WorldWideScience

Sample records for incident photon energies

  1. Cumulative percent energy deposition of photon beam incident on different targets, simulated by Monte Carlo

    International Nuclear Information System (INIS)

    Kandic, A.; Jevremovic, T.; Boreli, F.

    1989-01-01

    Monte Carlo simulation (without secondary radiation) of the standard photon interactions (Compton scattering, photoelectric absorption and pair protection) for the complex slab's geometry is used in numerical code ACCA. A typical ACCA run will yield: (a) transmission of primary photon radiation differential in energy, (b) the spectrum of energy deposited in the target as a function of position and (c) the cumulative percent energy deposition as a function of position. A cumulative percent energy deposition of photon monoenergetic beam incident on simplest and complexity tissue slab and Fe slab are presented in this paper. (author). 5 refs.; 2 figs

  2. Effects of a power and photon energy of incident light on near-field etching properties

    Science.gov (United States)

    Yatsui, T.; Saito, H.; Nishioka, K.; Leuschel, B.; Soppera, O.; Nobusada, K.

    2017-12-01

    We developed a near-field etching technique for realizing an ultra-flat surfaces of various materials and structures. To elucidate the near-field etching properties, we have investigated the effects of power and the photon energy of the incident light. First, we established theoretically that an optical near-field with photon energy lower than the absorption edge of the molecules can induce molecular vibrations. We used nanodiamonds to study the power dependence of the near-field etching properties. From the topological changes of the nanodiamonds, we confirmed the linear-dependence of the etching volume with the incident power. Furthermore, we studied the photon energy dependence using TiO2 nanostriped structures, which revealed that a lower photon energy results in a lower etching rate.

  3. Variation of energy absorption buildup factors with incident photon energy and penetration depth for some commonly used solvents

    International Nuclear Information System (INIS)

    Singh, Parjit S.; Singh, Tejbir; Kaur, Paramjeet

    2008-01-01

    G.P. fitting method has been used to compute energy absorption buildup factor of some commonly used solvents such as acetonitrile (C 4 H 3 N), butanol (C 4 H 9 OH), chlorobenzene (C 6 H 5 Cl), diethyl ether (C 4 H 10 O), ethanol (C 2 H 5 OH), methanol (CH 3 OH), propanol (C 3 H 7 OH) and water (H 2 O) for the wide energy range (0.015-15.0 MeV) up to the penetration depth of 10 mean free path. The variation of energy absorption buildup factor with chemical composition as well as incident photon energy for the selected solvents has been studied. It has been observed that the maximum value of energy absorption buildup factors shifts to the slightly higher incident photon energy with the increase in equivalent atomic number of the solvent and the solvent with least equivalent atomic number possesses the maximum value of energy absorption buildup factor

  4. Variation of energy absorption buildup factors with incident photon energy and penetration depth for some commonly used solvents

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Parjit S. [Department of Physics, Punjabi University, Patiala 147 002 (India)], E-mail: dr_parjit@hotmail.com; Singh, Tejbir [Department of Physics, Lovely Professional University, Phagwara 144 402 (India); Kaur, Paramjeet [IAS and Allied Services Training Centre, Punjabi University, Patiala 147 002 (India)

    2008-06-15

    G.P. fitting method has been used to compute energy absorption buildup factor of some commonly used solvents such as acetonitrile (C{sub 4}H{sub 3}N), butanol (C{sub 4}H{sub 9}OH), chlorobenzene (C{sub 6}H{sub 5}Cl), diethyl ether (C{sub 4}H{sub 10}O), ethanol (C{sub 2}H{sub 5}OH), methanol (CH{sub 3}OH), propanol (C{sub 3}H{sub 7}OH) and water (H{sub 2}O) for the wide energy range (0.015-15.0 MeV) up to the penetration depth of 10 mean free path. The variation of energy absorption buildup factor with chemical composition as well as incident photon energy for the selected solvents has been studied. It has been observed that the maximum value of energy absorption buildup factors shifts to the slightly higher incident photon energy with the increase in equivalent atomic number of the solvent and the solvent with least equivalent atomic number possesses the maximum value of energy absorption buildup factor.

  5. Integral particle reflection coefficient for oblique incidence of photons as universal function in the domain of initial energies up to 300 keV

    Directory of Open Access Journals (Sweden)

    Ljubenov Vladan L.

    2014-01-01

    Full Text Available In this paper we present the results of calculations and analyses of the integral particle reflection coefficient of photons for oblique photon incidence on planar targets, in the domain of initial photon energies from 100 keV to 300 keV. The results are based on the Monte Carlo simulations of the photon reflection from water, concrete, aluminum, iron, and copper materials, performed by the MCNP code. It has been observed that the integral particle reflection coefficient as a function of the ratio of total cross-section of photons and effective atomic number of target material shows universal behavior for all the analyzed shielding materials in the selected energy domain. Analytical formulas for different angles of photon incidence have been proposed, which describe the reflection of photons for all the materials and energies analyzed.

  6. Variation of energy absorption and exposure buildup factors with incident photon energy and penetration depth for boro-tellurite (B2O3-TeO2) glasses

    Science.gov (United States)

    Sayyed, M. I.; Elhouichet, H.

    2017-01-01

    The gamma ray energy absorption (EABF) and exposure buildup factors (EBF) of (100-x)TeO2-xB2O3 glass systems (where x=5, 10, 15, 20, 22.5 and 25 mol%) have been calculated in the energy region 0.015-15 MeV up to a penetration depth of 40 mfp (mean free path). The five parameters (G-P) fitting method has been used to estimate both EABF and EBF values. Variations of EABF and EBF with incident photon energy and penetration depth have been studied. It was found that EABF and EBF values were higher in the intermediate energy region, for all the glass systems. Furthermore, boro-tellurite glass with 5 mol% B2O3, was found to present the lowest EABF and EBF values, hence it is superior gamma-ray shielding material. The results indicate that the boro-tellurite glasses can be used as radiation shielding materials.

  7. Backscatter dose from metallic materials due to obliquely incident high-energy photon beams

    International Nuclear Information System (INIS)

    Nadrowitz, Roger; Feyerabend, Thomas

    2001-01-01

    If metallic material is exposed to ionizing radiation of sufficient high energy, an increase in dose due to backscatter radiation occurs in front of this material. Our purpose in this study was to quantify these doses at variable distances between scattering materials and the detector at axial beam angles between 0 deg. (zero angle in beams eye view) and 90 deg. . Copper, silver and lead sheets embedded in a phantom of perspex were exposed to 10 MV-bremsstrahlung. The detector we developed is based on the fluorescence property of pyromellitic acid (1,2,4,5 benzenetetracarboxylic acid) after exposure to ionizing radiation. Our results show that the additional doses and the corresponding dose distribution in front of the scattering materials depend quantitatively and qualitatively on the beam angle. The backscatter dose increases with varying beam angle from 0 deg. to 90 deg. up to a maximum at 55 deg. for copper and silver. At angles of 0 deg. and 55 deg. the integral backscatter doses over a tissue-equivalent depth of 2 mm are 11.2% and 21.6% for copper and 24% and 28% for silver, respectively. In contrast, in front of lead there are no obvious differences of the measured backscatter doses at angles between 0 deg. and 55 deg. With a further increase of the beam angle from 55 deg. to 90 deg. the backscatter dose decreases steeply for all three materials. In front of copper a markedly lower penetrating depth of the backscattered electrons was found for an angle of 0 deg. compared to 55 deg. This dependence from the beam angle was less pronounced in front of silver and not detectable in front of lead. In conclusion, the dependence of the backscatter dose from the angle between axial beam and scattering material must be considered, as higher scattering doses have to be considered than previously expected. This may have a clinical impact since the surface of metallic implants is usually curved

  8. Backscatter dose from metallic materials due to obliquely incident high-energy photon beams

    Energy Technology Data Exchange (ETDEWEB)

    Nadrowitz, Roger; Feyerabend, Thomas [Medical University of Luebeck, Germany, Department of Radiotherapy and Nuclear Medicine, Ratzeburger Allee 160, Luebeck, D-23538 (Germany)

    2001-06-01

    If metallic material is exposed to ionizing radiation of sufficient high energy, an increase in dose due to backscatter radiation occurs in front of this material. Our purpose in this study was to quantify these doses at variable distances between scattering materials and the detector at axial beam angles between 0 deg. (zero angle in beams eye view) and 90 deg. . Copper, silver and lead sheets embedded in a phantom of perspex were exposed to 10 MV-bremsstrahlung. The detector we developed is based on the fluorescence property of pyromellitic acid (1,2,4,5 benzenetetracarboxylic acid) after exposure to ionizing radiation. Our results show that the additional doses and the corresponding dose distribution in front of the scattering materials depend quantitatively and qualitatively on the beam angle. The backscatter dose increases with varying beam angle from 0 deg. to 90 deg. up to a maximum at 55 deg. for copper and silver. At angles of 0 deg. and 55 deg. the integral backscatter doses over a tissue-equivalent depth of 2 mm are 11.2% and 21.6% for copper and 24% and 28% for silver, respectively. In contrast, in front of lead there are no obvious differences of the measured backscatter doses at angles between 0 deg. and 55 deg. With a further increase of the beam angle from 55 deg. to 90 deg. the backscatter dose decreases steeply for all three materials. In front of copper a markedly lower penetrating depth of the backscattered electrons was found for an angle of 0 deg. compared to 55 deg. This dependence from the beam angle was less pronounced in front of silver and not detectable in front of lead. In conclusion, the dependence of the backscatter dose from the angle between axial beam and scattering material must be considered, as higher scattering doses have to be considered than previously expected. This may have a clinical impact since the surface of metallic implants is usually curved.

  9. Physics at high energy photon photon colliders

    International Nuclear Information System (INIS)

    Chanowitz, M.S.

    1994-06-01

    I review the physic prospects for high energy photon photon colliders, emphasizing results presented at the LBL Gamma Gamma Collider Workshop. Advantages and difficulties are reported for studies of QCD, the electroweak gauge sector, supersymmetry, and electroweak symmetry breaking

  10. Final-photon polarization in the scattering of photons by high-energy electrons

    International Nuclear Information System (INIS)

    Choi, J.; Choi, S.Y.; Ie, S.H.; Song, H.S.; Good, R.H. Jr.

    1987-01-01

    A general method for calculating the polarization of the outgoing photon beam in any reaction is presented. As an example the method is applied to the high-energy photon beam produced in Compton scattering of a laser beam by a high-energy electron beam. The Stokes parameters of the outgoing photon beam, relative to a unit vector normal to the photon momentum and including their dependence on the polarization of incident photon and electron beams, are obtained explicitly. It is expected that this method will be useful, both in photon production reactions and in the subsequent high-energy photon reactions

  11. Technical Note: On the impact of the incident electron beam energy on the primary dose component of flattening filter free photon beams.

    Science.gov (United States)

    Kuess, Peter; Georg, Dietmar; Palmans, Hugo; Lechner, Wolfgang

    2016-08-01

    For commercially available linear accelerators (Linacs), the electron energies of flattening filter free (FFF) and flattened (FF) beams are either identical or the electron energy of the FFF beam is increased to match the percentage depth dose curve (PDD) of the FF beam (in reference geometry). This study focuses on the primary dose components of FFF beams for both kinds of settings, studied on the same Linac. The measurements were conducted on a VersaHD Linac (Elekta, Crawley, UK) for both FF and FFF beams with nominal energies of 6 and 10 MV. In the clinical setting of the VersaHD, the energy of FFFM (Matched) beams is set to match the PDDs of the FF beams. In contrast the incident electron beam of the FFFU beam was set to the same energy as for the FF beam. Half value layers (HVLs) and a dual parameter beam quality specifier (DPBQS) were determined. For the 6 MV FFFM beam, HVL and DPBQS values were very similar compared to those of the 6 MV FF beam, while for the 10 MV FFFM and FF beams, only %dd(10)x and HVL values were comparable (differences below 1.5%). This shows that matching the PDD at one depth does not guarantee other beam quality dependent parameters to be matched. For FFFU beams, all investigated beam quality specifiers were significantly different compared to those for FF beams of the same nominal accelerator potential. The DPBQS of the 6 MV FF and FFFM beams was equal within the measurement uncertainty and was comparable to published data of a machine with similar TPR20,10 and %dd(10)x. In contrast to that, the DPBQS's two parameters of the 10 MV FFFM beam were substantially higher compared to those for the 10 MV FF beam. PDD-matched FF and FFF beams of both nominal accelerator potentials were observed to have similar HVL values, indicating similarity of their primary dose components. Using the DPBQS revealed that the mean attenuation coefficient was found to be the same within the uncertainty of 0.8% for 6 MV FF and 6 MV FFFM beams, while for 10 MV

  12. Technical Note: On the impact of the incident electron beam energy on the primary dose component of flattening filter free photon beams

    International Nuclear Information System (INIS)

    Kuess, Peter; Georg, Dietmar; Lechner, Wolfgang; Palmans, Hugo

    2016-01-01

    Purpose: For commercially available linear accelerators (Linacs), the electron energies of flattening filter free (FFF) and flattened (FF) beams are either identical or the electron energy of the FFF beam is increased to match the percentage depth dose curve (PDD) of the FF beam (in reference geometry). This study focuses on the primary dose components of FFF beams for both kinds of settings, studied on the same Linac. Methods: The measurements were conducted on a VersaHD Linac (Elekta, Crawley, UK) for both FF and FFF beams with nominal energies of 6 and 10 MV. In the clinical setting of the VersaHD, the energy of FFF M (Matched) beams is set to match the PDDs of the FF beams. In contrast the incident electron beam of the FFF U beam was set to the same energy as for the FF beam. Half value layers (HVLs) and a dual parameter beam quality specifier (DPBQS) were determined. Results: For the 6 MV FFF M beam, HVL and DPBQS values were very similar compared to those of the 6 MV FF beam, while for the 10 MV FFF M and FF beams, only %dd(10) x and HVL values were comparable (differences below 1.5%). This shows that matching the PDD at one depth does not guarantee other beam quality dependent parameters to be matched. For FFF U beams, all investigated beam quality specifiers were significantly different compared to those for FF beams of the same nominal accelerator potential. The DPBQS of the 6 MV FF and FFF M beams was equal within the measurement uncertainty and was comparable to published data of a machine with similar TPR 20,10 and %dd(10) x . In contrast to that, the DPBQS’s two parameters of the 10 MV FFF M beam were substantially higher compared to those for the 10 MV FF beam. Conclusions: PDD-matched FF and FFF beams of both nominal accelerator potentials were observed to have similar HVL values, indicating similarity of their primary dose components. Using the DPBQS revealed that the mean attenuation coefficient was found to be the same within the uncertainty of

  13. M-shell X-ray production cross-sections for elements with 67 ≤ Z ≤ 92 at incident photon energies EM1inc≤150keV

    International Nuclear Information System (INIS)

    Chauhan, Yogeshwar; Kumar, Anil; Puri, Sanjiv

    2009-01-01

    The X-ray production cross-sections for the Mk (k = ξ, δ, α, β, ζ, γ, m 1 and m 2 ) groups of X-rays have been evaluated for all the elements with 67 ≤ Z ≤ 92 at incident photon energies ranging E M 1 inc ≤150 keV using currently available theoretical data sets of different physical parameters, namely, partial photoionization cross-sections, X-ray emission rates, fluorescence and Coster-Kronig yields, and the K-shell/L j (j = 1-3) subshell to the M i (i = 1-5) subshell vacancy transfer probabilities, based on the independent particle models.

  14. Energy spectrum of Compton scattering of laser photons on relativistic electrons

    International Nuclear Information System (INIS)

    Ando, Hiroaki; Yoneda, Yasuharu

    1976-01-01

    The high energy photons in gamma-ray region are obtainable by the Compton scattering of laser photons on relativistic electrons. But the motion of the electrons in the storage ring is not necessarily uniform. In the study of the uneven effect, the energy distribution of scattered photons is derived from the assumed momentum distribution of incident electrons. It is generally impossible to derive the momentum distribution of incident electrons from the energy spectrum of scattered photons. The additional conditions which make this possible in a special case are considered. A calculational method is examined for deriving the energy spectrum of scattered photons from the assumed momentum distribution of incident electrons. (Mori, K.)

  15. A study of the point-like interactions of the photon using energy-flows in photo- and hadro-production for incident energies between 65 and 170 GeV

    International Nuclear Information System (INIS)

    Apsimon, R.J.; Flower, P.S.; Hallewell, G.; Morris, J.A.G.; Morris, J.V.; Paterson, C.N.; Sharp, P.H.; Atkinson, M.; Brook, N.; Coyle, P.; Dickinson, B.; Donnachie, A.; Doyle, A.T.; Ellison, R.J.; Foster, J.M.; Hughes-Jones, R.E.; Ibbotson, M.; Kolya, S.D.; Lafferty, G.D.; McCann, H.; McManus, C.; Mercer, D.; Ottewell, P.J.; Reid, D.; Thompson, R.J.; Waterhouse, J.; Baake, M.; Diekmann, B.; Gapp, C.; Gebert, F.; Heinloth, K.; Hoeger, C.; Holzkamp, A.; Holzkamp, S.; Jakob, H.P.; Joseph, D.; Kingler, J.; Koersgen, G.; Oedingen, R.; Paul, E.; Rotscheidt, H.; Soeldner-Rembold, S.; Weigend, A.S.; Bagdasarian, L.S.; Danagulian, S.; Galumian, P.I.; Oganesian, A.G.; Barberis, D.; Davenport, M.; Eades, J.; McClatchey, R.; Brodbeck, T.J.; Charity, T.; Clegg, A.B.; Henderson, R.C.W.; Hickman, M.T.; Keemer, N.R.; Newton, D.; O'Connor, A.; Wilson, G.W.; Danaher, S.; Galbraith, W.; Thacker, N.A.; Thompson, L.

    1990-01-01

    Energy-flow distributions for charged hadrons from interactions of photons, pions and kaons on hydrogen are presented as functions of Σp T 2 in the event plane. Data cover the range 0.0 T 2 in 2 and 0.0 F T 2 in for the photon-induced data. Using the hadron-induced data to parameterise the hadronic behaviour of the photon, the differences between cross sections are used to measure the contribution of the point-like photon interactions. Quantitative calculations of the point-like photon interactions using the Lund Monte-Carlo program LUCIFER, based on QCD, are in agreement with the data. (orig.)

  16. Photon energy tunability of advanced photon source undulators

    International Nuclear Information System (INIS)

    Viccaro, P.J.; Shenoy, G.K.

    1987-08-01

    At a fixed storage ring energy, the energy of the harmonics of an undulator can be shifted or ''tuned'' by changing the magnet gap of the device. The possible photon energy interval spanned in this way depends on the undulator period, minimum closed gap, minimum acceptable photon intensity and storage ring energy. The minimum magnet gap depends directly on the stay clear particle beam aperture required for storage ring operation. The tunability of undulators planned for the Advanced Photon Source with first harmonic photon energies in the range of 5 to 20 keV are discussed. The results of an analysis used to optimize the APS ring energy is presented and tunability contours and intensity parameters are presented for two typical classes of devices

  17. A study of the point-like interactions of the photon using energy-flows in photo- and hadro-production for incident energies between 65 and 170 GeV

    Energy Technology Data Exchange (ETDEWEB)

    Apsimon, R.J.; Flower, P.S.; Hallewell, G.; Morris, J.A.G.; Morris, J.V.; Paterson, C.N.; Sharp, P.H. (Rutherford Appleton Lab., Chilton (United Kingdom)); Atkinson, M.; Brook, N.; Coyle, P.; Dickinson, B.; Donnachie, A.; Doyle, A.T.; Ellison, R.J.; Foster, J.M.; Hughes-Jones, R.E.; Ibbotson, M.; Kolya, S.D.; Lafferty, G.D.; McCann, H.; McManus, C.; Mercer, D.; Ottewell, P.J.; Reid, D.; Thompson, R.J.; Waterhouse, J. (Manchester Univ. (UK). Dept. of Physics (United Kingdom)); Baake, M.; Diekmann, B.; Gapp, C.; Gebert, F.; Heinloth, K.; Hoeger, C.; Holzkamp, A.; Holzkamp, S.; Jakob, H.P.; Joseph, D.; Kingler, J.; Koersgen, G.; Oedingen, R.; Paul, E.; Rotscheidt, H.; Soeldner-Rembold, S.; Weigend, A.S. (Bonn Univ. (Germany, F.R.). Physikalisches Inst. (Germany, F.R.)); Bagdasarian, L.S.; Danagulian, S.; Galumian, P.I.; Oganesian, A.G. (AN Armyanskoj SSR, Erevan. Inst. Fiziki (USSR)); Barberis, D.; Davenport, M.; Eades, J.; McClatchey, R. (European Organization for Nuclear Research, G; OMEGA Photon Collaboration

    1990-03-01

    Energy-flow distributions for charged hadrons from interactions of photons, pions and kaons on hydrogen are presented as functions of {Sigma}p{sub T}{sup 2} in the event plane. Data cover the range 0.0<{Sigma}p{sub T}{sup 2}{sub in}<10.0(GeV/c){sup 2} and 0.0photon- and hadron-induced data show an excess of events with larger {Sigma}p{sub T}{sup 2}{sub in} for the photon-induced data. Using the hadron-induced data to parameterise the hadronic behaviour of the photon, the differences between cross sections are used to measure the contribution of the point-like photon interactions. Quantitative calculations of the point-like photon interactions using the Lund Monte-Carlo program LUCIFER, based on QCD, are in agreement with the data. (orig.).

  18. Photon Science for Renewable Energy

    International Nuclear Information System (INIS)

    Hussain, Zahid; Tamura, Lori; Padmore, Howard; Schoenlein, Bob; Bailey, Sue

    2010-01-01

    Our current fossil-fuel-based system is causing potentially catastrophic changes to our planet. The quest for renewable, nonpolluting sources of energy requires us to understand, predict, and ultimately control matter and energy at the electronic, atomic, and molecular levels. Light-source facilities - the synchrotrons of today and the next-generation light sources of tomorrow - are the scientific tools of choice for exploring the electronic and atomic structure of matter. As such, these photon-science facilities are uniquely positioned to jump-start a global revolution in renewable and carbonneutral energy technologies. In these pages, we outline and illustrate through examples from our nation's light sources possible scientific directions for addressing these profound yet urgent challenges.

  19. Characteristics of X-ray photons in tilted incident laser-produced plasma

    International Nuclear Information System (INIS)

    Wang Ruirong; Chen Weimin; Xie Dongzhu

    2008-01-01

    Characteristics of X-ray and spout direction of heat plasma flow were studied on Shenguang-II laser facility. Using of pinhole X-ray camera, X-ray photons from the plasma of aluminum (Al) irradiated by 1.053 μm laser, was measured and analysed. It is observed that the spatial distribution of X-ray photons in Al plasma for tilted irradiation is symmetic at the center of the target. The spout direction of heat plasma flow is inferred by the distribution contour of X-ray photons. the experimental results show that the spout direction of heat plasma flow is normal to target plane and the output intensity of X-ray photons does not increase significantly for tilted laser incidence. Uniformity of laser energy deposition is improved by superposing tilted incident and laser perpendicularly incident laser. At the same time, it is found that the conversion efficiency from the tilted incident laser energy to X-ray photons of laser-produced plasma is decreased. (authors)

  20. Photon upconversion towards applications in energy conversion and bioimaging

    Science.gov (United States)

    Sun, Qi-C.; Ding, Yuchen C.; Sagar, Dodderi M.; Nagpal, Prashant

    2017-12-01

    The field of plasmonics can play an important role in developing novel devices for application in energy and healthcare. In this review article, we consider the progress made in design and fabrication of upconverting nanoparticles and metal nanostructures for precisely manipulating light photons, with a wavelength of several hundred nanometers, at nanometer length scales, and describe how to tailor their interactions with molecules and surfaces so that two or more lower energy photons can be used to generate a single higher energy photon in a process called photon upconversion. This review begins by introducing the current state-of-the-art in upconverting nanoparticle synthesis and achievements in color tuning and upconversion enhancement. Through understanding and tailoring physical processes, color tuning and strong upconversion enhancement have been demonstrated by coupling with surface plasmon polariton waves, especially for low intensity or diffuse infrared radiation. Since more than 30% of incident sunlight is not utilized in most photovoltaic cells, this photon upconversion is one of the promising approaches to break the so-called Shockley-Queisser thermodynamic limit for a single junction solar cell. Furthermore, since the low energy photons typically cover the biological window of optical transparency, this approach can also be particularly beneficial for novel biosensing and bioimaging techniques. Taken together, the recent research boosts the applications of photon upconversion using designed metal nanostructures and nanoparticles for green energy, bioimaging, and therapy.

  1. Energy deposition model for I-125 photon radiation in water

    International Nuclear Information System (INIS)

    Fuss, M.C.; Garcia, G.; Munoz, A.; Oller, J.C.; Blanco, F.; Limao-Vieira, P.; Williart, A.; Garcia, G.; Huerga, C.; Tellez, M.

    2010-01-01

    In this study, an electron-tracking Monte Carlo algorithm developed by us is combined with established photon transport models in order to simulate all primary and secondary particle interactions in water for incident photon radiation. As input parameters for secondary electron interactions, electron scattering cross sections by water molecules and experimental energy loss spectra are used. With this simulation, the resulting energy deposition can be modelled at the molecular level, yielding detailed information about localization and type of single collision events. The experimental emission spectrum of I-125 seeds, as used for radiotherapy of different tumours, was used for studying the energy deposition in water when irradiating with this radionuclide. (authors)

  2. Energy deposition model for I-125 photon radiation in water

    Energy Technology Data Exchange (ETDEWEB)

    Fuss, M.C.; Garcia, G. [Instituto de Fisica Fundamental, Consejo Superior de Investigaciones Cientificas (CSIC), Madrid (Spain); Munoz, A.; Oller, J.C. [Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas (CIEMAT), Madrid (Spain); Blanco, F. [Departamento de Fisica Atomica, Molecular y Nuclear, Universidad Complutense de Madrid (Spain); Limao-Vieira, P. [Laboratorio de Colisoes Atomicas e Moleculares, Departamento de Fisica, CEFITEC, FCT-Universidade Nova de Lisboa, Caparica (Portugal); Williart, A.; Garcia, G. [Departamento de Fisica de los Materiales, Universidad Nacional de Educacion a Distancia, Madrid (Spain); Huerga, C.; Tellez, M. [Hospital Universitario La Paz, Madrid (Spain)

    2010-10-15

    In this study, an electron-tracking Monte Carlo algorithm developed by us is combined with established photon transport models in order to simulate all primary and secondary particle interactions in water for incident photon radiation. As input parameters for secondary electron interactions, electron scattering cross sections by water molecules and experimental energy loss spectra are used. With this simulation, the resulting energy deposition can be modelled at the molecular level, yielding detailed information about localization and type of single collision events. The experimental emission spectrum of I-125 seeds, as used for radiotherapy of different tumours, was used for studying the energy deposition in water when irradiating with this radionuclide. (authors)

  3. Design and construction of a high-energy photon polarimeter

    Science.gov (United States)

    Dugger, M.; Ritchie, B. G.; Sparks, N.; Moriya, K.; Tucker, R. J.; Lee, R. J.; Thorpe, B. N.; Hodges, T.; Barbosa, F. J.; Sandoval, N.; Jones, R. T.

    2017-09-01

    We report on the design and construction of a high-energy photon polarimeter for measuring the degree of polarization of a linearly-polarized photon beam. The photon polarimeter uses the process of pair production on an atomic electron (triplet production). The azimuthal distribution of scattered atomic electrons following triplet production yields information regarding the degree of linear polarization of the incident photon beam. The polarimeter, operated in conjunction with a pair spectrometer, uses a silicon strip detector to measure the recoil electron distribution resulting from triplet photoproduction in a beryllium target foil. The analyzing power ΣA for the device using a 75 μm beryllium converter foil is about 0.2, with a relative systematic uncertainty in ΣA of 1.5%.

  4. High energy photons production in nuclear reactions

    International Nuclear Information System (INIS)

    Nifenecker, H.; Pinston, J.A.

    1990-01-01

    Hard photon production, in nucleus-nucleus collisions, were studied at beam energies between 10 and 125 MeV. The main characteristics of the photon emission are deduced. They suggest that the neutron-proton collisions in the early stage of the reaction are the main source of high energy gamma-rays. An overview of the theoretical approaches is given and compared with experimental results. Theoretical attempts to include the contribution of charged pion exchange currents to photon production, in calculations of proton-nucleus-gamma and nucleus-nucleus-gamma reactions, showed suitable fitting with experimental data

  5. The DHG sum rule measured with medium energy photons

    International Nuclear Information System (INIS)

    Hicks, K.; Ardashev, K.; Babusci, D.

    1997-01-01

    The structure of the nucleon has many important features that are yet to be uncovered. Of current interest is the nucleon spin-structure which can be measured by doing double-polarization experiments with photon beams of medium energies (0.1 to 2 GeV). One such experiment uses dispersion relations, applied to the Compton scattering amplitude, to relate measurement of the total reaction cross section integrated over the incident photon energy to the nucleon anomalous magnetic moment. At present, no single facility spans the entire range of photon energies necessary to test this sum rule. The Laser-Electron Gamma Source (LEGS) facility will measure the double-polarization observables at photon energies between 0.15--0.47 MeV. Either the SPring8 facility, the GRAAL facility (France), or Jefferson Laboratory could make similar measurements at higher photon energies. A high-precision measurement of the spin-polarizability and the Drell-Hearn-Gerasimov sum rule is now possible with the advent of high-polarization solid HD targets at medium energy polarized photon facilities such as LEGS, GRAAL and SPring8. Other facilities with lower polarization in either the photon beam or target (or both) are also pursuing these measurements because of the high priority associated with this physics. The Spin-asymmetry (SASY) detector that will be used at LEGS has been briefly outlined in this paper. The detector efficiencies have been explored with simulations studies using the GEANT software, with the result that both charged and uncharged pions can be detected with a reasonable efficiency (> 30%) over a large solid angle. Tracking with a TPC, which will be built at LEGS over the next few years, will improve the capabilities of these measurements

  6. High-Energy QCD Asymptotics of Photon--Photon Collisions

    Energy Technology Data Exchange (ETDEWEB)

    Brodsky, Stanley J.

    2002-07-26

    The high-energy behavior of the total cross section for highly virtual photons, as predicted by the BFKL equation at next-to-leading order (NLO) in QCD, is discussed. The NLO BFKL predictions, improved by the BLM optimal scale setting, are in good agreement with recent OPAL and L3 data at CERN LEP2. NLO BFKL predictions for future linear colliders are presented.

  7. High-Energy QCD Asymptotics of Photon-Photon Collisions

    CERN Document Server

    Brodsky, S J; Kim, V T; Lipatov, L N; Pivovarov, G B

    2002-01-01

    The high-energy behaviour of the total cross section for highly virtual photons, as predicted by the BFKL equation at next-to-leading order (NLO) in QCD, is discussed. The NLO BFKL predictions, improved by the BLM optimal scale setting, are in good agreement with recent OPAL and L3 data at CERN LEP2. NLO BFKL predictions for future linear colliders are presented.

  8. Continuous Energy Photon Transport Implementation in MCATK

    Energy Technology Data Exchange (ETDEWEB)

    Adams, Terry R. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Trahan, Travis John [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Sweezy, Jeremy Ed [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Nolen, Steven Douglas [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hughes, Henry Grady [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Pritchett-Sheats, Lori A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Werner, Christopher John [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-10-31

    The Monte Carlo Application ToolKit (MCATK) code development team has implemented Monte Carlo photon transport into the MCATK software suite. The current particle transport capabilities in MCATK, which process the tracking and collision physics, have been extended to enable tracking of photons using the same continuous energy approximation. We describe the four photoatomic processes implemented, which are coherent scattering, incoherent scattering, pair-production, and photoelectric absorption. The accompanying background, implementation, and verification of these processes will be presented.

  9. Energy-correction photon counting pixel for photon energy extraction under pulse pile-up

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Daehee; Park, Kyungjin; Lim, Kyung Taek; Cho, Gyuseong, E-mail: gscho@kaist.ac.kr

    2017-06-01

    A photon counting detector (PCD) has been proposed as an alternative solution to an energy-integrating detector (EID) in medical imaging field due to its high resolution, high efficiency, and low noise. The PCD has expanded to variety of fields such as spectral CT, k-edge imaging, and material decomposition owing to its capability to count and measure the number and the energy of an incident photon, respectively. Nonetheless, pulse pile-up, which is a superimposition of pulses at the output of a charge sensitive amplifier (CSA) in each PC pixel, occurs frequently as the X-ray flux increases due to the finite pulse processing time (PPT) in CSAs. Pulse pile-up induces not only a count loss but also distortion in the measured X-ray spectrum from each PC pixel and thus it is a main constraint on the use of PCDs in high flux X-ray applications. To minimize these effects, an energy-correction PC (ECPC) pixel is proposed to resolve pulse pile-up without cutting off the PPT by adding an energy correction logic (ECL) via a cross detection method (CDM). The ECPC pixel with a size of 200×200 µm{sup 2} was fabricated by using a 6-metal 1-poly 0.18 µm CMOS process with a static power consumption of 7.2 μW/pixel. The maximum count rate of the ECPC pixel was extended by approximately three times higher than that of a conventional PC pixel with a PPT of 500 nsec. The X-ray spectrum of 90 kVp, filtered by 3 mm Al filter, was measured as the X-ray current was increased using the CdTe and the ECPC pixel. As a result, the ECPC pixel dramatically reduced the energy spectrum distortion at 2 Mphotons/pixel/s when compared to that of the ERCP pixel with the same 500 nsec PPT.

  10. K-edge energy-based calibration method for photon counting detectors

    Science.gov (United States)

    Ge, Yongshuai; Ji, Xu; Zhang, Ran; Li, Ke; Chen, Guang-Hong

    2018-01-01

    In recent years, potential applications of energy-resolved photon counting detectors (PCDs) in the x-ray medical imaging field have been actively investigated. Unlike conventional x-ray energy integration detectors, PCDs count the number of incident x-ray photons within certain energy windows. For PCDs, the interactions between x-ray photons and photoconductor generate electronic voltage pulse signals. The pulse height of each signal is proportional to the energy of the incident photons. By comparing the pulse height with the preset energy threshold values, x-ray photons with specific energies are recorded and sorted into different energy bins. To quantitatively understand the meaning of the energy threshold values, and thus to assign an absolute energy value to each energy bin, energy calibration is needed to establish the quantitative relationship between the threshold values and the corresponding effective photon energies. In practice, the energy calibration is not always easy, due to the lack of well-calibrated energy references for the working energy range of the PCDs. In this paper, a new method was developed to use the precise knowledge of the characteristic K-edge energy of materials to perform energy calibration. The proposed method was demonstrated using experimental data acquired from three K-edge materials (viz., iodine, gadolinium, and gold) on two different PCDs (Hydra and Flite, XCounter, Sweden). Finally, the proposed energy calibration method was further validated using a radioactive isotope (Am-241) with a known decay energy spectrum.

  11. Ionization of atoms by high energy photons

    International Nuclear Information System (INIS)

    Amusia, M.Y.; Ioffe, A.F.

    1994-01-01

    Photoionization of atoms by high energy photons is considered. It is emphasized that in this frequency region the cross section and other characteristics of the process are strongly effected by electron shell polarization and rearrangement effects, including that due to inner vacancy Auger decay. In the effects of nuclear structure could be important and noticeable, i.e. of virtual or real excitation of the nucleus degrees of freedom and of the Quantum Electrodynamics vacuum. Ionization accompanied by secondary photon emission (Compton ionization) is analyzed in the considered domain of energies

  12. Measurements of Pair Production Under Channelling Conditions by 70-180 GeV Photons Incident on Single Crystals

    CERN Multimedia

    2002-01-01

    This experiment will use the WA69 set-up to deliver a tagged photon beam in the energy range from 15~GeV to 150~GeV with a total angular spread of about @M~0.5~mrad. The incident photon direction is known to about 35~@mrad through the direction of the emitting electron. The photon beam is incident on an about 1~mm thick Ge single crystal in order to investigate pair production in single crystals. Above a certain energy threshold photons incident along crystal axis will show strongly increased pair production yi - the so-called .us Channelling Pair Production (ChPP). The produced pairs are analyzed in the @W-spectrometer. The large spread in incident photon angles offers an excellent opportunity to investigate in one single experiment the pair production in an angular region around a crystal axes and thereby compare ChPP with coherent (CPP) and incoherent (ICPP) processes. The very abrupt onset of ChPP (around threshold) will be measured and give a crucial test of the theoretical calculations. The differential...

  13. Hadronic photon-photon interactions at high energies

    International Nuclear Information System (INIS)

    Engel, R.; Siegen Univ.; Ranft, J.

    1996-01-01

    Photon-photon collisions are investigated in the framework of the two-component Dual Parton Model. The model contains contributions from direct, resolved soft and resolved hard interactions. All free parameters of the model are determined in fits to hadron-hadron and photon-hadron cross section data. The model is shown to agree well to hadron production data from hadron-hadron and photon-hadron collisions. The multiparticle production in hadron-hadron, photon-hadron and photon-photon collisions as predicted by the model is compared. Strong differences are only found as function of the transverse momentum variable. (author)

  14. Complex photonic structures for energy efficiency

    Directory of Open Access Journals (Sweden)

    Wiersma D. S.

    2013-06-01

    Full Text Available Photonic structures are playing an increasingly important role in energy efficiency. In particular, they can help to control the flow of light and improve the optical properties of photovoltaic solar cells. We will explain the physics of light transport in such structures with a special focus on disordered materials.

  15. Experimental observation of energy dependence of saturation thickness of multiply scattered gamma photons

    International Nuclear Information System (INIS)

    Singh, Manpreet; Singh, Gurvinderjit; Singh, Bhajan; Sandhu, B.S.

    2008-01-01

    The gamma photons continue to soften in energy as the number of scatterings increases in the target having finite dimensions both in depth and lateral dimensions. The number of multiply scattered photons increases with an increase in target thickness, and saturates at a particular value of the target thickness known as saturation thickness (depth). The present measurements are carried out to study the energy dependence of saturation thickness of multiply scattered gamma photons from targets of various thicknesses. The scattered photons are detected by a properly shielded NaI(Tl) gamma ray detector placed at 90 deg. to the incident beam. We observe that the saturation thickness increases with increasing incident gamma photon energy. Monte Carlo calculations based upon the package developed by Bauer and Pattison [Compton scattering experiments at the HMI (1981), HMI-B 364, pp. 1-106] support the present experimental results

  16. Dose characteristics of high-energy electrons, muons and photons

    International Nuclear Information System (INIS)

    Britvich, G.I.; Krupnyj, G.I.; Peleshko, V.N.; Rastsvetalov, Ya.N.

    1980-01-01

    Differential distribution of energy release at different depth of tissue-equivalent phantoms (plexiglas, polystyrene, polyethylene) at the energy of incident electrons, muons of 0.2-40 GeV and photons with the mean energy of 3.6 GeV are measured. The error of experimental results does not exceed 7%. On the basis of the data obtained dose characteristics of electrons, muons and photons for standard geometry are estimated. For all types of irradiation the maximum value of specific equivalent dose, nremxcm 2 /part. is presented. It is shown that published values of specific equivalent dose of electron radiation are higher in all the investigated energy range from 0.2 to 40 GeV, and for muon radiation a good agreement with the present experiment is observed. The highly precise results obtained which cover the wide dynamic range according to the energy of incident particles can serve as the basis for reconsidering the existing recommendations for dose characteristics of electron radiation [ru

  17. Energy flow in photonic crystal waveguides

    DEFF Research Database (Denmark)

    Søndergaard, Thomas; Dridi, Kim

    2000-01-01

    Theoretical and numerical investigations of energy flow in photonic crystal waveguides made of line defects and branching points are presented. It is shown that vortices of energy flow may occur, and the net energy flow along: the line defect is described via the effective propagation velocity....... Single-mode and multimode operations are studied, and dispersion relations are computed for different waveguide widths. Both strong positive, strong negative, and zero dispersion an possible. It is shown that geometric parameters such as the nature of the lattice, the line defect orientation, the defect...... width, and the branching-point geometry have a significant influence on the electrodynamics. These are important issues for the fabrication of photonic crystal structures....

  18. Improving the neutron-to-photon discrimination capability of detectors used for neutron dosimetry in high energy photon beam radiotherapy

    International Nuclear Information System (INIS)

    Irazola, L.; Terrón, J.A.; Bedogni, R; Pola, A.; Lorenzoli, M.; Sánchez-Nieto, B.; Gómez, F.; Sánchez-Doblado, F.

    2016-01-01

    The increasing interest of the medical community to radioinduced second malignancies due to photoneutrons in patients undergoing high-energy radiotherapy, has stimulated in recent years the study of peripheral doses, including the development of some dedicated active detectors. Although these devices are designed to respond to neutrons only, their parasitic photon response is usually not identically zero and anisotropic. The impact of these facts on measurement accuracy can be important, especially in points close to the photon field-edge. A simple method to estimate the photon contribution to detector readings is to cover it with a thermal neutron absorber with reduced secondary photon emission, such as a borated rubber. This technique was applied to the TNRD (Thermal Neutron Rate Detector), recently validated for thermal neutron measurements in high-energy photon radiotherapy. The positive results, together with the accessibility of the method, encourage its application to other detectors and different clinical scenarios. - Highlights: • Neutron-to-photon discrimination of a thermal neutron detector used in radiotherapy. • Photon and anisotropic response study with distance and beam incidence of thermal neutron detector. • Borated rubber for estimating photon contribution in any thermal neutron detector.

  19. Virtual photon interactions in high energy QCD

    International Nuclear Information System (INIS)

    Gieseke, S.

    2001-07-01

    We study the interactions of virtual photons in the high energy limit of quantum chromodynamics (QCD). The subject is discussed in terms of two closely linked applications: the calculation of the total cross section for γ * γ * -scattering and the description of DIS in the colour dipole model. We calculate virtual corrections in α s to the process γ * q → (qq)q and the tree level process γ * q → (qqg)q in the high energy limit. From this calculation we obtain one-loop corrections to the effective γ * -reggeon-qq-vertex in the helicity basis of the virtual photon and the qq-pair. The loop integrals for the virtual corrections have been performed and expressed in dimensional regularization in terms of logarithms and dilogarithms. We have convoluted the virtual one-loop matrix elements with tree level matrix elements and expressed the integrals over the phase space of the qq-pair explicitly in terms of a set of standard integrals. The real corrections have been calculated and, in case of the longitudinal polarization, expressed in factorized form. From these calculations, the impact factor of virtual photons will be determined, allowing for a first prediction of the total cross section for γ * γ * -scattering in the next-to-leading-log s approximation. The calculations in this thesis extend the photon wave function picture in the colour dipole model to next-to-leading order. For this purpose, the real corrections with a qqg final state are analyzed in transverse configuration space and interpreted as a first higher Fock component of the photon wave function. In addition, the matrix elements that have been calculated in this thesis are needed for the calculation of jet cross sections. (orig.)

  20. Photonics

    CERN Document Server

    Andrews, David L

    2015-01-01

    Discusses the basic physical principles underlying the technology instrumentation of photonics This volume discusses photonics technology and instrumentation. The topics discussed in this volume are: Communication Networks; Data Buffers; Defense and Security Applications; Detectors; Fiber Optics and Amplifiers; Green Photonics; Instrumentation and Metrology; Interferometers; Light-Harvesting Materials; Logic Devices; Optical Communications; Remote Sensing; Solar Energy; Solid-State Lighting; Wavelength Conversion Comprehensive and accessible coverage of the whole of modern photonics Emphas

  1. Beta and low energy photon response

    International Nuclear Information System (INIS)

    Cummings, F.M.; Yoder, R.C.

    1981-01-01

    This study quantifies the observed dosimeter response for a variety of beta and photon energies. The reportable skin dose is also included in the discussion. Presently, the reportable skin dose is determined by adding the nonpenetrating and penetrating dose components together. The scheme presently used to estimate the nonpenetrating dose component for personnel at Hanford utilizes the difference in light outputs of a TLD-700 chip filtered only by the security credential (total of 88 mg/cm 2 ) and a TLD-700 chip filtered by a 0.064 cm thick aluminum filter as well as the credential. The study indicates that a maximum chip response occurs in the range of photon energies between 30 keV and 40 keV and results in an overestimation of the calculated nonpenetrating dose by a factor of approximately 2. The reportable skin dose is overestimated by a factor of approximately 2.5 following adding the nonpenetrating and penetrating dose components. The effect of removing the security credential is slight and tends to increase the steepness of slope in the photon response curve

  2. Photon energy-fluence correction factor in low energy brachytherapy

    International Nuclear Information System (INIS)

    Antunes, Paula C.G.; Yoriyaz, Hélio; Vijande, Javier; Giménez-Alventosa, Vicent; Ballester, Facundo

    2017-01-01

    The AAPM TG-43 brachytherapy dosimetry formalism has become a standard for brachytherapy dosimetry worldwide; it implicitly assumes that charged-particle equilibrium (CPE) exists for the determination of absorbed dose to water at different locations. At the time of relating dose to tissue and dose to water, or vice versa, it is usually assumed that the photon fluence in water and in tissues are practically identical, so that the absorbed dose in the two media can be related by their ratio of mass energy-absorption coefficients. The purpose of this work is to study the influence of photon energy-fluence in different media and to evaluate a proposal for energy-fluence correction factors for the conversion between dose-to-tissue (D tis ) and dose-to-water (D w ). State-of-the art Monte Carlo (MC) calculations are used to score photon fluence differential in energy in water and in various human tissues (muscle, adipose and bone) in two different codes, MCNP and PENELOPE, which in all cases include a realistic modeling of the 125 I low-energy brachytherapy seed in order to benchmark the formalism proposed. A correction is introduced that is based on the ratio of the water-to-tissue photon energy-fluences using the large-cavity theory. In this work, an efficient way to correlate absorbed dose to water and absorbed dose to tissue in brachytherapy calculations at clinically relevant distances for low-energy photon emitting seed is proposed. The energy-fluence based corrections given in this work are able to correlate absorbed dose to tissue and absorbed dose to water with an accuracy better than 0.5% in the most critical cases. (author)

  3. Photon energy-fluence correction factor in low energy brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Antunes, Paula C.G.; Yoriyaz, Hélio [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Vijande, Javier; Giménez-Alventosa, Vicent; Ballester, Facundo, E-mail: pacrisguian@gmail.com [Department of Atomic, Molecular, and Nuclear Physics and Instituto de Física Corpuscular (UV-CSIC), University of Valencia (Spain)

    2017-07-01

    The AAPM TG-43 brachytherapy dosimetry formalism has become a standard for brachytherapy dosimetry worldwide; it implicitly assumes that charged-particle equilibrium (CPE) exists for the determination of absorbed dose to water at different locations. At the time of relating dose to tissue and dose to water, or vice versa, it is usually assumed that the photon fluence in water and in tissues are practically identical, so that the absorbed dose in the two media can be related by their ratio of mass energy-absorption coefficients. The purpose of this work is to study the influence of photon energy-fluence in different media and to evaluate a proposal for energy-fluence correction factors for the conversion between dose-to-tissue (D{sub tis}) and dose-to-water (D{sub w}). State-of-the art Monte Carlo (MC) calculations are used to score photon fluence differential in energy in water and in various human tissues (muscle, adipose and bone) in two different codes, MCNP and PENELOPE, which in all cases include a realistic modeling of the {sup 125}I low-energy brachytherapy seed in order to benchmark the formalism proposed. A correction is introduced that is based on the ratio of the water-to-tissue photon energy-fluences using the large-cavity theory. In this work, an efficient way to correlate absorbed dose to water and absorbed dose to tissue in brachytherapy calculations at clinically relevant distances for low-energy photon emitting seed is proposed. The energy-fluence based corrections given in this work are able to correlate absorbed dose to tissue and absorbed dose to water with an accuracy better than 0.5% in the most critical cases. (author)

  4. Energy calibration of a multilayer photon detector

    International Nuclear Information System (INIS)

    Johnson, R.A.

    1983-01-01

    The job of energy calibration was broken into three parts: gain normalization of all equivalent elements; determination of the functions for conversion of pulse height to energy; and gain stabilization. It is found that calorimeter experiments are no better than their calibration systems - calibration errors will be the major source of error at high energies. Redundance is found to be necessary - the system should be designed such that every element could be replaced during the life of the experiment. It is found to be important to have enough data taken during calibration runs and during the experiment to be able to sort out where the calibration problems were after the experiment is over. Each layer was normalized independently with electrons, and then the pulse height to energy conversion was determined with photons. The primary method of gain stabilization used the light flasher system

  5. Modeling silicon diode energy response factors for use in therapeutic photon beams.

    Science.gov (United States)

    Eklund, Karin; Ahnesjö, Anders

    2009-10-21

    Silicon diodes have good spatial resolution, which makes them advantageous over ionization chambers for dosimetry in fields with high dose gradients. However, silicon diodes overrespond to low-energy photons, that are more abundant in scatter which increase with large fields and larger depths. We present a cavity-theory-based model for a general response function for silicon detectors at arbitrary positions within photon fields. The model uses photon and electron spectra calculated from fluence pencil kernels. The incident photons are treated according to their energy through a bipartition of the primary beam photon spectrum into low- and high-energy components. Primary electrons from the high-energy component are treated according to Spencer-Attix cavity theory. Low-energy primary photons together with all scattered photons are treated according to large cavity theory supplemented with an energy-dependent factor K(E) to compensate for energy variations in the electron equilibrium. The depth variation of the response for an unshielded silicon detector has been calculated for 5 x 5 cm(2), 10 x 10 cm(2) and 20 x 20 cm(2) fields in 6 and 15 MV beams and compared with measurements showing that our model calculates response factors with deviations less than 0.6%. An alternative method is also proposed, where we show that one can use a correlation with the scatter factor to determine the detector response of silicon diodes with an error of less than 3% in 6 MV and 15 MV photon beams.

  6. Modeling silicon diode energy response factors for use in therapeutic photon beams

    International Nuclear Information System (INIS)

    Eklund, Karin; Ahnesjoe, Anders

    2009-01-01

    Silicon diodes have good spatial resolution, which makes them advantageous over ionization chambers for dosimetry in fields with high dose gradients. However, silicon diodes overrespond to low-energy photons, that are more abundant in scatter which increase with large fields and larger depths. We present a cavity-theory-based model for a general response function for silicon detectors at arbitrary positions within photon fields. The model uses photon and electron spectra calculated from fluence pencil kernels. The incident photons are treated according to their energy through a bipartition of the primary beam photon spectrum into low- and high-energy components. Primary electrons from the high-energy component are treated according to Spencer-Attix cavity theory. Low-energy primary photons together with all scattered photons are treated according to large cavity theory supplemented with an energy-dependent factor K(E) to compensate for energy variations in the electron equilibrium. The depth variation of the response for an unshielded silicon detector has been calculated for 5 x 5 cm 2 , 10 x 10 cm 2 and 20 x 20 cm 2 fields in 6 and 15 MV beams and compared with measurements showing that our model calculates response factors with deviations less than 0.6%. An alternative method is also proposed, where we show that one can use a correlation with the scatter factor to determine the detector response of silicon diodes with an error of less than 3% in 6 MV and 15 MV photon beams.

  7. A high energy photon detector system in compact form

    International Nuclear Information System (INIS)

    Kato, Sadayuki; Sugano, Katsuhito; Yoshioka, Masakazu.

    1975-01-01

    The development of a high energy photon detector system in compact form for use in experiments of high energy physics is described, and the results of its characteristics calibrated using converted electron beams and a pair spectrometer are reported. This system consists of a total absorption lead glass Cerenkov counter, twenty hodoscope arrays for the vertical and the horizontal directions respectively, a lead plate for the conversion of γ-rays into electron-positron pairs, veto counters, photon hardener, and lead blocks for shieldings and collimation. The spatial resolution of the hodoscope is 15 mm for each direction, covering 301 x 301 mm 2 area. The energy resolution of the total absorption lead glass Cerenkov counter, whose volume is 30 x 30 x 30 cm 3 , is typically 18 % (FWHM) for the incident electron energy of 500 MeV, and it can be expressed with a relation of ΔE/E = 3.94 Esup(-1/2). (E in MeV). (auth.)

  8. PHOTON09. Proceedings of the international conference on the structure and interactions of the photon including the 18th international workshop on photon-photon collisions and the international workshop on high energy photon linear colliders

    Energy Technology Data Exchange (ETDEWEB)

    Behnke, Olaf; Diehl, Markus; Schoerner-Sadenius, Thomas; Steinbrueck, Georg [eds.

    2010-01-15

    The following topics were dealt with: Electroweak and new physics, photon-collider technology, low-energy photon experiments, prompt photons, photon structure, jets and heavy flavours, vacuum polarization and light-by-light scattering, small-x processes, diffraction, total cross sections, exclusive channels and resonances, photons in astroparticle physics. (HSI)

  9. PHOTON09. Proceedings of the international conference on the structure and interactions of the photon including the 18th international workshop on photon-photon collisions and the international workshop on high energy photon linear colliders

    International Nuclear Information System (INIS)

    Behnke, Olaf; Diehl, Markus; Schoerner-Sadenius, Thomas; Steinbrueck, Georg

    2010-01-01

    The following topics were dealt with: Electroweak and new physics, photon-collider technology, low-energy photon experiments, prompt photons, photon structure, jets and heavy flavours, vacuum polarization and light-by-light scattering, small-x processes, diffraction, total cross sections, exclusive channels and resonances, photons in astroparticle physics. (HSI)

  10. Total reflection coefficients of low-energy photons presented as universal functions

    Directory of Open Access Journals (Sweden)

    Ljubenov Vladan

    2010-01-01

    Full Text Available The possibility of expressing the total particle and energy reflection coefficients of low-energy photons in the form of universal functions valid for different shielding materials is investigated in this paper. The analysis is based on the results of Monte Carlo simulations of photon reflection by using MCNP, FOTELP, and PENELOPE codes. The normal incidence of the narrow monoenergetic photon beam of the unit intensity and of initial energies from 20 keV up to 100 keV is considered, and particle and energy reflection coefficients from the plane homogenous targets of water, aluminum, and iron are determined and compared. The representations of albedo coefficients on the initial photon energy, on the probability of large-angle photon scattering, and on the mean number of photon scatterings are examined. It is found out that only the rescaled albedo coefficients dependent on the mean number of photon scatterings have the form of universal functions and these functions are determined by applying the least square method.

  11. Photonic design for efficient solid state energy conversion

    Science.gov (United States)

    Agrawal, Mukul

    The efficiency of conversion between electrical and photonic energy in optoelectronic devices such as light-emitting diodes, photodetectors and solar cells is strongly affected by the photonic modes supported by the device structure. In this thesis, we show how tuning of the local photon density of states in subwavelength structures can be used to optimize device performance. The first part of the thesis is focused on organic light emitting diodes (OLEDs), a candidate technology for next-generation displays and solid-state lighting. An important unsolved problem in OLEDs is to ensure that a significant fraction of photons emitted by the organic emissive layer couple out of the device structure instead of remaining trapped in the device. It is shown using modeling and experiments that optimized non-periodic dielectric multilayer stacks can significantly increase the photon outcoupling while maintaining display quality brightness uniformity over the viewing cone. In the second part, we discuss the theoretical limits to broadband light harvesting in photovoltaic cells. First, it is shown that the extent to which one-dimensional optical cavities can be used to enhance light absorption over a broad spectral range is limited by the requirement that the cavity mirrors have a causal response. This result is used as a guide to design practical dielectric structures that enhance light harvesting in planar thin-film organic solar cells. Finally, we consider the enhancement of optical absorption in two- and three-dimensional structures in which incident light is scattered into quasi-trapped modes for more effective utilization of solar radiation. It is shown that there is an upper bound to the degree to which optical absorption can be enhanced that is identical to the limit found in the geometric optics regime. Rigorous optical simulations are used to show that an optical structure consisting of a two-dimensional array of inverted pyramids comes close to this limit. Before

  12. Direct Characterization of Ultrafast Energy-Time Entangled Photon Pairs.

    Science.gov (United States)

    MacLean, Jean-Philippe W; Donohue, John M; Resch, Kevin J

    2018-02-02

    Energy-time entangled photons are critical in many quantum optical phenomena and have emerged as important elements in quantum information protocols. Entanglement in this degree of freedom often manifests itself on ultrafast time scales, making it very difficult to detect, whether one employs direct or interferometric techniques, as photon-counting detectors have insufficient time resolution. Here, we implement ultrafast photon counters based on nonlinear interactions and strong femtosecond laser pulses to probe energy-time entanglement in this important regime. Using this technique and single-photon spectrometers, we characterize all the spectral and temporal correlations of two entangled photons with femtosecond resolution. This enables the witnessing of energy-time entanglement using uncertainty relations and the direct observation of nonlocal dispersion cancellation on ultrafast time scales. These techniques are essential to understand and control the energy-time degree of freedom of light for ultrafast quantum optics.

  13. Conversion of zero point energy into high-energy photons

    Energy Technology Data Exchange (ETDEWEB)

    Ivlev, B. I. [Universidad Autonoma de San Luis Potosi, Instituto de Fisica, Av. Manuel Nava No. 6, Zona Universitaria, 78290 San Luis Potosi, SLP (Mexico)

    2016-11-01

    An unusual phenomenon, observed in experiments is studied. X-ray laser bursts of keV energy are emitted from a metal where long-living states, resulting in population inversion, are totally unexpected. Anomalous electron-photon states are revealed to be formed inside the metal. These states are associated with narrow, 10{sup -11} cm, potential well created by the local reduction of zero point electromagnetic energy. In contrast to analogous van der Waals potential well, leading to attraction of two hydrogen atoms, the depth of the anomalous well is on the order of 1 MeV. The states in that well are long-living which results in population inversion and subsequent laser generation observed. The X-ray emission, occurring in transitions to lower levels, is due to the conversion of zero point electromagnetic energy. (Author)

  14. Incident energy dependence of pt correlations at relativistic energies

    CERN Document Server

    Adams, J; Ahammed, Z; Amonett, J; Anderson, B D; Arkhipkin, D; Averichev, G S; Badyal, S K; Bai, Y; Balewski, J; Barannikova, O; Barnby, L S; Baudot, J; Bekele, S; Belaga, V V; Bellingeri-Laurikainen, A; Bellwied, R; Berger, J; Bezverkhny, B I; Bharadwaj, S; Bhasin, A; Bhati, A K; Bhatia, V S; Bichsel, H; Bielcik, J; Bielcikova, J; Billmeier, A; Bland, L C; Blyth, C O; Bonner, B E; Botje, M; Boucham, A; Bouchet, J; Brandin, A V; Bravar, A; Bystersky, M; Cadman, R V; Cai, X Z; Caines, H; Calderón de la Barca-Sanchez, M; Castillo, J; Catu, O; Cebra, D; Chajecki, Z; Chaloupka, P; Chattopadhyay, S; Chen, H F; Chen, Y; Cheng, J; Cherney, M; Chikanian, A; Christie, W; Coffin, J P; Cormier, T M; Cramer, J G; Crawford, H J; Das, D; Das, S; Daugherity, M; De Moura, M M; Dedovich, T G; Derevshchikov, A A; Didenko, L; Dietel, T; Dogra, S M; Dong, W J; Dong, X; Draper, J E; Du, F; Dubey, A K; Dunin, V B; Dunlop, J C; Dutta, M R; Mazumdar; Eckardt, V; Edwards, W R; Efimov, L G; Emelianov, V; Engelage, J; Eppley, G; Erazmus, B; Estienne, M; Fachini, P; Faivre, J; Fatemi, R; Fedorisin, J; Filimonov, K; Filip, P; Finch, E; Fine, V; Fisyak, Yu; Fu, J; Gagliardi, C A; Gaillard, L; Gans, J; Ganti, M S; Geurts, F; Ghazikhanian, V; Ghosh, P; González, J E; Gos, H; Grachov, O; Grebenyuk, O; Grosnick, D P; Guertin, S M; Guo, Y; Sen-Gupta, A; Gutíerrez, T D; Hallman, T J; Hamed, A; Hardtke, D; Harris, J W; Heinz, M; Henry, T W; Hepplemann, S; Hippolyte, B; Hirsch, A; Hjort, E; Hoffmann, G W; Huang, H Z; Huang, S L; Hughes, E W; Humanic, T J; Igo, G; Ishihara, A; Jacobs, P; Jacobs, W W; Jedynak, M; Jiang, H; Jones, P G; Judd, E G; Kabana, S; Kang, K; Kaplan, M; Keane, D; Kechechyan, A; Khodyrev, V Yu; Kiryluk, J; Kisiel, A; Kislov, E M; Klay, J; Klein, S R; Koetke, D D; Kollegger, T; Kopytine, M; Kotchenda, L; Kowalik, K L; Krämer, M; Kravtsov, P; Kravtsov, V I; Krüger, K; Kuhn, C; Kulikov, A I; Kumar, A; Kutuev, R K; Kuznetsov, A A; Lamont, M A C; Landgraf, J M; Lange, S; Laue, F; Lauret, J; Lebedev, A; Lednicky, R; Lehocka, S; Le Vine, M J; Li, C; Li, Q; Li, Y; Lin, G; Lindenbaum, S J; Lisa, M A; Liu, F; Liu, H; Liu, L; Liu, Q J; Liu, Z; Ljubicic, T; Llope, W J; Long, H; Longacre, R S; López-Noriega, M; Love, W A; Lu, Y; Ludlam, T; Lynn, D; Ma, G L; Ma, J G; Ma, Y G; Magestro, D; Mahajan, S; Mahapatra, D P; Majka, R; Mangotra, L K; Manweiler, R; Margetis, S; Markert, C; Martin, L; Marx, J N; Matis, H S; Matulenko, Yu A; McClain, C J; McShane, T S; Meissner, F; Melnik, Yu M; Meschanin, A; Miller, M L; Minaev, N G; Mironov, C; Mischke, A; Mishra, D K; Mitchell, J; Mohanty, B; Molnár, L; Moore, C F; Morozov, D A; Munhoz, M G; Nandi, B K; Nayak, S K; Nayak, T K; Nelson, J M; Netrakanti, P K; Nikitin, V A; Nogach, L V; Nurushev, S B; Odyniec, Grazyna Janina; Ogawa, A; Okorokov, V; Oldenburg, M; Olson, D; Pal, S K; Panebratsev, Yu A; Panitkin, S Y; Pavlinov, A I; Pawlak, T; Peitzmann, T; Perevozchikov, V; Perkins, C; Peryt, W; Petrov, V A; Phatak, S C; Picha, R; Planinic, M; Pluta, J; Porile, N; Porter, J; Poskanzer, A M; Potekhin, M V; Potrebenikova, E V; Potukuchi, B V K S; Prindle, D; Pruneau, C A; Putschke, J; Rakness, G; Raniwala, R; Raniwala, S; Ravel, O; Ray, R L; Razin, S V; Reichhold, D M; Reid, J G; Reinnarth, J; Renault, G; Retière, F; Ridiger, A; Ritter, H G; Roberts, J B; Rogachevski, O V; Romero, J L; Rose, A; Roy, C; Ruan, L; Russcher, M; Sahoo, R; Sakrejda, I; Salur, S; Sandweiss, J; Sarsour, M; Savin, I; Sazhin, P S; Schambach, J; Scharenberg, R P; Schmitz, N; Schweda, K; Seger, J; Seyboth, P; Shahaliev, E; Shao, M; Shao, W; Sharma, M; Shen, W Q; Shestermanov, K E; Shimansky, S S; Sichtermann, E P; Simon, F; Singaraju, R N; Smirnov, N; Snellings, R; Sood, G; Sørensen, P; Sowinski, J; Speltz, J; Spinka, H M; Srivastava, B; Stadnik, A; Stanislaus, T D S; Stock, R; Stolpovsky, A; Strikhanov, M N; Stringfellow, B C; Suaide, A A P; Sugarbaker, E R; Suire, C; Sumbera, M; Surrow, B; Swanger, M; Symons, T J M; Szanto de Toledo, A; Tai, A; Takahashi, J; Tang, A H; Tarnowsky, T J; Thein, D; Thomas, J H; Timoshenko, S; Tokarev, M; Trentalange, S; Tribble, R E; Tsai, O D; Ulery, J; Ullrich, T; Underwood, D G; Van Buren, G; Van Leeuwen, M; Van der Molen, A M; Varma, R; Vasilevski, I M; Vasilev, A N; Vernet, R; Vigdor, S E; Viyogi, Y P; Vokal, S; Voloshin, S A; Waggoner, W T; Wang, F; Wang, G; Wang, X L; Wang, Y; Wang, Z M; Ward, H; Watson, J W; Webb, J C; Westfall, G D; Wetzler, A; Whitten, C; Wieman, H; Wissink, S W; Witt, R; Wood, J; Wu, J; Xu, N; Xu, Z; Xu, Z Z; Yamamoto, E; Yepes, P; Yurevich, V I; Zborovský, I; Zhang, H; Zhang, W M; Zhang, Y; Zhang, Z P; Zoulkarneev, R; Zoulkarneeva, Y; Zubarev, A N

    2005-01-01

    We present results for two-particle transverse momentum correlations, , as a function of event centrality for Au+Au collisions at sqrt(sNN) = 20, 62, 130, and 200 GeV at the Relativistic Heavy Ion Collider. We observe correlations decreasing with centrality that are similar at all four incident energies. The correlations multiplied by the multiplicity density increase with incident energy and the centrality dependence may show evidence of processes such as thermalization, minijet production, or the saturation of transverse flow. The square root of the correlations divided by the event-wise average transverse momentum per event shows little or no beam energy dependence and generally agrees with previous measurements at the Super Proton Synchrotron.

  15. Measurement of neutron energy spectra for Eg=23.1 and 26.6 MeV mono-energetic photon induced reaction on natC using laser electron photon beam at NewSUBARU

    Science.gov (United States)

    Itoga, Toshiro; Nakashima, Hiroshi; Sanami, Toshiya; Namito, Yoshihito; Kirihara, Yoichi; Miyamoto, Shuji; Takemoto, Akinori; Yamaguchi, Masashi; Asano, Yoshihiro

    2017-09-01

    Photo-neutron energy spectra for Eg=23.1 and 26.6 MeV mono-energetic photons on natC were measured using laser Compton scattering facility at NewSUBARU BL01. The photon energy spectra were evaluated through measurements and simulations with collimator sizes and arrangements for the laser electron photon. The neutron energy spectra for the natC(g,xn) reaction were measured at 60 degrees in horizontal and 90 degrees in horizontal and vertical with respect to incident photon. The spectra show almost isotropic angular distribution and flat energy distribution from detection threshold to upper limit defined by reaction Q-value.

  16. Incidence of Second Malignancies Among Patients Treated With Proton Versus Photon Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Christine S., E-mail: chungc1@sutterhealth.org [Department of Radiation Oncology, Alta Bates Summit Medical Center, Berkeley, California (United States); Yock, Torunn I. [Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts (United States); Nelson, Kerrie [Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts (United States); Xu, Yang [Department of Health Care Policy, Harvard Medical School, Boston, Massachusetts (United States); Keating, Nancy L. [Department of Health Care Policy, Harvard Medical School, Boston, Massachusetts (United States); Department of General Internal Medicine, Brigham and Women' s Hospital, Boston, Massachusetts (United States); Tarbell, Nancy J. [Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts (United States); Office of the Executive Dean, Harvard Medical School, Boston, Massachusetts (United States)

    2013-09-01

    Purpose: Proton radiation, when compared with photon radiation, allows delivery of increased radiation dose to the tumor while decreasing dose to adjacent critical structures. Given the recent expansion of proton facilities in the United States, the long-term sequelae of proton therapy should be carefully assessed. The objective of this study was to compare the incidence of second cancers in patients treated with proton radiation with a population-based cohort of matched patients treated with photon radiation. Methods and Materials: We performed a retrospective cohort study of 558 patients treated with proton radiation from 1973 to 2001 at the Harvard Cyclotron in Cambridge, MA and 558 matched patients treated with photon therapy in the Surveillance, Epidemiology, and End Results (SEER) Program cancer registry. Patients were matched by age at radiation treatment, sex, year of treatment, cancer histology, and site. The main outcome measure was the incidence of second malignancies after radiation. Results: We matched 558 proton patients with 558 photon patients from the Surveillance, Epidemiology, and End Results registry. The median duration of follow-up was 6.7 years (interquartile range, 7.4) and 6.0 years (interquartile range, 9.3) in the proton and photon cohorts, respectively. The median age at treatment was 59 years in each cohort. Second malignancies occurred in 29 proton patients (5.2%) and 42 photon patients (7.5%). After we adjusted for sex, age at treatment, primary site, and year of diagnosis, proton therapy was not associated with an increased risk of second malignancy (adjusted hazard ratio, 0.52 [95% confidence interval, 0.32-0.85]; P=.009). Conclusions: The use of proton radiation therapy was not associated with a significantly increased risk of secondary malignancies compared with photon therapy. Longer follow-up of these patients is needed to determine if there is a significant decrease in second malignancies. Given the limitations of the study

  17. Incidence of Second Malignancies Among Patients Treated With Proton Versus Photon Radiation

    International Nuclear Information System (INIS)

    Chung, Christine S.; Yock, Torunn I.; Nelson, Kerrie; Xu, Yang; Keating, Nancy L.; Tarbell, Nancy J.

    2013-01-01

    Purpose: Proton radiation, when compared with photon radiation, allows delivery of increased radiation dose to the tumor while decreasing dose to adjacent critical structures. Given the recent expansion of proton facilities in the United States, the long-term sequelae of proton therapy should be carefully assessed. The objective of this study was to compare the incidence of second cancers in patients treated with proton radiation with a population-based cohort of matched patients treated with photon radiation. Methods and Materials: We performed a retrospective cohort study of 558 patients treated with proton radiation from 1973 to 2001 at the Harvard Cyclotron in Cambridge, MA and 558 matched patients treated with photon therapy in the Surveillance, Epidemiology, and End Results (SEER) Program cancer registry. Patients were matched by age at radiation treatment, sex, year of treatment, cancer histology, and site. The main outcome measure was the incidence of second malignancies after radiation. Results: We matched 558 proton patients with 558 photon patients from the Surveillance, Epidemiology, and End Results registry. The median duration of follow-up was 6.7 years (interquartile range, 7.4) and 6.0 years (interquartile range, 9.3) in the proton and photon cohorts, respectively. The median age at treatment was 59 years in each cohort. Second malignancies occurred in 29 proton patients (5.2%) and 42 photon patients (7.5%). After we adjusted for sex, age at treatment, primary site, and year of diagnosis, proton therapy was not associated with an increased risk of second malignancy (adjusted hazard ratio, 0.52 [95% confidence interval, 0.32-0.85]; P=.009). Conclusions: The use of proton radiation therapy was not associated with a significantly increased risk of secondary malignancies compared with photon therapy. Longer follow-up of these patients is needed to determine if there is a significant decrease in second malignancies. Given the limitations of the study

  18. Models for the analytic estimation of low energy photon albedo

    International Nuclear Information System (INIS)

    Simovic, R.; Markovic, S.; Ljubenov, V.

    2005-01-01

    This paper shows some monoenergetic models for estimation of photon reflection in the energy range from 20 keV to 80 keV. Using the DP0 approximation of the H-function we have derived the analytic expressions of the η and R functions in purpose to facilitate photon reflection analyses as well as the radiation shield designee. (author) [sr

  19. Photon energy dependence and angular response of glass display used in mobile phones for accident dosimetry

    International Nuclear Information System (INIS)

    Discher, Michael; Greiter, Matthias; Woda, Clemens

    2014-01-01

    Previous studies have shown that glass displays extracted from mobile phones are suitable as emergency dosimeters in case of an accidental radiation overexposure using the thermoluminescence (TL) method. So far these studies have focused only on recovering the absorbed dose to the material. However, dose in air or dose to the victim carrying the device might be significantly different. Therefore the aim of this work was to investigate photon energy dependence and angular response of glass display used in modern mobile phones. An over-response of about a factor of five is observed for low photon energies compared to the response to Cs-137 (662 keV) which is in reasonable agreement with calculated values mass energy-absorption coefficients of glass and air. Little variation in the energy dependence can be seen for glass displays coming from three different mobile phone models. The angular response for display glass is flat with regard to air kerma within the incident angle of ±60°, independent of the irradiation setup used (with a water phantom or with air kerma reference conditions). For incident angles of 90° the shielding effect of the mobile phones becomes important. With the dosimetric characterization of the photon energy and angular dependencies the absorbed dose in a glass display can be transferred to a reference air kerma dose and provides a useful option for retrospective accident dosimetry. - Highlights: • Determination of the photon energy dependence and angular response for display glass used as an accident dosimeter. • Over-response of about a factor of five for low photon energies. • Flat angular response within incident angles between ±60°

  20. A filter technique for optimising the photon energy response of a silicon pin diode dosemeter

    International Nuclear Information System (INIS)

    Olsher, R.H.; Eisen, Y.

    1996-01-01

    Unless they are energy compensated, silicon PIN diodes used in electronic pocket dosemeters, have significant over-response below 200 keV. Siemens is using three diodes in parallel with individual filters to produce excellent energy and angular response. An algorithm based on the photon spectrum of a single diode could be used to flatten the energy response. The commercial practice is to use a single diode with a simple filter to flatten the energy response, despite the mediocre low energy photon. The filter technique with an opening has been used for energy compensating GM detectors and proportional counters and a new variation of it has been investigated which compensates the energy response of a silicon PIN diode and maintains an extended low energy response. It uses a composite filter of two or more materials with several openings whose individual area is in the range of 15% to 25% of the diode's active area. One opening is centred over the diode's active area and others are located at the periphery of the active area to preserve a good polar response to ±45 o . Monte Carlo radiation transport methods were used to simulate the coupled electron-photon transport through a Hamamatsu S2506-01 diode and to determine the energy response of the diode for a variety of filters. In current mode, the resultant dosemeter energy response relative to air dose was within -15% and +30% for 0 o incidence over the energy range from 15 keV to 1 MeV. In pulse mode, the resultant dosemeter energy response was within -25% and +50% for 0 o incidence over the energy range from 30 keV to 10 MeV. For ±45 o incidence, the energy response was within -25% and +40% from 40 keV to 10 MeV. Theoretical viability of the filter technique has been shown in this work (Author)

  1. Bandgap characteristics of 2D plasma photonic crystal with oblique incidence: TM case

    International Nuclear Information System (INIS)

    Xie Ying-Tao; Yang Li-Xia

    2011-01-01

    A novel periodic boundary condition (PBC), that is the constant transverse wavenumber (CTW) method, is introduced to solve the time delay in the transverse plane with oblique incidence. Based on the novel PBC, the FDTD/PBC algorithm is proposed to study periodic structure consisting of plasma and vacuum. Then the reflection coefficient for the plasma slab from the FDTD/PBC algorithm is compared with the analytic results to show the validity of our technique. Finally, the reflection coefficients for the plasma photonic crystals are calculated using the FDTD/PBC algorithm to study the variation of bandgap characteristics with the incident angle and the plasma parameters. Thus it has provided the guiding sense for the actual manufacturing plasma photonic crystal. (general)

  2. Coupling the photon kinetics of soft photons with high energy photons

    Science.gov (United States)

    Silva, L. O.; Bingham, R.

    2017-10-01

    The description of electromagnetic fields based on the generalized photon kinetic theory, which takes advantage of the Wigner-Moyal description for the corresponding classical field theory, is capable of capturing collective plasma dynamics in the relativistic regime driven by broadband incoherent or partially coherent sources. We explore the possibility to extend this description to include the dynamics of hard photons in the plasma, whose interaction is dominated by single scattering processes. Examples of the modification of classical plasma instabilities due to the presence of hard photons is discussed. Work supported by the European Research Council (ERC-AdG-2015 InPairs Grant No. 695088).

  3. Partial cross sections of helium satellites at medium photon energies

    Energy Technology Data Exchange (ETDEWEB)

    Wehlitz, R.; Sellin, I.A. [Univ. of Tennessee, Knoxville, TN (United States); Hemmers, O. [Univ. of Nevada, Las Vegas, NV (United States)] [and others

    1997-04-01

    Still of current interest is the important role of single ionization with excitation compared to single ionization alone. The coupling between the electrons and the incoming photon is a single-particle operator. Thus, an excitation in addition to an ionization, leading to a so-called satellite line in a photoelectron spectrum, is entirely due to electron-electron interaction and probes the electron correlation in the ground and final state. Therefore the authors have undertaken the study of the intensity of helium satellites He{sup +}nl (n = 2 - 6) relative to the main photoline (n = 1) as a function of photon energy at photon energies well above threshold up to 900 eV. From these results they could calculate the partial cross-sections of the helium satellites. In order to test the consistency of their satellite-to-1s ratios with published double-to-single photoionization ratios, the authors calculated the double-to-single photoionization ratio from their measured ratios using the theoretical energy-distribution curves of Chang and Poe and Le Rouzo and Dal Cappello which proved to be valid for photon energies below 120 eV. These calculated double-to-single ionization ratios agree fairly well with recent ion measurements. In the lower photon energy range the authors ratios agree better with the ratios of Doerner et al. while for higher photon energies the agreement is better with the values of Levin et al.

  4. Partial cross sections of helium satellites at medium photon energies

    International Nuclear Information System (INIS)

    Wehlitz, R.; Sellin, I.A.; Hemmers, O.

    1997-01-01

    Still of current interest is the important role of single ionization with excitation compared to single ionization alone. The coupling between the electrons and the incoming photon is a single-particle operator. Thus, an excitation in addition to an ionization, leading to a so-called satellite line in a photoelectron spectrum, is entirely due to electron-electron interaction and probes the electron correlation in the ground and final state. Therefore the authors have undertaken the study of the intensity of helium satellites He + nl (n = 2 - 6) relative to the main photoline (n = 1) as a function of photon energy at photon energies well above threshold up to 900 eV. From these results they could calculate the partial cross-sections of the helium satellites. In order to test the consistency of their satellite-to-1s ratios with published double-to-single photoionization ratios, the authors calculated the double-to-single photoionization ratio from their measured ratios using the theoretical energy-distribution curves of Chang and Poe and Le Rouzo and Dal Cappello which proved to be valid for photon energies below 120 eV. These calculated double-to-single ionization ratios agree fairly well with recent ion measurements. In the lower photon energy range the authors ratios agree better with the ratios of Doerner et al. while for higher photon energies the agreement is better with the values of Levin et al

  5. Estimation of photon energy distribution in gamma calibration field

    International Nuclear Information System (INIS)

    Takahashi, Fumiaki; Shimizu, Shigeru; Yamaguchi, Yasuhiro

    1997-03-01

    Photon survey instruments used for radiation protection are usually calibrated at gamma radiation fields, which are traceable to the national standard with regard to exposure. Whereas scattered radiations as well as primary gamma-rays exit in the calibration field, no consideration for the effect of the scattered radiations on energy distribution is given in routine calibration works. The scattered radiations can change photon energy spectra in the field, and this can result in misinterpretations of energy-dependent instrument responses. Construction materials in the field affect the energy distribution and magnitude of the scattered radiations. The geometric relationship between a gamma source and an instrument can determine the energy distribution at the calibration point. Therefore, it is essential for the assurance of quality calibration to estimate the energy spectra at the gamma calibration fields. Then, photon energy distributions at some fields in the Facility of Radiation Standard of the Japan Atomic Energy Research Institute (JAERI) were estimated by measurements using a NaI(Tl) detector and Monte Carlo calculations. It was found that the use of collimator gives a different feature in photon energy distribution. The origin of scattered radiations and the ratio of the scattered radiations to the primary gamma-rays were obtained. The results can help to improve the calibration of photon survey instruments in the JAERI. (author)

  6. Direct photons in nuclear collisions at fair energies

    International Nuclear Information System (INIS)

    Kiselev, S. M.

