WorldWideScience

Sample records for incident photon flux

  1. Contactless heat flux control with photonic devices

    Energy Technology Data Exchange (ETDEWEB)

    Ben-Abdallah, Philippe, E-mail: pba@institutoptique.fr [Laboratoire Charles Fabry, UMR 8501, Institut d’Optique, CNRS, Université Paris-Sud 11, 2, Avenue Augustin Fresnel, 91127 Palaiseau Cedex (France); Biehs, Svend-Age, E-mail: s.age.biehs@uni-oldenburg.de [Institut für Physik, Carl von Ossietzky Universität, D-26111 Oldenburg (Germany)

    2015-05-15

    The ability to control electric currents in solids using diodes and transistors is undoubtedly at the origin of the main developments in modern electronics which have revolutionized the daily life in the second half of 20th century. Surprisingly, until the year 2000 no thermal counterpart for such a control had been proposed. Since then, based on pioneering works on the control of phononic heat currents new devices were proposed which allow for the control of heat fluxes carried by photons rather than phonons or electrons. The goal of the present paper is to summarize the main advances achieved recently in the field of thermal energy control with photons.

  2. Single-photon detector operating under extremely high background photon flux conditions

    International Nuclear Information System (INIS)

    Prochazka, Ivan; Sopko, Bruno; Blazej, Josef

    2009-01-01

    We are reporting our results in research and development in the field of avalanche semiconductor single-photon detectors and their application. Our goal was a development of a solid-state photon-counting detector capable of high-precision photon arrival time tagging in extremely harsh operating conditions. The background photon flux exceeding 10 9 photons per second hitting the detector active area should not avoid the useful signal detection and recognition on the signal level of units of photons per second. This is background photon flux about two orders of magnitude higher than what the conventional solid-state photon counters accept. The detection timing resolution should be better than 100 ps and the delay stability should be on picosecond level. We have developed and tested the active quenched and gated avalanche structure on silicon providing the required features in connection with the K14 detection chips. The detector is capable of gated operation under the conditions of background photon flux of 5x10 9 photons per second. The operational detector tolerates long term exposures to the input photon flux exceeding 10 15 photons (>1 mW) per second without damage.

  3. High-flux solar photon processes: Opportunities for applications

    Energy Technology Data Exchange (ETDEWEB)

    Steinfeld, J.I.; Coy, S.L.; Herzog, H.; Shorter, J.A.; Schlamp, M.; Tester, J.W.; Peters, W.A. [Massachusetts Inst. of Tech., Cambridge, MA (United States)

    1992-06-01

    The overall goal of this study was to identify new high-flux solar photon (HFSP) processes that show promise of being feasible and in the national interest. Electric power generation and hazardous waste destruction were excluded from this study at sponsor request. Our overall conclusion is that there is promise for new applications of concentrated solar photons, especially in certain aspects of materials processing and premium materials synthesis. Evaluation of the full potential of these and other possible applications, including opportunities for commercialization, requires further research and testing. 100 refs.

  4. EUV mirror based absolute incident flux detector

    Science.gov (United States)

    Berger, Kurt W.

    2004-03-23

    A device for the in-situ monitoring of EUV radiation flux includes an integrated reflective multilayer stack. This device operates on the principle that a finite amount of in-band EUV radiation is transmitted through the entire multilayer stack. This device offers improvements over existing vacuum photo-detector devices since its calibration does not change with surface contamination.

  5. Calibration of a single-photon counting detectors without the need of input photon flux calibration (Conference Presentation)

    Science.gov (United States)

    Gerrits, Thomas

    2017-05-01

    Calibration of fiber-coupled single-photon detectors usually requires knowledge of the input photon flux inside the fiber and/or knowledge of the linearity of a reference power meter. Many approaches have been presented in the past to accurately measure the photon detection probability of a single photon detector [1-6]. Under certain assumptions, one can utilize waveguide-coupled single photon detectors and a series of photon-counting measurements and a single-photon source to calibrate the detection efficiency of a single photon detector without the need of a reference power meter and the knowledge of the incoming photon flux. Here, this method is presented. Furthermore, if a reference detector is used, the detection efficiency of all evanescently coupled waveguide detectors can be measured, and the measurement outcome does not depend on splicing or fiber connection losses within in the setup, i.e., the measurement is setup-independent. In addition, the method, when using a reference detector, can be utilized to measure and distinguish between the absorption of a waveguide-coupled single photon detector and its internal detection efficiency. [1] A. J. Miller et al, Opt. Express 19, 9102-9110 (2011) [2] I. Muller et al., Metrologia 51, S329 (2014). [3] A. L. Migdall, Instrumentation and Measurement, IEEE Transactions on 50, 478-481 (2001). [4] S. V. Polyakov, A. L. Migdall, Optics Express 15, 1390-1407 (2007). [5] A. Avella et al., Optics Express 19, 23249-23257 (2011). [6] T. Lunghi et al., Opt. Express 22, 18078-18092 (2014)

  6. High-flux normal incidence monochromator for circularly polarized synchrotron radiation

    International Nuclear Information System (INIS)

    Schaefers, F.; Peatman, W.; Eyers, A.; Heckenkamp, C.; Schoenhense, G.; Heinzmann, U.

    1986-01-01

    A 6.5-m normal incidence monochromator installed at the storage ring BESSY, which is optimized for a high throughput of circularly polarized off-plane radiation at moderate resolution is described. The monochromator employs two exit slits and is specially designed and used for low-signal experiments such as spin- and angle-resolved photoelectron spectroscopy on solids, adsorbates, free atoms, and molecules. The Monk--Gillieson mounting (plane grating in a convergent light beam) allows for large apertures with relatively little astigmatism. With two gratings, a flux of more than 10 11 photons s -1 bandwidth -1 (0.2--0.5 nm) with a circular polarization of more than 90% in the wavelength range from 35 to 675 nm is achieved

  7. The energy dependence of photon-flux and efficiency in the NRF measurement

    Energy Technology Data Exchange (ETDEWEB)

    Agar, Osman [Institut fuer Kernphysik, Technische Universitaet Darmstadt, 64289 Darmstadt (Germany); Karamanoglu Mehmetbey University, Department of Physics, 70100 Karaman (Turkey); Gayer, Udo; Merter, Laura; Pai, Haridas; Pietralla, Norbert; Ries, Philipp; Romig, Christopher; Werner, Volker; Schillling, Marcel; Zweidinger, Markus [Institut fuer Kernphysik, Technische Universitaet Darmstadt, 64289 Darmstadt (Germany)

    2016-07-01

    The calibration of the detector efficiency and the photon-flux distribution play an important role during the analysis of nuclear resonance fluorescence (NRF) measurements. The nucleus {sup 11}B is a frequently used calibration target with well-known photo-excitation cross sections. The product of photon flux and efficiency is determined exploiting γ-ray transitions of the {sup 11}B monitoring target. Photon-flux calibrations from numerous measurements at the superconducting Darmstadt electron linear accelerator (S-DALINAC) are carried out up to the neutron separation threshold, in order to obtain a system check of influences of absorbers on the flux, and to check against different GEANT models as well as parametrizations of the Schiff formula.

  8. Photon flux determination for a precision measurement of the neutral pion lifetime

    Energy Technology Data Exchange (ETDEWEB)

    Teymurazyan, Aram [Univ. of Kentucky, Lexington, KY (United States)

    2008-01-01

    The Jefferson Lab Hall B PrimEx Collaboration is using tagged photons to perform a 1.4% level measurement of the absolute cross section for the photo-production of neutral pions in the Coulomb field of a nucleus as a test of Chiral Perturbation Theory. Such a high precision pushes the limits of the photon tagging technique in regards to the determination of the absolute photon flux. A multifaceted approach to this problem has included measuring the absolute tagging ratios with a Total Absorption Counter (TAC) as well as relative tagging ratios with a Pair Spectrometer (PS), and determining the rate of the tagging counters using multi-hit TDC's and a clock trigger. This enables the determination of the absolute tagged photon flux for the PrimEx experiment with uncertainty of ~ 1.0%, which is unprecedented. In view of the stringent constraints on the required precision of the photon flux for this experiment, periodicmeasurements of the pair production cross section were performed throughout the run. In these measurements, both the photon energy and flux were determined by the Jefferson Lab Hall B tagger, and the electron-positron pairs were swept by a magnetic field and detected in the new 1728 channel hybrid calorimeter (HyCal). The pair production crosssection was extracted with an uncertainty of ~ 2%, producing an agreement with theoretical calculations at the level of ~ 2%. This measurement provided a unique opportunity to verify the photon flux determination procedure for the PrimEx experiment.

  9. Generation of high-photon flux-coherent soft x-ray radiation with few-cycle pulses.

    Science.gov (United States)

    Demmler, Stefan; Rothhardt, Jan; Hädrich, Steffen; Krebs, Manuel; Hage, Arvid; Limpert, Jens; Tünnermann, Andreas

    2013-12-01

    We present a tabletop source of coherent soft x-ray radiation with high-photon flux. Two-cycle pulses delivered by a fiber-laser-pumped optical parametric chirped-pulse amplifier operating at 180 kHz repetition rate are upconverted via high harmonic generation in neon to photon energies beyond 200 eV. A maximum photon flux of 1.3·10(8) photons/s is achieved within a 1% bandwidth at 125 eV photon energy. This corresponds to a conversion efficiency of ~10(-9), which can be reached due to a gas jet simultaneously providing a high target density and phase matching. Further scaling potential toward higher photon flux as well as higher photon energies are discussed.

  10. Effects of a power and photon energy of incident light on near-field etching properties

    Science.gov (United States)

    Yatsui, T.; Saito, H.; Nishioka, K.; Leuschel, B.; Soppera, O.; Nobusada, K.

    2017-12-01

    We developed a near-field etching technique for realizing an ultra-flat surfaces of various materials and structures. To elucidate the near-field etching properties, we have investigated the effects of power and the photon energy of the incident light. First, we established theoretically that an optical near-field with photon energy lower than the absorption edge of the molecules can induce molecular vibrations. We used nanodiamonds to study the power dependence of the near-field etching properties. From the topological changes of the nanodiamonds, we confirmed the linear-dependence of the etching volume with the incident power. Furthermore, we studied the photon energy dependence using TiO2 nanostriped structures, which revealed that a lower photon energy results in a lower etching rate.

  11. The operating experience and incident analysis for High Flux Engineering Test Reactor

    International Nuclear Information System (INIS)

    Zhao Guang

    1999-01-01

    The paper describes the incidents analysis for High Flux Engineering test reactor (HFETR) and introduces operating experience. Some suggestion have been made to reduce the incidents of HFETR. It is necessary to adopt new improvements which enhance the safety and reliability of operation. (author)

  12. Measuring Low Fluxes of Photons, Neutral Molecules and Ions with a New Generation of Detectors, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — A new detector evaluation method (DEM) is proposed to determine the response of graphene detectors to low fluxes of photons, neutral atoms/molecules, and ions in the...

  13. Transfer Matrix for Obliquely Incident Electromagnetic Waves Propagating in One Dimension Plasma Photonic Crystals

    International Nuclear Information System (INIS)

    Guo Bin

    2009-01-01

    Based on the electromagnetic theory and by using an analytical technique-the transfer matrix method, the obliquely incident electromagnetic waves propagating in one-dimension plasma photonic crystals is studied. The dispersion relations for both the P-polarization waves and S-polarization waves, depending on the plasma density, plasma thickness and period, are discussed. (basic plasma phenomena)

  14. Fluorescence contribution to the reflection of a photonic flux on a flat medium

    International Nuclear Information System (INIS)

    Bourdier, A.; Frey, J.J.; Saillard, Y.; Burgan, J.R.; Desfono, J.F.

    1988-12-01

    The albedo of a flat plane due to the sole fluorescence mechanism is calculated. Numerical evaluations are given considering an incident blackbody flux on a cold material. An optimum blackbody temperature is thus defined for a given material. The importance of induced effects is underlined [fr

  15. Gulmarg estimate of PeV photon flux from Cygnus X-3 and its relevance

    International Nuclear Information System (INIS)

    Bhat, C.L.; Sapru, M.L.; Razdan, H.

    1986-01-01

    An analysis of atmospheric Cerenkov pulses recorded during January 1976 - December 1977, by a wide-angle photomultiplier system at Gulmarg (India), reveals a phase-dependent component exhibiting the characteristic Cygnus X-3 modulation period of 4.8h. Its amplitude, given by the number of excess events in the phase peak relative to the total phase-independent events, is found to be (1.8 ± 0.4)per cent, corresponding to a detected average flux of (1.6 ± 0.4) x 10 -12 γcm -2 s -1 above 0.5 PeV (1PeV = 10 15 eV). Taken together with the spectral data for the following years from several other experiments, there is the suggestion of a long-term reduction in the luminosity of the PeV source by a factor of ∼ 1.5 y -1 (exponential decay law with a time constant of ∼ 2.3y). This intriguing possibility is further strengthened by an examination of the Haverah Park phase-histograms of Cygnus X-3 for the period January 1979 to December 1984 and the Plateau Rosa data recorded between December 1981 - March 1985, which display analogous long-term behaviour at > 10 15 eV and > 2 x 10 13 eV respectively. After accounting for losses in the PeV photon beam due to γ-γ interactions with the 2.7deg K microwave background, a comparison of the ultra high energy photon fluxes from Cygnus X-3 with those in 10 11 - 10 12 eV energy region shows that the latter are significant by lower. This suggests that the TeV photons undergo servere circumstellar abnsorption through interactions with optical/infrared photons or/and have a production spectrum which differs in some significant manner from the one responsible for generating the PeV flux. (author)

  16. Microsystem for remote sensing of high energy radiation with associated extremely low photon flux densities

    Science.gov (United States)

    Otten, A.; Jain, V. K.

    2015-08-01

    This paper presents a microsystem for remote sensing of high energy radiation in extremely low flux density conditions. With wide deployment in mind, potential applications range from nuclear non-proliferation, to hospital radiation-safety. The daunting challenge is the low level of photon flux densities - emerging from a Scintillation Crystal (SC) on to a ~1 mm-square detector, which are a factor of 10000 or so lower than those acceptable to recently reported photonic chips (including `single-photon detection' chips), due to a combination of low Lux, small detector size, and short duration SC output pulses - on the order of 1 μs. These challenges are attempted to be overcome by the design of an innovative `System on a Chip' type microchip, with high detector sensitivity, and effective coupling from the SC to the photodetector. The microchip houses a tiny n+ diff p-epi photodiode (PD) as well as the associated analog amplification and other related circuitry, all fabricated in 0.5micron, 3-metal 2-poly CMOS technology. The amplification, together with pulse-shaping of the photocurrent-induced voltage signal, is achieved through a tandem of two capacitively coupled, double-cascode amplifiers. Included in the paper are theoretical estimates and experimental results.

  17. A new empirical model to estimate hourly diffuse photosynthetic photon flux density

    Science.gov (United States)

    Foyo-Moreno, I.; Alados, I.; Alados-Arboledas, L.

    2018-05-01

    Knowledge of the photosynthetic photon flux density (Qp) is critical in different applications dealing with climate change, plant physiology, biomass production, and natural illumination in greenhouses. This is particularly true regarding its diffuse component (Qpd), which can enhance canopy light-use efficiency and thereby boost carbon uptake. Therefore, diffuse photosynthetic photon flux density is a key driving factor of ecosystem-productivity models. In this work, we propose a model to estimate this component, using a previous model to calculate Qp and furthermore divide it into its components. We have used measurements in urban Granada (southern Spain), of global solar radiation (Rs) to study relationships between the ratio Qpd/Rs with different parameters accounting for solar position, water-vapour absorption and sky conditions. The model performance has been validated with experimental measurements from sites having varied climatic conditions. The model provides acceptable results, with the mean bias error and root mean square error varying between - 0.3 and - 8.8% and between 9.6 and 20.4%, respectively. Direct measurements of this flux are very scarce so that modelling simulations are needed, this is particularly true regarding its diffuse component. We propose a new parameterization to estimate this component using only measured data of solar global irradiance, which facilitates its use for the construction of long-term data series of PAR in regions where continuous measurements of PAR are not yet performed.

  18. Incidence of Second Malignancies Among Patients Treated With Proton Versus Photon Radiation

    International Nuclear Information System (INIS)

    Chung, Christine S.; Yock, Torunn I.; Nelson, Kerrie; Xu, Yang; Keating, Nancy L.; Tarbell, Nancy J.

    2013-01-01

    Purpose: Proton radiation, when compared with photon radiation, allows delivery of increased radiation dose to the tumor while decreasing dose to adjacent critical structures. Given the recent expansion of proton facilities in the United States, the long-term sequelae of proton therapy should be carefully assessed. The objective of this study was to compare the incidence of second cancers in patients treated with proton radiation with a population-based cohort of matched patients treated with photon radiation. Methods and Materials: We performed a retrospective cohort study of 558 patients treated with proton radiation from 1973 to 2001 at the Harvard Cyclotron in Cambridge, MA and 558 matched patients treated with photon therapy in the Surveillance, Epidemiology, and End Results (SEER) Program cancer registry. Patients were matched by age at radiation treatment, sex, year of treatment, cancer histology, and site. The main outcome measure was the incidence of second malignancies after radiation. Results: We matched 558 proton patients with 558 photon patients from the Surveillance, Epidemiology, and End Results registry. The median duration of follow-up was 6.7 years (interquartile range, 7.4) and 6.0 years (interquartile range, 9.3) in the proton and photon cohorts, respectively. The median age at treatment was 59 years in each cohort. Second malignancies occurred in 29 proton patients (5.2%) and 42 photon patients (7.5%). After we adjusted for sex, age at treatment, primary site, and year of diagnosis, proton therapy was not associated with an increased risk of second malignancy (adjusted hazard ratio, 0.52 [95% confidence interval, 0.32-0.85]; P=.009). Conclusions: The use of proton radiation therapy was not associated with a significantly increased risk of secondary malignancies compared with photon therapy. Longer follow-up of these patients is needed to determine if there is a significant decrease in second malignancies. Given the limitations of the study

  19. A superconducting microcalorimeter for low-flux detection of near-infrared single photons

    International Nuclear Information System (INIS)

    Dreyling-Eschweiler, Jan

    2014-07-01

    This thesis covers the development and the characterization of a single photon detector based on a superconducting microcalorimeter. The detector development is motivated by the Any Light Particle Search II (ALPS II) experiment at DESY in Hamburg, which searches for weakly interacting sub-eV particles (WISPs). Therefore, a detection of low-fluxes of 1064 nm light is required. The work is divided in three analyses: the characterization of a milli-kelvin (mK) cryostat, the characterization of superconducting sensors for single photon detection, and the determination of dark count rates concerning 1064 nm signals. Firstly, an adiabatic demagnetization refrigerator (ADR) is characterized, which allows to reach mK-temperatures. During commissioning, the ADR cryostat is optimized and prepared to stably cool superconducting sensors at 80 mK±25 μK. It is found that sensors can be continuously operated for ∝20 h before recharging the system in -4 s -1 . By operating a fiber-coupled TES, it is found that the dark count rate for 1064 nm signals is dominated by pile-up events of near-infrared thermal photons coming through the fiber from the warm environment. Considering a detection efficiency of ∝18 %, a dark count rate of 8.6 . 10 -3 s -1 is determined for 1064 nm ALPS photons.Concerning ALPS II, this results in a sensitivity gain compared to the ALPS I detector. Furthermore, this thesis is the starting point of TES detector development in Hamburg, Germany.

  20. Morphological and physiological photon flux influence under in vitro culture of apple shoots

    Directory of Open Access Journals (Sweden)

    Ilisandra Zanandrea

    2009-10-01

    Full Text Available The aim of the present study was to evaluate the growth and development of apple rootstock shoots submitted to different photon flux densities (7, 14, 21 and 60 µmol m-2 s-1 and three culture media. The best photon flux for maximizing growth, number of shoots and leaves was 14 µmol m-2 s-1, which also resulted in the highest values of chloroplastic pigments. On the other hand, the highest photon flux (60 µmol m-2 s-1 decreased significantly these parameters. Medium with reduced sucrose concentration did not affect the analyzed parameters, enabling an efficient multiplication of the cultivar with only 1% of sucrose.O objetivo do presente estudo foi avaliar características de crescimento e desenvolvimento de brotações de macieira submetidas a diferentes densidades de fluxo de fótons (7, 14, 21 e 60 µmol m-2 s-1 e três meios de cultura. O melhor fluxo de fótons para maximizar o crescimento, número de brotações e de folhas foi de 14 µmol m-2 s-1, o qual também proporcionou os maiores valores de pigmentos cloroplastídicos. Por outro lado, alto fluxo de fótons (60 µmol m-2 s-1 diminuiu significativamente os parâmetros citados acima. O meio com concentração reduzida de sacarose não afetou os parâmetros analisados, possibilitando uma multiplicação eficiente desta cultivar com apenas 1% deste carboidrato.

  1. Dependence of absolute photon flux on infrared absorbance alteration and surface roughness on photoresist polymers irradiated with vacuum ultraviolet photons emitted from HBr plasma

    Science.gov (United States)

    Zhang, Yan; Takeuchi, Takuya; Ishikawa, Kenji; Hayashi, Toshio; Takeda, Keigo; Sekine, Makoto; Hori, Masaru

    2017-12-01

    The absolute fluxes of vacuum ultraviolet (VUV) photons emitted from HBr plasma were analyzed and the effects of VUV photons on a photoresist polymer in ArF-excimer-laser (193 nm) lithography were quantitatively investigated on the basis of the infrared spectra attributed to the C=O region. The spectral peak intensity assigned to the methacrylic acid (MAA) in the photoresist drastically decreased owing to the loss of this monomer caused by the irradiation of VUV photons at dosages below 16 × 1016 photons/cm2. X-ray photoelectron spectroscopy observation showed that the removed monomer moved to the surface and generated volatile products that induced a decrease in film thickness. As a consequence, the surface became rough during the early-stage irradiation at dosages lower than 16 × 1016 photons/cm2 owing to the monomer loss of MAA with volatile product formation and subsequent cross-linking reactions.

  2. Self-adjoint angular flux equation for coupled electron-photon transport

    International Nuclear Information System (INIS)

    Liscum-Powell, J.L.; Prinja, A.K.; Morel, J.E.; Lorence, L.J. Jr.

    1999-01-01

    Recently, Morel and McGhee described an alternate second-order form of the transport equation called the self-adjoint angular flux (SAAF) equation that has the angular flux as its unknown. The SAAF formulation has all the advantages of the traditional even- and odd-parity self-adjoint equations, with the added advantages that it yields the full angular flux when it is numerically solved, it is significantly easier to implement reflective and reflective-like boundary conditions, and in the appropriate form it can be solved in void regions. The SAAF equation has the disadvantage that the angular domain is the full unit sphere, and, like the even- and odd-parity form, S n source iteration cannot be implemented using the standard sweeping algorithm. Also, problems arise in pure scattering media. Morel and McGhee demonstrated the efficacy of the SAAF formulation for neutral particle transport. Here, the authors apply the SAAF formulation to coupled electron-photon transport problems using multigroup cross sections from the CEPXS code and S n discretization

  3. Self-Adjoint Angular Flux Equation for Coupled Electron-Photon Transport

    International Nuclear Information System (INIS)

    Liscum-Powell, J.L.; Lorence, L.J. Jr.; Morel, J.E.; Prinja, A.K.

    1999-01-01

    Recently, Morel and McGhee described an alternate second-order form of the transport equation called the self adjoint angular flux (SAAF) equation that has the angular flux as its unknown. The SAAF formulation has all the advantages of the traditional even- and odd-parity self-adjoint equations, with the added advantages that it yields the full angular flux when it is numerically solved, it is significantly easier to implement reflective and reflective-like boundary conditions, and in the appropriate form it can be solved in void regions. The SAAF equation has the disadvantage that the angular domain is the full unit sphere and, like the even- and odd- parity form, S n source iteration cannot be implemented using the standard sweeping algorithm. Also, problems arise in pure scattering media. Morel and McGhee demonstrated the efficacy of the SAAF formulation for neutral particle transport. Here we apply the SAAF formulation to coupled electron-photon transport problems using multigroup cross-sections from the CEPXS code and S n discretization

  4. Uncertainty analysis of steady state incident heat flux measurements in hydrocarbon fuel fires.

    Energy Technology Data Exchange (ETDEWEB)

    Nakos, James Thomas

    2005-12-01

    The objective of this report is to develop uncertainty estimates for three heat flux measurement techniques used for the measurement of incident heat flux in a combined radiative and convective environment. This is related to the measurement of heat flux to objects placed inside hydrocarbon fuel (diesel, JP-8 jet fuel) fires, which is very difficult to make accurately (e.g., less than 10%). Three methods will be discussed: a Schmidt-Boelter heat flux gage; a calorimeter and inverse heat conduction method; and a thin plate and energy balance method. Steady state uncertainties were estimated for two types of fires (i.e., calm wind and high winds) at three times (early in the fire, late in the fire, and at an intermediate time). Results showed a large uncertainty for all three methods. Typical uncertainties for a Schmidt-Boelter gage ranged from {+-}23% for high wind fires to {+-}39% for low wind fires. For the calorimeter/inverse method the uncertainties were {+-}25% to {+-}40%. The thin plate/energy balance method the uncertainties ranged from {+-}21% to {+-}42%. The 23-39% uncertainties for the Schmidt-Boelter gage are much larger than the quoted uncertainty for a radiative only environment (i.e ., {+-}3%). This large difference is due to the convective contribution and because the gage sensitivities to radiative and convective environments are not equal. All these values are larger than desired, which suggests the need for improvements in heat flux measurements in fires.

  5. Study and Simulation of the Density of the Incident Solar Flux on the Walls of a Building in Adrar, Algeria

    Directory of Open Access Journals (Sweden)

    A. Oudrane

    2017-10-01

    Full Text Available In this work, we studied the effect of external climatic conditions on the evolution of the daily solar flux incident on the walls of a building located at Adrar region in the South of Algeria. This building is designed for heating or air conditioning applications. Numerical simulations allowed to compare the variation of the incident solar flux over a full day on the south, east, north and west walls of the building to the values of the solar flux on a horizontal wall (the outer ceiling. The horizontal global solar flux is calculated using a Gaussian sinusoidal function. The simulations were carried out in the case of a building located in a desert zone. The results of the numerical simulation showed the effect of the orientation of the building on the evolution of the incident daily solar flux.

  6. Photonics

    CERN Document Server

    Andrews, David L

    2015-01-01

    Discusses the basic physical principles underlying thescience and technology of nanophotonics, its materials andstructures This volume presents nanophotonic structures and Materials.Nanophotonics is photonic science and technology that utilizeslight/matter interactions on the nanoscale where researchers arediscovering new phenomena and developing techniques that go wellbeyond what is possible with conventional photonics andelectronics.The topics discussed in this volume are: CavityPhotonics; Cold Atoms and Bose-Einstein Condensates; Displays;E-paper; Graphene; Integrated Photonics; Liquid Cry

  7. Photonics

    CERN Document Server

    Andrews, David L

    2015-01-01

    Discusses the basic physical principles underlying Biomedical Photonics, spectroscopy and microscopy This volume discusses biomedical photonics, spectroscopy and microscopy, the basic physical principles underlying the technology and its applications. The topics discussed in this volume are: Biophotonics; Fluorescence and Phosphorescence; Medical Photonics; Microscopy; Nonlinear Optics; Ophthalmic Technology; Optical Tomography; Optofluidics; Photodynamic Therapy; Image Processing; Imaging Systems; Sensors; Single Molecule Detection; Futurology in Photonics. Comprehensive and accessible cov

  8. Photonics

    CERN Document Server

    Andrews, David L

    2015-01-01

    This book covers modern photonics accessibly and discusses the basic physical principles underlying all the applications and technology of photonicsThis volume covers the basic physical principles underlying the technology and all applications of photonics from statistical optics to quantum optics. The topics discussed in this volume are: Photons in perspective; Coherence and Statistical Optics; Complex Light and Singular Optics; Electrodynamics of Dielectric Media; Fast and slow Light; Holography; Multiphoton Processes; Optical Angular Momentum; Optical Forces, Trapping and Manipulation; Pol

  9. Photonics

    CERN Document Server

    Andrews, David L

    2015-01-01

    Discusses the basic physical principles underlying the technology instrumentation of photonics This volume discusses photonics technology and instrumentation. The topics discussed in this volume are: Communication Networks; Data Buffers; Defense and Security Applications; Detectors; Fiber Optics and Amplifiers; Green Photonics; Instrumentation and Metrology; Interferometers; Light-Harvesting Materials; Logic Devices; Optical Communications; Remote Sensing; Solar Energy; Solid-State Lighting; Wavelength Conversion Comprehensive and accessible coverage of the whole of modern photonics Emphas

  10. Measurements of Pair Production Under Channelling Conditions by 70-180 GeV Photons Incident on Single Crystals

    CERN Multimedia

    2002-01-01

    This experiment will use the WA69 set-up to deliver a tagged photon beam in the energy range from 15~GeV to 150~GeV with a total angular spread of about @M~0.5~mrad. The incident photon direction is known to about 35~@mrad through the direction of the emitting electron. The photon beam is incident on an about 1~mm thick Ge single crystal in order to investigate pair production in single crystals. Above a certain energy threshold photons incident along crystal axis will show strongly increased pair production yi - the so-called .us Channelling Pair Production (ChPP). The produced pairs are analyzed in the @W-spectrometer. The large spread in incident photon angles offers an excellent opportunity to investigate in one single experiment the pair production in an angular region around a crystal axes and thereby compare ChPP with coherent (CPP) and incoherent (ICPP) processes. The very abrupt onset of ChPP (around threshold) will be measured and give a crucial test of the theoretical calculations. The differential...

  11. Design Studies for Flux and Polarization Measurements of Photons and Positrons for SLAC Proposal E166: An experiment to test polarized positron production in the FFTB (LCC-0107)

    Energy Technology Data Exchange (ETDEWEB)

    Woods, M

    2003-10-02

    We present results from design studies carried out to investigate measurements of the flux, spectrum and polarization of undulator photons for SLAC Proposal E166. A transmission Compton polarimeter is considered for measuring the photon circular polarization. We also present results for measuring the flux and spectrum of positrons produced by the undulator photons in an 0.5X{sub 0} Titanium target. And we present some considerations for use of a transmission Compton polarimeter to measure the circular polarization of bremsstrahlung photons emitted by the polarized positrons in a thin radiator.

  12. Regression models describing Rosa hybrida response to day/night temperature and photosynthetic photon flux

    International Nuclear Information System (INIS)

    Hopper, D.A.; Hammer, P.A.

    1991-01-01

    A central composite rotatable design was used to estimate quadratic equations describing the relationship of irradiance, as measured by photosynthetic photon flux (PPF), and day (DT) and night (NT) temperatures to the growth and development of Rosa hybrida L. in controlled environments. Plants were subjected to 15 treatment combinations of the PPF, DT, and NT according to the coding of the design matrix. Day and night length were each 12 hours. Environmental factor ranges were chosen to include conditions representative of winter and spring commercial greenhouse production environments in the midwestern United States. After an initial hard pinch, 11 plant growth characteristics were measured every 10 days and at flowering. Four plant characteristics were recorded to describe flower bud development. Response surface equations were displayed as three-dimensional plots, with DT and NT as the base axes and the plant character on the z-axis while PPF was held constant. Response surfaces illustrated the plant response to interactions of DT and NT, while comparisons between plots at different PPF showed the overall effect of PPF. Canonical analysis of all regression models revealed the stationary point and general shape of the response surface. All stationary points of the significant models were located outside the original design space, and all but one surface was a saddle shape. Both the plots and analysis showed greater stem diameter, as well as higher fresh and dry weights of stems, leaves, and flower buds to occur at flowering under combinations of low DT (less than or equal to 17C) and low NT (less than or equal to 14C). However, low DT and NT delayed both visible bud formation and development to flowering. Increased PPF increased overall flower stem quality by increasing stem diameter and the fresh and dry weights of all plant parts at flowering, as well as decreased time until visible bud formation and flowering. These results summarize measured development at

  13. Sensitivity of Seven Diverse Species to Blue and Green Light: Interactions with Photon Flux

    Science.gov (United States)

    Snowden, M. Chase; Cope, Kevin R.; Bugbee, Bruce

    2016-01-01

    Despite decades of research, the effects of spectral quality on plant growth, and development are not well understood. Much of our current understanding comes from studies with daily integrated light levels that are less than 10% of summer sunlight thus making it difficult to characterize interactions between light quality and quantity. Several studies have reported that growth is increased under fluorescent lamps compared to mixtures of wavelengths from LEDs. Conclusions regarding the effect of green light fraction range from detrimental to beneficial. Here we report the effects of eight blue and green light fractions at two photosynthetic photon fluxes (PPF; 200 and 500 μmol m-2 s-1; with a daily light integral of 11.5 and 29 mol m-2 d-1) on growth (dry mass), leaf expansion, stem and petiole elongation, and whole-plant net assimilation of seven diverse plant species. The treatments included cool, neutral, and warm white LEDs, and combinations of blue, green and/or red LEDs. At the higher PPF (500), increasing blue light in increments from 11 to 28% reduced growth in tomato, cucumber, and pepper by 22, 26, and 14% respectively, but there was no statistically significant effect on radish, soybean, lettuce or wheat. At the lower PPF (200), increasing blue light reduced growth only in tomato (41%). The effects of blue light on growth were mediated by changes in leaf area and radiation capture, with minimal effects on whole-plant net-assimilation. In contrast to the significant effects of blue light, increasing green light in increments from 0 to 30% had a relatively small effect on growth, leaf area and net assimilation at either low or high PPF. Surprisingly, growth of three of the seven species was not reduced by a treatment with 93% green light compared to the broad spectrum treatments. Collectively, these results are consistent with a shade avoidance response associated with either low blue or high green light fractions. PMID:27706176

  14. Sensitivity of Seven Diverse Species to Blue and Green Light: Interactions with Photon Flux.

    Directory of Open Access Journals (Sweden)

    M Chase Snowden

    Full Text Available Despite decades of research, the effects of spectral quality on plant growth, and development are not well understood. Much of our current understanding comes from studies with daily integrated light levels that are less than 10% of summer sunlight thus making it difficult to characterize interactions between light quality and quantity. Several studies have reported that growth is increased under fluorescent lamps compared to mixtures of wavelengths from LEDs. Conclusions regarding the effect of green light fraction range from detrimental to beneficial. Here we report the effects of eight blue and green light fractions at two photosynthetic photon fluxes (PPF; 200 and 500 μmol m-2 s-1; with a daily light integral of 11.5 and 29 mol m-2 d-1 on growth (dry mass, leaf expansion, stem and petiole elongation, and whole-plant net assimilation of seven diverse plant species. The treatments included cool, neutral, and warm white LEDs, and combinations of blue, green and/or red LEDs. At the higher PPF (500, increasing blue light in increments from 11 to 28% reduced growth in tomato, cucumber, and pepper by 22, 26, and 14% respectively, but there was no statistically significant effect on radish, soybean, lettuce or wheat. At the lower PPF (200, increasing blue light reduced growth only in tomato (41%. The effects of blue light on growth were mediated by changes in leaf area and radiation capture, with minimal effects on whole-plant net-assimilation. In contrast to the significant effects of blue light, increasing green light in increments from 0 to 30% had a relatively small effect on growth, leaf area and net assimilation at either low or high PPF. Surprisingly, growth of three of the seven species was not reduced by a treatment with 93% green light compared to the broad spectrum treatments. Collectively, these results are consistent with a shade avoidance response associated with either low blue or high green light fractions.

  15. Sensitivity of Seven Diverse Species to Blue and Green Light: Interactions with Photon Flux.

    Science.gov (United States)

    Snowden, M Chase; Cope, Kevin R; Bugbee, Bruce

    2016-01-01

    Despite decades of research, the effects of spectral quality on plant growth, and development are not well understood. Much of our current understanding comes from studies with daily integrated light levels that are less than 10% of summer sunlight thus making it difficult to characterize interactions between light quality and quantity. Several studies have reported that growth is increased under fluorescent lamps compared to mixtures of wavelengths from LEDs. Conclusions regarding the effect of green light fraction range from detrimental to beneficial. Here we report the effects of eight blue and green light fractions at two photosynthetic photon fluxes (PPF; 200 and 500 μmol m-2 s-1; with a daily light integral of 11.5 and 29 mol m-2 d-1) on growth (dry mass), leaf expansion, stem and petiole elongation, and whole-plant net assimilation of seven diverse plant species. The treatments included cool, neutral, and warm white LEDs, and combinations of blue, green and/or red LEDs. At the higher PPF (500), increasing blue light in increments from 11 to 28% reduced growth in tomato, cucumber, and pepper by 22, 26, and 14% respectively, but there was no statistically significant effect on radish, soybean, lettuce or wheat. At the lower PPF (200), increasing blue light reduced growth only in tomato (41%). The effects of blue light on growth were mediated by changes in leaf area and radiation capture, with minimal effects on whole-plant net-assimilation. In contrast to the significant effects of blue light, increasing green light in increments from 0 to 30% had a relatively small effect on growth, leaf area and net assimilation at either low or high PPF. Surprisingly, growth of three of the seven species was not reduced by a treatment with 93% green light compared to the broad spectrum treatments. Collectively, these results are consistent with a shade avoidance response associated with either low blue or high green light fractions.

  16. Coherent Pair Production by Photons in the 20-170 GeV Energy Range Incident on Crystals and Birefringence

    CERN Document Server

    Apyan, A.; Badelek, B.; Ballestrero, S.; Biino, C.; Birol, I.; Cenci, P.; Connell, S.H.; Eichblatt, S.; Fonseca, T.; Freund, A.; Gorini, B.; Groess, R.; Ispirian, K.; Ketel, T.J.; Kononets, Yu.V.; Lopez, A.; Mangiarotti, A.; van Rens, B.; Sellschop, J.P.F.; Shieh, M.; Sona, P.; Strakhovenko, V.; Uggerhoj, E.; Uggerhj, Ulrik Ingerslev; Unel, G.; Velasco, M.; Vilakazi, Z.Z.; Wessely, O.; Kononets, Yu.V.

    2003-01-01

    The cross section for coherent pair production by linearly polarised photons in the 20-170 GeV energy range was measured for photon aligned incidence on ultra-high quality diamond and germanium crystals. The theoretical description of coherent bremsstrahlung and coherent pair production phenomena is an area of active theoretical debate and development. However, under our experimental conditions, the theory predicted the combined cross section and polarisation experimental observables very well indeed. In macroscopic terms, our experiment measured a birefringence effect in pair production in a crystal. This study of this effect also constituted a measurement of the energy dependent linear polarisation of photons produced by coherent bremsstrahlung in aligned crystals. New technologies for manipulating high energy photon beams can be realised based on an improved understanding of QED phenomena at these energies. In particular, this experiment demonstrates an efficient new polarimetry technique. The pair product...

  17. Investigation of photon detection probability dependence of SPADnet-I digital photon counter as a function of angle of incidence, wavelength and polarization

    Energy Technology Data Exchange (ETDEWEB)

    Játékos, Balázs, E-mail: jatekosb@eik.bme.hu; Ujhelyi, Ferenc; Lőrincz, Emőke; Erdei, Gábor

    2015-01-01

    SPADnet-I is a prototype, fully digital, high spatial and temporal resolution silicon photon counter, based on standard CMOS imaging technology, developed by the SPADnet consortium. Being a novel device, the exact dependence of photon detection probability (PDP) of SPADnet-I was not known as a function of angle of incidence, wavelength and polarization of the incident light. Our targeted application area of this sensor is next generation PET detector modules, where they will be used along with LYSO:Ce scintillators. Hence, we performed an extended investigation of PDP in a wide range of angle of incidence (0° to 80°), concentrating onto a 60 nm broad wavelength interval around the characteristic emission peak (λ=420 nm) of the scintillator. In the case where the sensor was optically coupled to a scintillator, our experiments showed a notable dependence of PDP on angle, polarization and wavelength. The sensor has an average PDP of approximately 30% from 0° to 60° angle of incidence, where it starts to drop rapidly. The PDP turned out not to be polarization dependent below 30°. If the sensor is used without a scintillator (i.e. the light source is in air), the polarization dependence is much less expressed, it begins only from 50°.

  18. Integral particle reflection coefficient for oblique incidence of photons as universal function in the domain of initial energies up to 300 keV

    Directory of Open Access Journals (Sweden)

    Ljubenov Vladan L.

    2014-01-01

    Full Text Available In this paper we present the results of calculations and analyses of the integral particle reflection coefficient of photons for oblique photon incidence on planar targets, in the domain of initial photon energies from 100 keV to 300 keV. The results are based on the Monte Carlo simulations of the photon reflection from water, concrete, aluminum, iron, and copper materials, performed by the MCNP code. It has been observed that the integral particle reflection coefficient as a function of the ratio of total cross-section of photons and effective atomic number of target material shows universal behavior for all the analyzed shielding materials in the selected energy domain. Analytical formulas for different angles of photon incidence have been proposed, which describe the reflection of photons for all the materials and energies analyzed.

  19. A rare gas optics-free absolute photon flux and energy analyzer for solar and planetary observations

    Science.gov (United States)

    Judge, Darrell L.

    1994-01-01

    We have developed a prototype spectrometer for space applications requiring long term absolute EUV photon flux measurements. In this recently developed spectrometer, the energy spectrum of the incoming photons is transformed directly into an electron energy spectrum by taking advantage of the photoelectric effect in one of several rare gases at low pressures. Using an electron energy spectrometer, followed by an electron multiplier detector, pulses due to individual electrons are counted. The overall efficiency of this process can be made essentially independent of gain drifts in the signal path, and the secular degradation of optical components which is often a problem in other techniques is avoided. A very important feature of this approach is its freedom from the problem of overlapping spectral orders that plagues grating EUV spectrometers. An instrument with these features has not been flown before, but is essential to further advances in our understanding of solar EUV flux dynamics, and the coupled dynamics of terrestrial and planetary atmospheres. The detailed characteristics of this optics-free spectrometer are presented in the publications section.

  20. THE MASS OF KOI-94d AND A RELATION FOR PLANET RADIUS, MASS, AND INCIDENT FLUX

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, Lauren M.; Marcy, Geoffrey W.; Isaacson, Howard; Kolbl, Rea [B-20 Hearst Field Annex, Astronomy Department, University of California, Berkeley, Berkeley, CA 94720 (United States); Rowe, Jason F.; Howell, Steve B. [NASA Ames Research Center, Moffett Field, CA 94035 (United States); Howard, Andrew W. [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); Fortney, Jonathan J.; Miller, Neil [Department of Astronomy and Astrophysics, University of California, Santa Cruz, 1156 High Street, 275 Interdisciplinary Sciences Building (ISB), Santa Cruz, CA 95064 (United States); Demory, Brice-Olivier; Seager, Sara [Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 (United States); Fischer, Debra A. [Department of Astronomy, Yale University, P.O. Box 208101, New Haven, CT 06510-8101 (United States); Adams, Elisabeth R.; Dupree, Andrea K. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Johnson, John Asher [California Institute of Technology, 1216 E. California Blvd., Pasadena, CA 91106 (United States); Horch, Elliott P. [Southern Connecticut State University, Department of Physics, 501 Crescent St., New Haven, CT 06515 (United States); Everett, Mark E. [National Optical Astronomy Observatory, 950 N. Cherry Ave, Tucson, AZ 85719 (United States); Fabrycky, Daniel C., E-mail: lweiss@berkeley.edu [Department of Astronomy and Astrophysics, University of Chicago, 5640 S. Ellis Ave, Chicago, IL 60637 (United States)

    2013-05-01

    We measure the mass of a modestly irradiated giant planet, KOI-94d. We wish to determine whether this planet, which is in a 22 day orbit and receives 2700 times as much incident flux as Jupiter, is as dense as Jupiter or rarefied like inflated hot Jupiters. KOI-94 also hosts at least three smaller transiting planets, all of which were detected by the Kepler mission. With 26 radial velocities of KOI-94 from the W. M. Keck Observatory and a simultaneous fit to the Kepler light curve, we measure the mass of the giant planet and determine that it is not inflated. Support for the planetary interpretation of the other three candidates comes from gravitational interactions through transit timing variations, the statistical robustness of multi-planet systems against false positives, and several lines of evidence that no other star resides within the photometric aperture. We report the properties of KOI-94b (M{sub P} = 10.5 {+-} 4.6 M{sub Circled-Plus }, R{sub P} = 1.71 {+-} 0.16 R{sub Circled-Plus }, P = 3.74 days), KOI-94c (M{sub P} = 15.6{sup +5.7}{sub -15.6} M{sub Circled-Plus }, R{sub P} = 4.32 {+-} 0.41 R{sub Circled-Plus }, P = 10.4 days), KOI-94d (M{sub P} = 106 {+-} 11 M{sub Circled-Plus }, R{sub P} = 11.27 {+-} 1.06 R{sub Circled-Plus }, P = 22.3 days), and KOI-94e (M{sub P} = 35{sup +18}{sub -28} M{sub Circled-Plus }, R{sub P} = 6.56 {+-} 0.62 R{sub Circled-Plus }, P = 54.3 days). The radial velocity analyses of KOI-94b and KOI-94e offer marginal (>2{sigma}) mass detections, whereas the observations of KOI-94c offer only an upper limit to its mass. Using the KOI-94 system and other planets with published values for both mass and radius (138 exoplanets total, including 35 with M{sub P} < 150 M{sub Circled-Plus }), we establish two fundamental planes for exoplanets that relate their mass, incident flux, and radius from a few Earth masses up to 13 Jupiter masses: (R{sub P}/R{sub Circled-Plus }) = 1.78(M{sub P}/M{sub Circled-Plus }){sup 0.53}(F/erg s{sup -1} cm

  1. Accuracy validation of incident photon fluence on DQE for various measurement conditions and X-ray units.

    Science.gov (United States)

    Haba, Tomonobu; Kondo, Shimpei; Hayashi, Daiki; Koyama, Shuji

    2013-07-01

    Detective quantum efficiency (DQE) is widely used as a comprehensive metric for X-ray image evaluation in digital X-ray units. The incident photon fluence per air kerma (SNR²(in)) is necessary for calculating the DQE. The International Electrotechnical Commission (IEC) reports the SNR²(in) under conditions of standard radiation quality, but this SNR²(in) might not be accurate as calculated from the X-ray spectra emitted by an actual X-ray tube. In this study, we evaluated the error range of the SNR²(in) presented by the IEC62220-1 report. We measured the X-ray spectra emitted by an X-ray tube under conditions of standard radiation quality of RQA5. The spectral photon fluence at each energy bin was multiplied by the photon energy and the mass energy absorption coefficient of air; then the air kerma spectrum was derived. The air kerma spectrum was integrated over the whole photon energy range to yield the total air kerma. The total photon number was then divided by the total air kerma. This value is the SNR²(in). These calculations were performed for various measurement parameters and X-ray units. The percent difference between the calculated value and the standard value of RQA5 was up to 2.9%. The error range was not negligibly small. Therefore, it is better to use the new SNR²(in) of 30694 (1/(mm(2) μGy)) than the current [Formula: see text] of 30174 (1/(mm(2) μGy)).

  2. Design of an arrangement for the production of a scattered photon field and the flux measurement

    International Nuclear Information System (INIS)

    Legarda, F.; Herranz, M.

    1992-01-01

    The design of an arrangement to create and measure a scattered radiation field is described. The expected flux distribution has been calculated using Monte Carlo techniques (EGS4 system). The proposed measurement system includes a collimator with an opening of 0.2deg and a detector with a ∝2% energy resolution. This system should have a positional uncertainty of millimetre, and a small amount (0.6%) of radiation scattered back from the measurement system to the source. (orig.)

  3. Flux

    DEFF Research Database (Denmark)

    Ravn, Ib

    . FLUX betegner en flyden eller strømmen, dvs. dynamik. Forstår man livet som proces og udvikling i stedet for som ting og mekanik, får man et andet billede af det gode liv end det, som den velkendte vestlige mekanicisme lægger op til. Dynamisk forstået indebærer det gode liv den bedst mulige...... kanalisering af den flux eller energi, der strømmer igennem os og giver sig til kende i vore daglige aktiviteter. Skal vores tanker, handlinger, arbejde, samvær og politiske liv organiseres efter stramme og faste regelsæt, uden slinger i valsen? Eller skal de tværtimod forløbe ganske uhindret af regler og bånd...

  4. Reaction of tomato [Lycopersicon esculentum], cucumber [Cucumis sativus] and eggplant [Solanum melongena] cultured under the film altered the ratio of red and far-red photon flux

    International Nuclear Information System (INIS)

    Hotta, Y.; Hayashi, G.

    1998-01-01

    The effects of covering films which altered the ratio of red (R 600-700nm) and far-red (FR 700-800nm) photon flux to control succulent growth of seedlings on character of tomato, cucumber and eggplant seedlings Were determined. Also the effects on growth and yield of eggplant cultured in plastic greenhouse covered with the same films were investigated. The results were as follows: 1) The stem length of tomato, cucumber and eggplant seedlings cultured under the high R/FR ratio (2.28) film which intercepted far-red photon flux in the greenhouse got shorter than for cheesecloth (1.00) which had sane level of photosynthetic photon flux transmittance, especially evident on eggplant. There was no difference in the number of leaves on these seedlings between tested film and the cheesecloth, but the top and root dry weight of these seedlings cultured under tested film got lighter than the one using cheesecloth. The leaves got smaller in eggplant too. 2) The stem of eggplant cultured under the high R/FR ratio (2.28) film got shorter and thicker than the control PVC film; but there was no difference on the yield. But eggplant cultured under the low R/FR ratio (0.66) film which intercepted red photon flux grew similarly as control, but its yield decreased

  5. Photon beam position monitor

    Science.gov (United States)

    Kuzay, Tuncer M.; Shu, Deming

    1995-01-01

    A photon beam position monitor for use in the front end of a beamline of a high heat flux and high energy photon source such as a synchrotron radiation storage ring detects and measures the position and, when a pair of such monitors are used in tandem, the slope of a photon beam emanating from an insertion device such as a wiggler or an undulator inserted in the straight sections of the ring. The photon beam position monitor includes a plurality of spaced blades for precisely locating the photon beam, with each blade comprised of chemical vapor deposition (CVD) diamond with an outer metal coating of a photon sensitive metal such as tungsten, molybdenum, etc., which combination emits electrons when a high energy photon beam is incident upon the blade. Two such monitors are contemplated for use in the front end of the beamline, with the two monitors having vertically and horizontally offset detector blades to avoid blade "shadowing". Provision is made for aligning the detector blades with the photon beam and limiting detector blade temperature during operation.

  6. Photobiological interactions of blue light and photosynthetic photon flux: effects of monochromatic and broad-spectrum light sources.

    Science.gov (United States)

    Cope, Kevin R; Snowden, M Chase; Bugbee, Bruce

    2014-01-01

    Photosynthesis (Pn) and photomorphogenesis (Pm) are affected by light quality, light intensity and photoperiod. Although blue light (BL) is necessary for normal development, it is less efficient in driving Pn than other wavelengths of photosynthetically active radiation. The effects of BL on Pm are highly species dependent. Here we report the interacting effects of BL and photosynthetic photon flux (PPF) on growth and development of lettuce, radish and pepper. We used light-emitting diode (LED) arrays to provide BL fractions from 11% to 28% under broad-spectrum white LEDs, and from 0.3% to 92% under monochromatic LEDs. All treatments were replicated three times at each of two PPFs (200 and 500 μmol m(-2) s(-1)). Other than light quality, environmental conditions were uniformly maintained across chambers. Regardless of PPF, BL was necessary to prevent shade-avoidance responses in radish and lettuce. For lettuce and radish, increasing BL reduced stem length, and for both species, there were significant interactions of BL with PPF for leaf expansion. Increasing BL reduced petiole length in radish and flower number in pepper. BL minimally affected pepper growth and other developmental parameters. Pepper seedlings were more photobiologically sensitive than older plants. Surprisingly, there were few interactions between monochromatic and broad-spectrum light sources. © 2013 The American Society of Photobiology.

  7. Vapor shield protection of plasma facing components under incident high heat flux

    International Nuclear Information System (INIS)

    Gilligan, J.; Bourham, M.; Hankins, O.; Eddy, W.; Hurley, J.; Black, D.

    1992-01-01

    Disruption damage to plasma facing components has been found to be a limiting design constraint in ITER and other large fusion devices. A growing data base is confirming the role of the vapor shield in protecting ablated surfaces under disruption-like conditions, which would imply longer lifetimes for plasma facing components. We present new results for exposure of various material surfaces to high heat fluxes up to 70 GW/m 2 over 100 μs (7 MJ/m 2 ) in the SIRENS high heat flux test facility. Tested materials are graphite grades, pyrolytic graphite, refractory metals and alloys, refractory coatings on copper substrates, boron nitride and preliminary results of diamond coating on silicon substrates. An empirical scaling law of the energy transmission factor through the vapor shield has been obtained. The application of a strong external magnetic field, to reduce turbulent energy transport in the vapor shield boundary, is shown to decrease f by as much as 35% for fields of 8 T. (orig.)

  8. Plant lighting system with five wavelength-band light-emitting diodes providing photon flux density and mixing ratio control

    Directory of Open Access Journals (Sweden)

    Yano Akira

    2012-11-01

    Full Text Available Abstract Background Plant growth and development depend on the availability of light. Lighting systems therefore play crucial roles in plant studies. Recent advancements of light-emitting diode (LED technologies provide abundant opportunities to study various plant light responses. The LED merits include solidity, longevity, small element volume, radiant flux controllability, and monochromaticity. To apply these merits in plant light response studies, a lighting system must provide precisely controlled light spectra that are useful for inducing various plant responses. Results We have developed a plant lighting system that irradiated a 0.18 m2 area with a highly uniform distribution of photon flux density (PFD. The average photosynthetic PFD (PPFD in the irradiated area was 438 micro-mol m–2 s–1 (coefficient of variation 9.6%, which is appropriate for growing leafy vegetables. The irradiated light includes violet, blue, orange-red, red, and far-red wavelength bands created by LEDs of five types. The PFD and mixing ratio of the five wavelength-band lights are controllable using a computer and drive circuits. The phototropic response of oat coleoptiles was investigated to evaluate plant sensitivity to the light control quality of the lighting system. Oat coleoptiles irradiated for 23 h with a uniformly distributed spectral PFD (SPFD of 1 micro-mol m–2 s–1 nm–1 at every peak wavelength (405, 460, 630, 660, and 735 nm grew almost straight upwards. When they were irradiated with an SPFD gradient of blue light (460 nm peak wavelength, the coleoptiles showed a phototropic curvature in the direction of the greater SPFD of blue light. The greater SPFD gradient induced the greater curvature of coleoptiles. The relation between the phototropic curvature (deg and the blue-light SPFD gradient (micro-mol m–2 s–1 nm–1 m–1 was 2 deg per 1 micro-mol m–2 s–1 nm–1 m–1. Conclusions The plant lighting system, with a computer with a

  9. Growth analysis of UV-B-irradiated cucumber seedlings as influenced by photosynthetic photon flux source and cultivar

    International Nuclear Information System (INIS)

    Krizek, D.T.; Mirecki, R.M.; Kramer, G.F.

    1994-01-01

    A growth analysis was made of ultraviolet-B (UV-B)-sensitive (Poinsett) and insensitive (Ashley) cultivars of Cucuumis satives L. grown in growth chambers at 600 μmol m −2 s −1 of photosynthetic photon flux (PPF) provided by red- and far-red-deficient metal halide (MH) or blue- and UV-A-deficient high pressure sodium/deluxe f HPS/DX) lamps. Plants were irradiated 6 h daily with 0.2 f-UV-B) or 18.2 C+UV-B) kJ m −2 day −1 of biologically effective UV-B for 8 or 15 days from time of seeding. In general, plants given supplemental UV-B for 15 days showed lower leaf area ratio (LARs, and higher specific leaf mass (SLM) mean relative growth rate (MRGR) and net assimilation rate (NAR) than that of control plants, but they showed no difference in leaf mass ratio (LMR), Plants grown under HPS/DX lamps vs MH lamps showed higher SLM and NAR. lower LAR and LMR. hut no difference in MRGR. LMR was the only growth parameter affected by cultivar: at 15 days, it was slightly greater in Poinsett than in Ashley. There were no interactive effects of UV-B. PPF source or cultivar on any of the growth parameters determined, indicating that the choice of either HPS/DX or MH lamps should not affect growth response to UV-B radiation. This was true even though leaves of UV-B-irradiated plants grown under HPS/DX lamps have been shown to have greater chlorosis than those grown under MH lamps. (author)

  10. Time-over-threshold readout to enhance the high flux capabilities of single-photon-counting detectors

    International Nuclear Information System (INIS)

    Bergamaschi, Anna; Dinapoli, Roberto; Greiffenberg, Dominic; Henrich, Beat; Johnson, Ian; Mozzanica, Aldo; Radicci, Valeria; Schmitt, Bernd; Shi, Xintian; Stoppani, Laura

    2011-01-01

    The MYTHEN photon-counting ASIC operated in time-over-threshold mode shows an innovative approach towards the development of a detector operating with very high photon intensities while maintaining the single-photon sensitivity for synchrotron radiation experiments. The MYTHEN single-photon-counting (SPC) detector has been characterized using the time-over-threshold (ToT) readout method, i.e. measuring the time that the signal produced by the detected X-rays remains above the comparator threshold. In the following it is shown that the ToT readout preserves the sensitivity, dynamic range and capability of background suppression of the SPC mode, while enhancing the count-rate capability, which is the main limitation of state-of-the-art SPC systems

  11. Time-over-threshold readout to enhance the high flux capabilities of single-photon-counting detectors

    Energy Technology Data Exchange (ETDEWEB)

    Bergamaschi, Anna, E-mail: anna.bergamaschi@psi.ch; Dinapoli, Roberto; Greiffenberg, Dominic; Henrich, Beat; Johnson, Ian; Mozzanica, Aldo; Radicci, Valeria; Schmitt, Bernd; Shi, Xintian; Stoppani, Laura [Paul Scherrer Institut, CH-5232 Villigen (Switzerland)

    2011-11-01

    The MYTHEN photon-counting ASIC operated in time-over-threshold mode shows an innovative approach towards the development of a detector operating with very high photon intensities while maintaining the single-photon sensitivity for synchrotron radiation experiments. The MYTHEN single-photon-counting (SPC) detector has been characterized using the time-over-threshold (ToT) readout method, i.e. measuring the time that the signal produced by the detected X-rays remains above the comparator threshold. In the following it is shown that the ToT readout preserves the sensitivity, dynamic range and capability of background suppression of the SPC mode, while enhancing the count-rate capability, which is the main limitation of state-of-the-art SPC systems.

