WorldWideScience

Sample records for incident linear energy

  1. Activation energy of etching for CR-39 as a function of linear energy transfer of the incident particles

    CERN Document Server

    Awad, E M

    1999-01-01

    In this work, we have studied the effect of the radiation damage caused by the incident particles on the activation energy of etching for CR-39 samples. The damage produced by the incident particle is expressed in terms of the linear energy transfer (LET). CR-39 samples from American Acrylic were irradiated to three different LET particles. These are N (LET sub 2 sub 0 sub 0 = 20 KeV/mu m) as a light particle, Fe (LET sub 2 sub 0 sub 0 = 110 KeV/mu m) as a medium particle and fission fragments (ff) from a sup 2 sup 5 sup 2 Cf source as heavy particles. In general the bulk etch rate was calculated using the weight difference method and the track etch rate was determined using the track geometry at various temperatures (50-90 deg. C) and concentrations (4-9 N) of the NaOH etchant. The average activation energy E sub b related to the bulk etch rate v sub b was calculated from 1n v sub b vs. 1/T. The average activation energy E sub t related to the track etch rate v sub t was estimated from 1n v sub t vs. 1/T. It...

  2. Linear energy divergences in Coulomb gauge QCD

    OpenAIRE

    Andrasi, A.

    2011-01-01

    The structure of linear energy divergences is analysed on the example of one graph to 3-loop order. Such dangerous divergences do cancel when all graphs are added, but next to leading divergences do not cancel out.

  3. Compact multi-energy electron linear accelerators

    International Nuclear Information System (INIS)

    Tanabe, E.; Hamm, R.W.

    1985-01-01

    Two distinctly different concepts that have been developed for compact multi-energy, single-section, standing-wave electron linear accelerator structures are presented. These new concepts, which utilize (a) variable nearest neighbor couplings and (b) accelerating field phase switching, provide the capability of continuously varying the electron output energy from the accelerator without degrading the energy spectrum. These techniques also provide the means for continuously varying the energy spectrum while maintaining a given average electron energy, and have been tested successfully with several accelerators of length from 0.1 m to 1.9 m. Theoretical amd experimental results from these accelerators, and demonstrated applications of these techniques to medical and industrial linear accelerator technology will be described. In addition, possible new applications available to research and industry from these techniques are presented. (orig.)

  4. Linear motor with contactless energy transfer

    NARCIS (Netherlands)

    2014-01-01

    An integrated electromagnetic energy conversions device is provided that includes a synchronous or brushless linear (SoBL) motor, and a transformer, where the transformer is integrated electromagnetically and topologically with the SoBL motor, where an electromagnetic field orientation of the

  5. Linear and non-linear energy barriers in systems of interacting single-domain ferromagnetic particles

    International Nuclear Information System (INIS)

    Petrila, Iulian; Bodale, Ilie; Rotarescu, Cristian; Stancu, Alexandru

    2011-01-01

    A comparative analysis between linear and non-linear energy barriers used for modeling statistical thermally-excited ferromagnetic systems is presented. The linear energy barrier is obtained by new symmetry considerations about the anisotropy energy and the link with the non-linear energy barrier is also presented. For a relevant analysis we compare the effects of linear and non-linear energy barriers implemented in two different models: Preisach-Neel and Ising-Metropolis. The differences between energy barriers which are reflected in different coercive field dependence of the temperature are also presented. -- Highlights: → The linear energy barrier is obtained from symmetry considerations. → The linear and non-linear energy barriers are calibrated and implemented in Preisach-Neel and Ising-Metropolis models. → The temperature and time effects of the linear and non-linear energy barriers are analyzed.

  6. Energy of linear quasineutral electrostatic drift waves

    International Nuclear Information System (INIS)

    Pfirsch, D.; Correa-Restrepo, D.

    1993-01-01

    Certain kinds of nonlinear instabilities are related to the existence of negative-energy perturbations. In this paper, an exact energy expression for linear quasineutral electrostatic perturbations is derived within the framework of dissipationless multifluid theory that is valid for any geometry. Taking the mass formally as a tensor with, in general, different masses parallel and perpendicular to an ambient magnetic field allows one to treat in a convenient way different approximations such as the full dynamics and restriction to parallel dynamics or the completely adiabatic case. Application to slab configurations yields the result that the adiabatic approximation does not allow negative energy for perturbations which are perfectly localized at a mode resonant surface, whereas inclusion of the parallel dynamics does. This is in agreement with a recent numerical study of drift-wave turbulence within the framework of collisional two-fluid theory by B. Scott [Phys. Rev. Lett. 65, 3289 (1990); Phys. Fluids B 4, 2468 (1992)]. A dissipationless theory can be formulated in terms of a Lagrangian, from which the energy is immediately obtained. We start with the nonlinear theory. The theory is formulated via a Lagrangian which is written in terms of displacement vectors ξ ν (x,t) such that all constraints are taken into account. The nonlinear energy is obtained from the Lagrangian by standard methods. The procedure used is the same as that developed in a forthcoming paper by Pfirsch and Sudan [Phys. Fluids B (to be published)] for ideal nonlinear magnetohydrodynamics theory. From the exact Lagrangian one obtains the Lagrangian of the linearized theory by simple expansion to second order in ξ ν . This Lagrangian then yields the energy of the linearized theory

  7. Incident energy dependence of pt correlations at relativistic energies

    CERN Document Server

    Adams, J; Ahammed, Z; Amonett, J; Anderson, B D; Arkhipkin, D; Averichev, G S; Badyal, S K; Bai, Y; Balewski, J; Barannikova, O; Barnby, L S; Baudot, J; Bekele, S; Belaga, V V; Bellingeri-Laurikainen, A; Bellwied, R; Berger, J; Bezverkhny, B I; Bharadwaj, S; Bhasin, A; Bhati, A K; Bhatia, V S; Bichsel, H; Bielcik, J; Bielcikova, J; Billmeier, A; Bland, L C; Blyth, C O; Bonner, B E; Botje, M; Boucham, A; Bouchet, J; Brandin, A V; Bravar, A; Bystersky, M; Cadman, R V; Cai, X Z; Caines, H; Calderón de la Barca-Sanchez, M; Castillo, J; Catu, O; Cebra, D; Chajecki, Z; Chaloupka, P; Chattopadhyay, S; Chen, H F; Chen, Y; Cheng, J; Cherney, M; Chikanian, A; Christie, W; Coffin, J P; Cormier, T M; Cramer, J G; Crawford, H J; Das, D; Das, S; Daugherity, M; De Moura, M M; Dedovich, T G; Derevshchikov, A A; Didenko, L; Dietel, T; Dogra, S M; Dong, W J; Dong, X; Draper, J E; Du, F; Dubey, A K; Dunin, V B; Dunlop, J C; Dutta, M R; Mazumdar; Eckardt, V; Edwards, W R; Efimov, L G; Emelianov, V; Engelage, J; Eppley, G; Erazmus, B; Estienne, M; Fachini, P; Faivre, J; Fatemi, R; Fedorisin, J; Filimonov, K; Filip, P; Finch, E; Fine, V; Fisyak, Yu; Fu, J; Gagliardi, C A; Gaillard, L; Gans, J; Ganti, M S; Geurts, F; Ghazikhanian, V; Ghosh, P; González, J E; Gos, H; Grachov, O; Grebenyuk, O; Grosnick, D P; Guertin, S M; Guo, Y; Sen-Gupta, A; Gutíerrez, T D; Hallman, T J; Hamed, A; Hardtke, D; Harris, J W; Heinz, M; Henry, T W; Hepplemann, S; Hippolyte, B; Hirsch, A; Hjort, E; Hoffmann, G W; Huang, H Z; Huang, S L; Hughes, E W; Humanic, T J; Igo, G; Ishihara, A; Jacobs, P; Jacobs, W W; Jedynak, M; Jiang, H; Jones, P G; Judd, E G; Kabana, S; Kang, K; Kaplan, M; Keane, D; Kechechyan, A; Khodyrev, V Yu; Kiryluk, J; Kisiel, A; Kislov, E M; Klay, J; Klein, S R; Koetke, D D; Kollegger, T; Kopytine, M; Kotchenda, L; Kowalik, K L; Krämer, M; Kravtsov, P; Kravtsov, V I; Krüger, K; Kuhn, C; Kulikov, A I; Kumar, A; Kutuev, R K; Kuznetsov, A A; Lamont, M A C; Landgraf, J M; Lange, S; Laue, F; Lauret, J; Lebedev, A; Lednicky, R; Lehocka, S; Le Vine, M J; Li, C; Li, Q; Li, Y; Lin, G; Lindenbaum, S J; Lisa, M A; Liu, F; Liu, H; Liu, L; Liu, Q J; Liu, Z; Ljubicic, T; Llope, W J; Long, H; Longacre, R S; López-Noriega, M; Love, W A; Lu, Y; Ludlam, T; Lynn, D; Ma, G L; Ma, J G; Ma, Y G; Magestro, D; Mahajan, S; Mahapatra, D P; Majka, R; Mangotra, L K; Manweiler, R; Margetis, S; Markert, C; Martin, L; Marx, J N; Matis, H S; Matulenko, Yu A; McClain, C J; McShane, T S; Meissner, F; Melnik, Yu M; Meschanin, A; Miller, M L; Minaev, N G; Mironov, C; Mischke, A; Mishra, D K; Mitchell, J; Mohanty, B; Molnár, L; Moore, C F; Morozov, D A; Munhoz, M G; Nandi, B K; Nayak, S K; Nayak, T K; Nelson, J M; Netrakanti, P K; Nikitin, V A; Nogach, L V; Nurushev, S B; Odyniec, Grazyna Janina; Ogawa, A; Okorokov, V; Oldenburg, M; Olson, D; Pal, S K; Panebratsev, Yu A; Panitkin, S Y; Pavlinov, A I; Pawlak, T; Peitzmann, T; Perevozchikov, V; Perkins, C; Peryt, W; Petrov, V A; Phatak, S C; Picha, R; Planinic, M; Pluta, J; Porile, N; Porter, J; Poskanzer, A M; Potekhin, M V; Potrebenikova, E V; Potukuchi, B V K S; Prindle, D; Pruneau, C A; Putschke, J; Rakness, G; Raniwala, R; Raniwala, S; Ravel, O; Ray, R L; Razin, S V; Reichhold, D M; Reid, J G; Reinnarth, J; Renault, G; Retière, F; Ridiger, A; Ritter, H G; Roberts, J B; Rogachevski, O V; Romero, J L; Rose, A; Roy, C; Ruan, L; Russcher, M; Sahoo, R; Sakrejda, I; Salur, S; Sandweiss, J; Sarsour, M; Savin, I; Sazhin, P S; Schambach, J; Scharenberg, R P; Schmitz, N; Schweda, K; Seger, J; Seyboth, P; Shahaliev, E; Shao, M; Shao, W; Sharma, M; Shen, W Q; Shestermanov, K E; Shimansky, S S; Sichtermann, E P; Simon, F; Singaraju, R N; Smirnov, N; Snellings, R; Sood, G; Sørensen, P; Sowinski, J; Speltz, J; Spinka, H M; Srivastava, B; Stadnik, A; Stanislaus, T D S; Stock, R; Stolpovsky, A; Strikhanov, M N; Stringfellow, B C; Suaide, A A P; Sugarbaker, E R; Suire, C; Sumbera, M; Surrow, B; Swanger, M; Symons, T J M; Szanto de Toledo, A; Tai, A; Takahashi, J; Tang, A H; Tarnowsky, T J; Thein, D; Thomas, J H; Timoshenko, S; Tokarev, M; Trentalange, S; Tribble, R E; Tsai, O D; Ulery, J; Ullrich, T; Underwood, D G; Van Buren, G; Van Leeuwen, M; Van der Molen, A M; Varma, R; Vasilevski, I M; Vasilev, A N; Vernet, R; Vigdor, S E; Viyogi, Y P; Vokal, S; Voloshin, S A; Waggoner, W T; Wang, F; Wang, G; Wang, X L; Wang, Y; Wang, Z M; Ward, H; Watson, J W; Webb, J C; Westfall, G D; Wetzler, A; Whitten, C; Wieman, H; Wissink, S W; Witt, R; Wood, J; Wu, J; Xu, N; Xu, Z; Xu, Z Z; Yamamoto, E; Yepes, P; Yurevich, V I; Zborovský, I; Zhang, H; Zhang, W M; Zhang, Y; Zhang, Z P; Zoulkarneev, R; Zoulkarneeva, Y; Zubarev, A N

    2005-01-01

    We present results for two-particle transverse momentum correlations, , as a function of event centrality for Au+Au collisions at sqrt(sNN) = 20, 62, 130, and 200 GeV at the Relativistic Heavy Ion Collider. We observe correlations decreasing with centrality that are similar at all four incident energies. The correlations multiplied by the multiplicity density increase with incident energy and the centrality dependence may show evidence of processes such as thermalization, minijet production, or the saturation of transverse flow. The square root of the correlations divided by the event-wise average transverse momentum per event shows little or no beam energy dependence and generally agrees with previous measurements at the Super Proton Synchrotron.

  8. Incidence of childhood linear scleroderma and systemic sclerosis in the UK and Ireland.

    Science.gov (United States)

    Herrick, Ariane L; Ennis, Holly; Bhushan, Monica; Silman, Alan J; Baildam, Eileen M

    2010-02-01

    Childhood scleroderma encompasses a rare, poorly understood spectrum of conditions. Our aim was to ascertain the incidence of childhood scleroderma in its different forms in the UK and Ireland, and to describe the age, sex, and ethnicity of the cases. The members of 5 specialist medical associations including pediatricians, dermatologists, and rheumatologists were asked to report all cases of abnormal skin thickening suspected to be localized (including linear) scleroderma or systemic sclerosis (SSc) in children scleroderma and 7 (7%) with SSc. This gave an incidence rate per million children per year of 3.4 (95% confidence interval [95% CI] 2.7-4.1) for localized scleroderma, including an incidence rate of 2.5 (95% CI 1.8-3.1) for linear scleroderma, and 0.27 (95% CI 0.1-0.5) for SSc. Of the 87 localized cases, 62 (71%) had linear disease. Of localized disease cases, 55 (63%) were female, 71 (82%) were classified as white British, and the patients' mean age when first seen in secondary care was 10.4 years. Of the 7 SSc cases, all were female, 6 (86%) were white British, and the mean age when first seen was 12.1 years. The median delay between onset and being first seen was 13.1 months for localized scleroderma and 7.2 months for SSc. These data provide additional estimates of the incidence of this rare disorder and its subforms.

  9. Energy in one-dimensional linear waves

    International Nuclear Information System (INIS)

    Repetto, C E; Roatta, A; Welti, R J

    2011-01-01

    This work is based on propagation phenomena that conform to the classical wave equation. General expressions of power, the energy conservation equation in continuous media and densities of the kinetic and potential energies are presented. As an example, we study the waves in a string and focused attention on the case of standing waves. The treatment is applicable to introductory science textbooks. (letters and comment)

  10. Energy balance in a system with quasispherical linear compression

    International Nuclear Information System (INIS)

    Es'kov, A.G.; Kozlov, N.P.; Kurtmullaev, R.K.; Semenov, V.N.; Khvesyuk, V.I.; Yaminskii, A.V.

    1983-01-01

    This letter reports the resists of some experimental studies and a numerical simulation of the Tor-linear fusion system, 1 in which a heavy plasma shell with a closed magnetic structure is compressed in a quasispherical manner. The parameters of the Tor-Linear, at the Kurchatov Institute of Atomic Energy in Moscow are as follows: The energy stored in the system which accelerates the linear is E = 0.5 MJ; the linear mass is m = 0.2 kg; the working volume of the linear module is 1.5 x 10 -3 m 3 ; the linear velocity is approx.10 3 m/s; the guiding field in the toriod in the linear is 1--10 x 10 21 m -3 ; and the intial volume of the plasma in the linear chamber is 2.5 x 10 -4 m 3 . In this series of experiments, new solutions were developed for all the systems of the plasma--linear complex of the Tor-Linear: to produce a plasma toroid, to transport it, and to trap it in the linear cavity

  11. Variable-energy drift-tube linear accelerator

    Science.gov (United States)

    Swenson, Donald A.; Boyd, Jr., Thomas J.; Potter, James M.; Stovall, James E.

    1984-01-01

    A linear accelerator system includes a plurality of post-coupled drift-tubes wherein each post coupler is bistably positionable to either of two positions which result in different field distributions. With binary control over a plurality of post couplers, a significant accumlative effect in the resulting field distribution is achieved yielding a variable-energy drift-tube linear accelerator.

  12. Linear systems formulation of scattering theory for rough surfaces with arbitrary incident and scattering angles.

    Science.gov (United States)

    Krywonos, Andrey; Harvey, James E; Choi, Narak

    2011-06-01

    Scattering effects from microtopographic surface roughness are merely nonparaxial diffraction phenomena resulting from random phase variations in the reflected or transmitted wavefront. Rayleigh-Rice, Beckmann-Kirchhoff. or Harvey-Shack surface scatter theories are commonly used to predict surface scatter effects. Smooth-surface and/or paraxial approximations have severely limited the range of applicability of each of the above theoretical treatments. A recent linear systems formulation of nonparaxial scalar diffraction theory applied to surface scatter phenomena resulted first in an empirically modified Beckmann-Kirchhoff surface scatter model, then a generalized Harvey-Shack theory that produces accurate results for rougher surfaces than the Rayleigh-Rice theory and for larger incident and scattered angles than the classical Beckmann-Kirchhoff and the original Harvey-Shack theories. These new developments simplify the analysis and understanding of nonintuitive scattering behavior from rough surfaces illuminated at arbitrary incident angles.

  13. Effects of a power and photon energy of incident light on near-field etching properties

    Science.gov (United States)

    Yatsui, T.; Saito, H.; Nishioka, K.; Leuschel, B.; Soppera, O.; Nobusada, K.

    2017-12-01

    We developed a near-field etching technique for realizing an ultra-flat surfaces of various materials and structures. To elucidate the near-field etching properties, we have investigated the effects of power and the photon energy of the incident light. First, we established theoretically that an optical near-field with photon energy lower than the absorption edge of the molecules can induce molecular vibrations. We used nanodiamonds to study the power dependence of the near-field etching properties. From the topological changes of the nanodiamonds, we confirmed the linear-dependence of the etching volume with the incident power. Furthermore, we studied the photon energy dependence using TiO2 nanostriped structures, which revealed that a lower photon energy results in a lower etching rate.