    2009-01-01

    Using the extrapolation of existing data, estimations of prompt-photon production at FAIR energies have been made. At y = y c.m. the rapidity density of prompt photons with p t > 1.5 GeV/c per central Au + Au event at 25 A GeV is estimated as ∼10 -4 . With the planned beam intensity 10 9 per second and 1% interaction probability, for 10% of most central events one can expect the prompt-photon rate ∼10 2 photons per second. Direct photons from the hadron scenario of ion collisions generated by the Hadron-String-Dynamics (HSD) transport approach with implemented meson scatterings πρ → πγ, ππ → ργ have been analyzed. Photons from short-living resonances (e.g., ω → π 0 γ) decaying during the dense phase of the collision should be considered as direct photons. They contribute significantly in the direct photon spectrum at p t = 0.5-1 GeV/c. At the FAIR energy 25 A GeV in Au + Au central collisions the HSD generator predicts, as a lower estimate, γ direct /γ ( π 0 ) ≅ 0.5% in the region p t = 0.5-1 GeV/c. At p t = 1.5-2 GeV/c γ prompt / γ ( π 0 ) ≅ 2%. Thermal direct photons have been evaluated with the Bjorken Hydro-Dynamics (BHD) model. The BHD spectra differ strongly from the HSD predictions. The direct-photon spectrum is very sensitive to the initial temperature parameter T 0 of the model. The 10-MeV increase in the T 0 value leads to ∼2 times higher photon yield.

  7. Photon energy scale determination and commissioning with radiative Z decays

    CERN Document Server

    Bondu, Olivier

    2012-01-01

    The CMS electromagnetic calorimeter (ECAL) is composed of 75848 lead-tungstate scintillating crystals. It has been designed to be fast, compact, and radiation-hard, with fine granularity and excellent energy resolution. Obtaining the design resolution is a crucial challenge for the SM Higgs search in the two photon channel at the LHC, and more generally good photon calibration and knowledge of the photon energy scale is required for analyses with photons in the final state. The behavior of photons and electrons in the calorimeter is not identical, making the use of a dedicated standard candle for photons, complementary to the canonical high-yield $Z^0$ decay to electrons, highly desirable. The use of $Z^0$ decays to a pair of muons, where one of the muons emits a Bremstrahlung photon, can be such a standard candle. These events, which can be cleanly selected, are a source of high-purity, relatively high-pt photons. Their kinematics are well-constrained by the $Z^0$ boson mass and the precision on the muon ...

  8. FEL based photon collider of TeV energy range

    International Nuclear Information System (INIS)

    Saldin, E.L.; Shnejdmiller, E.A.; Sarantsev, V.P.; Yurkov, M.V.

    1994-01-01

    Physical principles of operation of high energy photon linear colliders (PLC) based on the Compton backscattering of laser photons on high energy electrons are discussed. The main emphasis is put on the analysis of a possibility to construct the PLC with the center of mass energy 0.5-2 TeV. Free electron laser (FEL) is considered as a source of primary photons. Proposed FEL system consists of a tunable FEL oscillator (output power ∼ 1 - 10 MW) with subsequent amplification of the master signal in a FEL amplifier up to the power ∼ 3 x 10 11 W. The FEL parameters are optimized, restrictions on the electron beam and FEL magnetic system parameters are formulated and problems of technical realization are discussed. It is shown that the FEL technique provides the most suitable way to construct photon linear collider on the base of future generation linear collider. 22 refs., 10 figs., 2 tabs

  9. Production of high energy photon beam at TAC

    International Nuclear Information System (INIS)

    Akkurt, I.; Tekin, H. O.; Demir, N.; Cakirli, R. B.; Akkus, B.; Kupa, I.

    2010-01-01

    When an electron pass through an electric field, the electron loose its part of energy and photon is generated. This process is known as Bremsstrahlung (means 'radiation breaking' in German) and this photon can be used in a variety of different application. The TAC will be first Turkish Accelerator Center (TAC) where a IR-FEL and Beamstrahlung photon beam facilities will be established in first stage. The electrons will be accelerated up to 40 MeV by two LINAC and these beam will be used to generate Bremsstrahlung photon. In this study, the main parameters for Bremsstrahlung photon beam facility will be established at TAC will be detailed and fields to be used Bremsstrahlung beam will also be presented.

  10. Photonic Crystal Emitters for Thermophotovoltaic Energy Conversion

    International Nuclear Information System (INIS)

    Stelmakh, Veronika; Chan, Walker R; Joannopoulos, John D; Celanovic, Ivan; Ghebrebrhan, Michael; Soljacic, Marin

    2015-01-01

    This paper reports the design, fabrication, and characterization of 2D photonic crystal (PhC) thermal emitters for a millimeter-scale hydrocarbon TPV microgenerator as a possible replacement for batteries in portable microelectronics, robotics, etc. In our TPV system, combustion heats a PhC emitter to incandescence and the resulting radiation is converted by a low-bandgap TPV cell. The PhC tailors the photonic density of states to produce spectrally confined thermal emission that matches the bandgap of the TPV cell, enabling high heat-to-electricity conversion efficiency. The work builds on a previously developed fabrication process to produce a square array of cylindrical cavities in a metal substrate. We will present ongoing incremental improvements in the optical and thermo-mechanical properties, the fabrication process, and the system integration, as recently combined with fabrication using novel materials, such as sputtered coatings, to enable a monolithic system. (paper)

  11. Dual concentric crystal low energy photon detector

    Science.gov (United States)

    Guilmette, R.A.

    A photon detector for biological samples includes a block of NaI(T1) having a hole containing a thin walled cylinder of CsI(T1). At least three photo multiplier tubes are evenly spaced around the parameter of the block. Biological samples are placed within the hole, and emissions which are sensed by at least two of the photo multipliers from only the NaI(T1) detector are counted.

  12. Low-energy photons in high-energy photon fields--Monte Carlo generated spectra and a new descriptive parameter.

    Science.gov (United States)

    Chofor, Ndimofor; Harder, Dietrich; Willborn, Kay; Rühmann, Antje; Poppe, Björn

    2011-09-01

    The varying low-energy contribution to the photon spectra at points within and around radiotherapy photon fields is associated with variations in the responses of non-water equivalent dosimeters and in the water-to-material dose conversion factors for tissues such as the red bone marrow. In addition, the presence of low-energy photons in the photon spectrum enhances the RBE in general and in particular for the induction of second malignancies. The present study discusses the general rules valid for the low-energy spectral component of radiotherapeutic photon beams at points within and in the periphery of the treatment field, taking as an example the Siemens Primus linear accelerator at 6 MV and 15 MV. The photon spectra at these points and their typical variations due to the target system, attenuation, single and multiple Compton scattering, are described by the Monte Carlo method, using the code BEAMnrc/EGSnrc. A survey of the role of low energy photons in the spectra within and around radiotherapy fields is presented. In addition to the spectra, some data compression has proven useful to support the overview of the behaviour of the low-energy component. A characteristic indicator of the presence of low-energy photons is the dose fraction attributable to photons with energies not exceeding 200 keV, termed P(D)(200 keV). Its values are calculated for different depths and lateral positions within a water phantom. For a pencil beam of 6 or 15 MV primary photons in water, the radial distribution of P(D)(200 keV) is bellshaped, with a wide-ranging exponential tail of half value 6 to 7 cm. The P(D)(200 keV) value obtained on the central axis of a photon field shows an approximately proportional increase with field size. Out-of-field P(D)(200 keV) values are up to an order of magnitude higher than on the central axis for the same irradiation depth. The 2D pattern of P(D)(200 keV) for a radiotherapy field visualizes the regions, e.g. at the field margin, where changes of

  13. Photon beam convolution using polyenergetic energy deposition kernels

    International Nuclear Information System (INIS)

    Hoban, P.W.; Murray, D.C.; Round, W.H.

    1994-01-01

    In photon beam convolution calculations where polyenergetic energy deposition kernels (EDKs) are used, the primary photon energy spectrum should be correctly accounted for in Monte Carlo generation of EDKs. This requires the probability of interaction, determined by the linear attenuation coefficient, μ, to be taken into account when primary photon interactions are forced to occur at the EDK origin. The use of primary and scattered EDKs generated with a fixed photon spectrum can give rise to an error in the dose calculation due to neglecting the effects of beam hardening with depth. The proportion of primary photon energy that is transferred to secondary electrons increases with depth of interaction, due to the increase in the ratio μ ab /μ as the beam hardens. Convolution depth-dose curves calculated using polyenergetic EDKs generated for the primary photon spectra which exist at depths of 0, 20 and 40 cm in water, show a fall-off which is too steep when compared with EGS4 Monte Carlo results. A beam hardening correction factor applied to primary and scattered 0 cm EDKs, based on the ratio of kerma to terma at each depth, gives primary, scattered and total dose in good agreement with Monte Carlo results. (Author)

  14. High-energy diffraction microscopy at the advanced photon source

    DEFF Research Database (Denmark)

    Lienert, U.; Li, S. F.; Hefferan, C. M.

    2011-01-01

    The status of the High Energy Diffraction Microscopy (HEDM) program at the 1-ID beam line of the Advanced Photon Source is reported. HEDM applies high energy synchrotron radiation for the grain and sub-grain scale structural and mechanical characterization of polycrystalline bulk materials in situ...

  15. Electromagnetic energy flow lines as possible paths of photons

    Energy Technology Data Exchange (ETDEWEB)

    Davidovic, M [Faculty of Civil Engineering, University of Belgrade, Bulevar Kralja Aleksandra 73, 11000 Belgrade (Serbia); Sanz, A S; Miret-Artes, S [Instituto de Fisica Fundamental, Consejo Superior de Investigaciones CientIficas, Serrano 123, 28006 Madrid (Spain); Arsenovic, D; Bozic, M [Institute of Physics, University of Belgrade, Pregrevica 118, 11080 Belgrade (Serbia)], E-mail: milena@grf.bg.ac.yu, E-mail: asanz@imaff.cfmac.csic.es, E-mail: arsenovic@phy.bg.ac.yu, E-mail: bozic@phy.bg.ac.yu, E-mail: s.miret@imaff.cfmac.csic.es

    2009-07-15

    Motivated by recent experiments where interference patterns behind a grating are obtained by accumulating single photon events, we provide here an electromagnetic energy flow-line description to explain the emergence of such patterns. We find and discuss an analogy between the equation describing these energy flow lines and the equation of Bohmian trajectories used to describe the motion of massive particles.

  16. Soft Photons from transport and hydrodynamics at FAIR energies

    International Nuclear Information System (INIS)

    Grimm, Andreas; Bäuchle, Bjørn

    2013-01-01

    Direct photon spectra from uranium-uranium collisions at FAIR energies (E lab = 35 AGeV) are calculated within the hadronic Ultra-relativistic Quantum Molecular Dynamics transport model. In this microscopic model, one can optionally include a macroscopic intermediate hydrodynamic phase. The hot and dense stage of the collision is then modeled by a hydro dynamical calculation. Photon emission from transport-hydro hybrid calculations is examined for purely hadronic matter and matter that has a cross-over phase transition and a critical end point to deconfined and chirally restored matter at high temperatures. We find the photon spectra in both scenarios to be dominated by Bremsstrahlung. Comparing flow of photons in both cases suggests a way to distinguish these two scenarios.

  17. Photonics in Environment and Energy. A technology roadmap for SMEs on new photonic devices and materials

    Energy Technology Data Exchange (ETDEWEB)

    Loeffler, Jonathan; Salingre, Anthony; Vitale, David; Yatsunenko, Sergey; Lojkowski, Witold

    2012-11-01

    Scientific and technological developments in photonics will have a major influence on lots of industries over the next ten to fifteen years. In this highly evolving field, the long-term competitiveness of companies, and especially of Small and Medium sized Enterprises (SMEs), mainly depends on their ability to offer a good product and to establish a successful market position, which is well connected to the management of the hidden potential in existing technological capabilities. Technology roadmaps are interesting tools used to portray the structural and temporal relationships among science, technology and applications and thus help in the decision-making process to remain successful on the market. The present roadmap aims at identifying technological trends for new photonic devices and nanophotonic materials, mainly in terms of market development. It has the main objective to inform SMEs about new scientific discoveries and developments in photonics and their related problem-solving potential for future products and applications in the Environment and Energy sector. This roadmap is part of a set of four roadmaps about the use of photonic technologies in the industrial sectors of ICT, Heath and Well-being, Environment and Energy and Safety and Security. They were developed in the course of the European project PhotonicRoadSME. Altogether, these roadmaps will contribute to support SMEs in their strategic planning for future applications and products.

  18. Experimental search for solar hidden photons in the eV energy range using kinetic mixing with photons

    International Nuclear Information System (INIS)

    Mizumoto, T.; Ohta, R.; Horie, T.; Suzuki, J.; Minowa, M.; Inoue, Y.

    2013-01-01

    We have searched for solar hidden photons in the eV energy range using a dedicated hidden photon detector. The detector consisted of a parabolic mirror with a diameter of 500 mm and a focal length of 1007 mm installed in a vacuum chamber, and a photomultiplier tube at its focal point. The detector was attached to the Tokyo axion helioscope, Sumico which has a mechanism to track the sun. From the result of the measurement, we found no evidence for the existence of hidden photons and set a limit on the photon-hidden photon mixing parameter χ depending on the hidden photon mass m γ'

  19. Metal photonics and plasmonics for energy generation

    Science.gov (United States)

    Nagpal, Prashant

    Energy generation from renewable sources and conservation of energy are important goals for reducing our carbon footprint on the environment. Important sources of renewable energy like sun and geothermal energy are difficult to harness because of their energetically broad radiation. Most of our current energy requirements are met through consumption of fossil fuels, and more than 60% of this energy is released to the environment as "waste heat". Thus, converting heat from sun, or inefficient furnaces and automobiles can provide an important source of energy generation. In the present work, I describe design, fabrication, and characterization two and three dimensional patterned metals. These nanofabricated structures can be used as selective emitters to tailor the glow of hot objects. The tailored radiation can then be converted efficiently into electricity using an infrared photocell. This thermophotovoltaic conversion can be very efficient, and useful for converting heat-to-electricity from a wide variety of sources.

  20. Total number albedo and average cosine of the polar angle of low-energy photons reflected from water

    Directory of Open Access Journals (Sweden)

    Marković Srpko

    2007-01-01

    Full Text Available The total number albedo and average cosine of the polar angle for water and initial photon energy range from 20 keV to 100 keV are presented in this pa per. A water shield in the form of a thick, homogenous plate and per pendicular incidence of the monoenergetic photon beam are assumed. The results were obtained through Monte Carlo simulations of photon reflection by means of the MCNP computer code. Calculated values for the total number albedo were compared with data previously published and good agreement was confirmed. The dependence of the average cosine of the polar angle on energy is studied in detail. It has been found that the total average cosine of the polar angle has values in the narrow interval of 0.66-0.67, approximately corresponding to the reflection angle of 48°, and that it does not depend on the initial photon energy.

  1. Determining photon energy absorption parameters for different soil samples

    International Nuclear Information System (INIS)

    Kucuk, Nil; Cakir, Merve; Tumsavas, Zeynal

    2013-01-01

    The mass attenuation coefficients (μ s ) for five different soil samples were measured at 661.6, 1173.2 and 1332.5 keV photon energies. The soil samples were separately irradiated with 137 Cs and 60 Co (370 kBq) radioactive point gamma sources. The measurements were made by performing transmission experiments with a 2″ x 2″ NaI(Tl) scintillation detector, which had an energy resolution of 7% at 0.662 MeV for the gamma-rays from the decay of 137 Cs. The effective atomic numbers (Z eff ) and the effective electron densities (N eff ) were determined experimentally and theoretically using the obtained μ s values for the soil samples. Furthermore, the Z eff and N eff values of the soil samples were computed for the total photon interaction cross-sections using theoretical data over a wide energy region ranging from 1 keV to 15 MeV. The experimental values of the soils were found to be in good agreement with the theoretical values. Sandy loam and sandy clay loam soils demonstrated poor photon energy absorption characteristics. However, clay loam and clay soils had good photon energy absorption characteristics. (author)

  2. Imaging high energy photons with PILATUS II at the tagged photon beam at MAX-lab

    Energy Technology Data Exchange (ETDEWEB)

    Lee, V. [School of Physics, University of Melbourne, Parkville 3010 (Australia)], E-mail: leev@physics.unimelb.edu.au; Peake, D.J.; Sobott, B. [School of Physics, University of Melbourne, Parkville 3010 (Australia); Schroeder, B. [MAX-lab, Lund University, Lund (Sweden); Broennimann, Ch. [DECTRIS Ltd., Baden (Switzerland); Henrich, B. [Paul Scherrer Institut, 5232 Villigen PSI (Switzerland); Hansen, K. [MAX-lab, Lund University, Lund (Sweden); O' Keefe, G.J. [Centre for PET, Austin Hospital, Heidelberg, Victoria 3084 (Australia); School of Physics, University of Melbourne, Parkville 3010 (Australia); Taylor, G.N. [School of Physics, University of Melbourne, Parkville 3010 (Australia); Boland, M.J. [Australian Synchrotron, Clayton, Victoria 3168 (Australia); School of Physics, University of Melbourne, Parkville 3010 (Australia); Thompson, M.N.; Rassool, R.P. [School of Physics, University of Melbourne, Parkville 3010 (Australia)

    2009-05-21

    In photonuclear experiments precise location of the photon beam relative to the experimental sample is critical. Previously used techniques such as using photographic film to identify the position, intensity and centroid of the beam is time-consuming and a faster method is required. PILATUS is a single-photon-counting pixel detector developed at the Paul Scherrer Institute (PSI), Switzerland. It is a silicon-based, two-dimensional detector with a large dynamic range and zero readout noise. Designed as an X-ray detector, its optimal quantum efficiency is between 3 and 30 keV. This paper reports measurements carried out at the MAX-lab tagged photon facility in Lund, Sweden. The beam endpoint energy of approximately 200 MeV is far above the designed optimal energy detection range of PILATUS, and provides a critical test of the use of PILATUS under high energy conditions. The detector was placed in the photon beam and images were taken both downstream of other experiments, and in close range of a 19 mm collimator. The successful measurements demonstrate the versatility and robustness of the detector and provide an effective way of quickly and accurately monitoring beam position and profile in real time.

  3. Laboratory Astrophysics Using High Energy Density Photon and Electron Beams

    CERN Document Server

    Bingham, Robert

    2005-01-01

    The development of intense laser and particle beams has opened up new opportunities to study high energy density astrophysical processes in the Laboratory. With even higher laser intensities possible in the near future vacuum polarization processes such as photon - photon scattering with or without large magnetic fields may also be experimentally observed. In this talk I will review the status of laboratory experiments using intense beans to investigate extreme astrophysical phenomena such as supernovae explosions, gamma x-ray bursts, ultra-high energy cosmic accelerators etc. Just as intense photon or electron beams can excite relativistic electron plasma waves or wakefields used in plasma acceleration, intense neutrino beams from type II supernovae can also excite wakefields or plasma waves. Other instabilities driven by intense beams relevant to perhaps x-ray bursts is the Weibel instability. Simulation results of extreme processes will also be presented.

  4. Photon and dilepton production across collision energies and centralities

    Energy Technology Data Exchange (ETDEWEB)

    Linnyk, Olena; Cassing, Wolfgang [Justus Liebig Universitaet Giessen (Germany); Bratkovskaya, Elena [Johann Wolfgang Goethe Universitaet, Frankfurt am Main (Germany); Frankfurt Institute for Advanced Studies, Frankfurt am Main (Germany)

    2014-07-01

    Real and virtual photons are established messengers of chiral symmetry restoration and deconfinement phase transition in heavy-ion collisions. We calculate the emission of photons and dileptons throughout the evolution of the heavy-ion collisions using the parton-hadron-string dynamics (PHSD) transport approach and interpret the recent observations of the strong photon elliptic flow at RHIC and LHC simultaneously with the precisely measured photon and dilepton spectra. This allows us to disentangle the individual hadronic and partonic emission sources and to conclude on the characteristics of the produced QCD matter - the temperatures, densities and the degree of thermalisation reached, the lifetime of the QGP and the modification of vector mesons. Comparing the known sources to the data, we examine the possibility to accommodate new effects, such as the photon production in the initial pre-equilibrium phase and the dilepton production in the mixed phase. Additionally, we provide predictions for the dilepton spectra at LHC, the collision centrality dependence of the photon yield at RHIC, and the excitation function of the low-mass dilepton yield, thus investigating the potential of the dilepton measurements within the RHIC beam energy scan program, FAIR and NICA facilities.

  5. Production of photons with a narrow energy spectrum, starting from high energy electrons; Production de photons de spectre etroit a partir d'electrons de grande energie

    Energy Technology Data Exchange (ETDEWEB)

    Tzara, C [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1958-07-01

    A method for the production of photons with a narrow spectrum and of variable energy, based on the properties of the annihilation in flight of positrons, is examined in detail. The spectra of the photons produced and the yield of the process are given for various conditions. (author) [French] Une methode de production de photons de spectre etroit et d'energie variable, basee sur les proprietes de l'annihilation en vol des positons, est examinee en detail. Le spectre des photons produits, le rendement du processus sont donnes pour diverses conditions. (auteur)

  6. Thermoluminescent analyses of mean photon energy of a field

    Energy Technology Data Exchange (ETDEWEB)

    Cavalieri, T. A.; De Paiva, F.; Fonseca, G.; Dalledone S, P. de T.; Yoriyaz, H., E-mail: tassio.cavalieri@usp.br [Instituto de Pesquisas Energeticas e Nucleares / CNEN, Av. Lineu Prestes 2242, Cidade Universitaria, 05508-000 Sao Paulo (Brazil)

    2014-08-15

    Nowadays a common method of dosimetry is utilize the thermoluminescent dosimetry (TLD) of LiF, where for pure gamma field is typically used the LiF or CaF{sub 2} TLDs and for mixed neutron and gamma field dosimetry is used the pair TLD-600/TLD-700. The difference between these three LiF TLDs is the amount of isotope {sup 6}Li in their composition. The isotope {sup 6}Li has a great cross section for thermal neutrons, making the TLD-600 sensitive to thermal neutrons beyond the radiation gamma. Whereas the TLD-700 is considered sensitive only for radiation gamma. Some studies showed an energetic dependence of these TLDs for gammas rays. So the goal of this work was study these energetic dependence of TLDs from the angular coefficient of their response versus dose calibration curves when they were irradiated in four fields with photons of different energies: 43 keV, 662 keV, 1.2 MeV, 3 MeV. In order to create the calibration curves TLD, it was performed three irradiations with distinct exposure times for each photon energy. These studies showed a different angular coefficient to each curve; demonstrate the energetic dependence of these TLDs. By simulation with Monte Carlo based code, MCNP-5, it was observed the deposited photon dose due to different photons energies. From these simulations, it was also possible to observe a difference of dose deposition in TLDs when they were exposed to the same dose provided from different photons energies. These work showed the previously study of photon energetic dependence of LiF TLDs. (Author)

  7. Theoretical estimation of Photons flow rate Production in quark gluon interaction at high energies

    Science.gov (United States)

    Al-Agealy, Hadi J. M.; Hamza Hussein, Hyder; Mustafa Hussein, Saba

    2018-05-01

    photons emitted from higher energetic collisions in quark-gluon system have been theoretical studied depending on color quantum theory. A simple model for photons emission at quark-gluon system have been investigated. In this model, we use a quantum consideration which enhances to describing the quark system. The photons current rate are estimation for two system at different fugacity coefficient. We discussion the behavior of photons rate and quark gluon system properties in different photons energies with Boltzmann model. The photons rate depending on anisotropic coefficient : strong constant, photons energy, color number, fugacity parameter, thermal energy and critical energy of system are also discussed.

  8. Scoping studies - photon and low energy neutron interrogation

    Energy Technology Data Exchange (ETDEWEB)

    Becker, G.; Harker, Y.; Jones, J. [LMITCo, Idaho Falls, ID (United States); Harmon, F. [Idaho State Univ., Pocatello, ID (United States)

    1997-11-01

    High energy photon interrogation of waste containers, with the aim of producing photo nuclear reactions, in specific materials, holds the potential of good penetration and rapid analysis. Compact high energy ({le} 10 MeV) photon sources in the form of electron linacs producing bremstrahlung radiation are readily available. Work with the Varitron variable energy accelerator at ISU will be described. Advantages and limitations of the technique will be discussed. Using positive ion induced neutron producing reactions, it is possible to generate neutrons in a specific energy range. By this means, variable penetration and specific reactions can be excited in the assayed material. Examples using the {sup 3}H(p,n) and {sup 7}Li(p,n) reactions as neutron sources will be discussed. 4 refs., 7 figs.

  9. Mechanisms of photon scattering on nucleons at intermediate energies

    International Nuclear Information System (INIS)

    L'vov, A.I.

    1992-01-01

    The principal question for studies of photon scattering by nucleons and nuclei is the following: Can photon scattering say something new about the structure of these objects in comparisons with photo- and electroproduction investigations? There is a general reason to believe that it is indeed the case. The Hamiltonian of the electromagnetic interaction has, in general, a piece quadratic in the electromagnetic field (the so-called two-photon seagull) which is seen only in two-photon processes, such as Compton scattering. Although the longitudnal part of this seagull is constrained by the gauge invariance, its transverse part is decoupled from the electromagnetic current and cannot be found in photoabsorption processes. The seagull S μν depends on explicit degrees of freedom included into the Hamiltonian. E.g. the non-relativisitic Schroedinger equation has an effective seagull due to the kinetic energy (p - eA) 2 /2M. Its parent relativistic Dirac equation has no seagull at all but has the same low-energy consequences due to additional degrees of freedom (antiparticles). In low-energy nuclear physics, with explicit meson exchanges and meson clouds (i.e. internal polarizability of the nucleons). By explicitly including the mesons into the Hamiltonian one can remove part of the seagulls. Then the rest of them will be a signal for degrees of freedom invisible in photoabsorption at energies of the considered scale. Some seagulls are related with t-channel exchanges in Compton scattering. The π o -exchange is seen in γp-scattering but has no counterpart in photoproduction off the proton. Thus, a complementary study of one- and two-photon reactions provides a way to look in a region of higher energies where direct studies via photoproduction processes may be hard

  10. Determination of energy distribution for photon and neutron microdosimetry

    International Nuclear Information System (INIS)

    Todo, A.S.

    1989-01-01

    This work was undertaken to provide basic physical data for use in both microdosimetry and dosimetry of high energy photons and also in the neutron radiation field. It is described the formalism to determine the initial electron energy spectra in water irradiated by photons with energies up to 1 GeV. Calculations were performed with a Monte Carlo computer code, PHOEL-3, which is also described. The code treats explicitly the production of electron-positron pairs, Compton scattering, photoelectric absorption, and the emission of Auger electrons following the occurrence of K-shell vacancies in oxygen. The tables give directly the information needed to specify the absolute single-collision kerma in water, which approximates tissue, at each photon energy. Results for continuous photon energy spectra can be obtained by using linear interpolation with the tables. The conditions under which first-collision kerma approximate absorbed dose are discussed. A formula is given for estimating bremsstrahlung energy loss, one of the principal differences between kerma and absorbed dose in practical case. A study has been carried out, on the use of cylindrical, energy-proportional pulse-height detector for determining microdosimetric quantities, as neutron fractional dose spectra, D (L), in function of linear energy transfer, TLE. In the present study the Hurst detector was used and this device satisfies the requirement of the Bragg-Gray principle. It is developed a Monte Carlo Method to obtain the D(L) spectrum from a measured pulse-height spectrum H(h), and the knowledge of the distribution of recoil-particle track lenght, P(T) in the sensitive volume of the detector. These developed programs to find P(T) and D(L) are presented. The distribution of D(L) in LET were obtained using a known distribution of P(T) and the measured H(h) spectrum from sup(252)Cf neutron source. All the results are discussed and the conclusions are presented. (author)

  11. ATLAS proton-proton event containing two high energy photons

    CERN Multimedia

    ATLAS Collaboration

    2011-01-01

    An event where two energetic photons ("gammas") are produced in a proton-proton collision in ATLAS. Many events of this type are produced by well-understood Standard Model processes ("backgrounds") which do not involve Higgs particles. A small excess of events of this type with similar masses could indicate evidence for Higgs particle production, but any specific event is most likely to be from the background. The photons are indicated, in the different projections and views, by the clusters of energy shown in yellow.

  12. Energy spectra from coupled electron-photon slowing down

    International Nuclear Information System (INIS)

    Beck, H.L.

    1976-08-01

    A coupled electron-photon slowing down calculation for determining electron and photon track length in uniform homogeneous media is described. The method also provides fluxes for uniformly distributed isotropic sources. Source energies ranging from 10 keV to over 10 GeV are allowed and all major interactions are treated. The calculational technique and related cross sections are described in detail and sample calculations are discussed. A listing of the Fortran IV computer code used for the calculations is also included. 4 tables, 7 figures, 16 references

  13. A semi empirical formula for the angular differential number albedo of low-energy photons

    Directory of Open Access Journals (Sweden)

    Marković Srpko

    2005-01-01

    Full Text Available Low-energy photon reflection from water, aluminum, and iron is simulated by the MCNP code and results are com pared with similar Monte Carlo calculations. For the energy range from 60 to 150 keV and for the normal incidence of initial photons, a universal shape of the normalized angular differential number albedo is observed and after that fitted by the curve fit ting procedure in form of a second order polynomial over the polar angle. Finally, a one-parameter formula for the angular differential number albedo is developed and verified for water through the comparison of results with the semi empirical formulae and Monte Carlo calculations of other authors.

  14. Saturation and Energy Corrections for TeV Electrons and Photons

    CERN Document Server

    Clerbaux, Barbara; Mahmoud, Tariq; Marage, Pierre Edouard

    2006-01-01

    This note presents a study of the response of the CMS electromagnetic calorimeter ECAL to high energy electrons and photons (from 500 to 4000 GeV), using the full simulation of the CMS detector. The longitudinal containment and the lateral extension of high energy showers are discussed, and energy and eta dependent correction factors F(E_meas, eta), where E_meas = E_ECAL + E_HCAL, are determined in order to reconstruct the incident particle energy, using the energies measured in the ECAL and in the hadronic calorimeter HCAL. For ECAL barrel crystals with energy deposit higher than 1700 GeV, improvements are proposed to techniques aimed at correcting for the effects of electronics saturation.

  15. Photoionization of water molecules by high energy photons

    Directory of Open Access Journals (Sweden)

    Lara Martini

    2017-07-01

    Full Text Available We theoretically study the photoionization of water molecules by high energy photon impact. We develop a model in which the final state wavefunction is given by a Coulomb continuum wavefunction with effective charges and the water molecule bound states are represented using the Moccia's monocentric wavefunctions. We obtain analytical expressions for the transition matrix element that enable the computation of cross sections by numerical quadratures. We compare our predictions for photon energies between 20 and 300 eV with more elaborated theoretical results and experiments. We obtain a very good agreement with experiments, in particular, at enough high energies where there is a lack of elaborated results due to their high computational cost. Received: 15 March 2017, Accepted: 25 June 2017; Edited by: S. Kais; DOI: http://dx.doi.org/10.4279/PIP.090006 Cite as: L Martini, D I R Boll, O A Fojón, Papers in Physics 9, 090006 (2017

  16. Meson production in two-photon interactions at LHC energies

    Energy Technology Data Exchange (ETDEWEB)

    Da Silva, D. T.; Goncalves, V. P.; Sauter, W. K. [Instituto de Fisica e Matematica, Universidade Federal de Pelotas, Campus Universitario UFPel, CP 354, 96010-900, Capao do Leao-RS (Brazil)

    2013-03-25

    The LHC opens a new kinematical regime at high energy, where several questions related to the description of the high-energy regime of the Quantum Chromodynamics (QCD) remain without satisfactory answers. Some open questions are the search for non-q-bar q resonances, the determination of the spectrum of q-bar q states and the identification of states with anomalous {gamma}{gamma} couplings. A possible way to study these problems is the study of meson production in two-photon interactions. In this contribution we calculate the meson production in two-photon interactions at LHC energies considering proton - proton collisions and estimate the total cross section for the production of the mesons {pi}, a, f, {eta} and {chi}.

  17. Photon and energy propagation in Cd Se quantum dot systems

    International Nuclear Information System (INIS)

    Alves, Guilherme A.; Santos, Erasto J.; Monte, Adamo F.G.

    2011-01-01

    Full text. Photon propagation is a crucial process in a wide type of optical materials being responsible for the dynamics and excitation spreading. The addition of Cd Se quantum dots (QDs) into a polystyrene (PS) matrix introduces new properties in the polymeric matrix making this new system a good candidate for improvement in light- emitting devices. A confocal microscope was adapted to scan the spatial distribution of emitted luminescence from the sample surface. Energy transfer processes could be associated with the photon propagation provided by the measured luminescence spatial distribution. We proposed that this energy propagation is caused by the photons capture and emission between the dots and besides other mechanics such as electronic transfer, hopping and resonance. This dynamic process can be understood by the spatial migration of excited states. These facts demonstrate the great importance of the energy transfer, absorption and capture processes in a QD system for the improvement of optical electronic devices. It has been found that re-absorption by ground and excited states plays an important role for the energy propagation. The investigation have been done for a wide range of inter-dot distance in such a way that we could observe how the energy transfer behaves according to this distance. We observed that the photon migration length (PML) increases by increasing the QD concentration and reaches the highest value for a given QD concentration, i.e., for a specific inter-dot distance. However, above this concentration the PML starts to decrease. This behavior indicates that the inter-dots distance is crucial in order to get the highest energy flux inside the sample. Thus, by measuring the PML and its wavelength dependence it is possible to understand the whole dynamics in the QD/PS system. All the processes verified so far give us the possibility to classify the QD/PS system as a good candidate to be employed in an optical QD-based device

  18. High energy photon emission from wakefields

    Energy Technology Data Exchange (ETDEWEB)

    Farinella, D. M., E-mail: dfarinel@uci.edu; Lau, C. K.; Taimourzadeh, S.; Hwang, Y.; Abazajian, K.; Canac, N.; Taborek, P.; Tajima, T. [Department of Physics and Astronomy, University of California, Irvine, California 92697 (United States); Zhang, X. M., E-mail: zhxm@siom.ac.cn [Department of Physics and Astronomy, University of California, Irvine, California 92697 (United States); Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800 (China); Koga, J. K., E-mail: koga.james@qst.go.jp [Kansai Photon Science Institute, Japan Atomic Energy Agency (JAEA), Kizugawa, Kyoto 619-0215 (Japan); Ebisuzaki, T., E-mail: ebisu@riken.jp [RIKEN, Wako, Saitama 351-0198 (Japan)

    2016-07-15

    Experimental evidence has accumulated to indicate that wakefield acceleration (WFA) accompanies intense and sometimes coherent emission of radiation such as from betatron radiation. The investigation of this issue has additional impetus nowadays because we are learning (1) there is an additional acceleration process of the ponderomotive acceleration; (2) WFA may become relevant in much higher density regimes; (3) WFA has been proposed as the mechanism for extreme high energy cosmic ray acceleration and gamma ray bursts for active galactic nuclei. These require us to closely examine the radiative mechanisms in WFA anew. We report studies of radiation from wakefield (self-injected betatron) and ponderomotive (laser field) mechanisms in scalings of the frequency and intensity of the driver, as well as the plasma density.

  19. Photon-Photon Luminosities in Relativistic Heavy Ion Collisions at LHC Energies

    OpenAIRE

    Hencken, Kai; Trautmann, Dirk; Baur, Gerhard

    1994-01-01

    Effective photon-photon luminosities are calculated for various realistic hadron collider scenarios. The main characteristics of photon-photon processes at relativistic heavy-ion colliders are established and compared to the corresponding photon-photon luminosities at electron-positron and future Photon Linear Colliders (PLC). Higher order corrections as well as inelastic processes are discussed. It is concluded that feasible high luminosity Ca-Ca collisions at the Large Hadron Collider (LHC)...

  20. Fast IMRT with narrow high energy scanned photon beams

    Energy Technology Data Exchange (ETDEWEB)

    Andreassen, Bjoern; Straaring t, Sara Janek; Holmberg, Rickard; Naefstadius, Peder; Brahme, Anders [Department of Medical Radiation Physics, Karolinska Institutet and Stockholm University, P.O. Box 260, SE-171 76 Stockholm (Sweden); Department of Hospital Physics, Karolinska University Hospital, SE-171 76 Stockholm (Sweden); Department of Medical Radiation Physics, Karolinska Institutet and Stockholm University, P.O. Box 260, SE-171 76 Stockholm, Sweden and Department of Hospital Physics, Karolinska University Hospital, SE-171 76 Stockholm (Sweden)

    2011-08-15

    Purpose: Since the first publications on intensity modulated radiation therapy (IMRT) in the early 1980s almost all efforts have been focused on fairly time consuming dynamic or segmental multileaf collimation. With narrow fast scanned photon beams, the flexibility and accuracy in beam shaping increases, not least in combination with fast penumbra trimming multileaf collimators. Previously, experiments have been performed with full range targets, generating a broad bremsstrahlung beam, in combination with multileaf collimators or material compensators. In the present publication, the first measurements with fast narrow high energy (50 MV) scanned photon beams are presented indicating an interesting performance increase even though some of the hardware used were suboptimal. Methods: Inverse therapy planning was used to calculate optimal scanning patterns to generate dose distributions with interesting properties for fast IMRT. To fully utilize the dose distributional advantages with scanned beams, it is necessary to use narrow high energy beams from a thin bremsstrahlung target and a powerful purging magnet capable of deflecting the transmitted electron beam away from the generated photons onto a dedicated electron collector. During the present measurements the scanning system, purging magnet, and electron collimator in the treatment head of the MM50 racetrack accelerator was used with 3-6 mm thick bremsstrahlung targets of beryllium. The dose distributions were measured with diodes in water and with EDR2 film in PMMA. Monte Carlo simulations with geant4 were used to study the influence of the electrons transmitted through the target on the photon pencil beam kernel. Results: The full width at half-maximum (FWHM) of the scanned photon beam was 34 mm measured at isocenter, below 9.5 cm of water, 1 m from the 3 mm Be bremsstrahlung target. To generate a homogeneous dose distribution in a 10 x 10 cm{sup 2} field, the authors used a spot matrix of 100 equal intensity

  1. Comparison of HPGe detector response data for low energy photons using MCNP, EGS, and its codes

    International Nuclear Information System (INIS)

    Kim, Soon Young; Kim, Jong Kyung

    1995-01-01

    In this study, the photopeak efficiency, K α and K β escape fractions of HPGe detector(100mm 2 X 10mm) are calculated and tabulated as a function of incident X-ray energies from 12 to 60keV in 2-keV increments. Compton, elastic, and penetration fractions are not tabulated from this work since they are negligible amounts in this energy range. The results calculated from this work are compared with earlier Monte Carlo results which had been carried out by Chin-Tu Chen et al.. From the comparison, it is found that the results calculated from each code show a large difference when the incident photon energy approaches to 12keV as compared with energy ranges from 50 to 60keV. In X-ray dosimetry and diagnostic radiology, it is essential to have accurate knowledge of X-ray spectra for studies of patient dose and image quality. Being X-ray spectra measured with a detection system, some distortions due to the incomplete absorption of primary photon or escape before interacting with the detector which have finite dimension can take place

  2. Initial electron energy spectra in water irradiated by photons with energies to 1 GeV

    International Nuclear Information System (INIS)

    Todo, A.S.; Hiromoto, G.; Turner, J.E.; Hamm, R.N.; Wright, H.A.

    1984-02-01

    This work was undertaken to provide basic physical data for use in the dosimetry of high-energy photons. Present and future sources of such photons are described, and the relevant literature is reviewed and summarized. Calculations were performed with a Monte Carlo computer code, PHOEL-3, which is also described. Tables of initial electron and positron energies are presented for monoenergetic photons undergoing single interactions in water. Photon energies to 1 GeV are treated. The code treats explicitly the production of electron-positron pairs, Compton scattering, photoelectric absorption, and the emission of Auger electrons following the occurrence of K-shell vacancies in oxygen. The tables give directly the information needed to specify the absolute single-collision kerma in water, which approximates tissue, at each photon energy. Results for continuous photon energy spectra can be obtained by using linear interpolation with the tables. (Continuous spectra can also be used directly in PHOEL-3.) The conditions under whch first-collision kerma approximate absorbed dose are discussed. A formula is given for estimating bremsstrahlung energy loss, one of the principal differences between kerma and absorbed dose in practical cases. 31 references, 4 figures, 18 tables

  3. Photon and neutron energy response of Thermoluminescent (TL) dosimeters

    International Nuclear Information System (INIS)

    Thilagam, L.; Priya, M.R.; Mohapatra, D.K.

    2018-01-01

    Theoretical Monte Carlo (MC) simulations are carried out to investigate the relative thermoluminesence (TL) response of the most commonly used TLD materials to a wide range of photon energy. The effect of polytetrafluoroethylene (PTFE) on TL response of CaSO 4 :Dy is also studied. Additionally, the neutron response of LiF:Mg,Ti TL materials with different concentrations of 6 Li is estimated in terms of the number of 6 Li(n, t) 4 He capture reactions for a wider neutron energy

  4. Measurement of neutron energy spectra for Eg=23.1 and 26.6 MeV mono-energetic photon induced reaction on natC using laser electron photon beam at NewSUBARU

    Directory of Open Access Journals (Sweden)

    Itoga Toshiro

    2017-01-01

    Full Text Available Photo-neutron energy spectra for Eg=23.1 and 26.6 MeV mono-energetic photons on natC were measured using laser Compton scattering facility at NewSUBARU BL01. The photon energy spectra were evaluated through measurements and simulations with collimator sizes and arrangements for the laser electron photon. The neutron energy spectra for the natC(g,xn reaction were measured at 60 degrees in horizontal and 90 degrees in horizontal and vertical with respect to incident photon. The spectra show almost isotropic angular distribution and flat energy distribution from detection threshold to upper limit defined by reaction Q-value.

  5. Photon strength and the low-energy enhancement

    Energy Technology Data Exchange (ETDEWEB)

    Wiedeking, M. [iThemba LABS, P.O. Box 722, Somerset West 7129 (South Africa); Bernstein, L. A.; Bleuel, D. L.; Burke, J. T.; Hatarik, R.; Lesher, S. R.; Scielzo, N. D. [Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94551 (United States); Krtička, M. [Faculty of Mathematics and Physics, Charles University, V Holešovickách 2, Prague 8 (Czech Republic); Allmond, J. M. [Department of Physics, University of Richmond, Virginia 23173 (United States); Basunia, M. S.; Fallon, P.; Firestone, R. B.; Lake, P. T.; Lee, I-Y.; Paschalis, S.; Petri, M.; Phair, L. [Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Goldblum, B. L. [Department of Nuclear Engineering, University of California, Berkeley, California 94720 (United States)

    2014-08-14

    Several measurements in medium mass nuclei have reported a low-energy enhancement in the photon strength function. Although, much effort has been invested in unraveling the mysteries of this effect, its physical origin is still not conclusively understood. Here, a completely model-independent experimental approach to investigate the existence of this enhancement is presented. The experiment was designed to study statistical feeding from the quasi-continuum (below the neutron separation energy) to individual low-lying discrete levels in {sup 95}Mo produced in the (d, p) reaction. A key aspect to successfully study gamma decay from the region of high-level density is the detection and extraction of correlated particle-gamma-gamma events which was accomplished using an array of Clover HPGe detectors and large area annular silicon detectors. The entrance channel excitation energy into the residual nucleus produced in the reaction was inferred from the detected proton energies in the silicon detectors. Gating on gamma-transitions originating from low-lying discrete levels specifies the state fed by statistical gamma-rays. Any particle-gamma-gamma event in combination with specific energy sum requirements ensures a clean and unambiguous determination of the initial and final state of the observed gamma rays. With these requirements the statistical feeding to individual discrete levels is extracted on an event-by-event basis. The results are presented and compared to {sup 95}Mo photon strength function data measured at the University of Oslo.

  6. Photonics

    CERN Document Server

    Andrews, David L

    2015-01-01

    Discusses the basic physical principles underlying Biomedical Photonics, spectroscopy and microscopy This volume discusses biomedical photonics, spectroscopy and microscopy, the basic physical principles underlying the technology and its applications. The topics discussed in this volume are: Biophotonics; Fluorescence and Phosphorescence; Medical Photonics; Microscopy; Nonlinear Optics; Ophthalmic Technology; Optical Tomography; Optofluidics; Photodynamic Therapy; Image Processing; Imaging Systems; Sensors; Single Molecule Detection; Futurology in Photonics. Comprehensive and accessible cov

  7. Photonics

    CERN Document Server

    Andrews, David L

    2015-01-01

    Discusses the basic physical principles underlying thescience and technology of nanophotonics, its materials andstructures This volume presents nanophotonic structures and Materials.Nanophotonics is photonic science and technology that utilizeslight/matter interactions on the nanoscale where researchers arediscovering new phenomena and developing techniques that go wellbeyond what is possible with conventional photonics andelectronics.The topics discussed in this volume are: CavityPhotonics; Cold Atoms and Bose-Einstein Condensates; Displays;E-paper; Graphene; Integrated Photonics; Liquid Cry

  8. Photonics

    CERN Document Server

    Andrews, David L

    2015-01-01

    This book covers modern photonics accessibly and discusses the basic physical principles underlying all the applications and technology of photonicsThis volume covers the basic physical principles underlying the technology and all applications of photonics from statistical optics to quantum optics. The topics discussed in this volume are: Photons in perspective; Coherence and Statistical Optics; Complex Light and Singular Optics; Electrodynamics of Dielectric Media; Fast and slow Light; Holography; Multiphoton Processes; Optical Angular Momentum; Optical Forces, Trapping and Manipulation; Pol

  9. On the low-energy limit of one-loop photon-graviton amplitudes

    International Nuclear Information System (INIS)

    Bastianelli, F.; Corradini, O.; Dávila, J.M.; Schubert, C.

    2012-01-01

    We present first results of a systematic study of the structure of the low-energy limit of the one-loop photon-graviton amplitudes induced by massive scalars and spinors. Our main objective is the search of KLT-type relations where effectively two photons merge into a graviton. We find such a relation at the graviton-photon-photon level. We also derive the diffeomorphism Ward identity for the 1PI one-graviton-N-photon amplitudes.

  10. Photon energy response of an aluminum oxide TLD environmental dosimeter

    International Nuclear Information System (INIS)

    Olsher, R.H.

    1992-01-01

    Because of aluminum oxide's significant advantage in sensitivity (about a factor of 30) over LiF, minimal fading characteristics and ease of processing, aluminum oxide thermoluminescent dosimeters (TLDS) are being phased in at Los alamos for environmental monitoring of photon radiation. The new environmental dosimeter design consists of a polyethylene holder, about 0. 5 cm thick, loaded with a stack of four aluminum oxide TLD chips, each 1 mm thick and 5 mm in diameter. As part of the initial evaluation of the new design, the photon energy response of the dosimeter was calculated over the range from 10 keV to 1 MeV. Specific goals of the analysis included the determination of individual chip response in the stack, assessment of the response variation due to TLD material (i.e., LiF versus A1 2 O 3 ), and the effect of copper filtration in flattening the response

  11. Response of TAPS to monochromatic photons with energies between 45 and 790 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Gabler, A.R. (II. Physikalisches Institut, Universitaet Giessen, D-35392 Giessen (Germany)); Doering, W. (II. Physikalisches Institut, Universitaet Giessen, D-35392 Giessen (Germany)); Fuchs, M. (II. Physikalisches Institut, Universitaet Giessen, D-35392 Giessen (Germany)); Krusche, B. (II. Physikalisches Institut, Universitaet Giessen, D-35392 Giessen (Germany)); Metag, V. (II. Physikalisches Institut, Universitaet Giessen, D-35392 Giessen (Germany)); Novotny, R. (II. Physikalisches Institut, Universitaet Giessen, D-35392 Giessen (Germany)); Roebig-Landau, M. (II. Physikalisches Institut, Universitaet Giessen, D-35392 Giessen (Germany)); Stroeher, H. (II. Physikalisches Institut, Universitaet Giessen, D-35392 Giessen (Germany)); Tries, V. (II. Physikalisches Institut, Universitaet Giessen, D-35392 Giessen (Germany)); Molenaar, C. (Kernfysisch Versneller Instituut, Groningen (Netherlands)); Loehner, H. (Kernfysisch Versneller Instituut, Groningen (Netherlands)); Van Pol, J.H

    1994-07-15

    The Two Arm Photon Spectrometer TAPS - comprising 384 plastic-BaF[sub 2] scintillator telescopes - was tested with monochromatic photons in the energy range between 45 and 790 MeV. The energy resolution for a collimated photon beam hitting the central detector module was determined to [sigma]/E=0.59%xE[sup -1/2][sub [gamma

  12. Photon and dilepton production in high-energy heavy-ion collisions

    Indian Academy of Sciences (India)

    2015-05-07

    May 7, 2015 ... Photons; dileptons; Relativistic Heavy Ion Collider; Large Hadron Collider; quark ... the collisions produces relatively high pT photons, often referred to ..... energy have been found for identified charged hadrons at RHIC [25].

  13. Investigation of photon detection probability dependence of SPADnet-I digital photon counter as a function of angle of incidence, wavelength and polarization

    Energy Technology Data Exchange (ETDEWEB)

    Játékos, Balázs, E-mail: jatekosb@eik.bme.hu; Ujhelyi, Ferenc; Lőrincz, Emőke; Erdei, Gábor

    2015-01-01

    SPADnet-I is a prototype, fully digital, high spatial and temporal resolution silicon photon counter, based on standard CMOS imaging technology, developed by the SPADnet consortium. Being a novel device, the exact dependence of photon detection probability (PDP) of SPADnet-I was not known as a function of angle of incidence, wavelength and polarization of the incident light. Our targeted application area of this sensor is next generation PET detector modules, where they will be used along with LYSO:Ce scintillators. Hence, we performed an extended investigation of PDP in a wide range of angle of incidence (0° to 80°), concentrating onto a 60 nm broad wavelength interval around the characteristic emission peak (λ=420 nm) of the scintillator. In the case where the sensor was optically coupled to a scintillator, our experiments showed a notable dependence of PDP on angle, polarization and wavelength. The sensor has an average PDP of approximately 30% from 0° to 60° angle of incidence, where it starts to drop rapidly. The PDP turned out not to be polarization dependent below 30°. If the sensor is used without a scintillator (i.e. the light source is in air), the polarization dependence is much less expressed, it begins only from 50°.

  14. Free-Free Transitions in the Presence of Laser Fields and Debye Potential at Very Low Incident Electron Energies

    Science.gov (United States)

    Bhatia, Anand

    2012-01-01

    We study the free-free transition in electron-helium ion in the ground state and embedded in a Debye potential in the presence of an external laser field at very low incident electron energies. The laser field is treated classically while the collision dynamics is treated quantum mechanically. The laser field is chosen as monochromatic, linearly polarized and homogeneous. The incident electron is considered to be dressed by the laser field in a nonperturbative manner by choosing Volkov wave function for it. The scattering wave function for the incident electron on the target embedded in a Debye potential is solved numerically by taking into account the effect of electron exchange. We calculate the laser-assisted differential and total cross sections for free-free transition for absorption/emission of a single photon or no photon exchange. The results will be presented at the conference.

  15. Triplet-triplet annihilation photon-upconversion: towards solar energy applications.

    Science.gov (United States)

    Gray, Victor; Dzebo, Damir; Abrahamsson, Maria; Albinsson, Bo; Moth-Poulsen, Kasper

    2014-06-14

    Solar power production and solar energy storage are important research areas for development of technologies that can facilitate a transition to a future society independent of fossil fuel based energy sources. Devices for direct conversion of solar photons suffer from poor efficiencies due to spectrum losses, which are caused by energy mismatch between the optical absorption of the devices and the broadband irradiation provided by the sun. In this context, photon-upconversion technologies are becoming increasingly interesting since they might offer an efficient way of converting low energy solar energy photons into higher energy photons, ideal for solar power production and solar energy storage. This perspective discusses recent progress in triplet-triplet annihilation (TTA) photon-upconversion systems and devices for solar energy applications. Furthermore, challenges with evaluation of the efficiency of TTA-photon-upconversion systems are discussed and a general approach for evaluation and comparison of existing systems is suggested.

  16. Output calibration in solid water for high energy photon beams

    International Nuclear Information System (INIS)

    Reft, C.S.

    1989-01-01

    The AAPM Protocol recommends the use of water, polystyrene or acrylic media for measuring the output of high energy photon beams. It provides the appropriate restricted mass stopping powers and mass energy absorption coefficients for converting the dose to these media to dose to water. A water-equivalent solid has been developed for dosimetric applications. [C. Constantinou, F. Attix, and B. Paliwal, Med. Phys. 9, 436 (1982)]. Calculated values for the restricted mass stopping powers and mass energy absorption coefficients have been published for this material. [A. Ho and B. Paliwal, Med. Phys. 13, 403 (1986)]. The accuracy of these calculations was investigated by making output measurements, following the Protocol, with a Farmer type chamber in four materials for Co-60, 4, 6, 10, 18, and 24 MV photon beams. The results show that the scaled dose to water for the different media agree to better than 1%, and the analysis supports the methodology of the Protocol for obtaining the dose to water from the different media

  17. Statistical and physical content of low-energy photons in nuclear medicine imaging

    International Nuclear Information System (INIS)

    Gagnon, D.; Pouliot, N.; Laperriere, L.; Harel, F.; Gregoire, J.; Arsenault, A.

    1990-01-01

    Limit in the energy resolution of present gamma camera technology prevents a total rejection of Compton events: inclusion of bad photons in the image is inescapable. Various methods acquiring data over a large portion of the spectrum have already been described. This paper investigates the usefulness of low energy photons using statistical and physical models. Holospectral Imaging, for instance, exploits correlation between energy frames to build an information related transformation optimizing primary photon image. One can also use computer simulation to show that a portion of low energy photons is detected at the same location (pixel) as pure primary photons. These events are for instance: photons undergoing scatter interaction in the crystal; photons undergoing a small angle backscatter or forwardscatter interaction in the medium, photons backscattered by the Pyrex into the crystal. For a 140 keV source in 10 cm of water and a 1/4 inch thick crystal, more than 6% of all the photons detected do not have the primary energy and still are located in the right 4 mm pixel. Similarly, it is possible to show that more than 5% of all the photons detected at 140 keV deposit their energy in more than one pixel. These results give additional support to techniques considering low energy photons and more sophisticated ways to segregate between good and bad events

  18. Illuminating dark photons with high-energy colliders

    Energy Technology Data Exchange (ETDEWEB)

    Curtin, David [Maryland Center for Fundamental Physics, University of Maryland,College Park, MD 20742 (United States); Essig, Rouven [C.N. Yang Institute for Theoretical Physics, Stony Brook University,Stony Brook, NY 11794 (United States); Gori, Stefania [Perimeter Institute for Theoretical Physics,31 Caroline St. N, Waterloo, Ontario (Canada); Shelton, Jessie [Dept. of Physics, University of Illinois at Urbana-Champaign,1110 West Green Street, Urbana, IL 61801 (United States)

    2015-02-24

    High-energy colliders offer a unique sensitivity to dark photons, the mediators of a broken dark U(1) gauge theory that kinetically mixes with the Standard Model (SM) hypercharge. Dark photons can be detected in the exotic decay of the 125 GeV Higgs boson, h→ZZ{sub D}→4ℓ, and in Drell-Yan events, pp→Z{sub D}→ℓℓ. If the dark U(1) is broken by a hidden-sector Higgs mechanism, then mixing between the dark and SM Higgs bosons also allows the exotic decay h→Z{sub D}Z{sub D}→4ℓ. We show that the 14 TeV LHC and a 100 TeV proton-proton collider provide powerful probes of both exotic Higgs decay channels. In the case of kinetic mixing alone, direct Drell-Yan production offers the best sensitivity to Z{sub D}, and can probe ϵ≳9×10{sup −4} (4×10{sup −4}) at the HL-LHC (100 TeV pp collider). The exotic Higgs decay h→ZZ{sub D} offers slightly weaker sensitivity, but both measurements are necessary to distinguish the kinetically mixed dark photon from other scenarios. If Higgs mixing is also present, then the decay h→Z{sub D}Z{sub D} can allow sensitivity to the Z{sub D} for ϵ≳10{sup −9}−10{sup −6} (10{sup −10}−10{sup −7}) for the mass range 2m{sub μ}photon decays. We also compare the Z{sub D} sensitivity at pp colliders to the indirect, but model-independent, sensitivity of global fits to electroweak precision observables. We perform a global electroweak fit of the dark photon model, substantially updating previous work in the literature. Electroweak precision measurements at LEP, Tevatron, and the LHC exclude ϵ as low as 3×10{sup −2}. Sensitivity can be improved by up to a factor of ∼2 with HL-LHC data, and an additional factor of ∼4 with ILC/GigaZ data.

  19. The penetration, diffusion and energy deposition of high-energy photon in layered media

    International Nuclear Information System (INIS)

    Zhengming, Luo; Chengjun, Gou; Laub, Wolfram

    2002-01-01

    This paper presents a new theory for calculating the transport of high-energy photons and their secondary charged particles. We call this new algorithm characteristic line method, which is completely analytic. Using this new method we can not only accurately calculate the transport behavior of energetic photons, but also precisely describes the transport behavior and energy deposition of secondary electrons, photoelectrons, Compton recoil electrons and positron-electron pairs. Its calculation efficiency is much higher than the Monte Carlo method's. The theory can be directly applied to layered media situation and obtain a pencil-beam-modeled solution. Therefore, it may be applied to clinical applications for radiation therapy

  20. Polarization effects for pair creation by photon in oriented crystals at high energy

    International Nuclear Information System (INIS)

    Baier, V.N.; Katkov, V.M.

    2006-01-01

    Pair creation by a photon in an oriented crystal is considered in the frame of the quasiclassical operator method, which includes processes with polarized particles. Under some quite generic assumptions the general expression is derived for the probability of pair creation of longitudinally polarized electron (positron) by circularly polarized photon in oriented crystal. In the particular cases θ > V /m (θ is the angle of incidence, angle between the momentum of the initial photon and axis (plane) of crystal, V is the scale of a potential of axis or a plane relative to which the angle θ is defined) one has the constant field approximation and the coherent pair production theory correspondingly. Side by side with coherent process the probability of incoherent pair creation is calculated, which differs essentially from amorphous one. At high energy the pair creation in oriented crystal is strongly enhanced comparing with the amorphous medium. In the corresponding appendixes the integral polarization of positron is found in an external field and for the coherent and incoherent mechanisms

  1. Methodology of Continuous-Energy Adjoint Monte Carlo for Neutron, Photon, and Coupled Neutron-Photon Transport

    International Nuclear Information System (INIS)

    Hoogenboom, J. Eduard

    2003-01-01

    Adjoint Monte Carlo may be a useful alternative to regular Monte Carlo calculations in cases where a small detector inhibits an efficient Monte Carlo calculation as only very few particle histories will cross the detector. However, in general purpose Monte Carlo codes, normally only the multigroup form of adjoint Monte Carlo is implemented. In this article the general methodology for continuous-energy adjoint Monte Carlo neutron transport is reviewed and extended for photon and coupled neutron-photon transport. In the latter cases the discrete photons generated by annihilation or by neutron capture or inelastic scattering prevent a direct application of the general methodology. Two successive reaction events must be combined in the selection process to accommodate the adjoint analog of a reaction resulting in a photon with a discrete energy. Numerical examples illustrate the application of the theory for some simplified problems

  2. The performance of photons rainbow-colored energy experimental lecture schools in the kids' science museum of photons

    International Nuclear Information System (INIS)

    Hoshiya, Taiji; Sasaki, Kazuya; Nishikawa, Masahiro

    2008-01-01

    The Kansai Photon Science Institute (KPSI) of Japan Atomic Energy Agency (JAEA) has been promoting various activities of public understanding of science and technology, to be focused on the photon science, which is characterized by activities on science lectures and science events based on science and experiment classrooms, by utilizing the science museum of the JAEA (The Kids' Science Museum of Photons). In this phase, the KPSI extends systematically trial activities of the science museum to be as an experimental apparatus for studying on science and technology, including the program for promoting activities on public understanding of science and technology at the region. (author)

  3. Search for ultra high energy primary photons at the Pierre Auger Observatory

    Directory of Open Access Journals (Sweden)

    Colalillo Roberta

    2016-01-01

    Full Text Available The Pierre Auger Observatory, located in Argentina, provides an unprecedented integrated aperture in the search for primary photons with energy above 1017 eV over a large portion of the southern sky. Such photons can be detected in principle via the air showers they initiate at such energies, using the complement of Auger Observatory detectors. We discuss the results obtained in diffuse and directional searches for primary photons in the EeV energy range.

  4. Search for Invisible Decays of Sub-GeV Dark Photons in Missing-Energy Events at the CERN SPS.

    Science.gov (United States)

    Banerjee, D; Burtsev, V; Cooke, D; Crivelli, P; Depero, E; Dermenev, A V; Donskov, S V; Dubinin, F; Dusaev, R R; Emmenegger, S; Fabich, A; Frolov, V N; Gardikiotis, A; Gninenko, S N; Hösgen, M; Kachanov, V A; Karneyeu, A E; Ketzer, B; Kirpichnikov, D V; Kirsanov, M M; Kovalenko, S G; Kramarenko, V A; Kravchuk, L V; Krasnikov, N V; Kuleshov, S V; Lyubovitskij, V E; Lysan, V; Matveev, V A; Mikhailov, Yu V; Myalkovskiy, V V; Peshekhonov, V D; Peshekhonov, D V; Petuhov, O; Polyakov, V A; Radics, B; Rubbia, A; Samoylenko, V D; Tikhomirov, V O; Tlisov, D A; Toropin, A N; Trifonov, A Yu; Vasilishin, B; Vasquez Arenas, G; Ulloa, P; Zhukov, K; Zioutas, K

    2017-01-06

    We report on a direct search for sub-GeV dark photons (A^{'}), which might be produced in the reaction e^{-}Z→e^{-}ZA^{'} via kinetic mixing with photons by 100 GeV electrons incident on an active target in the NA64 experiment at the CERN SPS. The dark photons would decay invisibly into dark matter particles resulting in events with large missing energy. No evidence for such decays was found with 2.75×10^{9} electrons on target. We set new limits on the γ-A^{'} mixing strength and exclude the invisible A^{'} with a mass ≲100  MeV as an explanation of the muon g_{μ}-2 anomaly.

  5. Advanced Photonic Processes for Photovoltaic and Energy Storage Systems.

    Science.gov (United States)

    Sygletou, Maria; Petridis, Constantinos; Kymakis, Emmanuel; Stratakis, Emmanuel

    2017-10-01

    Solar-energy harvesting through photovoltaic (PV) conversion is the most promising technology for long-term renewable energy production. At the same time, significant progress has been made in the development of energy-storage (ES) systems, which are essential components within the cycle of energy generation, transmission, and usage. Toward commercial applications, the enhancement of the performance and competitiveness of PV and ES systems requires the adoption of precise, but simple and low-cost manufacturing solutions, compatible with large-scale and high-throughput production lines. Photonic processes enable cost-efficient, noncontact, highly precise, and selective engineering of materials via photothermal, photochemical, or photophysical routes. Laser-based processes, in particular, provide access to a plethora of processing parameters that can be tuned with a remarkably high degree of precision to enable innovative processing routes that cannot be attained by conventional approaches. The focus here is on the application of advanced light-driven approaches for the fabrication, as well as the synthesis, of materials and components relevant to PV and ES systems. Besides presenting recent advances on recent achievements, the existing limitations are outlined and future possibilities and emerging prospects discussed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Energy imparted to water slabs by photons in the energy range 5-300 keV. Calculations using a Monte Carlo photon transport model

    International Nuclear Information System (INIS)

    Persliden, J.; Carlsson, G.A.

    1984-01-01

    In diagnostic examinations of the trunk and head, the energy imparted to the patient is related to the radiation risk. In this work, the energy imparted to laterally infinite, 10-300 mm thick water slabs by 5-300 keV photons is calculated using a Monte Carlo photon transport model. The energy imparted is also derived for energy spectra of primary photons relevant to diagnostic radiology. In addition to values of energy imparted, values of backscattered and transmitted energies, quantities primarily obtained in the transport calculations, are reported. Assumptions about coherent scattering are shown to be important for values of backscattered and transmitted energies but unimportant with respect to values of energy imparted. Comparisons are made with other Monte Carlo results from the literature. Discrepancies of 10-20% in some calculated quantities can be traced back to the use of different tabulations of interaction cross-sections by various authors. (author)

  7. Charged Particle, Photon Multiplicity, and Transverse Energy Production in High-Energy Heavy-Ion Collisions

    Directory of Open Access Journals (Sweden)

    Raghunath Sahoo

    2015-01-01

    Full Text Available We review the charged particle and photon multiplicities and transverse energy production in heavy-ion collisions starting from few GeV to TeV energies. The experimental results of pseudorapidity distribution of charged particles and photons at different collision energies and centralities are discussed. We also discuss the hypothesis of limiting fragmentation and expansion dynamics using the Landau hydrodynamics and the underlying physics. Meanwhile, we present the estimation of initial energy density multiplied with formation time as a function of different collision energies and centralities. In the end, the transverse energy per charged particle in connection with the chemical freeze-out criteria is discussed. We invoke various models and phenomenological arguments to interpret and characterize the fireball created in heavy-ion collisions. This review overall provides a scope to understand the heavy-ion collision data and a possible formation of a deconfined phase of partons via the global observables like charged particles, photons, and the transverse energy measurement.

  8. Free-Free Transitions in the Presence of Laser Fields at Very Low Incident Electron Energy

    Science.gov (United States)

    Bhatia, A. K.; Sinha, Chandana

    2010-01-01

    We study the free-free transition in electron-hydrogenic systems in ground state in presence of an external laser field at very loud incident energies. The laser field is treated classically while the collision dynamics is treated quantum mechanically. The laser field is chosen to be monochromatic, linearly polarized and homogeneous. The incident electron is considered to be dressed by the laser in a nonperturbative manner by choosing a Volkov wave function for it. The scattering weave function for the electron is solved numerically by taking into account the effect of the electron exchange, short-range as well as of the long-range interactions to get the S and P wave phase shifts while for the higher angular momentum phase shifts the exchange approximation has only been considered. We calculate the laser assisted differential cross sections (LADCS) for the aforesaid free-free transition process for single photon absorption/emission. The laser intensity is chosen to be much less than the atomic field intensity. A strong suppression is noted in the LADCS as compared to the field free (FF) cross sections. Unlike the FF ones, the LADCS exhibit some oscillations having a distinct maximum at a low value of the scattering angle depending on the laser parameters as well as on the incident energies.

  9. Continuous energy adjoint Monte Carlo for coupled neutron-photon transport

    Energy Technology Data Exchange (ETDEWEB)

    Hoogenboom, J.E. [Delft Univ. of Technology (Netherlands). Interfaculty Reactor Inst.

    2001-07-01

    Although the theory for adjoint Monte Carlo calculations with continuous energy treatment for neutrons as well as for photons is known, coupled neutron-photon transport problems present fundamental difficulties because of the discrete energies of the photons produced by neutron reactions. This problem was solved by forcing the energy of the adjoint photon to the required discrete value by an adjoint Compton scattering reaction or an adjoint pair production reaction. A mathematical derivation shows the exact procedures to follow for the generation of an adjoint neutron and its statistical weight. A numerical example demonstrates that correct detector responses are obtained compared to a standard forward Monte Carlo calculation. (orig.)

  10. A high energy photon beam derived from neutral strange particle decay

    International Nuclear Information System (INIS)

    Reibel, K.; Ruchti, R.

    1982-01-01

    Conventional methods for generating photon beams include: tagged beams in which the photons are derived from electron bremsstrahlung in a radiator target; and broad band beams in which the photons are derived from π/sup 0/ decay - the hadronic component (n, K/sub s//sup 0/) accompanying such a beam is usually suppressed by passage of the beam through a low Z (D/sub 2/) filter. Although one can generate high energy photons by these techniques, the major drawback to these beams is that the photon energy spectrum obtained is peaked at very low E/sub γ/. (Recall that the bremsstrahlung spectrum falls as 1/k). With very high energy proton beams (20 TeV/c), one can image other alternatives for photon beam design. The authors consider one such option here

  11. The low energy photon tagger NEPTUN: Toward a detailed study of the Pygmy dipole resonance with real photons

    Energy Technology Data Exchange (ETDEWEB)

    Semmler, Diego; Aumann, T.; Bauer, C.; Baumann, M.; Beckstein, M.; Beller, J.; Blecher, A.; Cvejin, N.; Duchene, M.; Hug, F.; Kahlbow, J.; Knoerzer, M.; Kreis, K.; Kremer, C.; Ries, P.; Romig, C.; Scheit, H.; Schnorrenberger, L.; Symochko, D.; Walz, C. [Institut fuer Kernphysik, Darmstadt (Germany); Lefol, R. [University of Saskatchewan, Saskatoon (Canada); Loeher, B. [ExtreMe Matter Institute EMMI and Research Division, Frankfurt (Germany); Institute for Advanced Studies FIAS, Frankfurt (Germany)

    2014-07-01

    The low energy photon tagger NEPTUN at the S-DALINAC delivers a quasi-monoenergetic photon beam between about 4 MeV and 20 MeV with a resolution of approximately 25 keV. Tagged photons provide the possibility to measure the dipole strength of nuclei in the energy range below and above the neutron threshold. The highly efficient LaBr{sub 3} based spectrometer GALATEA will be used to detect not only the direct decays to the ground state, but also cascading decays can be measured with suitable efficiency. We will measure (γ,n)- and (γ,nγ)-reactions with neutron detectors based on plastic scintillators. This talk provides an overview about setup and goals of the NEPTUN experiment as well as the current state of the commissioning phase. Planned optimizations of the setup, based on the results of a test beam time in June 2013, are also presented.

  12. Measurements and Monte Carlo calculations of photon energy distributions in MAYAK PA workplaces

    International Nuclear Information System (INIS)

    Smetanin, M.; Vasilenko, E.; Semenov, M.; Xanthos, S.; Takoudis, G.; Clouvas, A.; Silva, J.; Potiriadis, C.

    2008-01-01

    Photon energy distributions were measured in different workplaces of the Mayak Production Association (MPA), which was the first plutonium production plant in the former Soviet Union. In situ gamma spectrometry measurements were performed with a portable germanium detector. The spectral stripping method is used for the conversion of the in situ gamma-ray spectra to photon fluence rate energy distribution. This method requires the simulation of the portable germanium detector, which has been performed based on the MCNP code of Los Alamos. Measured photon fluence rate energy distributions were compared with calculated photon energy distributions (with the MCNP code) in two different workplaces: in the first workplace the geometry exposure was known. On the contrary, in the second workplace, as in most workplaces of MPA, the exposure geometry was unknown. The results obtained from the comparison between the experimental and calculated photon fluence rate energy distributions are presented and discussed. (authors)

  13. Photon spectrometry for the determination of the dose-rate constant of low-energy photon-emitting brachytherapy sources

    International Nuclear Information System (INIS)

    Chen, Zhe Jay; Nath, Ravinder

    2007-01-01

    Accurate determination of dose-rate constant (Λ) for interstitial brachytherapy sources emitting low-energy photons (<50 keV) has remained a challenge in radiation dosimetry because of the lack of a suitable absolute dosimeter for accurate measurement of the dose rates near these sources. Indeed, a consensus value of Λ taken as the arithmetic mean of the dose-rate constants determined by different research groups and dosimetry techniques has to be used at present for each source model in order to minimize the uncertainties associated with individual determinations of Λ. Because the dosimetric properties of a source are fundamentally determined by the characteristics of the photons emitted by the source, a new technique based on photon spectrometry was developed in this work for the determination of dose-rate constant. The photon spectrometry technique utilized a high-resolution gamma-ray spectrometer to measure source-specific photon characteristics emitted by the low-energy sources and determine their dose-rate constants based on the measured photon-energy spectra and known dose-deposition properties of mono-energetic photons in water. This technique eliminates many of the difficulties arising from detector size, the energy dependence of detector sensitivity, and the use of non-water-equivalent solid phantoms in absolute dose rate measurements. It also circumvents the uncertainties that might be associated with the source modeling in Monte Carlo simulation techniques. It was shown that the estimated overall uncertainty of the photon spectrometry technique was less than 4%, which is significantly smaller than the reported 8-10% uncertainty associated with the current thermo-luminescent dosimetry technique. In addition, the photon spectrometry technique was found to be stable and quick in Λ determination after initial setup and calibration. A dose-rate constant can be determined in less than two hours for each source. These features make it ideal to determine

  14. Coherent production of high-energy photons and π mesons in heavy ion reactions

    International Nuclear Information System (INIS)

    Batkin, I.S.; Kopytin, I.V.

    1986-01-01

    A microscopic model of high-energy photon and pion production processes in collision of multicharged ions with kinetic energy of relative motion from 40 to 100 MeV per nucleon was constructed not using fitting parameters

  15. Increasing quantum yield of sodium salicylate above 80 eV photon energy: Implications for photoemission cross sections

    International Nuclear Information System (INIS)

    Lindle, D.W.; Ferrett, T.A.; Heimann, P.A.; Shirley, D.A.

    1986-01-01

    The quantum yield of the visible scintillator sodium salicylate is found to increase in the incident photon-energy range 80--270 eV. Because of its use as a photon-flux monitor in recent gas-phase photoelectron spectroscopy measurements, previously reported partial cross sections for Hg (4f, 5p, and 5d subshells) and CH 3 I (I 4d subshell) in this energy range are corrected, and new values are reported. For Hg, the correction brings the experimental data into better overall agreement with theory. However, considerable uncertainty remains in the absolute scale derived from previous Hg photoabsorption measurements, and no single rescaling of the subshell cross sections could simultaneously bring all three into agreement with available theoretical calculations

  16. Ultra-Fast Low Energy Switching Using an InP Photonic Crystal H0 Nanocavity

    DEFF Research Database (Denmark)

    Yu, Yi; Palushani, Evarist; Heuck, Mikkel

    2013-01-01

    Pump-probe measurements on InP photonic crystal H0 nanocavities show large-contrast ultrafast switching at low pulse energy. For large pulse energies, high-frequency carrier density oscillations are induced, leading to pulsesplitting.......Pump-probe measurements on InP photonic crystal H0 nanocavities show large-contrast ultrafast switching at low pulse energy. For large pulse energies, high-frequency carrier density oscillations are induced, leading to pulsesplitting....

  17. Effect of photon energy spectrum on dosimetric parameters of brachytherapy sources.

    Science.gov (United States)

    Ghorbani, Mahdi; Mehrpouyan, Mohammad; Davenport, David; Ahmadi Moghaddas, Toktam

    2016-06-01

    The aim of this study is to quantify the influence of the photon energy spectrum of brachytherapy sources on task group No. 43 (TG-43) dosimetric parameters. Different photon spectra are used for a specific radionuclide in Monte Carlo simulations of brachytherapy sources. MCNPX code was used to simulate 125I, 103Pd, 169Yb, and 192Ir brachytherapy sources. Air kerma strength per activity, dose rate constant, radial dose function, and two dimensional (2D) anisotropy functions were calculated and isodose curves were plotted for three different photon energy spectra. The references for photon energy spectra were: published papers, Lawrence Berkeley National Laboratory (LBNL), and National Nuclear Data Center (NNDC). The data calculated by these photon energy spectra were compared. Dose rate constant values showed a maximum difference of 24.07% for 103Pd source with different photon energy spectra. Radial dose function values based on different spectra were relatively the same. 2D anisotropy function values showed minor differences in most of distances and angles. There was not any detectable difference between the isodose contours. Dosimetric parameters obtained with different photon spectra were relatively the same, however it is suggested that more accurate and updated photon energy spectra be used in Monte Carlo simulations. This would allow for calculation of reliable dosimetric data for source modeling and calculation in brachytherapy treatment planning systems.

  18. Dosimetry of Al2O3 optically stimulated luminescent dosimeter at high energy photons and electrons

    Science.gov (United States)

    Yusof, M. F. Mohd; Joohari, N. A.; Abdullah, R.; Shukor, N. S. Abd; Kadir, A. B. Abd; Isa, N. Mohd

    2018-01-01

    The linearity of Al2O3 OSL dosimeters (OSLD) were evaluated for dosimetry works in clinical photons and electrons. The measurements were made at a reference depth of Zref according to IAEA TRS 398:2000 codes of practice at 6 and 10 MV photons and 6 and 9 MeV electrons. The measured dose was compared to the thermoluminescence dosimeters (TLD) and ionization chamber commonly used for dosimetry works for higher energy photons and electrons. The results showed that the measured dose in OSL dosimeters were in good agreement with the reported by the ionization chamber in both high energy photons and electrons. A reproducibility test also reported excellent consistency of readings with the OSL at similar energy levels. The overall results confirmed the suitability of OSL dosimeters for dosimetry works involving high energy photons and electrons in radiotherapy.

  19. Plasma Photonic Devices for High Energy Density Science

    International Nuclear Information System (INIS)

    Kodama, R.

    2005-01-01

    High power laser technologies are opening a variety of attractive fields of science and technology using high energy density plasmas such as plasma physics, laboratory astrophysics, material science, nuclear science including medical applications and laser fusion. The critical issues in the applications are attributed to the control of intense light and enormous density of charged particles including efficient generation of the particles such as MeV electrons and protons with a current density of TA/cm2. Now these application possibilities are limited only by the laser technology. These applications have been limited in the control of the high power laser technologies and their optics. However, if we have another device consisted of the 4th material, i.e. plasma, we will obtain a higher energy density condition and explore the application possibilities, which could be called high energy plasma device. One of the most attractive devices has been demonstrated in the fast ignition scheme of the laser fusion, which is cone-guiding of ultra-intense laser light in to high density regions1. This is one of the applications of the plasma device to control the ultra-intense laser light. The other role of the devices consisted of transient plasmas is control of enormous energy-density particles in a fashion analogous to light control with a conventional optical device. A plasma fibre (5?m/1mm), as one example of the devices, has guided and deflected the high-density MeV electrons generated by ultra-intense laser light 2. The electrons have been well collimated with either a lens-like plasma device or a fibre-like plasma, resulting in isochoric heating and creation of ultra-high pressures such as Giga bar with an order of 100J. Plasmas would be uniquely a device to easily control the higher energy density particles like a conventional optical device as well as the ultra-intense laser light, which could be called plasma photonic device. (Author)

  20. Advanced photon source low-energy undulator test line

    International Nuclear Information System (INIS)

    Milton, S.V.

    1997-01-01

    The injector system of the Advanced Photon Source (APS) consists of a linac capable of producing 450-MeV positrons or > 650-MeV electrons, a positron accumulator ring (PAR), and a booster synchrotron designed to accelerate particles to 7 GeV. There are long periods of time when these machines are not required for filling the main storage ring and instead can be used for synchrotron radiation research. We describe here an extension of the linac beam transport called the Low-Energy Undulator Test Line (LEUTL). The LEUTL will have a twofold purpose. The first is to fully characterize innovative, future generation undulators, some of which may prove difficult or impossible to measure by traditional techniques. These might include small-gap and superconducting undulators, very long undulators, undulators with designed-in internal focusing, and helical undulators. This technique also holds the promise of extending the magnetic measurement sensitivity beyond that presently attainable. This line will provide the capability to directly test undulators before their possible insertion into operating storage rings. A second use for the test line will be to investigate the generation of coherent radiation at wavelengths down to a few tens of nanometers

  1. Monte Carlo simulations used to calculate the energy deposited in the coronary artery lumen as a function of iodine concentration and photon energy.

    Science.gov (United States)

    Hocine, Nora; Meignan, Michel; Masset, Hélène

    2018-04-01

    To better understand the risks of cumulative medical X-ray investigations and the possible causal role of contrast agent on the coronary artery wall, the correlation between iodinated contrast media and the increase of energy deposited in the coronary artery lumen as a function of iodine concentration and photon energy is investigated. The calculations of energy deposition have been performed using Monte Carlo (MC) simulation codes, namely PENetration and Energy LOss of Positrons and Electrons (PENELOPE) and Monte Carlo N-Particle eXtended (MCNPX). Exposure of a cylinder phantom, artery and a metal stent (AISI 316L) to several X-ray photon beams were simulated. For the energies used in cardiac imaging the energy deposited in the coronary artery lumen increases with the quantity of iodine. Monte Carlo calculations indicate a strong dependence of the energy enhancement factor (EEF) on photon energy and iodine concentration. The maximum value of EEF is equal to 25; this factor is showed for 83 keV and for 400 mg Iodine/mL. No significant impact of the stent is observed on the absorbed dose in the artery for incident X-ray beams with mean energies of 44, 48, 52 and 55 keV. A strong correlation was shown between the increase in the concentration of iodine and the energy deposited in the coronary artery lumen for the energies used in cardiac imaging and over the energy range between 44 and 55 keV. The data provided by this study could be useful for creating new medical imaging protocols to obtain better diagnostic information with a lower level of radiation exposure.