  12. A code to determine the energy distribution, the incident energy and the flux of a beam of light ions into a stack of foils

    International Nuclear Information System (INIS)

    Sonzogni, A.A.; Romo, A.S.M.A.; Frosch, W.R.; Nassiff, S.J.

    1992-01-01

    The stacked-foil technique is one of the most used methods to obtain excitation functions of nuclear reactions using light ions as projectiles. The purpose of this program is the calculation of the energy of the beam in the stack, as well as to obtain the incident energy and the flux of the beam by using monitor excitation functions. (orig.)

  13. An incident flux expansion transport theory method suitable for coupling to diffusion theory methods in hexagonal geometry

    International Nuclear Information System (INIS)

    Hayward, Robert M.; Rahnema, Farzad; Zhang, Dingkang

    2013-01-01

    Highlights: ► A new hybrid stochastic–deterministic transport theory method to couple with diffusion theory. ► The method is implemented in 2D hexagonal geometry. ► The new method produces excellent results when compared with Monte Carlo reference solutions. ► The method is fast, solving all test cases in less than 12 s. - Abstract: A new hybrid stochastic–deterministic transport theory method, which is designed to couple with diffusion theory, is presented. The new method is an extension of the incident flux response expansion method, and it combines the speed of diffusion theory with the accuracy of transport theory. With ease of use in mind, the new method is derived in such a way that it can be implemented with only minimal modifications to an existing diffusion theory method. A new angular expansion, which is necessary for the diffusion theory coupling, is developed in 2D and 3D. The method is implemented in 2D hexagonal geometry, and an HTTR benchmark problem is used to test its accuracy in a standalone configuration. It is found that the new method produces excellent results (with average relative error in partial current less than 0.033%) when compared with Monte Carlo reference solutions. Furthermore, the method is fast, solving all test cases in less than 12 s

  14. A rare gas optics-free absolute photon flux and energy analyzer to provide absolute photoionization rates of inflowing interstellar neutrals

    Science.gov (United States)

    Judge, Darrell L.

    1994-01-01

    A prototype spectrometer has been developed for space applications requiring long term absolute EUV photon flux measurements. The energy spectrum of the incoming photons is transformed directly into an electron energy spectrum by taking advantage of the photoelectric effect in one of several rare gases at low pressures. Using an electron energy spectrometer, followed by an electron multiplier detector, pulses due to individual electrons are counted. The overall efficiency of this process can be made essentially independent of gain drifts in the signal path, and the secular degradation of optical components which is often a problem in other techniques is avoided. A very important feature of this approach is its freedom from the problem of overlapping spectral orders that plagues grating EUV spectrometers. An instrument with these features has not been flown before, but is essential to further advances in our understanding of solar EUV flux dynamics, and the coupled dynamics of terrestrial and planetary atmospheres. The detailed characteristics of this optics-free spectrometer are presented in the publications section.

  15. Time-over-threshold readout to enhance the high flux capabilities of single-photon-counting detectors.

    Science.gov (United States)

    Bergamaschi, Anna; Dinapoli, Roberto; Greiffenberg, Dominic; Henrich, Beat; Johnson, Ian; Mozzanica, Aldo; Radicci, Valeria; Schmitt, Bernd; Shi, Xintian; Stoppani, Laura

    2011-11-01

    The MYTHEN single-photon-counting (SPC) detector has been characterized using the time-over-threshold (ToT) readout method, i.e. measuring the time that the signal produced by the detected X-rays remains above the comparator threshold. In the following it is shown that the ToT readout preserves the sensitivity, dynamic range and capability of background suppression of the SPC mode, while enhancing the count-rate capability, which is the main limitation of state-of-the-art SPC systems.

  16. Measurement of the light flux density patterns from luminaires proposed as photon sources for photosynthesis during space travel

    Science.gov (United States)

    Walker, Paul N.

    1989-01-01

    Two luminaires were evaluated to determine the light flux density pattern on a horizontal plane surface. NASA supplied both luminaires; one was made by NASA and the other is commercially available. Tests were made for three combinations of luminaire height and luminaire lens material using the NASA luminaire; only one configuration of the commercial luminaire was tested. Measurements were made using four sensors with different wavelength range capabilities. The data are presented in graphical and tabular formats.

  17. Effect of high-flux astronomical sources on the constellation-X microcalorimeter spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Figueroa-Feliciano, E. E-mail: enectali.figueroa@gsfc.nasa.gov; Bandler, S.; Boyce, K.; Chervenak, J.; Finkbeiner, F.; Kelley, R.; Lindeman, M.A.; Porter, S.F.; Saab, T.; Stahle, C.K

    2004-03-11

    We study the effects of high flux on transition-edge sensors by using a non-linear microcalorimeter model with parameters suitable for the Constellation-X mission. A photon event list was created that simulated the flux and spectrum of the Crab nebula incident on the detector when folded through the Constellation-X optics and filters. Simulations show that even at Crab levels of flux, the Con-X microcalorimeter does not 'latch' into the normal state.

  18. CdTe Timepix detectors for single-photon spectroscopy and linear polarimetry of high-flux hard x-ray radiation

    Energy Technology Data Exchange (ETDEWEB)

    Hahn, C., E-mail: christoph.hahn@uni-jena.de; Höfer, S.; Kämpfer, T. [Helmholtz Institute Jena, 07743 Jena (Germany); Institute of Optics and Quantum Electronics, University of Jena, 07743 Jena (Germany); Weber, G.; Märtin, R. [Helmholtz Institute Jena, 07743 Jena (Germany); GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt (Germany); Stöhlker, Th. [Helmholtz Institute Jena, 07743 Jena (Germany); Institute of Optics and Quantum Electronics, University of Jena, 07743 Jena (Germany); GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt (Germany)

    2016-04-15

    Single-photon spectroscopy of pulsed, high-intensity sources of hard X-rays — such as laser-generated plasmas — is often hampered by the pileup of several photons absorbed by the unsegmented, large-volume sensors routinely used for the detection of high-energy radiation. Detectors based on the Timepix chip, with a segmentation pitch of 55 μm and the possibility to be equipped with high-Z sensor chips, constitute an attractive alternative to commonly used passive solutions such as image plates. In this report, we present energy calibration and characterization measurements of such devices. The achievable energy resolution is comparable to that of scintillators for γ spectroscopy. Moreover, we also introduce a simple two-detector Compton polarimeter setup with a polarimeter quality of (98 ± 1)%. Finally, a proof-of-principle polarimetry experiment is discussed, where we studied the linear polarization of bremsstrahlung emitted by a laser-driven plasma and found an indication of the X-ray polarization direction depending on the polarization state of the incident laser pulse.

  19. CdTe Timepix detectors for single-photon spectroscopy and linear polarimetry of high-flux hard x-ray radiation.

    Science.gov (United States)

    Hahn, C; Weber, G; Märtin, R; Höfer, S; Kämpfer, T; Stöhlker, Th

    2016-04-01

    Single-photon spectroscopy of pulsed, high-intensity sources of hard X-rays - such as laser-generated plasmas - is often hampered by the pileup of several photons absorbed by the unsegmented, large-volume sensors routinely used for the detection of high-energy radiation. Detectors based on the Timepix chip, with a segmentation pitch of 55 μm and the possibility to be equipped with high-Z sensor chips, constitute an attractive alternative to commonly used passive solutions such as image plates. In this report, we present energy calibration and characterization measurements of such devices. The achievable energy resolution is comparable to that of scintillators for γ spectroscopy. Moreover, we also introduce a simple two-detector Compton polarimeter setup with a polarimeter quality of (98 ± 1)%. Finally, a proof-of-principle polarimetry experiment is discussed, where we studied the linear polarization of bremsstrahlung emitted by a laser-driven plasma and found an indication of the X-ray polarization direction depending on the polarization state of the incident laser pulse.

  20. Reconstruction of the incident flux shape on the plasma-facing components of JET tokamak: 2D linear approach

    International Nuclear Information System (INIS)

    Gardarein, J.L.; Corre, Y.; Reichle, R.; Rigollet, F.; Le Niliot, Ch.

    2006-01-01

    In this work, a deconvolution of the temperatures measured with thermocouples fitted inside the plasma-facing components of a controlled fusion machine is performed. A 2D pulse response is used which is obtained by the thermal quadrupole method. The shape and intensity of the plasma flux deposited at the surface of the component is calculated and some experimental results are presented. (J.S.)

  1. Variation of energy absorption and exposure buildup factors with incident photon energy and penetration depth for boro-tellurite (B2O3-TeO2) glasses

    Science.gov (United States)

    Sayyed, M. I.; Elhouichet, H.

    2017-01-01

    The gamma ray energy absorption (EABF) and exposure buildup factors (EBF) of (100-x)TeO2-xB2O3 glass systems (where x=5, 10, 15, 20, 22.5 and 25 mol%) have been calculated in the energy region 0.015-15 MeV up to a penetration depth of 40 mfp (mean free path). The five parameters (G-P) fitting method has been used to estimate both EABF and EBF values. Variations of EABF and EBF with incident photon energy and penetration depth have been studied. It was found that EABF and EBF values were higher in the intermediate energy region, for all the glass systems. Furthermore, boro-tellurite glass with 5 mol% B2O3, was found to present the lowest EABF and EBF values, hence it is superior gamma-ray shielding material. The results indicate that the boro-tellurite glasses can be used as radiation shielding materials.

  2. UV Filtering of Dye-Sensitized Solar Cells: The Effects of Varying the UV Cut-Off upon Cell Performance and Incident Photon-to-Electron Conversion Efficiency

    Directory of Open Access Journals (Sweden)

    Matthew Carnie

    2012-01-01

    Full Text Available With current technology, UV filters are essential to ensure long-term dye-sensitized solar cell (DSC stability. Blocking photons, however, will have an obvious effect on device performance and upon its incident photon-to-current conversion efficiency (IPCE. Filters have been applied to DSC devices with a range of cut-off wavelengths in order to assess how different levels of filtering affect the performance and IPCE of devices made with three different dyes, namely N719, Z907, and N749. It is shown that dyes that extend their IPCE further into the NIR region suffer lesser relative efficiency losses due to UV filtering than dyes with narrower action spectra. Furthermore, the results are encouraging to those working towards the industrialisation of DSC technology. From the results presented it can be estimated that filtering at a level intended to prevent direct band gap excitation of the TiO2 semiconductor should cause a relative drop in cell efficiency of no more than 10% in forward illuminated devices and no more than 2% in reverse illuminated devices.

  3. Optimizing LED lighting for space plant growth unit: Joint effects of photon flux density, red to white ratios and intermittent light pulses

    Science.gov (United States)

    Avercheva, O. V.; Berkovich, Yu. A.; Konovalova, I. O.; Radchenko, S. G.; Lapach, S. N.; Bassarskaya, E. M.; Kochetova, G. V.; Zhigalova, T. V.; Yakovleva, O. S.; Tarakanov, I. G.

    2016-11-01

    The aim of this work were to choose a quantitative optimality criterion for estimating the quality of plant LED lighting regimes inside space greenhouses and to construct regression models of crop productivity and the optimality criterion depending on the level of photosynthetic photon flux density (PPFD), the proportion of the red component in the light spectrum and the duration of the duty cycle (Chinese cabbage Brassica chinensis L. as an example). The properties of the obtained models were described in the context of predicting crop dry weight and the optimality criterion behavior when varying plant lighting parameters. Results of the fractional 3-factor experiment demonstrated the share of the PPFD level participation in the crop dry weight accumulation was 84.4% at almost any combination of other lighting parameters, but when PPFD value increased up to 500 μmol m-2 s-1 the pulse light and supplemental light from red LEDs could additionally increase crop productivity. Analysis of the optimality criterion response to variation of lighting parameters showed that the maximum coordinates were the following: PPFD = 500 μmol m-2 s-1, about 70%-proportion of the red component of the light spectrum (PPFDLEDred/PPFDLEDwhite = 1.5) and the duty cycle with a period of 501 μs. Thus, LED crop lighting with these parameters was optimal for achieving high crop productivity and for efficient use of energy in the given range of lighting parameter values.

  4. Growth and Accumulation of Secondary Metabolites in Perilla as Affected by Photosynthetic Photon Flux Density and Electrical Conductivity of the Nutrient Solution

    Directory of Open Access Journals (Sweden)

    Na Lu

    2017-05-01

    Full Text Available The global demand for medicinal plants is increasing. The quality of plants grown outdoors, however, is difficult to control. Myriad environmental factors influence plant growth and directly impact biosynthetic pathways, thus affecting the secondary metabolism of bioactive compounds. Plant factories use artificial lighting to increase the quality of medicinal plants and stabilize production. Photosynthetic photon flux density (PPFD and electrical conductivity (EC of nutrient solutions are two important factors that substantially influence perilla (Perilla frutescens, Labiatae plant growth and quality. To identify suitable levels of PPFD and EC for perilla plants grown in a plant factory, the growth, photosynthesis, and accumulation of secondary metabolites in red and green perilla plants were measured at PPFD values of 100, 200, and 300 μmol m-2 s-1 in nutrient solutions with EC values of 1.0, 2.0, and 3.0 dS m-1. The results showed significant interactive effects between PPFD and EC for both the fresh and dry weights of green perilla, but not for red perilla. The fresh and dry weights of shoots and leafy areas were affected more by EC than by PPFD in green perilla, whereas they were affected more by PPFD than by EC in red perilla. Leaf net photosynthetic rates were increased as PPFD increased in both perilla varieties, regardless of EC. The perillaldehyde concentration (mg g-1 in red perilla was unaffected by the treatments, but accumulation in plants (mg per plant was significantly enhanced as the weight of dry leaves increased. Perillaldehyde concentrations in green perilla showed significant differences between combinations of the highest PPFD with the highest EC and the lowest PPFD with the lowest EC. Rosmarinic acid concentration (mg g-1 was increased in a combination of low EC and high PPFD conditions. Optimal cultivation conditions of red and green perilla in plant factory will be discussed in terms of plant growth and contents of

  5. Optimizing LED lighting for space plant growth unit: Joint effects of photon flux density, red to white ratios and intermittent light pulses.

    Science.gov (United States)

    Avercheva, O V; Berkovich, Yu A; Konovalova, I O; Radchenko, S G; Lapach, S N; Bassarskaya, E M; Kochetova, G V; Zhigalova, T V; Yakovleva, O S; Tarakanov, I G

    2016-11-01

    The aim of this work were to choose a quantitative optimality criterion for estimating the quality of plant LED lighting regimes inside space greenhouses and to construct regression models of crop productivity and the optimality criterion depending on the level of photosynthetic photon flux density (PPFD), the proportion of the red component in the light spectrum and the duration of the duty cycle (Chinese cabbage Brassica сhinensis L. as an example). The properties of the obtained models were described in the context of predicting crop dry weight and the optimality criterion behavior when varying plant lighting parameters. Results of the fractional 3-factor experiment demonstrated the share of the PPFD level participation in the crop dry weight accumulation was 84.4% at almost any combination of other lighting parameters, but when PPFD value increased up to 500µmol m -2 s -1 the pulse light and supplemental light from red LEDs could additionally increase crop productivity. Analysis of the optimality criterion response to variation of lighting parameters showed that the maximum coordinates were the following: PPFD = 500µmol m -2 s -1 , about 70%-proportion of the red component of the light spectrum (PPFD LEDred /PPFD LEDwhite = 1.5) and the duty cycle with a period of 501µs. Thus, LED crop lighting with these parameters was optimal for achieving high crop productivity and for efficient use of energy in the given range of lighting parameter values. Copyright © 2016 The Committee on Space Research (COSPAR). Published by Elsevier Ltd. All rights reserved.

  6. RETRACTED: The influence of sand diameter and wind velocity on sand particle lift-off and incident angles in the windblown sand flux

    Science.gov (United States)

    Bo, Tian-Li; Zheng, Xiao-Jing; Duan, Shao-Zhen; Liang, Yi-Rui

    2013-05-01

    This article has been retracted: please see Elsevier Policy on Article Withdrawal. This article has been retracted at the request of the Editors-in-Chief. This article also contains significant similarity with parts of text, written by the same author(s), that have appeared in Tian-Li Bo, Xiao-Jing Zheng, Shao-Zhen Duan, Yi-Rui Liang, The influence of wind velocity and sand grain diameter on the falling velocities of sand particles, Powder Technology, Volume 241, June 2013, Pages 158-165. Tian-Li Bo, Xiao-Jing Zheng, Shao-Zhen Duan, Yi-Rui Liang, Analysis of sand particles' lift-off and incident velocities in wind-blown sand flux, Acta Mechanica Sinica, April 2013, Volume 29, Issue 2, pp 158-165. Tian-Li Bo, Xiao-Jing Zheng, Shao-Zhen Duan, Yi-Rui Liang, Influence of sand grain diameter and wind velocity on lift-off velocities of sand particles, The European Physical Journal E, May 2013, 36:50. Tian-Li Bo, Shao-Zhen Duan, Xiao-Jing Zheng, Yi-Rui Liang, The influence of sand bed temperature on lift-off and falling parameters in windblown sand flux, Geomorphology, Volume 204, 1 January 2014, Pages 477-484. The scientific community takes a very strong view on this matter and apologies are offered to readers of the journal that this was not detected during the submission process.

  7. Photonic Crystals Towards Nanoscale Photonic Devices

    CERN Document Server

    Lourtioz, Jean-Michel; Berger, Vincent; Gérard, Jean-Michel; Maystre, Daniel; Tchelnokov, Alexis

    2005-01-01

    Just like the periodical crystalline potential in solid-state crystals determines their properties for the conduction of electrons, the periodical structuring of photonic crystals leads to envisioning the possibility of achieving a control of the photon flux in dielectric and metallic materials. The use of photonic crystals as a cage for storing, filtering or guiding light at the wavelength scale thus paves the way to the realisation of optical and optoelectronic devices with ultimate properties and dimensions. This should contribute toward meeting the demands for a greater miniaturisation that the processing of an ever increasing number of data requires. Photonic Crystals intends at providing students and researchers from different fields with the theoretical background needed for modelling photonic crystals and their optical properties, while at the same time presenting the large variety of devices, from optics to microwaves, where photonic crystals have found applications. As such, it aims at building brid...

  8. Photonic Crystals Towards Nanoscale Photonic Devices

    CERN Document Server

    Lourtioz, Jean-Michel; Berger, Vincent; Gérard, Jean-Michel; Maystre, Daniel; Tchelnokov, Alexei; Pagnoux, Dominique

    2008-01-01

    Just like the periodical crystalline potential in solid state crystals determines their properties for the conduction of electrons, the periodical structuring of photonic crystals leads to envisioning the possibility of achieving a control of the photon flux in dielectric and metallic materials. The use of photonic crystals as cages for storing, filtering or guiding light at the wavelength scale paves the way to the realization of optical and optoelectronic devices with ultimate properties and dimensions. This will contribute towards meeting the demands for greater miniaturization imposed by the processing of an ever increasing number of data. Photonic Crystals will provide students and researchers from different fields with the theoretical background required for modelling photonic crystals and their optical properties, while at the same time presenting the large variety of devices, ranging from optics to microwaves, where photonic crystals have found application. As such, it aims at building bridges between...

  9. Photon Differential Splatting for Rendering Caustics

    DEFF Research Database (Denmark)

    Frisvad, Jeppe Revall; Schjøth, Lars; Erleben, Kenny

    2014-01-01

    on heuristics rather than knowledge of the local flux density. We use photon differentials to determine the size and shape of the splats such that we achieve adaptive anisotropic flux density estimation in photon splatting. As compared to previous work that uses photon differentials, we present the first method...

  10. Two-temperature accretion disks with electron-positron pairs - Effects of Comptonized external soft photons

    Science.gov (United States)

    Kusunose, Masaaki; Takahara, Fumio

    1990-01-01

    The present account of the effects of soft photons from external sources on two-temperature accretion disks in electron-positron pair equilibrium solves the energy-balance equation for a given radial distribution of the input rate of soft photons, taking into account their bremsstrahlung and Comptonization. Critical rate behavior is investigated as a function of the ratio of the energy flux of incident soft photons and the energy-generation rate. As in a previous study, the existence of a critical accretion rate is established.

  11. Photon-photon collisions

    International Nuclear Information System (INIS)

    Haissinski, J.

    1986-06-01

    The discussions presented in this paper deal with the following points: distinctive features of gamma-gamma collisions; related processes; photon-photon elastic scattering in the continuum and γγ →gg; total cross section; γγ → V 1 V 2 (V=vector meson); radiative width measurements and light meson spectroscopy; exclusive channels at large /t/; jets and inclusive particle distribution in γγ collisions; and, the photon structure function F γ 2

  12. Photon-photon collisions

    International Nuclear Information System (INIS)

    Burke, D.L.

    1982-10-01

    Studies of photon-photon collisions are reviewed with particular emphasis on new results reported to this conference. These include results on light meson spectroscopy and deep inelastic e#betta# scattering. Considerable work has now been accumulated on resonance production by #betta##betta# collisions. Preliminary high statistics studies of the photon structure function F 2 /sup #betta#/(x,Q 2 ) are given and comments are made on the problems that remain to be solved

  13. Photon-photon colliders

    Energy Technology Data Exchange (ETDEWEB)

    Sessler, A.M.

    1995-04-01

    Since the seminal work by Ginsburg, et at., the subject of giving the Next Linear Collider photon-photon capability, as well as electron-positron capability, has drawn much attention. A 1990 article by V.I. Teinov describes the situation at that time. In March 1994, the first workshop on this subject was held. This report briefly reviews the physics that can be achieved through the photon-photon channel and then focuses on the means of achieving such a collider. Also reviewed is the spectrum of backscattered Compton photons -- the best way of obtaining photons. We emphasize the spectrum actually obtained in a collider with both polarized electrons and photons (peaked at high energy and very different from a Compton spectrum). Luminosity is estimated for the presently considered colliders, and interaction and conversion-point geometries are described. Also specified are laser requirements (such as wavelength, peak power, and average power) and the lasers that might be employed. These include conventional and free-electron lasers. Finally, we describe the R&D necessary to make either of these approaches viable and explore the use of the SLC as a test bed for a photon-photon collider of very high energy.

  14. Technical Note: On the impact of the incident electron beam energy on the primary dose component of flattening filter free photon beams.

    Science.gov (United States)

    Kuess, Peter; Georg, Dietmar; Palmans, Hugo; Lechner, Wolfgang

    2016-08-01

    For commercially available linear accelerators (Linacs), the electron energies of flattening filter free (FFF) and flattened (FF) beams are either identical or the electron energy of the FFF beam is increased to match the percentage depth dose curve (PDD) of the FF beam (in reference geometry). This study focuses on the primary dose components of FFF beams for both kinds of settings, studied on the same Linac. The measurements were conducted on a VersaHD Linac (Elekta, Crawley, UK) for both FF and FFF beams with nominal energies of 6 and 10 MV. In the clinical setting of the VersaHD, the energy of FFFM (Matched) beams is set to match the PDDs of the FF beams. In contrast the incident electron beam of the FFFU beam was set to the same energy as for the FF beam. Half value layers (HVLs) and a dual parameter beam quality specifier (DPBQS) were determined. For the 6 MV FFFM beam, HVL and DPBQS values were very similar compared to those of the 6 MV FF beam, while for the 10 MV FFFM and FF beams, only %dd(10)x and HVL values were comparable (differences below 1.5%). This shows that matching the PDD at one depth does not guarantee other beam quality dependent parameters to be matched. For FFFU beams, all investigated beam quality specifiers were significantly different compared to those for FF beams of the same nominal accelerator potential. The DPBQS of the 6 MV FF and FFFM beams was equal within the measurement uncertainty and was comparable to published data of a machine with similar TPR20,10 and %dd(10)x. In contrast to that, the DPBQS's two parameters of the 10 MV FFFM beam were substantially higher compared to those for the 10 MV FF beam. PDD-matched FF and FFF beams of both nominal accelerator potentials were observed to have similar HVL values, indicating similarity of their primary dose components. Using the DPBQS revealed that the mean attenuation coefficient was found to be the same within the uncertainty of 0.8% for 6 MV FF and 6 MV FFFM beams, while for 10 MV

  15. Technical Note: On the impact of the incident electron beam energy on the primary dose component of flattening filter free photon beams

    International Nuclear Information System (INIS)

    Kuess, Peter; Georg, Dietmar; Lechner, Wolfgang; Palmans, Hugo

    2016-01-01

    Purpose: For commercially available linear accelerators (Linacs), the electron energies of flattening filter free (FFF) and flattened (FF) beams are either identical or the electron energy of the FFF beam is increased to match the percentage depth dose curve (PDD) of the FF beam (in reference geometry). This study focuses on the primary dose components of FFF beams for both kinds of settings, studied on the same Linac. Methods: The measurements were conducted on a VersaHD Linac (Elekta, Crawley, UK) for both FF and FFF beams with nominal energies of 6 and 10 MV. In the clinical setting of the VersaHD, the energy of FFF M (Matched) beams is set to match the PDDs of the FF beams. In contrast the incident electron beam of the FFF U beam was set to the same energy as for the FF beam. Half value layers (HVLs) and a dual parameter beam quality specifier (DPBQS) were determined. Results: For the 6 MV FFF M beam, HVL and DPBQS values were very similar compared to those of the 6 MV FF beam, while for the 10 MV FFF M and FF beams, only %dd(10) x and HVL values were comparable (differences below 1.5%). This shows that matching the PDD at one depth does not guarantee other beam quality dependent parameters to be matched. For FFF U beams, all investigated beam quality specifiers were significantly different compared to those for FF beams of the same nominal accelerator potential. The DPBQS of the 6 MV FF and FFF M beams was equal within the measurement uncertainty and was comparable to published data of a machine with similar TPR 20,10 and %dd(10) x . In contrast to that, the DPBQS’s two parameters of the 10 MV FFF M beam were substantially higher compared to those for the 10 MV FF beam. Conclusions: PDD-matched FF and FFF beams of both nominal accelerator potentials were observed to have similar HVL values, indicating similarity of their primary dose components. Using the DPBQS revealed that the mean attenuation coefficient was found to be the same within the uncertainty of

  16. Photon-photon collisions

    Energy Technology Data Exchange (ETDEWEB)

    Brodsky, S.J.

    1988-07-01

    Highlights of the VIIIth International Workshop on Photon-Photon Collisions are reviewed. New experimental and theoretical results were reported in virtually every area of ..gamma gamma.. physics, particularly in exotic resonance production and tests of quantum chromodynamics where asymptotic freedom and factorization theorems provide predictions for both inclusive and exclusive ..gamma gamma.. reactions at high momentum transfer. 73 refs., 12 figs.

  17. Electron-positron pair production by gamma-rays in an anisotropic flux of soft photons, and application to pulsar polar caps

    Science.gov (United States)

    Voisin, Guillaume; Mottez, Fabrice; Bonazzola, Silvano

    2018-02-01

    Electron-positron pair production by collision of photons is investigated in view of application to pulsar physics. We compute the absorption rate of individual gamma-ray photons by an arbitrary anisotropic distribution of softer photons, and the energy and angular spectrum of the outgoing leptons. We work analytically within the approximation that 1 ≫ mc2/E > ɛ/E, with E and ɛ the gamma-ray and soft-photon maximum energy and mc2 the electron mass energy. We give results at leading order in these small parameters. For practical purposes, we provide expressions in the form of Laurent series which give correct reaction rates in the isotropic case within an average error of ˜ 7 per cent. We apply this formalism to gamma-rays flying downward or upward from a hot neutron star thermally radiating at a uniform temperature of 106 K. Other temperatures can be easily deduced using the relevant scaling laws. We find differences in absorption between these two extreme directions of almost two orders of magnitude, much larger than our error estimate. The magnetosphere appears completely opaque to downward gamma-rays while there are up to ˜ 10 per cent chances of absorbing an upward gamma-ray. We provide energy and angular spectra for both upward and downward gamma-rays. Energy spectra show a typical double peak, with larger separation at larger gamma-ray energies. Angular spectra are very narrow, with an opening angle ranging from 10-3 to 10-7 radians with increasing gamma-ray energies.

  18. Liquid crystal modified photonic crystal fiber (LC-PCF) fabricated with an un-cured SU-8 photoresist sealing technique for electrical flux measurement.

    Science.gov (United States)

    Kuo, Shu-Ming; Huang, Yu-Wen; Yeh, Szu-Ming; Cheng, Wood-Hi; Lin, Che-Hsin

    2011-09-12

    The optical transmission properties of photonic crystal fibers (PCFs) can be manipulated by modifying the pattern arrangement of the air channels within them. This paper presents a novel MEMS-based technique for modifying the optical transmission properties of commercial photonic-crystal fiber (PCF) by selectively filling the voids within the fiber structure with liquid crystals. In the proposed approach, an un-cured SU-8 ring pattern with a thickness of 5 μm is fabricated using a novel stamping method. The PCF is then brought into contact with the SU-8 pattern and an infra-red (IR) laser beam is passed through the fiber in order to soften the SU-8 surface; thereby selectively sealing some of the air channels with molten SU-8. Liquid crystals (LCs) are then infiltrated into the un-sealed holes in the PCF via capillary effects in order to modify the transmission properties of the PCF. Two selectively-filled PCFs are fabricated, namely an inner-ring LC-PCF and a single-line LC-PCF, respectively. It is shown that the two LC-PCFs exhibit significantly different optical behaviors. The practical applicability of the proposed selective-filling approach is demonstrated by fabricating an electric field sensor. The experimental results show that the sensor has the ability to measure electric fields with an intensity of up to 40 kV/cm.

  19. Photon-photon collisions

    International Nuclear Information System (INIS)

    Field, J.H.

    1984-01-01

    The current status, both theoretical and experimental, of two photon collision physics is reviewed with special emphasis on recent experimental results from e + e - storage rings. After a complete presentation of the helicity amplitude formalism for the general process e + e - → Xe + e - , various approximations (transverse photon, Weisaecker Williams) are discussed. Beam polarisation effects and radiative corrections are also briefly considered. A number of specific processes, for which experimental results are now available, are then described. In each case existing theoretical prediction are confronted with experimental results. The processes described include single resonance production, lepton and hadron pair production, the structure functions of the photon, the production of high Psub(T) jets and the total photon photon cross section. In the last part of the review the current status of the subject is summarised and some comments are made on future prospects. These include both extrapolations of current research to higher energy machines (LEP, HERA) as well as a brief mention of both the technical realisation and the physics interest of the real γγ and eγ collisions which may be possible using linear electron colliders in the 1 TeV energy range

  20. Photon-photon collisions

    Energy Technology Data Exchange (ETDEWEB)

    Brodsky, S.J.

    1985-01-01

    The study of photon-photon collisions has progressed enormously, stimulated by new data and new calculational tools for QCD. In the future we can expect precise determinations of ..cap alpha../sub s/ and ..lambda../sup ms/ from the ..gamma..*..gamma.. ..-->.. ..pi../sup 0/ form factor and the photon structure function, as well as detailed checks of QCD, determination of the shape of the hadron distribution amplitudes from ..gamma gamma.. ..-->.. H anti H, reconstruction of sigma/sub ..gamma gamma../ from exclusive channels at low W/sub ..gamma gamma../, definitive studies of high p/sub T/ hadron and jet production, and studies of threshold production of charmed systems. Photon-photon collisions, along with radiative decays of the psi and UPSILON, are ideal for the study of multiquark and gluonic resonances. We have emphasized the potential for resonance formation near threshold in virtually every hadronic exclusive channel, including heavy quark states c anti c c anti c, c anti c u anti u, etc. At higher energies SLC, LEP, ...) parity-violating electroweak effects and Higgs production due to equivalent Z/sup 0/ and W/sup + -/ beams from e ..-->.. eZ/sup 0/ and e ..-->.. nu W will become important. 44 references.

  1. Photon-photon collisions

    International Nuclear Information System (INIS)

    Brodsky, S.J.

    1985-01-01

    The study of photon-photon collisions has progressed enormously, stimulated by new data and new calculational tools for QCD. In the future we can expect precise determinations of α/sub s/ and Λ/sup ms/ from the γ*γ → π 0 form factor and the photon structure function, as well as detailed checks of QCD, determination of the shape of the hadron distribution amplitudes from γγ → H anti H, reconstruction of sigma/sub γγ/ from exclusive channels at low W/sub γγ/, definitive studies of high p/sub T/ hadron and jet production, and studies of threshold production of charmed systems. Photon-photon collisions, along with radiative decays of the psi and UPSILON, are ideal for the study of multiquark and gluonic resonances. We have emphasized the potential for resonance formation near threshold in virtually every hadronic exclusive channel, including heavy quark states c anti c c anti c, c anti c u anti u, etc. At higher energies SLC, LEP, ...) parity-violating electroweak effects and Higgs production due to equivalent Z 0 and W +- beams from e → eZ 0 and e → nu W will become important. 44 references

  2. Efficient and robust quantum random number generation by photon number detection

    International Nuclear Information System (INIS)

    Applegate, M. J.; Thomas, O.; Dynes, J. F.; Yuan, Z. L.; Shields, A. J.; Ritchie, D. A.

    2015-01-01

    We present an efficient and robust quantum random number generator based upon high-rate room temperature photon number detection. We employ an electric field-modulated silicon avalanche photodiode, a type of device particularly suited to high-rate photon number detection with excellent photon number resolution to detect, without an applied dead-time, up to 4 photons from the optical pulses emitted by a laser. By both measuring and modeling the response of the detector to the incident photons, we are able to determine the illumination conditions that achieve an optimal bit rate that we show is robust against variation in the photon flux. We extract random bits from the detected photon numbers with an efficiency of 99% corresponding to 1.97 bits per detected photon number yielding a bit rate of 143 Mbit/s, and verify that the extracted bits pass stringent statistical tests for randomness. Our scheme is highly scalable and has the potential of multi-Gbit/s bit rates

  3. High Flux Energy-Resolved Photon-Counting X-Ray Imaging Arrays with CdTe and CdZnTe for Clinical CT

    International Nuclear Information System (INIS)

    Barber, William C.; Hartsough, Neal E.; Gandhi, Thulasidharan; Iwanczyk, Jan S.; Wessel, Jan C.; Nygard, Einar; Malakhov, Nail; Wawrzyniak, Gregor; Dorholt, Ole; Danielsen, Roar

    2013-06-01

    We have fabricated fast room-temperature energy dispersive photon counting x-ray imaging arrays using pixellated cadmium zinc (CdTe) and cadmium zinc telluride (CdZnTe) semiconductors. We have also fabricated fast application specific integrated circuits (ASICs) with a two dimensional (2D) array of inputs for readout from the CdZnTe sensors. The new CdTe and CdZnTe sensors have a 2D array of pixels with a 0.5 mm pitch and can be tiled in 2D. The new 2D ASICs have four energy discriminators per pixel with a linear energy response across the entire dynamic range for clinical CT. The ASICs can also be tiled in 2D and are designed to fit within the active area of the 2D sensors. We have measured several important performance parameters including; an output count rate (OCR) in excess of 20 million counts per second per square mm, an energy resolution of 7 keV full width at half maximum (FWHM) across the entire dynamic range, and a noise floor less than 20 keV. This is achieved by directly interconnecting the ASIC inputs to the pixels of the CdTE and CdZnTe sensors incurring very little additional capacitance. We present a comparison of the performance of the CdTe and CdZnTe sensors including the OCR, FWHM energy resolution, and noise floor. (authors)

  4. CONFERENCE: Photon-photon collisions

    International Nuclear Information System (INIS)

    Anon.

    1983-01-01

    Despite being difficult to observe, photon-photon collisions have opened up a range of physics difficult, or even impossible, to access by other methods. The progress which has been made in this field was evident at the fifth international workshop on photon-photon collisions, held in Aachen from 13-16 April and attended by some 120 physicists

  5. Photon technology. Hard photon technology; Photon technology. Hard photon gijutsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    Research results of hard photon technology have been summarized as a part of novel technology development highly utilizing the quantum nature of photon. Hard photon technology refers to photon beam technologies which use photon in the 0.1 to 200 nm wavelength region. Hard photon has not been used in industry due to the lack of suitable photon sources and optical devices. However, hard photon in this wavelength region is expected to bring about innovations in such areas as ultrafine processing and material synthesis due to its atom selective reaction, inner shell excitation reaction, and spatially high resolution. Then, technological themes and possibility have been surveyed. Although there are principle proposes and their verification of individual technologies for the technologies of hard photon generation, regulation and utilization, they are still far from the practical applications. For the photon source technology, the laser diode pumped driver laser technology, laser plasma photon source technology, synchrotron radiation photon source technology, and vacuum ultraviolet photon source technology are presented. For the optical device technology, the multi-layer film technology for beam mirrors and the non-spherical lens processing technology are introduced. Also are described the reduction lithography technology, hard photon excitation process, and methods of analysis and measurement. 430 refs., 165 figs., 23 tabs.

  6. Obstructive carotid and/or intracranial artery disease rarely affects the incidence of haemodynamic ischaemic stroke during cardiac surgery: a study on brain perfusion single-photon emission computed tomography with acetazolamide.

    Science.gov (United States)

    Imasaka, Ken-ichi; Yasaka, Masahiro; Tayama, Eiki; Tomita, Yukihiro

    2015-11-01

    Ischaemic stroke is a major complication of cardiac surgery. The optimal strategies for operating on patients with obstructive carotid and/or intracranial artery disease (CIAD) are controversial. We aimed to clarify whether single-photon emission computed tomography (SPECT) with acetazolamide, to quantify the cerebral perfusion reserve, could predict the risk of haemodynamic ischaemic stroke during cardiac surgery. The incidence of stroke related to obstructive CIAD and the corresponding autoregulatory reserve were prospectively assessed in 514 consecutive patients who underwent elective cardiac surgery with cardiopulmonary bypass (n = 484) and off-pump coronary artery bypass grafting (n = 30) between 2009 and 2013. Preoperative cerebral blood flow and its reactivity to acetazolamide were quantitatively determined in patients (n = 88) with obstructive CIAD, diagnosed by carotid ultrasonography and/or magnetic resonance angiography. An impaired cerebral perfusion reserve was identified in 1 (1.1%) of the 88 patients. This patient underwent prophylactic superficial temporal artery to middle cerebral artery anastomosis 1 month before coronary artery bypass surgery. Subsequently, the patient underwent conventional coronary artery bypass surgery, without experiencing perioperative stroke. Seven (1.4%) patients died in-hospital mortality and 5 (1.0%) experienced perioperative stroke. However, no patients experienced perioperative haemodynamic ischaemic stroke. It is unusual for CIAD to affect the incidence of haemodynamic ischaemic stroke during cardiac surgery. Brain perfusion SPECT with acetazolamide is effective for narrowing down patients at high risk of ischaemic stroke during cardiac surgery. Meanwhile, the application of brain perfusion single-photon emission tomography should be confined only to patients with obstructive CIAD because it is an expensive examination tool. © The Author 2014. Published by Oxford University Press on behalf of the European Association

  7. Characterization and flux of marine oil snow settling toward the seafloor in the northern Gulf of Mexico during the Deepwater Horizon incident: Evidence for input from surface oil and impact on shallow shelf sediments.

    Science.gov (United States)

    Stout, Scott A; German, Christopher R

    2017-11-03

    Sediment trap samples from the shelf edge area (400-450m water depth), 58km northeast of the failed Macondo well, were collected before, during and after the Deepwater Horizon oil spill. Detailed chemical analyses of particulates revealed that fluxes of spill-derived TPH (2356μg/m 2 /day), total PAH (5.4μg/m 2 /day), and hopane (0.89μg/m 2 /day) settling to the seafloor directly beneath the surface-plume were 19- to 44-times higher during the active spill than pre- and post-spill background values. The oil was variably biodegraded, evaporated and photo-oxidized indicating that it derived from the sinking of surface oil. The hopane-based oil flux that we calculate (10bbl/km 2 ) indicates that at least 76,000bbl of Macondo oil that reached the ocean surface subsequently sank over an area of approximately 7600km 2 . We explore how this flux of sunken surface oil contributed to the total volume of oil deposited on the seafloor following the Deepwater Horizon incident. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. A trial of production of the plant-derived high-value protein in a plant factory: photosynthetic photon fluxes affect the accumulation of recombinant miraculin in transgenic tomato fruits.

    Science.gov (United States)

    Kato, Kazuhisa; Maruyama, Shinichiro; Hirai, Tadayoshi; Hiwasa-Tanase, Kyoko; Mizoguchi, Tsuyoshi; Goto, Eiji; Ezura, Hiroshi

    2011-08-01

    One of the ultimate goals of plant science is to test a hypothesis obtained by basic science and to apply it to agriculture and industry. A plant factory is one of the ideal systems for this trial. Environmental factors affect both plant yield and the accumulation of recombinant proteins for industrial applications within transgenic plants. However, there have been few reports studying plant productivity for recombinant protein in closed cultivation systems called plant factories. To investigate the effects of photosynthetic photon flux (PPF) on tomato fruit yield and the accumulation of recombinant miraculin, a taste-modifying glycoprotein, in transgenic tomato fruits, plants were cultivated at various PPFs from 100 to 400 (µmol m(-2) s(-)1) in a plant factory. Miraculin production per unit of energy used was highest at PPF100, although miraculin production per unit area was highest at PPF300. The commercial productivity of recombinant miraculin in transgenic tomato fruits largely depended on light conditions in the plant factory. Our trial will be useful to consider the trade-offs between the profits from production of high-value materials in plants and the costs of electricity.

  9. Workplace photon radiation fields

    International Nuclear Information System (INIS)

    Burgess, P.H.; Bartlett, D.T.; Ambrosi, P.

    1999-01-01

    The knowledge of workplace radiation fields is essential for measures in radiation protection. Information about the energy and directional distribution of the incident photon radiation was obtained by several devices developed by the National Radiation Protection Board, United Kingdom, by the Statens Stralskyddsinstitut, Sweden, together with EURADOS and by the Physikalisch-Technische Bundesanstalt, Germany. The devices are described and some results obtained at workplaces in nuclear industry, medicine and science in the photon energy range from 20 keV to 7 MeV are given. (author)

  10. Photonic Hypercrystals

    Directory of Open Access Journals (Sweden)

    Evgenii E. Narimanov

    2014-10-01

    Full Text Available We introduce a new “universality class” of artificial optical media—photonic hypercrystals. These hyperbolic metamaterials, with periodic spatial variation of dielectric permittivity on subwavelength scale, combine the features of optical metamaterials and photonic crystals. In particular, surface waves supported by a hypercrystal possess the properties of both the optical Tamm states in photonic crystals and surface-plasmon polaritons at the metal-dielectric interface.

  11. Microwave photonics

    CERN Document Server

    Lee, Chi H

    2006-01-01

    Wireless, optical, and electronic networks continue to converge, prompting heavy research into the interface between microwave electronics, ultrafast optics, and photonic technologies. New developments arrive nearly as fast as the photons under investigation, and their commercial impact depends on the ability to stay abreast of new findings, techniques, and technologies. Presenting a broad yet in-depth survey, Microwave Photonics examines the major advances that are affecting new applications in this rapidly expanding field.This book reviews important achievements made in microwave photonics o

  12. A high throughput 2 m normal incidence monochromator for SURF-II

    International Nuclear Information System (INIS)

    Ederer, D.L.; Cole, B.E.; West, J.B.

    1980-01-01

    The high intrinsic brightness of the circulating electron beam at SURF-II is used as the entrance slit for a two-meter normal incidence monochromator. A typical beam size for the electron beam is 100 μm high by 2 mm wide yielding an obserbed resolution of 0.4 Angstroem with a 200 μm exit slit and a 2400 lines/mm grating. The instrument accepts a beam with a 65 mrad horizontal divergence and a 10 mrad vertical divergence. A plane pre-mirror used near normal incidence reflects the incoming radiation onto the 2 m grating; this combination provides a horizontal exit beam, and enables the experiment to be located three meters from the orbit tangent point. With magnesium fluoride coated aluminium optics a flux of 2 x 10'' photon/s x Angstroem at 1200 Angstroem is observed with a 10 mA circulating current. A flux of 5 x 10 10 photon/s x Angstroem at 600 Angstroem is obserbed with an osmium coated grating and a 10 mA circulating current. Sample spectra of the angle-resolved photoelectron spectrum of CO are presented. (orig.)

  13. Photonic Paint Developed with Metallic Three-Dimensional Photonic Crystals

    Science.gov (United States)

    Sun, Po; Williams, John D.

    2012-01-01

    This work details the design and simulation of an inconspicuous photonic paint that can be applied onto an object for anticounterfeit and tag, track, and locate (TTL) applications. The paint consists of three-dimensional metallic tilted woodpile photonic crystals embedded into a visible and infrared transparent polymer film, which can be applied to almost any surface. The tilted woodpile photonic crystals are designed with a specific pass band detectable at nearly all incident angles of light. When painted onto a surface, these crystals provide a unique reflective infra-red optical signature that can be easily observed and recorded to verify the location or contents of a package.

  14. Polychromatic photons

    DEFF Research Database (Denmark)

    Keller, Ole

    2002-01-01

    A review is given of the space-time wave mechanics of single photons, a subject with an almost century long history. The Landau-Peierls photon wave function, which is related nonlocally to the electromagnetic field is first described, and thereafter the so-called energy wave function, based...... on the positive-frequency Riemann-Silberstein vectors, is discussed. Recent attempts to understand the birth process of a photon emerging from a single atom are summarized. The polychromatic photon concept is introduced, and it is indicated how the wave mechanics of polychromatic photons can be upgraded to wave...... in a hyperfine spin transition shows an exponential falloff with the distance from the atomic nucleus. The length parameter in this falloff is the Bohr radius....

  15. ELBA, Bremsstrahlung Dose from Isotropic Electron Flux on Plane Al Shield

    International Nuclear Information System (INIS)

    1978-01-01

    1 - Description of problem or function: ELBA takes an incident isotropic electron flux with a given differential energy spectrum and calculates the dose rate received from Bremsstrahlung produced in a plane aluminium shield placed in front of the receiver. There is an option to also calculate the electron dose rate from the same source. 2 - Method of solution: The electron differential spectrum as a function of depth is inferred by assuming that electrons travel straight ahead and that distance travelled and energy are related by a range-energy relationship. The electron dose rate at a given depth is calculated by integrating, over energy and direction, the product of the electron flux, the stopping power, and the appropriate flux- to-dose rate conversion factor. The Bremsstrahlung source is assumed to be plane and isotropic at a given depth. This source is defined as the integral over energy and direction of the product of photon energy, the differential Bremsstrahlung spectrum from electrons of a given energy, and the electron flux differential spectrum. The differential Bremsstrahlung spectrum is derived from the Born approximation cross section multiplied by a correction factor. The Bremsstrahlung dose rate is obtained by integrating, over photon energy and slab volume, the product of the Bremsstrahlung source, photon energy flux-to-dose rate conversion factor, buildup factor, and attenuation kernel. The buildup factor assumed is a plane isotropic buildup factor generate by Monte Carlo calculations. The integrations are performed by evaluating the integrand at the midpoint of each integration step, multiplying by the step width, and summing the result. The incident electron spectrum, dose rate conversion factors, and range formula coefficients are input by the user. The buildup factor information is contained in three Data statements in subroutine BURP. 3 - Restrictions on the complexity of the problem: There are limitations on the dimensions of certain arrays

  16. Nuclear photonics

    Science.gov (United States)

    Habs, D.; Günther, M. M.; Jentschel, M.; Thirolf, P. G.

    2012-07-01

    With the planned new γ-beam facilities like MEGa-ray at LLNL (USA) or ELI-NP at Bucharest (Romania) with 1013 γ/s and a band width of ΔEγ/Eγ≈10-3, a new era of γ beams with energies up to 20MeV comes into operation, compared to the present world-leading HIγS facility at Duke University (USA) with 108 γ/s and ΔEγ/Eγ≈3ṡ10-2. In the long run even a seeded quantum FEL for γ beams may become possible, with much higher brilliance and spectral flux. At the same time new exciting possibilities open up for focused γ beams. Here we describe a new experiment at the γ beam of the ILL reactor (Grenoble, France), where we observed for the first time that the index of refraction for γ beams is determined by virtual pair creation. Using a combination of refractive and reflective optics, efficient monochromators for γ beams are being developed. Thus, we have to optimize the total system: the γ-beam facility, the γ-beam optics and γ detectors. We can trade γ intensity for band width, going down to ΔEγ/Eγ≈10-6 and address individual nuclear levels. The term "nuclear photonics" stresses the importance of nuclear applications. We can address with γ-beams individual nuclear isotopes and not just elements like with X-ray beams. Compared to X rays, γ beams can penetrate much deeper into big samples like radioactive waste barrels, motors or batteries. We can perform tomography and microscopy studies by focusing down to μm resolution using Nuclear Resonance Fluorescence (NRF) for detection with eV resolution and high spatial resolution at the same time. We discuss the dominating M1 and E1 excitations like the scissors mode, two-phonon quadrupole octupole excitations, pygmy dipole excitations or giant dipole excitations under the new facet of applications. We find many new applications in biomedicine, green energy, radioactive waste management or homeland security. Also more brilliant secondary beams of neutrons and positrons can be produced.

  17. Photon tagging; considerations for an ELFE DESY proposal

    International Nuclear Information System (INIS)

    Mackenzie, J.A.

    1996-01-01

    Photon Tagging in the 5-15 GeV region is considered. The advantage of performing exclusive measurements in relation to obtainable photon flux in described. Finally some technical problems in relation to implementing a photon beam in the framework of the ELFE at DESY proposal are discussed. (author)

  18. [Spatiotempaoral distribution patterns of photosynthetic photon flux density, air temperature, and relative air humidity in forest gap of Pinus koraiensis-dominated broadleaved mixed forest in Xi-ao Xing' an Mountains].

    Science.gov (United States)

    Li, Meng; Duan, Wen-biao; Chen, Li-xin

    2009-12-01

    A continuous measurement of photosynthetic photon flux density (PPFD), air temperature, and relative air humidity was made in the forest gap in primary Pinus koraiensis-dominated broadleaved mixed forest in Xiao Xing' an Mountains to compare the spatiotemporal distribution patterns of the parameters. The diurnal maximum PPFD in the forest gap appeared between 11:00 and 13:00 on sunny and overcast days. On sunny days, the maximum PPFD during various time periods did not locate in fixed locations, the diurnal maximum PPFD occurred in the canopy edge of northern part of the gap; while on overcast days, it always occurred in the center of the gap. The mean monthly PPFD in the gap was the highest in June and the lowest in September, with the largest range observed in July. The maximum air temperature happened between 9:00 and 15:00 on sunny days, between 15:00 and 19:00 on overcast days, the locations were 8 m in the southern part of gap center both on sunny and overcast days. From 5:00 to 9:00, the air temperature at measured positions in the gap was higher on overcast days than on sunny days; but from 9:00 to 19:00, it was opposite. The mean monthly air temperature was the highest in June, and the lowest in September. The maximum relative humidity appeared between 5:00 and 9:00 on sunny and overcast days, and occurred in the canopy border of western part of the gap, with the relative air humidity on overcast days being always higher than that on sunny days. The mean monthly relative humidity was the highest in July, and the lowest in June. The heterogeneity of PPFD was higher on sunny days than on overcast days, but the heterogeneities of air temperature and relative humidity were not obvious. The maximum PPFD, air temperature, and relative humidity were not located in the same positions among different months during growing season. For mean monthly PPFD and air temperature, their variation gradient was higher in and around the center of gap; while for mean monthly

  19. Helioscope bounds on hidden sector photons

    International Nuclear Information System (INIS)

    Redondo, J.

    2008-01-01

    The flux of hypothetical ''hidden photons'' from the Sun is computed under the assumption that they interact with normal matter only through kinetic mixing with the ordinary standard model photon. Requiring that the exotic luminosity is smaller than the standard photon luminosity provides limits for the mixing parameter down to χ -14 , depending on the hidden photon mass. Furthermore, it is pointed point out that helioscopes looking for solar axions are also sensitive to hidden photons. The recent results of the CAST collaboration are used to further constrain the mixing parameter χ at low masses (m γ' <1 eV) where the luminosity bound is weaker. In this regime the solar hidden photon ux has a sizable contribution of longitudinally polarized hidden photons of low energy which are invisible for current helioscopes. (orig.)

  20. A study of the point-like interactions of the photon using energy-flows in photo- and hadro-production for incident energies between 65 and 170 GeV

    Science.gov (United States)

    Apsimon, R. J.; Atkinson, M.; Baake, M.; Bagdasarian, L. S.; Barberis, D.; Brodbeck, T. J.; Brook, N.; Charity, T.; Clegg, A. B.; Coyle, P.; Danaher, S.; Danagulian, S.; Davenport, M.; Dickinson, B.; Diekmann, B.; Donnachie, A.; Doyle, A. T.; Eades, J.; Ellison, R. J.; Flower, P. S.; Foster, J. M.; Galbraith, W.; Galumian, P. I.; Gapp, C.; Gebert, F.; Hallewell, G.; Heinloth, K.; Henderson, R. C. W.; Hickman, M. T.; Hoeger, C.; Holzkamp, A.; Holzkamp, S.; Hughes-Jones, R. E.; Ibbotson, M.; Jakob, H. P.; Joseph, D.; Keemer, N. R.; Kingler, J.; Koersgen, G.; Kolya, S. D.; Lafferty, G. D.; McCann, H.; McClatchey, R.; McManus, C.; Mercer, D.; Morris, J. A. G.; Morris, J. V.; Newton, D.; O'Connor, A.; Oedingen, R.; Oganesian, A. G.; Ottewell, P. J.; Paterson, C. N.; Paul, E.; Reid, D.; Rotscheidt, H.; Sharp, P. H.; Soeldner-Rembold, S.; Thacker, N. A.; Thompson, L.; Thompson, R. J.; Waterhouse, J.; Weigend, A. S.; Wilson, G. W.

    1990-03-01

    Energy-flow distributions for charged hadrons from interactions of photons, pions and kaons on hydrogen are presented as functions of Σ p {T/2} in the event plane. Data cover the range 0.0<Σ p {/T in 2}<10.0(GeV/c)2 and 0.0< x F <1.0 for beam momenta from 65 to 170 GeV/c. The comparisons between photon-and hadron-induced data show an excess of events with larger Σ p {/T in 2} for the photon-induced data. Using the hadron-induced data to parameterise the hadronic behaviour of the photon, the differences between cross sections are used to measure the contribution of the point-like photon interactions. Quantitative calculations of the point-like photon interactions using the Lund Monte-Carlo program LUCIFER, based on QCD, are in agreement with the data.

  1. Hallo photons calls photon; Allo photon appelle photon

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1997-09-01

    When a pair of photons is created, it seems that these 2 photons are bound together by a mysterious link. This phenomenon has been discovered at the beginning of the seventies. In this new experiment the 2 photons are separated and have to follow different ways through optic cables until they face a quantum gate. At this point they have to chose between a short and a long itinerary. Statistically they have the same probability to take either. In all cases the 2 photons agree to do the same choice even if the 2 quantum gates are distant of about 10 kilometers. Some applications in ciphering and coding of messages are expected. (A.C.)

  2. Microwave photonics

    CERN Document Server

    Lee, Chi H

    2013-01-01

    Microwave photonics continues to see rapid growth. The integration of optical fiber and wireless networks has become a commercial reality and is becoming increasingly pervasive. Such hybrid technology will lead to many innovative applications, including backhaul solutions for mobile networks and ultrabroadband wireless networks that can provide users with very high bandwidth services. Microwave Photonics, Second Edition systematically introduces important technologies and applications in this emerging field. It also reviews recent advances in micro- and millimeter-wavelength and terahertz-freq

  3. Photon diffraction

    Science.gov (United States)

    Hodge, John

    2009-11-01

    In current light models, a particle-like model of light is inconsistent with diffraction observations. A model of light is proposed wherein photon inferences are combined with the cosmological scalar potential model (SPM). That the photon is a surface with zero surface area in the travel direction is inferred from the Michelson-Morley experiment. That the photons in slits are mathematically treated as a linear antenna array (LAA) is inferred from the comparison of the transmission grating interference pattern and the single slit diffraction pattern. That photons induce a LAA wave into the plenum is inferred from the fractal model. Similarly, the component of the photon (the hod) is treated as a single antenna radiating a potential wave into the plenum. That photons are guided by action on the surface of the hod is inferred from the SPM. The plenum potential waves are a real field (not complex) that forms valleys, consistent with the pilot waves of the Bohm interpretation of quantum mechanics. Therefore, the Afshar experiment result is explained, supports Bohm, and falsifies Copenhagen. The papers may be viewed at http://web.citcom.net/˜scjh/.

  4. Number Albedo of Low-Energy Photons

    International Nuclear Information System (INIS)

    Ljubenov, V.; Simovic, R.; Markovic, S.

    2007-01-01

    Number albedo of water, aluminum and iron for incident photons in energy range from 20 keV to 100 keV is presented in this paper. Results are obtained through the Monte Carlo simulations of photon reflection by using the MCNP, FOTELP and PENELOPE computer codes. Calculated values are compared with the classical data published by B. P. Bulatov and his collaborators. Influence of the fluorescence yield to the photon number albedo of iron target is analyzed in detail. (author)

  5. Photon collider beam simulation with CAIN

    Indian Academy of Sciences (India)

    the laser pulse and the beam–beam interaction, is presented in figure 1. Energy flow obtained from the simulation was scaled to the average beam power. After the. Compton scattering, most of the incident electron beam power is transfered to the photon beam. However, the high-energy photons are very well-collimated ...

  6. Pyrolytic graphite gauge for measuring heat flux

    Science.gov (United States)

    Bunker, Robert C. (Inventor); Ewing, Mark E. (Inventor); Shipley, John L. (Inventor)

    2002-01-01

    A gauge for measuring heat flux, especially heat flux encountered in a high temperature environment, is provided. The gauge includes at least one thermocouple and an anisotropic pyrolytic graphite body that covers at least part of, and optionally encases the thermocouple. Heat flux is incident on the anisotropic pyrolytic graphite body by arranging the gauge so that the gauge surface on which convective and radiative fluxes are incident is perpendicular to the basal planes of the pyrolytic graphite. The conductivity of the pyrolytic graphite permits energy, transferred into the pyrolytic graphite body in the form of heat flux on the incident (or facing) surface, to be quickly distributed through the entire pyrolytic graphite body, resulting in small substantially instantaneous temperature gradients. Temperature changes to the body can thereby be measured by the thermocouple, and reduced to quantify the heat flux incident to the body.