  14. Comparison of linear and non-linear models for predicting energy expenditure from raw accelerometer data.

    Science.gov (United States)

    Montoye, Alexander H K; Begum, Munni; Henning, Zachary; Pfeiffer, Karin A

    2017-02-01

    This study had three purposes, all related to evaluating energy expenditure (EE) prediction accuracy from body-worn accelerometers: (1) compare linear regression to linear mixed models, (2) compare linear models to artificial neural network models, and (3) compare accuracy of accelerometers placed on the hip, thigh, and wrists. Forty individuals performed 13 activities in a 90 min semi-structured, laboratory-based protocol. Participants wore accelerometers on the right hip, right thigh, and both wrists and a portable metabolic analyzer (EE criterion). Four EE prediction models were developed for each accelerometer: linear regression, linear mixed, and two ANN models. EE prediction accuracy was assessed using correlations, root mean square error (RMSE), and bias and was compared across models and accelerometers using repeated-measures analysis of variance. For all accelerometer placements, there were no significant differences for correlations or RMSE between linear regression and linear mixed models (correlations: r  =  0.71-0.88, RMSE: 1.11-1.61 METs; p  >  0.05). For the thigh-worn accelerometer, there were no differences in correlations or RMSE between linear and ANN models (ANN-correlations: r  =  0.89, RMSE: 1.07-1.08 METs. Linear models-correlations: r  =  0.88, RMSE: 1.10-1.11 METs; p  >  0.05). Conversely, one ANN had higher correlations and lower RMSE than both linear models for the hip (ANN-correlation: r  =  0.88, RMSE: 1.12 METs. Linear models-correlations: r  =  0.86, RMSE: 1.18-1.19 METs; p  linear models for the wrist-worn accelerometers (ANN-correlations: r  =  0.82-0.84, RMSE: 1.26-1.32 METs. Linear models-correlations: r  =  0.71-0.73, RMSE: 1.55-1.61 METs; p  models offer a significant improvement in EE prediction accuracy over linear models. Conversely, linear models showed similar EE prediction accuracy to machine learning models for hip- and thigh

  15. Energy conserving, linear scaling Born-Oppenheimer molecular dynamics.

    Science.gov (United States)

    Cawkwell, M J; Niklasson, Anders M N

    2012-10-07

    Born-Oppenheimer molecular dynamics simulations with long-term conservation of the total energy and a computational cost that scales linearly with system size have been obtained simultaneously. Linear scaling with a low pre-factor is achieved using density matrix purification with sparse matrix algebra and a numerical threshold on matrix elements. The extended Lagrangian Born-Oppenheimer molecular dynamics formalism [A. M. N. Niklasson, Phys. Rev. Lett. 100, 123004 (2008)] yields microcanonical trajectories with the approximate forces obtained from the linear scaling method that exhibit no systematic drift over hundreds of picoseconds and which are indistinguishable from trajectories computed using exact forces.

  16. Low-energy limit of the extended Linear Sigma Model

    Energy Technology Data Exchange (ETDEWEB)

    Divotgey, Florian [Johann Wolfgang Goethe-Universitaet, Institut fuer Theoretische Physik, Frankfurt am Main (Germany); Kovacs, Peter [Wigner Research Center for Physics, Hungarian Academy of Sciences, Institute for Particle and Nuclear Physics, Budapest (Hungary); GSI Helmholtzzentrum fuer Schwerionenforschung, ExtreMe Matter Institute, Darmstadt (Germany); Giacosa, Francesco [Johann Wolfgang Goethe-Universitaet, Institut fuer Theoretische Physik, Frankfurt am Main (Germany); Jan-Kochanowski University, Institute of Physics, Kielce (Poland); Rischke, Dirk H. [Johann Wolfgang Goethe-Universitaet, Institut fuer Theoretische Physik, Frankfurt am Main (Germany); University of Science and Technology of China, Interdisciplinary Center for Theoretical Study and Department of Modern Physics, Hefei, Anhui (China)

    2018-01-15

    The extended Linear Sigma Model is an effective hadronic model based on the linear realization of chiral symmetry SU(N{sub f}){sub L} x SU(N{sub f}){sub R}, with (pseudo)scalar and (axial-)vector mesons as degrees of freedom. In this paper, we study the low-energy limit of the extended Linear Sigma Model (eLSM) for N{sub f} = flavors by integrating out all fields except for the pions, the (pseudo-)Nambu-Goldstone bosons of chiral symmetry breaking. The resulting low-energy effective action is identical to Chiral Perturbation Theory (ChPT) after choosing a representative for the coset space generated by chiral symmetry breaking and expanding it in powers of (derivatives of) the pion fields. The tree-level values of the coupling constants of the effective low-energy action agree remarkably well with those of ChPT. (orig.)

  17. Investigation of incomplete linear momentum transfer in heavy ion reactions at intermediate energies

    International Nuclear Information System (INIS)

    Leray, S.

    1986-07-01

    At intermediate energies, heavy ion central collisions lead to the incomplete fusion of the incident nuclei while part of the initial linear momentum is carried away by fast light particles. Experiments were performed with 30 MeV per nucleon neon and 20, 35 and 44 MeV per nucleon argon projectiles bombarding heavy targets. Results obtained with 30 MeV per nucleon neon and 20 MeV per nucleon argon beams are in good agreement with an empirical law established with lighter projectiles. On the contrary, 35 and 44 MeV per nucleon argon projectiles do not follow the same law and fission fragments progressively disappear. A simple model explains the evolution of the amount of transferred linear momentum versus incident energy. The disappearance of the fusion products of the composite system observed with argon projectiles beyond 35 MeV per nucleon is explained by a limitation of the excitation energy per nucleon which can be deposited in a nucleus. The limit is evaluated from nucleon binding energy in nuclei and probability to emit clusters and is in good agreement with experimental data. Because of the coupling between intrinsic motion of nucleons and relative motion of nuclei, some nucleons have a kinetic energy high enough to be emitted: a theoretical model is proposed which rather well fits the data concerning fast nucleons but cannot explain the measured amounts of transferred linear momentum. This is attributed to the existence of other mechanisms [fr

  18. Monte Carlo Investigation of Photon Beam Characteristics and its Variation with Incident Electron Beam Parameters for Indigenous Medical Linear Accelerator.

    Science.gov (United States)

    Mishra, Subhalaxmi; Dixit, P K; Selvam, T Palani; Yavalkar, Sanket S; Deshpande, D D

    2018-01-01

    A Monte Carlo model of a 6 MV medical linear accelerator (linac) unit built indigenously was developed using the BEAMnrc user code of the EGSnrc code system. The model was benchmarked against the measurements. Monte Carlo simulations were carried out for different incident electron beam parameters in the study. Simulation of indigenously developed linac unit has been carried out using the Monte Carlo based BEAMnrc user-code of the EGSnrc code system. Using the model, percentage depth dose (PDD), and lateral dose profiles were studied using the DOSXYZnrc user code. To identify appropriate electron parameters, three different distributions of electron beam intensity were investigated. For each case, the kinetic energy of the incident electron was varied from 6 to 6.5 MeV (0.1 MeV increment). The calculated dose data were compared against the measurements using the PTW, Germany make RFA dosimetric system (water tank MP3-M and 0.125 cm 3 ion chamber). The best fit of incident electron beam parameter was found for the combination of beam energy of 6.2 MeV and circular Gaussian distributed source in X and Y with FWHM of 1.0 mm. PDD and beam profiles (along both X and Y directions) were calculated for the field sizes from 5 cm × 5 cm to 25 cm × 25 cm. The dose difference between the calculated and measured PDD and profile values were under 1%, except for the penumbra region where the maximum deviation was found to be around 2%. A Monte Carlo model of indigenous linac (6 MV) has been developed and benchmarked against the measured data.

  19. Computational Modelling and Optimal Control of Ebola Virus Disease with non-Linear Incidence Rate

    Science.gov (United States)

    Takaidza, I.; Makinde, O. D.; Okosun, O. K.

    2017-03-01

    The 2014 Ebola outbreak in West Africa has exposed the need to connect modellers and those with relevant data as pivotal to better understanding of how the disease spreads and quantifying the effects of possible interventions. In this paper, we model and analyse the Ebola virus disease with non-linear incidence rate. The epidemic model created is used to describe how the Ebola virus could potentially evolve in a population. We perform an uncertainty analysis of the basic reproductive number R 0 to quantify its sensitivity to other disease-related parameters. We also analyse the sensitivity of the final epidemic size to the time control interventions (education, vaccination, quarantine and safe handling) and provide the cost effective combination of the interventions.

  20. Dark energy cosmology with generalized linear equation of state

    International Nuclear Information System (INIS)

    Babichev, E; Dokuchaev, V; Eroshenko, Yu

    2005-01-01

    Dark energy with the usually used equation of state p = wρ, where w const 0 ), where the constants α and ρ 0 are free parameters. This non-homogeneous linear equation of state provides the description of both hydrodynamically stable (α > 0) and unstable (α < 0) fluids. In particular, the considered cosmological model describes the hydrodynamically stable dark (and phantom) energy. The possible types of cosmological scenarios in this model are determined and classified in terms of attractors and unstable points by using phase trajectories analysis. For the dark energy case, some distinctive types of cosmological scenarios are possible: (i) the universe with the de Sitter attractor at late times, (ii) the bouncing universe, (iii) the universe with the big rip and with the anti-big rip. In the framework of a linear equation of state the universe filled with a phantom energy, w < -1, may have either the de Sitter attractor or the big rip

  1. A Design of Mechanical Frequency Converter Linear and Non-linear Spring Combination for Energy Harvesting

    International Nuclear Information System (INIS)

    Yamamoto, K; Fujita, T; Kanda, K; Maenaka, K; Badel, A; Formosa, F

    2014-01-01

    In this study, the improvement of energy harvesting from wideband vibration with random change by using a combination of linear and nonlinear spring system is investigated. The system consists of curved beam spring for non-linear buckling, which supports the linear mass-spring resonator. Applying shock acceleration generates a snap through action to the buckling spring. From the FEM analysis, we showed that the snap through acceleration from the buckling action has no relationship with the applied shock amplitude and duration. We use this uniform acceleration as an impulse shock source for the linear resonator. It is easy to obtain the maximum shock response from the uniform snap through acceleration by using a shock response spectrum (SRS) analysis method. At first we investigated the relationship between the snap-through behaviour and an initial curved deflection. Then a time response result for non-linear springs with snap through and minimum force that makes a buckling behaviour were obtained by FEM analysis. By obtaining the optimum SRS frequency for linear resonator, we decided its resonant frequency with the MATLAB simulator

  2. Economic MPC for a linear stochastic system of energy units

    DEFF Research Database (Denmark)

    Jørgensen, John Bagterp; Sokoler, Leo Emil; Standardi, Laura

    2016-01-01

    This paper summarizes comprehensively the work in four recent PhD theses from the Technical University of Denmark related to Economic MPC of future power systems. Future power systems will consist of a large number of decentralized power producers and a large number of controllable power consumers...... in addition to stochastic power producers such as wind turbines and solar power plants. Control of such large scale systems requires new control algorithms. In this paper, we formulate the control of such a system as an Economic Model Predictive Control (MPC) problem. When the power producers and controllable...... power consumers have linear dynamics, the Economic MPC may be expressed as a linear program. We provide linear models for a number of energy units in an energy system, formulate an Economic MPC for coordination of such a system. We indicate how advances in computational MPC makes the solutions...

  3. Effect of Integral Non-Linearity on Energy Calibration of ...

    African Journals Online (AJOL)

    The integral non-linearity (INL) of four spectroscopy systems, two integrated (A1 and A2) and two classical (B1 and B2) systems was determined using pulses from a random pulse generator. The effect of INL on the system's energy calibration was also determined. The effect is minimal in the classical system at high ...

  4. Bistable energy harvesting enhancement with an auxiliary linear oscillator

    Science.gov (United States)

    Harne, R. L.; Thota, M.; Wang, K. W.

    2013-12-01

    Recent work has indicated that linear vibrational energy harvesters with an appended degree-of-freedom (DOF) may be advantageous for introducing new dynamic forms to extend the operational bandwidth. Given the additional interest in bistable harvester designs, which exhibit a propitious snap through effect from one stable state to the other, it is a logical extension to explore the influence of an added DOF to a bistable system. However, bistable snap through is not a resonant phenomenon, which tempers the presumption that the dynamics induced by an additional DOF on bistable designs would inherently be beneficial as for linear systems. This paper presents two analytical formulations to assess the fundamental and superharmonic steady-state dynamics of an excited bistable energy harvester to which is attached an auxiliary linear oscillator. From an energy harvesting perspective, the model predicts that the additional linear DOF uniformly amplifies the bistable harvester response magnitude and generated power for excitation frequencies less than the attachment’s resonance while improved power density spans a bandwidth below this frequency. Analyses predict bandwidths having co-existent responses composed of a unique proportion of fundamental and superharmonic dynamics. Experiments validate key analytical predictions and observe the ability for the coupled system to develop an advantageous multi-harmonic interwell response when the initial conditions are insufficient for continuous high-energy orbit at the excitation frequency. Overall, the addition of an auxiliary linear oscillator to a bistable harvester is found to be an effective means of enhancing the energy harvesting performance and robustness.

  5. Non-linear and signal energy optimal asymptotic filter design

    Directory of Open Access Journals (Sweden)

    Josef Hrusak

    2003-10-01

    Full Text Available The paper studies some connections between the main results of the well known Wiener-Kalman-Bucy stochastic approach to filtering problems based mainly on the linear stochastic estimation theory and emphasizing the optimality aspects of the achieved results and the classical deterministic frequency domain linear filters such as Chebyshev, Butterworth, Bessel, etc. A new non-stochastic but not necessarily deterministic (possibly non-linear alternative approach called asymptotic filtering based mainly on the concepts of signal power, signal energy and a system equivalence relation plays an important role in the presentation. Filtering error invariance and convergence aspects are emphasized in the approach. It is shown that introducing the signal power as the quantitative measure of energy dissipation makes it possible to achieve reasonable results from the optimality point of view as well. The property of structural energy dissipativeness is one of the most important and fundamental features of resulting filters. Therefore, it is natural to call them asymptotic filters. The notion of the asymptotic filter is carried in the paper as a proper tool in order to unify stochastic and non-stochastic, linear and nonlinear approaches to signal filtering.

  6. Results from a prototype chicane-based energy spectrometer for a linear collider

    Energy Technology Data Exchange (ETDEWEB)

    Lyapin, A. [Univ. College London (United Kingdom); London Univ., Egham (United Kingdom). Royal Holloway; Schreiber, H.J.; Viti, M. [Deutsches Electronen Synchrotron DESY, Hamburg (Germany); Deutsches Electronen Synchrotron DESY, Zeuthen (DE)] (and others)

    2010-11-15

    The International Linear Collider (ILC) and other proposed high energy e{sup +}e{sup -} machines aim to measure with unprecedented precision Standard Model quantities and new, not yet discovered phenomena. One of the main requirements for achieving this goal is a measurement of the incident beam energy with an uncertainty close to 10{sup -4}. This article presents the analysis of data from a prototype energy spectrometer commissioned in 2006-2007 in SLAC's End Station A beamline. The prototype was a 4-magnet chicane equipped with beam position monitors measuring small changes of the beam orbit through the chicane at different beam energies. A single bunch energy resolution close to 5 . 10{sup -4} was measured, which is satisfactory for most scenarios. We also report on the operational experience with the chicane-based spectrometer and suggest ways of improving its performance. (orig.)

  7. Separated-orbit bisected energy-recovered linear accelerator

    Science.gov (United States)

    Douglas, David R.

    2015-09-01

    A separated-orbit bisected energy-recovered linear accelerator apparatus and method. The accelerator includes a first linac, a second linac, and a plurality of arcs of differing path lengths, including a plurality of up arcs, a plurality of downgoing arcs, and a full energy arc providing a path independent of the up arcs and downgoing arcs. The up arcs have a path length that is substantially a multiple of the RF wavelength and the full energy arc includes a path length that is substantially an odd half-integer multiple of the RF wavelength. Operation of the accelerator includes accelerating the beam utilizing the linacs and up arcs until the beam is at full energy, at full energy executing a full recirculation to the second linac using a path length that is substantially an odd half-integer of the RF wavelength, and then decelerating the beam using the linacs and downgoing arcs.

  8. Non-linear absorption for concentrated solar energy transport

    Energy Technology Data Exchange (ETDEWEB)

    Jaramillo, O. A; Del Rio, J.A; Huelsz, G [Centro de Investigacion de Energia, UNAM, Temixco, Morelos (Mexico)

    2000-07-01

    In order to determine the maximum solar energy that can be transported using SiO{sub 2} optical fibers, analysis of non-linear absorption is required. In this work, we model the interaction between solar radiation and the SiO{sub 2} optical fiber core to determine the dependence of the absorption of the radioactive intensity. Using Maxwell's equations we obtain the relation between the refractive index and the electric susceptibility up to second order in terms of the electric field intensity. This is not enough to obtain an explicit expression for the non-linear absorption. Thus, to obtain the non-linear optical response, we develop a microscopic model of an harmonic driven oscillators with damp ing, based on the Drude-Lorentz theory. We solve this model using experimental information for the SiO{sub 2} optical fiber, and we determine the frequency-dependence of the non-linear absorption and the non-linear extinction of SiO{sub 2} optical fibers. Our results estimate that the average value over the solar spectrum for the non-linear extinction coefficient for SiO{sub 2} is k{sub 2}=10{sup -}29m{sup 2}V{sup -}2. With this result we conclude that the non-linear part of the absorption coefficient of SiO{sub 2} optical fibers during the transport of concentrated solar energy achieved by a circular concentrator is negligible, and therefore the use of optical fibers for solar applications is an actual option. [Spanish] Con el objeto de determinar la maxima energia solar que puede transportarse usando fibras opticas de SiO{sub 2} se requiere el analisis de absorcion no linear. En este trabajo modelamos la interaccion entre la radiacion solar y el nucleo de la fibra optica de SiO{sub 2} para determinar la dependencia de la absorcion de la intensidad radioactiva. Mediante el uso de las ecuaciones de Maxwell obtenemos la relacion entre el indice de refraccion y la susceptibilidad electrica hasta el segundo orden en terminos de intensidad del campo electrico. Esto no es

  9. Local energy decay for linear wave equations with variable coefficients

    Science.gov (United States)

    Ikehata, Ryo

    2005-06-01

    A uniform local energy decay result is derived to the linear wave equation with spatial variable coefficients. We deal with this equation in an exterior domain with a star-shaped complement. Our advantage is that we do not assume any compactness of the support on the initial data, and its proof is quite simple. This generalizes a previous famous result due to Morawetz [The decay of solutions of the exterior initial-boundary value problem for the wave equation, Comm. Pure Appl. Math. 14 (1961) 561-568]. In order to prove local energy decay, we mainly apply two types of ideas due to Ikehata-Matsuyama [L2-behaviour of solutions to the linear heat and wave equations in exterior domains, Sci. Math. Japon. 55 (2002) 33-42] and Todorova-Yordanov [Critical exponent for a nonlinear wave equation with damping, J. Differential Equations 174 (2001) 464-489].