  2. High energy high intensity coherent photon beam for the SSC

    International Nuclear Information System (INIS)

    Tannenbaum, M.J.

    1984-01-01

    What is proposed for the 20 TeV protons hitting a fixed target is to make a tertiary electron beam similar to that which is the basis of the tagged photon beam at Fermilab. Briefly, a zero degree neutral beam is formed by sweeping out the primary proton beam and any secondary charged particles. Then the photons, from the decay of π 0 in the neutral beam, are converted to e + e - pairs in a lead converter and a high quality electron beam is formed. This beam is brought to the target area where it is converted to a photon beam by Bremsstrahlung in a radiator

  3. Improved dose localization with dual energy photon irradiation in treatment of lateralized intracranial malignancies

    International Nuclear Information System (INIS)

    Cooley, G.; Gillin, M.T.; Murray, K.J.; Wilson, J.F.; Janjan, N.A.

    1991-01-01

    Dual energy photon irradiation (6 MV and 20 MV) was compared to conventional treatment planning with 6 MV photons in a lateralized intracranial malignancy. Dose volume analysis was performed of both the tumor plus a 2 cm margin (target volume, TV) and normal tissues (NT). Parallel opposed treatment using weightings of 1:1, 1.5:1, and 2:1 were compared for 6 MV photons alone or in combination with 20 MV photons. Uniform treatment of the TV was accomplished within the 60 Gy isodose. Significant differences were observed, however, in NT volumes receiving greater than or equal to 60 Gy and 45-59 Gy. Dual photon energy reduced treatment of NT volumes to greater than or equal to 60 Gy by 13% (177 cm3 vs 204 cm3 in 2:1 weighting) to 70% (147 cm3 vs 498 cm3 in 1:1 weighting) for comparable plans. Dose optimization was also performed for both 6 MV alone or in combination with 20 MV photons. Usual approaches to achieve dose lateralization with conventional isocentric techniques were applied including parallel opposed 6 MV photons ipsilaterally weighted 3.4:1 (POP), and a 110 degrees arc rotational field used to limit treatment to the eye (ARC). Dual energy photon optimized plans included a three beam parallel opposed plan (TOP) and a mixed photon ipsilateral (IPSI) approach. The technique using parallel opposed 20 MV photons and ipsilateral 6 MV photons (TOP) used beam weightings of 1.1 (contralateral 20 MVX): 1.6 (ipsilateral 6 MVX): 1 (ipsilateral 20 MVX) to achieve dose optimization. The ipsilateral approach with 6 MVX and 20 MVX (IPSI) used beam weightings of 1:1.4, respectively. All optimized plans demonstrated a 41% (120 cm3; POP) to 53% (95 cm3; TOP) improvement over parallel opposed 6 MV photons weighted 2:1 (204 cm3) in NT volume receiving greater than or equal to 60 Gy

  4. Photon detector for high energy measurements in the SELEX spectrometer (Fermilab experiment E781)

    International Nuclear Information System (INIS)

    Goncharenko, Yu.M.; Grachov, O.A.; Kurshetsov, V.F.; Landsberg, L.G.; Nurushev, S.B.; Vasil'ev, A.N.

    1995-01-01

    A possibility to use one- or two-photon lead glass detectors for high energy measurements in the SELEX spectrometer with E γ up to 500 GeV is studied. It is shown that a single photon detector equipped with radiation-resistant lead glass counters is applicable for the experiment discussed. It is concluded that for the best energy resolution in the case of Primakoff effect like π - = γ * → π - + γ the combined method would be used with weighted combination of direct E γ measurement in the Photon-3 detector and the π - beam energy precise measurement. 11 refs., 4 tabs., 17 figs

  5. Search for invisible decays of sub-GeV dark photons in missing-energy events at the CERN SPS

    CERN Document Server

    Banerjee, D.

    2017-01-05

    We report on a direct search for sub-GeV dark photons (A') which might be produced in the reaction e^- Z \\to e^- Z A' via kinetic mixing with photons by 100 GeV electrons incident on an active target in the NA64 experiment at the CERN SPS. The A's would decay invisibly into dark matter particles resulting in events with large missing energy. No evidence for such decays was found with 2.75\\cdot 10^{9} electrons on target. We set new limits on the \\gamma-A' mixing strength and exclude the invisible A' with a mass < 100 MeV as an explanation of the muon g_\\mu-2 anomaly.

  6. Secondary bremsstrahlung and the energy-conservation aspects of kerma in photon-irradiated media.

    Science.gov (United States)

    Kumar, Sudhir; Nahum, Alan E

    2016-02-07

    Kerma, collision kerma and absorbed dose in media irradiated by megavoltage photons are analysed with respect to energy conservation. The user-code DOSRZnrc was employed to compute absorbed dose D, kerma K and a special form of kerma, K ncpt, obtained by setting the charged-particle transport energy cut-off very high, thereby preventing the generation of 'secondary bremsstrahlung' along the charged-particle paths. The user-code FLURZnrc was employed to compute photon fluence, differential in energy, from which collision kerma, K col and K were derived. The ratios K/D, K ncpt/D and K col/D have thereby been determined over a very large volumes of water, aluminium and copper irradiated by broad, parallel beams of 0.1 to 25 MeV monoenergetic photons, and 6, 10 and 15 MV 'clinical' radiotherapy qualities. Concerning depth-dependence, the 'area under the kerma, K, curve' exceeded that under the dose curve, demonstrating that kerma does not conserve energy when computed over a large volume. This is due to the 'double counting' of the energy of the secondary bremsstrahlung photons, this energy being (implicitly) included in the kerma 'liberated' in the irradiated medium, at the same time as this secondary bremsstrahlung is included in the photon fluence which gives rise to kerma elsewhere in the medium. For 25 MeV photons this 'violation' amounts to 8.6%, 14.2% and 25.5% in large volumes of water, aluminium and copper respectively but only 0.6% for a 'clinical' 6 MV beam in water. By contrast, K col/D and K ncpt/D, also computed over very large phantoms of the same three media, for the same beam qualities, are equal to unity within (very low) statistical uncertainties, demonstrating that collision kerma and the special type of kerma, K ncpt, do conserve energy over a large volume. A comparison of photon fluence spectra for the 25 MeV beam at a depth of  ≈51 g cm−2 for both very high and very low charged-particle transport cut-offs reveals the considerable

  7. Ring energy selection and extra long straight sections for the Advanced Photon Source

    International Nuclear Information System (INIS)

    1987-04-01

    Recommended criteria are given for the performance of Advanced Photon Source (APS), taking into consideration undulator tunability criteria and their relationship to the storage ring energy and undulator gap, length of straight sections

  8. Single and double ionization of helium by high-energy photon impact

    International Nuclear Information System (INIS)

    Andersson, L.R.; Burgdoerfer, J.

    1993-01-01

    Production of singly and doubly charged helium ions by impact of keV photons is studied. The ratio R ph = σ ph ++ /σ ph + for photoabsorption is calculated in the photon-energy range 2--18 keV using correlated initial- and final- state wave functions. Extrapolation towards symptotic photon energies yields R ph (ω → ∞) = 1.66% in agreement with previous predictions. Ionization due to Compton scattering, which becomes comparable to photoabsorption above ω ∼ 3 keV, is discussed

  9. Photoabsorption and Compton scattering in ionization of helium at high photon energies

    International Nuclear Information System (INIS)

    Andersson, L.R.; Burgdoerfer, J.; Tennessee Univ., Knoxville, TN

    1993-01-01

    Production of singly and doubly charged helium ions by impact of keV photons is studied. The ratio R ph = σ ph ++ /σ ph + for photoabsorption is calculated in the photon-energy range 2--18 keV using correlated initial- and final- state wave functions. Extrapolation towards asymptotic photon energies yields R ph (ω → ∞) = 1.66% in agreement with previous predictions. Ionization due to Compton scattering, which becomes comparable to photoabsorption above ω ∼ 3 keV, is discussed

  10. Positron annihilation spectroscopy using high-energy photons

    International Nuclear Information System (INIS)

    Butterling, Maik; Jungmann, Marco; Krause-Rehberg, Reinhard; Krille, Arnold; Anwand, Wolfgang; Brauer, Gerhard; Cowan, Thomas E.; Hartmann, Andreas; Kosev, Krasimir; Schwengner, Ronald; Wagner, Andreas

    2010-01-01

    The superconducting electron accelerator ELBE (Electron Linac with high Brilliance and low Emittance) at the Research Centre Dresden-Rossendorf (Germany) serves as a high-intensity bremsstrahlung photon-source delivering a pulsed beam (26 MHz) with very short bunches (<5 ps). The photons are being converted into positrons by means of pair production inside the target material thus forming an intense positron source. The accelerator machine pulse is used as time reference allowing positron lifetime spectroscopy. We performed positron annihilation spectroscopy by pair production in different sample materials and used coincidence techniques to reduce the background due to scattered photons significantly in order resulting in spectra of extraordinary high quality. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  11. Single photon energy dispersive x-ray diffraction

    International Nuclear Information System (INIS)

    Higginbotham, Andrew; Patel, Shamim; Ciricosta, Orlando; Suggit, Matthew J.; Wark, Justin S.; Hawreliak, James A.; Collins, Gilbert W.; Coppari, Federica; Eggert, Jon H.; Tang, Henry

    2014-01-01

    With the pressure range accessible to laser driven compression experiments on solid material rising rapidly, new challenges in the diagnosis of samples in harsh laser environments are emerging. When driving to TPa pressures (conditions highly relevant to planetary interiors), traditional x-ray diffraction techniques are plagued by increased sources of background and noise, as well as a potential reduction in signal. In this paper we present a new diffraction diagnostic designed to record x-ray diffraction in low signal-to-noise environments. By utilising single photon counting techniques we demonstrate the ability to record diffraction patterns on nanosecond timescales, and subsequently separate, photon-by-photon, signal from background. In doing this, we mitigate many of the issues surrounding the use of high intensity lasers to drive samples to extremes of pressure, allowing for structural information to be obtained in a regime which is currently largely unexplored

  12. Single photon energy dispersive x-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Higginbotham, Andrew; Patel, Shamim; Ciricosta, Orlando; Suggit, Matthew J.; Wark, Justin S. [Department of Physics, Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU (United Kingdom); Hawreliak, James A.; Collins, Gilbert W.; Coppari, Federica; Eggert, Jon H. [Lawrence Livermore National Laboratory, Livermore, California 94551 (United States); Tang, Henry [Department of Earth and Planetary Science, University of California Berkeley, Berkeley, California 94720 (United States)

    2014-03-15

    With the pressure range accessible to laser driven compression experiments on solid material rising rapidly, new challenges in the diagnosis of samples in harsh laser environments are emerging. When driving to TPa pressures (conditions highly relevant to planetary interiors), traditional x-ray diffraction techniques are plagued by increased sources of background and noise, as well as a potential reduction in signal. In this paper we present a new diffraction diagnostic designed to record x-ray diffraction in low signal-to-noise environments. By utilising single photon counting techniques we demonstrate the ability to record diffraction patterns on nanosecond timescales, and subsequently separate, photon-by-photon, signal from background. In doing this, we mitigate many of the issues surrounding the use of high intensity lasers to drive samples to extremes of pressure, allowing for structural information to be obtained in a regime which is currently largely unexplored.

  13. X and gamma reference radiation for calibrating dosemeters and doserate meters and for determining their response as a function of photon energy - Part 4: Calibration of area and personal dosemeters in low energy X reference radiation fields

    International Nuclear Information System (INIS)

    2004-01-01

    ISO 4037 consists of the following parts, under the general title X and gamma reference radiation for calibrating dosemeters and doserate meters and for determining their response as a function of photon energy: Part 1: Radiation characteristics and production methods; Part 2: Dosimetry for radiation protection over the energy ranges from 8 keV to 1,3 MeV and 4 MeV to 9 MeV; Part 3: Calibration of area and personal dosemeters and the measurement of their response as a function of energy and angle of incidence; Part 4: Calibration of area and personal dosemeters in low energy X reference radiation fields. This part 4. of ISO 4037 gives guidelines on additional aspects of the characterization of low energy photon radiations. This part of ISO 4037 also describes procedures for calibration and determination of the response of area and personal dose(rate)meters as a function of photon energy and angle of incidence. This part of ISO 4037 concentrates on the accurate determination of conversion coefficients from air kerma to Hp(10) and H*(10) for the spectra of low energy photon radiations. As an alternative to the use of conversion coefficients, the direct calibration in terms of these quantities by means of appropriate reference instruments is described

  14. Electromagnetic cascade in high-energy electron, positron, and photon interactions with intense laser pulses

    Science.gov (United States)

    Bulanov, S. S.; Schroeder, C. B.; Esarey, E.; Leemans, W. P.

    2013-06-01

    The interaction of high-energy electrons, positrons, and photons with intense laser pulses is studied in head-on collision geometry. It is shown that electrons and/or positrons undergo a cascade-type process involving multiple emissions of photons. These photons can consequently convert into electron-positron pairs. As a result charged particles quickly lose their energy developing an exponentially decaying energy distribution, which suppresses the emission of high-energy photons, thus reducing the number of electron-positron pairs being generated. Therefore, this type of interaction suppresses the development of the electromagnetic avalanche-type discharge, i.e., the exponential growth of the number of electrons, positrons, and photons does not occur in the course of interaction. The suppression will occur when three-dimensional effects can be neglected in the transverse particle orbits, i.e., for sufficiently broad laser pulses with intensities that are not too extreme. The final distributions of electrons, positrons, and photons are calculated for the case of a high-energy e-beam interacting with a counterstreaming, short intense laser pulse. The energy loss of the e-beam, which requires a self-consistent quantum description, plays an important role in this process, as well as provides a clear experimental observable for the transition from the classical to quantum regime of interaction.

  15. Electron and photon energy calibration with the ATLAS detector using LHC Run 1 data

    Czech Academy of Sciences Publication Activity Database

    Aad, G.; Abbott, B.; Abdallah, J.; Böhm, Jan; Chudoba, Jiří; Havránek, Miroslav; Hejbal, Jiří; Jakoubek, Tomáš; Kepka, Oldřich; Kupčo, Alexander; Kůs, Vlastimil; Lokajíček, Miloš; Lysák, Roman; Marčišovský, Michal; Mikeštíková, Marcela; Němeček, Stanislav; Šícho, Petr; Staroba, Pavel; Svatoš, Michal; Taševský, Marek; Vrba, Václav

    2014-01-01

    Roč. 74, č. 10 (2014), "3071-1"-"3071-48" ISSN 1434-6044 R&D Projects: GA MŠk(CZ) LG13009 Institutional support: RVO:68378271 Keywords : photon * energy * calibration * detector * resolution * showers * electromagnetic * electron * transverse energy * CERN LHC Coll * calorimeter Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 5.084, year: 2014

  16. Energy dependence of effective atomic numbers for photon energy absorption and photon interaction: Studies of some biological molecules in the energy range 1 keV-20 MeV

    DEFF Research Database (Denmark)

    Manohara, S.R.; Hanagodimath, S.M.; Gerward, Leif

    2008-01-01

    Effective atomic numbers for photon energy absorption, Z(PEA,eff), and for photon interaction, Z(PI,eff), have been calculated by a direct method in the photon-energy region from 1 keV to 20 MeV for biological molecules, such as fatty acids (lauric, myristic, palmitic, stearic, oleic, linoleic......, linolenic, arachidonic, and arachidic acids), nucleotide bases (adenine, guanine, cytosine, uracil, and thymine), and carbohydrates (glucose, sucrose, raffinose, and starch). The Z(PEA, eff) and Z(PI, eff) values have been found to change with energy and composition of the biological molecules. The energy...

  17. UV DRIVEN EVAPORATION OF CLOSE-IN PLANETS: ENERGY-LIMITED, RECOMBINATION-LIMITED, AND PHOTON-LIMITED FLOWS

    International Nuclear Information System (INIS)

    Owen, James E.; Alvarez, Marcelo A.

    2016-01-01

    We have investigated the evaporation of close-in exoplanets irradiated by ionizing photons. We find that the properties of the flow are controlled by the ratio of the recombination time to the flow timescale. When the recombination timescale is short compared to the flow timescale, the flow is in approximate local ionization equilibrium with a thin ionization front where the photon mean free path is short compared to the flow scale. In this “recombination-limited” flow the mass-loss scales roughly with the square root of the incident flux. When the recombination time is long compared to the flow timescale the ionization front becomes thick and encompasses the entire flow with the mass-loss rate scaling linearly with flux. If the planet's potential is deep, then the flow is approximately “energy-limited”; however, if the planet's potential is shallow, then we identify a new limiting mass-loss regime, which we term “photon-limited.” In this scenario, the mass-loss rate is purely limited by the incoming flux of ionizing photons. We have developed a new numerical approach that takes into account the frequency dependence of the incoming ionizing spectrum and performed a large suite of 1D simulations to characterize UV driven mass-loss around low-mass planets. We find that the flow is “recombination-limited” at high fluxes but becomes “energy-limited” at low fluxes; however, the transition is broad occurring over several orders of magnitude in flux. Finally, we point out that the transitions between the different flow types do not occur at a single flux value but depend on the planet's properties, with higher-mass planets becoming “energy-limited” at lower fluxes

  18. Well logging method and apparatus using a continuous energy spectrum photon source

    International Nuclear Information System (INIS)

    Turcotte, R.E.

    1976-01-01

    In accordance with an illustrative embodiment of the present invention, a method and apparatus for logging an earth formation of interest is disclosed in which repetitive bursts of a continuous energy spectrum of photons are emitted that penetrate the media surrounding a borehole traversing the earth formation. Thereafter, indications of photons resulting from the interaction of the emitted photons and the surrounding media are obtained, each indication being obtained at a different separation from the source along the axis of the borehole. Finally, the indications are compared to determine representations of a characteristic of the media surrounding the borehole. According to one aspect of the present invention, at least one of the indications is the result of annihilation photons produced by the interaction of the emitted photons and the surrounding media

  19. Measurements of high energy photons in Z-pinch experiments on primary test stand

    International Nuclear Information System (INIS)

    Si, Fenni; Zhang, Chuanfei; Xu, Rongkun; Yuan, Xi; Huang, Zhanchang; Xu, Zeping; Ye, Fan; Yang, Jianlun; Ning, Jiamin; Hu, Qingyuan; Zhu, Xuebin

    2015-01-01

    High energy photons are measured for the first time in wire-array Z-pinch experiments on the Primary Test Stand (PTS) which delivers a current up to 8 MA with a rise time of 70 ns. A special designed detecting system composed of three types of detectors is used to measure the average energy, intensity, and pulse waveform of high energy photons. Results from Pb-TLD (thermoluminescence dosimeter) detector indicate that the average energy is 480 keV (±15%). Pulse shape of high energy photons is measured by the photodiode detector consisted of scintillator coupled with a photodiode, and it is correlated with soft x-ray power by the same timing signal. Intensity is measured by both TLD and the photodiode detector, showing good accordance with each other, and it is 10 10 cm −2 (±20%) at 2 m in the horizontal direction. Measurement results show that high energy photons are mainly produced in pinch regions due to accelerated electrons. PTS itself also produces high energy photons due to power flow electrons, which is one order smaller in amplitude than those from pinch region

  20. 18 CFR 1316.9 - Nuclear energy hazards and nuclear incidents.

    Science.gov (United States)

    2010-04-01

    ... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Nuclear energy hazards... Text of Conditions and Certifications § 1316.9 Nuclear energy hazards and nuclear incidents. When so... documents or actions: Nuclear Energy Hazards and Nuclear Incidents (Applicable only to contracts for goods...

  1. Preliminary proposals for extending the ENDF format to allow incident charged particles and energy-angle correlation for emitted particles

    International Nuclear Information System (INIS)

    MacFarlane, R.E.; Stewart, L.; Hale, G.M.; Dunford, C.L.

    1984-04-01

    This rewrite of Data Formats and Procedures for the Evaluated Nuclear Data File, ENDF pertains to the latest version, ENDF/B-VI. Earlier versions provided representations for neutron cross sections and distributions, photon production from neutron reactions, a limited amount of charged-particle production from neutron reactions, photo-atomic interaction data, thermal neutron scattering data, and radionuclide production and decay data (including fission products). This version allows higher incident energies, adds more complete descriptions of the distributions of emitted particles, and provides for incident charged particles and photo-nuclear data by partitioning the ENDF library into sublibraries. Decay data, fission product yield data, thermal scattering data, and photo-atomic data have also been formally placed in sublibraries. In addition, this rewrite represents an extensive update to the Version V manual

  2. Infrared detection and photon energy up-conversion in graphene layer infrared photodetectors integrated with LEDs based on van der Waals heterostructures: Concept, device model, and characteristics

    Science.gov (United States)

    Ryzhii, V.; Otsuji, T.; Ryzhii, M.; Karasik, V. E.; Shur, M. S.

    2017-09-01

    We propose the concept of the infrared detection and photon energy up-conversion in the devices using the integration of the graphene layer infrared detectors (GLIPs) and the light emitting diodes (LEDs) based on van der Waals (vdW) heterostructures. Using the developed device model of the GLIP-LEDs, we calculate their characteristics. The GLIP-LED devices can operate as the detectors of far- and mid infrared radiation (FIR and MIR) with an electrical output or with near-infrared radiation (NIR) or visible radiation (VIR) output. In the latter case, GLIP-LED devices function as the photon energy up-converters of FIR and MIR to NIR or VIR. The operation of GLIP-LED devices is associated with the injection of the electron photocurrent produced due to the interband absorption of the FIR/MIR photons in the GLIP part into the LED emitting NIR/VIR photons. We calculate the GLIP-LED responsivity and up-conversion efficiency as functions the structure parameters and the energies of the incident FIR/MIR photons and the output NIR/VIR photons. The advantages of the GLs in the vdW heterostructures (relatively high photoexcitation rate from and low capture efficiency into GLs) combined with the reabsorption of a fraction of the NIR/FIR photon flux in the GLIP (which can enable an effective photonic feedback) result in the elevated GLIP-LED device responsivity and up-conversion efficiency. The positive optical feedback from the LED section of the device lead to increasing current injection enabling the appearance of the S-type current-voltage characteristic with a greatly enhanced responsivity near the switching point and current filamentation.

  3. Dosimetric properties of radiophotoluminescent glass detector in low-energy photon beams.

    Science.gov (United States)

    Kadoya, Noriyuki; Shimomura, Kouhei; Kitou, Satoshi; Shiota, Yasuo; Fujita, Yukio; Dobashi, Suguru; Takeda, Ken; Jingu, Keiichi; Matsushita, Haruo; Namito, Yoshihito; Ban, Syuichi; Koyama, Syuji; Tabushi, Katsuyoshi

    2012-10-01

    A radiophotoluminescent glass rod dosimeter (RGD) has recently become commercially available. It is being increasingly used for dosimetry in radiotherapy to measure the absorbed dose including scattered low-energy photons on the body surface of a patient and for postal dosimetry audit. In this article, the dosimetric properties of the RGD, including energy dependence of the dose response, reproducibly, variation in data obtained by the RGD for each energy, and angular dependence in low-energy photons, are discussed. An RGD (GD-301, Asahi Techno Glass Corporation, Shizuoka, Japan) was irradiated with monochromatic low-energy photon beams generated by synchrotron radiation at Photon Factory, High Energy Accelerator Research Organization (KEK). The size of GD-301 was 1.5 mm in diameter and 8.5 mm in length and the active dose readout volume being 1 mm diameter and 0.6 mm depth located 0.7 mm from the end of the detector. The energy dependence of the dose response and reproducibility and variation were investigated for RGDs irradiated with a plastic holder and those irradiated without the plastic holder. Response of the RGD was obtained by not only conventional single field irradiation but also bilateral irradiation. Angular dependence of the RGD was measured in the range of 0°-90° for 13, 17, 40, and 80 keV photon beams by conventional single field irradiation. The dose responses had a peak at around 40 keV. For the energy range of less than 25 keV, all dose response curves steeply decreased in comparison with the ratio of mass energy absorption coefficient of the RGD to that of air. As for the reproducibility and variation in data obtained by the RGD, the coefficient of variance increased with decrease in photon energy. Furthermore, the variation for bilateral irradiation was less than that for single field irradiation. Regarding angular dependence of the RGD, for energies of 13 and 17 keV, the response decreased with increase in the irradiation angle, and the

  4. Theoretical and experimental study of an energy-reinforced braking radiation photon beam

    International Nuclear Information System (INIS)

    Bertin, Pierre-Yves

    1966-01-01

    This research thesis reports the theoretical study of a photon beam raised towards high energies, its experimental implementation, the definition of a gamma spectrometry method which aimed at checking various hypotheses used in the beam theoretical study. After a presentation of the theory of phenomena of electron braking radiation, of materialisation of photons into positon-negaton pair, and of issues related to multiple Coulomb diffusion, the author reports the study of the different solutions which allow a photon beam to be obtained. A braking radiation of mono-kinetic electron has been used. This braking radiation is reinforced by absorption of low energy protons in a column of lithium hydride. The author describes how the beam is built up, and the experimental approach. He describes how raw data are processed to get rid of the influence of the multiple Coulomb diffusion and of the braking radiation. Experimental results are compared with those obtained by convolution of photon spectra and differential cross section

  5. Self energies of the electron and photon in the unified space field theory

    International Nuclear Information System (INIS)

    Duong Van Phi, Nguyen Mong Giao.

    1981-01-01

    Self energies of the electron and photon are calculated in the second approximation of perturbation theory. The formalism of the field theory of interaction in the unified 8-dimensional space is used. The calculations are free of divergence the unitary condition is fulfilled. It is shown that the ''naked'' and physical masses of a free electron are identical. A similar result is obtained for a free photon. Some other effects are discussed [ru

  6. The lateral characteristics of several ultra-high energy photon and hadron families

    International Nuclear Information System (INIS)

    Buja, Z.; Gladysz, E.; Mazurkiewicz, J.; Mikocki, S.; Szarska, M.; Zawiejski, L.

    1980-01-01

    In a thick lead X-ray film emulsion chamber of the Experiment Pamir, 8 ultra-high energy photon and hadron families were detected. They are considered to be almost ''pure'' families. The compound lateral characteristics for photon families indicate an existence of two groups of particles which have different average transverse momenta. A quite well visible azimuthal asymmetry in the number and transverse momenta values of produced particles is observed. (author)

  7. Computation of the mass attenuation coefficient of polymeric materials at specific gamma photon energies

    Science.gov (United States)

    Mirji, Rajeshwari; Lobo, Blaise

    2017-06-01

    The gamma ray mass attenuation coefficients of ten synthetic polymeric materials, namely, polyethylene (PE), polystyrene (PS), polycarbonate (PC), polyvinyl alcohol (PVA), polyvinyl chloride (PVC), Polyethylene terephthalate (PET), Polyvinyl pyrrolidone (PVP), Polytetrafluoroethylene (PTFE), Polypropylene (PP) and Polymethyl methacrylate (PMMA) have been calculated using second order polynomial equation and logarithmic interpolation formula at selected gamma photon energies, in the energy range starting from 14.4 keV up to 1332 keV. It is important to note that second order polynomial equation fits very well with NIST data for all the polymeric materials considered here, for gamma photon energies ranging from 300 keV up to 2000 keV. Third order polynomial fitting is best suited for lower gamma photon energies (from 10 keV up to 200 keV).

  8. Cherenkov detectors for spatial imaging applications using discrete-energy photons

    Energy Technology Data Exchange (ETDEWEB)

    Rose, Paul B.; Erickson, Anna S., E-mail: erickson@gatech.edu [Georgia Institute of Technology, Nuclear and Radiological Engineering, G.W. Woodruff School of Mechanical Engineering, 770 State St., Atlanta, Georgia 30332 (United States)

    2016-08-14

    Cherenkov detectors can offer a significant advantage in spatial imaging applications when excellent timing response, low noise and cross talk, large area coverage, and the ability to operate in magnetic fields are required. We show that an array of Cherenkov detectors with crude energy resolution coupled with monochromatic photons resulting from a low-energy nuclear reaction can be used to produce a sharp image of material while providing large and inexpensive detector coverage. The analysis of the detector response to relative transmission of photons with various energies allows for reconstruction of material's effective atomic number further aiding in high-Z material identification.

  9. Limits to the Fraction of High-energy Photon Emitting Gamma-Ray Bursts

    Science.gov (United States)

    Akerlof, Carl W.; Zheng, WeiKang

    2013-02-01

    After almost four years of operation, the two instruments on board the Fermi Gamma-ray Space Telescope have shown that the number of gamma-ray bursts (GRBs) with high-energy photon emission above 100 MeV cannot exceed roughly 9% of the total number of all such events, at least at the present detection limits. In a recent paper, we found that GRBs with photons detected in the Large Area Telescope have a surprisingly broad distribution with respect to the observed event photon number. Extrapolation of our empirical fit to numbers of photons below our previous detection limit suggests that the overall rate of such low flux events could be estimated by standard image co-adding techniques. In this case, we have taken advantage of the excellent angular resolution of the Swift mission to provide accurate reference points for 79 GRB events which have eluded any previous correlations with high-energy photons. We find a small but significant signal in the co-added field. Guided by the extrapolated power-law fit previously obtained for the number distribution of GRBs with higher fluxes, the data suggest that only a small fraction of GRBs are sources of high-energy photons.

  10. LIMITS TO THE FRACTION OF HIGH-ENERGY PHOTON EMITTING GAMMA-RAY BURSTS

    International Nuclear Information System (INIS)

    Akerlof, Carl W.; Zheng, WeiKang

    2013-01-01

    After almost four years of operation, the two instruments on board the Fermi Gamma-ray Space Telescope have shown that the number of gamma-ray bursts (GRBs) with high-energy photon emission above 100 MeV cannot exceed roughly 9% of the total number of all such events, at least at the present detection limits. In a recent paper, we found that GRBs with photons detected in the Large Area Telescope have a surprisingly broad distribution with respect to the observed event photon number. Extrapolation of our empirical fit to numbers of photons below our previous detection limit suggests that the overall rate of such low flux events could be estimated by standard image co-adding techniques. In this case, we have taken advantage of the excellent angular resolution of the Swift mission to provide accurate reference points for 79 GRB events which have eluded any previous correlations with high-energy photons. We find a small but significant signal in the co-added field. Guided by the extrapolated power-law fit previously obtained for the number distribution of GRBs with higher fluxes, the data suggest that only a small fraction of GRBs are sources of high-energy photons.

  11. Cosmological effects of scalar-photon couplings: dark energy and varying-α Models

    Energy Technology Data Exchange (ETDEWEB)

    Avgoustidis, A. [School of Physics and Astronomy, University of Nottingham, University Park, Nottingham NG7 2RD (United Kingdom); Martins, C.J.A.P.; Monteiro, A.M.R.V.L.; Vielzeuf, P.E. [Centro de Astrofísica, Universidade do Porto, Rua das Estrelas, 4150-762 Porto (Portugal); Luzzi, G., E-mail: tavgoust@gmail.com, E-mail: Carlos.Martins@astro.up.pt, E-mail: mmonteiro@fc.up.pt, E-mail: up110370652@alunos.fc.up.pt, E-mail: gluzzi@lal.in2p3.fr [Laboratoire de l' Accélérateur Linéaire, Université de Paris-Sud, CNRS/IN2P3, Bâtiment 200, BP 34, 91898 Orsay Cedex (France)

    2014-06-01

    We study cosmological models involving scalar fields coupled to radiation and discuss their effect on the redshift evolution of the cosmic microwave background temperature, focusing on links with varying fundamental constants and dynamical dark energy. We quantify how allowing for the coupling of scalar fields to photons, and its important effect on luminosity distances, weakens current and future constraints on cosmological parameters. In particular, for evolving dark energy models, joint constraints on the dark energy equation of state combining BAO radial distance and SN luminosity distance determinations, will be strongly dominated by BAO. Thus, to fully exploit future SN data one must also independently constrain photon number non-conservation arising from the possible coupling of SN photons to the dark energy scalar field. We discuss how observational determinations of the background temperature at different redshifts can, in combination with distance measures data, set tight constraints on interactions between scalar fields and photons, thus breaking this degeneracy. We also discuss prospects for future improvements, particularly in the context of Euclid and the E-ELT and show that Euclid can, even on its own, provide useful dark energy constraints while allowing for photon number non-conservation.

  12. Physics of reflective optics for the soft gamma-ray photon energy range

    DEFF Research Database (Denmark)

    Fernández-Perea, Mónica; Descalle, Marie-Anne; Soufli, Regina

    2013-01-01

    Traditional multilayer reflective optics that have been used in the past for imaging at x-ray photon energies as high as 200 keV are governed by classical wave phenomena. However, their behavior at higher energies is unknown, because of the increasing effect of incoherent scattering and the disag...

  13. Electron energy spectrum and maximum disruption angle under multi-photon beamstrahlung

    Energy Technology Data Exchange (ETDEWEB)

    Yokoya, Kaoru; Chen, Pisin

    1989-03-01

    The final electron energy spectrum under multi-photon beamstrahlung process is derived analytically in the classical and the intermediate regimes. The maximum disruption angle from the low energy tail of the spectrum is also estimated. The results are then applied to the TLC and the CLIC parameters. 6 refs., 1 fig., 1 tab.

  14. Photon mass attenuation coefficients, effective atomic numbers and ...

    Indian Academy of Sciences (India)

    of atomic number Z was performed using the logarithmic regression analysis of the data measured by the authors and reported earlier. The best-fit coefficients so obtained in the photon ..... This photon build-up is a function of thickness and atomic number of the sample and also the incident photon energy, which combine to ...

  15. Derivation of linear attenuation coefficients from CT numbers for low-energy photons

    International Nuclear Information System (INIS)

    Watanabe, Y.

    1999-01-01

    One can estimate photon attenuation properties from the CT number. In a standard method one assumes that the linear attenuation coefficient is proportional to electron density and ignores its nonlinear dependence on atomic number. When the photon energy is lower than about 50 keV, such as for brachytherapy applications, however, photoelectric absorption and Rayleigh scattering become important. Hence the atomic number must be explicitly considered in estimating the linear attenuation coefficient. In this study we propose a method to more accurately estimate the linear attenuation coefficient of low-energy photons from CT numbers. We formulate an equation that relates the CT number to the electron density and the effective atomic number. We use a CT calibration phantom to determine unknown coefficients in the equation. The equation with a given CT number is then solved for the effective atomic number, which in turn is used to calculate the linear attenuation coefficient for low-energy photons. We use the CT phantom to test the new method. The method significantly improves the standard method in estimating the attenuation coefficient at low photon energies (20keV≤E≤40keV) for materials with high atomic numbers. (author)

  16. Energy dependent response of plastic scintillation detectors to photon radiation of low to medium energy.

    Science.gov (United States)

    Ebenau, Melanie; Radeck, Désirée; Bambynek, Markus; Sommer, Holger; Flühs, Dirk; Spaan, Bernhard; Eichmann, Marion

    2016-08-01

    Plastic scintillation detectors are promising candidates for the dosimetry of low- to medium-energy photons but quantitative knowledge of their energy response is a prerequisite for their correct use. The purpose of this study was to characterize the energy dependent response of small scintillation detectors (active volume <1 mm(3)) made from the commonly used plastic scintillator BC400. Different detectors made from BC400 were calibrated at a number of radiation qualities ranging from 10 to 280 kV and at a (60)Co beam. All calibrations were performed at the Physikalisch-Technische Bundesanstalt, the National Metrology Institute of Germany. The energy response in terms of air kerma, dose to water, and dose to the scintillator was determined. Conversion factors from air kerma to dose to water and to dose to the scintillator were derived from Monte Carlo simulations. In order to quantitatively describe the energy dependence, a semiempirical model known as unimolecular quenching or Birks' formula was fitted to the data and from this the response to secondary electrons generated within the scintillator material BC400 was derived. The detector energy response in terms of air kerma differs for different scintillator sizes and different detector casings. It is therefore necessary to take attenuation within the scintillator and in the casing into account when deriving the response in terms of dose to water from a calibration in terms of air kerma. The measured energy response in terms of dose to water for BC400 cannot be reproduced by the ratio of mean mass energy-absorption coefficients for polyvinyl toluene to water but shows evidence of quenching. The quenching parameter kB in Birks' formula was determined to be kB = (12.3 ± 0.9) mg MeV(-1) cm(-2). The energy response was quantified relative to the response to (60)Co which is the common radiation quality for the calibration of therapy dosemeters. The observed energy dependence could be well explained with the

  17. Energy dependent response of plastic scintillation detectors to photon radiation of low to medium energy

    Energy Technology Data Exchange (ETDEWEB)

    Ebenau, Melanie, E-mail: melanie.ebenau@tu-dortmunde.de; Sommer, Holger; Spaan, Bernhard; Eichmann, Marion [Fakultät Physik, Technische Universität Dortmund, Otto-Hahn Str. 4a, 44221 Dortmund (Germany); Radeck, Désirée; Bambynek, Markus [Physikalisch-Technische Bundesanstalt, Bundesallee 100, 38116 Braunschweig (Germany); Flühs, Dirk [Universitätsklinikum Essen, Hufelandstr. 55, 45147 Essen (Germany)

    2016-08-15

    Purpose: Plastic scintillation detectors are promising candidates for the dosimetry of low- to medium-energy photons but quantitative knowledge of their energy response is a prerequisite for their correct use. The purpose of this study was to characterize the energy dependent response of small scintillation detectors (active volume <1 mm{sup 3}) made from the commonly used plastic scintillator BC400. Methods: Different detectors made from BC400 were calibrated at a number of radiation qualities ranging from 10 to 280 kV and at a {sup 60}Co beam. All calibrations were performed at the Physikalisch-Technische Bundesanstalt, the National Metrology Institute of Germany. The energy response in terms of air kerma, dose to water, and dose to the scintillator was determined. Conversion factors from air kerma to dose to water and to dose to the scintillator were derived from Monte Carlo simulations. In order to quantitatively describe the energy dependence, a semiempirical model known as unimolecular quenching or Birks’ formula was fitted to the data and from this the response to secondary electrons generated within the scintillator material BC400 was derived. Results: The detector energy response in terms of air kerma differs for different scintillator sizes and different detector casings. It is therefore necessary to take attenuation within the scintillator and in the casing into account when deriving the response in terms of dose to water from a calibration in terms of air kerma. The measured energy response in terms of dose to water for BC400 cannot be reproduced by the ratio of mean mass energy-absorption coefficients for polyvinyl toluene to water but shows evidence of quenching. The quenching parameter kB in Birks’ formula was determined to be kB = (12.3 ± 0.9) mg MeV{sup −1} cm{sup −2}. Conclusions: The energy response was quantified relative to the response to {sup 60}Co which is the common radiation quality for the calibration of therapy dosemeters. The

  18. Response of TAPS to monochromatic photons with energies between 45 and 790 MeV

    International Nuclear Information System (INIS)

    Gabler, A.R.; Doering, W.; Fuchs, M.; Krusche, B.; Metag, V.; Novotny, R.; Roebig-Landau, M.; Stroeher, H.; Tries, V.; Molenaar, C.; Loehner, H.; Van Pol, J.H.G.; Raschke, A.; Sumbera, M.; Venema, L.B.; Wilschut, H.W.; Averbeck, R.; Niebur, W.; Schubert, A.; Simon, R.S.; Beck, R.; Peise, J.; Miller, G.J.; Owens, R.O.; Anton, G.

    1994-01-01

    The Two Arm Photon Spectrometer TAPS - comprising 384 plastic-BaF 2 scintillator telescopes - was tested with monochromatic photons in the energy range between 45 and 790 MeV. The energy resolution for a collimated photon beam hitting the central detector module was determined to σ/E=0.59%xE -1/2 γ +1.9% (E γ given in GeV). For the the fast scintillation component alone σ/E=0.79%xE -1/2 γ +1.8% has been measured. The position resolution of the point of impact amounts to Δx=2 cm (FWHM) at the highest energies which corresponds to 30% of the diameter of an individual module. Monte Carlo simulations using the code GEANT3 are in good agreement with the experimental results. ((orig.))

  19. Upper limit on the ultrahigh-energy photon flux from AGASA and Yakutsk data

    International Nuclear Information System (INIS)

    Rubtsov, G.I.; Dedenko, L.G.; Fedorova, G.F.; Fedunin, E.Yu.; Roganova, T.M.; Glushkov, A.V.; Makarov, I.T.; Pravdin, M.I.; Sleptsov, I.E.; Gorbunov, D.S.; Troitsky, S.V.

    2006-01-01

    We present the interpretation of the muon and scintillation signals of ultrahigh-energy air showers observed by AGASA and Yakutsk extensive air shower array experiments. We consider case-by-case ten highest-energy events with known muon content and conclude that at the 95% confidence level none of them was induced by a primary photon. Taking into account statistical fluctuations and differences in the energy estimation of proton and photon primaries, we derive an upper limit of 36% at a 95% confidence level on the fraction of primary photons in the cosmic-ray flux above 10 20 eV. This result disfavors the Z-burst and superheavy dark-matter solutions to the Greisen-Zatsepin-Kuzmin-cutoff problem

  20. Does a deformation of special relativity imply energy dependent photon time delays?

    Science.gov (United States)

    Carmona, J. M.; Cortés, J. L.; Relancio, J. J.

    2018-01-01

    Theoretical arguments in favor of energy dependent photon time delays from a modification of special relativity (SR) have met with recent gamma ray observations that put severe constraints on the scale of such deviations. We review the case of the generality of this theoretical prediction in the case of a deformation of SR and find that, at least in the simple model based on the analysis of photon worldlines which is commonly considered, there are many scenarios compatible with a relativity principle which do not contain a photon time delay. This will be the situation for any modified dispersion relation which reduces to E=\\vert p\\vert for photons, independently of the quantum structure of spacetime. This fact opens up the possibility of a phenomenologically consistent relativistic generalization of SR with a new mass scale many orders of magnitude below the Planck mass.

  1. Simulating three-dimensional nonthermal high-energy photon emission in colliding-wind binaries

    Energy Technology Data Exchange (ETDEWEB)

    Reitberger, K.; Kissmann, R.; Reimer, A.; Reimer, O., E-mail: klaus.reitberger@uibk.ac.at [Institut für Astro- und Teilchenphysik and Institut für Theoretische Physik, Leopold-Franzens-Universität Innsbruck, A-6020 Innsbruck (Austria)

    2014-07-01

    Massive stars in binary systems have long been regarded as potential sources of high-energy γ rays. The emission is principally thought to arise in the region where the stellar winds collide and accelerate relativistic particles which subsequently emit γ rays. On the basis of a three-dimensional distribution function of high-energy particles in the wind collision region—as obtained by a numerical hydrodynamics and particle transport model—we present the computation of the three-dimensional nonthermal photon emission for a given line of sight. Anisotropic inverse Compton emission is modeled using the target radiation field of both stars. Photons from relativistic bremsstrahlung and neutral pion decay are computed on the basis of local wind plasma densities. We also consider photon-photon opacity effects due to the dense radiation fields of the stars. Results are shown for different stellar separations of a given binary system comprising of a B star and a Wolf-Rayet star. The influence of orbital orientation with respect to the line of sight is also studied by using different orbital viewing angles. For the chosen electron-proton injection ratio of 10{sup –2}, we present the ensuing photon emission in terms of two-dimensional projections maps, spectral energy distributions, and integrated photon flux values in various energy bands. Here, we find a transition from hadron-dominated to lepton-dominated high-energy emission with increasing stellar separations. In addition, we confirm findings from previous analytic modeling that the spectral energy distribution varies significantly with orbital orientation.

  2. Results on the Coherent Interaction of High Energy Electrons and Photons in Oriented Single Crystals

    CERN Document Server

    Apyan, A.; Badelek, B.; Ballestrero, S.; Biino, C.; Birol, I.; Cenci, P.; Connell, S.H.; Eichblatt, S.; Fonseca, T.; Freund, A.; Gorini, B.; Groess, R.; Ispirian, K.; Ketel, T.J.; Kononets, Yu.V.; Lopez, A.; Mangiarotti, A.; van Rens, B.; Sellschop, J.P.F.; Shieh, M.; Sona, P.; Strakhovenko, V.; Uggerhoj, E.; Uggerhj, Ulrik Ingerslev; Unel, G.; Velasco, M.; Vilakazi, Z.Z.; Wessely, O.; Kononets, Yu.V.

    2005-01-01

    The CERN-NA-59 experiment examined a wide range of electromagnetic processes for multi-GeV electrons and photons interacting with oriented single crystals. The various types of crystals and their orientations were used for producing photon beams and for converting and measuring their polarisation. The radiation emitted by 178 GeV unpolarised electrons incident on a 1.5 cm thick Si crystal oriented in the Coherent Bremsstrahlung (CB) and the String-of-Strings (SOS) modes was used to obtain multi-GeV linearly polarised photon beams. A new crystal polarimetry technique was established for measuring the linear polarisation of the photon beam. The polarimeter is based on the dependence of the Coherent Pair Production (CPP) cross section in oriented single crystals on the direction of the photon polarisation with respect to the crystal plane. Both a 1 mm thick single crystal of Germanium and a 4 mm thick multi-tile set of synthetic Diamond crystals were used as analyzers of the linear polarisation. A birefringence ...

  3. Critical analysis of major incidents risks in civil nuclear energy

    International Nuclear Information System (INIS)

    2000-09-01

    The differences existing between the PWR type reactors and the RBMK type reactors are explained as well as the risk associated to each type when it exists. The Ines scale, tool to give the level of an accident gravity comprises seven levels, the number seven is the most serious and corresponds to the Chernobyl accident; The number zero is of no consequence but must be mentioned as a matter of form. The incidents from 1 to 3 concern increasing incidents, affecting the nuclear power plant but not the external public. The accidents from 4 to 7 have a nature to affect the nuclear power plant and the environment. An efficient tool exists between nuclear operators it is made of the reports on incidents encountered by close reactors. Two others type reactors are coming, the high temperature type reactors and the fast neutrons reactors. different risks are evoked, terrorism, proliferation, transport and radioactive wastes. (N.C.)

  4. In vivo imaging of cerebral energy metabolism with two-photon fluorescence lifetime microscopy of NADH.

    Science.gov (United States)

    Yaseen, Mohammad A; Sakadžić, Sava; Wu, Weicheng; Becker, Wolfgang; Kasischke, Karl A; Boas, David A

    2013-02-01

    Minimally invasive, specific measurement of cellular energy metabolism is crucial for understanding cerebral pathophysiology. Here, we present high-resolution, in vivo observations of autofluorescence lifetime as a biomarker of cerebral energy metabolism in exposed rat cortices. We describe a customized two-photon imaging system with time correlated single photon counting detection and specialized software for modeling multiple-component fits of fluorescence decay and monitoring their transient behaviors. In vivo cerebral NADH fluorescence suggests the presence of four distinct components, which respond differently to brief periods of anoxia and likely indicate different enzymatic formulations. Individual components show potential as indicators of specific molecular pathways involved in oxidative metabolism.

  5. Unified description of neutron-, proton- and photon-induced fission cross sections in intermediate energy region

    International Nuclear Information System (INIS)

    Fukahori, Tokio; Iwamoto, Osamu; Chiba, Satoshi

    2003-01-01

    For an accelerator-driven nuclear waste transmutation system, it is very important to estimate sub-criticality of core system for feasibility and design study of the system. The fission cross section in the intermediate energy range has an important role. A program FISCAL has been developed to calculate neutron-, proton- and photon-induced fission cross sections in the energy region from several tens of MeV to 3 GeV. FISCAL adopts the systematics considering experimental data for Ag- 243 Am. It is found that unified description of neutron-, proton- and photon-induced fission cross sections is available. (author)

  6. DWBA differential and total pair production cross sections for intermediate energy photons

    International Nuclear Information System (INIS)

    Selvaraju, C.; Bhullar, A.S.; Sud, K.K.

    2001-01-01

    We present in this communication the theoretical differential and total cross section for electron-positron pair creation by intermediate energy photons (5.0-10.0 MeV) on different targets (Z=1, 30, 50, 68, 82 and 92). The computed cross sections are in distorted wave Born approximation (DWBA) in point Coulomb potential. The database of the differential and total pair production cross sections is presented in tabulated as well as in graphical form and the interpolation of differential cross sections for different atomic numbers, positron and photon energies is discussed

  7. Study of dose distribution in high energy photon beam used in radiotherapy

    International Nuclear Information System (INIS)

    Rafaravavy, R.; Raoelina Andriambololona; Bridier, A.

    2007-01-01

    The dose distribution in a medium traversed by a photon beam depends on beam energy, field size and medium nature. Percent depth dose (PDD), Dose Profile (DP) and Opening Collimator Factor (OCF) curves will be established to study this distribution. So, the PDD curves are composed by tree parts: the build-up region, the maximal dose and the quasi-equilibrium region. The maximum dose depth and the dose in depth increase with increasing photon beam energy but the dose surface decreases. The PDD increases with increasing field size.

  8. Double electron ionization in Compton scattering of high energy photons by helium atoms

    International Nuclear Information System (INIS)

    Amusia, M.Y.; Mikhailov, A.I.

    1995-01-01

    The cross section for double-electron ionization of two-electron atoms and ions in Compton scattering of high energy photons is calculated. It is demonstrated that its dependence on the incoming photon frequency is the same as that for single-electron ionization. The ratio of open-quotes double-to-singleclose quotes ionization in Compton scattering was found to be energy independent and almost identical with the corresponding value for photoionization. For the He atom it is 1.68%. This surprising result deserves experimental verification

  9. Double electron ionization in Compton scattering of high energy photons by helium atoms

    Energy Technology Data Exchange (ETDEWEB)

    Amusia, M.Y.; Mikhailov, A.I. [St. Petersburg Nuclear Physics Institute, Gatchina (Russian Federation)

    1995-08-01

    The cross section for double-electron ionization of two-electron atoms and ions in Compton scattering of high energy photons is calculated. It is demonstrated that its dependence on the incoming photon frequency is the same as that for single-electron ionization. The ratio of {open_quotes}double-to-single{close_quotes} ionization in Compton scattering was found to be energy independent and almost identical with the corresponding value for photoionization. For the He atom it is 1.68%. This surprising result deserves experimental verification.

  10. Photon beam position monitor

    Science.gov (United States)

    Kuzay, Tuncer M.; Shu, Deming

    1995-01-01

    A photon beam position monitor for use in the front end of a beamline of a high heat flux and high energy photon source such as a synchrotron radiation storage ring detects and measures the position and, when a pair of such monitors are used in tandem, the slope of a photon beam emanating from an insertion device such as a wiggler or an undulator inserted in the straight sections of the ring. The photon beam position monitor includes a plurality of spaced blades for precisely locating the photon beam, with each blade comprised of chemical vapor deposition (CVD) diamond with an outer metal coating of a photon sensitive metal such as tungsten, molybdenum, etc., which combination emits electrons when a high energy photon beam is incident upon the blade. Two such monitors are contemplated for use in the front end of the beamline, with the two monitors having vertically and horizontally offset detector blades to avoid blade "shadowing". Provision is made for aligning the detector blades with the photon beam and limiting detector blade temperature during operation.

  11. Electron, photons, and molecules: Storing energy from light

    Energy Technology Data Exchange (ETDEWEB)

    Miller, J.R. [Argonne National Laboratory, IL (United States)

    1996-09-01

    Molecular charge separation has important potential for photochemical energy storage. Its efficiency can be enhanced by principals which maximize the rates of the electron transfer steps which separate charge and minimize those which recombine high-energy charge pairs to lose stored energy. Dramatic scientific progress in understanding these principals has occurred since the founding of DOE and its predecessor agency ERDA. While additional knowledge in needed in broad areas of molecular electron transfer, some key areas of knowledge hold particular promise for the possibility of moving this area from science toward technology capable of contributing to the nation`s energy economy.

  12. Search for ultra-high energy photons with AMIGA muon counters

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, Nicolas Martin [Instituto de Tecnologias en Deteccion y Astroparticulas, Buenos Aires (Argentina); Institut fuer Kernphysik, Karlsruher Institut fuer Technologie. (Germany); Collaboration: Pierre-Auger-Collaboration

    2016-07-01

    The study of the composition of ultra-high energy (UHE) cosmic rays (CR) is one of the topical problems of astroparticle physics. The discovery of UHE photons, i.e. photons with energies around 1 EeV, in primary cosmic rays could be of particular interest for the field of astroparticle physics, and also for fundamental physics, since they are tracers of the highest-energy processes in the Universe. For the search for UHE photons at the Pierre Auger Observatory (PAO), several parameters have been proposed to distinguish between primary hadrons and photons. One of the most promising approaches to search for primary gamma rays is the study of the muon component in extensive air showers (EAS) produced in the interaction between the CR and the nuclei in the atmosphere. The number of muons in showers induced by gamma primaries is an order of magnitude lower than the hadronic primaries counterpart. The AMIGA extension of the PAO, consisting of an array of buried scintillators counters, allows the study of the muons produced during the EAS development. In this talk, the sensitivity of the muon counters to photon-initiated EAS and the possible discrimination procedures are discussed using dedicated EAS simulations with software package CORSIKA, including the detector response using the Offline package developed by the Pierre Auger Collaboration.

  13. Low-energy-consumption hybrid lasers for silicon photonics

    DEFF Research Database (Denmark)

    Chung, Il-Sug; Ran, Qijiang; Mørk, Jesper

    2012-01-01

    Physics and characteristics of a hybrid vertical-cavity laser that can be an on-chip Si light source with high speed and low energy consumption are discussed.......Physics and characteristics of a hybrid vertical-cavity laser that can be an on-chip Si light source with high speed and low energy consumption are discussed....

  14. Angular distribution of thick-target bremsstrahlung produced by electrons with initial energies ranging from 10 to 20 keV incident on Ag

    Energy Technology Data Exchange (ETDEWEB)

    Gonzales, D.; Cavness, B.; Williams, S. [Department of Physics, Angelo State University, San Angelo, Texas 76909 (United States)

    2011-11-15

    Experimental results are presented comparing the intensities of the bremsstrahlung produced by electrons with initial energies ranging from 10 to 20 keV incident on a thick Ag target, measured at forward angles in the range of 0 degree sign to 55 degree sign . When the data are corrected for attenuation due to photon absorption within the target, the results indicate that the detected radiation is distributed anisotropically only at photon energies k that are approximately equal to the initial energy of the incident electrons E{sub 0}. The results of our experiments suggest that, as k/E{sub 0}{yields} 0, the detected radiation essentially becomes isotropic due primarily to the scattering of electrons within the target. A comparison to the theory of Kissel et al.[At. Data Nucl. Data Tables 28, 381 (1983)] suggests that the angular distribution of bremsstrahlung emitted by electrons incident on thick targets is similar to the angular distribution of bremsstrahlung emitted by electrons incident on free-atom targets only when k/E{sub 0}{approx_equal} 1. The experimental data also are in approximate agreement with the angular distribution predictions of the Monte Carlo program penelope.

  15. Photon energy conversion by near-zero permittivity nonlinear materials

    Science.gov (United States)

    Luk, Ting S.; Sinclair, Michael B.; Campione, Salvatore

    2017-12-19

    Efficient harmonic light generation can be achieved with ultrathin films by coupling an incident pump wave to an epsilon-near-zero (ENZ) mode of the thin film. As an example, efficient third harmonic generation from an indium tin oxide nanofilm (.lamda./42 thick) on a glass substrate for a pump wavelength of 1.4 .mu.m was demonstrated. A conversion efficiency of 3.3.times.10.sup.-6 was achieved by exploiting the field enhancement properties of the ENZ mode with an enhancement factor of 200. This nanoscale frequency conversion method is applicable to other plasmonic materials and reststrahlen materials in proximity of the longitudinal optical phonon frequencies.

  16. Effective atomic numbers, electron densities and kinetic energy released in matter of vitamins for photon interaction

    Science.gov (United States)

    Shantappa, A.; Hanagodimath, S. M.

    2014-01-01

    Effective atomic numbers, electron densities of some vitamins (Retinol, Riboflavin, Niacin, Biotin, Folic acid, Cobalamin, Phylloquinone and Flavonoids) composed of C, H, O, N, Co, P and S have been calculated for total and partial photon interactions by the direct method for energy range 1 keV-100 GeV by using WinXCOM and kinetic energy released in matter (Kerma) relative to air is calculated in energy range of 1 keV-20 MeV. Change in effective atomic number and electron density with energy is calculated for all photon interactions. Variation of photon mass attenuation coefficients with energy are shown graphically only for total photon interaction. It is observed that change in mass attenuation coefficient with composition of different chemicals is very large below 100 keV and moderate between 100 keV and 10 MeV and negligible above 10 MeV. Behaviour of vitamins is almost indistinguishable except biotin and cobalamin because of large range of atomic numbers from 1(H) to 16 (S) and 1(H) to 27(Co) respectively. K a value shows a peak due to the photoelectric effect around K-absorption edge of high- Z constituent of compound for biotin and cobalamin.

  17. Derivation of electron and photon energy spectra from electron beam central axis depth dose curves

    Energy Technology Data Exchange (ETDEWEB)

    Deng Jun [Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305 (United States)]. E-mail: jun@reyes.stanford.edu; Jiang, Steve B.; Pawlicki, Todd; Li Jinsheng; Ma, C.M. [Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305 (United States)

    2001-05-01

    A method for deriving the electron and photon energy spectra from electron beam central axis percentage depth dose (PDD) curves has been investigated. The PDD curves of 6, 12 and 20 MeV electron beams obtained from the Monte Carlo full phase space simulations of the Varian linear accelerator treatment head have been used to test the method. We have employed a 'random creep' algorithm to determine the energy spectra of electrons and photons in a clinical electron beam. The fitted electron and photon energy spectra have been compared with the corresponding spectra obtained from the Monte Carlo full phase space simulations. Our fitted energy spectra are in good agreement with the Monte Carlo simulated spectra in terms of peak location, peak width, amplitude and smoothness of the spectrum. In addition, the derived depth dose curves of head-generated photons agree well in both shape and amplitude with those calculated using the full phase space data. The central axis depth dose curves and dose profiles at various depths have been compared using an automated electron beam commissioning procedure. The comparison has demonstrated that our method is capable of deriving the energy spectra for the Varian accelerator electron beams investigated. We have implemented this method in the electron beam commissioning procedure for Monte Carlo electron beam dose calculations. (author)

  18. The energy spectrum of 662 keV photons in a water equivalent phantom

    International Nuclear Information System (INIS)

    Akar Tarim, U.; Gurler, O.; Ozmutlu, E.N.; Yalcin, S.; Gundogdu, O.; Sharaf, J.M.; Bradley, D.A.

    2012-01-01

    Investigation is made on the energy spectrum of photons originating from interactions of 662 keV primary gamma-ray photons emitted by a point source positioned at the centre of a water equivalent solid phantom of dimensions 19 cm×19 cm×24 cm. Peaks resulting from total energy loss (photopeak) and multiple and back scattering have been observed using a 51 mm×51 mm NaI(Tl) detector; good agreement being found between the measured and simulated response functions. The energy spectrum of the gamma photons obtained through the Monte Carlo simulation reveals local maxima at about 100 keV and 210 keV, being also observed in the experimental response function. Such spectra can be used as a method of testing the water equivalence of solid phantom media before their use for dosimetry measurements. - Highlights: ► Peaks resulting from total energy loss (photopeak) and multiple and back scattering were observed. ► Energy distribution of γ-ray photons from a point source at the centre of a water equivalent solid phantom. ► The method can be applied to various detector geometries.

  19. Photon albedo coefficients as functions of μ/Zeff parameter

    Directory of Open Access Journals (Sweden)

    Ljubenov Vladan L.

    2013-01-01

    Full Text Available This paper presents the results of the analyses of photon reflection from planar targets for normal photon incidence and for different shielding materials (water, concrete, aluminum, iron, and copper, in the range of the initial photon energies from 20 keV to 300 keV. Calculations of photon reflection parameters based on the results of Monte Carlo simulations of the photon transport have been performed using MCNP4C code. Integral reflection coefficients, presented as functions of the ratio of total cross-section of photons and effective atomic number of target material, show universal behaviour for all the analyzed shielding materials in the selected energy domain.

  20. Fluorescence resonance energy transfer between conjugated molecules infiltrated in three-dimensional opal photonic crystals

    International Nuclear Information System (INIS)

    Zou, Lu; Sui, Ning; Wang, Ying-Hui; Qian, Cheng; Ma, Yu-Guang; Zhang, Han-Zhuang

    2015-01-01

    Fluorescence resonance energy transfer (FRET) from Coumarin 6 (C-6) to Sulforhodamine B (S-B) infiltrated into opal PMMA (poly-methyl-methacrylate) photonic crystals (PCs) has been studied in detail. The intrinsic mesh micro-porous structure of opal PCs could increase the luminescent efficiency through inhibiting the intermolecular interaction. Meanwhile, its structure of periodically varying refractive indices could also modify the FRET through affecting the luminescence characteristics of energy donor or energy acceptor. The results demonstrate that the FRET efficiency between conjugated dyes was easily modified by opal PCs. - Highlights: • We investigate the fluorescence resonance energy transfer between two kinds of dyes. • These two kinds of dyes are infiltrated in PMMA opal photonic crystals. • The structure of opal PCs could improve the luminescent characteristics. • The structure of opal PCs could improve the energy transfer characteristics

  1. Photon-photon colliders

    International Nuclear Information System (INIS)

    Sessler, A.M.

    1995-04-01

    Since the seminal work by Ginsburg, et at., the subject of giving the Next Linear Collider photon-photon capability, as well as electron-positron capability, has drawn much attention. A 1990 article by V.I. Teinov describes the situation at that time. In March 1994, the first workshop on this subject was held. This report briefly reviews the physics that can be achieved through the photon-photon channel and then focuses on the means of achieving such a collider. Also reviewed is the spectrum of backscattered Compton photons -- the best way of obtaining photons. We emphasize the spectrum actually obtained in a collider with both polarized electrons and photons (peaked at high energy and very different from a Compton spectrum). Luminosity is estimated for the presently considered colliders, and interaction and conversion-point geometries are described. Also specified are laser requirements (such as wavelength, peak power, and average power) and the lasers that might be employed. These include conventional and free-electron lasers. Finally, we describe the R ampersand D necessary to make either of these approaches viable and explore the use of the SLC as a test bed for a photon-photon collider of very high energy

  2. The highest energy cosmic rays, photons and neutrinos

    International Nuclear Information System (INIS)

    Zas, Enrique

    1998-01-01

    In these lectures I introduce and discuss aspects of currently active fields of interest related to the production, transport and detection of high energy particles from extraterrestrial sources. I have payed most attention to the highest energies and I have divided the material according to the types of particles which will be searched for with different experimental facilities in planning: hadrons, gamma rays and neutrinos. Particular attention is given to shower development, stochastic acceleration and detection techniques

  3. Workplace photon radiation fields

    International Nuclear Information System (INIS)

    Burgess, P.H.; Bartlett, D.T.; Ambrosi, P.

    1999-01-01

    The knowledge of workplace radiation fields is essential for measures in radiation protection. Information about the energy and directional distribution of the incident photon radiation was obtained by several devices developed by the National Radiation Protection Board, United Kingdom, by the Statens Stralskyddsinstitut, Sweden, together with EURADOS and by the Physikalisch-Technische Bundesanstalt, Germany. The devices are described and some results obtained at workplaces in nuclear industry, medicine and science in the photon energy range from 20 keV to 7 MeV are given. (author)

  4. Monte Carlo Investigation of Photon Beam Characteristics and its Variation with Incident Electron Beam Parameters for Indigenous Medical Linear Accelerator.

    Science.gov (United States)

    Mishra, Subhalaxmi; Dixit, P K; Selvam, T Palani; Yavalkar, Sanket S; Deshpande, D D

    2018-01-01

    A Monte Carlo model of a 6 MV medical linear accelerator (linac) unit built indigenously was developed using the BEAMnrc user code of the EGSnrc code system. The model was benchmarked against the measurements. Monte Carlo simulations were carried out for different incident electron beam parameters in the study. Simulation of indigenously developed linac unit has been carried out using the Monte Carlo based BEAMnrc user-code of the EGSnrc code system. Using the model, percentage depth dose (PDD), and lateral dose profiles were studied using the DOSXYZnrc user code. To identify appropriate electron parameters, three different distributions of electron beam intensity were investigated. For each case, the kinetic energy of the incident electron was varied from 6 to 6.5 MeV (0.1 MeV increment). The calculated dose data were compared against the measurements using the PTW, Germany make RFA dosimetric system (water tank MP3-M and 0.125 cm 3 ion chamber). The best fit of incident electron beam parameter was found for the combination of beam energy of 6.2 MeV and circular Gaussian distributed source in X and Y with FWHM of 1.0 mm. PDD and beam profiles (along both X and Y directions) were calculated for the field sizes from 5 cm × 5 cm to 25 cm × 25 cm. The dose difference between the calculated and measured PDD and profile values were under 1%, except for the penumbra region where the maximum deviation was found to be around 2%. A Monte Carlo model of indigenous linac (6 MV) has been developed and benchmarked against the measured data.

  5. Characterization of the Photon Energy Spectrum of a 6 MV Linac

    International Nuclear Information System (INIS)

    Hernandez Bojorquez, M.; Larraga, J. M.; Garcia, A.; Celis, M. A.; Martinez-Davalos, A.; Rodriguez-Villafuerte, M.

    2006-01-01

    In this work we study the influence of the purity of the materials used in experimental transmission measurements to obtain data to reconstruct the photon energy spectrum of a 6 MV Linac. We also evaluate the contribution to PDDs due to electron contamination in the reconstructed spectrum

  6. Photon induced x-ray fluorescence analysis using energy dispersive detector and dichotomous sampler

    International Nuclear Information System (INIS)

    Jaklevic, J.M.; Loo, B.W.; Goulding, F.S.

    1976-01-01

    Operating experience in using the photon-excited energy-dispersive x-ray fluorescence analysis system has demonstrated the applicability of this technique to large-scale air-sampling networks. This experience has shown that it is possible to perform automatic sampling and analysis of aerosol particulates at a sensitivity and accuracy more than adequate for most air pollution studies

  7. Low-energy photon-neutrino inelastic processes beyond the Standard Model

    CERN Document Server

    Abada, A.; Pittau, R.

    1999-01-01

    We investigate in this work the leading contributions of the MSSM with R-parity violation and of Left-Right models to the low-energy five-leg photon-neutrino processes. We discuss the results and compare them to the Standard Model ones.

  8. Millijoule Pulse Energy Second Harmonic Generation With Single-Stage Photonic Bandgap Rod Fiber Laser

    DEFF Research Database (Denmark)

    Laurila, Marko; Saby, Julien; Alkeskjold, Thomas Tanggaard

    2011-01-01

    In this paper, we demonstrate, for the first time, a single-stage Q-switched single-mode (SM) ytterbium-doped rod fiber laser delivering record breaking pulse energies at visible and UV light. We use a photonic bandgap rod fiber with a mode field diameter of 59μm based on a new distributed...

  9. Development of twin Ge detector for high energy photon measurement and its performance

    Energy Technology Data Exchange (ETDEWEB)

    Shigetome, Yoshiaki; Harada, Hideo [Power Reactor and Nuclear Fuel Development Corp., Tokai, Ibaraki (Japan). Tokai Works

    1998-03-01

    Prototype twin HPGe detector composed of two large HPGe crystals was developed to obtain better detection efficiency ({epsilon}) and P/T ratio, which was required for high energy photon spectroscopy. In this work, the performances of the twin HPGe detector were evaluated by computer simulation employing EGS4 code. (author)

  10. Photon and dilepton production in high-energy heavy-ion collisions

    Indian Academy of Sciences (India)

    2015-05-07

    May 7, 2015 ... The recent results on direct photons and dileptons in high-energy heavy-ion collisions, obtained particularly at Relativistic Heavy Ion Collider (RHIC) and Large Hadron Collider (LHC) are reviewed. The results are new not only in terms of the probes, but also in terms of the precision. We shall discuss the ...

  11. Energy in elastic fiber embedded in elastic matrix containing incident SH wave

    Science.gov (United States)

    Williams, James H., Jr.; Nagem, Raymond J.

    1989-01-01

    A single elastic fiber embedded in an infinite elastic matrix is considered. An incident plane SH wave is assumed in the infinite matrix, and an expression is derived for the total energy in the fiber due to the incident SH wave. A nondimensional form of the fiber energy is plotted as a function of the nondimensional wavenumber of the SH wave. It is shown that the fiber energy attains maximum values at specific values of the wavenumber of the incident wave. The results obtained here are interpreted in the context of phenomena observed in acousto-ultrasonic experiments on fiber reinforced composite materials.

  12. Dose calculation methods in photon beam therapy using energy deposition kernels

    International Nuclear Information System (INIS)

    Ahnesjoe, A.

    1991-01-01

    The problem of calculating accurate dose distributions in treatment planning of megavoltage photon radiation therapy has been studied. New dose calculation algorithms using energy deposition kernels have been developed. The kernels describe the transfer of energy by secondary particles from a primary photon interaction site to its surroundings. Monte Carlo simulations of particle transport have been used for derivation of kernels for primary photon energies form 0.1 MeV to 50 MeV. The trade off between accuracy and calculational speed has been addressed by the development of two algorithms; one point oriented with low computional overhead for interactive use and one for fast and accurate calculation of dose distributions in a 3-dimensional lattice. The latter algorithm models secondary particle transport in heterogeneous tissue by scaling energy deposition kernels with the electron density of the tissue. The accuracy of the methods has been tested using full Monte Carlo simulations for different geometries, and found to be superior to conventional algorithms based on scaling of broad beam dose distributions. Methods have also been developed for characterization of clinical photon beams in entities appropriate for kernel based calculation models. By approximating the spectrum as laterally invariant, an effective spectrum and dose distribution for contaminating charge particles are derived form depth dose distributions measured in water, using analytical constraints. The spectrum is used to calculate kernels by superposition of monoenergetic kernels. The lateral energy fluence distribution is determined by deconvolving measured lateral dose distributions by a corresponding pencil beam kernel. Dose distributions for contaminating photons are described using two different methods, one for estimation of the dose outside of the collimated beam, and the other for calibration of output factors derived from kernel based dose calculations. (au)

  13. One photon exchange processes and the calibration of polarization of high energy protons

    International Nuclear Information System (INIS)

    Margolis, B.; Thomas, G.H.

    1978-01-01

    Polarization phenomena in small momentum transfer high energy one-photon exchange processes in the reaction p + A → X + A where A is a complex nucleus and X is anything are examined. It is shown that these polarizations can be related directly to photoproduction polarization effects in the reaction γ + p → X at low energies. Explicit formulae are written for polarization effects in the case where X → π 0 + p

  14. Direct photon production and jet energy-loss in small systems

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Chun; Park, Chanwook [Department of Physics, McGill University, 3600 University Street, Montreal, QC, H3A 2T8 (Canada); Paquet, Jean-François [Department of Physics, McGill University, 3600 University Street, Montreal, QC, H3A 2T8 (Canada); Department of Physics & Astronomy, Stony Brook University, Stony Brook, NY 11733 (United States); Denicol, Gabriel S. [Department of Physics, McGill University, 3600 University Street, Montreal, QC, H3A 2T8 (Canada); Physics Department, Brookhaven National Laboratory, Upton, NY 11973 (United States); Jeon, Sangyong; Gale, Charles [Department of Physics, McGill University, 3600 University Street, Montreal, QC, H3A 2T8 (Canada)

    2016-12-15

    Two types of penetrating probes, direct photon and QCD jets, are investigated in the background of a small and rapidly expanding droplet of quark-gluon plasma. The additional thermal electromagnetic radiation results in a ∼50% enhancement of the direct photons. In high multiplicity p+Pb collisions, jets can lose a sizeable fraction of their initial energy, leading to a charged hadron R{sub pA} of ∼0.8 at a transverse momentum around 10 GeV. Those two proposed measurements can help understand the apparent collective behaviour observed in small collision systems.

  15. Intermediate-energy particle physics with real photons at the new direct-current accelerator ELSA

    International Nuclear Information System (INIS)

    Menze, D.

    1987-12-01

    The author reviews the physics of intermediate-energy photon interactions with nucleons and light nuclei. After a consideration of the photoproduction of mesons in the framework of the quark model and a description of the different polarization observables he discusses the photoproduction of pions, vector mesons, and kaons. In this connection the decay of baryon resonances of dibaryon resonances by photoexcitation of the deuteron are considered whereby also the polarization observables are described. Finally the photon reactions on three-nucleon systems are considered. (HSI)

  16. Bio-Inspired Photon Absorption and Energy Transfer for Next Generation Photovoltaic Devices

    Science.gov (United States)

    Magsi, Komal

    Nature's solar energy harvesting system, photosynthesis, serves as a model for photon absorption, spectra broadening, and energy transfer. Photosynthesis harvests light far differently than photovoltaic cells. These differences offer both engineering opportunity and scientific challenges since not all of the natural photon absorption mechanisms have been understood. In return, solar cells can be a very sensitive probe for the absorption characteristics of molecules capable of transferring charge to a conductive interface. The objective of this scientific work is the advancement of next generation photovoltaics through the development and application of natural photo-energy transfer processes. Two scientific methods were used in the development and application of enhancing photon absorption and transfer. First, a detailed analysis of photovoltaic front surface fluorescent spectral modification and light scattering by hetero-structure was conducted. Phosphor based spectral down-conversion is a well-known laser technology. The theoretical calculations presented here indicate that parasitic losses and light scattering within the spectral range are large enough to offset any expected gains. The second approach for enhancing photon absorption is based on bio-inspired mechanisms. Key to the utilization of these natural processes is the development of a detailed scientific understanding and the application of these processes to cost effective systems and devices. In this work both aspects are investigated. Dye type solar cells were prepared and tested as a function of Chlorophyll (or Sodium-Copper Chlorophyllin) and accessory dyes. Forster has shown that the fluorescence ratio of Chlorophyll is modified and broadened by separate photon absorption (sensitized absorption) through interaction with nearby accessory pigments. This work used the dye type solar cell as a diagnostic tool by which to investigate photon absorption and photon energy transfer. These experiments shed

  17. Free-Free Transitions of e-H System Inside a Dense Plasma Irradiated by a Laser Field at Very Low Incident Electron Energies

    Science.gov (United States)

    Bhatia, A. K.; Sinha, C.

    2012-01-01

    The free-free transition is studied for an electron-hydrogen in the ground state at low incident energies in the presence of an external homogenous, monochromatic, and linearly polarized laser-field inside a hot dense plasma.The effect of plasma screening is considered in the Debye-Huckel approximation. The calculations are performed in the soft photon limit, assuming that the plasma frequency is much higher than the laser frequency. The incident electron is considered to be dressed by the laser field in a nonperturbative manner by choosing the Volkov solutions in both the initial and final channels. The space part of the scattering wave function for the electron is solved numerically by taking into account the electron exchange. The laser-assisted differential and total cross sections are calculated for single-photon absorption /emission and no photon exchange in the soft photon limit, the laser intensity being much less than the atomic field intensity. The calculations have been carried out for various values of Debye parameter, ranging from 0.005 to 0.12. A strong suppression is noted in the laser-assisted cross sections as compared to the field-free situation. A significant difference is noted for the singlet and triplet cross sections. The suppression is much more in the triplet states.

  18. High Energy Conversion Efficiency with 3-D Micro-Patterned Photoanode for Enhancement Diffusivity and Modification of Photon Distribution in Dye-Sensitized Solar Cells.

    Science.gov (United States)

    Yun, Min Ju; Sim, Yeon Hyang; Cha, Seung I; Seo, Seon Hee; Lee, Dong Y

    2017-11-08

    Dye sensitize solar cells (DSSCs) have been considered as the promising alternatives silicon based solar cell with their characteristics including high efficiency under weak illumination and insensitive power output to incident angle. Therefore, many researches have been studied to improve the energy conversion efficiency of DSSCs. However the efficiency of DSSCs are still trapped at the around 10%. In this study, micro-scale hexagonal shape patterned photoanode have proposed to modify light distribution of photon. In the patterned electrode, the appearance efficiency have been obtained from 7.1% to 7.8% considered active area and the efficiency of 12.7% have been obtained based on the photoanode area. Enhancing diffusion of electrons and modification of photon distribution utilizing the morphology of the electrode are major factors to improving the performance of patterned electrode. Also, finite element method analyses of photon distributions were conducted to estimate morphological effect that influence on the photon distribution and current density. From our proposed study, it is expecting that patterned electrode is one of the solution to overcome the stagnant efficiency and one of the optimized geometry of electrode to modify photon distribution. Process of inter-patterning in photoanode has been minimized.

  19. Dose conversion coefficients for high-energy photons, electrons, neutrons and protons

    International Nuclear Information System (INIS)

    Sakamoto, Yukio

    2005-01-01

    Dose conversion coefficients for photons, electrons and neutrons based on new ICRP recommendations were cited in the ICRP Publication 74, but the energy ranges of these data were limited and there are no data for high energy radiations produced in accelerator facilities. For the purpose of designing the high intensity proton accelerator facilities at JAERI, the dose evaluation code system of high energy radiations based on the HERMES code was developed and the dose conversion coefficients of effective dose were evaluated for photons, neutrons and protons up to 10 GeV, and electrons up to 100 GeV. The dose conversion coefficients of effective dose equivalent were also evaluated using quality factors to consider the consistency between radiation weighting factors and Q-L relationship. The effective dose conversion coefficients obtained in this work were in good agreement with those recently evaluated by using FLUKA code for photons and electrons with all energies, and neutrons and protons below 500 MeV. There were some discrepancy between two data owing to the difference of cross sections in the nuclear reaction models. The dose conversion coefficients of effective dose equivalents for high energy radiations based on Q-L relation in ICRP Publication 60 were evaluated only in this work. The previous comparison between effective dose and effective dose equivalent made it clear that the radiation weighting factors for high energy neutrons and protons were overestimated and the modification was required. (author)

  20. Temporal evolution of photon energy emitted from two-component advective flows: origin of time lag

    Science.gov (United States)

    Chatterjee, Arka; Chakrabarti, Sandip K.; Ghosh, Himadri

    2017-12-01

    X-ray time lag of black hole candidates contains important information regarding the emission geometry. Recently, study of time lags from observational data revealed very intriguing properties. To investigate the real cause of this lag behavior with energy and spectral states, we study photon paths inside a two-component advective flow (TCAF) which appears to be a satisfactory model to explain the spectral and timing properties. We employ the Monte Carlo simulation technique to carry out the Comptonization process. We use a relativistic thick disk in Schwarzschild geometry as the CENtrifugal pressure supported BOundary Layer (CENBOL) which is the Compton cloud. In TCAF, this is the post-shock region of the advective component. Keplerian disk on the equatorial plane which is truncated at the inner edge i.e. at the outer boundary of the CENBOL, acts as the soft photon source. Ray-tracing code is employed to track the photons to a distantly located observer. We compute the cumulative time taken by a photon during Comptonization, reflection and following the curved geometry on the way to the observer. Time lags between various hard and soft bands have been calculated. We study the variation of time lags with accretion rates, CENBOL size and inclination angle. Time lags for different energy channels are plotted for different inclination angles. The general trend of variation of time lag with QPO frequency and energy as observed in satellite data is reproduced.

  1. Radiobiological characterization of different energy-photon beams used in radiotherapy from linear accelerator

    International Nuclear Information System (INIS)

    Elata, A.; Hassan, A. M. E.; Ali, E.; Calzolari, P.; Bettega, D.