  7. Quantum photonics

    CERN Document Server

    Pearsall, Thomas P

    2017-01-01

    This textbook employs a pedagogical approach that facilitates access to the fundamentals of Quantum Photonics. It contains an introductory description of the quantum properties of photons through the second quantization of the electromagnetic field, introducing stimulated and spontaneous emission of photons at the quantum level. Schrödinger’s equation is used to describe the behavior of electrons in a one-dimensional potential. Tunneling through a barrier is used to introduce the concept of non­locality of an electron at the quantum level, which is closely-related to quantum confinement tunneling, resonant tunneling, and the origin of energy bands in both periodic (crystalline) and aperiodic (non-crystalline) materials. Introducing the concepts of reciprocal space, Brillouin zones, and Bloch’s theorem, the determination of electronic band structure using the pseudopotential method is presented, allowing direct computation of the band structures of most group IV, group III-V, and group II-VI semiconducto...

  8. Green photonics

    International Nuclear Information System (INIS)

    Quan, Frederic

    2012-01-01

    Photonics, the broad merger of electronics with the optical sciences, encompasses such a wide swath of technology that its impact is almost universal in our everyday lives. This is a broad overview of some aspects of the industry and their contribution to the ‘green’ or environmental movement. The rationale for energy conservation is briefly discussed and the impact of photonics on our everyday lives and certain industries is described. Some opinions from industry are presented along with market estimates. References are provided to some of the most recent research in these areas. (review article)

  9. Photon Scattering and Reflection in Diagnostic Energy Domain

    International Nuclear Information System (INIS)

    Simovic, R.; Markovic, S.; Ljubenov, V.; Ilic, R. D.

    2008-01-01

    Dependence of reflected photons angular and energy distributions on the parameter c' - probability for large angle scattering, is treated in this paper. Simulation of photon reflection was performed by the FOTELP code for a normal incidence of photons into infinite slabs of common shielding materials. (author)

  10. Photon Differentials

    DEFF Research Database (Denmark)

    Schjøth, Lars; Frisvad, Jeppe Revall; Erleben, Kenny

    2007-01-01

    illumination features. This is often not desirable as these may lose clarity or vanish altogether. We present an accurate method for reconstruction of indirect illumination with photon mapping. Instead of reconstructing illumination using classic density estimation on finite points, we use the correlation...

  11. Photon Rao

    Indian Academy of Sciences (India)

    Volume 2 Issue 5 May 1997 pp 69-72 Feature Article. Molecule of the Month Molecular–Chameleon: Solvatochromism at its Iridescent Best! Photon Rao · More Details Fulltext PDF. Volume 16 Issue 12 December 2011 pp 1303-1306. Molecule of the Month - Molecular-Chameleon: Solvatochromism at its Iridescent Best!

  12. Photon detectors

    International Nuclear Information System (INIS)

    Va'vra, J.

    1995-10-01

    J. Seguinot and T. Ypsilantis have recently described the theory and history of Ring Imaging Cherenkov (RICH) detectors. In this paper, I will expand on these excellent review papers, by covering the various photon detector designs in greater detail, and by including discussion of mistakes made, and detector problems encountered, along the way. Photon detectors are among the most difficult devices used in physics experiments, because they must achieve high efficiency for photon transport and for the detection of single photo-electrons. For gaseous devices, this requires the correct choice of gas gain in order to prevent breakdown and wire aging, together with the use of low noise electronics having the maximum possible amplification. In addition, the detector must be constructed of materials which resist corrosion due to photosensitive materials such as, the detector enclosure must be tightly sealed in order to prevent oxygen leaks, etc. The most critical step is the selection of the photocathode material. Typically, a choice must be made between a solid (CsI) or gaseous photocathode (TMAE, TEA). A conservative approach favors a gaseous photocathode, since it is continuously being replaced by flushing, and permits the photon detectors to be easily serviced (the air sensitive photocathode can be removed at any time). In addition, it can be argued that we now know how to handle TMAE, which, as is generally accepted, is the best photocathode material available as far as quantum efficiency is concerned. However, it is a very fragile molecule, and therefore its use may result in relatively fast wire aging. A possible alternative is TEA, which, in the early days, was rejected because it requires expensive CaF 2 windows, which could be contaminated easily in the region of 8.3 eV and thus lose their UV transmission

  13. Fully reflective photon sieve

    Science.gov (United States)

    Sun, Wenbo; Hu, Yongxiang; MacDonnell, David G.; Kim, Hyun Jung; Weimer, Carl; Baize, Rosemary R.

    2018-02-01

    Photon sieves (PS) have many applications and various designs in focusing light. However, a traditional PS only has a light transmissivity up to ∼25% and a focusing efficiency up to ∼7%, which hinder the application of them in many fields, especially for satellite remote sensing. To overcome these inherent drawbacks of traditional PSs, a concept of reflective photon sieve is developed in this work. This reflective photon sieve is based on a transparent membrane backed by a mirror. The transparent membrane is optimally a fully transparent material sheet with given refractive index and designed geometric thickness which has an optical thickness of a quarter incident wavelength (i.e. an anti-reflective coating). The PS-patterned pinholes are made on the transparent membrane. The design makes the light reflected from pinholes and that from zones of membrane material have 180° phase difference. Thus, light incident on this optical device is reflected and focused on its focal point. This device can have a reflectivity of ∼100% and a focusing efficiency of ∼50% based on numerical simulation. This device functions similar to a concave focusing mirror but can preserve the phase feature of light (such as that for the light with orbital angular momentum). It also has excellent wavelength-dependent property, which can exclude most of the undesired light from the focal point. A thin sheet of this component can perform the joint function of lenses and gratings/etalons in the optical path of a remote sensing system, thus is suitable for controling/filtering light in compact instruments such as satellite sensors. This concept is validated by the finite-difference time domain (FDTD) modeling and a lab prototype in this study.

  14. A quantum imager for intensity correlated photons

    Energy Technology Data Exchange (ETDEWEB)

    Boiko, D L; Brauer, N; Sergio, M; Niclass, C; Charbon, E [Ecole Polytechnique Federale de Lausanne, 1015, Lausanne (Switzerland); Gunther, N J [Performance Dynamics, 4061 East Castro Valley Blvd, Suite 110, Castro Valley, CA (United States); Beretta, G B [HP Laboratories, 1501 Page Mill Road, Palo Alto, CA (United States)], E-mail: dmitri.boiko@csem.ch

    2009-01-15

    We report on a device capable of imaging second-order spatio-temporal correlations g{sup (2)}(x, {tau}) between photons. The imager is based on a monolithic array of single-photon avalanche diodes (SPADs) implemented in CMOS technology and a simple algorithm to treat multiphoton time-of-arrival distributions from different SPAD pairs. It is capable of 80 ps temporal resolution with fluxes as low as 10 photons s{sup -1} at room temperature. An important application might be the local imaging of g{sup (2)} as a means of confirming the presence of true Bose-Einstein macroscopic coherence (BEC) of cavity exciton polaritons.

  15. Supernova brightening from chameleon-photon mixing

    International Nuclear Information System (INIS)

    Burrage, C.

    2008-01-01

    Measurements of standard candles and measurements of standard rulers give an inconsistent picture of the history of the universe. This discrepancy can be explained if photon number is not conserved as computations of the luminosity distance must be modified. I show that photon number is not conserved when photons mix with chameleons in the presence of a magnetic field. The strong magnetic fields in a supernova mean that the probability of a photon converting into a chameleon in the interior of the supernova is high, this results in a large flux of chameleons at the surface of the supernova. Chameleons and photons also mix as a result of the intergalactic magnetic field. These two effects combined cause the image of the supernova to be brightened resulting in a model which fits both observations of standard candles and observations of standard rulers

  16. Photon factory

    International Nuclear Information System (INIS)

    Tanaka, J.; Huke, K.; Chikawa, J.

    1985-01-01

    The Photon Factory (PF) was established on April 1, 1978 at KEK. The PF is a synchrotron radiation facility, which has a 2.5 GeV electron storage ring fully dedicated to the SR usage and a 2.5 GeV electron linac supplying electrons and positrons to the PF ring and the accumulation ring of TRISTAN (30 GeV electron-positron colliding machine). The PF consists of three departments, injector linac, light source, and instrumentation department. The facility is described

  17. Measurement of the Nuclear Dependence of Direct Photon and Neutral Meson Production at High Transverse Momentum by Negative 515-GeV/c Pions Incident on Beryllium and Copper Targets

    Energy Technology Data Exchange (ETDEWEB)

    Sorrell, Lee Ronald [Michigan State Univ., East Lansing, MI (United States)

    1995-01-01

    The nuclear dependence of inclusive direct photon production and inclusive neutral meson production by a 515 GeV/c $\\pi^-$ beam has been measured using data collected by the E706 experiment during the 19.90 fixed, target run at the Fermi National Accelerator Laboratory. The experiment utilized a finely segmented liquid argon calorimeter and a high precision charged particle spectrometer to make precision measurements of inclusive direct photon, neutral pion, and $\\eta$ production in the rapidity interval from -0.75 < $y$ < 0.75. The $\\pi^0$ data is reported for the $P_T$ range from 0.6 GeV /c to 12 GeV /c, while the $\\eta$ data is reported for the range from 3.5 GeV /c to 7.0 GeV /c. The direct photon nuclear dependence results are reported for the range from approxlmately 4.0 GeV/c to 8.5 GeV/c. The data from the beryllium and copper targets have been fit using the parameterization $\\sigma_A$ = $\\sigma_0$ x $A^{\\alpha}$. The neutral meson results are in good agreement with previous charged meson results. The direct photon results are consistent with no anomalous enhancement.

  18. Ultra-refractive and extended-range one-dimensional photonic crystal superprisms

    Science.gov (United States)

    Ting, D. Z. Y.

    2003-01-01

    We describe theoretical analysis and design of one-dimensional photonic crystal prisms. We found that inside the photonic crystal, for frequencies near the band edges, light propagation direction is extremely sensitive to the variations in wavelength and incident angle.

  19. ASP: a new PEP experiment to measure single photons

    International Nuclear Information System (INIS)

    Hollebeek, R.

    1984-05-01

    The design and construction of a new experiment for PEP designed to measure the flux of low energy photons unaccompanied by any additional photons, or charged tracks is described. The device consists of arrays of extruded lead glass bars and PWC's in the central region with lead-scintillator shower counters, drift chambers and PWC's in the forward regions. 9 references

  20. Simple parametrization of photon mass energy absorption ...

    Indian Academy of Sciences (India)

    E-mail: tku@physics.uni-mysore.ac.in; umeshtk@gmail.com. MS received 21 May 2008; ... Complex molecules such as carbohydrates, proteins, lipids, enzymes, vitamins and hormones perform a variety of ... where φ is the fluence of photon flux of energy E and µen/ρ is the mass energy absorption coefficient. Thus, in ...

  1. Resonance formation in photon-photon collisions

    Energy Technology Data Exchange (ETDEWEB)

    Gidal, G.

    1988-08-01

    Recent experimental progress on resonance formation in photon-photon collisions is reviewed with particular emphasis on the pseudoscalar and tensor nonents and on the ..gamma gamma..* production of spin-one resonances. 37 refs., 17 figs., 5 tabs.

  2. Collisional and photon induced molecular synthesis within ice mantles

    International Nuclear Information System (INIS)

    Mason, N.J.; Dawes, A.; Tegeder, P.; Holtom, P.

    2002-01-01

    Multilayers of molecules condensed on bulk surfaces at temperatures below 270 K are of great importance in several areas of modern physical and chemical research, for example in the terrestrial stratosphere where they play a key role in the heterogeneous catalytic destruction of ozone on the surfaces of ice crystals in polar stratospheric clouds. The interactions of photons, electrons and ions with a molecular adsorbate produces highly reactive species (radicals, cations, anions) which can subsequently react with neighbouring molecules to form new products and hence initiate further chemical and physical processes. To date, few studies of molecules synthesis by collisions within multilayers has been done and are largely restricted to ion-molecule reactions. Neutral atom/molecule-molecule collisions stimulated by photon, electron and ion impact were studied. A prototype instrument in which multilayers of ice with co-adsorbed molecular species may be formed on a cold substrate at temperatures compatible with the terrestrial atmosphere, the interstellar medium or planetary bodies was constructed. Using UV irradiation, electrons and ions films were bombarded. Molecular synthesis within the mantle was proved by a combination of FTIR, UV-vis and mass spectrometry as a function of incident flux, energy and polarization. First results of synchrotron irradiation of water film are given. (nevyjel)

  3. Virtual photon spectra for finite nuclei

    International Nuclear Information System (INIS)

    Wolynec, E.; Martins, M.N.

    1988-01-01

    The experimental results of an isochromat of the virtual photon spectrum, obtained by measuring the number of ground-state protons emitted by the 16.28 MeV isobaric analogue state in 90 Zr as a function of electron incident energy in the range 17-105 MeV, are compared with the values predicted by a calculation of the E1 DWBA virtual photon spectra for finite nuclei. It is found that the calculations are in excellent agreement with the experimental results. The DWBA virtual photon spectra for finite nuclei for E2 and M1 multipoles are also assessed. (author) [pt

  4. Photon interrogation annual report for FY-1980

    International Nuclear Information System (INIS)

    Nieschmidt, E.B.; Tsang, F.Y.; Lawrence, R.S.; Vegors, S.H. Jr.

    1980-12-01

    The Photon Interrogation Technique is being developed for the assay of transuranic materials. A description of source and detector geometry, die-away times and photon flux measurements is given. Considerable effort during FY-1980 was devoted to collimator construction and shielding materials and configurations. Boric acid was found to be a very efficient shielding material for this application. Descriptions and results of these efforts are presented. Results of photon flux determinations, system response to source position and their effects on accuracy are discussed. Changes in the detector system produced a considerable efficiency increase and instrumentation changes brought improved performance. The instrument system with additions can obtain neutron spectral information. A schedule for further development of the system is presented

  5. Energy spectrum of Compton scattering of laser photons on relativistic electrons

    International Nuclear Information System (INIS)

    Ando, Hiroaki; Yoneda, Yasuharu

    1976-01-01

    The high energy photons in gamma-ray region are obtainable by the Compton scattering of laser photons on relativistic electrons. But the motion of the electrons in the storage ring is not necessarily uniform. In the study of the uneven effect, the energy distribution of scattered photons is derived from the assumed momentum distribution of incident electrons. It is generally impossible to derive the momentum distribution of incident electrons from the energy spectrum of scattered photons. The additional conditions which make this possible in a special case are considered. A calculational method is examined for deriving the energy spectrum of scattered photons from the assumed momentum distribution of incident electrons. (Mori, K.)

  6. Increasing quantum yield of sodium salicylate above 80 eV photon energy: Implications for photoemission cross sections

    Science.gov (United States)

    Lindle, D. W.; Ferrett, T. A.; Heimann, P. A.; Shirley, D. A.

    1986-08-01

    The quantum yield of the visible scintillator sodium salicylate is found to increase in the incident photon-energy range 80-270 eV. Because of its use as a photon-flux monitor in recent gas-phase photoelectron spectroscopy measurements, previously reported partial cross sections for Hg (4f, 5p, and 5d subshells) and CH3I (I 4d subshell) in this energy range are corrected, and new values are reported. For Hg, the correction brings the experimental data into better overall agreement with theory. However, considerable uncertainty remains in the absolute scale derived from previous Hg photoabsorption measurements, and no single rescaling of the subshell cross sections could simultaneously bring all three into agreement with available theoretical calculations.

  7. Critical flux determination by flux-stepping

    DEFF Research Database (Denmark)

    Beier, Søren; Jonsson, Gunnar Eigil

    2010-01-01

    In membrane filtration related scientific literature, often step-by-step determined critical fluxes are reported. Using a dynamic microfiltration device, it is shown that critical fluxes determined from two different flux-stepping methods are dependent upon operational parameters such as step......, such values are more or less useless in itself as critical flux predictors, and constant flux verification experiments have to be conducted to check if the determined critical fluxes call predict sustainable flux regimes. However, it is shown that using the step-by-step predicted critical fluxes as start...

  8. Estimating daytime ecosystem respiration from eddy-flux data

    DEFF Research Database (Denmark)

    Bruhn, Dan; Mikkelsen, Teis Nørgaard; Herbst, Mathias

    2011-01-01

    based on whole ecosystem fluxes from a linear regression of photosynthetic photon flux density data vs. daytime net ecosystem exchange data at forest ecosystem level. This method is based on the principles of the Kok-method applied at leaf level for estimating daytime respiration. We demonstrate...

  9. RR photons

    CERN Document Server

    Camara, Pablo G; Marchesano, Fernando

    2011-01-01

    Type II string compactifications to 4d generically contain massless Ramond-Ramond U(1) gauge symmetries. However there is no massless matter charged under these U(1)'s, which makes a priori difficult to measure any physical consequences of their existence. There is however a window of opportunity if these RR U(1)'s mix with the hypercharge $U(1)_Y$ (hence with the photon). In this paper we study in detail different avenues by which $U(1)_{RR}$ bosons may mix with D-brane U(1)'s. We concentrate on Type IIA orientifolds and their M-theory lift, and provide geometric criteria for the existence of such mixing, which may occur either via standard kinetic mixing or via the mass terms induced by St\\"uckelberg couplings. The latter case is particularly interesting, and appears whenever D-branes wrap torsional $p$-cycles in the compactification manifold. We also show that in the presence of torsional cycles discrete gauge symmetries and Aharanov-Bohm strings and particles appear in the 4d effective action, and that ty...

  10. Photonic time crystals.

    Science.gov (United States)

    Zeng, Lunwu; Xu, Jin; Wang, Chengen; Zhang, Jianhua; Zhao, Yuting; Zeng, Jing; Song, Runxia

    2017-12-07

    When space (time) translation symmetry is spontaneously broken, the space crystal (time crystal) forms; when permittivity and permeability periodically vary with space (time), the photonic crystal (photonic time crystal) forms. We proposed the concept of photonic time crystal and rewritten the Maxwell's equations. Utilizing Finite Difference Time Domain (FDTD) method, we simulated electromagnetic wave propagation in photonic time crystal and photonic space-time crystal, the simulation results show that more intensive scatter fields can obtained in photonic time crystal and photonic space-time crystal.

  11. Ultrafast photon number resolving detector with a temperature stabilized si multi pixel photon counter

    Energy Technology Data Exchange (ETDEWEB)

    Song, Minsoo; Hong, Eugene; Won, Eunil; Yoon, Tai Hyun [Korea Univ., Seoul (Korea, Republic of)

    2008-11-15

    Quantum information science has been rapidly progressed and matured and matured thanks to the recent developments of the single photon detection technologies. Single photon detectors such as a Si avalanche photo diode(APD)in the infrared, an InGaAs/InP APD in the telecommunication band, and a super conducting transient edge sensor(TES)in the broad region of the spectrum have been widely used. Single photon detectors, however, operating at the ultraviolet to visible (370nm∼800nm)regions has not been actively investigated partly due to the lack of single photon and/or entangled photon sources and the lack of solid state single photon detectors. In this paper, we investigate the single photon detection characteristics of a Si multi pixel photon counter(MPPC), which has a high spectral responsivity between 300nm to 800nm, as a photon number resolving solid state detector. Figure 1 shows the schematic diagram of the single photon detection set up at 399nm by using a temperature stabilized Si MPPC. The output beam of the laser being properly attenuated is directed to the MPPC module, at which fixed number of photo electrons corresponding to incident individual photon are generated at Geiger mode of the Si APD pixels. The detected photo current is converted into a digital signal by using a fast analog to digital converter and a digital oscilloscope stores the time sequence of the photo currents. Figure 2 shows the accumulated charges collected by MPPC at∼10.deg.C showing a clear single photon and two photons peaks, respectively, separated by ∼5 sigma of the coincidence counts at the two output ports of a Mach Zender interferometer as a function of optical path length difference. The research was supported by Seoul R and BD program(NT070127)and by the KRISS.

  12. Ultrafast photon number resolving detector with a temperature stabilized si multi pixel photon counter

    International Nuclear Information System (INIS)

    Song, Minsoo; Hong, Eugene; Won, Eunil; Yoon, Tai Hyun

    2008-01-01

    Quantum information science has been rapidly progressed and matured and matured thanks to the recent developments of the single photon detection technologies. Single photon detectors such as a Si avalanche photo diode(APD)in the infrared, an InGaAs/InP APD in the telecommunication band, and a super conducting transient edge sensor(TES)in the broad region of the spectrum have been widely used. Single photon detectors, however, operating at the ultraviolet to visible (370nm∼800nm)regions has not been actively investigated partly due to the lack of single photon and/or entangled photon sources and the lack of solid state single photon detectors. In this paper, we investigate the single photon detection characteristics of a Si multi pixel photon counter(MPPC), which has a high spectral responsivity between 300nm to 800nm, as a photon number resolving solid state detector. Figure 1 shows the schematic diagram of the single photon detection set up at 399nm by using a temperature stabilized Si MPPC. The output beam of the laser being properly attenuated is directed to the MPPC module, at which fixed number of photo electrons corresponding to incident individual photon are generated at Geiger mode of the Si APD pixels. The detected photo current is converted into a digital signal by using a fast analog to digital converter and a digital oscilloscope stores the time sequence of the photo currents. Figure 2 shows the accumulated charges collected by MPPC at∼10.deg.C showing a clear single photon and two photons peaks, respectively, separated by ∼5 sigma of the coincidence counts at the two output ports of a Mach Zender interferometer as a function of optical path length difference. The research was supported by Seoul R and BD program(NT070127)and by the KRISS

  13. Wheelchair incidents

    NARCIS (Netherlands)

    Drongelen AW van; Roszek B; Hilbers-Modderman ESM; Kallewaard M; Wassenaar C; LGM

    2002-01-01

    This RIVM study was performed to gain insight into wheelchair-related incidents with powered and manual wheelchairs reported to the USA FDA, the British MDA and the Dutch Center for Quality and Usability Research of Technical Aids (KBOH). The data in the databases do not indicate that incidents with

  14. One Dimensional Polymeric Organic Photonic Crystals for DFB Lasers

    Directory of Open Access Journals (Sweden)

    F. Scotognella

    2008-01-01

    Full Text Available We present a very simple method to realize a one-dimensional photonic crystal (1D PC, consisting of a dye-doped polymeric multilayer. Due to the high photonic density of states at the edges of the photonic band-gap (PBG, a surface emitting distributed feedback (DFB laser is obtained with this structure. Furthermore, the incidence angle dependence of the PBG of the polymeric multilayer is reported.

  15. Spectrum of acetylene fluorescence excited by single XUV photons

    International Nuclear Information System (INIS)

    Schmieder, R.W.

    1982-01-01

    The spectrum of visible emission from photofragments of acetylene excited by single 16.85 eV photons has been recorded for the first time. The spectrum is dominated by the Swan and Deslandres-d'Azambuja bands of C 2 and the 431.5 nm band of CH. The yields of these emissions are of the order 10 -3 photons per absorbed incident photon. The experimental conditions suggest that the emission results from primary C* 2 and CH* photofragments

  16. Discriminating electromagnetic radiation based on angle of incidence

    Science.gov (United States)

    Hamam, Rafif E.; Bermel, Peter; Celanovic, Ivan; Soljacic, Marin; Yeng, Adrian Y. X.; Ghebrebrhan, Michael; Joannopoulos, John D.

    2015-06-16

    The present invention provides systems, articles, and methods for discriminating electromagnetic radiation based upon the angle of incidence of the electromagnetic radiation. In some cases, the materials and systems described herein can be capable of inhibiting reflection of electromagnetic radiation (e.g., the materials and systems can be capable of transmitting and/or absorbing electromagnetic radiation) within a given range of angles of incidence at a first incident surface, while substantially reflecting electromagnetic radiation outside the range of angles of incidence at a second incident surface (which can be the same as or different from the first incident surface). A photonic material comprising a plurality of periodically occurring separate domains can be used, in some cases, to selectively transmit and/or selectively absorb one portion of incoming electromagnetic radiation while reflecting another portion of incoming electromagnetic radiation, based upon the angle of incidence. In some embodiments, one domain of the photonic material can include an isotropic dielectric function, while another domain of the photonic material can include an anisotropic dielectric function. In some instances, one domain of the photonic material can include an isotropic magnetic permeability, while another domain of the photonic material can include an anisotropic magnetic permeability. In some embodiments, non-photonic materials (e.g., materials with relatively large scale features) can be used to selectively absorb incoming electromagnetic radiation based on angle of incidence.

  17. Preliminary thermo-mechanical analysis of the second phase photon shutters for insertion device beamline front ends at the Advanced Photon Source

    International Nuclear Information System (INIS)

    Nian, H.L.T.; Sheng, I.C.A.; Kuzay, T.M.

    1993-01-01

    The photon shutters (PS) on the insertion device front end of the beamlines at the Advanced Photon Source (APS) are designed to fully intercept powerful 7-GeV undulator radiation. Traditional materials (oxygen-free copper and Glidcop) are used in their construction. Initially, the APS proposes to operate the storage ring at 100 mA. In later phases of operation, the APS will operate the storage ring at 300 mA. The heat flux from the undulators is enormous. For example, in the later phase of the project, the first photon shutter (PS1) placed at a distance of 17 m from the Undulator A source will be subjected to 1400 W/mm 2 at normal incidence with a total power of 11.4 kW. The PS uses an enhanced heat transfer mechanism developed at Argonne National Laboratory, which increases the convective heat transfer coefficient to about 3 W/cm 2 · degrees C with single phase water as the coolant. To be able to handle the expected three-fold increase in the intense heat flux, some low-Z materials (such as beryllium or graphite), which can absorb the x-rays through their thickness, are now considered as the facing material on the absorber base plate of the PS. Our analysis of PSI indicates that the face plate made of either graphite or beryllium retains its integrity in most of the cases. The maximum effective stress of the absorber plate (made of annealed OFHC) exceeds the yield strength (50 MPa) except in the case of an absorber with a 10-mm graphite face plate

  18. Characterization of a silicon strip detector for photon-counting spectral CT using monoenergetic photons from 40 keV to 120 keV

    Science.gov (United States)

    Liu, Xuejin; Bornefalk, Hans; Chen, Han; Danielsson, Mats; Karlsson, Staffan; Persson, Mats; Xu, Cheng; Huber, Ben

    2014-03-01

    Background: We are developing a segmented silicon strip detector that operates in photon-counting mode and allows pulse-height discrimination with 8 adjustable energy bins. In this work, we determine the energy resolution of the detector using monoenergetic x-ray radiation from 40 keV to 120 keV. We further investigate the effects of pulse pileup and charge sharing between detector channels that may lead to a decreased energy resolution. Methods: For each incident monochromatic x-ray energy, we obtain count spectra at different photon fluxes. These spectra corresponds to the pulse-height response of the detector and allow the determination of energy resolution and charge-sharing probability. The energy resolution, however, is influenced by signal pileup and charge sharing. Both effects are quantified using Monte Carlo simulations of the detector that aim to reproduce the conditions during the measurements. Results: The absolute energy resolution is found to increase from 1.7 to 2.1 keV for increasing energies 40 keV to 120 keV at the lowest measured photon flux. The effect of charge sharing is found to increase the absolute energy resolution by a factor of 1.025 at maximum. This increase is considered as negligibly small. The pileup of pulses leads to a deterioration rate of the energy resolution of 4 · 10-3 keV Mcps-1 mm2, corresponding to an increase of 0.04keV per 10 Mcps increase of the detected count rate.

  19. Photonic crystals: towards nanoscale photonic devices

    National Research Council Canada - National Science Library

    Lourtioz, J.-M

    2005-01-01

    .... From this point of view, the emergence of photonic bandgap materials and photonic crystals at the end of the 1980s can be seen as a revenge to the benefit this time of optics and electromagnetism. In the same way as the periodicity of solid state crystals determines the energy bands and the conduction properties of electrons, the periodical structur...

  20. Photon-photon measurements in CMS

    CERN Document Server

    Chudasama, Ruchi

    2017-01-01

    We discuss the measurement of photon-photon processes using data collected by the CMS experiment in pp collisions at $\\sqrt{s}$ = 7 and 8 TeV and in PbPb collisions at $\\sqrt{s_{_{{\\rm NN}}}}= 5.02$ TeV.

  1. High energy photon-photon collisions

    International Nuclear Information System (INIS)

    Brodsky, S.J.; Zerwas, P.M.

    1994-07-01

    The collisions of high energy photons produced at a electron-positron collider provide a comprehensive laboratory for testing QCD, electroweak interactions and extensions of the standard model. The luminosity and energy of the colliding photons produced by back-scattering laser beams is expected to be comparable to that of the primary e + e - collisions. In this overview, we shall focus on tests of electroweak theory in photon-photon annihilation, particularly γγ → W + W - , γγ → Higgs bosons, and higher-order loop processes, such as γγ → γγ, Zγ and ZZ. Since each photon can be resolved into a W + W minus pair, high energy photon-photon collisions can also provide a remarkably background-free laboratory for studying WW collisions and annihilation. We also review high energy γγ tests of quantum chromodynamics, such as the scaling of the photon structure function, t bar t production, mini-jet processes, and diffractive reactions

  2. Programmable Quantum Photonic Processor Using Silicon Photonics

    Science.gov (United States)

    2017-04-01

    mentioned above, increased infidelity in the single photon states produced by sources sharply increases the resource overhead for quantum repeaters...for a time-invariant cavity. Using a “dual Hong-Ou-Mandel” geometry shown in Fig. 3, we were able to ensure that the incoming and existing photon

  3. Photonic crystal light source

    Science.gov (United States)

    Fleming, James G [Albuquerque, NM; Lin, Shawn-Yu [Albuquerque, NM; Bur, James A [Corrales, NM

    2004-07-27

    A light source is provided by a photonic crystal having an enhanced photonic density-of-states over a band of frequencies and wherein at least one of the dielectric materials of the photonic crystal has a complex dielectric constant, thereby producing enhanced light emission at the band of frequencies when the photonic crystal is heated. The dielectric material can be a metal, such as tungsten. The spectral properties of the light source can be easily tuned by modification of the photonic crystal structure and materials. The photonic crystal light source can be heated electrically or other heating means. The light source can further include additional photonic crystals that exhibit enhanced light emission at a different band of frequencies to provide for color mixing. The photonic crystal light source may have applications in optical telecommunications, information displays, energy conversion, sensors, and other optical applications.

  4. Photonic Design for Photovoltaics

    Energy Technology Data Exchange (ETDEWEB)

    Kosten, E.; Callahan, D.; Horowitz, K.; Pala, R.; Atwater, H.

    2014-08-28

    We describe photonic design approaches for silicon photovoltaics including i) trapezoidal broadband light trapping structures ii) broadband light trapping with photonic crystal superlattices iii) III-V/Si nanowire arrays designed for broadband light trapping.

  5. Photonic crystal pioneer

    Science.gov (United States)

    Anscombe, Nadya

    2011-08-01

    Over the past ten years, Crystal Fiber, now part of NKT Photonics, has been busy commercializing photonic crystal fibre. Nadya Anscombe finds out about the evolution of the technology and its applications.

  6. Incidents analysis

    International Nuclear Information System (INIS)

    Francois, P.

    1996-01-01

    We undertook a study programme at the end of 1991. To start with, we performed some exploratory studies aimed at learning some preliminary lessons on this type of analysis: Assessment of the interest of probabilistic incident analysis; possibility of using PSA scenarios; skills and resources required. At the same time, EPN created a working group whose assignment was to define a new approach for analysis of incidents on NPPs. This working group gave thought to both aspects of Operating Feedback that EPN wished to improve: Analysis of significant incidents; analysis of potential consequences. We took part in the work of this group, and for the second aspects, we proposed a method based on an adaptation of the event-tree method in order to establish a link between existing PSA models and actual incidents. Since PSA provides an exhaustive database of accident scenarios applicable to the two most common types of units in France, they are obviously of interest for this sort of analysis. With this method we performed some incident analyses, and at the same time explores some methods employed abroad, particularly ASP (Accident Sequence Precursor, a method used by the NRC). Early in 1994 EDF began a systematic analysis programme. The first, transient phase will set up methods and an organizational structure. 7 figs

  7. Photonic crystals: role of architecture and disorder on spectral properties.

    Science.gov (United States)

    Verma, Rupesh; Audhkhasi, Romil; Thyagarajan, Krishna; Banerjee, Varsha

    2018-03-01

    Many of the present-day optical devices use photonic crystals. These are multilayers of dielectric media that control the reflection and transmission of light falling on them. In this paper, we study the optical properties of periodic, fractal, and aperiodic photonic crystals and compare them based on their attributes. Our calculations of the band reflectivity and degree of robustness reveal novel features, e.g., fractal photonic crystals are found to reflect the maximum amount of incident light. On the other hand, aperiodic photonic crystals have the largest immunity to disorder. We believe that such properties will be useful in a variety of applications in the field of optical communication.

  8. Band structure peculiarities of magnetic photonic crystals

    Science.gov (United States)

    Gevorgyan, A. H.; Golik, S. S.

    2017-10-01

    In this work we studied light diffraction in magneto-photonic crystals (MPC) having large magneto-optical activity and modulation large depth. The case of arbitrary angles between the direction of the external static magnetic field and the normal to the border of the MPC layer is considered. The problem is solved by Ambartsumian's modified layer addition method. It is found that there is a new type of non-reciprocity, namely, the relation R (α) ≠ R (- α) takes place, where R is the reflection coefficient, and α is the incidence angle. It is shown the formation of new photonic band gap (PBG) at oblique incidence of light, which is not selective for the polarization of the incident light, in the case when the external magnetic field is directed along the medium axis. Such a system can be used as: a tunable polarization filter, polarization mirror, circular (elliptical) polarizer, tunable optical diode, etc.

  9. Photonic crystal fibers

    DEFF Research Database (Denmark)

    Lægsgaard, Jesper; Hansen, K P; Nielsen, M D

    2003-01-01

    Photonic crystal fibers having a complex microstructure in the transverse plane constitute a new and promising class of optical fibers. Such fibers can either guide light through total internal reflection or the photonic bandgap effect, In this paper, we review the different types and applications...... of photonic crystal fibers with particular emphasis on recent advances in the field....

  10. Delayed photon selfinterference

    International Nuclear Information System (INIS)

    Kessel', A.R.; Moiseev, S.A.

    1993-01-01

    Delayed photon selfinterference on a sample containing resonant two-level atoms is considered when the difference in the lengths in two optical paths exceeds the photon 'length'. It is shown that a reading pulse of the electromagnetic field can induce photon echo

  11. Diffusion Based Photon Mapping

    DEFF Research Database (Denmark)

    Schjøth, Lars; Olsen, Ole Fogh; Sporring, Jon

    2006-01-01

    . To address this problem we introduce a novel photon mapping algorithm based on nonlinear anisotropic diffusion. Our algorithm adapts according to the structure of the photon map such that smoothing occurs along edges and structures and not across. In this way we preserve the important illumination features......, while eliminating noise. We call our method diffusion based photon mapping....

  12. Single photon from a single trapped atom

    International Nuclear Information System (INIS)

    Dingjan, J.; Jones, M.P.A.; Beugnon, J.; Darquiee, B.; Bergamini, S.; Browaeys, A.; Messin, G.; Grangier, P.

    2005-01-01

    Full text: A quantum treatment of the interaction between atoms and light usually begins with the simplest model system: a two-level atom interacting with a monochromatic light wave. Here we demonstrate an elegant experimental realization of this system using an optically trapped single rubidium atom illuminated by resonant light pulses. We observe Rabi oscillations, and show that this system can be used as a highly efficient triggered source of single photons with a well-defined polarisation. In contrast to other sources based on neutral atoms and trapped ions, no optical cavity is required. We achieved a flux of single photons of about 10 4 s -1 at the detector, and observe complete antibunching. This source has potential applications for distributed atom-atom entanglement using single photons. (author)

  13. Towards brilliant, compact x-ray sources: a new x-ray photonic device

    Science.gov (United States)

    Scherer, Brian; Mandal, Sudeep; Salisbury, Joshua; Edic, Peter; Hopkins, Forrest; Lee, Susanne M.

    2017-05-01

    General Electric has designed an innovative x-ray photonic device that concentrates a polychromatic beam of diverging x-rays into a less divergent, parallel, or focused x-ray beam. The device consists of multiple, thin film multilayer stacks. X-rays incident on a given multilayer stack propagate within a high refractive index transmission layer while undergoing multiple total internal reflections from a novel, engineered multilayer containing materials of lower refractive index. Development of this device could lead to order-of-magnitude flux density increases, over a large broadband energy range from below 20 keV to above 300 keV. In this paper, we give an overview of the device and present GE's progress towards fabricating prototype devices.

  14. Photon correlation holography.

    Science.gov (United States)

    Naik, Dinesh N; Singh, Rakesh Kumar; Ezawa, Takahiro; Miyamoto, Yoko; Takeda, Mitsuo

    2011-01-17

    Unconventional holography called photon correlation holography is proposed and experimentally demonstrated. Using photon correlation, i.e. intensity correlation or fourth order correlation of optical field, a 3-D image of the object recorded in a hologram is reconstructed stochastically with illumination through a random phase screen. Two different schemes for realizing photon correlation holography are examined by numerical simulations, and the experiment was performed for one of the reconstruction schemes suitable for the experimental proof of the principle. The technique of photon correlation holography provides a new insight into how the information is embedded in the spatial as well as temporal correlation of photons in the stochastic pseudo thermal light.

  15. Asymmetry ratio in pair production and the degree of linearly polarized photons at intermediate energies

    CERN Document Server

    Asai, J

    1999-01-01

    In order to initiate the experiments using linearly polarized tagged photons at intermediate energies, it is imperative to know and to monitor the degree of polarization. The relationship is re-examined between the linear polarization of photons and the asymmetry ratio in pair production by such photons. An improved method is proposed in which pairs are prohibited from entering the cone region around the incident photon beam. By restricting the directions of pairs, the asymmetry ratio is much improved. (author)

  16. Flux qubit to a transmission line

    Energy Technology Data Exchange (ETDEWEB)

    Haeberlein, Max; Baust, Alexander; Zhong, Ling; Gross, Rudolf [Walther-Meissner-Institut, Bayerische Akademie der Wissenschaften, Garching (Germany); Physik-Department, TU Muenchen, Garching (Germany); Nanosystems Initiative Munich (NIM), Muenchen (Germany); Anderson, Gustav; Wang, Lujun; Eder, Peter; Fischer, Michael; Goetz, Jan; Xie, Edwar; Schwarz, Manuel; Wulschner, Karl Friedrich; Deppe, Frank; Fedorov, Kirill; Huebl, Hans; Menzel, Edwin [Walther-Meissner-Institut, Bayerische Akademie der Wissenschaften, Garching (Germany); Physik-Department, TU Muenchen, Garching (Germany); Marx, Achim [Walther-Meissner-Institut, Bayerische Akademie der Wissenschaften, Garching (Germany)

    2015-07-01

    Within the last decade, superconducting qubits coupled to microwave resonators have been extensively studied within the framework of quantum electrodynamics. Ultimately, quantum computing seems within reach in such architectures. However, error correction schemes are necessary to achieve the required fidelity in multi-qubit operations, drastically increasing the number of qubits involved. In this work, we couple a flux qubit to a transmission line where it interacts with itinerant microwave photons granting access to all-optical quantum computing. In this approach, travelling photons generate entanglement between two waveguides, containing the qubit information. In this presentation, we show experimental data on flux qubits coupled to transmission lines. Furthermore, we will discuss entanglement generation between two separate paths.

  17. Electron and Photon ID

    CERN Document Server

    Hryn'ova, Tetiana; The ATLAS collaboration

    2017-01-01

    The identification of prompt photons and the rejection of background coming mostly from photons from hadron decays relies on the high granularity of the ATLAS calorimeter. The electron identification used in ATLAS for run 2 is based on a likelihood discrimination to separate isolated electron candidates from candidates originating from photon conversions, hadron misidentification and heavy flavor decays. In addition, isolation variables are used as further handles to separate signal and background. Several methods are used to measure with data the efficiency of the photon identification requirements, to cover a broad energy spectrum. At low energy, photons from radiative Z decays are used. In the medium energy range, similarities between electrons and photon showers are exploited using Z->ee decays. At high energy, inclusive photon samples are used. The measurement of the efficiencies of the electron identification and isolation cuts are performed with the data using tag and probe techniques with large statis...

  18. Strongly-Refractive One-Dimensional Photonic Crystal Prisms

    Science.gov (United States)

    Ting, David Z. (Inventor)

    2004-01-01

    One-dimensional (1D) photonic crystal prisms can separate a beam of polychromatic electromagnetic waves into constituent wavelength components and can utilize unconventional refraction properties for wavelength dispersion over significant portions of an entire photonic band rather than just near the band edges outside the photonic band gaps. Using a ID photonic crystal simplifies the design and fabrication process and allows the use of larger feature sizes. The prism geometry broadens the useful wavelength range, enables better optical transmission, and exhibits angular dependence on wavelength with reduced non-linearity. The properties of the 1 D photonic crystal prism can be tuned by varying design parameters such as incidence angle, exit surface angle, and layer widths. The ID photonic crystal prism can be fabricated in a planar process, and can be used as optical integrated circuit elements.

  19. 200-MeV bremsstrahlung tagged photon beams at Sendai

    International Nuclear Information System (INIS)

    Hirose, K.; Chiba, M.; Inoue, M.; Kanda, H.; Kimura, R.; Kino, K.; Kobayashi, Y.; Konno, O.; Maeda, K.; Miyase, H.; Miyamoto, A.; Ohtsuki, T.; Saito, A.; Suda, T.; Takahashi, K.; Tamae, T.; Terasaki, Y.; Terasawa, T.; Tsubota, H.; Tsuruta, T.; Utoyama, M.; Yuuki, H.; Yamaguchi, Y.; Yamazaki, H.

    2006-01-01

    A new beam line for photonuclear reaction experiments using tagged photons has been constructed to take advantage of the completion of the 1.2-GeV STretcher Booster (STB) ring at the Laboratory of Nuclear Science (LNS), Tohoku University. A photon tagging system was installed at the end of the new beam line. It provides bremsstrahlung tagged photon beams in an energy range from 0.2E 0 to 0.8E 0 MeV at the incident electron energy E 0 with an energy resolution of ΔE/E∼10 -2 . The tagged photon intensity I= 6 photons/s is available for typical photonuclear reaction experiments. We introduce the basic parameters of the tagged photons by showing the commissioning data

  20. Photonic crystals with active organic materials

    Science.gov (United States)

    Wu, Yeheng

    The concept of photonic crystals, which involves periodically arranged dielectrics that form a new type of material having novel photonic properties, was first proposed about two decades ago. Since then, a number of applications in photonic technology have been explored. Specifically, organic and hybrid photonic crystals are promising because of the unique advantages of the organic materials. A one-dimensional (1D) photonic crystal (multilayer) has high reflectance across a certain wavelength range. We report on studies of 1D multilayer polymer films that were fabricated using spin-coating, free film stacking, and co-extrusion techniques. For example, a stack fabricated by placing a laser dye-doped gain medium between two multilayer reflecting polymer films forms a micro-resonator laser or distributed Bragg laser. The resulting laser system is made entirely of plastic and is only several tens of micrometers in thickness. When the gain, a dye-doped medium, comprises one type of a two-type multilayer film, it results a laser exhibiting distributed feedback. At the edge of the photonic band, the group velocity becomes small and the density of photon states becomes high, which leads to laser emission. Such distributed feedback lasers were fabricated using the co-extrusion technique. The refractive indices and the photonic lattice determine the photonic band gap, which can be tuned by changing these parameters. Materials with Kerr nonlinearity exhibit a change in refractive index depending on the incident intensity of the light. To demonstrate such switching, electrochemical etching techniques on silicon wafers were used to form two-dimensional (2D) photonic crystals. By incorporating the nonlinear organic material into the 2D structure, we have made all-optical switches. The reflection of a beam from the 2D photonic crystal can be controlled by another beam because it induces a refractive index change in the active material by altering the reflection band. A mid

  1. A strategy to reduce the angular dependence of a dye-sensitized solar cell by coupling to a TiO2 nanotube photonic crystal

    Science.gov (United States)

    Guo, Min; Xie, Keyu; Liu, Xiaolin; Wang, Yu; Zhou, Limin; Huang, Haitao

    2014-10-01

    Almost all types of solar cells suffer from a decreased power output when the incident light is tilted away from normal since the incident intensity generally follows a cosine law of the incident angle. Making use of the blue shift nature of the Bragg position of a TiO2 nanotube photonic crystal (NT PC) under oblique incidence, we demonstrate experimentally that the use of the NT PC can partially compensate the cosine power loss of a dye-sensitized solar cell (DSSC). The strategy used here is to purposely choose the Bragg position of the NT PC to be at the longer wavelength side of the dye absorption peak. When the incident light is tilted, the blue shift of the Bragg position results in more overlap with the dye absorption peak, generating a higher efficiency that partially compensates the reduced photon flux due to light inclination. Moreover, the unique structure of the vertically aligned TiO2 nanotubes contributes an additional scattering effect when the incident light is tilted. As a result, the power output of a DSSC coupled with the NT PC layer shows a much flatter angular dependence than a DSSC without the NT PC. At all the incident angles, the DSSC coupled with the NT PC layer also shows a higher power conversion efficiency than the one without. The concept of using NT PC to mitigate the angular dependence of DSSCs can be easily extended to many other optoelectronic devices that are irradiance sensitive.Almost all types of solar cells suffer from a decreased power output when the incident light is tilted away from normal since the incident intensity generally follows a cosine law of the incident angle. Making use of the blue shift nature of the Bragg position of a TiO2 nanotube photonic crystal (NT PC) under oblique incidence, we demonstrate experimentally that the use of the NT PC can partially compensate the cosine power loss of a dye-sensitized solar cell (DSSC). The strategy used here is to purposely choose the Bragg position of the NT PC to be at the

  2. Nonlinear silicon photonics

    Science.gov (United States)

    Borghi, M.; Castellan, C.; Signorini, S.; Trenti, A.; Pavesi, L.

    2017-09-01

    Silicon photonics is a technology based on fabricating integrated optical circuits by using the same paradigms as the dominant electronics industry. After twenty years of fervid development, silicon photonics is entering the market with low cost, high performance and mass-manufacturable optical devices. Until now, most silicon photonic devices have been based on linear optical effects, despite the many phenomenologies associated with nonlinear optics in both bulk materials and integrated waveguides. Silicon and silicon-based materials have strong optical nonlinearities which are enhanced in integrated devices by the small cross-section of the high-index contrast silicon waveguides or photonic crystals. Here the photons are made to strongly interact with the medium where they propagate. This is the central argument of nonlinear silicon photonics. It is the aim of this review to describe the state-of-the-art in the field. Starting from the basic nonlinearities in a silicon waveguide or in optical resonator geometries, many phenomena and applications are described—including frequency generation, frequency conversion, frequency-comb generation, supercontinuum generation, soliton formation, temporal imaging and time lensing, Raman lasing, and comb spectroscopy. Emerging quantum photonics applications, such as entangled photon sources, heralded single-photon sources and integrated quantum photonic circuits are also addressed at the end of this review.

  3. Observational capabilities of solar satellite "Coronas-Photon"

    Science.gov (United States)

    Kotov, Yu.

    Coronas-Photon mission is the third satellite of the Russian Coronas program on solar activity observation The main goal of the Coronas-Photon is the study of solar hard electromagnetic radiation in the wide energy range from UV up to high energy gamma-radiation sim 2000MeV Scientific payload for solar radiation observation consists of three type of instruments 1 monitors Natalya-2M Konus-RF RT-2 Penguin-M BRM Phoka Sphin-X Sokol for spectral and timing measurements of full solar disk radiation with timing in flare burst mode up to one msec Instruments Natalya-2M Konus-RF RT-2 will cover the wide energy range of hard X-rays and soft Gamma rays 15keV to 2000MeV and will together constitute the largest area detectors ever used for solar observations Detectors of gamma-ray monitors are based on structured inorganic scintillators with energy resolution sim 5 for nuclear gamma-line band to 35 for GeV-band PSD analysis is used for gamma neutron separation for solar neutron registration T 30MeV Penguin-M has capability to measure linear polarization of hard X-rays using azimuth are measured by Compton scattering asymmetry in case of polarization of an incident flux For X-ray and EUV monitors the scintillation phoswich detectors gas proportional counter CZT assembly and Filter-covered Si-diodes are used 2 Telescope-spectrometer TESIS for imaging solar spectroscopy in X-rays with angular resolution up to 1 in three spectral lines and RT-2 CZT assembly of CZT

  4. Radon flux measurement methodologies

    International Nuclear Information System (INIS)

    Nielson, K.K.; Rogers, V.C.

    1984-01-01

    Five methods for measuring radon fluxes are evaluated: the accumulator can, a small charcoal sampler, a large-area charcoal sampler, the ''Big Louie'' charcoal sampler, and the charcoal tent sampler. An experimental comparison of the five flux measurement techniques was also conducted. Excellent agreement was obtained between the measured radon fluxes and fluxes predicted from radium and emanation measurements

  5. Fast photon-detection for COMPASS RICH-1

    CERN Document Server

    Chiosso, Michela; Alexeev, M; Angerer, H; Birsa, R; Bordalo, P; Bradamante, F; Bressan, A; Ciliberti, P; Colantoni, M L; Dafni, T; Dalla Torre, S; Delagnes, E; Denisov, O; Deschamps, H; Diaz, V; Dibiase, N; Duic, V; Eyrich, W; Ferrero, A; Finger, M; Finger Jr, M; Fisher, H; Gerassimov, S; Giorgi, M; Gobbo, B; Hagemann, R; von Harrac, D; Heinsius, F H; Joosten, R; Ketzer, B; Königsmann, K; Kolosov, V N; Konorov, I; Kramer, D; Kunne, F; Lehmann, A; Levorato, S; Maggiora, A; Magnon, A; Mann, A; Martin, A; Menon, G; Mutter, A; Nähle, O; Neyret, D; Nerling, F; Panebianco, S; Panzieri, D; Paul, S; Pesaro, G; Pizzolotto, C; Polak, J; Rebourgeard, P; Robinet, P; Rocco, E; Schiavon, P; Schill, C; Schoenmaier, W; Schröder, W; Silva, L; Slunecka, M; Sozzi, F; Steiger, L; Sulc, M; Svec, M; Tessarotto, F; Teufel, A; Wollny, H

    2008-01-01

    A fast photon-detection system for the detector RICH-1 of the COMPASS Experiment at CERN SPS is in operation since the 2006 run. It is based on the use of Multi-Anode Photomultipliers (MAPMTs) coupled to individual fused silica lens telescopes and fast read-out electronics. It has been designed taking into account the high photon flux in the central region of the detector and the high rate requirements of the COMPASS Experiment. We present the photon-detection design and construction, together with its characterization and measured performances based on the data collected in 2006.

  6. Prompt photon production in photoproduction at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Nowak, Krzysztof

    2010-03-15

    This thesis presents measurement of the production of prompt photons in photoproduction with the H1 experiment at HERA. The analysis is based on the data taken in the years 2004-2007, with a total integrated luminosity of 340 pb{sup -1}. The main difficulty of the measurement comes from the high background of neutral mesons decaying into photons. It is accounted for with the help of multivariate analysis. Prompt photon cross sections are measured with the low negative four-momentum transfer squared Q{sup 2} < 1GeV{sup 2} and in the inelasticity range 0.1 < y < 0.7 for photons with a transverse energy 6 < E{sub T}{sup {gamma}} < 15GeV and in the pseudorapidity range.1.0 < {eta}{sup {gamma}} < 2.4 as a function of photons transverse energy and its pseudorapidity. Cross sections for prompt photon events with an additional hadronic jet are measured as a function of the transverse energy and pseudorapidity of the jet and of the momentum fractions x{sub {gamma}} and x{sub p} of the incident photon and proton carried by the constituents participating in the hard scattering process. Additionally, the transverse correlation between the photon and the jet is studied. The results are compared with predictions of a next-to-leading order calculation and a calculation based on the k{sub T} factorisation approach. Neither of calculations is able to describe all the aspects of the measurement. (orig.)

  7. Photon routing in cavity QED: Beyond the fundamental limit of photon blockade

    Energy Technology Data Exchange (ETDEWEB)

    Rosenblum, Serge; Dayan, Barak [Department of Chemical Physics, Weizmann Institute of Science, Rehovot 76100 (Israel); Parkins, Scott [Department of Physics, University of Auckland, Private Bag 92019, Auckland (New Zealand)

    2011-09-15

    The most simple and seemingly straightforward application of the photon blockade effect, in which the transport of one photon prevents the transport of others, would be to separate two incoming indistinguishable photons to different output ports. We show that time-energy uncertainty relations inherently prevent this ideal situation when the blockade is implemented by a two-level system. The fundamental nature of this limit is revealed in the fact that photon blockade in the strong coupling regime of cavity QED, resulting from the nonlinearity of the Jaynes-Cummings energy level structure, exhibits efficiency and temporal behavior identical to those of photon blockade in the bad cavity regime, where the underlying nonlinearity is that of the atom itself. We demonstrate that this limit can be exceeded, yet not avoided, by exploiting time-energy entanglement between the incident photons. Finally, we show how this limit can be circumvented completely by using a three-level atom coupled to a single-sided cavity, enabling an ideal and robust photon routing mechanism.

  8. Single-photon imaging

    CERN Document Server

    Seitz, Peter

    2011-01-01

    The acquisition and interpretation of images is a central capability in almost all scientific and technological domains. In particular, the acquisition of electromagnetic radiation, in the form of visible light, UV, infrared, X-ray, etc. is of enormous practical importance. The ultimate sensitivity in electronic imaging is the detection of individual photons. With this book, the first comprehensive review of all aspects of single-photon electronic imaging has been created. Topics include theoretical basics, semiconductor fabrication, single-photon detection principles, imager design and applications of different spectral domains. Today, the solid-state fabrication capabilities for several types of image sensors has advanced to a point, where uncoooled single-photon electronic imaging will soon become a consumer product. This book is giving a specialist´s view from different domains to the forthcoming “single-photon imaging” revolution. The various aspects of single-photon imaging are treated by internati...

  9. Hybrid photon detectors

    CERN Document Server

    D'Ambrosio, C

    2003-01-01

    Hybrid photon detectors detect light via vacuum photocathodes and accelerate the emitted photoelectrons by an electric field towards inversely polarized silicon anodes, where they are absorbed, thus producing electron-hole pairs. These, in turn, are collected and generate electronic signals on their ohmic contacts. This review first describes the characteristic properties of the main components of hybrid photon detectors: light entrance windows, photocathodes, and silicon anodes. Then, essential relations describing the trajectories of photoelectrons in electric and magnetic fields and their backscattering from the silicon anodes are derived. Depending on their anode configurations, three families of hybrid photon detectors are presented: hybrid photomultiplier tubes with single anodes for photon counting with high sensitivity and for gamma spectroscopy; multi-anode photon detector tubes with anodes subdivided into square or hexagonal pads for position-sensitive photon detection; imaging silicon pixel array t...

  10. One-Dimensional Photonic Crystal Superprisms

    Science.gov (United States)

    Ting, David

    2005-01-01

    Theoretical calculations indicate that it should be possible for one-dimensional (1D) photonic crystals (see figure) to exhibit giant dispersions known as the superprism effect. Previously, three-dimensional (3D) photonic crystal superprisms have demonstrated strong wavelength dispersion - about 500 times that of conventional prisms and diffraction gratings. Unlike diffraction gratings, superprisms do not exhibit zero-order transmission or higher-order diffraction, thereby eliminating cross-talk problems. However, the fabrication of these 3D photonic crystals requires complex electron-beam substrate patterning and multilayer thin-film sputtering processes. The proposed 1D superprism is much simpler in structural complexity and, therefore, easier to design and fabricate. Like their 3D counterparts, the 1D superprisms can exhibit giant dispersions over small spectral bands that can be tailored by judicious structure design and tuned by varying incident beam direction. Potential applications include miniature gas-sensing devices.

  11. Tale of two photons

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    A very profitable spinoff from electron- positron collisions is two-photon physics. Rather than the electron and positron interacting directly via an exchanged photon, two virtual (transient) photons, one from each particle, get tangled up. With new electron-positron colliders appearing on the scene, a topical meeting on two-photon physics - 'From DAPHNE to LEP 200 and beyond' - held from 2-4 February in Paris, in the premises of the Ministry of Higher Education and Research, was particularly timely. Some 60 physicists, both experimentalists and theorists, participated, with some thirty speakers

  12. Photon virtual bound state

    International Nuclear Information System (INIS)

    Inoue, J.; Ohtaka, K.

    2004-01-01

    We study virtual bound states in photonics, which are a vectorial extension of electron virtual bound states. The condition for these states is derived. It is found that the Mie resonant state which satisfies the condition that the size parameter is less than the angular momentum should be interpreted as a photon virtual bound state. In order to confirm the validity of the concept, we compare the photonic density of states, the width of which represents the lifetime of the photon virtual bound states, with numerical results

  13. Photonic Integrated Circuits

    Science.gov (United States)

    Krainak, Michael; Merritt, Scott

    2016-01-01

    Integrated photonics generally is the integration of multiple lithographically defined photonic and electronic components and devices (e.g. lasers, detectors, waveguides passive structures, modulators, electronic control and optical interconnects) on a single platform with nanometer-scale feature sizes. The development of photonic integrated circuits permits size, weight, power and cost reductions for spacecraft microprocessors, optical communication, processor buses, advanced data processing, and integrated optic science instrument optical systems, subsystems and components. This is particularly critical for small spacecraft platforms. We will give an overview of some NASA applications for integrated photonics.

  14. Advanced Photon Source (APS)

    Data.gov (United States)

    Federal Laboratory Consortium — The Advanced Photon Source (APS) at the U.S. Department of Energy's Argonne National Laboratoryprovides this nation's (in fact, this hemisphere's) brightest storage...

  15. Review on Dark Photon

    Directory of Open Access Journals (Sweden)

    Curciarello Francesca

    2016-01-01

    Full Text Available e+e− collider experiments at the intensity frontier are naturally suited to probe the existence of a force beyond the Standard Model between WIMPs, the most viable dark matter candidates. The mediator of this new force, known as dark photon, should be a new vector gauge boson very weakly coupled to the Standard Model photon. No significant signal has been observed so far. I will report on current limits set on the coupling factor ε2 between the photon and the dark photon by e+e− collider experiments.

  16. Biomedical photonics handbook

    CERN Document Server

    Vo-Dinh, Tuan

    2003-01-01

    1.Biomedical Photonics: A Revolution at the Interface of Science and Technology, T. Vo-DinhPHOTONICS AND TISSUE OPTICS2.Optical Properties of Tissues, J. Mobley and T. Vo-Dinh3.Light-Tissue Interactions, V.V. Tuchin 4.Theoretical Models and Algorithms in Optical Diffusion Tomography, S.J. Norton and T. Vo-DinhPHOTONIC DEVICES5.Laser Light in Biomedicine and the Life Sciences: From the Present to the Future, V.S. Letokhov6.Basic Instrumentation in Photonics, T. Vo-Dinh7.Optical Fibers and Waveguides for Medical Applications, I. Gannot and

  17. Two Photon Distribution Amplitudes

    International Nuclear Information System (INIS)

    El Beiyad, M.; Pire, B.; Szymanowski, L.; Wallon, S.