  10. Maximization of energy in the output of a linear system

    International Nuclear Information System (INIS)

    Dudley, D.G.

    1976-01-01

    A time-limited signal which, when passed through a linear system, maximizes the total output energy is considered. Previous work has shown that the solution is given by the eigenfunction associated with the maximum eigenvalue in a Hilbert-Schmidt integral equation. Analytical results are available for the case where the transfer function is a low-pass filter. This work is extended by obtaining a numerical solution to the integral equation which allows results for reasonably general transfer functions

  11. Designing and Testing Composite Energy Storage Systems for Regulating the Outputs of Linear Wave Energy Converters

    Directory of Open Access Journals (Sweden)

    Zanxiang Nie

    2017-01-01

    Full Text Available Linear wave energy converters generate intrinsically intermittent power with variable frequency and amplitude. A composite energy storage system consisting of batteries and super capacitors has been developed and controlled by buck-boost converters. The purpose of the composite energy storage system is to handle the fluctuations and intermittent characteristics of the renewable source, and hence provide a steady output power. Linear wave energy converters working in conjunction with a system composed of various energy storage devices, is considered as a microsystem, which can function in a stand-alone or a grid connected mode. Simulation results have shown that by applying a boost H-bridge and a composite energy storage system more power could be extracted from linear wave energy converters. Simulation results have shown that the super capacitors charge and discharge often to handle the frequent power fluctuations, and the batteries charge and discharge slowly for handling the intermittent power of wave energy converters. Hardware systems have been constructed to control the linear wave energy converter and the composite energy storage system. The performance of the composite energy storage system has been verified in experiments by using electronics-based wave energy emulators.

  12. Novel ocean energy permanent magnet linear generator buoy

    Energy Technology Data Exchange (ETDEWEB)

    Rhinefrank, K.; Agamloh, E.B.; Jouanne, A. von; Wallace, A.K.; Prudell, J.; Kimble, K.; Aills, J.; Schmidt, E.; Schacher, A. [School of Electrical Engineering and Computer Science, Oregon State University, Corvallis, OR 97331-3211 (United States); Chan, P.; Sweeny, B. [Department of Mechanical Engineering, Oregon State University, Corvallis, OR 97331-3211 (United States)

    2006-07-15

    This paper describes the research, design, construction and prototype testing process of a novel ocean energy direct drive permanent magnet linear generator buoy. The buoy employs the vertical component of the motion of ocean waves to power a linear generator. The generator consists of a permanent magnet field system (mounted on the central translator shaft) and an armature, in which the power is generated (mounted on the buoy). The translator shaft is anchored to the sea floor, and the buoy/floater moves armature coils relative to the permanent magnet translator to induce voltages. The electrical and mechanical structures of the buoy generator are provided, along with performance characteristics, including voltage, current and developed power. (author)

  13. Energy of linear quasi-neutral electrostatic drift waves

    International Nuclear Information System (INIS)

    Pfirsch, D.; Correa-Restrepo, D.

    1992-01-01

    An exact energy expression for linear quasi-neutral electrostatic perturbations is derived within the framework of dissipationless multi-fluid theory, valid for any geometry. Taking the mass as a tensor with, in general, different masses parallel and perpendicular to an ambient magnetic field allows one to treat the full dynamics and also to restrict consideration to parallel dynamics or to the completely adiabatic case. Application to slab configurations yields the result that in plane geometry the adiabatic approximation does not allow negative-energy perturbations, whereas inclusion of the parallel dynamics does. This is in agreement with a numerical study of drift-wave turbulence within the framework of collisional two-fluid theory by B. Scott. Unlike Scott, we consider a dissipationless theory. Whereas the nonlinear energy is just kinetic plus potential plus thermal energy, the energy of perturbations depends on constraints. In a multi-fluid quasi-neutral electrostatic theory, from which we start, such constraints are mass conservation and entropy conservation. The latter is violated if heat conduction, heat sources (e.g. Joule heating) and heat sinks play a role. Hence, the energy expressions obtained are, valid only when situations where this is not the case or where these phenomena do not influence the entropy constraint. The latter is the case if the heat conduction is infinitely large such that the equilibrium temperature profiles T ν (x) of the various particle species ν are independent of x and δT ν =0. A vanishing temperature perturbation results in an entropy-conserving theory if one takes the adiabatic coefficients γ ν =1. This is possible, however, only for the perturbations; the equilibrium energy would diverge. When we consider this case, we do it in the way that the γs are put equal to 1 only after having obtained the perturbed energy for general γs. (author) 7 refs

  14. Free-Free Transitions in the Presence of Laser Fields at Very Low Incident Electron Energy

    Science.gov (United States)

    Bhatia, A. K.; Sinha, Chandana

    2010-01-01

    We study the free-free transition in electron-hydrogenic systems in ground state in presence of an external laser field at very loud incident energies. The laser field is treated classically while the collision dynamics is treated quantum mechanically. The laser field is chosen to be monochromatic, linearly polarized and homogeneous. The incident electron is considered to be dressed by the laser in a nonperturbative manner by choosing a Volkov wave function for it. The scattering weave function for the electron is solved numerically by taking into account the effect of the electron exchange, short-range as well as of the long-range interactions to get the S and P wave phase shifts while for the higher angular momentum phase shifts the exchange approximation has only been considered. We calculate the laser assisted differential cross sections (LADCS) for the aforesaid free-free transition process for single photon absorption/emission. The laser intensity is chosen to be much less than the atomic field intensity. A strong suppression is noted in the LADCS as compared to the field free (FF) cross sections. Unlike the FF ones, the LADCS exhibit some oscillations having a distinct maximum at a low value of the scattering angle depending on the laser parameters as well as on the incident energies.

  15. Feedback Linearization Controller for a Wind Energy Power System

    Directory of Open Access Journals (Sweden)

    Muthana Alrifai

    2016-09-01

    Full Text Available This paper deals with the control of a doubly-fed induction generator (DFIG-based variable speed wind turbine power system. A system of eight ordinary differential equations is used to model the wind energy conversion system. The generator has a wound rotor type with back-to-back three-phase power converter bridges between its rotor and the grid; it is modeled using the direct-quadrature rotating reference frame with aligned stator flux. An input-state feedback linearization controller is proposed for the wind energy power system. The controller guarantees that the states of the system track the desired states. Simulation results are presented to validate the proposed control scheme. Moreover, further simulation results are shown to investigate the robustness of the proposed control scheme to changes in some of the parameters of the system.

  16. Modelling non-linear effects of dark energy

    Science.gov (United States)

    Bose, Benjamin; Baldi, Marco; Pourtsidou, Alkistis

    2018-04-01

    We investigate the capabilities of perturbation theory in capturing non-linear effects of dark energy. We test constant and evolving w models, as well as models involving momentum exchange between dark energy and dark matter. Specifically, we compare perturbative predictions at 1-loop level against N-body results for four non-standard equations of state as well as varying degrees of momentum exchange between dark energy and dark matter. The interaction is modelled phenomenologically using a time dependent drag term in the Euler equation. We make comparisons at the level of the matter power spectrum and the redshift space monopole and quadrupole. The multipoles are modelled using the Taruya, Nishimichi and Saito (TNS) redshift space spectrum. We find perturbation theory does very well in capturing non-linear effects coming from dark sector interaction. We isolate and quantify the 1-loop contribution coming from the interaction and from the non-standard equation of state. We find the interaction parameter ξ amplifies scale dependent signatures in the range of scales considered. Non-standard equations of state also give scale dependent signatures within this same regime. In redshift space the match with N-body is improved at smaller scales by the addition of the TNS free parameter σv. To quantify the importance of modelling the interaction, we create mock data sets for varying values of ξ using perturbation theory. This data is given errors typical of Stage IV surveys. We then perform a likelihood analysis using the first two multipoles on these sets and a ξ=0 modelling, ignoring the interaction. We find the fiducial growth parameter f is generally recovered even for very large values of ξ both at z=0.5 and z=1. The ξ=0 modelling is most biased in its estimation of f for the phantom w=‑1.1 case.

  17. Production of low energy gamma rays by neutron interactions with fluorine for incident neutron energies between 0.1 and 20 MeV

    International Nuclear Information System (INIS)

    Morgan, G.L.; Dickens, J.K.

    1975-06-01

    Differential cross sections for the production of low-energy gamma rays (less than 240 keV) by neutron interactions in fluorine have been measured for neutron energies between 0.1 and 20 MeV. The Oak Ridge Electron Linear Accelerator was used as the neutron source. Gamma rays were detected at 92 0 using an intrinsic germanium detector. Incident neutron energies were determined by time-of-flight techniques. Tables are presented for the production cross sections of three gamma rays having energies of 96, 110, and 197 keV. (14 figures, 3 tables) (U.S.)

  18. Energy efficient downlink MIMO transmission with linear precoding

    Institute of Scientific and Technical Information of China (English)

    XU Jie; LI ShiChao; QIU Ling; SLIMANE Ben S.; YU ChengWen

    2013-01-01

    Energy efficiency (EE) is becoming increasingly important for wireless cellular networks. This paper addresses EE optimization problems in downlink multiuser MIMO systems with linear precoding. Referring to different active transmit/receive antenna sets and transmission schemes as different modes, we propose a joint bandwidth/power optimization and mode switching scheme to maximize EE. With a specific mode, we prove that the optimal bandwidth and transmit power is either full transmit power or full bandwidth. After deriving the optimal bandwidth and transmit power, we further propose mode switching to select the mode with optimal EE. Since the optimal mode switching, i.e. exhaustive search, is too complex to implement, an alternative heuristic method is developed to decrease the complexity through reducing the search size and avoiding the EE calculation during each search. Through simulations, we demonstrate that the proposed methods can significantly improve EE and the performance is similar to the optimal exhaustive search.

  19. Multibunch beam breakup in high energy linear colliders

    International Nuclear Information System (INIS)

    Thompson, K.A.; Ruth, R.D.

    1989-03-01

    The SLAC design for a next-generation linear collider with center-of-mass energy of 0.5 to 1.0 TeV requires that multiple bunches (/approximately/10) be accelerated on each rf fill. At the beam intensity (/approximately/10 10 particles per bunch) and rf frequency (11--17 GHz) required, the beam would be highly unstable transversely. Using computer simulation and analytic models, we have studied several possible methods of controlling the transverse instability: using damped cavities to damp the transverse dipole modes; adjusting the frequency of the dominant transverse mode relative to the rf frequency, so that bunches are placed near zero crossings of the wake; introducing a cell-to-cell spread in the transverse dipole mode frequencies; and introducing a bunch-to-bunch variation in the transverse focusing. The best cure(s) to use depend on the bunch spacing, intensity, and other features of the final design. 8 refs., 3 figs

  20. Electromagnetic Energy Converters - Rotating Motors and Linear Generators

    Energy Technology Data Exchange (ETDEWEB)

    Ekergaard, Boel

    2011-07-01

    This licentiate thesis presents a study of the electromagnetic properties of linear synchronous permanent magnet generators, utilized in wave energy converters, and a two pole permanent magnet motor for an electrical vehicle. Both machine topologies are presented, designed with a numerical simulation tool, based on a model derived from Maxwell's equations. Full scale prototypes of both the machines are under construction. A continued study about the impact on the magnetic circuit caused by the longitudinal ends of a linear generator is performed. The results present significant core losses in the translator and an increased cogging force caused by the longitudinal ends. Further, a new electric conversion circuit based on the electric resonance phenomena is presented. Experimental results indicate that a successful electric resonance between the generator and external circuit has been achieved. Finally, detailed analytical and numerical methods are utilized to investigate the losses in the two pole permanent magnet motor over a wide frequency interval. The results indicate that the efficiency of electrical motors in electrical vehicle system can be increased relative existing designs and argue for limiting of the gearbox. The system total efficiency and mechanical stability can thereby be increased. The work concerning the wave energy converter is a part of a larger project, the so called Lysekil Wave Power Project, whereas the work concerning the electric motor so far has been carried out as an individual project. However, a future goal is to integrate the research on the electric motor for electrical vehicle with closely related ongoing research regarding a flywheel based electric driveline for an All Electric Propulsion System

  1. 18 CFR 1316.9 - Nuclear energy hazards and nuclear incidents.

    Science.gov (United States)

    2010-04-01

    ... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Nuclear energy hazards... Text of Conditions and Certifications § 1316.9 Nuclear energy hazards and nuclear incidents. When so... documents or actions: Nuclear Energy Hazards and Nuclear Incidents (Applicable only to contracts for goods...

  2. Effect of high linear energy transfer radiation on biological membranes

    International Nuclear Information System (INIS)

    Choudhary, D.; Srivastava, M.; Kale, R.K.; Sarma, A.

    1998-01-01

    Cellular membranes are vital elements, and their integrity is extremely essential for the viability of the cells. We studied the effects of high linear energy transfer (LET) radiation on the membranes. Rabbit erythrocytes (1 x 10 7 cells/ml) and microsomes (0.6 mg protein/ml) prepared from liver of rats were irradiated with 7 Li ions of energy 6.42 MeV/u and 16 O ions of energy 4.25 MeV/u having maximum LET values of 354 keV/μm and 1130 keV/μm, respectively. 7 Li- and 16 O-induced microsomal lipid peroxidation was found to increase with fluence. The 16 O ions were more effective than 7 Li ions, which could be due to the denser energy distribution in the track and the yield of free radicals. These findings suggested that the biological membranes could be peroxidized on exposure to high-LET radiation. Inhibition of the lipid peroxidation was observed in the presence of a membrane-active drug, chlorpromazine (CPZ), which could be due to scavenging of free radicals (mainly HO. and ROO.), electron donation, and hydrogen transfer reactions. The 7 Li and 16 O ions also induced hemolysis in erythrocytes. The extent of hemolysis was found to be a function of time and fluence, and showed a characteristic sigmoidal pattern. The 16 O ions were more effective in the lower fluence range than 7 Li ions. These results were compared with lipid peroxidation and hemolysis induced by gamma-radiation. (orig.)

  3. Proton Linear Energy Transfer measurement using Emulsion Cloud Chamber

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Jae-ik [Proton Therapy Center, National Cancer Center (Korea, Republic of); Division of Heavy Ion Clinical Research, Korea Institute of Radiological & Medical Sciences (KIRAMS), Seoul (Korea, Republic of); Park, Seyjoon [Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University, School of Medicine, Seoul (Korea, Republic of); Kim, Haksoo; Kim, Meyoung [Proton Therapy Center, National Cancer Center (Korea, Republic of); Jeong, Chiyoung [Department of Radiation Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul (Korea, Republic of); Cho, Sungkoo [Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University, School of Medicine, Seoul (Korea, Republic of); Lim, Young Kyung; Shin, Dongho [Proton Therapy Center, National Cancer Center (Korea, Republic of); Lee, Se Byeong, E-mail: sblee@ncc.re.kr [Proton Therapy Center, National Cancer Center (Korea, Republic of); Morishima, Kunihiro; Naganawa, Naotaka; Sato, Osamu [Department of Physics, Nagoya University, Nagoya (Japan); Kwak, Jungwon [Department of Radiation Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul (Korea, Republic of); Kim, Sung Hyun [Center for Underground Physics, Institute for Basic Science (IBS), Daejeon (Korea, Republic of); Cho, Jung Sook [Department of refinement education, Dongseo University, Busan (Korea, Republic of); Ahn, Jung Keun [Department of Physics, Korea University, Seoul (Korea, Republic of); Kim, Ji Hyun; Yoon, Chun Sil [Gyeongsang National University, Jinju (Korea, Republic of); Incerti, Sebastien [CNRS, IN2P3, CENBG, UMR 5797, F-33170 Gradignan (France); Université Bordeaux 1, CENBG, UMR 5797, F-33170 Gradignan (France)

    2015-04-15

    This study proposes to determine the correlation between the Volume Pulse Height (VPH) measured by nuclear emulsion and Linear Energy Transfer (LET) calculated by Monte Carlo simulation based on Geant4. The nuclear emulsion was irradiated at the National Cancer Center (NCC) with a therapeutic proton beam and was installed at 5.2 m distance from the beam nozzle structure with various thicknesses of water-equivalent material (PMMA) blocks to position with specific positions along the Bragg curve. After the beam exposure and development of the emulsion films, the films were scanned by S-UTS developed in Nagoya University. The proton tracks in the scanned films were reconstructed using the ‘NETSCAN’ method. Through this procedure, the VPH can be derived from each reconstructed proton track at each position along the Bragg curve. The VPH value indicates the magnitude of energy loss in proton track. By comparison with the simulation results obtained using Geant4, we found the correlation between the LET calculated by Monte Carlo simulation and the VPH measured by the nuclear emulsion.