    2009-02-01

    The main objective of this study was to perform a radiobiological characterization of different energy photon beams (6 MV and 15 MV) from linear accelerator used in radiotherapy, and comparison of different treatment modalities, with special regard to late effects of radiation. Using two end points, cell survival and micronucleus induction, in the biological system (Chines hamster V79 cell line). Chromosomes number was counted and found to be 22 chromosomes per cell. Cells were kept in confluent growth for two days and then exposed to two photon beams and immediately after irradiation were counted and re seeded in different numbered for each dose. For evaluation of surviving fraction samples were incubated at 37o C for 6 days, five samples were counted for each dose. At the same time three samples were seeded for the micronuclei frequency and incubated at 37o C after 24 hours cytochalasin-B was added to block cells in cytokinesis. The survival curve showed similar curves for the two beams and decreased with dose. The micronuclei frequency was positively correlated with dose and the energy of the photon. This indicates the presence of low dose of photoneutrons produced by using high energy photon beams. (Author)

  2. Experimental investigations of the neutron contamination in high-energy photon fields at medical linear accelerators

    International Nuclear Information System (INIS)

    Brunckhorst, Elin

    2009-01-01

    The scope of this thesis was to develop a device for the detection of the photoneutron dose inside the high-energy photon field. The photoneutron contamination of a Siemens PRIMUS linear accelerator was investigated in detail in its 15 MV photon mode. The experimental examinations were performed with three ionisation chambers (a tissue equivalent chamber, a magnesium chamber and a 10 B-coated magnesium chamber) and two types of thermoluminescence detectors (enriched with 6 Li and 7 Li, respectively). The detectors have different sensitivities to photons and neutrons and their combination allows the dose separation in a mixed neutron/photon field. The application of the ionisation chamber system, as well as the present TLD system for photoneutron detection in high-energy photon beams is a new approach. The TLD neutron sensitivity was found to be too low for a measurement inside the open photon field and the further investigation focused on the ionisation chambers. The three ionisation chambers were calibrated at different photon and neutron sources and a the borated magnesium chamber showed a very high response to thermal neutrons. For a cross check of the calibration, the three chambers were also used for dose separation of a boron neutron capture therapy beam where the exact determination of the thermal neutron dose is essential. Very accurate results were achieved for the thermal neutron dose component. At the linear accelerator the chamber system was reduced to a paired chamber system utilising the two magnesium chambers, since the fast neutron component was to small to be separated. The neutron calibration of the three chambers could not be applied, instead a conversion of measured thermal neutron signal by the borated chamber to Monte Carlo simulated total neutron dose was performed. Measurements for open fields in solid water and liquid water were performed with the paired chamber system. In larger depths the neutron dose could be determined with an

  3. Experimental investigations of the neutron contamination in high-energy photon fields at medical linear accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Brunckhorst, Elin

    2009-02-26

    The scope of this thesis was to develop a device for the detection of the photoneutron dose inside the high-energy photon field. The photoneutron contamination of a Siemens PRIMUS linear accelerator was investigated in detail in its 15 MV photon mode. The experimental examinations were performed with three ionisation chambers (a tissue equivalent chamber, a magnesium chamber and a {sup 10}B-coated magnesium chamber) and two types of thermoluminescence detectors (enriched with {sup 6}Li and {sup 7}Li, respectively). The detectors have different sensitivities to photons and neutrons and their combination allows the dose separation in a mixed neutron/photon field. The application of the ionisation chamber system, as well as the present TLD system for photoneutron detection in high-energy photon beams is a new approach. The TLD neutron sensitivity was found to be too low for a measurement inside the open photon field and the further investigation focused on the ionisation chambers. The three ionisation chambers were calibrated at different photon and neutron sources and a the borated magnesium chamber showed a very high response to thermal neutrons. For a cross check of the calibration, the three chambers were also used for dose separation of a boron neutron capture therapy beam where the exact determination of the thermal neutron dose is essential. Very accurate results were achieved for the thermal neutron dose component. At the linear accelerator the chamber system was reduced to a paired chamber system utilising the two magnesium chambers, since the fast neutron component was to small to be separated. The neutron calibration of the three chambers could not be applied, instead a conversion of measured thermal neutron signal by the borated chamber to Monte Carlo simulated total neutron dose was performed. Measurements for open fields in solid water and liquid water were performed with the paired chamber system. In larger depths the neutron dose could be determined

  4. Simulation of ultra-high energy photon propagation in the geomagnetic field

    Science.gov (United States)

    Homola, P.; Góra, D.; Heck, D.; Klages, H.; PeĶala, J.; Risse, M.; Wilczyńska, B.; Wilczyński, H.

    2005-12-01

    The identification of primary photons or specifying stringent limits on the photon flux is of major importance for understanding the origin of ultra-high energy (UHE) cosmic rays. UHE photons can initiate particle cascades in the geomagnetic field, which leads to significant changes in the subsequent atmospheric shower development. We present a Monte Carlo program allowing detailed studies of conversion and cascading of UHE photons in the geomagnetic field. The program named PRESHOWER can be used both as an independent tool or together with a shower simulation code. With the stand-alone version of the code it is possible to investigate various properties of the particle cascade induced by UHE photons interacting in the Earth's magnetic field before entering the Earth's atmosphere. Combining this program with an extensive air shower simulation code such as CORSIKA offers the possibility of investigating signatures of photon-initiated showers. In particular, features can be studied that help to discern such showers from the ones induced by hadrons. As an illustration, calculations for the conditions of the southern part of the Pierre Auger Observatory are presented. Catalogue identifier:ADWG Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADWG Program obtainable: CPC Program Library, Quen's University of Belfast, N. Ireland Computer on which the program has been thoroughly tested:Intel-Pentium based PC Operating system:Linux, DEC-Unix Programming language used:C, FORTRAN 77 Memory required to execute with typical data:Recipes, http://www.nr.com]. Nature of the physical problem:Simulation of a cascade of particles initiated by UHE photon passing through the geomagnetic field above the Earth's atmosphere. Method of solution: The primary photon is tracked until its conversion into ee pair or until it reaches the upper atmosphere. If conversion occurred each individual particle in the resultant preshower is checked for either bremsstrahlung radiation (electrons) or

  5. Review of high energy diffraction in real and virtual photon proton scattering at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Wolf, G.

    2009-07-15

    The electron-proton collider HERA at DESY opened the door for the study of diffraction in real and virtual photon-proton scattering at center-of-mass energies W up to 250 GeV and for large negative mass squared -Q{sup 2} of the virtual photon up to Q{sup 2}=1600 GeV{sup 2}. At W = 220 GeV and Q{sup 2}=4 GeV{sup 2}, diffraction accounts for about 15% of the total virtual photon proton cross section decreasing to {approx}5% at Q{sup 2}=200 GeV{sup 2}. An overview of the results obtained by the experiments H1 and ZEUS on the production of neutral vector mesons and on inclusive diffraction up to the year 2008 is presented. (orig.)

  6. Development and construction of the low-energy photon tagger NEPTUN

    Energy Technology Data Exchange (ETDEWEB)

    Lindenberg, K.

    2007-07-15

    Within the scope of this thesis a photon tagging system was designed and constructed at the superconducting Darmstadt electron linear accelerator (S-DALINAC). The set-up consists of a deflecting magnet, an array of focal plane detectors, the data acquisition system and new beam-line components. The system provides tagged photons in an energy range from 6 MeV to 20 MeV with the emphasis on best possible resolution and intensity. The absolute energy resolution of photons at 10 MeV is better than 25 keV. With the current focal-plane detectors a maximum rate of tagged photons of 10{sup 4}/(keV.s) can be achieved. An upgrade to more than 10{sup 5}/(keV.s) with an alternative detector array is under investigation. The design values mentioned above are the requirements for planned experiments in the fields of nuclear astrophysics and nuclear structure. The most important constraints which have to be considered arise from the special demands of ({gamma},n) reactions above but close to the particle threshold which generates slow neutrons with energies of a few hundreds of keV. The unambiguous assignment of slow neutrons to prompt electrons is done on-line in special buffered time-to-digital converters. With a design of the data acquisition for this scenario one also covers the requirements for experiments with prompt detection of the ejectiles such as in nuclear resonance fluorescence and ({gamma},n) far above the threshold. This photon tagging system enables to measure ({gamma},x) cross sections as a function of excitation energy and decay patterns after particle evaporation. It is an important extension to the high-flux activation experiments and the nuclear resonance fluorescence experiments below the threshold with untagged bremsstrahlung. (orig.)

  7. Development and construction of the low-energy photon tagger NEPTUN

    International Nuclear Information System (INIS)

    Lindenberg, K.

    2007-07-01

    Within the scope of this thesis a photon tagging system was designed and constructed at the superconducting Darmstadt electron linear accelerator (S-DALINAC). The set-up consists of a deflecting magnet, an array of focal plane detectors, the data acquisition system and new beam-line components. The system provides tagged photons in an energy range from 6 MeV to 20 MeV with the emphasis on best possible resolution and intensity. The absolute energy resolution of photons at 10 MeV is better than 25 keV. With the current focal-plane detectors a maximum rate of tagged photons of 10 4 /(keV.s) can be achieved. An upgrade to more than 10 5 /(keV.s) with an alternative detector array is under investigation. The design values mentioned above are the requirements for planned experiments in the fields of nuclear astrophysics and nuclear structure. The most important constraints which have to be considered arise from the special demands of (γ,n) reactions above but close to the particle threshold which generates slow neutrons with energies of a few hundreds of keV. The unambiguous assignment of slow neutrons to prompt electrons is done on-line in special buffered time-to-digital converters. With a design of the data acquisition for this scenario one also covers the requirements for experiments with prompt detection of the ejectiles such as in nuclear resonance fluorescence and (γ,n) far above the threshold. This photon tagging system enables to measure (γ,x) cross sections as a function of excitation energy and decay patterns after particle evaporation. It is an important extension to the high-flux activation experiments and the nuclear resonance fluorescence experiments below the threshold with untagged bremsstrahlung. (orig.)

  8. Monte Carlo simulation of MOSFET detectors for high-energy photon beams using the PENELOPE code

    Science.gov (United States)

    Panettieri, Vanessa; Amor Duch, Maria; Jornet, Núria; Ginjaume, Mercè; Carrasco, Pablo; Badal, Andreu; Ortega, Xavier; Ribas, Montserrat

    2007-01-01

    The aim of this work was the Monte Carlo (MC) simulation of the response of commercially available dosimeters based on metal oxide semiconductor field effect transistors (MOSFETs) for radiotherapeutic photon beams using the PENELOPE code. The studied Thomson&Nielsen TN-502-RD MOSFETs have a very small sensitive area of 0.04 mm2 and a thickness of 0.5 µm which is placed on a flat kapton base and covered by a rounded layer of black epoxy resin. The influence of different metallic and Plastic water™ build-up caps, together with the orientation of the detector have been investigated for the specific application of MOSFET detectors for entrance in vivo dosimetry. Additionally, the energy dependence of MOSFET detectors for different high-energy photon beams (with energy >1.25 MeV) has been calculated. Calculations were carried out for simulated 6 MV and 18 MV x-ray beams generated by a Varian Clinac 1800 linear accelerator, a Co-60 photon beam from a Theratron 780 unit, and monoenergetic photon beams ranging from 2 MeV to 10 MeV. The results of the validation of the simulated photon beams show that the average difference between MC results and reference data is negligible, within 0.3%. MC simulated results of the effect of the build-up caps on the MOSFET response are in good agreement with experimental measurements, within the uncertainties. In particular, for the 18 MV photon beam the response of the detectors under a tungsten cap is 48% higher than for a 2 cm Plastic water™ cap and approximately 26% higher when a brass cap is used. This effect is demonstrated to be caused by positron production in the build-up caps of higher atomic number. This work also shows that the MOSFET detectors produce a higher signal when their rounded side is facing the beam (up to 6%) and that there is a significant variation (up to 50%) in the response of the MOSFET for photon energies in the studied energy range. All the results have shown that the PENELOPE code system can

  9. Monte Carlo simulation of MOSFET detectors for high-energy photon beams using the PENELOPE code.

    Science.gov (United States)

    Panettieri, Vanessa; Duch, Maria Amor; Jornet, Núria; Ginjaume, Mercè; Carrasco, Pablo; Badal, Andreu; Ortega, Xavier; Ribas, Montserrat

    2007-01-07

    The aim of this work was the Monte Carlo (MC) simulation of the response of commercially available dosimeters based on metal oxide semiconductor field effect transistors (MOSFETs) for radiotherapeutic photon beams using the PENELOPE code. The studied Thomson&Nielsen TN-502-RD MOSFETs have a very small sensitive area of 0.04 mm(2) and a thickness of 0.5 microm which is placed on a flat kapton base and covered by a rounded layer of black epoxy resin. The influence of different metallic and Plastic water build-up caps, together with the orientation of the detector have been investigated for the specific application of MOSFET detectors for entrance in vivo dosimetry. Additionally, the energy dependence of MOSFET detectors for different high-energy photon beams (with energy >1.25 MeV) has been calculated. Calculations were carried out for simulated 6 MV and 18 MV x-ray beams generated by a Varian Clinac 1800 linear accelerator, a Co-60 photon beam from a Theratron 780 unit, and monoenergetic photon beams ranging from 2 MeV to 10 MeV. The results of the validation of the simulated photon beams show that the average difference between MC results and reference data is negligible, within 0.3%. MC simulated results of the effect of the build-up caps on the MOSFET response are in good agreement with experimental measurements, within the uncertainties. In particular, for the 18 MV photon beam the response of the detectors under a tungsten cap is 48% higher than for a 2 cm Plastic water cap and approximately 26% higher when a brass cap is used. This effect is demonstrated to be caused by positron production in the build-up caps of higher atomic number. This work also shows that the MOSFET detectors produce a higher signal when their rounded side is facing the beam (up to 6%) and that there is a significant variation (up to 50%) in the response of the MOSFET for photon energies in the studied energy range. All the results have shown that the PENELOPE code system can successfully

  10. High energy photons and neutrinos from gamma ray bursts

    International Nuclear Information System (INIS)

    Dar, A.

    1998-01-01

    The Hubble space telescope has recently discovered thousands of gigantic comet-like objects in a ring around the central star in the nearest planetary nebula. It is suggested that such circumstellar rings exist around most of stars. Collisions of the relativistic debris from gamma ray bursts in dense stellar regions with such gigantic comet-like objects, which have been stripped off from the circumstellar rings by gravitational perturbations, produce detectable fluxes of high energy gamma-rays and neutrinos from gamma ray bursts

  11. Photonic microstructures for energy-generating clear glass and net-zero energy buildings

    Science.gov (United States)

    Vasiliev, Mikhail; Alghamedi, Ramzy; Nur-E-Alam, Mohammad; Alameh, Kamal

    2016-01-01

    Transparent energy-harvesting windows are emerging as practical building-integrated photovoltaics (BIPV), capable of generating electricity while simultaneously reducing heating and cooling demands. By incorporating spectrally-selective diffraction gratings as light deflecting structures of high visible transparency into lamination interlayers and using improved spectrally-selective thin-film coatings, most of the visible solar radiation can be transmitted through the glass windows with minimum attenuation. At the same time, the ultraviolet (UV) and a part of incident solar infrared (IR) radiation energy are converted and/or deflected geometrically towards the panel edge for collection by CuInSe2 solar cells. Experimental results show power conversion efficiencies in excess of 3.04% in 10 cm × 10 cm vertically-placed clear glass panels facing direct sunlight, and up to 2.08% in 50 cm × 50 cm installation-ready framed window systems. These results confirm the emergence of a new class of solar window system ready for industrial application. PMID:27550827

  12. Dose conversion coefficients for high-energy photons, electrons, neutrons and protons

    CERN Document Server

    Sakamoto, Y; Sato, O; Tanaka, S I; Tsuda, S; Yamaguchi, Y; Yoshizawa, N

    2003-01-01

    In the International Commission on Radiological Protection (ICRP) 1990 Recommendations, radiation weighting factors were introduced in the place of quality factors, the tissue weighting factors were revised, and effective doses and equivalent doses of each tissues and organs were defined as the protection quantities. Dose conversion coefficients for photons, electrons and neutrons based on new ICRP recommendations were cited in the ICRP Publication 74, but the energy ranges of theses data were limited and there are no data for high energy radiations produced in accelerator facilities. For the purpose of designing the high intensity proton accelerator facilities at JAERI, the dose evaluation code system of high energy radiations based on the HERMES code was developed and the dose conversion coefficients of effective dose were evaluated for photons, neutrons and protons up to 10 GeV, and electrons up to 100 GeV. The dose conversion coefficients of effective dose equivalent were also evaluated using quality fact...

  13. On the absorbed dose determination method in high energy photon beams

    International Nuclear Information System (INIS)

    Scarlat, F.; Scarisoreanu, A.; Oane, M.; Mitru, E.; Avadanei, C.

    2008-01-01

    The absorbed dose determination method in water, based on standards of air kerma or exposure in high energy photon beams generated by electron with energies in the range of 1 MeV to 50 MeV is presented herein. The method is based on IAEA-398, AAPM TG-51, DIN 6800-2, IAEA-381, IAEA-277 and NACP-80 recommendations. The dosimetry equipment is composed of UNIDOS T 10005 electrometer and different ionization chambers calibrated in air kerma method in a Co 60 beam. Starting from the general formalism showed in IAEA-381, the determination of absorbed dose in water, under reference conditions in high energy photon beams, is given. This method was adopted for the secondary standard dosimetry laboratory (SSDL) in NILPRP-Bucharest

  14. Nanooptics for high efficient photon managment

    Science.gov (United States)

    Wyrowski, Frank; Schimmel, Hagen

    2005-09-01

    Optical systems for photon management, that is the generation of tailored electromagnetic fields, constitute one of the keys for innovation through photonics. An important subfield of photon management deals with the transformation of an incident light field into a field of specified intensity distribution. In this paper we consider some basic aspects of the nature of systems for those light transformations. It turns out, that the transversal redistribution of energy (TRE) is of central concern to achieve systems with high transformation efficiency. Besides established techniques nanostructured optical elements (NOE) are demanded to implement transversal energy redistribution. That builds a bridge between the needs of photon management, optical engineering, and nanooptics.

  15. The Dosepix detector—an energy-resolving photon-counting pixel detector for spectrometric measurements

    CERN Document Server

    Zang, A; Ballabriga, R; Bisello, F; Campbell, M; Celi, J C; Fauler, A; Fiederle, M; Jensch, M; Kochanski, N; Llopart, X; Michel, N; Mollenhauer, U; Ritter, I; Tennert, F; Wölfel, S; Wong, W; Michel, T

    2015-01-01

    The Dosepix detector is a hybrid photon-counting pixel detector based on ideas of the Medipix and Timepix detector family. 1 mm thick cadmium telluride and 300 μm thick silicon were used as sensor material. The pixel matrix of the Dosepix consists of 16 x 16 square pixels with 12 rows of (200 μm)2 and 4 rows of (55 μm)2 sensitive area for the silicon sensor layer and 16 rows of pixels with 220 μm pixel pitch for CdTe. Besides digital energy integration and photon-counting mode, a novel concept of energy binning is included in the pixel electronics, allowing energy-resolved measurements in 16 energy bins within one acquisition. The possibilities of this detector concept range from applications in personal dosimetry and energy-resolved imaging to quality assurance of medical X-ray sources by analysis of the emitted photon spectrum. In this contribution the Dosepix detector, its response to X-rays as well as spectrum measurements with Si and CdTe sensor layer are presented. Furthermore, a first evaluation wa...

  16. Electron and photon energy calibration with the ATLAS detector using LHC Run 1 data

    CERN Document Server

    Aad, Georges; Abdallah, Jalal; Abdel Khalek, Samah; Abdinov, Ovsat; Aben, Rosemarie; Abi, Babak; Abolins, Maris; AbouZeid, Ossama; Abramowicz, Halina; Abreu, Henso; Abreu, Ricardo; Abulaiti, Yiming; Acharya, Bobby Samir; Adamczyk, Leszek; Adams, David; Adelman, Jahred; Adomeit, Stefanie; Adye, Tim; Agatonovic-Jovin, Tatjana; Aguilar-Saavedra, Juan Antonio; Agustoni, Marco; Ahlen, Steven; Ahmadov, Faig; Aielli, Giulio; Akerstedt, Henrik; Åkesson, Torsten Paul Ake; Akimoto, Ginga; Akimov, Andrei; Alberghi, Gian Luigi; Albert, Justin; Albrand, Solveig; Alconada Verzini, Maria Josefina; Aleksa, Martin; Aleksandrov, Igor; Alexa, Calin; Alexander, Gideon; Alexandre, Gauthier; Alexopoulos, Theodoros; Alhroob, Muhammad; Alimonti, Gianluca; Alio, Lion; Alison, John; Allbrooke, Benedict; Allison, Lee John; Allport, Phillip; Almond, John; Aloisio, Alberto; Alonso, Alejandro; Alonso, Francisco; Alpigiani, Cristiano; Altheimer, Andrew David; Alvarez Gonzalez, Barbara; Alviggi, Mariagrazia; Amako, Katsuya; Amaral Coutinho, Yara; Amelung, Christoph; Amidei, Dante; Amor Dos Santos, Susana Patricia; Amorim, Antonio; Amoroso, Simone; Amram, Nir; Amundsen, Glenn; Anastopoulos, Christos; Ancu, Lucian Stefan; Andari, Nansi; Andeen, Timothy; Anders, Christoph Falk; Anders, Gabriel; Anderson, Kelby; Andreazza, Attilio; Andrei, George Victor; Anduaga, Xabier; Angelidakis, Stylianos; Angelozzi, Ivan; Anger, Philipp; Angerami, Aaron; Anghinolfi, Francis; Anisenkov, Alexey; Anjos, Nuno; Annovi, Alberto; Antonaki, Ariadni; Antonelli, Mario; Antonov, Alexey; Antos, Jaroslav; Anulli, Fabio; Aoki, Masato; Aperio Bella, Ludovica; Apolle, Rudi; Arabidze, Giorgi; Aracena, Ignacio; Arai, Yasuo; Araque, Juan Pedro; Arce, Ayana; Arguin, Jean-Francois; Argyropoulos, Spyridon; Arik, Metin; Armbruster, Aaron James; Arnaez, Olivier; Arnal, Vanessa; Arnold, Hannah; Arratia, Miguel; Arslan, Ozan; Artamonov, Andrei; Artoni, Giacomo; Asai, Shoji; Asbah, Nedaa; Ashkenazi, Adi; Åsman, Barbro; Asquith, Lily; Assamagan, Ketevi; Astalos, Robert; Atkinson, Markus; Atlay, Naim Bora; Auerbach, Benjamin; Augsten, Kamil; Aurousseau, Mathieu; Avolio, Giuseppe; Azuelos, Georges; Azuma, Yuya; Baak, Max; Baas, Alessandra; Bacci, Cesare; Bachacou, Henri; Bachas, Konstantinos; Backes, Moritz; Backhaus, Malte; Backus Mayes, John; Badescu, Elisabeta; Bagiacchi, Paolo; Bagnaia, Paolo; Bai, Yu; Bain, Travis; Baines, John; Baker, Oliver Keith; Balek, Petr; Balli, Fabrice; Banas, Elzbieta; Banerjee, Swagato; Bannoura, Arwa A E; Bansal, Vikas; Bansil, Hardeep Singh; Barak, Liron; Baranov, Sergei; Barberio, Elisabetta Luigia; Barberis, Dario; Barbero, Marlon; Barillari, Teresa; Barisonzi, Marcello; Barklow, Timothy; Barlow, Nick; Barnett, Bruce; Barnett, Michael; Barnovska, Zuzana; Baroncelli, Antonio; Barone, Gaetano; Barr, Alan; Barreiro, Fernando; Barreiro Guimarães da Costa, João; Bartoldus, Rainer; Barton, Adam Edward; Bartos, Pavol; Bartsch, Valeria; Bassalat, Ahmed; Basye, Austin; Bates, Richard; Batley, Richard; Battaglia, Marco; Battistin, Michele; Bauer, Florian; Bawa, Harinder Singh; Beattie, Michael David; Beau, Tristan; Beauchemin, Pierre-Hugues; Beccherle, Roberto; Bechtle, Philip; Beck, Hans Peter; Becker, Anne Kathrin; Becker, Sebastian; Beckingham, Matthew; Becot, Cyril; Beddall, Andrew; Beddall, Ayda; Bedikian, Sourpouhi; Bednyakov, Vadim; Bee, Christopher; Beemster, Lars; Beermann, Thomas; Begel, Michael; Behr, Katharina; Belanger-Champagne, Camille; Bell, Paul; Bell, William; Bella, Gideon; Bellagamba, Lorenzo; Bellerive, Alain; Bellomo, Massimiliano; Belotskiy, Konstantin; Beltramello, Olga; Benary, Odette; Benchekroun, Driss; Bendtz, Katarina; Benekos, Nektarios; Benhammou, Yan; Benhar Noccioli, Eleonora; Benitez Garcia, Jorge-Armando; Benjamin, Douglas; Bensinger, James; Benslama, Kamal; Bentvelsen, Stan; Berge, David; Bergeaas Kuutmann, Elin; Berger, Nicolas; Berghaus, Frank; Beringer, Jürg; Bernard, Clare; Bernat, Pauline; Bernius, Catrin; Bernlochner, Florian Urs; Berry, Tracey; Berta, Peter; Bertella, Claudia; Bertoli, Gabriele; Bertolucci, Federico; Bertsche, Carolyn; Bertsche, David; Besana, Maria Ilaria; Besjes, Geert-Jan; Bessidskaia, Olga; Bessner, Martin Florian; Besson, Nathalie; Betancourt, Christopher; Bethke, Siegfried; Bhimji, Wahid; Bianchi, Riccardo-Maria; Bianchini, Louis; Bianco, Michele; Biebel, Otmar; Bieniek, Stephen Paul; Bierwagen, Katharina; Biesiada, Jed; Biglietti, Michela; Bilbao De Mendizabal, Javier; Bilokon, Halina; Bindi, Marcello; Binet, Sebastien; Bingul, Ahmet; Bini, Cesare; Black, Curtis; Black, James; Black, Kevin; Blackburn, Daniel; Blair, Robert; Blanchard, Jean-Baptiste; Blazek, Tomas; Bloch, Ingo; Blocker, Craig; Blum, Walter; Blumenschein, Ulrike; Bobbink, Gerjan; Bobrovnikov, Victor; Bocchetta, Simona Serena; Bocci, Andrea; Bock, Christopher; Boddy, Christopher Richard; Boehler, Michael; Boek, Thorsten Tobias; Bogaerts, Joannes Andreas; Bogdanchikov, Alexander; Bogouch, Andrei; Bohm, Christian; Bohm, Jan; Boisvert, Veronique; Bold, Tomasz; Boldea, Venera; Boldyrev, Alexey; Bomben, Marco; Bona, Marcella; Boonekamp, Maarten; Borisov, Anatoly; Borissov, Guennadi; Borri, Marcello; Borroni, Sara; Bortfeldt, Jonathan; Bortolotto, Valerio; Bos, Kors; Boscherini, Davide; Bosman, Martine; Boterenbrood, Hendrik; Boudreau, Joseph; Bouffard, Julian; Bouhova-Thacker, Evelina Vassileva; Boumediene, Djamel Eddine; Bourdarios, Claire; Bousson, Nicolas; Boutouil, Sara; Boveia, Antonio; Boyd, James; Boyko, Igor; Bracinik, Juraj; Brandt, Andrew; Brandt, Gerhard; Brandt, Oleg; Bratzler, Uwe; Brau, Benjamin; Brau, James; Braun, Helmut; Brazzale, Simone Federico; Brelier, Bertrand; Brendlinger, Kurt; Brennan, Amelia Jean; Brenner, Richard; Bressler, Shikma; Bristow, Kieran; Bristow, Timothy Michael; Britton, Dave; Brochu, Frederic; Brock, Ian; Brock, Raymond; Bromberg, Carl; Bronner, Johanna; Brooijmans, Gustaaf; Brooks, Timothy; Brooks, William; Brosamer, Jacquelyn; Brost, Elizabeth; Brown, Jonathan; Bruckman de Renstrom, Pawel; Bruncko, Dusan; Bruneliere, Renaud; Brunet, Sylvie; Bruni, Alessia; Bruni, Graziano; Bruschi, Marco; Bryngemark, Lene; Buanes, Trygve; Buat, Quentin; Bucci, Francesca; Buchholz, Peter; Buckingham, Ryan; Buckley, Andrew; Buda, Stelian Ioan; Budagov, Ioulian; Buehrer, Felix; Bugge, Lars; Bugge, Magnar Kopangen; Bulekov, Oleg; Bundock, Aaron Colin; Burckhart, Helfried; Burdin, Sergey; Burghgrave, Blake; Burke, Stephen; Burmeister, Ingo; Busato, Emmanuel; Büscher, Daniel; Büscher, Volker; Bussey, Peter; Buszello, Claus-Peter; Butler, Bart; Butler, John; Butt, Aatif Imtiaz; Buttar, Craig; Butterworth, Jonathan; Butti, Pierfrancesco; Buttinger, William; Buzatu, Adrian; Byszewski, Marcin; Cabrera Urbán, Susana; Caforio, Davide; Cakir, Orhan; Calafiura, Paolo; Calandri, Alessandro; Calderini, Giovanni; Calfayan, Philippe; Calkins, Robert; Caloba, Luiz; Calvet, David; Calvet, Samuel; Camacho Toro, Reina; Camarda, Stefano; Cameron, David; Caminada, Lea Michaela; Caminal Armadans, Roger; Campana, Simone; Campanelli, Mario; Campoverde, Angel; Canale, Vincenzo; Canepa, Anadi; Cano Bret, Marc; Cantero, Josu; Cantrill, Robert; Cao, Tingting; Capeans Garrido, Maria Del Mar; Caprini, Irinel; Caprini, Mihai; Capua, Marcella; Caputo, Regina; Cardarelli, Roberto; Carli, Tancredi; Carlino, Gianpaolo; Carminati, Leonardo; Caron, Sascha; Carquin, Edson; Carrillo-Montoya, German D; Carter, Janet; Carvalho, João; Casadei, Diego; Casado, Maria Pilar; Casolino, Mirkoantonio; Castaneda-Miranda, Elizabeth; Castelli, Angelantonio; Castillo Gimenez, Victoria; Castro, Nuno Filipe; Catastini, Pierluigi; Catinaccio, Andrea; Catmore, James; Cattai, Ariella; Cattani, Giordano; Caughron, Seth; Cavaliere, Viviana; Cavalli, Donatella; Cavalli-Sforza, Matteo; Cavasinni, Vincenzo; Ceradini, Filippo; Cerio, Benjamin; Cerny, Karel; Santiago Cerqueira, Augusto; Cerri, Alessandro; Cerrito, Lucio; Cerutti, Fabio; Cerv, Matevz; Cervelli, Alberto; Cetin, Serkant Ali; Chafaq, Aziz; Chakraborty, Dhiman; Chalupkova, Ina; Chang, Philip; Chapleau, Bertrand; Chapman, John Derek; Charfeddine, Driss; Charlton, Dave; Chau, Chav Chhiv; Chavez Barajas, Carlos Alberto; Cheatham, Susan; Chegwidden, Andrew; Chekanov, Sergei; Chekulaev, Sergey; Chelkov, Gueorgui; Chelstowska, Magda Anna; Chen, Chunhui; Chen, Hucheng; Chen, Karen; Chen, Liming; Chen, Shenjian; Chen, Xin; Chen, Ye; Chen, Yujiao; Cheng, Hok Chuen; Cheng, Yangyang; Cheplakov, Alexander; Cherkaoui El Moursli, Rajaa; Chernyatin, Valeriy; Cheu, Elliott; Chevalier, Laurent; Chiarella, Vitaliano; Chiefari, Giovanni; Childers, John Taylor; Chilingarov, Alexandre; Chiodini, Gabriele; Chisholm, Andrew; Chislett, Rebecca Thalatta; Chitan, Adrian; Chizhov, Mihail; Chouridou, Sofia; Chow, Bonnie Kar Bo; Chromek-Burckhart, Doris; Chu, Ming-Lee; Chudoba, Jiri; Chwastowski, Janusz; Chytka, Ladislav; Ciapetti, Guido; Ciftci, Abbas Kenan; Ciftci, Rena; Cinca, Diane; Cindro, Vladimir; Ciocio, Alessandra; Cirkovic, Predrag; Citron, Zvi Hirsh; Citterio, Mauro; Ciubancan, Mihai; Clark, Allan G; Clark, Philip James; Clarke, Robert; Cleland, Bill; Clemens, Jean-Claude; Clement, Christophe; Coadou, Yann; Cobal, Marina; Coccaro, Andrea; Cochran, James H; Coffey, Laurel; Cogan, Joshua Godfrey; Coggeshall, James; Cole, Brian; Cole, Stephen; Colijn, Auke-Pieter; Collot, Johann; Colombo, Tommaso; Colon, German; Compostella, Gabriele; Conde Muiño, Patricia; Coniavitis, Elias; Conidi, Maria Chiara; Connell, Simon Henry; Connelly, Ian; Consonni, Sofia Maria; Consorti, Valerio; Constantinescu, Serban; Conta, Claudio; Conti, Geraldine; Conventi, Francesco; Cooke, Mark; Cooper, Ben; Cooper-Sarkar, Amanda; Cooper-Smith, Neil; Copic, Katherine; Cornelissen, Thijs; Corradi, Massimo; Corriveau, Francois; Corso-Radu, Alina; Cortes-Gonzalez, Arely; Cortiana, Giorgio; Costa, Giuseppe; Costa, María José; Costanzo, Davide; Côté, David; Cottin, Giovanna; Cowan, Glen; Cox, Brian; Cranmer, Kyle; Cree, Graham; Crépé-Renaudin, Sabine; Crescioli, Francesco; Cribbs, Wayne Allen; Crispin Ortuzar, Mireia; Cristinziani, Markus; Croft, Vince; Crosetti, Giovanni; Cuciuc, Constantin-Mihai; Cuhadar Donszelmann, Tulay; Cummings, Jane; Curatolo, Maria; Cuthbert, Cameron; Czirr, Hendrik; Czodrowski, Patrick; Czyczula, Zofia; D'Auria, Saverio; D'Onofrio, Monica; Da Cunha Sargedas De Sousa, Mario Jose; Da Via, Cinzia; Dabrowski, Wladyslaw; Dafinca, Alexandru; Dai, Tiesheng; Dale, Orjan; Dallaire, Frederick; Dallapiccola, Carlo; Dam, Mogens; Daniells, Andrew Christopher; Dano Hoffmann, Maria; Dao, Valerio; Darbo, Giovanni; Darmora, Smita; Dassoulas, James; Dattagupta, Aparajita; Davey, Will; David, Claire; Davidek, Tomas; Davies, Eleanor; Davies, Merlin; Davignon, Olivier; Davison, Adam; Davison, Peter; Davygora, Yuriy; Dawe, Edmund; Dawson, Ian; Daya-Ishmukhametova, Rozmin; De, Kaushik; de Asmundis, Riccardo; De Castro, Stefano; De Cecco, Sandro; De Groot, Nicolo; de Jong, Paul; De la Torre, Hector; De Lorenzi, Francesco; De Nooij, Lucie; De Pedis, Daniele; De Salvo, Alessandro; De Sanctis, Umberto; De Santo, Antonella; De Vivie De Regie, Jean-Baptiste; Dearnaley, William James; Debbe, Ramiro; Debenedetti, Chiara; Dechenaux, Benjamin; Dedovich, Dmitri; Deigaard, Ingrid; Del Peso, Jose; Del Prete, Tarcisio; Deliot, Frederic; Delitzsch, Chris Malena; Deliyergiyev, Maksym; Dell'Acqua, Andrea; Dell'Asta, Lidia; Dell'Orso, Mauro; Della Pietra, Massimo; della Volpe, Domenico; Delmastro, Marco; Delsart, Pierre-Antoine; Deluca, Carolina; Demers, Sarah; Demichev, Mikhail; Demilly, Aurelien; Denisov, Sergey; Derendarz, Dominik; Derkaoui, Jamal Eddine; Derue, Frederic; Dervan, Paul; Desch, Klaus Kurt; Deterre, Cecile; Deviveiros, Pier-Olivier; Dewhurst, Alastair; Dhaliwal, Saminder; Di Ciaccio, Anna; Di Ciaccio, Lucia; Di Domenico, Antonio; Di Donato, Camilla; Di Girolamo, Alessandro; Di Girolamo, Beniamino; Di Mattia, Alessandro; Di Micco, Biagio; Di Nardo, Roberto; Di Simone, Andrea; Di Sipio, Riccardo; Di Valentino, David; Dias, Flavia; Diaz, Marco Aurelio; Diehl, Edward; Dietrich, Janet; Dietzsch, Thorsten; Diglio, Sara; Dimitrievska, Aleksandra; Dingfelder, Jochen; Dionisi, Carlo; Dita, Petre; Dita, Sanda; Dittus, Fridolin; Djama, Fares; Djobava, Tamar; Barros do Vale, Maria Aline; Do Valle Wemans, André; Doan, Thi Kieu Oanh; Dobos, Daniel; Doglioni, Caterina; Doherty, Tom; Dohmae, Takeshi; Dolejsi, Jiri; Dolezal, Zdenek; Dolgoshein, Boris; Donadelli, Marisilvia; Donati, Simone; Dondero, Paolo; Donini, Julien; Dopke, Jens; Doria, Alessandra; Dova, Maria-Teresa; Doyle, Tony; Dris, Manolis; Dubbert, Jörg; Dube, Sourabh; Dubreuil, Emmanuelle; Duchovni, Ehud; Duckeck, Guenter; Ducu, Otilia Anamaria; Duda, Dominik; Dudarev, Alexey; Dudziak, Fanny; Duflot, Laurent; Duguid, Liam; Dührssen, Michael; Dunford, Monica; Duran Yildiz, Hatice; Düren, Michael; Durglishvili, Archil; Dwuznik, Michal; Dyndal, Mateusz; Ebke, Johannes; Edson, William; Edwards, Nicholas Charles; Ehrenfeld, Wolfgang; Eifert, Till; Eigen, Gerald; Einsweiler, Kevin; Ekelof, Tord; El Kacimi, Mohamed; Ellert, Mattias; Elles, Sabine; Ellinghaus, Frank; Ellis, Nicolas; Elmsheuser, Johannes; Elsing, Markus; Emeliyanov, Dmitry; Enari, Yuji; Endner, Oliver Chris; Endo, Masaki; Engelmann, Roderich; Erdmann, Johannes; Ereditato, Antonio; Eriksson, Daniel; Ernis, Gunar; Ernst, Jesse; Ernst, Michael; Ernwein, Jean; Errede, Deborah; Errede, Steven; Ertel, Eugen; Escalier, Marc; Esch, Hendrik; Escobar, Carlos; Esposito, Bellisario; Etienvre, Anne-Isabelle; Etzion, Erez; Evans, Hal; Ezhilov, Alexey; Fabbri, Laura; Facini, Gabriel; Fakhrutdinov, Rinat; Falciano, Speranza; Falla, Rebecca Jane; Faltova, Jana; Fang, Yaquan; Fanti, Marcello; Farbin, Amir; Farilla, Addolorata; Farooque, Trisha; Farrell, Steven; Farrington, Sinead; Farthouat, Philippe; Fassi, Farida; Fassnacht, Patrick; Fassouliotis, Dimitrios; Favareto, Andrea; Fayard, Louis; Federic, Pavol; Fedin, Oleg; Fedorko, Wojciech; Fehling-Kaschek, Mirjam; Feigl, Simon; Feligioni, Lorenzo; Feng, Cunfeng; Feng, Eric; Feng, Haolu; Fenyuk, Alexander; Fernandez Perez, Sonia; Ferrag, Samir; Ferrando, James; Ferrari, Arnaud; Ferrari, Pamela; Ferrari, Roberto; Ferreira de Lima, Danilo Enoque; Ferrer, Antonio; Ferrere, Didier; Ferretti, Claudio; Ferretto Parodi, Andrea; Fiascaris, Maria; Fiedler, Frank; Filipčič, Andrej; Filipuzzi, Marco; Filthaut, Frank; Fincke-Keeler, Margret; Finelli, Kevin Daniel; Fiolhais, Miguel; Fiorini, Luca; Firan, Ana; Fischer, Adam; Fischer, Julia; Fisher, Wade Cameron; Fitzgerald, Eric Andrew; Flechl, Martin; Fleck, Ivor; Fleischmann, Philipp; Fleischmann, Sebastian; Fletcher, Gareth Thomas; Fletcher, Gregory; Flick, Tobias; Floderus, Anders; Flores Castillo, Luis; Florez Bustos, Andres Carlos; Flowerdew, Michael; Formica, Andrea; Forti, Alessandra; Fortin, Dominique; Fournier, Daniel; Fox, Harald; Fracchia, Silvia; Francavilla, Paolo; Franchini, Matteo; Franchino, Silvia; Francis, David; Franconi, Laura; Franklin, Melissa; Franz, Sebastien; Fraternali, Marco; French, Sky; Friedrich, Conrad; Friedrich, Felix; Froidevaux, Daniel; Frost, James; Fukunaga, Chikara; Fullana Torregrosa, Esteban; Fulsom, Bryan Gregory; Fuster, Juan; Gabaldon, Carolina; Gabizon, Ofir; Gabrielli, Alessandro; Gabrielli, Andrea; Gadatsch, Stefan; Gadomski, Szymon; Gagliardi, Guido; Gagnon, Pauline; Galea, Cristina; Galhardo, Bruno; Gallas, Elizabeth; Gallo, Valentina Santina; Gallop, Bruce; Gallus, Petr; Galster, Gorm Aske Gram Krohn; Gan, KK; Gao, Jun; Gao, Yongsheng; Garay Walls, Francisca; Garberson, Ford; García, Carmen; García Navarro, José Enrique; Garcia-Sciveres, Maurice; Gardner, Robert; Garelli, Nicoletta; Garonne, Vincent; Gatti, Claudio; Gaudio, Gabriella; Gaur, Bakul; Gauthier, Lea; Gauzzi, Paolo; Gavrilenko, Igor; Gay, Colin; Gaycken, Goetz; Gazis, Evangelos; Ge, Peng; Gecse, Zoltan; Gee, Norman; Geerts, Daniël Alphonsus Adrianus; Geich-Gimbel, Christoph; Gellerstedt, Karl; Gemme, Claudia; Gemmell, Alistair; Genest, Marie-Hélène; Gentile, Simonetta; George, Matthias; George, Simon; Gerbaudo, Davide; Gershon, Avi; Ghazlane, Hamid; Ghodbane, Nabil; Giacobbe, Benedetto; Giagu, Stefano; Giangiobbe, Vincent; Giannetti, Paola; Gianotti, Fabiola; Gibbard, Bruce; Gibson, Stephen; Gilchriese, Murdock; Gillam, Thomas; Gillberg, Dag; Gilles, Geoffrey; Gingrich, Douglas; Giokaris, Nikos; Giordani, MarioPaolo; Giordano, Raffaele; Giorgi, Filippo Maria; Giorgi, Francesco Michelangelo; Giraud, Pierre-Francois; Giugni, Danilo; Giuliani, Claudia; Giulini, Maddalena; Gjelsten, Børge Kile; Gkaitatzis, Stamatios; Gkialas, Ioannis; Gladilin, Leonid; Glasman, Claudia; Glatzer, Julian; Glaysher, Paul; Glazov, Alexandre; Glonti, George; Goblirsch-Kolb, Maximilian; Goddard, Jack Robert; Godfrey, Jennifer; Godlewski, Jan; Goeringer, Christian; Goldfarb, Steven; Golling, Tobias; Golubkov, Dmitry; Gomes, Agostinho; Gomez Fajardo, Luz Stella; Gonçalo, Ricardo; Goncalves Pinto Firmino Da Costa, Joao; Gonella, Laura; González de la Hoz, Santiago; Gonzalez Parra, Garoe; Gonzalez-Sevilla, Sergio; Goossens, Luc; Gorbounov, Petr Andreevich; Gordon, Howard; Gorelov, Igor; Gorini, Benedetto; Gorini, Edoardo; Gorišek, Andrej; Gornicki, Edward; Goshaw, Alfred; Gössling, Claus; Gostkin, Mikhail Ivanovitch; Gouighri, Mohamed; Goujdami, Driss; Goulette, Marc Phillippe; Goussiou, Anna; Goy, Corinne; Gozpinar, Serdar; Grabas, Herve Marie Xavier; Graber, Lars; Grabowska-Bold, Iwona; Grafström, Per; Grahn, Karl-Johan; Gramling, Johanna; Gramstad, Eirik; Grancagnolo, Sergio; Grassi, Valerio; Gratchev, Vadim; Gray, Heather; Graziani, Enrico; Grebenyuk, Oleg; Greenwood, Zeno Dixon; Gregersen, Kristian; Gregor, Ingrid-Maria; Grenier, Philippe; Griffiths, Justin; Grillo, Alexander; Grimm, Kathryn; Grinstein, Sebastian; Gris, Philippe Luc Yves; Grishkevich, Yaroslav; Grivaz, Jean-Francois; Grohs, Johannes Philipp; Grohsjean, Alexander; Gross, Eilam; Grosse-Knetter, Joern; Grossi, Giulio Cornelio; Groth-Jensen, Jacob; Grout, Zara Jane; Guan, Liang; Guescini, Francesco; Guest, Daniel; Gueta, Orel; Guicheney, Christophe; Guido, Elisa; Guillemin, Thibault; Guindon, Stefan; Gul, Umar; Gumpert, Christian; Gunther, Jaroslav; Guo, Jun; Gupta, Shaun; Gutierrez, Phillip; Gutierrez Ortiz, Nicolas Gilberto; Gutschow, Christian; Guttman, Nir; Guyot, Claude; Gwenlan, Claire; Gwilliam, Carl; Haas, Andy; Haber, Carl; Hadavand, Haleh Khani; Haddad, Nacim; Haefner, Petra; Hageböck, Stephan; Hajduk, Zbigniew; Hakobyan, Hrachya; Haleem, Mahsana; Hall, David; Halladjian, Garabed; Hamacher, Klaus; Hamal, Petr; Hamano, Kenji; Hamer, Matthias; Hamilton, Andrew; Hamilton, Samuel; Hamity, Guillermo Nicolas; Hamnett, Phillip George; Han, Liang; Hanagaki, Kazunori; Hanawa, Keita; Hance, Michael; Hanke, Paul; Hanna, Remie; Hansen, Jørgen Beck; Hansen, Jorn Dines; Hansen, Peter Henrik; Hara, Kazuhiko; Hard, Andrew; Harenberg, Torsten; Hariri, Faten; Harkusha, Siarhei; Harper, Devin; Harrington, Robert; Harris, Orin; Harrison, Paul Fraser; Hartjes, Fred; Hasegawa, Makoto; Hasegawa, Satoshi; Hasegawa, Yoji; Hasib, A; Hassani, Samira; Haug, Sigve; Hauschild, Michael; Hauser, Reiner; Havranek, Miroslav; Hawkes, Christopher; Hawkings, Richard John; Hawkins, Anthony David; Hayashi, Takayasu; Hayden, Daniel; Hays, Chris; Hayward, Helen; Haywood, Stephen; Head, Simon; Heck, Tobias; Hedberg, Vincent; Heelan, Louise; Heim, Sarah; Heim, Timon; Heinemann, Beate; Heinrich, Lukas; Hejbal, Jiri; Helary, Louis; Heller, Claudio; Heller, Matthieu; Hellman, Sten; Hellmich, Dennis; Helsens, Clement; Henderson, James; Henderson, Robert; Heng, Yang; Hengler, Christopher; Henrichs, Anna; Henriques Correia, Ana Maria; Henrot-Versille, Sophie; Hensel, Carsten; Herbert, Geoffrey Henry; Hernández Jiménez, Yesenia; Herrberg-Schubert, Ruth; Herten, Gregor; Hertenberger, Ralf; Hervas, Luis; Hesketh, Gavin Grant; Hessey, Nigel; Hickling, Robert; Higón-Rodriguez, Emilio; Hill, Ewan; Hill, John; Hiller, Karl Heinz; Hillert, Sonja; Hillier, Stephen; Hinchliffe, Ian; Hines, Elizabeth; Hirose, Minoru; Hirschbuehl, Dominic; Hobbs, John; Hod, Noam; Hodgkinson, Mark; Hodgson, Paul; Hoecker, Andreas; Hoeferkamp, Martin; Hoenig, Friedrich; Hoffman, Julia; Hoffmann, Dirk; Hofmann, Julia Isabell; Hohlfeld, Marc; Holmes, Tova Ray; Hong, Tae Min; Hooft van Huysduynen, Loek; Horii, Yasuyuki; Hostachy, Jean-Yves; Hou, Suen; Hoummada, Abdeslam; Howard, Jacob; Howarth, James; Hrabovsky, Miroslav; Hristova, Ivana; Hrivnac, Julius; Hryn'ova, Tetiana; Hsu, Catherine; Hsu, Pai-hsien Jennifer; Hsu, Shih-Chieh; Hu, Diedi; Hu, Xueye; Huang, Yanping; Hubacek, Zdenek; Hubaut, Fabrice; Huegging, Fabian; Huffman, Todd Brian; Hughes, Emlyn; Hughes, Gareth; Huhtinen, Mika; Hülsing, Tobias Alexander; Hurwitz, Martina; Huseynov, Nazim; Huston, Joey; Huth, John; Iacobucci, Giuseppe; Iakovidis, Georgios; Ibragimov, Iskander; Iconomidou-Fayard, Lydia; Ideal, Emma; Iengo, Paolo; Igonkina, Olga; Iizawa, Tomoya; Ikegami, Yoichi; Ikematsu, Katsumasa; Ikeno, Masahiro; Ilchenko, Iurii; Iliadis, Dimitrios; Ilic, Nikolina; Inamaru, Yuki; Ince, Tayfun; Ioannou, Pavlos; Iodice, Mauro; Iordanidou, Kalliopi; Ippolito, Valerio; Irles Quiles, Adrian; Isaksson, Charlie; Ishino, Masaya; Ishitsuka, Masaki; Ishmukhametov, Renat; Issever, Cigdem; Istin, Serhat; Iturbe Ponce, Julia Mariana; Iuppa, Roberto; Ivarsson, Jenny; Iwanski, Wieslaw; Iwasaki, Hiroyuki; Izen, Joseph; Izzo, Vincenzo; Jackson, Brett; Jackson, Matthew; Jackson, Paul; Jaekel, Martin; Jain, Vivek; Jakobs, Karl; Jakobsen, Sune; Jakoubek, Tomas; Jakubek, Jan; Jamin, David Olivier; Jana, Dilip; Jansen, Eric; Jansen, Hendrik; Janssen, Jens; Janus, Michel; Jarlskog, Göran; Javadov, Namig; Javůrek, Tomáš; Jeanty, Laura; Jejelava, Juansher; Jeng, Geng-yuan; Jennens, David; Jenni, Peter; Jentzsch, Jennifer; Jeske, Carl; Jézéquel, Stéphane; Ji, Haoshuang; Jia, Jiangyong; Jiang, Yi; Jimenez Belenguer, Marcos; Jin, Shan; Jinaru, Adam; Jinnouchi, Osamu; Joergensen, Morten Dam; Johansson, Erik; Johansson, Per; Johns, Kenneth; Jon-And, Kerstin; Jones, Graham; Jones, Roger; Jones, Tim; Jongmanns, Jan; Jorge, Pedro; Joshi, Kiran Daniel; Jovicevic, Jelena; Ju, Xiangyang; Jung, Christian; Jungst, Ralph Markus; Jussel, Patrick; Juste Rozas, Aurelio; Kaci, Mohammed; Kaczmarska, Anna; Kado, Marumi; Kagan, Harris; Kagan, Michael; Kajomovitz, Enrique; Kalderon, Charles William; Kama, Sami; Kamenshchikov, Andrey; Kanaya, Naoko; Kaneda, Michiru; Kaneti, Steven; Kantserov, Vadim; Kanzaki, Junichi; Kaplan, Benjamin; Kapliy, Anton; Kar, Deepak; Karakostas, Konstantinos; Karastathis, Nikolaos; Karnevskiy, Mikhail; Karpov, Sergey; Karpova, Zoya; Karthik, Krishnaiyengar; Kartvelishvili, Vakhtang; Karyukhin, Andrey; Kashif, Lashkar; Kasieczka, Gregor; Kass, Richard; Kastanas, Alex; Kataoka, Yousuke; Katre, Akshay; Katzy, Judith; Kaushik, Venkatesh; Kawagoe, Kiyotomo; Kawamoto, Tatsuo; Kawamura, Gen; Kazama, Shingo; Kazanin, Vassili; Kazarinov, Makhail; Keeler, Richard; Kehoe, Robert; Keil, Markus; Keller, John; Kempster, Jacob Julian; Keoshkerian, Houry; Kepka, Oldrich; Kerševan, Borut Paul; Kersten, Susanne; Kessoku, Kohei; Keung, Justin; Khalil-zada, Farkhad; Khandanyan, Hovhannes; Khanov, Alexander; Khodinov, Alexander; Khomich, Andrei; Khoo, Teng Jian; Khoriauli, Gia; Khoroshilov, Andrey; Khovanskiy, Valery; Khramov, Evgeniy; Khubua, Jemal; Kim, Hee Yeun; Kim, Hyeon Jin; Kim, Shinhong; Kimura, Naoki; Kind, Oliver; King, Barry; King, Matthew; King, Robert Steven Beaufoy; King, Samuel Burton; Kirk, Julie; Kiryunin, Andrey; Kishimoto, Tomoe; Kisielewska, Danuta; Kiss, Florian; Kittelmann, Thomas; Kiuchi, Kenji; Kladiva, Eduard; Klein, Max; Klein, Uta; Kleinknecht, Konrad; Klimek, Pawel; Klimentov, Alexei; Klingenberg, Reiner; Klinger, Joel Alexander; Klioutchnikova, Tatiana; Klok, Peter; Kluge, Eike-Erik; Kluit, Peter; Kluth, Stefan; Kneringer, Emmerich; Knoops, Edith; Knue, Andrea; Kobayashi, Dai; Kobayashi, Tomio; Kobel, Michael; Kocian, Martin; Kodys, Peter; Koevesarki, Peter; Koffas, Thomas; Koffeman, Els; Kogan, Lucy Anne; Kohlmann, Simon; Kohout, Zdenek; Kohriki, Takashi; Koi, Tatsumi; Kolanoski, Hermann; Koletsou, Iro; Koll, James; Komar, Aston; Komori, Yuto; Kondo, Takahiko; Kondrashova, Nataliia; Köneke, Karsten; König, Adriaan; König, Sebastian; Kono, Takanori; Konoplich, Rostislav; Konstantinidis, Nikolaos; Kopeliansky, Revital; Koperny, Stefan; Köpke, Lutz; Kopp, Anna Katharina; Korcyl, Krzysztof; Kordas, Kostantinos; Korn, Andreas; Korol, Aleksandr; Korolkov, Ilya; Korolkova, Elena; Korotkov, Vladislav; Kortner, Oliver; Kortner, Sandra; Kostyukhin, Vadim; Kotov, Vladislav; Kotwal, Ashutosh; Kourkoumelis, Christine; Kouskoura, Vasiliki; Koutsman, Alex; Kowalewski, Robert Victor; Kowalski, Tadeusz; Kozanecki, Witold; Kozhin, Anatoly; Kral, Vlastimil; Kramarenko, Viktor; Kramberger, Gregor; Krasnopevtsev, Dimitriy; Krasny, Mieczyslaw Witold; Krasznahorkay, Attila; Kraus, Jana; Kravchenko, Anton; Kreiss, Sven; Kretz, Moritz; Kretzschmar, Jan; Kreutzfeldt, Kristof; Krieger, Peter; Kroeninger, Kevin; Kroha, Hubert; Kroll, Joe; Kroseberg, Juergen; Krstic, Jelena; Kruchonak, Uladzimir; Krüger, Hans; Kruker, Tobias; Krumnack, Nils; Krumshteyn, Zinovii; Kruse, Amanda; Kruse, Mark; Kruskal, Michael; Kubota, Takashi; Kuday, Sinan; Kuehn, Susanne; Kugel, Andreas; Kuhl, Andrew; Kuhl, Thorsten; Kukhtin, Victor; Kulchitsky, Yuri; Kuleshov, Sergey; Kuna, Marine; Kunkle, Joshua; Kupco, Alexander; Kurashige, Hisaya; Kurochkin, Yurii; Kurumida, Rie; Kus, Vlastimil; Kuwertz, Emma Sian; Kuze, Masahiro; Kvita, Jiri; La Rosa, Alessandro; La Rotonda, Laura; Lacasta, Carlos; Lacava, Francesco; Lacey, James; Lacker, Heiko; Lacour, Didier; Lacuesta, Vicente Ramón; Ladygin, Evgueni; Lafaye, Remi; Laforge, Bertrand; Lagouri, Theodota; Lai, Stanley; Laier, Heiko; Lambourne, Luke; Lammers, Sabine; Lampen, Caleb; Lampl, Walter; Lançon, Eric; Landgraf, Ulrich; Landon, Murrough; Lang, Valerie Susanne; Lankford, Andrew; Lanni, Francesco; Lantzsch, Kerstin; Laplace, Sandrine; Lapoire, Cecile; Laporte, Jean-Francois; Lari, Tommaso; Lassnig, Mario; Laurelli, Paolo; Lavrijsen, Wim; Law, Alexander; Laycock, Paul; Le Dortz, Olivier; Le Guirriec, Emmanuel; Le Menedeu, Eve; LeCompte, Thomas; Ledroit-Guillon, Fabienne Agnes Marie; Lee, Claire Alexandra; Lee, Hurng-Chun; Lee, Jason; Lee, Shih-Chang; Lee, Lawrence; Lefebvre, Guillaume; Lefebvre, Michel; Legger, Federica; Leggett, Charles; Lehan, Allan; Lehmacher, Marc; Lehmann Miotto, Giovanna; Lei, Xiaowen; Leight, William Axel; Leisos, Antonios; Leister, Andrew Gerard; Leite, Marco Aurelio Lisboa; Leitner, Rupert; Lellouch, Daniel; Lemmer, Boris; Leney, Katharine; Lenz, Tatjana; Lenzen, Georg; Lenzi, Bruno; Leone, Robert; Leone, Sandra; Leonhardt, Kathrin; Leonidopoulos, Christos; Leontsinis, Stefanos; Leroy, Claude; Lester, Christopher; Lester, Christopher Michael; Levchenko, Mikhail; Levêque, Jessica; Levin, Daniel; Levinson, Lorne; Levy, Mark; Lewis, Adrian; Lewis, George; Leyko, Agnieszka; Leyton, Michael; Li, Bing; Li, Bo; Li, Haifeng; Li, Ho Ling; Li, Lei; Li, Liang; Li, Shu; Li, Yichen; Liang, Zhijun; Liao, Hongbo; Liberti, Barbara; Lichard, Peter; Lie, Ki; Liebal, Jessica; Liebig, Wolfgang; Limbach, Christian; Limosani, Antonio; Lin, Simon; Lin, Tai-Hua; Linde, Frank; Lindquist, Brian Edward; Linnemann, James; Lipeles, Elliot; Lipniacka, Anna; Lisovyi, Mykhailo; Liss, Tony; Lissauer, David; Lister, Alison; Litke, Alan; Liu, Bo; Liu, Dong; Liu, Jianbei; Liu, Kun; Liu, Lulu; Liu, Miaoyuan; Liu, Minghui; Liu, Yanwen; Livan, Michele; Livermore, Sarah; Lleres, Annick; Llorente Merino, Javier; Lloyd, Stephen; Lo Sterzo, Francesco; Lobodzinska, Ewelina; Loch, Peter; Lockman, William; Loddenkoetter, Thomas; Loebinger, Fred; Loevschall-Jensen, Ask Emil; Loginov, Andrey; Lohse, Thomas; Lohwasser, Kristin; Lokajicek, Milos; Lombardo, Vincenzo Paolo; Long, Brian Alexander; Long, Jonathan; Long, Robin Eamonn; Lopes, Lourenco; Lopez Mateos, David; Lopez Paredes, Brais; Lopez Paz, Ivan; Lorenz, Jeanette; Lorenzo Martinez, Narei; Losada, Marta; Loscutoff, Peter; Lou, XinChou; Lounis, Abdenour; Love, Jeremy; Love, Peter; Lowe, Andrew; Lu, Feng; Lu, Nan; Lubatti, Henry; Luci, Claudio; Lucotte, Arnaud; Luehring, Frederick; Lukas, Wolfgang; Luminari, Lamberto; Lundberg, Olof; Lund-Jensen, Bengt; Lungwitz, Matthias; Lynn, David; Lysak, Roman; Lytken, Else; Ma, Hong; Ma, Lian Liang; Maccarrone, Giovanni; Macchiolo, Anna; Machado Miguens, Joana; Macina, Daniela; Madaffari, Daniele; Madar, Romain; Maddocks, Harvey Jonathan; Mader, Wolfgang; Madsen, Alexander; Maeno, Mayuko; Maeno, Tadashi; Magradze, Erekle; Mahboubi, Kambiz; Mahlstedt, Joern; Mahmoud, Sara; Maiani, Camilla; Maidantchik, Carmen; Maier, Andreas Alexander; Maio, Amélia; Majewski, Stephanie; Makida, Yasuhiro; Makovec, Nikola; Mal, Prolay; Malaescu, Bogdan; Malecki, Pawel; Maleev, Victor; Malek, Fairouz; Mallik, Usha; Malon, David; Malone, Caitlin; Maltezos, Stavros; Malyshev, Vladimir; Malyukov, Sergei; Mamuzic, Judita; Mandelli, Beatrice; Mandelli, Luciano; Mandić, Igor; Mandrysch, Rocco; Maneira, José; Manfredini, Alessandro; Manhaes de Andrade Filho, Luciano; Manjarres Ramos, Joany Andreina; Mann, Alexander; Manning, Peter; Manousakis-Katsikakis, Arkadios; Mansoulie, Bruno; Mantifel, Rodger; Mapelli, Livio; March, Luis; Marchand, Jean-Francois; Marchiori, Giovanni; Marcisovsky, Michal; Marino, Christopher; Marjanovic, Marija; Marques, Carlos; Marroquim, Fernando; Marsden, Stephen Philip; Marshall, Zach; Marti, Lukas Fritz; Marti-Garcia, Salvador; Martin, Brian; Martin, Brian Thomas; Martin, Tim; Martin, Victoria Jane; Martin dit Latour, Bertrand; Martinez, Homero; Martinez, Mario; Martin-Haugh, Stewart; Martyniuk, Alex; Marx, Marilyn; Marzano, Francesco; Marzin, Antoine; Masetti, Lucia; Mashimo, Tetsuro; Mashinistov, Ruslan; Masik, Jiri; Maslennikov, Alexey; Massa, Ignazio; Massa, Lorenzo; Massol, Nicolas; Mastrandrea, Paolo; Mastroberardino, Anna; Masubuchi, Tatsuya; Mättig, Peter; Mattmann, Johannes; Maurer, Julien; Maxfield, Stephen; Maximov, Dmitriy; Mazini, Rachid; Mazzaferro, Luca; Mc Goldrick, Garrin; Mc Kee, Shawn Patrick; McCarn, Allison; McCarthy, Robert; McCarthy, Tom; McCubbin, Norman; McFarlane, Kenneth; Mcfayden, Josh; Mchedlidze, Gvantsa; McMahon, Steve; McPherson, Robert; Meade, Andrew; Mechnich, Joerg; Medinnis, Michael; Meehan, Samuel; Mehlhase, Sascha; Mehta, Andrew; Meier, Karlheinz; Meineck, Christian; Meirose, Bernhard; Melachrinos, Constantinos; Mellado Garcia, Bruce Rafael; Meloni, Federico; Mengarelli, Alberto; Menke, Sven; Meoni, Evelin; Mercurio, Kevin Michael; Mergelmeyer, Sebastian; Meric, Nicolas; Mermod, Philippe; Merola, Leonardo; Meroni, Chiara; Merritt, Frank; Merritt, Hayes; Messina, Andrea; Metcalfe, Jessica; Mete, Alaettin Serhan; Meyer, Carsten; Meyer, Christopher; Meyer, Jean-Pierre; Meyer, Jochen; Middleton, Robin; Migas, Sylwia; Mijović, Liza; Mikenberg, Giora; Mikestikova, Marcela; Mikuž, Marko; Milic, Adriana; Miller, David; Mills, Corrinne; Milov, Alexander; Milstead, David; Milstein, Dmitry; Minaenko, Andrey; Minashvili, Irakli; Mincer, Allen; Mindur, Bartosz; Mineev, Mikhail; Ming, Yao; Mir, Lluisa-Maria; Mirabelli, Giovanni; Mitani, Takashi; Mitrevski, Jovan; Mitsou, Vasiliki A; Mitsui, Shingo; Miucci, Antonio; Miyagawa, Paul; Mjörnmark, Jan-Ulf; Moa, Torbjoern; Mochizuki, Kazuya; Mohapatra, Soumya; Mohr, Wolfgang; Molander, Simon; Moles-Valls, Regina; Mönig, Klaus; Monini, Caterina; Monk, James; Monnier, Emmanuel; Montejo Berlingen, Javier; Monticelli, Fernando; Monzani, Simone; Moore, Roger; Morange, Nicolas; Moreno, Deywis; Moreno Llácer, María; Morettini, Paolo; Morgenstern, Marcus; Morii, Masahiro; Moritz, Sebastian; Morley, Anthony Keith; Mornacchi, Giuseppe; Morris, John; Morvaj, Ljiljana; Moser, Hans-Guenther; Mosidze, Maia; Moss, Josh; Motohashi, Kazuki; Mount, Richard; Mountricha, Eleni; Mouraviev, Sergei; Moyse, Edward; Muanza, Steve; Mudd, Richard; Mueller, Felix; Mueller, James; Mueller, Klemens; Mueller, Thibaut; Mueller, Timo; Muenstermann, Daniel; Munwes, Yonathan; Murillo Quijada, Javier Alberto; Murray, Bill; Musheghyan, Haykuhi; Musto, Elisa; Myagkov, Alexey; Myska, Miroslav; Nackenhorst, Olaf; Nadal, Jordi; Nagai, Koichi; Nagai, Ryo; Nagai, Yoshikazu; Nagano, Kunihiro; Nagarkar, Advait; Nagasaka, Yasushi; Nagel, Martin; Nairz, Armin Michael; Nakahama, Yu; Nakamura, Koji; Nakamura, Tomoaki; Nakano, Itsuo; Namasivayam, Harisankar; Nanava, Gizo; Narayan, Rohin; Nattermann, Till; Naumann, Thomas; Navarro, Gabriela; Nayyar, Ruchika; Neal, Homer; Nechaeva, Polina; Neep, Thomas James; Nef, Pascal Daniel; Negri, Andrea; Negri, Guido; Negrini, Matteo; Nektarijevic, Snezana; Nelson, Andrew; Nelson, Timothy Knight; Nemecek, Stanislav; Nemethy, Peter; Nepomuceno, Andre Asevedo; Nessi, Marzio; Neubauer, Mark; Neumann, Manuel; Neves, Ricardo; Nevski, Pavel; Newman, Paul; Nguyen, Duong Hai; Nickerson, Richard; Nicolaidou, Rosy; Nicquevert, Bertrand; Nielsen, Jason; Nikiforou, Nikiforos; Nikiforov, Andriy; Nikolaenko, Vladimir; Nikolic-Audit, Irena; Nikolics, Katalin; Nikolopoulos, Konstantinos; Nilsson, Paul; Ninomiya, Yoichi; Nisati, Aleandro; Nisius, Richard; Nobe, Takuya; Nodulman, Lawrence; Nomachi, Masaharu; Nomidis, Ioannis; Norberg, Scarlet; Nordberg, Markus; Novgorodova, Olga; Nowak, Sebastian; Nozaki, Mitsuaki; Nozka, Libor; Ntekas, Konstantinos; Nunes Hanninger, Guilherme; Nunnemann, Thomas; Nurse, Emily; Nuti, Francesco; O'Brien, Brendan Joseph; O'grady, Fionnbarr; O'Neil, Dugan; O'Shea, Val; Oakham, Gerald; Oberlack, Horst; Obermann, Theresa; Ocariz, Jose; Ochi, Atsuhiko; Ochoa, Ines; Oda, Susumu; Odaka, Shigeru; Ogren, Harold; Oh, Alexander; Oh, Seog; Ohm, Christian; Ohman, Henrik; Okamura, Wataru; Okawa, Hideki; Okumura, Yasuyuki; Okuyama, Toyonobu; Olariu, Albert; Olchevski, Alexander; Olivares Pino, Sebastian Andres; Oliveira Damazio, Denis; Oliver Garcia, Elena; Olszewski, Andrzej; Olszowska, Jolanta; Onofre, António; Onyisi, Peter; Oram, Christopher; Oreglia, Mark; Oren, Yona; Orestano, Domizia; Orlando, Nicola; Oropeza Barrera, Cristina; Orr, Robert; Osculati, Bianca; Ospanov, Rustem; Otero y Garzon, Gustavo; Otono, Hidetoshi; Ouchrif, Mohamed; Ouellette, Eric; Ould-Saada, Farid; Ouraou, Ahmimed; Oussoren, Koen Pieter; Ouyang, Qun; Ovcharova, Ana; Owen, Mark; Ozcan, Veysi Erkcan; Ozturk, Nurcan; Pachal, Katherine; Pacheco Pages, Andres; Padilla Aranda, Cristobal; Pagáčová, Martina; Pagan Griso, Simone; Paganis, Efstathios; Pahl, Christoph; Paige, Frank; Pais, Preema; Pajchel, Katarina; Palacino, Gabriel; Palestini, Sandro; Palka, Marek; Pallin, Dominique; Palma, Alberto; Palmer, Jody; Pan, Yibin; Panagiotopoulou, Evgenia; Panduro Vazquez, William; Pani, Priscilla; Panikashvili, Natalia; Panitkin, Sergey; Pantea, Dan; Paolozzi, Lorenzo; Papadopoulou, Theodora; Papageorgiou, Konstantinos; Paramonov, Alexander; Paredes Hernandez, Daniela; Parker, Michael Andrew; Parodi, Fabrizio; Parsons, John; Parzefall, Ulrich; Pasqualucci, Enrico; Passaggio, Stefano; Passeri, Antonio; Pastore, Fernanda; Pastore, Francesca; Pásztor, Gabriella; Pataraia, Sophio; Patel, Nikhul; Pater, Joleen; Patricelli, Sergio; Pauly, Thilo; Pearce, James; Pedersen, Lars Egholm; Pedersen, Maiken; Pedraza Lopez, Sebastian; Pedro, Rute; Peleganchuk, Sergey; Pelikan, Daniel; Peng, Haiping; Penning, Bjoern; Penwell, John; Perepelitsa, Dennis; Perez Codina, Estel; Pérez García-Estañ, María Teresa; Perez Reale, Valeria; Perini, Laura; Pernegger, Heinz; Perrino, Roberto; Peschke, Richard; Peshekhonov, Vladimir; Peters, Krisztian; Peters, Yvonne; Petersen, Brian; Petersen, Troels; Petit, Elisabeth; Petridis, Andreas; Petridou, Chariclia; Petrolo, Emilio; Petrucci, Fabrizio; Pettersson, Nora Emilia; Pezoa, Raquel; Phillips, Peter William; Piacquadio, Giacinto; Pianori, Elisabetta; Picazio, Attilio; Piccaro, Elisa; Piccinini, Maurizio; Piegaia, Ricardo; Pignotti, David; Pilcher, James; Pilkington, Andrew; Pina, João Antonio; Pinamonti, Michele; Pinder, Alex; Pinfold, James; Pingel, Almut; Pinto, Belmiro; Pires, Sylvestre; Pitt, Michael; Pizio, Caterina; Plazak, Lukas; Pleier, Marc-Andre; Pleskot, Vojtech; Plotnikova, Elena; Plucinski, Pawel; Poddar, Sahill; Podlyski, Fabrice; Poettgen, Ruth; Poggioli, Luc; Pohl, David-leon; Pohl, Martin; Polesello, Giacomo; Policicchio, Antonio; Polifka, Richard; Polini, Alessandro; Pollard, Christopher Samuel; Polychronakos, Venetios; Pommès, Kathy; Pontecorvo, Ludovico; Pope, Bernard; Popeneciu, Gabriel Alexandru; Popovic, Dragan; Poppleton, Alan; Portell Bueso, Xavier; Pospisil, Stanislav; Potamianos, Karolos; Potrap, Igor; Potter, Christina; Potter, Christopher; Poulard, Gilbert; Poveda, Joaquin; Pozdnyakov, Valery; Pralavorio, Pascal; Pranko, Aliaksandr; Prasad, Srivas; Pravahan, Rishiraj; Prell, Soeren; Price, Darren; Price, Joe; Price, Lawrence; Prieur, Damien; Primavera, Margherita; Proissl, Manuel; Prokofiev, Kirill; Prokoshin, Fedor; Protopapadaki, Eftychia-sofia; Protopopescu, Serban; Proudfoot, James; Przybycien, Mariusz; Przysiezniak, Helenka; Ptacek, Elizabeth; Puddu, Daniele; Pueschel, Elisa; Puldon, David; Purohit, Milind; Puzo, Patrick; Qian, Jianming; Qin, Gang; Qin, Yang; Quadt, Arnulf; Quarrie, David; Quayle, William; Queitsch-Maitland, Michaela; Quilty, Donnchadha; Qureshi, Anum; Radeka, Veljko; Radescu, Voica; Radhakrishnan, Sooraj Krishnan; Radloff, Peter; Rados, Pere; Ragusa, Francesco; Rahal, Ghita; Rajagopalan, Srinivasan; Rammensee, Michael; Randle-Conde, Aidan Sean; Rangel-Smith, Camila; Rao, Kanury; Rauscher, Felix; Rave, Tobias Christian; Ravenscroft, Thomas; Raymond, Michel; Read, Alexander Lincoln; Readioff, Nathan Peter; Rebuzzi, Daniela; Redelbach, Andreas; Redlinger, George; Reece, Ryan; Reeves, Kendall; Rehnisch, Laura; Reisin, Hernan; Relich, Matthew; Rembser, Christoph; Ren, Huan; Ren, Zhongliang; Renaud, Adrien; Rescigno, Marco; Resconi, Silvia; Rezanova, Olga; Reznicek, Pavel; Rezvani, Reyhaneh; Richter, Robert; Ridel, Melissa; Rieck, Patrick; Rieger, Julia; Rijssenbeek, Michael; Rimoldi, Adele; Rinaldi, Lorenzo; Ritsch, Elmar; Riu, Imma; Rizatdinova, Flera; Rizvi, Eram; Robertson, Steven; Robichaud-Veronneau, Andree; Robinson, Dave; Robinson, James; Robson, Aidan; Roda, Chiara; Rodrigues, Luis; Roe, Shaun; Røhne, Ole; Rolli, Simona; Romaniouk, Anatoli; Romano, Marino; Romero Adam, Elena; Rompotis, Nikolaos; Ronzani, Manfredi; Roos, Lydia; Ros, Eduardo; Rosati, Stefano; Rosbach, Kilian; Rose, Matthew; Rose, Peyton; Rosendahl, Peter Lundgaard; Rosenthal, Oliver; Rossetti, Valerio; Rossi, Elvira; Rossi, Leonardo Paolo; Rosten, Rachel; Rotaru, Marina; Roth, Itamar; Rothberg, Joseph; Rousseau, David; Royon, Christophe; Rozanov, Alexandre; Rozen, Yoram; Ruan, Xifeng; Rubbo, Francesco; Rubinskiy, Igor; Rud, Viacheslav; Rudolph, Christian; Rudolph, Matthew Scott; Rühr, Frederik; Ruiz-Martinez, Aranzazu; Rurikova, Zuzana; Rusakovich, Nikolai; Ruschke, Alexander; Rutherfoord, John; Ruthmann, Nils; Ryabov, Yury; Rybar, Martin; Rybkin, Grigori; Ryder, Nick; Saavedra, Aldo; Sacerdoti, Sabrina; Saddique, Asif; Sadeh, Iftach; Sadrozinski, Hartmut; Sadykov, Renat; Safai Tehrani, Francesco; Sakamoto, Hiroshi; Sakurai, Yuki; Salamanna, Giuseppe; Salamon, Andrea; Saleem, Muhammad; Salek, David; Sales De Bruin, Pedro Henrique; Salihagic, Denis; Salnikov, Andrei; Salt, José; Salvatore, Daniela; Salvatore, Pasquale Fabrizio; Salvucci, Antonio; Salzburger, Andreas; Sampsonidis, Dimitrios; Sanchez, Arturo; Sánchez, Javier; Sanchez Martinez, Victoria; Sandaker, Heidi; Sandbach, Ruth Laura; Sander, Heinz Georg; Sanders, Michiel; Sandhoff, Marisa; Sandoval, Tanya; Sandoval, Carlos; Sandstroem, Rikard; Sankey, Dave; Sansoni, Andrea; Santoni, Claudio; Santonico, Rinaldo; Santos, Helena; Santoyo Castillo, Itzebelt; Sapp, Kevin; Sapronov, Andrey; Saraiva, João; Sarrazin, Bjorn; Sartisohn, Georg; Sasaki, Osamu; Sasaki, Yuichi; Sauvage, Gilles; Sauvan, Emmanuel; Savard, Pierre; Savu, Dan Octavian; Sawyer, Craig; Sawyer, Lee; Saxon, David; Saxon, James; Sbarra, Carla; Sbrizzi, Antonio; Scanlon, Tim; Scannicchio, Diana; Scarcella, Mark; Scarfone, Valerio; Schaarschmidt, Jana; Schacht, Peter; Schaefer, Douglas; Schaefer, Ralph; Schaepe, Steffen; Schaetzel, Sebastian; Schäfer, Uli; Schaffer, Arthur; Schaile, Dorothee; Schamberger, R~Dean; Scharf, Veit; Schegelsky, Valery; Scheirich, Daniel; Schernau, Michael; Scherzer, Max; Schiavi, Carlo; Schieck, Jochen; Schillo, Christian; Schioppa, Marco; Schlenker, Stefan; Schmidt, Evelyn; Schmieden, Kristof; Schmitt, Christian; Schmitt, Sebastian; Schneider, Basil; Schnellbach, Yan Jie; Schnoor, Ulrike; Schoeffel, Laurent; Schoening, Andre; Schoenrock, Bradley Daniel; Schorlemmer, Andre Lukas; Schott, Matthias; Schouten, Doug; Schovancova, Jaroslava; Schramm, Steven; Schreyer, Manuel; Schroeder, Christian; Schuh, Natascha; Schultens, Martin Johannes; Schultz-Coulon, Hans-Christian; Schulz, Holger; Schumacher, Markus; Schumm, Bruce; Schune, Philippe; Schwanenberger, Christian; Schwartzman, Ariel; Schwegler, Philipp; Schwemling, Philippe; Schwienhorst, Reinhard; Schwindling, Jerome; Schwindt, Thomas; Schwoerer, Maud; Sciacca, Gianfranco; Scifo, Estelle; Sciolla, Gabriella; Scott, Bill; Scuri, Fabrizio; Scutti, Federico; Searcy, Jacob; Sedov, George; Sedykh, Evgeny; Seidel, Sally; Seiden, Abraham; Seifert, Frank; Seixas, José; Sekhniaidze, Givi; Sekula, Stephen; Selbach, Karoline Elfriede; Seliverstov, Dmitry; Sellers, Graham; Semprini-Cesari, Nicola; Serfon, Cedric; Serin, Laurent; Serkin, Leonid; Serre, Thomas; Seuster, Rolf; Severini, Horst; Sfiligoj, Tina; Sforza, Federico; Sfyrla, Anna; Shabalina, Elizaveta; Shamim, Mansoora; Shan, Lianyou; Shang, Ruo-yu; Shank, James; Shapiro, Marjorie; Shatalov, Pavel; Shaw, Kate; Shehu, Ciwake Yusufu; Sherwood, Peter; Shi, Liaoshan; Shimizu, Shima; Shimmin, Chase Owen; Shimojima, Makoto; Shiyakova, Mariya; Shmeleva, Alevtina; Shochet, Mel; Short, Daniel; Shrestha, Suyog; Shulga, Evgeny; Shupe, Michael; Shushkevich, Stanislav; Sicho, Petr; Sidiropoulou, Ourania; Sidorov, Dmitri; Sidoti, Antonio; Siegert, Frank; Sijacki, Djordje; Silva, José; Silver, Yiftah; Silverstein, Daniel; Silverstein, Samuel; Simak, Vladislav; Simard, Olivier; Simic, Ljiljana; Simion, Stefan; Simioni, Eduard; Simmons, Brinick; Simoniello, Rosa; Simonyan, Margar; Sinervo, Pekka; Sinev, Nikolai; Sipica, Valentin; Siragusa, Giovanni; Sircar, Anirvan; Sisakyan, Alexei; Sivoklokov, Serguei; Sjölin, Jörgen; Sjursen, Therese; Skottowe, Hugh Philip; Skovpen, Kirill; Skubic, Patrick; Slater, Mark; Slavicek, Tomas; Sliwa, Krzysztof; Smakhtin, Vladimir; Smart, Ben; Smestad, Lillian; Smirnov, Sergei; Smirnov, Yury; Smirnova, Lidia; Smirnova, Oxana; Smith, Kenway; Smizanska, Maria; Smolek, Karel; Snesarev, Andrei; Snidero, Giacomo; Snyder, Scott; Sobie, Randall; Socher, Felix; Soffer, Abner; Soh, Dart-yin; Solans, Carlos; Solar, Michael; Solc, Jaroslav; Soldatov, Evgeny; Soldevila, Urmila; Solodkov, Alexander; Soloshenko, Alexei; Solovyanov, Oleg; Solovyev, Victor; Sommer, Philip; Song, Hong Ye; Soni, Nitesh; Sood, Alexander; Sopczak, Andre; Sopko, Bruno; Sopko, Vit; Sorin, Veronica; Sosebee, Mark; Soualah, Rachik; Soueid, Paul; Soukharev, Andrey; South, David; Spagnolo, Stefania; Spanò, Francesco; Spearman, William Robert; Spettel, Fabian; Spighi, Roberto; Spigo, Giancarlo; Spiller, Laurence Anthony; Spousta, Martin; Spreitzer, Teresa; Spurlock, Barry; St Denis, Richard Dante; Staerz, Steffen; Stahlman, Jonathan; Stamen, Rainer; Stamm, Soren; Stanecka, Ewa; Stanek, Robert; Stanescu, Cristian; Stanescu-Bellu, Madalina; Stanitzki, Marcel Michael; Stapnes, Steinar; Starchenko, Evgeny; Stark, Jan; Staroba, Pavel; Starovoitov, Pavel; Staszewski, Rafal; Stavina, Pavel; Steinberg, Peter; Stelzer, Bernd; Stelzer, Harald Joerg; Stelzer-Chilton, Oliver; Stenzel, Hasko; Stern, Sebastian; Stewart, Graeme; Stillings, Jan Andre; Stockton, Mark; Stoebe, Michael; Stoicea, Gabriel; Stolte, Philipp; Stonjek, Stefan; Stradling, Alden; Straessner, Arno; Stramaglia, Maria Elena; Strandberg, Jonas; Strandberg, Sara; Strandlie, Are; Strauss, Emanuel; Strauss, Michael; Strizenec, Pavol; Ströhmer, Raimund; Strom, David; Stroynowski, Ryszard; Struebig, Antonia; Stucci, Stefania Antonia; Stugu, Bjarne; Styles, Nicholas Adam; Su, Dong; Su, Jun; Subramaniam, Rajivalochan; Succurro, Antonella; Sugaya, Yorihito; Suhr, Chad; Suk, Michal; Sulin, Vladimir; Sultansoy, Saleh; Sumida, Toshi; Sun, Siyuan; Sun, Xiaohu; Sundermann, Jan Erik; Suruliz, Kerim; Susinno, Giancarlo; Sutton, Mark; Suzuki, Yu; Svatos, Michal; Swedish, Stephen; Swiatlowski, Maximilian; Sykora, Ivan; Sykora, Tomas; Ta, Duc; Taccini, Cecilia; Tackmann, Kerstin; Taenzer, Joe; Taffard, Anyes; Tafirout, Reda; Taiblum, Nimrod; Takai, Helio; Takashima, Ryuichi; Takeda, Hiroshi; Takeshita, Tohru; Takubo, Yosuke; Talby, Mossadek; Talyshev, Alexey; Tam, Jason; Tan, Kong Guan; Tanaka, Junichi; Tanaka, Reisaburo; Tanaka, Satoshi; Tanaka, Shuji; Tanasijczuk, Andres Jorge; Tannenwald, Benjamin Bordy; Tannoury, Nancy; Tapprogge, Stefan; Tarem, Shlomit; Tarrade, Fabien; Tartarelli, Giuseppe Francesco; Tas, Petr; Tasevsky, Marek; Tashiro, Takuya; Tassi, Enrico; Tavares Delgado, Ademar; Tayalati, Yahya; Taylor, Frank; Taylor, Geoffrey; Taylor, Wendy; Teischinger, Florian Alfred; Teixeira Dias Castanheira, Matilde; Teixeira-Dias, Pedro; Temming, Kim Katrin; Ten Kate, Herman; Teng, Ping-Kun; Teoh, Jia Jian; Terada, Susumu; Terashi, Koji; Terron, Juan; Terzo, Stefano; Testa, Marianna; Teuscher, Richard; Therhaag, Jan; Theveneaux-Pelzer, Timothée; Thomas, Juergen; Thomas-Wilsker, Joshuha; Thompson, Emily; Thompson, Paul; Thompson, Peter; Thompson, Ray; Thompson, Stan; Thomsen, Lotte Ansgaard; Thomson, Evelyn; Thomson, Mark; Thong, Wai Meng; Thun, Rudolf; Tian, Feng; Tibbetts, Mark James; Tikhomirov, Vladimir; Tikhonov, Yury; Timoshenko, Sergey; Tiouchichine, Elodie; Tipton, Paul; Tisserant, Sylvain; Todorov, Theodore; Todorova-Nova, Sharka; Toggerson, Brokk; Tojo, Junji; Tokár, Stanislav; Tokushuku, Katsuo; Tollefson, Kirsten; Tomlinson, Lee; Tomoto, Makoto; Tompkins, Lauren; Toms, Konstantin; Topilin, Nikolai; Torrence, Eric; Torres, Heberth; Torró Pastor, Emma; Toth, Jozsef; Touchard, Francois; Tovey, Daniel; Tran, Huong Lan; Trefzger, Thomas; Tremblet, Louis; Tricoli, Alessandro; Trigger, Isabel Marian; Trincaz-Duvoid, Sophie; Tripiana, Martin; Trischuk, William; Trocmé, Benjamin; Troncon, Clara; Trottier-McDonald, Michel; Trovatelli, Monica; True, Patrick; Trzebinski, Maciej; Trzupek, Adam; Tsarouchas, Charilaos; Tseng, Jeffrey; Tsiareshka, Pavel; Tsionou, Dimitra; Tsipolitis, Georgios; Tsirintanis, Nikolaos; Tsiskaridze, Shota; Tsiskaridze, Vakhtang; Tskhadadze, Edisher; Tsukerman, Ilya; Tsulaia, Vakhtang; Tsuno, Soshi; Tsybychev, Dmitri; Tudorache, Alexandra; Tudorache, Valentina; Tuna, Alexander Naip; Tupputi, Salvatore; Turchikhin, Semen; Turecek, Daniel; Turk Cakir, Ilkay; Turra, Ruggero; Tuts, Michael; Tykhonov, Andrii; Tylmad, Maja; Tyndel, Mike; Uchida, Kirika; Ueda, Ikuo; Ueno, Ryuichi; Ughetto, Michael; Ugland, Maren; Uhlenbrock, Mathias; Ukegawa, Fumihiko; Unal, Guillaume; Undrus, Alexander; Unel, Gokhan; Ungaro, Francesca; Unno, Yoshinobu; Unverdorben, Christopher; Urbaniec, Dustin; Urquijo, Phillip; Usai, Giulio; Usanova, Anna; Vacavant, Laurent; Vacek, Vaclav; Vachon, Brigitte; Valencic, Nika; Valentinetti, Sara; Valero, Alberto; Valery, Loic; Valkar, Stefan; Valladolid Gallego, Eva; Vallecorsa, Sofia; Valls Ferrer, Juan Antonio; Van Den Wollenberg, Wouter; Van Der Deijl, Pieter; van der Geer, Rogier; van der Graaf, Harry; Van Der Leeuw, Robin; van der Ster, Daniel; van Eldik, Niels; van Gemmeren, Peter; Van Nieuwkoop, Jacobus; van Vulpen, Ivo; van Woerden, Marius Cornelis; Vanadia, Marco; Vandelli, Wainer; Vanguri, Rami; Vaniachine, Alexandre; Vankov, Peter; Vannucci, Francois; Vardanyan, Gagik; Vari, Riccardo; Varnes, Erich; Varol, Tulin; Varouchas, Dimitris; Vartapetian, Armen; Varvell, Kevin; Vazeille, Francois; Vazquez Schroeder, Tamara; Veatch, Jason; Veloso, Filipe; Veneziano, Stefano; Ventura, Andrea; Ventura, Daniel; Venturi, Manuela; Venturi, Nicola; Venturini, Alessio; Vercesi, Valerio; Verducci, Monica; Verkerke, Wouter; Vermeulen, Jos; Vest, Anja; Vetterli, Michel; Viazlo, Oleksandr; Vichou, Irene; Vickey, Trevor; Vickey Boeriu, Oana Elena; Viehhauser, Georg; Viel, Simon; Vigne, Ralph; Villa, Mauro; Villaplana Perez, Miguel; Vilucchi, Elisabetta; Vincter, Manuella; Vinogradov, Vladimir; Virzi, Joseph; Vivarelli, Iacopo; Vives Vaque, Francesc; Vlachos, Sotirios; Vladoiu, Dan; Vlasak, Michal; Vogel, Adrian; Vogel, Marcelo; Vokac, Petr; Volpi, Guido; Volpi, Matteo; von der Schmitt, Hans; von Radziewski, Holger; von Toerne, Eckhard; Vorobel, Vit; Vorobev, Konstantin; Vos, Marcel; Voss, Rudiger; Vossebeld, Joost; Vranjes, Nenad; Vranjes Milosavljevic, Marija; Vrba, Vaclav; Vreeswijk, Marcel; Vu Anh, Tuan; Vuillermet, Raphael; Vukotic, Ilija; Vykydal, Zdenek; Wagner, Peter; Wagner, Wolfgang; Wahlberg, Hernan; Wahrmund, Sebastian; Wakabayashi, Jun; Walder, James; Walker, Rodney; Walkowiak, Wolfgang; Wall, Richard; Waller, Peter; Walsh, Brian; Wang, Chao; Wang, Chiho; Wang, Fuquan; Wang, Haichen; Wang, Hulin; Wang, Jike; Wang, Jin; Wang, Kuhan; Wang, Rui; Wang, Song-Ming; Wang, Tan; Wang, Xiaoxiao; Wanotayaroj, Chaowaroj; Warburton, Andreas; Ward, Patricia; Wardrope, David Robert; Warsinsky, Markus; Washbrook, Andrew; Wasicki, Christoph; Watkins, Peter; Watson, Alan; Watson, Ian; Watson, Miriam; Watts, Gordon; Watts, Stephen; Waugh, Ben; Webb, Samuel; Weber, Michele; Weber, Stefan Wolf; Webster, Jordan S; Weidberg, Anthony; Weigell, Philipp; Weinert, Benjamin; Weingarten, Jens; Weiser, Christian; Weits, Hartger; Wells, Phillippa; Wenaus, Torre; Wendland, Dennis; Weng, Zhili; Wengler, Thorsten; Wenig, Siegfried; Wermes, Norbert; Werner, Matthias; Werner, Per; Wessels, Martin; Wetter, Jeffrey; Whalen, Kathleen; White, Andrew; White, Martin; White, Ryan; White, Sebastian; Whiteson, Daniel; Wicke, Daniel; Wickens, Fred; Wiedenmann, Werner; Wielers, Monika; Wienemann, Peter; Wiglesworth, Craig; Wiik-Fuchs, Liv Antje Mari; Wijeratne, Peter Alexander; Wildauer, Andreas; Wildt, Martin Andre; Wilkens, Henric George; Will, Jonas Zacharias; Williams, Hugh; Williams, Sarah; Willis, Christopher; Willocq, Stephane; Wilson, Alan; Wilson, John; Wingerter-Seez, Isabelle; Winklmeier, Frank; Winter, Benedict Tobias; Wittgen, Matthias; Wittig, Tobias; Wittkowski, Josephine; Wollstadt, Simon Jakob; Wolter, Marcin Wladyslaw; Wolters, Helmut; Wosiek, Barbara; Wotschack, Jorg; Woudstra, Martin; Wozniak, Krzysztof; Wright, Michael; Wu, Mengqing; Wu, Sau Lan; Wu, Xin; Wu, Yusheng; Wulf, Evan; Wyatt, Terry Richard; Wynne, Benjamin; Xella, Stefania; Xiao, Meng; Xu, Da; Xu, Lailin; Yabsley, Bruce; Yacoob, Sahal; Yakabe, Ryota; Yamada, Miho; Yamaguchi, Hiroshi; Yamaguchi, Yohei; Yamamoto, Akira; Yamamoto, Kyoko; Yamamoto, Shimpei; Yamamura, Taiki; Yamanaka, Takashi; Yamauchi, Katsuya; Yamazaki, Yuji; Yan, Zhen; Yang, Haijun; Yang, Hongtao; Yang, Un-Ki; Yang, Yi; Yanush, Serguei; Yao, Liwen; Yao, Weiming; Yasu, Yoshiji; Yatsenko, Elena; Yau Wong, Kaven Henry; Ye, Jingbo; Ye, Shuwei; Yeletskikh, Ivan; Yen, Andy L; Yildirim, Eda; Yilmaz, Metin; Yoosoofmiya, Reza; Yorita, Kohei; Yoshida, Rikutaro; Yoshihara, Keisuke; Young, Charles; Young, Christopher John; Youssef, Saul; Yu, David Ren-Hwa; Yu, Jaehoon; Yu, Jiaming; Yu, Jie; Yuan, Li; Yurkewicz, Adam; Yusuff, Imran; Zabinski, Bartlomiej; Zaidan, Remi; Zaitsev, Alexander; Zaman, Aungshuman; Zambito, Stefano; Zanello, Lucia; Zanzi, Daniele; Zeitnitz, Christian; Zeman, Martin; Zemla, Andrzej; Zengel, Keith; Zenin, Oleg; Ženiš, Tibor; Zerwas, Dirk; Zevi della Porta, Giovanni; Zhang, Dongliang; Zhang, Fangzhou; Zhang, Huaqiao; Zhang, Jinlong; Zhang, Lei; Zhang, Xueyao; Zhang, Zhiqing; Zhao, Zhengguo; Zhemchugov, Alexey; Zhong, Jiahang; Zhou, Bing; Zhou, Lei; Zhou, Ning; Zhu, Cheng Guang; Zhu, Hongbo; Zhu, Junjie; Zhu, Yingchun; Zhuang, Xuai; Zhukov, Konstantin; Zibell, Andre; Zieminska, Daria; Zimine, Nikolai; Zimmermann, Christoph; Zimmermann, Robert; Zimmermann, Simone; Zimmermann, Stephanie; Zinonos, Zinonas; Ziolkowski, Michael; Zobernig, Georg; Zoccoli, Antonio; zur Nedden, Martin; Zurzolo, Giovanni; Zutshi, Vishnu; Zwalinski, Lukasz

