of Sarcheshmeh Copper Power Station

    Directory of Open Access Journals (Sweden)

    Sajad Zare

    2017-08-01

    Full Text Available Background One of the most common harmful factors in the workplace is noise. Noise control is a factor beneficial for health and safety in the workplace. Objectives The current study aimed to design and manufacture a silencer for the cooling tower pump of Sarcheshmeh Copper power station in order to control noise. Methods In this study, sound pressure level was measured by the use of a sound level meter (B & K 2260. Measurement was carried out in the light of ISO 1996 standard. After studying technical and acoustic features of the noise source, a dispersive-absorptive silencer was designed to control noise pollution generated by the cooling tower pump of the thermal station. After analyzing the frequencies of sound pressure level and using available data, a cylindrical silencer (with a diameter of 1.5 m and height of 3 m was designed and manufactured. The internal part of the silencer was filled with different columns of absorbent material covered with punched metal. Therefore, the silencer consisted of (1 acoustic diffuser, (2 acoustic chamber, and (3 acoustic channels. Results Measurements showed that, at a distance of 1 m from the source, sound pressure level reduced from 127 dBA before installing the silencer to 79 dBA after the installation, resulting in a reduction of 48 dBA. Conclusions Using a silencer with absorbent material (glass wool is very effective in reducing the noise generated by the pump.

  8. Pump-Power-Driven Mode Switching in a Microcavity Device and Its Relation to Bose-Einstein Condensation

    Directory of Open Access Journals (Sweden)

    H. A. M. Leymann

    2017-06-01

    Full Text Available We investigate the switching of the coherent emission mode of a bimodal microcavity device, occurring when the pump power is varied. We compare experimental data to theoretical results and identify the underlying mechanism based on the competition between the effective gain, on the one hand, and the intermode kinetics, on the other. When the pumping is ramped up, above a threshold, the mode with the largest effective gain starts to emit coherent light, corresponding to lasing. In contrast, in the limit of strong pumping, it is the intermode kinetics that determines which mode acquires a large occupation and shows coherent emission. We point out that this latter mechanism is akin to the equilibrium Bose-Einstein condensation of massive bosons. Thus, the mode switching in our microcavity device can be viewed as a minimal instance of Bose-Einstein condensation of photons. Moreover, we show that the switching from one cavity mode to the other always occurs via an intermediate phase where both modes are emitting coherent light and that it is associated with both superthermal intensity fluctuations and strong anticorrelations between both modes.

  9. The comparison between proton pump inhibitors and sucralfate in incidence of ventilator associated pneumonia in critically ill patients.

    Science.gov (United States)

    Khorvash, Farzin; Abbasi, Saeed; Meidani, Mohsen; Dehdashti, Fatemeh; Ataei, Behrooz

    2014-01-01

    Ventilator associated pneumonia (VAP) are one of the most common nosocomial infections in intensive care unit (ICU). The ICU patients are at risk of stress ulcer and gastrointestinal bleeding for different reasons. In order to prevent this complication, anti acids are used for patients. This study compared pantoprazole with sucralfate in incidence of ventilator associated pneumonia. This randomized clinical trial was carried out on ICU patients with mechanical ventilation in Alzahra university hospital in Isfahan from 2010 to 2011. One hundred forty eight ventilated patients were randomly allocated in two groups. The first group was treated with sucralfate and the second group was treated with pantoprazole for stress ulcer prophylaxis and followed up during hospitalization in ICU for nosocomial pneumonia. Data analyzed by SPSS software. One hundred thirty seven patients were selected for study. During the study period, 34 cases (24.8%) acquired pneumonia, of which 10 were in the sucralfate group and 24 were in the pantoprazole group (14.1% vs. 36.4%). According to Chi-square test, rate of pneumonia was significantly lower in patients receiving sucralfate than the pantoprazole group (P < 0.001). On the basis of the results, there is a significant relationship between the kind of drug used for stress ulcer and ventilator associated pneumonia. According to this article, rate of pneumonia was significantly lower in patients receiving sucralfate than the pantoprazole group.

  10. The comparison between proton pump inhibitors and sucralfate in incidence of ventilator associated pneumonia in critically ill patients

    Directory of Open Access Journals (Sweden)

    Farzin Khorvash

    2014-01-01

    Full Text Available Background: Ventilator associated pneumonia (VAP are one of the most common nosocomial infections in intensive care unit (ICU. The ICU patients are at risk of stress ulcer and gastrointestinal bleeding for different reasons. In order to prevent this complication, anti acids are used for patients. This study compared pantoprazole with sucralfate in incidence of ventilator associated pneumonia. Materials and Methods: This randomized clinical trial was carried out on ICU patients with mechanical ventilation in Alzahra university hospital in Isfahan from 2010 to 2011. One hundred forty eight ventilated patients were randomly allocated in two groups. The first group was treated with sucralfate and the second group was treated with pantoprazole for stress ulcer prophylaxis and followed up during hospitalization in ICU for nosocomial pneumonia. Data analyzed by SPSS software. Results: One hundred thirty seven patients were selected for study. During the study period, 34 cases (24.8% acquired pneumonia, of which 10 were in the sucralfate group and 24 were in the pantoprazole group (14.1% vs. 36.4%. According to Chi-square test, rate of pneumonia was significantly lower in patients receiving sucralfate than the pantoprazole group ( P < 0.001. Conclusion: On the basis of the results, there is a significant relationship between the kind of drug used for stress ulcer and ventilator associated pneumonia. According to this article, rate of pneumonia was significantly lower in patients receiving sucralfate than the pantoprazole group.

  11. Mirror and grating surface figure requirements for grazing incidence synchrotron radiation beamlines: Power loading effects

    Energy Technology Data Exchange (ETDEWEB)

    Hulbert, S.L.; Sharma, S.

    1987-01-01

    At present, grazing incidence mirrors are used almost exclusively as the first optical element in VUV and soft x-ray synchrotron radiation beamlines. The performance of these mirrors is determined by thermal and mechanical stress-induced figure errors as well as by figure errors remaining from the grinding and polishing process. With the advent of VUV and soft x-ray undulators and wigglers has come a new set of thermal stress problems related to both the magnitude and the spatial distribution of power from these devices. In many cases the power load on the entrance slits and gratings in these beamlines is no longer negligible. The dependence of thermally-induced front-end mirror figure errors on various storage ring and insertion device parameters (especially those at the National Synchrotron Light Source) and the effects of these figure errors on two classes of soft x-ray beamlines are presented.

  12. Self-mode-locking operation of a diode-end-pumped Tm:YAP laser with watt-level output power

    Science.gov (United States)

    Zhang, Su; Zhang, Xinlu; Huang, Jinjer; Wang, Tianhan; Dai, Junfeng; Dong, Guangzong

    2018-03-01

    We report on a high power continuous wave (CW) self-mode-locked Tm:YAP laser pumped by a 792 nm laser diode. Without any additional mode-locking elements in the cavity, stable and self-starting mode-locking operation has been realized. The threshold pump power of the CW self-mode-locked Tm:YAP laser is only 5.4 W. The maximum average output power is as high as 1.65 W at the pump power of 12 W, with the repetition frequency of 468 MHz and the center wavelength of 1943 nm. To the best of our knowledge, this is the first CW self-mode-locked Tm:YAP laser. The experiment results show that the Tm:YAP crystal is a promising gain medium for realizing the high power self-mode-locking operation at 2 µm.

  13. Criteria for classification and reporting of fire incidences in nuclear power plants of India

    International Nuclear Information System (INIS)

    Kapoor, R.K.

    1998-01-01

    Is is important that all fires in and around fire effective neighbourhood of Nuclear Power Plant (NPP) should be promptly reported (Reportable fires) and investigated. However, the depth of investigation and the range of authorities to whom the individual fire incidence need to be reported depends upon the severity of fire. In case of conventional non-chemical industries, the severity of fire depends mainly on the extent of loss caused by fire on property and the burn injury to persons. In case of NPP, two additional losses viz, release of radioactivity to working/public environment and the risk to safety related systems of NPP due to fire assume greater importance. This paper describes the criteria used in NPPs of India for classification of reportable fire incidences into four categories, viz. Insignificant, small, medium and large fires. It also gives the level of investigation depending upon the severity of fire. The fire classification scheme is explained in this paper with the help of worked out examples and two incidences of fire in Indian NPPs. (author)

  14. Development of a fire incident database for the United States nuclear power industry

    International Nuclear Information System (INIS)

    Wilks, G.

    1998-01-01

    The Nuclear Power Industry in the United States has identified a need to develop and maintain a comprehensive fire events database to support anticipated performance-based or risk-based fire protection programs and regulations. These new programs will require accurate information on the frequency, severity and consequences of fire events. Previous attempts to collect fire incident data had been made over the years for other purposes, but it was recognized that the detail and form of the data collected would be insufficient to support the new initiatives. Weaknesses in the earlier efforts included the inability in some cases to obtain fire incidents reports, inconsistent of incomplete information reported, and the inability to easily retrieve, sort, analyze and trend the data. The critical elements identified for the new data collection efforts included a standardized fire incident report from to assure consistent and accurate information, some mechanism to assure that all fire events are reported, and the ability to easily access the data for trending and analysis. In addition, the database would need to be unbiased and viewed as such by outside agencies. A new database is currently being developed that should meet all of these identified need. (author)

  15. Design windows of laser fusion power plants and conceptual design of laser-diode pumped slab laser

    International Nuclear Information System (INIS)

    Kozaki, Y.; Eguchi, T.; Izawa, Y.

    1999-01-01

    An analysis of the design space available to laser fusion power plants has been carried out, in terms of design key parameters such as target gain, laser energy and laser repetition rate, the number of fusion react ion chambers, and plant size. The design windows of economically attractive laser fusion plants is identified with the constraints of key design parameters and the cost conditions. Especially, for achieving high repetition rate lasers, we have proposed and designed a diode-pumped solid-state laser driver which consists of water-cooled zig-zag path slab amplifiers. (author)

  16. Numerical and experimental analysis of the vibratory behavior of a nuclear power plant piping system excitated by a pump

    International Nuclear Information System (INIS)

    Vatin, E.; Guillou, J.; Tephany, F.; Trollat, C.

    1993-08-01

    This paper presents a study on the dynamic response of piping systems installed in the French 1300 MWe Nuclear Power Plants. Variations in pressure are generated by a multi-staged centrifugal pump mounted on the piping system and provide a dynamic excitation of the pipe. This type of dynamic loading has led to nozzle cracks for some of the pipes, whereas, for other installations, it has not be found detrimental. This study presents an explanation of the different dynamic behavior observed at the various plants. To this end, a numerical model, calibrated with on-site measurements, is impleted. (authors). 8 figs., 1 tab., 5 refs

  17. Connection of superaccident feed pumps, especially for PWR or WWER power plants

    International Nuclear Information System (INIS)

    Sykora, D.

    1983-01-01

    The design is described of a superaccident feed pump for emergency water supply from storage tanks to the steam generator. Between the pump and the steam generator in the connecting pipe is installed an injector mixer, possibly complete with a heat exchanger. The output of the injector mixer is connected to the secondary side of the steam generator, the input of the forced or drawn medium is connected either to the steam space or to the water space of the secondary side of the steam generator. The said connection will considerably reduce the heat impact which threatens the integrity of the construction material of the steam generator during transition to superaccident feeding. (M.D.)

  18. Optimal Power Consumption in a Central Heating System with Geothermal Heat Pump

    DEFF Research Database (Denmark)

    Tahersima, Fatemeh; Stoustrup, Jakob; Rasmussen, Henrik

    2011-01-01

    , lowering the temperature of forward water alleviates energy consumption. The hypothesis is that the minimum water temperature is achieved when at least one of the hydronic heaters in the building works at full capacity. The setpoint of the forward water temperature is found by solving a model based...... controllers. Simulation results for a case study with simplified subsystems' models show considerable energy savings compared to the traditional control scheme for the heat pump....

  19. Optical pumping of Rb by Ti:Sa laser and high-power laser diode

    Czech Academy of Sciences Publication Activity Database

    Buchta, Zdeněk; Rychnovský, Jan; Lazar, Josef

    2006-01-01

    Roč. 8, č. 1 (2006), s. 350-354 ISSN 1454-4164 R&D Projects: GA AV ČR IAA1065303; GA ČR GA102/04/2109 Institutional research plan: CEZ:AV0Z20650511 Keywords : optical pumping * Ti:Sa laser * laser diode * emission linewidth * spectroscopy * laser frequency stabilization Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.106, year: 2006

  20. High-power extended cavity laser optimized for optical pumping ot Rb

    Czech Academy of Sciences Publication Activity Database

    Buchta, Zdeněk; Číp, Ondřej; Lazar, Josef

    2007-01-01

    Roč. 18, č. 9 (2007), N77-N80 ISSN 0957-0233 R&D Pro jects: GA ČR GA102/04/2109; GA MŠk(CZ) LC06007; GA AV ČR IAA200650504; GA AV ČR IAA1065303 Institutional research plan: CEZ:AV0Z20650511 Keywords : laser diode * emission linewidth * diffraction grating * optical pumping * spectroscopy Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.297, year: 2007

  1. Numerical Investigation of Periodically Unsteady Pressure Field in a High Power Centrifugal Diffuser Pump

    Directory of Open Access Journals (Sweden)

    Ji Pei

    2014-05-01

    Full Text Available Pressure fluctuations are the main factors that can give rise to reliability problems in centrifugal pumps. The periodically unsteady pressure characteristics caused by rotor-stator interaction have been investigated by CFD calculation in a residual heat removal pump. Side chamber flow effect is also considered for the simulation to accurately predict the flow in whole flow passage. The pressure fluctuation results in time and frequency domains were considered for several typical monitoring points in impeller and diffuser channels. In addition, the pressure fluctuation intensity coefficient (PFIC based on standard deviation was defined on each grid node for entire space and impeller revolution period. The results show that strong pressure fluctuation intensity can be found in the gap between impeller and diffuser. As a source, the fluctuation can spread to the upstream and downstream flow channels as well as the side chamber channels. Meanwhile, strong pressure fluctuation intensity can be found in the discharge tube of the circular casing. In addition, the obvious influence of operational flow rate on the PFIC distribution can be found. The analysis indicates that the pressure fluctuations in the aspects of both frequency and intensity can be used to comprehensively evaluate the unsteady pressure characteristics in centrifugal pumps.

  2. A diode-pumped continuous-wave Nd:YAG laser with an average output power of 1 kW

    International Nuclear Information System (INIS)

    Lee, Sung Man; Cha, Byung Heon; Kim, Cheol Jung

    2004-01-01

    A diode-pumped Nd:YAG laser with an average output power of 1 kW is developed for industrial applications, such as metal cutting, precision welding, etc. To develop such a diode-pumped high power solid-state laser, a series of laser modules have been used in general with and without thermal birefringence compensation. For example, Akiyama et al. used three laser modules to obtain a output power of 5.4 kW CW.1 In the side-pumped Nd:YAG laser, which is a commonly used pump scheme to obtain high output power, the crystal rod has a short thermal focal length at a high input pump power, and the short thermal focal length in turn leads to beam distortion within a laser resonator. Therefore, to achieve a high output power with good stability, isotropic beam profile, and high optical efficiency, the detailed analysis of the resonator stability condition depending on both mirror distances and a crystal separation is essential

  3. ComfortPower. Design, construction and evaluation of a combined fuel-cell and heat pump system

    Energy Technology Data Exchange (ETDEWEB)

    Silversand, Fredrik (Catator AB, Lund (Sweden))

    2010-12-15

    Catator AB has constructed, commissioned and evaluated a combined fuel-cell and heat-pump system (ComfortPower). The basic idea behind the project was to demonstrate the possibility to achieve ultrahigh thermal efficiencies when combining fuel-cell technologies and heat pumps. Moreover, the system should provide a great flexibility with respect to the fuel mix and should in addition to heat provide surplus electricity and cooling. The system was built on a HT-PEM platform (high temperature polymer electrolyte fuel cell from Serenergy a/s), which was operated by Catators proprietary Optiformer technology. The power generator was combined with a heat pump module (F1145-5, 230 V), supplied by Nibe. The system was packaged into a cabinet (1.65 x 0.6 x 0.6 m) comprising the power module, the heat pump, all necessary balance-of-plant components and the control system. The power output from the fuel-cell system was around 1.35 kW, which enabled operation of the heat pump compressor. By utilizing surplus heat energy from the fuel cell it was possible to achieve a favourable operation point in the heat pump system, resulting in a high overall COP (coefficient of performance). The heat output from the system was as high as 10 kW whereas 6 kW cooling could be provided. The thermal efficiencies measured in experiments were normally around 200%, calculated on the lower heating value of the fuel. A number of fuels have been investigated in the fuel cell system, including both gaseous (natural gas/LPG) and liquid fuels (alcohols and kerosene). Indeed, the system has a wide fuel flexibility, which opens up for a variety of applications in campus villages and buildings. This study has demonstrated the possibility to reduce the carbon dioxide footprint by a factor of 2 over conventional boilers in heating applications. In addition the unit can be operated on a variety of fuels and can produce cooling and electricity in addition to heat. A fully working system has been designed

  4. Heat loss analysis-based design of a 12 MW wind power generator module having an HTS flux pump exciter

    International Nuclear Information System (INIS)

    Sung, Hae-Jin; Go, Byeong-Soo; Jiang, Zhenan; Park, Minwon; Yu, In-Keun

    2016-01-01

    Highlights: • A large-scale HTS generator module has been suggested to avoid issues such as a huge vacuum vessel and higher reliability. • The challenging heat loss analysis of a large-scale HTS generator has successfully been performed, enabling the design of an optimal support structure having a total heat loss of 43 W/400 kW. • The results prove the potential of a large-scale superconducting wind-power generator to operate efficiently, and support further development of the concept. - Abstract: The development of an effective high-temperature superconducting (HTS) generator is currently a research focus; however, the reduction of heat loss of a large-scale HTS generator is a challenge. This study deals with a heat loss analysis-based design of a 12 MW wind power generator module having an HTS flux pump exciter. The generator module consists of an HTS rotor of the generator and an HTS flux pump exciter. The specifications of the module were described, and the detailed configuration of the module was illustrated. For the heat loss analysis of the module, the excitation loss of the flux pump exciter, eddy current loss of all of the structures in the module, radiation loss, and conduction loss of an HTS coil supporter were assessed using a 3D finite elements method program. In the case of the conduction loss, different types of the supporters were compared to find out the supporter of the lowest conduction loss in the module. The heat loss analysis results of the module were reflected in the design of the generator module and discussed in detail. The results will be applied to the design of large-scale superconducting generators for wind turbines including a cooling system.

  5. Heat loss analysis-based design of a 12 MW wind power generator module having an HTS flux pump exciter

    Energy Technology Data Exchange (ETDEWEB)

    Sung, Hae-Jin, E-mail: haejin0216@gmail.com [Changwon National University, 20 Changwondaehak-ro, Changwon, 641-773 (Korea, Republic of); Go, Byeong-Soo [Changwon National University, 20 Changwondaehak-ro, Changwon, 641-773 (Korea, Republic of); Jiang, Zhenan [Robinson Research Institute, Victoria University of Wellington, PO Box 33436 (New Zealand); Park, Minwon [Changwon National University, 20 Changwondaehak-ro, Changwon, 641-773 (Korea, Republic of); Yu, In-Keun, E-mail: yuik@changwon.ac.kr [Changwon National University, 20 Changwondaehak-ro, Changwon, 641-773 (Korea, Republic of)

    2016-11-15

    Highlights: • A large-scale HTS generator module has been suggested to avoid issues such as a huge vacuum vessel and higher reliability. • The challenging heat loss analysis of a large-scale HTS generator has successfully been performed, enabling the design of an optimal support structure having a total heat loss of 43 W/400 kW. • The results prove the potential of a large-scale superconducting wind-power generator to operate efficiently, and support further development of the concept. - Abstract: The development of an effective high-temperature superconducting (HTS) generator is currently a research focus; however, the reduction of heat loss of a large-scale HTS generator is a challenge. This study deals with a heat loss analysis-based design of a 12 MW wind power generator module having an HTS flux pump exciter. The generator module consists of an HTS rotor of the generator and an HTS flux pump exciter. The specifications of the module were described, and the detailed configuration of the module was illustrated. For the heat loss analysis of the module, the excitation loss of the flux pump exciter, eddy current loss of all of the structures in the module, radiation loss, and conduction loss of an HTS coil supporter were assessed using a 3D finite elements method program. In the case of the conduction loss, different types of the supporters were compared to find out the supporter of the lowest conduction loss in the module. The heat loss analysis results of the module were reflected in the design of the generator module and discussed in detail. The results will be applied to the design of large-scale superconducting generators for wind turbines including a cooling system.

  6. The Influence of RSG-GAS Primary Pump Operation Concerning the Rise Water Level of Reactor Pool in 15 MW Reactor Power

    International Nuclear Information System (INIS)

    Djunaidi

    2004-01-01

    The expansion of air volume in the delay chamber shows in rise water level of reactor pool during the operation. The rises of water level in the reactor pool is not quite from the expansion of air volume in the delay chamber, but some influence the primary pump operation. The purpose evaluated of influence primary pump is to know the influence primary pump power concerning the rise water level during the reactor operation. From the data collection during 15 MW power operation in the last core 42 the influence of primary pump operation concerning the rise water level in the reactor pool is 34.48 % from the total increased after operation during 12 days. (author)

  7. Vertical pump assembly

    International Nuclear Information System (INIS)

    Dohnal, M.; Rosel, J.; Skarka, V.

    1988-01-01

    The mounting is described of the drive assembly of a vertical pump for nuclear power plants in areas with seismic risk. The assembly is attached to the building floor using flexible and damping elements. The design allows producing seismically resistant pumps without major design changes in the existing types of vertical pumps. (E.S.). 1 fig

  8. High-power linearly-polarized operation of a cladding-pumped Yb fibre laser using a volume Bragg grating for wavelength selection.

    Science.gov (United States)

    Jelger, P; Wang, P; Sahu, J K; Laurell, F; Clarkson, W A

    2008-06-23

    In this work a volume Bragg grating is used as a wavelength selective element in a high-power cladding-pumped Yb-doped silica fiber laser. The laser produced 138 W of linearly-polarized single-spatial-mode output at 1066 nm with a relatively narrow linewidth of 0.2 nm for approximately 202 W of launched pump power at 976 nm. The beam propagation factor (M(2)) for the output beam was determined to be 1.07. Thermal limitations of volume Bragg gratings are discussed in the context of power scaling for fiber lasers.

  9. High-power and highly efficient diode-cladding-pumped holmium-doped fluoride fiber laser operating at 2.94 microm.

    Science.gov (United States)

    Jackson, Stuart D

    2009-08-01

    A high-power diode-cladding-pumped Ho(3+), Pr(3+)-doped fluoride glass fiber laser is demonstrated. The laser produced a maximum output power of 2.5 W at a slope efficiency of 32% using diode lasers emitting at 1,150 nm. The long-emission wavelength of 2.94 microm measured at maximum pump power, which is particularly suited to medical applications, indicates that tailoring of the proportion of Pr(3+) ions can provide specific emission wavelengths while providing sufficient de-excitation of the lower laser level.

  10. Break-In, Performance, and Endurance Tests Results on Fixed Displacement Hydraulic Fluid Power Vane Pumps.

    Science.gov (United States)

    1982-07-15

    most critical . It is best to install it inside the housing to measure the temperature inside the pump. If the outlet temperature probe is installed in...141I1HL PPE’SSUPL IS: :M49.65 PS It THE S5THNDiAPL L’E’,J.’I- OF (1-HE: r’EASUREL’ F LOW’ 1 ’-:-- A-. caPM MEASURED. S.PEED’I 9 i;*-j3%1 P* MEASURED

  11. Aging and service wear of auxiliary feedwater pumps for PWR nuclear power plants

    International Nuclear Information System (INIS)

    Greenstreet, W.L.

    1989-01-01

    This paper describes investigations on auxiliary feedwater pumps being done under the Nuclear Plant Aging Research (NPAR) Program. Objectives of these studies are: to identify and evaluate practical, cost-effective methods for detecting, monitoring, and assessing the severity of time-dependent degradation (aging and service wear); recommend inspection and maintenance practices; establish acceptance criteria; and help facilitate use of the results. Emphasis is given to identifying and assessing methods for detecting failure in the incipient stage and to developing degradation trends to allow timely maintenance, repair or replacement actions. 3 refs

  12. Fuel savings with conventional hot water space heating systems by incorporating a natural gas powered heat pump. Preliminary project: Development of heat pump technology

    Science.gov (United States)

    Vanheyden, L.; Evertz, E.