  4. Internal high linear energy transfer (LET) targeted radiotherapy for cancer

    International Nuclear Information System (INIS)

    Allen, Barry J

    2006-01-01

    High linear energy transfer (LET) radiation for internal targeted therapy has been a long time coming on to the medical therapy scene. While fundamental principles were established many decades ago, the clinical implementation has been slow. Localized neutron capture therapy, and more recently systemic targeted alpha therapy, are at the clinical trial stage. What are the attributes of these therapies that have led a band of scientists and clinicians to dedicate so much of their careers? High LET means high energy density, causing double strand breaks in DNA, and short-range radiation, sparing adjacent normal tissues. This targeted approach complements conventional radiotherapy and chemotherapy. Such therapies fail on several fronts. Foremost is the complete lack of progress for the control of primary GBM, the holy grail for cancer therapies. Next is the inability to regress metastatic cancer on a systemic basis. This has been the task of chemotherapy, but palliation is the major application. Finally, there is the inability to inhibit the development of lethal metastatic cancer after successful treatment of the primary cancer. This review charts, from an Australian perspective, the developing role of local and systemic high LET, internal radiation therapy. (review)

  5. Proton Linear Energy Transfer measurement using Emulsion Cloud Chamber

    International Nuclear Information System (INIS)

    Shin, Jae-ik; Park, Seyjoon; Kim, Haksoo; Kim, Meyoung; Jeong, Chiyoung; Cho, Sungkoo; Lim, Young Kyung; Shin, Dongho; Lee, Se Byeong; Morishima, Kunihiro; Naganawa, Naotaka; Sato, Osamu; Kwak, Jungwon; Kim, Sung Hyun; Cho, Jung Sook; Ahn, Jung Keun; Kim, Ji Hyun; Yoon, Chun Sil; Incerti, Sebastien

    2015-01-01

    This study proposes to determine the correlation between the Volume Pulse Height (VPH) measured by nuclear emulsion and Linear Energy Transfer (LET) calculated by Monte Carlo simulation based on Geant4. The nuclear emulsion was irradiated at the National Cancer Center (NCC) with a therapeutic proton beam and was installed at 5.2 m distance from the beam nozzle structure with various thicknesses of water-equivalent material (PMMA) blocks to position with specific positions along the Bragg curve. After the beam exposure and development of the emulsion films, the films were scanned by S-UTS developed in Nagoya University. The proton tracks in the scanned films were reconstructed using the ‘NETSCAN’ method. Through this procedure, the VPH can be derived from each reconstructed proton track at each position along the Bragg curve. The VPH value indicates the magnitude of energy loss in proton track. By comparison with the simulation results obtained using Geant4, we found the correlation between the LET calculated by Monte Carlo simulation and the VPH measured by the nuclear emulsion

  6. Proton Linear Energy Transfer measurement using Emulsion Cloud Chamber

    Science.gov (United States)

    Shin, Jae-ik; Park, Seyjoon; Kim, Haksoo; Kim, Meyoung; Jeong, Chiyoung; Cho, Sungkoo; Lim, Young Kyung; Shin, Dongho; Lee, Se Byeong; Morishima, Kunihiro; Naganawa, Naotaka; Sato, Osamu; Kwak, Jungwon; Kim, Sung Hyun; Cho, Jung Sook; Ahn, Jung Keun; Kim, Ji Hyun; Yoon, Chun Sil; Incerti, Sebastien

    2015-04-01

    This study proposes to determine the correlation between the Volume Pulse Height (VPH) measured by nuclear emulsion and Linear Energy Transfer (LET) calculated by Monte Carlo simulation based on Geant4. The nuclear emulsion was irradiated at the National Cancer Center (NCC) with a therapeutic proton beam and was installed at 5.2 m distance from the beam nozzle structure with various thicknesses of water-equivalent material (PMMA) blocks to position with specific positions along the Bragg curve. After the beam exposure and development of the emulsion films, the films were scanned by S-UTS developed in Nagoya University. The proton tracks in the scanned films were reconstructed using the 'NETSCAN' method. Through this procedure, the VPH can be derived from each reconstructed proton track at each position along the Bragg curve. The VPH value indicates the magnitude of energy loss in proton track. By comparison with the simulation results obtained using Geant4, we found the correlation between the LET calculated by Monte Carlo simulation and the VPH measured by the nuclear emulsion.

  7. Heavy ion mutagenesis: linear energy transfer effects and genetic linkage

    Science.gov (United States)

    Kronenberg, A.; Gauny, S.; Criddle, K.; Vannais, D.; Ueno, A.; Kraemer, S.; Waldren, C. A.; Chatterjee, A. (Principal Investigator)

    1995-01-01

    We have characterized a series of 69 independent mutants at the endogenous hprt locus of human TK6 lymphoblasts and over 200 independent S1-deficient mutants of the human x hamster hybrid cell line AL arising spontaneously or following low-fluence exposures to densely ionizing Fe ions (600 MeV/amu, linear energy transfer = 190 keV/microns). We find that large deletions are common. The entire hprt gene (> 44 kb) was missing in 19/39 Fe-induced mutants, while only 2/30 spontaneous mutants lost the entire hprt coding sequence. When the gene of interest (S1 locus = M1C1 gene) is located on a nonessential human chromosome 11, multilocus deletions of several million base pairs are observed frequently. The S1 mutation frequency is more than 50-fold greater than the frequency of hprt mutants in the same cells. Taken together, these results suggest that low-fluence exposures to Fe ions are often cytotoxic due to their ability to create multilocus deletions that may often include the loss of essential genes. In addition, the tumorigenic potential of these HZE heavy ions may be due to the high potential for loss of tumor suppressor genes. The relative insensitivity of the hprt locus to mutation is likely due to tight linkage to a gene that is required for viability.

  8. Size-corrected BMD decreases during peak linear growth: implications for fracture incidence during adolescence.

    Science.gov (United States)

    Faulkner, Robert A; Davison, K Shawn; Bailey, Donald A; Mirwald, Robert L; Baxter-Jones, Adam D G

    2006-12-01

    Peak adolescent fracture incidence at the distal end of the radius coincides with a decline in size-corrected BMD in both boys and girls. Peak gains in bone area preceded peak gains in BMC in a longitudinal sample of boys and girls, supporting the theory that the dissociation between skeletal expansion and skeletal mineralization results in a period of relative bone weakness. The high incidence of fracture in adolescence may be related to a period of relative skeletal fragility resulting from dissociation between bone expansion and bone mineralization during the growing years. The aim of this study was to examine the relationship between changes in size-corrected BMD (BMDsc) and peak distal radius fracture incidence in boys and girls. Subjects were 41 boys and 46 girls measured annually (DXA; Hologic 2000) over the adolescent growth period and again in young adulthood. Ages of peak height velocity (PHV), peak BMC velocity (PBMCV), and peak bone area (BA) velocity (PBAV) were determined for each child. To control for maturational differences, subjects were aligned on PHV. BMDsc was calculated by first regressing the natural logarithms of BMC and BA. The power coefficient (pc) values from this analysis were used as follows: BMDsc = BMC/BA(pc). BMDsc decreased significantly before the age of PHV and then increased until 4 years after PHV. The peak rates in radial fractures (reported from previous work) in both boys and girls coincided with the age of negative velocity in BMDsc; the age of peak BA velocity (PBAV) preceded the age of peak BMC velocity (PBMCV) by 0.5 years in both boys and girls. There is a clear dissociation between PBMCV and PBAV in boys and girls. BMDsc declines before age of PHV before rebounding after PHV. The timing of these events coincides directly with reported fracture rates of the distal end of the radius. Thus, the results support the theory that there is a period of relative skeletal weakness during the adolescent growth period caused, in

  9. Critical analysis of major incidents risks in civil nuclear energy

    International Nuclear Information System (INIS)

    2000-09-01

    The differences existing between the PWR type reactors and the RBMK type reactors are explained as well as the risk associated to each type when it exists. The Ines scale, tool to give the level of an accident gravity comprises seven levels, the number seven is the most serious and corresponds to the Chernobyl accident; The number zero is of no consequence but must be mentioned as a matter of form. The incidents from 1 to 3 concern increasing incidents, affecting the nuclear power plant but not the external public. The accidents from 4 to 7 have a nature to affect the nuclear power plant and the environment. An efficient tool exists between nuclear operators it is made of the reports on incidents encountered by close reactors. Two others type reactors are coming, the high temperature type reactors and the fast neutrons reactors. different risks are evoked, terrorism, proliferation, transport and radioactive wastes. (N.C.)

  10. Free-Free Transitions in the Presence of Laser Fields and Debye Potential at Very Low Incident Electron Energies

    Science.gov (United States)

    Bhatia, Anand

    2012-01-01

    We study the free-free transition in electron-helium ion in the ground state and embedded in a Debye potential in the presence of an external laser field at very low incident electron energies. The laser field is treated classically while the collision dynamics is treated quantum mechanically. The laser field is chosen as monochromatic, linearly polarized and homogeneous. The incident electron is considered to be dressed by the laser field in a nonperturbative manner by choosing Volkov wave function for it. The scattering wave function for the incident electron on the target embedded in a Debye potential is solved numerically by taking into account the effect of electron exchange. We calculate the laser-assisted differential and total cross sections for free-free transition for absorption/emission of a single photon or no photon exchange. The results will be presented at the conference.

  11. A Novel Approach for Analysis of the Log-Linear Age-Period-Cohort Model: Application to Lung Cancer Incidence

    Directory of Open Access Journals (Sweden)

    Tengiz Mdzinarishvili

    2009-12-01

    Full Text Available A simple, computationally efficient procedure for analyses of the time period and birth cohort effects on the distribution of the age-specific incidence rates of cancers is proposed. Assuming that cohort effects for neighboring cohorts are almost equal and using the Log-Linear Age-Period-Cohort Model, this procedure allows one to evaluate temporal trends and birth cohort variations of any type of cancer without prior knowledge of the hazard function. This procedure was used to estimate the influence of time period and birth cohort effects on the distribution of the age-specific incidence rates of first primary, microscopically confirmed lung cancer (LC cases from the SEER9 database. It was shown that since 1975, the time period effect coefficients for men increase up to 1980 and then decrease until 2004. For women, these coefficients increase from 1975 up to 1990 and then remain nearly constant. The LC birth cohort effect coefficients for men and women increase from the cohort of 1890–94 until the cohort of 1925–29, then decrease until the cohort of 1950–54 and then remain almost unchanged. Overall, LC incidence rates, adjusted by period and cohort effects, increase up to the age of about 72–75, turn over, and then fall after the age of 75–78. The peak of the adjusted rates in men is around the age of 77–78, while in women, it is around the age of 72–73. Therefore, these results suggest that the age distribution of the incidence rates in men and women fall at old ages.

  12. Linear energy transfer incorporated intensity modulated proton therapy optimization

    Science.gov (United States)

    Cao, Wenhua; Khabazian, Azin; Yepes, Pablo P.; Lim, Gino; Poenisch, Falk; Grosshans, David R.; Mohan, Radhe

    2018-01-01

    The purpose of this study was to investigate the feasibility of incorporating linear energy transfer (LET) into the optimization of intensity modulated proton therapy (IMPT) plans. Because increased LET correlates with increased biological effectiveness of protons, high LETs in target volumes and low LETs in critical structures and normal tissues are preferred in an IMPT plan. However, if not explicitly incorporated into the optimization criteria, different IMPT plans may yield similar physical dose distributions but greatly different LET, specifically dose-averaged LET, distributions. Conventionally, the IMPT optimization criteria (or cost function) only includes dose-based objectives in which the relative biological effectiveness (RBE) is assumed to have a constant value of 1.1. In this study, we added LET-based objectives for maximizing LET in target volumes and minimizing LET in critical structures and normal tissues. Due to the fractional programming nature of the resulting model, we used a variable reformulation approach so that the optimization process is computationally equivalent to conventional IMPT optimization. In this study, five brain tumor patients who had been treated with proton therapy at our institution were selected. Two plans were created for each patient based on the proposed LET-incorporated optimization (LETOpt) and the conventional dose-based optimization (DoseOpt). The optimized plans were compared in terms of both dose (assuming a constant RBE of 1.1 as adopted in clinical practice) and LET. Both optimization approaches were able to generate comparable dose distributions. The LET-incorporated optimization achieved not only pronounced reduction of LET values in critical organs, such as brainstem and optic chiasm, but also increased LET in target volumes, compared to the conventional dose-based optimization. However, on occasion, there was a need to tradeoff the acceptability of dose and LET distributions. Our conclusion is that the

  13. Incident wave, infragravity wave, and non-linear low-frequency bore evolution across fringing coral reefs

    Science.gov (United States)

    Storlazzi, C. D.; Griffioen, D.; Cheriton, O. M.

    2016-12-01

    Coral reefs have been shown to significantly attenuate incident wave energy and thus provide protection for 100s of millions of people globally. To better constrain wave dynamics and wave-driven water levels over fringing coral reefs, a 4-month deployment of wave and tide gauges was conducted across two shore-normal transects on Roi-Namur Island and two transects on Kwajalein Island in the Republic of the Marshall Islands. At all locations, although incident wave (periods 250 s) heights on the outer reef flat just inshore of the zone of wave breaking, the infragravity wave heights generally equaled the incident wave heights by the middle of the reef flat and exceeded the incident wave heights on the inner reef flat by the shoreline. The infragravity waves generally were asymmetric, positively skewed, bore-like forms with incident-band waves riding the infragravity wave crest at the head of the bore; these wave packets have similar structure to high-frequency internal waves on an internal wave bore. Bore height was shown to scale with water depth, offshore wave height, and offshore wave period. For a given tidal elevation, with increasing offshore wave heights, such bores occurred more frequently on the middle reef flat, whereas they occurred less frequently on the inner reef flat. Skewed, asymmetric waves are known to drive large gradients in velocity and shear stress that can transport material onshore. Thus, a better understanding of these low-frequency, energetic bores on reef flats is critical to forecasting how coral reef-lined coasts may respond to sea-level rise and climate change.

  14. Energy in elastic fiber embedded in elastic matrix containing incident SH wave

    Science.gov (United States)

    Williams, James H., Jr.; Nagem, Raymond J.

    1989-01-01

    A single elastic fiber embedded in an infinite elastic matrix is considered. An incident plane SH wave is assumed in the infinite matrix, and an expression is derived for the total energy in the fiber due to the incident SH wave. A nondimensional form of the fiber energy is plotted as a function of the nondimensional wavenumber of the SH wave. It is shown that the fiber energy attains maximum values at specific values of the wavenumber of the incident wave. The results obtained here are interpreted in the context of phenomena observed in acousto-ultrasonic experiments on fiber reinforced composite materials.

  15. Comparison of linear, mixed integer and non-linear programming methods in energy system dispatch modelling

    DEFF Research Database (Denmark)

    Ommen, Torben Schmidt; Markussen, Wiebke Brix; Elmegaard, Brian

    2014-01-01

    In the paper, three frequently used operation optimisation methods are examined with respect to their impact on operation management of the combined utility technologies for electric power and DH (district heating) of eastern Denmark. The investigation focusses on individual plant operation...... differences and differences between the solution found by each optimisation method. One of the investigated approaches utilises LP (linear programming) for optimisation, one uses LP with binary operation constraints, while the third approach uses NLP (non-linear programming). The LP model is used...... as a benchmark, as this type is frequently used, and has the lowest amount of constraints of the three. A comparison of the optimised operation of a number of units shows significant differences between the three methods. Compared to the reference, the use of binary integer variables, increases operation...

  16. Cross-beam energy transfer: On the accuracy of linear stationary models in the linear kinetic regime

    Science.gov (United States)

    Debayle, A.; Masson-Laborde, P.-E.; Ruyer, C.; Casanova, M.; Loiseau, P.

    2018-05-01

    We present an extensive numerical study by means of particle-in-cell simulations of the energy transfer that occurs during the crossing of two laser beams. In the linear regime, when ions are not trapped in the potential well induced by the laser interference pattern, a very good agreement is obtained with a simple linear stationary model, provided the laser intensity is sufficiently smooth. These comparisons include different plasma compositions to cover the strong and weak Landau damping regimes as well as the multispecies case. The correct evaluation of the linear Landau damping at the phase velocity imposed by the laser interference pattern is essential to estimate the energy transfer rate between the laser beams, once the stationary regime is reached. The transient evolution obtained in kinetic simulations is also analysed by means of a full analytical formula that includes 3D beam energy exchange coupled with the ion acoustic wave response. Specific attention is paid to the energy transfer when the laser presents small-scale inhomogeneities. In particular, the energy transfer is reduced when the laser inhomogeneities are comparable with the Landau damping characteristic length of the ion acoustic wave.

  17. Development of high gradient superconducting radio frequency cavities for international linear collider and energy recovery linear accelerator

    International Nuclear Information System (INIS)

    Saito, Kenji; Furuta, Fumio; Saeki, Takayuki

    2009-01-01

    Superconducting radio frequency (SRF) cavities were used for storage rings like TRISTAN at KEK, HERA at DESY and LEP-II at CERN in 1990-2000. This technology has been accepted as a common accelerator technology. In August 2004, ITPR recommended an electron/positron linear collider based on SRF technology for the future high energy physics. ICFA accepted the recommendation and named it ILC (International Linear Collider). SRF cavities have a very unique feature due to its very small surface resistance. Energy recovery is another very exciting application. Many laboratories are proposing ERL (Energy Recovery LINAC) as a next bright photon source. In these accelerators, production of SRF cavities with reliably high performance is the most important issue. In this paper the activities of ILC high gradient cavities will be introduced. ERL activity will be briefly presented. (author)

  18. Development of High Gradient Superconducting Radio Frequency Cavities for International Linear Collider and Energy Recovery Linear Accelerator

    Science.gov (United States)

    Saito, Kenji; Furuta, Fumio; Saeki, Takayuki

    Superconducting radio frequency (SRF) cavities were used for storage rings like TRISTAN at KEK, HERA at DESY and LEP-II at CERN in 1990-2000. This technology has been accepted as a common accelerator technology. In August 2004, ITPR recommended an electron/positron linear collider based on SRF technology for the future high energy physics. ICFA accepted the recommendation and named it ILC (International Linear Collider). SRF cavities have a very unique feature due to its very small surface resistance. Energy recovery is another very exciting application. Many laboratories are proposing ERL (Energy Recovery LINAC) as a next bright photon source. In these accelerators, production of SRF cavities with reliably high performance is the most important issue. In this paper the activities of ILC high gradient cavities will be introduced. ERL activity will be briefly presented.

  19. Linear momentum, angular momentum and energy in the linear collision between two balls

    Science.gov (United States)

    Hanisch, C.; Hofmann, F.; Ziese, M.

    2018-01-01

    In an experiment of the basic physics laboratory, kinematical motion processes were analysed. The motion was recorded with a standard video camera having frame rates from 30 to 240 fps the videos were processed using video analysis software. Video detection was used to analyse the symmetric one-dimensional collision between two balls. Conservation of linear and angular momentum lead to a crossover from rolling to sliding directly after the collision. By variation of the rolling radius the system could be tuned from a regime in which the balls move away from each other after the collision to a situation in which they re-collide.