    2014-10-01

    This paper presents the electron and photon energy calibration achieved with the ATLAS detector using about 25 fb$^{-1}$ of LHC proton--proton collision data taken at centre-of-mass energies of $\\sqrt{s}$ = 7 and 8 TeV. The reconstruction of electron and photon energies is optimised using multivariate algorithms. The response of the calorimeter layers is equalised in data and simulation, and the longitudinal profile of the electromagnetic showers is exploited to estimate the passive material in front of the calorimeter and reoptimise the detector simulation. After all corrections, the $Z$ resonance is used to set the absolute energy scale. For electrons from $Z$ decays, the achieved calibration is typically accurate to 0.05% in most of the detector acceptance, rising to 0.2% in regions with large amounts of passive material. The remaining inaccuracy is less than 0.2-1% for electrons with a transverse energy of 10 GeV, and is on average 0.3% for photons. The detector resolution is determined with a relative in...

  17. Method of incident low-energy gamma-ray direction reconstruction in the GAMMA-400 gamma-ray space telescope

    International Nuclear Information System (INIS)

    Kheymits, M D; Leonov, A A; Zverev, V G; Galper, A M; Arkhangelskaya, I V; Arkhangelskiy, A I; Yurkin, Yu T; Bakaldin, A V; Suchkov, S I; Topchiev, N P; Dalkarov, O D

    2016-01-01

    The GAMMA-400 gamma-ray space-based telescope has as its main goals to measure cosmic γ-ray fluxes and the electron-positron cosmic-ray component produced, theoretically, in dark-matter-particles decay or annihilation processes, to search for discrete γ-ray sources and study them in detail, to examine the energy spectra of diffuse γ-rays — both galactic and extragalactic — and to study gamma-ray bursts (GRBs) and γ-rays from the active Sun. Scientific goals of GAMMA-400 telescope require fine angular resolution. The telescope is of a pair-production type. In the converter-tracker, the incident gamma-ray photon converts into electron-positron pair in the tungsten layer and then the tracks are detected by silicon- strip position-sensitive detectors. Multiple scattering processes become a significant obstacle in the incident-gamma direction reconstruction for energies below several gigaelectronvolts. The method of utilising this process to improve the resolution is proposed in the presented work. (paper)

  18. Predictions of Quantum Molecular Dynamical Model between incident energy 50 and 1000 MeV/Nucleon

    Directory of Open Access Journals (Sweden)

    Kumar Sanjeev

    2015-01-01

    Full Text Available In the present work, the Quantum Molecular Dynamical (QMD model is summarized as a useful tool for the incident energy range of 50 to 1000 MeV/nucleon in heavy-ion collisions. The model has reproduced the experimental results of various collaborations such as ALADIN, INDRA, PLASTIC BALL and FOPI upto a high level of accuracy for the phenomena like multifragmentation, collective flow as well as elliptical flow in the above prescribed energy range. The efforts are further in the direction to predict the symmetry energy in the wide incident energy range.

  19. Perturbation correction for alanine dosimeters in different phantom materials in high-energy photon beams.

    Science.gov (United States)

    von Voigts-Rhetz, P; Anton, M; Vorwerk, H; Zink, K

    2016-02-07

    In modern radiotherapy the verification of complex treatments plans is often performed in inhomogeneous or even anthropomorphic phantoms. For dose verification small detectors are necessary and therefore alanine detectors are most suitable. Though the response of alanine for a wide range of clinical photon energies in water is well know, the knowledge about the influence of the surrounding phantom material on the response of alanine is sparse. Therefore we investigated the influence of twenty different surrounding/phantom materials for alanine dosimeters in clinical photon fields via Monte Carlo simulations. The relative electron density of the used materials was in the range [Formula: see text] up to 1.69, covering almost all materials appearing in inhomogeneous or anthropomorphic phantoms used in radiotherapy. The investigations were performed for three different clinical photon spectra ranging from 6 to 25 MV-X and Co-60 and as a result a perturbation correction [Formula: see text] depending on the environmental material was established. The Monte Carlo simulation show, that there is only a small dependence of [Formula: see text] on the phantom material and the photon energy, which is below  ±0.6%. The results confirm the good suitability of alanine detectors for in-vivo dosimetry.

  20. Effects of incident cluster size, substrate temperature, and incident energy on bombardment of Ni clusters onto Cu (0 0 1) surface studied using molecular dynamics simulation

    International Nuclear Information System (INIS)

    Lin, Shiang-Jiun; Wu, Cheng-Da; Fang, Te-Hua; Chen, Guan-Hung

    2012-01-01

    The bombardment process of a Ni cluster onto a Cu (0 0 1) surface is studied using molecular dynamics (MD) simulations based on the tight-binding second-moment approximation (TB-SMA) many-body potential. The effects of incident cluster size, substrate temperature, and incident energy are evaluated in terms of molecular trajectories, kinetic energy, stress, self-diffusion coefficient, and sputtering yield. The simulation results clearly show that the penetration depth and Cu surface damage increase with increasing incident cluster size for a given incident energy per atom. The self-diffusion coefficient and the penetration depth of a cluster significantly increase with increasing substrate temperature. An incident cluster can be scattered into molecules or atoms that become embedded in the surface after incidence. When the incident energy is increased, the number of volcano-like defects and the penetration depth increase. A high sputtering yield can be obtained by increasing the incident energy at high temperature. The sputtering yield significantly increases with cluster size when the incident energy is above 5 eV/atom.

  1. Photons, missing energy and the quest for supersymmetry at the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Gebbert, Ulla

    2012-03-15

    In this thesis a search for supersymmetry in events with at least one photon, jets and missing transverse energy (E{sub T}) in an integrated luminosity of 4.32 fb{sup -1} of pp collisions at {radical}(s)=7 TeV is presented. The data is recorded by the CMS detector in 2011. Final states with photons are expected in models with gauge mediated supersymmetry breaking, where the lightest supersymmetric particle is the gravitino. The gravitino leaves the detector without energy deposition and thus leads to missing transverse momentum in the event. E{sub T} is crucial to distinguish the signal from the Standard Model events and is reconstructed from all energy deposits in the detector. Due to the non-linearity of the response in the calorimeter, additional corrections are required. In this thesis, a data driven technique to determine the correction for unclustered energy deposits, using the transverse momentum balance between a Z boson and the hadronic recoil, is presented. For the search for supersymmetry the E{sub T} distribution measured in data is compared to the expected Standard Model distribution. For this purpose the main Standard Model background processes from QCD multi- and photon-jet or electro-weak processes are modelled using data events. No excess over the Standard Model expectation is observed. Exclusion limits at the 95% CL are set and interpreted in the GMSB parameter space.

  2. Numerical radiation dosimetry using Monte Carlo photon transport at diagnostic energies

    International Nuclear Information System (INIS)

    Ioppolo, J.; Buckley, C.; Tuchyna, T.; Price, R.

    2000-01-01

    Full text: The Electron Gamma Shower 4 (EGS4) code has been installed on a WinNT workstation to allow the simulation of the dose absorbed in a patient during routine radiological examinations. Several additions to the code were required to form a theoretically sound model for use in the prediction of dose in the diagnostic energy range. Experimental measurements of dose using thermoluminescence dosimeters (TLD) were directly compared with EGS4 simulations. A Philips diagnostic X-ray machine with a field size of 17x17cm was used to irradiate a homogeneous perspex slab 30x30x12cm. TLDs were placed at evenly spaced points symmetrically about the central beam perpendicular to the cathode-anode axis at a number of depths. A diagnostic energy X-ray spectrum was measured from a comparable X-ray machine with similar beam quality and provided as input for the EGS4 code. Diverging point source geometry of the output beam, plus a realistic 3D model of the homogeneous perspex block, were also used in the EGS4 code. The LSCAT low energy photon scattering expansion by Namito et al (KEK internal report 95-10, 1995) was used to incorporate the binding effect that orbital electrons have on incoherent photons with energies less than 100 keV. EGS4 simulations were performed with sufficient numbers of photon histories to produce statistical uncertainties < 5% in the distribution of dose. Copyright (2000) Australasian College of Physical Scientists and Engineers in Medicine

  3. Photonic Color Filters Integrated with Organic Solar Cells for Energy Harvesting

    KAUST Repository

    Park, Hui Joon

    2011-09-27

    Color filters are indispensable in most color display applications. In most cases, they are chemical pigment-based filters, which produce a particular color by absorbing its complementary color, and the absorbed energy is totally wasted. If the absorbed and wasted energy can be utilized, e.g., to generate electricity, innovative energy-efficient electronic media could be envisioned. Here we show photonic nanostructures incorporated with photovoltaics capable of producing desirable colors in the visible band and utilize the absorbed light to simultaneously generate electrical powers. In contrast to the traditional colorant-based filters, these devices offer great advantages for electro-optic applications. © 2011 American Chemical Society.

  4. Features of possible polarized photon beams at high energy and corresponding physics programme or the proton structure function using real photons

    International Nuclear Information System (INIS)

    Tannenbaum, M.J.

    1980-01-01

    In the range of electron energies available at Fermilab, 100 GeV less than or equal to E less than or equal to 500 GeV, coherent Bremsstrahlung in crystals, particularly diamond, gives a huge enhancement to the equivalent photon spectrum at large values of x where x = k/E. The photons in this enhancement are polarized. Requirements on electron beam energy spread, angular divergence and spot size imposed by the use of a diamond as a radiator are discussed. The physics program emphasizes hard processes and tests of QCD using polarization

  5. Comparative Investigation of Ce3+ Doped Scintillators in a Wide Range of Photon Energies Covering X-ray CT, Nuclear Medicine and Megavoltage Radiation Therapy Portal Imaging Applications

    Science.gov (United States)

    Valais, Ioannis G.; Michail, Christos M.; David, Stratos L.; Liaparinos, Panagiotis F.; Fountos, George P.; Paschalis, Theodoros V.; Kandarakis, Ioannis S.; Panayiotakis, George S.

    2010-02-01

    The aim of the present work is to study the performance of scintillators currently used in PET and animal PET systems, under conditions met in radiation therapy and PET/CT imaging. The results of this study will be useful in applications where both CT and PET photons as well as megavoltage cone beam CT (MV CBCT) photons could be detected using a common detector unit. To this aim crystal samples of GSO, LSO, LYSO, LuYAP and YAP scintillators, doped with cerium (Ce+3) were examined under a wide energy range of photon energies. Evaluation was performed by determining the absolute luminescence efficiency (emitted light flux over incident X-ray exposure) in the energy range employed in X-ray CT, in Nuclear Medicine (70 keV up to 662 keV) and in radiotherapy 6 MV (approx. 2.0 MeV mean energy)-18 MV (approx. 4.5 MeV mean energy). Measurements were performed using an experimental set-up based on a photomultiplier coupled to a light integration sphere. The emission spectrum under X-ray excitation was measured, using an optical grating monochromator, to determine the spectral compatibility to optical photon detectors incorporated in medical imaging systems. Maximum absolute luminescence efficiency values were observed at 70 keV for YAP:Ce and LuYAP:Ce and at 140 keV for LSO:Ce, LYSO:Ce and GSO:Ce. Highest absolute efficiency between the scintillators examined was observed for LSO:Ce, followed by LYSO:Ce. The detector optical gain (DOG) exhibited a significant variation with the increase of energy between 70 keV to 2.0 MeV. All scintillators exhibited low compatibility when combined with GaAsP (G5645) photodetector.

  6. Simulation calculation for the energy deposition profile and the transmission fraction of intense pulsed electron beam at various incident angles

    International Nuclear Information System (INIS)

    Yang Hailiang; Qiu Aici; Zhang Jiasheng; Huang Jianjun; Sun Jianfeng

    2002-01-01

    The incident angles have a heavy effect on the intense pulsed electron beam energy deposition profile, energy deposition fraction and beam current transmission fraction in material. The author presents electron beam energy deposition profile and energy deposition fraction versus electron energy (0.5-2.0 MeV), at various incident angles for three aluminum targets of various thickness via theoretical calculation. The intense pulsed electron beam current transmission fractions versus electron energy (0.4-1.4 MeV) at various incident angles for three thickness of carbon targets were also theoretically calculated. The calculation results indicate that the deposition energy in unit mass of material surface layer increase with the rise of electron beam incident angle, and electron beam with low incident angle (closer to normal incident angle) penetrates deeper into the target material. The electron beams deposit more energy in unit mass of material surface layer at 60 degree-70 degree incident angle

  7. Optimal energy for cell radiosensitivity enhancement by gold nanoparticles using synchrotron-based monoenergetic photon beams.

    Science.gov (United States)

    Rahman, Wan Nordiana; Corde, Stéphanie; Yagi, Naoto; Abdul Aziz, Siti Aishah; Annabell, Nathan; Geso, Moshi

    2014-01-01

    Gold nanoparticles have been shown to enhance radiation doses delivered to biological targets due to the high absorption coefficient of gold atoms, stemming from their high atomic number (Z) and physical density. These properties significantly increase the likelihood of photoelectric effects and Compton scattering interactions. Gold nanoparticles are a novel radiosensitizing agent that can potentially be used to increase the effectiveness of current radiation therapy techniques and improve the diagnosis and treatment of cancer. However, the optimum radiosensitization effect of gold nanoparticles is strongly dependent on photon energy, which theoretically is predicted to occur in the kilovoltage range of energy. In this research, synchrotron-generated monoenergetic X-rays in the 30-100 keV range were used to investigate the energy dependence of radiosensitization by gold nanoparticles and also to determine the photon energy that produces optimum effects. This investigation was conducted using cells in culture to measure dose enhancement. Bovine aortic endothelial cells with and without gold nanoparticles were irradiated with X-rays at energies of 30, 40, 50, 60, 70, 81, and 100 keV. Trypan blue exclusion assays were performed after irradiation to determine cell viability. Cell radiosensitivity enhancement was indicated by the dose enhancement factor which was found to be maximum at 40 keV with a value of 3.47. The dose enhancement factor obtained at other energy levels followed the same direction as the theoretical calculations based on the ratio of the mass energy absorption coefficients of gold and water. This experimental evidence shows that the radiosensitization effect of gold nanoparticles varies with photon energy as predicted from theoretical calculations. However, prediction based on theoretical assumptions is sometimes difficult due to the complexity of biological systems, so further study at the cellular level is required to fully characterize the effects

  8. Application of the Monte Carlo method in calculation of energy-time distribution from a pulsed photon source in homogeneous air environment

    International Nuclear Information System (INIS)

    Ilic, R.D.; Vojvodic, V.I.; Orlic, M.P.

    1981-01-01

    The stochastic nature of photon interactions with matter and the characteristics of photon transport through real materials, are very well suited for applications of the Monte Carlo method in calculations of the energy-space distribution of photons. Starting from general principles of the Monte Carlo method, physical-mathematical model of photon transport from a pulsed source is given for the homogeneous air environment. Based on that model, a computer program is written which is applied in calculations of scattered photons delay spectra and changes of the photon energy spectrum. Obtained results provide the estimation of the timespace function of the electromagnetic field generated by photon from a pulsed source. (author)

  9. Invariant operator theory for the single-photon energy in time-varying media

    International Nuclear Information System (INIS)

    Jeong-Ryeol, Choi

    2010-01-01

    After the birth of quantum mechanics, the notion in physics that the frequency of light is the only factor that determines the energy of a single photon has played a fundamental role. However, under the assumption that the theory of Lewis–Riesenfeld invariants is applicable in quantum optics, it is shown in the present work that this widely accepted notion is valid only for light described by a time-independent Hamiltonian, i.e., for light in media satisfying the conditions, ε(i) = ε(0), μ(t) = μ(0), and σ(t) = 0 simultaneously. The use of the Lewis–Riesenfeld invariant operator method in quantum optics leads to a marvelous result: the energy of a single photon propagating through time-varying linear media exhibits nontrivial time dependence without a change of frequency. (general)

  10. A tunable low-energy photon source for high-resolution angle-resolved photoemission spectroscopy

    International Nuclear Information System (INIS)

    Harter, John W.; Monkman, Eric J.; Shai, Daniel E.; Nie Yuefeng; Uchida, Masaki; Burganov, Bulat; Chatterjee, Shouvik; King, Philip D. C.; Shen, Kyle M.

    2012-01-01

    We describe a tunable low-energy photon source consisting of a laser-driven xenon plasma lamp coupled to a Czerny-Turner monochromator. The combined tunability, brightness, and narrow spectral bandwidth make this light source useful in laboratory-based high-resolution photoemission spectroscopy experiments. The source supplies photons with energies up to ∼7 eV, delivering under typical conditions >10 12 ph/s within a 10 meV spectral bandwidth, which is comparable to helium plasma lamps and many synchrotron beamlines. We first describe the lamp and monochromator system and then characterize its output, with attention to those parameters which are of interest for photoemission experiments. Finally, we present angle-resolved photoemission spectroscopy data using the light source and compare its performance to a conventional helium plasma lamp.

  11. Photon and proton induced fission on heavy nuclei at intermediate energies

    Directory of Open Access Journals (Sweden)

    Andrade-II E.

    2014-04-01

    Full Text Available We present an analysis of fission induced by intermediate energy protons or photons on actinides. The 660 MeV proton induced reactions are on 241Am, 238U, and 237Np targets and the Bremmstrahlung-photons with end-point energies at 50 MeV and 3500 MeV are on 232Th and 238U targets. The study was performed by means of the Monte Carlo simulation code CRISP. A multimodal fission extension was added to the code within an approach which accounts for the contribution of symmetric and asymmetric fission. This procedure allowed the investigation of fission cross sections, fissility, number of evaporated nucleons and fission-fragment charge distributions. The comparison with experimental data show a good agreement between calculations and experiments.

  12. Photon and proton induced fission on heavy nuclei at intermediate energies

    Energy Technology Data Exchange (ETDEWEB)

    Andrade-II, E.; Karapetyan, G.S.; Deppman, A.; Guimaraes, V. [Universidade de Sao Paulo (USP), Sao Paulo, SP (Brazil). Instituto de Fisica; Balabekyan, A.R. [Yerevan State University, Alex Manoogian 1, Yerevan (Armenia); Demekhina, N.A. [Yerevan Physics Institute, Alikhanyan Brothers 2, Yerevan (Armenia); Joint Institute for Nuclear Research (JINR), Flerov Laboratory of Nuclear Reactions (LNR), Moscow (Russian Federation)

    2014-07-01

    We present an analysis of fission induced by intermediate energy protons or photons on actinides. The 660 MeV proton induced reactions are on {sup 241}Am, {sup 238}U, and {sup 237}Np targets and the Bremsstrahlung-photons with end-point energies at 50 MeV and 3500 MeV are on {sup 232}Th and {sup 238}U targets. The study was performed by means of the Monte Carlo simulation code CRISP. A multimodal fission extension was added to the code within an approach which accounts for the contribution of symmetric and asymmetric fission. This procedure allowed the investigation of fission cross sections, fissility, number of evaporated nucleons and fission-fragment charge distributions. The comparison with experimental data show a good agreement between calculations and experiments. (author)

  13. Synthetic oligomer analysis using atmospheric pressure photoionization mass spectrometry at different photon energies

    International Nuclear Information System (INIS)

    Desmazières, Bernard; Legros, Véronique; Giuliani, Alexandre; Buchmann, William

    2014-01-01

    Graphical abstract: Atmospheric pressure photoIonization mass spectra of synthetic oligomers were recorded in the negative mode by varying the photon energy using synchrotron radiation. Photon energy required for an efficient ionization of the polymer was correlated to ionization potential of the solvent (for example 9.4 eV for tetrahydrofuran). -- Highlights: •Atmospheric pressure photoionization was performed using synchrotron radiation. •Photoionization of oligomers in THF with 10% CH 2 Cl 2 produces intact [M + Cl] − ions. •The photon energy required corresponds to ionization potential of the solvent. •Polymer distributions depend on source parameters such T °C and applied voltages. •Liquid chromatography was coupled to MS using an APPI interface for polymer analysis. -- Abstract: Atmospheric pressure photoionization (APPI) followed by mass spectrometric detection was used to ionize a variety of polymers: polyethylene glycol, polymethyl methacrylate, polystyrene, and polysiloxane. In most cases, whatever the polymer or the solvent used (dichloromethane, tetrahydrofuran, hexane, acetone or toluene), only negative ion mode produced intact ions such as chlorinated adducts, with no or few fragmentations, in contrast to the positive ion mode that frequently led to important in-source fragmentations. In addition, it was shown that optimal detection of polymer distributions require a fine tuning of other source parameters such as temperature and ion transfer voltage. Series of mass spectra were recorded in the negative mode, in various solvents (dichloromethane, tetrahydrofuran, hexane, toluene, and acetone), by varying the photon energy from 8 eV up to 10.6 eV using synchrotron radiation. To these solvents, addition of a classical APPI dopant (toluene or acetone) was not necessary. Courtesy of the synchrotron radiation, it was demonstrated that the photon energy required for an efficient ionization of the polymer was correlated to the ionization energy

  14. Synthetic oligomer analysis using atmospheric pressure photoionization mass spectrometry at different photon energies

    Energy Technology Data Exchange (ETDEWEB)

    Desmazières, Bernard [Global Bioenergies, 5 rue Henri Desbruyeres, 91030 Evry (France); Legros, Véronique [CNRS, UMR8587, Université d’Evry-Val-d’Essonne, Laboratoire Analyse et Modélisation pour la Biologie et l’Environnement, F-91025 Evry (France); Giuliani, Alexandre [Synchrotron SOLEIL, L’Orme des Merisiers, Saint-Aubin, 91192 Gif-sur-Yvette (France); UAR1008, CEPIA, INRA, Rue de la Geraudiere, F-44316 Nantes (France); Buchmann, William, E-mail: william.buchmann@univ-evry.fr [CNRS, UMR8587, Université d’Evry-Val-d’Essonne, Laboratoire Analyse et Modélisation pour la Biologie et l’Environnement, F-91025 Evry (France)

    2014-01-15

    Graphical abstract: Atmospheric pressure photoIonization mass spectra of synthetic oligomers were recorded in the negative mode by varying the photon energy using synchrotron radiation. Photon energy required for an efficient ionization of the polymer was correlated to ionization potential of the solvent (for example 9.4 eV for tetrahydrofuran). -- Highlights: •Atmospheric pressure photoionization was performed using synchrotron radiation. •Photoionization of oligomers in THF with 10% CH{sub 2}Cl{sub 2} produces intact [M + Cl]{sup −} ions. •The photon energy required corresponds to ionization potential of the solvent. •Polymer distributions depend on source parameters such T °C and applied voltages. •Liquid chromatography was coupled to MS using an APPI interface for polymer analysis. -- Abstract: Atmospheric pressure photoionization (APPI) followed by mass spectrometric detection was used to ionize a variety of polymers: polyethylene glycol, polymethyl methacrylate, polystyrene, and polysiloxane. In most cases, whatever the polymer or the solvent used (dichloromethane, tetrahydrofuran, hexane, acetone or toluene), only negative ion mode produced intact ions such as chlorinated adducts, with no or few fragmentations, in contrast to the positive ion mode that frequently led to important in-source fragmentations. In addition, it was shown that optimal detection of polymer distributions require a fine tuning of other source parameters such as temperature and ion transfer voltage. Series of mass spectra were recorded in the negative mode, in various solvents (dichloromethane, tetrahydrofuran, hexane, toluene, and acetone), by varying the photon energy from 8 eV up to 10.6 eV using synchrotron radiation. To these solvents, addition of a classical APPI dopant (toluene or acetone) was not necessary. Courtesy of the synchrotron radiation, it was demonstrated that the photon energy required for an efficient ionization of the polymer was correlated to the

  15. Enhanced emission of high-energy photons perpendicular to the reaction plane in α+Th reactions

    International Nuclear Information System (INIS)

    Tegner, P.; Marianski, B.; Morsch, H.P.; Rogge, M.; Bargholtz, C.; Decowski, P.; Zemlo, L.

    1991-01-01

    High-energy photon and neutron emission has been measured in coincidence with fission fragments in α+ 232 Th reactions at 170 MeV. From measurements parallel and perpendicular to the fission plane, anisotropies relative to the reaction plane were determined. The in-plane/out-of-plane intensity ratio is 0.72(7) for photons with energies above 20 MeV and 11(3) for neutrons at 35 MeV. The result for high-energy photons can be explained by nucleon-nucleon bremsstrahlung if the initial flow of nucleons has a correlation to the reaction plane similar to the one observed for fast neutrons

  16. Center of mass energy and system-size dependence of photon production at forward rapidity at RHIC

    Energy Technology Data Exchange (ETDEWEB)

    STAR Collaboration; Abelev, Betty

    2010-07-05

    We present the multiplicity and pseudorapidity distributions of photons produced in Au+Au and Cu+Cu collisions at {radical}s{sub NN} = 62.4 and 200 GeV. The photons are measured in the region -3.7 < {eta} < -2.3 using the photon multiplicity detector in the STAR experiment at RHIC. The number of photons produced per average number of participating nucleon pairs increases with the beam energy and is independent of the collision centrality. For collisions with similar average numbers of participating nucleons the photon multiplicities are observed to be similar for Au+Au and Cu+Cu collisions at a given beam energy. The ratios of the number of charged particles to photons in the measured pseudorapidity range are found to be 1.4 {+-} 0.1 and 1.2 {+-} 0.1 for {radical}s{sub NN} = 62.4 GeV and 200 GeV, respectively. The energy dependence of this ratio could reflect varying contributions from baryons to charged particles, while mesons are the dominant contributors to photon production in the given kinematic region. The photon pseudorapidity distributions normalized by average number of participating nucleon pairs, when plotted as a function of {eta} - ybeam, are found to follow a longitudinal scaling independent of centrality and colliding ion species at both beam energies.

  17. Polarimetry of coherent bremsstrahlung by analysis of the photon energy spectrum

    International Nuclear Information System (INIS)

    Darbinyan, S.; Hakobyan, H.; Jones, R.; Sirunyan, A.; Vartapetian, H.

    2005-01-01

    A method of coherent bremsstrahlung (CB) polarimetry based on the analysis of the shape of the photon energy spectrum is presented. The influence of a number of uncertainty sources, including the choice of atomic form-factors, has been analyzed. For a CB source consisting of a diamond radiator and multi-GeV electrons, an absolute accuracy of polarimetry at the level of 0.01-0.02 is attainable

  18. Target asymmetry measurement of deuteron photodisintegration at a photon energy of 550 MeV

    International Nuclear Information System (INIS)

    Althoff, K.H.; Anton, G.; Bock, B.; Bour, D.; Erbs, P.; Ferber, W.; Gelhausen, H.; Haertel, U.; Havenith, W.; Jahnen, T.; Kaufmann, H.P.; Kaul, O.; Luecking, B.; Menze, D.; Meyer, W.; Miczaika, T.; Rennings, K.; Riechert, H.; Roderburg, E.; Ruhm, W.; Schenuit, E.; Schilling, E.; Schwille, W.; Sternal, G.; Sundermann, D.; Thiel, W.; Thiesmeyer, D.; Wagener, K.

    1984-01-01

    The target asymmetry of the deuteron photodisintegration was measured at a photon energy of 550+-50 MeV and at proton center-off-mass angles between 25 and 155 degrees. D-butanol and ND 3 were used as target material yielding a maximum deuteron polarization of 41%. Proton and neutron were detected in coincidence. The data show a structure which cannot be described by the existing analyses. (orig.)

  19. Three-dimensional parametrization of photon-initiated high energy showers

    International Nuclear Information System (INIS)

    De Angelis, A.

    1988-01-01

    A three-dimensional parametrization of photon-initiated showers in a homogeneous absorber is presented. The form, suggested by a model assimilating the transverse shower development to a random walk process, displays a simple scaling with the primary energy, and is very suitable for numerical integration. The parameters are explicitly calculated for the case of showers in SF5 lead glass, and the results are compared with the explicit simulation by GEANT3.11. Fields of application are investigated. (orig.)

  20. Skin damage probabilities using fixation materials in high-energy photon beams

    International Nuclear Information System (INIS)

    Carl, J.; Vestergaard, A.

    2000-01-01

    Patient fixation, such as thermoplastic masks, carbon-fibre support plates and polystyrene bead vacuum cradles, is used to reproduce patient positioning in radiotherapy. Consequently low-density materials may be introduced in high-energy photon beams. The aim of the this study was to measure the increase in skin dose when low-density materials are present and calculate the radiobiological consequences in terms of probabilities of early and late skin damage. An experimental thin-windowed plane-parallel ion chamber was used. Skin doses were measured using various overlaying low-density fixation materials. A fixed geometry of a 10 x 10 cm field, a SSD = 100 cm and photon energies of 4, 6 and 10 MV on Varian Clinac 2100C accelerators were used for all measurements. Radiobiological consequences of introducing these materials into the high-energy photon beams were evaluated in terms of early and late damage of the skin based on the measured surface doses and the LQ-model. The experimental ion chamber save results consistent with other studies. A relationship between skin dose and material thickness in mg/cm 2 was established and used to calculate skin doses in scenarios assuming radiotherapy treatment with opposed fields. Conventional radiotherapy may apply mid-point doses up to 60-66 Gy in daily 2-Gy fractions opposed fields. Using thermoplastic fixation and high-energy photons as low as 4 MV do increase the dose to the skin considerably. However, using thermoplastic materials with thickness less than 100 mg/cm 2 skin doses are comparable with those produced by variation in source to skin distance, field size or blocking trays within clinical treatment set-ups. The use of polystyrene cradles and carbon-fibre materials with thickness less than 100 mg/cm 2 should be avoided at 4 MV at doses above 54-60 Gy. (author)

  1. Disintegration of Ta and W nuclei by high-energy electrons and photons

    International Nuclear Information System (INIS)

    Mitrofanova, A.V.; Noga, V.I.; Popov, A.I.; Ranyuk, Yu.N.; Telegin, Yu.N.

    1977-01-01

    The induced activity method is applied to measure the yields of 15 photonuclear reactions on the tantalum and tungsten nuclei in the 600-1300 MeV energy range of photons. The cross sections are calculated in the ''rectangular'' approximation of the bremsstrahlung spectrum. The data are analysed by the Rudstam semiempirical formula. For the reactions with tungsten nuclei the photo- to electro-yield ratios are measured

  2. Photon Energy Threshold in Direct Photocatalysis with Metal Nanoparticles: Key Evidence from the Action Spectrum of the Reaction.

    Science.gov (United States)

    Sarina, Sarina; Jaatinen, Esa; Xiao, Qi; Huang, Yi Ming; Christopher, Philip; Zhao, Jin Cai; Zhu, Huai Yong

    2017-06-01

    By investigating the action spectra (the relationship between the irradiation wavelength and apparent quantum efficiency of reactions under constant irradiance) of a number of reactions catalyzed by nanoparticles including plasmonic metals, nonplasmonic metals, and their alloys at near-ambient temperatures, we found that a photon energy threshold exists in each photocatalytic reaction; only photons with sufficient energy (e.g., higher than the energy level of the lowest unoccupied molecular orbitals) can initiate the reactions. This energy alignment (and the photon energy threshold) is determined by various factors, including the wavelength and intensity of irradiation, molecule structure, reaction temperature, and so forth. Hence, distinct action spectra were observed in the same type of reaction catalyzed by the same catalyst due to a different substituent group, a slightly changed reaction temperature. These results indicate that photon-electron excitations, instead of the photothermal effect, play a dominant role in direct photocatalysis of metal nanoparticles for many reactions.

  3. Characterization of energy response for photon-counting detectors using x-ray fluorescence

    International Nuclear Information System (INIS)

    Ding, Huanjun; Cho, Hyo-Min; Molloi, Sabee; Barber, William C.; Iwanczyk, Jan S.

    2014-01-01

    Purpose: To investigate the feasibility of characterizing a Si strip photon-counting detector using x-ray fluorescence. Methods: X-ray fluorescence was generated by using a pencil beam from a tungsten anode x-ray tube with 2 mm Al filtration. Spectra were acquired at 90° from the primary beam direction with an energy-resolved photon-counting detector based on an edge illuminated Si strip detector. The distances from the source to target and the target to detector were approximately 19 and 11 cm, respectively. Four different materials, containing silver (Ag), iodine (I), barium (Ba), and gadolinium (Gd), were placed in small plastic containers with a diameter of approximately 0.7 cm for x-ray fluorescence measurements. Linear regression analysis was performed to derive the gain and offset values for the correlation between the measured fluorescence peak center and the known fluorescence energies. The energy resolutions and charge-sharing fractions were also obtained from analytical fittings of the recorded fluorescence spectra. An analytical model, which employed four parameters that can be determined from the fluorescence calibration, was used to estimate the detector response function. Results: Strong fluorescence signals of all four target materials were recorded with the investigated geometry for the Si strip detector. The average gain and offset of all pixels for detector energy calibration were determined to be 6.95 mV/keV and −66.33 mV, respectively. The detector’s energy resolution remained at approximately 2.7 keV for low energies, and increased slightly at 45 keV. The average charge-sharing fraction was estimated to be 36% within the investigated energy range of 20–45 keV. The simulated detector output based on the proposed response function agreed well with the experimental measurement. Conclusions: The performance of a spectral imaging system using energy-resolved photon-counting detectors is very dependent on the energy calibration of the

  4. Circumstances under which various approximate relativistic and nonrelativistic theories yield accurate Compton scattering doubly differential cross sections at high photon energy

    International Nuclear Information System (INIS)

    LaJohn, L A; Pratt, R H

    2009-01-01

    We discuss the increase in error with increasing nuclear charge Z in the use of the relativistic impulse approximation (RIA) for the calculation of Compton K-shell scattering doubly differential cross sections (DDCS). We also show that nonrelativistic (nr) expressions can be used to obtain accurate peak region DDCS at scattering angles less than about 35 0 even at incident photon energies ω i exceeding 1 MeV, if Z<30. This is possible because in the Compton peak region, as θ→0, a low momentum transfer limit is being approached.

  5. Measurement of changes in linear accelerator photon energy through flatness variation using an ion chamber array

    International Nuclear Information System (INIS)

    Gao Song; Balter, Peter A.; Rose, Mark; Simon, William E.

    2013-01-01

    Purpose: To compare the use of flatness versus percent depth dose (PDD) for determining changes in photon beam energy for a megavoltage linear accelerator. Methods: Energy changes were accomplished by adjusting the bending magnet current by up to ±15% in 5% increments away from the value used clinically. Two metrics for flatness, relative flatness in the central 80% of the field (Flat) and average maximum dose along the diagonals normalized by central axis dose (F DN ), were measured using a commercially available planner ionization chamber array. PDD was measured in water at depths of 5 and 10 cm in 3 × 3 cm 2 and 10 × 10 cm 2 fields using a cylindrical chamber. Results: PDD was more sensitive to changes in energy when the beam energy was increased than when it was decreased. For the 18-MV beam in particular, PDD was not sensitive to energy reductions below the nominal energy. The value of Flat was found to be more sensitive to decreases in energy than to increases, with little sensitivity to energy increases above the nominal energy for 18-MV beams. F DN was the only metric that was found to be sensitive to both increases and reductions of energy for both the 6- and 18-MV beams. Conclusions: Flatness based metrics were found to be more sensitive to energy changes than PDD, In particular, F DN was found to be the most sensitive metric to energy changes for photon beams of 6 and 18 MV. The ionization chamber array allows this metric to be conveniently measured as part of routine accelerator quality assurance.

  6. The response of film badge dosemeters to high energy photon radiation

    International Nuclear Information System (INIS)

    Playle, T.S.

    1988-12-01

    The sites of the earlier magnox reactor power stations at Berkeley and Bradwell in the United Kingdom are subject to 6 MeV photon radiation from the coolant gas. Since 1966 the Central Electricity Generating Board has included in its film badge personal dosimetry procedures an algorithm for applying a correction for over-response to high energy photon radiation. The correction is based on laboratory irradiations using a source of pure 6 MeV photon radiation. Recently, the opportunity arose to evaluate the response of the film badges at locations around the Berkeley reactors where spectrum-dependent dose equivalent rates had been measured. This report compares the response of the film badge in these characterised radiation environments with the response measured in the calibration laboratory. It is concluded that in the location where measurements were made, the high energy enhancement of measured dose was obscured by the effects of low energy scattered radiation, and it is considered that this will be the case for all practical situations on the power station site. There is therefore no advantage in using the 6 MeV correction factors for routine film badge dosimetry in these locations. (author)

  7. Contribution of activation products to occupational exposure following treatment using high-energy photons in radiotherapy

    International Nuclear Information System (INIS)

    Petrovic, N.; Krestic-Vesovic, J.; Stojanovic, D.; Ciraj-Bjelac, O.; Lazarevic, D.; Kovacevic, M.

    2011-01-01

    When high-energy photon beams are used for irradiation in radiotherapy, neutrons that are the result of photonuclear reactions create activation products that affect the occupational dose of radiotherapy staff. For the assessment of activation products in situ gamma spectroscopy was performed parallel to dose-rate measurements following irradiation, by using a high-energy photon beam from a linear accelerator Elekta Precise (Elekta, Stockholm (Sweden)) used in radiotherapy. The major identified activation products were the following radioisotopes: 2 '8Al, 24 Na, 56 Mn, 5 4 M n, 187 W, 64 Cu and 62 Cu. Based on the typical workload and dose-rate measurement, the assessed additional annual occupational dose ranged from 1.7 to 0.25 mSv. As the measured dose rate arising from the activation products rapidly decreases as a function of time, the assessed additional dose is negligible after 10 min following irradiation. To keep the occupational dose as low as reasonably achievable, it is recommended to delay entrance to the therapy room at least 2-4 min, when high-energy photons are used. This would reduce the effective dose by 30 %. (authors)

  8. Photon Upconversion and Molecular Solar Energy Storage by Maximizing the Potential of Molecular Self-Assembly.

    Science.gov (United States)

    Kimizuka, Nobuo; Yanai, Nobuhiro; Morikawa, Masa-Aki

    2016-11-29

    The self-assembly of functional molecules into ordered molecular assemblies and the fulfillment of potentials unique to their nanotomesoscopic structures have been one of the central challenges in chemistry. This Feature Article provides an overview of recent progress in the field of molecular self-assembly with the focus on the triplet-triplet annihilation-based photon upconversion (TTA-UC) and supramolecular storage of photon energy. On the basis of the integration of molecular self-assembly and photon energy harvesting, triplet energy migration-based TTA-UC has been achieved in varied molecular systems. Interestingly, some molecular self-assemblies dispersed in solution or organogels revealed oxygen barrier properties, which allowed TTA-UC even under aerated conditions. The elements of molecular self-assembly were also introduced to the field of molecular solar thermal fuel, where reversible photoliquefaction of ionic crystals to ionic liquids was found to double the molecular storage capacity with the simultaneous pursuit of switching ionic conductivity. A future prospect in terms of innovating molecular self-assembly toward molecular systems chemistry is also discussed.

  9. Energy transfer in nanowire solar cells with photon-harvesting shells

    KAUST Repository

    Peters, C. H.

    2009-01-01

    The concept of a nanowire solar cell with photon-harvesting shells is presented. In this architecture, organic molecules which absorb strongly in the near infrared where silicon absorbs weakly are coupled to silicon nanowires (SiNWs). This enables an array of 7-μm -long nanowires with a diameter of 50 nm to absorb over 85% of the photons above the bandgap of silicon. The organic molecules are bonded to the surface of the SiNWs forming a thin shell. They absorb the low-energy photons and subsequently transfer the energy to the SiNWs via Förster resonant energy transfer, creating free electrons and holes within the SiNWs. The carriers are then separated at a radial p-n junction in a nanowire and extracted at the respective electrodes. The shortness of the nanowires is expected to lower the dark current due to the decrease in p-n junction surface area, which scales linearly with wire length. The theoretical power conversion efficiency is 15%. To demonstrate this concept, we measure a 60% increase in photocurrent from a planar silicon-on-insulator diode when a 5 nm layer of poly[2-methoxy-5-(2′ -ethyl-hexyloxy)-1,4-phenylene vinylene is applied to the surface of the silicon. This increase is in excellent agreement with theoretical predictions. © 2009 American Institute of Physics.

  10. Collisions of polyatomic ions with surfaces: incident energy partitioning and chemical reactions

    International Nuclear Information System (INIS)

    Zabka, J.; Roithova, J.; Dolejsek, Z.; Herman, Z.

    2002-01-01

    Collision of polyatomic ions with surfaces were investigated in ion-surface scattering experiments to obtain more information on energy partitioning in ion-surface collision and on chemical reactions at surfaces. Mass spectra, translation energy and angular distributions of product ions were measured in dependence on the incident energy and the incident angle of polyatomic projectiles. From these data distributions of energy fractions resulting in internal excitation of the projectile, translation energy of the product ions, and energy absorbed by the surface were determined. The surface investigated were a standard stainless steel surface, covered by hydrocarbons, carbon surfaces at room and elevated temperatures, and several surfaces covered by a self-assembled monolayers (C 12 -hydrocarbon SAM, C 11 -perfluorohydrocarbon SAM, and C 11 hydrocarbon with terminal -COOH group SAM). The main processes observed at collision energies of 10 - 50 eV were: neutralization of the ions at surfaces, inelastic scattering and dissociations of the projectile ions, quasi elastic scattering of the projectile ions, and chemical reactions with the surface material (usually hydrogen-atom transfer reactions). The ion survival factor was estimated to be a few percent for even-electron ions (like protonated ethanol ion, C 2 H 5 O + , CD 5 + ) and about 10 - 10 2 times lower for radical ions (like ethanol and benzene molecular ions, CD 4 + ). In the polyatomic ion -surface energy transfer experiments, the ethanol molecular ion was used as a well-characterized projectile ion. The results with most of the surfaces studied showed in the collision energy range of 13 - 32 eV that most collisions were strongly inelastic with about 6 - 8 % of the incident projectile energy transformed into internal excitation of the projectile (independent of the incident angle) and led partially to its further dissociation in a unimolecular way after the interaction with the surface. The incident energy

  11. The dosimetric effects of photon energy on the quality of prostate volumetric modulated arc therapy.

    Science.gov (United States)

    Mattes, Malcolm D; Tai, Cyril; Lee, Alvin; Ashamalla, Hani; Ikoro, N C

    2014-01-01

    Studies comparing the dosimetric effects of high- and low-energy photons to treat prostate cancer using 3-dimensional conformal and intensity modulated radiation therapy have yielded mixed results. With the advent of newer radiation delivery systems like volumetric modulated arc therapy (VMAT), the impact of changing photon energy is readdressed. Sixty-five patients treated for prostate cancer at our institution from 2011 to 2012 underwent CT simulation. A target volume encompassing the prostate and entire seminal vesicles was treated to 50.4 Gy, followed by a boost to the prostate and proximal seminal vesicles to a total dose of 81 Gy. The VMAT plans were generated for 6-MV and 10-MV photons under identical optimization conditions using the Eclipse system version 8.6 (Varian Medical Systems, Palo Alto, CA). The analytical anisotropic algorithm was used for all dose calculations. Plans were normalized such that 98% of the planning target volume (PTV) received 100% of the prescribed dose. Dose-volumetric data from the treatment planning system was recorded for both 6-MV and 10-MV plans, which were compared for both the entire cohort and subsets of patients stratified according to the anterior-posterior separation. Plans using 10-MV photons had statistically significantly lower relative integral dose (4.1%), gradient measure (4.1%), skin Dmax (16.9%), monitor units (13.0%), and bladder V(30) (3.1%) than plans using 6-MV photons (P photons was more pronounced for thicker patients (anterior-posterior separation >21 cm) for most parameters, with statistically significant differences in bladder V(30), bladder V(65), integral dose, conformity index, and monitor units. The main dosimetric benefits of 10-MV as compared with 6-MV photons are seen in thicker patients, though for the entire cohort 10-MV plans resulted in a lower integral dose, gradient measure, skin Dmax, monitor units, and bladder V(30), possibly at the expense of higher rectum V(81). Copyright © 2014

  12. Specific absorbed fractions of energy at various ages from internal photon sources: 7, Adult male

    International Nuclear Information System (INIS)

    Cristy, M.; Eckerman, K.F.

    1987-04-01

    Specific absorbed fractions (PHI's) in various organs of the body (target organs) from sources of monoenergetic photons in various other organs (source organs) are tabulated. In this volume PHI-values are tabulated for an adult male (70-kg Reference Man). These PHI-values can be used in calculating the photon component of the dose-equivalent rate in a given target organ from a given radionuclide that is present in a given source organ. The International Commission on Radiological Protection recognizes that the endosteal, or bone surface, cells are the tissue at risk for bone cancer. We have applied the dosimetry methods developed for beta-emitting radionuclides deposited in bone to follow the transport of secondary electrons that were freed by photon interactions through the microscopic structure of the skeleton. With these methods we can estimate PHI in the endosteal cells and can better estimate PHI in the active marrow; the latter is overestimated with other methods at photon energies below 200 keV. 12 refs., 2 tabs

  13. Specific absorbed fractions of energy at various ages from internal photon sources: 1, Methods

    International Nuclear Information System (INIS)

    Cristy, M.; Eckerman, K.F.

    1987-04-01

    Specific absorbed fractions (PHI's) in various organs of the body (target organs) from sources of monoenergetic photons in various other organs (source organs) are tabulated. This volume outlines various methods used to compute the PHI-values and describes how the ''best'' estimates recommended by us are chosen. These PHI-values can be used in calculating the photon component of the dose-equivalent rate in a given target organ from a given radionuclide that is present in a given source organ. The International Commission on Radiological Protection recognizes that the endosteal, or bone surface, cells are the tissue at risk for bone cancer. We have applied the dosimetry methods that Spiers and co-workers developed for beta-emitting radionuclides deposited in bone to follow the transport of secondary electrons that were freed by photon interactions through the microscopic structure of the skeleton. With these methods we can estimate PHI in the endosteal cells and can better estimate PHI in the active marrow; the latter is overestimated with the methods at photon energies below 200 keV. 41 refs., 25 figs., 23 tabs

  14. Prediction of sound transmission loss through multilayered panels by using Gaussian distribution of directional incident energy

    Science.gov (United States)

    Kang; Ih; Kim; Kim

    2000-03-01

    In this study, a new prediction method is suggested for sound transmission loss (STL) of multilayered panels of infinite extent. Conventional methods such as random or field incidence approach often given significant discrepancies in predicting STL of multilayered panels when compared with the experiments. In this paper, appropriate directional distributions of incident energy to predict the STL of multilayered panels are proposed. In order to find a weighting function to represent the directional distribution of incident energy on the wall in a reverberation chamber, numerical simulations by using a ray-tracing technique are carried out. Simulation results reveal that the directional distribution can be approximately expressed by the Gaussian distribution function in terms of the angle of incidence. The Gaussian function is applied to predict the STL of various multilayered panel configurations as well as single panels. The compared results between the measurement and the prediction show good agreements, which validate the proposed Gaussian function approach.

  15. Photon counting and energy discriminating X-ray detectors. Benefits and applications

    International Nuclear Information System (INIS)

    Walter, David; Zscherpel, Uwe; Ewert, Uwe

    2016-01-01

    Since a few years the direct detection of X-ray photons into electrical signals is possible by usage of highly absorbing photo conducting materials (e.g. CdTe) as detection layer of an underlying CMOS semiconductor X-ray detector. Even NDT energies up to 400 keV are possible today, as well. The image sharpness and absorption efficiency is improved by the replacement of the unsharp scintillation layer (as used at indirect detecting detectors) by a photo conducting layer of much higher thickness. If the read-out speed is high enough (ca. 50 - 100 ns dead time) single X-ray photons can be counted and their energy measured. Read-out noise and dark image correction can be avoided. By setting energy thresholds selected energy ranges of the X-ray spectrum can be detected or suppressed. This allows material discrimination by dual-energy techniques or the reduction of image contributions of scattered radiation, which results in an enhanced contrast sensitivity. To use these advantages in an effective way, a special calibration procedure has to be developed, which considers also time dependent processes in the detection layer. This contribution presents some of these new properties of direct detecting digital detector arrays (DDAs) and shows first results on testing fiber reinforced composites as well as first approaches to dual energy imaging.

  16. The effect of energy spectrum change on DNA damage in and out of field in 10-MV clinical photon beams.

    Science.gov (United States)

    Ezzati, A O; Xiao, Y; Sohrabpour, M; Studenski, M T

    2015-01-01

    The aim of this study was to quantify the DNA damage induced in a clinical megavoltage photon beam at various depths in and out of the field. MCNPX was used to simulate 10 × 10 and 20 × 20 cm(2) 10-MV photon beams from a clinical linear accelerator. Photon and electron spectra were collected in a water phantom at depths of 2.5, 12.5 and 22.5 cm on the central axis and at off-axis points out to 10 cm. These spectra were used as an input to a validated microdosimetric Monte Carlo code, MCDS, to calculate the RBE of induced DSB in DNA at points in and out of the primary radiation field at three depths. There was an observable difference in the energy spectra for photons and electrons for points in the primary radiation field and those points out of field. In the out-of-field region, the mean energy for the photon and electron spectra decreased by a factor of about six and three from the in-field mean energy, respectively. Despite the differences in spectra and mean energy, the change in RBE was photon and electron spectra, these changes do not correlate with a change in RBE in a clinical MV photon beam as the electron spectra are dominated by electrons with energies >20 keV.

  17. Molecular desorption of a nonevaporable getter St 707 irradiated at room temperature with synchrotron radiation of 194 eV critical photon energy

    CERN Document Server

    Le Pimpec, F; Laurent, Jean Michel

    2003-01-01

    Photon stimulated molecular desorption from a nonevaporable getter (NEG) St 707(R) (SAES Getters TM ) surface after conditioning and after saturation with isotopic carbon monoxide Ýcf. nomenclature in Handbook of Chemistry and Physics, 74th edition, edited by D. R. Lide (CRC Press, Boca Raton, 1994)¿ /sup 13/C/sup 18/O, has been studied on a dedicated beamline at the EPA ring at CERN. The synchrotron radiation of 194 eV critical energy and with an average photon intensity of ~1 * 10/sup 17/ photons s/sup -1/ was impinging on the sample at perpendicular incidence. It is found that the desorption yields eta (molecules/photon) of the characteristic gases in an UHV system (hydrogen, methane, carbon monoxide, and carbon dioxide) for a freshly activated NEG and for a NEG fully saturated with /sup 13/C /sup 18/O are lower than that of 300 degrees C baked stainless steel. (22 refs). Fully activated NEG was studied and found to desorb less as compared to a 300 degree c baked stainless-steel surface. Furthermore, it ...

  18. Iodine-131 imaging using 284 keV photons with a small animal CZT-SPECT system dedicated to low-medium-energy photon detection.

    Science.gov (United States)

    Kojima, Akihiro; Gotoh, Kumiko; Shimamoto, Masako; Hasegawa, Koki; Okada, Seiji

    2016-02-01

    Iodine-131 is widely used for radionuclide therapy because of its β-particle and for diagnostic imaging employing its principal gamma ray. Since that principal gamma ray has the relatively high energy of 364 keV, small animal single-photon emission computed tomography (SPECT) imaging systems may be required to possess the ability to image such higher energy photons. The aim of this study was to investigate the possibility of imaging I-131 using its 284 keV photons instead of its 364 keV photons in a small animal SPECT imaging system dedicated to the detection of low-medium-energy photons (below 300 keV). The imaging system used was a commercially available preclinical SPECT instrument with CZT detectors that was equipped with multi-pinhole collimators and was accompanied by a CT imager. An energy window for I-131 imaging was set to a photopeak of 284 keV with a low abundance compared with 364 keV photons. Small line sources and two mice, one of each of two types, that were injected with NaI-131 were scanned. Although higher counts occurred at the peripheral region of the reconstructed images due to the collimator penetration by the 364 keV photons, the shape of the small line sources could be well visualized. The measured spatial resolution was relatively poor (~1.9 mm for full width at half maximum and ~3.9 mm for full width at tenth maximum). However, a good linear correlation between SPECT values and the level of I-131 radioactivity was observed. Furthermore, the uptake of NaI-131 to the thyroid gland for the two mice was clearly identified in the 3D-SPECT image fused with the X-ray CT image. We conclude that the use of an energy window set on the photopeak of 284 keV and the multi-pinhole collimator may permit I-131 imaging for a preclinical CZT-SPECT system that does not have the ability to acquire images using the 364 keV photons.

  19. The High Energy Photons Emission from Solar Flares Observed by SZ2-XD

    Science.gov (United States)

    Wang, Huanyu; Li, Xinqiao; Ma, Yuqian; Zhang, Chengmo; Xu, Yupeng; Wang, Jingzhou; Chen, Guoming

    The spectra and light curve of near a hundred Solar X-ray Flare events, which were observed by SZ2/XD in the energy band of 10-800 keV during 2001, have been investigated. The events covered from C to X-class flares, which are shown different characters of high energy photons emission. The results will be presented in this paper. The discussions will be made especially for 3 of the brightest X-class solar flares SF010402(X20),SF010406(X5.6) and SF010415 (X14.4, a GLE event).

  20. Cost-effectiveness and incidence of renewable energy promotion in Germany

    OpenAIRE

    Böhringer, Christoph; Landis, Florian; Tovar Reaños, Miguel Angel

    2017-01-01

    Over the last decade Germany has boosted renewable energy in power production by means of massive subsidies. The flip side are very high electricity prices which raises concerns that the transition cost towards a renewable energy system will be mainly borne by poor households. In this paper, we combine computable general equilibrium and microsimulation analysis to investigate the cost-effectiveness and incidence of Germany's renewable energy promotion. We find that the regressive effects of r...

  1. The effect of low-energy electrons on the response of ion chambers to ionizing photon beams

    Science.gov (United States)

    La Russa, Daniel J.

    Cavity ionization chambers are one of the most popular and widely used devices for quantifying ionizing photon beams. This popularity originates from the precision of these devices and the relative ease with which ionization measurements are converted to quantities of interest in therapeutic radiology or radiation protection, collectively referred to as radiation dosimetry. The formalisms used for these conversions, known as cavity theory, make several assumptions about the electron spectrum in the low-energy range resulting from the incident photon beam. These electrons often account for a significant fraction of the ion chamber response. An inadequate treatment of low-energy electrons can therefore significantly effect calculated quantities of interest. This thesis sets out to investigate the effect of low-energy electrons on (1) the use of Spencer-Attix cavity theory with 60Co beams; and (2) the standard temperature-pressure correction factor, P TP, used to relate the measured ionization to a set of reference temperature and pressure conditions for vented ion chambers. Problems with the PTP correction are shown to arise when used with kilovoltage x rays, where ionization measurements are due primarily to electrons that do not have enough energy to cross the cavity. A combination of measurements and Monte Carlo calculations using the EGSnrc Monte Carlo code demonstrate the breakdown of PTP in these situations when used with non-air-equivalent chambers. The extent of the breakdown is shown to depend on cavity size, energy of the incident photons, and the composition of the chamber. In the worst case, the standard P TP factor overcorrects the response of an aluminum chamber by ≈12% at an air density typical of Mexico City. The response of a more common graphite-walled chamber with similar dimensions at the same air density is undercorrected by ≈ 2%. The EGSnrc Monte Carlo code is also used to investigate Spencer-Attix cavity theory as it is used in the

  2. X-ray evidence of low-energy photon therapy for cervical lordosis restoration and radial head spur healing

    Science.gov (United States)

    Fitz-Ritson, Donald; Filonenko, Natalia; Salansky, Norman M.

    1994-09-01

    X rays were used for low energy photon therapy (LEPT) efficacy assessment for cervical lordosis restoration and radial head spur healing. Two cases, their evaluation, and treatment are discussed along with the follow-up results.

  3. Review of personal monitoring techniques for the measurement of absorbed dose from external beta and low energy photon radiation

    DEFF Research Database (Denmark)

    Christensen, Poul

    1986-01-01

    The techniques available at present for personal monitoring of doses from external beta and low energy photon radiation are reviewed. The performance of currently used dosimetry systems is compared with that recommended internationally, and developments for improving the actual performance...

  4. A Pb-TLD spectrometer to measure high energy photons in z-pinch experiments on the primary test stand

    International Nuclear Information System (INIS)

    Si, Fenni; Yang, Jianlun; Xu, Rongkun; Yuan, Xi; Huang, Zhanchang; Ye, Fan; Wang, Dong; Zhang, Chuanfei

    2017-01-01

    Highlights: • A Pb-TLD spectrometer has been developed to measure spectra of high energy photons in wire-array z pinches on PTS. • Energy spectra of high energy photons on PTS has been firstly obtained by unfolding programs developed with MATLAB code. • The energy of high energy x-ray on PTS is obtained to be mainly within the region of 100 keV to 1.3 MeV. - Abstract: A Pb-TLD spectrometer has been developed based on attenuation techniques to measure high energy photons in wire-array z-pinch experiments on the primary test stand (PTS). It is composed of a stack of 18 lead filters interspersed with 19 thermoluminescent dosimeters (TLD). A shield is constructed for the spectrometer and scattered radiation is reduced to less than 5% by the shield. Response functions of the spectrometer are calculated by MCNP5 for 0–2 MeV photons. Based on response functions and 19 dose data measured in experiments, energy spectra of high energy photons on PTS has been firstly obtained by unfolding programs developed with MATLAB code using iterative least square fit. Results show that energy peak locates within 200 keV and 300 keV, and the fluence decreases to background level at energy higher than 1.3 MeV.

  5. A Pb-TLD spectrometer to measure high energy photons in z-pinch experiments on the primary test stand

    Energy Technology Data Exchange (ETDEWEB)

    Si, Fenni; Yang, Jianlun; Xu, Rongkun; Yuan, Xi; Huang, Zhanchang; Ye, Fan; Wang, Dong; Zhang, Chuanfei, E-mail: sifenni@163.com

    2017-05-15

    Highlights: • A Pb-TLD spectrometer has been developed to measure spectra of high energy photons in wire-array z pinches on PTS. • Energy spectra of high energy photons on PTS has been firstly obtained by unfolding programs developed with MATLAB code. • The energy of high energy x-ray on PTS is obtained to be mainly within the region of 100 keV to 1.3 MeV. - Abstract: A Pb-TLD spectrometer has been developed based on attenuation techniques to measure high energy photons in wire-array z-pinch experiments on the primary test stand (PTS). It is composed of a stack of 18 lead filters interspersed with 19 thermoluminescent dosimeters (TLD). A shield is constructed for the spectrometer and scattered radiation is reduced to less than 5% by the shield. Response functions of the spectrometer are calculated by MCNP5 for 0–2 MeV photons. Based on response functions and 19 dose data measured in experiments, energy spectra of high energy photons on PTS has been firstly obtained by unfolding programs developed with MATLAB code using iterative least square fit. Results show that energy peak locates within 200 keV and 300 keV, and the fluence decreases to background level at energy higher than 1.3 MeV.

  6. Search for anomalous production of events with a high energy lepton and photon at the Tevatron

    Energy Technology Data Exchange (ETDEWEB)

    Loginov, Andrey Borisovich [State Scientific Center of the Russian Federation. Inst. for Theoretical and Experimental Physics, Moscow (Russian Federation)

    2006-01-01

    We present results of a search for the anomalous production of events containing a high-transverse momentum charged lepton (ℓ, either e or μ) and photon (γ), accompanied by missing transverse energy (ET), and/or additional leptons and photons, and jets (X). We use the same kinematic selection criteria as in a previous CDF search, but with a substantially larger data set, 305 pb-1, a p$\\bar{p}$ collision energy of 1.96 TeV, and the upgraded CDF II detector. We find 42 ℓγET events versus a standard model expectation of 37.3 ± 5.4 events. The level of excess observed in Run I, 16 events with an expectation of 7.6 ± 0.7 events (corresponding to a 2.7 σ effect), is not supported by the new data. In the signature of ℓℓγ + X we observe 31 events versus an expectation of 23.0 ± 2.7 events. In this sample we find no events with an extra photon or ET and so find no events like the one eeγγ ET event observed in Run I.

  7. Interference, confinement and non Franck-Condon effects in photoionization of H{sub 2} molecules at high photon energy

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, J; MartIn, F [Departamento de Quimica, C-9, Universidad Autonoma de Madrid, 28049 Madrid (Spain); Fojon, O, E-mail: jorge@phys.au.d, E-mail: ofojon@fceia.unr.edu.a, E-mail: fernando.martin@uam.e [Institute de Fisica Rosario (CONICET-UNR), Pellegrini 250, 2000 Rosario (Argentina)

    2009-11-01

    We study in detail photoionization of H{sub 2} molecules by high energy photons. Bound and continuum states are accurately evaluated by using B-spline basis functions. The usual Franck-Condon behavior is not followed when the molecule is parallel to the polarization direction. The origin of this anomaly is related to interference effects. Moreover, it is shown that at these high photon energies, the nuclear asymmetry parameter exhibits a reminiscence of these interference patterns.

  8. Energy dependence of photon-induced L shell x-ray intensity ratios in Ta and W

    Energy Technology Data Exchange (ETDEWEB)

    Shatendra, K; Allawadhi, K L; Sood, B S

    1984-02-01

    The L shell x-ray intensity ratios have been measured for the elements Ta and W by photoionization of L shell electrons in the photon energy region 14 <= E <= 44 keV. The experimental results are compared with those calculated at the photon energies used in the present measurements. The measured values show fairly good agreement with the calculated values within the experimental uncertainties. 11 references, 7 figures.

  9. Alpha-particle breakup at incident energies of 20 and 40 MeV/nucleon

    International Nuclear Information System (INIS)

    Wu, J.R.; Chang, C.C.; Holmgren, H.D.; Koontz, R.W.

    1979-01-01

    The breakup of alpha particles at incident energies of 20 and 40 MeV/nucleon on 27 Al, 58 Ni, 90 Zr, and 209 Bi has been studied. It was found that the breakup cross section decreases rapidly with increasing angles and increases with increasing target mass and incident energy. The total breakup yield, summed over all charged fragments, is approx.15--35% of the alpha-particle total reaction cross section, and has an approximate A/sup 1/3/ dependence. The ratios of breakup yields among different fragments are approximately p:d:t: 3 He approx. = 13:3:1:2, and are roughly independent of the incident energy and the target nucleus. These features suggest that the alpha-particle fragmentation is a peripheral process and is dominated by the properties of the incident projectile. A simple plane-wave alpha-particle breakup model gives a rather good description to the experimental data. In addition to the breakup deuteron peak at half of the beam energy, a second peak at quarter of the beam energy (or the same energy as the breakup proton peak) is observed. This peak might be due to a two-step breakup-pickup process

  10. Efficiency calibration of x-ray HPGe detectors for photons with energies above the Ge K binding energy

    Energy Technology Data Exchange (ETDEWEB)

    Maidana, Nora L., E-mail: nmaidana@if.usp.br [Instituto de Física, Universidade de São Paulo, Travessa R 187, Cidade Universitária, CEP:05508-900 São Paulo, SP (Brazil); Vanin, Vito R.; Jahnke, Viktor [Instituto de Física, Universidade de São Paulo, Travessa R 187, Cidade Universitária, CEP:05508-900 São Paulo, SP (Brazil); Fernández-Varea, José M. [Facultat de Física (ECM and ICC), Universitat de Barcelona, Diagonal 645, E-08028 Barcelona (Spain); Martins, Marcos N. [Instituto de Física, Universidade de São Paulo, Travessa R 187, Cidade Universitária, CEP:05508-900 São Paulo, SP (Brazil); Brualla, Lorenzo [NCTeam, Strahlenklinik, Universitätsklinikum Essen, Hufelandstraße 55, D-45122 Essen (Germany)

    2013-11-21

    We report on the efficiency calibration of a HPGe x-ray detector using radioactive sources and an analytical expression taken from the literature, in two different arrangements, with and without a broad-angle collimator. The frontal surface of the Ge crystal was scanned with pencil beams of photons. The Ge dead layer was found to be nonuniform, with central and intermediate regions that have thin (μm range) and thick (mm range) dead layers, respectively, surrounded by an insensitive ring. We discuss how this fact explains the observed efficiency curves and generalize the adopted model. We show that changes in the thickness of the Ge-crystal dead layer affect the efficiency of x-ray detectors, but the use of an appropriate broad-beam external collimator limiting the photon flux to the thin dead layer in the central region leads to the expected efficiency dependence with energy and renders the calibration simpler.