    1980-12-01

    Compression type air/water heat pumps were developed for domestic heating systems rated at 20 to 150 kW. The heat pump is driven either by a reciprocating piston or rotary piston engine modified to operate on natural gas. Particular features of natural gas engines as prime movers, such as waste heat recovery and variable speed, are stressed. Two systems suitable for heat pump operation were selected from among five different mass produced car engines and were modified to incorporate reciprocating piston compressor pairs. The refrigerants used are R 12 and R 22. Test rig data transferred to field conditions show that the fuel consumption of conventional boilers can be reduced by 50% and more by the installation of engine driven heat pumps. Pilot heat pumps based on a 1,600 cc reciprocating piston engine were built for heating four two-family houses. Pilot pump operation confirms test rig findings. The service life of rotary piston and reciprocating piston engines was investigated. The tests reveal characteristic curves for reciprocating piston engines and include exhaust composition measurements.

  13. Impact of the TEPCO incident on the public's attitude to nuclear power generation. Periodic survey No.3

    International Nuclear Information System (INIS)

    Kitada, Atsuko

    2003-01-01

    The impact of the TEPCO incident, was examined, using the data collected by public opinion polls on power generation, which have been conducted persistently since 1993. The survey revealed that there were no negative changes in the public's attitude overall (including their concerns about nuclear power accidents, their sense of danger of such accidents, the image of organizations involved in nuclear power generation, their confidence in such organizations, and their opinion on the use of nuclear power generation), and that the TEPCO incident had no impact on the public's attitude to nuclear power generation. In contrast with the JCO accident, which did affect the public's attitude to nuclear power generation, the TEPCO incident left a strong impression on few people, and public awareness was limited. Such low public awareness is deemed to relate to its lack of impact on the public's attitude to nuclear power generation. In the case of the JCO accident, even individuals who had limited exposure to the mass media were highly of it, whereas in the case of the TEPCO incident, individuals who were relatively unexposed to the mass media were substantially less aware of the incident than their more mass-media-exposed counterparts. This is deemed to have been due to the difference in mass media reports. A comparison of newspaper articles covering the TEPCO and the JCO accident substantiated the quantitative difference in mass media reports: articles on the former numbered less than half of the latter. Correlation analysis with respect to the awareness of the TEPCO incident was conducted, in order to identify the impact of the incident on individuals with a high level of awareness. Such individuals were highly confident that safe operation is being regarded as the top-priority objective by staff at the nuclear power plants, indicating that their confidence was not undermined by the TEPCO incident. However, there was a high level of distrust, that the truth about safety is

  14. Aging of turbine drives for safety-related pumps in nuclear power plants

    International Nuclear Information System (INIS)

    Cox, D.F.

    1995-06-01

    This study was performed to examine the relationship between time-dependent degradation and current industry practices in the areas of maintenance, surveillance, and operation of steam turbine drives for safety-related pumps. These pumps are located in the Auxiliary Feedwater (AFW) system for pressurized-water reactor plants and in the Reactor Core Isolation Cooling and High-Pressure Coolant Injection systems for boiling-water reactor plants. This research has been conducted by examination of failure data in the Nuclear Plant Reliability Data System, review of Licensee Event Reports, discussion of problems with operating plant personnel, and personal observation. The reported failure data were reviewed to determine the cause of the event and the method of discovery. Based on the research results, attempts have been made to determine the predictability of failures and possible preventive measures that may be implemented. Findings in a recent study of AFW systems indicate that the turbine drive is the single largest contributor to AFW system degradation. However, examination of the data shows that the turbine itself is a reliable piece of equipment with a good service record. Most of the problems documented are the result of problems with the turbine controls and the mechanical overspeed trip mechanism; these apparently stem from three major causes which are discussed in the text. Recent improvements in maintenance practices and procedures, combined with a stabilization of the design, have led to improved performance resulting in a reliable safety-related component. However, these improvements have not been universally implemented

  15. Evaluation of incident analysis practices in the Finnish nuclear power industry

    Energy Technology Data Exchange (ETDEWEB)

    Kettunen, J.; Laakso, K

    1999-12-01

    This report provides an analysis and evaluation of incident analysis methods and practices applied by the Finnish regulator Radiation and Nuclear Safety Authority (STUK) and the two Finnish nuclear power plant operators Teollisuuden Voima Oy (TVO) and Fortum Power and Heat Oy (Fortum). The study was conducted in 1998-99. The research material was based on tape-recorded interviews as well as internal directions and event investigation reports provided by the three participating organisations. A framework for analysis and evaluation was developed as part of the study on the basis of referenced root cause analysis and operating experience review methods, selected (foreign) inspection reports, scientific papers and research literature. Well-known inspection methods and principles, such as ASSET and MTO/HPES, provided important guidance to this work. This study shows that although all the evaluated organisations had rather comprehensive incident analysis arrangements, more focus and priorisation is needed. Deficiencies were identified mostly in the areas of recording, assessment and classification of new events and observations, use of existing operating experience data, utilisation of information technology based tools, and allocation of work and resources. In general the direct causes of identified events can be detected and removed, but more emphasis should be given to the prevention of recurrence. This requires a more efficient feedback loop that can be created and maintained by focusing on the root causes of significant events, tasks and activities in which the originating errors occurred, and weaknesses of defensive barriers, and by implementing periodic operational experience reviews. A strategy document for the operating experience feedback process, and firm procedures for the initial assessment of new events and the carrying out of data analyses would help. (orig.)

  16. Nuclear power plant operating experiences from the IAEA/NEA Incident Reporting System 1999-2002

    International Nuclear Information System (INIS)

    2003-01-01

    Incident reporting has become an increasingly important aspect of the operation and regulation of all public health and safety-related industries. Diverse industries such as aeronautics, chemicals, pharmaceuticals and explosives all depend on operating experience feedback to provide lessons learned about safety. The Incident Reporting System (IRS) is an essential element of the system for feeding back international operating experience for nuclear power plants. IRS reports contain information on events of Safety significance with important lessons learned. These experiences assist in reducing or eliminating recurrence of events at other plants. The IRS is jointly operated and managed by the Nuclear Energy Agency (NEA), a semi-autonomous body within the Organisation for Economic Co-operation and Development (OECD), and the International Atomic Energy Agency (IAEA). It is important that sufficient national resources be allocated to enable timely and high quality reporting of events important to safety, and to share these events in the IRS database. The first report, which covered the period July 1996 - June 1999, was widely acclaimed and encouraged both agencies to prepare this second report in order to highlight important lessons learned from around 300 events reported to the IRS for the period July 1999 - December 2002. Several areas were selected in this report to show the range of important topics available in the IRS. These include different types of failure in a variety of plant systems, as well as human performance considerations. This report is primarily aimed at senior officials in industry and government who have decision-making roles in the nuclear power industry

  17. Maximum Power Point Tracking for Brushless DC Motor-Driven Photovoltaic Pumping Systems Using a Hybrid ANFIS-FLOWER Pollination Optimization Algorithm

    Directory of Open Access Journals (Sweden)

    Neeraj Priyadarshi

    2018-04-01

    Full Text Available In this research paper, a hybrid Artificial Neural Network (ANN-Fuzzy Logic Control (FLC tuned Flower Pollination Algorithm (FPA as a Maximum Power Point Tracker (MPPT is employed to amend root mean square error (RMSE of photovoltaic (PV modeling. Moreover, Gaussian membership functions have been considered for fuzzy controller design. This paper interprets the Luo converter occupied brushless DC motor (BLDC-directed PV water pump application. Experimental responses certify the effectiveness of the suggested motor-pump system supporting diverse operating states. The Luo converter, a newly developed DC-DC converter, has high power density, better voltage gain transfer and superior output waveform and can track optimal power from PV modules. For BLDC speed control there is no extra circuitry, and phase current sensors are enforced for this scheme. The most recent attempt using adaptive neuro-fuzzy inference system (ANFIS-FPA-operated BLDC directed PV pump with advanced Luo converter, has not been formerly conferred.

  18. Offshore Floating Wind Turbine-driven Deep Sea Water Pumping for Combined Electrical Power and District Cooling

    International Nuclear Information System (INIS)

    Sant, T; Buhagiar, D; Farrugia, R N

    2014-01-01

    A new concept utilising floating wind turbines to exploit the low temperatures of deep sea water for space cooling in buildings is presented. The approach is based on offshore hydraulic wind turbines pumping pressurised deep sea water to a centralised plant consisting of a hydro-electric power system coupled to a large-scale sea water-cooled air conditioning (AC) unit of an urban district cooling network. In order to investigate the potential advantages of this new concept over conventional technologies, a simplified model for performance simulation of a vapour compression AC unit was applied independently to three different systems, with the AC unit operating with (1) a constant flow of sea surface water, (2) a constant flow of sea water consisting of a mixture of surface sea water and deep sea water delivered by a single offshore hydraulic wind turbine and (3) an intermittent flow of deep sea water pumped by a single offshore hydraulic wind turbine. The analysis was based on one year of wind and ambient temperature data for the Central Mediterranean that is known for its deep waters, warm climate and relatively low wind speeds. The study confirmed that while the present concept is less efficient than conventional turbines utilising grid-connected electrical generators, a significant portion of the losses associated with the hydraulic transmission through the pipeline are offset by the extraction of cool deep sea water which reduces the electricity consumption of urban air-conditioning units

  19. Offshore Floating Wind Turbine-driven Deep Sea Water Pumping for Combined Electrical Power and District Cooling

    Science.gov (United States)

    Sant, T.; Buhagiar, D.; Farrugia, R. N.

    2014-06-01

    A new concept utilising floating wind turbines to exploit the low temperatures of deep sea water for space cooling in buildings is presented. The approach is based on offshore hydraulic wind turbines pumping pressurised deep sea water to a centralised plant consisting of a hydro-electric power system coupled to a large-scale sea water-cooled air conditioning (AC) unit of an urban district cooling network. In order to investigate the potential advantages of this new concept over conventional technologies, a simplified model for performance simulation of a vapour compression AC unit was applied independently to three different systems, with the AC unit operating with (1) a constant flow of sea surface water, (2) a constant flow of sea water consisting of a mixture of surface sea water and deep sea water delivered by a single offshore hydraulic wind turbine and (3) an intermittent flow of deep sea water pumped by a single offshore hydraulic wind turbine. The analysis was based on one year of wind and ambient temperature data for the Central Mediterranean that is known for its deep waters, warm climate and relatively low wind speeds. The study confirmed that while the present concept is less efficient than conventional turbines utilising grid-connected electrical generators, a significant portion of the losses associated with the hydraulic transmission through the pipeline are offset by the extraction of cool deep sea water which reduces the electricity consumption of urban air-conditioning units.

  20. Fabrication of the shafts of the liquid metal pumps for the Creys-Malville nuclear power station

    International Nuclear Information System (INIS)

    Pasqualini, G.; Lefebvre, B.; Archer, J.; Gravier, M.

    1982-01-01

    This report is a synthesis of the considerations with regard to the project work and the work executes in the field of metallurgy, which have made it possible to manufacture the shafts of primary and secondary pumps intended for the Creys-Malville nuclear power station. In the first part of this report attention is drawn to the most important items of this equipment with regard to the performance specifications. These specifications are the expression of the experiences made in France in the industrial manufacture of pumps for liquid metals for this type of application Rapsodie (1967) and Phenix (1974). In the second part of the report on hand, in particular the technical aspects of the welding operations with regard to the use of the chosen material (austenitic corrosion resisting steel Z 15 CNW 22-12, maual TIG welding, the type of steel of the filler metal being the same as the parent metal) will be discussed. Finally, a testified comment on the most important steps of the manufacture of these shafts in the works at Jeumont will be described. (orig.) [de

  1. Analysis of human factor aspects in connection with available incident reports obligatorily reported by German nuclear power plants

    International Nuclear Information System (INIS)

    Wilpert, B.; Freitag, M.; Miller, R.

    1993-01-01

    Goal of the present study is the analysis of human factor aspects in connection with available incident reports obligatorily reported by German nuclear power plants. Based on psychological theories and empirical studies this study develops a classification scheme which permits the identification of foci of erroneous human actions. This classification scheme is applied to a selection of human factor relevant incidents by calculating frequencies of the occurrence of human error categories. The results allow insights into human factor related problem areas. (orig.) [de

  2. High-power ultralong-wavelength Tm-doped silica fiber laser cladding-pumped with a random distributed feedback fiber laser.

    Science.gov (United States)

    Jin, Xiaoxi; Du, Xueyuan; Wang, Xiong; Zhou, Pu; Zhang, Hanwei; Wang, Xiaolin; Liu, Zejin

    2016-07-15

    We demonstrated a high-power ultralong-wavelength Tm-doped silica fiber laser operating at 2153 nm with the output power exceeding 18 W and the slope efficiency of 25.5%. A random distributed feedback fiber laser with the center wavelength of 1173 nm was employed as pump source of Tm-doped fiber laser for the first time. No amplified spontaneous emissions or parasitic oscillations were observed when the maximum output power reached, which indicates that employing 1173 nm random distributed feedback fiber laser as pump laser is a feasible and promising scheme to achieve high-power emission of long-wavelength Tm-doped fiber laser. The output power of this Tm-doped fiber laser could be further improved by optimizing the length of active fiber, reflectivity of FBGs, increasing optical efficiency of pump laser and using better temperature management. We also compared the operation of 2153 nm Tm-doped fiber lasers pumped with 793 nm laser diodes, and the maximum output powers were limited to ~2 W by strong amplified spontaneous emission and parasitic oscillation in the range of 1900-2000 nm.

  3. Efficiency of small wind generator powered water pumping systems; Rendimento de unidade de bombeamento de agua acionada por gerador eolico de pequeno porte

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Mendeleyev Guerreiro; Carvalho, Paulo Cesar Marques de; Costa, Levy Ferreira [Universidade Federal do Ceara (UFC), Fortaleza, CE (Brazil). Dept. de Engenharia Eletrica; Borges Neto, Manuel Rangel [Centro Federal de Educacao Tecnologica de Petrolina (CEFET), PE (Brazil)

    2008-07-01

    The present paper aims to evaluate the efficiency of a small wind generator powered water pumping system; the generator is a permanent magnet generator of 1 kw of axial flow, using three fiber glass blades with 2.46 m diameter. The used centrifugal pump is connected to a 0.5 c v motor, three-phase, frequency of 60 Hz, rotational speed of 3450 rpm. For the efficiency evaluation a shell anemometer, a flow and pressure sensor were used, connected to a data logger to the collection and storage of the data. An energy analyzer was also used to collect the current, voltage and power generated from the wind generator. (author)

  4. 10 GHz frequency comb spectral broadening in AlGaAs-on-Insulator nano-waveguide with ultra-low pump power

    DEFF Research Database (Denmark)

    Hu, Hao; Pu, Minhao; Yvind, Kresten

    2017-01-01

    We experimentally demonstrated 10 GHz frequency comb spectral broadening with a 30-dB bandwidth of 238 nm in an 11-mm long AlGaAsOI nano-waveguide. The 10-GHz 230-fs pump pulse has an average power of only 12 mW.......We experimentally demonstrated 10 GHz frequency comb spectral broadening with a 30-dB bandwidth of 238 nm in an 11-mm long AlGaAsOI nano-waveguide. The 10-GHz 230-fs pump pulse has an average power of only 12 mW....

  5. Apparatus and method for servicing an elongated suspended pump motor in an electric power plant with limited access

    International Nuclear Information System (INIS)

    Chavez, R.V.; Ekeroth, D.E.; Johnson, F.T.; Matusz, J.M.

    1994-01-01

    Elongated coolant pumps suspended under steam generators within containment in a power plant with limited access space, are removed and replaced by an elongated maintenance cart with an elongated opening along one side in which the motor is received. Rollers support the cart for conveying the elongated motor in an upright position out from under the steam generator and onto an elevator. The elevator is lowered to transfer support of the cart and motor through trunnions to saddles straddling the elevator for rotation of the cart to a generally horizontal position. The elevator then raises the horizontally disposed cart carrying the motor to a higher floor where it is rolled off the elevator and out through the auxiliary equipment hatch. 14 figures

  6. High power diode-pumped continuous wave and Q-switch operation of Tm,Ho:YVO4 laser

    International Nuclear Information System (INIS)

    Yao, B Q; Li, G; Meng, P B; Zhu, G L; Ju, Y L; Wang, Y Z

    2010-01-01

    High power diode-pumped continuous wave (CW) and Q-switch operation of Tm,Ho:YVO 4 laser is reported. Using two Tm,Ho:YVO 4 rods in a single cavity, up to 20.2 W of CW output lasing at 2054.7 nm was obtained under cryogenic temperature of 77 K with an optical to optical conversion efficiency of 32.9%. For Q-switch operation, up to 19.4 W of output was obtained under 15 kHz pulse repetition frequency (PRF) with a minimum pulse width of 24.2 ns. In addition, different pulse repetition frequencies of Q-switch operation with 10.0 kHz, 12.5 kHz and 15.0 kHz were investigated comparatively

  7. Solar Pump

    Science.gov (United States)

    Pique, Charles

    1987-01-01

    Proposed pump moves liquid by action of bubbles formed by heat of sun. Tube of liquid having boiling point of 100 to 200 degrees F placed at focal axis of cylindrical reflector. Concentrated sunlight boils liquid at focus, and bubbles of vapor rise in tube, carrying liquid along with them. Pressure difference in hot tube sufficient to produce flow in large loop. Used with conventional flat solar heating panel in completely solar-powered heat-storage system.

  8. The incident guidelines for nuclear power stations of the FRG - an example illustrating the degradation of safety standards for nuclear power plants

    International Nuclear Information System (INIS)

    1984-01-01

    The 'Guidelines for the Assessment of the Design of Nuclear Power Plants Against Incidents', i.e. the Federal German Incident Guidelines, have been the subject of an official hearing of experts before the Committee of Internal Affairs of the German Bundestag on February 22, 1984. The report in hand presents the official invitation to the meeting, the list of questions posed, written statements given by critics, and an appendix with the full text of the Incident Guidelines, as of August 12, 1983. (orig./HP) [de

  9. Future directions in 980-nm pump lasers: submarine deployment to low-cost watt-class terrestrial pumps

    Science.gov (United States)

    Gulgazov, Vadim N.; Jackson, Gordon S.; Lascola, Kevin M.; Major, Jo S.; Parke, Ross; Richard, Tim; Rossin, Victor V.; Zhang, Kai

    1999-09-01

    The demands of global bandwidth and distribution are rising rapidly as Internet usage grows. This fundamentally means that more photons are flowing within optical cables. While transmitting sources launches some optical power, the majority of the optical power that is present within modern telecommunication systems originates from optical amplifiers. In addition, modern optical amplifiers offer flat optical gain over broad wavelength bands, thus making possible dense wavelength de-multiplexing (DWDM) systems. Optical amplifier performance, and by extension the performance of the laser pumps that drive them, is central to the future growth of both optical transmission and distribution systems. Erbium-doped amplifiers currently dominate optical amplifier usage. These amplifiers absorb pump light at 980 nm and/or 1480 nm, and achieve gain at wavelengths around 1550 nm. 980 nm pumps achieve better noise figures and are therefore used for the amplification of small signals. Due to the quantum defect, 1480 nm lasers deliver more signal photon per incident photon. In addition, 1480 nm lasers are less expensive than 980 nm lasers. Thus, 1480 nm pump lasers are used for amplification in situations where noise is not critical. The combination of these traits leads to the situation where many amplifiers contain 980 nm lasers to pump the input section of the Er- doped fiber with 1480 nm lasers being used to pump the latter section of Er fiber. This can be thought of as using 980 nm lasers to power an optical pre-amplifier with the power amplification function being pump with 1480 nm radiation. This paper will focus on 980 nm pump lasers and the impact that advances in 980 nm pump technology will have on optical amplification systems. Currently, 980 nm technology is rapidly advancing in two areas, power and reliability. Improving reliability is becoming increasingly important as amplifiers move towards employing more pump lasers and using these pump lasers without redundancy

  10. Solar powered absorption cycle heat pump using phase change materials for energy storage

    Science.gov (United States)

    Middleton, R. L.

    1972-01-01

    Solar powered heating and cooling system with possible application to residential homes is described. Operating principles of system are defined and illustration of typical energy storage and exchange system is provided.

  11. High-power narrow-linewidth quasi-CW diode-pumped TEM00 1064 nm Nd:YAG ring laser.

    Science.gov (United States)

    Liu, Yuan; Wang, Bao-shan; Xie, Shi-yong; Bo, Yong; Wang, Peng-yuan; Zuo, Jun-wei; Xu, Yi-ting; Xu, Jia-lin; Peng, Qin-jun; Cui, Da-fu; Xu, Zu-yan

    2012-04-01

    We demonstrated a high average power, narrow-linewidth, quasi-CW diode-pumped Nd:YAG 1064 nm laser with near-diffraction-limited beam quality. A symmetrical three-mirror ring cavity with unidirectional operation elements and an etalon was employed to realize the narrow-linewidth laser output. Two highly efficient laser modules and a 90° quartz rotator for birefringence compensation were used for the high output power. The maximum average output power of 62.5 W with the beam quality factor M(2) of 1.15 was achieved under a pump power of 216 W at a repetition rate of 500 Hz, corresponding to the optical-to-optical conversion efficiency of 28.9%. The linewidth of the laser at the maximum output power was measured to be less than 0.2 GHz.

  12. Fluorescence-pumped photolytic gas laser system for a commercial laser fusion power plant

    International Nuclear Information System (INIS)

    Monsler, M.J.

    1977-01-01

    The first results are given for the conceptual design of a short-wavelength gas laser system suitable for use as a driver (high average power ignition source) for a commercial laser fusion power plant. A comparison of projected overall system efficiencies of photolytically excited oxygen, sulfur, selenium and iodine lasers is described, using a unique windowless laser cavity geometry which will allow scaling of single amplifier modules to 125 kJ per aperture for 1 ns pulses. On the basis of highest projected overall efficiency, a selenium laser is chosen for a conceptual power plant fusion laser system. This laser operates on the 489 nm transauroral transition of selenium, excited by photolytic dissociation of COSe by ultraviolet fluorescence radiation. Power balances and relative costs for optics, electrical power conditioning and flow conditioning of both the laser and fluorescer gas streams are discussed for a system with the following characteristics: 8 operating modules, 2 standby modules, 125 kJ per module, 1.4 pulses per second, 1.4 MW total average power. The technical issues of scaling visible and near-infrared photolytic gas laser systems to this size are discussed

  13. Use mobile pumps and liquid chilling water units to provide chilled water for nuclear reactor during nuclear power plant accident

    International Nuclear Information System (INIS)

    Zhang Guobin; Feng Jiaxuan

    2012-01-01

    From the nuclear accident in Japan Fuksuhima in March this year, despite a shut down of the reactor, the residue heat inside the reactor was not able to remove due to the failure of the cooling system and it finally caused the catastrophe. It was observed that when the failure of the cooling system after an earthquake of magnitude 9 and a tsunami of 28 meters height, the containment vessel for the reactor core was still able to maintain its integrity in the first 24 hours before the first explosion was happened. A backup emergency heat removal system for nuclear power plants using mo- bile pumps and liquid chilling units has been proposed 20 years ago by Cheung [Ref. 1]. Due to the fact that there are more than 400 nuclear power plants around the world and 10% of them are located in earthquake active zone, together with the aging of some of the power plants which were built more than 30 years ago, the risk of another nuclear accident becomes high. An emergency safety measure has to be designed in order to deal with the unforeseen scenario. This re- port re-visits the proposal again; to re-design to the suit the need and to integrate with the current situation of the nuclear industry. (authors)

  14. Pressure Pump Power Control in the Primary Circuit of the Heat Exchange System

    Directory of Open Access Journals (Sweden)

    Shilin Aleksandr

    2017-01-01

    Full Text Available In this paper we consider the problem of speed in hot water systems where highly efficient plate heat exchanger is used. Especially marked the problem which is connected with long transition drive of constant speed exceeding the time of the heat exchanger accumulative tank emptying more than twice. As a regulating element in the heat exchange system there was proposed to use asynchronous electric drive of pressure pump in the primary circuit of the heat exchanger. For correct use of such electric drive we solved the problem of control object mathematical model synthesis, which has non-linear properties, in particular, the transfer coefficient of the circuit can vary in more than 6 times. At the same time there was revealed the dependence of the transfer coefficient on the motor speed, which must be considered in the controller synthesis. In conclusion we suggested the solutions of regulators synthesis tasks with customizable settings for speed and switchable structure between relay λ and PI regulators.