  20. Quantum energy teleportation with a linear harmonic chain

    International Nuclear Information System (INIS)

    Nambu, Yasusada; Hotta, Masahiro

    2010-01-01

    A protocol of quantum energy teleportation is proposed for a one-dimensional harmonic chain. A coherent-state positive operator-valued measure (POVM) measurement is performed on coupled oscillators of the chain in the ground state accompanied by energy infusion to the system. This measurement consumes a part of the ground-state entanglement. Depending on the measurement result, a displacement operation is performed on a distant oscillator accompanied by energy extraction from the zero-point fluctuation of the oscillator. We find that the amount of consumed entanglement is bounded from below by a positive value that is proportional to the amount of teleported energy.

  1. Extrapolations of nuclear binding energies from new linear mass relations

    DEFF Research Database (Denmark)

    Hove, D.; Jensen, A. S.; Riisager, K.

    2013-01-01

    We present a method to extrapolate nuclear binding energies from known values for neighboring nuclei. We select four specific mass relations constructed to eliminate smooth variation of the binding energy as function nucleon numbers. The fast odd-even variations are avoided by comparing nuclei...

  2. Atomic core-ionization energies; approximately piecewise-linear and linear relationships

    DEFF Research Database (Denmark)

    Avery, James Emil; Avery, John Scales

    2008-01-01

    as to make all of the members   of the basis set correspond to the energy of the state being   represented. In this paper we apply the method to core ionization in   atoms and atomic ions, using a basis where $\\op{V}_0(\\xx)$ is chosen   to be the nuclear attraction potential. We make use of a large...

  3. Predictions of Quantum Molecular Dynamical Model between incident energy 50 and 1000 MeV/Nucleon

    Directory of Open Access Journals (Sweden)

    Kumar Sanjeev

    2015-01-01

    Full Text Available In the present work, the Quantum Molecular Dynamical (QMD model is summarized as a useful tool for the incident energy range of 50 to 1000 MeV/nucleon in heavy-ion collisions. The model has reproduced the experimental results of various collaborations such as ALADIN, INDRA, PLASTIC BALL and FOPI upto a high level of accuracy for the phenomena like multifragmentation, collective flow as well as elliptical flow in the above prescribed energy range. The efforts are further in the direction to predict the symmetry energy in the wide incident energy range.

  4. Effects of incident cluster size, substrate temperature, and incident energy on bombardment of Ni clusters onto Cu (0 0 1) surface studied using molecular dynamics simulation

    International Nuclear Information System (INIS)

    Lin, Shiang-Jiun; Wu, Cheng-Da; Fang, Te-Hua; Chen, Guan-Hung

    2012-01-01

    The bombardment process of a Ni cluster onto a Cu (0 0 1) surface is studied using molecular dynamics (MD) simulations based on the tight-binding second-moment approximation (TB-SMA) many-body potential. The effects of incident cluster size, substrate temperature, and incident energy are evaluated in terms of molecular trajectories, kinetic energy, stress, self-diffusion coefficient, and sputtering yield. The simulation results clearly show that the penetration depth and Cu surface damage increase with increasing incident cluster size for a given incident energy per atom. The self-diffusion coefficient and the penetration depth of a cluster significantly increase with increasing substrate temperature. An incident cluster can be scattered into molecules or atoms that become embedded in the surface after incidence. When the incident energy is increased, the number of volcano-like defects and the penetration depth increase. A high sputtering yield can be obtained by increasing the incident energy at high temperature. The sputtering yield significantly increases with cluster size when the incident energy is above 5 eV/atom.

  5. Effect of linear and non-linear components in the temperature dependences of thermoelectric properties on the energy conversion efficiency

    International Nuclear Information System (INIS)

    Yamashita, Osamu

    2009-01-01

    The new thermal rate equations were built up by taking the linear and non-linear components in the temperature dependences of the Seebeck coefficient α, the electrical resistivity ρ and thermal conductivity κ of a thermoelectric (TE) material into the thermal rate equations on the assumption that their temperature dependences are expressed by a quadratic function of temperature T. The energy conversion efficiency η for a single TE element was formulated using the new thermal rate ones proposed here. By applying it to the high-performance half-Heusler compound, the non-linear component in the temperature dependence of α among those of the TE properties has the greatest effect on η, so that η/η 0 was increased by 11% under the condition of T = 510 K and ΔT = 440 K, where η 0 is a well-known conventional energy conversion efficiency. It was thus found that the temperature dependences of TE properties have a significant influence on η. When one evaluates the accurate achievement rate of η exp obtained experimentally for a TE generator, therefore, η exp should be compared with η the estimated from the theoretical expression proposed here, not with η 0 , particularly when there is a strong non-linearity in the temperature dependence of TE properties.

  6. Energy in one-dimensional linear waves in a string

    International Nuclear Information System (INIS)

    Burko, Lior M

    2010-01-01

    We consider the energy density and energy transfer in small amplitude, one-dimensional waves on a string and find that the common expressions used in textbooks for the introductory physics with calculus course give wrong results for some cases, including standing waves. We discuss the origin of the problem, and how it can be corrected in a way appropriate for the introductory calculus-based physics course. (letters and comments)

  7. Noble-gas ion sputtering yield of gold and copper: Dependence on the energy and angle of incidence of the projectiles

    Energy Technology Data Exchange (ETDEWEB)

    Oliva-Florio, A.; Baragiola, R.A.; Jakas, M.M.; Alonso, E.V.; Ferron, J.

    1987-02-15

    We have measured the sputtering yield of Au and Cu targets as a function of energy and the angle of incidence of noble-gas projectiles in the energy range 2--50 keV. The experimental results were compared with the analytical theory of sputtering and with computer simulations. Our study indicates that the linear-cascade model is applicable only asymptotically for low nuclear stopping powers.

  8. Simulation calculation for the energy deposition profile and the transmission fraction of intense pulsed electron beam at various incident angles

    International Nuclear Information System (INIS)

    Yang Hailiang; Qiu Aici; Zhang Jiasheng; Huang Jianjun; Sun Jianfeng

    2002-01-01

    The incident angles have a heavy effect on the intense pulsed electron beam energy deposition profile, energy deposition fraction and beam current transmission fraction in material. The author presents electron beam energy deposition profile and energy deposition fraction versus electron energy (0.5-2.0 MeV), at various incident angles for three aluminum targets of various thickness via theoretical calculation. The intense pulsed electron beam current transmission fractions versus electron energy (0.4-1.4 MeV) at various incident angles for three thickness of carbon targets were also theoretically calculated. The calculation results indicate that the deposition energy in unit mass of material surface layer increase with the rise of electron beam incident angle, and electron beam with low incident angle (closer to normal incident angle) penetrates deeper into the target material. The electron beams deposit more energy in unit mass of material surface layer at 60 degree-70 degree incident angle

  9. Energy Recovery from a Non-Linear Electromagnetic System

    Directory of Open Access Journals (Sweden)

    Kęcik Krzysztof

    2018-03-01

    Full Text Available The paper presents study of a pseudo-magnetic levitation system (pseudo-maglev dedicated for energy harvesting. The idea rely on motion of a pseudo-levitating magnet in a coil’s terminal. The study based on real prototype harvester system, which in the pendulum dynamic vibration absorber is applied. For some parameters, the stability loss caused by the period doubling bifurcation is detected. The coexistence of two stable solutions, one of which is much better for energy harvesting is observed. The influence of the pseudo-maglev parameters on the recovered current and stability of the periodic solutions is presented in detail. The obtained results show, that the best energy recovery occurs for the high pseudo-maglev stiffness and close to the coil resistance. The amplitude’s excitation, the load resistances and the coupling coefficient strongly influence on the system’s response.

  10. Variation of energy absorption buildup factors with incident photon energy and penetration depth for some commonly used solvents

    International Nuclear Information System (INIS)

    Singh, Parjit S.; Singh, Tejbir; Kaur, Paramjeet

    2008-01-01

    G.P. fitting method has been used to compute energy absorption buildup factor of some commonly used solvents such as acetonitrile (C 4 H 3 N), butanol (C 4 H 9 OH), chlorobenzene (C 6 H 5 Cl), diethyl ether (C 4 H 10 O), ethanol (C 2 H 5 OH), methanol (CH 3 OH), propanol (C 3 H 7 OH) and water (H 2 O) for the wide energy range (0.015-15.0 MeV) up to the penetration depth of 10 mean free path. The variation of energy absorption buildup factor with chemical composition as well as incident photon energy for the selected solvents has been studied. It has been observed that the maximum value of energy absorption buildup factors shifts to the slightly higher incident photon energy with the increase in equivalent atomic number of the solvent and the solvent with least equivalent atomic number possesses the maximum value of energy absorption buildup factor

  11. Uncertainty relations, zero point energy and the linear canonical group

    Science.gov (United States)

    Sudarshan, E. C. G.

    1993-01-01

    The close relationship between the zero point energy, the uncertainty relations, coherent states, squeezed states, and correlated states for one mode is investigated. This group-theoretic perspective enables the parametrization and identification of their multimode generalization. In particular the generalized Schroedinger-Robertson uncertainty relations are analyzed. An elementary method of determining the canonical structure of the generalized correlated states is presented.

  12. Routing versus energy optimization in a linear network

    NARCIS (Netherlands)

    Coenen, Tom Johannes Maria; van Ommeren, Jan C.W.; de Graaf, Maurits

    In wireless networks, devices (or nodes) often have a limited battery supply to use for the sending and reception of transmissions. By allowing nodes to relay messages for other nodes, the distance that needs to be bridged can be reduced, thus limiting the energy needed for a transmission. However,

  13. RF emittance in a low energy electron linear accelerator

    Science.gov (United States)

    Sanaye Hajari, Sh.; Haghtalab, S.; Shaker, H.; Kelisani, M. Dayyani

    2018-04-01

    Transverse beam dynamics of an 8 MeV low current (10 mA) S-band traveling wave electron linear accelerator has been studied and optimized. The main issue is to limit the beam emittance, mainly induced by the transverse RF forces. The linac is being constructed at Institute for Research in Fundamental Science (IPM), Tehran Iran Labeled as Iran's First Linac, nearly all components of this accelerator are designed and constructed within the country. This paper discusses the RF coupler induced field asymmetry and the corresponding emittance at different focusing levels, introduces a detailed beam dynamics design of a solenoid focusing channel aiming to reduce the emittance growth and studies the solenoid misalignment tolerances. In addition it has been demonstrated that a prebuncher cavity with appropriate parameters can help improving the beam quality in the transverse plane.

  14. Collisions of polyatomic ions with surfaces: incident energy partitioning and chemical reactions

    International Nuclear Information System (INIS)

    Zabka, J.; Roithova, J.; Dolejsek, Z.; Herman, Z.

    2002-01-01

    Collision of polyatomic ions with surfaces were investigated in ion-surface scattering experiments to obtain more information on energy partitioning in ion-surface collision and on chemical reactions at surfaces. Mass spectra, translation energy and angular distributions of product ions were measured in dependence on the incident energy and the incident angle of polyatomic projectiles. From these data distributions of energy fractions resulting in internal excitation of the projectile, translation energy of the product ions, and energy absorbed by the surface were determined. The surface investigated were a standard stainless steel surface, covered by hydrocarbons, carbon surfaces at room and elevated temperatures, and several surfaces covered by a self-assembled monolayers (C 12 -hydrocarbon SAM, C 11 -perfluorohydrocarbon SAM, and C 11 hydrocarbon with terminal -COOH group SAM). The main processes observed at collision energies of 10 - 50 eV were: neutralization of the ions at surfaces, inelastic scattering and dissociations of the projectile ions, quasi elastic scattering of the projectile ions, and chemical reactions with the surface material (usually hydrogen-atom transfer reactions). The ion survival factor was estimated to be a few percent for even-electron ions (like protonated ethanol ion, C 2 H 5 O + , CD 5 + ) and about 10 - 10 2 times lower for radical ions (like ethanol and benzene molecular ions, CD 4 + ). In the polyatomic ion -surface energy transfer experiments, the ethanol molecular ion was used as a well-characterized projectile ion. The results with most of the surfaces studied showed in the collision energy range of 13 - 32 eV that most collisions were strongly inelastic with about 6 - 8 % of the incident projectile energy transformed into internal excitation of the projectile (independent of the incident angle) and led partially to its further dissociation in a unimolecular way after the interaction with the surface. The incident energy

  15. A Bayesian approach for estimating under-reported dengue incidence with a focus on non-linear associations between climate and dengue in Dhaka, Bangladesh.

    Science.gov (United States)

    Sharmin, Sifat; Glass, Kathryn; Viennet, Elvina; Harley, David

    2018-04-01

    Determining the relation between climate and dengue incidence is challenging due to under-reporting of disease and consequent biased incidence estimates. Non-linear associations between climate and incidence compound this. Here, we introduce a modelling framework to estimate dengue incidence from passive surveillance data while incorporating non-linear climate effects. We estimated the true number of cases per month using a Bayesian generalised linear model, developed in stages to adjust for under-reporting. A semi-parametric thin-plate spline approach was used to quantify non-linear climate effects. The approach was applied to data collected from the national dengue surveillance system of Bangladesh. The model estimated that only 2.8% (95% credible interval 2.7-2.8) of all cases in the capital Dhaka were reported through passive case reporting. The optimal mean monthly temperature for dengue transmission is 29℃ and average monthly rainfall above 15 mm decreases transmission. Our approach provides an estimate of true incidence and an understanding of the effects of temperature and rainfall on dengue transmission in Dhaka, Bangladesh.

  16. Prediction of sound transmission loss through multilayered panels by using Gaussian distribution of directional incident energy

    Science.gov (United States)

    Kang; Ih; Kim; Kim

    2000-03-01

    In this study, a new prediction method is suggested for sound transmission loss (STL) of multilayered panels of infinite extent. Conventional methods such as random or field incidence approach often given significant discrepancies in predicting STL of multilayered panels when compared with the experiments. In this paper, appropriate directional distributions of incident energy to predict the STL of multilayered panels are proposed. In order to find a weighting function to represent the directional distribution of incident energy on the wall in a reverberation chamber, numerical simulations by using a ray-tracing technique are carried out. Simulation results reveal that the directional distribution can be approximately expressed by the Gaussian distribution function in terms of the angle of incidence. The Gaussian function is applied to predict the STL of various multilayered panel configurations as well as single panels. The compared results between the measurement and the prediction show good agreements, which validate the proposed Gaussian function approach.

  17. Power Take-Off with Integrated Resonator for Energy Extraction from Linear Motions

    DEFF Research Database (Denmark)

    2014-01-01

    The invention relates to a magnetic gear for converting linear motion into rotational motion and vice versa. The present invention converts slow linear irregular oscillating motion of wave energy devices into torque on a high speed shaft for powering a generator while making the wave energy device...... of sea or ocean waves into useful energy, such as electricity. The invention relates to the control and operation of a magnetic gear based motor/generator system. The invention provides a high force density electric powered linear actuator....... resonate with the waves. The invention relates to the field of energy-harvesting from energy sources, where the energy-harvesting requires the extraction of energy from slow and often irregular reciprocating motion of bodies. The present invention relates to a wave power apparatus for converting power...

  18. Design and testing of a coaxial linear magnetic spring with integral linear motor. [for spacecraft energy storage

    Science.gov (United States)

    Patt, P. J.

    1985-01-01

    The design of a coaxial linear magnetic spring which incorporates a linear motor to control axial motion and overcome system damping is presented, and the results of static and dynamic tests are reported. The system has nominal stiffness 25,000 N/m and is designed to oscillate a 900-g component over a 4.6-mm stroke in a Stirling-cycle cryogenic refrigerator being developed for long-service (5-10-yr) space applications (Stolfi et al., 1983). Mosaics of 10 radially magnetized high-coercivity SmCO5 segments enclosed in Ti cans are employed, and the device is found to have quality factor 70-100, corresponding to energy-storage efficiency 91-94 percent. Drawings, diagrams, and graphs are provided.

  19. Cost-effectiveness and incidence of renewable energy promotion in Germany

    OpenAIRE

    Böhringer, Christoph; Landis, Florian; Tovar Reaños, Miguel Angel

    2017-01-01

    Over the last decade Germany has boosted renewable energy in power production by means of massive subsidies. The flip side are very high electricity prices which raises concerns that the transition cost towards a renewable energy system will be mainly borne by poor households. In this paper, we combine computable general equilibrium and microsimulation analysis to investigate the cost-effectiveness and incidence of Germany's renewable energy promotion. We find that the regressive effects of r...

  20. Neutrino mass, dark energy, and the linear growth factor

    International Nuclear Information System (INIS)

    Kiakotou, Angeliki; Lahav, Ofer; Elgaroey, Oystein

    2008-01-01

    We study the degeneracies between neutrino mass and dark energy as they manifest themselves in cosmological observations. In contradiction to a popular formula in the literature, the suppression of the matter power spectrum caused by massive neutrinos is not just a function of the ratio of neutrino to total mass densities f ν =Ω ν /Ω m , but also each of the densities independently. We also present a fitting formula for the logarithmic growth factor of perturbations in a flat universe, f(z,k;f ν ,w,Ω DE )≅[1-A(k)Ω DE f ν +B(k)f ν 2 -C(k)f ν 3 ]Ω m α (z), where α depends on the dark energy equation of state parameter w. We then discuss cosmological probes where the f factor directly appears: peculiar velocities, redshift distortion, and the integrated Sachs-Wolfe effect. We also modify the approximation of Eisenstein and Hu [Astrophys. J. 511, 5 (1999)] for the power spectrum of fluctuations in the presence of massive neutrinos and provide a revised code [http://www.star.ucl.ac.uk/∼lahav/nu m atter p ower.f].

  1. Shielding calculation for treatment rooms of high energy linear accelerator

    International Nuclear Information System (INIS)

    Elleithy, M.A.

    2006-01-01

    A review of German Institute of Standardization (DIN) scheme of the shielding calculation and the essential data required has been done for X-rays and electron beam in the energy range from 1 MeV to 50 MeV. Shielding calculation was done for primary and secondary radiations generated during X-ray operation of Linac. In addition, shielding was done against X-rays generated (Bremsstrahlung) by useful electron beams. The calculations also covered the neutrons generated from the interactions of useful X-rays (at energies above 8 MeV) with the surrounding. The present application involved the computation of shielding against the double scattered components of X-rays and neutrons in the maze area and the thickness of the paraffin wax of the room door. A new developed computer program was designed to assist shielding thickness calculations for a new Linac installation or in replacing an existing machine. The program used a combination of published tables and figures in computing the shielding thickness at different locations for all possible radiation situations. The DIN published data of 40 MeV accelerator room was compared with the program calculations. It was found that there is good agreement between both calculations. The developed program improved the accuracy and speed of calculation

  2. Link State Relationships Under Incident Conditions: Using a CTM-Based Linear Programming Dynamic Traffic Assignment Model

    Science.gov (United States)

    2010-03-01

    Urban transportation networks, consisting of numerous links and nodes, experience traffic incidents such as accidents and road maintenance work. A typical consequence of incidents is congestion which results in long queues and causes high travel time...