  11. Variation in emission and energy recovery concerning incident angle in a scheme recovering high energy ions by secondary electrons

    International Nuclear Information System (INIS)

    Wada, Takayuki; Konno, Shota; Nakamoto, Satoshi; Takeno, Hiromasa; Furuyama, Yuichi; Taniike, Akira

    2016-01-01

    As an energy recovery device for fast protons produced in D- 3 He nuclear fusion, secondary electron (SE) direct energy converter (SEDEC) was proposed in addition to traveling wave direct energy converter (TWDEC). Some protons passing through a TWDEC come into an SEDEC, where protons penetrate to a number of foil electrodes and emitted SEs are recovered. Following to a development of SE orbit control by magnetic field, dependence on incident angle of protons was examined to optimize structure of SEDEC. Based on a theoretical expectation, experiments were performed by changing incident angle of protons and variation in emission and energy recovery were measured. Both emission and energy recovery increased as the angle increased, and differences with theoretical expectation are discussed. (author)

  12. Incident energy dependence of collision dynamics in A+A reactions from AGS to SPS

    International Nuclear Information System (INIS)

    Nara, Yasushi

    2000-01-01

    Based on the hadronic transport model of JAM, I calculate the time evolution of particles, density, temperature and energy density for the heavy ion collision at the incident energies of AGS(11A GeV), JHF(25A GeV) and SPS(158A GeV). Microscopic calculations show that resonance matter with extremely large baryon density is created at AGS energy, while at JHF energy, quark matter with extremely large baryon density is suggested. At SPS energy, quark matter with large baryon density might be created. (author)

  13. Cost-effectiveness and incidence of renewable energy promotion in Germany

    Energy Technology Data Exchange (ETDEWEB)

    Boehringer, Christoph [Oldenburg Univ. (Germany). Dept. of Economics; Landis, Florian [Eidgenoessische Technische Hochschule, Zurich (Switzerland); Tovar Reanos, Miguel Angel [Zentrum fuer Europaeische Wirtschaftsforschung GmbH (ZEW), Mannheim (Germany)

    2017-08-01

    Over the last decade Germany has boosted renewable energy in power production by means of massive subsidies. The flip side are very high electricity prices which raises concerns that the transition cost towards a renewable energy system will be mainly borne by poor households. In this paper, we combine computable general equilibrium and microsimulation analysis to investigate the cost-effectiveness and incidence of Germany's renewable energy promotion. We find that the regressive effects of renewable energy promotion could be ameliorated by alternative subsidy financing mechanisms which achieve the same level of electricity generation from renewable energy sources.

  14. Dosimetric aspects of the therapeutic photon beams from a dual-energy linear accelerator

    International Nuclear Information System (INIS)

    Al-Ghazi, M.S.A.L.; Arjune, B.; Fiedler, J.A.; Sharma, P.D.

    1988-01-01

    Parameters of the photon beams (6 and 20 MV) from a dual-energy linear accelerator (Mevatron-KD, Siemens Medical Laboratories, CA) are presented. The depth dose characteristics of the photon beams are d/sub max/ of 1.8 and 3.8 cm and percentage depth dose of 68% and 80% at 10-cm depth and 100-cm source--surface distance for a field size of 10 x 10 cm 2 for 6 and 20 MV, respectively. The 6 and 20 MV beams were found to correspond to nominal accelerating potentials of 4.7 and 17 MV, respectively. The stability of output is within +- 1% and flatness and symmetry are within +- 3%. These figures compare favorably with the manufacturer's specifications

  15. 2D and 3D photonic crystal materials for photocatalysis and electrochemical energy storage and conversion

    Science.gov (United States)

    Collins, Gillian; Armstrong, Eileen; McNulty, David; O’Hanlon, Sally; Geaney, Hugh; O’Dwyer, Colm

    2016-01-01

    Abstract This perspective reviews recent advances in inverse opal structures, how they have been developed, studied and applied as catalysts, catalyst support materials, as electrode materials for batteries, water splitting applications, solar-to-fuel conversion and electrochromics, and finally as photonic photocatalysts and photoelectrocatalysts. Throughout, we detail some of the salient optical characteristics that underpin recent results and form the basis for light-matter interactions that span electrochemical energy conversion systems as well as photocatalytic systems. Strategies for using 2D as well as 3D structures, ordered macroporous materials such as inverse opals are summarized and recent work on plasmonic–photonic coupling in metal nanoparticle-infiltrated wide band gap inverse opals for enhanced photoelectrochemistry are provided. PMID:27877904

  16. High energy deeply virtual Compton scattering on a photon and related meson exclusive production

    International Nuclear Information System (INIS)

    Machado, Magno V. T.

    2007-01-01

    In this work we estimate the differential cross section for the high energy deeply virtual Compton scattering on a photon target, γ*γ→γγ, within the QCD dipole-dipole scattering formalism. For the phenomenology, a saturation model for the dipole-dipole cross section for two photon scattering is considered. Its robustness is supported by a good description of current accelerator data. In addition, we consider the related exclusive vector meson production processes, γ*γ→Vγ. This analysis is focused on the light ρ and φ meson production, which produces larger cross sections. The phenomenological results are compared with the theoretical calculation using the color-dipole Balitsky-Fadin-Kuraev-Lipatov approach

  17. Free-Free Transitions of the e-H System Inside a Dense Plasma Irradiated by a Laser Field at Very Low Incident-Electron Energies

    Science.gov (United States)

    Bhatia, A. K.; Sinha, C.

    2012-01-01

    The free-free transition is studied for an electron-hydrogen atom in ground state when a low-energy electron (external) is injected into hydrogenic plasma in the presence of an external homogenous, monochromatic, and linearly polarized laser field. The effect of plasma screening is considered in the Debye-Huckel approximation. The calculations are performed in the soft photon limit. The incident electron is considered to be dressed by the laser field in a nonperturbative manner by choosing the Volkov solutions in both the initial and final channels. The space part of the scattering wave function for the electron is solved numerically by taking into account the electron exchange. The laser-assisted differential and total cross sections are calculated for single-photon absorption or emission and no-photon exchange in the soft photon limit, the laser intensity being much less than the atomic field intensity. The calculations have been carried out for various values of Debye parameter, ranging from 0.005 to 0.12. A strong suppression is noted in the laser-assisted cross sections as compared to the field-free situation. A significant difference is noted for the singlet and triplet cross sections. The suppression is much more in the triplet states.

  18. Surface dose measurements under stretched, perforated thermoplast sheets and under protective wound dressings for high energy photon radiation

    International Nuclear Information System (INIS)

    Staudenraus, J.; Christ, G.

    2000-01-01

    Patient fixation masks made of perforated thermoplast sheets are widely used in radiotherapy. These masks in particular serve to immobilize the head and neck region during radiation treatment. We placed samples made of differently stretched, perforated mask material on the surface of a white polystyrene (RW3) phantom and measured for high energy photon beams from Co-60 radiation up to 25 MV bremsstrahlung the dose increase resulting from the build-up under the hole and bridge areas. Depending on the energy of the incident beam and the thickness of the stretched mask material we observed a dose increase under the bridges at the phantom surface of 55% up to 140% compared to the dose without a layer of mask material. Under a hole the dose increase is almost half the value found under a bridge. However, deeper than 1 mm under the phantom surface this difference in dose increase under holes and bridges decreases to less than 10%. The mean dose increase under a perforated thermoplast sheet is lower than the dose increase under a homogeneous sheet made of the same material with the same mean thickness. Radiation induced skin lesions or an ulcerating tumour, respectively, may require a protective wound dressing under a patient fixation mask during radiation therapy. Choosing a thin hydrocolloid wound dressing the additional dose increase of the skin, compared to the dose increase due to the fixation mask, can be kept low. (orig.) [de

  19. Many-Body Theory of Proton-Generated Point Defects for Losses of Electron Energy and Photons in Quantum Wells

    Science.gov (United States)

    Huang, Danhong; Iurov, Andrii; Gao, Fei; Gumbs, Godfrey; Cardimona, D. A.

    2018-02-01

    The effects of point defects on the loss of either energies of ballistic electron beams or incident photons are studied by using a many-body theory in a multi-quantum-well system. This theory includes the defect-induced vertex correction to a bare polarization function of electrons within the ladder approximation, and the intralayer and interlayer screening of defect-electron interactions is also taken into account in the random-phase approximation. The numerical results of defect effects on both energy-loss and optical-absorption spectra are presented and analyzed for various defect densities, numbers of quantum wells, and wave vectors. The diffusion-reaction equation is employed for calculating distributions of point defects in a layered structure. For completeness, the production rate for Frenkel-pair defects and their initial concentration are obtained based on atomic-level molecular-dynamics simulations. By combining the defect-effect, diffusion-reaction, and molecular-dynamics models with an available space-weather-forecast model, it will be possible in the future to enable specific designing for electronic and optoelectronic quantum devices that will be operated in space with radiation-hardening protection and, therefore, effectively extend the lifetime of these satellite onboard electronic and optoelectronic devices. Specifically, this theory can lead to a better characterization of quantum-well photodetectors not only for high quantum efficiency and low dark current density but also for radiation tolerance or mitigating the effects of the radiation.

  20. Investigation of human teeth with respect to the photon interaction, energy absorption and buildup factor

    Energy Technology Data Exchange (ETDEWEB)

    Kurudirek, Murat, E-mail: mkurudirek@gmail.co [Faculty of Science, Department of Physics, Ataturk University, 25240 Erzurum (Turkey); Topcuoglu, Sinan [Faculty of Dentistry, Department of Endodontic, Ataturk University, 25240 Erzurum (Turkey)

    2011-05-15

    The effective atomic numbers and electron densities of human teeth have been calculated for total photon interaction (Z{sub PI{sub e{sub f{sub f}}}},Ne{sub PI{sub e{sub f{sub f}}}}) and photon energy absorption (Z{sub PEA{sub e{sub f{sub f}}}},Z{sub RW{sub e{sub f{sub f}}}}Ne{sub PEA{sub e{sub f{sub f}}}}) in the energy region 1 keV-20 MeV. Besides, the energy absorption (EABF) and exposure (EBF) buildup factors have been calculated for these samples by using the geometric progression fitting approximation in the energy region 0.015-15 MeV up to 40 mfp (mean free path). Wherever possible the results were compared with experiment. Effective atomic numbers (Z{sub PI{sub e{sub f{sub f}}}}) of human teeth were calculated using different methods. Discrepancies were noted in Z{sub PI{sub e{sub f{sub f}}}} between the direct and interpolation methods in the low and high energy regions where absorption processes dominate while good agreement was observed in intermediate energy region where Compton scattering dominates. Significant variations up to 22% were observed between Z{sub PI{sub e{sub f{sub f}}}} and Z{sub PEA{sub e{sub f{sub f}}}} in the energy region 30-150 keV which is the used energy range in dental cone beam computed tomography (CBCT) X-ray machines. The Z{sub eff} values of human teeth were found to relatively vary within 1% if different laser treatments are applied. In this variation, the Er:YAG laser treated samples were found to be less effected than Nd:YAG laser treated ones when compared with control group. Relative differences between EABF and EBF were found to be significantly high in the energy region 60 keV-1 MeV even though they have similar variations with respect to the different parameters viz. photon energy, penetration depth.

  1. A new approach to film dosimetry for high-energy photon beams using organic plastic scintillators

    International Nuclear Information System (INIS)

    Yeo, I.J.; Wang, C.-K.C.; Burch, S.E.

    1999-01-01

    Successful radiotherapy relies on accurate dose measurement. Traditional dosimeters such as ion chambers, TLDs and diodes have disadvantages such as relatively long measurement time and poor spatial resolution. These drawbacks become more serious problems for dynamic beams (i.e. with the use of dynamic wedges or even the intensity modulation technique). X-ray film, an integrating dosimeter, may not be associated with the above disadvantages and problems. However, there are several major issues regarding use of x-ray film for routine dosimetry, including the over-response of the film to low-energy photons, variations in the dose response curve (nonlinearity), lack of reproducibility due to variation in processing, etc. This paper addresses the first problem. That is, x-ray film over-responds to low-energy photons (energies below 400 keV), and thus generates unacceptably inaccurate dosimetric data compared with ion-chamber data. To overcome the over-response problem of x-ray film in a phantom, a scintillation method has been investigated. In this method, a film is sandwiched by two plastic scintillation screens to enhance the film response to upstream electrons, and therefore minimize the over-response caused by low-energy photons. The sandwiched system was tested with a 4 MV linac beam. The result shows that, depending on the uniformity of the scintillation screens, the depth-dose distribution obtained from the sandwich system can be made to agree well with that obtained from ion chambers. However, the required high degree of uniformity remains a challenge for the scintillation screen manufacturers. (author)

  2. Influence of trace elements in human tissue in low-energy photon brachytherapy dosimetry

    International Nuclear Information System (INIS)

    White, Shane A; Landry, Guillaume; Van Gils, Francis; Verhaegen, Frank; Reniers, Brigitte

    2012-01-01

    The aim of this paper is to determine the dosimetric impact of trace elements in human tissues for low-energy photon sources used in brachytherapy. Monte Carlo dose calculations were used to investigate the dosimetric effect of trace elements present in normal or cancerous human tissues. The effect of individual traces (atomic number Z = 11–30) was studied in soft tissue irradiated by low-energy brachytherapy sources. Three other tissue types (prostate, adipose and mammary gland) were also simulated with varying trace concentrations to quantify the contribution of each trace to the dose distribution. The dose differences between cancerous and healthy prostate tissues were calculated in single- and multi-source geometries. The presence of traces in a tissue produces a difference in the dose distribution that is dependent on Z and the concentration of the trace. Low-Z traces (Na) have a negligible effect ( 3%). There is a potentially significant difference in the dose distribution between cancerous and healthy prostate tissues (4%) and even larger if compared to the trace-free composition (15%) in both single- and multi-sourced geometries. Trace elements have a non-negligible (up to 8% in prostate D 90 ) effect on the dose in tissues irradiated with low-energy photon sources. This study underlines the need for further investigation into accurate determination of the trace composition of tissues associated with low-energy brachytherapy. Alternatively, trace elements could be incorporated as a source of uncertainty in dose calculations. (paper)

  3. An analysis of MCNP cross-sections and tally methods for low-energy photon emitters.

    Science.gov (United States)

    Demarco, John J; Wallace, Robert E; Boedeker, Kirsten

    2002-04-21

    Monte Carlo calculations are frequently used to analyse a variety of radiological science applications using low-energy (10-1000 keV) photon sources. This study seeks to create a low-energy benchmark for the MCNP Monte Carlo code by simulating the absolute dose rate in water and the air-kerma rate for monoenergetic point sources with energies between 10 keV and 1 MeV. The analysis compares four cross-section datasets as well as the tally method for collision kerma versus absorbed dose. The total photon attenuation coefficient cross-section for low atomic number elements has changed significantly as cross-section data have changed between 1967 and 1989. Differences of up to 10% are observed in the photoelectric cross-section for water at 30 keV between the standard MCNP cross-section dataset (DLC-200) and the most recent XCOM/NIST tabulation. At 30 keV, the absolute dose rate in water at 1.0 cm from the source increases by 7.8% after replacing the DLC-200 photoelectric cross-sections for water with those from the XCOM/NIST tabulation. The differences in the absolute dose rate are analysed when calculated with either the MCNP absorbed dose tally or the collision kerma tally. Significant differences between the collision kerma tally and the absorbed dose tally can occur when using the DLC-200 attenuation coefficients in conjunction with a modern tabulation of mass energy-absorption coefficients.

  4. Quantitative material decomposition using spectral computed tomography with an energy-resolved photon-counting detector

    International Nuclear Information System (INIS)

    Lee, Seungwan; Choi, Yu-Na; Kim, Hee-Joung

    2014-01-01

    Dual-energy computed tomography (CT) techniques have been used to decompose materials and characterize tissues according to their physical and chemical compositions. However, these techniques are hampered by the limitations of conventional x-ray detectors operated in charge integrating mode. Energy-resolved photon-counting detectors provide spectral information from polychromatic x-rays using multiple energy thresholds. These detectors allow simultaneous acquisition of data in different energy ranges without spectral overlap, resulting in more efficient material decomposition and quantification for dual-energy CT. In this study, a pre-reconstruction dual-energy CT technique based on volume conservation was proposed for three-material decomposition. The technique was combined with iterative reconstruction algorithms by using a ray-driven projector in order to improve the quality of decomposition images and reduce radiation dose. A spectral CT system equipped with a CZT-based photon-counting detector was used to implement the proposed dual-energy CT technique. We obtained dual-energy images of calibration and three-material phantoms consisting of low atomic number materials from the optimal energy bins determined by Monte Carlo simulations. The material decomposition process was accomplished by both the proposed and post-reconstruction dual-energy CT techniques. Linear regression and normalized root-mean-square error (NRMSE) analyses were performed to evaluate the quantitative accuracy of decomposition images. The calibration accuracy of the proposed dual-energy CT technique was higher than that of the post-reconstruction dual-energy CT technique, with fitted slopes of 0.97–1.01 and NRMSEs of 0.20–4.50% for all basis materials. In the three-material phantom study, the proposed dual-energy CT technique decreased the NRMSEs of measured volume fractions by factors of 0.17–0.28 compared to the post-reconstruction dual-energy CT technique. It was concluded that the

  5. High Transverse Momentum Direct Photon Production at Fermilab Fixed-Target Energies

    International Nuclear Information System (INIS)

    Apanasevich, Leonard

    2005-01-01

    This thesis describes a study of the production of high transverse momentum direct photons and π 0 mesons by proton beams at 530 and 800 GeV/c and π - beams at 515 GeV/c incident on beryllium, copper, and liquid hydrogen targets. The data were collected by Fermilab experiment E706 during the 1990 and 1991-92 fixed target runs. The apparatus included a large, finely segmented lead and liquid argon electromagnetic calorimeter and a charged particle spectrometer featuring silicon strip detectors in the target region and proportional wire chambers and drift tubes downstream of a large aperture analysis magnet. The inclusive cross sections are presented as functions of transverse momentum and rapidity. The measurements are compared with next-to-leading order perturbative QCD calculations and to results from previous experiments

  6. Microsystem for remote sensing of high energy radiation with associated extremely low photon flux densities

    Science.gov (United States)

    Otten, A.; Jain, V. K.

    2015-08-01

    This paper presents a microsystem for remote sensing of high energy radiation in extremely low flux density conditions. With wide deployment in mind, potential applications range from nuclear non-proliferation, to hospital radiation-safety. The daunting challenge is the low level of photon flux densities - emerging from a Scintillation Crystal (SC) on to a ~1 mm-square detector, which are a factor of 10000 or so lower than those acceptable to recently reported photonic chips (including `single-photon detection' chips), due to a combination of low Lux, small detector size, and short duration SC output pulses - on the order of 1 μs. These challenges are attempted to be overcome by the design of an innovative `System on a Chip' type microchip, with high detector sensitivity, and effective coupling from the SC to the photodetector. The microchip houses a tiny n+ diff p-epi photodiode (PD) as well as the associated analog amplification and other related circuitry, all fabricated in 0.5micron, 3-metal 2-poly CMOS technology. The amplification, together with pulse-shaping of the photocurrent-induced voltage signal, is achieved through a tandem of two capacitively coupled, double-cascode amplifiers. Included in the paper are theoretical estimates and experimental results.

  7. Experimental study of angular dependence in double photon Compton scattering

    International Nuclear Information System (INIS)

    Sandhu, B.S.; Dewan, R.; Saddi, M.B.; Singh, B.; Ghumman, B.S.

    2000-01-01

    The collision differential cross-section and energy of one of the final photons for double photon Compton scattering have been measured as a function of scattering angle θ 1 . The incident photon energy is 0.662 MeV and thin aluminium foils are used as a scatterer. The two simultaneously emitted photons in this higher order process are detected in coincidence using two NaI(Tl) scintillation spectrometers and 30 ns timing electronics. The measured values for energy and collision differential cross-section agree with theory within experimental estimated error. The present data provide information of angular dependence in this higher order process

  8. Optimal energy for cell radiosensitivity enhancement by gold nanoparticles using synchrotron-based monoenergetic photon beams

    Directory of Open Access Journals (Sweden)

    Rahman WN

    2014-05-01

    Full Text Available Wan Nordiana Rahman,1,2 Stéphanie Corde,3,4 Naoto Yagi,5 Siti Aishah Abdul Aziz,1 Nathan Annabell,2 Moshi Geso21School of Health Sciences, Universiti Sains Malaysia, Kelantan, Malaysia; 2Division of Medical Radiation, School of Medical Sciences, Royal Melbourne Institute of Technology, Bundoora, VIC, 3Radiation Oncology, Prince of Wales Hospital, High Street, Randwick, 4Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW, Australia; 5Japanese Synchrotron Radiation Research Institute, Sayo-gun, Hyogo, JapanAbstract: Gold nanoparticles have been shown to enhance radiation doses delivered to biological targets due to the high absorption coefficient of gold atoms, stemming from their high atomic number (Z and physical density. These properties significantly increase the likelihood of photoelectric effects and Compton scattering interactions. Gold nanoparticles are a novel radiosensitizing agent that can potentially be used to increase the effectiveness of current radiation therapy techniques and improve the diagnosis and treatment of cancer. However, the optimum radiosensitization effect of gold nanoparticles is strongly dependent on photon energy, which theoretically is predicted to occur in the kilovoltage range of energy. In this research, synchrotron-generated monoenergetic X-rays in the 30–100 keV range were used to investigate the energy dependence of radiosensitization by gold nanoparticles and also to determine the photon energy that produces optimum effects. This investigation was conducted using cells in culture to measure dose enhancement. Bovine aortic endothelial cells with and without gold nanoparticles were irradiated with X-rays at energies of 30, 40, 50, 60, 70, 81, and 100 keV. Trypan blue exclusion assays were performed after irradiation to determine cell viability. Cell radiosensitivity enhancement was indicated by the dose enhancement factor which was found to be maximum at 40 keV with a value of 3

  9. Systematics of threshold incident energy for deep sub-barrier fusion hindrance

    International Nuclear Information System (INIS)

    Ichikawa, Takatoshi; Hagino, Kouichi; Iwamoto, Akira

    2007-01-01

    We systematically evaluate the potential energy at the touching configuration for heavy-ion reactions using various potential models. We point out that the energy at the touching point, especially that estimated with the Krappe-Nix-Sierk (KNS) potential, strongly correlates with the threshold incident energy for steep falloff of fusion cross sections observed recently for several systems at extremely low energies. This clearly indicates that the steep fall-off phenomenon can be attributed to the dynamics after the target and projectile touch with each other, e.g., the tunneling process and the nuclear saturation property in the overlap region

  10. Monte Carlo calculations of energy and angular distributions of transmitted and backscattered neutrons of 15 MeV incident energy

    International Nuclear Information System (INIS)

    Gaber, M.; Faied, A.

    1994-01-01

    The Monte Carlo technique was used to generate both energy and angular distributions of transmitted and backscattered neutrons incident on infinite graphite slabs of thicknesses ranging from 1-90 cm. Point isotropic and parallel beams of 15 MeV neutrons were used. A computer program was developed to simulate collisions by fast neutrons. (author)

  11. Calculation of the effective D-d neutron energy distribution incident on a cylindrical shell sample

    International Nuclear Information System (INIS)

    Gotoh, Hiroshi

    1977-07-01

    A method is proposed to calculate the effective energy distribution of neutrons incident on a cylindrical shell sample placed perpendicularly to the direction of the deuteron beam bombarding a deuterium metal target. The Monte Carlo method is used and the Fortran program is contained. (auth.)

  12. The success of the distorted wave method at very high incident energy

    International Nuclear Information System (INIS)

    Barrette, J.; Berthier, B.; Gastebois, J.

    1986-05-01

    The one-proton and one-neutron direct surface transfer reactions induced by 793 MeV 16 O incident energy beam bombarding a 208 Pb target nucleus, are widely explained by two selection rules contained in the Dirtorted Wave Method formalism

  13. Energy systems evaluation of potential for incidents having health or safety impact

    International Nuclear Information System (INIS)

    Speas, I.G.

    1986-01-01

    The paper discusses the results of safety surveys of Martin Marietta Energy Systems - operated nuclear facilities. The purpose was to identify potential incidents that could cause large numbers of casualties, evaluate existing prevention/response actions, and identify possible improvements. The survey findings indicate the potential for an accident with consequences similar to those at Bhopal, India, is essentially non-existent

  14. Energy Level Tuning of Poly(phenylene-alt-dithienobenzothiadiazole)s for Low Photon Energy Loss Solar Cells.

    Science.gov (United States)

    Heuvel, Ruurd; van Franeker, Jacobus J; Janssen, René A J

    2017-03-01

    Six poly(phenylene- alt -dithienobenzothiadiazole)-based polymers have been synthesized for application in polymer-fullerene solar cells. Hydrogen, fluorine, or nitrile substitution on benzo-thiadiazole and alkoxy or ester substitution on the phenylene moiety are investigated to reduce the energy loss per converted photon. Power conversion efficiencies (PCEs) up to 6.6% have been obtained. The best performance is found for the polymer-fullerene combination with distinct phase separation and crystalline domains. This improves the maximum external quantum efficiency for charge formation and collection to 66%. The resulting higher photocurrent compensates for the relatively large energy loss per photon ( E loss = 0.97 eV) in achieving a high PCE. By contrast, the poly-mer that provides a reduced energy loss ( E loss = 0.49 eV) gives a lower photocurrent and a reduced PCE of 1.8% because the external quantum efficiency of 17% is limited by a suboptimal morphology and a reduced driving force for charge transfer.

  15. A Thin detector with ionization tubes for high energy electrons and photons

    International Nuclear Information System (INIS)

    Amatuni, Ts. A.; Denisov, S.P.; Krasnokutsky, R.N.; Lebedenko, V.N.; Shuvalov, R.S.

    1981-01-01

    A possibility to measure the energy of electrons and photons with a simple detector, consisting of a lead convertor and ionization tubes filled with pure argon, has been studied. The measurements have been performed in a 26.6 GeV electron beam. The best energy resolution approximately 16% was achieved for the convertor thickness 40 mm and argon pressure > 20 atm. The performance of the detector in magnetic field up to 16 kGs has been also studied. It turned out that the mean pulse height rises approximately linearly with increasing magnetic field and becomes flat at H approximately 10 kGs. This behaviour is the same for magnetic field perpendicular and parallel with respect to the ionization tubes. The energy resolution depends weakly on the magnetic field. Ionization tubes filled with argon or xenon under high pressure may be used for minimum ionizing particle detection [ru

  16. Experimental Study of Photon Induced Reactions on 3He and 4He at Low Energies

    International Nuclear Information System (INIS)

    Tornow, W.

    2011-01-01

    Data are reported for the photodisintegration cross section of the reaction 3 He(γ, p) 2 H at ten energies between 7.0 and 16.0 MeV. Very preliminary data are presented for the reaction 4 He(γ, p) 3 H between 22.0 and 29.5 MeV in 0.5 MeV energy steps, and for the reaction 4 He(γ, n) 3 He at three energies around 28.0 MeV. High-pressure He/Xe gas scintillators served as target and detector. Our data are in better agreement with recent theoretical calculations than the majority of the existing data for all three reactions, but differ significantly from recent data taken with a mono-energetic photon beam and a time-projection chamber. (author)

  17. Proceedings of the LAMPF workshop on photon and neutral meson physics at intermediate energies

    International Nuclear Information System (INIS)

    Baer, H.W.; Crannell, H.; Peterson, R.J.

    1987-12-01

    This volume contains the Proceedings of the Workshop on ''Photon and Neutral-Meson, Physics at Intermediate Energies,'' held at Los Alamos, New Mexico, January 7 to 9, 1987. The purpose of this workshop was to bring together scientists working in the areas of electromagnetic, heavy-ion, and light hadron physics to discuss both the physics that could be addressed and potential capabilities of new, large intermediate-energy photon detectors. Based on the papers contained in these proceedings, it appears clear that there are a number of important areas that could be addressed with a much higher resolution neutral meson detector. It is also clear that the technical capability for building a neutral meson detector for energies up to 4 GeV with solid angle of approximately 10 mrs and resolution of a few hundred keV now exists. It also appears entirely reasonable to construct such a detector to be easily transportable so that it would become a national facility, available for use at a number of different laboratories. From the many interesting papers presented and from the broad representation of physicists from laboratories in Asia, Canada, Europe, Japan, and the United States, there appears to be a strong case for proceeding with the construction of such a detector

  18. Photon energy dependence of three fortuitous dosemeters from personal electronic devices, measured by optically stimulated luminescence

    International Nuclear Information System (INIS)

    Beerten, K.; Vanhavere, F.

    2010-01-01

    New data are presented with regard to the relative OSL sensitivity of three different emergency dosemeters irradiated to various photon energies approximately between 48 and 1250 keV using blue excitation light. Investigated components extracted from commonly worn objects include those from USB flash drives (alumina substrate), mobile phones (Ba-rich silicate) and credit cards (chip card module). Several basic properties have been investigated such as the overall radiation sensitivity, the shape of the decay curve and fading of the OSL signal. An increase of the sensitivity for low energies relative to 60 Co gamma rays can be observed for the three dosemeters, the increase being very pronounced for the Ba-rich component (factor of 10) and less pronounced for the chip card module (factor of 2). It is concluded that proper dose correction factors for photon energy have to be applied in order to accurately determine the absorbed dose to tissue. The OSL sensitivity to neutron irradiation was investigated as well, but this was found to be less than the gamma sensitivity. (authors)

  19. Photon energy dependence of three fortuitous dosemeters from personal electronic devices, measured by optically stimulated luminescence.

    Science.gov (United States)

    Beerten, Koen; Vanhavere, Filip

    2010-08-01

    New data are presented with regard to the relative OSL sensitivity of three different emergency dosemeters irradiated to various photon energies approximately between 48 and 1250 keV using blue excitation light. Investigated components extracted from commonly worn objects include those from USB flash drives (alumina substrate), mobile phones (Ba-rich silicate) and credit cards (chip card module). Several basic properties have been investigated such as the overall radiation sensitivity, the shape of the decay curve and fading of the OSL signal. An increase of the sensitivity for low energies relative to (60)Co gamma rays can be observed for the three dosemeters, the increase being very pronounced for the Ba-rich component (factor of 10) and less pronounced for the chip card module (factor of 2). It is concluded that proper dose correction factors for photon energy have to be applied in order to accurately determine the absorbed dose to tissue. The OSL sensitivity to neutron irradiation was investigated as well, but this was found to be less than the gamma sensitivity.

  20. Resonance interaction energy between two entangled atoms in a photonic bandgap environment.

    Science.gov (United States)

    Notararigo, Valentina; Passante, Roberto; Rizzuto, Lucia

    2018-03-26

    We consider the resonance interaction energy between two identical entangled atoms, where one is in the excited state and the other in the ground state. They interact with the quantum electromagnetic field in the vacuum state and are placed in a photonic-bandgap environment with a dispersion relation quadratic near the gap edge and linear for low frequencies, while the atomic transition frequency is assumed to be inside the photonic gap and near its lower edge. This problem is strictly related to the coherent resonant energy transfer between atoms in external environments. The analysis involves both an isotropic three-dimensional model and the one-dimensional case. The resonance interaction asymptotically decays faster with distance compared to the free-space case, specifically as 1/r 2 compared to the 1/r free-space dependence in the three-dimensional case, and as 1/r compared to the oscillatory dependence in free space for the one-dimensional case. Nonetheless, the interaction energy remains significant and much stronger than dispersion interactions between atoms. On the other hand, spontaneous emission is strongly suppressed by the environment and the correlated state is thus preserved by the spontaneous-decay decoherence effects. We conclude that our configuration is suitable for observing the elusive quantum resonance interaction between entangled atoms.

  1. Personal monitoring for external sources of beta and low energy photon radiations

    Energy Technology Data Exchange (ETDEWEB)

    Christensen, P.; Herbaut, Y.; Marshall, T.O.

    1987-01-01

    In general, the dosemeters currently used for personal monitoring of beta and low energy photon doses suffer from an energy threshold problem because the detector and/or filter is too thick. Furthermore, current non-tissue-equivalent dosemeters, e.g. film dosemeters, are not provided with the filters needed to evaluate beta ray and low energy photon doses separately. To improve the present state of film dosemeters the thickness of the film wrapping paper should be reduced significantly and the badge should be provided with a number of pairs of thin filters. The dose evaluation from such a dosemeter is, however, complex and inaccurate and it seems unlikely that the required improvement is achievable at a reasonable cost. Improvement of tissue-equivalent dosemeters is possible by further development of multi-element dosemeters and thin detectors. The multi-element method has the advantage of using existing detectors, however the dose estimation is encumbered with high random error and the dosemeter design may become prohibitively expensive. The use of thin tissue-equivalent detectors implies a very simple badge design and an inherently accurate and uncomplicated dose evaluation. The development of adequate, thin, tissue-equivalent detectors suited for automated processing should therefore be encouraged.

  2. Personal monitoring for external sources of beta and low energy photon radiations

    International Nuclear Information System (INIS)

    Christensen, P.; Herbaut, Y.; Marshall, T.O.

    1987-01-01

    In general, the dosemeters currently used for personal monitoring of beta and low energy photon doses suffer from an energy threshold problem because the detector and/or filter is too thick. Furthermore, current non-tissue-equivalent dosemeters, e.g. film dosemeters, are not provided with the filters needed to evaluate beta ray and low energy photon doses separately. To improve the present state of film dosemeters the thickness of the film wrapping paper should be reduced significantly and the badge should be provided with a number of pairs of thin filters. The dose evaluation from such a dosemeter is, however, complex and inaccurate and it seems unlikely that the required improvement is achievable at a reasonable cost. Improvement of tissue-equivalent dosemeters is possible by further development of multi-element dosemeters and thin detectors. The multi-element method has the advantage of using existing detectors, however the dose estimation is encumbered with high random error and the dosemeter design may become prohibitively expensive. The use of thin tissue-equivalent detectors implies a very simple badge design and an inherently accurate and uncomplicated dose evaluation. The development of adequate, thin, tissue-equivalent detectors suited for automated processing should therefore be encouraged. (author)

  3. Photon energy spectrum in B →Xs + γ and comparison with data

    International Nuclear Information System (INIS)

    Ali, A.; Greub, C.

    1995-06-01

    A comparison of the inclusive photon energy spectrum in the radiative decay B→X s +γ; measured recently by the CLEO collaboration, with the standard model is presented, using a B-meson wave function model and improving earlier perturbative QCD-based computations of the same. The dependence of the photon energy spectrum on the non-perturbative model parameters, p F , the b-quark Fermi momentum in the B hadron, and m q , the spectator quark mass, is explicitly shown, allowing a comparison of these parameters with the ones obtained from the analysis of the lepton energy spectrum in semileptonic B decays. Taking into account present uncertainties, we estimate BR(B→X s +γ)=(2.55±1.28)x10 -4 in the standard model, assuming vertical stroke V ts vertical stroke /vertical stroke V cb vertical stroke =1.0. Comparing this with CLEO measurement BR(B→X s +γ)=(2.32±0.67)x10 -4 implies vertical stroke V ts vertical stroke /vertical stroke V cb vertical stroke =1.1±0.43, in agreement with the CKM unitarity. (orig.)

  4. Single photon and multiphoton events with missing energy in $e^{+} e^{-}$ collisions at LEP

    CERN Document Server

    Achard, P; Aguilar-Benítez, M; Alcaraz, J; Alemanni, G; Allaby, James V; Aloisio, A; Alviggi, M G; Anderhub, H; Andreev, V P; Anselmo, F; Arefev, A; Azemoon, T; Aziz, T; Bagnaia, P; Bajo, A; Baksay, G; Baksay, L; Baldew, S V; Banerjee, S; Banerjee, Sw; Barczyk, A; Barillère, R; Bartalini, P; Basile, M; Batalova, N; Battiston, R; Bay, A; Becattini, F; Becker, U; Behner, F; Bellucci, L; Berbeco, R; Berdugo, J; Berges, P; Bertucci, B; Betev, B L; Biasini, M; Biglietti, M; Biland, A; Blaising, J J; Blyth, S C; Bobbink, Gerjan J; Böhm, A; Boldizsar, L; Borgia, B; Bottai, S; Bourilkov, D; Bourquin, Maurice; Braccini, S; Branson, J G; Brochu, F; Burger, J D; Burger, W J; Cai, X D; Capell, M; Cara Romeo, G; Carlino, G; Cartacci, A M; Casaus, J; Cavallari, F; Cavallo, N; Cecchi, C; Cerrada, M; Chamizo-Llatas, M; Chang, Y H; Chemarin, M; Chen, A; Chen, G; Chen, G M; Chen, H F; Chen, H S; Chiefari, G; Cifarelli, Luisa; Cindolo, F; Clare, I; Clare, R; Coignet, G; Colino, N; Costantini, S; de la Cruz, B; Cucciarelli, S; van Dalen, J A; De Asmundis, R; Déglon, P L; Debreczeni, J; Degré, A; Dehmelt, K; Deiters, K; Della Volpe, D; Delmeire, E; Denes, P; De Notaristefani, F; De Salvo, A; Diemoz, M; Dierckxsens, M; Dionisi, C; Dittmar, M; Doria, A; Dova, M T; Duchesneau, D; Duda, M; Echenard, B; Eline, A; El-Hage, A; El-Mamouni, H; Engler, A; Eppling, F J; Extermann, P; Falagán, M A; Falciano, S; Favara, A; Fay, J; Fedin, O; Felcini, M; Ferguson, T; Fesefeldt, H S; Fiandrini, E; Field, J H; Filthaut, F; Fisher, P H; Fisher, W; Fisk, I; Forconi, G; Freudenreich, Klaus; Furetta, C; Galaktionov, Yu; Ganguli, S N; García-Abia, P; Gataullin, M; Gentile, S; Giagu, S; Gong, Z F; Grenier, G; Grimm, O; Grünewald, M W; Guida, M; van Gulik, R; Gupta, V K; Gurtu, A; Gutay, L J; Haas, D; Hatzifotiadou, D; Hebbeker, T; Hervé, A; Hirschfelder, J; Hofer, H; Hohlmann, M; Holzner, G; Hou, S R; Hu, Y; Jin, B N; Jones, L W; de Jong, P; Josa-Mutuberria, I; Käfer, D; Kaur, M; Kienzle-Focacci, M N; Kim, J K; Kirkby, Jasper; Kittel, E W; Klimentov, A; König, A C; Kopal, M; Koutsenko, V F; Kräber, M H; Krämer, R W; Krüger, A; Kunin, A; Ladrón de Guevara, P; Laktineh, I; Landi, G; Lebeau, M; Lebedev, A; Lebrun, P; Lecomte, P; Lecoq, P; Le Coultre, P; Le Goff, J M; Leiste, R; Levtchenko, M; Levchenko, P M; Li, C; Likhoded, S; Lin, C H; Lin, W T; Linde, Frank L; Lista, L; Liu, Z A; Lohmann, W; Longo, E; Lü, Y S; Luci, C; Luminari, L; Lustermann, W; Ma Wen Gan; Malgeri, L; Malinin, A; Maña, C; Mans, J; Martin, J P; Marzano, F; Mazumdar, K; McNeil, R R; Mele, S; Merola, L; Meschini, M; Metzger, W J; Mihul, A; Milcent, H; Mirabelli, G; Mnich, J; Mohanty, G B; Muanza, G S; Muijs, A J M; Musicar, B; Musy, M; Nagy, S; Natale, S; Napolitano, M; Nessi-Tedaldi, F; Newman, H; Nisati, A; Novák, T; Nowak, H; Ofierzynski, R A; Organtini, G; Pal, I; Palomares, C; Paolucci, P; Paramatti, R; Passaleva, G; Patricelli, S; Paul, T; Pauluzzi, M; Paus, C; Pauss, Felicitas; Pedace, M; Pensotti, S; Perret-Gallix, D; Petersen, B; Piccolo, D; Pierella, F; Pioppi, M; Piroué, P A; Pistolesi, E; Plyaskin, V; Pohl, M; Pozhidaev, V; Pothier, J; Prokofev, D; Prokofiev, D O; Quartieri, J; Rahal-Callot, G; Rahaman, M A; Raics, P; Raja, N; Ramelli, R; Rancoita, P G; Ranieri, R; Raspereza, A V; Razis, P A; Ren, D; Rescigno, M; Reucroft, S; Riemann, S; Riles, K; Roe, B P; Romero, L; Rosca, A; Rosenbleck, C; Rosier-Lees, S; Roth, S; Rubio, J A; Ruggiero, G; Rykaczewski, H; Sakharov, A; Saremi, S; Sarkar, S; Salicio, J; Sánchez, E; Schäfer, C; Shchegelskii, V; Schopper, Herwig Franz; Schotanus, D J; Sciacca, C; Servoli, L; Shevchenko, S; Shivarov, N; Shoutko, V; Shumilov, E; Shvorob, A V; Son, D; Souga, C; Spillantini, P; Steuer, M; Stickland, D P; Stoyanov, B; Strässner, A; Sudhakar, K; Sultanov, G G; Sun, L Z; Sushkov, S; Suter, H; Swain, J D; Szillási, Z; Tang, X W; Tarjan, P; Tauscher, Ludwig; Taylor, L; Tellili, B; Teyssier, D; Timmermans, C; Ting, Samuel C C; Ting, S M; Tonwar, S C; Tóth, J; Tully, C; Tung, K L; Ulbricht, J; Valente, E; Van de Walle, R T; Vásquez, R; Veszpremi, V; Vesztergombi, G; Vetlitskii, I; Vicinanza, D; Viertel, Gert M; Villa, S; Vivargent, M; Vlachos, S; Vodopyanov, I; Vogel, H; Vogt, H; Vorobev, I; Vorobyov, A A; Wadhwa, M; Wang, Q; Wang, X L; Wang, Z M; Weber, M; Wienemann, P; Wilkens, H; Wynhoff, S; Xia, L; Xu, Z Z; Yamamoto, J; Yang, B Z; Yang, C G; Yang, H J; Yang, M; Yeh, S C; Zalite, A; Zalite, Yu; Zhang, Z P; Zhao, J; Zhu, G Y; Zhu, R Y; Zhuang, H L; Zichichi, A; Zimmermann, B; Zöller, M

    2004-01-01

    Single- and multi-photon events with missing energy are selected in 619/pb of data collected by the L3 detector at LEP at centre-of-mass energies between 189GeV and 209GeV. The cross sections of the process e^+e^- -> nu nu gamma (gamma) are found to be in agreement with the Standard Model expectations, and the number of light neutrino species is determined, including lower energy data, to be N_nu = 2.98 +/- 0.05 +/- 0.04. Selection results are also given in the form of tables which can be used to test future models involving single- and multi-photon signatures at LEP. These final states are also predicted by models with large extra dimensions and by several supersymmetric models. No evidence for such models is found. Among others, lower limits between 1.5TeV and 0.65TeV are set, at 95% confidence level, on the new scale of gravity for the number of extra dimensions between 2 and 8.

  5. Hard photon emission from high energy electrons and positrons in single crystals

    International Nuclear Information System (INIS)

    Bajer, V.N.; Katkov, V.M.; Strakhovenko, V.M.

    1991-01-01

    A radiation of electrons and positrons in single crystals in coherent bremsstrahlung (CBS) region has been considered for the case when CBS has the most hard spectrum. Under this condition a particle moves near a crystalline plane (in fcc(d) crystal for axis (001) this is the plane (110)) and influence of the continuous plane potential should be taken into account. This potential gives additional contribution in soft part of the spectrum and affects on hard photon emission. Observation of this phenomena at high energy is discussed. 14 refs.; 5 figs.; 1 tab

  6. Radiation-hard silicon photonics for high energy physics and beyond

    CERN Multimedia

    CERN. Geneva

    2016-01-01

    Silicon photonics (SiPh) is currently being investigated as a promising technology for future radiation hard optical links. The possibility of integrating SiPh devices with electronics and/or silicon particle sensors as well as an expected very high resistance against radiation damage make this technology particularly interesting for potential use close to the interaction points in future in high energy physics experiments and other radiation-sensitive applications. The presentation will summarize the outcomes of the research on radiation hard SiPh conducted within the ICE-DIP projected.

  7. Calculation of Bremsstrahlung radiation of electrons on atoms in wide energy range of photons

    CERN Document Server

    Romanikhin, V P

    2002-01-01

    The complete spectra of the Bremsstrahlung radiation on the krypton atoms within the range of the photon energies of 10-25000 eV and lanthanum near the potential of the 4d-shell ionization is carried out. The atoms summarized polarizability is calculated on the basis of the simple semiclassical approximation of the local electron density and experimental data on the photoabsorption. The comparison with the calculational results is carried out through the method of distorted partial waves (PDWA) for Kr and with the experimental data on La

  8. Photon energy dependent intensity variations observed in Auger spectra of free argon clusters

    International Nuclear Information System (INIS)

    Lundwall, M; Lindblad, A; Bergersen, H; Rander, T; Oehrwall, G; Tchaplyguine, M; Peredkov, S; Svensson, S; Bjoerneholm, O

    2006-01-01

    Photon energy dependent intensity variations are experimentally observed in the L 2,3 M 2,3 M 2,3 Auger spectra of argon clusters. Two cluster sizes are examined in the present study. Extrinsic scattering effects, both elastic and inelastic, involving the photoelectron are discussed and suggested as the explanation of the variations in the Auger signal. The atoms in the first few coordination shells surrounding the core-ionized atom are proposed to be the main targets for the scattering processes

  9. Shielding considerations for an electron linear accelerator complex for high energy physics and photonics research

    International Nuclear Information System (INIS)

    Holmes, J.A.; Huntzinger, C.J.

    1987-01-01

    Radiation shielding considerations for a major high-energy physics and photonics research complex which comprise a 50 MeV electron linear accelerator injector, a 1.0 GeV electron linear accelerator and a 1.3 GeV storage ring are discussed. The facilities will be unique because of the close proximity of personnel to the accelerator beam lines, the need to adapt existing facilities and shielding materials and the application of strict ALARA dose guidelines while providing maximum access and flexibility during a phased construction program

  10. Photon-photon collisions

    International Nuclear Information System (INIS)

    Field, J.H.

    1984-01-01

    The current status, both theoretical and experimental, of two photon collision physics is reviewed with special emphasis on recent experimental results from e + e - storage rings. After a complete presentation of the helicity amplitude formalism for the general process e + e - → Xe + e - , various approximations (transverse photon, Weisaecker Williams) are discussed. Beam polarisation effects and radiative corrections are also briefly considered. A number of specific processes, for which experimental results are now available, are then described. In each case existing theoretical prediction are confronted with experimental results. The processes described include single resonance production, lepton and hadron pair production, the structure functions of the photon, the production of high Psub(T) jets and the total photon photon cross section. In the last part of the review the current status of the subject is summarised and some comments are made on future prospects. These include both extrapolations of current research to higher energy machines (LEP, HERA) as well as a brief mention of both the technical realisation and the physics interest of the real γγ and eγ collisions which may be possible using linear electron colliders in the 1 TeV energy range

  11. An investigation of the photon energy dependence of the EPR alanine dosimetry system

    International Nuclear Information System (INIS)

    Bergstrand, Eva Stabell; Shortt, Ken R; Ross, Carl K; Hole, Eli Olaug

    2003-01-01

    The electron paramagnetic resonance (EPR) alanine dosimetry system is based on EPR measurements of radicals formed in alanine by ionizing radiation. The system has been studied to determine its energy dependence for photons in the 10-30 MV region relative to those of 60 Co and to find out if the system would be suitable for dosimetry comparisons. The irradiations were carried out at the National Research Council, Ottawa, Canada and the doses ranged from 8 to 54 Gy. The EPR measurements were performed at the University of Oslo, Norway. The ratio of the slope of the alanine reading versus dose-to-water curve for a certain linac photon beam quality and the corresponding slope for a reference 60 Co γ-radiation gives an experimental measure of the relative dose-to-water response of the EPR alanine dosimetry system. For calculating the linear regression coefficients of these alanine reading versus dose curves, the method of weighted least squares was used. This method is assumed to produce more accurate regression coefficients when applied to EPR dosimetry than the common method of standard least squares. The overall uncertainty on the ratio of slopes was between 0.5 and 0.6% for all three linac energies. The relative response for all the linac beams compared to cobalt was less than unity: by about 0.5% for the 20 and 30 MV points but by more than 1% for the 10 MV point. The given standard uncertainties negate concluding that there is any significant internal variation in the measured response as a function of beam quality between the three linac energies. Thus, we calculated the average dose response for all three energies and found that the alanine response is 0.8% (±0.5%) lower for high energy x-rays than for 60 Co γ-rays. This result indicates a small energy dependence in the alanine response for the high-energy photons relative to 60 Co which may be significant. This result is specific to our dosimetry system (alanine with 20% polyethylene binder pressed into a

  12. SU-E-T-781: Using An Electronic Portal Imaging Device (EPID) for Correlating Linac Photon Beam Energies

    Energy Technology Data Exchange (ETDEWEB)

    Yaddanapudi, S; Cai, B; Sun, B; Noel, C; Goddu, S; Mutic, S [Washington University School of Medicine, Saint Louis, MO (United States)

    2015-06-15

    Purpose: Electronic portal imaging devices (EPIDs) have proven to be useful for measuring several parameters of interest in linear accelerator (linac) quality assurance (QA). The purpose of this project was to evaluate the feasibility of using EPIDs for determining linac photon beam energies. Methods: Two non-clinical Varian TrueBeam linacs (Varian Medical Systems, Palo Alto, CA) with 6MV and 10MV photon beams were used to perform the measurements. The linacs were equipped with an amorphous silicon based EPIDs (aSi1000) that were used for the measurements. We compared the use of flatness versus percent depth dose (PDD) for predicting changes in linac photon beam energy. PDD was measured in 1D water tank (Sun Nuclear Corporation, Melbourne FL) and the profiles were measured using 2D ion-chamber array (IC-Profiler, Sun Nuclear) and the EPID. Energy changes were accomplished by varying the bending magnet current (BMC). The evaluated energies conformed with the AAPM TG142 tolerance of ±1% change in PDD. Results: BMC changes correlating with a ±1% change in PDD corresponded with a change in flatness of ∼1% to 2% from baseline values on the EPID. IC Profiler flatness values had the same correlation. We observed a similar trend for the 10MV beam energy changes. Our measurements indicated a strong correlation between changes in linac photon beam energy and changes in flatness. For all machines and energies, beam energy changes produced change in the uniformity (AAPM TG-142), varying from ∼1% to 2.5%. Conclusions: EPID image analysis of beam profiles can be used to determine linac photon beam energy changes. Flatness-based metrics or uniformity as defined by AAPM TG-142 were found to be more sensitive to linac photon beam energy changes than PDD. Research funding provided by Varian Medical Systems. Dr. Sasa Mutic receives compensation for providing patient safety training services from Varian Medical Systems, the sponsor of this study.

  13. Luminescence imaging of water during irradiation of X-ray photons lower energy than Cerenkov- light threshold

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Seiichi; Koyama, Shuji; Komori, Masataka [Radiological and Medical Laboratory Sciences, Nagoya University Graduate School of Medicine (Japan); Toshito, Toshiyuki [Department of Proton Therapy Physics, Nagoya Proton Therapy Center, Nagoya City West Medical Center (Japan)

    2016-10-01

    Luminescence imaging of water using X-ray photon irradiation at energy lower than maximum energy of ~200 keV is thought to be impossible because the secondary electrons produced in this energy range do not emit Cerenkov- light. Contrary to this consensus assumption, we show that the luminescence imaging of water can be achieved by X-ray irradiation at energy lower than 120 keV. We placed water phantoms on a table with a conventional X-ray imaging system, and luminescence images of these phantoms were measured with a high-sensitivity, cooled charge coupled device (CCD) camera during X-ray photon irradiation at energy below 120 keV. We also carried out such imaging of an acrylic block and plastic scintillator. The luminescence images of water phantoms taken during X-ray photon irradiation clearly showed X-ray photon distribution. The intensity of the X-ray photon images of the phantom increased almost proportionally to the number of X-ray irradiations. Lower-energy X-ray photon irradiation showed lower-intensity luminescence at the deeper parts of the phantom due to the higher X-ray absorption in the water phantom. Furthermore, lower-intensity luminescence also appeared at the deeper parts of the acrylic phantom due to its higher density than water. The intensity of the luminescence for water was 0.005% of that for plastic scintillator. Luminescence imaging of water during X-ray photon irradiation at energy lower than 120 keV was possible. This luminescence imaging method is promising for dose estimation in X-ray imaging systems.

  14. Luminescence imaging of water during irradiation of X-ray photons lower energy than Cerenkov- light threshold

    Science.gov (United States)

    Yamamoto, Seiichi; Koyama, Shuji; Komori, Masataka; Toshito, Toshiyuki

    2016-10-01

    Luminescence imaging of water using X-ray photon irradiation at energy lower than maximum energy of 200 keV is thought to be impossible because the secondary electrons produced in this energy range do not emit Cerenkov- light. Contrary to this consensus assumption, we show that the luminescence imaging of water can be achieved by X-ray irradiation at energy lower than 120 keV. We placed water phantoms on a table with a conventional X-ray imaging system, and luminescence images of these phantoms were measured with a high-sensitivity, cooled charge coupled device (CCD) camera during X-ray photon irradiation at energy below 120 keV. We also carried out such imaging of an acrylic block and plastic scintillator. The luminescence images of water phantoms taken during X-ray photon irradiation clearly showed X-ray photon distribution. The intensity of the X-ray photon images of the phantom increased almost proportionally to the number of X-ray irradiations. Lower-energy X-ray photon irradiation showed lower-intensity luminescence at the deeper parts of the phantom due to the higher X-ray absorption in the water phantom. Furthermore, lower-intensity luminescence also appeared at the deeper parts of the acrylic phantom due to its higher density than water. The intensity of the luminescence for water was 0.005% of that for plastic scintillator. Luminescence imaging of water during X-ray photon irradiation at energy lower than 120 keV was possible. This luminescence imaging method is promising for dose estimation in X-ray imaging systems.

  15. Photon induced resonant Raman scattering in CdS

    International Nuclear Information System (INIS)

    Muzart, J.; Lluesma, E.G.; Arguello, C.A.; Leite, R.C.C.

    1975-01-01

    A novel aspect of resonant Raman scattering is observed in CdS by means of the ratio of Stokes to anti-Stokes intensities. With increasing temperature, as the forbidden band energy approaches a value that is twice the incident photon energy, (from a Nd-Yag-laser) a large enhancement of the above ratio is observed for both the LO and the 2LO phonon Raman intensities. The results indicate a resonance with the scattered photon. Resonance is only observed for high incident photon intensities. A possible explanation for the above observations is that flooding of the crystal with photons of energy hν induces states of energy hν displaced from the electronic bands by mixing of electronic and photon states

  16. Angle-resolved photoemission spectroscopy with 9-eV photon-energy pulses generated in a gas-filled hollow-core photonic crystal fiber

    Science.gov (United States)

    Bromberger, H.; Ermolov, A.; Belli, F.; Liu, H.; Calegari, F.; Chávez-Cervantes, M.; Li, M. T.; Lin, C. T.; Abdolvand, A.; Russell, P. St. J.; Cavalleri, A.; Travers, J. C.; Gierz, I.

    2015-08-01

    A recently developed source of ultraviolet radiation, based on optical soliton propagation in a gas-filled hollow-core photonic crystal fiber, is applied here to angle-resolved photoemission spectroscopy (ARPES). Near-infrared femtosecond pulses of only few μJ energy generate vacuum ultraviolet radiation between 5.5 and 9 eV inside the gas-filled fiber. These pulses are used to measure the band structure of the topological insulator Bi2Se3 with a signal to noise ratio comparable to that obtained with high order harmonics from a gas jet. The two-order-of-magnitude gain in efficiency promises time-resolved ARPES measurements at repetition rates of hundreds of kHz or even MHz, with photon energies that cover the first Brillouin zone of most materials.

  17. Angle-resolved photoemission spectroscopy with 9-eV photon-energy pulses generated in a gas-filled hollow-core photonic crystal fiber

    International Nuclear Information System (INIS)

    Bromberger, H.; Liu, H.; Chávez-Cervantes, M.; Gierz, I.; Ermolov, A.; Belli, F.; Abdolvand, A.; Russell, P. St. J.; Travers, J. C.; Calegari, F.; Li, M. T.; Lin, C. T.; Cavalleri, A.

    2015-01-01

    A recently developed source of ultraviolet radiation, based on optical soliton propagation in a gas-filled hollow-core photonic crystal fiber, is applied here to angle-resolved photoemission spectroscopy (ARPES). Near-infrared femtosecond pulses of only few μJ energy generate vacuum ultraviolet radiation between 5.5 and 9 eV inside the gas-filled fiber. These pulses are used to measure the band structure of the topological insulator Bi 2 Se 3 with a signal to noise ratio comparable to that obtained with high order harmonics from a gas jet. The two-order-of-magnitude gain in efficiency promises time-resolved ARPES measurements at repetition rates of hundreds of kHz or even MHz, with photon energies that cover the first Brillouin zone of most materials

  18. Angle-resolved photoemission spectroscopy with 9-eV photon-energy pulses generated in a gas-filled hollow-core photonic crystal fiber

    Energy Technology Data Exchange (ETDEWEB)

    Bromberger, H., E-mail: Hubertus.Bromberger@mpsd.mpg.de; Liu, H.; Chávez-Cervantes, M.; Gierz, I. [Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg (Germany); Ermolov, A.; Belli, F.; Abdolvand, A.; Russell, P. St. J.; Travers, J. C. [Max Planck Institute for the Science of Light, Günther-Scharowsky-Str. 1, 91058 Erlangen (Germany); Calegari, F. [Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg (Germany); Institute for Photonics and Nanotechnologies, IFN-CNR, Piazza Leonardo da Vinci 32, I-20133 Milano (Italy); Li, M. T.; Lin, C. T. [Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569 Stuttgart (Germany); Cavalleri, A. [Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg (Germany); Clarendon Laboratory, Department of Physics, University of Oxford, Parks Rd. Oxford OX1 3PU (United Kingdom)

    2015-08-31

    A recently developed source of ultraviolet radiation, based on optical soliton propagation in a gas-filled hollow-core photonic crystal fiber, is applied here to angle-resolved photoemission spectroscopy (ARPES). Near-infrared femtosecond pulses of only few μJ energy generate vacuum ultraviolet radiation between 5.5 and 9 eV inside the gas-filled fiber. These pulses are used to measure the band structure of the topological insulator Bi{sub 2}Se{sub 3} with a signal to noise ratio comparable to that obtained with high order harmonics from a gas jet. The two-order-of-magnitude gain in efficiency promises time-resolved ARPES measurements at repetition rates of hundreds of kHz or even MHz, with photon energies that cover the first Brillouin zone of most materials.

  19. Photon Counting Energy Dispersive Detector Arrays for X-ray Imaging.

    Science.gov (United States)

    Iwanczyk, Jan S; Nygård, Einar; Meirav, Oded; Arenson, Jerry; Barber, William C; Hartsough, Neal E; Malakhov, Nail; Wessel, Jan C

    2009-01-01

    The development of an innovative detector technology for photon-counting in X-ray imaging is reported. This new generation of detectors, based on pixellated cadmium telluride (CdTe) and cadmium zinc telluride (CZT) detector arrays electrically connected to application specific integrated circuits (ASICs) for readout, will produce fast and highly efficient photon-counting and energy-dispersive X-ray imaging. There are a number of applications that can greatly benefit from these novel imagers including mammography, planar radiography, and computed tomography (CT). Systems based on this new detector technology can provide compositional analysis of tissue through spectroscopic X-ray imaging, significantly improve overall image quality, and may significantly reduce X-ray dose to the patient. A very high X-ray flux is utilized in many of these applications. For example, CT scanners can produce ~100 Mphotons/mm(2)/s in the unattenuated beam. High flux is required in order to collect sufficient photon statistics in the measurement of the transmitted flux (attenuated beam) during the very short time frame of a CT scan. This high count rate combined with a need for high detection efficiency requires the development of detector structures that can provide a response signal much faster than the transit time of carriers over the whole detector thickness. We have developed CdTe and CZT detector array structures which are 3 mm thick with 16×16 pixels and a 1 mm pixel pitch. These structures, in the two different implementations presented here, utilize either a small pixel effect or a drift phenomenon. An energy resolution of 4.75% at 122 keV has been obtained with a 30 ns peaking time using discrete electronics and a (57)Co source. An output rate of 6×10(6) counts per second per individual pixel has been obtained with our ASIC readout electronics and a clinical CT X-ray tube. Additionally, the first clinical CT images, taken with several of our prototype photon-counting and

  20. Effect of oblique incidence on silver nanomaterials fabricated in water via ultrafast laser ablation for photonics and explosives detection

    Energy Technology Data Exchange (ETDEWEB)

    Krishna Podagatlapalli, G. [Advanced Center of Research in High Energy Materials (ACRHEM), University of Hyderabad, Prof. C. R. Rao Road, Hyderabad 500046 (India); Hamad, Syed [School of Physics, University of Hyderabad, Prof. C. R. Rao Road, Hyderabad 500046 (India); Ahamad Mohiddon, Md. [Centre for Nanotechnology University of Hyderabad, Prof. C. R. Rao Road, Hyderabad 500046 (India); Venugopal Rao, S., E-mail: svrsp@uohyd.ernet.in [Advanced Center of Research in High Energy Materials (ACRHEM), University of Hyderabad, Prof. C. R. Rao Road, Hyderabad 500046 (India)

    2014-06-01

    Highlights: •Effect of non-zero angle of incidence on ps ablation of Ag investigated. •Ag colloids were evaluated by TEM, UV–vis absorption spectra and fs-DFWM. •30° incident angle provided Ag NPs of small size with higher yields. •FESEM, AFM, Raman data revealed the fabrication of Ag nanostructures. •Utility of Ag nanostructures surfaces for multiple SERS studies demonstrated. -- Abstract: Picosecond (ps) laser ablation of silver (Ag) substrate submerged in double distilled water was performed at 800 nm for different angles of incidence of 5°, 15°, 30° and 45°. Prepared colloidal solutions were characterized through transmission electron microscopy, UV absorption spectroscopy to explore their morphologies and surface plasmon resonance (SPR) properties. Third order nonlinear optical (NLO) characterization of colloids was performed using degenerate four wave mixing (DFWM) technique with ∼40 fs laser pulses at 800 nm and the NLO coefficients were obtained. Detailed analysis of the data obtained from colloidal solutions suggested that superior results in terms of yield, sizes of the NPs, SPR peak position were achieved for ablation performed at 30° incident angle. Surface enhanced Raman spectra (SERS) of Rhodamine 6G from nanostructured substrates were investigated using excitation wavelengths of 532 and 785 nm. In both the cases substrates prepared at 30° incident angle exhibited superior enhancement in the Raman signatures with a best enhancement factor achieved being >10{sup 8}. SERS of an explosive molecule 5-amino, 3-nitro, -1H-1,2,4-nitrozole (ANTA) was also demonstrated from these nanostructured substrates. Multiple usage of Ag nanostructures for SERS studies revealed that structures prepared at 30° incident angle provided superior performance amongst all.

  1. Uncertainty and sensitivity analysis of the effect of the mean energy and FWHM of the initial electron fluence on the Bremsstrahlung photon spectra of linear accelerators

    International Nuclear Information System (INIS)

    Juste, B.; Miró, R.; Verdú, G.; Macián, R.

    2012-01-01

    A calculation of the correct dose in radiation therapy requires an accurate description of the radiation source because uncertainties in characterization of the linac photon spectrum are propagated through the dose calculations. Unfortunately, detailed knowledge of the initial electron beam parameters is not readily available, and many researchers adjust the initial electron fluence values by trial-and-error methods. The main goal of this work was to develop a methodology to characterize the fluence of initial electrons before they hit the tungsten target of an Elekta Precise medical linear accelerator. To this end, we used a Monte Carlo technique to analyze the influence of the characteristics of the initial electron beam on the distribution of absorbed dose from a 6 MV linac photon beam in a water phantom. The technique is based on calculations with Software for Uncertainty and Sensitivity Analysis (SUSA) and Monte Carlo simulations with the MCNP5 transport code. The free parameters used in the SUSA calculations were the mean energy and full-width-at-half-maximum (FWHM) of the initial electron distribution. A total of 93 combinations of these parameters gave initial electron fluence configurations. The electron spectra thus obtained were used in a simulation of the electron transport through the target of the linear accelerator, which produced different photon (Bremsstrahlung) spectra. The simulated photon spectra were compared with the 6-MV photon spectrum provided by the linac manufacturer (Elekta). This comparison revealed how the mean energy and FWHM of the initial electron fluence affect the spectrum of the generated photons. This study has made it possible to fine-tune the examined electron beam parameters to obtain the resulted absorbed doses with acceptable accuracy (error <1%). - Highlights: ► Mean energy and radial spread are important parameters for simulating the incident electron beam in radiation therapy. ► Errors in determining the electron

  2. Attenuation correction strategies for multi-energy photon emitters using SPECT

    International Nuclear Information System (INIS)

    Pretorius, P.H.; King, M.A.; Pan, T.S.

    1996-01-01

    The aim of this study was to investigate whether the photopeak window projections from different energy photons can be combined into a single window for reconstruction or if it is better to not combine the projections due to differences in the attenuation maps required for each photon energy. The mathematical cardiac torso (MCAT) phantom was modified to simulate the uptake of Ga-67 in the human body. Four spherical hot tumors were placed in locations which challenged attenuation correction. An analytical 3D projector with attenuation and detector response included was used to generate projection sets. Data were reconstructed using filtered backprojection (FBP) reconstruction with Butterworth filtering in conjunction with one iteration of Chang attenuation correction, and with 5 and 10 iterations of ordered-subset maximum-likelihood expectation-maximization reconstruction. To serve as a standard for comparison, the projection sets obtained from the two energies were first reconstructed separately using their own attenuation maps. The emission data obtained from both energies were added and reconstructed using the following attenuation strategies: (1) the 93 keV attenuation map for attenuation correction, (2) the 185 keV attenuation map for attenuation correction, (3) using a weighted mean obtained from combining the 93 keV and 185 keV maps, and (4) an ordered subset approach which combines both energies. The central count ratio (CCR) and total count ratio (TCR) were used to compare the performance of the different strategies. Compared to the standard method, results indicate an over-estimation with strategy 1, an under-estimation with strategy 2 and comparable results with strategies 3 and 4. In all strategies, the CCR's of sphere 4 were under-estimated, although TCR's were comparable to that of the other locations. The weighted mean and ordered subset strategies for attenuation correction were of comparable accuracy to reconstruction of the windows separately

  3. Sensitivity comparison of two L-alanine doped blends to different photon energies

    International Nuclear Information System (INIS)

    Chen, Felipe; Vega Ramirez, Jose; Nicolucci, Patricia; Baffa, Oswaldo

    2008-01-01

    Full text: Blends of L-alanine (85% weight proportion) with KI (10%) and with PbI 2 (10%), these last two compounds acting as dopants, and with PVA (5%) acting as binder, were prepared in water at 80 C degrees. A blend of pure L-alanine (95%) with PVA (5%) was also prepared. The three blends were irradiated with photon beams of different energies (120 kV, 60 Co and 10 MV) with a unique dose of 30 Gy to compare their sensitivities for those three energies. EPR spectra of the three irradiated blends were recorded in a K-Band spectrometer (24 GHz) taking aliquots of about 4 mg for each blend. The energy sensitivity of a blend was defined as the peak-to-peak amplitude of its EPR spectrum central line. For the 60 Co energy (1.25 MeV) the blends presented practically the same sensitivity indicating that the presence of the dopants does not affect the sensitivity of L-alanine. For 10 MV X-rays there was an increment (around 20% - 30 %) in sensitivity for the two L-alanine doped blends compared with the pure L-alanine blend (not doped). In the case of 120 kV X-rays, the blends ala+KI and ala+PbI 2 showed an increment of 10 and 20 times, respectively, more sensitivity than the pure L-alanine blend. It is concluded that the dopants KI and PbI 2 produce a great enhance of the L-alanine sensitivity to low-energy photons. For the same dopant's content (10%) in the blend, PbI 2 showed a better performance. These results encourage us to try to enhance the sensitivity of L-alanine even more increasing the dopant's content in the blend. Application of these L-alanine doped blends in the dosimetry in diagnostic radiology could be possible. (author)

  4. Theory of emission spectra from metal films irradiated by low energy electrons near normal incidence

    International Nuclear Information System (INIS)

    Kretschmann, E.; Callcott, T.A.; Arakawa, E.T.

    1980-01-01

    The emission spectrum produced by low energy electrons incident on a rough metal surface has been calculated for a roughness auto-correlation function containing a prominent peak at a high wave vector. For low energy electrons near normal incidence, the high wavevector peak dominates the roughness coupled surface plasmon radiation (RCSPR) process. The calculation yields estimates of the ratio of RCSPR to transition radiation, the dependence of emission intensity on electron energy and the shape and position of the RCSPR peak. The most interesting result is that the high-wavevector roughness can split the RCSPR radiation into peaks lying above and below the asymptotic surface plasma frequency. The results are compared with data from Ag in the following paper. (orig.)

  5. Nuclear-optical methods for production of polarized photons with energies of a few hundred GeV

    International Nuclear Information System (INIS)

    Ispiryan, K.A.; Ispiryan, M.K.

    1985-01-01

    The absorption coefficients of linearly polarized photons passing through a crystal in parallel to its crystallographic planes are calculated. The methods of determination of the obtainable degree of polarization as well as of the intensity losses for the cases when non-polarized photon beams pass through various crystals in parallel to the planes (110) are described. The energy dependence of the thickness of the quarter-wave plate crystals transforming the linear polarization of the beam into circular one is obtained

  6. Energy dependence of ion-induced sputtering yields from monoatomic solids at normal incidence

    International Nuclear Information System (INIS)

    Yamamura, Yasunori; Tawara, Hiro.

    1995-03-01

    The yields of the ion-induced sputtering from monoatomic solids at normal incidence for various ion-target combinations are presented graphically as a function of the incident ion energy. In order to fill the lack of the experimental data, the sputtering yields are also calculated by the Monte Carlo simulation code ACAT for some ion-target combinations. Each graph shows available experimental data points and the ACAT data, together with the sputtering yields calculated by the present empirical formula, whose parameters are determined by the best-fit to available data. (author)

  7. Double π production on the deuteron with the energy-tagged photon beam of the spectrometer facility for photon-induced reactions

    International Nuclear Information System (INIS)

    Merkel, R.

    1992-11-01

    Within the framework of this thesis it has been achieved to complete the tagging system TOPAS 1 including all aspects of hardware, software and calibration procedures. In addition, TOPAS 1, has been integrated into SAPHIR successfully, thus adding an indispensable tool for making physical measurements. Initial data analysis of the double Pion production at the Deuteron proved the basic function and usability of the tagging system in measuring total cross sections, also comprising their dependence on photon energy. (orig.) [de

  8. Benchmark of PENELOPE code for low-energy photon transport: dose comparisons with MCNP4 and EGS4

    International Nuclear Information System (INIS)

    Ye, Sung-Joon; Brezovich, Ivan A; Pareek, Prem; Naqvi, Shahid A

    2004-01-01

    The expanding clinical use of low-energy photon emitting 125 I and 103 Pd seeds in recent years has led to renewed interest in their dosimetric properties. Numerous papers pointed out that higher accuracy could be obtained in Monte Carlo simulations by utilizing newer libraries for the low-energy photon cross-sections, such as XCOM and EPDL97. The recently developed PENELOPE 2001 Monte Carlo code is user friendly and incorporates photon cross-section data from the EPDL97. The code has been verified for clinical dosimetry of high-energy electron and photon beams, but has not yet been tested at low energies. In the present work, we have benchmarked the PENELOPE code for 10-150 keV photons. We computed radial dose distributions from 0 to 10 cm in water at photon energies of 10-150 keV using both PENELOPE and MCNP4C with either DLC-146 or DLC-200 cross-section libraries, assuming a point source located at the centre of a 30 cm diameter and 20 cm length cylinder. Throughout the energy range of simulated photons (except for 10 keV), PENELOPE agreed within statistical uncertainties (at worst ±5%) with MCNP/DLC-146 in the entire region of 1-10 cm and with published EGS4 data up to 5 cm. The dose at 1 cm (or dose rate constant) of PENELOPE agreed with MCNP/DLC-146 and EGS4 data within approximately ±2% in the range of 20-150 keV, while MCNP/DLC-200 produced values up to 9% lower in the range of 20-100 keV than PENELOPE or the other codes. However, the differences among the four datasets became negligible above 100 keV

  9. Benchmark of PENELOPE code for low-energy photon transport: dose comparisons with MCNP4 and EGS4.

    Science.gov (United States)

    Ye, Sung-Joon; Brezovich, Ivan A; Pareek, Prem; Naqvi, Shahid A

    2004-02-07

    The expanding clinical use of low-energy photon emitting 125I and 103Pd seeds in recent years has led to renewed interest in their dosimetric properties. Numerous papers pointed out that higher accuracy could be obtained in Monte Carlo simulations by utilizing newer libraries for the low-energy photon cross-sections, such as XCOM and EPDL97. The recently developed PENELOPE 2001 Monte Carlo code is user friendly and incorporates photon cross-section data from the EPDL97. The code has been verified for clinical dosimetry of high-energy electron and photon beams, but has not yet been tested at low energies. In the present work, we have benchmarked the PENELOPE code for 10-150 keV photons. We computed radial dose distributions from 0 to 10 cm in water at photon energies of 10-150 keV using both PENELOPE and MCNP4C with either DLC-146 or DLC-200 cross-section libraries, assuming a point source located at the centre of a 30 cm diameter and 20 cm length cylinder. Throughout the energy range of simulated photons (except for 10 keV), PENELOPE agreed within statistical uncertainties (at worst +/- 5%) with MCNP/DLC-146 in the entire region of 1-10 cm and with published EGS4 data up to 5 cm. The dose at 1 cm (or dose rate constant) of PENELOPE agreed with MCNP/DLC-146 and EGS4 data within approximately +/- 2% in the range of 20-150 keV, while MCNP/DLC-200 produced values up to 9% lower in the range of 20-100 keV than PENELOPE or the other codes. However, the differences among the four datasets became negligible above 100 keV.

  10. SU-F-I-70: Investigation of Gafchromic EBT3 Film Energy Dependence Using Proton, Photon, and Electron Beams

    International Nuclear Information System (INIS)

    Ferreira, C; Schnell, E; Ahmad, S; De La Fuente Herman, T

    2016-01-01

    Purpose: To investigate the energy dependence of Gafchromic EBT3 film over a range of clinically used proton, photon and electron energies. Methods: Proton beam energies of 117 and 204 MeV, corresponding respectively to ranges in water of 10 cm and 27 cm from a Mevion S250 double scatter system unit were used. Electron energies of 6 and 20 MeV and photon energies of 6 and 18 MV from a Varian Clinac 21EX Linac were used. Two pieces of film (5×5 cm"2) were irradiated sequentially for doses of 100, 500, and 1000 cGy for all energies and modalities. Films were placed on the central beam axis for a 10×10 cm"2 field size in the middle of spread out Bragg peak (SOBP) for proton and in respective dmax for photon and electron energies. Films were scanned on a flatbed Epson Expression 10000 XL scanner on the central region of the scanning window using 48-bit, 300 dpi, and landscape orientation after 48 hours post-irradiation of film to account for optical density (OD) stabilization. Film analysis of the red channel was performed using ImageJ 1.48v (National Institutes of Health). Results: The energy dependency of EBT3 among all energies and modalities for all doses studied was small within measurement uncertainties (1σ = ± 4.1%). The mean net OD in red channel for films receiving the same dose in the same energy modality had standard deviations within 0.9% for photons, 4.9% for electrons and 1.8% for protons. It was observed that film pieces were activated during proton irradiation, e.g., 7 mR/hr at surface after 30 minutes of irradiation, lasting for 2 hours post irradiation. Conclusion: EBT3 energy dependency was evaluated for clinically used proton, photon, and electron energies. The film self-activation may have contributed to fog and negligible dose.

  11. Electron Energy Loss and One- and Two-Photon Excited SERS Probing of “Hot” Plasmonic Silver Nanoaggregates

    DEFF Research Database (Denmark)

    Kadkhodazadeh, Shima; Wagner, Jakob Birkedal; Joseph, Virginia

    2013-01-01

    in an optical experiment and electron energy loss intensity at energies corresponding to excitation wavelengths used for optical probing. This inverse relation exists independent on specific nanoaggregate geometries and is mainly controlled by the gap size between the particles forming the aggregate. The ratio...... between two- and one-photon excited SERS measured at different excitation wavelengths provides information about local fields in the hottest spots and their dependence on the photon energy. Our data verify experimentally the predicted increase of local optical fields in the hot spots with increasing wave...

  12. The two-photon self-energy and other QED radiative corrections

    International Nuclear Information System (INIS)

    Zschocke, S.

    2001-07-01

    One of the main issues in current nuclear physics is the precise measurement of the Lamb shift of strongly bound electrons in quantum electrodynamic (QED) tests in strong fields in highly charged ions. The currently performed high-precision measurements require extreme accuracy in the theoretical calculation of Lamb shift. This requires consideration of all α and α 2 order QED corrections as well as of precisely all orders in Zα. In the past years most of these QED corrections have been calculated both in 1st order and in 2nd order interference theory. As yet however, it has not been possible to assess the contribution of the two-photon self-energy, which has therefore been the greatest uncertainty factor in predicting Lamb shift in hydrogen-like systems. This study examines the contribution of these processes to Lamb shift. It also provides the first ever derivation of renormalized terms of two-photon vacuum polarisation and self-energy vacuum polarisation. Until now it has only been possible to evaluate these contributions by way of an Uehling approximation [de

  13. The Pierre Auger observatory's project of detecting photons and neutrinos at very high energies

    International Nuclear Information System (INIS)

    Bertou, X.

    2001-11-01

    Cosmic radiations of ultra high energy (RCUHE, beyond 10 18 eV) are difficult to study because of their low flux on the earth surface: about 1 photon per year and per km 2 . The observatory Pierre Auger proposes to study RCUHE by designing 2 sites of 3000 km 2 (one in each hemisphere) allowing the observation of the shower initiated by cosmic radiation by using 4 fluorescence telescopes and a network of 1600 Cherenkov detectors. The identification of the primary particle is a very delicate point, the detection of neutrino or photon at these energies would bring valuable information for the understanding of potential sources of RCUHE. The first part of this work presents the project and its assets to perform its task. The second part is dedicated to the description of the Cherenkov detectors, of the trigger system, and of the centralized data acquisition system. The last part present the prototype installation that is under construction at Macargue in Argentina. (A.C.)

  14. Energy discrimination for positron emission tomography using the time information of the first detected photons

    Science.gov (United States)

    Therrien, A. C.; Lemaire, W.; Lecoq, P.; Fontaine, R.; Pratte, J.-F.

    2018-01-01

    The advantages of Time-of-Flight positron emission tomography (TOF-PET) have pushed the development of detectors with better time resolution. In particular, Silicon Photomultipliers (SiPM) have evolved tremendously in the past decade and arrays with a fully digital readout are the next logical step (dSiPM). New multi-timestamp methods use the precise time information of multiple photons to estimate the time of a PET event with greater accuracy, resulting in excellent time resolution. We propose a method which uses the same timestamps as the time estimator to perform energy discrimination, thus using data obtained within 5 ns of the beginning of the event. Having collected all the necessary information, the dSiPM could then be disabled for the remaining scintillation while dedicated electronics process the collected data. This would reduce afterpulsing as the SPAD would be turned off for several hundred nanoseconds, emptying the majority of traps. The proposed method uses a strategy based on subtraction and minimal electronics to reject energy below a selected threshold. This method achieves an error rate of less than 3% for photopeak discrimination (threshold at 400 keV) for dark count rates up to 100 cps/μm2, time-to-digital converter resolution up to 50 ps and a photon detection efficiency ranging from 10 to 70%.

  15. Time-resolved stimulated emission depletion and energy transfer dynamics in two-photon excited EGFP

    Science.gov (United States)

    Masters, T. A.; Robinson, N. A.; Marsh, R. J.; Blacker, T. S.; Armoogum, D. A.; Larijani, B.; Bain, A. J.