  15. Investigation of Pumped Storage Hydropower Power-Off Transient Process Using 3D Numerical Simulation Based on SP-VOF Hybrid Model

    Directory of Open Access Journals (Sweden)

    Daqing Zhou

    2018-04-01

    Full Text Available The transient characteristic of the power-off process is investigated due to its close relation to hydraulic facilities’ safety in a pumped storage hydropower (PSH. In this paper, power-off transient characteristics of a PSH station in pump mode was studied using a three-dimensional (3D unsteady numerical method based on a single-phase and volume of fluid (SP-VOF coupled model. The computational domain covered the entire flow system, including reservoirs, diversion tunnel, surge tank, pump-turbine unit, and tailrace tunnel. The fast changing flow fields and dynamic characteristic parameters, such as unit flow rate, runner rotate speed, pumping lift, and static pressure at measuring points were simulated, and agreed well with experimental results. During the power-off transient process, the PSH station underwent pump mode, braking mode, and turbine mode, with the dynamic characteristics and inner flow configurations changing significantly. Intense pressure fluctuation occurred in the region between the runner and guide vanes, and its frequency and amplitude were closely related to the runner’s rotation speed and pressure gradient, respectively. While the reversed flow rate of the PSH unit reached maximum, some parameters, such as static pressure, torque, and pumping lift would suddenly jump significantly, due to the water hammer effect. The moment these marked jumps occurred was commonly considered as the most dangerous moment during the power-off transient process, due to the blade passages being clogged by vortexes, and chaos pressure distribution on the blade surfaces. The results of this study confirm that 3D SP-VOF hybrid simulation is an effective method to reveal the hydraulic mechanism of the PSH transient process.

  16. Modelling of high-power diode-pumped erbium 3-µm fibre lasers

    NARCIS (Netherlands)

    Jackson, S.D.; King, T.A.; Pollnau, Markus

    2000-01-01

    We present theoretical calculations that relate to the cw operation of a high-power Er3+,Pr3+:ZBLAN double-clad fibre laser. Using the measured energy-transfer, energy-transfer-upconversion and cross-relaxation parameters relevant to Er3+-doped and Er3+,Pr3+-codoped ZBLAN, we compare the theoretical

  17. Investigating the adaptability of the multi-pump multi-piston power take-off system for a novel wave energy converter

    NARCIS (Netherlands)

    Wei, Y.; Barradas Berglind, J.J; van Rooij, M.; Prins, WA; Jayawardhana, B.; Vakis, A. I.

    2017-01-01

    In this work, a numerical model is developed in order to investigate the adaptability of the multi-pump multi-piston power take-off ((MPPTO)-P-2) system of a novel wave energy converter (WEC). This model is realized in the MATLAB/SIMULINK environment, using the multi-body dynamics solver Multibody

  18. Pumped Storage Power plants, Challenges and opportunities - Some conclusions; Stockage d'energie par pompage, defis et opportunites - Quelques conclusions

    Energy Technology Data Exchange (ETDEWEB)

    Viollet, Pierre-Louis; Roult, Didier; Mathex, Bruno; Ouaabi, Aziz; Louis, Frederic; Petitjean, Alain; Capuozzo, Vincent; Mazzouji, Farid; Prestat, Bruno; Nekrassov, Andrei; Caignaert, Guy; Vidil, Roland; Guilbaud, Claude; Metais, Olivier

    2011-11-15

    This document briefly synthesizes a conference which addressed the development of pumped storage power plants in the world, and social, economic, technical and scientific challenges related to this development which is closely related to the development of intermittent renewable energies (wind and solar energy). Current developments in different countries (Germany, Portugal, Switzerland, Norway, France and China) are evoked

  19. Thermomechanical piston pump development

    Science.gov (United States)

    Sabelman, E. E.

    1971-01-01

    A thermally powered reciprocating pump has been devised to replace or augment an electric pump for the transport of temperature-control fluid on the Thermoelectric Outer Planet Spacecraft (TOPS). The thermally powered pump operates cyclically by extracting heat energy from the fluid by means of a vapor-pressure expansion system and by using the heat to perform the mechanical work of pumping. A feasibility test unit has been constructed to provide an output of 7 cu in during a 10- to 100-second cycle. It operates with a fluid input temperature of 200 to 300 F and a heat sink temperature of 0 to 30 F.

  20. Measurement of the sound power incident on the walls of a reverberation room with near field acoustic holography

    DEFF Research Database (Denmark)

    Jacobsen, Finn; Tiana Roig, Elisabet

    2010-01-01

    area; and it has always been regarded as impossible to measure the sound power that is incident on a wall directly. This paper examines a new method of determining this quantity from sound pressure measurements at positions on the wall using 'statistically optimised near field acoustic holography...

  1. Techno-economic feasibility of the irrigation system for the grassland and farmland conservation in China: Photovoltaic vs. wind power water pumping

    International Nuclear Information System (INIS)

    Campana, Pietro Elia; Li, Hailong; Yan, Jinyue

    2015-01-01

    Highlights: • A novel design procedure for photovoltaic and wind power water pumping systems for irrigation is proposed. • The design procedure is proved conducting dynamic simulations of the water supply and water demand. • The technical and economic effectiveness of photovoltaic water pumping systems is proved simulating the crop yield response. - Abstract: Photovoltaic water pumping (PVWP) and wind power water pumping (WPWP) systems for irrigation represent innovative solutions for the restoration of degraded grassland and the conservation of farmland in remote areas of China. The present work systematically compares the technical and economic suitability of such systems, providing a general approach for the design and selection of the suitable technology for irrigation purposes. The model calculates the PVWP and WPWP systems sizes based on irrigation water requirement (IWR), solar irradiation and wind speed. Based on the lowest PVWP and WPWP systems components costs, WPWP systems can compete with PVWP systems only at high wind speed and low solar irradiation values. Nevertheless, taking into account the average specific costs both for PVWP and WPWP systems, it can be concluded that the most cost-effective solution for irrigation is site specific. According to the dynamic simulations, it has also been found that the PVWP systems present better performances in terms of matching between IWR and water supply compared to the WPWP systems. The mismatch between IWR and pumped water resulted in a reduction of crop yield. Therefore, the dynamic simulations of the crop yield are essential for economic assessment and technology selection

  2. Apparatus for facilitating the servicing of inverted canned pump motors having limited access space and restricted access time especially in nuclear power plants

    International Nuclear Information System (INIS)

    Matusz, J.M.

    1991-01-01

    This patent describes a service apparatus for one or more inverted canned motor pumps installed above a floor and beneath a steam generator in a nuclear or fossil power plant with limited access space and limited access time at least in the case of nuclear power plants, each of the canned motor pumps having a pump casing and a depending motor having a flange secured to a pump casing flange by tensioned studs with tightened nuts. It comprises a maintenance cart having a height greater than the height of the motor beneath the motor flange and further having a generally U-shaped frame means with an open vertical side that permits the cart to be moved horizontally such that the cart frame means can be moved under the pump casing to surround the depending motor; actuator means supported by the cart frame means and having translating arm means engageable with support means on the motor; means for operating the translating arm means to support, raise and lower the motor; means supported by the frame means to support the motor flange prior to raising the motor to its installed position and after the motor has been released from its installed position and lowered to the cart; work platform means provided on the cart frame means at an elevation beneath the motor flange elevation; and roller means provided on the bottom of the cart frame means to facilitate horizontal cart movement along the floor

  3. Pumps for nuclear facilities

    International Nuclear Information System (INIS)

    1999-01-01

    The guide describes how the Finnish Radiation and Nuclear Safety Authority (STUK) controls pumps and their motors at nuclear power plants and other nuclear facilities. The scope of the control is determined by the Safety Class of the pump in question. The various phases of the control are: (1) review of construction plan, (2) control of manufacturing, and construction inspection, (3) commissioning inspection, and (4) control during operation. STUK controls Safety Class 1, 2 and 3 pumps at nuclear facilities as described in this guide. STUK inspects Class EYT (non-nuclear) pumps separately or in connection with the commissioning inspections of the systems. This guide gives the control procedure and related requirements primarily for centrifugal pumps. However, it is also applied to the control of piston pumps and other pump types not mentioned in this guide

  4. IAEA expert review mission completes assessment of fuel cleaning incident at Paks Nuclear Power Plant

    International Nuclear Information System (INIS)

    2003-01-01

    Full text: The IAEA today completed its expert review mission to investigate the 10 April fuel cleaning incident at the Paks nuclear power plant in Hungary. The mission was requested by the Hungarian Government to provide an independent assessment of the causes and actions taken by the plant and Hungarian authorities. The team was composed of nuclear and radiation experts from the IAEA, Austria, Canada, Finland, Slovakia, the United Kingdom and the United States. In a press conference, team leader Miroslav Lipar highlighted the team's findings in five areas: On management, the team concluded that the Hungarian Atomic Energy Authority and Paks are committed to improving the safety of the plant. They noted that as a result of steam generator decontamination in previous years, deposits became attached to the fuel assemblies. A decision was made to clean the fuel and contract an outside company to develop and operate a fuel cleaning process. The team found that the design and operation of the fuel cleaning tank and system was not accomplished in the manner prescribed by the IAEA Safety Standards. Neither the Hungarian Atomic Energy Authority nor Paks used conservative decision-making in their safety assessments for this unproven fuel cleaning system. The team determined that there was an over-reliance on the contractor that had been selected for the design, management and operation of the fuel cleaning system. Time pressure related to a prescribed fuel outage schedule, combined with confidence generated by previous successful fuel cleaning operations, contributed to a weak assessment of a new design and operation, which involved fuel directly removed from the reactor following a planned shutdown. On regulatory oversight, the IAEA team concluded that the Hungarian Atomic Energy Authority underestimated the safety significance of the proposed designs for the fuel cleaning system, which resulted in a less than rigorous review and assessment than should have been necessary

  5. Formation of nanosecond SBS-compressed pulses for pumping an ultra-high power parametric amplifier

    Science.gov (United States)

    Kuz’min, A. A.; Kulagin, O. V.; Rodchenkov, V. I.

    2018-04-01

    Compression of pulsed Nd : glass laser radiation under stimulated Brillouin scattering (SBS) in perfluorooctane is investigated. Compression of 16-ns pulses at a beam diameter of 30 mm is implemented. The maximum compression coefficient is 28 in the optimal range of laser pulse energies from 2 to 4 J. The Stokes pulse power exceeds that of the initial laser pulse by a factor of about 11.5. The Stokes pulse jitter (fluctuations of the Stokes pulse exit time from the compressor) is studied. The rms spread of these fluctuations is found to be 0.85 ns.

  6. Pressure fluctuation analysis for charging pump of chemical and volume control system of nuclear power plant

    Directory of Open Access Journals (Sweden)

    Chen Qiang

    2016-01-01

    Full Text Available Equipment Failure Root Cause Analysis (ERCA methodology is employed in this paper to investigate the root cause for charging pump’s pressure fluctuation of chemical and volume control system (RCV in pressurized water reactor (PWR nuclear power plant. RCA project task group has been set up at the beginning of the analysis process. The possible failure modes are listed according to the characteristics of charging pump’s actual pressure fluctuation and maintenance experience during the analysis process. And the failure modes are analysed in proper sequence by the evidence-collecting. It suggests that the gradually untightened and loosed shaft nut in service should be the root cause. And corresponding corrective actions are put forward in details.

  7. Power extraction problem in the externally pumped 16 μm gasdynamic lasers: modelling and optimization

    International Nuclear Information System (INIS)

    Bahrampour, A R; Farrahi, R-M

    2003-01-01

    Power extraction problem in the gasdynamic lasers is studied by developing a quasi-one-dimensional model. Flow variables and characteristic parameters of the 16 μm output beam are obtained by numerical calculations. It is shown numerically that this type of the gasdynamic lasers can deliver a large amount of energy in high repetition rate. Based on this model, the output energy of the laser is optimized by employing the variational method. The most important parameter, the optimal nozzle-shape, is obtained by defining the family of optimal shapes. It is shown that the supersonic part of each member of this family consists of an acceleration part, an uniformization part which is a curved surface and is smoothly connected to the first part, and a relaxation duct. Finally, numerical optimization with respect to several parameters is carried out

  8. ALT-I pump limiter experiments

    International Nuclear Information System (INIS)

    Goebel, D.M.; Conn, R.W.; Campbell, G.A.

    1987-09-01

    Results from the ALT-I pump limiter experiments in TEXTOR are presented. ALT-I has demonstrated control of the plasma density in a high recycling tokamak by pumping up to 15% of the core efflux. The closed pump limiter designs with restricted entrance geometries to reduce the backflow of neutral gas to the plasma remove over 50% of the ion flux incident on the collection slot. Up to 80% of the entrance ion flux is removed when the edge electron temperature is less than 10 eV and plasma-neutral gas interactions are minimized inside the limiter. Results from a 3-D Monte Carlo neutral gas transport code agree closely with these experimental results. The compound curvature of the head is found to distribute the heat over the surface as predicted in the original designs. Impurity removal experiments demonstrate that significant helium exhaust can be achieved with a pump limiter. During ohmic heating in TEXTOR, the energy and particle confinement times are proportional to the line averaged core density. With ICRH auxiliary heating, tau/sub E/ follow L-mode scaling independent of particle removal by the pump limiter. Pump limiter operation does not directly modify the SOL plasma density and electron temperature, but controls the core plasma density by changing the global recycling at the boundary. The global particle confinement, the particle flux to the limiter, and the edge electron temperature follow the changes in the core density and auxiliary heating power. 25 refs

  9. Diode-side-pumped intracavity frequency-doubled Nd:YAG/BaWO4 Raman laser generating average output power of 3.14 W at 590 nm.

    Science.gov (United States)

    Li, Shutao; Zhang, Xingyu; Wang, Qingpu; Zhang, Xiaolei; Cong, Zhenhua; Zhang, Huaijin; Wang, Jiyang

    2007-10-15

    We report a linear-cavity high-power all-solid-state Q-switched yellow laser. The laser source comprises a diode-side-pumped Nd:YAG module that produces 1064 nm fundamental radiation, an intracavity BaWO(4) Raman crystal that generates a first-Stokes laser at 1180 nm, and a KTP crystal that frequency doubles the first-Stokes laser to 590 nm. A convex-plane cavity is employed in this configuration to counteract some of the thermal effect caused by high pump power. An average output power of 3.14 W at 590 nm is obtained at a pulse repetition frequency of 10 kHz.

  10. Power and efficiency scaling of diode pumped Cr:LiSAF lasers: 770-1110 nm tuning range and frequency doubling to 387-463 nm.

    Science.gov (United States)

    Demirbas, Umit; Baali, Ilyes

    2015-10-15

    We report significant average power and efficiency scaling of diode-pumped Cr:LiSAF lasers in continuous-wave (cw), cw frequency-doubled, and mode-locked regimes. Four single-emitter broad-area laser diodes around 660 nm were used as the pump source, which provided a total pump power of 7.2 W. To minimize thermal effects, a 20 mm long Cr:LiSAF sample with a relatively low Cr-concentration (0.8%) was used as the gain medium. In cw laser experiments, 2.4 W of output power, a slope efficiency of 50%, and a tuning range covering the 770-1110 nm region were achieved. Intracavity frequency doubling with beta-barium borate (BBO) crystals generated up to 1160 mW of blue power and a record tuning range in the 387-463 nm region. When mode locked with a saturable absorber mirror, the laser produced 195 fs pulses with 580 mW of average power around 820 nm at a 100.3 MHz repetition rate. The optical-to-optical conversion efficiency of the system was 33% in cw, 16% in cw frequency-doubled, and 8% in cw mode-locked regimes.

  11. Penis Pump

    Science.gov (United States)

    ... your appointment might be less involved. Choosing a penis pump Some penis pumps are available without a ... it doesn't get caught in the ring. Penis pumps for penis enlargement Many advertisements in magazines ...

  12. Mode-locked Ti:sapphire laser oscillators pumped by wavelength-multiplexed laser diodes

    Science.gov (United States)

    Sugiyama, Naoto; Tanaka, Hiroki; Kannari, Fumihiko

    2018-05-01

    We directly pumped a Ti:sapphire laser by combining 478 and 520 nm laser diodes to prevent the effect of absorption loss induced by the pump laser of shorter wavelengths (∼450 nm). We obtain a continuous-wave output power of 660 mW at a total incident pump power of 3.15 W. We demonstrate mode locking using a semiconductor saturable absorber mirror, and 126 fs pulses were obtained at a repetition rate of 192 MHz. At the maximum pump power, the average output power is 315 mW. Shorter mode-locked pulses of 42 and 48 fs were respectively achieved by Kerr-lens mode locking with average output powers of 280 and 360 mW at a repetition rate of 117 MHz.

  13. A Fourier Approximation Method for the Multi-Pump Multi-Piston Power Take-Off System

    NARCIS (Netherlands)

    Wei, Yanji; Barradas Berglind, Jose de Jesus; Muhammad Zaki Almuzakki, M.; van Rooij, Marijn; Wang, Ruoqi; Jayawardhana, Bayu; Vakis, Antonis I.

    2018-01-01

    In this work, a frequency-domain method for the numerical solution of the nonlinear dynamics of a wave energy converter with a pumping system is presented. To this end, a finite Fourier series is used to describe the nonlinear force components, i.e., the pumping force. The dynamics of the buoy and

  14. Diode-pumped high power 2.7 μm Er:Y2O3 ceramic laser at room temperature

    Science.gov (United States)

    Wang, Li; Huang, Haitao; Shen, Deyuan; Zhang, Jian; Chen, Hao; Tang, Dingyuan

    2017-09-01

    Investigation of room temperature laser performance of the polycrystalline Er:Y2O3 ceramic at 2.7 μm with respect to dopant concentrations was conducted. With 7 at.% Er3+ concentration Er:Y2O3 ceramic as laser gain medium, over 2.05 W of CW output power at 2.7 μm was generated with a slope efficiency of 11.1% with respect to the absorbed LD pump power. The prospects for improvement in lasing efficiency and output power are considered.

  15. Detection of pump degradation

    International Nuclear Information System (INIS)

    Greene, R.H.; Casada, D.A.; Ayers, C.W.

    1995-08-01

    This Phase II Nuclear Plant Aging Research study examines the methods of detecting pump degradation that are currently employed in domestic and overseas nuclear facilities. This report evaluates the criteria mandated by required pump testing at U.S. nuclear power plants and compares them to those features characteristic of state-of-the-art diagnostic programs and practices currently implemented by other major industries. Since the working condition of the pump driver is crucial to pump operability, a brief review of new applications of motor diagnostics is provided that highlights recent developments in this technology. The routine collection and analysis of spectral data is superior to all other technologies in its ability to accurately detect numerous types and causes of pump degradation. Existing ASME Code testing criteria do not require the evaluation of pump vibration spectra but instead overall vibration amplitude. The mechanical information discernible from vibration amplitude analysis is limited, and several cases of pump failure were not detected in their early stages by vibration monitoring. Since spectral analysis can provide a wealth of pertinent information concerning the mechanical condition of rotating machinery, its incorporation into ASME testing criteria could merit a relaxation in the monthly-to-quarterly testing schedules that seek to verify and assure pump operability. Pump drivers are not included in the current battery of testing. Operational problems thought to be caused by pump degradation were found to be the result of motor degradation. Recent advances in nonintrusive monitoring techniques have made motor diagnostics a viable technology for assessing motor operability. Motor current/power analysis can detect rotor bar degradation and ascertain ranges of hydraulically unstable operation for a particular pump and motor set. The concept of using motor current or power fluctuations as an indicator of pump hydraulic load stability is presented

  16. Detection of pump degradation

    Energy Technology Data Exchange (ETDEWEB)

    Greene, R.H.; Casada, D.A.; Ayers, C.W. [and others

    1995-08-01

    This Phase II Nuclear Plant Aging Research study examines the methods of detecting pump degradation that are currently employed in domestic and overseas nuclear facilities. This report evaluates the criteria mandated by required pump testing at U.S. nuclear power plants and compares them to those features characteristic of state-of-the-art diagnostic programs and practices currently implemented by other major industries. Since the working condition of the pump driver is crucial to pump operability, a brief review of new applications of motor diagnostics is provided that highlights recent developments in this technology. The routine collection and analysis of spectral data is superior to all other technologies in its ability to accurately detect numerous types and causes of pump degradation. Existing ASME Code testing criteria do not require the evaluation of pump vibration spectra but instead overall vibration amplitude. The mechanical information discernible from vibration amplitude analysis is limited, and several cases of pump failure were not detected in their early stages by vibration monitoring. Since spectral analysis can provide a wealth of pertinent information concerning the mechanical condition of rotating machinery, its incorporation into ASME testing criteria could merit a relaxation in the monthly-to-quarterly testing schedules that seek to verify and assure pump operability. Pump drivers are not included in the current battery of testing. Operational problems thought to be caused by pump degradation were found to be the result of motor degradation. Recent advances in nonintrusive monitoring techniques have made motor diagnostics a viable technology for assessing motor operability. Motor current/power analysis can detect rotor bar degradation and ascertain ranges of hydraulically unstable operation for a particular pump and motor set. The concept of using motor current or power fluctuations as an indicator of pump hydraulic load stability is presented.

  17. Comparison of ichthyoplankton collected with a pump and stationary plankton nets in a power plant discharge canal

    International Nuclear Information System (INIS)

    King, L.R.; Smith, B.A.; Kellogg, R.L.; Perry, E.S.

    1981-01-01

    Simultaneous 15-minute ichthyoplankton abundance samples were taken at the Indian Point Generating Station discharge canal using a 6-in. pump/larval table system and stationary 0.5-m diameter conical plankton nets. A total of 79 paired samples were collected on 6 days in June and July 1978. The average density of total ichthyoplankton collected was 3.0/m 3 for pump samples and 3.3/m 3 net samples. No significant differences (P > 0.05) were detected between density estimates for total ichthyoplankton determined from pump and net samples for eggs, yolk-sac larvae, post yolk-sac larvae, and juveniles. Thirteen out of 14 taxa compared showed no significant difference betwen pump and net collections. The pump and net collection systems were equally effective for estimating densities of most ichthyoplankton

  18. A SAS/AF application to administrate and query a file of incidents occurring in foreign nuclear power plants

    International Nuclear Information System (INIS)

    Durbec, V.

    1994-07-01

    The Research and Development Division of Electricite de France has a file of incidents occurring in foreign pressurized water nuclear power stations. These incidents have an impact either on safety or reliability. The file is stored on an IBM 3090. For each incident, a docket is assigned, containing the identity of the nuclear plant and information in the form of code or text on the incident. An application has been built with the SAS System under IBM (MVS) in order to: - allow the input of new nuclear plant identities, monthly operating coefficients and new incidents; - subset data from each SAS data set, according to selection criteria (country, manufacturers, period, materials, etc...) in the form of coded fields and characters strings; -calculate simple statistical analyses on subset data (histograms of break duration, distribution of operating coefficients, cross-tabulation tables of sets and materials which bring about the incident) with a restitution on screen and/or printer; - edit an annual booklet containing general results of functioning of plants. After validation, data retrieved from the database are used in probabilistic safety analysis of nuclear power plants and materials designing studies (comparison with French materials, identification of factors having an impact on performance). The application is an interactive menu-driven tool and contains data entry screens (for new data or selection criteria). These screens have been built with SAS/AF software and Screen Control Language. Data selection and processing have been developed with Base SAS and SAS/GRAPH software. (author). 1 ref., 6 figs., 2 tabs

  19. Summary of Test Results From a 1 kW(sub e)-Class Free-Piston Stirling Power Convertor Integrated With a Pumped NaK Loop

    Science.gov (United States)

    Briggs, Maxwell H.; Geng, Steven M.; Pearson, J. Boise; Godfroy, Thomas J.

    2010-01-01

    As a step towards development of Stirling power conversion for potential use in Fission Surface Power (FSP) systems, a pair of commercially available 1 kW class free-piston Stirling convertors was modified to operate with a NaK liquid metal pumped loop for thermal energy input. This was the first-ever attempt at powering a free-piston Stirling engine with a pumped liquid metal heat source and is a major FSP project milestone towards demonstrating technical feasibility. The tests included performance mapping the convertors over various hot and cold-end temperatures, piston amplitudes and NaK flow rates; and transient test conditions to simulate various start-up and fault scenarios. Performance maps of the convertors generated using the pumped NaK loop for thermal input show increases in power output over those measured during baseline testing using electric heating. Transient testing showed that the Stirling convertors can be successfully started in a variety of different scenarios and that the convertors can recover from a variety of fault scenarios.