    2008-01-01

    The factorization of the amplitude of the process γ*γ→γγ in the low energy and high photon virtuality region is demonstrated at the Born order and in the leading logarithmic approximation. The leading order two photon (generalized) distribution amplitudes exhibit a characteristic ln Q 2 behaviour and obey new inhomogeneous evolution equations

  18. Integrated microwave photonics

    NARCIS (Netherlands)

    Marpaung, D.A.I.; Roeloffzen, C.G.H.; Heideman, Rene; Leinse, Arne; Sales, S.; Capmany, J.

    2013-01-01

    Microwave photonics (MWP) is an emerging field in which radio frequency (RF) signals are generated, distributed, processed and analyzed using the strength of photonic techniques. It is a technology that enables various functionalities which are not feasible to achieve only in the microwave domain. A

  19. Diffusion Based Photon Mapping

    DEFF Research Database (Denmark)

    Schjøth, Lars; Fogh Olsen, Ole; Sporring, Jon

    2007-01-01

    . To address this problem we introduce a novel photon mapping algorithm based on nonlinear anisotropic diffusion. Our algorithm adapts according to the structure of the photon map such that smoothing occurs along edges and structures and not across. In this way we preserve the important illumination features...

  20. ALICE Photon Multiplicity Detector

    CERN Multimedia

    Nayak, T

    2013-01-01

    Photon Multiplicity Detector (PMD) measures the multiplicity and spatial distribution of photons in the forward region of ALICE on a event-by-event basis. PMD is a pre-shower detector having fine granularity and full azimuthal coverage in the pseudo-rapidity region 2.3 < η < 3.9.

  1. Diffusion Based Photon Mapping

    DEFF Research Database (Denmark)

    Schjøth, Lars; Sporring, Jon; Fogh Olsen, Ole

    2008-01-01

    . To address this problem, we introduce a photon mapping algorithm based on nonlinear anisotropic diffusion. Our algorithm adapts according to the structure of the photon map such that smoothing occurs along edges and structures and not across. In this way, we preserve important illumination features, while...

  2. Prompt photon production in photoproduction at HERA

    International Nuclear Information System (INIS)

    Nowak, Krzysztof

    2010-03-01

    This thesis presents measurement of the production of prompt photons in photoproduction with the H1 experiment at HERA. The analysis is based on the data taken in the years 2004-2007, with a total integrated luminosity of 340 pb -1 . The main difficulty of the measurement comes from the high background of neutral mesons decaying into photons. It is accounted for with the help of multivariate analysis. Prompt photon cross sections are measured with the low negative four-momentum transfer squared Q 2 2 and in the inelasticity range 0.1 T γ γ γ and x p of the incident photon and proton carried by the constituents participating in the hard scattering process. Additionally, the transverse correlation between the photon and the jet is studied. The results are compared with predictions of a next-to-leading order calculation and a calculation based on the k T factorisation approach. Neither of calculations is able to describe all the aspects of the measurement. (orig.)

  3. High energy photon response

    International Nuclear Information System (INIS)

    Cummings, F.M.; Yoder, R.C.; Endres, G.W.R.; Kathren, R.L.

    1981-01-01

    This study examines the response of the Hanford 4-chip and 5-chip dosimeter to high energy photons. The dose response of the Hanford Multipurpose Personnel Diometer (HMPD) to photons with energies greater than 0.65 MeV has been evaluated relative to the dose produced by photons from a 60 Co. source. The penetrating dose determined with the HMPD is compared to the 1 cm depth dose in tissue measured with an extrapolation chamber. The results of the study indicate that the HMPD can be used to estimate the 1 cm depth dose in tissue from photons with energies between 0.65 MeV and 3.0 MeV to within an accuracy of 15%. However, the 1 cm depth dose is underestimated by 38% when the dosimeter is irradiated in a beam of very high energy photons produced by bombarding a tungsten target with 25 MeV electrons

  4. Photonic Crystal Fibres

    DEFF Research Database (Denmark)

    Bjarklev, Anders Overgaard; Broeng, Jes; Sanchez Bjarklev, Araceli

    Photonic crystal fibres represent one of the most active research areas today in the field of optics. The diversity of applications that may be addressed by these fibres and their fundamental appeal, by opening up the possibility of guiding light in a radically new way compared to conventional...... optical fibres, have spun an interest from almost all areas of optics and photonics. The aim of this book is to provide an understanding of the different types of photonic crystal fibres and to outline some of the many new and exciting applications that these fibres offer. The book is intended for both...... readers with a general interest in photonic crystals, as well as for scientists who are entering the field and desire a broad overview as well as a solid starting point for further specialized stuides. Teh book, therefore, covers bothe general aspects such as the link from classical optics to photonic...

  5. Active Photonic Crystal Waveguides

    DEFF Research Database (Denmark)

    Ek, Sara

    This thesis deals with the fabrication and characterization of active photonic crystal waveguides, realized in III-V semiconductor material with embedded active layers. The platform offering active photonic crystal waveguides has many potential applications. One of these is a compact photonic...... crystal semiconductor optical amplier. As a step towards such a component, photonic crystal waveguides with a single quantum well, 10 quantum wells and three layers of quantum dots are fabricated and characterized. An experimental study of the amplied spontaneous emission and a implied transmission...... are presented in this thesis. A variation of photonic crystal design parameters are used leading to a spectral shift of the dispersion, it is veried that the observed effects shift accordingly. An enhancement of the amplified spontaneous emission was observed close to the band edge, where light is slowed down...

  6. Nonlinear Photonics 2014: introduction.

    Science.gov (United States)

    Akhmediev, N; Kartashov, Yaroslav

    2015-01-12

    International Conference "Nonlinear Photonics-2014" took place in Barcelona, Spain on July 27-31, 2014. It was a part of the "Advanced Photonics Congress" which is becoming a traditional notable event in the world of photonics. The current focus issue of Optics Express contains contributions from the participants of the Conference and the Congress. The articles in this focus issue by no means represent the total number of the congress contributions (around 400). However, it demonstrates wide range of topics covered at the event. The next conference of this series is to be held in 2016 in Australia, which is the home of many researchers working in the field of photonics in general and nonlinear photonics in particular.

  7. Ion photon emission microscope

    Science.gov (United States)

    Doyle, Barney L.

    2003-04-22

    An ion beam analysis system that creates microscopic multidimensional image maps of the effects of high energy ions from an unfocussed source upon a sample by correlating the exact entry point of an ion into a sample by projection imaging of the ion-induced photons emitted at that point with a signal from a detector that measures the interaction of that ion within the sample. The emitted photons are collected in the lens system of a conventional optical microscope, and projected on the image plane of a high resolution single photon position sensitive detector. Position signals from this photon detector are then correlated in time with electrical effects, including the malfunction of digital circuits, detected within the sample that were caused by the individual ion that created these photons initially.

  8. Photodamage of mesotetraphenylporphyrin under one- and two-photon excitation

    International Nuclear Information System (INIS)

    Wen Yanan; Liu Yuqiang; Yang Zhenling; Yang Yanqiang; Guo Ximing

    2010-01-01

    Photoinduced damage behavior of mesotetraphenylporphyrin (TPP) under one- and two-photon excitation with femtosecond laser pulses is investigated in the present work. Quenching in the luminescent intensity is observed. Results suggest that laser irradiation on TPP mainly causes two simultaneously occurring photoprocesses: photodamage and formation of a porphine-type photoproduct. The damage rate exhibits a linear dependence on the incident light power in one-photon excitation, whereas in two-photon excitation, the power dependence of the damage rate turns out to be exponential. The photoproduct formed in one- and two-photon excitation is identical. This product, which is observed to possess superior photostability and two-photon absorbing ability compared with the original TPP sensitizer, is likely to be treated as a secondary photosensitizer in the activation process of photodynamic therapy (PDT). This work might be helpful for the drug evaluation in the practical application of PDT.

  9. Single-photon light detection with transition-edge sensors

    International Nuclear Information System (INIS)

    Rajteri, M.; Taralli, E.; Portesi, C.; Monticone, E.

    2008-01-01

    Transition-Edge Sensors (TESs) are micro calorimeters that measure the energy of incident single-photons by the resistance increase of a superconducting film biased within the superconducting-to-normal transition. TES are able to detect single photons from x-ray to IR with an intrinsic energy resolution and photon-number discrimination capability. Metrological, astronomical and quantum communication applications are the fields where these properties can be particularly important. In this work, we report about characterization of different TESs based on Ti films. Single-photons have been detected from 200 nm to 800 nm working at T c ∼ 100 m K. Using a pulsed laser at 690 nm we have demonstrated the capability to resolve up to five photons.

  10. Clustering of Emerging Flux

    Science.gov (United States)

    Ruzmaikin, A.

    1997-01-01

    Observations show that newly emerging flux tends to appear on the Solar surface at sites where there is flux already. This results in clustering of solar activity. Standard dynamo theories do not predict this effect.

  11. Characterization of photonic structures using visible and infrared polarimetry

    Directory of Open Access Journals (Sweden)

    Kral Z.

    2010-06-01

    Full Text Available Photonic Crystals are materials with a spatial periodic variation of the refractive index on the wavelength scale. This confers these materials interesting photonic properties such as the existence of photonic bands and forbidden photon frequency ranges, the photonic band gaps. Among their applications it is worth mentioning the achievement of low-threshold lasers and high-Q resonant cavities. A particular case of the Photonic Crystals is well-known and widely studied since a long time: the periodic thin film coatings. The characterization of thin film coatings is a classical field of study with a very well established knowledge. However, characterization of 2D and 3D photonic crystals needs to be studied in detail as it poses new problems that have to be solved. In this sense, Polarimetry is a specially suited tool given their inherent anisotropy: photonic bands depend strongly on the propagation direction and on polarization. In this work we show how photonic crystal structures can be characterized using polarimetry equipment. We compare the numerical modeling of the interaction of the light polarization with the photonic crystal with the polarimetry measurements. With the S-Matrix formalism, the Mueller matrix of a Photonic Crystal for a given wavelength, angle of incidence and propagation direction can be obtained. We will show that useful information from polarimetry (and also from spectrometry can be obtained when multivariate spectra are considered. We will also compare the simulation results with Polarimetry measurements on different kinds of samples: macroporous silicon photonic crystals in the near-IR range and Laser-Interference-Lithography nanostructured photoresist.

  12. Single photons on demand

    International Nuclear Information System (INIS)

    Grangier, P.; Abram, I.

    2004-01-01

    Quantum cryptography and information processing are set to benefit from developments in novel light sources that can emit photons one by one. Quantum mechanics has gained a reputation for making counter-intuitive predictions. But we rarely get the chance to witness these effects directly because, being humans, we are simply too big. Take light, for example. The light sources that are familiar to us, such as those used in lighting and imaging or in CD and DVD players, are so huge that they emit billions and billions of photons. But what if there was a light source that emitted just one photon at a time? Over the past few years, new types of light source that are able to emit photons one by one have been emerging from laboratories around the world. Pulses of light composed of a single photon correspond to power flows in the femtowatt range - a million billion times less than that of a table lamp. The driving force behind the development of these single-photon sources is a range of novel applications that take advantage of the quantum nature of light. Quantum states of superposed and entangled photons could lead the way to guaranteed-secure communication, to information processing with unprecedented speed and efficiency, and to new schemes for quantum teleportation. (U.K.)

  13. Progress in neuromorphic photonics

    Science.gov (United States)

    Ferreira de Lima, Thomas; Shastri, Bhavin J.; Tait, Alexander N.; Nahmias, Mitchell A.; Prucnal, Paul R.

    2017-03-01

    As society's appetite for information continues to grow, so does our need to process this information with increasing speed and versatility. Many believe that the one-size-fits-all solution of digital electronics is becoming a limiting factor in certain areas such as data links, cognitive radio, and ultrafast control. Analog photonic devices have found relatively simple signal processing niches where electronics can no longer provide sufficient speed and reconfigurability. Recently, the landscape for commercially manufacturable photonic chips has been changing rapidly and now promises to achieve economies of scale previously enjoyed solely by microelectronics. By bridging the mathematical prowess of artificial neural networks to the underlying physics of optoelectronic devices, neuromorphic photonics could breach new domains of information processing demanding significant complexity, low cost, and unmatched speed. In this article, we review the progress in neuromorphic photonics, focusing on photonic integrated devices. The challenges and design rules for optoelectronic instantiation of artificial neurons are presented. The proposed photonic architecture revolves around the processing network node composed of two parts: a nonlinear element and a network interface. We then survey excitable lasers in the recent literature as candidates for the nonlinear node and microring-resonator weight banks as the network interface. Finally, we compare metrics between neuromorphic electronics and neuromorphic photonics and discuss potential applications.

  14. Searching for Heavy Photons with Detached Verices in the Heavy Photon Search Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Szumila-Vance, Holly [Old Dominion Univ., Norfolk, VA (United States); Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2017-08-01

    The Jefferson Lab Heavy Photon Search (HPS) experiment is searching for a hypothetical massive particle called the heavy photon which could mediate a dark electromagnetic-type force. If heavy photons kinetically mix with Standard Model photons, they may be radiated by electrons scattering from a heavy nucleus and then decay to e+e- pairs. HPS uniquely searches for heavy photons that either decay at the target or a measurable distance after. The experiment utilizes a silicon vertex tracker (SVT) for momentum and vertex reconstruction, together with an electromagnetic calorimeter for measuring particle energies and triggering events. The HPS experiment took its first data during the spring 2015 engineering run using a 1 GeV electron beam incident on a tungsten target and its second data in the spring of 2016 at a beam energy of 2.3 GeV. The 2015 run obtained two days of production data that was used for the first physics results. The analysis of the data was conducted as a blinded analysis by tuning cuts on 10% of the data. This dissertation discusses the displaced vertex search for heavy photons in the 2015 engineering run. It describes the theoretical motivation for looking for heavy photons and provides an overview of the HPS experimental design and performance. The performance details of the experiment are primarily derived from the 2015 engineering run with some discussion from the higher energy running in 2016. This dissertation further discusses the cuts used to optimize the displaced vertex search and the results of the search. The displaced vertex search did not set a limit on the heavy photon but did validate the methodology for conducting the search. Finally, we used the full data set to make projections and guide future analyses.

  15. Probabilities of Bremsstrahlung Emission of Photons at Low-Energy Electron-Nuclear Collisions in a Magnetic Field

    Science.gov (United States)

    Koryagin, S. A.; Balandin, I. A.

    2017-08-01

    We consider quantum-mechanical probabilities of bremsstrahlung of photons in the case of low-energy Coulomb collisions in a magnetic field, where the scattering center so perturbs the state of the incident electron that the motion of the latter becomes quasi-bound. Quantum formulas for the spectral power of bremsstrahlung radiation are obtained from the classical formulas by replacing the Fourier amplitudes of the particle velocity with matrix elements of the velocity operator for wave functions, which are normalized by the condition of a unit flux being incident on the nucleus (or an equivalent outgoing flux), with summation over finite Landau levels and quantized values of the impact parameter. Equivalent forms of the specified matrix elements, which are expressed in terms of the Coulomb field and annihilation/creation operators for the eigenfunctions of the operator of the squared impact parameter, are presented. The obtained presentations for the spectral power of bremsstrahlung radiation in the case of quasi-bound electron motion allow one to translate the results of calculating this value in the classical limit to the quantum case, which is typical of white dwarfs with the strongest magnetic fields.

  16. Fundamentals of microwave photonics

    CERN Document Server

    Urick, V J; McKinney , Jason D

    2015-01-01

    A comprehensive resource to designing andconstructing analog photonic links capable of high RFperformanceFundamentals of Microwave Photonics provides acomprehensive description of analog optical links from basicprinciples to applications.  The book is organized into fourparts. The first begins with a historical perspective of microwavephotonics, listing the advantages of fiber optic links anddelineating analog vs. digital links. The second section coversbasic principles associated with microwave photonics in both the RFand optical domains.  The third focuses on analog modulationformats-starti

  17. Single-Photon Optomechanics

    Science.gov (United States)

    Nunnenkamp, A.; Børkje, K.; Girvin, S. M.

    2011-08-01

    Optomechanics experiments are rapidly approaching the regime where the radiation pressure of a single photon displaces the mechanical oscillator by more than its zero-point uncertainty. We show that in this limit the power spectrum has multiple sidebands and that the cavity response has several resonances in the resolved-sideband limit. Using master-equation simulations, we also study the crossover from the weak-coupling many-photon to the single-photon strong-coupling regime. Finally, we find non-Gaussian steady states of the mechanical oscillator when multiphoton transitions are resonant. Our study provides the tools to detect and take advantage of this novel regime of optomechanics.

  18. Photonics: Technology project summary

    Science.gov (United States)

    Depaula, Ramon P.

    1991-01-01

    Photonics involves the use of light (photons) in conjunction with electronics for applications in communications, computing, control, and sensing. Components used in photonic systems include lasers, optical detectors, optical wave guide devices, fiber optics, and traditional electronic devices. The goal of this program is to develop hybrid optoelectronic devices and systems for sensing, information processing, communications, and control. It is hoped that these new devices will yield at least an order of magnitude improvement in performance over existing technology. The objective of the program is to conduct research and development in the following areas: (1) materials and devices; (2) networking and computing; (3) optical processing/advanced pattern recognition; and (4) sensing.

  19. Physics of photonic devices

    CERN Document Server

    Chuang, Shun Lien

    2009-01-01

    The most up-to-date book available on the physics of photonic devices This new edition of Physics of Photonic Devices incorporates significant advancements in the field of photonics that have occurred since publication of the first edition (Physics of Optoelectronic Devices). New topics covered include a brief history of the invention of semiconductor lasers, the Lorentz dipole method and metal plasmas, matrix optics, surface plasma waveguides, optical ring resonators, integrated electroabsorption modulator-lasers, and solar cells. It also introduces exciting new fields of research such as:

  20. Single photon ECT

    International Nuclear Information System (INIS)

    Maeda, Toshio; Matsuda, Hiroshi; Tada, Akira; Bunko, Hisashi; Koizumi, Kiyoshi

    1982-01-01

    The detectability of lesions located deep in a body or overlapped with a physiologically increased activity improve with the help of single photon ECT. In some cases, the ECT is superior to the conventional gamma camera images and X-ray CT scans in the evaluation of the location and size of lesion. The single photon ECT of the brain compares favorably with the contrast enhansed X-ray CT scans. The most important adaptation of the single photon ECT are the detection of recurrent brain tumors after craniotomy and the evaluation of ischemic heart diseases. (author)

  1. Fundamentals of photonics

    CERN Document Server

    Saleh, Bahaa E A

    2007-01-01

    Now in a new full-color edition, Fundamentals of Photonics, Second Edition is a self-contained and up-to-date introductory-level textbook that thoroughly surveys this rapidly expanding area of engineering and applied physics. Featuring a logical blend of theory and applications, coverage includes detailed accounts of the primary theories of light, including ray optics, wave optics, electromagnetic optics, and photon optics, as well as the interaction of photons and atoms, and semiconductor optics. Presented at increasing levels of complexity, preliminary sections build toward more advan

  2. Cosmogenic photons strongly constrain UHECR source models

    Directory of Open Access Journals (Sweden)

    van Vliet Arjen

    2017-01-01

    Full Text Available With the newest version of our Monte Carlo code for ultra-high-energy cosmic ray (UHECR propagation, CRPropa 3, the flux of neutrinos and photons due to interactions of UHECRs with extragalactic background light can be predicted. Together with the recently updated data for the isotropic diffuse gamma-ray background (IGRB by Fermi LAT, it is now possible to severely constrain UHECR source models. The evolution of the UHECR sources especially plays an important role in the determination of the expected secondary photon spectrum. Pure proton UHECR models are already strongly constrained, primarily by the highest energy bins of Fermi LAT’s IGRB, as long as their number density is not strongly peaked at recent times.

  3. Comparison of the two different standard flux-to-dose rate conversion factors

    International Nuclear Information System (INIS)

    Metghalchi, M.; Ashrafi, R.

    1983-01-01

    A very useful and simple way of obtaining the dose rate associated with neutron or photon fluxes is to multiply these fluxes by the appropriate flux-to-dose rate conversion factors. Two basic standard flux-to-dose rate conversion factors. are being used in all over the world, those recommended by the International Commission on Radiation Protection (ICRP) and the American National Standars (ANS). The purpose of this paper is to compare these two standard with each other. The comparison proved that the dose rate associated with a specific neutron flux, obtained by the ANS flux-to-dose rate conversion factors is usually higher than those calculated by the ICRP's conversion factors. Whereas in the case of the photon, in all energies, the difference between the dose rates obtained by these two standard flux-to-dose rate conversion factors are noticeable, and the ANS results are higher than the ICRP ones. So, it should be noted that for a specific neutron or photon flux the dose rate obtained by the ANS flux-to-dose rate conversion factors are more conservative than those obtained by the ICRP's. Therefore, in order to establish a more reasonable new standard flux-to-dose rate conversion factors, more work should be done. (author)

  4. Quantum dots in photonic crystals for integrated quantum photonics

    Science.gov (United States)

    Kim, Je-Hyung; Richardson, Christopher J. K.; Leavitt, Richard P.; Waks, Edo

    2017-08-01

    Integrated quantum photonic technologies hold a great promise for application in quantum information processing. A major challenge is to integrate multiple single photon sources on a chip. Quantum dots are bright sources of high purity single photons, and photonic crystals can provide efficient photonic platforms for generating and manipulating single photons from integrated quantum dots. However, integrating multiple quantum dots with photonic crystal devices still remains as a challenging task due to the spectral randomness of the emitters. Here, we present the integration of multiple quantum dots with individual photonic crystal cavities and report quantum interference from chip-integrated multiple quantum dots. To solve the problem of spectral randomness, we introduce local engineering techniques for tuning multiple quantum dots and cavities. From integrated quantum dot devices we observe indistinguishable nature of single photons from individual quantum dots on the same chip. Therefore, our approach paves the way for large-scale quantum photonics with integrated quantum emitters.

  5. Observation of higher-order diffraction features in self-assembled photonic crystals

    International Nuclear Information System (INIS)

    Nair, Rajesh V.; Vijaya, R.

    2007-01-01

    The optical response of high quality three dimensionally (3D) ordered photonic crystals is analyzed in the high energy region. By tuning the reflectance with the angle of incidence of light, the peaks in the reflection spectrum that correspond to the first, second, and third order photonic stop bands and the van Hove singular point in the photon density of states are clearly distinguished. The high energy features have been observed for photonic crystals made from colloids of different diameters, having different index contrast and fabricated by two different self-assembly routes. The observation of van Hove singularity at near-normal incidence of light and its presence even in low index-contrast photonic crystals provide conclusive evidence that these high energy features are due to the perfect periodic ordering present in the photonic crystals with less defects and disorder

  6. Microwave photonics shines

    Science.gov (United States)

    Won, Rachel

    2011-12-01

    The combination of microwave photonics and optics has advanced many applications in defence, wireless communications, imaging and network infrastructure. Rachel Won talks to Jianping Yao from the University of Ottawa in Canada about the importance of this growing field.

  7. Photonic fabrics take shape

    Science.gov (United States)

    Graham-Rowe, Duncan

    2007-01-01

    Electronics firms, fashion houses and medical-equipment suppliers are all busy developing textiles that blend photonics technology with materials science. Duncan Graham-Rowe reports on the striking results of their endeavours.

  8. Photonic Crystal Nanocavity Arrays

    National Research Council Canada - National Science Library

    Altug, Hatice; Vuckovic, Jelena

    2006-01-01

    We recently proposed two-dimensional coupled photonic crystal nanocavity arrays as a route to achieve a slow-group velocity of light in all crystal directions, thereby enabling numerous applications...

  9. Nonlinear Photonic Crystal Fibers

    DEFF Research Database (Denmark)

    Hansen, Kim Per

    2004-01-01

    Despite the general recession in the global economy and the collapse of the optical telecommunication market, research within specialty fibers is thriving. This is, more than anything else, due to the technology transition from standard all-glass fibers to photonic crystal fibers, which, instead...... of doping, use a microstructure of air and glass to obtain a refractive index difference between the core and the cladding. This air/glass microstructure lends the photonic crystal fibers a range of unique and highly usable properties, which are very different from those found in solid standard fibers......, leading to reduced mode confinement and dispersion flexibility. In this thesis, we treat the nonlinear photonic crystal fiber – a special sub-class of photonic crystal fibers, the core of which has a diameter comparable to the wavelength of the light guided in the fiber. The small core results in a large...

  10. Photonic Crystal Fibers

    National Research Council Canada - National Science Library

    Kristiansen, Rene E

    2005-01-01

    This report results from a contract tasking Crystal Fibre A/S as follows: Crystal Fibre will conduct research and development of large mode area, dual clad multi-core Yb-doped photonic crystal fiber...

  11. Photonic Quantum Information Processing

    International Nuclear Information System (INIS)

    Walther, P.

    2012-01-01

    The advantage of the photon's mobility makes optical quantum system ideally suited for delegated quantum computation. I will present results for the realization for a measurement-based quantum network in a client-server environment, where quantum information is securely communicated and computed. Related to measurement-based quantum computing I will discuss a recent experiment showing that quantum discord can be used as resource for the remote state preparation, which might shine new light on the requirements for quantum-enhanced information processing. Finally, I will briefly review recent photonic quantum simulation experiments of four frustrated Heisenberg-interactions spins and present an outlook of feasible simulation experiments with more complex interactions or random walk structures. As outlook I will discuss the current status of new quantum technology for improving the scalability of photonic quantum systems by using superconducting single-photon detectors and tailored light-matter interactions. (author)

  12. Nonlinear optics and photonics

    CERN Document Server

    He, Guang S

    2015-01-01

    This book provides a comprehensive presentation on most of the major topics in nonlinear optics and photonics, with equal emphasis on principles, experiments, techniques, and applications. It covers many major new topics including optical solitons, multi-photon effects, nonlinear photoelectric effects, fast and slow light , and Terahertz photonics. Chapters 1-10 present the fundamentals of modern nonlinear optics, and could be used as a textbook with problems provided at the end of each chapter. Chapters 11-17 cover the more advanced topics of techniques and applications of nonlinear optics and photonics, serving as a highly informative reference for researchers and experts working in related areas. There are also 16 pages of color photographs to illustrate the visual appearances of some typical nonlinear optical effects and phenomena. The book could be adopted as a textbook for both undergraduates and graduate students, and serve as a useful reference work for researchers and experts in the fields of physics...

  13. Principles of photonics

    CERN Document Server

    Liu, Jia-Ming

    2016-01-01

    With this self-contained and comprehensive text, students will gain a detailed understanding of the fundamental concepts and major principles of photonics. Assuming only a basic background in optics, readers are guided through key topics such as the nature of optical fields, the properties of optical materials, and the principles of major photonic functions regarding the generation, propagation, coupling, interference, amplification, modulation, and detection of optical waves or signals. Numerous examples and problems are provided throughout to enhance understanding, and a solutions manual containing detailed solutions and explanations is available online for instructors. This is the ideal resource for electrical engineering and physics undergraduates taking introductory, single-semester or single-quarter courses in photonics, providing them with the knowledge and skills needed to progress to more advanced courses on photonic devices, systems and applications.

  14. The photon collider at TESLA

    Czech Academy of Sciences Publication Activity Database

    Badelek, B.; Bloechinger, C.; Blümlein, J.; Boos, E.; Brinkman, R.; Burkhardt, H.; Bussey, P.; Carimalo, C.; Chýla, Jiří; Ciftci, A.K.

    2004-01-01

    Roč. 19, č. 30 (2004), s. 5097-5186 ISSN 0217-751X Institutional research plan: CEZ:AV0Z1010920 Keywords : photon collider * linear collider * gamma-gamma * photon-photon * photon electron * Compton scattering Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 1.054, year: 2004

  15. Photonics Explorer: revolutionizing photonics in the classroom

    Science.gov (United States)

    Prasad, Amrita; Debaes, Nathalie; Cords, Nina; Fischer, Robert; Vlekken, Johan; Euler, Manfred; Thienpont, Hugo

    2012-10-01

    The `Photonics Explorer' is a unique intra-curricular optics kit designed to engage, excite and educate secondary school students about the fascination of working with light - hands-on, in their own classrooms. Developed with a pan European collaboration of experts, the kit equips teachers with class sets of experimental material provided within a supporting didactic framework, distributed in conjunction with teacher training courses. The material has been specifically designed to integrate into European science curricula. Each kit contains robust and versatile components sufficient for a class of 25-30 students to work in groups of 2-3. The didactic content is based on guided inquiry-based learning (IBL) techniques with a strong emphasis on hands-on experiments, team work and relating abstract concepts to real world applications. The content has been developed in conjunction with over 30 teachers and experts in pedagogy to ensure high quality and ease of integration. It is currently available in 7 European languages. The Photonics Explorer allows students not only to hone their essential scientific skills but also to really work as scientists and engineers in the classroom. Thus, it aims to encourage more young people to pursue scientific careers and avert the imminent lack of scientific workforce in Europe. 50 Photonics Explorer kits have been successfully tested in 7 European countries with over 1500 secondary school students. The positive impact of the kit in the classroom has been qualitatively and quantitatively evaluated. A non-profit organisation, EYESTvzw [Excite Youth for Engineering Science and Technology], is responsible for the large scale distribution of the Photonics Explorer.

  16. Magnetic photonic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Lyubchanskii, I L [Donetsk Physical and Technical Institute of the National Academy of Sciences of Ukraine, 72, R. Luxemburg St., 83114 Donetsk (Ukraine); Dadoenkova, N N [Donetsk Physical and Technical Institute of the National Academy of Sciences of Ukraine, 72, R. Luxemburg St., 83114 Donetsk (Ukraine); Lyubchanskii, M I [Donetsk Physical and Technical Institute of the National Academy of Sciences of Ukraine, 72, R. Luxemburg St., 83114 Donetsk (Ukraine); Shapovalov, E A [Department of Physics, Donetsk National University, 24, Universitetskaya St., 83055 Donetsk (Ukraine); Rasing, Th [NSRIM Institute, University of Nijmegen, 6525 ED, Nijmegen (Netherlands)

    2003-09-21

    In this paper we outline a new direction in the area of photonic crystals (PCs), or photonic band gap materials, i.e. one-, two-, or three-dimensional superstructures with periods that are comparable with the wavelengths of electromagnetic radiation. The main (and principal) characteristic of this new class of PCs is the presence of magnetically ordered components (or external magnetic field). The linear and nonlinear optical properties of such magnetic PCs are discussed. (topical review)

  17. ALICE photon spectrometer crystals

    CERN Multimedia

    Maximilien Brice

    2006-01-01

    Members of the mechanical assembly team insert the last few crystals into the first module of ALICE's photon spectrometer. These crystals are made from lead-tungstate, a crystal as clear as glass but with nearly four times the density. When a high-energy particle passes through one of these crystals it will scintillate, emitting a flash of light allowing the energy of photons, electrons and positrons to be measured.

  18. Photonics in switching

    CERN Document Server

    Midwinter, John E; Kelley, Paul

    1993-01-01

    Photonics in Switching provides a broad, balanced overview of the use of optics or photonics in switching, from materials and devices to system architecture. The chapters, each written by an expert in the field, survey the key technologies, setting them in context and highlighting their benefits and possible applications. This book is a valuable resource for those working in the communications industry, either at the professional or student level, who do not have extensive background knowledge or the underlying physics of the technology.

  19. Photon structure function

    International Nuclear Information System (INIS)

    Bardeen, W.A.

    1980-11-01

    Theoretical understanding of the photon structure function is reviewed. As an illustration of the pointlike component, the parton model is briefly discussed. However, the systematic study of the photon structure function is presented through the framework of the operator product expansion. Perturbative QCD is used as the theoretical basis for the calculation of leading contributions to the operator product expansion. The influence of higher order QCD effects on these results is discussed. Recent results for the polarized structure functions are discussed

  20. Continuous-Wave Single-Photon Transistor Based on a Superconducting Circuit

    DEFF Research Database (Denmark)

    Kyriienko, Oleksandr; Sørensen, Anders Søndberg

    2016-01-01

    We propose a microwave frequency single-photon transistor which can operate under continuous wave probing and represents an efficient single microwave photon detector. It can be realized using an impedance matched system of a three level artificial ladder-type atom coupled to two microwave cavities...... and the appearance of a photon flux leaving the second cavity through a separate input-output port. The proposal does not require time variation of the probe signals, thus corresponding to a passive version of a single-photon transistor. The resulting device is robust to qubit dephasing processes, possesses low dark...

  1. Continuous energy adjoint transport for photons in PHITS

    Directory of Open Access Journals (Sweden)

    Malins Alex

    2017-01-01

    Full Text Available Adjoint Monte Carlo can be an effcient algorithm for solving photon transport problems where the size of the tally is relatively small compared to the source. Such problems are typical in environmental radioactivity calculations, where natural or fallout radionuclides spread over a large area contribute to the air dose rate at a particular location. Moreover photon transport with continuous energy representation is vital for accurately calculating radiation protection quantities. Here we describe the incorporation of an adjoint Monte Carlo capability for continuous energy photon transport into the Particle and Heavy Ion Transport code System (PHITS. An adjoint cross section library for photon interactions was developed based on the JENDL- 4.0 library, by adding cross sections for adjoint incoherent scattering and pair production. PHITS reads in the library and implements the adjoint transport algorithm by Hoogenboom. Adjoint pseudo-photons are spawned within the forward tally volume and transported through space. Currently pseudo-photons can undergo coherent and incoherent scattering within the PHITS adjoint function. Photoelectric absorption is treated implicitly. The calculation result is recovered from the pseudo-photon flux calculated over the true source volume. A new adjoint tally function facilitates this conversion. This paper gives an overview of the new function and discusses potential future developments.

  2. Continuous energy adjoint transport for photons in PHITS

    Science.gov (United States)

    Malins, Alex; Machida, Masahiko; Niita, Koji

    2017-09-01

    Adjoint Monte Carlo can be an effcient algorithm for solving photon transport problems where the size of the tally is relatively small compared to the source. Such problems are typical in environmental radioactivity calculations, where natural or fallout radionuclides spread over a large area contribute to the air dose rate at a particular location. Moreover photon transport with continuous energy representation is vital for accurately calculating radiation protection quantities. Here we describe the incorporation of an adjoint Monte Carlo capability for continuous energy photon transport into the Particle and Heavy Ion Transport code System (PHITS). An adjoint cross section library for photon interactions was developed based on the JENDL- 4.0 library, by adding cross sections for adjoint incoherent scattering and pair production. PHITS reads in the library and implements the adjoint transport algorithm by Hoogenboom. Adjoint pseudo-photons are spawned within the forward tally volume and transported through space. Currently pseudo-photons can undergo coherent and incoherent scattering within the PHITS adjoint function. Photoelectric absorption is treated implicitly. The calculation result is recovered from the pseudo-photon flux calculated over the true source volume. A new adjoint tally function facilitates this conversion. This paper gives an overview of the new function and discusses potential future developments.

  3. Photon Production at the LHC

    CERN Document Server

    Lafaye, Remi; The ATLAS collaboration

    2013-01-01

    We review the last results on photon production at LHC by the ATLAS and CMS experiments obtained in proton-proton collisions with a center of mass energy of 7 TeV. We discuss the impact of prompt photon and photon-jet differential cross-sections, on the parton distribution function of the proton. Di-photon differential cross-sections are also presented as a function of the di-photon invariant mass, transverse momentum, azimuthal separation, and cos theta*.

  4. Non-Poissonian photon statistics from macroscopic photon cutting materials.

    Science.gov (United States)

    de Jong, Mathijs; Meijerink, Andries; Rabouw, Freddy T

    2017-05-24

    In optical materials energy is usually extracted only from the lowest excited state, resulting in fundamental energy-efficiency limits such as the Shockley-Queisser limit for single-junction solar cells. Photon-cutting materials provide a way around such limits by absorbing high-energy photons and 'cutting' them into multiple low-energy excitations that can subsequently be extracted. The occurrence of photon cutting or quantum cutting has been demonstrated in a variety of materials, including semiconductor quantum dots, lanthanides and organic dyes. Here we show that photon cutting results in bunched photon emission on the timescale of the excited-state lifetime, even when observing a macroscopic number of optical centres. Our theoretical derivation matches well with experimental data on NaLaF 4 :Pr 3+ , a material that can cut deep-ultraviolet photons into two visible photons. This signature of photon cutting can be used to identify and characterize new photon-cutting materials unambiguously.

  5. Compact neutron flux monitor

    International Nuclear Information System (INIS)

    Madhavi, V.; Phatak, P.R.; Bahadur, C.; Bayala, A.K.; Jakati, R.K.; Sathian, V.

    2003-01-01

    Full text: A compact size neutron flux monitor has been developed incorporating standard boards developed for smart radiation monitors. The sensitivity of the monitors is 0.4cps/nV. It has been tested up to 2075 nV flux with standard neutron sources. It shows convincing results even in high flux areas like 6m away from the accelerator in RMC (Parel) for 106/107 nV. These monitors have a focal and remote display, alarm function with potential free contacts for centralized control and additional provision of connectivity via RS485/Ethernet. This paper describes the construction, working and results of the above flux monitor

  6. A study on new types of metallic photonic crystals

    International Nuclear Information System (INIS)

    Ahmed, M.I.

    2013-01-01

    In this thesis, I tried to synthesize a one dimension dielectric photonic crystal. I have succeeded in depositing single layers of zinc oxide and magnesium oxide on glass substrates. Each single layer was characterized by a scanning electron microscope, X-ray diffraction, A Mirue interferometer, and a spectrophotometer. The refractive indices, extinction coefficients, and absorption coefficients of each single layer were calculated from the measured transmittance, reflectance, and thickness data. Using the calculated parameters (refractive indices) and measured parameters (thicknesses) the transmission spectrum of the one dimension photonic crystal composed of zinc oxide and magnesium oxide was modelled. Using the transfer matrix method, a comparative study of the one dimension-dielectric and metallic photonic crystals was done. Effect of the refractive index difference, filling factor, number of periods, Plasmon frequency, damping coefficient, and incidence angle on the transmittance of the dielectric and metallic photonic crystal was carried out. A multilayered structure composed of Silver and Gallium Nitride was designed to transmit in the visible region, block UV frequencies, and reflect the IR and microwave frequencies. Using a combination of MaxwellGarnett Approximation and the transfer matrix method; the properties of a nanocomposite photonic crystal consisting of Cryolite and spherical nanoparticles of silver distributed in a dielectric matrix of titanium dioxide was studied. Effect of the nanoparticle concentration, lattice constant and incidence angle on the polaritonic and structure photonic band gap were studied.

  7. CMOS-compatible photonic devices for single-photon generation

    Directory of Open Access Journals (Sweden)

    Xiong Chunle

    2016-09-01

    Full Text Available Sources of single photons are one of the key building blocks for quantum photonic technologies such as quantum secure communication and powerful quantum computing. To bring the proof-of-principle demonstration of these technologies from the laboratory to the real world, complementary metal–oxide–semiconductor (CMOS-compatible photonic chips are highly desirable for photon generation, manipulation, processing and even detection because of their compactness, scalability, robustness, and the potential for integration with electronics. In this paper, we review the development of photonic devices made from materials (e.g., silicon and processes that are compatible with CMOS fabrication facilities for the generation of single photons.

  8. Aberrated surface soliton formation in a nonlinear 1D and 2D photonic crystal.

    Science.gov (United States)

    Trofimov, Vyacheslav A; Lysak, Tatiana M; Trykin, Evgenii M

    2018-01-01

    We discuss a novel type of surface soliton-aberrated surface soliton-appearance in a nonlinear one dimensional photonic crystal and a possibility of this surface soliton formation in two dimensional photonic crystal. An aberrated surface soliton possesses a nonlinear distribution of the wavefront. We show that, in one dimensional photonic crystal, the surface soliton is formed at the photonic crystal boundary with the ambient medium. Essentially, that it occupies several layers at the photonic crystal boundary and penetrates into the ambient medium at a distance also equal to several layers, so that one can infer about light energy localization at the lateral surface of the photonic crystal. In the one dimensional case, the surface soliton is formed from an earlier formed soliton that falls along the photonic crystal layers at an angle which differs slightly from the normal to the photonic crystal face. In the two dimensional case, the soliton can appear if an incident Gaussian beam falls on the photonic crystal face. The influence of laser radiation parameters, optical properties of photonic crystal layers and ambient medium on the one dimensional surface soliton formation is investigated. We also discuss the influence of two dimensional photonic crystal configuration on light energy localization near the photonic crystal surface. It is important that aberrated surface solitons can be created at relatively low laser pulse intensity and for close values of alternating layers dielectric permittivity which allows their experimental observation.

  9. Photonics for life.

    Science.gov (United States)

    Cubeddu, Rinaldo; Bassi, Andrea; Comelli, Daniela; Cova, Sergio; Farina, Andrea; Ghioni, Massimo; Rech, Ivan; Pifferi, Antonio; Spinelli, Lorenzo; Taroni, Paola; Torricelli, Alessandro; Tosi, Alberto; Valentini, Gianluca; Zappa, Franco

    2011-01-01

    Light is strictly connected with life, and its presence is fundamental for any living environment. Thus, many biological mechanisms are related to light interaction or can be evaluated through processes involving energy exchange with photons. Optics has always been a precious tool to evaluate molecular and cellular mechanisms, but the discovery of lasers opened new pathways of interactions of light with biological matter, pushing an impressive development for both therapeutic and diagnostic applications in biomedicine. The use of light in different fields has become so widespread that the word photonics has been utilized to identify all the applications related to processes where the light is involved. The photonics area covers a wide range of wavelengths spanning from soft X-rays to mid-infrared and includes all devices related to photons as light sources, optical fibers and light guides, detectors, and all the related electronic equipment. The recent use of photons in the field of telecommunications has pushed the technology toward low-cost, compact, and efficient devices, making them available for many other applications, including those related to biology and medicine where these requirements are of particular relevance. Moreover, basic sciences such as physics, chemistry, mathematics, and electronics have recognized the interdisciplinary need of biomedical science and are translating the most advanced researches into these fields. The Politecnico school has pioneered many of them,and this article reviews the state of the art of biomedical research at the Politecnico in the field internationally known as biophotonics.

  10. Reconfigurable topological photonic crystal

    Science.gov (United States)

    Shalaev, Mikhail I.; Desnavi, Sameerah; Walasik, Wiktor; Litchinitser, Natalia M.

    2018-02-01

    Topological insulators are materials that conduct on the surface and insulate in their interior due to non-trivial topology of the band structure. The edge states on the interface between topological (non-trivial) and conventional (trivial) insulators are topologically protected from scattering due to structural defects and disorders. Recently, it was shown that photonic crystals (PCs) can serve as a platform for realizing a scatter-free propagation of light waves. In conventional PCs, imperfections, structural disorders, and surface roughness lead to significant losses. The breakthrough in overcoming these problems is likely to come from the synergy of the topological PCs and silicon-based photonics technology that enables high integration density, lossless propagation, and immunity to fabrication imperfections. For many applications, reconfigurability and capability to control the propagation of these non-trivial photonic edge states is essential. One way to facilitate such dynamic control is to use liquid crystals (LCs), which allow to modify the refractive index with external electric field. Here, we demonstrate dynamic control of topological edge states by modifying the refractive index of a LC background medium. Background index is changed depending on the orientation of a LC, while preserving the topology of the system. This results in a change of the spectral position of the photonic bandgap and the topological edge states. The proposed concept might be implemented using conventional semiconductor technology, and can be used for robust energy transport in integrated photonic devices, all-optical circuity, and optical communication systems.

  11. Video Meteor Fluxes

    Science.gov (United States)

    Campbell-Brown, M. D.; Braid, D.

    2011-01-01

    The flux of meteoroids, or number of meteoroids per unit area per unit time, is critical for calibrating models of meteoroid stream formation and for estimating the hazard to spacecraft from shower and sporadic meteors. Although observations of meteors in the millimetre to centimetre size range are common, flux measurements (particularly for sporadic meteors, which make up the majority of meteoroid flux) are less so. It is necessary to know the collecting area and collection time for a given set of observations, and to correct for observing biases and the sensitivity of the system. Previous measurements of sporadic fluxes are summarized in Figure 1; the values are given as a total number of meteoroids striking the earth in one year to a given limiting mass. The Gr n et al. (1985) flux model is included in the figure for reference. Fluxes for sporadic meteoroids impacting the Earth have been calculated for objects in the centimeter size range using Super-Schmidt observations (Hawkins & Upton, 1958); this study used about 300 meteors, and used only the physical area of overlap of the cameras at 90 km to calculate the flux, corrected for angular speed of meteors, since a large angular speed reduces the maximum brightness of the meteor on the film, and radiant elevation, which takes into account the geometric reduction in flux when the meteors are not perpendicular to the horizontal. They bring up corrections for both partial trails (which tends to increase the collecting area) and incomplete overlap at heights other than 90 km (which tends to decrease it) as effects that will affect the flux, but estimated that the two effects cancelled one another. Halliday et al. (1984) calculated the flux of meteorite-dropping fireballs with fragment masses greater than 50 g, over the physical area of sky accessible to the MORP fireball cameras, counting only observations in clear weather. In the micron size range, LDEF measurements of small craters on spacecraft have been used to

  12. Metallic dielectric photonic crystals and methods of fabrication

    Energy Technology Data Exchange (ETDEWEB)

    Chou, Jeffrey Brian; Kim, Sang-Gook

    2016-12-20

    A metallic-dielectric photonic crystal is formed with a periodic structure defining a plurality of resonant cavities to selectively absorb incident radiation. A metal layer is deposited on the inner surfaces of the resonant cavities and a dielectric material fills inside the resonant cavities. This photonic crystal can be used to selectively absorb broadband solar radiation and then reemit absorbed radiation in a wavelength band that matches the absorption band of a photovoltaic cell. The photonic crystal can be fabricated by patterning a sacrificial layer with a plurality of holes, into which is deposited a supporting material. Removing the rest of the sacrificial layer creates a supporting structure, on which a layer of metal is deposited to define resonant cavities. A dielectric material then fills the cavities to form the photonic crystal.

  13. Metallic dielectric photonic crystals and methods of fabrication

    Energy Technology Data Exchange (ETDEWEB)

    Chou, Jeffrey Brian; Kim, Sang-Gook

    2017-12-05

    A metallic-dielectric photonic crystal is formed with a periodic structure defining a plurality of resonant cavities to selectively absorb incident radiation. A metal layer is deposited on the inner surfaces of the resonant cavities and a dielectric material fills inside the resonant cavities. This photonic crystal can be used to selectively absorb broadband solar radiation and then reemit absorbed radiation in a wavelength band that matches the absorption band of a photovoltaic cell. The photonic crystal can be fabricated by patterning a sacrificial layer with a plurality of holes, into which is deposited a supporting material. Removing the rest of the sacrificial layer creates a supporting structure, on which a layer of metal is deposited to define resonant cavities. A dielectric material then fills the cavities to form the photonic crystal.

  14. The bremsstrahlung tagged photon beam in Hall B at JLab

    CERN Document Server

    Sober, D I; Longhi, A; Matthews, S K; O'Brien, J T; Berman, B L; Briscoe, W J; Cole, P L; Connelly, J P; Dodge, W R; Murphy, L Y; Philips, S A; Dugger, M K; Lawrence, D; Ritchie, B G; Smith, E S; Lambert, J M; Anciant, E; Audit, G; Auger, T; Marchand, C; Klusman, M; Napolitano, J; Khandaker, M A; Salgado, C W; Sarty, A J

    2000-01-01

    We describe the design and commissioning of the photon tagging beamline installed in experimental Hall B at the Thomas Jefferson National Accelerator Facility (JLab). This system can tag photon energies over a range from 20% to 95% of the incident electron energy, and is capable of operation with beam energies up to 6.1 GeV. A single dipole magnet is combined with a hodoscope containing two planar arrays of plastic scintillators to detect energy-degraded electrons from a thin bremsstrahlung radiator. The first layer of 384 partially overlapping small scintillators provides photon energy resolution, while the second layer of 61 larger scintillators provides the timing resolution necessary to form a coincidence with the corresponding nuclear interaction triggered by the tagged photon. The definitions of overlap channels in the first counter plane and of geometric correlation between the two planes are determined using digitized time information from the individual counters. Auxiliary beamline devices are briefl...

  15. Solar Magnetic Flux Ropes

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... The most probable initial magnetic configuration of a CME is a flux rope consisting of twisted field lines which fill the whole volume of a dark coronal cavity. The flux ropes can be in stable equilibrium in the coronal magnetic field for weeks and even months, but suddenly they lose their stability and erupt with ...

  16. Mesoscopic photon heat transistor

    DEFF Research Database (Denmark)

    Ojanen, T.; Jauho, Antti-Pekka

    2008-01-01

    We show that the heat transport between two bodies, mediated by electromagnetic fluctuations, can be controlled with an intermediate quantum circuit-leading to the device concept of a mesoscopic photon heat transistor (MPHT). Our theoretical analysis is based on a novel Meir-Wingreen-Landauer-typ......We show that the heat transport between two bodies, mediated by electromagnetic fluctuations, can be controlled with an intermediate quantum circuit-leading to the device concept of a mesoscopic photon heat transistor (MPHT). Our theoretical analysis is based on a novel Meir......-Wingreen-Landauer-type of conductance formula, which gives the photonic heat current through an arbitrary circuit element coupled to two dissipative reservoirs at finite temperatures. As an illustration we present an exact solution for the case when the intermediate circuit can be described as an electromagnetic resonator. We discuss...

  17. Graphene-based photonic crystal

    International Nuclear Information System (INIS)

    Berman, Oleg L.; Boyko, Vladimir S.; Kezerashvili, Roman Ya.; Kolesnikov, Anton A.; Lozovik, Yurii E.

    2010-01-01

    A novel type of photonic crystal formed by embedding a periodic array of constituent stacks of alternating graphene and dielectric discs into a background dielectric medium is proposed. The photonic band structure and transmittance of such photonic crystal are calculated. The graphene-based photonic crystals can be used effectively as the frequency filters and waveguides for the far infrared region of electromagnetic spectrum. Due to substantial suppression of absorption of low-frequency radiation in doped graphene the damping and skin effect in the photonic crystal are also suppressed. The advantages of the graphene-based photonic crystal are discussed.

  18. Update on photon-photon collisions

    International Nuclear Information System (INIS)

    Arteaga-Romero, N.; Cochard, G.; Ong, S.; Amiens Univ., 80; Carimalo, C.; Kessler, P.; Nicolaidis, A.; Parisi, J.; Courau, A.

    1980-03-01

    This report is the continuation of the 'Update' of last year (L.P.C. 79-03, March 1979, in French). In Part I, the structure functions of the photon in QCD are examined. It is shown that, while large psub(T) hadron production is similar to some extent in γγ collisions and in hadron-hadron collisions, the point-like nature of the photon introduces new terms which are entirely calculable, providing new means to test the dynamics of strong interactions. In Part II, problems of analysis in γγ experiments are discussed. The pros and cons of various options with regard to the measurement of outgoing electrons (non-tagging, finite-angle tagging, tagging at 0 0 ) are compared. It is shown that (a) non-tagging may be applied to the study of a limited number of processes only; (b) finite-angle tagging counters allow for various possibilities (double-tagging, single-tagging, double anti-tagging), but none of them is entirely satisfactory; (c) the ideal measurement is double tagging at 0 0 , provided the problem of bremsstrahlung saturation of the tagging counters can be solved

  19. Photonic Floquet topological insulators

    Science.gov (United States)

    Rechtsman, Mikael C.; Zeuner, Julia M.; Plotnik, Yonatan; Lumer, Yaakov; Podolsky, Daniel; Dreisow, Felix; Nolte, Stefan; Segev, Mordechai; Szameit, Alexander

    2013-09-01

    Topological insulators are a new phase of matter, with the striking property that conduction of electrons occurs only on the surface. In two dimensions, surface electrons in topological insulators do not scatter despite defects and disorder, providing robustness akin to superconductors. Topological insulators are predicted to have wideranging applications in fault-tolerant quantum computing and spintronics. Recently, large theoretical efforts were directed towards achieving topological insulation for electromagnetic waves. One-dimensional systems with topological edge states have been demonstrated, but these states are zero-dimensional, and therefore exhibit no transport properties. Topological protection of microwaves has been observed using a mechanism similar to the quantum Hall effect, by placing a gyromagnetic photonic crystal in an external magnetic field. However, since magnetic effects are very weak at optical frequencies, realizing photonic topological insulators with scatterfree edge states requires a fundamentally different mechanism - one that is free of magnetic fields. Recently, a number of proposals for photonic topological transport have been put forward. Specifically, one suggested temporally modulating a photonic crystal, thus breaking time-reversal symmetry and inducing one-way edge states. This is in the spirit of the proposed Floquet topological insulators, where temporal variations in solidstate systems induce topological edge states. Here, we propose and experimentally demonstrate the first external field-free photonic topological insulator with scatter-free edge transport: a photonic lattice exhibiting topologically protected transport of visible light on the lattice edges. Our system is composed of an array of evanescently coupled helical waveguides arranged in a graphene-like honeycomb lattice. Paraxial diffraction of light is described by a Schrödinger equation where the propagation coordinate acts as `time'. Thus the waveguides

  20. Time-Dependent Neutron and Photon Dose-Field Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Wooten, Hasani Omar [Georgia Inst. of Technology, Atlanta, GA (United States)

    2005-08-01

    A unique tool is developed that allows the user to model physical representations of complicated glovebox facilities in two dimensions and determine neutral-particle flux and ambient dose-equivalent fields throughout that geometry. The Pandemonium code, originally designed to determine flux and dose-rates only, is improved to include realistic glovebox geometries, time-dependent source and detector positions, time-dependent shielding thickness calculations, time-integrated doses, a representative criticality accident scenario based on time-dependent reactor kinetics, and more rigorous photon treatment. A primary benefit of this work has been an extensive analysis and improvement of the photon model that is not limited to the application described in this thesis. The photon model has been extended in energy range to 10 MeV to include photons from fission and new photon buildup factors have been included that account for the effects of photon buildup at slant-path thicknesses as a function of angle, where the mean free path thickness has been preserved. The overall system of codes is user-friendly and it is directly applicable to facilities such as the plutonium facility at Los Alamos National Laboratory, where high-intensity neutron and photon emitters are regularly used. The codes may be used to determine a priori doses for given work scenarios in an effort to supply dose information to process models which will in turn assist decision makers on ensuring as low as reasonably achievable (ALARA) compliance. In addition, coupling the computational results of these tools with the process model visualization tools will help to increase worker safety and radiological safety awareness.

  1. Models for photon-photon total cross-sections

    International Nuclear Information System (INIS)

    Godbole, R.M.; Grau, A.; Pancheri, G.

    1999-01-01

    The paper presents here a brief overview of recent models describing the photon-photon cross-section into hadrons. It shall be showed in detail results from the eikonal minijet model, with and without soft gluon summation

  2. Photon upconversion towards applications in energy conversion and bioimaging

    Science.gov (United States)

    Sun, Qi-C.; Ding, Yuchen C.; Sagar, Dodderi M.; Nagpal, Prashant

    2017-12-01

    The field of plasmonics can play an important role in developing novel devices for application in energy and healthcare. In this review article, we consider the progress made in design and fabrication of upconverting nanoparticles and metal nanostructures for precisely manipulating light photons, with a wavelength of several hundred nanometers, at nanometer length scales, and describe how to tailor their interactions with molecules and surfaces so that two or more lower energy photons can be used to generate a single higher energy photon in a process called photon upconversion. This review begins by introducing the current state-of-the-art in upconverting nanoparticle synthesis and achievements in color tuning and upconversion enhancement. Through understanding and tailoring physical processes, color tuning and strong upconversion enhancement have been demonstrated by coupling with surface plasmon polariton waves, especially for low intensity or diffuse infrared radiation. Since more than 30% of incident sunlight is not utilized in most photovoltaic cells, this photon upconversion is one of the promising approaches to break the so-called Shockley-Queisser thermodynamic limit for a single junction solar cell. Furthermore, since the low energy photons typically cover the biological window of optical transparency, this approach can also be particularly beneficial for novel biosensing and bioimaging techniques. Taken together, the recent research boosts the applications of photon upconversion using designed metal nanostructures and nanoparticles for green energy, bioimaging, and therapy.

  3. Handedness of direct photons

    International Nuclear Information System (INIS)

    Kopeliovich, B.Z.; Rezaeian, A.H.; Schmidt, Ivan

    2008-01-01

    The azimuthal asymmetry of direct photons originating from primary hard scatterings between partons is calculated. This can be accounted for by the inclusion of the color dipole orientation, which is sensitive to the rapid variation of the nuclear profile. To this end we introduce the dipole orientation within the saturation model of Golec-Biernat and Wuesthoff, while preserving all its features at the cross-section level. We show that the direct photon elliptic anisotropy v2 coming from this mechanism changes sign and becomes negative for peripheral collisions, albeit it is quite small for nuclear collisions at the RHIC energy. (author)

  4. Recent developments in the theory of photon-photon collisions

    International Nuclear Information System (INIS)

    Brodsky, S.J.

    1984-09-01

    Over the past few years the field of photon-photon collisions has emerged as one of the best testing grounds for QCD, particularly in the area of exclusive and inclusive hard scattering processes, exotic resonance production, and detailed tests of the coupling of real and virtual photons to the quark current. In this summary of contributed papers, I will briefly review recent theoretical progress in the analysis of two-photon reactions and possible directions for future work. 29 references

  5. Neutron flux enhancement at LASREF

    International Nuclear Information System (INIS)

    Sommer, W.F.; Ferguson, P.D.; Wechsler, M.S.

    1991-01-01

    The accelerator at the Los Alamos Meson Physics Facility produces a 1-mA beam of protons at an energy of 800 MeV. Since 1985, the Los Alamos Spallation Radiation Effects Facility (LASREF) has made use of the neutron flux that is generated as the incident protons interact with the nuclei in targets and a copper beam stop. A variety of basic and applied experiments in radiation damage and radiation effects have been completed. Recent studies indicate that the flux at LASREF can be increased by at least a factor of ten from the present level of about 5 E+17 m -2 s -1 . This requires changing the beam-stop material from Cu to W and optimizing the geometry of the beam-target interaction region. These studies are motivated by the need for a large volume, high energy, and high intensity neutron source in the development of materials for advanced energy concepts such as fusion reactors. 18 refs., 7 figs., 2 tabs

  6. Photon states in anisotropic media

    Indian Academy of Sciences (India)

    Rosen) cor- relations as codified in Bell's inequalities have been tested for the polarization-entangled states of two photons. Similarly, quantum teleportation and quantum encryption have also been accomplished using photon polarization states.