  3. Link state relationships under incident conditions : using a CTM-based linear programming dynamic traffic assignment model.

    Science.gov (United States)

    2010-03-01

    Urban transportation networks, consisting of numerous links and nodes, experience traffic incidents such as accidents and road : maintenance work. A typical consequence of incidents is congestion which results in long queues and causes high travel ti...

  4. Evaluation of non-linear blending in dual-energy computed tomography

    International Nuclear Information System (INIS)

    Holmes, David R.; Fletcher, Joel G.; Apel, Anja; Huprich, James E.; Siddiki, Hassan; Hough, David M.; Schmidt, Bernhard; Flohr, Thomas G.; Robb, Richard; McCollough, Cynthia; Wittmer, Michael; Eusemann, Christian

    2008-01-01

    Dual-energy CT scanning has significant potential for disease identification and classification. However, it dramatically increases the amount of data collected and therefore impacts the clinical workflow. One way to simplify image review is to fuse CT datasets of different tube energies into a unique blended dataset with desirable properties. A non-linear blending method based on a modified sigmoid function was compared to a standard 0.3 linear blending method. The methods were evaluated in both a liver phantom and patient study. The liver phantom contained six syringes of known CT contrast which were placed in a bovine liver. After scanning at multiple tube currents (45, 55, 65, 75, 85, 95, 105, and 115 mAs for the 140-kV tube), the datasets were blended using both methods. A contrast-to-noise (CNR) measure was calculated for each syringe. In addition, all eight scans were normalized using the effective dose and statistically compared. In the patient study, 45 dual-energy CT scans were retrospectively mixed using the 0.3 linear blending and modified sigmoid blending functions. The scans were compared visually by two radiologists. For the 15, 45, and 64 HU syringes, the non-linear blended images exhibited similar CNR to the linear blended images; however, for the 79, 116, and 145 HU syringes, the non-linear blended images consistently had a higher CNR across dose settings. The radiologists qualitatively preferred the non-linear blended images of the phantom. In the patient study, the radiologists preferred non-linear blending in 31 of 45 cases with a strong preference in bowel and liver cases. Non-linear blending of dual energy data can provide an improvement in CNR over linear blending and is accompanied by a visual preference for non-linear blended images. Further study on selection of blending parameters and lesion conspicuity in non-linear blended images is being pursued

  5. Wideband energy harvesting for piezoelectric devices with linear resonant behavior.

    Science.gov (United States)

    Luo, Cheng; Hofmann, Heath F

    2011-07-01

    In this paper, an active energy harvesting technique for a spring-mass-damper mechanical resonator with piezoelectric electromechanical coupling is investigated. This technique applies a square-wave voltage to the terminals of the device at the same frequency as the mechanical excitation. By controlling the magnitude and phase angle of this voltage, an effective impedance matching can be achieved which maximizes the amount of power extracted from the device. Theoretically, the harvested power can be the maximum possible value, even at off-resonance frequencies. However, in actual implementation, the efficiency of the power electronic circuit limits the amount of power harvested. A power electronic full-bridge converter is built to implement the technique. Experimental results show that the active technique can increase the effective bandwidth by a factor of more than 2, and harvests significantly higher power than rectifier-based circuits at off-resonance frequencies.

  6. Alpha-particle breakup at incident energies of 20 and 40 MeV/nucleon

    International Nuclear Information System (INIS)

    Wu, J.R.; Chang, C.C.; Holmgren, H.D.; Koontz, R.W.

    1979-01-01

    The breakup of alpha particles at incident energies of 20 and 40 MeV/nucleon on 27 Al, 58 Ni, 90 Zr, and 209 Bi has been studied. It was found that the breakup cross section decreases rapidly with increasing angles and increases with increasing target mass and incident energy. The total breakup yield, summed over all charged fragments, is approx.15--35% of the alpha-particle total reaction cross section, and has an approximate A/sup 1/3/ dependence. The ratios of breakup yields among different fragments are approximately p:d:t: 3 He approx. = 13:3:1:2, and are roughly independent of the incident energy and the target nucleus. These features suggest that the alpha-particle fragmentation is a peripheral process and is dominated by the properties of the incident projectile. A simple plane-wave alpha-particle breakup model gives a rather good description to the experimental data. In addition to the breakup deuteron peak at half of the beam energy, a second peak at quarter of the beam energy (or the same energy as the breakup proton peak) is observed. This peak might be due to a two-step breakup-pickup process

  7. A study of the linear free energy model for DNA structures using the generalized Hamiltonian formalism

    Energy Technology Data Exchange (ETDEWEB)

    Yavari, M., E-mail: yavari@iaukashan.ac.ir [Islamic Azad University, Kashan Branch (Iran, Islamic Republic of)

    2016-06-15

    We generalize the results of Nesterenko [13, 14] and Gogilidze and Surovtsev [15] for DNA structures. Using the generalized Hamiltonian formalism, we investigate solutions of the equilibrium shape equations for the linear free energy model.

  8. Variation in emission and energy recovery concerning incident angle in a scheme recovering high energy ions by secondary electrons

    International Nuclear Information System (INIS)

    Wada, Takayuki; Konno, Shota; Nakamoto, Satoshi; Takeno, Hiromasa; Furuyama, Yuichi; Taniike, Akira

    2016-01-01

    As an energy recovery device for fast protons produced in D- 3 He nuclear fusion, secondary electron (SE) direct energy converter (SEDEC) was proposed in addition to traveling wave direct energy converter (TWDEC). Some protons passing through a TWDEC come into an SEDEC, where protons penetrate to a number of foil electrodes and emitted SEs are recovered. Following to a development of SE orbit control by magnetic field, dependence on incident angle of protons was examined to optimize structure of SEDEC. Based on a theoretical expectation, experiments were performed by changing incident angle of protons and variation in emission and energy recovery were measured. Both emission and energy recovery increased as the angle increased, and differences with theoretical expectation are discussed. (author)

  9. Incident energy dependence of collision dynamics in A+A reactions from AGS to SPS

    International Nuclear Information System (INIS)

    Nara, Yasushi

    2000-01-01

    Based on the hadronic transport model of JAM, I calculate the time evolution of particles, density, temperature and energy density for the heavy ion collision at the incident energies of AGS(11A GeV), JHF(25A GeV) and SPS(158A GeV). Microscopic calculations show that resonance matter with extremely large baryon density is created at AGS energy, while at JHF energy, quark matter with extremely large baryon density is suggested. At SPS energy, quark matter with large baryon density might be created. (author)

  10. Cost-effectiveness and incidence of renewable energy promotion in Germany

    Energy Technology Data Exchange (ETDEWEB)

    Boehringer, Christoph [Oldenburg Univ. (Germany). Dept. of Economics; Landis, Florian [Eidgenoessische Technische Hochschule, Zurich (Switzerland); Tovar Reanos, Miguel Angel [Zentrum fuer Europaeische Wirtschaftsforschung GmbH (ZEW), Mannheim (Germany)

    2017-08-01

    Over the last decade Germany has boosted renewable energy in power production by means of massive subsidies. The flip side are very high electricity prices which raises concerns that the transition cost towards a renewable energy system will be mainly borne by poor households. In this paper, we combine computable general equilibrium and microsimulation analysis to investigate the cost-effectiveness and incidence of Germany's renewable energy promotion. We find that the regressive effects of renewable energy promotion could be ameliorated by alternative subsidy financing mechanisms which achieve the same level of electricity generation from renewable energy sources.

  11. Physics with linear colliders in the tev CM energy region

    International Nuclear Information System (INIS)

    Bulos, F.; Cook, V.; Hinchliffe, I.; Lane, K.; Pellet, D.; Perl, M.; Seiden, A.; Wiedemann, H.

    1982-01-01

    It may well be that the e/sup +/e/sup -/ physics beyond PEP and PETRA and up to 200 GeV CM energy will deal primarily with the verification of the standard model (SM) of weak and electromagnetic interactions. Various theoretical and experimental studies at workshops for contemplated accelerators (SLC, LEP I, Z 0 ) have assumed this. Beyond 200 GeV the picture is less clear. The absence of theoretical models with strong predictions comparable to the SM adds to the difficulty. In addition, the experimental verification of the SM itself is yet to come, and one is forced to make certain assumptions about the outcome. The following assumptions are made: Z 0 , W/sup +-/, light higgs (if M/sub H/ < 100 GeV) have all been discovered. The t quark has been discovered if its mass is < 100 GeV. QCD is basically the correct theory of the strong interactions. With these assumptions, the authors have produced an updated table of possible physics in the TeV region. This table was used as the basis for the study of specific physics. It contains best estimates of cross-section, promising signatures for final states, and some helpful comments

  12. Design and Experiment Analysis of a Direct-Drive Wave Energy Converter with a Linear Generator

    OpenAIRE

    Jing Zhang; Haitao Yu; Zhenchuan Shi

    2018-01-01

    Coastal waves are an abundant nonpolluting and renewable energy source. A wave energy converter (WEC) must be designed for efficient and steady operation in highly energetic ocean environments. A direct-drive wave energy conversion (D-DWEC) system with a tubular permanent magnet linear generator (TPMLG) on a wind and solar photovoltaic complementary energy generation platform is proposed to improve the conversion efficiency and reduce the complexity and device volume of WECs. The operating pr...

  13. Energy Efficiency of an Intracavity Coupled, Laser-Driven Linear Accelerator Pumped by an External Laser

    International Nuclear Information System (INIS)

    Neil Na, Y.C.; Siemann, R.H.; SLAC; Byer, R.L.; Stanford U., Phys. Dept.

    2005-01-01

    We calculate the optimum energy efficiency of a laser-driven linear accelerator by adopting a simple linear model. In the case of single bunch operation, the energy efficiency can be enhanced by incorporating the accelerator into a cavity that is pumped by an external laser. In the case of multiple bunch operation, the intracavity configuration is less advantageous because the strong wakefield generated by the electron beam is also recycled. Finally, the calculation indicates that the luminosity of a linear collider based on such a structure is comparably small if high efficiency is desired

  14. Computer modelling of a linear turbine for extracting energy from slow-flowing waters

    International Nuclear Information System (INIS)

    Raykov, Plamen

    2014-01-01

    The aim of the paper is to describe the main relationships in the process of designing linear chain turbines with blades and their accompanying devices for obtaining energy from slow flowing waters. Based on the shortcomings of previous types of linear turbines a new concept for arrangement of the blades angles with respect to the flowing water was developed. The dependencies of the geometrical parameters of designed new type linear water turbine and the force applied by the flowing water to the blades are obtained. The optimal relationship between velocity of stream water and extracted power is calculated. The ratio between power characteristics of the extracted energy for different speeds of blades and inclination angle are presented. On the basis of the theoretical results a new linear turbine prototype with inclined blades was designed. Key words: water power system, blade-chain devices, linear turbines

  15. Systematics of threshold incident energy for deep sub-barrier fusion hindrance

    International Nuclear Information System (INIS)

    Ichikawa, Takatoshi; Hagino, Kouichi; Iwamoto, Akira

    2007-01-01

    We systematically evaluate the potential energy at the touching configuration for heavy-ion reactions using various potential models. We point out that the energy at the touching point, especially that estimated with the Krappe-Nix-Sierk (KNS) potential, strongly correlates with the threshold incident energy for steep falloff of fusion cross sections observed recently for several systems at extremely low energies. This clearly indicates that the steep fall-off phenomenon can be attributed to the dynamics after the target and projectile touch with each other, e.g., the tunneling process and the nuclear saturation property in the overlap region

  16. Cumulative percent energy deposition of photon beam incident on different targets, simulated by Monte Carlo

    International Nuclear Information System (INIS)

    Kandic, A.; Jevremovic, T.; Boreli, F.

    1989-01-01

    Monte Carlo simulation (without secondary radiation) of the standard photon interactions (Compton scattering, photoelectric absorption and pair protection) for the complex slab's geometry is used in numerical code ACCA. A typical ACCA run will yield: (a) transmission of primary photon radiation differential in energy, (b) the spectrum of energy deposited in the target as a function of position and (c) the cumulative percent energy deposition as a function of position. A cumulative percent energy deposition of photon monoenergetic beam incident on simplest and complexity tissue slab and Fe slab are presented in this paper. (author). 5 refs.; 2 figs

  17. Monte Carlo calculations of energy and angular distributions of transmitted and backscattered neutrons of 15 MeV incident energy

    International Nuclear Information System (INIS)

    Gaber, M.; Faied, A.

    1994-01-01

    The Monte Carlo technique was used to generate both energy and angular distributions of transmitted and backscattered neutrons incident on infinite graphite slabs of thicknesses ranging from 1-90 cm. Point isotropic and parallel beams of 15 MeV neutrons were used. A computer program was developed to simulate collisions by fast neutrons. (author)

  18. Calculation of the effective D-d neutron energy distribution incident on a cylindrical shell sample

    International Nuclear Information System (INIS)

    Gotoh, Hiroshi

    1977-07-01

    A method is proposed to calculate the effective energy distribution of neutrons incident on a cylindrical shell sample placed perpendicularly to the direction of the deuteron beam bombarding a deuterium metal target. The Monte Carlo method is used and the Fortran program is contained. (auth.)

  19. The success of the distorted wave method at very high incident energy

    International Nuclear Information System (INIS)

    Barrette, J.; Berthier, B.; Gastebois, J.

    1986-05-01

    The one-proton and one-neutron direct surface transfer reactions induced by 793 MeV 16 O incident energy beam bombarding a 208 Pb target nucleus, are widely explained by two selection rules contained in the Dirtorted Wave Method formalism

  20. Energy systems evaluation of potential for incidents having health or safety impact

    International Nuclear Information System (INIS)

    Speas, I.G.

    1986-01-01

    The paper discusses the results of safety surveys of Martin Marietta Energy Systems - operated nuclear facilities. The purpose was to identify potential incidents that could cause large numbers of casualties, evaluate existing prevention/response actions, and identify possible improvements. The survey findings indicate the potential for an accident with consequences similar to those at Bhopal, India, is essentially non-existent

  1. Vibration Energy Harvesting on Vehicle Suspension Using Rotary and Linear Electromagnetic Generator

    Directory of Open Access Journals (Sweden)

    Arif Indro Sultoni

    2013-04-01

    Full Text Available In this paper, we discuss comparation of vehicle vibration energy harvesting between rotary and linear electromagnetic generator. We construct the two model of energy harvester mechanism and then analyze both of energy absorbtion and vehicle comfortability. Furthermore, we analyze both of energy absorbtion and vehicle comfortability. Vehicle is modeled as quarter car. Rotarty generator harvests 2.5 x 10-4 Watt. The other hand, linear generator has viscous characteristic and capable to generates 90 Watts with 12 Volt power supply for 0.03 m amplitude of bumpy road input. Linear generator reduces oscillation with 1.2 sec settling time. It is more comfort than the angular which has 3 sec in settling time. With unnevenees road input, mean power of this generator is 64 Watt.

  2. Theory of emission spectra from metal films irradiated by low energy electrons near normal incidence

    International Nuclear Information System (INIS)

    Kretschmann, E.; Callcott, T.A.; Arakawa, E.T.

    1980-01-01

    The emission spectrum produced by low energy electrons incident on a rough metal surface has been calculated for a roughness auto-correlation function containing a prominent peak at a high wave vector. For low energy electrons near normal incidence, the high wavevector peak dominates the roughness coupled surface plasmon radiation (RCSPR) process. The calculation yields estimates of the ratio of RCSPR to transition radiation, the dependence of emission intensity on electron energy and the shape and position of the RCSPR peak. The most interesting result is that the high-wavevector roughness can split the RCSPR radiation into peaks lying above and below the asymptotic surface plasma frequency. The results are compared with data from Ag in the following paper. (orig.)

  3. Energy dependence of ion-induced sputtering yields from monoatomic solids at normal incidence

    International Nuclear Information System (INIS)

    Yamamura, Yasunori; Tawara, Hiro.

    1995-03-01

    The yields of the ion-induced sputtering from monoatomic solids at normal incidence for various ion-target combinations are presented graphically as a function of the incident ion energy. In order to fill the lack of the experimental data, the sputtering yields are also calculated by the Monte Carlo simulation code ACAT for some ion-target combinations. Each graph shows available experimental data points and the ACAT data, together with the sputtering yields calculated by the present empirical formula, whose parameters are determined by the best-fit to available data. (author)

  4. A generic double-curvature piezoelectric shell energy harvester: Linear/nonlinear theory and applications

    Science.gov (United States)

    Zhang, X. F.; Hu, S. D.; Tzou, H. S.

    2014-12-01

    Converting vibration energy to useful electric energy has attracted much attention in recent years. Based on the electromechanical coupling of piezoelectricity, distributed piezoelectric zero-curvature type (e.g., beams and plates) energy harvesters have been proposed and evaluated. The objective of this study is to develop a generic linear and nonlinear piezoelectric shell energy harvesting theory based on a double-curvature shell. The generic piezoelectric shell energy harvester consists of an elastic double-curvature shell and piezoelectric patches laminated on its surface(s). With a current model in the closed-circuit condition, output voltages and energies across a resistive load are evaluated when the shell is subjected to harmonic excitations. Steady-state voltage and power outputs across the resistive load are calculated at resonance for each shell mode. The piezoelectric shell energy harvesting mechanism can be simplified to shell (e.g., cylindrical, conical, spherical, paraboloidal, etc.) and non-shell (beam, plate, ring, arch, etc.) distributed harvesters using two Lamé parameters and two curvature radii of the selected harvester geometry. To demonstrate the utility and simplification procedures, the generic linear/nonlinear shell energy harvester mechanism is simplified to three specific structures, i.e., a cantilever beam case, a circular ring case and a conical shell case. Results show the versatility of the generic linear/nonlinear shell energy harvesting mechanism and the validity of the simplification procedures.