  20. Summary of Test Results From a 1 kWe-Class Free-Piston Stirling Power Convertor Integrated With a Pumped NaK Loop

    Science.gov (United States)

    Briggs, Maxwell H.; Geng, Steven M.; Pearson, J. Boise; Godfroy, Thomas J.

    2010-01-01

    As a step towards development of Stirling power conversion for potential use in Fission Surface Power (FSP) systems, a pair of commercially available 1 kW class free-piston Stirling convertors was modified to operate with a NaK liquid metal pumped loop for thermal energy input. This was the first-ever attempt at powering a free-piston Stirling engine with a pumped liquid metal heat source and is a major FSP project milestone towards demonstrating technical feasibility. The tests included performance mapping the convertors over various hot and cold-end temperatures, piston amplitudes and NaK flow rates; and transient test conditions to simulate various start-up and fault scenarios. Performance maps of the convertors generated using the pumped NaK loop for thermal input show increases in power output over those measured during baseline testing using electric heating. Transient testing showed that the Stirling convertors can be successfully started in a variety of different scenarios and that the convertors can recover from a variety of fault scenarios.

  1. Electrokinetic pumps and actuators

    International Nuclear Information System (INIS)

    Phillip M. Paul

    2000-01-01

    Flow and ionic transport in porous media are central to electrokinetic pumping as well as to a host of other microfluidic devices. Electrokinetic pumping provides the ability to create high pressures (to over 10,000 psi) and high flow rates (over 1 mL/min) with a device having no moving parts and all liquid seals. The electrokinetic pump (EKP) is ideally suited for applications ranging from a high pressure integrated pump for chip-scale HPLC to a high flow rate integrated pump for forced liquid convection cooling of high-power electronics. Relations for flow rate and current fluxes in porous media are derived that provide a basis for analysis of complex microfluidic systems as well as for optimization of electrokinetic pumps

  2. Electrokinetic pumps and actuators

    Energy Technology Data Exchange (ETDEWEB)

    Phillip M. Paul

    2000-03-01

    Flow and ionic transport in porous media are central to electrokinetic pumping as well as to a host of other microfluidic devices. Electrokinetic pumping provides the ability to create high pressures (to over 10,000 psi) and high flow rates (over 1 mL/min) with a device having no moving parts and all liquid seals. The electrokinetic pump (EKP) is ideally suited for applications ranging from a high pressure integrated pump for chip-scale HPLC to a high flow rate integrated pump for forced liquid convection cooling of high-power electronics. Relations for flow rate and current fluxes in porous media are derived that provide a basis for analysis of complex microfluidic systems as well as for optimization of electrokinetic pumps.

  3. Mega akku in the Alps. Pumped-storage power plant Limberg II in Kaprun; Mega-Akku in den Alpen. Pumpspeicherwerk Limberg II in Kaprun

    Energy Technology Data Exchange (ETDEWEB)

    Steyrer, Peter [POEYRY Energy GmbH, Salzburg (Austria). Konstruktiver Wasserbau

    2011-05-15

    Since the 1920ies, the Kaprun valley and the area around the Grossglockner are a subject for project planning of hydropower plants. The power plant group Glockner-Kaprun with upper and main stage was completed in 1955. Since 1970, various options for expansion were examined by a pumped storage plant. The result of these investigations is the project Limberg II, which is realized since 2007 and completed this year.

  4. Centrifugal pumps

    CERN Document Server

    Anderson, HH

    1981-01-01

    Centrifugal Pumps describes the whole range of the centrifugal pump (mixed flow and axial flow pumps are dealt with more briefly), with emphasis on the development of the boiler feed pump. Organized into 46 chapters, this book discusses the general hydrodynamic principles, performance, dimensions, type number, flow, and efficiency of centrifugal pumps. This text also explains the pumps performance; entry conditions and cavitation; speed and dimensions for a given duty; and losses. Some chapters further describe centrifugal pump mechanical design, installation, monitoring, and maintenance. The

  5. Test Results From a Pair of 1-kWe Dual-Opposed Free-Piston Stirling Power Convertors Integrated With a Pumped NaK Loop

    Science.gov (United States)

    Geng, Steven M.; Briggs, Maxwell H.; Penswick, L. Barry; Pearson, J. Boise; Godfroy, Thomas J.

    2011-01-01

    As a step towards development of Stirling power conversion for potential use in Fission Surface Power (FSP) systems, a pair of commercially available 1-kW-class free-piston Stirling convertors were modified to operate with a NaK (sodium (Na) and potassium (K)) liquid metal pumped loop for thermal energy input. This was the first-ever attempt at powering a free-piston Stirling engine with a pumped liquid metal heat source and is a major FSP project milestone towards demonstrating technical feasibility. The convertors were successfully tested at the Marshall Space Flight Center (MSFC) from June 6 through July 14, 2009. The convertors were operated for a total test time of 66 hr and 16 min. The tests included (a) performance mapping the convertors over various hot- and cold-end temperatures, piston amplitudes, and NaK flow rates and (b) transient test conditions to simulate various startup (i.e., low-, medium-, and high-temperature startups) and fault scenarios (i.e., loss of heat source, loss of NaK pump, convertor stall, etc.). This report documents the results of this testing

  6. Portable photovoltaic irrigation pumps

    Energy Technology Data Exchange (ETDEWEB)

    Furber, J. D.

    1980-07-01

    Experiences in developing a solar-powered irrigation pump to meet the needs of poor farmers in developing nations are summarized. The design which evolved is small and portable, employing a high-efficiency electric pump, powered by photovoltaic panels. Particular emphasis is placed on how the system works, and on early field problems experienced with the first prototypes. The resolution of these problems and the performance of actual systems in various countries is presented and user responses are noted.

  7. Laser-diode pumped 40-W Yb:YAG ceramic laser.

    Science.gov (United States)

    Hao, Qiang; Li, Wenxue; Pan, Haifeng; Zhang, Xiaoyi; Jiang, Benxue; Pan, Yubai; Zeng, Heping

    2009-09-28

    We demonstrated a high-power continuous-wave (CW) polycrystalline Yb:YAG ceramic laser pumped by fiber-pigtailed laser diode at 968 nm with 400 mum fiber core. The Yb:YAG ceramic laser performance was compared for different Yb(3+) ion concentrations in the ceramics by using a conventional end-pump laser cavity consisting of two flat mirrors with output couplers of different transmissions. A CW laser output of 40 W average power with M(2) factor of 5.8 was obtained with 5 mol% Yb concentration under 120 W incident pump power. This is to the best of our knowledge the highest output power in end-pumped bulk Yb:YAG ceramic laser.

  8. The flooding incident at the Aagesta pressurized heavy water nuclear power plant

    International Nuclear Information System (INIS)

    Dahlgren, C.

    1996-03-01

    This work is an independent investigation of the consequences of the flooding incident at the Aagesta HPWR, Stockholm in May 1969. The basis for the report is an incident in which, due to short circuits in the wiring because of flooding water, the ECCS is momentarily subjected to a pressure much higher than designed for. The hypothetical scenario analyzed here is the case in which the ECCS breaks due to the high pressure. As a consequence of the break, the pressure and the water level in the reactor vessel decrease. The report is divided into three parts; First the Aagesta HPWR is described as well as the chronology of the incident, an analysis of the effects of a hypothetical break in the ECCS is then developed. The second part is a scoping analysis of the incident, modeling the pressure decrease and mass flow rate out of the break. The heat-up of the core, and the core degradation was modeled as well. The third part is formed by a RELAP5/MOD3.1 modeling of the Aagesta HPWR. 18 refs

  9. Wheelchair incidents

    NARCIS (Netherlands)

    Drongelen AW van; Roszek B; Hilbers-Modderman ESM; Kallewaard M; Wassenaar C; LGM

    2002-01-01

    This RIVM study was performed to gain insight into wheelchair-related incidents with powered and manual wheelchairs reported to the USA FDA, the British MDA and the Dutch Center for Quality and Usability Research of Technical Aids (KBOH). The data in the databases do not indicate that incidents with

  10. Diagnosis of feed water, condensate and circulation pumps in electric power plants; Diagnostico de bombas de agua de alimentacion, condensado y circulacion en centrales termoelectricas

    Energy Technology Data Exchange (ETDEWEB)

    Colin Castellanos, Carlos [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1991-12-31

    This article encompasses the analysis and the diagnosis of the pump`s performance that belong to the feed water, condensate and circulation systems of a fossil fuel power plant (FFPP). For this analysis pressure, temperature and flow data were collected by means of field installed instrumentation, as well as these pumps` motors current consumption and voltage values. Later on, the capacity and the pump efficiency are calculated and compared with the design values, to obtain the actual performance of the equipment with the aid of their characteristic curves (Q vs {Delta}H, Q vs {pi}, etc.). [Espanol] Este articulo comprende el analisis y el diagnostico de comportamiento de las bombas, las cuales forman parte de los sistemas de agua de alimentacion, condensado y circulacion de una central termoelectrica (CT). Para el analisis se recopilan datos de presion, temperatura y flujo de la instrumentacion instalada en campo, asi como de los valores de consumo de corriente y de voltaje en los motores de dichas bombas. Posteriormente, se calcula la capacidad y la eficiencia de las bombas en operacion real y se comparan con los valores de diseno, para obtener el comportamiento real del equipo con ayuda de las curvas caracteristicas (Q vs {Delta}H, Q vs {pi}, etcetera).

  11. Diagnosis of feed water, condensate and circulation pumps in electric power plants; Diagnostico de bombas de agua de alimentacion, condensado y circulacion en centrales termoelectricas

    Energy Technology Data Exchange (ETDEWEB)

    Colin Castellanos, Carlos [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1992-12-31

    This article encompasses the analysis and the diagnosis of the pump`s performance that belong to the feed water, condensate and circulation systems of a fossil fuel power plant (FFPP). For this analysis pressure, temperature and flow data were collected by means of field installed instrumentation, as well as these pumps` motors current consumption and voltage values. Later on, the capacity and the pump efficiency are calculated and compared with the design values, to obtain the actual performance of the equipment with the aid of their characteristic curves (Q vs {Delta}H, Q vs {pi}, etc.). [Espanol] Este articulo comprende el analisis y el diagnostico de comportamiento de las bombas, las cuales forman parte de los sistemas de agua de alimentacion, condensado y circulacion de una central termoelectrica (CT). Para el analisis se recopilan datos de presion, temperatura y flujo de la instrumentacion instalada en campo, asi como de los valores de consumo de corriente y de voltaje en los motores de dichas bombas. Posteriormente, se calcula la capacidad y la eficiencia de las bombas en operacion real y se comparan con los valores de diseno, para obtener el comportamiento real del equipo con ayuda de las curvas caracteristicas (Q vs {Delta}H, Q vs {pi}, etcetera).

  12. Efficient diode-side-pumped Nd:YVO4 slab laser in different generation regimes

    International Nuclear Information System (INIS)

    Zinov'ev, A P; Antipov, Oleg L; Novikov, A A

    2009-01-01

    A diode-side-pumped Nd:YVO 4 slab laser with the grazing-incidence bounce geometry of the cavity is studied experimentally. Upon continuous pumping different lasing regimes are realised, namely, cw, passive and active Q-switching and passive mode-locking. The resonator parameters are optimised to achieve the maximum cw output power (∼17 W) and high-quality beam (M 2 ∼ 1.3). (lasers)

  13. The Multidisk Diode-Pumped High Power Yb:YAG Laser Amplifier of High-Intensity Laser System with 1 kHz Repetition Rate

    Science.gov (United States)

    Kuptsov, G. V.; Petrov, V. V.; Petrov, V. A.; Laptev, A. V.; Kirpichnikov, A. V.; Pestryakov, E. V.

    2018-04-01

    The source of instabilities in the multidisk diode-pumped high power Yb:YAG laser amplifier with cryogenic closed-loop cooling in the laser amplification channel of the high-intensity laser system with 1 kHz repetition rate was determined. Dissected copper mounts were designed and used to suppress instabilities and to achieve repeatability of the system. The equilibrium temperature dependency of the active elements on average power was measured. The seed laser for the multidisk amplifier was numerically simulated and designed to allow one to increase pulses output energy after the amplifier up to 500 mJ.

  14. Sensationalization of reports of the Kashiwazaki-Kariwa nuclear power plant incident. A search for top stories in Japanese newspapers

    International Nuclear Information System (INIS)

    Nakajima, Tatsuo

    2009-01-01

    The purpose of this study is to clarify whether reports of nuclear accidents, particularly the damage done by the 2007 Niigata-ken Chuetsu-Oki earthquake to the Kashiwazaki-Kariwa nuclear power plant in Niigata, Japan, tend to be exaggerated by national media. News related to the Kashiwazaki incident was compared with that for nine other high-profile accidents in Japan, including the 1999 JCO critical accident and the 2005 JR-West Fukuchiyama Line derailment. Articles were extracted from four national newspapers in Japan, focusing on the 30 issues immediately following each accident. The numbers of articles and top stories related to the relevant accidents appearing on the front pages of the newspapers were counted. Based on these numbers, the Kashiwazaki incident was reported at a level similar to the JCO accident and Fukuchiyama line derailment in some newspapers, although these two accidents were more serious than the Kashiwazaki incident. This suggests that at least some newspapers in Japan sensationalized reports of the Kashiwazaki incident. (author)

  15. Detection of pump degradation

    International Nuclear Information System (INIS)

    Casada, D.

    1995-01-01

    There are a variety of stressors that can affect the operation of centrifugal pumps. Although these general stressors are active in essentially all centrifugal pumps, the stressor level and the extent of wear and degradation can vary greatly. Parameters that affect the extent of stressor activity are manifold. In order to assure the long-term operational readiness of a pump, it is important to both understand the nature and magnitude of the specific degradation mechanisms and to monitor the performance of the pump. The most commonly applied method of monitoring the condition of not only pumps, but rotating machinery in general, is vibration analysis. Periodic or continuous special vibration analysis is a cornerstone of most pump monitoring programs. In the nuclear industry, non-spectral vibration monitoring of safety-related pumps is performed in accordance with the ASME code. Pump head and flow rate are also monitored, per code requirements. Although vibration analysis has dominated the condition monitoring field for many years, there are other measures that have been historically used to help understand pump condition; advances in historically applied technologies and developing technologies offer improved monitoring capabilities. The capabilities of several technologies (including vibration analysis, dynamic pressure analysis, and motor power analysis) to detect the presence and magnitude of both stressors and resultant degradation are discussed

  16. Safety of the batteries and power units used in insulin pumps: A pilot cross-sectional study by the Association for the Study of Innovative Diabetes Treatment in Japan.

    Science.gov (United States)

    Murata, Takashi; Nirengi, Shinsuke; Sakane, Naoki; Kuroda, Akio; Hirota, Yushi; Matsuhisa, Munehide; Namba, Mitsuyoshi; Kobayashi, Tetsuro

    2017-10-21

    We investigated the safety of the batteries and power units used in insulin pumps in Japan. A self-administered questionnaire was sent to the 201 members of the Association for Innovative Diabetes Treatment in Japan. A total of 56 members responded, and among the 1,499 active devices, 66 had episodes of trouble related to the batteries and power units. The ratio of reported troubles to the number of insulin pumps was significantly higher in insulin pumps with a continuous glucose monitoring sensor compared with insulin pumps without a continuous glucose monitoring sensor (odds ratio 2.82, P batteries varied; alkaline batteries purchased at drug stores and other shops accounted for 19.7%. Termination of battery life within 72 h of use was reported most frequently (50.0%), suspension of the insulin pump (21.2%) and leakage of the battery fluid (4.5%) followed. A total of 53.2% of the reported insulin pumps needed to be replaced, and 37.1% of them recovered after replacement of the battery. As trouble related to the batteries and power units of insulin pumps was frequent, practical guidance should be provided to respective patients regarding the use of reliable batteries, and to be well prepared for unexpected insulin pump failure. © 2017 The Authors. Journal of Diabetes Investigation published by Asian Association for the Study of Diabetes (AASD) and John Wiley & Sons Australia, Ltd.

  17. Effect of Exogenous Albumin on the Incidence of Postoperative Acute Kidney Injury in Patients Undergoing Off-pump Coronary Artery Bypass Surgery with a Preoperative Albumin Level of Less Than 4.0 g/dl.

    Science.gov (United States)

    Lee, Eun-Ho; Kim, Wook-Jong; Kim, Ji-Yeon; Chin, Ji-Hyun; Choi, Dae-Kee; Sim, Ji-Yeon; Choo, Suk-Jung; Chung, Cheol-Hyun; Lee, Jae-Won; Choi, In-Cheol

    2016-05-01

    Hypoalbuminemia may increase the risk of acute kidney injury (AKI). The authors investigated whether the immediate preoperative administration of 20% albumin solution affects the incidence of AKI after off-pump coronary artery bypass surgery. In this prospective, single-center, randomized, parallel-arm double-blind trial, 220 patients with preoperative serum albumin levels less than 4.0 g/dl were administered 100, 200, or 300 ml of 20% human albumin according to the preoperative serum albumin level (3.5 to 3.9, 3.0 to 3.4, or less than 3.0 g/dl, respectively) or with an equal volume of saline before surgery. The primary outcome measure was AKI incidence after surgery. Postoperative AKI was defined by maximal AKI Network criteria based on creatinine changes. Patient characteristics and perioperative data except urine output during surgery were similar between the two groups studied, the albumin group and the control group. Urine output (median [interquartile range]) during surgery was higher in the albumin group (550 ml [315 to 980]) than in the control group (370 ml [230 to 670]; P = 0.006). The incidence of postoperative AKI in the albumin group was lower than that in the control group (14 [13.7%] vs. 26 [25.7%]; P = 0.048). There were no significant between-group differences in severe AKI, including renal replacement therapy, 30-day mortality, and other clinical outcomes. There were no significant adverse events. Administration of 20% exogenous albumin immediately before surgery increases urine output during surgery and reduces the risk of AKI after off-pump coronary artery bypass surgery in patients with a preoperative serum albumin level of less than 4.0 g/dl.

  18. Analysis of the possibility to cover energy demand from renewable sources on the motive power of the heat pump in low-energy building

    Directory of Open Access Journals (Sweden)

    Knapik Maciej

    2017-01-01

    Full Text Available The article presents the problem of the demand for electricity for the heat pump and an analysis of the coverage of this demand by renewable energy sources such as wind turbines and photovoltaic cells, which generate electricity in low energy buildings. Low-energy and passive constructions are a result of introduction of new ideas in building design process. Their main objective is to achieve a significant reduction in demand for renewable primary energy, necessary to cover the needs of these buildings, mostly related to their heating, ventilation and domestic hot water This article presents the results of numerical analysis and calculations performed in MATLAB software, based on typical meteorological years. The results showed that renewable energy sources, can allow to cover a significant demand for electricity, that is required to power the heat pump it is economically justified.

  19. Modeling and optimization of a heat-pump-assisted high temperature proton exchange membrane fuel cell micro-combined-heat-and-power system for residential applications

    DEFF Research Database (Denmark)

    Arsalis, Alexandros; Kær, Søren Knudsen; Nielsen, Mads Pagh

    2015-01-01

    In this study a micro-combined-heat-and-power (micro-CHP) system is coupled to a vapor-compression heat pump to fulfill the residential needs for heating (space heating and water heating) and electricity in detached single-family households in Denmark. Such a combination is assumed to be attractive...... for application, since both fuel cell technology and electric heat pumps are found to be two of the most efficient technologies for generation/conversion of useful energy. The micro-CHP system is fueled with natural gas and includes a fuel cell stack, a fuel processor and other auxiliary components. The micro......-CHP system assumes heat-led operation, to avoid dumping of heat and the use of complicated thermal energy storage. The overall system is grid-interconnected to allow importing and exporting of electricity as necessary. In this study emphasis is given on the operational characterization of the system...

  20. High-power Femtosecond Optical Parametric Amplification at 1 kHz in BiB(3)O(6) pumped at 800 nm.

    Science.gov (United States)

    Petrov, Valentin; Noack, Frank; Tzankov, Pancho; Ghotbi, Masood; Ebrahim-Zadeh, Majid; Nikolov, Ivailo; Buchvarov, Ivan

    2007-01-22

    Substantial power scaling of a travelling-wave femtosecond optical parametric amplifier, pumped near 800 nm by a 1 kHz Ti:sapphire laser amplifier, is demonstrated using monoclinic BiB(3)O(6) in a two stage scheme with continuum seeding. Total energy output (signal plus idler) exceeding 1 mJ is achieved, corresponding to an intrinsic conversion efficiency of approximately 32% for the second stage. The tunability extends from 1.1 to 2.9 microm. The high parametric gain and broad amplification bandwidth of this crystal allowed the maintenance of the pump pulse duration, leading to pulse lengths less than 140 fs, both for the signal and idler pulses, even at such high output levels.

  1. Diode-Pumped Quasi-Three-Level Passively Q-Switched Nd:GGG Laser with a Codoped Nd,Cr:YAG Saturable Absorber

    International Nuclear Information System (INIS)

    Kun-Na, He; Chun-Qing, Gao; Zhi-Yi, Wei; Qi-Nan, Li; Zhi-Guo, Zhang; Hai-He, Jiang; Shao-Tang, Yin; Qing-Li, Zhang

    2009-01-01

    We demonstrate the first quasi-three-level passively Q-switched Nd:GGG laser at 937 nm using a Nd,Cr:YAG crystal as the saturable absorber. The dependences of the average output power, the repetition rate and the pulse width on the incident pump power are obtained. A maximum average output power of 1.18 W with repetition rate of 35 kHz and pulse width of 45 ns is achieved at an incident pump power of 18.3 W. The corresponding optical-to-optical and slope efficiencies are 6% and 10%, respectively

  2. Fault diagnosis technology of nuclear power plant based on weighted degree of grey incidence of optimized entropy

    International Nuclear Information System (INIS)

    Kong Yan; Li Zhenjie; Ren Xin; Wang Chuan

    2012-01-01

    Nuclear power plants (NPPs) are very complex grey system, in which faults and signs have not certain corresponding connection, so it's hard to diagnose the faults. A model based on weighted degree of grey incidence of optimized entropy was proposed according to the problem. To validate the system, some simulation experiments about the typical faults of condenser of NPPs were conducted. The results show that the system's conclusion is right, and the system's velocity is fast which can satisfy diagnosis in real time, and with the distinctive features such as good stability, high resolution rate and so on. (authors)

  3. Diode Pumped Alkaline Laser System: A High Powered, Low SWaP Directed Energy Option for Ballistic Missile Defense High-Level Summary - April 2017

    Energy Technology Data Exchange (ETDEWEB)

    Wisoff, P. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-04-28

    The Diode-Pumped Alkali Laser (DPAL) system is an R&D effort funded by the Missile Defense Agency (MDA) underway at Lawrence Livermore National Laboratory (LLNL). MDA has described the characteristics needed for a Boost Phase directed energy (DE) weapon to work against ICBM-class threat missiles. In terms of the platform, the mission will require a high altitude Unmanned Aerial Vehicle (UAV) that can fly in the “quiet” stratosphere and display long endurance – i.e., days on station. In terms of the laser, MDA needs a high power, low size and weight laser that could be carried by such a platform and deliver lethal energy to an ICBM-class threat missile from hundreds of kilometers away. While both the military and industry are pursuing Directed Energy for tactical applications, MDA’s objectives pose a significantly greater challenge than other current efforts in terms of the power needed from the laser, the low size and weight required, and the range, speed, and size of the threat missiles. To that end, MDA is funding two R&D efforts to assess the feasibility of a high power (MWclass) and low SWaP (size, weight and power) laser: a fiber combining laser (FCL) project at MIT’s Lincoln Laboratory, and LLNL’s Diode-Pumped Alkali Laser (DPAL) system.