  7. Photon strength functions

    International Nuclear Information System (INIS)

    Bergqvist, I.

    1976-01-01

    Methods for extracting photon strength functions are briefly discussed. We follow the Brink-Axel approach to relate the strength functions to the giant resonances observed in photonuclear work and summarize the available data on the E1, E2 and M1 resonances. Some experimental and theoretical problems are outlined. (author)

  8. Photonic band structure computations.

    Science.gov (United States)

    Hermann, D; Frank, M; Busch, K; Wolfle, P

    2001-01-29

    We introduce a novel algorithm for band structure computations based on multigrid methods. In addition, we demonstrate how the results of these band structure calculations may be used to compute group velocities and effective photon masses. The results are of direct relevance to studies of pulse propagation in such materials.

  9. ALICE Photon Spectrometer

    CERN Multimedia

    Kharlov, Y

    2013-01-01

    PHOS provides unique coverage of the following physics topics: - Study initial phase of the collision of heavy nuclei via direct photons, - Jet-quenching as a probe of deconfinement, studied via high Pτ ϒ and π0, - Signals of chiral-symmetry restoration, - QCD studies in pp collisions via identified neutral spectra.

  10. What is a Photon?

    Indian Academy of Sciences (India)

    IAS Admin

    We discuss the absorber theory of radiation as put forward by Wheeler and Feynman. We show that it gives a better understanding of the photon compared to the usual quantum electrodynamics. (QED) picture. All the fifty years of conscious brooding have brought me no closer to answer the question, `What are light quanta ...

  11. Magnetic photon scattering

    International Nuclear Information System (INIS)

    Lovesey, S.W.

    1987-05-01

    The report reviews, at an introductory level, the theory of photon scattering from condensed matter. Magnetic scattering, which arises from first-order relativistic corrections to the Thomson scattering amplitude, is treated in detail and related to the corresponding interaction in the magnetic neutron diffraction amplitude. (author)

  12. Biomedical photonics handbook biomedical diagnostics

    CERN Document Server

    Vo-Dinh, Tuan

    2014-01-01

    Shaped by Quantum Theory, Technology, and the Genomics RevolutionThe integration of photonics, electronics, biomaterials, and nanotechnology holds great promise for the future of medicine. This topic has recently experienced an explosive growth due to the noninvasive or minimally invasive nature and the cost-effectiveness of photonic modalities in medical diagnostics and therapy. The second edition of the Biomedical Photonics Handbook presents fundamental developments as well as important applications of biomedical photonics of interest to scientists, engineers, manufacturers, teachers, studen

  13. Limits on the photon mass

    International Nuclear Information System (INIS)

    Vasseur, G.

    1996-03-01

    Is the photon mass strictly null as it is told in quantum electrodynamics. In fact, a coherent theory can be build with a massive photon. Experiences have been regularly led to try to make obvious an eventual non null photon mass. Superior limits more and more strict have been found. Here is given a general survey of the consequences of a non null photon mass, different methods to measure it and the achieved limits. (author). 30 refs., 1 fig

  14. Directed flux motor

    Science.gov (United States)

    Wilson, Andrew (Inventor); Punnoose, Andrew (Inventor); Strausser, Katherine (Inventor); Parikh, Neil (Inventor)

    2011-01-01

    A directed flux motor described utilizes the directed magnetic flux of at least one magnet through ferrous material to drive different planetary gear sets to achieve capabilities in six actuated shafts that are grouped three to a side of the motor. The flux motor also utilizes an interwoven magnet configuration which reduces the overall size of the motor. The motor allows for simple changes to modify the torque to speed ratio of the gearing contained within the motor as well as simple configurations for any number of output shafts up to six. The changes allow for improved manufacturability and reliability within the design.

  15. Applications of Photonic Crystals to Photovoltaic Devices

    Science.gov (United States)

    Foster, Stephen

    Photonic crystals are structures that exhibit wavelength-scale spatial periodicity in their dielectric function. They are best known for their ability to exhibit complete photonic band gaps (PBGs) - spectral regions over which no light can propagate within the crystal. PBGs are specific instances of a more general phenomenon, in which the local photonic density of states can be enhanced or suppressed over different frequency ranges by tuning the properties of the crystal. This can be used to redirect, concentrate, or even trap light incident on the crystal. In this thesis, we investigate how photonic crystals can be used to enhance the efficiency of photovoltaic devices by trapping light. Due to the many different types of photovoltaic devices in existence (varying widely in materials used, modes of operation, and internal structure), there is no single light trapping architecture that can be applied to all photovoltaics. In this work we study a number of different devices: dye-sensitized solar cells, polymer solar cells, silicon-perovskite tandem cells, and single-junction silicon cells. We propose novel photonic crystal-based light trapping designs for each type of device, and evaluate these designs numerically to demonstrate their effectiveness. Full-field optical simulations of the cell are performed for each design, using either finite element method (FEM) or finite-difference time-domain (FDTD) techniques. Where appropriate, electrical modelling of the cell is also performed, through either the use of a simple one-diode model, or by obtaining full solutions to the semiconductor drift-diffusion equations within the cell. In all cases we find that the photonic crystal-based designs significantly outperform their non-nanostructured counterparts. In the case of dye-sensitized and polymer cells, enhancements in light absorption of 33% and 40% (respectively) are seen, relative to reference cells with planar geometries. In the case of silicon-perovskite tandem cells

  16. Nonlinear photonic quasicrystals

    International Nuclear Information System (INIS)

    Freedman, B.; Bartal, G.; Segev, M.; Lifshitz, R.; Christodoulides, D.; Fleischer, J.

    2005-01-01

    Full Text:Quasicrystals are structures with long-range order and no periodicity, whose unique structural and physical properties have intrigued scientists ever since their discovery and initial theoretical analysis more than two decades ago. The lack of periodicity excludes the use of well-established theoretical and experimental tools for the analysis of quasicrystals, including such notions as the Brillouin zone and Bloch theorem. Instead, the quasiperiodic atomic arrangement gives rise to unique properties such as a hierarchy of effective Brillouin (or Jones) zones, yielding a fractal-like band structure, and the existence of unique phason degrees of freedom. Generally, in atomic quasicrystals it is very difficult to directly observe the evolution of electronic wave-packets propagating through the structure, or the dynamics of the structure itself. Photonic quasicrystals, on the other hand, are macroscopic objects and hence their internal wave dynamics can be locally excited and directly imaged. Here, we employ optical induction to create 2D photonic quasicrystals, and explore wave transport phenomena in quasicrystals in ways that were impossible until now. We demonstrate linear tunneling-transport of light initiated at different crystal sites, and observe the formation of lattice solitons when the light is made sufficiently intense. We experiment with dynamical photonic quasicrystals, in which crystal sites interact with one another, and directly observe dislocation dynamics: creation, healing, and local structural rearrangement due to phason flips. Our experiments show that photonic quasicrystals are an excellent model system through which one can study the universal features of wave dynamics in quasiperiodic structures, that should apply not only to photonics, but also to other systems such as matter waves in quasiperiodic traps, generic pattern-forming systems as in parametrically-excited surface waves, liquid quasicrystals, as well as the more familiar

  17. Hydrogenated amorphous silicon photonics

    Science.gov (United States)

    Narayanan, Karthik

    2011-12-01

    Silicon Photonics is quickly proving to be a suitable interconnect technology for meeting the future goals of on-chip bandwidth and low power requirements. However, it is not clear how silicon photonics will be integrated into CMOS chips, particularly microprocessors. The issue of integrating photonic circuits into electronic IC fabrication processes to achieve maximum flexibility and minimum complexity and cost is an important one. In order to minimize usage of chip real estate, it will be advantageous to integrate in three-dimensions. Hydrogenated amorphous silicon (a-Si:H) is emerging as a promising material for the 3-D integration of silicon photonics for on-chip optical interconnects. In addition, a-Si:H film can be deposited using CMOS compatible low temperature plasma-enhanced chemical vapor deposition (PECVD) process at any point in the fabrication process allowing maximum flexibility and minimal complexity. In this thesis, we demonstrate a-Si:H as a high performance alternate platform to crystalline silicon, enabling backend integration of optical interconnects in a hybrid photonic-electronic network-on-chip architecture. High quality passive devices are fabricated on a low-loss a-Si:H platform enabling wavelength division multiplexing schemes. We demonstrate a broadband all-optical modulation scheme based on free-carrier absorption effect, which can enable compact electro-optic modulators in a-Si:H. Furthermore, we comprehensively characterize the optical nonlinearities in a-Si:H and observe that a-Si:H exhibits enhanced nonlinearities as compared to crystalline silicon. Based on the enhanced nonlinearities, we demonstrate low-power four-wave mixing in a-Si:H waveguides enabling high speed all-optical devices in an a-Si:H platform. Finally, we demonstrate a novel data encoding scheme using thermal and all-optical tuning of silicon waveguides, increasing the spectral efficiency in an interconnect link.

  18. Optimization of photonic crystal cavities

    DEFF Research Database (Denmark)

    Wang, Fengwen; Sigmund, Ole

    2017-01-01

    We present optimization of photonic crystal cavities. The optimization problem is formulated to maximize the Purcell factor of a photonic crystal cavity. Both topology optimization and air-hole-based shape optimization are utilized for the design process. Numerical results demonstrate...... that the Purcell factor of the photonic crystal cavity can be significantly improved through optimization....

  19. Development of a high-speed single-photon pixellated detector for visible wavelengths

    CERN Document Server

    Mac Raighne, Aaron; Mathot, Serge; McPhate, Jason; Vallerga, John; Jarron, Pierre; Brownlee, Colin; O’Shea, Val

    2009-01-01

    We present the development of a high-speed, single-photon counting, Hybrid Photo Detector (HPD). The HPD consists of a vacuum tube, containing the detector assembly, sealed with a transparent optical input window. Photons incident on the photocathode eject a photoelectron into a large electric field, which accelerates the incident electron onto a silicon detector. The silicon detector is bump bonded to a Medipix readout chip. This set-up allows for the detection and readout of low incident photon intensities at rates that are otherwise unattainable with current camera technology. Reported is the fabrication of the camera that brings together a range of sophisticated design and fabrication techniques and the expected theoretical imaging performance. Applications to cellular and molecular microscopy are also described in which single-photon-counting abilities at high frame rates are crucial

  20. Aeronet Solar Flux

    Data.gov (United States)

    National Aeronautics and Space Administration — SolRad-Net (Solar Radiation Network) is an established network of ground-based sensors providing high-frequency solar flux measurements in quasi-realtime to the...

  1. Flux in Tallinn

    Index Scriptorium Estoniae

    2004-01-01

    Rahvusvahelise elektroonilise kunsti sümpoosioni ISEA2004 klubiõhtu "Flux in Tallinn" klubis Bon Bon. Eestit esindasid Ropotator, Ars Intel Inc., Urmas Puhkan, Joel Tammik, Taavi Tulev (pseud. Wochtzchee). Klubiõhtu koordinaator Andres Lõo

  2. The Effect of Photon Source on Heterogeneous Photocatalytic Oxidation of Ethanol by a Silica-Titania Composite

    Science.gov (United States)

    Coutts, Janelle L.; Levine, Lanfang H.; Richards, Jeffrey T.; Mazyck, David W.

    2011-01-01

    The objective of this study was to distinguish the effect of photon flux (i.e., photons per unit time reaching a surface) from that of photon energy (i.e., wavelength) of a photon source on the silica-titania composite (STC)-catalyzed degradation of ethanol in the gas phase. Experiments were conducted in a bench-scale annular reactor packed with STC pellets and irradiated with either a UV-A fluorescent black light blue lamp ((gamma)max=365 nm) at its maximum light intensity or a UV-C germicidal lamp ((gamma)max=254 nm) at three levels of light intensity. The STC-catalyzed oxidation of ethanol was found to follow zero-order kinetics with respect to CO2 production, regardless of the photon source. Increased photon flux led to increased EtOH removal, mineralization, and oxidation rate accompanied by lower intermediate concentration in the effluent. The oxidation rate was higher in the reactor irradiated by UV-C than by UV-A (38.4 vs. 31.9 nM/s) at the same photon flux, with similar trends for mineralization (53.9 vs. 43.4%) and reaction quantum efficiency (i.e., photonic efficiency, 63.3 vs. 50.1 nmol CO2 (mu)mol/photons). UV-C irradiation also led to decreased intermediate concentration in the effluent . compared to UV-A irradiation. These results demonstrated that STC-catalyzed oxidation is enhanced by both increased photon flux and photon energy.

  3. Impact of Monoenergetic Photon Sources on Nonproliferation Applications Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Geddes, Cameron [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Ludewigt, Bernhard [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Valentine, John [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Quiter, Brian [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Descalle, Marie-Anne [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Warren, Glen [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Kinlaw, Matt [Idaho National Lab. (INL), Idaho Falls, ID (United States); Thompson, Scott [Idaho National Lab. (INL), Idaho Falls, ID (United States); Chichester, David [Idaho National Lab. (INL), Idaho Falls, ID (United States); Miller, Cameron [Univ. of Michigan, Ann Arbor, MI (United States); Pozzi, Sara [Univ. of Michigan, Ann Arbor, MI (United States)

    2017-03-01

    Near-monoenergetic photon sources (MPSs) have the potential to improve sensitivity at greatly reduced dose in existing applications and enable new capabilities in other applications, particularly where passive signatures do not penetrate or are insufficiently accurate. MPS advantages include the ability to select energy, energy spread, flux, and pulse structures to deliver only the photons needed for the application, while suppressing extraneous dose and background. Some MPSs also offer narrow angular divergence photon beams which can target dose and/or mitigate scattering contributions to image contrast degradation. Current bremsstrahlung photon sources (e.g., linacs and betatrons) produce photons over a broad range of energies, thus delivering unnecessary dose that in some cases also interferes with the signature to be detected and/or restricts operations. Current sources must be collimated (reducing flux) to generate narrow divergence beams. While MPSs can in principle resolve these issues, they remain at relatively low TRL status. Candidate MPS technologies for nonproliferation applications are now being developed, each of which has different properties (e.g. broad vs. narrow angular divergence). Within each technology, source parameters trade off against one another (e.g. flux vs. energy spread), representing a large operation space. This report describes a broad survey of potential applications, identification of high priority applications, and detailed simulations addressing those priority applications. Requirements were derived for each application, and analysis and simulations were conducted to define MPS parameters that deliver benefit. The results can inform targeting of MPS development to deliver strong impact relative to current systems.

  4. Determining Reactor Neutrino Flux

    OpenAIRE

    Cao, Jun

    2011-01-01

    Flux is an important source of uncertainties for a reactor neutrino experiment. It is determined from thermal power measurements, reactor core simulation, and knowledge of neutrino spectra of fuel isotopes. Past reactor neutrino experiments have determined the flux to (2-3)% precision. Precision measurements of mixing angle $\\theta_{13}$ by reactor neutrino experiments in the coming years will use near-far detector configurations. Most uncertainties from reactor will be canceled out. Understa...

  5. Theoretical magnetic flux emergence

    OpenAIRE

    MacTaggart, David

    2011-01-01

    Magnetic flux emergence is the subject of how magnetic fields from the solar interior can rise and expand into the atmosphere to produce active regions. It is the link that joins dynamics in the convection zone with dynamics in the atmosphere. In this thesis, we study many aspects of magnetic flux emergence through mathematical modelling and computer simulations. Our primary aim is to understand the key physical processes that lie behind emergence. The first chapter intro...

  6. Flux Emergence (Theory)

    Science.gov (United States)

    Cheung, Mark C. M.; Isobe, Hiroaki

    2014-07-01

    Magnetic flux emergence from the solar convection zone into the overlying atmosphere is the driver of a diverse range of phenomena associated with solar activity. In this article, we introduce theoretical concepts central to the study of flux emergence and discuss how the inclusion of different physical effects (e.g., magnetic buoyancy, magnetoconvection, reconnection, magnetic twist, interaction with ambient field) in models impact the evolution of the emerging field and plasma.

  7. Soft x-ray spectroscopy undulator beamline at the Advanced Photon Source

    Energy Technology Data Exchange (ETDEWEB)

    Randall, K.J.; Xu, Z.; Moore, J.F.; Gluskin, E.

    1997-09-01

    Construction of the high-resolution soft x ray spectroscopy undulator beamline, 2ID-C, at the Advanced Photon Source (APS) has been completed. The beamline, one of two soft x ray beamlines at the APS, will cover the photon energy range from 500 to 3,000 eV, with a maximum resolving power between 7,000 and 14,000. The optical design is based on a spherical grating monochromator (SGM) giving both high resolution and high flux throughput. Photon flux is calculated to be approximately 10{sup 12}--10{sup 13} photons per second with a beam size of approximately 1 x 1 mm{sup 2} at the sample.

  8. Tunable omnidirectional photonic band gap of one-dimensional photonic crystals containing Dirac semimetals

    Science.gov (United States)

    Zhao, Yunkun; Zhang, Yuping; Guo, Xiaohan; Liu, Maodong; Chen, Huan; Liu, Shande; Zhang, Huiyun

    2017-12-01

    We have theoretically investigated the tunability of the omnidirectional bandgap (OBG) of a one-dimensional photonic crystal consisting of alternating Dirac semimetals (DSs) and SiO2 dielectrics by adjusting the structural Fermi level. This photonic bandgap (PBG) is strongly dependent on the Fermi level and thickness ratio of the DSs and SiO2 layers. The effects of different parameters such as Fermi level, incident angle, and lattice constant on PBG are analyzed in detail. It is found that the first gap does not change with the change in lattice constant, but it is sensitive to the Fermi level; the width of the omnidirectional PBG increases with the structural Fermi level. The second gap is also sensitive to the Fermi level, the upper and lower frequency limits of this PBG shift to higher frequency, and the width becomes narrower as the Fermi level is increasing, where only one OBG exists in the range of 3.6-4.3 THz for transverse electric polarization. However, as the angle of incidence increases, the photonic bandgap can close for transverse magnetic polarization. All these properties can be applied to tunable optical filters or optical switches.

  9. Neutron flux monitoring device

    International Nuclear Information System (INIS)

    Shimazu, Yoichiro.

    1995-01-01

    In a neutron flux monitoring device, there are disposed a neutron flux measuring means for outputting signals in accordance with the intensity of neutron fluxes, a calculation means for calculating a self power density spectrum at a frequency band suitable to an object to be measured based on the output of the neutron flux measuring means, an alarm set value generation means for outputting an alarm set value as a comparative reference, and an alarm judging means for comparing the alarm set value with the outputted value of the calculation means to judge requirement of generating an alarm and generate an alarm in accordance with the result of the judgement. Namely, the time-series of neutron flux signals is put to fourier transformation for a predetermined period of time by the calculation means, and from each of square sums for real number component and imaginary number component for each of the frequencies, a self power density spectrum in the frequency band suitable to the object to be measured is calculated. Then, when the set reference value is exceeded, an alarm is generated. This can reliably prevent generation of erroneous alarm due to neutron flux noises and can accurately generate an alarm at an appropriate time. (N.H.)

  10. Neutron flux monitor

    International Nuclear Information System (INIS)

    Oda, Naotaka.

    1993-01-01

    The device of the present invention greatly saves an analog processing section such as an analog filter and an analog processing circuit. That is, the device of the present invention comprises (1) a neutron flux detection means for detecting neutron fluxed in the reactor, (2) a digital filter means for dividing signals corresponding to the detected neutron fluxes into predetermined frequency band regions, (3) a calculation processing means for applying a calculation processing corresponding to the frequency band regions to the neutron flux detection signals divided by the digital filter means. With such a constitution, since the neutron detection signals are processed by the digital filter means, the accuracy is improved and the change for the property of the filter is facilitated. Further, when a neutron flux level is obtained, a calculation processing corresponding to the frequency band region can be conducted without the analog processing circuit. Accordingly, maintenance and accuracy are improved by greatly decreasing the number of parts. Further, since problems inherent to the analog circuit are solved, neutron fluxes are monitored at high reliability. (I.S.)

  11. Few-photon optical diode

    OpenAIRE

    Roy, Dibyendu

    2010-01-01

    We propose a novel scheme of realizing an optical diode at the few-photon level. The system consists of a one-dimensional waveguide coupled asymmetrically to a two-level system. The two or multi-photon transport in this system is strongly correlated. We derive exactly the single and two-photon current and show that the two-photon current is asymmetric for the asymmetric coupling. Thus the system serves as an optical diode which allows transmission of photons in one direction much more efficie...

  12. Photon production at the LHC

    CERN Document Server

    Lafaye, R

    2013-01-01

    We review the last results on photon production at the LHC by the ATLAS and CMS experiments obtained in proton-proton collisions with a center of mass energy of 7 TeV in 2010 and 2011, corresponding to a maximum integrated luminosity of 5 fb−1. We compare the prompt photon and photon-jet differential cross-sections to theoretical predictions and discuss their impact on the parton distribution functions of the proton. Di-photon differential cross-sections are also presented as a function of the di-photon invariant mass, transverse momentum, azimuthal separation, and cos theta*.

  13. Physics with Photons in ATLAS

    CERN Multimedia

    CERN. Geneva

    2011-01-01

    The fine granularity ATLAS electromagnetic calorimeter provides a precise measurement of the photon energy and direction, as well as efficient rejection of background from fake photons, while the high precision inner detector allows also the reconstruction of photons that convert into electron-positron pairs.Isolated photons are measured using well-defined infrared-safe isolation criteria corrected for underlying event and the effects of additional proton-proton collisions. Differential cross sections for inclusive photons and diphotons are presented, and the spectrum of diphoton production is used to search for the Higgs boson in this decay channel.

  14. Photonic band gap materials

    Science.gov (United States)

    Cassagne, D.

    Photonic band gap materials Photonic band gap materials are periodic dielectric structures that control the propagation of electromagnetic waves. We describe the plane wave method, which allows to calculate the band structures of photonic crystals. By symmetry analysis and a perturbative approach, we predict the appearance of the low energy photonic band gaps of hexagonal structures. We propose new two-dimensional structures called graphite and boron nitride. Using a transfer matrix method, we calculate the transmission of the graphite structure and we show the crucial role of the coupling with external modes. We study the appearance of allowed modes in the photonic band gap by the introduction of localized defects in the periodicity. Finally, we discuss the properties of opals formed by self-organized silica microspheres, which are very promising for the fabrication of three-dimensional photonic crystals. Les matériaux à bandes interdites photoniques sont des structures diélectriques périodiques qui contrôlent la propagation des ondes électromagnétiques. Nous décrivons la méthode des ondes planes qui permet de calculer les structures de bandes des cristaux photoniques. Par une analyse de la symétrie et une approche perturbative, nous précisons les conditions d'existence des bandes interdites de basse énergie. Nous proposons de nouvelles structures bidimensionnelles appelées graphite et nitrure de bore. Grâce à une méthode de matrices de transfert, nous calculons la transmission de la structure graphite et nous mettons en évidence le rôle fondamental du couplage avec les modes extérieurs. Nous étudions l'apparition de modes permis dans la bande interdite grâce à l'introduction de défauts dans la périodicité. Enfin, nous discutons les propriétés des opales constituées de micro-billes de silice auto-organisées, qui sont très prometteuses pour la fabrication de cristaux photoniques tridimensionnels.

  15. Photonic band gap structure for a ferroelectric photonic crystal at microwave frequencies.

    Science.gov (United States)

    King, Tzu-Chyang; Chen, De-Xin; Lin, Wei-Cheng; Wu, Chien-Jang

    2015-10-10

    In this work, the photonic band gap (PBG) structure in a one-dimensional ferroelectric photonic crystal (PC) is theoretically investigated. We consider a PC, air/(AB)N/air, in which layer A is a dielectric of MgO and layer B is taken to be a ferroelectric of Ba0.55Sr0.45TiO3 (BSTO). With an extremely high value in the dielectric constant in BSTO, the calculated photonic band structure at microwave frequencies exhibits some interesting features that are significantly different from those in a usual dielectric-dielectric PC. First, the photonic transmission band consists of multiple and nearly discrete transmission peaks. Second, the calculated bandwidth of the PBG is nearly unchanged as the angle of incidence varies in the TE wave. The bandwidth will slightly reduce for the TM mode. Thus, a wide omnidirectional PBG can be obtained. Additionally, the effect of the thickness of the ferroelectric layer on the PBG is much more pronounced compared to the dielectric layer thickness. That is, the increase of ferroelectric thickness can significantly decrease the PBG bandwidth.

  16. On the observability of the gamma-ray line flux from dark matter annihilation

    Science.gov (United States)

    Rudaz, S.; Stecker, F. W.

    1991-01-01

    The limits on the possible cosmic gamma-ray line flux from the two-photon annihilation of dark matter in the Galaxy are discussed. These limits are derived using both particle physics and cosmological constraints on dark matter candidates which arise in supersymmetric extensions of the standard model of particle physics. Results are given in terms of allowed and prescribed areas in the flux-energy plane. Then these bounds are used to consider the observability of the line flux above continuum background fluxes using future high-resolution gamma-ray telescopes.

  17. Perspectives: Nanofibers and nanowires for disordered photonics

    Directory of Open Access Journals (Sweden)

    Dario Pisignano

    2017-03-01

    Full Text Available As building blocks of microscopically non-homogeneous materials, semiconductor nanowires and polymer nanofibers are emerging component materials for disordered photonics, with unique properties of light emission and scattering. Effects found in assemblies of nanowires and nanofibers include broadband reflection, significant localization of light, strong and collective multiple scattering, enhanced absorption of incident photons, synergistic effects with plasmonic particles, and random lasing. We highlight recent related discoveries, with a focus on material aspects. The control of spatial correlations in complex assemblies during deposition, the coupling of modes with efficient transmission channels provided by nanofiber waveguides, and the embedment of random architectures into individually coded nanowires will allow the potential of these photonic materials to be fully exploited, unconventional physics to be highlighted, and next-generation optical devices to be achieved. The prospects opened by this technology include enhanced random lasing and mode-locking, multi-directionally guided coupling to sensors and receivers, and low-cost encrypting miniatures for encoders and labels.

  18. A search for point sources of EeV photons

    Energy Technology Data Exchange (ETDEWEB)

    Aab, A. [Universität Siegen, Siegen (Germany); Abreu, P.; Andringa, S. [Laboratório de Instrumentação e Física Experimental de Partículas (LIP) and Instituto Superior Técnico (IST), Universidade de Lisboa (Portugal); Aglietta, M. [Osservatorio Astrofisico di Torino (INAF), Università di Torino and Sezione INFN, Torino (Italy); Ahlers, M. [University of Wisconsin, Madison, WI (United States); Ahn, E. J. [Fermilab, Batavia, IL (United States); Al Samarai, I. [Institut de Physique Nucléaire d' Orsay (IPNO), Université Paris 11, CNRS-IN2P3, Orsay (France); Albuquerque, I. F. M. [Universidade de São Paulo, Instituto de Física, São Paulo, SP (Brazil); Allekotte, I. [Centro Atómico Bariloche and Instituto Balseiro (CNEA-UNCuyo-CONICET), San Carlos de Bariloche (Argentina); Allen, J. [New York University, New York, NY (United States); Allison, P. [Ohio State University, Columbus, OH (United States); Almela, A. [Universidad Tecnológica Nacional—Facultad Regional Buenos Aires, Buenos Aires (Argentina); Castillo, J. Alvarez [Universidad Nacional Autonoma de Mexico, Mexico, D. F. (Mexico); Alvarez-Muñiz, J. [Universidad de Santiago de Compostela (Spain); Batista, R. Alves [Universität Hamburg, Hamburg (Germany); Ambrosio, M.; Aramo, C. [Università di Napoli " Federico II" and Sezione INFN, Napoli (Italy); Aminaei, A. [IMAPP, Radboud University Nijmegen (Netherlands); Anchordoqui, L. [University of Wisconsin, Milwaukee, WI (United States); Arqueros, F. [Universidad Complutense de Madrid, Madrid (Spain); Collaboration: Pierre Auger Collaboration102; and others

    2014-07-10

    Measurements of air showers made using the hybrid technique developed with the fluorescence and surface detectors of the Pierre Auger Observatory allow a sensitive search for point sources of EeV photons anywhere in the exposed sky. A multivariate analysis reduces the background of hadronic cosmic rays. The search is sensitive to a declination band from –85° to +20°, in an energy range from 10{sup 17.3} eV to 10{sup 18.5} eV. No photon point source has been detected. An upper limit on the photon flux has been derived for every direction. The mean value of the energy flux limit that results from this, assuming a photon spectral index of –2, is 0.06 eV cm{sup –2} s{sup –1}, and no celestial direction exceeds 0.25 eV cm{sup –2} s{sup –1}. These upper limits constrain scenarios in which EeV cosmic ray protons are emitted by non-transient sources in the Galaxy.

  19. Neutron radiography imaging with 2-dimensional photon counting method and its problems

    International Nuclear Information System (INIS)

    Ikeda, Y.; Kobayashi, H.; Niwa, T.; Kataoka, T.

    1988-01-01

    A ultra sensitive neutron imaging system has been deviced with a 2-dimensional photon counting camara (ARGUS 100). The imaging system is composed by a 2-dimensional single photon counting tube and a low background vidicon followed with an image processing unit and frame memories. By using the imaging system, electronic neutron radiography (NTV) has been possible under the neutron flux less than 3 x 10 4 n/cm 2 ·s. (author)

  20. Photon activation analysis

    International Nuclear Information System (INIS)

    Segebade, C.; Weise, H.P.; Lutz, G.J.

    1988-01-01

    This book is written to give, in a concentrated form, an overview of the application of photonuclear reactions to activation analysis. Is is intended to accompany the analyst's work in the photon activation analysis laboratory as a practical usable reference. Emphasis is placed upon analytical qualitative and quantitative data which are based upon experimentally obtained results. Therefore, both a source of general information on photon activation analysis and a laboratory manual are combined in this book. The results of the authors' laboratory work and a large amount of literature data are evaluated and presented as completely as possible by the authors. Special knowledge of photonuclear physics is not required; only a very elementary theoretical introduction is given. More detailed information on the physical and mathematical theory should be sought in the special literature which is cited in the relevant chapters. (orig./RB)

  1. Photons in a ball

    Energy Technology Data Exchange (ETDEWEB)

    Mueck, Wolfgang [Universita degli Studi di Napoli ' ' Federico II' ' , Dipartimento di Fisica ' ' Ettore Pancini' ' , Naples (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Napoli, Naples (Italy)

    2015-12-15

    The electromagnetic field inside a spherical cavity of large radius R is considered in the presence of stationary charge and current densities. R provides infra-red regularisation while maintaining gauge invariance. The quantum ground state of physical photons forming the magnetic field is found to be a coherent state with a definite mean occupation number. The electric field, which is determined by the Gauss law constraint, is maintained by a minimum uncertainty coherent state, according to the projection operator approach to the quantisation of constrained systems. The mean occupation number of this state is proportional to the square of the total charge. The results confirm formulae obtained previously from a calculation with a finite photon mass for infra-red regularisation. (orig.)

  2. Photons in a ball

    Energy Technology Data Exchange (ETDEWEB)

    Mück, Wolfgang, E-mail: mueck@na.infn.it [Dipartimento di Fisica “Ettore Pancini”, Università degli Studi di Napoli “Federico II”, Via Cintia, 80126, Naples (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Napoli, Via Cintia, 80126, Naples (Italy)

    2015-12-11

    The electromagnetic field inside a spherical cavity of large radius R is considered in the presence of stationary charge and current densities. R provides infra-red regularisation while maintaining gauge invariance. The quantum ground state of physical photons forming the magnetic field is found to be a coherent state with a definite mean occupation number. The electric field, which is determined by the Gauss law constraint, is maintained by a minimum uncertainty coherent state, according to the projection operator approach to the quantisation of constrained systems. The mean occupation number of this state is proportional to the square of the total charge. The results confirm formulae obtained previously from a calculation with a finite photon mass for infra-red regularisation.

  3. Natural photonic crystals

    Science.gov (United States)

    Vigneron, Jean Pol; Simonis, Priscilla

    2012-10-01

    Photonic structures appeared in nature several hundred millions years ago. In the living world, color is used for communication and this important function strongly impacts the individual chances of survival as well as the chances to reproduce. This has a statistical influence on species populations. Therefore, because they are involved in evolution, natural color-generating structures are - from some point of view - highly optimized. In this short review, a survey is presented of the development of natural photonic crystal-type structures occurring in insects, spiders, birds, fishes and other marine animals, in plants and more, from the standpoint of light-waves propagation. One-, two-, and three-dimensional structures will be reviewed with selected examples.

  4. Essentials of photonics

    CERN Document Server

    Rogers, Alan; Baets, Roel

    2008-01-01

    Photons and ElectronsHistorical SketchThe Wave Nature of LightPolarizationThe Electromagnetic SpectrumEmission and Absorption ProcessesPhoton Statistics The Behaviour of Electrons LasersSummaryWave Properties of LightThe Electromagnetic SpectrumWave RepresentationElectromagnetic WavesReflection and RefractionTotal Internal ReflectionInterference of LightLight WaveguidingInterferometersDiffractionGaussian Beams and Stable Optical ResonatorsPolarization OpticsThe Polarization EllipseCrystal OpticsRetarding WaveplatesA Variable Waveplate: The Soleil-Babinet Compensator Polarizing PrismsLinear BirefringenceCircular BirefringenceElliptical BirefringencePractical Polarization EffectsPolarization AnalysisThe Form of the Jones MatricesLight and Matter Emission, Propagation, and Absorption ProcessesClassical Theory of Light Propagation in Uniform Dielectric Media Optical Dispersion Emission and Absorption of LightOptical Coherence and CorrelationIntroductionMeasure of Coherence Wiener-Khinchin TheoremDual-Beam Interfe...

  5. Photonics an introduction

    CERN Document Server

    Reider, Georg A

    2016-01-01

    This book provides a comprehensive introduction into photonics, from the electrodynamic and quantum mechanic fundamentals to the level of photonic components and building blocks such as lasers, amplifiers, modulators, waveguides, and detectors. The book will serve both as textbook and as a reference work for the advanced student or scientist. Theoretical results are derived from basic principles with convenient, yet state-of-the-art mathematical tools, providing not only deeper understanding but also familiarization with formalisms used in the relevant technical literature and research articles. Among the subject matters treated are polarization optics, pulse and beam propagation, waveguides, light–matter interaction, stationary and transient behavior of lasers, semiconductor optics and lasers (including low-dimensional systems such as quantum wells), detector technology, photometry, and colorimetry. Nonlinear optics are elaborated comprehensively. The book is intended for both students of physics and elect...

  6. Energy deposition model for I-125 photon radiation in water

    Energy Technology Data Exchange (ETDEWEB)

    Fuss, M.C.; Garcia, G. [Instituto de Fisica Fundamental, Consejo Superior de Investigaciones Cientificas (CSIC), Madrid (Spain); Munoz, A.; Oller, J.C. [Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas (CIEMAT), Madrid (Spain); Blanco, F. [Departamento de Fisica Atomica, Molecular y Nuclear, Universidad Complutense de Madrid (Spain); Limao-Vieira, P. [Laboratorio de Colisoes Atomicas e Moleculares, Departamento de Fisica, CEFITEC, FCT-Universidade Nova de Lisboa, Caparica (Portugal); Williart, A.; Garcia, G. [Departamento de Fisica de los Materiales, Universidad Nacional de Educacion a Distancia, Madrid (Spain); Huerga, C.; Tellez, M. [Hospital Universitario La Paz, Madrid (Spain)

    2010-10-15

    In this study, an electron-tracking Monte Carlo algorithm developed by us is combined with established photon transport models in order to simulate all primary and secondary particle interactions in water for incident photon radiation. As input parameters for secondary electron interactions, electron scattering cross sections by water molecules and experimental energy loss spectra are used. With this simulation, the resulting energy deposition can be modelled at the molecular level, yielding detailed information about localization and type of single collision events. The experimental emission spectrum of I-125 seeds, as used for radiotherapy of different tumours, was used for studying the energy deposition in water when irradiating with this radionuclide. (authors)

  7. Energy deposition model for I-125 photon radiation in water

    International Nuclear Information System (INIS)

    Fuss, M.C.; Garcia, G.; Munoz, A.; Oller, J.C.; Blanco, F.; Limao-Vieira, P.; Williart, A.; Garcia, G.; Huerga, C.; Tellez, M.

    2010-01-01

    In this study, an electron-tracking Monte Carlo algorithm developed by us is combined with established photon transport models in order to simulate all primary and secondary particle interactions in water for incident photon radiation. As input parameters for secondary electron interactions, electron scattering cross sections by water molecules and experimental energy loss spectra are used. With this simulation, the resulting energy deposition can be modelled at the molecular level, yielding detailed information about localization and type of single collision events. The experimental emission spectrum of I-125 seeds, as used for radiotherapy of different tumours, was used for studying the energy deposition in water when irradiating with this radionuclide. (authors)

  8. Poynting flux dominated jets challenged by their photospheric emission

    Energy Technology Data Exchange (ETDEWEB)

    Bégué, Damien [The Oskar Klein Centre for Cosmoparticle Physics, AlbaNova, SE-106 91 Stockholm (Sweden); Department of Physics, KTH Royal Institute of Technology, AlbaNova, University Center, SE-106 91 Stockholm (Sweden)

    2015-12-17

    One of the key open question for gamma-ray bursts (GRBs) jets, is the magnetization of the outflow. Here we consider the photospheric emission of Poynting flux dominated outflows, when the dynamics is mediated by magnetic reconnection. We show that thermal three-particle processes, responsible for the thermalization of the plasma, become inefficient far below the photosphere. Conservation of the total photon number above this radius, combined with Compton scattering below the photosphere enforces kinetic equilibrium between electrons and photons. This, in turn, leads to an increase in the observed photon temperature, which reaches ≳ 8 MeV (observed energy) when decoupling the plasma at the photosphere. This result is weakly dependent on the free model parameters. The predicted peak energy is more than an order of magnitude higher than the observed peak energy of most GRBs, which puts strong constraints on the magnetization of these outflows.

  9. Three-photon micromasers

    International Nuclear Information System (INIS)

    Obada, A.S.F.; Abu Sitta, A.M.M.; Yasin, O.M.

    1993-01-01

    A non-degenerate 3-photon micromaser is analyzed. A 4-level atom is taken and 3 models of the field are considered. The model is solved for the case of resonance and the master equation for the density matrix is obtained. Semi-analytical solutions are obtained under specified approximations. Three modes can exist depending on the time of interaction. (author). 10 refs, 2 figs

  10. The Open Flux Problem

    International Nuclear Information System (INIS)

    Linker, J. A.; Caplan, R. M.; Downs, C.; Riley, P.; Mikic, Z.; Lionello, R.; Henney, C. J.; Arge, C. N.; Liu, Y.; Derosa, M. L.; Yeates, A.; Owens, M. J.

    2017-01-01

    The heliospheric magnetic field is of pivotal importance in solar and space physics. The field is rooted in the Sun’s photosphere, where it has been observed for many years. Global maps of the solar magnetic field based on full-disk magnetograms are commonly used as boundary conditions for coronal and solar wind models. Two primary observational constraints on the models are (1) the open field regions in the model should approximately correspond to coronal holes (CHs) observed in emission and (2) the magnitude of the open magnetic flux in the model should match that inferred from in situ spacecraft measurements. In this study, we calculate both magnetohydrodynamic and potential field source surface solutions using 14 different magnetic maps produced from five different types of observatory magnetograms, for the time period surrounding 2010 July. We have found that for all of the model/map combinations, models that have CH areas close to observations underestimate the interplanetary magnetic flux, or, conversely, for models to match the interplanetary flux, the modeled open field regions are larger than CHs observed in EUV emission. In an alternative approach, we estimate the open magnetic flux entirely from solar observations by combining automatically detected CHs for Carrington rotation 2098 with observatory synoptic magnetic maps. This approach also underestimates the interplanetary magnetic flux. Our results imply that either typical observatory maps underestimate the Sun’s magnetic flux, or a significant portion of the open magnetic flux is not rooted in regions that are obviously dark in EUV and X-ray emission.

  11. Active Photonic Devices

    Science.gov (United States)

    Della Valle, Giuseppe; Osellame, Roberto

    The chapter is devoted to active photonic devices fabricated by fs-laser writing. After a brief introduction focused on the role played by fs-laser written active devices, Sect. 10.2 briefly reviews the spectroscopical properties of the most interesting active ions so far exploited, namely erbium, ytterbium, neodimium, and bismuth. In Sect. 10.3 the main figures of merit for an active waveguide, namely the internal gain, the insertion loss, the net gain, and the noise figure are introduced and the experimental procedure for accurate gain measurement is also detailed. A thorough review of the active photonic devices demonstrated with the femtosecond laser microfabrication technique is presented in Sects. 10.4, 10.5, and 10.6, where several active waveguides and amplifiers, prototypal lasers, as well as more functionalized laser devices (operating under single longitudinal mode or stable mode-locking regime) are illustrated, respectively. Finally, conclusions and future perspectives of femtosecond-laser micromachining of active photonic devices are provided.

  12. Photon-activation therapy

    International Nuclear Information System (INIS)

    Fairchild, R.G.; Bond, V.P.

    1982-01-01

    Photon Activation Therapy (PAT) is a technique in which radiation dose to tumor is enhanced via introduction of stable 127 I in the form of iodinated deoxyuridine (IdUrd). Stimulation of cytotoxic effects from IdUrd is accomplished by activation with external (or implanted) radiation sources. Thus, accumulations of this nucleoside in actively competing cellpools do not preclude therapy in so far as such tissues can be excluded from the radiation field. Calculations show that 5% replacement of thymidine (Tyd) in tumor DNA should enhance the biological effectiveness of a given photon radiotherapy dose by a factor of approx. 3. Proportionally higher gains would result from higher replacements of Tyd and IdUrd. In addition, biological response is enhanced by chemical sensitization with IdUrd. The data indicate that damage from photon activation as well as chemical sensitization does not repair. Thus, at low dose rates, a further increase in therapeutic gain should accrue as normal tissues are allowed to repair and regenerate. A samarium-145 source has been developed for PAT, with activating x-ray energies of from 38 to 45 keV. Favorable clinical results can be expected through the use of IdUrd and protracted irradiations with low energy x-rays. In particular, PAT may provide unique advantages at selected sites such as brain, or head and neck tumors

  13. Slotted Photonic Crystal Sensors

    Science.gov (United States)

    Scullion, Mark G.; Krauss, Thomas F.; Di Falco, Andrea

    2013-01-01

    Optical biosensors are increasingly being considered for lab-on-a-chip applications due to their benefits such as small size, biocompatibility, passive behaviour and lack of the need for fluorescent labels. The light guiding mechanisms used by many of them results in poor overlap of the optical field with the target molecules, reducing the maximum sensitivity achievable. This review article presents a new platform for optical biosensors, namely slotted photonic crystals, which provide higher sensitivities due to their ability to confine, spatially and temporally, the optical mode peak within the analyte itself. Loss measurements showed values comparable to standard photonic crystals, confirming their ability to be used in real devices. A novel resonant coupler was designed, simulated, and experimentally tested, and was found to perform better than other solutions within the literature. Combining with cavities, microfluidics and biological functionalization allowed proof-of-principle demonstrations of protein binding to be carried out. Higher sensitivities were observed in smaller structures than possible with most competing devices reported in the literature. This body of work presents slotted photonic crystals as a realistic platform for complete on-chip biosensing; addressing key design, performance and application issues, whilst also opening up exciting new ideas for future study. PMID:23503295

  14. Photonic Molecule Lasers Revisited

    Science.gov (United States)

    Gagnon, Denis; Dumont, Joey; Déziel, Jean-Luc; Dubé, Louis J.

    2014-05-01

    Photonic molecules (PMs) formed by coupling two or more optical resonators are ideal candidates for the fabrication of integrated microlasers, photonic molecule lasers. Whereas most calculations on PM lasers have been based on cold-cavity (passive) modes, i.e. quasi-bound states, a recently formulated steady-state ab initio laser theory (SALT) offers the possibility to take into account the spectral properties of the underlying gain transition, its position and linewidth, as well as incorporating an arbitrary pump profile. We will combine two theoretical approaches to characterize the lasing properties of PM lasers: for two-dimensional systems, the generalized Lorenz-Mie theory will obtain the resonant modes of the coupled molecules in an active medium described by SALT. Not only is then the theoretical description more complete, the use of an active medium provides additional parameters to control, engineer and harness the lasing properties of PM lasers for ultra-low threshold and directional single-mode emission. We will extend our recent study and present new results for a number of promising geometries. The authors acknowledge financial support from NSERC (Canada) and the CERC in Photonic Innovations of Y. Messaddeq.

  15. Effect of Temperature on Photonic Band Gaps in Semiconductor-Based One-Dimensional Photonic Crystal

    Directory of Open Access Journals (Sweden)

    J. V. Malik

    2013-01-01

    Full Text Available The effect of the temperature and angle of incidence on the photonic band gap (PBG for semiconductor-based photonic crystals has been investigated. The refractive index of semiconductor layers is taken as a function of temperature and wavelength. Three structures have been analyzed by choosing a semiconductor material for one of the two materials in a bilayer structure. The semiconductor material is taken to be ZnS, Si, and Ge with air in first, second, and third structures respectively. The shifting of band gaps with temperature is more pronounced in the third structure than in the first two structures because the change in the refractive index of Ge layers with temperature is more than the change of refractive index of both ZnS and Si layers with temperature. The propagation characteristics of the proposed structures are analyzed by transfer matrix method.

  16. Determination of the atmospheric neutrino fluxes from atmospheric neutrino data

    International Nuclear Information System (INIS)

    Gonzalez-Garcia, C.; Maltoni, M.; Rojo, J.

    2006-06-01

    The precise knowledge of the atmospheric neutrino fluxes is a key ingredient in the interpretation of the results from any atmospheric neutrino experiment. In the standard data analysis, these fluxes are theoretical inputs obtained from sophisticated numerical calculations based on the convolution of the primary cosmic ray spectrum with the expected yield of neutrinos per incident cosmic ray. In this work we present an alternative approach to the determination of the atmospheric neutrino fluxes based on the direct extraction from the experimental data on neutrino event rates. The extraction is achieved by means of a combination of artificial neural networks as interpolants and Monte Carlo methods for faithful error estimation. (author)

  17. Omnidirectional photonic band gap enlarged by one-dimensional ternary unmagnetized plasma photonic crystals based on a new Fibonacci quasiperiodic structure

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Haifeng [College of Electronic and Information Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China); Nanjing Artillery Academy, Nanjing 211132 (China); Liu Shaobin [College of Electronic and Information Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China); State Key Laboratory of Millimeter Waves of Southeast University, Nanjing Jiangsu 210096 (China); Kong Xiangkun; Bian Borui; Dai Yi [College of Electronic and Information Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China)

    2012-11-15

    In this paper, an omnidirectional photonic band gap realized by one-dimensional ternary unmagnetized plasma photonic crystals based on a new Fibonacci quasiperiodic structure, which is composed of homogeneous unmagnetized plasma and two kinds of isotropic dielectric, is theoretically studied by the transfer matrix method. It has been shown that such an omnidirectional photonic band gap originates from Bragg gap in contrast to zero-n gap or single negative (negative permittivity or negative permeability) gap, and it is insensitive to the incidence angle and the polarization of electromagnetic wave. From the numerical results, the frequency range and central frequency of omnidirectional photonic band gap can be tuned by the thickness and density of the plasma but cease to change with increasing Fibonacci order. The bandwidth of omnidirectional photonic band gap can be notably enlarged. Moreover, the plasma collision frequency has no effect on the bandwidth of omnidirectional photonic band gap. It is shown that such new structure Fibonacci quasiperiodic one-dimensional ternary plasma photonic crystals have a superior feature in the enhancement of frequency range of omnidirectional photonic band gap compared with the conventional ternary and conventional Fibonacci quasiperiodic ternary plasma photonic crystals.

  18. Monte Carlo studies on photon interactions in radiobiological experiments.

    Science.gov (United States)

    Shahmohammadi Beni, Mehrdad; Krstic, D; Nikezic, D; Yu, K N

    2018-01-01

    X-ray and γ-ray photons have been widely used for studying radiobiological effects of ionizing radiations. Photons are indirectly ionizing radiations so they need to set in motion electrons (which are a directly ionizing radiation) to perform the ionizations. When the photon dose decreases to below a certain limit, the number of electrons set in motion will become so small that not all cells in an "exposed" cell population can get at least one electron hit. When some cells in a cell population are not hit by a directly ionizing radiation (in other words not irradiated), there will be rescue effect between the irradiated cells and non-irradiated cells, and the resultant radiobiological effect observed for the "exposed" cell population will be different. In the present paper, the mechanisms underlying photon interactions in radiobiological experiments were studied using our developed NRUphoton computer code, which was benchmarked against the MCNP5 code by comparing the photon dose delivered to the cell layer underneath the water medium. The following conclusions were reached: (1) The interaction fractions decreased in the following order: 16O > 12C > 14N > 1H. Bulges in the interaction fractions (versus water medium thickness) were observed, which reflected changes in the energies of the propagating photons due to traversals of different amount of water medium as well as changes in the energy-dependent photon interaction cross-sections. (2) Photoelectric interaction and incoherent scattering dominated for lower-energy (10 keV) and high-energy (100 keV and 1 MeV) incident photons. (3) The fractions of electron ejection from different nuclei were mainly governed by the photoelectric effect cross-sections, and the fractions from the 1s subshell were the largest. (4) The penetration fractions in general decreased with increasing medium thickness, and increased with increasing incident photon energy, the latter being explained by the corresponding reduction in

  19. INDIA: Photon multiplicity detector

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    Full text: The team of Indian scientists from Calcutta's Variable Energy Cyclotron Centre, Bhubaneswar Institute of Physics, Panjab (Chandigarh), Rajasthan (Jaipur) and Jammu in collaboration with GSI Darmstadt have contributed a large and highly granular preshower photon multiplicity detector (PMD) for the WA98 experiment at the CERN SPS proton synchrotron. This experiment studies high energy collisions of lead ions and will measure both charged particle and photon multiplicity in a large overlap region. The motivation for measuring photon multiplicity in ultra-relativistic heavy ion collisions stems from theoretical predictions of changes in the relative production of photons and charged particles in the phase transition of hadronic matter to quarkgluon plasma and its subsequent hadronization. The photon multiplicity detector consists of a matrix of scintillator pads placed in light-tight boxes and mounted behind the lead converter plates. The light from the scintillator pads is transported to the readout system using wavelength shifting (WLS) fibres. Developing on the team's earlier experience with a smaller version for the WA93 experiment (September 1991, page 16), several modifications were incorporated to improve light collection and transport. Use of improved WLS fibres, short WLS pieces to minimize self-absorption, and thermal splicing with long clear fibres were some of the important changes incorporated. Tests showed signficantly improved light collection. The scintillator pads were fabricated at all the five collaborating centres in India and the complicated assembly in the detector box modules carried out at the Variable Energy Cyclotron Centre, Calcutta. More than 400 lead converter plates were machined in Calcutta to rigorous tolerances of 0.2 mm. The assembled detector box modules and lead plates were shipped to CERN in spring 1994 for tests and installation. The WA98 PMD consists of over 50,000 scintillator pads of sizes varying from 15 to

  20. Comparative Investigation of Ce3+ Doped Scintillators in a Wide Range of Photon Energies Covering X-ray CT, Nuclear Medicine and Megavoltage Radiation Therapy Portal Imaging Applications

    Science.gov (United States)

    Valais, Ioannis G.; Michail, Christos M.; David, Stratos L.; Liaparinos, Panagiotis F.; Fountos, George P.; Paschalis, Theodoros V.; Kandarakis, Ioannis S.; Panayiotakis, George S.

    2010-02-01

    The aim of the present work is to study the performance of scintillators currently used in PET and animal PET systems, under conditions met in radiation therapy and PET/CT imaging. The results of this study will be useful in applications where both CT and PET photons as well as megavoltage cone beam CT (MV CBCT) photons could be detected using a common detector unit. To this aim crystal samples of GSO, LSO, LYSO, LuYAP and YAP scintillators, doped with cerium (Ce+3) were examined under a wide energy range of photon energies. Evaluation was performed by determining the absolute luminescence efficiency (emitted light flux over incident X-ray exposure) in the energy range employed in X-ray CT, in Nuclear Medicine (70 keV up to 662 keV) and in radiotherapy 6 MV (approx. 2.0 MeV mean energy)-18 MV (approx. 4.5 MeV mean energy). Measurements were performed using an experimental set-up based on a photomultiplier coupled to a light integration sphere. The emission spectrum under X-ray excitation was measured, using an optical grating monochromator, to determine the spectral compatibility to optical photon detectors incorporated in medical imaging systems. Maximum absolute luminescence efficiency values were observed at 70 keV for YAP:Ce and LuYAP:Ce and at 140 keV for LSO:Ce, LYSO:Ce and GSO:Ce. Highest absolute efficiency between the scintillators examined was observed for LSO:Ce, followed by LYSO:Ce. The detector optical gain (DOG) exhibited a significant variation with the increase of energy between 70 keV to 2.0 MeV. All scintillators exhibited low compatibility when combined with GaAsP (G5645) photodetector.

  1. First Swiss bachelor in Photonics

    Science.gov (United States)

    Leutenegger, Tobias; Studer, Bruno

    2015-10-01

    Swissmem, the Swiss association of mechanical and electrical engineering industries, founded a new photonics group in 2013. This reflects the importance of this key technology for Switzerland. Swissmem requested from the Swiss Universities of Applied Sciences to introduce a new bachelor program to fulfill the increasing demand of the Swiss industry of young academics in the field of photonics. Optech Consulting is investigating the Swiss photonics market since many years on behalf of Swissphotonics, the Swiss national thematic network for photonics. The study concluded that the total production volume of the Swiss photonics industry in the year 2013 was 3 billion Swiss francs and a slight growth is expected for 2014. The University of Applied Science HTW Chur is located in the Eastern part of Switzerland. This area of the Rhine valley is a technology cluster of innovative companies in the field of optics and electronics. The industry is growing and the R&D departments of the worldwide active companies are lacking well-educated photonics engineers. The HTW Chur is dedicated to establish the first Swiss bachelor in Photonics. Supported by strong industrial players and an excellent network, the HTW Chur developed different job descriptions and a complete curriculum, which reflect the needs of the Swiss photonics industry. Almost 60% of the ECTS of this national degree program are assigned to photonics specific courses and the practical projects are organized in close collaboration with the photonics industry. Curriculum, job descriptions and the industrial needs will be discussed in detail in this paper.

  2. Performance tests of a 2-meter grasshopper monochromator at photon factory

    International Nuclear Information System (INIS)

    Yanagihara, Mihiro; Maezawa, Hideki; Sasaki, Taizo; Suzuki, Yoshio; Iguchi, Yasuo.

    1984-12-01

    A 2-meter grasshopper monochromator was installed and adjusted at BL-11A in Photon Factory, and performance tests were carried out. The usable photon energy range for the monochromator is 90 to 1000 eV for a 2400 grooves/mm grating, and the flux is 10 8 - 10 9 photons/sec for entrance and exit slit widths of 15 μm. A resolving power of about 2000 is realized at 250 eV for this slit width. (author)

  3. Quantum random-number generator based on a photon-number-resolving detector

    International Nuclear Information System (INIS)

    Ren Min; Wu, E; Liang Yan; Jian Yi; Wu Guang; Zeng Heping

    2011-01-01

    We demonstrated a high-efficiency quantum random number generator which takes inherent advantage of the photon number distribution randomness of a coherent light source. This scheme was realized by comparing the photon flux of consecutive pulses with a photon number resolving detector. The random bit generation rate could reach 2.4 MHz with a system clock of 6.0 MHz, corresponding to a random bit generation efficiency as high as 40%. The random number files passed all the stringent statistical tests.

  4. High resolution reversible color images on photonic crystal substrates.

    Science.gov (United States)

    Kang, Pilgyu; Ogunbo, Samuel O; Erickson, David

    2011-08-16

    When light is incident on a crystalline structure with appropriate periodicity, some colors will be preferentially reflected (Joannopoulos, J. D.; Meade, R. D.; Winn, J. N. Photonic crystals: molding the flow of light; Princeton University Press: Princeton, NJ, 1995; p ix, 137 pp). These photonic crystals and the structural color they generate represent an interesting method for creating reflective displays and drawing devices, since they can achieve a continuous color response and do not require back lighting (Joannopoulos, J. D.; Villeneuve, P. R.; Fan, S. H. Photonic crystals: Putting a new twist on light. Nature 1997, 386, 143-149; Graham-Rowe, D. Tunable structural colour. Nat. Photonics 2009, 3, 551-553.; Arsenault, A. C.; Puzzo, D. P.; Manners, I.; Ozin, G. A. Photonic-crystal full-colour displays. Nat. Photonics 2007, 1, 468-472; Walish, J. J.; Kang, Y.; Mickiewicz, R. A.; Thomas, E. L. Bioinspired Electrochemically Tunable Block Copolymer Full Color Pixels. Adv. Mater.2009, 21, 3078). Here we demonstrate a technique for creating erasable, high-resolution, color images using otherwise transparent inks on self-assembled photonic crystal substrates (Fudouzi, H.; Xia, Y. N. Colloidal crystals with tunable colors and their use as photonic papers. Langmuir 2003, 19, 9653-9660). Using inkjet printing, we show the ability to infuse fine droplets of silicone oils into the crystal, locally swelling it and changing the reflected color (Sirringhaus, H.; Kawase, T.; Friend, R. H.; Shimoda, T.; Inbasekaran, M.; Wu, W.; Woo, E. P. High-resolution inkjet printing of all-polymer transistor circuits. Science 2000, 290, 2123-2126). Multicolor images with resolutions as high as 200 μm are obtained from oils of different molecular weights with the lighter oils being able to penetrate deeper, yielding larger red shifts. Erasing of images is done simply by adding a low vapor pressure oil which dissolves the image, returning the substrate to its original state.

  5. MCFRS Incidents by Station

    Data.gov (United States)

    Montgomery County of Maryland — This dataset contains the monthly summary data indicating incident occurred in each fire station response area. The summary data is the incident count broken down by...

  6. Police Incident Reports Written

    Data.gov (United States)

    Town of Chapel Hill, North Carolina — This table contains incident reports filed with the Chapel Hill Police Department. Multiple incidents may have been reported at the same time. The most serious...

  7. TART calculations of neutron attenuation and neutron-induced photons on 5% and 20% borated polyethylene slabs

    International Nuclear Information System (INIS)

    Wuest, C.R.