  5. Variation of energy absorption buildup factors with incident photon energy and penetration depth for some commonly used solvents

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Parjit S. [Department of Physics, Punjabi University, Patiala 147 002 (India)], E-mail: dr_parjit@hotmail.com; Singh, Tejbir [Department of Physics, Lovely Professional University, Phagwara 144 402 (India); Kaur, Paramjeet [IAS and Allied Services Training Centre, Punjabi University, Patiala 147 002 (India)

    2008-06-15

    G.P. fitting method has been used to compute energy absorption buildup factor of some commonly used solvents such as acetonitrile (C{sub 4}H{sub 3}N), butanol (C{sub 4}H{sub 9}OH), chlorobenzene (C{sub 6}H{sub 5}Cl), diethyl ether (C{sub 4}H{sub 10}O), ethanol (C{sub 2}H{sub 5}OH), methanol (CH{sub 3}OH), propanol (C{sub 3}H{sub 7}OH) and water (H{sub 2}O) for the wide energy range (0.015-15.0 MeV) up to the penetration depth of 10 mean free path. The variation of energy absorption buildup factor with chemical composition as well as incident photon energy for the selected solvents has been studied. It has been observed that the maximum value of energy absorption buildup factors shifts to the slightly higher incident photon energy with the increase in equivalent atomic number of the solvent and the solvent with least equivalent atomic number possesses the maximum value of energy absorption buildup factor.

  6. DIESYS—dynamically non-linear dielectric elastomer energy generating synergetic structures: perspectives and challenges

    International Nuclear Information System (INIS)

    Antoniadis, I A; Venetsanos, D T; Papaspyridis, F G

    2013-01-01

    Dielectric elastomer based generators (DEGs) offer some unique properties over energy generators based on other materials. These properties include high energy density, high efficiency over a broad range of frequencies, low compliance, the ability to produce high strain, large area, low cost films with no toxic materials and wide range environmental tolerance. As further shown in this paper, DEG materials can also exhibit a non-linear dynamic behavior, enhancing broad-band energy transfer. More specifically, dielectric elastomer (DE) energy generating synergetic structures (DIESYS) are considered as dynamic energy absorbers. Two elementary characteristic DIESYS design concepts are examined, leading to a typical antagonistic configuration for in-plane oscillations and a typical synagonistic configuration for out-of-plane oscillations. Originally, all the DE elements of the structure are assumed to be always in tension during all the phases of the harvesting cycle, conforming to the traditional concept of operation of DE structures. As shown in this paper, the traditional always-in-tension concept results in a linear dynamic system response, despite the fact that the implemented (DE) parts are considered to have been made of a non-linear (hyperelastic) material. In contrast, the proposed loose-part concept ensures the appearance of a non-linear broad-band system response, enhancing energy transfer from the environmental source. (paper)

  7. Study of Piezoelectric Vibration Energy Harvester with non-linear conditioning circuit using an integrated model

    Science.gov (United States)

    Manzoor, Ali; Rafique, Sajid; Usman Iftikhar, Muhammad; Mahmood Ul Hassan, Khalid; Nasir, Ali

    2017-08-01

    Piezoelectric vibration energy harvester (PVEH) consists of a cantilever bimorph with piezoelectric layers pasted on its top and bottom, which can harvest power from vibrations and feed to low power wireless sensor nodes through some power conditioning circuit. In this paper, a non-linear conditioning circuit, consisting of a full-bridge rectifier followed by a buck-boost converter, is employed to investigate the issues of electrical side of the energy harvesting system. An integrated mathematical model of complete electromechanical system has been developed. Previously, researchers have studied PVEH with sophisticated piezo-beam models but employed simplistic linear circuits, such as resistor, as electrical load. In contrast, other researchers have worked on more complex non-linear circuits but with over-simplified piezo-beam models. Such models neglect different aspects of the system which result from complex interactions of its electrical and mechanical subsystems. In this work, authors have integrated the distributed parameter-based model of piezo-beam presented in literature with a real world non-linear electrical load. Then, the developed integrated model is employed to analyse the stability of complete energy harvesting system. This work provides a more realistic and useful electromechanical model having realistic non-linear electrical load unlike the simplistic linear circuit elements employed by many researchers.

  8. Improving the energy efficiency of sparse linear system solvers on multicore and manycore systems.

    Science.gov (United States)

    Anzt, H; Quintana-Ortí, E S

    2014-06-28

    While most recent breakthroughs in scientific research rely on complex simulations carried out in large-scale supercomputers, the power draft and energy spent for this purpose is increasingly becoming a limiting factor to this trend. In this paper, we provide an overview of the current status in energy-efficient scientific computing by reviewing different technologies used to monitor power draft as well as power- and energy-saving mechanisms available in commodity hardware. For the particular domain of sparse linear algebra, we analyse the energy efficiency of a broad collection of hardware architectures and investigate how algorithmic and implementation modifications can improve the energy performance of sparse linear system solvers, without negatively impacting their performance. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  9. Effect of linear energy on the properties of an AL alloy in DPMIG welding

    Science.gov (United States)

    Liao, Tianfa; Jin, Li; Xue, Jiaxiang

    2018-01-01

    The effect of different linear energy parameters on the DPMIG welding performance of AA1060 aluminium alloy is studied in this paper. The stability of the welding process is verified with a Labview electrical signal acquisition system, and the microstructure and tensile properties of the welded joint are studied via optical microscopy, scanning electron microscopy and electrical tensile tests. The test results show that the welding process for the DPMIG methods stable and that the weld beads appear as scales. Tensile strength results indicate that, with increasing linear energy, the tensile strength first increases and then decreases. The tensile strength of the joint is maximized when the linear energy is 120.5 J / mm-1.

  10. Fitting and forecasting coupled dark energy in the non-linear regime

    Energy Technology Data Exchange (ETDEWEB)

    Casas, Santiago; Amendola, Luca; Pettorino, Valeria; Vollmer, Adrian [Institut für Theoretische Physik, Ruprecht-Karls-Universität Heidelberg, Philosophenweg 16, Heidelberg, 69120 Germany (Germany); Baldi, Marco, E-mail: casas@thphys.uni-heidelberg.de, E-mail: l.amendola@thphys.uni-heidelberg.de, E-mail: mail@marcobaldi.it, E-mail: v.pettorino@thphys.uni-heidelberg.de, E-mail: vollmer@thphys.uni-heidelberg.de [Dipartimento di Fisica e Astronomia, Alma Mater Studiorum Università di Bologna, viale Berti Pichat, 6/2, Bologna, I-40127 Italy (Italy)

    2016-01-01

    We consider cosmological models in which dark matter feels a fifth force mediated by the dark energy scalar field, also known as coupled dark energy. Our interest resides in estimating forecasts for future surveys like Euclid when we take into account non-linear effects, relying on new fitting functions that reproduce the non-linear matter power spectrum obtained from N-body simulations. We obtain fitting functions for models in which the dark matter-dark energy coupling is constant. Their validity is demonstrated for all available simulations in the redshift range 0z=–1.6 and wave modes below 0k=1 h/Mpc. These fitting formulas can be used to test the predictions of the model in the non-linear regime without the need for additional computing-intensive N-body simulations. We then use these fitting functions to perform forecasts on the constraining power that future galaxy-redshift surveys like Euclid will have on the coupling parameter, using the Fisher matrix method for galaxy clustering (GC) and weak lensing (WL). We find that by using information in the non-linear power spectrum, and combining the GC and WL probes, we can constrain the dark matter-dark energy coupling constant squared, β{sup 2}, with precision smaller than 4% and all other cosmological parameters better than 1%, which is a considerable improvement of more than an order of magnitude compared to corresponding linear power spectrum forecasts with the same survey specifications.

  11. Fitting and forecasting coupled dark energy in the non-linear regime

    International Nuclear Information System (INIS)

    Casas, Santiago; Amendola, Luca; Pettorino, Valeria; Vollmer, Adrian; Baldi, Marco

    2016-01-01

    We consider cosmological models in which dark matter feels a fifth force mediated by the dark energy scalar field, also known as coupled dark energy. Our interest resides in estimating forecasts for future surveys like Euclid when we take into account non-linear effects, relying on new fitting functions that reproduce the non-linear matter power spectrum obtained from N-body simulations. We obtain fitting functions for models in which the dark matter-dark energy coupling is constant. Their validity is demonstrated for all available simulations in the redshift range 0z=–1.6 and wave modes below 0k=1 h/Mpc. These fitting formulas can be used to test the predictions of the model in the non-linear regime without the need for additional computing-intensive N-body simulations. We then use these fitting functions to perform forecasts on the constraining power that future galaxy-redshift surveys like Euclid will have on the coupling parameter, using the Fisher matrix method for galaxy clustering (GC) and weak lensing (WL). We find that by using information in the non-linear power spectrum, and combining the GC and WL probes, we can constrain the dark matter-dark energy coupling constant squared, β 2 , with precision smaller than 4% and all other cosmological parameters better than 1%, which is a considerable improvement of more than an order of magnitude compared to corresponding linear power spectrum forecasts with the same survey specifications

  12. Analysis of incident-energy dependence of delayed neutron yields in actinides

    Energy Technology Data Exchange (ETDEWEB)

    Nasir, Mohamad Nasrun bin Mohd, E-mail: monasr211@gmail.com; Metorima, Kouhei, E-mail: kohei.m2420@hotmail.co.jp; Ohsawa, Takaaki, E-mail: ohsawa@mvg.biglobe.ne.jp; Hashimoto, Kengo, E-mail: kengoh@pp.iij4u.or.jp [Graduate School of Science and Engineering, Kindai University, Kowakae, Higashi-Osaka, 577-8502 (Japan)

    2015-04-29

    The changes of delayed neutron yields (ν{sub d}) of Actinides have been analyzed for incident energy up to 20MeV using realized data of precursor after prompt neutron emission, from semi-empirical model, and delayed neutron emission probability data (P{sub n}) to carry out a summation method. The evaluated nuclear data of the delayed neutron yields of actinide nuclides are still uncertain at the present and the cause of the energy dependence has not been fully understood. In this study, the fission yields of precursor were calculated considering the change of the fission fragment mass yield based on the superposition of fives Gaussian distribution; and the change of the prompt neutrons number associated with the incident energy dependence. Thus, the incident energy dependent behavior of delayed neutron was analyzed.The total number of delayed neutron is expressed as ν{sub d}=∑Y{sub i} • P{sub ni} in the summation method, where Y{sub i} is the mass yields of precursor i and P{sub ni} is the delayed neutron emission probability of precursor i. The value of Y{sub i} is derived from calculation of post neutron emission mass distribution using 5 Gaussian equations with the consideration of large distribution of the fission fragments. The prompt neutron emission ν{sub p} increases at higher incident-energy but there are two different models; one model says that the fission fragment mass dependence that prompt neutron emission increases uniformly regardless of the fission fragments mass; and the other says that the major increases occur at heavy fission fragments area. In this study, the changes of delayed neutron yields by the two models have been investigated.

  13. Complex energy eigenvalues of a linear potential with a parabolical barrier

    International Nuclear Information System (INIS)

    Malherbe, J.B.

    1978-01-01

    The physical meaning and restrictions of complex energy eigenvalues are briefly discussed. It is indicated that a quasi-stationary phase describes an idealised disintegration system. Approximate resonance-eigenvalues of the one dimensional Schrodinger equation with a linear potential and parabolic barrier are calculated by means of Connor's semiclassical method. This method is based on the generalized WKB-method of Miller and Good. The results obtained confirm the correctness of a model representation which explains the unusual distribution of eigenvalues by certain other linear potentials in a complex energy level [af

  14. Effects of dual-energy CT with non-linear blending on abdominal CT angiography

    International Nuclear Information System (INIS)

    Li, Sulan; Wang, Chaoqin; Jiang, Xiao Chen; Xu, Ge

    2014-01-01

    To determine whether non-linear blending technique for arterial-phase dual-energy abdominal CT angiography (CTA) could improve image quality compared to the linear blending technique and conventional 120 kVp imaging. This study included 118 patients who had accepted dual-energy abdominal CTA in the arterial phase. They were assigned to Sn140/80 kVp protocol (protocol A, n = 40) if body mass index (BMI) < 25 or Sn140/100 kVp protocol (protocol B, n = 41) if BMI ≥ 25. Non-linear blending images and linear blending images with a weighting factor of 0.5 in each protocol were generated and compared with the conventional 120 kVp images (protocol C, n = 37). The abdominal vascular enhancements, image noise, signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR) and radiation dose were assessed. Statistical analysis was performed using one-way analysis of variance test, independent t test, Mann-Whitney U test, and Kruskal-Wallis test. Mean vascular attenuation, CNR, SNR and subjective image quality score for the non-linear blending images in each protocol were all higher compared to the corresponding linear blending images and 120 kVp images (p values ranging from < 0.001 to 0.007) except for when compared to non-linear blending images for protocol B and 120 kVp images in CNR and SNR. No significant differences were found in image noise among the three kinds of images and the same kind of images in different protocols, but the lowest radiation dose was shown in protocol A. Non-linear blending technique of dual-energy CT can improve the image quality of arterial-phase abdominal CTA, especially with the Sn140/80 kVp scanning.

  15. Effects of dual-energy CT with non-linear blending on abdominal CT angiography

    Energy Technology Data Exchange (ETDEWEB)

    Li, Sulan; Wang, Chaoqin; Jiang, Xiao Chen; Xu, Ge [Dept. of Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou (China)

    2014-08-15

    To determine whether non-linear blending technique for arterial-phase dual-energy abdominal CT angiography (CTA) could improve image quality compared to the linear blending technique and conventional 120 kVp imaging. This study included 118 patients who had accepted dual-energy abdominal CTA in the arterial phase. They were assigned to Sn140/80 kVp protocol (protocol A, n = 40) if body mass index (BMI) < 25 or Sn140/100 kVp protocol (protocol B, n = 41) if BMI ≥ 25. Non-linear blending images and linear blending images with a weighting factor of 0.5 in each protocol were generated and compared with the conventional 120 kVp images (protocol C, n = 37). The abdominal vascular enhancements, image noise, signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR) and radiation dose were assessed. Statistical analysis was performed using one-way analysis of variance test, independent t test, Mann-Whitney U test, and Kruskal-Wallis test. Mean vascular attenuation, CNR, SNR and subjective image quality score for the non-linear blending images in each protocol were all higher compared to the corresponding linear blending images and 120 kVp images (p values ranging from < 0.001 to 0.007) except for when compared to non-linear blending images for protocol B and 120 kVp images in CNR and SNR. No significant differences were found in image noise among the three kinds of images and the same kind of images in different protocols, but the lowest radiation dose was shown in protocol A. Non-linear blending technique of dual-energy CT can improve the image quality of arterial-phase abdominal CTA, especially with the Sn140/80 kVp scanning.

  16. A mechanical energy harvested magnetorheological damper with linear-rotary motion converter

    Science.gov (United States)

    Chu, Ki Sum; Zou, Li; Liao, Wei-Hsin

    2016-04-01

    Magnetorheological (MR) dampers are promising to substitute traditional oil dampers because of adaptive properties of MR fluids. During vibration, significant energy is wasted due to the energy dissipation in the damper. Meanwhile, for conventional MR damping systems, extra power supply is needed. In this paper, a new energy harvester is designed in an MR damper that integrates controllable damping and energy harvesting functions into one device. The energy harvesting part of this MR damper has a unique mechanism converting linear motion to rotary motion that would be more stable and cost effective when compared to other mechanical transmissions. A Maxon motor is used as a power generator to convert the mechanical energy into electrical energy to supply power for the MR damping system. Compared to conventional approaches, there are several advantages in such an integrated device, including weight reduction, ease in installation with less maintenance. A mechanical energy harvested MR damper with linear-rotary motion converter and motion rectifier is designed, fabricated, and tested. Experimental studies on controllable damping force and harvested energy are performed with different transmissions. This energy harvesting MR damper would be suitable to vehicle suspensions, civil structures, and smart prostheses.

  17. Optimization of piezoelectric cantilever energy harvesters including non-linear effects

    International Nuclear Information System (INIS)

    Patel, R; McWilliam, S; Popov, A A

    2014-01-01

    This paper proposes a versatile non-linear model for predicting piezoelectric energy harvester performance. The presented model includes (i) material non-linearity, for both substrate and piezoelectric layers, and (ii) geometric non-linearity incorporated by assuming inextensibility and accurately representing beam curvature. The addition of a sub-model, which utilizes the transfer matrix method to predict eigenfrequencies and eigenvectors for segmented beams, allows for accurate optimization of piezoelectric layer coverage. A validation of the overall theoretical model is performed through experimental testing on both uniform and non-uniform samples manufactured in-house. For the harvester composition used in this work, the magnitude of material non-linearity exhibited by the piezoelectric layer is 35 times greater than that of the substrate layer. It is also observed that material non-linearity, responsible for reductions in resonant frequency with increases in base acceleration, is dominant over geometric non-linearity for standard piezoelectric harvesting devices. Finally, over the tested range, energy loss due to damping is found to increase in a quasi-linear fashion with base acceleration. During an optimization study on piezoelectric layer coverage, results from the developed model were compared with those from a linear model. Unbiased comparisons between harvesters were realized by using devices with identical natural frequencies—created by adjusting the device substrate thickness. Results from three studies, each with a different assumption on mechanical damping variations, are presented. Findings showed that, depending on damping variation, a non-linear model is essential for such optimization studies with each model predicting vastly differing optimum configurations. (paper)

  18. Design of a linear detector array unit for high energy x-ray helical computed tomography and linear scanner

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jeong Tae; Park, Jong Hwan; Kim, Gi Yoon [Dept. of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon (Korea, Republic of); Kim, Dong Geun [Medical Imaging Department, ASTEL Inc., Seongnam (Korea, Republic of); Park, Shin Woong; Yi, Yun [Dept. of Electronics and Information Eng, Korea University, Seoul (Korea, Republic of); Kim, Hyun Duk [Research Center, Luvantix ADM Co., Ltd., Daejeon (Korea, Republic of)

    2016-11-15

    A linear detector array unit (LdAu) was proposed and designed for the high energy X-ray 2-d and 3-d imaging systems for industrial non-destructive test. Specially for 3-d imaging, a helical CT with a 15 MeV linear accelerator and a curved detector is proposed. the arc-shape detector can be formed by many LdAus all of which are arranged to face the focal spot when the source-to-detector distance is fixed depending on the application. An LdAu is composed of 10 modules and each module has 48 channels of CdWO{sub 4} (CWO) blocks and Si PIn photodiodes with 0.4 mm pitch. this modular design was made for easy manufacturing and maintenance. through the Monte carlo simulation, the CWO detector thickness of 17 mm was optimally determined. the silicon PIn photodiodes were designed as 48 channel arrays and fabricated with NTD (neutron transmutation doping) wafers of high resistivity and showed excellent leakage current properties below 1 nA at 10 V reverse bias. to minimize the low-voltage breakdown, the edges of the active layer and the guard ring were designed as a curved shape. the data acquisition system was also designed and fabricated as three independent functional boards; a sensor board, a capture board and a communication board to a Pc. this paper describes the design of the detectors (CWO blocks and Si PIn photodiodes) and the 3-board data acquisition system with their simulation results.