  4. Outline of incidents and failures of Japanese nuclear power plants during April 1995 and March 1996

    International Nuclear Information System (INIS)

    1996-01-01

    The number of incidents and failures reported to MITI by electric utility companies, as stipulated in the ''Electric Utility Industry Law'' and the ''Law for Regulation of Nuclear Source Material, Nuclear Fuel Material, and Reactor'', amounted to 14 cases in FY 1995. The number of reports per unit was 0.3, showing the same values with last year. The above 14 cases consists of 9 cases of manual shutdown and 1 case of automatic shutdown during operation (including test and adjustment operation), and 4 cases were found during reactor shutdown. Figs, 1 tab

  5. LD-pumped actively Q-switched c-cut Nd:GdVO4 self-Raman laser operating at 1166 and 1176 nm

    Science.gov (United States)

    Sun, Xinzhi; Zhang, Xihe; Li, Shutao; Dong, Yuan

    2017-12-01

    A laser diode pumped actively Q-switched c-cut Nd:GdVO4 self-Raman laser is experimentally investigated. Simultaneous pulse outputs at 1166 nm and 1176 nm corresponding to the Raman shifts of 807 and 882 cm-1 are acquired. At the pulse repetition frequency (PRF) of 20 kHz, the maximum output power is 103 mW at 1166 nm with the incident pump power of 2.31 W, while 1176 nm output power reaches 530 mW with the incident pump power of 4.11 W. The maximum output power of Raman laser is 570 mW with the incident pump power of 4.11 W and the PRF of 30 kHz. With the incident pump power of 3.67 W and the PRF of 30 kHz, the highest diode-to-Stokes optical conversion efficiency of 14.9% is obtained with the corresponding average output power of 547 mW.

  6. Application of electro geometric model for analysis of overhead power lines and substation in lightning incidence, v. 16(62)

    International Nuclear Information System (INIS)

    Kotevski, Darko

    2008-01-01

    This paper is a resume of the master thesis made within my master studies at the Department for transmission and distribution systems at FEIT-Skopje. New methodology is presented for estimation of the rates of lightning strikes on power lines and substations with Monte Carlo simulation. Modeling is based on well known electro geometric model which states that protection zones of lightning protection devices are dependant with amplitude of the lighting current. Therefore, for a known configuration it is possible with application of simple numerical methods to evaluate efficiency of the protection devices. Data gained from the simulations can be used to design such devices, to correct existing lightning protection systems or to make analysis for improving reliability of power system elements in lightning incidence. (Author)

  7. Application of electro geometric model for analysis of overhead power lines and substation in lightning incidence, v. 16(63)

    International Nuclear Information System (INIS)

    Kotevski, Darko

    2008-01-01

    This paper is a resume of the master thesis made within my master studies at the Department for transmission and distribution systems at FEIT-Skopje. New methodology is presented for estimation of the rates of lightning strikes on power lines and substations with Monte Carlo simulation. Modeling is based on well known electro geometric model which states that protection zones of lightning protection devices are dependant with amplitude of the lighting current. Therefore, for a known configuration it is possible with application of simple numerical methods to evaluate efficiency of the protection devices. Data gained from the simulations can be used to design such devices, to correct existing lightning protection systems or to make analysis for improving reliability of power system elements in lightning incidence. (Author

  8. IAEA/NEA incident reporting system (IRS). Reporting guidelines. Feedback from safety related operating experience for nuclear power plants

    International Nuclear Information System (INIS)

    1998-01-01

    The Incident Reporting System (IRS) is an international system jointly operated by the International Atomic Energy Agency (IAEA) and the Nuclear Energy Agency of the Organisation for Economic Cooperation and Development (OECD/NEA). The fundamental objective of the IRS is to contribute to improving the safety of commercial nuclear power plants (NPPs) which are operated worldwide. This objective can be achieved by providing timely and detailed information on both technical and human factors related to events of safety significance which occur at these plants. The purpose of these guidelines, which supersede the previous IAEA Safety Series No. 93 (Part II) and the NEA IRS guidelines, is to describe the system and to give users the necessary background and guidance to enable them to produce IRS reports meeting a high standard of quality while retaining the high efficiency of the system expected by all Member States operating nuclear power plants. These guidelines have been jointly developed and approved by the NEA/IAEA

  9. 46 CFR 181.300 - Fire pumps.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Fire pumps. 181.300 Section 181.300 Shipping COAST GUARD... EQUIPMENT Fire Main System § 181.300 Fire pumps. (a) A self priming, power driven fire pump must be..., the minimum capacity of the fire pump must be 189 liters (50 gallons) per minute at a pressure of not...

  10. 46 CFR 118.300 - Fire pumps.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Fire pumps. 118.300 Section 118.300 Shipping COAST GUARD... Fire pumps. (a) A self priming, power driven fire pump must be installed on each vessel. (b) On a..., the fire pump must be capable of delivering a single hose stream from the highest hydrant, through the...

  11. Heat pumps

    CERN Document Server

    Macmichael, DBA

    1988-01-01

    A fully revised and extended account of the design, manufacture and use of heat pumps in both industrial and domestic applications. Topics covered include a detailed description of the various heat pump cycles, the components of a heat pump system - drive, compressor, heat exchangers etc., and the more practical considerations to be taken into account in their selection.

  12. Reactor recirculation pump test loop

    International Nuclear Information System (INIS)

    Taka, Shusei; Kato, Hiroyuki

    1979-01-01

    A test loop for a reactor primary loop recirculation pumps (PLR pumps) has been constructed at Ebara's Haneda Plant in preparation for production of PLR pumps under license from Byron Jackson Pump Division of Borg-Warner Corporation. This loop can simulate operating conditions for test PLR pumps with 130 per cent of the capacity of pumps for a 1100 MWe BWR plant. A main loop, primary cooling system, water demineralizer, secondary cooling system, instrumentation and control equipment and an electric power supply system make up the test loop. This article describes the test loop itself and test results of two PLR pumps for Fukushima No. 2 N.P.S. Unit 1 and one main circulation pump for HAZ Demonstration Test Facility. (author)

  13. Load Frequency Control by use of a Number of Both Heat Pump Water Heaters and Electric Vehicles in Power System with a Large Integration of Renewable Energy Sources

    Science.gov (United States)

    Masuta, Taisuke; Shimizu, Koichiro; Yokoyama, Akihiko

    In Japan, from the viewpoints of global warming countermeasures and energy security, it is expected to establish a smart grid as a power system into which a large amount of generation from renewable energy sources such as wind power generation and photovoltaic generation can be installed. Measures for the power system stability and reliability are necessary because a large integration of these renewable energy sources causes some problems in power systems, e.g. frequency fluctuation and distribution voltage rise, and Battery Energy Storage System (BESS) is one of effective solutions to these problems. Due to a high cost of the BESS, our research group has studied an application of controllable loads such as Heat Pump Water Heater (HPWH) and Electric Vehicle (EV) to the power system control for reduction of the required capacity of BESS. This paper proposes a new coordinated Load Frequency Control (LFC) method for the conventional power plants, the BESS, the HPWHs, and the EVs. The performance of the proposed LFC method is evaluated by the numerical simulations conducted on a power system model with a large integration of wind power generation and photovoltaic generation.

  14. Estimation of probability density functions of damage parameter for valve leakage detection in reciprocating pump used in nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jong Kyeom; Kim, Tae Yun; Kim, Hyun Su; Chai, Jang Bom; Lee, Jin Woo [Div. of Mechanical Engineering, Ajou University, Suwon (Korea, Republic of)

    2016-10-15

    This paper presents an advanced estimation method for obtaining the probability density functions of a damage parameter for valve leakage detection in a reciprocating pump. The estimation method is based on a comparison of model data which are simulated by using a mathematical model, and experimental data which are measured on the inside and outside of the reciprocating pump in operation. The mathematical model, which is simplified and extended on the basis of previous models, describes not only the normal state of the pump, but also its abnormal state caused by valve leakage. The pressure in the cylinder is expressed as a function of the crankshaft angle, and an additional volume flow rate due to the valve leakage is quantified by a damage parameter in the mathematical model. The change in the cylinder pressure profiles due to the suction valve leakage is noticeable in the compression and expansion modes of the pump. The damage parameter value over 300 cycles is calculated in two ways, considering advance or delay in the opening and closing angles of the discharge valves. The probability density functions of the damage parameter are compared for diagnosis and prognosis on the basis of the probabilistic features of valve leakage.

  15. Estimation of probability density functions of damage parameter for valve leakage detection in reciprocating pump used in nuclear power plants

    International Nuclear Information System (INIS)

    Lee, Jong Kyeom; Kim, Tae Yun; Kim, Hyun Su; Chai, Jang Bom; Lee, Jin Woo

    2016-01-01

    This paper presents an advanced estimation method for obtaining the probability density functions of a damage parameter for valve leakage detection in a reciprocating pump. The estimation method is based on a comparison of model data which are simulated by using a mathematical model, and experimental data which are measured on the inside and outside of the reciprocating pump in operation. The mathematical model, which is simplified and extended on the basis of previous models, describes not only the normal state of the pump, but also its abnormal state caused by valve leakage. The pressure in the cylinder is expressed as a function of the crankshaft angle, and an additional volume flow rate due to the valve leakage is quantified by a damage parameter in the mathematical model. The change in the cylinder pressure profiles due to the suction valve leakage is noticeable in the compression and expansion modes of the pump. The damage parameter value over 300 cycles is calculated in two ways, considering advance or delay in the opening and closing angles of the discharge valves. The probability density functions of the damage parameter are compared for diagnosis and prognosis on the basis of the probabilistic features of valve leakage

  16. Estimation of Probability Density Functions of Damage Parameter for Valve Leakage Detection in Reciprocating Pump Used in Nuclear Power Plants

    Directory of Open Access Journals (Sweden)

    Jong Kyeom Lee

    2016-10-01

    Full Text Available This paper presents an advanced estimation method for obtaining the probability density functions of a damage parameter for valve leakage detection in a reciprocating pump. The estimation method is based on a comparison of model data which are simulated by using a mathematical model, and experimental data which are measured on the inside and outside of the reciprocating pump in operation. The mathematical model, which is simplified and extended on the basis of previous models, describes not only the normal state of the pump, but also its abnormal state caused by valve leakage. The pressure in the cylinder is expressed as a function of the crankshaft angle, and an additional volume flow rate due to the valve leakage is quantified by a damage parameter in the mathematical model. The change in the cylinder pressure profiles due to the suction valve leakage is noticeable in the compression and expansion modes of the pump. The damage parameter value over 300 cycles is calculated in two ways, considering advance or delay in the opening and closing angles of the discharge valves. The probability density functions of the damage parameter are compared for diagnosis and prognosis on the basis of the probabilistic features of valve leakage.

  17. Nuclear-pumped lasers

    CERN Document Server

    Prelas, Mark

    2016-01-01

    This book focuses on Nuclear-Pumped Laser (NPL) technology and provides the reader with a fundamental understanding of NPLs, a review of research in the field, and exploration of large scale NPL system design and applications. Early chapters look at the fundamental properties of lasers, nuclear-pumping and nuclear reactions that may be used as drivers for nuclear-pumped lasers. The book goes on to explore the efficient transport of energy from the ionizing radiation to the laser medium and then the operational characteristics of existing nuclear-pumped lasers. Models based on Mathematica, explanations and a tutorial all assist the reader’s understanding of this technology. Later chapters consider the integration of the various systems involved in NPLs and the ways in which they can be used, including beyond the military agenda. As readers will discover, there are significant humanitarian applications for high energy/power lasers, such as deflecting asteroids, space propulsion, power transmission and mining....

  18. Wideband metamaterial array with polarization-independent and wide incident angle for harvesting ambient electromagnetic energy and wireless power transfer

    Science.gov (United States)

    Zhong, Hui-Teng; Yang, Xue-Xia; Song, Xing-Tang; Guo, Zhen-Yue; Yu, Fan

    2017-11-01

    In this work, we introduced the design, demonstration, and discussion of a wideband metamaterial array with polarization-independent and wide-angle for harvesting ambient electromagnetic (EM) energy and wireless power transfer. The array consists of unit cells with one square ring and four metal bars. In comparison to the published metamaterial arrays for harvesting EM energy or wireless transfer, this design had the wide operation bandwidth with the HPBW (Half Power Band Width) of 110% (6.2 GHz-21.4 GHz), which overcomes the narrow-band operation induced by the resonance characteristic of the metamaterial. On the normal incidence, the simulated maximum harvesting efficiency was 96% and the HPBW was 110% for the random polarization wave. As the incident angle increases to 45°, the maximum efficiency remained higher than 88% and the HPBW remained higher than 83% for the random polarization wave. Furthermore, the experimental verification of the designed metamaterial array was conducted, and the measured results were in reasonable agreement with the simulated ones.

  19. Detection of pump degradation

    International Nuclear Information System (INIS)

    Casada, D.

    1994-01-01

    There are a variety of stressors that can affect the operation of centrifugal pumps. Although these general stressors are active in essentially all centrifugal pumps, the stressor level and the extent of wear and degradation can vary greatly. Parameters that affect the extent of stressor activity are manifold. In order to assure the long-term operational readiness of a pump, it is important to both understand the nature and magnitude of the specific degradation mechanisms and to monitor the performance of the pump. The most commonly applied method of monitoring the condition of not only pumps, but rotating machinery in general, is vibration analysis. Periodic or continuous spectral vibration analysis is a cornerstone of most pump monitoring programs. In the nuclear industry, non-spectral vibration monitoring of safety-related pumps is performed in accordance with the ASME code. Although vibration analysis has dominated the condition monitoring field for many years, there are other measures that have been historically used to help understand pump condition: advances in historically applied technologies and developing technologies offer improved monitoring capabilities. The capabilities of several technologies (including vibration analysis, dynamic pressure analysis, and motor power analysis) to detect the presence and magnitude of both stressors and resultant degradation are discussed

  20. Use of plant specific PSA to evaluate incidents at nuclear power plants

    International Nuclear Information System (INIS)

    1991-06-01

    One of the possible applications of the plant specific probabilistic safety assessment (PSA) is its use in the analysis of operational events at the plant. The methodological development in that area was initiated recently in the framework of the IAEA's Incident Reporting System where determination of the safety significance of the event is essential for optimizing feedback of operating experience. This report provides details of the methodology and procedures to be used in event analysis. The report also contains three case studies which have been performed and summarizes lessons learned from those case studies. The results (event probabilities) obtained using plant specific PSA and the results of the analysis of the same events in the framework of the Accident Sequence Precursor (ASP) programmes (generic models) were compared and commented on. 6 refs, figs and tabs

  1. Method for controlling powertrain pumps

    Science.gov (United States)

    Sime, Karl Andrew; Spohn, Brian L; Demirovic, Besim; Martini, Ryan D; Miller, Jean Marie

    2013-10-22

    A method of controlling a pump supplying a fluid to a transmission includes sensing a requested power and an excess power for a powertrain. The requested power substantially meets the needs of the powertrain, while the excess power is not part of the requested power. The method includes sensing a triggering condition in response to the ability to convert the excess power into heat in the transmission, and determining that an operating temperature of the transmission is below a maximum. The method also includes determining a calibrated baseline and a dissipation command for the pump. The calibrated baseline command is configured to supply the fluid based upon the requested power, and the dissipation command is configured to supply additional fluid and consume the excess power with the pump. The method operates the pump at a combined command, which is equal to the calibrated baseline command plus the dissipation command.

  2. Heat pumps

    CERN Document Server

    Brodowicz, Kazimierz; Wyszynski, M L; Wyszynski

    2013-01-01

    Heat pumps and related technology are in widespread use in industrial processes and installations. This book presents a unified, comprehensive and systematic treatment of the design and operation of both compression and sorption heat pumps. Heat pump thermodynamics, the choice of working fluid and the characteristics of low temperature heat sources and their application to heat pumps are covered in detail.Economic aspects are discussed and the extensive use of the exergy concept in evaluating performance of heat pumps is a unique feature of the book. The thermodynamic and chemical properties o

  3. Amplified spontaneous emission and thermal management on a high average-power diode-pumped solid-state laser - the Lucia laser system

    International Nuclear Information System (INIS)

    Albach, D.

    2010-01-01

    The development of the laser triggered the birth of numerous fields in both scientific and industrial domains. High intensity laser pulses are a unique tool for light/matter interaction studies and applications. However, current flash-pumped glass-based systems are inherently limited in repetition-rate and efficiency. Development within recent years in the field of semiconductor lasers and gain media drew special attention to a new class of lasers, the so-called Diode Pumped Solid State Laser (DPSSL). DPSSLs are highly efficient lasers and are candidates of choice for compact, high average-power systems required for industrial applications but also as high-power pump sources for ultra-high intense lasers. The work described in this thesis takes place in the context of the 1 kilowatt average-power DPSSL program Lucia, currently under construction at the 'Laboratoire d'Utilisation des Laser Intenses' (LULI) at the Ecole Polytechnique, France. Generation of sub-10 nanosecond long pulses with energies of up to 100 joules at repetition rates of 10 hertz are mainly limited by Amplified Spontaneous Emission (ASE) and thermal effects. These limitations are the central themes of this work. Their impact is discussed within the context of a first Lucia milestone, set around 10 joules. The developed laser system is shown in detail from the oscillator level to the end of the amplification line. A comprehensive discussion of the impact of ASE and thermal effects is completed by related experimental benchmarks. The validated models are used to predict the performances of the laser system, finally resulting in a first activation of the laser system at an energy level of 7 joules in a single-shot regime and 6.6 joules at repetition rates up to 2 hertz. Limitations and further scaling approaches are discussed, followed by an outlook for the further development. (author) [fr

  4. The construction for remediation work of contaminated water at Fukushima Daiichi Nuclear Power Plant. Closure work of seawater piping trench and screen pump chamber

    International Nuclear Information System (INIS)

    Hibi, Yasuki; Yanai, Shuji; Nishikori, Kazumasa; Soma, Yu

    2016-01-01

    In the seawater piping trench of Fukushima Daiichi Nuclear Power Plant, highly contaminated water was stagnating, which flowed in from the reactor building and turbine building affected by the tsunami caused by the Tohoku Pacific Ocean Earthquake. Although the screen pump chamber, adjacent to the seawater piping trench, escaped from the inflow and retention of contaminated water, it was exposed to the leakage risk of contaminated water from the seawater piping trench. As measures against these conditions, the following emergency work was applied: (1) contaminated water replacement and removal operation based on the implantation of fillers into the seawater piping trench, and (2) closure operation of the screen pump chamber by implanting fillers into the screen pump chamber. In face of these operations, long-distance underwater flow special filler, high workable concrete, and underwater non-separation concrete were developed and used. The implantation of the long-distance underwater-flow special fillers into the seawater piping trench was successfully completed by filling to the tunnel top without gap and without water head difference, and by preventing the occurrence of movement or water path formation of the fillers in the initial curing process. Other fillers were also able to be implanted as planned. The leakage risk of contaminated water to the periphery could be suppressed to a large extent by this work. (A.O.)

  5. Managing congestion in distribution grids - Market design consideration. How heat pumps can deliver flexibility though well-designed markets and virtual power plant technology

    Energy Technology Data Exchange (ETDEWEB)

    Holmberg Rasmussen, L. [NEAS Energy, Aalborg (Denmark); Bang, C.; Togeby, M. [Ea Energy Analyses, Copenhagen (Denmark)

    2012-10-15

    Heat pumps can be used to reduce oil and natural gas consumption and can assist in the integration of increased amounts of wind power in the electricity system. The new electricity demand may increase the value of electricity generated by wind power. This can be the result even without any advanced control of the heat pumps. However, heat pumps can be controlled according to prices, and this can both reduce the energy cost for end-users and be beneficial for the energy system. Variable prices can reflect spot prices, and in the future, operation of heat pumps may also reflect more dynamic prices, for example by delivering regulating power. Regulating power prices can be attractive for the end-user because the variation is considerable and includes many low prices. Heat pumps (and also electric vehicles) may potentially create overloading of electricity lines. Distribution grids in particular may be challenged if a large number of these units draw electricity at the same time. This challenge can be amplified when heat pumps react to price signals. The economic optimisation of the heat pump operation may result in an increased correlation of their electricity demand. The price signal may lead to a loss of diversity in the on/off cycles of the control. In the future it is quite foreseeable that heat pumps could deliver regulating power, thereby assisting in the maintenance of the balance in an overall system with significant wind power. Thus another example of a potential problem would be if all heat pumps react to the same price signal at the same time (i.e. delivering down regulation by switching on), as this could also result in the overloading of local distribution networks. Seen in light of the focus on smart grid solutions, the ideal response to the above congestion examples would be to send a high distribution tariff for the relevant time to the areas where congestion is likely. This would solve the local problem, while at the same time allow the large majority

  6. Temperature in the Primary Heat Transport Pump Bearing of the Nuclear Power Plant 'Embalse Rio Tercero' in view of the Cutting of the Service Water

    International Nuclear Information System (INIS)

    Raffo, J.L

    2001-01-01

    This study contains the analysis of the Primary Heat Transport Pump Bearing of the Nuclear Power Plant 'Embalse Rio Tercero', Cordoba, Argentine, in view of the cutting of the Service Water refrigeration which cools the Gland Seal System.This takes two ways: One is the study of the temperature rise of the water that cools the carbon bearing and the time involved.This is supported upon manuals and drawings.The other, on the temperature distribution in different operating conditions.This has been done by the simulation of the normal and transient conditions in the software COSMOS/M

  7. Source term estimation during incident response to severe nuclear power plant accidents. Draft

    Energy Technology Data Exchange (ETDEWEB)

    McKenna, T J; Giitter, J

    1987-07-01

    The various methods of estimating radionuclide release to the environment (source terms) as a result of an accident at a nuclear power reactor are discussed. The major factors affecting potential radionuclide releases off site (source terms) as a result of nuclear power plant accidents are described. The quantification of these factors based on plant instrumentation also is discussed. A range of accident conditions from those within the design basis to the most severe accidents possible are included in the text. A method of gross estimation of accident source terms and their consequences off site is presented. The goal is to present a method of source term estimation that reflects the current understanding of source term behavior and that can be used during an event. (author)

  8. Source term estimation during incident response to severe nuclear power plant accidents. Draft

    International Nuclear Information System (INIS)

    McKenna, T.J.; Giitter, J.

    1987-01-01

    The various methods of estimating radionuclide release to the environment (source terms) as a result of an accident at a nuclear power reactor are discussed. The major factors affecting potential radionuclide releases off site (source terms) as a result of nuclear power plant accidents are described. The quantification of these factors based on plant instrumentation also is discussed. A range of accident conditions from those within the design basis to the most severe accidents possible are included in the text. A method of gross estimation of accident source terms and their consequences off site is presented. The goal is to present a method of source term estimation that reflects the current understanding of source term behavior and that can be used during an event. (author)

  9. Source term estimation during incident response to severe nuclear power plant accidents

    International Nuclear Information System (INIS)

    McKenna, T.J.; Glitter, J.G.

    1988-10-01

    This document presents a method of source term estimation that reflects the current understanding of source term behavior and that can be used during an event. The various methods of estimating radionuclide release to the environment (source terms) as a result of an accident at a nuclear power reactor are discussed. The major factors affecting potential radionuclide releases off site (source terms) as a result of nuclear power plant accidents are described. The quantification of these factors based on plant instrumentation also is discussed. A range of accident conditions from those within the design basis to the most severe accidents possible are included in the text. A method of gross estimation of accident source terms and their consequences off site is presented. 39 refs., 48 figs., 19 tabs

  10. Energy efficiency in pumps

    Energy Technology Data Exchange (ETDEWEB)

    Kaya, Durmus; Yagmur, E. Alptekin [TUBITAK-MRC, P.O. Box 21, 41470 Gebze, Kocaeli (Turkey); Yigit, K. Suleyman; Eren, A. Salih; Celik, Cenk [Engineering Faculty, Kocaeli University, Kocaeli (Turkey); Kilic, Fatma Canka [Department of Air Conditioning and Refrigeration, Kocaeli University, Kullar, Kocaeli (Turkey)

    2008-06-15

    In this paper, ''energy efficiency'' studies, done in a big industrial facility's pumps, are reported. For this purpose; the flow rate, pressure and temperature have been measured for each pump in different operating conditions and at maximum load. In addition, the electrical power drawn by the electric motor has been measured. The efficiencies of the existing pumps and electric motor have been calculated by using the measured data. Potential energy saving opportunities have been studied by taking into account the results of the calculations for each pump and electric motor. As a conclusion, improvements should be made each system. The required investment costs for these improvements have been determined, and simple payback periods have been calculated. The main energy saving opportunities result from: replacements of the existing low efficiency pumps, maintenance of the pumps whose efficiencies start to decline at certain range, replacements of high power electric motors with electric motors that have suitable power, usage of high efficiency electric motors and elimination of cavitation problems. (author)

  11. Energy efficiency in pumps

    International Nuclear Information System (INIS)

    Kaya, Durmus; Yagmur, E. Alptekin; Yigit, K. Suleyman; Kilic, Fatma Canka; Eren, A. Salih; Celik, Cenk

    2008-01-01

    In this paper, 'energy efficiency' studies, done in a big industrial facility's pumps, are reported. For this purpose; the flow rate, pressure and temperature have been measured for each pump in different operating conditions and at maximum load. In addition, the electrical power drawn by the electric motor has been measured. The efficiencies of the existing pumps and electric motor have been calculated by using the measured data. Potential energy saving opportunities have been studied by taking into account the results of the calculations for each pump and electric motor. As a conclusion, improvements should be made each system. The required investment costs for these improvements have been determined, and simple payback periods have been calculated. The main energy saving opportunities result from: replacements of the existing low efficiency pumps, maintenance of the pumps whose efficiencies start to decline at certain range, replacements of high power electric motors with electric motors that have suitable power, usage of high efficiency electric motors and elimination of cavitation problems

  12. Dryout delay in loss-of-coolant incidents in nuclear power plants

    International Nuclear Information System (INIS)

    Belda, W.