    1993-01-01

    The coupled neutron/photon transport code TART has been used to calculate the attenuation of neutrons and the production of induced photons for neutrons incidents on 5% and 20% borated polyethylene slabs. The neutron attenuation lengths are found to be 2.4 cm and 2.9 cm for 5% and 20% borated polyethylene, respectively

  8. Frequency Agile Microwave Photonic Notch Filter in a Photonic Chip

    Science.gov (United States)

    2016-10-21

    AFRL-AFOSR-JP-TR-2016-0087 Frequency Agile Microwave Photonic Notch Filter in a Photonic Chip Benjamin Eggleton UNIVERSITY OF SYDNEY Final Report 10...REPORT TYPE      Final 3.  DATES COVERED (From - To)      14 May 2014 to 13 May 2016 4.  TITLE AND SUBTITLE Frequency Agile Microwave Photonic Notch Filter...in a Photonic Chip 5a.  CONTRACT NUMBER 5b.  GRANT NUMBER FA2386-14-1-4030 5c.  PROGRAM ELEMENT NUMBER 61102F 6.  AUTHOR(S) Benjamin Eggleton, David

  9. Incident Information Management Tool

    CERN Document Server

    Pejovic, Vladimir

    2015-01-01

    Flaws of\tcurrent incident information management at CMS and CERN\tare discussed. A new data\tmodel for future incident database is\tproposed and briefly described. Recently developed draft version of GIS-­‐based tool for incident tracking is presented.

  10. Photonic crystals in epitaxial semiconductors

    CERN Document Server

    La Rue, R M de

    1998-01-01

    The title of the paper uses the expression "photonic crystals". By photonic crystals, we mean regular periodic structures with a substantial refractive index variation in one-, two- or three- dimensional space. Such crystals can $9 exist naturally, for example natural opal, but are more typically fabricated by people. Under sufficiently strong conditions, i.e., sufficiently large refractive index modulation, correct size of structural components, and $9 appropriate rotational and translational symmetry, these crystals exhibit the characteristics of a photonic bandgap (PBG) structure. In a full photonic bandgap structure there is a spectral stop band for electromagnetic waves $9 propagating in any direction through the structure and with an arbitrary state of polarization. This behavior is of interest both from a fundamental viewpoint and from the point of view of novel applications in photonic devices. The $9 paper gives an outline review of work on photonic crystals carried out by the Optoelectronics Researc...

  11. All-photonic quantum repeaters

    Science.gov (United States)

    Azuma, Koji; Tamaki, Kiyoshi; Lo, Hoi-Kwong

    2015-01-01

    Quantum communication holds promise for unconditionally secure transmission of secret messages and faithful transfer of unknown quantum states. Photons appear to be the medium of choice for quantum communication. Owing to photon losses, robust quantum communication over long lossy channels requires quantum repeaters. It is widely believed that a necessary and highly demanding requirement for quantum repeaters is the existence of matter quantum memories. Here we show that such a requirement is, in fact, unnecessary by introducing the concept of all-photonic quantum repeaters based on flying qubits. In particular, we present a protocol based on photonic cluster-state machine guns and a loss-tolerant measurement equipped with local high-speed active feedforwards. We show that, with such all-photonic quantum repeaters, the communication efficiency scales polynomially with the channel distance. Our result paves a new route towards quantum repeaters with efficient single-photon sources rather than matter quantum memories. PMID:25873153

  12. Coupled electron-photon radiation transport

    International Nuclear Information System (INIS)

    Lorence, L.; Kensek, R.P.; Valdez, G.D.; Drumm, C.R.; Fan, W.C.; Powell, J.L.

    2000-01-01

    Massively-parallel computers allow detailed 3D radiation transport simulations to be performed to analyze the response of complex systems to radiation. This has been recently been demonstrated with the coupled electron-photon Monte Carlo code, ITS. To enable such calculations, the combinatorial geometry capability of ITS was improved. For greater geometrical flexibility, a version of ITS is under development that can track particles in CAD geometries. Deterministic radiation transport codes that utilize an unstructured spatial mesh are also being devised. For electron transport, the authors are investigating second-order forms of the transport equations which, when discretized, yield symmetric positive definite matrices. A novel parallelization strategy, simultaneously solving for spatial and angular unknowns, has been applied to the even- and odd-parity forms of the transport equation on a 2D unstructured spatial mesh. Another second-order form, the self-adjoint angular flux transport equation, also shows promise for electron transport

  13. The Photon Collider at Tesla

    Science.gov (United States)

    Badelek, B.; Blöchinger, C.; Blümlein, J.; Boos, E.; Brinkmann, R.; Burkhardt, H.; Bussey, P.; Carimalo, C.; Chyla, J.; Çiftçi, A. K.; Decking, W.; de Roeck, A.; Fadin, V.; Ferrario, M.; Finch, A.; Fraas, H.; Franke, F.; Galynskii, M.; Gamp, A.; Ginzburg, I.; Godbole, R.; Gorbunov, D. S.; Gounaris, G.; Hagiwara, K.; Han, L.; Heuer, R.-D.; Heusch, C.; Illana, J.; Ilyin, V.; Jankowski, P.; Jiang, Y.; Jikia, G.; Jönsson, L.; Kalachnikow, M.; Kapusta, F.; Klanner, R.; Klassen, M.; Kobayashi, K.; Kon, T.; Kotkin, G.; Krämer, M.; Krawczyk, M.; Kuang, Y. P.; Kuraev, E.; Kwiecinski, J.; Leenen, M.; Levchuk, M.; Ma, W. F.; Martyn, H.; Mayer, T.; Melles, M.; Miller, D. J.; Mtingwa, S.; Mühlleitner, M.; Muryn, B.; Nickles, P. V.; Orava, R.; Pancheri, G.; Penin, A.; Potylitsyn, A.; Poulose, P.; Quast, T.; Raimondi, P.; Redlin, H.; Richard, F.; Rindani, S. D.; Rizzo, T.; Saldin, E.; Sandner, W.; Schönnagel, H.; Schneidmiller, E.; Schreiber, H. J.; Schreiber, S.; Schüler, K. P.; Serbo, V.; Seryi, A.; Shanidze, R.; da Silva, W.; Söldner-Rembold, S.; Spira, M.; Stasto, A. M.; Sultansoy, S.; Takahashi, T.; Telnov, V.; Tkabladze, A.; Trines, D.; Undrus, A.; Wagner, A.; Walker, N.; Watanabe, I.; Wengler, T.; Will, I.; Wipf, S.; Yavaş, Ö.; Yokoya, K.; Yurkov, M.; Zarnecki, A. F.; Zerwas, P.; Zomer, F.

    High energy photon colliders (γγ,γe) are based on e-e- linear colliders where high energy photons are produced using Compton scattering of laser light on high energy electrons just before the interaction point. This paper is a part of the Technical Design Report of the linear collider TESLA.1 Physics program, possible parameters and some technical aspects of the photon collider at TESLA are discussed.

  14. Topological Order in Silicon Photonics

    Science.gov (United States)

    2017-02-07

    AFRL-AFOSR-VA-TR-2017-0037 Topological orders in Silicon photonics Mohammad Hafezi MARYLAND UNIV COLLEGE PARK 3112 LEE BLDG COLLEGE PARK, MD 20742...15 SEP 2016 4. TITLE AND SUBTITLE Topological Order in Silicon Photonics 5a. CONTRACT NUMBER 5b. GRANT NUMBER FA-9550-14-1-0267 5c. PROGRAM...matter to ultra cold gases. Recently, photonic systems have been under investigation to explore various types of topological orders and to potentially

  15. CERN manufactured hybrid photon detectors

    CERN Multimedia

    Maximilien Brice

    2004-01-01

    These hybrid photon detectors (HPDs) produce an electric signal from a single photon. An electron is liberated from a photocathode and accelerated to a silicon pixel array allowing the location of the photon on the cathode to be recorded. The electronics and optics for these devices have been developed in close collaboration with industry. HPDs have potential for further use in astrophysics and medical imaging.

  16. Silicon photonic heater-modulator

    Science.gov (United States)

    Zortman, William A.; Trotter, Douglas Chandler; Watts, Michael R.

    2015-07-14

    Photonic modulators, methods of forming photonic modulators and methods of modulating an input optical signal are provided. A photonic modulator includes a disk resonator having a central axis extending along a thickness direction of the disk resonator. The disk resonator includes a modulator portion and a heater portion. The modulator portion extends in an arc around the central axis. A PN junction of the modulator portion is substantially normal to the central axis.

  17. Silicon photonic integration in telecommunications

    Directory of Open Access Journals (Sweden)

    Christopher Richard Doerr

    2015-08-01

    Full Text Available Silicon photonics is the guiding of light in a planar arrangement of silicon-based materials to perform various functions. We focus here on the use of silicon photonics to create transmitters and receivers for fiber-optic telecommunications. As the need to squeeze more transmission into a given bandwidth, a given footprint, and a given cost increases, silicon photonics makes more and more economic sense.

  18. Photonic based marine radar demonstrator

    OpenAIRE

    Laghezza, Francesco; Scotti, Filippo; Ghelfi, Paolo; Bogoni, Antonella; Banchi, Luca; Malaspina, Vincenzo; Serafino, Giovanni

    2015-01-01

    This paper presents the results obtained during the field trial experiments of the first photonic-based radar system demonstrator, in a real maritime environment. The developed demonstrator exploits photonic technologies for both the generation and the detection of radar RF signals, allowing increased performance even in term of system flexibility. The photonic radar performance have been compared with a state of the art commercial system for maritime applications provide...

  19. Nanodiamond Emitters of Single Photons

    Directory of Open Access Journals (Sweden)

    Vlasov I.I.

    2015-01-01

    Full Text Available Luminescence properties of single color centers were studied in nanodiamonds of different origin. It was found that single photon emitters could be realized even in molecularsized diamond (less than 2 nm capable of housing stable luminescent center “silicon-vacancy.” First results on incorporation of single-photon emitters based on luminescent nanodiamonds in plasmonic nanoantennas to enhance the photon count rate and directionality, diminish the fluorescence decay time, and provide polarization selectivity are presented.

  20. Silicon applications in photonics

    Science.gov (United States)

    Jelenski, A. M.; Gawlik, G.; Wesolowski, M.

    2005-09-01

    Silicon technology enabled the miniaturization of computers and other electronic system for information storage, transmission and transformation allowing the development of the Knowledge Based Information Society. Despite the fact that silicon roadmap indicates possibilities for further improvement, already now the speed of electrons and the bandwidth of electronic circuits are not sufficient and photons are commonly utilized for signal transmission through optical fibers and purely photonic circuits promise further improvements. However materials used for these purposes II/V semiconductor compounds, glasses make integration of optoelectronic circuits with silicon complex an expensive. Therefore research on light generation, transformation and transmission in silicon is very active and recently, due to nanotechnology some spectacular results were achieved despite the fact that mechanisms of light generation are still discussed. Three topics will be discussed. Porous silicon was actively investigated due to its relatively efficient electroluminescence enabling its use in light sources. Its index of refraction, differs considerably from the index of silicon, and this allows its utilization for Bragg mirrors, wave guides and photonic crystals. The enormous surface enables several applications on medicine and biotechnology and in particular due to the effective chemo-modulation of its refracting index the design of optical chemosensors. An effective luminescence of doped and undoped nanocrystalline silicon opened another way for the construction of silicon light sources. Optical amplification was already discovered opening perspectives for the construction of nanosilicon lasers. Luminescences was observed at red, green and blue wavelengths. The used technology of silica and ion implantation are compatible with commonly used CMOS technology. Finally the recently developed and proved idea of optically pumped silicon Raman lasers, using nonlinearity and vibrations in the

  1. Higgs-photon resonances

    Energy Technology Data Exchange (ETDEWEB)

    Dobrescu, Bogdan A.; Fox, Patrick J.; Kearney, John [Fermilab, Theoretical Physics Department, Batavia, IL (United States)

    2017-10-15

    We study models that produce a Higgs boson plus photon (h{sup 0}γ) resonance at the LHC. When the resonance is a Z{sup '} boson, decays to h{sup 0}γ occur at one loop. If the Z{sup '} boson couples at tree level to quarks, then the h{sup 0}γ branching fraction is typically of order 10{sup -5} or smaller. Nevertheless, there are models that would allow the observation of Z{sup '} → h{sup 0}γ at √(s) = 13 TeV with a cross section times branching fraction larger than 1 fb for a Z{sup '} mass in the 200-450 GeV range, and larger than 0.1 fb for a mass up to 800 GeV. The one-loop decay of the Z{sup '} into lepton pairs competes with h{sup 0}γ, even if the Z{sup '} couplings to leptons vanish at tree level. We also present a model in which a Z{sup '} boson decays into a Higgs boson and a pair of collimated photons, mimicking an h{sup 0}γ resonance. In this model, the h{sup 0}γ resonance search would be the discovery mode for a Z{sup '} as heavy as 2 TeV. When the resonance is a scalar, although decay to h{sup 0}γ is forbidden by angular momentum conservation, the h{sup 0} plus collimated photons channel is allowed. We comment on prospects of observing an h{sup 0}γ resonance through different Higgs decays, on constraints from related searches, and on models where h{sup 0} is replaced by a nonstandard Higgs boson. (orig.)

  2. Multichannel strobed photon counter

    International Nuclear Information System (INIS)

    Ganichev, V.A.; Elkin, O.K.; Zajdel', I.N.; Kozlov, V.A.; Lyapunov, G.M.; Malinovskij, A.L.; Ryabov, E.A.; Sil'kis, Eh.G.

    1987-01-01

    A multichannel strobed photon counter operating in the visible spectrum range is developed on the basis of luminescence amplifier with a microchannel plate and LI-706 supervidicon. The pulses overvoltaged supply mode of a microchannel plate has brought about amplification necessary for input into plateau of the counting characteristics and photoacceptor strobing in the nanosecond (140 ns) range. Device noises are practically completely determined by noises in luminescence amplifier photocathode. the above multichannel counter has a durable stability of parameters, electronic system simplicity and small dimensions of the photoacceptor

  3. Spaceborne Photonics Institute

    Science.gov (United States)

    Venable, D. D.; Farrukh, U. O.; Han, K. S.; Hwang, I. H.; Jalufka, N. W.; Lowe, C. W.; Tabibi, B. M.; Lee, C. J.; Lyons, D.; Maclin, A.

    1994-01-01

    This report describes in chronological detail the development of the Spaceborne Photonics Institute as a sustained research effort at Hampton University in the area of optical physics. This provided the research expertise to initiate a PhD program in Physics. Research was carried out in the areas of: (1) modelling of spaceborne solid state laser systems; (2) amplified spontaneous emission in solar pumped iodine lasers; (3) closely simulated AM0 CW solar pumped iodine laser and repeatedly short pulsed iodine laser oscillator; (4) a materials spectroscopy and growth program; and (5) laser induced fluorescence and atomic and molecular spectroscopy.

  4. Photonic crystal optofluidic biolaser

    Science.gov (United States)

    Mozaffari, Mohammad Hazhir; Ebnali-Heidari, Majid; Abaeiani, Gholamreza; Moravvej-Farshi, Mohammad Kazem

    2017-09-01

    Optofluidic biolasers are recently being considered in bioanalytical applications due to their advantages over the conventional biosensing methods Exploiting a photonic crystal slab with selectively dye-infiltrated air holes, we propose a new optofluidic heterostructure biolaser, with a power conversion efficiency of 25% and the spectral linewidth of 0.24 nm. Simulations show that in addition to these satisfactory lasing characteristics, the proposed lab-on-a-chip biolaser is highly sensitive to the minute biological changes that may occur in its cavity and can detect a single virus with a radius as small as 13 nm.

  5. Spectral resolution and high-flux capability tradeoffs in CdTe detectors for clinical CT.

    Science.gov (United States)

    Hsieh, Scott S; Rajbhandary, Paurakh L; Pelc, Norbert J

    2018-04-01

    Photon-counting detectors using CdTe or CZT substrates are promising candidates for future CT systems but suffer from a number of nonidealities, including charge sharing and pulse pileup. By increasing the pixel size of the detector, the system can improve charge sharing characteristics at the expense of increasing pileup. The purpose of this work is to describe these considerations in the optimization of the detector pixel pitch. The transport of x rays through the CdTe substrate was simulated in a Monte Carlo fashion using GEANT4. Deposited energy was converted into charges distributed as a Gaussian function with size dependent on interaction depth to capture spreading from diffusion and Coulomb repulsion. The charges were then collected in a pixelated fashion. Pulse pileup was incorporated separately with Monte Carlo simulation. The Cramér-Rao lower bound (CRLB) of the measurement variance was numerically estimated for the basis material projections. Noise in these estimates was propagated into CT images. We simulated pixel pitches of 250, 350, and 450 microns and compared the results to a photon counting detector with pileup but otherwise ideal energy response and an ideal dual-energy system (80/140 kVp with tin filtration). The modeled CdTe thickness was 2 mm, the incident spectrum was 140 kVp and 500 mA, and the effective dead time was 67 ns. Charge summing circuitry was not modeled. We restricted our simulations to objects of uniform thickness and did not consider the potential advantage of smaller pixels at high spatial frequencies. At very high x-ray flux, pulse pileup dominates and small pixel sizes perform best. At low flux or for thick objects, charge sharing dominates and large pixel sizes perform best. At low flux and depending on the beam hardness, the CRLB of variance in basis material projections tasks can be 32%-55% higher with a 250 micron pixel pitch compared to a 450 micron pixel pitch. However, both are about four times worse in variance

  6. Recent photon results from ATLAS

    CERN Document Server

    Glasman, Claudia; The ATLAS collaboration

    2017-01-01

    The production of prompt isolated photons at hadron colliders provides a stringent test of perturbative QCD and can be used to probe the gluon density function of the proton. The ATLAS collaboration has performed precise measurements of the inclusive production o f isolated prompt photons at a center-of-mass energy of 13 TeV, differential in both rap idity and the photon transverse momentum. In addition, the integrated and differential c ross sections for isolated photon pair production 8 TeV have been measured. The results are compared with state-of-the-art theory predictions at NLO in QCD and with predictions of several MC generators.

  7. Soluble organic nutrient fluxes

    Science.gov (United States)

    Robert G. Qualls; Bruce L. Haines; Wayne Swank

    2014-01-01

    Our objectives in this study were (i) compare fluxes of the dissolved organic nutrients dissolved organic carbon (DOC), DON, and dissolved organic phosphorus (DOP) in a clearcut area and an adjacent mature reference area. (ii) determine whether concentrations of dissolved organic nutrients or inorganic nutrients were greater in clearcut areas than in reference areas,...

  8. Radiation flux measuring device

    International Nuclear Information System (INIS)

    Corte, E.; Maitra, P.

    1977-01-01

    A radiation flux measuring device is described which employs a differential pair of transistors, the output of which is maintained constant, connected to a radiation detector. Means connected to the differential pair produce a signal representing the log of the a-c component of the radiation detector, thereby providing a signal representing the true root mean square logarithmic output. 3 claims, 2 figures

  9. Muon and neutrino fluxes

    Science.gov (United States)

    Edwards, P. G.; Protheroe, R. J.

    1985-01-01

    The result of a new calculation of the atmospheric muon and neutrino fluxes and the energy spectrum of muon-neutrinos produced in individual extensive air showers (EAS) initiated by proton and gamma-ray primaries is reported. Also explained is the possibility of detecting atmospheric nu sub mu's due to gamma-rays from these sources.

  10. Flux scaling: Ultimate regime

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. Flux scaling: Ultimate regime. With the Nusselt number and the mixing length scales, we get the Nusselt number and Reynolds number (w'd/ν) scalings: and or. and. scaling expected to occur at extremely high Ra Rayleigh-Benard convection. Get the ultimate regime ...

  11. The TORT three-dimensional discrete ordinates neutron/photon transport code (TORT version 3)

    Energy Technology Data Exchange (ETDEWEB)

    Rhoades, W.A.; Simpson, D.B.

    1997-10-01

    TORT calculates the flux or fluence of neutrons and/or photons throughout three-dimensional systems due to particles incident upon the system`s external boundaries, due to fixed internal sources, or due to sources generated by interaction with the system materials. The transport process is represented by the Boltzman transport equation. The method of discrete ordinates is used to treat the directional variable, and a multigroup formulation treats the energy dependence. Anisotropic scattering is treated using a Legendre expansion. Various methods are used to treat spatial dependence, including nodal and characteristic procedures that have been especially adapted to resist numerical distortion. A method of body overlay assists in material zone specification, or the specification can be generated by an external code supplied by the user. Several special features are designed to concentrate machine resources where they are most needed. The directional quadrature and Legendre expansion can vary with energy group. A discontinuous mesh capability has been shown to reduce the size of large problems by a factor of roughly three in some cases. The emphasis in this code is a robust, adaptable application of time-tested methods, together with a few well-tested extensions.

  12. Deterministically swapping frequency-bin entanglement from photon-photon to atom-photon hybrid systems

    Science.gov (United States)

    Ou, Bao-Quan; Liu, Chang; Sun, Yuan; Chen, Ping-Xing

    2018-02-01

    Inspired by the recent developments of the research on the atom-photon quantum interface and energy-time entanglement between single-photon pulses, we are motivated to study the deterministic protocol for the frequency-bin entanglement of the atom-photon hybrid system, which is analogous to the frequency-bin entanglement between single-photon pulses. We show that such entanglement arises naturally in considering the interaction between a frequency-bin entangled single-photon pulse pair and a single atom coupled to an optical cavity, via straightforward atom-photon phase gate operations. Its anticipated properties and preliminary examples of its potential application in quantum networking are also demonstrated. Moreover, we construct a specific quantum entanglement witness tool to detect such extended frequency-bin entanglement from a reasonably general set of separable states, and prove its capability theoretically. We focus on the energy-time considerations throughout the analysis.

  13. Direct Writing of Photonic Structures by Two-Photon Polymerization

    Directory of Open Access Journals (Sweden)

    Li Yan

    2013-11-01

    Full Text Available Single-mode dielectric-loaded surface plasmon-polariton nanowaveguides with strong mode confinement at excitation wavelength of 830 nm and high-Q polymer whispering gallery mode microcavities with surface roughness less than 12 nm have been directly written by two-photon polymerization, which pave the way to fabricate 3D plasmonic photonic structures by direct laser writing.

  14. Photon and di-photon production at ATLAS

    CERN Document Server

    INSPIRE-00213273

    2013-01-01

    The latest ATLAS measurements of the cross section for the inclusive production of isolated prompt photons in $pp$ collisions at a centre-of-mass energy $\\sqrt{s}$ = 7 TeV at the LHC are presented, as well as the measurement of the di-photon production cross section.

  15. Sidewall roughness measurement of photonic wires and photonic crystals

    DEFF Research Database (Denmark)

    Svalgaard, Mikael; Frandsen, Lars Hagedorn; Garnæs, Jørgen

    2007-01-01

    The performance of nanophotonic building blocks such as photonic wires and photonic crystals are rapidly improving, with very low propagation loss and very high cavity Q-factors being reported. In order to facilitate further improvements in performance the ability to quantitatively measure...

  16. Photonic band gap engineering in 2D photonic crystals

    Indian Academy of Sciences (India)

    -dimensional photonic crystals with square lattices composed of air holes in dielectric and vice versa i.e., dielectric rods in air, using the plane-wave expansion method are investigated. We then study, how the photonic band gap size is ...

  17. Quantum photonics with quantum dots in photonic wires

    DEFF Research Database (Denmark)

    Munsch, Mathieu; Kuhlmann, Andreas; Cadeddu, Davide

    2016-01-01

    We present results from the spectroscopy of a single quantum dot in a photonic wire. The device presents a high photon extraction efficiency, and strong hybrid coupling to mechanical modes. We use resonance fluorescence to probe the emitter’s properties with the highest sensitivity. Weperform...

  18. Non-Poissonian photon statistics from macroscopic photon cutting materials

    NARCIS (Netherlands)

    De Jong, Mathijs; Meijerink, A; Rabouw, Freddy T.

    2017-01-01

    In optical materials energy is usually extracted only from the lowest excited state, resulting in fundamental energy-efficiency limits such as the Shockley-Queisser limit for single-junction solar cells. Photon-cutting materials provide a way around such limits by absorbing high-energy photons and

  19. Topology optimized nanoparticles for near-infrared enhanced photon upconversion

    DEFF Research Database (Denmark)

    Vester-Petersen, Joakim; Christiansen, Rasmus E.; Julsgaard, Brian

    )converted into photons with higher energies through absorption in rare earth ions (Er3+) followed by radiative decay.This process converts otherwise non-absorbed long wavelength photos to shorter wavelength photons able to bridge the band gap energy and contribute to the energy generation of the solar modules...... have shown that the intensity of the upconverted light is proportional to the intensity of the incident light raised to some power, n, [1]. Experimentally n is found to be 1.5 and the light intensity is proportional to the square of the electric field norm, |E|2. We aim to enhance the incident light...... using topology optimized nanoparticles. Here, the distribution of nanoparticle material is optimized to enhance |E|3 in a thin Er3+ doped TiO2 film. Topology optimization has previously proven successful for optimizing wave propagation in acoustics [2] and electromagnetics [3,4]. The governing physics...

  20. Photon counting systems

    International Nuclear Information System (INIS)

    Cuby, J.G.

    1988-01-01

    This paper is a review of the various photon counting systems, used in astronomy, at optical wavelengths. Technological differences between available devices are introduced according to the processes applied to these photoelectrons (multiplication and/or acceleration), and their impact targets (phosphors, photodetectors, resistive or conductive anodes...). Two detection processes are involved: threshold discrimination above noise for most types of devices, and analog measurement for systems using resistive and wedge-and-strip anodes. Devices currently used for astronomical observations are presented, and their performance characteristics. These devices are: photomultipliers, which are monopixel detectors, using multiplication with dynodes; images intensifiers cameras, most frequently read with CCDs; analog devices with resistive or wedge-and-strip anodes, behind microchannel plates (MCP); Digicons, using direct electronic bombardment; the MAMA detector, with coincidence anodes behind MCP; and then the PAPA detector using masks encoding readout. Dead time effects, which define the dynamic range are presented with some details. Finally, because of the improvement of low level readout noise devices (CCDs), the field of application of the photon counting techniques confines to the blue and the UV part of the spectrum, at low signal to noise ratios [fr

  1. Amplified Photon Upconversion by Photonic Shell of Cholesteric Liquid Crystals.

    Science.gov (United States)

    Kang, Ji-Hwan; Kim, Shin-Hyun; Fernandez-Nieves, Alberto; Reichmanis, Elsa

    2017-04-26

    As an effective platform to exploit triplet-triplet-annihilation-based photon upconversion (TTA-UC), microcapsules composed of a fluidic UC core and photonic shell are microfluidically prepared using a triple emulsion as the template. The photonic shell consists of cholesteric liquid crystals (CLCs) with a periodic helical structure, exhibiting a photonic band gap. Combined with planar anchoring at the boundaries, the shell serves as a resonance cavity for TTA-UC emission and enables spectral tuning of the UC under low-power-density excitation. The CLC shell can be stabilized by introducing a polymerizable mesogen in the LC host. Because of the microcapsule spherical symmetry, spontaneous emission of the delayed fluorescence is omnidirectionally amplified at the edge of the stop band. These results demonstrate the range of opportunities provided by TTA-UC systems for the future design of low-threshold photonic devices.

  2. Photonic integration and photonics-electronics convergence on silicon platform

    CERN Document Server

    Liu, Jifeng; Baba, Toshihiko; Vivien, Laurent; Xu, Dan-Xia

    2015-01-01

    Silicon photonics technology, which has the DNA of silicon electronics technology, promises to provide a compact photonic integration platform with high integration density, mass-producibility, and excellent cost performance. This technology has been used to develop and to integrate various photonic functions on silicon substrate. Moreover, photonics-electronics convergence based on silicon substrate is now being pursued. Thanks to these features, silicon photonics will have the potential to be a superior technology used in the construction of energy-efficient cost-effective apparatuses for various applications, such as communications, information processing, and sensing. Considering the material characteristics of silicon and difficulties in microfabrication technology, however, silicon by itself is not necessarily an ideal material. For example, silicon is not suitable for light emitting devices because it is an indirect transition material. The resolution and dynamic range of silicon-based interference de...

  3. Robust Adaptive Photon Tracing using Photon Path Visibility

    DEFF Research Database (Denmark)

    Hachisuka, Toshiya; Jensen, Henrik Wann

    2011-01-01

    algorithm is the use of visibility of photon path as the importance function which ensures that our sampling algorithm focuses on paths that are visible from the given viewpoint. Our sampling algorithm builds on two recent developments in Markov chain Monte Carlo methods: adaptive Markov chain sampling...... and replica exchange. Using these techniques, each photon path is adaptively mutated and it explores the sampling space efficiently without being stuck at a local peak of the importance function. We have implemented this sampling approach in the progressive photon mapping algorithm which provides visibility...... information in a natural way when a photon path contributes to a measurement point. We demonstrate that the final algorithm is strikingly simple, yet effective at sampling photons under lighting conditions that would be difficult for existing Monte Carlo ray tracing-based methods....

  4. ULY JUP COSPIN HIGH FLUX TELESCOPE HIGH RES. ION FLUX

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set contains ion flux data recorded by the COSPIN High Flux Telescope (HFT) during the Ulysses Jupiter encounter 1992-Jan-25 to 1992-Feb-18.

  5. Experimental search for a time-modulated muon flux from the direction of Cygnus X-3

    International Nuclear Information System (INIS)

    Worstell, W.A.

    1986-01-01

    Two underground experiments have recently reported detection of an anomalously large muon flux from the direction of the binary X-ray source cygnus X-3, with the 4.8-hour period characteristic of this source. A muon flux of the claimed magnitude, combined with constraints from surface observations, is inconsistent with the production of these muons by photons from Cygnus X-3 in normal air showers. This flux would require either unexpected photon interactions at very high energy (>5 TeV)( or a new type of neutral particle in the flux from Cygnus X-3. This thesis documents measurements with the HPW (Harvard-Purdue-Wisconsin) large underground water Cerenkov detector which do not confirm the claimed muon flux. The author places an upper limit on the flux of time-modulated muons from the direction of Cygnus X-3 of 5 x 10 -11 muons-cm -2 sec -1 at a vertical depth of 1450 MWE meters of water equivalent, with 90% confidence. This upper limit may be compared with the flux of 7 x 10 -11 muons-cm 2 sec -1 at a vertical depth of 1800 MWE which was claimed by another experiment. The HPW measurements are consistent with no anomalous muon flux from Cygnus X-3

  6. Hard photons in heavy ion collisions: direct or statistical?

    International Nuclear Information System (INIS)

    Herrmann, N.; Bock, R.; Emling, H.; Freifelder, R.; Gobbi, A.; Grosse, E.; Hildenbrand, K.D.; Kulessa, R.; Matulewicz, T.; Rami, F.; Simon, R.S.; Stelzer, H.; Wessels, J.; Maurenzig, P.R.; Olmi, A.; Stefanini, A.A.; Kuehn, W.; Metag, V.; Novotny, R.

    1987-10-01

    Photons with energies from 2 to 60 MeV have been measured in coincidence with binary fragments in the reaction 92 Mo + 92 Mo at an incident energy of 19.5 A MeV. The rapid change of the γ-ray spectrum and multiplicity with the fragment total kinetic energy in the exit channel indicates that the γ-rays are emitted statistically by the highly excited fragments. Temperatures as high as 6 MeV are inferred. (orig.)

  7. Selective mode excitation in hollow-core photonic crystal fiber

    Science.gov (United States)

    Galea, A. D.; Couny, F.; Coupland, S.; Roberts, P. J.; Sabert, H.; Knight, J. C.; Birks, T. A.; Russell, Philip St. J.

    2005-04-01

    Modes are selectively excited by launching light through the cladding from the side into a hollow-core photonic crystal fiber. Measuring the total output power at the end of the fiber as a function of the angle of incidence of the exciting laser beam provides a powerful diagnostic for characterizing the cladding bandgap. Furthermore, various types of modes on either side of the bandgap are excited individually, and their near-field images are obtained.

  8. The STAR Photon Multiplicity Detector

    Energy Technology Data Exchange (ETDEWEB)

    Aggarwal, M.M.; Badyal, S.K.; Bhaskar, P.; Bhatia, V.S.; Chattopadhyay, S. E-mail: sub@veccal.ernet.in; Das, S.; Datta, R.; Dubey, A.K.; Dutta Majumdar, M.R.; Ganti, M.S.; Ghosh, P.; Gupta, A.; Gupta, M.; Gupta, R.; Kaur, I.; Kumar, A.; Mahajan, S.; Mahapatra, D.P.; Mangotra, L.K.; Mishra, D.; Mohanty, B.; Nayak, S.K.; Nayak, T.K.; Pal, S.K.; Phatak, S.C.; Potukuchi, B.V.K.S.; Raniwala, R.; Raniwala, S.; Sahoo, R.; Sharma, A.; Singaraju, R.N.; Sood, G.; Trivedi, M.D.; Varma, R.; Viyogi, Y.P

    2003-03-01

    Details concerning the design, fabrication and performance of STAR Photon Multiplicity Detector (PMD) are presented. The PMD will cover the forward region, within the pseudorapidity range 2.3-3.5, behind the forward time projection chamber. It will measure the spatial distribution of photons in order to study collective flow, fluctuation and chiral symmetry restoration.

  9. Photonic nanowires for quantum optics

    DEFF Research Database (Denmark)

    Munsch, M.; Claudon, J.; Bleuse, J.

    Photonic nanowires (PWs) are simple dielectric structures for which a very efficient and broadband spontaneous emission (SE) control has been predicted [1]. Recently, a single photon source featuring a record high efficiency was demonstrated using this geometry [2]. Using time-resolved micro-phot...

  10. Advances on integrated microwave photonics

    DEFF Research Database (Denmark)

    Dong, Jianji; Liao, Shasha; Yan, Siqi

    2017-01-01

    Integrated microwave photonics has attracted a lot of attentions and makes significant improvement in last 10 years. We have proposed and demonstrated several schemes about microwave photonics including waveform generation, signal processing and energy-efficient micro-heaters. Our schemes are all...

  11. Nanodiamond particles forming photonic structures

    International Nuclear Information System (INIS)

    Grichko, Varvara; Tyler, Talmage; Grishko, Victor I; Shenderova, Olga

    2008-01-01

    Colloid suspensions of irregularly shaped, highly charged detonation nanodiamond particles are found to have unexpected optical properties, similar to those of photonic crystals. This finding is all the more surprising since the particles used in this work are far more polydisperse than those typically forming photonic crystals. Intensely iridescent structures have been fabricated using the centrifugation of aqueous suspensions of nanodiamonds

  12. Nanodiamond particles forming photonic structures

    Energy Technology Data Exchange (ETDEWEB)

    Grichko, Varvara; Tyler, Talmage; Grishko, Victor I; Shenderova, Olga [International Technology Center, 8100 Brownleigh Drive, Suite 120, Raleigh, NC 27617 (United States)], E-mail: oshenderova@itc-inc.org

    2008-06-04

    Colloid suspensions of irregularly shaped, highly charged detonation nanodiamond particles are found to have unexpected optical properties, similar to those of photonic crystals. This finding is all the more surprising since the particles used in this work are far more polydisperse than those typically forming photonic crystals. Intensely iridescent structures have been fabricated using the centrifugation of aqueous suspensions of nanodiamonds.

  13. Photon Production Within Storage Capsules

    CERN Document Server

    Rittmann, P D

    2003-01-01

    This report provides tables and electronic worksheets that list the photon production rate within SrF2 and CsC1 storage capsules, particularly the continuous spectrum of bremsstrahlung photons from the slowing down of the emitted electrons (BREMCALC).

  14. Negative refraction angular characterization in one-dimensional photonic crystals.

    Directory of Open Access Journals (Sweden)

    Jesus Eduardo Lugo

    2011-04-01

    Full Text Available Photonic crystals are artificial structures that have periodic dielectric components with different refractive indices. Under certain conditions, they abnormally refract the light, a phenomenon called negative refraction. Here we experimentally characterize negative refraction in a one dimensional photonic crystal structure; near the low frequency edge of the fourth photonic bandgap. We compare the experimental results with current theory and a theory based on the group velocity developed here. We also analytically derived the negative refraction correctness condition that gives the angular region where negative refraction occurs.By using standard photonic techniques we experimentally determined the relationship between incidence and negative refraction angles and found the negative refraction range by applying the correctness condition. In order to compare both theories with experimental results an output refraction correction was utilized. The correction uses Snell's law and an effective refractive index based on two effective dielectric constants. We found good agreement between experiment and both theories in the negative refraction zone.Since both theories and the experimental observations agreed well in the negative refraction region, we can use both negative refraction theories plus the output correction to predict negative refraction angles. This can be very useful from a practical point of view for space filtering applications such as a photonic demultiplexer or for sensing applications.

  15. The bremsstrahlung tagged photon beam in Hall B at JLab

    Energy Technology Data Exchange (ETDEWEB)

    Sober, D.I.; Crannell, Hall; Longhi, Alberto; Matthews, S.K.; O' Brien, J.T. E-mail: obrienj@cua.edu; Berman, B.L.; Briscoe, W.J.; Cole, Philip L.; Connelly, J.P.; Dodge, W.R.; Murphy, L.Y.; Philips, S.A.; Dugger, M.K.; Lawrence, D.; Ritchie, B.G.; Smith, E.S.; Lambert, James M.; Anciant, E.; Audit, G.; Auger, T.; Marchand, C.; Klusman, M.; Napolitano, J.; Khandaker, M.A.; Salgado, C.W.; Sarty, A.J

    2000-02-01

    We describe the design and commissioning of the photon tagging beamline installed in experimental Hall B at the Thomas Jefferson National Accelerator Facility (JLab). This system can tag photon energies over a range from 20% to 95% of the incident electron energy, and is capable of operation with beam energies up to 6.1 GeV. A single dipole magnet is combined with a hodoscope containing two planar arrays of plastic scintillators to detect energy-degraded electrons from a thin bremsstrahlung radiator. The first layer of 384 partially overlapping small scintillators provides photon energy resolution, while the second layer of 61 larger scintillators provides the timing resolution necessary to form a coincidence with the corresponding nuclear interaction triggered by the tagged photon. The definitions of overlap channels in the first counter plane and of geometric correlation between the two planes are determined using digitized time information from the individual counters. Auxiliary beamline devices are briefly described, and performance results to date under real operating conditions are presented. The entire photon-tagging system has met or exceeded its design goals.

  16. An Artificial Neural Net Approach to Photon - Pi-zero Discrimination using the CMS Endcap Preshower

    CERN Document Server

    Kyriakis, Aristotelis; Loukas, Demetrios; Mousa, Jehad

    1999-01-01

    Using a general Artificial Neural Network approach, we have obtained a neutral pion rejection varying between 45% and 75% depending on the energy and the incidence angle of the pion. The single photon efficiency was set to 91%. These results represent a significant improvement over previous analyses in reducing the neutral pion background to the two-photon decay of the intermediate mass Higgs boson.

  17. In-medium modifications of the pi pi interaction in photon-induced reactions

    NARCIS (Netherlands)

    Messchendorp, JG; Janssen, S; Kotulla, M; Ahrens, J; Annand, JRH; Beck, R; Bloch, F; Caselotti, G; Fog, L; Hornidge, D; Krusche, B; Langgartner, W; McGeorge, JC; MacGregor, IJD; Mengel, K; Metag, V.; Novotny, R; Owens, RO; Pfeiffer, M; Sack, S; Sanderson, R.; Schadmand, S

    2002-01-01

    Differential cross sections of the reactions (gamma,pi(0)pi(0)) and (gamma,pi(0)pi(+/-)) have been measured for several nuclei (H-1,C-12, and Pb-nat) at an incident-photon energy of E-gamma=400-460 MeV at the tagged-photon facility at MAMI-B using the TAPS spectrometer. A significant nuclear-mass

  18. Atmospheric lepton fluxes

    Directory of Open Access Journals (Sweden)

    Gaisser Thomas K.

    2015-01-01

    Full Text Available This review of atmospheric muons and neutrinos emphasizes the high energy range relevant for backgrounds to high-energy neutrinos of astrophysical origin. After a brief historical introduction, the main distinguishing features of atmospheric νμ and νe are discussed, along with the implications of the muon charge ratio for the νµ / ν̅µ ratio. Methods to account for effects of the knee in the primary cosmic-ray spectrum and the energy-dependence of hadronic interactions on the neutrino fluxes are discussed and illustrated in the context of recent results from IceCube. A simple numerical/analytic method is proposed for systematic investigation of uncertainties in neutrino fluxes arising from uncertainties in the primary cosmic-ray spectrum/composition and hadronic interactions.

  19. Uncovering the Circular Polarization Potential of Chiral Photonic Cellulose Films for Photonic Applications.

    Science.gov (United States)

    Zheng, Hongzhi; Li, Wanru; Li, Wen; Wang, Xiaojun; Tang, Zhiyong; Zhang, Sean Xiao-An; Xu, Yan

    2018-02-12

    Circularly polarized light (CPL) is central to photonic technologies. A key challenge lies in developing a general route for generation of CPL with tailored chiroptical activity using low-cost raw materials suitable for scale-up. This study presents that cellulose films with photonic bandgaps (PBG) and left-handed helical sense have an intrinsic ability for circular polarization leading to PBG-based CPL with extraordinary |g | values, well-defiend handedness, and tailorable wavelength by the PBG change. Using such cellulose films, incident light ranging from near-UV to near-IR can be transformed to passive L-CPL and R-CPL with viewing-side-dependent handedness and |g | values up to 0.87, and spontaneous emission transformed to R-CPL emission with |g | values up to 0.68. Unprecedented evidence is presented with theoretical underpinning that the PBG effect can stimulate the R-CPL emission. The potential of cellulose-based CPL films for polarization-based encryption is illustrated. The evaporation-induced self-assembly coupled with nanoscale mesogens of cellulose nanocrystals opens new venues for technological advances and enables a versatile strategy for rational design and scalable manufacturing of organic and inorganic CPL films for photonic applications. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Silicon photonics fundamentals and devices

    CERN Document Server

    Deen, M Jamal

    2012-01-01

    The creation of affordable high speed optical communications using standard semiconductor manufacturing technology is a principal aim of silicon photonics research. This would involve replacing copper connections with optical fibres or waveguides, and electrons with photons. With applications such as telecommunications and information processing, light detection, spectroscopy, holography and robotics, silicon photonics has the potential to revolutionise electronic-only systems. Providing an overview of the physics, technology and device operation of photonic devices using exclusively silicon and related alloys, the book includes: * Basic Properties of Silicon * Quantum Wells, Wires, Dots and Superlattices * Absorption Processes in Semiconductors * Light Emitters in Silicon * Photodetectors , Photodiodes and Phototransistors * Raman Lasers including Raman Scattering * Guided Lightwaves * Planar Waveguide Devices * Fabrication Techniques and Material Systems Silicon Photonics: Fundamentals and Devices outlines ...

  1. Two-dimensional topological photonics

    Science.gov (United States)

    Khanikaev, Alexander B.; Shvets, Gennady

    2017-12-01

    Originating from the studies of two-dimensional condensed-matter states, the concept of topological order has recently been expanded to other fields of physics and engineering, particularly optics and photonics. Topological photonic structures have already overturned some of the traditional views on wave propagation and manipulation. The application of topological concepts to guided wave propagation has enabled novel photonic devices, such as reflection-free sharply bent waveguides, robust delay lines, spin-polarized switches and non-reciprocal devices. Discrete degrees of freedom, widely used in condensed-matter physics, such as spin and valley, are now entering the realm of photonics. In this Review, we summarize the latest advances in this highly dynamic field, with special emphasis on the experimental work on two-dimensional photonic topological structures.

  2. NEUTRON FLUX INTENSITY DETECTION

    Science.gov (United States)

    Russell, J.T.

    1964-04-21

    A method of measuring the instantaneous intensity of neutron flux in the core of a nuclear reactor is described. A target gas capable of being transmuted by neutron bombardment to a product having a resonance absorption line nt a particular microwave frequency is passed through the core of the reactor. Frequency-modulated microwave energy is passed through the target gas and the attenuation of the energy due to the formation of the transmuted product is measured. (AEC)

  3. Gaseous mercury fluxes from forest soils in response to forest harvesting intensity: A field manipulation experiment

    Science.gov (United States)

    M. Mazur; C.P.J. Mitchell; C.S. Eckley; S.L. Eggert; R.K. Kolka; S.D. Sebestyen; E.B. Swain

    2014-01-01

    Forest harvesting leads to changes in soil moisture, temperature and incident solar radiation, all strong environmental drivers of soil-air mercury (Hg) fluxes. Whether different forest harvesting practices significantly alter Hg fluxes from forest soils is unknown.We conducted a field-scale experiment in a northern Minnesota deciduous forest wherein gaseous Hg...

  4. Photonic quantum information: science and technology.

    Science.gov (United States)

    Takeuchi, Shigeki

    2016-01-01

    Recent technological progress in the generation, manipulation and detection of individual single photons has opened a new scientific field of photonic quantum information. This progress includes the realization of single photon switches, photonic quantum circuits with specific functions, and the application of novel photonic states to novel optical metrology beyond the limits of standard optics. In this review article, the recent developments and current status of photonic quantum information technology are overviewed based on the author's past and recent works.

  5. Physics of magnetic flux ropes

    Science.gov (United States)

    Russell, C. T.; Priest, E. R.; Lee, L. C.

    The present work encompasses papers on the structure, waves, and instabilities of magnetic flux ropes (MFRs), photospheric flux tubes (PFTs), the structure and heating of coronal loops, solar prominences, coronal mass ejections and magnetic clouds, flux ropes in planetary ionospheres, the magnetopause, magnetospheric field-aligned currents and flux tubes, and the magnetotail. Attention is given to the equilibrium of MFRs, resistive instability, magnetic reconnection and turbulence in current sheets, dynamical effects and energy transport in intense flux tubes, waves in solar PFTs, twisted flux ropes in the solar corona, an electrodynamical model of solar flares, filament cooling and condensation in a sheared magnetic field, the magnetopause, the generation of twisted MFRs during magnetic reconnection, ionospheric flux ropes above the South Pole, substorms and MFR structures, evidence for flux ropes in the earth magnetotail, and MFRs in 3D MHD simulations.

  6. Coherent single-photon absorption by single emitters coupled to one-dimensional nanophotonic waveguides

    DEFF Research Database (Denmark)

    Chen, Yuntian; Wubs, Martijn; Mørk, Jesper

    2011-01-01

    solutions for the dynamics of absorption, with maximum atomic excitation . We furthermore propose a terminated waveguide to aid the single-photon absorption. We found that for an emitter placed at an optimal distance from the termination, the maximum atomic excitation due to an incident single......We study the dynamics of single-photon absorption by a single emitter coupled to a one-dimensional waveguide that simultaneously provides channels for spontaneous emission (SE) decay and a channel for the input photon. We have developed a time-dependent theory that allows us to specify any input......-photon wavepacket can exceed 70%. This high value is a direct consequence of the high SE β-factor for emission into the waveguide. Finally, we have also explored whether waveguide dispersion could aid single-photon absorption by pulse shaping. For a Gaussian input wavepacket, we found that the absorption efficiency...

  7. Photonics a short course

    CERN Document Server

    Degiorgio, Vittorio

    2016-01-01

    This extended and revised edition will serve as a concise, self-contained, up-to-date introduction to Photonics for undergraduate students. It can also be used as a primer by researchers and professionals who start working in the field. Blending theory with technical descriptions, the book covers a wide range of topics, including the general mechanism of laser action, continuous and pulsed laser operation, optical propagation in isotropic and anisotropic media, operating principles and structure of passive optical components, electro-optic and acousto-optic modulation, solid-state lasers, semiconductor lasers and LEDs, nonlinear optical phenomena, and optical fiber components and devices. The book concludes with an overview of applications, including optical communications, telemetry and sensing, industrial and biomedical applications, solid-state lighting, displays, and photovoltaics. This second edition includes a set of problems at the end of all but the last chapter. These problems deal with numerical c...

  8. Progress on photonic crystals

    CERN Document Server

    Lecoq, P; Gundacker, S; Hillemanns, H; Jarron, P; Knapitsch, A; Leclercq, J L; Letartre, X; Meyer, T; Pauwels, K; Powolny, F; Seassal, C

    2010-01-01

    The renewal of interest for Time of Flight Positron Emission Tomography (TOF PET) has highlighted the need for increasing the light output of scintillating crystals and in particular for improving the light extraction from materials with a high index of refraction. One possible solution to overcome the problem of total internal reflection and light losses resulting from multiple bouncing within the crystal is to improve the light extraction efficiency at the crystal/photodetector interface by means of photonic crystals, i.e. media with a periodic modulation of the dielectric constant at the wavelength scale. After a short reminder of the underlying principles this contribution proposes to present the very encouraging results we have recently obtained on LYSO pixels and the perspectives on other crystals such as BGO, LuYAP and LuAG. These results confirm the impressive predictions from our previously published Monte Carlo simulations. A detailed description of the sample preparation procedure is given as well ...

  9. Ordered photonic microstructures

    Science.gov (United States)

    Chen, Kevin Ming

    2001-09-01

    This thesis examines novel photonic materials systems possessing order in the atomic, microscopic, and macroscopic dimensional regimes. In the atomic order regime, a structure-property investigation is done for Er2O3 in which the first report of room temperature photoluminescence (PL) is provided. Thin films of the rare earth oxide were deposited via reactive sputtering of Er metal in an Ar/O2 ambient, and subsequently annealed to promote grain growth. Heat treatment consisting of a 650°C followed by 1000°C anneal produces maximum crystallinity as measured by glancing angle x-ray diffraction. These films show characteristic PL at λ = 1.54 μm. In the microscopic order regime, omnidirectional reflectors and thin film microcavities are demonstrated using sol-gel and solid-state materials. A first demonstration of omnidirectional reflectivity in sol-gel structures was accomplished using a dielectric stack consisting of 12 spin-on SiO 2/TiO2 quarterwave sol-gel films. Similarly, solid-state dielectric stacks consisting of 6 Si/SiO2 sputtered films were used to demonstrate the same principle. Microcavities were formed using solgel structures, producing a low quality factor Q = 35 due to limitations in film thickness control and lossy interfaces from stress-induced cracks. The high index contrast Si/SiO2 microcavities enabled Q ~ 1000 using 17 total layers following hydrogenation of dangling bonds within the amorphous Si films. Combining fabrication processes for the solid-state microcavity and Er2O3 films, a device was fabricated to demonstrate photoluminescence enhancement of an Er2O3 film embedded in a microcavity. The structure consisted of 3-bilayer mirrors on either side of an SiO2/Er2O3/SiO2 cavity. The Q ~ 300 was near the theoretical value for such a structure. At room temperature, PL of Er2O3 was enhanced by a factor of 1000 in the microcavity compared to a single thin film. In the macroscopic order regime, self-assembly of micron- sized SiO 2 and

  10. Photonics principles and practices

    CERN Document Server

    Al-Azzawi, Abdul

    2006-01-01

    Light The Nature of Light Light and Shadows Thermal Radiation Light Production Light Intensity Light and Colour Laws of Light Optics Plane Mirrors Spherical Mirrors Lenses Prisms Beamsplitters Light Passing through Optical Components Optical Instruments for Viewing Applications Polarization of Light Optical Materials Waves and Diffraction Waves Interference and Diffraction The Diffraction Grating Interferometers Spectrometers and Spectroscopes Optical Fibres Fibre Optic Cables Advanced Fibre Optic Cables Light Attenuation in Optical Components Fibre-Optic Cable Types and Installations Fibre-Optic Connectors Passive Fibre Optic Devices Wavelength Division Multiplexer Optical Amplifiers Optical Receivers Lasers Optical Switches Optical Fibre Communications Fibre Optic Lighting Testing Fibre Optic Testing Safety Photonics Laboratory Safety Miscellaneous Appendix A: Details of the Devices, Components, Tools, and Parts Appendix B: Alignment Procedure of a Conventional Ar...

  11. The advanced photon source

    International Nuclear Information System (INIS)

    Galayda, J.N.

    1995-01-01

    The Advanced Photon Source (APS) is a 7-GeV third-generation synchrotron radiation storage ring and full-energy positron injector. Construction project funding began in 1989, and ground breaking took place on 5 May 1990. Construction of all accelerator facilities was completed in January 1995 and storage ring commissioning is underway. First observation of x-rays from a bending magnet source took place on 26 March 1995. Nearly all performance specifications of the injector have been reached, and first observations indicate that the reliability, dynamic aperture, emittance, and orbit stability in the storage ring are satisfactory. Observation of radiation from the first of 20 insertion device beamlines is scheduled for October 1995. Start of regular operations is expected to take place well before the APS Project target date of December 1996

  12. Photonics a short course

    CERN Document Server

    Degiorgio, Vittorio

    2014-01-01

    This book will serve as a concise, self-contained, up-to-date introduction to Photonics, to be used as a textbook for undergraduate students or as a reference book for researchers and professionals. Blending theory with technical descriptions, the book covers a wide range of topics, including the general mechanism of laser action, continuous and pulsed laser operation, optical propagation in isotropic and anisotropic media, operating principles and structure of passive optical components, electro-optical and acousto-optical modulation, solid-state lasers, semiconductor lasers and LEDs, nonlinear optics, and optical fiber components and devices.. The book concludes with an overview of applications, including optical communications, telemetry and sensing, industrial and biomedical applications, solid-state lighting, displays, and photovoltaics.

  13. Nonlocal hyperconcentration on entangled photons using photonic module system

    International Nuclear Information System (INIS)

    Cao, Cong; Wang, Tie-Jun; Mi, Si-Chen; Zhang, Ru; Wang, Chuan

    2016-01-01

    Entanglement distribution will inevitably be affected by the channel and environment noise. Thus distillation of maximal entanglement nonlocally becomes a crucial goal in quantum information. Here we illustrate that maximal hyperentanglement on nonlocal photons could be distilled using the photonic module and cavity quantum electrodynamics, where the photons are simultaneously entangled in polarization and spatial-mode degrees of freedom. The construction of the photonic module in a photonic band-gap structure is presented, and the operation of the module is utilized to implement the photonic nondestructive parity checks on the two degrees of freedom. We first propose a hyperconcentration protocol using two identical partially hyperentangled initial states with unknown coefficients to distill a maximally hyperentangled state probabilistically, and further propose a protocol by the assistance of an ancillary single photon prepared according to the known coefficients of the initial state. In the two protocols, the total success probability can be improved greatly by introducing the iteration mechanism, and only one of the remote parties is required to perform the parity checks in each round of iteration. Estimates on the system requirements and recent experimental results indicate that our proposal is realizable with existing or near-further technologies.

  14. Photon technology. Laser processing technology; Photon technology. Laser process gijutsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    Survey has been conducted to develop laser processing technology utilizing the interaction between substance and photon. This is a part of the leading research on photon technology development. The photon technology development is aimed at novel technology development highly utilizing the quantum nature of photons. In the field of laser processing, high quality photons are used as tools, special functions of atoms and molecules will be discovered, and processing for functional fabrication (photon machining) will be established. A role of laser processing in industries has become significant, which is currently spreading not only into cutting and welding of materials and scalpels but also into such a special field as ultrafine processing of materials. The spreading is sometimes obstructed due to the difficulty of procurement of suitable machines and materials, and the increase of cost. The purpose of this study is to develop the optimal laser technology, to elucidate the interaction between substance and photon, and to develop the laser system and the transmission and regulation systems which realize the optimal conditions. 387 refs., 115 figs., 25 tabs.

  15. Method of incident low-energy gamma-ray direction reconstruction in the GAMMA-400 gamma-ray space telescope

    International Nuclear Information System (INIS)

    Kheymits, M D; Leonov, A A; Zverev, V G; Galper, A M; Arkhangelskaya, I V; Arkhangelskiy, A I; Yurkin, Yu T; Bakaldin, A V; Suchkov, S I; Topchiev, N P; Dalkarov, O D

    2016-01-01

    The GAMMA-400 gamma-ray space-based telescope has as its main goals to measure cosmic γ-ray fluxes and the electron-positron cosmic-ray component produced, theoretically, in dark-matter-particles decay or annihilation processes, to search for discrete γ-ray sources and study them in detail, to examine the energy spectra of diffuse γ-rays — both galactic and extragalactic — and to study gamma-ray bursts (GRBs) and γ-rays from the active Sun. Scientific goals of GAMMA-400 telescope require fine angular resolution. The telescope is of a pair-production type. In the converter-tracker, the incident gamma-ray photon converts into electron-positron pair in the tungsten layer and then the tracks are detected by silicon- strip position-sensitive detectors. Multiple scattering processes become a significant obstacle in the incident-gamma direction reconstruction for energies below several gigaelectronvolts. The method of utilising this process to improve the resolution is proposed in the presented work. (paper)

  16. Photonic crystals, amorphous materials, and quasicrystals.

    Science.gov (United States)

    Edagawa, Keiichi

    2014-06-01

    Photonic crystals consist of artificial periodic structures of dielectrics, which have attracted much attention because of their wide range of potential applications in the field of optics. We may also fabricate artificial amorphous or quasicrystalline structures of dielectrics, i.e. photonic amorphous materials or photonic quasicrystals. So far, both theoretical and experimental studies have been conducted to reveal the characteristic features of their optical properties, as compared with those of conventional photonic crystals. In this article, we review these studies and discuss various aspects of photonic amorphous materials and photonic quasicrystals, including photonic band gap formation, light propagation properties, and characteristic photonic states.

  17. Holographic Two-Photon Induced Photopolymerization

    Data.gov (United States)

    Federal Laboratory Consortium — Holographic two-photon-induced photopolymerization (HTPIP) offers distinct advantages over conventional one-photon-induced photopolymerization and current techniques...

  18. Multi-Photon Entanglement and Quantum Teleportation

    National Research Council Canada - National Science Library

    Shih, Yanhua

    1999-01-01

    The project 'Multi-Photon Entanglement and Quantum Teleportation' concerns a series of experimental and theoretical investigations on multi-photon entangled states and the applications, for example...

  19. Photonic crystal based polarization insensitive flat lens

    Science.gov (United States)

    Turduev, M.; Bor, E.; Kurt, H.