    2018-04-01

    Time and polarization-resolved stimulated emission depletion (STED) measurements are used to investigate excited state evolution following the two-photon excitation of enhanced green fluorescent protein (EGFP). We employ a new approach for the accurate STED measurement of the hitherto unmeasured degree of hexadecapolar transition dipole moment alignment ⟨α40 ⟩ present at a given excitation-depletion (pump-dump) pulse separation. Time-resolved polarized fluorescence measurements as a function of pump-dump delay reveal the time evolution of ⟨α40 ⟩ to be considerably more rapid than predicted for isotropic rotational diffusion in EGFP. Additional depolarization by homo-Förster resonance energy transfer is investigated for both ⟨α20 ⟩ (quadrupolar) and ⟨α40 ⟩ transition dipole alignments. These results point to the utility of higher order dipole correlation measurements in the investigation of resonance energy transfer processes.

  16. Measurement of the energy dependence of the total photon-proton cross section at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Abramowicz, H. [Tel Aviv Univ. (Israel). Raymond and Beverly Sackler Faculty of Exact Sciences; Univ. Coll. London (United Kingdom); Krakow Univ. of Technology (Poland). Faculty of Physics, Mathematics and Applied Computer Science; Abt, I. [Max-Planck-Institut fuer Physik, Muenchen (Germany); Adamczyk, L. [AGH-Univ. of Science and Technology, Cracow (PL). Faculty of Physics and Applied Computer Science] (and others)

    2010-10-15

    The energy dependence of the photon-proton total cross section, {sigma}{sub tot}{sup {gamma}}{sup p}, was determined from e{sup +}p scattering data collected with the ZEUS detector at HERA at three values of the center-of-mass energy, W, of the {gamma}p system in the range 194

  17. Heavy quark production in photon-Pomeron interactions at high energies

    Energy Technology Data Exchange (ETDEWEB)

    Machado, M. M. [Instituto Federal de Ciencia, Educacao e Tecnologia Farroupilha, Campus Sao Borja, Rua Otaviano Castilho Mendes, 355, CEP 97670-000, Sao Borja, RS (Brazil); Goncalves, V. P. [Instituto de Fisica e Matematica - IFM, Universidade Federal de Pelotas, Caixa Postal 354, CEP 96010-900, RS (Brazil)

    2013-03-25

    The diffractive heavy quark cross sections are estimated considering photon-Pomeron interactions in hadron - hadron at RHIC, Tevatron, and CERN LHC energies. We assume the validity of the hard diffractive factorization and calculate the charm and bottom total cross sections and rapidity distributions using the diffractive parton distribution functions of the Pomeron obtained by the H1 Collaboration at DESY-HERA. Such processes are sensitive to the gluon content of the Pomeron at high energies and are a good place to constrain the behavior of this distribution. We also compare our predictions with those obtained using the dipole model, and verify that these processes are a good test of the different mechanisms for heavy quarks diffractive production at hadron colliders.

  18. Comparison of analytical and Monte Carlo calculations of multi-photon effects in bremsstrahlung emission by high-energy electrons

    DEFF Research Database (Denmark)

    Mangiarotti, Alessio; Sona, Pietro; Ballestrero, Sergio

    2012-01-01

    Approximate analytical calculations of multi-photon effects in the spectrum of total radiated energy by high-energy electrons crossing thin targets are compared to the results of Monte Carlo type simulations. The limits of validity of the analytical expressions found in the literature are establi...

  19. Guidelines for the calibration of low energy photon sources at beta-ray brachytherapy sources

    International Nuclear Information System (INIS)

    2000-01-01

    With the development of improved methods of implanting brachytherapy sources in a precise manner for treating prostate cancer and other disease processes, there has been a tremendous growth in the use of low energy photon sources, such as 125 I and 103 Pd brachytherapy seeds. Low energy photon sources have the advantage of easier shielding and also lowering the dose to normal tissue. However, the dose distributions around these sources are affected by the details in construction of the source and its encapsulation more than other sources used for brachytherapy treatments, such as 192 Ir. With increasing number of new low energy photon sources on the market, care should be taken with regard to its traceability to primary standards. It cannot be assumed that a calibration factor for an ionization chamber that is valid for one type of low energy photon source, automatically is valid for another source even if both would use the same isotope. Moreover, the method used to calculate the dose must also take into account the structure of the source and the encapsulation. The dose calculation algorithm that is valid for one type of low energy source may not be valid for another source even if in both cases the same radionuclide is used. Simple ''point source'' approximations, i.e. where the source is modeled as a point, should be avoided, as such methods do not account for any details in the source construction. In this document, the dose calculation formalism adopted for low energy photon sources is that recommended by the American Association of Physicists in Medicine (AAPM) as outlined by Task Group-43 (TG-43). This method accounts for the source and capsule geometry. The AAPM recommends brachytherapy photon sources to be specified in terms of 'Air Kerma Strength' that is also used in the formalism mentioned above. On the other hand, the International Commission on Radiation Units and Measurements (ICRU) recommends that the specification be done in terms of Reference Air

  20. Studies on effective atomic numbers for photon energy absorption and electron density of some narcotic drugs in the energy range 1 keV-20 MeV

    Science.gov (United States)

    Gounhalli, Shivraj G.; Shantappa, Anil; Hanagodimath, S. M.

    2013-04-01

    Effective atomic numbers for photon energy absorption ZPEA,eff, photon interaction ZPI,eff and for electron density Nel, have been calculated by a direct method in the photon-energy region from 1 keV to 20 MeV for narcotic drugs, such as Heroin (H), Cocaine (CO), Caffeine (CA), Tetrahydrocannabinol (THC), Cannabinol (CBD), Tetrahydrocannabivarin (THCV). The ZPEA,eff, ZPI,eff and Nel values have been found to change with energy and composition of the narcotic drugs. The energy dependence ZPEA,eff, ZPI,eff and Nel is shown graphically. The maximum difference between the values of ZPEA,eff, and ZPI,eff occurs at 30 keV and the significant difference of 2 to 33% for the energy region 5-100 keV for all drugs. The reason for these differences is discussed.

  1. Theoretical photoionization spectra in the UV photon energy range for a Mg-like Al+ ion

    International Nuclear Information System (INIS)

    Kim, Dae-Soung; Kim, Young Soon

    2008-01-01

    In the present work, we report the photoionization cross sections of the Al + ion calculated for the photon energy range 20-26 eV and 30-50 eV. We have expanded our previous calculation (2007 J. Phys. Soc. Japan 76 014302) with an optimized admixture of the initial ground state 3s 21 S and exited states 3s3p 1,3 P, 3s3d 1,3 D and 3s4s 1,3 S, and obtained significantly improved predictions for the main background and autoionizing resonance structures of the reported experimental spectra. The absolute measurements of the photoionization cross sections of the Al + ion in these energy ranges have been performed by West et al (2001 Phys. Rev. A 63 052719), and they reported that the prominent peaks around 21 eV were attributed to the effects of the significant influence of the small fraction of the fourth-order radiation with energies around 84 eV from the synchrotron source. In our previous work, the main shape for these cross sections was calculated assuming an admixture of initial 3s 21 S and 3s3p 3 P states, only with a rough overall estimate for the experimental spectra in the photon energy range 20-26 eV, and without these peaks around 21 eV. The report of the experimental assignment attributes these peaks to the excitation of a 2p electron from the core. However, our present results with the new admixture reveal similar peaks without considering the possibility of the core excitation

  2. Synthetic oligomer analysis using atmospheric pressure photoionization mass spectrometry at different photon energies.

    Science.gov (United States)

    Desmazières, Bernard; Legros, Véronique; Giuliani, Alexandre; Buchmann, William

    2014-01-15

    Atmospheric pressure photoionization (APPI) followed by mass spectrometric detection was used to ionize a variety of polymers: polyethylene glycol, polymethyl methacrylate, polystyrene, and polysiloxane. In most cases, whatever the polymer or the solvent used (dichloromethane, tetrahydrofuran, hexane, acetone or toluene), only negative ion mode produced intact ions such as chlorinated adducts, with no or few fragmentations, in contrast to the positive ion mode that frequently led to important in-source fragmentations. In addition, it was shown that optimal detection of polymer distributions require a fine tuning of other source parameters such as temperature and ion transfer voltage. Series of mass spectra were recorded in the negative mode, in various solvents (dichloromethane, tetrahydrofuran, hexane, toluene, and acetone), by varying the photon energy from 8eV up to 10.6eV using synchrotron radiation. To these solvents, addition of a classical APPI dopant (toluene or acetone) was not necessary. Courtesy of the synchrotron radiation, it was demonstrated that the photon energy required for an efficient ionization of the polymer was correlated to the ionization energy of the solvent. As commercial APPI sources typically use krypton lamps with energy fixed at 10eV and 10.6eV, the study of the ionization of polymers over a wavelength range allowed to confirm and refine the previously proposed ionization mechanisms. Moreover, the APPI source can efficiently be used as an interface between size exclusion chromatography or reverse phase liquid chromatography and MS for the study of synthetic oligomers. However, the photoionization at fixed wavelength of polymer standards with different molecular weights showed that it was difficult to obtain intact ionized oligomers with molecular weights above a few thousands. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Photon-photon collisions

    Energy Technology Data Exchange (ETDEWEB)

    Brodsky, S.J.

    1985-01-01

    The study of photon-photon collisions has progressed enormously, stimulated by new data and new calculational tools for QCD. In the future we can expect precise determinations of ..cap alpha../sub s/ and ..lambda../sup ms/ from the ..gamma..*..gamma.. ..-->.. ..pi../sup 0/ form factor and the photon structure function, as well as detailed checks of QCD, determination of the shape of the hadron distribution amplitudes from ..gamma gamma.. ..-->.. H anti H, reconstruction of sigma/sub ..gamma gamma../ from exclusive channels at low W/sub ..gamma gamma../, definitive studies of high p/sub T/ hadron and jet production, and studies of threshold production of charmed systems. Photon-photon collisions, along with radiative decays of the psi and UPSILON, are ideal for the study of multiquark and gluonic resonances. We have emphasized the potential for resonance formation near threshold in virtually every hadronic exclusive channel, including heavy quark states c anti c c anti c, c anti c u anti u, etc. At higher energies SLC, LEP, ...) parity-violating electroweak effects and Higgs production due to equivalent Z/sup 0/ and W/sup + -/ beams from e ..-->.. eZ/sup 0/ and e ..-->.. nu W will become important. 44 references.

  4. Photon-photon collisions

    International Nuclear Information System (INIS)

    Brodsky, S.J.

    1985-01-01

    The study of photon-photon collisions has progressed enormously, stimulated by new data and new calculational tools for QCD. In the future we can expect precise determinations of α/sub s/ and Λ/sup ms/ from the γ*γ → π 0 form factor and the photon structure function, as well as detailed checks of QCD, determination of the shape of the hadron distribution amplitudes from γγ → H anti H, reconstruction of sigma/sub γγ/ from exclusive channels at low W/sub γγ/, definitive studies of high p/sub T/ hadron and jet production, and studies of threshold production of charmed systems. Photon-photon collisions, along with radiative decays of the psi and UPSILON, are ideal for the study of multiquark and gluonic resonances. We have emphasized the potential for resonance formation near threshold in virtually every hadronic exclusive channel, including heavy quark states c anti c c anti c, c anti c u anti u, etc. At higher energies SLC, LEP, ...) parity-violating electroweak effects and Higgs production due to equivalent Z 0 and W +- beams from e → eZ 0 and e → nu W will become important. 44 references

  5. Analysis of incident-energy dependence of delayed neutron yields in actinides

    Energy Technology Data Exchange (ETDEWEB)

    Nasir, Mohamad Nasrun bin Mohd, E-mail: monasr211@gmail.com; Metorima, Kouhei, E-mail: kohei.m2420@hotmail.co.jp; Ohsawa, Takaaki, E-mail: ohsawa@mvg.biglobe.ne.jp; Hashimoto, Kengo, E-mail: kengoh@pp.iij4u.or.jp [Graduate School of Science and Engineering, Kindai University, Kowakae, Higashi-Osaka, 577-8502 (Japan)

    2015-04-29

    The changes of delayed neutron yields (ν{sub d}) of Actinides have been analyzed for incident energy up to 20MeV using realized data of precursor after prompt neutron emission, from semi-empirical model, and delayed neutron emission probability data (P{sub n}) to carry out a summation method. The evaluated nuclear data of the delayed neutron yields of actinide nuclides are still uncertain at the present and the cause of the energy dependence has not been fully understood. In this study, the fission yields of precursor were calculated considering the change of the fission fragment mass yield based on the superposition of fives Gaussian distribution; and the change of the prompt neutrons number associated with the incident energy dependence. Thus, the incident energy dependent behavior of delayed neutron was analyzed.The total number of delayed neutron is expressed as ν{sub d}=∑Y{sub i} • P{sub ni} in the summation method, where Y{sub i} is the mass yields of precursor i and P{sub ni} is the delayed neutron emission probability of precursor i. The value of Y{sub i} is derived from calculation of post neutron emission mass distribution using 5 Gaussian equations with the consideration of large distribution of the fission fragments. The prompt neutron emission ν{sub p} increases at higher incident-energy but there are two different models; one model says that the fission fragment mass dependence that prompt neutron emission increases uniformly regardless of the fission fragments mass; and the other says that the major increases occur at heavy fission fragments area. In this study, the changes of delayed neutron yields by the two models have been investigated.

  6. Development of a BaF2 scintillation spectrometer for evaluation of photon energy spectra in workplaces around nuclear facilities

    International Nuclear Information System (INIS)

    Urabe, Itsumasa; Yoshimoto, Taka-aki; Kobayashi, Katsuhei; Akiyoshi, Tsunekazu; Tsujimoto, Tadashi; Nakashima, Yoshiyuki; Oda, Keiji.

    1997-01-01

    A BaF 2 scintillation spectrometer has been constructed for the determination of photon energy spectra in workplaces around nuclear facilities. Energy absorption spectra by the BaF 2 detector were calculated with the EGS4 Monte Carlo code in the energy region from 0.1 to 100 MeV and a response matrix of the spectrometer was obtained from the energy absorption spectra, of which the energy resolutions were modified to fit to the experimental results. With the irradiation experiments using neutron-capture gamma rays and those from radioactive sources, it became clear that photon energy spectra can be evaluated within an error of about 10% in the energy region 0.1 MeV to a few tens of megaelectronvolts. (author)

  7. Multiply excited molecules produced by photon and electron interactions

    International Nuclear Information System (INIS)

    Odagiri, T.; Kouchi, N.

    2006-01-01

    The photon and electron interactions with molecules resulting in the formation of multiply excited molecules and the subsequent decay are subjects of great interest because the independent electron model and Born-Oppenheimer approximation are much less reliable for the multiply excited states of molecules than for the ground and lower excited electronic states. We have three methods to observe and investigate multiply excited molecules: 1) Measurements of the cross sections for the emission of fluorescence emitted by neutral fragments in the photoexcitation of molecules as a function of incident photon energy [1-3], 2) Measurements of the electron energy-loss spectra tagged with the fluorescence photons emitted by neutral fragments [4], 3) Measurements of the cross sections for generating a pair of photons in absorption of a single photon by a molecule as a function of incident photon energy [5-7]. Multiply excited states degenerate with ionization continua, which make a large contribution in the cross section curve involving ionization processes. The key point of our methods is hence that we measure cross sections free from ionization. The feature of multiply excited states is noticeable in such a cross section curve. Recently we have measured: i) the cross sections for the emission of the Lyman- fluorescence in the photoexcitation of CH 4 as a function of incident photon energy in the range 18-51 eV, ii) the electron energy-loss spectrum of CH 4 tagged with the Lyman-photons at 80 eV incident electron energy and 10 electron scattering angle in the range of the energy loss 20-45 eV, in order to understand the formation and decay of the doubly excited methane in photon and electron interactions. [8] The results are summarized in this paper and the simultaneous excitation of two electrons by electron interaction is compared with that by photon interaction in terms of the oscillator strength. (authors)

  8. Modelling of solar cells with down-conversion of high energy photons, anti-reflection coatings and light trapping

    International Nuclear Information System (INIS)

    Vos, Alexis de; Szymanska, Aleksandra; Badescu, Viorel

    2009-01-01

    In classical solar cells, each absorbed photon gives rise to one electron-hole pair, irrespective of the photon energy. By applying an appropriate photoluminescent layer in front of the solar cell semiconductor, one can convert one high energy photon into two low energy photons (so-called down-conversion). In the present study, we do not consider photoluminescent layers that merely shift down photon energies (without enhancing the number of photons). In principle, these two photons can then generate two electron-hole pairs in the solar cell, thus increasing the efficiency of the device. However, the two photons emitted by the converter, are not necessarily emitted in the direction of the semiconductor: they can also be emitted in the direction 'back to the sun'. As most semiconductors have a high refractive index, in case the luminescent material has a low refractive index, more than half of the photoluminescence emission is lost in the sun direction, resulting in a net loss of light current generated by the solar cell instead of an increase. On the other hand, a high refractive index of the conversion layer (e.g. equal to the solar cell refractive index) will lead to a bad optical coupling with the air and a good optical coupling with the semiconductor, and therefore, more than 50% of the emitted low energy photons will actually reach the solar cell. However, in the latter case, many solar photons do not reach the converter in the first place because of reflection at the air-converter interface. As a result, it turns out that, in the absence of any anti-reflection coating, a refractive index n 2 of the converting layer in the range between n 1 1/2 and n 1 is optimal, where n 1 is the refractive index of the solar cell material. If, however, an anti-reflection coating is applied between air and the converter, the best choice for n 2 is n 1 . Finally, if two anti-reflection coatings are applied (the former between air and the converter, the latter between the

  9. Near-uv photon efficiency in a TiO2 electrode - Application to hydrogen production from solar energy

    Science.gov (United States)

    Desplat, J.-L.

    1976-01-01

    An n-type (001) TiO2 electrode irradiated at 365 nm was tested under anodic polarization. A saturation current independent of pH and proportional to light intensity has been observed. Accurate measurements of the incident power lead to a 60 per cent photon efficiency. A photoelectrochemical cell built with such an electrode, operated under solar irradiation without concentration, produced an electrolysis current of 0.7 mA/sq cm without applied voltage.

  10. The mean energy loss by neutrino with magnetic moment in strong magnetic field with consideration of positronium contribution to photon dispersion

    Science.gov (United States)

    Mosichkin, A. F.

    2017-11-01

    The process of radiative decay of the neutrino with a magnetic moment in a strong magnetic field with consideration of positronium influence on photon dispersion has been studied. Positronium contribution to the photon polarization operator induces significant modifications of the photon dispersion law and neutrino radiative decay amplitude. It has been shown that the mean energy loss of a neutrino with magnetic a moment significantly increases, when the positronium contribution to photon dispersion is taken into account.

  11. Angular momentum and incident-energy dependence of nucleus-nucleus interaction

    International Nuclear Information System (INIS)

    Yamaguchi, S.

    1991-01-01

    The purpose of this paper is to understand intuitively the origin of the angular momentum and incident-energy dependence of the nucleus-nucleus interaction on the basis of the totally- antisymmetrized many-body theory. With the aim of understanding the structure of the nucleus-nucleus interaction, we show first that the nucleus-nucleus interaction can be written by the use of the density-distribution function and the phase-space distribution function instead of using the many-body wave function itself. And we show that the structure change of the density-distribution function with the increase of the angular momentum causes the angular momentum dependence of the nucleus-nucleus interaction and that the incident-energy dependence of the nucleus-nucleus interaction originates from the structure change of the phase-space distribution function

  12. Measurement of neutron-production double-differential cross sections for intermediate energy pion incident reaction

    International Nuclear Information System (INIS)

    Iwamoto, Yosuke; Shigyo, Nobuhiro; Satoh, Daiki

    2002-01-01

    Neutron-production double-differential cross sections for 870-MeV π + and π - and 2.1-GeV π + mesons incident on iron and lead targets were measured with NE213 liquid scintillators by time-of-flight technique. NE213 liquid scintillators 12.7 cm in diameter and 12.7 cm thick were placed in directions of 15, 30, 60, 90, 120 and 150deg. The typical flight path length was 15 m. Neutron detection efficiencies were derived from the calculation results of SCINFUL and CECIL codes. The experimental results were compared with the JAM code. The double differential cross sections calculated by the JAM code disagree with experimental data at neutron energies below about 30 MeV. JAM overestimates π + -incident neutron-production cross sections in forward angles at neutron energies of 100 to 500 MeV. (author)

  13. Next-Generation Photon Sources for Grand Challenges in Science and Energy

    Energy Technology Data Exchange (ETDEWEB)

    None

    2009-05-01

    The next generation of sustainable energy technologies will revolve around transformational new materials and chemical processes that convert energy efficiently among photons, electrons, and chemical bonds. New materials that tap sunlight, store electricity, or make fuel from splitting water or recycling carbon dioxide will need to be much smarter and more functional than today's commodity-based energy materials. To control and catalyze chemical reactions or to convert a solar photon to an electron requires coordination of multiple steps, each carried out by customized materials and interfaces with designed nanoscale structures. Such advanced materials are not found in nature the way we find fossil fuels; they must be designed and fabricated to exacting standards, using principles revealed by basic science. Success in this endeavor requires probing, and ultimately controlling, the interactions among photons, electrons, and chemical bonds on their natural length and time scales. Control science - the application of knowledge at the frontier of science to control phenomena and create new functionality - realized through the next generation of ultraviolet and X-ray photon sources, has the potential to be transformational for the life sciences and information technology, as well as for sustainable energy. Current synchrotron-based light sources have revolutionized macromolecular crystallography. The insights thus obtained are largely in the domain of static structure. The opportunity is for next generation light sources to extend these insights to the control of dynamic phenomena through ultrafast pump-probe experiments, time-resolved coherent imaging, and high-resolution spectroscopic imaging. Similarly, control of spin and charge degrees of freedom in complex functional materials has the potential not only to reveal the fundamental mechanisms of high-temperature superconductivity, but also to lay the foundation for future generations of information science. This

  14. Studies on a modular high-energy photon spectrometer of pure CsI scintillators

    International Nuclear Information System (INIS)

    Kopyto, D.

    1994-04-01

    Aim of the present thesis is the optimization of components for the construction of a high-energy photon spectrometer of pure CsI for the detection of the neutral pseudoscalar mesons π 0 , η, and η' at COSY. These mesons are distinguished by their decay into two γ quanta and can therefore be detected by means of a photon spectrometer. A concept of a 2-arm shower counter of pure CsI is presented. Conclusions on the energy resolution of such a calorimeter shall yield a test module, which is constructed of 5.5 CsI(pure) pyramide trunk, each of which possesses a length of 30 cm and an angular acceptance of 6 .6 . The geometry of the moduls is formed in such a way that its extension to a 2-arm shower counter is possible at any time. Hitherto 14 by teflon foils wrapped up crystals for the test module were tested. Their energy resolution varies at 0.66 MeV between 20 and 25 % FWHM. Furthermore a method was found, which allows to trim the position dependence to the required values. So for the position dependence of a crystal even a value of 1.1 % could be reached. The energy resolution amounted thereby to 22 % FWHM. A measurement of the energy resolution with 20 MeV protons yielded a value of 7 %. For the energy calibration of the single detector elements in a dynamic range between 1 MeV and 12 GeV with low-energy γ sources the charge response function of the photoelectron multiplier to be applied in the test module was determined in dependence on the light intensity. The measurement resulted that the photomultiplier at 40 MeV (related to a CsI(pure) reference crystal with an about twofold so high efficiency of the detectable light in comparison to the long pyramide trunks) deviates by 4 % and at 300 MeV by 38 % from the linear behaviour, while it at 500 MeV shows a deviation of 50 %

  15. Monte Carlo Modeling of Dual and Triple Photon Energy Absorptiometry Technique

    Directory of Open Access Journals (Sweden)

    Alireza Kamali-Asl

    2007-12-01

    Full Text Available Introduction: Osteoporosis is a bone disease in which there is a reduction in the amount of bone mineral content leading to an increase in the risk of bone fractures. The affected individuals not only have to go through lots of pain and suffering but this disease also results in high economic costs to the society due to a large number of fractures.  A timely and accurate diagnosis of this disease makes it possible to start a treatment and thus preventing bone fractures as a result of osteoporosis. Radiographic methods are particularly well suited for in vivo determination of bone mineral density (BMD due to the relatively high x-ray absorption properties of bone mineral compared to other tissues. Materials and Methods: Monte Carlo simulation has been conducted to explore the possibilities of triple photon energy absorptiometry (TPA in the measurement of bone mineral content. The purpose of this technique is to correctly measure the bone mineral density in the presence of fatty and soft tissues. The same simulations have been done for a dual photon energy absorptiometry (DPA system and an extended DPA system. Results: Using DPA with three components improves the accuracy of the obtained result while the simulation results show that TPA system is not accurate enough to be considered as an adequate method for the measurement of bone mineral density. Discussion: The reason for the improvement in the accuracy is the consideration of fatty tissue in TPA method while having attenuation coefficient as a function of energy makes TPA an inadequate method. Conclusion: Using TPA method is not a perfect solution to overcome the problem of non uniformity in the distribution of fatty tissue.

  16. Low dose out-of-field radiotherapy, part 2: Calculating the mean photon energy values for the out-of-field photon energy spectrum from scattered radiation using Monte Carlo methods.

    Science.gov (United States)

    Skrobala, A; Adamczyk, S; Kruszyna-Mochalska, M; Skórska, M; Konefał, A; Suchorska, W; Zaleska, K; Kowalik, A; Jackowiak, W; Malicki, J

    2017-08-01

    During radiotherapy, leakage from the machine head and collimator expose patients to out-of-field irradiation doses, which may cause secondary cancers. To quantify the risks of secondary cancers due to out-of-field doses, it is first necessary to measure these doses. Since most dosimeters are energy-dependent, it is essential to first determine the type of photon energy spectrum in the out-of-field area. The aim of this study was to determine the mean photon energy values for the out-of-field photon energy spectrum for a 6 MV photon beam using the GEANT 4-Monte Carlo method. A specially-designed large water phantom was simulated with a static field at gantry 0°. The source-to-surface distance was 92cm for an open field size of 10×10cm2. The photon energy spectra were calculated at five unique positions (at depths of 0.5, 1.6, 4, 6, 8, and 10cm) along the central beam axis and at six different off-axis distances. Monte Carlo simulations showed that mean radiation energy levels drop rapidly beyond the edge of the 6 MV photon beam field: at a distance of 10cm, the mean energy level is close to 0.3MeV versus 1.5MeV at the central beam axis. In some cases, the energy level actually increased even as the distance from the field edge increased: at a depth of 1.6cm and 15cm off-axis, the mean energy level was 0.205MeV versus 0.252MeV at 20cm off-axis. The out-of-field energy spectra and dose distribution data obtained in this study with Monte Carlo methods can be used to calibrate dosimeters to measure out-of-field radiation from 6MV photons. Copyright © 2017 Société française de radiothérapie oncologique (SFRO). Published by Elsevier SAS. All rights reserved.

  17. Searches for supersymmetry in the photon(s) plus missing energy channels at $\\sqrt{s}$ = 161 GeV and 172 GeV

    CERN Document Server

    Barate, R.; Decamp, D.; Ghez, Philippe; Goy, C.; Lees, J.P.; Lucotte, A.; Minard, M.N.; Nief, J.Y.; Pietrzyk, B.; Casado, M.P.; Chmeissani, M.; Comas, P.; Crespo, J.M.; Delfino, M.; Fernandez, E.; Fernandez-Bosman, M.; Garrido, L.; Juste, A.; Martinez, M.; Merino, G.; Miquel, R.; Mir, L.M.; Padilla, C.; Park, I.C.; Pascual, A.; Perlas, J.A.; Riu, I.; Sanchez, F.; Colaleo, A.; Creanza, D.; de Palma, M.; Gelao, G.; Iaselli, G.; Maggi, G.; Maggi, M.; Marinelli, N.; Nuzzo, S.; Ranieri, A.; Raso, G.; Ruggieri, F.; Selvaggi, G.; Silvestris, L.; Tempesta, P.; Tricomi, A.; Zito, G.; Huang, X.; Lin, J.; Ouyang, Q.; Wang, T.; Xie, Y.; Xu, R.; Xue, S.; Zhang, J.; Zhang, L.; Zhao, W.; Abbaneo, D.; Alemany, R.; Bazarko, A.O.; Becker, U.; Bright-Thomas, P.; Cattaneo, M.; Cerutti, F.; Dissertori, G.; Drevermann, H.; Forty, R.W.; Frank, M.; Hagelberg, R.; Hansen, J.B.; Harvey, John; Janot, P.; Jost, B.; Kneringer, E.; Lehraus, I.; Mato, P.; Minten, A.; Moneta, L.; Pacheco, A.; Pusztaszeri, J.F.; Ranjard, F.; Rizzo, G.; Rolandi, Gigi; Rousseau, D.; Schlatter, D.; Schmitt, M.; Schneider, O.; Tejessy, W.; Teubert, F.; Tomalin, I.R.; Wachsmuth, H.; Wagner, A.; Ajaltouni, Z.; Barres, A.; Boyer, C.; Falvard, A.; Ferdi, C.; Gay, P.; Guicheney, C.; Henrard, P.; Jousset, J.; Michel, B.; Monteil, S.; Montret, J.C.; Pallin, D.; Perret, P.; Podlyski, F.; Proriol, J.; Rosnet, P.; Rossignol, J.M.; Fearnley, T.; Hansen, J.D.; Hansen, J.R.; Hansen, P.H.; Nilsson, B.S.; Rensch, B.; Waananen, A.; Daskalakis, G.; Kyriakis, A.; Markou, C.; Simopoulou, E.; Vayaki, A.; Blondel, A.; Brient, J.C.; Machefert, F.; Rouge, A.; Rumpf, M.; Valassi, A.; Videau, H.; Boccali, T.; Focardi, E.; Parrini, G.; Zachariadou, K.; Cavanaugh, R.; Corden, M.; Georgiopoulos, C.; Huehn, T.; Jaffe, D.E.; Antonelli, A.; Bencivenni, G.; Bologna, G.; Bossi, F.; Campana, P.; Capon, G.; Casper, D.; Chiarella, V.; Felici, G.; Laurelli, P.; Mannocchi, G.; Murtas, F.; Murtas, G.P.; Passalacqua, L.; Pepe-Altarelli, M.; Curtis, L.; Dorris, S.J.; Halley, A.W.; Knowles, I.G.; Lynch, J.G.; O'Shea, V.; Raine, C.; Scarr, J.M.; Smith, K.; Teixeira-Dias, P.; Thompson, A.S.; Thomson, Evelyn J.; Thomson, F.; Turnbull, R.M.; Buchmuller, O.; Dhamotharan, S.; Geweniger, C.; Graefe, G.; Hanke, P.; Hansper, G.; Hepp, V.; Kluge, E.E.; Putzer, A.; Sommer, J.; Tittel, K.; Werner, S.; Wunsch, M.; Beuselinck, R.; Binnie, D.M.; Cameron, W.; Dornan, P.J.; Girone, M.; Goodsir, S.; Martin, E.B.; Morawitz, P.; Moutoussi, A.; Nash, J.; Sedgbeer, J.K.; Spagnolo, P.; Stacey, A.M.; Williams, M.D.; Ghete, V.M.; Girtler, P.; Kuhn, D.; Rudolph, G.; Betteridge, A.P.; Bowdery, C.K.; Buck, P.G.; Colrain, P.; Crawford, G.; Finch, A.J.; Foster, F.; Hughes, G.; Jones, R.W.L.; Sloan, T.; Whelan, E.P.; Williams, M.I.; Giehl, I.; Hoffmann, C.; Jakobs, K.; Kleinknecht, K.; Quast, G.; Renk, B.; Rohne, E.; Sander, H.G.; van Gemmeren, P.; Zeitnitz, C.; Aubert, J.J.; Benchouk, C.; Bonissent, A.; Bujosa, G.; Carr, J.; Coyle, P.; Diaconu, C.; Ealet, A.; Fouchez, D.; Konstantinidis, N.; Leroy, O.; Motsch, F.; Payre, P.; Talby, M.; Sadouki, A.; Thulasidas, M.; Tilquin, A.; Trabelsi, K.; Aleppo, M.; Antonelli, M.; Ragusa, F.; Berlich, R.; Blum, W.; Buescher, Volker; Dietl, H.; Ganis, G.; Gotzhein, C.; Kroha, H.; Lutjens, G.; Lutz, G.; Manner, W.; Moser, H.G.; Richter, Robert, 1; Rosado-Schlosser, A.; Schael, S.; Settles, R.; Seywerd, H.; St. Denis, Richard Dante; Stenzel, H.; Wiedenmann, W.; Wolf, G.; Boucrot, J.; Callot, O.; Chen, S.; Cordier, A.; Davier, M.; Duflot, L.; Grivaz, J.F.; Heusse, Ph.; Hocker, Andreas; Jacholkowska, A.; Jacquet, M.; Kim, D.W.; Le Diberder, F.; Lefrancois, J.; Lutz, A.M.; Nikolic, Irina; Schune, M.H.; Serin, L.; Simion, S.; Tournefier, E.; Veillet, J.J.; Videau, I.; Zerwas, D.; Azzurri, P.; Bagliesi, Giuseppe; Bettarini, S.; Bozzi, C.; Calderini, G.; Ciulli, V.; Dell'Orso, R.; Fantechi, R.; Ferrante, I.; Giassi, A.; Gregorio, A.; Ligabue, F.; Lusiani, A.; Marrocchesi, P.S.; Messineo, A.; Palla, F.; Sanguinetti, G.; Sciaba, A.; Sguazzoni, G.; Steinberger, J.; Tenchini, R.; Vannini, C.; Venturi, A.; Verdini, P.G.; Blair, G.A.; Bryant, L.M.; Chambers, J.T.; Gao, Y.; Green, M.G.; Medcalf, T.; Perrodo, P.; Strong, J.A.; von Wimmersperg-Toeller, J.H.; Botterill, D.R.; Clifft, R.W.; Edgecock, T.R.; Haywood, S.; Maley, P.; Norton, P.R.; Thompson, J.C.; Wright, A.E.; Bloch-Devaux, Brigitte; Colas, P.; Fabbro, B.; Kozanecki, W.; Lancon, E.; Lemaire, M.C.; Locci, E.; Perez, P.; Rander, J.; Renardy, J.F.; Rosowsky, A.; Roussarie, A.; Schuller, J.P.; Schwindling, J.; Trabelsi, A.; Vallage, B.; Black, S.N.; Dann, J.H.; Kim, H.Y.; Litke, A.M.; McNeil, M.A.; Taylor, G.; Booth, C.N.; Boswell, R.; Brew, C.A.J.; Cartwright, S.; Combley, F.; Kelly, M.S.; Lehto, M.; Newton, W.M.; Reeve, J.; Thompson, L.F.; Affholderbach, K.; Boehrer, Armin; Brandt, S.; Cowan, G.; Foss, J.; Grupen, C.; Lutters, G.; Saraiva, P.; Smolik, L.; Stephan, F.; Apollonio, M.; Bosisio, L.; Della Marina, R.; Giannini, G.; Gobbo, B.; Musolino, G.; Putz, J.; Rothberg, J.; Wasserbaech, S.; Williams, R.W.; Armstrong, S.R.; Charles, E.; Elmer, P.; Ferguson, D.P.S.; Gonzalez, S.; Greening, T.C.; Hayes, O.J.; Hu, H.; Jin, S.; McNamara, P.A., III; Nachtman, J.M.; Nielsen, J.; Orejudos, W.; Pan, Y.B.; Saadi, Y.; Scott, I.J.; Walsh, J.; Wu, Sau Lan; Wu, X.; Yamartino, J.M.; Zobernig, G.

    1998-01-01

    Searches for supersymmetric particles in channels with one or more photons and missing energy have been performed with data collected by the ALEPH detector at LEP. The data consist of 11.1 \\pb\\ at $\\sqrt{s} = 161 ~\\, \\rm GeV$, 1.1 \\pb\\ at 170 \\gev\\ and 9.5 \\pb\\ at 172 GeV. The \\eenunu\\ cross se ction is measured. The data are in good agreement with predictions based on the Standard Model, and are used to set upper limits on the cross sections for anomalous photon production. These limits are compared to two different SUSY models and used to set limits on the neutralino mass. A limit of 71 \\gevsq\\ at 95\\% C.L. is set on the mass of the lightest neutralin o ($\\tau_{\\chi_{1}^{0}} \\leq $ 3 ns) for the gauge-mediated supersymmetry breaking and LNZ models.

  18. Development of dose delivery verification by PET imaging of photonuclear reactions following high energy photon therapy

    International Nuclear Information System (INIS)

    Janek, S; Svensson, R; Jonsson, C; Brahme, A

    2006-01-01

    A method for dose delivery monitoring after high energy photon therapy has been investigated based on positron emission tomography (PET). The technique is based on the activation of body tissues by high energy bremsstrahlung beams, preferably with energies well above 20 MeV, resulting primarily in 11 C and 15 O but also 13 N, all positron-emitting radionuclides produced by photoneutron reactions in the nuclei of 12 C, 16 O and 14 N. A PMMA phantom and animal tissue, a frozen hind leg of a pig, were irradiated to 10 Gy and the induced positron activity distributions were measured off-line in a PET camera a couple of minutes after irradiation. The accelerator used was a Racetrack Microtron at the Karolinska University Hospital using 50 MV scanned photon beams. From photonuclear cross-section data integrated over the 50 MV photon fluence spectrum the predicted PET signal was calculated and compared with experimental measurements. Since measured PET images change with time post irradiation, as a result of the different decay times of the radionuclides, the signals from activated 12 C, 16 O and 14 N within the irradiated volume could be separated from each other. Most information is obtained from the carbon and oxygen radionuclides which are the most abundant elements in soft tissue. The predicted and measured overall positron activities are almost equal (-3%) while the predicted activity originating from nitrogen is overestimated by almost a factor of two, possibly due to experimental noise. Based on the results obtained in this first feasibility study the great value of a combined radiotherapy-PET-CT unit is indicated in order to fully exploit the high activity signal from oxygen immediately after treatment and to avoid patient repositioning. With an RT-PET-CT unit a high signal could be collected even at a dose level of 2 Gy and the acquisition time for the PET could be reduced considerably. Real patient dose delivery verification by means of PET imaging seems to be

  19. On the photon energy moments and their 'bias' corrections in B->Xs+γ

    International Nuclear Information System (INIS)

    Benson, D.; Bigi, I.I.; Uraltsev, N.

    2005-01-01

    Photon energy moments in B->X s +γ and the impact of experimental cuts are analyzed, including the biases exponential in the effective hardness missed in the conventional OPE. We incorporate the perturbative corrections fully implementing the Wilsonian momentum separation ab initio. This renders perturbative effects numerically suppressed while leaving heavy quark parameters and the corresponding light-cone distribution function well defined and preserving their physical properties. The moments of the distribution function are given by the heavy quark expectation values of which many have been extracted from the B->X c -bar ν decays. The quantitative estimates for the biases in the heavy quark parameters determined from the photon moments show they cannot be neglected for E cut -bar 1.85 GeV, and grow out of theory control for E cut above 2.1 GeV. Implications for the moments in the B->X c -bar ν decays at high cuts are briefly addressed

  20. Electron and photon energy reconstruction in the electromagnetic calorimeter of ATLAS

    CERN Document Server

    AUTHOR|(CDS)2075753; Mandelli, Luciano

    2007-01-01

    The Atlas LAr electromagnetic calorimeter is designed to provide a precise measurement of electrons and photons energies, in order to meet the requirements coming from the LHC physics program. This request of precision makes important to understand the behavior of the detector in all its aspect. Of fundamental importance to achieve the best possible performances is the calibration of the EM calorimeter, and this is the topic of this thesis. With detailed Monte Carlo simulations of single electrons and photons in the Atlas detector, we find a method to calibrate the electromagnetic calorimeter, based only on the informations that come from it. All the informations needed to develop a calibration method come from the simulations made with the technique of the Calibration Hits, that allows to know the en- ergy deposited in all the materials inside the detector volume, and not only in the active layer of each subdetector as possible in the standard simulations. This technique required a big effort for the develop...

  1. Liquid scintillator for 2D dosimetry for high-energy photon beams

    International Nuclear Information System (INIS)

    Poenisch, Falk; Archambault, Louis; Briere, Tina Marie; Sahoo, Narayan; Mohan, Radhe; Beddar, Sam; Gillin, Michael T.

    2009-01-01

    Complex radiation therapy techniques require dosimetric verification of treatment planning and delivery. The authors investigated a liquid scintillator (LS) system for application for real-time high-energy photon beam dosimetry. The system was comprised of a transparent acrylic tank filled with liquid scintillating material, an opaque outer tank, and a CCD camera. A series of images was acquired when the tank with liquid scintillator was irradiated with a 6 MV photon beam, and the light data measured with the CCD camera were filtered to correct for scattering of the optical light inside the liquid scintillator. Depth-dose and lateral profiles as well as two-dimensional (2D) dose distributions were found to agree with results from the treatment planning system. Further, the corrected light output was found to be linear with dose, dose rate independent, and is robust for single or multiple acquisitions. The short time needed for image acquisition and processing could make this system ideal for fast verification of the beam characteristics of the treatment machine. This new detector system shows a potential usefulness of the LS for 2D QA.

  2. Liquid scintillator for 2D dosimetry for high-energy photon beams

    Energy Technology Data Exchange (ETDEWEB)

    Poenisch, Falk; Archambault, Louis; Briere, Tina Marie; Sahoo, Narayan; Mohan, Radhe; Beddar, Sam; Gillin, Michael T. [Department of Radiation Physics, University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Boulevard., Unit 94, Houston, Texas 77030 (United States)

    2009-05-15

    Complex radiation therapy techniques require dosimetric verification of treatment planning and delivery. The authors investigated a liquid scintillator (LS) system for application for real-time high-energy photon beam dosimetry. The system was comprised of a transparent acrylic tank filled with liquid scintillating material, an opaque outer tank, and a CCD camera. A series of images was acquired when the tank with liquid scintillator was irradiated with a 6 MV photon beam, and the light data measured with the CCD camera were filtered to correct for scattering of the optical light inside the liquid scintillator. Depth-dose and lateral profiles as well as two-dimensional (2D) dose distributions were found to agree with results from the treatment planning system. Further, the corrected light output was found to be linear with dose, dose rate independent, and is robust for single or multiple acquisitions. The short time needed for image acquisition and processing could make this system ideal for fast verification of the beam characteristics of the treatment machine. This new detector system shows a potential usefulness of the LS for 2D QA.

  3. Improvement of radiological penumbra using intermediate energy photons (IEP) for stereotactic radiosurgery

    International Nuclear Information System (INIS)

    O'Malley, Lauren; Pignol, Jean-Philippe; Beachey, David J; Keller, Brian M; Presutti, Joseph; Sharpe, Michael

    2006-01-01

    Using efficient immobilization and dedicated beam collimation devices, stereotactic radiosurgery ensures highly conformal treatment of small tumours with limited microscopic extension. One contribution to normal tissue irradiation remains the radiological penumbra. This work aims at demonstrating that intermediate energy photons (IEP), above orthovoltage but below megavoltage, improve dose distribution for stereotactic radiosurgery for small irradiation field sizes due to a dramatic reduction of radiological penumbra. Two different simulation systems were used: (i) Monte Carlo simulation to investigate the dose distribution of monoenergetic IEP between 100 keV and 1 MeV in water phantom; (ii) the Pinnacle 3 TPS including a virtual IEP unit to investigate the dosimetry benefit of treating with 11 non-coplanar beams a 2 cm tumour in the middle of a brain adjacent to a 1 mm critical structure. Radiological penumbrae below 300 μm are generated for field size below 2 x 2 cm 2 using monoenergetic IEP beams between 200 and 400 keV. An 800 kV beam generated in a 0.5 mm tungsten target maximizes the photon intensity in this range. Pinnacle 3 confirms the dramatic reduction in penumbra size. DVHs show for a constant dose distribution conformality, improved dose distribution homogeneity and better sparing of critical structures using a 800 kV beam compared to a 6 MV beam

  4. Improvement of radiological penumbra using intermediate energy photons (IEP) for stereotactic radiosurgery

    Science.gov (United States)

    O'Malley, Lauren; Pignol, Jean-Philippe; Beachey, David J.; Keller, Brian M.; Presutti, Joseph; Sharpe, Michael

    2006-05-01

    Using efficient immobilization and dedicated beam collimation devices, stereotactic radiosurgery ensures highly conformal treatment of small tumours with limited microscopic extension. One contribution to normal tissue irradiation remains the radiological penumbra. This work aims at demonstrating that intermediate energy photons (IEP), above orthovoltage but below megavoltage, improve dose distribution for stereotactic radiosurgery for small irradiation field sizes due to a dramatic reduction of radiological penumbra. Two different simulation systems were used: (i) Monte Carlo simulation to investigate the dose distribution of monoenergetic IEP between 100 keV and 1 MeV in water phantom; (ii) the Pinnacle3 TPS including a virtual IEP unit to investigate the dosimetry benefit of treating with 11 non-coplanar beams a 2 cm tumour in the middle of a brain adjacent to a 1 mm critical structure. Radiological penumbrae below 300 µm are generated for field size below 2 × 2 cm2 using monoenergetic IEP beams between 200 and 400 keV. An 800 kV beam generated in a 0.5 mm tungsten target maximizes the photon intensity in this range. Pinnacle3 confirms the dramatic reduction in penumbra size. DVHs show for a constant dose distribution conformality, improved dose distribution homogeneity and better sparing of critical structures using a 800 kV beam compared to a 6 MV beam.

  5. Slow-light-enhanced energy efficiency for graphene microheaters on silicon photonic crystal waveguides

    Science.gov (United States)

    Yan, Siqi; Zhu, Xiaolong; Frandsen, Lars Hagedorn; Xiao, Sanshui; Mortensen, N. Asger; Dong, Jianji; Ding, Yunhong

    2017-01-01

    Slow light has been widely utilized to obtain enhanced nonlinearities, enhanced spontaneous emissions and increased phase shifts owing to its ability to promote light–matter interactions. By incorporating a graphene on a slow-light silicon photonic crystal waveguide, here we experimentally demonstrate an energy-efficient graphene microheater with a tuning efficiency of 1.07 nmmW−1 and power consumption per free spectral range of 3.99 mW. The rise and decay times (10–90%) are only 750 and 525 ns, which, to the best of our knowledge, are the fastest reported response times for microheaters in silicon photonics. The corresponding figure of merit of the device is 2.543 nW s, one order of magnitude better than results reported in previous studies. The influence of the length and shape of the graphene heater to the tuning efficiency is further investigated, providing valuable guidelines for enhancing the tuning efficiency of the graphene microheater. PMID:28181531

  6. Comparison of the NPL water calorimeter with other dosimetric techniques for high energy photon beams

    International Nuclear Information System (INIS)

    Rosser, K.E.; Williams, A.J.

    1999-01-01

    At present, the primary standard of absorbed dose to water at NPL in high energy photon beams is a graphite calorimeter. However the quantity of interest in radiation dosimetry is absorbed dose to water. Therefore, a new absorbed dose to water standard based on water calorimetry is being developed at NPL. The calorimeter operates at 4 deg. C, with temperature control being provided by a combination of liquid and air cooling. The sealed glass inner vessel of the calorimeter has been designed to minimise the effect of non-water materials on the measurement of absorbed dose. Measurements of absorbed dose to water made in 6, 10 and 19 MV photon beams agreed within the measurement uncertainties with those determined using the primary standard graphite calorimeter. Also the absorbed dose to water measured using the water calorimeter agrees with that based on the air kerma standards for 60 Co γ-radiation within the uncertainties. The development of the water calorimeter will lead to a very robust dosimetry system at NPL, where the absorbed dose to water can be determined using three independent techniques. (author)

  7. Nucleation of diindenoperylene and pentacene at thermal and hyperthermal incident kinetic energies

    Energy Technology Data Exchange (ETDEWEB)

    Kish, Edward R.; Desai, Tushar V.; Greer, Douglas R.; Engstrom, James R., E-mail: jre7@cornell.edu [School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853 (United States); Woll, Arthur R. [Cornell High Energy Synchrotron Source, Cornell University, Ithaca, New York 14853 (United States)

    2015-05-15

    The authors have examined the nucleation of diindenoperylene (DIP) on SiO{sub 2} employing primarily atomic force microscopy and focusing on the effect of incident kinetic energy employing both thermal and supersonic sources. For all incident kinetic energies examined (E{sub i} = 0.09–11.3 eV), the nucleation of DIP is homogeneous and the dependence of the maximum island density on the growth rate is described by a power law. A critical nucleus of approximately two molecules is implicated by our data. A re-examination of the nucleation of pentacene on SiO{sub 2} gives the same major result that the maximum island density is determined by the growth rate, and it is independent of the incident kinetic energy. These observations are readily understood by factoring in the size of the critical nucleus in each case, and the island density, which indicates that diffusive transport of molecules to the growing islands dominate the dynamics of growth in the submonolayer regime.

  8. High energy nuclear data evaluations for neutron-, proton-, and photon-induced reactions at KAERI

    International Nuclear Information System (INIS)

    Lee, Young Ouk; Chang, Jong Hwa; Kim, Doo Hwan; Lee, Jeong Yeon; Han, Yinlu; Sukhovitski, Efrem Sh.

    2001-01-01

    The Korea Atomic Energy Research Institute (KAERI) is building high energy neutron-, proton-, and photon-induced nuclear data libraries for energies up to hundreds MeV in response to nuclear data needs from various R and Ds and applications. The librares provide nuclear data needed for the accelerator-driven transmutation of nuclear waste and radiation transport simulations of cancer radiotherapy. The neutron library currently has 10 isotopes such as C-12, N-14, O-16, Al-27, Si-28, Ca-40, Fe-56, Ni-58, Zr-90, Sn-120, and Pb-208 for energies from 20 up to 400 MeV. The proton nuclear data were evaluated in a consistent manner with the neutron case, using the same nuclear model parameters. In addition to the same isotopes included in the neutron library, the proton library has 70 extra isotopes of 24 elements ranging from nitrogen to lead up to 150 MeV for which the evaluations are focused on the medical and activation analyses applications. The photonuclear data library has been built along with international collaboration by participating in the IAEA's Coordinated Research Project (CRP) which ended last year. Currently the KAERI photonuclear library includes 143 isotopes of 39 elements

  9. Investigation to optimize the energy resolution and efficiency of cadmium(zinc)telluride for photon measurements

    Science.gov (United States)

    Kim, Hadong

    While the investigations of the Cd(Zn)Te characteristics were completed, a new method to make arbitrary anode shapes, without the troublesome shadow mask technique, was found. With this technique, the two-anode geometry Cd(Zn)Te detector was introduced and tested. The semiconductor performance of the two-anode geometry detectors for the incoming gamma rays of 241Am, 57Co, and 137Cs were compared to the responses of the planar device. The very promising photon energy resolutions of 9.3 and 5.4% FWHM were obtained with the two-anode geometry detector for the gamma rays energies of 122 keV and 662 keV, respectively, while no discernible full energy peaks were apparent with the planar detector. Several simulation programs that are very easy to handle were developed as useful tools for investigating the complicated gamma ray pulse height distributions, which were due to the energy deposition events inside the semiconductors. Comparisons to the known values and with the results from other application programs, validated the information obtained from the simulation programs, which were developed during this research effort. A graphical user interface (GUI) was designed for the user's convenience in order to enter the required input parameters for the specific requirements of each simulation programs. The idealized noise free spectra for the planar detector and for the small pixel geometry detector were successfully obtained by applying Monte Carlo techniques.

  10. Multilayer optics for monochromatic high-resolution X-ray imaging diagnostic in a broad photon energy range from 2 keV to 22 keV

    International Nuclear Information System (INIS)

    Troussel, Ph.; Dennetiere, D.; Maroni, R.; Høghøj, P.; Hedacq, S.; Cibik, L.; Krumrey, M.

    2014-01-01

    The “Commissariat à l’énergie atomique et aux énergies alternatives” (CEA) studies and designs advanced X-ray diagnostics to probe dense plasmas produced at the future Laser MegaJoule (LMJ) facility. Mainly for X-ray imaging with high spatial resolution, different types of multilayer mirrors were developed to provide broadband X-ray reflectance at grazing incidence. These coatings are deposited on two toroidal mirror substrates that are then mounted into a Wolter-type geometry (working at a grazing angle of 0.45°) to realize an X-ray microscope. Non-periodic (depth graded) W/Si multilayer can be used in the broad photon energy range from 2 keV to 22 keV. A third flat mirror can be added for the spectral selection of the microscope. This mirror is coated with a Mo/Si multilayer for which the d-spacing varies in the longitudinal direction to satisfy the Bragg condition within the angular acceptance of the microscope and also to compensate the angular dispersion due to the field of the microscope. We present a study of such a so-called Göbel mirror which was optimized for photon energy of 10.35 keV. The three mirrors were coated using magnetron sputtering technology by Xenocs SA. The reflectance in the entire photon energy range was determined in the laboratory of the Physikalisch-Technische Bundesanstalt (PTB) at the synchrotron radiation facility BESSY II in Berlin

  11. Multilayer optics for monochromatic high-resolution X-ray imaging diagnostic in a broad photon energy range from 2 keV to 22 keV

    Energy Technology Data Exchange (ETDEWEB)

    Troussel, Ph., E-mail: philippe.troussel@cea.fr [CEA, DAM, DIF, F-91297 Arpajon (France); Dennetiere, D. [Synchrotron Soleil, L’orme des Merisiers, 91190 Saint-Aubin (France); Maroni, R. [CEA, DAM, DIF, F-91297 Arpajon (France); Høghøj, P.; Hedacq, S. [Xenocs SA, 19, rue François Blumet, F-38360 Sassenage (France); Cibik, L.; Krumrey, M. [Physikalisch-Technische Bundesanstalt (PTB), Abbestr. 2-12, 10587 Berlin (Germany)

    2014-12-11

    The “Commissariat à l’énergie atomique et aux énergies alternatives” (CEA) studies and designs advanced X-ray diagnostics to probe dense plasmas produced at the future Laser MegaJoule (LMJ) facility. Mainly for X-ray imaging with high spatial resolution, different types of multilayer mirrors were developed to provide broadband X-ray reflectance at grazing incidence. These coatings are deposited on two toroidal mirror substrates that are then mounted into a Wolter-type geometry (working at a grazing angle of 0.45°) to realize an X-ray microscope. Non-periodic (depth graded) W/Si multilayer can be used in the broad photon energy range from 2 keV to 22 keV. A third flat mirror can be added for the spectral selection of the microscope. This mirror is coated with a Mo/Si multilayer for which the d-spacing varies in the longitudinal direction to satisfy the Bragg condition within the angular acceptance of the microscope and also to compensate the angular dispersion due to the field of the microscope. We present a study of such a so-called Göbel mirror which was optimized for photon energy of 10.35 keV. The three mirrors were coated using magnetron sputtering technology by Xenocs SA. The reflectance in the entire photon energy range was determined in the laboratory of the Physikalisch-Technische Bundesanstalt (PTB) at the synchrotron radiation facility BESSY II in Berlin.

  12. Multilayer optics for monochromatic high-resolution X-ray imaging diagnostic in a broad photon energy range from 2 keV to 22 keV

    Science.gov (United States)

    Troussel, Ph.; Dennetiere, D.; Maroni, R.; Høghøj, P.; Hedacq, S.; Cibik, L.; Krumrey, M.

    2014-12-01

    The "Commissariat à l'énergie atomique et aux énergies alternatives" (CEA) studies and designs advanced X-ray diagnostics to probe dense plasmas produced at the future Laser MegaJoule (LMJ) facility. Mainly for X-ray imaging with high spatial resolution, different types of multilayer mirrors were developed to provide broadband X-ray reflectance at grazing incidence. These coatings are deposited on two toroidal mirror substrates that are then mounted into a Wolter-type geometry (working at a grazing angle of 0.45°) to realize an X-ray microscope. Non-periodic (depth graded) W/Si multilayer can be used in the broad photon energy range from 2 keV to 22 keV. A third flat mirror can be added for the spectral selection of the microscope. This mirror is coated with a Mo/Si multilayer for which the d-spacing varies in the longitudinal direction to satisfy the Bragg condition within the angular acceptance of the microscope and also to compensate the angular dispersion due to the field of the microscope. We present a study of such a so-called Göbel mirror which was optimized for photon energy of 10.35 keV. The three mirrors were coated using magnetron sputtering technology by Xenocs SA. The reflectance in the entire photon energy range was determined in the laboratory of the Physikalisch-Technische Bundesanstalt (PTB) at the synchrotron radiation facility BESSY II in Berlin.

  13. Photon Collider Physics with Real Photon Beams

    International Nuclear Information System (INIS)

    Gronberg, J; Asztalos, S

    2005-01-01

    Photon-photon interactions have been an important probe into fundamental particle physics. Until recently, the only way to produce photon-photon collisions was parasitically in the collision of charged particles. Recent advances in short-pulse laser technology have made it possible to consider producing high intensity, tightly focused beams of real photons through Compton scattering. A linear e + e - collider could thus be transformed into a photon-photon collider with the addition of high power lasers. In this paper they show that it is possible to make a competitive photon-photon collider experiment using the currently mothballed Stanford Linear Collider. This would produce photon-photon collisions in the GeV energy range which would allow the discovery and study of exotic heavy mesons with spin states of zero and two

  14. Relation between hard photon production and impact parameter in heavy ion collisions at intermediate energies; Dependance de la production de photons durs avec le parametre d`impact dans les collisions entre ions lourds aux energies intermediaires

    Energy Technology Data Exchange (ETDEWEB)

    Martinez Garcia, G.

    1994-06-01

    Hard photons produced in heavy-ions collisions at intermediate energies have been used in order to study hot and compresses nuclear matter created in these collisions (at Ganil). It was found that Bremsstrahlung radiation emitted in np collisions is the main mechanism of hard-photon production for the whole range of impact parameter. Moreover, it was observed a substantial decrease of the hardness of hard-photon spectrum. The BUU model reproduces very well the experimental results, showing that the hardness of the spectrum reflects, mainly, nuclear-matter compression in the first stage of the collision. A new method was developed to measure the density of the nuclear matter created at the beginning of the collision. BUU results and some experimental evidences point out that a significant contribution of hard photons are produced in the last stage of the collision: thermal hard photons. These photons are sensitive to the density oscillation of nuclear matter. Its production cross-section will constitute a measurement of the compressibility of nuclear matter and its spectrum a measure of the temperature. (from author) 64 figs., 60 refs.

  15. Calibration in photon radiation fields with energies above 3 MeV

    International Nuclear Information System (INIS)

    Bueermann, L.

    1997-01-01

    For determination of the response of dosemeters and dose ratemeters for photon energies above 3 MeV, the PTB uses reference radiation fields generated via the nuclear reactions 12 (p, p' γ) 12 C (4.4 MeV) and 19 F(p,αγ) 16 O (6-7 MeV). As a maximum, kerma rates of 1 mGy/h released in air can be achieved at 1 m distance from the target. The air kerma in the reference fields is determined with two different methods, i.e. by spectrometry using a Ge detector, and by ionometry using a graphite cavity ionisation chamber. The total uncertainty of the value determined for the air kerma (collision radiation) in the reference fields is 50% at a confidence level of 68.3%. (orig./CB) [de

  16. Feasibility study of radiophotoluminescent glass rod dosimeter postal dose intercomparison for high energy photon beam

    International Nuclear Information System (INIS)

    Rah, Jeong-Eun; Kim, Siyong; Cheong, Kwang-Ho; Lee, Jeong-Woo; Chung, Jin-Beom; Shin, Dong-Oh; Suh, Tae-Suk

    2009-01-01

    A radiophotoluminescent glass rod dosimeter (GRD) system has recently become commercially available. In this study we evaluated whether the GRD would be suitable for external dosimetric audit program in radiotherapy. For this purpose, we introduced a methodology of the absorbed dose determination with the GRD by establishing calibration coefficient and various correction factors (non-linearity dose response, fading, energy dependence and angular dependence). A feasibility test of the GRD postal dose intercomparison was also performed for eight high photon beams by considering four radiotherapy centers in Korea. In the accuracy evaluation of the GRD dosimetry established in this study, we obtained within 1.5% agreements with the ionization chamber dosimetry for the 60 Co beam. It was also observed that, in the feasibility study, all the relative deviations were smaller than 3%. Based on these results, we believe that the new GRD system has considerable potential to be used for a postal dose audit program

  17. Absorbed dose calibration factors for parallel-plate chambers in high energy photon beams

    International Nuclear Information System (INIS)

    McEwen, M.R.; Duane, S.; Thomas, R.A.S.

    2002-01-01

    An investigation was carried out into the performance of parallel-plate chambers in 60 Co and MV photon beams. The aim was to derive calibration factors, investigate chamber-to-chamber variability and provide much-needed information on the use of parallel-plate chambers in high-energy X-ray beams. A set of NE2561/NE2611 reference chambers, calibrated against the primary standard graphite calorimeter is used for the dissemination of absorbed dose to water. The parallel-plate chambers were calibrated by comparison with the NPL reference chambers in a water phantom. Two types of parallel-plate chamber were investigated - the NACP -02 and Roos and measurements were made at 60 C0 and 6 linac photon energies (6-19 MV). Calibration factors were derived together with polarity corrections. The standard uncertainty in the calibration of a chamber in terms of absorbed dose to water is estimated to be ±0.75%. The results of the polarity measurements were somewhat confusing. One would expect the correction to be small and previous measurements in electron beams have indicated that there is little variation between chambers of these types. However, some chambers gave unexpectedly large polarity corrections, up to 0.8%. By contrast the measured polarity correction for a NE2611 chamber was less than 0.13% at all energies. The reason for these large polarity corrections is not clear, but experimental error and linac variations have been ruled out. By combining the calibration data for the different chambers it was possible to obtain experimental k Q factors for the two chamber types. It would appear from the data that the variations between chambers of the same type are random and one can therefore define a generic curve for each chamber type. These are presented in Figure 1, together with equivalent data for two cylindrical chamber types - NE2561/NE2611 and NE2571. As can be seen, there is a clear difference between the curves for the cylindrical chambers and those for the

  18. High energy X-ray photon counting imaging using linear accelerator and silicon strip detectors

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Y., E-mail: cycjty@sophie.q.t.u-tokyo.ac.jp [Department of Bioengineering, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Shimazoe, K.; Yan, X. [Department of Nuclear Engineering and Management, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Ueda, O.; Ishikura, T. [Fuji Electric Co., Ltd., Fuji, Hino, Tokyo 191-8502 (Japan); Fujiwara, T. [National Institute of Advanced Industrial Science and Technology, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568 (Japan); Uesaka, M.; Ohno, M. [Nuclear Professional School, the University of Tokyo, 2-22 Shirakata-shirane, Tokai, Ibaraki 319-1188 (Japan); Tomita, H. [Department of Quantum Engineering, Nagoya University, Furo, Chikusa, Nagoya 464-8603 (Japan); Yoshihara, Y. [Department of Nuclear Engineering and Management, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Takahashi, H. [Department of Bioengineering, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Department of Nuclear Engineering and Management, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan)

    2016-09-11

    A photon counting imaging detector system for high energy X-rays is developed for on-site non-destructive testing of thick objects. One-dimensional silicon strip (1 mm pitch) detectors are stacked to form a two-dimensional edge-on module. Each detector is connected to a 48-channel application specific integrated circuit (ASIC). The threshold-triggered events are recorded by a field programmable gate array based counter in each channel. The detector prototype is tested using 950 kV linear accelerator X-rays. The fast CR shaper (300 ns pulse width) of the ASIC makes it possible to deal with the high instant count rate during the 2 μs beam pulse. The preliminary imaging results of several metal and concrete samples are demonstrated.

  19. Quantum-path control in high-order harmonic generation at high photon energies

    International Nuclear Information System (INIS)

    Zhang Xiaoshi; Lytle, Amy L; Cohen, Oren; Murnane, Margaret M; Kapteyn, Henry C

    2008-01-01

    We show through experiment and calculations how all-optical quasi-phase-matching of high-order harmonic generation can be used to selectively enhance emission from distinct quantum trajectories at high photon energies. Electrons rescattered in a strong field can traverse short and long quantum trajectories that exhibit differing coherence lengths as a result of variations in intensity of the driving laser along the direction of propagation. By varying the separation of the pulses in a counterpropagating pulse train, we selectively enhance either the long or the short quantum trajectory, and observe distinct spectral signatures in each case. This demonstrates a new type of coupling between the coherence of high-order harmonic beams and the attosecond time-scale quantum dynamics inherent in the process

  20. High energy X-ray photon counting imaging using linear accelerator and silicon strip detectors

    International Nuclear Information System (INIS)

    Tian, Y.; Shimazoe, K.; Yan, X.; Ueda, O.; Ishikura, T.; Fujiwara, T.; Uesaka, M.; Ohno, M.; Tomita, H.; Yoshihara, Y.; Takahashi, H.

    2016-01-01

    A photon counting imaging detector system for high energy X-rays is developed for on-site non-destructive testing of thick objects. One-dimensional silicon strip (1 mm pitch) detectors are stacked to form a two-dimensional edge-on module. Each detector is connected to a 48-channel application specific integrated circuit (ASIC). The threshold-triggered events are recorded by a field programmable gate array based counter in each channel. The detector prototype is tested using 950 kV linear accelerator X-rays. The fast CR shaper (300 ns pulse width) of the ASIC makes it possible to deal with the high instant count rate during the 2 μs beam pulse. The preliminary imaging results of several metal and concrete samples are demonstrated.

  1. Virtual photons in the pion form factors and the energy-momentum tensor

    Energy Technology Data Exchange (ETDEWEB)

    Kubis, Bastian E-mail: b.kubis@fz-juelich.de; Meissner, Ulf-G. E-mail: ulf-g.meissner@fz-juelich.de

    2000-05-22

    We evaluate the vector and scalar form factor of the pion in the presence of virtual photons at next-to-leading order in two-flavor chiral perturbation theory. We also consider the scalar and tensor pion form factors of the energy-momentum tensor. We find that the intrinsic electromagnetic corrections are very small for the vector as well as the charged pion scalar form factor. The scalar radius of the neutral pion is reduced by two percent. We perform infrared regularization by considering electron-positron annihilation into pions and the decay of a light Higgs boson into a pion pair. We discuss the detector resolution dependent contributions to the various form factors and pion radii.

  2. Virtual photons in the pion form factors and the energy-momentum tensor

    International Nuclear Information System (INIS)

    Kubis, Bastian; Meissner, Ulf-G.

    2000-01-01

    We evaluate the vector and scalar form factor of the pion in the presence of virtual photons at next-to-leading order in two-flavor chiral perturbation theory. We also consider the scalar and tensor pion form factors of the energy-momentum tensor. We find that the intrinsic electromagnetic corrections are very small for the vector as well as the charged pion scalar form factor. The scalar radius of the neutral pion is reduced by two percent. We perform infrared regularization by considering electron-positron annihilation into pions and the decay of a light Higgs boson into a pion pair. We discuss the detector resolution dependent contributions to the various form factors and pion radii

  3. The $\\eta_c$(2980) formation in two-photon collisions at LEP energies

    CERN Document Server

    Abdallah, J; Adam, W; Adzic, P; Albrecht, T; Alderweireld, T; Alemany-Fernandez, R; Allmendinger, T; Allport, P P; Amaldi, Ugo; Amapane, N; Amato, S; Anashkin, E; Andreazza, A; Andringa, S; Anjos, N; Antilogus, P; Apel, W D; Arnoud, Y; Ask, S; Åsman, B; Augustin, J E; Augustinus, A; Baillon, Paul; Ballestrero, A; Bambade, P; Barbier, R; Bardin, Dimitri Yuri; Barker, G; Baroncelli, A; Battaglia, Marco; Baubillier, M; Becks, K H; Begalli, M; Behrmann, A; Ben-Haim, E; Benekos, N C; Benvenuti, Alberto C; Bérat, C; Berggren, M; Berntzon, L; Bertrand, D; Besançon, M; Besson, N; Bloch, D; Blom, M; Bluj, M; Bonesini, M; Boonekamp, M; Booth, P S L; Borisov, G; Botner, O; Bouquet, B; Bowcock, T J V; Boyko, I; Bracko, M; Brenner, R; Brodet, E; Brückman, P; Brunet, J M; Bugge, L; Buschmann, P; Calvi, M; Camporesi, T; Canale, V; Carena, F; Castro, N; Cavallo, F R; Chapkin, M M; Charpentier, P; Checchia, P; Chierici, R; Shlyapnikov, P; Chudoba, J; Chung, S U; Cieslik, K; Collins, P; Contri, R; Cosme, G; Cossutti, F; Costa, M J; Crawley, B; Crennell, D J; Cuevas-Maestro, J; D'Hondt, J; Dalmau, J; Da Silva, T; Da Silva, W; Della Ricca, G; De Angelis, A; de Boer, Wim; De Clercq, C; De Lotto, B; De Maria, N; De Min, A; De Paula, L S; Di Ciaccio, Lucia; Di Simone, A; Doroba, K; Drees, J; Dris, M; Eigen, G; Ekelöf, T J C; Ellert, M; Elsing, M; Espirito-Santo, M C; Fanourakis, G K; Fassouliotis, D; Feindt, M; Fernández, J; Ferrer, A; Ferro, F; Flagmeyer, U; Föth, H; Fokitis, E; Fulda-Quenzer, F; Fuster, J A; Gandelman, M; García, C; Gavillet, P; Gazis, E N; Gokieli, R; Golob, B; Gómez-Ceballos, G; Gonçalves, P; Graziani, E; Grosdidier, G; Grzelak, K; Guy, J; Haag, C; Hallgren, A; Hamacher, K; Hamilton, K; Hansen, J; Haug, S; Hauler, F; Hedberg, V; Hennecke, M; Herr, H; Hoffman, J; Holmgren, S O; Holt, P J; Houlden, M A; Hultqvist, K; Jackson, J N; Jarlskog, G; Jarry, P; Jeans, D; Johansson, E K; Johansson, P D; Jonsson, P; Joram, C; Jungermann, L; Kapusta, F; Katsanevas, S; Katsoufis, E C; Kernel, G; Kersevan, Borut P; Kiiskinen, A P; King, B T; Kjaer, N J; Kluit, P; Kokkinias, P; Kourkoumelis, C; Kuznetsov, O; Krumshtein, Z; Kucharczyk, M; Lamsa, J; Leder, G; Ledroit, F; Leinonen, L; Leitner, R; Lemonne, J; Lepeltier, V; Lesiak, T; Liebig, W; Liko, D; Lipniacka, A; Lopes, J H; López, J M; Loukas, D; Lutz, P; Lyons, L; MacNaughton, J; Malek, A; Maltezos, S; Mandl, F; Marco, J; Marco, R; Maréchal, B; Margoni, M; Marin, J C; Mariotti, C; Markou, A; Martínez-Rivero, C; Masik, J; Mastroyiannopoulos, N; Matorras, F; Matteuzzi, C; Mazzucato, F; Mazzucato, M; McNulty, R; Meroni, C; Meyer, W T; Migliore, E; Mitaroff, W A; Mjörnmark, U; Moa, T; Moch, M; Mönig, K; Monge, R; Montenegro, J; Moraes, D; Moreno, S; Morettini, P; Müller, U; Münich, K; Mulders, M; Mundim, L M; Murray, W; Muryn, B; Myatt, Gerald; Myklebust, T; Nassiakou, M; Navarria, Francesco Luigi; Nawrocki, K; Nicolaidou, R; Nikolenko, M; Oblakowska-Mucha, A; Obraztsov, V F; Olshevskii, A G; Onofre, A; Orava, Risto; Österberg, K; Ouraou, A; Oyanguren, A; Paganoni, M; Paiano, S; Palacios, J P; Palka, H; Papadopoulou, T D; Pape, L; Parkes, C; Parodi, F; Parzefall, U; Passeri, A; Passon, O; Peralta, L; Perepelitsa, V F; Perrotta, A; Petrolini, A; Piedra, J; Pieri, L; Pierre, F; Pimenta, M; Piotto, E; Podobnik, T; Poireau, V; Pol, M E; Polok, G; Poropat, P; Pozdnyakov, V; Pukhaeva, N; Pullia, Antonio; Rames, J; Ramler, L; Read, A; Rebecchi, P; Rehn, J; Reid, D; Reinhardt, R; Renton, P B; Richard, F; Rídky, J; Rivero, M; Rodríguez, D; Romero, A; Ronchese, P; Rosenberg, E I; Roudeau, Patrick; Rovelli, T; Ruhlmann-Kleider, V; Ryabtchikov, D; Sadovskii, A; Salmi, L; Salt, J; Savoy-Navarro, A; Schwickerath, U; Segar, A; Sekulin, R L; Siebel, M; Sissakian, A N; Smadja, G; Smirnova, O G; Sokolov, A; Sopczak, A; Sosnowski, R; Spassoff, Tz; Stanitzki, M; Stocchi, A; Strauss, J; Stugu, B; Szczekowski, M; Szeptycka, M; Szumlak, T; Tabarelli de Fatis, T; Taffard, A C; Tegenfeldt, F; Timmermans, J; Tkatchev, L G; Tobin, M; Todorovova, S; Tomé, B; Tonazzo, A; Tortosa, P; Travnicek, P; Treille, D; Tristram, G; Trochimczuk, M; Troncon, C; Turluer, M L; Tyapkin, I A; Tyapkin, P; Tzamarias, S; Uvarov, V; Valenti, G; van Dam, P; Van Eldik, J; Van Lysebetten, A; Van Remortel, N; Van Vulpen, I B; Vegni, G; Veloso, F; Venus, W A; Verbeure, F; Verdier, P; Verzi, V; Vilanova, D; Vitale, L; Vrba, V; Wahlen, H; Washbrook, A J; Weiser, C; Wicke, D; Wickens, J H; Wilkinson, G; Winter, M; Witek, M; Yushchenko, O P; Zalewska-Bak, A; Zalewski, Piotr; Zavrtanik, D; Zhuravlov, V; Zimin, N I; Zinchenko, A I; Zupan, M

    2003-01-01

    eta_c(2980) production in gammagamma interactions has been detected via its decays into K0_sK+-pi-+, K+K-K+K- and K+K-pi+pi- in the data taken with the DELPHI detector at LEP1 and LEP2 energies. The two-photon radiative width averaged over all observed decay channels is Gamma_gammagamma = 13.9+-2.0(stat.)+-1.4(syst.)+-2.7(BR)keV. No direct decay channel eta_c -> pi+pi-pi+pi- has been observed. An upper limit Gamma_gammagamma<5.5keV at 95% confidence level has been evaluated for this decay mode.

  4. 3He(γ,pp)n cross sections with tagged photons below the Δ resonance energy

    Science.gov (United States)

    Kolb, N. R.; Feldman, G.; O'rielly, G. V.; Pywell, R. E.; Skopik, D. M.; Hackett, E. D.; Quraan, M. A.; Rodning, N. L.

    1996-11-01

    Cross sections have been measured for the 3He(γ,pp)n reaction with tagged photons in the range Eγ =161-208 MeV using the Saskatchewan-Alberta Large Acceptance Detector (SALAD). The protons were detected over a range of polar angles of 40°-140° and azimuthal angles of 0°-360° with an energy threshold of 40 MeV. Comparisons are made with a microscopic calculation which includes one-, two-, and three-nucleon absorption mechanisms. One- and two-nucleon processes, including final-state interactions, are unable to account for the measured cross sections. The addition of three-nucleon absorption diagrams gives roughly the right strength, but the distribution in phase space is in disagreement with the data.

  5. 3He(γ,pp)n cross sections with tagged photons below the Δ resonance energy

    International Nuclear Information System (INIS)

    Kolb, N.R.; Feldman, G.; ORielly, G.V.; Pywell, R.E.; Skopik, D.M.; Hackett, E.D.; Quraan, M.A.; Rodning, N.L.

    1996-01-01

    Cross sections have been measured for the 3 He(γ,pp)n reaction with tagged photons in the range E γ =161 endash 208 MeV using the Saskatchewan-Alberta Large Acceptance Detector (SALAD). The protons were detected over a range of polar angles of 40 degree endash 140 degree and azimuthal angles of 0 degree endash 360 degree with an energy threshold of 40 MeV. Comparisons are made with a microscopic calculation which includes one-, two-, and three-nucleon absorption mechanisms. One- and two-nucleon processes, including final-state interactions, are unable to account for the measured cross sections. The addition of three-nucleon absorption diagrams gives roughly the right strength, but the distribution in phase space is in disagreement with the data. copyright 1996 The American Physical Society

  6. Field test analysis of concentrator photovoltaic system focusing on average photon energy and temperature

    Science.gov (United States)

    Husna, Husyira Al; Ota, Yasuyuki; Minemoto, Takashi; Nishioka, Kensuke

    2015-08-01

    The concentrator photovoltaic (CPV) system is unique and different from the common flat-plate PV system. It uses a multi-junction solar cell and a Fresnel lens to concentrate direct solar radiation onto the cell while tracking the sun throughout the day. The cell efficiency could reach over 40% under high concentration ratio. In this study, we analyzed a one year set of environmental condition data of the University of Miyazaki, Japan, where the CPV system was installed. Performance ratio (PR) was discussed to describe the system’s performance. Meanwhile, the average photon energy (APE) was used to describe the spectrum distribution at the site where the CPV system was installed. A circuit simulator network was used to simulate the CPV system electrical characteristics under various environmental conditions. As for the result, we found that the PR of the CPV systems depends on the APE level rather than the cell temperature.

  7. Inhomogeneities in high energy photon beams used in radiotherapy. Experimental and theoretical studies

    International Nuclear Information System (INIS)

    Kappas, K.

    1986-01-01

    This work is dedicated to the influence of the human body inhomogeneities on the dose distribution for high energy photons beams used in Radiotherapy. It consists in an experimental part and a theoretical analysis leading to original models of calculation. We study essentially, - the beam quality of the machines used and its influence on some basic dosimetric quantities and on the response of an ionization chamber. - The dose perturbation due to off-axis heterogeneous volumes at off-axis points of measurement; a model is suggested to take into account the perturbation of the multiple scatter. The perturbation of the dose in the transition region, between water equivalent medium and heterogeneous medium (air) is also investigated. The last part is devoted to computer applications of the proposed correction methods and to a comparison between the different computerized treatment planning systems which take into account of inhomogeneities [fr

  8. Photon energy-modulated radiotherapy: Monte Carlo simulation and treatment planning study

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jong Min; Kim, Jung-in; Heon Choi, Chang; Chie, Eui Kyu; Kim, Il Han; Ye, Sung-Joon [Interdiciplinary Program in Radiation Applied Life Science, Seoul National University, Seoul, 110-744, Korea and Department of Radiation Oncology, Seoul National University Hospital, Seoul, 110-744 (Korea, Republic of); Interdiciplinary Program in Radiation Applied Life Science, Seoul National University, Seoul, 110-744 (Korea, Republic of); Department of Radiation Oncology, Seoul National University Hospital, Seoul, 110-744 (Korea, Republic of); Interdiciplinary Program in Radiation Applied Life Science, Seoul National University, Seoul, 110-744 (Korea, Republic of) and Department of Radiation Oncology, Seoul National University Hospital, Seoul, 110-744 (Korea, Republic of); Interdiciplinary Program in Radiation Applied Life Science, Seoul National University, Seoul, 110-744 (Korea, Republic of); Department of Radiation Oncology, Seoul National University Hospital, Seoul, 110-744 (Korea, Republic of) and Department of Intelligent Convergence Systems, Seoul National University, Seoul, 151-742 (Korea, Republic of)

    2012-03-15

    Purpose: To demonstrate the feasibility of photon energy-modulated radiotherapy during beam-on time. Methods: A cylindrical device made of aluminum was conceptually proposed as an energy modulator. The frame of the device was connected with 20 tubes through which mercury could be injected or drained to adjust the thickness of mercury along the beam axis. In Monte Carlo (MC) simulations, a flattening filter of 6 or 10 MV linac was replaced with the device. The thickness of mercury inside the device varied from 0 to 40 mm at the field sizes of 5 x 5 cm{sup 2} (FS5), 10 x 10 cm{sup 2} (FS10), and 20 x 20 cm{sup 2} (FS20). At least 5 billion histories were followed for each simulation to create phase space files at 100 cm source to surface distance (SSD). In-water beam data were acquired by additional MC simulations using the above phase space files. A treatment planning system (TPS) was commissioned to generate a virtual machine using the MC-generated beam data. Intensity modulated radiation therapy (IMRT) plans for six clinical cases were generated using conventional 6 MV, 6 MV flattening filter free, and energy-modulated photon beams of the virtual machine. Results: As increasing the thickness of mercury, Percentage depth doses (PDD) of modulated 6 and 10 MV after the depth of dose maximum were continuously increased. The amount of PDD increase at the depth of 10 and 20 cm for modulated 6 MV was 4.8% and 5.2% at FS5, 3.9% and 5.0% at FS10 and 3.2%-4.9% at FS20 as increasing the thickness of mercury from 0 to 20 mm. The same for modulated 10 MV was 4.5% and 5.0% at FS5, 3.8% and 4.7% at FS10 and 4.1% and 4.8% at FS20 as increasing the thickness of mercury from 0 to 25 mm. The outputs of modulated 6 MV with 20 mm mercury and of modulated 10 MV with 25 mm mercury were reduced into 30%, and 56% of conventional linac, respectively. The energy-modulated IMRT plans had less integral doses than 6 MV IMRT or 6 MV flattening filter free plans for tumors located in the

  9. Dosimetry quality audit of high energy photon beams in greek radiotherapy centers

    International Nuclear Information System (INIS)

    Hourdakis, Constantine J.; Boziari, A.