    1975-01-01

    The maximum credible accident (MCA) as a result of a fault in the system is assumed to be the rupture of a pipe in the primary circuit. During the outflow process following the rupture - called blowdown - it is possible that the internals of a reactor pressure vessel are exposed to extreme mechanical and thermal stresses. The fuel rods in the core, the Zircaloy cladding tubes of which can be heated up by lack of coolant to inadmissibly high temperatures, are particularly at risk. In case of the cladding tubes being damaged, radioactive substances are released. If they escape from the outer containment, this would lead to pressures on the immediate and more distant vicinity of the nuclear pover plant. In order to eliminate the factors of uncertainty when calculating the overall blowdown process in advance, it is necessary to have a relationship valid for the instationary circumstances to work out the burnout delay which is of decisive importance for the post-incident cooling phase of the reactor. The aim of this investigation, therefore, is to develop, with the aid of a suitable model, a method of calculating the burnout delay. (orig./TK) [de

  13. An Evaluation of Power Fluidics Mixing and Pumping for Application in the Single Shell Tank (SST) Retrieval Program

    International Nuclear Information System (INIS)

    CRASS, D.W.

    2001-01-01

    This document is being released for information only. It provides an explanation of fluidics pumping and mixing technology and explores the feasibility of using fluidics technology for the retrieval of S102. It concludes that there are no obvious flaws that would prevent deploying the technology and recommends further development of fluidics technology as a retrieval option. The configuration described herein does not represent the basis for project definition

  14. The New S-RAM Air Variable Compressor/Expander for Heat Pump and Waste Heat to Power Application

    Energy Technology Data Exchange (ETDEWEB)

    Dehoff, Ryan R [ORNL; Jestings, Lee [S-RAM Dynamics; Conde, Ricardo [S-RAM Dynamics

    2016-05-23

    S-RAM Dynamics (S-RAM) has designed an innovative heat pump system targeted for commercial and industrial applications. This new heat pump system is more efficient than anything currently on the market and utilizes air as the refrigerant instead of hydrofluorocarbon (HFC) refrigerants, leading to lower operating costs, minimal environmental costs or concerns, and lower maintenance costs. The heat pumps will be manufactured in the United States. This project was aimed at determining the feasibility of utilizing additive manufacturing to make the heat exchanger device for the new heat pump system. ORNL and S-RAM Dynamics collaborated on determining the prototype performance and subsequently printing of the prototype using additive manufacturing. Complex heat exchanger designs were fabricated using the Arcam electron beam melting (EBM) powder bed technology using Ti-6Al-4V material. An ultrasonic welding system was utilized in order to remove the powder from the small openings of the heat exchanger. The majority of powder in the small chambers was removed, however, the amount of powder remaining in the heat exchanger was a function of geometry. Therefore, only certain geometries of heat exchangers could be fabricated. SRAM Dynamics evaluated a preliminary heat exchanger design. Although the results of the additive manufacturing of the heat exchanger were not optimum, a less complex geometry was demonstrated. A sleeve valve was used as a demonstration piece, as engine designs from S-RAM Dynamics require the engine to have a very high density. Preliminary designs of this geometry were successfully fabricated using the EBM technology.

  15. Operating experience feedback report: Reliability of safety-related steam turbine-driven standby pumps. Commercial power reactors, Volume 10

    International Nuclear Information System (INIS)

    Boardman, J.R.

    1994-10-01

    This report documents a detailed analysis of failure initiators, causes and design features for steam turbine assemblies (turbines with their related components, such as governors and valves) which are used as drivers for standby pumps in the auxiliary feedwater systems of US commercial pressurized water reactor plants, and in the high pressure coolant injection and reactor core isolation cooling systems of US commercial boiling water reactor plants. These standby pumps provide a redundant source of water to remove reactor core heat as specified in individual plant safety analysis reports. The period of review for this report was from January 1974 through December 1990 for licensee event reports (LERS) and January 1985 through December 1990 for Nuclear Plant Reliability Data System (NPRDS) failure data. This study confirmed the continuing validity of conclusions of earlier studies by the US Nuclear Regulatory Commission and by the US nuclear industry that the most significant factors in failures of turbine-driven standby pumps have been the failures of the turbine-drivers and their controls. Inadequate maintenance and the use of inappropriate vendor technical information were identified as significant factors which caused recurring failures

  16. Study of a pilot photovoltaic-electrolyser-fuel cell power system for a geothermal heat pump heated greenhouse and evaluation of the electrolyser efficiency and operational mode

    Directory of Open Access Journals (Sweden)

    Ileana Blanco

    2014-11-01

    Full Text Available The intrinsic factor of variability of renewable energy sources often limits their broader use. The photovoltaic solar systems can be provided with a power back up based on a combination of an electrolyser and a fuel cell stack. The integration of solar hydrogen power systems with greenhouse heating equipment can provide a possible option for powering stand-alone greenhouses. The aim of the research under development at the experimental farm of Department of Agro-Environmental Sciences of the University of Bari Aldo Moro is to investigate on the suitable solutions of a power system based on photovoltaic energy and on the use of hydrogen as energy vector, integrated with a ground source heat pump for greenhouse heating in a self sustained way. The excess energy produced by a purpose-built array of solar photovoltaic modules supplies an alkaline electrolyser; the produced hydrogen gas is stored in pressured storage tank. When the solar radiation level is insufficient to meet the heat pump power demand, the fuel cell starts converting the chemical energy stored by the hydrogen fuel into electricity. This paper reports on the description of the realised system. Furthermore the efficiency and the operational mode of the electrolyser were evaluated during a trial period characterised by mutable solar radiant energy. Anyway the electrolyser worked continuously in a transient state producing fluctuations of the hydrogen production and without ever reaching the steady-state conditions. The Faradic efficiency, evaluated by means of an empirical mathematic model, highlights that the suitable working range of the electrolyser was 1.5÷2.5 kW and then for hydrogen production more than 0.21 Nm3h–1.

  17. Survey of incidents in West German nuclear power plants in the last quarter of the year 1988

    International Nuclear Information System (INIS)

    1989-01-01

    There were 79 incidents reported. Six incidents belong to reporting category E (immediate notification), the remaining 73 incidents belong to reporting category N (normal notification). The survey covers all incidents reported to GRS until the 15th of February 1989 and also includes incidents that happened before the last quarter of 1988 but were recorded later. There was no release of radioactivity involved in the incidents, and there are no effects on man or the environment reported. (orig./HP) [de

  18. Diode pumped actively Q-switched Nd:YVO4 self-Raman laser

    International Nuclear Information System (INIS)

    Su Fufang; Zhang Xingyu; Wang Qingpu; Ding Shuanghong; Jia Peng; Li Shutao; Fan Shuzhen; Zhang Chen; Liu Bo

    2006-01-01

    By using Nd:YVO 4 as the gain medium and the Raman medium simultaneously, the actively Q-switched operation of the self-Raman Nd:YVO 4 laser at 1176 nm was realized. The output characteristics including the average power, pulse energy and pulse width versus the incident pump power and pulse repetition rate were investigated. At a pulse repetition rate of 20 kHz an average power up to 0.57 W was obtained with the incident pump power of 10.2 W, corresponding to a conversion efficiency of 5.6% with respect to the diode laser input power. Meanwhile, an analysis of the self-Raman Nd:YVO 4 laser was carried out by using the rate equations. The obtained theoretical results were in agreement with the experimental results on the whole

  19. New treatment of low probability events with particular application to nuclear power plant incidents

    Energy Technology Data Exchange (ETDEWEB)

    Critchley, O.H.

    1986-01-01

    The 'New Treatment' attempts to resolve the 'Zero-Infinity Dilemmas' posed by the threat of low probability events (LPE) philosophical approach which rejects mathematical idealism in favour of the engineering pragmatism that is characteristic of the scientific method. The LPE is seen as a rare singularity in the stream of 'Event-noise' of mundane, untoward incidents that afflict industrial systems. Engineering inspection which has evolved as a regulatory mechanism can be effective in reducing this 'noise' and the competent inspector is able to recognise the 'loss of resistance to failure' which so often comes before an LPE. Despite that an intractable residual risk remains, but this can be made societally tolerable if there is a justifiable conviction that safety is defended by trustworthy engineering. In an age marked by an increasing complexity and sophistication in its science and technology, the engineer is emerging as the proper central decision maker in such matters standing, athwart pure administration and theory on the one hand and expertise and practice on the other. Moreover, evidence that his intellect may be peculiarly adapted for such a role is coming from recent findings in neuropsychology. The Nuclear Installations Inspectorate is cited as an exemplar of the engineering inspection needed to apprehend those human fallibilities in design and application to which most catastrophic failures of technology are due. However, such regulatory systems and the assessment functions associated with them lack accountability and, as an interpretation of Goedel's theorem suggests, cannot assess their own efficiency. Independent, disinterested appraisal assisted by Signal Detection Theory is offered as a remedy.

  20. Coordination of Heat Pumps, Electric Vehicles and AGC for Efficient LFC in a Smart Hybrid Power System via SCA-Based Optimized FOPID Controllers

    Directory of Open Access Journals (Sweden)

    Rahmat Khezri

    2018-02-01

    Full Text Available Due to the high price of fossil fuels, the increased carbon footprint in conventional generation units and the intermittent functionality of renewable units, alternative sources must contribute to the load frequency control (LFC of the power system. To tackle the challenge, dealing with controllable loads, the ongoing study aims at efficient LFC in smart hybrid power systems. To achieve this goal, heat pumps (HPs and electric vehicles (EVs are selected as the most effective controllable loads to contribute to the LFC issue. In this regard, the EVs can be controlled in a bidirectional manner as known charging and discharging states under a smart structure. In addition, regarding the HPs, the power consumption is controllable. As the main task, this paper proposes a fractional order proportional integral differential (FOPID controller for coordinated control of power consumption in HPs, the discharging state in EVs and automatic generation control (AGC. The parameters of the FOPID controllers are optimized simultaneously by the sine cosine algorithm (SCA, which is a new method for optimization problems. In the sequel, four scenarios, including step and random load changes, aggregated intermittent generated power from wind turbines, a random load change scenario and a sensitivity analysis scenario, are selected to demonstrate the efficiency of the proposed SCA-based FOPID controllers in a hybrid two-area power system.

  1. Use of non-steroidal anti-inflammatory drugs and proton pump inhibitors in correlation with incidence, recurrence and death of peptic ulcer bleeding: an ecological study

    Science.gov (United States)

    Lu, Yunxia; Sverdén, Emma; Ljung, Rickard; Söderlund, Claes; Lagergren, Jesper

    2013-01-01

    Background Non-steroidal anti-inflammatory drugs (NSAIDs) and proton pump inhibitors (PPIs) are regarded as two types of drugs that respectively increase and decrease the risk of peptic ulcer bleeding. However, their relation to occurrence, recurrence and death of bleeding in the population level is not clear. Study objective To clarify recent calendar-time correlations between sales of NSAIDs and PPIs and the occurrence of peptic ulcer bleeding, re-bleeding and death. Design Ecological study. Results The time trend of peptic ulcer bleeding did not correlate with PPI sales but did correlate with NSAIDs in mem (Rmale=0.6571, Pmale=0.05). Sales of PPIs (inverse) and NSAIDs correlated with re-bleeding in women (Rmale=−0.8754, Pmale=0.002 and Rfemale=0.7161, Pfemale=0.03, respectively), but not in men. An inverse correlation between PPI sales and 30-day death after bleeding was found (Rmale=−0.9392, Pmale=0.0002 and Rfemale=−0.8561, Pfemale=0.003), and NSAID sales were found to correlate with increased death after bleeding ((Rmale=0.7278, Pmale=0.03, Rfemale=0.7858, Pfemale=0.01). Conclusions The sales of NSAIDs and PPIs correlate with recurrence of peptic ulcer bleeding in women and death after peptic ulcer bleeding in both genders in the population level. PMID:23293249

  2. Analysis of the cognitive strategies used by nuclear power plant operators during micro incidents

    International Nuclear Information System (INIS)

    Carvalho, Paulo Victor R. de; Santos, Isaac L. dos; Mol, Antonio Carlos de A.; Grecco, Claudio H.; Oliveira, Mauro Vitor de; Augusto, Silas Cordeiro; Carvalho, Eduardo F. de

    2005-01-01

    This paper focuses on the analysis and modeling of the nuclear power operators' actual work in the control room and simulator training. The modeling of the operators work deals with the use of operational procedures, the constant changes in the focus of attention and the dynamics of the conflicting activities. The paper explores the relationships between the courses of action of the different operators and the constraints imposed by their working environment. It shows that the safety implications of the control room operators' cognitive and cultural issues go far beyond the formal organizational constructs usually implied. Our findings indicate that the competence required for the operators are concerned with developing the possibility of constructing situation awareness, managing conflicts, gaps and time problems created by ongoing task procedures, and dealing with distractions, developing skills for collaborative work. (author)

  3. Analysis of the noise of the jet pumps of the Unit 2 of the Laguna Verde nuclear power plant; Analisis de ruido de las bombas de chorro de la Unidad 2 de la Central Laguna Verde

    Energy Technology Data Exchange (ETDEWEB)

    Castillo D, R.; Ortiz V, J.; Ruiz E, J.A. [ININ, A.P. 18-1027, 11801 Mexico D.F. (Mexico); Calleros M, G. [CFE, Central Nucleoelectrica de Laguna Verde, Alto Lucero, Veracruz (Mexico)]. E-mail: rcd@nuclear.inin-mx

    2004-07-01

    The use of the analysis of noise for the detection of badly functioning of the components of a BWR it is a powerful tool in the determination of abnormal conditions of operation, during the life of a nuclear plant of power. From the eighties, some nuclear reactors have presented problems related with the jet pumps and the knots of the recirculation. The Regulatory Commission of the United States, in the I E bulletin 80-07, recommended to carry out a periodic supervision of the pressure drop of the jet pumps, to prevent structural failures. In this work, methods of analysis of noise are used for the detection of abnormal conditions of operation of the jet pumps of a BWR. Signals are analysed to low and high frequency of pressure drop with the NOISE software that is in development. The obtained results show the behavior of the jet pumps of jet 6 and 11 before and after a partial blockade in their throats where the pump 6 return to their condition of previous operation and the pump 11 present a new fall of pressure, inside the limit them permissible of operation. The methodology of the analysis of noise demonstrated to be an useful tool for the badly functioning detection, and you could apply to create a database to supervise the dynamic behavior of the jet pumps of an BWR. (Author)

  4. Analysis of water flow, power and electrical current of a motor pump powered by photovoltaic panels; Analise da vazao, potencia e corrente em uma motobomba acionada por paines fotovoltaicos

    Energy Technology Data Exchange (ETDEWEB)

    Oyama, Paulo Takashi; Santos, Jose Airton Azevedo dos; Michels, Roger Nabeyama [Universidade Tecnologica Federal do Parana (UTFPR-MD), Medianeira, PR (Brazil)], E-mail: airton@utfpr.edu.br; Ricieri, Reinaldo Prandini [Universidade do Oeste Paulista (UNIOESTE), Cascavel, PR (Brazil). Dept. de Engenharia Agricola], E-mail: ricieri@unioeste.br; Halmeman, Maria Cristina Rodrigues [Universidade Tecnologica Federal do Parana (UTFPR-CM), Campo Mourao, PR (Brazil)

    2009-07-01

    Because of the high cost of electricity connection to distant places, far away from conventional nets, photovoltaic solar energy is widely used in public illumination, water pumping, medical care centers, etc. With the purpose to contribute to a better utilization in this type of energy, the object of the project is to analyze the water flow, power and electrical current of a motor pump to be used for water lift, driven by photovoltaic panels, the data will be collected at every 2 meters in height from 2.2 to 18.2 meters. The analyses show the outflow linear dependence in relation to the height of the water lift, a second order dependence of the electrical power provided by the photovoltaic panels in relation to the solar irradiance on the panels and a linear dependence of the electrical current in relation to the solar irradiance. This study is a part of a project developed at the 'Universidade Tecnologica Federal do Parana' (UTFPR) - Campus Medianeira - PR. Two photovoltaic panels were used from Solarex Brand, model MSX 56, a motor pump made by Shurflo Ltd, model 2088-732, two pyranometers from KIPP and ZONEN CM3, a type K thermocouple, a pressure transducer model HUBA-510 and a water flow transducer. (author)

  5. Centrifugal pumps

    CERN Document Server

    Gülich, Johann Friedrich

    2014-01-01

    This book gives an unparalleled, up-to-date, in-depth treatment of all kinds of flow phenomena encountered in centrifugal pumps including the complex interactions of fluid flow with vibrations and wear of materials. The scope includes all aspects of hydraulic design, 3D-flow phenomena and partload operation, cavitation, numerical flow calculations, hydraulic forces, pressure pulsations, noise, pump vibrations (notably bearing housing vibration diagnostics and remedies), pipe vibrations, pump characteristics and pump operation, design of intake structures, the effects of highly viscous flows, pumping of gas-liquid mixtures, hydraulic transport of solids, fatigue damage to impellers or diffusers, material selection under the aspects of fatigue, corrosion, erosion-corrosion or hydro-abrasive wear, pump selection, and hydraulic quality criteria. As a novelty, the 3rd ed. brings a fully analytical design method for radial impellers, which eliminates the arbitrary choices inherent to former design procedures. The d...

  6. The Performance Evaluation of Overall Heat Transfer and Pumping Power of γ-Al2O3/water Nanofluid as Coolant in Automotive Diesel Engine Radiator

    Directory of Open Access Journals (Sweden)

    Navid Bozorgan

    2013-05-01

    Full Text Available The efficiency of γ-Al2O3/water nanofluid as coolant is investigated in the present study. γ-Al2O3 nanoparticles with diameters of 20 nm dispersed in water with volume concentrations up 2% are selected and their performance in a radiator of Chevrolet Suburban diesel engine under turbulent flow conditions are numerically studied. The performance of an automobile radiator is a function of overall heat transfer coefficient and total heat transfer area. The heat transfer relations between nanofluid and airflow have been investigated to evaluate the overall heat transfer and the pumping power of γ-Al2O3/water nanofluid in the radiator with a given heat exchange capacity. In the present paper, the effects of the automotive speed and Reynolds number of the nanofluid in the different volume concentrations on the radiator performance are also investigated. As an example, the results show that for 2% γ-Al2O3 nanoparticles in water with Renf=6000 in the radiator while the automotive speed is 50 mph, the overall heat transfer coefficient and pumping power are approximately 11.11% and 29.17% more than that of water for given conditions, respectively. These results confirm that γ-Al2O3/water nanofluid offers higher overall heat transfer performance than water and can be reduced the total heat transfer area of the radiator.

  7. Pumping life

    DEFF Research Database (Denmark)

    Sitsel, Oleg; Dach, Ingrid; Hoffmann, Robert Daniel

    2012-01-01

    The name PUMPKIN may suggest a research centre focused on American Halloween traditions or the investigation of the growth of vegetables – however this would be misleading. Researchers at PUMPKIN, short for Centre for Membrane Pumps in Cells and Disease, are in fact interested in a large family o......’. Here we illustrate that the pumping of ions means nothing less than the pumping of life....

  8. Electromagnetic pump technology

    International Nuclear Information System (INIS)

    Prabhakar, R.

    1994-01-01

    Fast Breeder Reactors have an important role to play in our nuclear power programme. Liquid metal sodium is used as the coolant for removing fission heat generated in fast reactors and a distinctive physical property of sodium is its high electrical conductivity. This enables application of electromagnetic (EM) pumps, working on same principle as electric motors, for pumping liquid sodium. Due to its lower efficiency as compared to centrifugal pumps, use of EM pumps has been restricted to reactor auxiliary circuits and experimental facilities. As part of our efforts to manufacture fast reactor components indigenously, work on the development of two types of EM pumps namely flat linear induction pump (FLIP) and annular linear induction pump (ALIP) has been undertaken. Design procedures based on an equivalent circuit approach have been established and results from testing a 5.6 x 10E-3 Cum/s (20 Cum/h) FLIP in a sodium loop were used to validate the procedure. (author). 7 refs., 6 figs

  9. 50W CW output power and 12mJ pulses from a quasi-2-level Yb:YAG ceramic rod laser end-pumped at the 969nm zero-phonon line

    Science.gov (United States)

    Fries, Christian; Weitz, Marco; Theobald, Christian; v. Löwis of Menar, Patric; Bartschke, Jürgen; L'huillier, Johannes A.

    2015-02-01

    With the advent of high power and narrow bandwidth 969 nm pump diodes, direct pumping into the upper laser level of Yb:YAG and hence quasi-2-level lasers became possible. Pumping directly into the emitting level leads to higher quantum efficiency and reduction of non-radiative decay. Consequently, thermal load, thermal lensing and risk of fracture are reduced significantly. Moreover pump saturation and thermal population of uninvolved energy-levels in ground and excited states are benefical for a homogenous distribution of the pump beam as well as the reduction of reabsorption loss compared to 3-level systems, which allows for high-power DPSS lasers. Beside continuous-wave (cw) operation, nanosecond pulses with a repetition rate between 1 and 5 kHz are an attractive alternative to flashlamp-pumped systems (10-100 Hz) in various measurement applications that require higher data acquisition rates because of new faster detectors. Based on measurements of the absorption and a detailed numerical model for pump beam distribution, including beam propagation and saturation factors, power-scaling of a ceramic rod Yb:YAG oscillator was possible. Finally a cw output power of 50 W with 33 % pump efficiency at 1030 nm has been demonstrated (M2 dumping of this system. The cavity-dumped setup allowed for 3-10 ns pulses with a pulse energy of 12.5 mJ at 1 kHz (M2 < 1.1). In order to achieve these results a systematic experimental and numerical investigation on gain dynamics and the identification of different stable operating regimes has been carried out.

  10. Blocking device especially for circulating pumps

    International Nuclear Information System (INIS)

    Susil, J.; Vychodil, V.; Lorenc, P.

    1976-01-01

    The claim of the invention is a blocking device which blocks reverse flow occurring after the shutdown of circulating pumps, namely in the operation of nuclear power plants or in pumps with a high delivery head. (F.M.)

  11. Fusion reactor pumped laser

    International Nuclear Information System (INIS)

    Jassby, D.L.

    1988-01-01

    A nuclear pumped laser is described comprising: a toroidal fusion reactor, the reactor generating energetic neutrons; an annular gas cell disposed around the outer periphery of the reactor, the cell including an annular reflecting mirror disposed at the bottom of the cell and an annular output window disposed at the top of the cell; a gas lasing medium disposed within the annular cell for generating output laser radiation; neutron reflector material means disposed around the annular cell for reflecting neutrons incident thereon back into the gas cell; neutron moderator material means disposed between the reactor and the gas cell and between the gas cell and the neutron reflector material for moderating the energy of energetic neutrons from the reactor; converting means for converting energy from the moderated neutrons to energy pumping means for pumping the gas lasing medium; and beam compactor means for receiving output laser radiation from the annular output window and generating a single output laser beam therefrom

  12. Intermittency and Inflexibility Blister Pump Impress Factors

    OpenAIRE

    Mlakar, Boštjan; Zupančič, Cvetko

    2011-01-01

    Divisional centralized heating and cooling system, cogeneratton system of heat and power and power-gas cogeneration system. In order to further fully and reasonably use the heat in doubleeffect absorption units, double-stage bubble pump must be involved in the adoption o u pump replacing the traditional mechanical solution pump. It was designed a secon generator based on a solar pump-free lithium bromide absorption chiller system. The expenmen adopts the lunate thermosiphon elevation tube, ef...