    2017-07-01

    The paper proposes a new design of an inhomogeneous artificially created photonic crystal lens structure consisting of annular dielectric rods to efficiently focus both transverse electric and transverse magnetic polarizations of light into the same focal point. The locations of each individual cell that contains the annular dielectric rods are determined according to a nonlinear distribution function. The inner and outer radii of the annular photonic dielectric rods are optimized with respect to the polarization insensitive frequency response of the transmission spectrum of the lens structure. The physical background of the polarization insensitive focusing mechanism is investigated in both spatial and frequency domains. Moreover, polarization independent wavefront transformation/focusing has been explored in detail by investigating the dispersion relation of the structure. Corresponding phase index distribution of the lens is attained for polarization insensitive normalized frequency range of a/λ  =  0.280 and a/λ  =  0.300, where a denotes the lattice constant of the designed structure and λ denotes the wavelength of the incident light. We show the wave transformation performance and focal point movement dynamics for both polarizations of the lens structure by specially adjusting the length of the structure. The 3D finite-difference time domain numerical analysis is also performed to verifiy that the proposed design is able to focus the wave regardless of polarization into approximately the same focal point (difference between focal distances of both polarizations stays below 0.25λ) with an operating bandwidth of 4.30% between 1476 nm and 1541 nm at telecom wavelengths. The main superiorities of the proposed lens structure are being all dielectric and compact, and having flat front and back surfaces, rendering the proposed lens design more practical in the photonic integration process in various applications such as optical switch

  20. Interfacing Superconducting Qubits and Single Optical Photons Using Molecules in Waveguides

    Science.gov (United States)

    Das, Sumanta; Elfving, Vincent E.; Faez, Sanli; Sørensen, Anders S.

    2017-04-01

    We propose an efficient light-matter interface at optical frequencies between a single photon and a superconducting qubit. The desired interface is based on a hybrid architecture composed of an organic molecule embedded inside an optical waveguide and electrically coupled to a superconducting qubit placed near the outside surface of the waveguide. We show that high fidelity, photon-mediated, entanglement between distant superconducting qubits can be achieved with incident pulses at the single photon level. Such a low light level is highly desirable for achieving a coherent optical interface with superconducting qubit, since it minimizes decoherence arising from the absorption of light.

  1. Plasmas fluxes to surfaces for an oblique magnetic field

    International Nuclear Information System (INIS)

    Pitcher, C.S.; Stangeby, P.C.; Elder, J.D.; Bell, M.G.; Kilpatrick, S.J.; Manos, D.M.; Medley, S.S.; Owens, D.K.; Ramsey, A.T.; Ulrickson, M.

    1992-07-01

    The poloidal and toroidal spatial distributions of D α , He I and C II emission have been obtained in the vicinity of the TFTR bumper limiter and are compared with models of ion flow to the surface. The distributions are found not to agree with a model (the ''Cosine'' model) which determines the incident flux density using only the parallel fluxes in the scrape-off layer and the projected area of the surface perpendicular to the field lines. In particular, the Cosine model is not able to explain the significant fluxes observed at locations on the surface which are oblique to the magnetic field. It is further shown that these fluxes cannot be explained by the finite Larmor radius of impinging ions. Finally, it is demonstrated, with the use of Monte Carlo codes, that the distributions can be explained by including both parallel and cross-field transport onto the limiter surface

  2. Heavy-quark correlations in direct photon-photon collisions

    CERN Document Server

    Krämer, M; Kramer, Michael; Laenen, Eric

    1996-01-01

    In two-photon collisions at LEP2 and a future e^+e^- linear collider heavy quarks (mainly charm) will be pair-produced rather copiously. The production via direct and resolved photons can be distinguished experimentally via a remnant-jet tag. We study correlations of the heavy quarks at next-to-leading order in QCD in the direct channel, which is free from phenomenological parton densities in the photon. These correlations are therefore directly calculable in perturbative QCD and provide a stringent test of the production mechanism.

  3. Higher-order photon correlations in pulsed photonic crystal nanolasers

    International Nuclear Information System (INIS)

    Elvira, D.; Hachair, X.; Braive, R.; Beaudoin, G.; Robert-Philip, I.; Sagnes, I.; Abram, I.; Beveratos, A.; Verma, V. B.; Baek, B.; Nam, S. W.; Stevens, M. J.; Dauler, E. A.

    2011-01-01

    We report on the higher-order photon correlations of a high-β nanolaser under pulsed excitation at room temperature. Using a multiplexed four-element superconducting single-photon detector we measured g (n) (0-vector) with n=2,3,4. All orders of correlation display partially chaotic statistics, even at four times the threshold excitation power. We show that this departure from coherence and Poisson statistics is due to the quantum fluctuations associated with the small number of photons at the lasing threshold.

  4. Analysis of photonic band gap in novel piezoelectric photonic crystal

    Science.gov (United States)

    Malar Kodi, A.; Doni Pon, V.; Joseph Wilson, K. S.

    2018-03-01

    The transmission properties of one-dimensional novel photonic crystal having silver-doped novel piezoelectric superlattice and air as the two constituent layers have been investigated by means of transfer matrix method. By changing the appropriate thickness of the layers and filling factor of nanocomposite system, the variation in the photonic band gap can be studied. It is found that the photonic band gap increases with the filling factor of the metal nanocomposite and with the thickness of the layer. These structures possess unique characteristics enabling one to operate as optical waveguides, selective filters, optical switches, integrated piezoelectric microactuators, etc.

  5. A UV flux constraint on the formation of direct collapse black holes

    NARCIS (Netherlands)

    Latif, M. A.; Bovino, S.; Van Borm, C.; Grassi, T.; Schleicher, D. R. G.; Spaans, Marco

    2014-01-01

    The ability of metal-free gas to cool by molecular hydrogen in primordial haloes is strongly associated with the strength of ultraviolet (UV) flux produced by the stellar populations in the first galaxies. Depending on the stellar spectrum, these UV photons can either dissociate H2 molecules

  6. Rosseland and Flux Mean Opacities for Compton Scattering

    Energy Technology Data Exchange (ETDEWEB)

    Poutanen, Juri, E-mail: juri.poutanen@utu.fi [Tuorla Observatory, Department of Physics and Astronomy, University of Turku, Väisäläntie 20, FI-21500 Piikkiö (Finland)

    2017-02-01

    Rosseland mean opacity plays an important role in theories of stellar evolution and X-ray burst models. In the high-temperature regime, when most of the gas is completely ionized, the opacity is dominated by Compton scattering. Our aim here is to critically evaluate previous works on this subject and to compute the exact Rosseland mean opacity for Compton scattering over a broad range of temperature and electron degeneracy parameter. We use relativistic kinetic equations for Compton scattering and compute the photon mean free path as a function of photon energy by solving the corresponding integral equation in the diffusion limit. As a byproduct we also demonstrate the way to compute photon redistribution functions in the case of degenerate electrons. We then compute the Rosseland mean opacity as a function of temperature and electron degeneracy and present useful approximate expressions. We compare our results to previous calculations and find a significant difference in the low-temperature regime and strong degeneracy. We then proceed to compute the flux mean opacity in both free-streaming and diffusion approximations, and show that the latter is nearly identical to the Rosseland mean opacity. We also provide a simple way to account for the true absorption in evaluating the Rosseland and flux mean opacities.

  7. ITMO Photonics: center of excellence

    Science.gov (United States)

    Voznesenskaya, Anna; Bougrov, Vladislav; Kozlov, Sergey; Vasilev, Vladimir

    2016-09-01

    ITMO University, the leading Russian center in photonics research and education, has the mission to train highlyqualified competitive professionals able to act in conditions of fast-changing world. This paradigm is implemented through creation of a strategic academic unit ITMO Photonics, the center of excellence concentrating organizational, scientific, educational, financial, laboratory and human resources. This Center has the following features: dissemination of breakthrough scientific results in photonics such as advanced photonic materials, ultrafast optical and quantum information, laser physics, engineering and technologies, into undergraduate and graduate educational programs through including special modules into the curricula and considerable student's research and internships; transformation of the educational process in accordance with the best international educational practices, presence in the global education market in the form of joint educational programs with leading universities, i.e. those being included in the network programs of international scientific cooperation, and international accreditation of educational programs; development of mechanisms for the commercialization of innovative products - results of scientific research; securing financial sustainability of research in the field of photonics of informationcommunication systems via funding increase and the diversification of funding sources. Along with focusing on the research promotion, the Center is involved in science popularization through such projects as career guidance for high school students; interaction between student's chapters of international optical societies; invited lectures of World-famous experts in photonics; short educational programs in optics, photonics and light engineering for international students; contests, Olympics and grants for talented young researchers; social events; interactive demonstrations.

  8. Acute incidents during anaesthesia

    African Journals Online (AJOL)

    Incidents can occur during induction, maintenance and emergence from anaesthesia. The following acute critical incidents are discussed in this article: • Anaphylaxis. • Aspiration ..... Already used in South Africa and Malawi, a scale-up of the technique is under way in Tanzania, Rwanda and Ghana. The report found that.

  9. Monte Carlo simulation of spectrum changes in a photon beam due to a brass compensator

    Energy Technology Data Exchange (ETDEWEB)

    Custidiano, E.R., E-mail: ernesto7661@gmail.com [Department of Physics, FaCENA, UNNE, Av., Libertad 5470, C.P.3400, Corrientes (Argentina); Valenzuela, M.R., E-mail: meraqval@gmail.com [Department of Physics, FaCENA, UNNE, Av., Libertad 5470, C.P.3400, Corrientes (Argentina); Dumont, J.L., E-mail: Joseluis.Dumont@elekta.com [Elekta CMS Software, St.Louis, MO (United States); McDonnell, J., E-mail: josemc@express.com.ar [Cumbres Institute, Riobamba 1745, C.P.2000, Rosario, Santa Fe (Argentina); Rene, L, E-mail: luismrene@gmail.com [Radiotherapy Center, Crespo 953, C.P.2000, Rosario, Santa Fe (Argentina); Rodriguez Aguirre, J.M., E-mail: juakcho@gmail.com [Department of Physics, FaCENA, UNNE, Av., Libertad 5470, C.P.3400, Corrientes (Argentina)

    2011-06-15

    Monte Carlo simulations were used to study the changes in the incident spectrum when a poly-energetic photon beam passes through a static brass compensator. The simulated photon beam spectrum was evaluated by comparing it against the incident spectra. We also discriminated the changes in the transmitted spectrum produced by each of the microscopic processes. (i.e. Rayleigh scattering, photoelectric effect, Compton scattering, and pair production). The results show that the relevant process in the energy range considered is the Compton Effect, as expected for composite materials of intermediate atomic number and energy range considered.

  10. Monte Carlo simulation of spectrum changes in a photon beam due to a brass compensator

    International Nuclear Information System (INIS)

    Custidiano, E.R.; Valenzuela, M.R.; Dumont, J.L.; McDonnell, J.; Rene, L; Rodriguez Aguirre, J.M.

    2011-01-01

    Monte Carlo simulations were used to study the changes in the incident spectrum when a poly-energetic photon beam passes through a static brass compensator. The simulated photon beam spectrum was evaluated by comparing it against the incident spectra. We also discriminated the changes in the transmitted spectrum produced by each of the microscopic processes. (i.e. Rayleigh scattering, photoelectric effect, Compton scattering, and pair production). The results show that the relevant process in the energy range considered is the Compton Effect, as expected for composite materials of intermediate atomic number and energy range considered.

  11. Photonic band gap engineering in 2D photonic crystals

    Indian Academy of Sciences (India)

    -dimensional photonic crystals with square lattices composed of air holes in ... TIFAC-Center of Relevance & Excellence in Fiber Optics & Optical Communication, Department of Applied Physics, Delhi College of Engineering, Faculty of ...

  12. Photonics activities at DTU Fotonik

    DEFF Research Database (Denmark)

    Jeppesen, Palle; Jepsen, Peter Uhd; Lodahl, Peter

    2010-01-01

    DTU Fotonik, Department of Photonics Engineering at the Technical University of Denmark has about 200 employees including 60 PhD students. The ambition is to be among the world’s leading University departments within photonics research, education and innovation. To fulfil this ambition, DTU Fotonik...... tries to attract excellent researchers and students from all over the world and to collaborate with world leading research institutes and companies. The activities span from quantum photonics, nanotechnology and metamaterials over nonlinear fiber optics, optical sensors and diode lasers & LED systems...

  13. Photon-counting image sensors

    CERN Document Server

    Teranishi, Nobukazu; Theuwissen, Albert; Stoppa, David; Charbon, Edoardo

    2017-01-01

    The field of photon-counting image sensors is advancing rapidly with the development of various solid-state image sensor technologies including single photon avalanche detectors (SPADs) and deep-sub-electron read noise CMOS image sensor pixels. This foundational platform technology will enable opportunities for new imaging modalities and instrumentation for science and industry, as well as new consumer applications. Papers discussing various photon-counting image sensor technologies and selected new applications are presented in this all-invited Special Issue.

  14. Spin-photon entangling diode

    DEFF Research Database (Denmark)

    Flindt, Christian; Sørensen, A. S.; Lukin, M. D.

    2007-01-01

    We propose a semiconductor device that can electrically generate entangled electron spin-photon states, providing a building block for entanglement of distant spins. The device consists of a p-i-n diode structure that incorporates a coupled double quantum dot. We show that electronic control...... of the diode bias and local gating allow for the generation of single photons that are entangled with a robust quantum memory based on the electron spins. Practical performance of this approach to controlled spin-photon entanglement is analyzed....

  15. Summary of Lepton Photon 2011

    Energy Technology Data Exchange (ETDEWEB)

    Peskin, Michael E.; /SLAC

    2012-03-14

    In this lecture, I summarize developments presented at the Lepton Photon 2011 conference and give my perspective on the current situation in high-energy physics. I am grateful to the organizers of Lepton Photon 2011 for providing us a very pleasant and simulating week in Mumbai. This year's Lepton Photon conference has covered the full range of subjects that fall within the scope of high-energy physics, including connections to cosmology, nuclear physics, and atomic physics. The experiments that were discussed detect particles ranging in energy from radio frequencies to EeV.

  16. Radiological incidents in radiotherapy

    International Nuclear Information System (INIS)

    Hobzova, L.; Novotny, J.

    2008-01-01

    In many countries a reporting system of radiological incidents to national regulatory body exists and providers of radiotherapy treatment are obliged to report all major and/or in some countries all incidents occurring in institution. State Office for Nuclear Safety (SONS) is providing a systematic guidance for radiotherapy departments from 1997 by requiring inclusion of radiation safety problems into Quality assurance manual, which is the basic document for obtaining a license of SONS for handling with sources of ionizing radiation. For that purpose SONS also issued the recommendation 'Introduction of QA system for important sources in radiotherapy-radiological incidents' in which the radiological incidents are defined and the basic guidance for their classification (category A, B, C, D), investigation and reporting are given. At regular periods the SONS in co-operation with radiotherapy centers is making a survey of all radiological incidents occurring in institutions and it is presenting obtained information in synoptic communication (2003 Motolske dny, 2005 Novy Jicin). This presentation is another summary report of radiological incidents that occurred in our radiotherapy institutions during last 3 years. Emphasis is given not only to survey and statistics, but also to analysis of reasons of the radiological incidents and to their detection and prevention. Analyses of incidents in radiotherapy have led to a much broader understanding of incident causation. Information about the error should be shared as early as possible during or after investigation by all radiotherapy centers. Learning from incidents, errors and near misses should be a part of improvement of the QA system in institutions. Generally, it is recommended that all radiotherapy facilities should participate in the reporting, analyzing and learning system to facilitate the dissemination of knowledge throughout the whole country to prevent errors in radiotherapy.(authors)

  17. Reactor flux calculations

    Energy Technology Data Exchange (ETDEWEB)

    Lhuillier, D. [Commissariat à l' Énergie Atomique et aux Énergies Alternatives, Centre de Saclay, IRFU/SPhN, 91191 Gif-sur-Yvette (France)

    2013-02-15

    The status of the prediction of reactor anti-neutrino spectra is presented. The most accurate method is still the conversion of total β spectra of fissionning isotopes as measured at research reactors. Recent re-evaluations of the conversion process led to an increased predicted flux by few percent and were at the origin of the so-called reactor anomaly. The up to date predictions are presented with their main sources of error. Perspectives are given on the complementary ab-initio predictions and upcoming experimental cross-checks of the predicted spectrum shape.

  18. Australian methane fluxes

    International Nuclear Information System (INIS)

    Williams, D.J.

    1990-01-01

    Estimates are provided for the amount of methane emitted annually into the atmosphere in Australia for a variety of sources. The sources considered are coal mining, landfill, motor vehicles, natural gas suply system, rice paddies, bushfires, termites, wetland and animals. This assessment indicates that the major sources of methane are natural or agricultural in nature and therefore offer little scope for reduction. Nevertheless the remainder are not trival and reduction of these fluxes could play a significant part in any Australian action on the greenhouse problem. 19 refs., 7 tabs., 1 fig

  19. [The flux of historiography].

    Science.gov (United States)

    Mazzolini, R G

    2001-01-01

    The author places Grmek's editorial within the flux of the historiographical debate which, since the middle of the 1970s, has concentrated on two major crises due to the end of social science-oriented 'scientific history' and to the 'linguistic turn'. He also argues that Grmek's historiographical work of the 1980s and 1990s was to some extent an alternative to certain observed changes in historical fashion and has achieved greater intelligibility because of its commitment to a rational vision of science and historiography.

  20. gPhoton: THE GALEX PHOTON DATA ARCHIVE

    Energy Technology Data Exchange (ETDEWEB)

    Million, Chase [Million Concepts LLC, P.O. Box 119, 141 Mary Street, Lemont, PA 16851 (United States); Fleming, Scott W.; Shiao, Bernie; Smith, Myron; Thompson, Randy; White, Richard L. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Seibert, Mark [The Observatories of the Carnegie Institution of Washington, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Loyd, Parke [Laboratory for Atmospheric and Space Physics, Boulder, Colorado, 80309 (United States); Tucker, Michael [Dept. of Physics and Astronomy, Appalachian State University, Boone, NC 28608 (United States)

    2016-12-20

    gPhoton is a new database product and software package that enables analysis of GALEX ultraviolet data at the photon level. The project’s stand-alone, pure-Python calibration pipeline reproduces the functionality of the original mission pipeline to reduce raw spacecraft data to lists of time-tagged, sky-projected photons, which are then hosted in a publicly available database by the Mikulski Archive at Space Telescope. This database contains approximately 130 terabytes of data describing approximately 1.1 trillion sky-projected events with a timestamp resolution of five milliseconds. A handful of Python and command-line modules serve as a front end to interact with the database and to generate calibrated light curves and images from the photon-level data at user-defined temporal and spatial scales. The gPhoton software and source code are in active development and publicly available under a permissive license. We describe the motivation, design, and implementation of the calibration pipeline, database, and tools, with emphasis on divergence from prior work, as well as challenges created by the large data volume. We summarize the astrometric and photometric performance of gPhoton relative to the original mission pipeline. For a brief example of short time-domain science capabilities enabled by gPhoton, we show new flares from the known M-dwarf flare star CR Draconis. The gPhoton software has permanent object identifiers with the ASCL (ascl:1603.004) and DOI (doi:10.17909/T9CC7G). This paper describes the software as of version v1.27.2.

  1. The photonic nanowire: A highly efficient single-photon source

    DEFF Research Database (Denmark)

    Gregersen, Niels

    2014-01-01

    The photonic nanowire represents an attractive platform for a quantum light emitter. However, careful optical engineering using the modal method, which elegantly allows access to all relevant physical parameters, is crucial to ensure high efficiency.......The photonic nanowire represents an attractive platform for a quantum light emitter. However, careful optical engineering using the modal method, which elegantly allows access to all relevant physical parameters, is crucial to ensure high efficiency....

  2. gPhoton: THE GALEX PHOTON DATA ARCHIVE

    International Nuclear Information System (INIS)

    Million, Chase; Fleming, Scott W.; Shiao, Bernie; Smith, Myron; Thompson, Randy; White, Richard L.; Seibert, Mark; Loyd, Parke; Tucker, Michael

    2016-01-01

    gPhoton is a new database product and software package that enables analysis of GALEX ultraviolet data at the photon level. The project’s stand-alone, pure-Python calibration pipeline reproduces the functionality of the original mission pipeline to reduce raw spacecraft data to lists of time-tagged, sky-projected photons, which are then hosted in a publicly available database by the Mikulski Archive at Space Telescope. This database contains approximately 130 terabytes of data describing approximately 1.1 trillion sky-projected events with a timestamp resolution of five milliseconds. A handful of Python and command-line modules serve as a front end to interact with the database and to generate calibrated light curves and images from the photon-level data at user-defined temporal and spatial scales. The gPhoton software and source code are in active development and publicly available under a permissive license. We describe the motivation, design, and implementation of the calibration pipeline, database, and tools, with emphasis on divergence from prior work, as well as challenges created by the large data volume. We summarize the astrometric and photometric performance of gPhoton relative to the original mission pipeline. For a brief example of short time-domain science capabilities enabled by gPhoton, we show new flares from the known M-dwarf flare star CR Draconis. The gPhoton software has permanent object identifiers with the ASCL (ascl:1603.004) and DOI (doi:10.17909/T9CC7G). This paper describes the software as of version v1.27.2.

  3. Distinguishing dark matter from unresolved point sources in the Inner Galaxy with photon statistics

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Samuel K. [Princeton Center for Theoretical Science, Princeton University, 400 Jadwin Hall, Princeton, NJ, 08544 (United States); Lisanti, Mariangela [Department of Physics, Princeton University, Jadwin Hall, Princeton, NJ, 08544 (United States); Safdi, Benjamin R., E-mail: samuelkl@princeton.edu, E-mail: mlisanti@princeton.edu, E-mail: bsafdi@princeton.edu [Center for Theoretical Physics, Massachusetts Institute of Technology, 77 Massachusetts Ave., 6-304, Cambridge, MA, 02139 (United States)

    2015-05-01

    Data from the Fermi Large Area Telescope suggests that there is an extended excess of GeV gamma-ray photons in the Inner Galaxy. Identifying potential astrophysical sources that contribute to this excess is an important step in verifying whether the signal originates from annihilating dark matter. In this paper, we focus on the potential contribution of unresolved point sources, such as millisecond pulsars (MSPs). We propose that the statistics of the photons—in particular, the flux probability density function (PDF) of the photon counts below the point-source detection threshold—can potentially distinguish between the dark-matter and point-source interpretations. We calculate the flux PDF via the method of generating functions for these two models of the excess. Working in the framework of Bayesian model comparison, we then demonstrate that the flux PDF can potentially provide evidence for an unresolved MSP-like point-source population.

  4. Ultra High Energy Cosmic Ray, Neutrino, and Photon Propagation and the Multi-Messenger Approach

    International Nuclear Information System (INIS)

    Taylor, Andrew; De Castro, Alexandra; Castillo-Ruiz, Edith

    2009-01-01

    The propagation of UHECR nuclei for A = 1(protons) to A = 56(iron) from cosmological sources through extragalactic space is discussed in the first lecture. This is followed in the second and third lectures by a consideration of the generation and propagation of secondary particles produced via the UHECR loss interactions. In the second lecture we focus on the generation of the diffuse cosmogenic UHE-neutrino flux. In the third lecture we investigate the arriving flux of UHE-photon flux at Earth. In the final lecture the results of the previous lectures are put together in order to provide new insights into UHECR sources. The first of these providing a means with which to investigate the local population of UHECR sources through the measurement of the UHECR spectrum and their photon fraction at Earth. The second of these providing contraints on the UHECR source radiation fields through the possible observation at Earth of UHECR nuclei.

  5. Engineering Photon-Photon Interactions within Rubidium-Filled Waveguides

    Science.gov (United States)

    Perrella, C.; Light, P. S.; Vahid, S. Afshar; Benabid, F.; Luiten, A. N.

    2018-04-01

    Strong photon-photon interactions are a required ingredient for deterministic two-photon optical quantum logic gates. Multiphoton transitions in dense atomic vapors have been shown to be a promising avenue for producing such interactions. The strength of a multiphoton interaction can be enhanced by conducting the interaction in highly confined geometries such as small-cross-section optical waveguides. We demonstrate, both experimentally and theoretically, that the strength of such interactions scale only with the optical mode diameter, d , not d2 as might be initially expected. This weakening of the interaction arises from atomic motion inside the waveguides. We create an interaction between two optical signals, at 780 and 776 nm, using the 5 S1 /2→5 D5 /2 two-photon transition in rubidium vapor within a range of hollow-core fibers with different core sizes. The interaction strength is characterized by observing the absorption and phase shift induced on the 780-nm beam, which is in close agreement with theoretical modeling that accounts for the atomic motion inside the fibers. These observations demonstrate that transit-time effects upon multiphoton transitions are of key importance when engineering photon-photon interactions within small-cross-section waveguides that might otherwise be thought to lead to enhanced optical nonlinearity through increased intensities.

  6. PHOTON PBL: problem-based learning in photonics technology education

    Science.gov (United States)

    Massa, Nicholas; Audet, Richard; Donnelly, Judith; Hanes, Fenna; Kehrhahn, Marijke

    2007-06-01

    Problem-based learning (PBL) is an educational approach whereby students learn course content by actively and collaboratively solving real-world problems presented in a context similar to that in which the learning is to be applied. Research shows that PBL improves student learning and retention, critical thinking and problem-solving skills, and the ability to skillfully apply knowledge to new situations - skills deemed critical to lifelong learning. Used extensively in medical education since the 1970's, and widely adopted in other fields including business, law, and education, PBL is emerging as an alternative to traditional lecture-based courses in engineering and technology education. In today's ever-changing global economy where photonics technicians are required to work productively in teams to solve complex problems across disciplines as well as cultures, PBL represents an exciting alternative to traditional lecture-based photonics education. In this paper we present the PHOTON PBL project, a National Science Foundation Advanced Technology Education (NSF-ATE) project aimed at creating, in partnership with the photonics industry and university research labs from across the US, a comprehensive series of multimedia-based PBL instructional resource materials and offering faculty professional development in the use of PBL in photonics technology education. Quantitative and qualitative research will be conducted on the effectiveness of PBL in photonics technician education.

  7. EDITORIAL: Photonic terahertz technology

    Science.gov (United States)

    Lisauskas, Alvydas; Löffler, Torsten; Roskos, Hartmut G.

    2005-07-01

    In recent years, when reading newspapers and journals or watching TV, one has been able to find feature presentations dealing with the prospects of terahertz (THz) technology and its potential impact on market applications. THz technology aims to fill the THz gap in the electro-magnetic spectrum in order to make the THz frequency regime, which spans the two orders of magnitude from 100 GHz to 10 THz, accessible for applications. From the lower-frequency side, electronics keeps pushing upwards, while photonic approaches gradually improve our technological options at higher frequencies. The popular interest reflects the considerable advances in research in the THz field, and it is mainly advances in the photonic branch, with the highlight being the development of the THz quantum cascade laser, which in recent years have caught the imagination of the public, and of potential users and investors. This special issue of Semiconductor Science and Technology provides an overview of key scientific developments which currently represent the cutting edge of THz photonic technology. In order to be clear about the implications, we should define exactly what we mean by 'THz photonic technology', or synonymously 'THz photonics'. It is characterized by the way in which THz radiation (or a guided THz wave) is generated, namely by the use of lasers. This may be done in one of two fundamentally different schemes: (i) by laser action in the terahertz frequency range itself (THz lasers), or (ii) by down-conversion processes (photomixing) involving the radiation of lasers which operate in the visible, near-infrared or infrared spectral ranges, either in pulsed or continuous-wave mode. The field of THz photonics has grown so considerably that it is out of the question to cover all its aspects in a single special issue of a journal. We have elected, instead, to focus our attention on two types of development with a potentially strong impact on the THz field: first, on significant advances

  8. Improved photon detector

    International Nuclear Information System (INIS)

    Zermeno, A.; Marsh, L.M.

    1981-01-01

    Apparatus and methods used to obtain image information from modulation of a uniform flux. A multi-layered detector apparatus is disclosed which comprises a first conductive layer having two sides, a photoconductive layer thick enough to obtain a desired level of sensitivity and resolution of the detector apparatus when the detector apparatus is exposed to radiation of known energy, one side of the photoconductive layer being integrally affixed to and in electrical contact with one side of the first conductive layer, an insulating layer having two sides that is a phosphor that will emit light when irradiated by x-rays, one side of the insulating layer being affixed to the other side of the photoconductive layer and a transparent conductive layer having two sides, one side of the transparent conductive layer being affixed to the other side of the insulating layer. (author)

  9. Photon interactions with nuclei

    International Nuclear Information System (INIS)

    Thornton, S.T.; Sealock, R.M.

    1989-01-01

    This document is a progress report for DOE Grant No. FG05-89ER40501, A000. The grant began March, 1989. Our primary research effort has been expended at the LEGS project at Brookhaven National Laboratory. This report will summarize our present research effort at LEGS as well as data analysis and publications from previous experiments performed at SLAC. In addition the principal investigators are heavily involved in the CLAS collaboration in Hall B at CEBAF. We have submitted several letters of intent and proposals and have made commitments to construct experimental equipment for CEBAF. We expect our primary experimental effort to continue at LEGS until CEBAF becomes operational. This report will be divided into separate sections describing our progress at LEGS, SLAC, and CEBAF. We will also discuss our significant efforts in the education and training of both undergraduate and graduate students. Photon detectors are described as well as experiments on delta deformation in nuclei of quasielastic scattering and excitation of the delta by 4 He(e,e')

  10. Patterned Colloidal Photonic Crystals.

    Science.gov (United States)

    Hou, Jue; Li, Mingzhu; Song, Yanlin

    2018-03-01

    Colloidal photonic crystals (PCs) have been well developed because they are easy to prepare, cost-effective, and versatile with regards to modification and functionalization. Patterned colloidal PCs contribute a novel approach to constructing high-performance PC devices with unique structures and specific functions. In this review, an overview of the strategies for fabricating patterned colloidal PCs, including patterned substrate-induced assembly, inkjet printing, and selective immobilization and modification, is presented. The advantages of patterned PC devices are also discussed in detail, for example, improved detection sensitivity and response speed of the sensors, control over the flow direction and wicking rate of microfluidic channels, recognition of cross-reactive molecules through an array-patterned microchip, fabrication of display devices with tunable patterns, well-arranged RGB units, and wide viewing-angles, and the ability to construct anti-counterfeiting devices with different security strategies. Finally, the perspective of future developments and challenges is presented. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Photonic MEMS switch applications

    Science.gov (United States)

    Husain, Anis

    2001-07-01

    As carriers and service providers continue their quest for profitable network solutions, they have shifted their focus from raw bandwidth to rapid provisioning, delivery and management of revenue generating services. Inherently transparent to data rate the transmission wavelength and data format, MEMS add scalability, reliability, low power and compact size providing flexible solutions to the management and/or fiber channels in long haul, metro, and access networks. MEMS based photonic switches have gone from the lab to commercial availability and are now currently in carrier trials and volume production. 2D MEMS switches offer low up-front deployment costs while remaining scalable to large arrays. They allow for transparent, native protocol transmission. 2D switches enable rapid service turn-up and management for many existing and emerging revenue rich services such as storage connectivity, optical Ethernet, wavelength leasing and optical VPN. As the network services evolve, the larger 3D MEMS switches, which provide greater scalability and flexibility, will become economically viable to serve the ever-increasing needs.

  12. Parity-Time Symmetric Photonics

    KAUST Repository

    Zhao, Han

    2018-01-17

    The establishment of non-Hermitian quantum mechanics (such as parity-time (PT) symmetry) stimulates a paradigmatic shift for studying symmetries of complex potentials. Owing to the convenient manipulation of optical gain and loss in analogy to the complex quantum potentials, photonics provides an ideal platform for visualization of many conceptually striking predictions from the non-Hermitian quantum theory. A rapidly developing field has emerged, namely, PT symmetric photonics, demonstrating intriguing optical phenomena including eigenstate coalescence and spontaneous PT symmetry breaking. The advance of quantum physics, as the feedback, provides photonics with brand-new paradigms to explore the entire complex permittivity plane for novel optical functionalities. Here, we review recent exciting breakthroughs in PT symmetric photonics while systematically presenting their underlying principles guided by non-Hermitian symmetries. The potential device applications for optical communication and computing, bio-chemical sensing, and healthcare are also discussed.

  13. Photon management in solar cells

    CERN Document Server

    Rau, Uwe; Gombert, Andreas

    2015-01-01

    Written by renowned experts in the field of photon management in solar cells, this one-stop reference gives an introduction to the physics of light management in solar cells, and discusses the different concepts and methods of applying photon management. The authors cover the physics, principles, concepts, technologies, and methods used, explaining how to increase the efficiency of solar cells by splitting or modifying the solar spectrum before they absorb the sunlight. In so doing, they present novel concepts and materials allowing for the cheaper, more flexible manufacture of solar cells and systems. For educational purposes, the authors have split the reasons for photon management into spatial and spectral light management. Bridging the gap between the photonics and the photovoltaics communities, this is an invaluable reference for materials scientists, physicists in industry, experimental physicists, lecturers in physics, Ph.D. students in physics and material sciences, engineers in power technology, appl...

  14. Modelling of photonic crystal fibres

    DEFF Research Database (Denmark)

    Knudsen, Erik

    2003-01-01

    , as well as a honeycomb bandgap fibre and the first analysis of semi-periodic layered air-hole fibres. Using the modelling framework established as a basis, we provide an analysis of microbend loss, by regarding displacement of a fibre core as a stationary stochastic process, inducing mismatch between......In the presenta ph.d. work a theoretical study of aspects of modelling photonic crystal fibres was carried out. Photonic crystal fibres form a class of optical waveguides where guidance is no longer provided by a difference in refractive index between core and cladding. Instead, guidance...... is provided by an arrangement of air-holes running along the length of the fibre. Depending on the geometry of the fibre, the guiding mechanism may be either arising from the formation of a photonic bandgap in the cladding structure (photonic bandgap fibre), or by an effect resembling total internal...

  15. Photon states in anisotropic media

    Indian Academy of Sciences (India)

    Abstract. Quantum aspects of optical polarization are discussed for waves traveling in anisotropic dielectric media with a view to relate the dynamics of polarization with that of photon spin and its manipulation by classical polarizers.

  16. Manipulating continuous variable photonic entanglement

    International Nuclear Information System (INIS)

    Plenio, M.B.

    2005-01-01

    I will review our work on photonic entanglement in the continuous variable regime including both Gaussian and non-Gaussian states. The feasibility and efficiency of various entanglement purification protocols are discussed this context. (author)

  17. Single-photon absorption by single photosynthetic light-harvesting complexes

    Science.gov (United States)

    Chan, Herman C. H.; Gamel, Omar E.; Fleming, Graham R.; Whaley, K. Birgitta

    2018-03-01

    We provide a unified theoretical approach to the quantum dynamics of absorption of single photons and subsequent excitonic energy transfer in photosynthetic light-harvesting complexes. Our analysis combines a continuous mode -photon quantum optical master equation for the chromophoric system with the hierarchy of equations of motion describing excitonic dynamics in presence of non-Markovian coupling to vibrations of the chromophores and surrounding protein. We apply the approach to simulation of absorption of single-photon coherent states by pigment–protein complexes containing between one and seven chromophores, and compare with results obtained by excitation using a thermal radiation field. We show that the values of excitation probability obtained under single-photon absorption conditions can be consistently related to bulk absorption cross-sections. Analysis of the timescale and efficiency of single-photon absorption by light-harvesting systems within this full quantum description of pigment–protein dynamics coupled to a quantum radiation field reveals a non-trivial dependence of the excitation probability and the excited state dynamics induced by exciton–phonon coupling during and subsequent to the pulse, on the bandwidth of the incident photon pulse. For bandwidths equal to the spectral bandwidth of Chlorophyll a, our results yield an estimation of an average time of ∼0.09 s for a single chlorophyll chromophore to absorb the energy equivalent of one (single-polarization) photon under irradiation by single-photon states at the intensity of sunlight.

  18. Coupling the photon kinetics of soft photons with high energy photons

    Science.gov (United States)

    Silva, L. O.; Bingham, R.

    2017-10-01

    The description of electromagnetic fields based on the generalized photon kinetic theory, which takes advantage of the Wigner-Moyal description for the corresponding classical field theory, is capable of capturing collective plasma dynamics in the relativistic regime driven by broadband incoherent or partially coherent sources. We explore the possibility to extend this description to include the dynamics of hard photons in the plasma, whose interaction is dominated by single scattering processes. Examples of the modification of classical plasma instabilities due to the presence of hard photons is discussed. Work supported by the European Research Council (ERC-AdG-2015 InPairs Grant No. 695088).

  19. National Photonics Skills Standard for Technicians.

    Science.gov (United States)

    Center for Occupational Research and Development, Inc., Waco, TX.

    This document defines "photonics" as the generation, manipulation, transport, detection, and use of light information and energy whose quantum unit is the photon. The range of applications of photonics extends from energy generation to detection to communication and information processing. Photonics is at the heart of today's…

  20. Photon final states at the Tevatron

    Energy Technology Data Exchange (ETDEWEB)

    Campanelli, Mario; /University Coll. London

    2008-04-01

    The authors present here several recent measurements involving associate production of photons and jets at the Tevatron. In particular, inclusive photon + met from D0, and photon + b-jets and photon + b-jet + leptons + MET from CDF are described in some detail. These measurements offer a good test of QCD predictions in rather complex final states.

  1. Photon factory activity report, 1992

    International Nuclear Information System (INIS)

    1993-01-01

    This issue is the annual report of the Photon Factory, National laboratory of High Energy Physics. First, the outline of the Photon Factory is presented. Injector linac, light source, beamlines and instrumentation, the Tristan synchrotron radiation facility at the accumulation ring, and the Tristan super light facility are described in detail. The facility is open to researchers. The user's reports are collected as well. (J.P.N.) (435 refs.)

  2. Modeling of photonic Crystal Fibres

    DEFF Research Database (Denmark)

    Bjarklev, Anders Overgaard; Broeng, Jes; Barkou, Stig Eigil

    1999-01-01

    Diferent theoretical models for analysis of photonic crystal fibres are reviewed and compaired. The methods span from simple scalar approaches to full-vectorial models using different mode-field decompositions. The specific advantages of the methods are evaluated.......Diferent theoretical models for analysis of photonic crystal fibres are reviewed and compaired. The methods span from simple scalar approaches to full-vectorial models using different mode-field decompositions. The specific advantages of the methods are evaluated....

  3. Topology Optimized Photonic Wire Splitters

    DEFF Research Database (Denmark)

    Frandsen, Lars Hagedorn; Borel, Peter Ingo; Jensen, Jakob Søndergaard

    2006-01-01

    Photonic wire splitters have been designed using topology optimization. The splitters have been fabricated in silicon-on-insulator material and display broadband low-loss 3dB splitting in a bandwidth larger than 100 nm.......Photonic wire splitters have been designed using topology optimization. The splitters have been fabricated in silicon-on-insulator material and display broadband low-loss 3dB splitting in a bandwidth larger than 100 nm....

  4. Photon factory activity report, 1993

    International Nuclear Information System (INIS)

    1994-01-01

    This issue is the annual report of the Photon Factory, National Laboratory of High Energy Physics. First the outline of the Photon Factory is presented. Injector linac, light source, beamlines and instrumentation, synchrotron radiation facility at the Tristan accumulation ring, and the Tristan super light facility are described in detail. The facility is open to researchers. The user's reports are collected as well. (J.P.N.)

  5. Experimental search for muonic photons

    CERN Document Server

    Vilain, P; Beyer, R; Flegel, Wilfried; Mouthuy, T; Øverås, H; Panman, J; Rozanov, A N; Winter, Klaus; Zacek, G; Zacek, V; Büsser, F W; Foos, C; Gerland, L; Layda, T; Niebergall, F; Rädel, G; Stähelin, P; Voss, T; Favart, D; Grégoire, G; Knoops, E; Lemaître, V; Gorbunov, P; Grigoriev, E A; Ilyin, V A; Khovanskii, V D; Maslennikov, A M; Okun, Lev Borisovich; Lippich, W; Nathaniel, A; Staude, A; Vogt, J; Cocco, A G; Ereditato, A; Fiorillo, G; Marchetti-Stasi, F; Palladino, Vittorio; Strolin, P; Capone, A; De Pedis, D; Dore, U; Frenkel-Rambaldi, A; Loverre, P F; Macina, Daniela; Piredda, G; Santacesaria, R; Di Capua, E; Ricciardi, S; Saitta, B; Akkus, B; Arik, E; Serin-Zeyrek, M; Sever, R; Tolun, P; Hiller, K; Nahnhauer, R; Roloff, H

    1998-01-01

    We report new limits on the production of muonic photons in the CERN neutrino beam. The results are based on the analysis of neutrino production of dimuons in the CHARM II detector. A $90\\%$ CL limit on the coupling constant of muonic photons, $\\alpha_{\\mu} / \\alpha < (1.5 \\div 3.2) \\times10^{-6}$ is derived for a muon neutrino mass in the range $m_{\

  6. Single-photon sampling architecture for solid-state imaging sensors.

    Science.gov (United States)

    van den Berg, Ewout; Candès, Emmanuel; Chinn, Garry; Levin, Craig; Olcott, Peter Demetri; Sing-Long, Carlos

    2013-07-23

    Advances in solid-state technology have enabled the development of silicon photomultiplier sensor arrays capable of sensing individual photons. Combined with high-frequency time-to-digital converters (TDCs), this technology opens up the prospect of sensors capable of recording with high accuracy both the time and location of each detected photon. Such a capability could lead to significant improvements in imaging accuracy, especially for applications operating with low photon fluxes such as light detection and ranging and positron-emission tomography. The demands placed on on-chip readout circuitry impose stringent trade-offs between fill factor and spatiotemporal resolution, causing many contemporary designs to severely underuse the technology's full potential. Concentrating on the low photon flux setting, this paper leverages results from group testing and proposes an architecture for a highly efficient readout of pixels using only a small number of TDCs. We provide optimized design instances for various sensor parameters and compute explicit upper and lower bounds on the number of TDCs required to uniquely decode a given maximum number of simultaneous photon arrivals. To illustrate the strength of the proposed architecture, we note a typical digitization of a 60 × 60 photodiode sensor using only 142 TDCs. The design guarantees registration and unique recovery of up to four simultaneous photon arrivals using a fast decoding algorithm. By contrast, a cross-strip design requires 120 TDCs and cannot uniquely decode any simultaneous photon arrivals. Among other realistic simulations of scintillation events in clinical positron-emission tomography, the above design is shown to recover the spatiotemporal location of 99.98% of all detected photons.

  7. Neutronics and photonics calculations for the tokamak experimental power reactor

    International Nuclear Information System (INIS)

    Santoro, R.T.; Baker, V.C.; Barnes, J.M.

    1977-03-01

    The results of one-dimensional neutronic and photonic calculations that compare the nuclear performance of blanket and shield designs proposed for use in the Tokamak Experimental Power Reactor are presented. The nuclear analysis was carried out for both nonbreeding and tritium-breeding blanket modules to compare the spatial variations of the radiation flux and energy distributions, nuclear heating, radiation damage, and tritium breeding. Nonbreeding blanket modules that contain potassium plus SS-316 or potassium only as the energy-absorbing medium and breeding blankets that use natural lithium as the fertile material were evaluated as a function of the first-wall cooling scheme

  8. Topological Photonics for Continuous Media

    Science.gov (United States)

    Silveirinha, Mario

    Photonic crystals have revolutionized light-based technologies during the last three decades. Notably, it was recently discovered that the light propagation in photonic crystals may depend on some topological characteristics determined by the manner how the light states are mutually entangled. The usual topological classification of photonic crystals explores the fact that these structures are periodic. The periodicity is essential to ensure that the underlying wave vector space is a closed surface with no boundary. In this talk, we prove that it is possible calculate Chern invariants for a wide class of continuous bianisotropic electromagnetic media with no intrinsic periodicity. The nontrivial topology of the relevant continuous materials is linked with the emergence of edge states. Moreover, we will demonstrate that continuous photonic media with the time-reversal symmetry can be topologically characterized by a Z2 integer. This novel classification extends for the first time the theory of electronic topological insulators to a wide range of photonic platforms, and is expected to have an impact in the design of novel photonic systems that enable a topologically protected transport of optical energy. This work is supported in part by Fundacao para a Ciencia e a Tecnologia Grant Number PTDC/EEI-TEL/4543/2014.

  9. Tunable Multiband Microwave Photonic Filters

    Directory of Open Access Journals (Sweden)

    Mable P. Fok

    2017-11-01

    Full Text Available The increasing demand for multifunctional devices, the use of cognitive wireless technology to solve the frequency resource shortage problem, as well as the capabilities and operational flexibility necessary to meet ever-changing environment result in an urgent need of multiband wireless communications. Spectral filter is an essential part of any communication systems, and in the case of multiband wireless communications, tunable multiband RF filters are required for channel selection, noise/interference removal, and RF signal processing. Unfortunately, it is difficult for RF electronics to achieve both tunable and multiband spectral filtering. Recent advancements of microwave photonics have proven itself to be a promising candidate to solve various challenges in RF electronics including spectral filtering, however, the development of multiband microwave photonic filtering still faces lots of difficulties, due to the limited scalability and tunability of existing microwave photonic schemes. In this review paper, we first discuss the challenges that were facing by multiband microwave photonic filter, then we review recent techniques that have been developed to tackle the challenge and lead to promising developments of tunable microwave photonic multiband filters. The successful design and implementation of tunable microwave photonic multiband filter facilitate the vision of dynamic multiband wireless communications and radio frequency signal processing for commercial, defense, and civilian applications.

  10. Permanent magnet flux-biased magnetic actuator with flux feedback

    Science.gov (United States)

    Groom, Nelson J. (Inventor)

    1991-01-01

    The invention is a permanent magnet flux-biased magnetic actuator with flux feedback for adjustably suspending an element on a single axis. The magnetic actuator includes a pair of opposing electromagnets and provides bi-directional forces along the single axis to the suspended element. Permanent magnets in flux feedback loops from the opposing electromagnets establish a reference permanent magnet flux-bias to linearize the force characteristics of the electromagnets to extend the linear range of the actuator without the need for continuous bias currents in the electromagnets.

  11. Computational Modeling of Photonic Crystal Microcavity Single-Photon Emitters

    Science.gov (United States)

    Saulnier, Nicole A.

    Conventional cryptography is based on algorithms that are mathematically complex and difficult to solve, such as factoring large numbers. The advent of a quantum computer would render these schemes useless. As scientists work to develop a quantum computer, cryptographers are developing new schemes for unconditionally secure cryptography. Quantum key distribution has emerged as one of the potential replacements of classical cryptography. It relics on the fact that measurement of a quantum bit changes the state of the bit and undetected eavesdropping is impossible. Single polarized photons can be used as the quantum bits, such that a quantum system would in some ways mirror the classical communication scheme. The quantum key distribution system would include components that create, transmit and detect single polarized photons. The focus of this work is on the development of an efficient single-photon source. This source is comprised of a single quantum dot inside of a photonic crystal microcavity. To better understand the physics behind the device, a computational model is developed. The model uses Finite-Difference Time-Domain methods to analyze the electromagnetic field distribution in photonic crystal microcavities. It uses an 8-band k · p perturbation theory to compute the energy band structure of the epitaxially grown quantum dots. We discuss a method that combines the results of these two calculations for determining the spontaneous emission lifetime of a quantum dot in bulk material or in a microcavity. The computational models developed in this thesis are used to identify and characterize microcavities for potential use in a single-photon source. The computational tools developed are also used to investigate novel photonic crystal microcavities that incorporate 1D distributed Bragg reflectors for vertical confinement. It is found that the spontaneous emission enhancement in the quasi-3D cavities can be significantly greater than in traditional suspended slab

  12. Infrared radiometric technique for rapid quantitative evaluation of heat flux distribution over large areas

    Science.gov (United States)

    Glazer, Stuart; Siebes, Georg

    1989-01-01

    This paper describes a novel approach for rapid, quantitative measurement of spatially distributed heat flux incident on a plane. The technique utilizes the spatial temperature distribution on an opaque thin film at the location of interest, as measured by an imaging infrared radiometer. Knowledge of film radiative properties, plus quantitative estimates of convection cooling permit the steady state energy balance at any location on the film sheet to be solved for the incident heat flux. Absolute accuracies on the order of 10-15 percent have been obtained in tests performed in air. The method is particularly useful for evaluation of spatial heat flux uniformity from distributed heat sources over large areas. It has recently been used in several applications at the Jet Propulsion Laboratory, including flux uniformity measurements from large distributed quartz lamp arrays used during thermal vacuum testing of several spacecraft components, and flux mapping of a low power NdYg laser beam.

  13. Critical incident stress management.

    Science.gov (United States)

    Lim, J J; Childs, J; Gonsalves, K

    2000-10-01

    Recent studies have indicated implementation of the CISM Program has impacted and reduced the cost of workers' compensation claims for stress related conditions and the number of lost work days (Ott, 1997; Western Management Consultants, 1996). Occupational health professionals need to be ready to develop and implement a comprehensive critical incident stress management process in anticipation of a major event. The ability to organize, lead, or administer critical incident stress debriefings for affected employees is a key role for the occupational health professional. Familiarity with these concepts and the ability to identify a critical incident enhances value to the business by mitigating the stress and impact to the workplace. Critical Incident Stress Management Systems have the potential for decreasing stress and restoring employees to normal life function--a win/win situation for both the employees and the organization.

  14. Marine Animal Incident Database

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Large whale stranding, death, ship strike and entanglement incidents are all recorded to monitor the health of each population and track anthropogenic factors that...

  15. Police Incident Blotter (Archive)

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — The Police Blotter Archive contains crime incident data after it has been validated and processed to meet Uniform Crime Reporting (UCR) standards, published on a...

  16. Prediction of Safety Incidents

    Data.gov (United States)

    National Aeronautics and Space Administration — Safety incidents, including injuries, property damage and mission failures, cost NASA and contractors thousands of dollars in direct and indirect costs. This project...

  17. 2011 Japanese Nuclear Incident

    Science.gov (United States)

    EPA’s RadNet system monitored the environmental radiation levels in the United States and parts of the Pacific following the Japanese Nuclear Incident. Learn about EPA’s response and view historical laboratory data and news releases.

  18. Prospects for Photon-Photon and Photon-Proton Measurements with Forward Proton Taggers in ATLAS

    CERN Document Server

    Trzebinski, Maciej; The ATLAS collaboration

    2017-01-01

    Talk for Photon2017 conference. Topics covered: ALFA and AFP detectors. Physics: elastic scattering, diffractive bremsstrahlung, exclusive pion pair production, anomalous gauge couplings, new physics (e.g. magnetic monopoles).

  19. Information Security Incident Management

    Directory of Open Access Journals (Sweden)

    D. I. Persanov

    2010-03-01

    Full Text Available The present report highlights the points of information security incident management in an enterprise. Some aspects of the incident and event classification are given. The author presents his view of the process scheme over the monitoring and processing information security events. Also, the report determines a few critical points of the listed process and gives the practical recommendations over its development and optimization.

  20. What is a photon?

    Science.gov (United States)

    Kracklauer, A. F.

    2015-09-01

    The linguistic and epistemological constraints on finding and expressing an answer to the title question are reviewed. First, it is recalled that "fields" are defined in terms of their effect on "test charges" and not in terms of any, even idealistically considered, primary, native innate qualities of their own. Thus, before fields can be discussed, the theorist has to have already available a defined "test particle" and field source. Clearly, neither the test nor the engendering particles can be defined as elements of the considered field without redefining the term "field." Further, the development of a theory as a logical structure (i.e., an internally self consistent conceptual complex) entails that the subject(s) of the theory (the primitive elements) and the rules governing their interrelationships (axioms) cannot be deduced by any logical procedure. They are always hypothesized on the basis of intuition supported by empirical experience. Given hypothesized primitive elements and axioms it is possible, in principle, to test for the 'completion' of the axiom set (i.e., any addition introduces redundancy) and for self consistency. Thus, theory building is limited to establishing the self consistency of a theory's mathematical expression and comparing that with the external, ontic world. Finally, a classical model with an event-by-event simulation of an EPR-B experiment to test a Bell Inequality is described. This model leads to a violation of Bell's limit without any quantum input (no nonlocal interaction nor entanglement), thus substantiating previous critical analysis of the derivation of Bell inequalities. On the basis of this result, it can be concluded that the electromagnetic interaction possesses no preternatural aspects, and that the usual models in terms of waves, fields and photons are all just imaginary constructs with questionable relation to a presumed reality.

  1. Reactor neutron flux measuring device

    International Nuclear Information System (INIS)

    Okutani, Yasushi; Hayakawa, Toshifumi.

    1994-01-01

    The present invention concerns a device for displaying an approximate neutron flux distribution to recognize the neutron flux distribution of the whole reactor in a short period of time. The device of the present invention displays, the results of measurement for neutron fluxes collected by a data collecting section on every results of the measurements at measuring points situating at horizontally identical positions of the reactor core. In addition, every results of the measurements at the measuring points situating at the identical height in the reactor core are accumulated, and the results of the integration are graphically displayed. With such procedures, the neutron flux distribution in the entire reactor is approximately displayed. Existent devices could not recognize the neutron flux distribution of the entire reactor at a glance and it took much time for the recognition. The device of the present invention can recognize the neutron flux distribution of the entire reactor in a short period of time. (I.S.)

  2. Flux compactifications and generalized geometries

    International Nuclear Information System (INIS)

    Grana, Mariana

    2006-01-01

    Following the lectures given at CERN Winter School 2006, we present a pedagogical overview of flux compactifications and generalized geometries, concentrating on closed string fluxes in type II theories. We start by reviewing the supersymmetric flux configurations with maximally symmetric four-dimensional spaces. We then discuss the no-go theorems (and their evasion) for compactifications with fluxes. We analyse the resulting four-dimensional effective theories for Calabi-Yau and Calabi-Yau orientifold compactifications, concentrating on the flux-induced superpotentials. We discuss the generic mechanism of moduli stabilization and illustrate with two examples: the conifold in IIB and a T 6 /(Z 3 x Z 3 ) torus in IIA. We finish by studying the effective action and flux vacua for generalized geometries in the context of generalized complex geometry

  3. California's Future Carbon Flux

    Science.gov (United States)

    Xu, L.; Pyles, R. D.; Paw U, K.; Gertz, M.

    2008-12-01

    The diversity of the climate and vegetation systems in the state of California provides a unique opportunity to study carton dioxide exchange between the terrestrial biosphere and the atmosphere. In order to accurately calculate the carbon flux, this study couples the sophisticated analytical surface layer model ACASA (Advance Canopy-Atmosphere-Soil Algorithm, developed in the University of California, Davis) with the newest version of mesoscale model WRF (the Weather Research & Forecasting Model, developed by NCAR and several other agencies). As a multilayer, steady state model, ACASA incorporates higher-order representations of vertical temperature variations, CO2 concentration, radiation, wind speed, turbulent statistics, and plant physiology. The WRF-ACASA coupling is designed to identify how multiple environmental factors, in particularly climate variability, population density, and vegetation distribution, impact on future carbon cycle prediction across a wide geographical range such as in California.

  4. A Silicon-Strip Detector for Photon-Counting Spectral CT: Energy Resolution From 40 keV to 120 keV

    Science.gov (United States)

    Liu, Xuejin; Bornefalk, Hans; Chen, Han; Danielsson, Mats; Karlsson, Staffan; Persson, Mats; Xu, Cheng; Huber, Ben

    2014-06-01

    We are developing a segmented silicon-strip detector for spectral computed tomography. The detector operates in photon-counting mode and allows pulse-height discrimination with 8 adjustable energy bins. In this work, we determine the energy resolution of a detector module using monoenergetic x-rays from 40 keV to 120 keV, provided at the European Synchrotron Radiation Facility, Grenoble. For each incident x-ray energy, pulse height spectra at different input photon fluxes are obtained. We investigate changes of the energy resolution due to charge sharing between pixels and pulse pileup. The different incident energies are used to channel-wise calibrate the pulse-height response in terms of signal gain and offset and to probe the homogeneity of the detector module. The detector shows a linear pulse-height response in the energy range from 40 keV to 120 keV. The gain variation among the channels is below 4%, whereas the variation of the offsets is on the order of 1 keV. We find an absolute energy resolution ( σE) that degrades from 1.5 keV to 1.9 keV with increasing x-ray energy from 40 keV to 100 keV. With increasing input count rate, σE degrades by approximately 4 ·10-3 keV Mcps-1 mm2, which is, within error bars, the same for the different energies. The effect of charge sharing on the width of the response peak is found to be negligible.

  5. Measurement of exclusive two-photon processes with dilepton final states in pp collisions at the LHC

    CERN Document Server

    Forthomme, Laurent

    The unification of the electromagnetic and weak forces is a cornerstone of the standard theory of elementary particles and fundamental interactions. At the Large Hadron Collider the processes of pair production via fusion of two exchanged photons provide a unique laboratory both for testing the standard theory and for search of new phenomena in high-energy physics. In this thesis such a two-photon exclusive pair production in pp collisions has been studied experimentally, at two centre of mass energies using the data collected with the CMS experiment during LHC's Run-1. Thanks to large, effective photon fluxes and the outstanding performance of the CMS apparatus clean two-photon signal samples could be extracted. The novel track-based exclusivity selection was instrumental for making successful measurements in an extremely demanding LHC environment. In particular, the "reference" two-photon production of lepton pairs has been measured and investigated in detail, including extended phenomenological studies. A ...

  6. Neutron fluxes in test reactors

    Energy Technology Data Exchange (ETDEWEB)

    Youinou, Gilles Jean-Michel [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2017-01-01

    Communicate the fact that high-power water-cooled test reactors such as the Advanced Test Reactor (ATR), the High Flux Isotope Reactor (HFIR) or the Jules Horowitz Reactor (JHR) cannot provide fast flux levels as high as sodium-cooled fast test reactors. The memo first presents some basics physics considerations about neutron fluxes in test reactors and then uses ATR, HFIR and JHR as an illustration of the performance of modern high-power water-cooled test reactors.

  7. Formation of η' mesons in photon-photon collisions

    International Nuclear Information System (INIS)

    Uitert, B.K. van.

    1986-01-01

    This thesis describes an experiment performed at the positron electron storage ring PEP at the Stanford Linear Accelerator Center on the formation of the η' resonance which is observed in its decay mode ρ 0 γ, where the ρ decays into a π + π - pair. Some general features of the relatively new subject of photon-photon physics are introduced. The η' and the coupling of photons to the η' are discussed in the context of the quark model. It is shown how the mixing angle in the nonet of pseudoscalar mesons can be derived from ratios of γγ widths. The kinematics of the two-photon exchange process, the formation of the η' resonance by the two virtual photons and its subsequent electromagnetic decay into ρ 0 γ are discussed. The selected sample of events is used to determine the γγ width of the η' under the conventional assignment J P = 0 - for the η' and J P = 1 - for the ρ. The result is combined with measurements by other experiments to a world average, which is used to determine the mixing angle for the pseudoscalar nonet under various assumptions. The decay angular and energy distributions are investigated in detail. (Auth.)