    2008-01-01

    Background and purpose: Dosimetry quality audits and intercomparisons in radiotherapy centers is a useful tool in order to enhance the confidence for an accurate therapy and to explore and dissolve discrepancies in dose delivery. This is the first national comprehensive study that has been carried out in Greece. During 2002 - 2006 the Greek Atomic Energy Commission performed a dosimetry quality audit of high energy external photon beams in all (23) Greek radiotherapy centers, where 31 linacs and 13 Co-60 teletherapy units were assessed in terms of their mechanical performance characteristics and relative and absolute dosimetry. Materials and Methods: The quality audit in dosimetry of external photon beams took place by means of on-site visits, where certain parameters of the photon beams were measured, calculated and assessed according to a specific protocol and the IAEA TRS 398 dosimetry code of practice. In each radiotherapy unit (Linac or Co-60), certain functional parameters were measured and the results were compared to tolerance values and limits. Doses in water under reference and non reference conditions were measured and compared to the stated values. Also, the treatment planning systems (TPS) were evaluated with respect to irradiation time calculations. Results: The results of the mechanical tests, dosimetry measurements and TPS evaluation have been presented in this work and discussed in detail. This study showed that Co-60 units had worse performance mechanical characteristics than linacs. 28% of all irradiation units (23% of linacs and 42% of Co-60 units) exceeded the acceptance limit at least in one mechanical parameter. Dosimetry accuracy was much worse in Co60 units than in linacs. 61% of the Co60 units exhibited deviations outside ±3% and 31% outside ±5%. The relevant percentages for the linacs were 24% and 7% respectively. The results were grouped for each hospital and the sources of errors (functional and human) have been investigated and

  10. Dosimetry quality audit of high energy photon beams in greek radiotherapy centers.

    Science.gov (United States)

    Hourdakis, Constantine J; Boziari, A

    2008-04-01

    Dosimetry quality audits and intercomparisons in radiotherapy centers is a useful tool in order to enhance the confidence for an accurate therapy and to explore and dissolve discrepancies in dose delivery. This is the first national comprehensive study that has been carried out in Greece. During 2002--2006 the Greek Atomic Energy Commission performed a dosimetry quality audit of high energy external photon beams in all (23) Greek radiotherapy centers, where 31 linacs and 13 Co-60 teletherapy units were assessed in terms of their mechanical performance characteristics and relative and absolute dosimetry. The quality audit in dosimetry of external photon beams took place by means of on-site visits, where certain parameters of the photon beams were measured, calculated and assessed according to a specific protocol and the IAEA TRS 398 dosimetry code of practice. In each radiotherapy unit (Linac or Co-60), certain functional parameters were measured and the results were compared to tolerance values and limits. Doses in water under reference and non reference conditions were measured and compared to the stated values. Also, the treatment planning systems (TPS) were evaluated with respect to irradiation time calculations. The results of the mechanical tests, dosimetry measurements and TPS evaluation have been presented in this work and discussed in detail. This study showed that Co-60 units had worse performance mechanical characteristics than linacs. 28% of all irradiation units (23% of linacs and 42% of Co-60 units) exceeded the acceptance limit at least in one mechanical parameter. Dosimetry accuracy was much worse in Co60 units than in linacs. 61% of the Co60 units exhibited deviations outside +/-3% and 31% outside +/-5%. The relevant percentages for the linacs were 24% and 7% respectively. The results were grouped for each hospital and the sources of errors (functional and human) have been investigated and discussed in details. This quality audit proved to be a

  11. The photon energy dependence of the alanine/EPR dosimetry system, an experimental investigation

    International Nuclear Information System (INIS)

    Bergstrand, E.S.; Hole, E.O.; Shortt, K.R.; Ross, C.K.

    2002-01-01

    The energy dependence of a dosimetry system based on electron paramagnetic resonance (EPR) spectroscopy of alanine has been studied to determine its suitability for use in dose verification for radiotherapy. A few experiments with high-energy photon irradiation of alanine have been reported in the literature. However, the reported results disagree whether the ratio of dose in alanine to dose in water is independent of the radiation energy or whether there is a small dependence for photon energies of relevance to radiotherapy. The concentration of free radicals in alanine is proportional to the absorbed dose in alanine over a wide dose range covering three decades. The relative number of radicals may be determined by examining the EPR spectrum, and hence it is possible to determine the dose with a system that has been calibrated using a known dose of 60 Co radiation. In the present work, irradiations of alanine dosimeters were performed at the National Research Council (NRC), in Ottawa, Canada. The radiation qualities investigated were 10, 20 and 30 MV x-rays using the NRC linac. For each radiation quality, 30 dosimeters were irradiated in a water phantom with a level of absorbed dose to water ranging from 10 to 50 Gy. For reference purposes, irradiations using the NRC 60 Co source were performed on more or less the same day as the irradiations at each specific linac quality. In all beams, the dose to water was measured using a graphite-walled NE2571 ionisation chamber that was originally calibrated by comparison with a sealed-water calorimeter. The alanine dosimeters were evaluated at the EPR laboratory at the University of Oslo, Norway, using an X-band Bruker ESP300E spectrometer with a rectangular double resonator. One of the resonators contained a Mn 2+ /MgO sample that was read after each dosimeter reading, in order to provide independence from short-term sensitivity fluctuations in the spectrometer. All dosimeters irradiated at one specific linac quality were

  12. Measuring thermo-luminescence efficiency of TLD-2000 detectors to different energy photons

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Wei Min; Chen, Bao Wei; Han, Yi; Yang, Zhong Jian [China Institute for Radiation Protection, Taiyuan (China)

    2016-06-15

    As an important detecting device, TLD is a widely used in the radiation monitoring. It is essential for us to study the property of detecting element. The aim of this study is to calculate the thermo-luminescence efficiency of TL elements. A batch of thermo-luminescence elements were irradiated by the filtered X-ray beams of average energies in the range 40-200 kVp, 662 keV {sup 137}Cs gamma rays and then the amounts of lights were measured by the TL reader. The deposition energies in elements were calculated by theory formula and Monte Carlo simulation. The unit absorbed dose in elements by photons with different energies corresponding to the amounts of lights was calculated, which is called the thermo luminescent efficiency (η(E)). Because of the amounts of lights can be calculated by the absorbed dose in elements multiply η(E), the η(E) can be calculated by the experimental data (the amounts of lights) divided by absorbed dose. The deviation of simulation results compared with theoretical calculation results were less than 5%, so the absorbed dose in elements was calculated by simulation results in here. The change range of η(E) value, relative to 662 keV {sup 137}Cs gamma rays, is about 30% in the energy range of 33 keV to 662 keV, is in accordance by the comparison with relevant foreign literatures. The η(E) values can be used for updating the amounts of lights that are got by the direct ratio assumed relations with deposition energy in TL elements, which can largely reduce the error of calculation results of the amounts of lights. These data can be used for the design of individual dosimeter which used TLD-2000 thermo-luminescence elements, also have a certain reference value for manufacturer to improve the energy-response performance of TL elements by formulation adjustment.

  13. Photoproduction of π+π-π0 on hydrogen with linearly polarized photons of energy 20-70 GeV

    International Nuclear Information System (INIS)

    Lasalle, J.C.; Patrick, G.N.; Storr, K.M.; Atkinson, M.; Axon, T.J.; Barberis, D.; Brodbeck, T.J.; Brookes, G.R.; Bunn, J.J.; Bussey, P.J.; Clegg, A.B.; Dainton, J.B.; Davenport, M.; Dickinson, B.; Dieckmann, B.; Donnachie, A.; Ellison, R.J.; Flower, P.; Flynn, P.J.; Galbraith, W.; Heinloth, K.; Henderson, R.C.W.; Hughes-Jones, R.E.; Hutton, J.S.; Ibbotson, M.; Jakob, H.P.; Jung, M.; Kemp, M.A.R.; Kumar, B.R.; Laberrigue, J.; Lafferty, G.D.; Lane, J.B.; Levy, J.M.; Liebenau, V.; McClatchey, R.H.; Mercer, D.; Morris, J.A.G.; Morris, J.V.; Newton, D.; Paterson, C.; Paul, E.; Raine, C.; Reidenbach, M.; Rotscheidt, H.; Schloesser, A.; Sharp, P.H.; Skillicorn, I.O.; Smith, K.M.; Thompson, R.J.; Vaissiere, C. de la; Waite, A.P.; Worsell, M.F.; Yiou, T.P.

    1984-01-01

    Results on photoproduction of π + π - π 0 in the photon energy range 20-70 GeV are presented. For the ω meson, the production cross-section is found to be 1010 +- 15 (statistical) +- 290 (systematic) nb and is constant over the incident photon energy range. Spin-density matrix elements are evaluated for ω meson production. The PHI meson is observed with a total photoproduction cross section (corrected for branching ratio to π + π - π 0 ) of 610 +- 35 +- 170 nb. A third resonance, at 1.67 GeV, is seen in the mass spectrum and its interpretation is discussed. The production of a braod π + π - π 0 continuum, mainly via rhoπ, and peaking at 1.2 GeV, contributes with a cross section of about 2.5 μb. The spin-parity content is analysed by the moments of the π + π - π 0 decay angular distribution in the helicity frame and by maximum likelihood fits to the π + π - π 0 Dalitz plot. It is found that production of Jsup(P) = 1 - states accounts for less than half of the total mass spectrum above 900 MeV. There is a broad enhancement in the 1 + wave around 1.15 GeV indicating photoproduction of the H(1190) meson. (orig.)

  14. Activation energy of etching for CR-39 as a function of linear energy transfer of the incident particles

    CERN Document Server

    Awad, E M

    1999-01-01

    In this work, we have studied the effect of the radiation damage caused by the incident particles on the activation energy of etching for CR-39 samples. The damage produced by the incident particle is expressed in terms of the linear energy transfer (LET). CR-39 samples from American Acrylic were irradiated to three different LET particles. These are N (LET sub 2 sub 0 sub 0 = 20 KeV/mu m) as a light particle, Fe (LET sub 2 sub 0 sub 0 = 110 KeV/mu m) as a medium particle and fission fragments (ff) from a sup 2 sup 5 sup 2 Cf source as heavy particles. In general the bulk etch rate was calculated using the weight difference method and the track etch rate was determined using the track geometry at various temperatures (50-90 deg. C) and concentrations (4-9 N) of the NaOH etchant. The average activation energy E sub b related to the bulk etch rate v sub b was calculated from 1n v sub b vs. 1/T. The average activation energy E sub t related to the track etch rate v sub t was estimated from 1n v sub t vs. 1/T. It...

  15. Inverse photon-photon processes

    International Nuclear Information System (INIS)

    Carimalo, C.; Crozon, M.; Kesler, P.; Parisi, J.

    1981-12-01

    We here consider inverse photon-photon processes, i.e. AB → γγX (where A, B are hadrons, in particular protons or antiprotons), at high energies. As regards the production of a γγ continuum, we show that, under specific conditions the study of such processes might provide some information on the subprocess gg γγ, involving a quark box. It is also suggested to use those processes in order to systematically look for heavy C = + structures (quarkonium states, gluonia, etc.) showing up in the γγ channel. Inverse photon-photon processes might thus become a new and fertile area of investigation in high-energy physics, provided the difficult problem of discriminating between direct photons and indirect ones can be handled in a satisfactory way

  16. 200-MeV bremsstrahlung tagged photon beams at Sendai

    International Nuclear Information System (INIS)

    Hirose, K.; Chiba, M.; Inoue, M.; Kanda, H.; Kimura, R.; Kino, K.; Kobayashi, Y.; Konno, O.; Maeda, K.; Miyase, H.; Miyamoto, A.; Ohtsuki, T.; Saito, A.; Suda, T.; Takahashi, K.; Tamae, T.; Terasaki, Y.; Terasawa, T.; Tsubota, H.; Tsuruta, T.; Utoyama, M.; Yuuki, H.; Yamaguchi, Y.; Yamazaki, H.

    2006-01-01

    A new beam line for photonuclear reaction experiments using tagged photons has been constructed to take advantage of the completion of the 1.2-GeV STretcher Booster (STB) ring at the Laboratory of Nuclear Science (LNS), Tohoku University. A photon tagging system was installed at the end of the new beam line. It provides bremsstrahlung tagged photon beams in an energy range from 0.2E 0 to 0.8E 0 MeV at the incident electron energy E 0 with an energy resolution of ΔE/E∼10 -2 . The tagged photon intensity I= 6 photons/s is available for typical photonuclear reaction experiments. We introduce the basic parameters of the tagged photons by showing the commissioning data

  17. Electric-Field-Induced Energy Tuning of On-Demand Entangled-Photon Emission from Self-Assembled Quantum Dots.

    Science.gov (United States)

    Zhang, Jiaxiang; Zallo, Eugenio; Höfer, Bianca; Chen, Yan; Keil, Robert; Zopf, Michael; Böttner, Stefan; Ding, Fei; Schmidt, Oliver G

    2017-01-11

    We explore a method to achieve electrical control over the energy of on-demand entangled-photon emission from self-assembled quantum dots (QDs). The device used in our work consists of an electrically tunable diode-like membrane integrated onto a piezoactuator, which is capable of exerting a uniaxial stress on QDs. We theoretically reveal that, through application of the quantum-confined Stark effect to QDs by a vertical electric field, the critical uniaxial stress used to eliminate the fine structure splitting of QDs can be linearly tuned. This feature allows experimental realization of a triggered source of energy-tunable entangled-photon emission. Our demonstration represents an important step toward realization of a solid-state quantum repeater using indistinguishable entangled photons in Bell state measurements.

  18. Dosimetry of small circular beams of high energy photons for stereotactic radiosurgery and radiotherapy: the use of small ionization chambers

    International Nuclear Information System (INIS)

    Mazal, A.; Gaboriauid, G.; Zefkili, S.; Rosenwald, J.C.; Boutaudon, S.; Pontvert, D.

    1999-01-01

    The irradiation of small targets in the brain in a singe fraction (radiosurgery) or with a fractionated approach (stereotactic radiosurgery) with small beams of photons requires specific conditions to measure and to model the dosimetric data needed for treatment planning. In this work we present the method and materials adopted in our institution since 1988 to perform the dosimetry of high energy (6-23) circular photon beams with diameters ranging from 10 to 40 mm at the isocenter of linear accelerators, and its evolution as new dosimetric material became commercially available. in circular ionization chambers of small dimensions. We want to answer the following questions: Which are the minimal basic data needed to model small circular beams of high energy photons? Can we extrapolate or convert data from conventional data of larger beams? Which are the detectors well adapted for these kind of measurements and for which range of beam sizes?

  19. The METAS absorbed dose to water calibration service for high energy photon and electron beam radiotherapy

    International Nuclear Information System (INIS)

    Stucki, G.; Muench, W.; Quintel, H.

    2002-01-01

    Full text: The Swiss Federal Office of Metrology and Accreditation (METAS) provides an absorbed dose to water calibration service for reference dosimeters using 60 Co γ radiation, ten X-ray beam qualities between TPR 20,10 =0.639 and 0.802 and ten electron beam qualities between R 50 =1.75 gcm -2 and 8.54 gcm -2 . A 22 MeV microtron accelerator with a conventional treatment head is used as radiation source for the high energy photon and electron beams. The treatment head produces clinical beams. The METAS absorbed dose calibration service for high energy photons is based on a primary standard sealed water calorimeter of the Domen type, that is used to calibrate several METAS transfer standards of type NE2611A and NE2571A in terms of absorbed dose to water in the energy range from 60 Co to TPR 20,10 = 0.802. User reference dosimeters are compared with the transfer standards to give calibration factors in absorbed dose to water with an uncertainty of 1.0% for 60 Co γ radiation and 1.4% for higher energies (coverage factor k=2). The calibration service was launched in 1997. The calibration factors measured by METAS have been compared with those derived from the Code of Practice of the International Atomic Energy Agency using the calculated k Q factors listed in table 14. The comparison showed a maximum difference of 0.8% for the NE25611A and NE 2571A chambers. At 60 Co γ radiation the METAS primary standard of absorbed dose to water was bilaterally compared with the primary standards of the Bureau International des Poids et Mesures BIPM (Sevres) as well as of the National Research Council NRC (Canada). In either case the standards were in agreement within the comparison uncertainties. The METAS absorbed dose calibration service for high energy electron beams is based on a primary standard chemical dosimeter. A monoenergetic electron beam of precisely known particle energy and beam charge is totally absorbed in Fricke solution (ferrous ammonium sulphate) of a given

  20. A closed-form formulation for the build-up factor and absorbed energy for photons and electrons in the Compton energy range in Cartesian geometry

    Energy Technology Data Exchange (ETDEWEB)

    Borges, Volnei; Vilhena, Marco Tullio, E-mail: borges@ufrgs.b, E-mail: vilhena@pq.cnpq.b [Universidade Federal do Rio Grande do Sul (PROMEC/UFRGS), Porto Alegre, RS (Brazil). Programa de Pos-Graduacao em Engenharia Mecanica; Fernandes, Julio Cesar Lombaldo, E-mail: julio.lombaldo@ufrgs.b [Universidade Federal do Rio Grande do Sul (DMPA/UFRGS), Porto Alegre, RS (Brazil). Dept. de Matematica Pura e Aplicada. Programa de Pos Graduacao em Matematica Aplicada

    2011-07-01

    In this work, we report on a closed-form formulation for the build-up factor and absorbed energy, in one and two dimensional Cartesian geometry for photons and electrons, in the Compton energy range. For the one-dimensional case we use the LTS{sub N} method, assuming the Klein-Nishina scattering kernel for the determination of the angular radiation intensity for photons. We apply the two-dimensional LTS{sub N} nodal solution for the averaged angular radiation evaluation for the two-dimensional case, using the Klein-Nishina kernel for photons and the Compton kernel for electrons. From the angular radiation intensity we construct a closed-form solution for the build-up factor and evaluate the absorbed energy. We present numerical simulations and comparisons against results from the literature. (author)

  1. A closed-form formulation for the build-up factor and absorbed energy for photons and electrons in the Compton energy range in Cartesian geometry

    International Nuclear Information System (INIS)

    Borges, Volnei; Vilhena, Marco Tullio; Fernandes, Julio Cesar Lombaldo

    2011-01-01

    In this work, we report on a closed-form formulation for the build-up factor and absorbed energy, in one and two dimensional Cartesian geometry for photons and electrons, in the Compton energy range. For the one-dimensional case we use the LTS N method, assuming the Klein-Nishina scattering kernel for the determination of the angular radiation intensity for photons. We apply the two-dimensional LTS N nodal solution for the averaged angular radiation evaluation for the two-dimensional case, using the Klein-Nishina kernel for photons and the Compton kernel for electrons. From the angular radiation intensity we construct a closed-form solution for the build-up factor and evaluate the absorbed energy. We present numerical simulations and comparisons against results from the literature. (author)

  2. Search for anomalous production of photonic events with missing energy in $e^+ e^-$ collisions at $\\sqrt{s}$ = 130-172 GeV

    CERN Document Server

    Ackerstaff, K; Allison, J; Altekamp, N; Anderson, K J; Anderson, S; Arcelli, S; Asai, S; Ashby, S F; Axen, D A; Azuelos, Georges; Ball, A H; Barberio, E; Barlow, R J; Bartoldus, R; Batley, J Richard; Baumann, S; Bechtluft, J; Beeston, C; Behnke, T; Bell, A N; Bell, K W; Bella, G; Bentvelsen, Stanislaus Cornelius Maria; Bethke, Siegfried; Betts, S; Biebel, O; Biguzzi, A; Bird, S D; Blobel, Volker; Bloodworth, Ian J; Bloomer, J E; Bobinski, M; Bock, P; Bonacorsi, D; Boutemeur, M; Braibant, S; Brigliadori, L; Brown, R M; Burckhart, Helfried J; Burgard, C; Bürgin, R; Capiluppi, P; Carnegie, R K; Carter, A A; Carter, J R; Chang, C Y; Charlton, D G; Chrisman, D; Clarke, P E L; Cohen, I; Conboy, J E; Cooke, O C; Couyoumtzelis, C; Coxe, R L; Cuffiani, M; Dado, S; Dallapiccola, C; Dallavalle, G M; Davis, R; De Jong, S; del Pozo, L A; Desch, Klaus; Dienes, B; Dixit, M S; Doucet, M; Duchovni, E; Duckeck, G; Duerdoth, I P; Eatough, D; Edwards, J E G; Estabrooks, P G; Evans, H G; Evans, M; Fabbri, Franco Luigi; Fanfani, A; Fanti, M; Faust, A A; Feld, L; Fiedler, F; Fierro, M; Fischer, H M; Fleck, I; Folman, R; Fong, D G; Foucher, M; Fürtjes, A; Futyan, D I; Gagnon, P; Gary, J W; Gascon, J; Gascon-Shotkin, S M; Geddes, N I; Geich-Gimbel, C; Geralis, T; Giacomelli, G; Giacomelli, P; Giacomelli, R; Gibson, V; Gibson, W R; Gingrich, D M; Glenzinski, D A; Goldberg, J; Goodrick, M J; Gorn, W; Grandi, C; Gross, E; Grunhaus, Jacob; Gruwé, M; Hajdu, C; Hanson, G G; Hansroul, M; Hapke, M; Hargrove, C K; Hart, P A; Hartmann, C; Hauschild, M; Hawkes, C M; Hawkings, R; Hemingway, Richard J; Herndon, M; Herten, G; Heuer, R D; Hildreth, M D; Hill, J C; Hillier, S J; Hobson, P R; Höcker, Andreas; Homer, R James; Honma, A K; Horváth, D; Hossain, K R; Howard, R; Hüntemeyer, P; Hutchcroft, D E; Igo-Kemenes, P; Imrie, D C; Ingram, M R; Ishii, K; Jawahery, A; Jeffreys, P W; Jeremie, H; Jimack, Martin Paul; Joly, A; Jones, C R; Jones, G; Jones, M; Jost, U; Jovanovic, P; Junk, T R; Kanzaki, J I; Karlen, D A; Kartvelishvili, V G; Kawagoe, K; Kawamoto, T; Kayal, P I; Keeler, Richard K; Kellogg, R G; Kennedy, B W; Kirk, J; Klier, A; Kluth, S; Kobayashi, T; Kobel, M; Koetke, D S; Kokott, T P; Kolrep, M; Komamiya, S; Kress, T; Krieger, P; Von Krogh, J; Kyberd, P; Lafferty, G D; Lahmann, R; Lai, W P; Lanske, D; Lauber, J; Lautenschlager, S R; Layter, J G; Lazic, D; Lee, A M; Lefebvre, E; Lellouch, Daniel; Letts, J; Levinson, L; Lloyd, S L; Loebinger, F K; Long, G D; Losty, Michael J; Ludwig, J; Liu, D; Macchiolo, A; MacPherson, A L; Mannelli, M; Marcellini, S; Markopoulos, C; Markus, C; Martin, A J; Martin, J P; Martínez, G; Mashimo, T; Mättig, P; McDonald, W J; McKenna, J A; McKigney, E A; McMahon, T J; McPherson, R A; Meijers, F; Menke, S; Merritt, F S; Mes, H; Meyer, J; Michelini, Aldo; Mikenberg, G; Miller, D J; Mincer, A; Mir, R; Mohr, W; Montanari, A; Mori, T; Müller, U; Mihara, S; Nagai, K; Nakamura, I; Neal, H A; Nellen, B; Nisius, R; O'Neale, S W; Oakham, F G; Odorici, F; Ögren, H O; Oh, A; Oldershaw, N J; Oreglia, M J; Orito, S; Pálinkás, J; Pásztor, G; Pater, J R; Patrick, G N; Patt, J; Pérez-Ochoa, R; Petzold, S; Pfeifenschneider, P; Pilcher, J E; Pinfold, J L; Plane, D E; Poffenberger, P R; Poli, B; Posthaus, A; Rembser, C; Robertson, S; Robins, S A; Rodning, N L; Roney, J M; Rooke, A M; Rossi, A M; Routenburg, P; Rozen, Y; Runge, K; Runólfsson, O; Ruppel, U; Rust, D R; Rylko, R; Sachs, K; Saeki, T; Sang, W M; Sarkisyan-Grinbaum, E; Sbarra, C; Schaile, A D; Schaile, O; Scharf, F; Scharff-Hansen, P; Schieck, J; Schleper, P; Schmitt, B; Schmitt, S; Schöning, A; Schröder, M; Schultz-Coulon, H C; Schumacher, M; Schwick, C; Scott, W G; Shears, T G; Shen, B C; Shepherd-Themistocleous, C H; Sherwood, P; Siroli, G P; Sittler, A; Skillman, A; Skuja, A; Smith, A M; Snow, G A; Sobie, Randall J; Söldner-Rembold, S; Springer, R W; Sproston, M; Stephens, K; Steuerer, J; Stockhausen, B; Stoll, K; Strom, D; Ströhmer, R; Szymanski, P; Tafirout, R; Talbot, S D; Tanaka, S; Taras, P; Tarem, S; Teuscher, R; Thiergen, M; Thomson, M A; Von Törne, E; Torrence, E; Towers, S; Trigger, I; Trócsányi, Z L; Tsur, E; Turcot, A S; Turner-Watson, M F; Utzat, P; Van Kooten, R; Verzocchi, M; Vikas, P; Vokurka, E H; Voss, H; Wäckerle, F; Wagner, A; Ward, C P; Ward, D R; Watkins, P M; Watson, A T; Watson, N K; Wells, P S; Wermes, N; White, J S; Wilkens, B; Wilson, G W; Wilson, J A; Wyatt, T R; Yamashita, S; Yekutieli, G; Zacek, V; Zer-Zion, D

    1998-01-01

    Photonic events with large missing energy have been observed in e+e- collisions at centre-of-mass energies of 130, 136, 161 and 172 GeV using the OPAL detector at LEP. Results are presented based on search topologies designed to select events with a single photon and missing transverse energy or events with a pair of acoplanar photons. In both search topologies, cross-section measurements are performed within the kinematic acceptance of the selection. These results are compared with the expectations from the Standard Model processes e+e- -> nu nu(bar) gamma (gamma) (single-photon) and e+e- -> \

  3. Angle-resolved photoemission spectroscopy with 9-eV photon-energy pulses generated in a gas-filled hollow-core photonic crystal fiber

    OpenAIRE

    Bromberger, H.; Ermolov, A.; Belli, F.; Liu, H.; Calegari, F.; Chavez-Cervantes, M.; Li, M. T.; Lin, C. T.; Abdolvand, A.; Russell, P. St. J.; Cavalleri, A.; Travers, J. C.; Gierz, I.

    2015-01-01

    A recently developed source of ultraviolet radiation, based on optical soliton propagation in a gas-filled hollow-core photonic crystal fiber, is applied here to angle-resolved photoemission spectroscopy (ARPES). Near-infrared femtosecond pulses of only few {\\mu}J energy generate vacuum ultraviolet (VUV) radiation between 5.5 and 9 eV inside the gas-filled fiber. These pulses are used to measure the band structure of the topological insulator Bi2Se3 with a signal to noise ratio comparable to ...

  4. Clinical application of intensity and energy modulated radiotherapy with photon and electron beams

    International Nuclear Information System (INIS)

    Xiangkui Mu

    2005-01-01

    In modern, advanced radiotherapy (e.g. intensity modulated photon radiotherapy, IMXT) the delivery time for each fraction becomes prolonged to 10-20 minutes compared with the conventional, commonly 2-5 minutes. The biological effect of this prolongation is not fully known. The large number of beam directions in IMXT commonly leads to a large integral dose in the patient. Electrons would reduce the integral dose but are not suitable for treating deep-seated tumour, due to their limited penetration in tissues. By combining electron and photon beams, the dose distributions may be improved compared with either used alone. One obstacle for using electron beams in clinical routine is that there is no available treatment planning systems that optimise electron beam treatments in a similar way as for IMXT. Protons have an even more pronounced dose fall-off, larger penetration depth and less penumbra widening than electrons and are therefore more suitable for advanced radiotherapy. However, proton facilities optimised for advanced radiotherapy are not commonly available. In some instances electron beams may be an acceptable surrogate. The first part of this study is an experimental in vitro study where the situation in a tumour during fractionated radiotherapy is simulated. The effect of the prolonged fraction time is compared with the predictions by radiobiological models. The second part is a treatment planning study to analyse the mixing of electron and photon beams for at complex target volume in comparison with IMXT. In the next step a research version of an electron beam optimiser was used for the improvement of treatment plans. The aim was to develop a method for translating crude energy and intensity matrices for optimised electrons into a deliverable treatment plan without destroying the dose distribution. In the final part, different methods of treating the spinal canal in medulloblastoma were explored in a treatment planning study that was evaluated with

  5. Virtual photon spectra for finite nuclei

    International Nuclear Information System (INIS)

    Wolynec, E.; Martins, M.N.

    1988-01-01

    The experimental results of an isochromat of the virtual photon spectrum, obtained by measuring the number of ground-state protons emitted by the 16.28 MeV isobaric analogue state in 90 Zr as a function of electron incident energy in the range 17-105 MeV, are compared with the values predicted by a calculation of the E1 DWBA virtual photon spectra for finite nuclei. It is found that the calculations are in excellent agreement with the experimental results. The DWBA virtual photon spectra for finite nuclei for E2 and M1 multipoles are also assessed. (author) [pt

  6. Proper surface channelling of low energy argon ions incident on a nickel (110) crystal

    International Nuclear Information System (INIS)

    Evdokimov, I.N.; Berg, J.A. van den; Armour, D.G.

    1979-01-01

    The scattering behaviour of 6 keV argon ions from a nickel (110) surface has been investigated for specular reflection under grazing incidence conditions. The occurrence of an anomalously high energy loss has been confirmed and the transition from chain scattering at large scattering angles to a distinctly different type of scattering at small angles has been investigated. The characteristics of the low angle scattering phenomena, which dominate the observed spectra at scattering angles below about 18 0 , may be explained in terms of a surface hyperchannelling model in which the incident ions are confined to move within the shallow 'potential valleys' between two atomic rows in the surface. The critical angle for occurrence of this phenomena which is distinctly different from surface semichannelling has been evaluated with Lindhard's standard string potential. The experimentally measured critical angles are in good agreement with the calculated ones. (author)

  7. Is the development of nuclear energy likely to increase the incidence of genetic diseases for mankind

    International Nuclear Information System (INIS)

    Leonard, A.

    1976-01-01

    In a normal human population a relatively high number of individuals (+10%) are bearing genetic and chromosomal deficiencies. As a result of the difficulties encountered when carrying out valid epidemiological investigations, the observations made on the descent of irradiated subjects have not demonstrated that an exposure for a man to ionizing radiations increases the incidence of his deficiencies. That explains the need of having to use the results of experiments conducted on animals in order to evaluate this kind of hazard for mankind. The analysis of these experimental data allows us to conclude that under normal conditions of exploitation the expected development of the nuclear energy is not likely to increase significantly the incidence of genetic deficiencies for mankind. (G.C.)

  8. Optical and energy dependent response of the alanine gel solution produced at IPEN to clinical photons and electrons beams

    International Nuclear Information System (INIS)

    Silva, Cleber F.

    2011-01-01

    The DL-Alanine (C 3 H 7 NO 2 ) is an amino acid tissue equivalent traditionally used as standard dosimetric material in EPR dosimetry. Recently, it has been studied to be applied in gel dosimetry, considering that the addition of Alanine in the Fricke gel solution improves the production of ferric ions radiation induced. The spectrophotometric evaluation technique can be used comparing the two spectrum wavelengths bands: 457 nm band that corresponds to ferrous ions and 588 nm band that corresponds to ferric ions concentration to evaluate the dosimetric properties of this material. The performance of the Alanine gel solution developed at IPEN has been firstly studied using the spectrophotometric technique aiming to apply this material to 3D clinical doses evaluations using MRI technique. In this work, the optical and the energy dependent response of this solution submitted to clinical photons and electrons beams were studied. Different batches of gel solutions were prepared and maintained at low temperature during 12 h to solidification. Before irradiation, the samples were maintained during 1 h at room temperature. The photons and electrons irradiations were carried out using a Varian 2100C Medical Linear Accelerator of the Radiotherapy Department of the Hospital das Clinicas of the University of Sao Paulo with absorbed doses between 1 and 40 Gy; radiation field of 10 x 10 cm 2 ; photon energies of 6 MeV and 15 MeV; and electron with energies between 6 and 15 MeV. The obtained results indicate that signal response dependence for clinical photons and electrons beams, to the same doses, for Alanine gel dosimeter is better than 3.6 % (1σ), and the energy dependence response, to the same doses, is better 3% (1σ) for both beams. These results indicate that the same calibration factor can be used and the optical response is energy independent in the studied dose range and clinical photons and electrons beams energies. (author)

  9. Photonic events with missing energy in $e^{+}e^{-}$ collisions at $\\sqrt{s}=189 GeV$

    CERN Document Server

    Abbiendi, G.; Ainsley, C.; Akesson, P.F.; Alexander, G.; Allison, John; Anderson, K.J.; Arcelli, S.; Asai, S.; Ashby, S.F.; Axen, D.; Azuelos, G.; Bailey, I.; Ball, A.H.; Barberio, E.; Barlow, Roger J.; Batley, J.R.; Baumann, S.; Behnke, T.; Bell, Kenneth Watson; Bella, G.; Bellerive, A.; Bentvelsen, S.; Bethke, S.; Biebel, O.; Bloodworth, I.J.; Bock, P.; Bohme, J.; Boeriu, O.; Bonacorsi, D.; Boutemeur, M.; Braibant, S.; Bright-Thomas, P.; Brigliadori, L.; Brown, Robert M.; Burckhart, H.J.; Cammin, J.; Capiluppi, P.; Carnegie, R.K.; Carter, A.A.; Carter, J.R.; Chang, C.Y.; Charlton, David G.; Ciocca, C.; Clarke, P.E.L.; Clay, E.; Cohen, I.; Cooke, O.C.; Couchman, J.; Couyoumtzelis, C.; Coxe, R.L.; Cuffiani, M.; Dado, S.; Dallavalle, G.Marco; Dallison, S.; Davis, R.; Roeck, A.de; Dervan, P.; Desch, K.; Dienes, B.; Dixit, M.S.; Donkers, M.; Dubbert, J.; Duchovni, E.; Duckeck, G.; Duerdoth, I.P.; Estabrooks, P.G.; Etzion, E.; Fabbri, F.; Fanti, M.; Faust, A.A.; Feld, L.; Ferrari, P.; Fiedler, F.; Fleck, I.; Ford, M.; Frey, A.; Furtjes, A.; Futyan, D.I.; Gagnon, P.; Gary, J.W.; Gaycken, G.; Geich-Gimbel, C.; Giacomelli, G.; Giacomelli, P.; Gingrich, D.M.; Glenzinski, D.; Goldberg, J.; Grandi, C.; Graham, K.; Gross, E.; Grunhaus, J.; Gruwe, M.; Gunther, P.O.; Hadju, C.C.; Hanson, G.G.; Hansroul, M.; Hapke, M.; Harder, K.; Harel, A.; Hargrove, C.K.; Harin-Dirac, M.; Hauke, A.; Hauschild, M.; Hawkes, C.M.; Hawkings, R.; Hemingway, R.J.; Hensel, C.; Herten, G.; Heuer, R.D.; Hildreth, M.D.; Hill, J.C.; Hobson, P.R.; Hocker, James Andrew; Hoffman, Kara Dion; Homer, R.J.; Honma, A.K.; Horvath, D.; Hossain, K.R.; Howard, R.; Huntemeyer, P.; Igo-Kemenes, P.; Imrie, D.C.; Ishii, K.; Jacob, F.R.; Jawahery, A.; Jeremie, H.; Jones, C.R.; Jovanovic, P.; Junk, T.R.; Kanaya, N.; Kanzaki, J.; Karapetian, G.; Karlen, D.; Kartvelishvili, V.; Kawagoe, K.; Kawamoto, T.; Kayal, P.I.; Keeler, R.K.; Kellogg, R.G.; Kennedy, B.W.; Kim, D.H.; Klein, K.; Klier, A.; Kobayashi, T.; Kobel, M.; Kokott, T.P.; Komamiya, S.; Kowalewski, Robert V.; Kress, T.; Krieger, P.; von Krogh, J.; Kuhl, T.; Kupper, M.; Kyberd, P.; Lafferty, G.D.; Landsman, H.; Lanske, D.; Lawson, I.; Layter, J.G.; Leins, A.; Lellouch, D.; Letts, J.; Levinson, L.; Liebisch, R.; Lillich, J.; List, B.; Littlewood, C.; Lloyd, A.W.; Lloyd, S.L.; Loebinger, F.K.; Long, G.D.; Losty, M.J.; Lu, J.; Ludwig, J.; Macchiolo, A.; Macpherson, A.; Mader, W.; Mannelli, M.; Marcellini, S.; Marchant, T.E.; Martin, A.J.; Martin, J.P.; Martinez, G.; Mashimo, T.; Mattig, Peter; McDonald, W.John; McKenna, J.; McMahon, T.J.; McPherson, R.A.; Meijers, F.; Mendez-Lorenzo, P.; Merritt, F.S.; Mes, H.; Michelini, A.; Mihara, S.; Mikenberg, G.; Miller, D.J.; Mohr, W.; Montanari, A.; Mori, T.; Nagai, K.; Nakamura, I.; Neal, H.A.; Nisius, R.; O'Neale, S.W.; Oakham, F.G.; Odorici, F.; Ogren, H.O.; Oh, A.; Okpara, A.; Oreglia, M.J.; Orito, S.; Pasztor, G.; Pater, J.R.; Patrick, G.N.; Patt, J.; Pfeifenschneider, P.; Pilcher, J.E.; Pinfold, J.; Plane, David E.; Poli, B.; Polok, J.; Pooth, O.; Przybycien, M.; Quadt, A.; Rembser, C.; Rick, H.; Robins, S.A.; Rodning, N.; Roney, J.M.; Rosati, S.; Roscoe, K.; Rossi, A.M.; Rozen, Y.; Runge, K.; Runolfsson, O.; Rust, D.R.; Sachs, K.; Saeki, T.; Sahr, O.; Sang, W.M.; Sarkisian, E.K.G.; Sbarra, C.; Schaile, A.D.; Schaile, O.; Scharff-Hansen, P.; Schmitt, S.; Schroder, Matthias; Schumacher, M.; Schwick, C.; Scott, W.G.; Seuster, R.; Shears, T.G.; Shen, B.C.; Shepherd-Themistocleous, C.H.; Sherwood, P.; Siroli, G.P.; Skuja, A.; Smith, A.M.; Snow, G.A.; Sobie, R.; Soldner-Rembold, S.; Spagnolo, S.; Sproston, M.; Stahl, A.; Stephens, K.; Stoll, K.; Strom, David M.; Strohmer, R.; Surrow, B.; Talbot, S.D.; Tarem, S.; Taylor, R.J.; Teuscher, R.; Thiergen, M.; Thomas, J.; Thomson, M.A.; Torrence, E.; Towers, S.; Trefzger, T.; Trigger, I.; Trocsanyi, Z.; Tsur, E.; Turner-Watson, M.F.; Ueda, I.; Vannerem, P.; Verzocchi, M.; Voss, H.; Vossebeld, J.; Waller, D.; Ward, C.P.; Ward, D.R.; Watkins, P.M.; Watson, A.T.; Watson, N.K.; Wells, P.S.; Wengler, T.; Wermes, N.; Wetterling, D.; White, J.S.; Wilson, G.W.; Wilson, J.A.; Wyatt, T.R.; Yamashita, S.; Zacek, V.; Zer-Zion, D.

    2000-01-01

    Photonic events with large missing energy have been observed in e+e- collisions at a centre-of-mass energy of 189GeV using the OPAL detector at LEP. Results are presented for event topologies consistent with a single photon or with an acoplanar photon pair. Cross-section measurements are performed within the kinematic acceptance of each selection, and the number of light neutrino species is measured. Cross-section results are compared with the expectations from the Standard Model process e+e- to nu nubar + photon(s). No evidence is observed for new physics contributions to these final states. Upper limits are derived on sigma(e+e- to XY).BR(X to Y gamma) and sigma(e+e- to XX).BR**2(X to Y gamma) for the case of stable and invisible Y. These limits apply to single and pair production of excited neutrinos (X=nu*, Y = nu), to neutralino production (X=neutralino_2, Y=neutralino_1) and to supersymmetric models in which X = neutralino_1 and Y = light gravitino. The case of macroscopic decay lengths of particle X is...

  10. Measurements of the Influence of Thermoplastic Mask in High Energy Photon Beams: Gel Dosimeter or Ionizing Chamber?

    Science.gov (United States)

    Moreira, M. V.; Petchevist, C. D.; de Almeida, A.

    2009-12-01

    The influence of the immobilization mask material on the absorbed dose distribution in patients exposed to radiotherapy treatment with photon beams has been investigated for photons from a 60Co source and a 6 MV Linac. Absorbed dose values have been inferred at different depths and in the build-up region. Dose measurements were obtained using Fricke Xylenol Gel dosimeter and the cylindrical PTW Freiburg TM 31016-0.016 cc ionizing micro chamber; their discrepancies are discussed. The affinities of FXG and PTW ICMicro for measurements with high energy photons and the difference in the effective atomic numbers due to their compositions are most likely the most important factors that contribute to the measured dose in the build-up region. The measured values show that the use of the mask material contributes to increase the absorbed doses near the surface of the tissue. The result also shows that the build-up effect for 60Co is significantly smaller than that for 6 MV photons; however, the variations noted in the final doses of the radiotherapic treatments with photons of high energy do not represent alterations in the total doses received by the patients submitted to the radiotherapy.

  11. Anisotropy in angular distributions of 238U fission fragments by photons, produced in high energy electron interaction with Si monocrystal

    International Nuclear Information System (INIS)

    Kasilov, V.I.; Lapin, N.N.

    1981-01-01

    An enhancement is detected under the angle of 90 deg in the fission fragment yield from 238 U nuclei produced by photons emitted by high-energy electrons passing through a silicon monocrystal. The results enable one to select the most optimal conditions to obtain maximal yields of nuclear particles [ru

  12. Low intensity, continuous wave photodoping of ZnO quantum dots - photon energy and particle size effects.

    Science.gov (United States)

    Aguirre, Matías E; Municoy, S; Grela, M A; Colussi, A J

    2017-02-08

    The unique properties of semiconductor quantum dots (QDs) have found application in the conversion of solar to chemical energy. How the relative rates of the redox processes that control QD photon efficiencies depend on the particle radius (r) and photon energy (E λ ), however, is not fully understood. Here, we address these issues and report the quantum yields (Φs) of interfacial charge transfer and electron doping in ZnO QDs capped with ethylene glycol (EG) as a function of r and E λ in the presence and absence of methyl viologen (MV 2+ ) as an electron acceptor, respectively. We found that Φs for the oxidation of EG are independent of E λ and photon fluence (φ λ ), but markedly increase with r. The independence of Φs on φ λ ensures that QDs are never populated by more than one electron-hole pair, thereby excluding Auger-type terminations. We show that these findings are consistent with the operation of an interfacial redox process that involves thermalized carriers in the Marcus inverted region. In the absence of MV 2+ , QDs accumulate electrons up to limiting volumetric densities ρ e,∞ that depend sigmoidally on excess photon energy E* = E λ - E BG (r), where E BG (r) is the r-dependent bandgap energy. The maximum electron densities: ρ ev,∞ ∼ 4 × 10 20 cm -3 , are reached at E* > 0.5 eV, independent of the particle radius.

  13. Overdose Problem Associated with Treatment Planning Software for High Energy Photons in Response of Panama's Accident

    International Nuclear Information System (INIS)

    Attalla, E.M.; Lotayef, M.M.; Khalil, E.M.; El-Hosiny, H.A.

    2007-01-01

    The purpose of this study was to quantify dose distribution errors by comparing actual dose measurements with the calculated values done by the software. To evaluate the outcome of radiation overexposure related to Panama's accident and in response to ensure that the treatment planning systems (T.P.S.) are being operated in accordance with the appropriate quality assurance programme, we studied the central axis and pripheral depth dose data using complex field shaped with blocks to quantify dose distribution errors. Material and Methods: Multi data T.P.S. software versions 2.35 and 2.40 and Helax T.P.S. software version 5.1 B were assesed. The calculated data of the software treatment planning systems were verified by comparing these data with the actual dose measurements for open and blocked high energy photon fields (Co-60, 6MV and 18MV photons). Results: Close calculated and measured results were obtained for the 2-D (Multi data) and 3-D treatment planning (TMS Helax). These results were correct within 1 to 2% for open fields and 0.5 to 2.5% for peripheral blocked fields. Discrepancies between calculated and measured data ranged between 13. to 36% along the central axis of complex blocked fields when normalisation point was selected at the Dmax, when the normalisation point was selected near or under the blocks, the variation between the calculated and the measured data was up to 500% difference. Conclusions: The present results emphasize the importance of the proper selection of the normalization point in the radiation field, as this facilitates detection of aberrant dose distribution (over exposure or under exposure)

  14. Overdose problem associated with treatment planning software for high energy photons in response of Panama's accident.

    Science.gov (United States)

    Attalla, Ehab M; Lotayef, Mohamed M; Khalil, Ehab M; El-Hosiny, Hesham A; Nazmy, Mohamed S

    2007-06-01

    The purpose of this study was to quantify dose distribution errors by comparing actual dose measurements with the calculated values done by the software. To evaluate the outcome of radiation overexposure related to Panama's accident and in response to ensure that the treatment planning systems (T.P.S.) are being operated in accordance with the appropriate quality assurance programme, we studied the central axis and pripheral depth dose data using complex field shaped with blocks to quantify dose distribution errors. Multidata T.P.S. software versions 2.35 and 2.40 and Helax T.P.S. software version 5.1 B were assesed. The calculated data of the software treatment planning systems were verified by comparing these data with the actual dose measurements for open and blocked high energy photon fields (Co-60, 6MV & 18MV photons). Close calculated and measured results were obtained for the 2-D (Multidata) and 3-D treatment planning (TMS Helax). These results were correct within 1 to 2% for open fields and 0.5 to 2.5% for peripheral blocked fields. Discrepancies between calculated and measured data ranged between 13. to 36% along the central axis of complex blocked fields when normalisation point was selected at the Dmax, when the normalisation point was selected near or under the blocks, the variation between the calculated and the measured data was up to 500% difference. The present results emphasize the importance of the proper selection of the normalization point in the radiation field, as this facilitates detection of aberrant dose distribution (over exposure or under exposure).

  15. Improving measurement quality assurance for photon irradiations at Department of Energy facilities. Final technical report

    International Nuclear Information System (INIS)

    1996-01-01

    For radiation-instrument calibration to be generally acceptable throughout the US, direct or indirect traceability to a primary standard is required. In most instances, one of the primary standards established at NIST is employed for this purpose. The Department of Energy Laboratory Accreditation Program (DOELAP) is an example of a program employing dosimetry based on the NIST primary photon-, beta particle- and neutron-dosimetry standards. The NIST primary dosimetry standards for bremsstrahlung were first established in the 1950s. They have been updated since then on several occasions. In the 1970s, Technical Committee 85 of the International Standards Organization (ISO) started its work on establishing sets of internationally acceptable, well-characterized photon beams for the calibration of radiation-protection instruments. It is the intent of this paper to make a detailed comparison between the current NIST and the most up-to-date ISO techniques. At present, 41 bremsstrahlung techniques are specified in ISO 4037 while NIST supports a total of 32 techniques. Given the existing equivalences, it makes sense to try to extend the NIST techniques to cover more of the ISO Narrow Spectrum and High Air-Kerma Rate Series. These extensions will also allow the possibility for use of ISO beam techniques in future revisions of the DOELAP standard, which has been suggested by DOE. To this end, NIST was funded by DOE to procure material and make adaptations to the existing NIST x-ray calibration ranges to allow NIST to have the capability of producing all the ISO bremsstrahlung techniques. The following sections describe the steps that were taken to achieve this

  16. Characterization of the phantom material virtual water in high-energy photon and electron beams.

    Science.gov (United States)

    McEwen, M R; Niven, D

    2006-04-01

    The material Virtual Water has been characterized in photon and electron beams. Range-scaling factors and fluence correction factors were obtained, the latter with an uncertainty of around 0.2%. This level of uncertainty means that it may be possible to perform dosimetry in a solid phantom with an accuracy approaching that of measurements in water. Two formulations of Virtual Water were investigated with nominally the same elemental composition but differing densities. For photon beams neither formulation showed exact water equivalence-the water/Virtual Water dose ratio varied with the depth of measurement with a difference of over 1% at 10 cm depth. However, by using a density (range) scaling factor very good agreement (water and Virtual Water at all depths was obtained. In the case of electron beams a range-scaling factor was also required to match the shapes of the depth dose curves in water and Virtual Water. However, there remained a difference in the measured fluence in the two phantoms after this scaling factor had been applied. For measurements around the peak of the depth-dose curve and the reference depth this difference showed some small energy dependence but was in the range 0.1%-0.4%. Perturbation measurements have indicated that small slabs of material upstream of a detector have a small (<0.1% effect) on the chamber reading but material behind the detector can have a larger effect. This has consequences for the design of experiments and in the comparison of measurements and Monte Carlo-derived values.

  17. On the origin of very-high-energy photons in astrophysics: a short introduction to acceleration and radiation physics

    International Nuclear Information System (INIS)

    Lemoine, M.; Pelletier, G.

    2015-01-01

    Powerful astrophysical sources produce non-thermal spectra of very-high-energy photons, with generic power-law distributions, through various radiative processes of charged particles, e.g., synchrotron radiation, inverse Compton processes, and hadronic interactions. Those charged particles have themselves been accelerated to ultra-relativistic energies in intense electromagnetic fields in the source. In many cases, the exact acceleration scheme is not known, but standard scenarios, such as Fermi mechanisms and reconnection processes are generally considered as prime suspects for the conversion of bulk kinetic or electromagnetic energy into a power law of supra-thermal particles. This paper proposes a short introduction to the various acceleration and radiative processes which shape the distributions of very-high-energy photons (E > 100 MeV) in astrophysics. (authors)

  18. Simulation of ultra-high energy photon propagation with PRESHOWER 2.0

    Science.gov (United States)

    Homola, P.; Engel, R.; Pysz, A.; Wilczyński, H.

    2013-05-01

    In this paper we describe a new release of the PRESHOWER program, a tool for Monte Carlo simulation of propagation of ultra-high energy photons in the magnetic field of the Earth. The PRESHOWER program is designed to calculate magnetic pair production and bremsstrahlung and should be used together with other programs to simulate extensive air showers induced by photons. The main new features of the PRESHOWER code include a much faster algorithm applied in the procedures of simulating the processes of gamma conversion and bremsstrahlung, update of the geomagnetic field model, and a minor correction. The new simulation procedure increases the flexibility of the code so that it can also be applied to other magnetic field configurations such as, for example, encountered in the vicinity of the sun or neutron stars. Program summaryProgram title: PRESHOWER 2.0 Catalog identifier: ADWG_v2_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADWG_v2_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 3968 No. of bytes in distributed program, including test data, etc.: 37198 Distribution format: tar.gz Programming language: C, FORTRAN 77. Computer: Intel-Pentium based PC. Operating system: Linux or Unix. RAM:probability of the process expected to occur. The new algorithm reduces significantly the number of tracking steps and speeds up the execution of the program. The geomagnetic field model has been updated to IGRF-11, allowing for interpolations up to the year 2015. Numerical Recipes procedures to calculate modified Bessel functions have been replaced with an open source CERN routine DBSKA. One minor bug has been fixed. Restrictions: Gamma conversion into particles other than an electron pair is not considered. Spatial structure of the cascade is neglected. Additional comments

  19. Fluid circulating pump operated by same incident solar energy which heats energy collection fluid

    Science.gov (United States)

    Collins, E. R.

    1980-01-01

    The application of using a spacecraft solar powered pump terrestrially to reduce or eliminate the need for fossil fuel generated electricity for domestic solar hot water systems was investigated. A breadboard prototype model was constructed utilizing bimetals to convert thermal energy into mechanical motion by means of a toggle operated shutter mechanism. Although it did not meet expected thermal efficiency, the prototype model was sufficient to demonstrate the mechanical concept.

  20. Preliminary evaluation of a novel energy-resolved photon-counting gamma ray detector.

    Science.gov (United States)

    Meng, L-J; Tan, J W; Spartiotis, K; Schulman, T

    2009-06-11

    In this paper, we present the design and preliminary performance evaluation of a novel energy-resolved photon-counting (ERPC) detector for gamma ray imaging applications. The prototype ERPC detector has an active area of 4.4 cm × 4.4 cm, which is pixelated into 128 × 128 square pixels with a pitch size of 350 µm × 350µm. The current detector consists of multiple detector hybrids, each with a CdTe crystal of 1.1 cm × 2.2 cm × 1 mm, bump-bonded onto a custom-designed application-specific integrated circuit (ASIC). The ERPC ASIC has 2048 readout channels arranged in a 32 × 64 array. Each channel is equipped with pre- and shaping-amplifiers, a discriminator, peak/hold circuitry and an analog-to-digital converter (ADC) for digitizing the signal amplitude. In order to compensate for the pixel-to-pixel variation, two 8-bit digital-to-analog converters (DACs) are implemented into each channel for tuning the gain and offset. The ERPC detector is designed to offer a high spatial resolution, a wide dynamic range of 12-200 keV and a good energy resolution of 3-4 keV. The hybrid detector configuration provides a flexible detection area that can be easily tailored for different imaging applications. The intrinsic performance of a prototype ERPC detector was evaluated with various gamma ray sources, and the results are presented.

  1. Excitation and photon decay of giant resonances excited by intermediate energy heavy ions

    International Nuclear Information System (INIS)

    Bertrand, F.E.; Beene, J.R.

    1987-01-01

    Inelastic scattering of medium energy heavy ions provides very large cross sections and peak-to-continuum ratios for excitation of giant resonances. For energies above about 50 MeV/nucleon, giant resonances are excited primarily through Coulomb excitation, which is indifferent to isospin, thus providing a good probe for the study of isovector giant resonances. The extremely large cross sections available from heavy ion excitation permit the study of rare decay modes of the giant resonances. In particular, recent measurements have been made of the photon decay of giant resonances following excitation by 22 and 84 MeV/nucleon 17 O projectiles. The singles results at 84 MeV/nucleon yield peak cross sections for the isoscalar giant quadrupole resonance and the isovector giant dipole resonance of approximately 0.8 and 3 barns/sr, respectively. Data on the ground state decay of the isoscalar giant quadrupole and isovector giant dipole resonances are presented and compared with calculations. Decays to low-lying excited states are also discussed. Preliminary results from an experiment to isolate the 208 Pb isovector quadrupole resonance using its gamma decay are presented. 22 refs., 19 figs., 1 tab

  2. Experimental Observations of Nuclear Activity in Deuterated Materials Subjected to a Low-Energy Photon Beam

    Science.gov (United States)

    Steinetz, Bruce M.; Benyo, Theresa L.; Pines, Vladimir; Pines, Marianna; Forsley, Lawrence P.; Westmeyer, Paul A.; Chait, Arnon; Becks, Michael D.; Martin, Richard E.; Hendricks, Robert C.; hide

    2017-01-01

    Exposure of highly deuterated materials to a low-energy (nom. 2 MeV) photon beam resulted in nuclear activity of both the parent metals of hafnium and erbium and a witness material (molybdenum) mixed with the reactants. Gamma spectral analysis of all deuterated materials, ErD2.8+C36D74+Mo and HfD2+C36D74+Mo, showed that nuclear processes had occurred as shown by unique gamma signatures. For the deuterated erbium specimens, posttest gamma spectra showed evidence of radioisotopes of erbium ((163)Er and (171)Er) and of molybdenum ((99)Mo and (101)Mo) and by beta decay, technetium (99mTc and 101Tc). For the deuterated hafnium specimens, posttest gamma spectra showed evidence of radioisotopes of hafnium (180mHf and 181Hf) and molybdenum ((99)Mo and (101)Mo), and by beta decay, technetium ((99m)Tc and (101)Tc). In contrast, when either the hydrogenated or non-gas-loaded erbium or hafnium materials were exposed to the gamma flux, the gamma spectra revealed no new isotopes. Neutron activation materials showed evidence of thermal and epithermal neutrons. CR-39 solid-state nuclear track detectors showed evidence of fast neutrons with energies between 1.4 and 2.5 MeV and several instances of triple tracks, indicating (is) greater than 10 MeV neutrons. Further study is required to determine the mechanism causing the nuclear activity.

  3. Radiation resistant PIDECα cell using photon intermediate direct energy conversion and a 210Po source.

    Science.gov (United States)

    Weaver, Charles L; Schott, Robert J; Prelas, Mark A; Wisniewski, Denis A; Rothenberger, Jason B; Lukosi, Eric D; Oh, Kyuhak

    2018-02-01

    Radiation damage is a significant concern with both alphavoltaic and betavoltaic cells because their performance degrades, especially with high-energy - (>200keV) beta and alpha particles. Indirect excitation methods, such as the Photon Intermediate Direct Energy Conversion (PIDEC) framework, can protect the transducer from radiation. A nuclear battery using a 90 Sr beta source was constructed by the author's research group, which demonstrated the radiation resistance of a PIDEC cell driven by beta particles (PIDECβ cell). Use of alpha sources to drive nuclear batteries would appear to be much more attractive than beta sources due to higher potential power density. However, they are also subject to higher rates of radiation damage. This paper describes the successful incorporation of alpha particles into the PIDEC framework using the alpha emitter 210 Po to form a PIDECα cell. The PIDECα cell transducer was exposed to alpha particles for over one year without experiencing adverse effects from radiation damage. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Comparison of dual photon and dual energy X-ray bone densitometers in a clinic setting

    International Nuclear Information System (INIS)

    Nelson, D.A.; Shaffer, S.; Brown, E.B.; Flynn, M.J.; Cody, D.D.

    1991-01-01

    Two separate studies were conducted. We evaluated the relationships between results of lumbar spine measurements using two dual photon absorptiometry (DPA1 and DPA2) instruments and one dual energy X-ray (DXA) instrument with the same subject (49 volunteers), and also in 65 patients who were measured on the DPA1 and DXA machines. Second, we measured the lumbar spine and the proximal femur in three groups of 12 female volunteers three times on one instrument within 1 week. We purposely simulated a busy clinic setting with different technologists, older radioactive sources, and a heterogeneous patient group. The comparison study indicated a significant difference between the mean bone density values reported by the machines, but the results were highly correlated (R 2 = 0.89-0.96). This study emphasizes the differences between instruments, the potential for greater error in busy clinic environments, and the apparent superiority of dual energy X-ray absorptiometry under these less than ideal conditions. (orig./GDG)

  5. Energy dependence of photon-induced L-shell x-ray intensity ratios in some high-Z elements

    Energy Technology Data Exchange (ETDEWEB)

    Shatendra, K; Allawadhi, K L; Sood, B S [Punjabi Univ., Patiala (India). Nuclear Science Labs.

    1983-12-14

    The L-shell x-ray intensity ratios in Au, Pb, Th and U at various photon energies have been measured and their energy dependence is studied. A comparison of the experimental values is made with those calculated using the x-ray emission rates and subshell photoelectric cross sections, subshell fluorescence yields and Coster-Kronig transition probabilities and fairly good agreement is observed.

  6. Effects of phosphor proportion and grain size on photon energy response of CaSO4:Dy teflon TLD discs

    International Nuclear Information System (INIS)

    Pradhan, A.S.; Bhatt, R.C.

    1979-01-01

    Effects of phosphor proportion and grain size on the photon energy dependence of CaSO 4 :Dy embedded teflon TLD discs have been studied. It was found that in the commonly used TLD disc compositions, the proportion of phosphor has only little effect on energy dependence. This dependence could be significantly reduced by using phosphor of grain size less than 1 μm. The experimental results are compared with calculated results. (Auth.)

  7. Heating nuclei with light ions at GeV incident energies

    International Nuclear Information System (INIS)

    Pollacco, E.C.; Brzychczyk, J.; Volant, C.; Legrain, R.; Nalpas, L.; Bracken, D.S.; Kwiatkowski, K.; Morley, K.B.; Foxford, E.R.; Viola, V.E.; Yoder, N.R.

    1996-03-01

    Hot nuclei are studied, where through an appropriate choice of incident channel and event selection, dynamical effects are attenuated and multifragmentation is limited. Three preparatory results are discussed, the 3 He(1.8 GeV) + nat Ag can be described using and intranuclear cascade, INC, model; through a suitable selection of events a limit of the excitation energy that a nucleus can absorb without breaking into large pieces is given, it is shown, that corresponding alpha decay is consistent with an, evaporative process. (K.A.)

  8. Measuring linac photon beam energy through EPID image analysis of physically wedged fields

    Energy Technology Data Exchange (ETDEWEB)

    Dawoud, S. M., E-mail: samir.dawoud@leedsth.nhs.uk; Weston, S. J.; Bond, I.; Ward, G. C.; Rixham, P. A.; Mason, J.; Huckle, A. [Department of Medical Physics and Engineering, St. James Institute of Oncology, St. James University Hospital, Leeds LS9 7TF (United Kingdom); Sykes, J. R. [Institute of Medical Physics, School of Physics, The University of Sydney, New South Wales 2006, Australia and Department of Medical Physics and Engineering, St. James Institute of Oncology, St. James University Hospital, Leeds LS9 7TF (United Kingdom)

    2014-02-15

    Purpose: Electronic portal imaging devices (EPIDs) have proven to be useful tools for measuring several parameters of interest in linac quality assurance (QA). However, a method for measuring linac photon beam energy using EPIDs has not previously been reported. In this report, such a method is devised and tested, based on fitting a second order polynomial to the profiles of physically wedged beams, where the metric of interest is the second order coefficientα. The relationship between α and the beam quality index [percentage depth dose at 10 cm depth (PDD{sub 10})] is examined to produce a suitable calibration curve between these two parameters. Methods: Measurements were taken in a water-tank for beams with a range of energies representative of the local QA tolerances about the nominal value 6 MV. In each case, the beam quality was found in terms of PDD{sub 10} for 100 × 100 mm{sup 2} square fields. EPID images of 200 × 200 mm{sup 2} wedged fields were then taken for each beam and the wedge profile was fitted in MATLAB 2010b (The MathWorks, Inc., Natick, MA). α was then plotted against PDD{sub 10} and fitted with a linear relation to produce the calibration curve. The uncertainty in α was evaluated by taking five repeat EPID images of the wedged field for a beam of 6 MV nominal energy. The consistency of measuring α was found by taking repeat measurements on a single linac over a three month period. The method was also tested at 10 MV by repeating the water-tank crosscalibration for a range of energies centered approximately about a 10 MV nominal value. Finally, the calibration curve from the test linac and that from a separate clinical machine were compared to test consistency of the method across machines in a matched fleet. Results: The relationship betweenα and PDD{sub 10} was found to be strongly linear (R{sup 2} = 0.979) while the uncertainty in α was found to be negligible compared to that associated with measuring PDD{sub 10} in the water-tank (

  9. SU-F-I-70: Investigation of Gafchromic EBT3 Film Energy Dependence Using Proton, Photon, and Electron Beams

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, C; Schnell, E; Ahmad, S; De La Fuente Herman, T [University of Oklahoma Health Science Center, Oklahoma City, OK (United States)

    2016-06-15

    Purpose: To investigate the energy dependence of Gafchromic EBT3 film over a range of clinically used proton, photon and electron energies. Methods: Proton beam energies of 117 and 204 MeV, corresponding respectively to ranges in water of 10 cm and 27 cm from a Mevion S250 double scatter system unit were used. Electron energies of 6 and 20 MeV and photon energies of 6 and 18 MV from a Varian Clinac 21EX Linac were used. Two pieces of film (5×5 cm{sup 2}) were irradiated sequentially for doses of 100, 500, and 1000 cGy for all energies and modalities. Films were placed on the central beam axis for a 10×10 cm{sup 2} field size in the middle of spread out Bragg peak (SOBP) for proton and in respective dmax for photon and electron energies. Films were scanned on a flatbed Epson Expression 10000 XL scanner on the central region of the scanning window using 48-bit, 300 dpi, and landscape orientation after 48 hours post-irradiation of film to account for optical density (OD) stabilization. Film analysis of the red channel was performed using ImageJ 1.48v (National Institutes of Health). Results: The energy dependency of EBT3 among all energies and modalities for all doses studied was small within measurement uncertainties (1σ = ± 4.1%). The mean net OD in red channel for films receiving the same dose in the same energy modality had standard deviations within 0.9% for photons, 4.9% for electrons and 1.8% for protons. It was observed that film pieces were activated during proton irradiation, e.g., 7 mR/hr at surface after 30 minutes of irradiation, lasting for 2 hours post irradiation. Conclusion: EBT3 energy dependency was evaluated for clinically used proton, photon, and electron energies. The film self-activation may have contributed to fog and negligible dose.

  10. A systematic evaluation of the dose-rate constant determined by photon spectrometry for 21 different models of low-energy photon-emitting brachytherapy sources.

    Science.gov (United States)

    Chen, Zhe Jay; Nath, Ravinder

    2010-10-21

    The aim of this study was to perform a systematic comparison of the dose-rate constant (Λ) determined by the photon spectrometry technique (PST) with the consensus value ((CON)Λ) recommended by the American Association of Physicists in Medicine (AAPM) for 21 low-energy photon-emitting interstitial brachytherapy sources. A total of 63 interstitial brachytherapy sources (21 different models with 3 sources per model) containing either (125)I (14 models), (103)Pd (6 models) or (131)Cs (1 model) were included in this study. A PST described by Chen and Nath (2007 Med. Phys. 34 1412-30) was used to determine the dose-rate constant ((PST)Λ) for each source model. Source-dependent variations in (PST)Λ were analyzed systematically against the spectral characteristics of the emitted photons and the consensus values recommended by the AAPM brachytherapy subcommittee. The values of (PST)Λ for the encapsulated sources of (103)Pd, (125)I and (131)Cs varied from 0.661 to 0.678 cGyh(-1) U(-1), 0.959 to 1.024 cGyh(-1)U(-1) and 1.066 to 1.073 cGyh(-1)U(-1), respectively. The relative variation in (PST)Λ among the six (103)Pd source models, caused by variations in photon attenuation and in spatial distributions of radioactivity among the source models, was less than 3%. Greater variations in (PST)Λ were observed among the 14 (125)I source models; the maximum relative difference was over 6%. These variations were caused primarily by the presence of silver in some (125)I source models and, to a lesser degree, by the variations in photon attenuation and in spatial distribution of radioactivity among the source models. The presence of silver generates additional fluorescent x-rays with lower photon energies which caused the (PST)Λ value to vary from 0.959 to 1.019 cGyh(-1)U(-1) depending on the amount of silver used by a given source model. For those (125)I sources that contain no silver, their (PST)Λ was less variable and had values within 1% of 1.024 cGyh(-1)U(-1). For the 16

  11. Theoretical model application to the evaluation of fission neutron data up to 20 MeV incidence energy

    International Nuclear Information System (INIS)

    Ruben, A.; Maerten, H.; Seeliger, D.

    1990-01-01

    A complex statistical theory of fission neutron emission combined with a phenomenological fission model has been used to calculate fission neutron data for 238 U. Obtained neutron multiplicities and energy spectra as well as average fragment energies for incidence energies from threshold to 20 MeV (including multiple-chance fission) are compared with traditional data representations. (author). 19 refs, 6 figs

  12. Calculations of the photon dose behind concrete shielding of high energy proton accelerators

    International Nuclear Information System (INIS)

    Dworak, D.; Tesch, K.; Zazula, J.M.

    1992-02-01

    The photon dose per primary beam proton behind lateral concrete shieldings was calculated by using an extension of the Monte Carlo particle shower code FLUKA. The following photon-producing processes were taken into account: capture of thermal neutrons, deexcitation of nuclei after nuclear evaporation, inelastic neutron scattering and nuclear reactions below 140 MeV, as well as photons from electromagnetic cascades. The obtained ratio of the photon dose to the neutron dose equivalent varies from 8% to 20% and it well compares with measurements performed recently at DESY giving a mean ratio of 14%. (orig.)

  13. Update of neutron dose yields as a function of energy for protons and deuterons incident on beryllium targets

    International Nuclear Information System (INIS)

    Ten Haken, R.K.; Awschalom, M.; Rosenberg, I.

    1982-11-01

    Neutron absorbed dose yields (absorbed dose rates per unit incident current on targets at a given SAD or SSD) increase with incident charged particle energy for both protons and deuterons. Analyses of neutron dose yield versus incident particle energy have been performed for both deuterons and protons. It is the purpose of this report to update those analyses by pooling all of the more recent published results and to reanalyze the trend of yield, Y, versus incident energy, E, which in the past has been described by an expression of the form Y = aE/sup b/, where a and b are empirical constants. From the reanalyzed trend it is concluded that for a given size cyclotron (E/sub p/ = 2E/sub d/), the dose yields using protons are higher than those using deuterons up to a proton energy E/sub p/ of 64 MeV

  14. A Correction of Random Incidence Absorption Coefficients for the Angular Distribution of Acoustic Energy under Measurement Conditions

    DEFF Research Database (Denmark)

    Jeong, Cheol-Ho

    2009-01-01

    Most acoustic measurements are based on an assumption of ideal conditions. One such ideal condition is a diffuse and reverberant field. In practice, a perfectly diffuse sound field cannot be achieved in a reverberation chamber. Uneven incident energy density under measurement conditions can cause...... discrepancies between the measured value and the theoretical random incidence absorption coefficient. Therefore the angular distribution of the incident acoustic energy onto an absorber sample should be taken into account. The angular distribution of the incident energy density was simulated using the beam...... tracing method for various room shapes and source positions. The averaged angular distribution is found to be similar to a Gaussian distribution. As a result, an angle-weighted absorption coefficient was proposed by considering the angular energy distribution to improve the agreement between...

  15. Deviation from an inverse cosine dependence of kinetic secondary electron emission for angle of incidence at keV energy

    International Nuclear Information System (INIS)

    Ohya, Kaoru; Kawata, Jun; Mori, Ichiro

    1989-01-01

    Incident angle dependence of kinetic secondary electron emission from metals resulting from incidence of keV ions is investigated by computer simulation with the TRIM Monte Carlo program of ion scattering in matter. The results show large deviations from the inverse cosine dependence, which derives from high-energy approximation, because of a series of elastic collisions of incident ions with metal atoms. In the keV energy region, the elastic collisions have two different effects on the angular dependence for relatively high-energy light ions and for low-energy heavy ions: they result in over- and under-inverse-cosine dependences, respectively. The properties are observed even with an experiment of the keV-neutral incidence on a contaminated surface. In addition, the effects of the thin oxide layer and roughness on the surface are examined with simplified models. (author)

  16. Nonlinear ionization of many-electron systems over a broad photon-energy range

    International Nuclear Information System (INIS)

    Karamatskou, Antonia

    2015-11-01

    Rapid developments in laser technology and, in particular, the advances in the realm of free-electron lasers have initiated tremendous progress in both theoretical and experimental atomic, molecular and optical physics. Owing to high intensities in combination with short pulse durations we can enter the utterly nonlinear regime of light-matter interaction and study the dynamics and features of matter under extreme conditions. The capabilities of X-ray free-electron laser sources have promoted the importance of nonlinear optics also in the X-ray regime. I show in my thesis how we can exploit the nonlinear response regime to reveal hidden information about resonance structures that are not resolved in the weak-field regime. This prospect points to many applications for future investigations of various complex systems with free-electron lasers. In the present thesis the interaction of atomic closed-shell systems with ultrashort and strong laser pulses is investigated. Over a broad photon-energy range the characteristics of the atomic shell are studied with a particular focus on the nonlinear response regime and on electron correlation effects. Several computational extensions of the XCID package for multi-electron dynamics are presented and their applications in various studies are demonstrated; a completely new capability of the numerical method is realized by implementing the calculation of photoelectron spectra and by calculating eigenstates of the many-electron Hamiltonian. The field of study within the present work encompasses (1) the strong-field regime, where the question of the adiabatic character in tunneling ionization is discussed and analyzed, especially for the case of few-cycle pulses; (2) the XUV regime, in which we show for the first time that the collectivity in resonant excitation reveals new information; and (3) the (hard) x-ray regime, which is highly relevant for x-ray free-electron laser experiments, and where we show how important two-photon

  17. Observation of higher-order diffraction features in self-assembled photonic crystals

    International Nuclear Information System (INIS)

    Nair, Rajesh V.; Vijaya, R.

    2007-01-01

    The optical response of high quality three dimensionally (3D) ordered photonic crystals is analyzed in the high energy region. By tuning the reflectance with the angle of incidence of light, the peaks in the reflection spectrum that correspond to the first, second, and third order photonic stop bands and the van Hove singular point in the photon density of states are clearly distinguished. The high energy features have been observed for photonic crystals made from colloids of different diameters, having different index contrast and fabricated by two different self-assembly routes. The observation of van Hove singularity at near-normal incidence of light and its presence even in low index-contrast photonic crystals provide conclusive evidence that these high energy features are due to the perfect periodic ordering present in the photonic crystals with less defects and disorder

  18. Energy dependence of angular distributions of sputtered particles by ion-beam bombardment at normal incidence

    International Nuclear Information System (INIS)

    Matsuda, Yoshinobu; Ueda, Yasutoshi; Uchino, Kiichiro; Muraoka, Katsunori; Maeda, Mitsuo; Akazaki, Masanori; Yamamura, Yasunori.

    1986-01-01

    The angular distributions of sputtered Fe-atoms were measured using the laser fluorescence technique during Ar-ion bombardment for energies of 0.6, 1, 2 and 3 keV at normal incidence. The measured cosine distribution at 0.6 keV progressively deviated to an over-cosine distribution at higher energies, and at 3 keV the angular distribution was an overcosine distribution of about 20 %. The experimental results agree qualitatively with calculations by a recent computer simulation code, ACAT. The results are explained by the competition between surface scattering and the effects of primary knock-on atoms, which tend to make the angular distributions over-cosine and under-cosine, respectively. (author)

  19. Search for supersymmetry in events with photons and missing transverse energy in pp collisions at 13 TeV

    CERN Document Server

    Khachatryan, Vardan; Tumasyan, Armen; Adam, Wolfgang; Aşılar, Ece; Bergauer, Thomas; Brandstetter, Johannes; Brondolin, Erica; Dragicevic, Marko; Erö, Janos; Flechl, Martin; Friedl, Markus; Fruehwirth, Rudolf; Ghete, Vasile Mihai; Hartl, Christian; Hörmann, Natascha; Hrubec, Josef; Jeitler, Manfred; König, Axel; Krätschmer, Ilse; Liko, Dietrich; Matsushita, Takashi; Mikulec, Ivan; Rabady, Dinyar; Rad, Navid; Rahbaran, Babak; Rohringer, Herbert; Schieck, Jochen; Strauss, Josef; Waltenberger, Wolfgang; Wulz, Claudia-Elisabeth; Mossolov, Vladimir; Shumeiko, Nikolai; Suarez Gonzalez, Juan; Alderweireldt, Sara; De Wolf, Eddi A; Janssen, Xavier; Lauwers, Jasper; Van De Klundert, Merijn; Van Haevermaet, Hans; Van Mechelen, Pierre; Van Remortel, Nick; Van Spilbeeck, Alex; Abu Zeid, Shimaa; Blekman, Freya; D'Hondt, Jorgen; Daci, Nadir; De Bruyn, Isabelle; Deroover, Kevin; Heracleous, Natalie; Lowette, Steven; Moortgat, Seth; Moreels, Lieselotte; Olbrechts, Annik; Python, Quentin; Tavernier, Stefaan; Van Doninck, Walter; Van Mulders, Petra; Van Parijs, Isis; Brun, Hugues; Caillol, Cécile; Clerbaux, Barbara; De Lentdecker, Gilles; Delannoy, Hugo; Fasanella, Giuseppe; Favart, Laurent; Goldouzian, Reza; Grebenyuk, Anastasia; Karapostoli, Georgia; Lenzi, Thomas; Léonard, Alexandre; Luetic, Jelena; Maerschalk, Thierry; Marinov, Andrey; Randle-conde, Aidan; Seva, Tomislav; Vander Velde, Catherine; Vanlaer, Pascal; Yonamine, Ryo; Zenoni, Florian; Zhang, Fengwangdong; Cimmino, Anna; Cornelis, Tom; Dobur, Didar; Fagot, Alexis; Garcia, Guillaume; Gul, Muhammad; Poyraz, Deniz; Salva Diblen, Sinem; Schöfbeck, Robert; Sharma, Archana; Tytgat, Michael; Van Driessche, Ward; Yazgan, Efe; Zaganidis, Nicolas; Bakhshiansohi, Hamed; Beluffi, Camille; Bondu, Olivier; Brochet, Sébastien; Bruno, Giacomo; Caudron, Adrien; De Visscher, Simon; Delaere, Christophe; Delcourt, Martin; Francois, Brieuc; Giammanco, Andrea; Jafari, Abideh; Jez, Pavel; Komm, Matthias; Lemaitre, Vincent; Magitteri, Alessio; Mertens, Alexandre; Musich, Marco; Nuttens, Claude; Piotrzkowski, Krzysztof; Quertenmont, Loic; Selvaggi, Michele; Vidal Marono, Miguel; Wertz, Sébastien; Beliy, Nikita; Aldá Júnior, Walter Luiz; Alves, Fábio Lúcio; Alves, Gilvan; Brito, Lucas; Hensel, Carsten; Moraes, Arthur; Pol, Maria Elena; Rebello Teles, Patricia; Belchior Batista Das Chagas, Ewerton; Carvalho, Wagner; Chinellato, Jose; Custódio, Analu; Melo Da Costa, Eliza; Da Silveira, Gustavo Gil; De Jesus Damiao, Dilson; De Oliveira Martins, Carley; Fonseca De Souza, Sandro; Huertas Guativa, Lina Milena; Malbouisson, Helena; Matos Figueiredo, Diego; Mora Herrera, Clemencia; Mundim, Luiz; Nogima, Helio; Prado Da Silva, Wanda Lucia; Santoro, Alberto; Sznajder, Andre; Tonelli Manganote, Edmilson José; Vilela Pereira, Antonio; Ahuja, Sudha; Bernardes, Cesar Augusto; Dogra, Sunil; Tomei, Thiago; De Moraes Gregores, Eduardo; Mercadante, Pedro G; Moon, Chang-Seong; Novaes, Sergio F; Padula, Sandra; Romero Abad, David; Ruiz Vargas, José Cupertino; Aleksandrov, Aleksandar; Hadjiiska, Roumyana; Iaydjiev, Plamen; Rodozov, Mircho; Stoykova, Stefka; Sultanov, Georgi; Vutova, Mariana; Dimitrov, Anto