  13. Methodology for assessment of characteristics of PV water pumping systems using a DC power supply; Metodologia de levantamento de caracteristicas de sistemas fotovoltaicos de bombeamento d'agua utilizando fonte de alimentacao CC

    Energy Technology Data Exchange (ETDEWEB)

    Vilela, Olga de Castro; Fraidenraich, Naum [Universidade Federal de Pernambuco (FAE/DEN/UFPE), Recife, PE (Brazil). Grupo de Fontes Alternativas de Energia. Dept. de Energia Nuclear], Emails: ocv@ufpe.br, nf@ufpe.br; Galdino, Marco Antonio [Centro de Pesquisas de Energia Eletrica (CEPEL), Rio de Janeiro, RJ (Brazil)], E-mail: marcoag@cepel.br

    2010-07-01

    This article describes a methodology which was used to reduce the time required to perform experimental assessment of characteristic curves (flowrate vs. solar irradiance) of PV water pumping systems showing different configurations. The characteristic curves are proposed to be obtained from two other types of curves: flowrate vs. DC power - measured using a DC power supply adjusted to simulate the operation of the PV panel in the system, and DC power vs. solar irradiance - obtained through outdoors measurements using PV panels. It is demonstrated how is possible to reduce the number of days of outdoor measurements necessary for obtaining these curves when the systems under test show configurations using the same pumping heights or the same PV panels. The flowrates, thus also the daily pumped volumes, calculated using the curves obtained through this methodology are considered the upper limits of system performance. (author)

  14. A Comparison of Off-Grid-Pumped Hydro Storage and Grid-Tied Options for an IRSOFC-HAWT Power Generator

    Directory of Open Access Journals (Sweden)

    Mahdi Majidniya

    2017-01-01

    Full Text Available An Internal Reforming Solid Oxide Fuel Cell (IRSOFC is modeled thermodynamically; a Horizontal Axis Wind Turbine (HAWT is designed; the combined IRSOFC-HAWT system should create a reliable source of electricity for the demand of a village located in Manjil, Iran. The output power of HAWT is unstable, but by controlling the fuel rate for the IRSOFC it is possible to have a stable power output from the combined system. When the electricity demand is over the peak or the wind speed is low/unstable/significantly high, the generated power may not be sufficient. To solve this problem, two scenarios are considered: connecting to the grid or using a Pumped Hydro Storage (PHS. For the second scenario, the extra produced electricity is saved when the production is more than demand and can be used when the extra power is needed. The economic analysis is done based on the economic conditions in Iran. The results will show a period of return about 9.5 and 13 years with the levelized cost of electricity about 0.0747 and 0.0882 $/kWh for the first and second scenarios, respectively. Furthermore, effects of some parameters such as the electricity price and the real interest rate are discussed.

  15. Tunable high-power narrow-spectrum external-cavity diode laser at 675 nm as a pump source for UV generation

    DEFF Research Database (Denmark)

    Chi, Mingjun; Jensen, Ole Bjarlin; Erbert, Gotz

    2011-01-01

    High-power narrow-spectrum diode laser systems based on tapered gain media in external cavity are demonstrated at 675 nm. Two 2-mm-long amplifiers are used, one with a 500-µm-long ridge-waveguide section (device A), the other with a 750-µm-long ridge-waveguide section (device B). The laser system...... of 1.0 W. The laser system B based on device B is tunable from 666 to 685 nm. As high as 1.05 W output power is obtained around 675.67 nm. The emission spectral bandwidth is less than 0.07 nm throughout the tuning range, and the beam quality factor M2 is 1.13 at an output power of 0.93 W. The laser...... system B is used as a pump source for the generation of 337.6 nm UV light by single-pass frequency doubling in a BIBO crystal. An output power of 109 µW UV light, corresponding to a conversion efficiency of 0.026%W-1 is attained....

  16. Concept of the solar-pumped laser-photovoltaics combined system and its application to laser beam power feeding to electric vehicles

    Science.gov (United States)

    Motohiro, Tomoyoshi; Takeda, Yasuhiko; Ito, Hiroshi; Hasegawa, Kazuo; Ikesue, Akio; Ichikawa, Tadashi; Higuchi, Kazuo; Ichiki, Akihisa; Mizuno, Shintaro; Ito, Tadashi; Yamada, Noboru; Nath Luitel, Hom; Kajino, Tsutomu; Terazawa, Hidetaka; Takimoto, Satoshi; Watanabe, Kemmei

    2017-08-01

    We have developed a compact solar-pumped laser (µSPL) employing an off-axis parabolic mirror with an aperture of 76.2 mm diameter and an yttrium aluminum garnet (YAG) ceramic rod of φ1 mm × 10 mm doped with 1% Nd and 0.1% Cr as a laser medium. The laser oscillation wavelength of 1.06 µm, just below the optical absorption edge of Si cells, is suitable for photoelectric conversion with minimal thermal loss. The concept of laser beam power feeding to an electric vehicle equipped with a photovoltaic panel on the roof was proposed by Ueda in 2010, in which the electricity generated by solar panels over the road is utilized to drive a semiconductor laser located on each traffic signal along the road. By substituting this solar-electricity-driven semiconductor laser with a solar-pumped laser, the energy loss of over 50% in converting the solar electricity to a laser beam can be eliminated. The overall feasibility of this system in an urban area such as Tokyo was investigated.

  17. Operation method study based on the energy balance of an independent microgrid using solar-powered water electrolyzer and an electric heat pump

    International Nuclear Information System (INIS)

    Obara, Shin'ya; Watanabe, Seizi; Rengarajan, Balaji

    2011-01-01

    A completely energy-independent microgrid (green microgrid) was examined in this work with the aims of abating greenhouse gas emissions by spreading the use of green energy, providing energy backup systems for disaster, and increasing the energy utilization efficiency with the use of exhaust heat. This paper analyzed the energy supply to six houses in a cold region. The green microgrid consisted of photovoltaics, water electrolyzers, proton-exchange membrane fuel cells (PEFCs), and heat pumps. To investigate the operation method and the capacity of each piece of equipment in the arrangement, a distributed system with two or more sets of equipment and a central system with one set of equipment were analyzed by a genetic algorithm. By introducing the prior energy need pattern of a cold region into the proposed system, the operation method and equipment capacity based on the power and heat balance were clarified. By introducing the partial load performance of a water electrolyzer and a PEFC into the analysis program, the operation method of each system was investigated. It was found that the area of a solar cell of a distributed system could be reduced by 12% as compared to a central system. -- Highlights: → A completely energy-independent microgrid (green microgrid) was planned. → The green microgrid consisted of photovoltaics, water electrolyzers, PEM-FCs, and heat pumps. → Operation of a concentrated system and a distributed system. → Investigate of the operation method and the capacity of each piece of equipment.

  18. Short-term optimization of the new Avce pumping plant and three existing hydro power plants on the Soca river in Slovenia

    International Nuclear Information System (INIS)

    Bregar, Zvonko

    2007-01-01

    In the following years a new pumping plant Avce is going to join the existing cascade of three small-regulating-basin hydro power plants (HPPs) on the Soca river in Slovenia. The pumping plant operation will have to be synchronous to the operation of existing plants and vice versa since all four plants depend upon the same inflow and since they all belong to the same generation company that buys and sells electricity to a day-ahead electricity market. The Soca river has torrent alpine characteristics so there are doubts about the operation of the system in frequent dry seasons. As shown in this article, such questions can be effectively solved by first presenting the hydro system of four HPPs under study as a directed graph and then as a mixed integer linear program (MILP): a set of equations and inequations modeling technical issues of HPPs and a target function (the day-ahead market price) modeling the electricity market. A small and simple MILP model called Flores has been used for this study. The MILP approach requires only to specify the problem since the solution is found by using available commercial computer solvers. It can be applied on-line and it can be augmented to include also the transmission constraints, ancillary services, etc. (author)

  19. Short-term optimization of the new Avce pumping plant and three existing hydro power plants on the Soca river in Slovenia

    Energy Technology Data Exchange (ETDEWEB)

    Bregar, Zvonko [Milan Vidmar Electric Power Research Institute, Hajdrihova 2, SI-1000 Ljubljana (Slovenia)

    2007-08-15

    In the following years a new pumping plant Avce is going to join the existing cascade of three small-regulating-basin hydro power plants (HPPs) on the Soca river in Slovenia. The pumping plant operation will have to be synchronous to the operation of existing plants and vice versa since all four plants depend upon the same inflow and since they all belong to the same generation company that buys and sells electricity to a day-ahead electricity market. The Soca river has torrent alpine characteristics so there are doubts about the operation of the system in frequent dry seasons. As shown in this article, such questions can be effectively solved by first presenting the hydro system of four HPPs under study as a directed graph and then as a mixed integer linear program (MILP): a set of equations and inequations modeling technical issues of HPPs and a target function (the day-ahead market price) modeling the electricity market. A small and simple MILP model called Flores has been used for this study. The MILP approach requires only to specify the problem since the solution is found by using available commercial computer solvers. It can be applied on-line and it can be augmented to include also the transmission constraints, ancillary services, etc. (author)

  20. Detailed semantic analyses of human error incidents occurring at domestic nuclear power plants to fiscal year 2000

    International Nuclear Information System (INIS)

    Tsuge, Tadashi; Hirotsu, Yuko; Takano, Kenichi; Ebisu, Mitsuhiro; Tsumura, Joji

    2003-01-01

    Analysing and evaluating observed cases of human error incidents with the emphasis on human factors and behavior involved was essential for preventing recurrence of those. CRIEPI has been conducting detailed and structures analyses of all incidents reported during last 35 year based on J-HPES, from the beginning of the first Tokai nuclear power operation till fiscal year of 2000, in which total 212 human error cases are identified. Results obtained by the analyses have been stored into the J-HPES data-base. This summarized the semantic analyses on all case-studies stored in the above data-base to grasp the practical and concrete contents and trend of more frequently observed human errors (as are called trigger actions here), causal factors and preventive measures. These semantic analyses have been executed by classifying all those items into some categories that could be considered as having almost the same meaning using the KJ method. Followings are obtained typical results by above analyses: (1) Trigger action-Those could be classified into categories of operation or categories of maintenance. Operational timing errors' and 'operational quantitative errors' were major actions in trigger actions of operation, those occupied about 20% among all actions. At trigger actions of maintenance, 'maintenance quantitative error' were major actions, those occupied quarter among all actions; (2) Causal factor- 'Human internal status' were major factors, as in concrete factors, those occupied 'improper persistence' and 'lack of knowledge'; (3) Preventive measure-Most frequent measures got were job management changes in procedural software improvements, which was from 70% to 80%. As for preventive measures of operation, software improvements have been implemented on 'organization and work practices' and 'individual consciousness'. Concerning preventive measures of maintenance, improvements have been implemented on 'organization and work practices'. (author)

  1. Positive Darwinian selection in the piston that powers proton pumps in complex I of the mitochondria of Pacific salmon.

    Directory of Open Access Journals (Sweden)

    Michael R Garvin

    Full Text Available The mechanism of oxidative phosphorylation is well understood, but evolution of the proteins involved is not. We combined phylogenetic, genomic, and structural biology analyses to examine the evolution of twelve mitochondrial encoded proteins of closely related, yet phenotypically diverse, Pacific salmon. Two separate analyses identified the same seven positively selected sites in ND5. A strong signal was also detected at three sites of ND2. An energetic coupling analysis revealed several structures in the ND5 protein that may have co-evolved with the selected sites. These data implicate Complex I, specifically the piston arm of ND5 where it connects the proton pumps, as important in the evolution of Pacific salmon. Lastly, the lineage to Chinook experienced rapid evolution at the piston arm.

  2. Positive Darwinian selection in the piston that powers proton pumps in complex I of the mitochondria of Pacific salmon.

    Science.gov (United States)

    Garvin, Michael R; Bielawski, Joseph P; Gharrett, Anthony J

    2011-01-01

    The mechanism of oxidative phosphorylation is well understood, but evolution of the proteins involved is not. We combined phylogenetic, genomic, and structural biology analyses to examine the evolution of twelve mitochondrial encoded proteins of closely related, yet phenotypically diverse, Pacific salmon. Two separate analyses identified the same seven positively selected sites in ND5. A strong signal was also detected at three sites of ND2. An energetic coupling analysis revealed several structures in the ND5 protein that may have co-evolved with the selected sites. These data implicate Complex I, specifically the piston arm of ND5 where it connects the proton pumps, as important in the evolution of Pacific salmon. Lastly, the lineage to Chinook experienced rapid evolution at the piston arm.

  3. Positive Darwinian Selection in the Piston That Powers Proton Pumps in Complex I of the Mitochondria of Pacific Salmon

    Science.gov (United States)

    Garvin, Michael R.; Bielawski, Joseph P.; Gharrett, Anthony J.

    2011-01-01

    The mechanism of oxidative phosphorylation is well understood, but evolution of the proteins involved is not. We combined phylogenetic, genomic, and structural biology analyses to examine the evolution of twelve mitochondrial encoded proteins of closely related, yet phenotypically diverse, Pacific salmon. Two separate analyses identified the same seven positively selected sites in ND5. A strong signal was also detected at three sites of ND2. An energetic coupling analysis revealed several structures in the ND5 protein that may have co-evolved with the selected sites. These data implicate Complex I, specifically the piston arm of ND5 where it connects the proton pumps, as important in the evolution of Pacific salmon. Lastly, the lineage to Chinook experienced rapid evolution at the piston arm. PMID:21969854

  4. High-energy high-efficiency Nd:YLF laser end-pump by 808 nm diode

    Science.gov (United States)

    Ma, Qinglei; Mo, Haiding; Zhao, Jay

    2018-04-01

    A model is developed to calculate the optimal pump position for end-pump configuration. The 808 nm wing pump is employed to spread the absorption inside the crystal. By the optimal laser cavity design, a high-energy high-efficiency Nd:YLF laser operating at 1053 nm is presented. In cw operation, a 13.6 W power is obtained with a slope efficiency of 51% with respect to 30 W incident pump power. The beam quality is near diffraction limited with M2 ∼ 1.02. In Q-switch operation, a pulse energy of 5 mJ is achieved with a peak power of 125 kW at 1 kHz repetition rate.

  5. Swiss energy research program on heat-pumps, combined heat and power and refrigeration for 2008-2011; Energieforschungsprogramm. Waermepumpen, Waerme-Kraft-Kopplung, Kaelte fuer die Jahre 2008-2011

    Energy Technology Data Exchange (ETDEWEB)

    Kopp, T. [Hochschule fuer Technik HSR, Rapperswil (Switzerland); Eckmanns, A. [Swiss Federal Office of Energy (OFEN), Berne (Switzerland)

    2009-07-15

    This report published by the Swiss Federal Office of Energy (SFOE) takes a look at the research programme on heat-pumps, combined heat and power and refrigeration for the years 2008 - 2011. Work proposed for the years 2008 - 2011 involves the following topics: Improvement of components and the thermodynamic cycles of heat pumps and refrigeration plants as well as the improvements in the efficiency of cogeneration plants and the reduction of emission of pollutants. Also, the overall optimisation of total systems is to be examined. Highly-efficient systems for sanitary hot water production are to be looked at, as are miniaturisation and new solutions for the installation of heating and cooling systems with heat pumps. Also the development of environmental-friendly working fluids for heat pumps and refrigeration plants is planned. Pilot and demonstration projects are also to be supported in all areas.

  6. Hydraulic optimization of 'S' characteristics of the pump-turbine for Xianju pumped storage plant

    International Nuclear Information System (INIS)

    Liu, W C; Zheng, J S; Cheng, J; Shi, Q H

    2012-01-01

    The pump-turbine with a rated power capacity of 375MW each at Xianju pumped storage plant is the most powerful one under construction in China. In order to avoid the instability near no-load conditions, the hydraulic design of the pump-turbine has been optimized to improving the 'S' characteristic in the development of the model pump-turbine. This paper presents the cause of 'S' characteristic of a pump-turbine by CFD simulation of the internal flow. Based on the CFD analysis, the hydraulic design optimization of the pump-turbine was carried out to eliminate the 'S' characteristics of the machine at Xianju pumped storage plant and a big step for removing the 'S' characteristic of a pump-turbine has been obtained. The model test results demonstrate that the pump-turbine designed for Xianju pumped storage plant can smoothly operate near no-load conditions without an addition of misaligned guide vanes.

  7. Diode-pumped Tm:YAP/YVO4 intracavity Raman laser

    International Nuclear Information System (INIS)

    Zhao, Jiaqun; Zhou, Xiaofeng; Wang, Guodong; Cheng, Ping; Xu, Feng

    2017-01-01

    The laser performance based on YVO 4 Raman conversion in a diode-pumped actively Q-switched Tm:YAP laser is demonstrated for the first time. With an incident diode power of 10.9 W and a pulse repetition rate of 1 kHz, the average output powers for the first Stokes laser at 2.4 μm is about 270 mW. (paper)

  8. A novel solar energy integrated low-rank coal fired power generation using coal pre-drying and an absorption heat pump

    International Nuclear Information System (INIS)

    Xu, Cheng; Bai, Pu; Xin, Tuantuan; Hu, Yue; Xu, Gang; Yang, Yongping

    2017-01-01

    Highlights: •An improved solar energy integrated LRC fired power generation is proposed. •High efficient and economic feasible solar energy conversion is achieved. •Cold-end losses of the boiler and condenser are reduced. •The energy and exergy efficiencies of the overall system are improved. -- Abstract: A novel solar energy integrated low-rank coal (LRC) fired power generation using coal pre-drying and an absorption heat pump (AHP) was proposed. The proposed integrated system efficiently utilizes the solar energy collected from the parabolic trough to drive the AHP to absorb the low-grade waste heat of the steam cycle, achieving larger amount of heat with suitable temperature for coal’s moisture removal prior to the furnace. Through employing the proposed system, the solar energy could be partially converted into the high-grade coal’s heating value and the cold-end losses of the boiler and the steam cycle could be reduced simultaneously, leading to a high-efficient solar energy conversion together with a preferable overall thermal efficiency of the power generation. The results of the detailed thermodynamic and economic analyses showed that, using the proposed integrated concept in a typical 600 MW LRC-fired power plant could reduce the raw coal consumption by 4.6 kg/s with overall energy and exergy efficiencies improvement of 1.2 and 1.8 percentage points, respectively, as 73.0 MW th solar thermal energy was introduced. The cost of the solar generated electric power could be as low as $0.044/kW h. This work provides an improved concept to further advance the solar energy conversion and utilisation in solar-hybrid coal-fired power generation.

  9. Mono pump equipment evaluation report

    International Nuclear Information System (INIS)

    1992-01-01

    A mobile pump has been designed, developed, and tested as part of an effort to increase oil spill response time, improve oil/water recovery efficiency and reduce cleanup and reclamation costs. The pump is mounted on an engine powered track carrier, and can be detached from the carrier and skidded into remote spill sites or transported by helicopter. The pump can safely recover highly volatile flammable substances such as condensate and gasoline, as well as heavy crude oil up to 5000 centipoise viscosity. It can pump up to 30 gal/min at zero head, and up to 1000 feet in a vertical direction. 13 figs

  10. Solar pumped laser

    Science.gov (United States)

    Lee, J. H.; Hohl, F.; Weaver, W. R. (Inventor)

    1984-01-01

    A solar pumped laser is described in which the lasant is a gas that will photodissociate and lase when subjected to sunrays. Sunrays are collected and directed onto the gas lasant to cause it to lase. Applications to laser propulsion and laser power transmission are discussed.

  11. Application of the FFTBM method and the power relative contribution to the discharge transitory of the recirculation pumps of a BWR

    International Nuclear Information System (INIS)

    Castillo D, R.; Ortiz V, J.; Fuentes M, L.

    2013-10-01

    In this work was realized the simulation of the discharge transitory of both recirculation pumps of a BWR with the Simulate-3K code. This type of transitory is used in the stability analyses for the licensing of the fuel reload. An analysis of the precision of the simulation is also presented, using the FFTBM method jointly with the power relative contribution. This way, instead of determining the total precision of the calculation, a weighed precision is obtained by the contribution of each relevant parameter of the transitory. The results show that the precision of the simulation is acceptable due to the small magnitude of the merit figure of the width total average. The error in the merit figure comes mainly from the parameters total flow in the core and temperature of the fuel in the core. (Author)

  12. Pump Application as Hydraulic Turbine – Pump as Turbine (PaT)

    OpenAIRE

    Rusovs, D

    2009-01-01

    The paper considers pump operation as hydraulic turbine with purpose to produce mechanical power from liquid flow. The Francis hydraulic turbine was selected for comparison with centrifugal pump in reverse operation. Turbine and centrifugal pump velocity triangles were considered with purpose to evaluate PaT efficiency. Shape of impeller blades for turbine and pumps was analysed. Specific speed calculation is carried out with purpose to obtain similarity in pump and turbine description. For ...

  13. Liquid metals pumping

    International Nuclear Information System (INIS)

    Le Frere, J.P.

    1984-01-01

    Pumps used to pump liquid metals depend on the liquid metal and on the type of application concerned. One deals more particularly with electromagnetic pumps, the main pumps used with mechanical pumps. To pump sodium in the nuclear field, these two types of pumps are used; the pumps of different circuits of Super Phenix are presented and described [fr

  14. Market optimization of a cluster of DG-RES, micro-CHP, heat pumps and energy storage within network constraints: The Power Matching City field test

    Energy Technology Data Exchange (ETDEWEB)

    Bliek, F.W.; Van den Noort, A. [KEMA, Arnhem (Netherlands); Roossien, B.; Kamphuis, I.G. [ECN Efficiency and Infrastructure, Petten (Netherlands); De Wit, J.; Van de Velde, J. [HumiQ, Barendrecht (Netherlands); Eijgelaar, M. [Essent, Arnhem (Netherlands)

    2010-10-15

    The share of renewable energy resources for electricity production, in a distributed setting (DG-RES), increases. The amount of energy transported via the electricity grid by substitution of fossil fuels for mobility applications (electric vehicles) and domestic heating (heat pumps) increases as well. Apart from the volume of electricity also the simultaneity factor increases at all grid levels. This poses unprecedented challenges to capacity management of the electricity infrastructure. A solution for tackling this challenge is using more active distribution networks, intelligent coordination of supply and demand using ICT and using the gas distribution network to mitigate electricity distribution bottlenecks. In the EU FP6 Energy Program Integral project, a large scale heterogeneous field test has been designed for application of the software agent based PowerMatcher technology. The test is conducted in a suburb of Groningen, Hoogkerk, and entails approximately 30 homes with either a 'dual fuel' heating system (electrical heat pump with gas-fired peak-burners) or a micro-CHP. Homes also may have PV. Furthermore, a wind production facility and nodes with electricity chargers for EVs and electricity storage are part of the Virtual Power Plant cluster, constructed in this way. Domestic heating systems have intrinsic operational flexibility in comfort management through the thermal mass of the dwellings. Furthermore, the field test comfort systems are equipped with possibilities for hot water storage for central heating as well as for tap-water. Finally, having additional gas-fired heating capacity for electrical heat pumps adds to increasing flexibility by switching the energy source dependent on the status of the electricity grid. Purpose of the field test is using this flexibility to react to phenomena in the electricity system. From a commercial perspective, the aggregated cluster reacts on small-time scale events like real-time portfolio imbalance

  15. Electro-Kinetic Pumping with Slip Irreversibility in Heat Exchange of CSP-Powered Bio-Digester Assemblies

    OpenAIRE

    Ogedengbe, Emmanuel; Rosen, Marc

    2012-01-01

    Parametric studies of the effects of slip irreversibility in concentrating solar power (CSP)-powered bio-digester assemblies are investigated. Complexities regarding the identification of the appropriate electro-kinetic phenomena for certain electrolyte phases are reviewed. The application of exergy analysis to the design of energy conversion devices, like solar thermal collectors, for the required heat of formation in a downdraft waste food bio-digester, is discussed. Thermal management in t...

  16. Improvements relating to electromagnetic pumps

    International Nuclear Information System (INIS)

    Davidson, D.F.

    1975-01-01

    Reference is made to electromagnetic pumps suitable for use in pumping molten Na, and particularly to annular linear induction pumps that may for example be used to pump molten Na at temperatures up to 650 0 in situations where it is not possible to provide cooling. Previous designs of such pumps have employed disk-shaped coils around the outside of the annulus, the coils being energised from a three-phase power supply to produce a travelling radial field. The pump system described obviates the necessity for joints between the coils. It also allows the use of all types of high temperature insultation, simplified manufacture, and enables the windings to be located on the inside of the annulus. Full constructional details are given. (U.K.)