  8. PHOTON09. Proceedings of the international conference on the structure and interactions of the photon including the 18th international workshop on photon-photon collisions and the international workshop on high energy photon linear colliders

    Energy Technology Data Exchange (ETDEWEB)

    Behnke, Olaf; Diehl, Markus; Schoerner-Sadenius, Thomas; Steinbrueck, Georg (eds.)

    2010-01-15

    The following topics were dealt with: Electroweak and new physics, photon-collider technology, low-energy photon experiments, prompt photons, photon structure, jets and heavy flavours, vacuum polarization and light-by-light scattering, small-x processes, diffraction, total cross sections, exclusive channels and resonances, photons in astroparticle physics. (HSI)

  9. PHOTON09. Proceedings of the international conference on the structure and interactions of the photon including the 18th international workshop on photon-photon collisions and the international workshop on high energy photon linear colliders

    International Nuclear Information System (INIS)

    Behnke, Olaf; Diehl, Markus; Schoerner-Sadenius, Thomas; Steinbrueck, Georg

    2010-01-01

    The following topics were dealt with: Electroweak and new physics, photon-collider technology, low-energy photon experiments, prompt photons, photon structure, jets and heavy flavours, vacuum polarization and light-by-light scattering, small-x processes, diffraction, total cross sections, exclusive channels and resonances, photons in astroparticle physics. (HSI)

  10. Data Acquisition and Flux Calculations

    DEFF Research Database (Denmark)

    Rebmann, C.; Kolle, O; Heinesch, B

    2012-01-01

    In this chapter, the basic theory and the procedures used to obtain turbulent fluxes of energy, mass, and momentum with the eddy covariance technique will be detailed. This includes a description of data acquisition, pretreatment of high-frequency data and flux calculation.......In this chapter, the basic theory and the procedures used to obtain turbulent fluxes of energy, mass, and momentum with the eddy covariance technique will be detailed. This includes a description of data acquisition, pretreatment of high-frequency data and flux calculation....

  11. Heat Flux Instrumentation Laboratory (HFIL)

    Data.gov (United States)

    Federal Laboratory Consortium — Description: The Heat Flux Instrumentation Laboratory is used to develop advanced, flexible, thin film gauge instrumentation for the Air Force Research Laboratory....

  12. Silicon photonics: some remaining challenges

    Science.gov (United States)

    Reed, G. T.; Topley, R.; Khokhar, A. Z.; Thompson, D. J.; Stanković, S.; Reynolds, S.; Chen, X.; Soper, N.; Mitchell, C. J.; Hu, Y.; Shen, L.; Martinez-Jimenez, G.; Healy, N.; Mailis, S.; Peacock, A. C.; Nedeljkovic, M.; Gardes, F. Y.; Soler Penades, J.; Alonso-Ramos, C.; Ortega-Monux, A.; Wanguemert-Perez, G.; Molina-Fernandez, I.; Cheben, P.; Mashanovich, G. Z.

    2016-03-01

    This paper discusses some of the remaining challenges for silicon photonics, and how we at Southampton University have approached some of them. Despite phenomenal advances in the field of Silicon Photonics, there are a number of areas that still require development. For short to medium reach applications, there is a need to improve the power consumption of photonic circuits such that inter-chip, and perhaps intra-chip applications are viable. This means that yet smaller devices are required as well as thermally stable devices, and multiple wavelength channels. In turn this demands smaller, more efficient modulators, athermal circuits, and improved wavelength division multiplexers. The debate continues as to whether on-chip lasers are necessary for all applications, but an efficient low cost laser would benefit many applications. Multi-layer photonics offers the possibility of increasing the complexity and effectiveness of a given area of chip real estate, but it is a demanding challenge. Low cost packaging (in particular, passive alignment of fibre to waveguide), and effective wafer scale testing strategies, are also essential for mass market applications. Whilst solutions to these challenges would enhance most applications, a derivative technology is emerging, that of Mid Infra-Red (MIR) silicon photonics. This field will build on existing developments, but will require key enhancements to facilitate functionality at longer wavelengths. In common with mainstream silicon photonics, significant developments have been made, but there is still much left to do. Here we summarise some of our recent work towards wafer scale testing, passive alignment, multiplexing, and MIR silicon photonics technology.

  13. K-edge energy-based calibration method for photon counting detectors

    Science.gov (United States)

    Ge, Yongshuai; Ji, Xu; Zhang, Ran; Li, Ke; Chen, Guang-Hong

    2018-01-01

    In recent years, potential applications of energy-resolved photon counting detectors (PCDs) in the x-ray medical imaging field have been actively investigated. Unlike conventional x-ray energy integration detectors, PCDs count the number of incident x-ray photons within certain energy windows. For PCDs, the interactions between x-ray photons and photoconductor generate electronic voltage pulse signals. The pulse height of each signal is proportional to the energy of the incident photons. By comparing the pulse height with the preset energy threshold values, x-ray photons with specific energies are recorded and sorted into different energy bins. To quantitatively understand the meaning of the energy threshold values, and thus to assign an absolute energy value to each energy bin, energy calibration is needed to establish the quantitative relationship between the threshold values and the corresponding effective photon energies. In practice, the energy calibration is not always easy, due to the lack of well-calibrated energy references for the working energy range of the PCDs. In this paper, a new method was developed to use the precise knowledge of the characteristic K-edge energy of materials to perform energy calibration. The proposed method was demonstrated using experimental data acquired from three K-edge materials (viz., iodine, gadolinium, and gold) on two different PCDs (Hydra and Flite, XCounter, Sweden). Finally, the proposed energy calibration method was further validated using a radioactive isotope (Am-241) with a known decay energy spectrum.

  14. KoFlux: Korean Regional Flux Network in AsiaFlux

    Science.gov (United States)

    Kim, J.

    2002-12-01

    AsiaFlux, the Asian arm of FLUXNET, held the Second International Workshop on Advanced Flux Network and Flux Evaluation in Jeju Island, Korea on 9-11 January 2002. In order to facilitate comprehensive Asia-wide studies of ecosystem fluxes, the meeting launched KoFlux, a new Korean regional network of long-term micrometeorological flux sites. For a successful assessment of carbon exchange between terrestrial ecosystems and the atmosphere, an accurate measurement of surface fluxes of energy and water is one of the prerequisites. During the 7th Global Energy and Water Cycle Experiment (GEWEX) Asian Monsoon Experiment (GAME) held in Nagoya, Japan on 1-2 October 2001, the Implementation Committee of the Coordinated Enhanced Observing Period (CEOP) was established. One of the immediate tasks of CEOP was and is to identify the reference sites to monitor energy and water fluxes over the Asian continent. Subsequently, to advance the regional and global network of these reference sites in the context of both FLUXNET and CEOP, the Korean flux community has re-organized the available resources to establish a new regional network, KoFlux. We have built up domestic network sites (equipped with wind profiler and radiosonde measurements) over deciduous and coniferous forests, urban and rural rice paddies and coastal farmland. As an outreach through collaborations with research groups in Japan, China and Thailand, we also proposed international flux sites at ecologically and climatologically important locations such as a prairie on the Tibetan plateau, tropical forest with mixed and rapid land use change in northern Thailand. Several sites in KoFlux already begun to accumulate interesting data and some highlights are presented at the meeting. The sciences generated by flux networks in other continents have proven the worthiness of a global array of micrometeorological flux towers. It is our intent that the launch of KoFlux would encourage other scientists to initiate and

  15. Study of photon-photon collision reactions on DCI

    International Nuclear Information System (INIS)

    Falvard, Alain.

    1978-01-01

    One first shows interesting aspects specific of photon-photon collisions (γγ → X; leptonic or hadronic system C=+1, any Jsup(p) (a priori)). Then, one justifies the introduction, in experimental conditions at DCI, of a double Williams-Weiszacker approximation to compute ee → eeX reactions cross sections. This is made after a calculation developped in the frame of an 0(2,1) group's formalism. After, one presents to the important points of two photons experiments: essentially, necessity tagg electrons diffused at zero degree. The tagging system on DCI is then described: drift chambers of good spatial accuracy (0.2 mm), proximity of the beam are its main characteristics. One then estimates the background in detectors and the waited counting rates for ee→ee+(2γ) e + e - ,μ + μ - , π + π - [fr

  16. Narrow-band photon beam via laser Compton scattering in an energy recovery linac

    Directory of Open Access Journals (Sweden)

    T. Akagi

    2016-11-01

    Full Text Available Narrow-bandwidth photon beams in the x-ray and γ-ray energy ranges are expected to be applied in various fields. An energy recovery linac (ERL-based laser Compton scattering (LCS source employing a laser enhancement cavity can produce a high-flux and narrow-bandwidth photon beam. We conducted the first experiment of an ERL-based LCS source in combination with a laser enhancement cavity. We obtained LCS photons with an energy of 6.95±0.01  keV by colliding an electron beam of 20 MeV with a laser of 1064 nm wavelength. The photon flux at the interaction point was evaluated to be (2.6±0.1×10^{7}  photons/s with an average beam current of 58  μA and an average laser power of 10 kW. The energy bandwidth was evaluated to be 0.4% (rms with an opening angle of 0.14 mrad. The technologies demonstrated in this experiment are applicable for future ERL-based LCS sources.

  17. Photonics Research and Development

    Energy Technology Data Exchange (ETDEWEB)

    Dickson, Elizabeth [UNLV Research Foundation, Las Vegas, NV (United States)

    2010-01-15

    During the period August 2005 through October 2009, the UNLV Research Foundation (UNLVRF), a non-profit affiliate of the University of Nevada, Las Vegas (UNLV), in collaboration with UNLV's Colleges of Science and Engineering; Boston University (BU); Oak Ridge National Laboratory (ORNL); and Sunlight Direct, LLC, has managed and conducted a diverse and comprehensive research and development program focused on light-emitting diode (LED) technologies that provide significantly improved characteristics for lighting and display applications. This final technical report provides detailed information on the nature of the tasks, the results of the research, and the deliverables. It is estimated that about five percent of the energy used in the nation is for lighting homes, buildings and streets, accounting for some 25 percent of the average home's electric bill. However, the figure is significantly higher for the commercial sector. About 60 percent of the electricity for businesses is for lighting. Thus replacement of current lighting with solid-state lighting technology has the potential to significantly reduce this nation's energy consumption by some estimates, possibly as high as 20%. The primary objective of this multi-year R&D project has been to develop and advance lighting technologies to improve national energy conversion efficiencies; reduce heat load; and significantly lower the cost of conventional lighting technologies. The UNLVRF and its partners have specifically focused these talents on (1) improving LED technologies; (2) optimizing hybrid solar lighting, a technology which potentially offers the benefits of blending natural with artificial lighting systems, thus improving energy efficiency; and (3) building a comprehensive academic infrastructure within UNLV which concentrates on photonics R&D. Task researchers have reported impressive progress in (1) the development of quantum dot laser emitting diodes (QDLEDs) which will ultimately improve

  18. An analytical method based on multipole moment expansion to calculate the flux distribution in Gammacell-220

    Science.gov (United States)

    Rezaeian, P.; Ataenia, V.; Shafiei, S.

    2017-12-01

    In this paper, the flux of photons inside the irradiation cell of the Gammacell-220 is calculated using an analytical method based on multipole moment expansion. The flux of the photons inside the irradiation cell is introduced as the function of monopole, dipoles and quadruples in the Cartesian coordinate system. For the source distribution of the Gammacell-220, the values of the multipole moments are specified by direct integrating. To confirm the validation of the presented methods, the flux distribution inside the irradiation cell was determined utilizing MCNP simulations as well as experimental measurements. To measure the flux inside the irradiation cell, Amber dosimeters were employed. The calculated values of the flux were in agreement with the values obtained by simulations and measurements, especially in the central zones of the irradiation cell. In order to show that the present method is a good approximation to determine the flux in the irradiation cell, the values of the multipole moments were obtained by fitting the simulation and experimental data using Levenberg-Marquardt algorithm. The present method leads to reasonable results for the all source distribution even without any symmetry which makes it a powerful tool for the source load planning.

  19. From elementary flux modes to elementary flux vectors: Metabolic pathway analysis with arbitrary linear flux constraints

    Science.gov (United States)

    Klamt, Steffen; Gerstl, Matthias P.; Jungreuthmayer, Christian; Mahadevan, Radhakrishnan; Müller, Stefan

    2017-01-01

    Elementary flux modes (EFMs) emerged as a formal concept to describe metabolic pathways and have become an established tool for constraint-based modeling and metabolic network analysis. EFMs are characteristic (support-minimal) vectors of the flux cone that contains all feasible steady-state flux vectors of a given metabolic network. EFMs account for (homogeneous) linear constraints arising from reaction irreversibilities and the assumption of steady state; however, other (inhomogeneous) linear constraints, such as minimal and maximal reaction rates frequently used by other constraint-based techniques (such as flux balance analysis [FBA]), cannot be directly integrated. These additional constraints further restrict the space of feasible flux vectors and turn the flux cone into a general flux polyhedron in which the concept of EFMs is not directly applicable anymore. For this reason, there has been a conceptual gap between EFM-based (pathway) analysis methods and linear optimization (FBA) techniques, as they operate on different geometric objects. One approach to overcome these limitations was proposed ten years ago and is based on the concept of elementary flux vectors (EFVs). Only recently has the community started to recognize the potential of EFVs for metabolic network analysis. In fact, EFVs exactly represent the conceptual development required to generalize the idea of EFMs from flux cones to flux polyhedra. This work aims to present a concise theoretical and practical introduction to EFVs that is accessible to a broad audience. We highlight the close relationship between EFMs and EFVs and demonstrate that almost all applications of EFMs (in flux cones) are possible for EFVs (in flux polyhedra) as well. In fact, certain properties can only be studied with EFVs. Thus, we conclude that EFVs provide a powerful and unifying framework for constraint-based modeling of metabolic networks. PMID:28406903

  20. Four-terminal circuit element with photonic core

    Science.gov (United States)

    Sampayan, Stephen

    2017-08-29

    A four-terminal circuit element is described that includes a photonic core inside of the circuit element that uses a wide bandgap semiconductor material that exhibits photoconductivity and allows current flow through the material in response to the light that is incident on the wide bandgap material. The four-terminal circuit element can be configured based on various hardware structures using a single piece or multiple pieces or layers of a wide bandgap semiconductor material to achieve various designed electrical properties such as high switching voltages by using the photoconductive feature beyond the breakdown voltages of semiconductor devices or circuits operated based on electrical bias or control designs. The photonic core aspect of the four-terminal circuit element provides unique features that enable versatile circuit applications to either replace the semiconductor transistor-based circuit elements or semiconductor diode-based circuit elements.

  1. Geometrically distributed one-dimensional photonic crystals for light-reflection in all angles.

    Science.gov (United States)

    Alagappan, G; Wu, P

    2009-07-06

    We demonstrate that a series of one-dimensional photonic crystals made of any dielectric materials, with the periods are distributed in a geometrical progression of a common ratio, r light of any spectral range. If an omni-directional reflection is desired for all polarizations and for all incident angles smaller than thetao, then r light reflection.

  2. Fabrication and Characterization of Three Dimensional Photonic Crystals Generated by Multibeam Interference Lithography

    Science.gov (United States)

    Chen, Ying-Chieh

    2009-01-01

    Multibeam interference lithography is investigated as a manufacturing technique for three-dimensional photonic crystal templates. In this research, optimization of the optical setup and the photoresist initiation system leads to a significant improvement of the optical quality of the crystal, as characterized by normal incidence optical…

  3. A solution algorithm for calculating photon radiation fields with the aid of the Monte Carlo method

    International Nuclear Information System (INIS)

    Zappe, D.

    1978-04-01

    The MCTEST program and its subroutines for the solution of the Boltzmann transport equation is presented. The program renders possible to calculate photon radiation fields of point or plane gamma sources. After changing two subroutines the calculation can also be carried out for the case of directed incidence of radiation on plane shields of iron or concrete. (author)

  4. Heat flux solarimeter

    Energy Technology Data Exchange (ETDEWEB)

    Sartarelli, A.; Vera, S.; Cyrulies, E. [Instituto de Desarrollo Humano, Univ. Nac. de Gral. Sarmiento (IDH, UNGS), Los Polvorines (Argentina); Echarri, R. [Instituto de Desarrollo Humano, Univ. Nac. de Gral. Sarmiento (IDH, UNGS), Los Polvorines (Argentina); Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET) (Argentina); Samson, I. [INTEC (Instituto Tecnologico Santo Domingo), Santo Domingo (Dominican Republic)

    2010-12-15

    The solarimeter presented in this work is easy to assemble. It is calibrated and its performance is validated by means of Hottel's method. Finally, the curves obtained with this solarimeter are compared to the ones obtained with a commercial solarimeter. This device is based on the evaluation of the heat flow in a metal rod. In consequence, measurements are not affected by ambient temperature variations. On the other hand, there is a linear relationship between the temperatures measured at the rod ends and the incident radiation, as can be concluded both from the theory of its operation and the calibration lines obtained. The results obtained from the global irradiance measurements in the area of Los Polvorines (Buenos Aires Province), together with a preliminary evaluation of the solarimeter's response time, are presented in this work. (author)

  5. Coherent control of the waveforms of recoilless γ-ray photons

    Science.gov (United States)

    Vagizov, Farit; Antonov, Vladimir; Radeonychev, Y. V.; Shakhmuratov, R. N.; Kocharovskaya, Olga

    2014-04-01

    The concepts and ideas of coherent, nonlinear and quantum optics have been extended to photon energies in the range of 10-100 kiloelectronvolts, corresponding to soft γ-ray radiation (the term used when the radiation is produced in nuclear transitions) or, equivalently, hard X-ray radiation (the term used when the radiation is produced by electron motion). The recent experimental achievements in this energy range include the demonstration of parametric down-conversion in the Langevin regime, electromagnetically induced transparency in a cavity, the collective Lamb shift, vacuum-assisted generation of atomic coherences and single-photon revival in nuclear absorbing multilayer structures. Also, realization of single-photon coherent storage and stimulated Raman adiabatic passage were recently proposed in this regime. More related work is discussed in a recent review. However, the number of tools for the coherent manipulation of interactions between γ-ray photons and nuclear ensembles remains limited. Here we suggest and implement an efficient method to control the waveforms of γ-ray photons coherently. In particular, we demonstrate the conversion of individual recoilless γ-ray photons into a coherent, ultrashort pulse train and into a double pulse. Our method is based on the resonant interaction of γ-ray photons with an ensemble of nuclei with a resonant transition frequency that is periodically modulated in time. The frequency modulation, which is achieved by a uniform vibration of the resonant absorber, owing to the Doppler effect, renders resonant absorption and dispersion both time dependent, allowing us to shape the waveforms of the incident γ-ray photons. We expect that this technique will lead to advances in the emerging fields of coherent and quantum γ-ray photon optics, providing a basis for the realization of γ-ray-photon/nuclear-ensemble interfaces and quantum interference effects at nuclear γ-ray transitions.

  6. Squeezing Flux Out of Fat

    DEFF Research Database (Denmark)

    Gonzalez-Franquesa, Alba; Patti, Mary-Elizabeth

    2018-01-01

    Merging transcriptomics or metabolomics data remains insufficient for metabolic flux estimation. Ramirez et al. integrate a genome-scale metabolic model with extracellular flux data to predict and validate metabolic differences between white and brown adipose tissue. This method allows both metab...

  7. Search for ultra-high energy photons and neutrinos using Telescope Array surface detector

    Directory of Open Access Journals (Sweden)

    Troitsky S.V.

    2013-06-01

    Full Text Available We search for ultra-high energy photons by analyzing geometrical properties of shower fronts of events registered by the Telescope Array surface detector. By making use of an event-by-event statistical method, we derive upper limits on the absolute flux of primary photons with energies above 1019eV, 1019.5eV and above 1020eV based on the three years data from Telescope Array surface detector (May 2008 – May 2011. We report the results of down-going neutrino search based on the analysis of very inclined events.

  8. A rare gas optics-free absolute EUV photon spectrometer for solar system studies

    Science.gov (United States)

    Daybell, M. D.; Gruntman, M. A.; Judge, D. L.; Samson, J. A. R.

    1992-01-01

    We have developed a prototype spectrometer for space applications which require long term absolute EUV photon flux measurements. In this recently developed spectrometer, the energy spectrum of the incoming photons is transformed directly into an electron energy spectrum by taking advantage of the photoelectric effect in one of several rare gases at low pressures. Using an electron energy spectrometer operating at a few eV, and followed by an electron multiplying detector, pulses due to individual electrons are counted. The overall efficiency of this process is essentially independent of gain drifts in the signal path, and the secular degradation of optical components which is often a problem in other techniques is avoided.

  9. Increased fluorescence of PbS quantum dots in photonic crystals by excitation enhancement

    Science.gov (United States)

    Barth, Carlo; Roder, Sebastian; Brodoceanu, Daniel; Kraus, Tobias; Hammerschmidt, Martin; Burger, Sven; Becker, Christiane

    2017-07-01

    We report on the enhanced fluorescence of lead sulfide quantum dots interacting with leaky modes of slab-type silicon photonic crystals. The photonic crystal slabs were fabricated, supporting leaky modes in the near infrared wavelength range. Lead sulfite quantum dots which are resonant in the same spectral range were prepared in a thin layer above the slab. We selectively excited the leaky modes by tuning the wavelength and angle of incidence of the laser source and measured distinct resonances of enhanced fluorescence. By an appropriate experiment design, we ruled out directional light extraction effects and determined the impact of enhanced excitation. Three-dimensional numerical simulations consistently explain the experimental findings by strong near-field enhancements in the vicinity of the photonic crystal surface. Our study provides a basis for systematic tailoring of photonic crystals used in biological applications such as biosensing and single molecule detection, as well as quantum dot solar cells and spectral conversion applications.

  10. ZZ ENDLIB, Coupled Electron and Photon Transport Library in ENDL Format

    International Nuclear Information System (INIS)

    2002-01-01

    Description of program or function: The LLNL Evaluated Nuclear Data Library has existed since 1958 in a succession of forms and formats. The present form is as a machine-independent character file format and contains data for the evaluated atomic relaxation data library (EADL), the evaluated photon interaction data library (EPDL), and the evaluated electron interaction data library (EEDL). The purpose of these libraries is to furnish data for coupled electron-photon transport calculations. In order to perform coupled photon-electron transport calculations, all three libraries are required. The UCRL-ID-117796 report included in the documentation for this package provides information on the contents and formats for all three libraries, which are included in this package. All of these libraries span atomic numbers, Z, from 1 to 100. Additionally the electron and photon interaction libraries cover the incident particle energy range from 10 eV to 100 GeV

  11. Fabrication of Ceramic Layer-by-Layer Infrared Wavelength Photonic Band Gap Crystals

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Henry Hao-Chuan [Iowa State Univ., Ames, IA (United States)

    2004-12-19

    Photonic band gap (PBG) crystals, also known as photonic crystals, are periodic dielectric structures which form a photonic band gap that prohibit the propagation of electromagnetic (EM) waves of certain frequencies at any incident angles. Photonic crystals have several potential applications including zero-threshold semiconductor lasers, the inhibition of spontaneous emission, dielectric mirrors, and wavelength filters. If defect states are introduced in the crystals, light can be guided from one location to another or even a sharp bending of light in micron scale can be achieved. This generates the potential for optical waveguide and optical circuits, which will contribute to the improvement in the fiber-optic communications and the development of high-speed computers.

  12. Radiation incidents in dentistry

    International Nuclear Information System (INIS)

    Lovelock, D.J.

    1996-01-01

    Most dental practitioners act as their own radiographer and radiologist, unlike their medical colleagues. Virtually all dental surgeons have a dental X-ray machine for intraoral radiography available to them and 40% of dental practices have equipment for dental panoramic tomography. Because of the low energy of X-ray equipment used in dentistry, radiation incidents tend to be less serious than those associated with other aspects of patient care. Details of 47 known incidents are given. The advent of the 1985 and 1988 Ionising Radiation Regulations has made dental surgeons more aware of the hazards of radiation. These regulations, and general health and safety legislation, have led to a few dental surgeons facing legal action. Because of the publicity associated with these court cases, it is expected that there will be a decrease in radiation incidents arising from the practice of dentistry. (author)

  13. Entangled photons and quantum communication

    International Nuclear Information System (INIS)

    Yuan Zhensheng; Bao Xiaohui; Lu Chaoyang; Zhang Jun; Peng Chengzhi; Pan Jianwei

    2010-01-01

    This article reviews the progress of quantum communication that utilizes photonic entanglement. We start with a survey of various methods for generating entangled photons, followed by an introduction of the theoretical principles and the experimental implementations of quantum key distribution. We then move on to a discussion of more involved quantum communication protocols including quantum dense coding, teleportation and quantum communication complexity. After that, we review the progress in free-space quantum communication, decoherence-free subspace, and quantum repeater protocols which are essential ingredients for long-distance quantum communication. Practical realizations of quantum repeaters, which require an interface between photons and quantum memories, are discussed briefly. Finally, we draw concluding remarks considering the technical challenges, and put forward an outlook on further developments of this field.

  14. Photon Factory activity report, 1991

    International Nuclear Information System (INIS)

    1992-01-01

    The Photon Factory is a national synchrotron radiation research facility affiliated with the National Laboratory for High Energy Physics located in Tsukuba Science City. The Photon Factory consists of a 2.5 GeV electron/positron linear accelerator, a 2.5 GeV electron/positron storage ring, beam lines and experimental stations. All the facilities for synchrotron radiation research are open to scientists. A part of the accumulation ring of the TRISTAN main ring has been used as a synchrotron radiation source in the energy range from 5.8 to 6.5 GeV. The Photon Factory is composed of three divisions of Injector Linac, Light Source and Instrumentation. The researches of each divisions are reviewed, and the users' short reports are collected. The list of published papers with author index is also included in the publication. (K.I.) 233 refs

  15. Photonic quantum technologies (Presentation Recording)

    Science.gov (United States)

    O'Brien, Jeremy L.

    2015-09-01

    The impact of quantum technology will be profound and far-reaching: secure communication networks for consumers, corporations and government; precision sensors for biomedical technology and environmental monitoring; quantum simulators for the design of new materials, pharmaceuticals and clean energy devices; and ultra-powerful quantum computers for addressing otherwise impossibly large datasets for machine learning and artificial intelligence applications. However, engineering quantum systems and controlling them is an immense technological challenge: they are inherently fragile; and information extracted from a quantum system necessarily disturbs the system itself. Of the various approaches to quantum technologies, photons are particularly appealing for their low-noise properties and ease of manipulation at the single qubit level. We have developed an integrated waveguide approach to photonic quantum circuits for high performance, miniaturization and scalability. We will described our latest progress in generating, manipulating and interacting single photons in waveguide circuits on silicon chips.

  16. Quantum photonics hybrid integration platform

    Energy Technology Data Exchange (ETDEWEB)

    Murray, E.; Floether, F. F. [Cambridge Research Laboratory, Toshiba Research Europe Limited, 208 Science Park, Milton Road, Cambridge CB4 0GZ (United Kingdom); Cavendish Laboratory, University of Cambridge, J.J. Thomson Avenue, Cambridge CB3 0HE (United Kingdom); Ellis, D. J. P.; Meany, T.; Bennett, A. J., E-mail: anthony.bennet@crl.toshiba.co.uk; Shields, A. J. [Cambridge Research Laboratory, Toshiba Research Europe Limited, 208 Science Park, Milton Road, Cambridge CB4 0GZ (United Kingdom); Lee, J. P. [Cambridge Research Laboratory, Toshiba Research Europe Limited, 208 Science Park, Milton Road, Cambridge CB4 0GZ (United Kingdom); Engineering Department, University of Cambridge, 9 J. J. Thomson Avenue, Cambridge CB3 0FA (United Kingdom); Griffiths, J. P.; Jones, G. A. C.; Farrer, I.; Ritchie, D. A. [Cavendish Laboratory, University of Cambridge, J.J. Thomson Avenue, Cambridge CB3 0HE (United Kingdom)

    2015-10-26

    Fundamental to integrated photonic quantum computing is an on-chip method for routing and modulating quantum light emission. We demonstrate a hybrid integration platform consisting of arbitrarily designed waveguide circuits and single-photon sources. InAs quantum dots (QD) embedded in GaAs are bonded to a SiON waveguide chip such that the QD emission is coupled to the waveguide mode. The waveguides are SiON core embedded in a SiO{sub 2} cladding. A tuneable Mach Zehnder interferometer (MZI) modulates the emission between two output ports and can act as a path-encoded qubit preparation device. The single-photon nature of the emission was verified using the on-chip MZI as a beamsplitter in a Hanbury Brown and Twiss measurement.

  17. Optical properties of photonic crystals

    CERN Document Server

    Sakoda, Kazuaki

    2001-01-01

    The interaction between the radiation field and matter is the most fundamen­ tal source of dynamics in nature. It brings about the absorption and emission of photons, elastic and inelastic light scattering, the radiative lifetime of elec­ tronic excited states, and so on. The huge amount of energy carried from the sun by photons is the source of all activities of creatures on the earth. The absorption of photons by chlorophylls and the successive electronic excita­ tion initiate a series of chemical reactions that are known as photosynthesis, which support all life on the earth. Radiative energy is also the main source of all meteorological phenomena. The fundamentals of the radiation field and its interaction with matter were clarified by classical electromagnetism and quantum electrodynamics. These theories, we believe, explain all electromagnetic phenomena. They not only provide a firm basis for contemporary physics but also generate a vast range of technological applications. These include television, ...

  18. Stochastic stabilization of cosmological photons

    International Nuclear Information System (INIS)

    Dettmann, C P; Keating, J P; Prado, S D

    2004-01-01

    The stability of photon trajectories in models of the universe that have constant spatial curvature is determined by the sign of the curvature: they are exponentially unstable if the curvature is negative and stable if it is positive or zero. We demonstrate that random fluctuations in the curvature provide an additional stabilizing mechanism. This mechanism is analogous to the one responsible for stabilizing the stochastic Kapitsa pendulum. When the mean curvature is negative it is capable of stabilizing the photon trajectories; when the mean curvature is zero or positive it determines the characteristic frequency with which neighbouring trajectories oscillate about each other. In constant negative curvature models of the universe that have compact topology, exponential instability implies chaos (e.g. mixing) in the photon dynamics. We discuss some consequences of stochastic stabilization in this context. (letter to the editor)

  19. Silicon photonic physical unclonable function.

    Science.gov (United States)

    Grubel, Brian C; Bosworth, Bryan T; Kossey, Michael R; Sun, Hongcheng; Cooper, A Brinton; Foster, Mark A; Foster, Amy C

    2017-05-29

    Physical unclonable functions (PUFs) serve as a hardware source of private information that cannot be duplicated and have applications in hardware integrity and information security. Here we demonstrate a photonic PUF based on ultrafast nonlinear optical interactions in a chaotic silicon micro-cavity. The device is probed with a spectrally-encoded ultrashort optical pulse, which nonlinearly interacts with the micro-cavity. This interaction produces a highly complex and unpredictable, yet deterministic, ultrafast response that can serve as a unique "fingerprint" of the cavity and as a source of private information for the device's holder. Experimentally, we extract 17.1-kbit binary keys from six different photonic PUF designs and demonstrate the uniqueness and reproducibility of these keys. Furthermore, we experimentally test exact copies of the six photonic PUFs and demonstrate their unclonability due to unavoidable fabrication variations.

  20. Clinical two-photon microendoscopy.

    Science.gov (United States)

    König, K; Ehlers, A; Riemann, I; Schenkl, S; Bückle, R; Kaatz, M

    2007-05-01

    Two-photon medical imaging has found its way into dermatology as an excellent method for noninvasive skin cancer detection without need of contrast agents as well as for in situ drug screening of topically-applied cosmetical and pharmaceutical components. There is an increasing demand to apply the multiphoton technology also for deep-tissue skin imaging as well as for intracorporal imaging. We report on the first clinical use of multiphoton endoscopes, in particular of a miniaturized rigid two-photon GRIN lens endoscope. The microendoscope was attached to the multiphoton tomograph DermaInspect and employed to detect the extracellular matrix proteins collagen and elastin in the human dermis of volunteers and patients with ulcera by in vivo second harmonic generation and in vivo two-photon autofluorescence. Copyright 2007 Wiley-Liss, Inc.

  1. Two-Photon Ghost Image and Interference-Diffraction

    Science.gov (United States)

    Shih, Y. H.; Sergienko, A. V.; Pittman, T. B.; Strekalov, D. V.; Klyshko, D. N.

    1996-01-01

    One of the most surprising consequences of quantum mechanics is entanglement of two or more distance particles. The two-particle entangled state was mathematically formulated by Schrodinger. Based on this unusual quantum behavior, EPR defined their 'physical reality' and then asked the question: 'Can Quantum-Mechanical Description of Physical Reality Be Considered Complete?' One may not appreciate EPR's criterion of physical reality and insist that 'no elementary quantum phenomenon is a phenomenon until it is a recorded phenomenon'. Optical spontaneous parametric down conversion (SPDC) is the most effective mechanism to generate an EPR type entangled two-photon state. In SPDC, an optical beam, called the pump, is incident on a birefringent crystal. The pump is intense enough so that nonlinear effects lead to the conversion of pump photons into pairs of photons, historically called signal and idler. Technically, the SPDC is said to be type-1 or type-2, depending on whether the signal and idler beams have parallel or orthogonal polarization. The SPDC conversion efficiency is typically on the order of 10(exp -9) to 10(exp -11), depending on the SPDC nonlinear material. The signal and idler intensities are extremely low, only single photon detection devices can register them. The quantum entanglement nature of SPDC has been demonstrated in EPR-Bohm experiments and Bell's inequality measurements. The following two experiments were recently performed in our laboratory, which are more closely related to the original 1935 EPR gedankenezperiment. The first experiment is a two-photon optical imaging type experiment, which has been named 'ghost image' by the physics community. The signal and idler beams of SPDC are sent in different directions, so that the detection of the signal and idler photons can be performed by two distant photon counting detectors. An aperture object (mask) is placed in front of the signal photon detector and illuminated by the signal beam through a

  2. Apparatus for photon activation positron annihilation analysis

    Science.gov (United States)

    Akers, Douglas W [Idaho Falls, ID

    2007-06-12

    Non-destructive testing apparatus according to one embodiment of the invention comprises a photon source. The photon source produces photons having predetermined energies and directs the photons toward a specimen being tested. The photons from the photon source result in the creation of positrons within the specimen being tested. A detector positioned adjacent the specimen being tested detects gamma rays produced by annihilation of positrons with electrons. A data processing system operatively associated with the detector produces output data indicative of a lattice characteristic of the specimen being tested.

  3. NEUTRINO, γ -RAY, AND COSMIC-RAY FLUXES FROM THE CORE OF THE CLOSEST RADIO GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Fraija, N. [Instituto de Astronomía, Universidad Nacional Autónoma de México, Apdo. Postal 70-264, Cd. Universitaria, DF 04510, México (Mexico); Marinelli, A., E-mail: nifraija@astro.unam.mx, E-mail: antonio.marinelli@pi.infn.it [Dipartimento di Fisica, Universita di Pisa and I.N.F.N., Largo Bruno Pontecorvo, 3, I-56127 Pisa (Italy)

    2016-10-20

    The closest radio galaxies; Centaurus A (Cen A), M87, and NGC 1275, have been detected from radio wavelengths to TeV γ -rays, and also studied as high-energy neutrino and ultra-high-energy cosmic-ray (UHECR) potential emitters. Their spectral energy distributions (SEDs) show a double-peak feature, which is explained by a synchrotron self-Compton (SSC) model. However, TeV γ -ray measured spectra could suggest that very-high-energy γ -rays might have a hadronic origin. We introduce a lepto-hadronic model to describe the broadband SED; from radio to sub-GeV photons as synchrotron SSC emission and TeV γ -ray photons as neutral pion decay resulting from p γ interactions occurring close to the core. These photo-hadronic interactions take place when Fermi-accelerated protons interact with the seed photons around synchrotron SSC peaks. Obtaining a good description of the TeV γ -ray fluxes, first, we compute neutrino fluxes and events expected in the IceCube detector and, second, we estimate UHECR fluxes and the event rate expected in Telescope Array, Pierre Auger, and HiRes observatories. Within this scenario, we show that the expected high-energy neutrinos cannot explain the astrophysical flux observed by IceCube, and the connection with UHECRs observed by Auger experiment around Cen A might be possible only considering a heavy nuclei composition in the observed events.

  4. Principal Metabolic Flux Mode Analysis.

    Science.gov (United States)

    Bhadra, Sahely; Blomberg, Peter; Castillo, Sandra; Rousu, Juho; Wren, Jonathan

    2018-02-06

    In the analysis of metabolism, two distinct and complementary approaches are frequently used: Principal component analysis (PCA) and stoichiometric flux analysis. PCA is able to capture the main modes of variability in a set of experiments and does not make many prior assumptions about the data, but does not inherently take into account the flux mode structure of metabolism. Stoichiometric flux analysis methods, such as Flux Balance Analysis (FBA) and Elementary Mode Analysis, on the other hand, are able to capture the metabolic flux modes, however, they are primarily designed for the analysis of single samples at a time, and not best suited for exploratory analysis on a large sets of samples. We propose a new methodology for the analysis of metabolism, called Principal Metabolic Flux Mode Analysis (PMFA), which marries the PCA and stoichiometric flux analysis approaches in an elegant regularized optimization framework. In short, the method incorporates a variance maximization objective form PCA coupled with a stoichiometric regularizer, which penalizes projections that are far from any flux modes of the network. For interpretability, we also introduce a sparse variant of PMFA that favours flux modes that contain a small number of reactions. Our experiments demonstrate the versatility and capabilities of our methodology. The proposed method can be applied to genome-scale metabolic network in efficient way as PMFA does not enumerate elementary modes. In addition, the method is more robust on out-of-steady steady-state experimental data than competing flux mode analysis approaches. Matlab software for PMFA and SPMFA and data set used for experiments are available in https://github.com/aalto-ics-kepaco/PMFA. sahely@iitpkd.ac.in, juho.rousu@aalto.fi, Peter.Blomberg@vtt.fi, Sandra.Castillo@vtt.fi. Detailed results are in Supplementary files. Supplementary data are available at https://github.com/aalto-ics-kepaco/PMFA/blob/master/Results.zip.

  5. Efficient heat dissipation of photonic crystal microcavity by monolayer graphene.

    Science.gov (United States)

    Shih, Min-Hsiung; Li, Lain-Jong; Yang, Yi-Chun; Chou, Hsiang-Yu; Lin, Cheng-Te; Su, Ching-Yuan

    2013-12-23

    Graphene, which exhibits excellent thermal conductivity, is a potential heat dissipation medium for compact optoelectronic devices. Photonic devices normally produce large- quantity of unwanted heat, and thus, a heat dissipation strategy is urgently needed. In this study, single-layer graphene (SLG) grown by chemical vapor deposition (CVD) is used to cover the surface of a photonic crystal (PhC) cavity, where the heat flux produced by the PhC cavity can be efficiently dissipated along the in-plane direction of the SLG. The thermal properties of the graphene-capped PhC cavity were characterized by experiments and theoretical calculations. The thermal resistance of the SLG-capped PhC cavity obtained from experiments is lower than half of that of a bare PhC cavity. The temperature of a SLG-capped PhC cavity is 45 K lower than that without SLG capping under an optical power of 100 μW. Our simulation results indicate that SLG receives the majority of the heat fluxes from the device, leading to the efficient heat dissipation. Both the experimental and simulation results suggest that the SLG is a promising material to enhance the heat dissipation efficiency for optoelectronic applications.

  6. Photon and electron data bases and their use in radiation transport calculations

    International Nuclear Information System (INIS)

    Cullen, D.E.; Perkins, S.T.; Seltzer, S.M.

    1992-01-01

    Traditionally, the data included in the ENDF/B photon interaction data base have been sufficient to describe the interaction of primary photons with matter. The data usually contained in this data base included: (1) cross sections: coherent and incoherent scattering, pair production as well as photoelectric absorption; and (2) form factors and scattering functions: to describe the angular distribution of coherent and incoherently scattered photons. These data were sufficient to describe the interaction of primary photons with matter. However, they were not adequate to uniquely define the emission of secondary photons following photoelectric effects such as fluorescence. Traditionally, it has been assumed that when a photoelectric event occurs, all of the energy of the incident photons is deposited at the point of the interaction. In fact, in the case of photons with energies near the K photoelectric edge of lead, almost 88% of the energy will be reradiated as fluorescence X rays. Traditional data also did not include the effect of anomalous scattering on coherent scattering. Including this effect predicts a coherent scattering cross section that approaches zero at low energy, as opposed to the constant low-energy limit predicted by simply using form factors. Lastly, traditional data did not differentiate between pair and triplet production

  7. Controllable optical bistability in photonic-crystal one-atom laser

    International Nuclear Information System (INIS)

    Guo Xiaoyong; Lue Shuchen

    2009-01-01

    We investigate the property of optical bistability in a photonic-crystal one-atom laser when nonlinear microcavity is present. The physical system consists of a coherently driven two-level light emitter strongly coupled to a high-quality microcavity which is embedded within a photonic crystal and another coherent probing field which has incident into the microcavity. In our case, the microcavity is fabricated by nonlinear material and placed as an impurity in photonic crystal. This study reveals that such a system can exhibit optical bistability. The dependence of threshold value and hysteresis loop on the photonic band gap of the photonic crystal, driving field Rabi frequency and dephasing processes, are studied. Our results clearly illustrate the ability to control optical bistability through suitable photonic-crystal architectures and external coherent driving field, and this study suggests that in a photonic-crystal nonlinear microcavity, the one-atom laser acts as an effective controllable bistable device in the design of all-light digital computing systems in the near future.

  8. Research summer camp in photonics

    Science.gov (United States)

    Buyanovskaya, Elizaveta; Melnik, Maksim; Egorov, Vladimir; Gleim, Artur; Lukishova, Svetlana; Kozlov, Sergei; Zhang, Xi-Cheng

    2017-08-01

    ITMO University and the University of Rochester became close partners several years ago. One of the first outcomes of this mutually beneficial partnership was the creation of International Institute of Photonics and Optical Information Technologies led by Prof. Sergei Kozlov and Prof. Xi-Cheng Zhang. Universities have created a double Masters-degree program in optics in 2014, and several ITMO students have been awarded degrees from Rochester. At the same time ITMO University organizes Summer Research camp in Photonics for University of Rochester students. Students spent two weeks in the Northern Capital of Russia learning about the emerging practical applications of femtosecond optics, terahertz biomedicine and quantum information technologies.

  9. Polymers for electronic & photonic application

    CERN Document Server

    Wong, C P

    2013-01-01

    The most recent advances in the use of polymeric materials by the electronic industry can be found in Polymers for Electronic and Photonic Applications. This bookprovides in-depth coverage of photoresis for micro-lithography, microelectronic encapsulants and packaging, insulators, dielectrics for multichip packaging,electronic and photonic applications of polymeric materials, among many other topics. Intended for engineers and scientists who design, process, and manufacturemicroelectronic components, this book will also prove useful for hybrid and systems packaging managers who want to be info

  10. Study on radiation flux of the receiver with a parabolic solar concentrator system

    International Nuclear Information System (INIS)

    Mao, Qianjun; Shuai, Yong; Yuan, Yuan

    2014-01-01

    Highlights: • The idea of integral dish and multi-dishes in a parabolic solar collector has been proposed. • The impacts of three factors of the receiver have been investigated. • The radiation flux distribution can benefit from a large system error. - Abstract: The solar receiver plays a key role in the performance of a solar dish electric generator. Its radiation flux distribution can directly affect the efficiency of the parabolic solar concentrator system. In this paper, radiation flux distribution of the receiver is simulated successfully using MCRT method. The impacts of incident solar irradiation, aspect ratio (the ratio of the receiver height to the receiver diameter), and system error on the radiation flux of the receiver are investigated. The parameters are studied in the following ranges: incident solar irradiation from 100 to 1100 W/m 2 , receiver aspect ratio from 0.5 to 1.5, and the system error from 0 to 10 mrad. A non-dimensional parameter Θ is defined to represent the ratio of radiation flux to incident solar irradiation. The results show that the maximum of Θ is about 200 in simulation conditions. The aspect ratio and system error have a significant impact on the radiation flux. The optimal receiver aspect ratio is 1.5 at a constant incident solar irradiation, and the maximum of radiation flux increases with decreasing system error, however, the radiation flux distribution can benefit from a large system error. Meanwhile, effects of integral dish and multi-dishes on the radiation flux distribution have been investigated. The results show that the accuracy of two cases can be ignored within the same parameters

  11. Fast pulse discriminator for photon counting at high photon densities

    International Nuclear Information System (INIS)

    Benoit, R.; Pedrini, A.

    1977-03-01

    A fast tunnel diode discriminator for photon counting up to 200MHz count frequency is described. The tunnel diode is operated on its apparent I.V. characteristics displayed when the diode is driven into its oscillating region. The pulse shaper-discriminator is completely D.C. coupled in order to avoid base-line shift at high pulse rates

  12. Photonic wires and trumpets for ultrabright single photon sources

    DEFF Research Database (Denmark)

    Gérard, Jean-Michel; Claudon, Julien; Bleuse, Joël

    2013-01-01

    as to tailor their radiation diagram in the far-field. We highlight the novel “photonic trumpet” geometry, which provides a clean Gaussian beam, and is much less sensitive to fabrication imperfections than the more common needle-like taper geometry. S4Ps based on a single QD in a PW with integrated bottom...

  13. Photon management with luminescent materials and photonic structures

    Science.gov (United States)

    Goldschmidt, J. C.; Fischer, S.; Fröhlich, Benjamin; Gutmann, J.; Herter, B.; Hofmann, C.; Löffler, J.; van Veggel, Frank C. J. M.; Wolf, S.

    2014-05-01

    Upconversion of sub-band-gap photons is a promising approach to increase the efficiency of solar cells. In this paper, we review the recent progress in upconverter material development and realization of efficient upconverter silicon solar cell devices. Current published record values for the increase in the short-circuit current density due to upconversion are 13.1 mA/cm2 at a solar concentration of 210 suns determined in a sun simulator measurement. This increase is equivalent to a relative efficiency enhancement of 0.19% for the silicon solar cell. Although this is a considerable enhancement by more than one order of magnitude from values published only a few years ago, further enhancement of the upconversion performance is necessary. To this end, we investigate theoretically the application of resonant cavity and grating photonic structures. Our simulation based analysis considers irradiance enhancement and modified density of photon states due to the photonic structures and their impact on the upconversion dynamics in β-NaYF4: 20%Er3+. It shows that an optimized grating can increase upconversion luminescence by a factor of 3 averaged over the whole structure in comparison to an unstructured reference with the same amount of upconverter material.

  14. In-situ measurement of bound states in the continuum in photonic crystal slabs (Conference Presentation)

    Science.gov (United States)

    Kalchmair, Stefan; Gansch, Roman; Genevet, Patrice; Zederbauer, Tobias; MacFarland, Donald; Detz, Hermann; Andrews, Aaron Maxwell; Schrenk, Werner; Strasser, Gottfried; Capasso, Federico; Loncar, Marko

    2016-04-01

    Photonic crystal slabs have been subject to research for more than a decade, yet the existence of bound states in the radiation continuum (BICs) in photonic crystals has been reported only recently [1]. A BIC is formed when the radiation from all possible channels interferes destructively, causing the overall radiation to vanish. In photonic crystals, BICs are the result of accidental phase matching between incident, reflected and in-plane waves at seemingly random wave vectors [2]. While BICs in photonic crystals have been discussed previously using reflection measurements, we reports for the first time in-situ measurements of the bound states in the continuum in photonic crystal slabs. By embedding a photodetector into a photonic crystal slab we were able to directly observe optical BICs. The photonic crystal slabs are processed from a GaAs/AlGaAs quantum wells heterostructure, providing intersubband absorption in the mid-infrared wavelength range. The generated photocurrent is collected via doped contact layers on top and bottom of the suspended photonic crystal slab. We were mapping out the photonic band structure by rotating the device and by acquiring photocurrent spectra every 5°. Our measured photonic bandstructure revealed several BICs, which was confirmed with a rigorously coupled-wave analysis simulation. Since coupling to external fields is suppressed, the photocurrent measured by the photodetector vanishes at the BIC wave vector. To confirm the relation between the measured photocurrent and the Q-factor we used temporal coupled mode theory, which yielded an inverse proportional relation between the photocurrent and the out-coupling loss from the photonic crystal. Implementing a plane wave expansion simulation allowed us to identify the corresponding photonic crystal modes. The ability to directly measure the field intensity inside the photonic crystal presents an important milestone towards integrated opto-electronic BIC devices. Potential

  15. Effect of shape of scatterers and plasma frequency on the complete photonic band gap properties of two-dimensional dielectric-plasma photonic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Fathollahi Khalkhali, T., E-mail: tfathollahi@aeoi.org.ir; Bananej, A.

    2016-12-16

    In this study, we analyze complete photonic band gap properties of two-dimensional dielectric-plasma photonic crystals with triangular and square lattices, composed of plasma rods with different geometrical shapes in the anisotropic tellurium background. Using the finite-difference time-domain method we discuss the maximization of the complete photonic band gap width as a function of plasma frequency and plasma rods parameters with different shapes and orientations. The numerical results demonstrate that our proposed structures represent significantly wide complete photonic band gaps in comparison to previously studied dielectric-plasma photonic crystals. - Highlights: • In this paper, we have investigated plasma photonic crystals. • Plasma is a kind of dispersive medium with its equivalent refractive index related to the frequency of an incident EM wave. • In this work, our simulations are performed using the Meep implementation of the finite-difference time-domain (FDTD) method. • For this study, the lattice structures investigated are triangular and square. • Extensive calculations reveal that almost all of these structures represent wide complete band gaps.

  16. Effect of shape of scatterers and plasma frequency on the complete photonic band gap properties of two-dimensional dielectric-plasma photonic crystals

    International Nuclear Information System (INIS)

    Fathollahi Khalkhali, T.; Bananej, A.

    2016-01-01

    In this study, we analyze complete photonic band gap properties of two-dimensional dielectric-plasma photonic crystals with triangular and square lattices, composed of plasma rods with different geometrical shapes in the anisotropic tellurium background. Using the finite-difference time-domain method we discuss the maximization of the complete photonic band gap width as a function of plasma frequency and plasma rods parameters with different shapes and orientations. The numerical results demonstrate that our proposed structures represent significantly wide complete photonic band gaps in comparison to previously studied dielectric-plasma photonic crystals. - Highlights: • In this paper, we have investigated plasma photonic crystals. • Plasma is a kind of dispersive medium with its equivalent refractive index related to the frequency of an incident EM wave. • In this work, our simulations are performed using the Meep implementation of the finite-difference time-domain (FDTD) method. • For this study, the lattice structures investigated are triangular and square. • Extensive calculations reveal that almost all of these structures represent wide complete band gaps.

  17. Double resonance spectroscopy of multiple-photon excited molecules

    Science.gov (United States)

    Steinfeld, J. I.; Melzer, J. E.

    1977-01-01

    Multiple infrared photon absorption is a quite general process which molecules can undergo when placed in a high flux of infrared energy, such as the focussed beam of a CO2 laser. In order to understand how this process works, one must be able to follow the evolution of the molecules through their internal states, populated by photon absorption. Double-resonance spectroscopy is the method of a choice for getting at this information. A system pumped by CO2 laser radiation can be examined with a tunable laser probe beam, such as that from a lead-salt diode laser. From such an experiment, one can directly observe Rabi modulation of the absorption lines, determine elementary state-to-state relaxation pathways, and locate higher excited vibrational states. Systems currently under investigation include SF6 and vinyl chloride. In suitable cases, the probe beam can be a tunable visible or UV source, such as a dye laser. Fluorescence spectroscopy can then be used to monitor the transient absorptions produced by multiple-photon excitation. Among the systems which can be examined are biacetyl and glyoxal.

  18. A Search for Single Photon Events in Neutrino Interactions

    CERN Document Server

    Kullenberg, C.T.; Dimmery, D.; Tian, X.C.; Autiero, D.; Gninenko, S.; Rubbia, A.; Alekhin, S.; Astier, P.; Baldisseri, A.; Baldo-Ceolin, M.; Banner, M.; Bassompierre, G.; Benslama, K.; Besson, N.; Bird, I.; Blumenfeld, B.; Bobisut, F.; Bouchez, J.; Boyd, S.; Bueno, A.; Bunyatov, S.; Camilleri, L.; Cardini, A.; Cattaneo, P.W.; Cavasinni, V.; Cervera-Villanueva, A.; Challis, R.; Chukanov, A.; Collazuol, G.; Conforto, G.; Conta, C.; Contalbrigo, M.; Cousins, R.; Degaudenzi, H.; De Santo, A.; Del Prete, T.; Di Lella, L.; do Couto e Silva, E.; Dumarchez, J.; Ellis, M.; Feldman, G.J.; Ferrari, R.; Ferrère, D.; Flaminio, V.; Fraternali, M.; Gaillard, J.-M.; Gangler, E.; Geiser, A.; Geppert, D.; Gibin, D.; Godley, A.; Gomez-Cadenas, J.-J.; Gosset, J.; Gößling, C.; Gouanère, M.; Grant, A.; Graziani, G.; Guglielmi, A.; Hagner, C.; Hernando, J.; Hurst, P.; Hyett, N.; Iacopini, E.; Joseph, C.; Juget, F.; Kent, N.; Klimov, O.; Kokkonen, J.; Kovzelev, A.; Krasnoperov, A.; Kim, J.J.; Kirsanov, M.; Kulagin, S.; Lacaprara, S.; Lachaud, C.; Lakić, B.; Lanza, A.; La Rotonda, L.; Laveder, M.; Letessier-Selvon, A.; Levy, J.M.; Ling, J.; Linssen, L.; Ljubičic, A.; Long, J.; Lupi, A.; Lyubushkin, V.; Marchionni, A.; Martelli, F.; Méchain, X.; Mendiburu, J.-P.; Meyer, J.-P.; Mezzetto, M.; Moorhead, G.F.; Naumov, D.; Nédélec, P.; Nefedov, Yu.; Nguyen-Mau, C.; Orestano, D.; Pastore, F.; Peak, L.S.; Pennacchio, E.; Pessard, H.; Petti, R.; Placci, A.; Polesello, G.; Pollmann, D.; Polyarush, A.; Poulsen, C.; Popov, B.; Rebuffi, L.; Rico, J.; Riemann, P.; Roda, C.; Salvatore, F.; Samoylov, O.; Schahmaneche, K.; Schmidt, B.; Schmidt, T.; Sconza, A.; Scott, A.M.; Seaton, M.B.; Sevior, M.; Sillou, D.; Soler, F.J.P.; Sozzi, G.; Steele, D.; Stiegler, U.; Stipčević, M.; Stolarczyk, Th.; Tareb-Reyes, M.; Taylor, G.N.; Tereshchenko, V.; Toropin, A.; Touchard, A.-M.; Tovey, S.N.; Tran, M.-T.; Tsesmelis, E.; Ulrichs, J.; Vacavant, L.; Valdata-Nappi, M.; Valuev, V.; Vannucci, F.; Varvell, K.E.; Veltri, M.; Vercesi, V.; Vidal-Sitjes, G.; Vieira, J.-M.; Vinogradova, T.; Weber, F.V.; Weisse, T.; Wilson, F.F.; Winton, L.J.; Wu, Q.; Yabsley, B.D.; Zaccone, H.; Zuber, K.; Zuccon, P.

    2012-01-01

    We present a search for neutrino-induced events containing a single, exclusive photon using data from the NOMAD experiment at the CERN SPS where the average energy of the neutrino flux is $\\simeq 25$ GeV. The search is motivated by an excess of electron-like events in the 200--475 MeV energy region as reported by the MiniBOONE experiment. In NOMAD, photons are identified via their conversion to $e^+e^-$ in an active target embedded in a magnetic field. The background to the single photon signal is dominated by the asymmetric decay of neutral pions produced either in a coherent neutrino-nucleus interaction, or in a neutrino-nucleon neutral current deep inelastic scattering, or in an interaction occurring outside the fiducial volume. All three backgrounds are determined {\\it in situ} using control data samples prior to opening the `signal-box'. In the signal region, we observe {\\bf 155} events with a predicted background of {\\bf 129.2 $\\pm$ 8.5 $\\pm$ 3.3}. We interpret this as null evidence for excess of single...

  19. External trabeculectomy with T-Flux implant.

    LENUS (Irish Health Repository)

    Jungkim, S

    2012-02-03

    PURPOSE: To evaluate the efficacy and safety of T-Flux implant in nonpenetrating glaucoma surgery. METHODS: This clinical interventional case series study included 35 eyes of 35 patients with medically uncontrolled primary open angle glaucoma. External trabeculectomy with T-Flux (ETTF) is a technique of nonpenetrating glaucoma surgery, in which after removing deep scleral tissue and un-roofing the canal of Schlemn (CS) the external trabecular tissue is peeled off to enhance the aqueous drainage without opening the anterior chamber. A non-absorbable T-Flux implant (IOL TECH Laboratories, France) was sutured in deep intrascleral space to keep it patent. Snellen\\'s best-corrected visual acuity, slit lamp biomicroscopy, intraocular pressure (IOP), gonioscopy, funduscopy, and optic disc assessment were performed preoperatively and postoperatively at 1 day, 1 week, and 1, 3 , 6, and 12 months. Visual field testing was performed preoperatively and at 6 and 12 months postoperatively. RESULTS: For three eyes, surgery was converted to standard trabeculectomy owing to the perforation of trabeculo-Descemet\\'s membrane and iris prolapse and excluded from the study. The results of the remaining 32 eyes were included in the study. Preoperative IOP (mean +\\/- SD) of 32.88 +\\/- 5.7 mmHg decreased to 15.44 +\\/- 1.6 mmHg after 12 months. Ten eyes (28.6%) had microhyphema that resolved spontaneously; 3 eyes (8.6%) had microperforation without iris prolapse so ETTF was proceeded routinely. The preoperative number of antiglaucoma medications per patient reduced from (mean +\\/- SD) 2.74 +\\/- 0.61 to 0.11 +\\/- 0.32 postoperatively at 12 months. Visual acuity and visual fields remained stable. CONCLUSIONS: ETTF appears to provide significant control of IOP and have low incidence of complications.

  20. Incidents in nuclear installations

    International Nuclear Information System (INIS)

    Franzen, L.F.; Wienhold, W.

    1976-09-01

    With reference to the incident list of the Ministry for the period 1971-74, Prof. Bechert has expressed a lot of questions and statements in a letter to the Government. The letter is quoted in full. Inadequate conclusions drawn by Prof. Bechert in connection with quotations from daily newspapers and other documents are put right. (HP) [de