  17. Electromagnetic pump

    International Nuclear Information System (INIS)

    Ito, Koji; Suetake, Norio; Aizawa, Toshie; Nakasaki, Masayoshi

    1998-01-01

    The present invention provides an electromagnetic pump suitable to a recycling pump for liquid sodium as coolants of an FBR type reactor. Namely, a stator module of the electromagnetic pump of the present invention comprises a plurality of outer laminate iron core units and outer stator modules stacked alternately in the axial direction. With such a constitution, even a long electromagnetic pump having a large number of outer stator coils can be manufactured without damaging electric insulation of the outer stator coils. In addition, the inner circumferential surface of the outer laminate iron cores is urged and brought into contact with the outer circumferential surface of the outer duct by an elastic material. With such a constitution, Joule loss heat generated in the outer stator coils and internal heat generated in the outer laminate iron cores can be released to an electroconductive fluid flowing the inner circumference of the outer duct by way of the outer duct. (I.S.)

  18. Electrokinetic pump

    Science.gov (United States)

    Patel, Kamlesh D.

    2007-11-20

    A method for altering the surface properties of a particle bed. In application, the method pertains particularly to an electrokinetic pump configuration where nanoparticles are bonded to the surface of the stationary phase to alter the surface properties of the stationary phase including the surface area and/or the zeta potential and thus improve the efficiency and operating range of these pumps. By functionalizing the nanoparticles to change the zeta potential the electrokinetic pump is rendered capable of operating with working fluids having pH values that can range from 2-10 generally and acidic working fluids in particular. For applications in which the pump is intended to handle highly acidic solutions latex nanoparticles that are quaternary amine functionalized can be used.

  19. Analysis of pumping systems to large flows of cooling water in power plants; Analisis de sistemas de bombeo para grandes flujos de agua de enfriamiento en centrales termoelectricas

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez Sanchez, Ramon; Herrera Velarde, Jose Ramon; Gonzalez Sanchez, Angel [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico)]. E-mail: rsanchez@iie.org.mx; jrhv@iie.org.mx; ags@iie.org.mx

    2010-11-15

    Accurate measurement of large water flows remains being a challenge in the problems of implementation of circulating water systems of power plants and other applications. This paper, presents a methodology for the analysis in pumping systems with high rates of water in power plants, as well as their practical application and results in pipelines water flow of a thermoelectrical power plant of 350 MW. In this power plant, the water flow per pipeline for a half of condenser oscillates around 7 m{sup 3}/s (14 m{sup 3}/s per power generating unit). In this analysis, we present the techniques used to measure large flows of water with high accurately, as well as the computational model for water circulating system using PIPE FLO and the results of practical application techniques. [Spanish] La medicion precisa de grandes flujos de agua, sigue siendo un reto en los problemas de aplicacion de sistemas de agua de circulacion de centrales termoelectricas, entre otras aplicaciones. En este articulo, se presenta una metodologia para el analisis de sistemas de bombeo con grandes flujos de agua en centrales termoelectricas, asi como, su aplicacion practica y los resultados obtenidos en los ductos de agua de circulacion de una central generadora con unidades de 350 MW. En esta central, los flujos por caja de agua oscilan alrededor de los 7 m{sup 3}/s (14 m{sup 3}/s por unidad generadora). En el analisis, se presentan las tecnicas utilizadas para medir con precision grandes flujos de agua (tubo de Pitot), asi como, el modelado del sistema de agua de circulacion por medio de un paquete computacional (PIPE FLO) y resultados obtenidos de la aplicacion de dichas tecnicas.

  20. Pump Propels Liquid And Gas Separately

    Science.gov (United States)

    Harvey, Andrew; Demler, Roger

    1993-01-01

    Design for pump that handles mixtures of liquid and gas efficiently. Containing only one rotor, pump is combination of centrifuge, pitot pump, and blower. Applications include turbomachinery in powerplants and superchargers in automobile engines. Efficiencies lower than those achieved in separate components. Nevertheless, design is practical and results in low consumption of power.

  1. Simulations of longitudinally pumped dye laser amplifier

    International Nuclear Information System (INIS)

    Takehisa, Kiwamu; Takemori, Satoshi

    1995-01-01

    Simulations of a copper laser pumped dye laser amplifier and new designs of the longitudinally pumped dye laser amplifier are presented. The simulations take the consideration of the amplified spontaneous emission (ASE). The new designs utilize a center-hole reflector instead of a dichroic mirror. The simulation results indicate that the poor spatial overlap between the pump beam and the dye beam in the transverse pumping not only reduces the laser output power, but also generates ASE strongly. The results also indicate that the longitudinal pumping is as efficient as the transverse pumping. (author)

  2. Pumps and pump facilities. 2. ed.

    International Nuclear Information System (INIS)

    Bohl, W.; Bauerfeind, H.; Gutmann, G.; Leuschner, G.; Matthias, H.B.; Mengele, R.; Neumaier, R.; Vetter, G.; Wagner, W.

    1981-01-01

    This book deals with the common fundamental aspects of liquid pumps and gives an exemplary choice of the most important kinds of pumps. The scientific matter is dealt with by means of practical mathematical examples among other ways of presenting the matter. Survey of contents: Division on main operational data of pumps - pipe characteristics - pump characteristics - suction behaviour of the pumps - projecting and operation of rotary pumps - boiler feed pumps - reactor feed pumps - oscillating positive-displacement pumps - eccentric spiral pumps. (orig./GL) [de

  3. High-power diode-end-pumped Tm:YLF slab laser delivering 189 W at 1890 nm

    CSIR Research Space (South Africa)

    Koen, W

    2010-09-01

    Full Text Available Laser Delivering 189 W at 1890 nm W. Koen, H.J. Strauss, C. Bollig and M.J.D. Esser CSIR National Laser Centre, Meiring Naude Road, Brummeria, Pretoria, 0001 wkoen@csir.co.za Abstract: We present a high-power Tm:YLF slab laser double...

  4. An experimental and theoretical investigation on the effects of adding hybrid nanoparticles on heat transfer efficiency and pumping power of an oil-based nanofluid as a coolant fluid

    DEFF Research Database (Denmark)

    Asadi, Meisam; Asadi, Amin; Aberoumand, Sadegh

    2018-01-01

    The present work aims to study heat transfer performance and pumping power of MgO-MWCNT/ thermal oil hybrid nanofluid. Using a KD2 Pro thermal analyzer, the thermal conductivity of the samples have been measured. The results showed an increasing trend for the thermal conductivity of the nanofluid...... nanofluid is highly efficient in heat transfer applications as a coolant fluid in both the laminar and turbulent flow regimes, although it causes a certain penalty in the pumping power....... efficiency and pumping power in all the studied range of solid concentrations and temperatures have been theoretically investigated, based on the experimental data of dynamic viscosity and thermal conductivity, for both the internal laminar and turbulent flow regimes. It was observed that the studied......The present work aims to study heat transfer performance and pumping power of MgO-MWCNT/ thermal oil hybrid nanofluid. Using a KD2 Pro thermal analyzer, the thermal conductivity of the samples have been measured. The results showed an increasing trend for the thermal conductivity of the nanofluid...

  5. Efficiency potentials of heat pumps with combined heat and power. For maximum reduction of CO2 emissions and for electricity generation from fossil fuels with CO2 reduction in Switzerland

    International Nuclear Information System (INIS)

    Rognon, F.

    2005-06-01

    This comprehensive report for the Swiss Federal Office of Energy (SFOE) takes a look at how the efficiency potential of heat pumps together with combined heat and power systems can help provide a maximum reduction of CO 2 emissions and provide electricity generation from fossil fuel in Switzerland together with reductions in CO 2 emissions. In Switzerland, approximately 80% of the low-temperature heat required for space-heating and for the heating-up of hot water is produced by burning combustibles. Around a million gas and oil boilers were in use in Switzerland in 2000, and these accounted for approximately half the country's 41.1 million tonnes of CO 2 emissions. The authors state that there is a more efficient solution with lower CO 2 emissions: the heat pump. With the enormous potential of our environment it would be possible to replace half the total number of boilers in use today with heat pumps. This would be equivalent to 90 PJ p.a. of useful heat, or 500,000 systems. The power source for heat pumps should come from the substitution of electric heating systems (electric resistor-based systems) and from the replacement of boilers. This should be done by using combined heat and power systems with full heat utilisation. This means, according to the authors, that the entire required power source can be provided without the need to construct new electricity production plants. The paper examines and discusses the theoretical, technical, market and realisable potentials

  6. Thermodynamic performance analysis of a novel electricity-heating cogeneration system (EHCS) based on absorption heat pump applied in the coal-fired power plant

    International Nuclear Information System (INIS)

    Zhang, Hongsheng; Li, Zhenlin; Zhao, Hongbin

    2015-01-01

    Highlights: • Presented a novel waste heat recovery method for Combined Heat and Power system. • Established models of the integrated system based on energy and exergy analysis. • Adopted both design and actual data ensuring the reliability of analysis results. - Abstract: A novel electricity-heating cogeneration system (EHCS) which is equipped with an absorption heat pump (AHP) system to recover waste heat from exhaust steam of the steam turbines in coal-fired thermal power plants is proposed to reduce heating energy consumption and improve the utilization of the fossil fuels in existing CHP (Combined Heat and Power) systems. According to the first and second thermodynamic law, the changes of the performance evaluation indicators are analyzed, and exergy analyses for key components of the system are carried out as well as changes of exergy indexes focusing on 135 MW direct air cooling units before and after modification. Compared with the conventional heating system, the output power increases by about 3.58 MW, gross coal consumption rate and total exergy loss respectively reduces by 11.50 g/kW h and 4.649 MW, while the total thermal and exergy efficiency increases by 1.26% and 1.45% in the EHCS when the heating load is 99,918 kJ at 75% THA condition. Meanwhile, the decrement of total exergy loss and increment of total exergy efficiency increase with the increasing of the heating load. The scheme cannot only bring great economic benefits but also save fossil resources, which has a promising market application potential.

  7. The utilization of excess wind-electric power from stock water pumping systems to heat a sector of the stock tank

    Energy Technology Data Exchange (ETDEWEB)

    Nydahl, J.E.; Carlson, B.O. [Univ. of Wyoming, Laramie, WY (United States)

    1996-12-31

    On the high plains, a wind-electric stock water pumping system produces a significant amount of excess power over the winter months due to intense winds and the decreased water consumption by cattle. The University of Wyoming is developing a multi-tasking system to utilize this excess energy to resistively heat a small sector of the stock tank at its demonstration/experimental site. This paper outlines the detailed heat transfer analysis that predicted drinking water temperature and icing conditions. It also outlines the optimization criteria and the power produced by the Bergey 1500 wind electric system. Results show that heating a smaller insulated tank inserted into the larger tank would raise the drinking water temperature by a maximum of 6.7 {degrees}C and eliminate icing conditions. The returns associated with the additional cattle weight gain, as a result of the consumption of warmer water, showed that system modification costs would be recovered the first year. 12 refs., 11 figs., 2 tabs.

  8. Learning from real and tissue-engineered jellyfish: How to design and build a muscle-powered pump at intermediate Reynolds numbers

    Science.gov (United States)

    Nawroth, Janna; Lee, Hyungsuk; Feinberg, Adam; Ripplinger, Crystal; McCain, Megan; Grosberg, Anna; Dabiri, John; Parker, Kit

    2012-11-01

    Tissue-engineered devices promise to advance medical implants, aquatic robots and experimental platforms for tissue-fluid interactions. The design, fabrication and systematic improvement of tissue constructs, however, is challenging because of the complex interactions of living cell, synthetic materials and their fluid environments. In a proof of concept study we have tissue-engineered a construct that mimics the swimming of a juvenile jellyfish, a simple model system for muscle-powered pumps at intermediate Reynolds numbers with quantifiable fluid dynamics and morphological properties. Optimally designed constructs achieved jellyfish-like swimming and generated biomimetic propulsion and feeding currents. Focusing on the fluid interactions, we discuss failed and successful designs and the lessons learned in the process. The main challenges were (1) to derive a body shape and deformation suitable for effective fluid transport under physiological fluid conditions, (2) to understand the mechanical properties of muscle and bell matrix and device a design capable of the desired deformation, (3) to establish adequate 3D kinematics of power and recovery stroke, and (4) to evaluate the performance of the design.

  9. Direct cryosorption pumping of an energetic hydrogen ion beam

    International Nuclear Information System (INIS)

    Schwenterly, S.W.; Ryan, P.M.; Tsai, C.C.

    1979-01-01

    Cryosorption pumps (CSP) are a prime candidate for the pumping of helium and deuterium-tritium (D-T) in tokamak divertor systems and may also see service in neutral beam injectors. However, the ability of a CSP to take high energy ions escaping from a plasma or neutral beam has not previously been demonstrated. In this study we arranged a 10-cm ion source of the type used in the Oak Ridge Tokamak (ORMAK) to inject a beam of ions directly into the inlet of a CSP. The pump contained two chevron baffles at 100K and 15K as well as a 15K cryosorption surface covered with a type 5A molecular sieve. The cryosurfaces were cooled by a closed-cycle helium refrigerator. For hydrogen ion pulses up to 11.5-keV energy and 1.3-A current, the pressure maintained during the pulse was only a few percent higher than that maintained with an equal flow of cold neutral gas. Pulse lengths of 100-300 ms were used. Calorimetric measurements showed that 40-60% of the I-V power was incident on the pump inlet. Cool-down and regeneration behavior of the pump will also be discussed

  10. Electro-Kinetic Pumping with Slip Irreversibility in Heat Exchange of CSP-Powered Bio-Digester Assemblies

    Directory of Open Access Journals (Sweden)

    Emmanuel O.B. Ogedengbe

    2012-12-01

    Full Text Available Parametric studies of the effects of slip irreversibility in concentrating solar power (CSP-powered bio-digester assemblies are investigated. Complexities regarding the identification of the appropriate electro-kinetic phenomena for certain electrolyte phases are reviewed. The application of exergy analysis to the design of energy conversion devices, like solar thermal collectors, for the required heat of formation in a downdraft waste food bio-digester, is discussed. Thermal management in the silicon-based substrate of the energy system is analyzed. The rectangular-shaped micro-channels are simulated with a finite-volume, staggered coupling of the pressure-velocity fields. Entropy generation transport within the energy system is determined and coupled with the solution procedure. Consequently, the effects of channel size perturbation, Reynolds number, and pressure ratios on the thermal performance and exergy destruction are presented. A comparative analysis of the axial heat conduction for thermal management in energy conversion devices is proposed.

  11. High average power, diode pumped petawatt laser systems: a new generation of lasers enabling precision science and commercial applications

    Science.gov (United States)

    Haefner, C. L.; Bayramian, A.; Betts, S.; Bopp, R.; Buck, S.; Cupal, J.; Drouin, M.; Erlandson, A.; Horáček, J.; Horner, J.; Jarboe, J.; Kasl, K.; Kim, D.; Koh, E.; Koubíková, L.; Maranville, W.; Marshall, C.; Mason, D.; Menapace, J.; Miller, P.; Mazurek, P.; Naylon, A.; Novák, J.; Peceli, D.; Rosso, P.; Schaffers, K.; Sistrunk, E.; Smith, D.; Spinka, T.; Stanley, J.; Steele, R.; Stolz, C.; Suratwala, T.; Telford, S.; Thoma, J.; VanBlarcom, D.; Weiss, J.; Wegner, P.

    2017-05-01

    Large laser systems that deliver optical pulses with peak powers exceeding one Petawatt (PW) have been constructed at dozens of research facilities worldwide and have fostered research in High-Energy-Density (HED) Science, High-Field and nonlinear physics [1]. Furthermore, the high intensities exceeding 1018W/cm2 allow for efficiently driving secondary sources that inherit some of the properties of the laser pulse, e.g. pulse duration, spatial and/or divergence characteristics. In the intervening decades since that first PW laser, single-shot proof-of-principle experiments have been successful in demonstrating new high-intensity laser-matter interactions and subsequent secondary particle and photon sources. These secondary sources include generation and acceleration of charged-particle (electron, proton, ion) and neutron beams, and x-ray and gamma-ray sources, generation of radioisotopes for positron emission tomography (PET), targeted cancer therapy, medical imaging, and the transmutation of radioactive waste [2, 3]. Each of these promising applications requires lasers with peak power of hundreds of terawatt (TW) to petawatt (PW) and with average power of tens to hundreds of kW to achieve the required secondary source flux.

  12. High-vacuum plasma pump

    International Nuclear Information System (INIS)

    Dorodnov, A.M.; Minajchev, V.E.; Miroshkin, S.I.

    1980-01-01

    The action of an electric-arc high-vacuum pump intended for evacuating the volumes in which the operation processes are followed by a high gas evolution is considered. The operation of the pump is based on the principle of controlling the getter feed according to the gas load and effect of plasma sorbtion pumping. The pump performances are given. The starting pressure is about 5 Pa, the limiting residual pressure is about 5x10 -6 Pa, the pumping out rate of nitrogen in the pressure range 5x10 -5 -5x10 -3 Pa accounts for about 4000 l/s, the power consumption comes to 6 kW. Analyzing the results of the test operation of the pump, it has been concluded that its principal advantages are the high starting pressure, controlled getter feed rate and possibility of pumping out the gases which are usually pumped out with difficulty. The operation reliability of the pump is defined mainly by reliable operation of the ignition system of the vacuum arc [ru

  13. Experimental study of membrane pump for plasma devices

    International Nuclear Information System (INIS)

    Suzuki, Hajime; Ohyabu, Nobuyoshi; Nakamura, Yukio; Sagara, Akio; Motojima, Osamu; Livshits, A.; Notkin, M.; Busnyuk, A.; Komatsu, Kazuyuki

    1998-01-01

    Recycling control is a key to improve fusion plasma performance. The membrane pump has potential advantages for hydrogen pumping in fusion devices. However, there are unsolved issues for using membrane pump in LHD (Large Helical Device). The first issue is characteristics of the membrane pump under high incident hydrogen atom flux. The second issue is relationship between the surface condition and the pumping efficiency. Impurities from plasma may change the surface condition of the membrane. In order to solve these issues, a membrane pump system was fabricated and installed in a linear plasma device at NIFS (National Institute for Fusion Science). The membrane pump was successfully operated. (author)

  14. Considerations for reference pump curves

    International Nuclear Information System (INIS)

    Stockton, N.B.

    1992-01-01

    This paper examines problems associated with inservice testing (IST) of pumps to assess their hydraulic performance using reference pump curves to establish acceptance criteria. Safety-related pumps at nuclear power plants are tested under the American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel Code (the Code), Section 11. The Code requires testing pumps at specific reference points of differential pressure or flow rate that can be readily duplicated during subsequent tests. There are many cases where test conditions cannot be duplicated. For some pumps, such as service water or component cooling pumps, the flow rate at any time depends on plant conditions and the arrangement of multiple independent and constantly changing loads. System conditions cannot be controlled to duplicate a specific reference value. In these cases, utilities frequently request to use pump curves for comparison of test data for acceptance. There is no prescribed method for developing a pump reference curve. The methods vary and may yield substantially different results. Some results are conservative when compared to the Code requirements; some are not. The errors associated with different curve testing techniques should be understood and controlled within reasonable bounds. Manufacturer's pump curves, in general, are not sufficiently accurate to use as reference pump curves for IST. Testing using reference curves generated with polynomial least squares fits over limited ranges of pump operation, cubic spline interpolation, or cubic spline least squares fits can provide a measure of pump hydraulic performance that is at least as accurate as the Code required method. Regardless of the test method, error can be reduced by using more accurate instruments, by correcting for systematic errors, by increasing the number of data points, and by taking repetitive measurements at each data point

  15. Fluidic pumps

    International Nuclear Information System (INIS)

    Priestman, G.H.

    1990-01-01

    A fluidic pump has primary and secondary vessels connected by a pipe, a displacement vessel having liquid to be delivered through a pipe via a rectifier provided with a feed tank. A drive unit delivers pressure fluid to a line to raise liquid and compress trapped gas or liquid in the space, including the pipe between the liquids in the two vessels and thus drive liquid out of the displacement vessel. The driving gas is therefore separated by the barrier liquid and the trapped gas or liquid from the liquid to be pumped which liquid could be e.g. radioactive. (author)

  16. Diode laser-pumped Ho:YLF laser

    International Nuclear Information System (INIS)

    Hemmati, H.

    1987-01-01

    The author reports laser action in Ho:YLF at 2.06 μm following optical pumping with a cw diode laser array. Diode laser-pumped Nd-YAG and Ho:YAG have been reported recently. Lasers with a wavelength of 2 μm have medical and optical communication applications. The diode laser light is focused with a 60-mm focal length lens onto the YLF crystal. A high-reflectivity mirror with 100-mm radius of curvature was used as the output coupler. The lasing threshold was at 5 mWof incident power. This is higher than expected considering that a high reflector was used as the output coupler. However, a more uniform cooling of the crystal is expected to lower the lasing threshold. With 100 mW of pump power coupled into the crystal, --20 mW of 2-μm radiation was observed from this unoptimized setup. The 2-μm laser output is highly sensitive to output coupler alignment, YLF crystal temperature, and pump laser wavelength. The 20% optical conversion efficiency achieved in his preliminary measurements is expected to be improved by better crystal cooling, proper matching of laser wavelength to crystal absorption, variations in the concentration of Ho and sensitizers and use of a proper output coupler. A study of the parameters mentioned above and the effect of crystal temperature on the laser output is under way

  17. The replacement of an electromagnetic primary sodium sampling pump in the Fast Flux Test Facility

    International Nuclear Information System (INIS)

    Grygiel, M.L.; McCargar, C.G.

    1985-01-01

    On November 16, 1984 a leak was discovered in one of the Fast Flux Test Facility (FFTF) Primary Sodium Sampling System electromagnetic pumps. The leak was discovered in the course of routine cell entry to investigate a shorted trace heat element. The purpose of this paper is to describe the circumstances surrounding the occurrence of the leak, the actions taken to replace the damaged pump and the additional steps which were necessary to return the plant to power. In addition, the processes involved in producing the leak are described briefly. The relative ease of recovery from this incident is indicative of the overall feasibility of the Liquid Metal Reactor (LMR) operational concept

  18. Medical treatment of radiation damages and medical emergency planning in case of nuclear power plant incidents and accidents

    International Nuclear Information System (INIS)

    Ohlenschlaeger, L.

    1981-03-01

    Medical measures in case of radiation damages are discussed on the basis of five potential categories of radiation incidents and accidents, respectively, viz. contaminations, incorporations, external local and general radiation over-exposures, contaminated wounds, and combinations of radiation damages and conventional injuries. Considerations are made for diagnostic and therapeutic initial measures especially in case of minor and moderate radiation accidents. The medical emergency planning is reviewed by means of definations used in the practical handling of incidents or accidents. The parameters are: extent of the incident or accident, number of persons involved, severity of radiation damage. Based on guiding symptoms the criteria for the classification into minor, moderate or severe radiation accidents are discussed. Reference is made to the Medical Radiation Protection Centers existing in the Federal Republic of Germany and the possibility of getting advices in case of radiation incidents and accidents. (orig.) [de

  19. Solar PV energy for water pumping system

    International Nuclear Information System (INIS)

    Mahar, F.

    1997-01-01

    The paper provides an introduction into understanding the relative merits, characteristics, including economics, of photovoltically powered water pumping systems. Although more than 10,000 photovoltaic pumping systems are known to be operating through out the world, many potential users do not know how to decide weather feasibility assessment, and system procurement so that the reader can made an informed decision about water pumping systems, especially those powered with photovoltaics. (author)

  20. A diode-pumped Nd:YAlO3 dual-wavelength yellow light source

    International Nuclear Information System (INIS)

    Zhang, Jing; Zhai, Pei; Xia, Jing; Li, Shutao; Fu, Xihong

    2013-01-01

    We present what is, to the best of our knowledge, the first diode-pumped Nd:YAlO 3 (Nd:YAP) continuous-wave (cw) dual-wavelength yellow laser at 593 nm and 598 nm, based on sum-frequency generation between 1064 and 1339 nm in a-axis polarization using LBO crystal and between 1079 and 1341 nm in c-axis polarization using PPKTP crystal, respectively. At an incident pump power of 17.3 W, the maximum output power obtained at 593 nm and 598 nm is 0.18 W and 1.86 W, respectively. The laser experiment shows that Nd:YAP crystal can be used for an efficient diode-pumped dual-wavelength yellow laser system. (paper)