  19. Angular momentum and incident-energy dependence of nucleus-nucleus interaction

    International Nuclear Information System (INIS)

    Yamaguchi, S.

    1991-01-01

    The purpose of this paper is to understand intuitively the origin of the angular momentum and incident-energy dependence of the nucleus-nucleus interaction on the basis of the totally- antisymmetrized many-body theory. With the aim of understanding the structure of the nucleus-nucleus interaction, we show first that the nucleus-nucleus interaction can be written by the use of the density-distribution function and the phase-space distribution function instead of using the many-body wave function itself. And we show that the structure change of the density-distribution function with the increase of the angular momentum causes the angular momentum dependence of the nucleus-nucleus interaction and that the incident-energy dependence of the nucleus-nucleus interaction originates from the structure change of the phase-space distribution function

  20. Measurement of neutron-production double-differential cross sections for intermediate energy pion incident reaction

    International Nuclear Information System (INIS)

    Iwamoto, Yosuke; Shigyo, Nobuhiro; Satoh, Daiki

    2002-01-01

    Neutron-production double-differential cross sections for 870-MeV π + and π - and 2.1-GeV π + mesons incident on iron and lead targets were measured with NE213 liquid scintillators by time-of-flight technique. NE213 liquid scintillators 12.7 cm in diameter and 12.7 cm thick were placed in directions of 15, 30, 60, 90, 120 and 150deg. The typical flight path length was 15 m. Neutron detection efficiencies were derived from the calculation results of SCINFUL and CECIL codes. The experimental results were compared with the JAM code. The double differential cross sections calculated by the JAM code disagree with experimental data at neutron energies below about 30 MeV. JAM overestimates π + -incident neutron-production cross sections in forward angles at neutron energies of 100 to 500 MeV. (author)

  1. Nucleation of diindenoperylene and pentacene at thermal and hyperthermal incident kinetic energies

    Energy Technology Data Exchange (ETDEWEB)

    Kish, Edward R.; Desai, Tushar V.; Greer, Douglas R.; Engstrom, James R., E-mail: jre7@cornell.edu [School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853 (United States); Woll, Arthur R. [Cornell High Energy Synchrotron Source, Cornell University, Ithaca, New York 14853 (United States)

    2015-05-15

    The authors have examined the nucleation of diindenoperylene (DIP) on SiO{sub 2} employing primarily atomic force microscopy and focusing on the effect of incident kinetic energy employing both thermal and supersonic sources. For all incident kinetic energies examined (E{sub i} = 0.09–11.3 eV), the nucleation of DIP is homogeneous and the dependence of the maximum island density on the growth rate is described by a power law. A critical nucleus of approximately two molecules is implicated by our data. A re-examination of the nucleation of pentacene on SiO{sub 2} gives the same major result that the maximum island density is determined by the growth rate, and it is independent of the incident kinetic energy. These observations are readily understood by factoring in the size of the critical nucleus in each case, and the island density, which indicates that diffusive transport of molecules to the growing islands dominate the dynamics of growth in the submonolayer regime.

  2. Materials analysis using x-ray linear attenuation coefficient measurements at four photon energies

    International Nuclear Information System (INIS)

    Midgley, S M

    2005-01-01

    The analytical properties of an accurate parameterization scheme for the x-ray linear attenuation coefficient are examined. The parameterization utilizes an additive combination of N compositional- and energy-dependent coefficients. The former were derived from a parameterization of elemental cross-sections using a polynomial in atomic number. The compositional-dependent coefficients are referred to as the mixture parameters, representing the electron density and higher order statistical moments describing elemental distribution. Additivity is an important property of the parameterization, allowing measured x-ray linear attenuation coefficients to be written as linear simultaneous equations, and then solved for the unknown coefficients. The energy-dependent coefficients can be determined by calibration from measurements with materials of known composition. The inverse problem may be utilized for materials analysis, whereby the simultaneous equations represent multi-energy linear attenuation coefficient measurements, and are solved for the mixture parameters. For in vivo studies, the choice of measurement energies is restricted to the diagnostic region (approximately 20 keV to 150 keV), where the parameterization requires N ≥ 4 energies. We identify a mathematical pathology that must be overcome in order to solve the inverse problem in this energy regime. An iterative inversion strategy is presented for materials analysis using four or more measurements, and then tested against real data obtained at energies 32 keV to 66 keV. The results demonstrate that it is possible to recover the electron density to within ±4% and fourth mixture parameter. It is also a key finding that the second and third mixture parameters cannot be recovered, as they are of minor importance in the parameterization at diagnostic x-ray energies

  3. On Energy Efficient Mobile Hydraulic Systems : with Focus on Linear Actuation

    OpenAIRE

    Heybroek, Kim

    2017-01-01

    In this dissertation, energy efficient hydraulic systems are studied. The research focuses on solutions for linear actuators in mobile applications, with emphasis on construction machines. Alongside the aspect of energy efficiency, the thesis deals with competing aspects in hydraulic system design found in the development of construction machines. Simulation models and controls for different concepts are developed, taking the whole machine into account. In line with this work, several proof o...

  4. Estimating trajectories of energy intake through childhood and adolescence using linear-spline multilevel models.

    Science.gov (United States)

    Anderson, Emma L; Tilling, Kate; Fraser, Abigail; Macdonald-Wallis, Corrie; Emmett, Pauline; Cribb, Victoria; Northstone, Kate; Lawlor, Debbie A; Howe, Laura D

    2013-07-01

    Methods for the assessment of changes in dietary intake across the life course are underdeveloped. We demonstrate the use of linear-spline multilevel models to summarize energy-intake trajectories through childhood and adolescence and their application as exposures, outcomes, or mediators. The Avon Longitudinal Study of Parents and Children assessed children's dietary intake several times between ages 3 and 13 years, using both food frequency questionnaires (FFQs) and 3-day food diaries. We estimated energy-intake trajectories for 12,032 children using linear-spline multilevel models. We then assessed the associations of these trajectories with maternal body mass index (BMI), and later offspring BMI, and also their role in mediating the relation between maternal and offspring BMIs. Models estimated average and individual energy intake at 3 years, and linear changes in energy intake from age 3 to 7 years and from age 7 to 13 years. By including the exposure (in this example, maternal BMI) in the multilevel model, we were able to estimate the average energy-intake trajectories across levels of the exposure. When energy-intake trajectories are the exposure for a later outcome (in this case offspring BMI) or a mediator (between maternal and offspring BMI), results were similar, whether using a two-step process (exporting individual-level intercepts and slopes from multilevel models and using these in linear regression/path analysis), or a single-step process (multivariate multilevel models). Trajectories were similar when FFQs and food diaries were assessed either separately, or when combined into one model. Linear-spline multilevel models provide useful summaries of trajectories of dietary intake that can be used as an exposure, outcome, or mediator.

  5. Modeling of non-linear CHP efficiency curves in distributed energy systems

    DEFF Research Database (Denmark)

    Milan, Christian; Stadler, Michael; Cardoso, Gonçalo

    2015-01-01

    Distributed energy resources gain an increased importance in commercial and industrial building design. Combined heat and power (CHP) units are considered as one of the key technologies for cost and emission reduction in buildings. In order to make optimal decisions on investment and operation...... for these technologies, detailed system models are needed. These models are often formulated as linear programming problems to keep computational costs and complexity in a reasonable range. However, CHP systems involve variations of the efficiency for large nameplate capacity ranges and in case of part load operation......, which can be even of non-linear nature. Since considering these characteristics would turn the models into non-linear problems, in most cases only constant efficiencies are assumed. This paper proposes possible solutions to address this issue. For a mixed integer linear programming problem two...

  6. Electromagnetic response in kinetic energy driven cuprate superconductors: Linear response approach

    International Nuclear Information System (INIS)

    Krzyzosiak, Mateusz; Huang, Zheyu; Feng, Shiping; Gonczarek, Ryszard

    2010-01-01

    Within the framework of the kinetic energy driven superconductivity, the electromagnetic response in cuprate superconductors is studied in the linear response approach. The kernel of the response function is evaluated and employed to calculate the local magnetic field profile, the magnetic field penetration depth, and the superfluid density, based on the specular reflection model for a purely transverse vector potential. It is shown that the low temperature magnetic field profile follows an exponential decay at the surface, while the magnetic field penetration depth depends linearly on temperature, except for the strong deviation from the linear characteristics at extremely low temperatures. The superfluid density is found to decrease linearly with decreasing doping concentration in the underdoped regime. The problem of gauge invariance is addressed and an approximation for the dressed current vertex, which does not violate local charge conservation is proposed and discussed.

  7. Competition Experiments as a Means of Evaluating Linear Free Energy Relationships

    Science.gov (United States)

    Mullins, Richard J.; Vedernikov, Andrei; Viswanathan, Rajesh

    2004-01-01

    The use of competition experiments as a means of evaluating linear free energy relationship in the undergraduate teaching laboratory is reported. The use of competition experiments proved to be a reliable method for the construction of Hammett plots with good correlation providing great flexibility with regard to the compounds and reactions that…

  8. Energy and luminosity requirements for the next generation of linear colliders

    International Nuclear Information System (INIS)

    Amaldi, U.

    1987-01-01

    In order to gain new knowledge ('new physics') from 'next generation' linear colliders energy and luminosity are important variables when considering the design of these new elementary particle probes. The standard model of the electroweak interaction is reviewed and stipulations for postulated Higgs particle, a new neutral Z particle, and a new quark and a neutral lepton searches with next generation colliders are given

  9. Exact solutions of linearized Schwinger endash Dyson equation of fermion self-energy

    International Nuclear Information System (INIS)

    Zhou, B.

    1997-01-01

    The Schwinger endash Dyson equation of fermion self-energy in the linearization approximation is solved exactly in a theory with gauge and effective four-fermion interactions. Different expressions for the independent solutions, which, respectively, submit to irregular and regular ultraviolet boundary condition are derived and expounded. copyright 1997 American Institute of Physics

  10. Using system theory and energy methods to prove existence of non-linear PDE's

    NARCIS (Netherlands)

    Zwart, H.J.

    2015-01-01

    In this discussion paper we present an idea of combining techniques known from systems theory with energy estimates to show existence for a class of non-linear partial differential equations (PDE's). At the end of the paper a list of research questions with possible approaches is given.

  11. Derivation of linear attenuation coefficients from CT numbers for low-energy photons

    International Nuclear Information System (INIS)

    Watanabe, Y.

    1999-01-01

    One can estimate photon attenuation properties from the CT number. In a standard method one assumes that the linear attenuation coefficient is proportional to electron density and ignores its nonlinear dependence on atomic number. When the photon energy is lower than about 50 keV, such as for brachytherapy applications, however, photoelectric absorption and Rayleigh scattering become important. Hence the atomic number must be explicitly considered in estimating the linear attenuation coefficient. In this study we propose a method to more accurately estimate the linear attenuation coefficient of low-energy photons from CT numbers. We formulate an equation that relates the CT number to the electron density and the effective atomic number. We use a CT calibration phantom to determine unknown coefficients in the equation. The equation with a given CT number is then solved for the effective atomic number, which in turn is used to calculate the linear attenuation coefficient for low-energy photons. We use the CT phantom to test the new method. The method significantly improves the standard method in estimating the attenuation coefficient at low photon energies (20keV≤E≤40keV) for materials with high atomic numbers. (author)

  12. Dose determination of Neutron contamination in radiothrapy rooms equiped with high energy linear accelerators

    International Nuclear Information System (INIS)

    Shweikani, R.; Anjak, O.

    2014-03-01

    Radiotherapy represents the most widely spread technique to control and treat cancer. To increase the treatment efficiency, high-energy linear accelerators are used. However, applying high energy photon beams leads to a non-negligible dose of neutrons contaminating therapeutic beams. A high-energy (23 MV) linear accelerator (Varian 21EX) was studied. The CR-39 nuclear track detectors (NTDs) were used to study the variation of fast neutron relative intensities around a linear accelerator high energy photon beam and to determined the its variation on the patient plane at 0, 50, 100, 150 and 200 cm from the center of the photon beam was. By increasing the distance from the center of the X-ray beam towards the periphery, the photoneutron dose equivalent decreased rapidly for the fields. Photoneutron intensity and distributions at isocenter level with the field sizes of 40*40 cm'2 at SSD=100cm around 23 MV photon beam using Nuclear Track Detectors were determined. The advantages of CR-39 NTD s over active detectors: 1- there is no pulse pileup problem. 2- no photon interference with neutron measurement. 3- no electronics are required. 4 - less prone to noise and interference. The photoneutron intensities were rapidly decreased as we move away from the isocenter of linear accelerators. As the use of simulation software MCNP match in the results we have obtained through direct measurements and the modeling results using the code MCNP (author).

  13. An effective description of dark matter and dark energy in the mildly non-linear regime

    Energy Technology Data Exchange (ETDEWEB)

    Lewandowski, Matthew; Senatore, Leonardo [Stanford Institute for Theoretical Physics, Stanford University, Stanford, CA 94306 (United States); Maleknejad, Azadeh, E-mail: matthew.lewandowski@cea.fr, E-mail: azade@ipm.ir, E-mail: senatore@stanford.edu [School of Physics, Institute for Research in Fundamental Sciences (IPM), P. Code. 19538-33511, Tehran (Iran, Islamic Republic of)

    2017-05-01

    In the next few years, we are going to probe the low-redshift universe with unprecedented accuracy. Among the various fruits that this will bear, it will greatly improve our knowledge of the dynamics of dark energy, though for this there is a strong theoretical preference for a cosmological constant. We assume that dark energy is described by the so-called Effective Field Theory of Dark Energy, which assumes that dark energy is the Goldstone boson of time translations. Such a formalism makes it easy to ensure that our signatures are consistent with well-established principles of physics. Since most of the information resides at high wavenumbers, it is important to be able to make predictions at the highest wavenumber that is possible. The Effective Field Theory of Large-Scale Structure (EFTofLSS) is a theoretical framework that has allowed us to make accurate predictions in the mildly non-linear regime. In this paper, we derive the non-linear equations that extend the EFTofLSS to include the effect of dark energy both on the matter fields and on the biased tracers. For the specific case of clustering quintessence, we then perturbatively solve to cubic order the resulting non-linear equations and construct the one-loop power spectrum of the total density contrast.

  14. Precise and fast beam energy measurement at the international linear collider

    International Nuclear Information System (INIS)

    Viti, Michele

    2010-02-01

    The international Linear Collider (ILC) is an electron-positron collider with a center-of-mass energy between 200 and 500 GeV and a peak luminosity of 2 . 10 34 cm -2 s -1 . For the physics program at this machine, an excellent bunch-by-bunch control of the beam energy is mandatory. Several techniques are foreseen to be implemented at the ILC in order to achieve this request. Energy spectrometers upstream and downstream of the electron/positron interaction point were proposed and the present default option for the upstream spectrometer is a beam position monitor based (BPM-based) spectrometer. In 2006/2007, a prototype of such a device was commissioned at the End Station A beam line at the Stanford Linear Accelerator Center (SLAC) in order to study performance and reliability. In addition, a novel method based on laser Compton backscattering has been proposed, since as proved at the Large Electron-Positron Collider (LEP) and the Stanford Linear Collider (SLC), complementary methods are necessary to cross-check the results of the BPM-based spectrometer. In this thesis, an overview of the experiment at End Station A is given, with emphasis on the performance of the magnets in the chicane and first energy resolution estimations. Also, the novel Compton backscattering method is discussed in details and found to be very promising. It has the potential to bring the beam energy resolution well below the requirement of ΔE b /E b =10 -4 . (orig.)

  15. SYMMETRY PROPERTIES OF THE COULOMB POTENTIAL WITH A LINEAR DEPENDENCE ON ENERGY

    Directory of Open Access Journals (Sweden)

    Radu Budaca

    2017-12-01

    Full Text Available The D-dimensional Schr ̈odinger equation for a Coulomb potential with a coupling constant depending linearly on energy is analytically solved. The energy spectrum in the asymptotic regime of the slope parameter is found to be fully determined up to a scale only by its quantum numbers. The raising and lowering operators for this limiting model are determined from the recurrence properties of the associated solutions. It is shown that they satisfy the commutation relations of an SU(1,1 algebra and act on wave-functions which are normalized differently from the case of the usual bound state problem for an energy independent Coulomb potential.

  16. Beam-beam interaction in high energy linear electron-positron colliders

    International Nuclear Information System (INIS)

    Ritter, S.

    1985-04-01

    The interaction of high energy electron and positron beams in a linear collider has been investigated using a macroparticle Monte Carlo method based on a Cloud-In-Cells plasma simulation scheme. Density evolutions, luminosities, energy and angular distributions for electrons (positrons) and synchrotron photons are calculated. Beside beams with a symmetric transverse profile also flat beams are considered. A reasonably good agreement to alternative computer calculations as well as to an analytical approximation for the energy spectrum of synchrotron photons has been obtained. (author)

  17. Online beam energy measurement of Beijing electron positron collider II linear accelerator

    Science.gov (United States)

    Wang, S.; Iqbal, M.; Liu, R.; Chi, Y.

    2016-02-01

    This paper describes online beam energy measurement of Beijing Electron Positron Collider upgraded version II linear accelerator (linac) adequately. It presents the calculation formula, gives the error analysis in detail, discusses the realization in practice, and makes some verification. The method mentioned here measures the beam energy by acquiring the horizontal beam position with three beam position monitors (BPMs), which eliminates the effect of orbit fluctuation, and is much better than the one using the single BPM. The error analysis indicates that this online measurement has further potential usage such as a part of beam energy feedback system. The reliability of this method is also discussed and demonstrated in this paper.

  18. Linearly decoupled energy-stable numerical methods for multi-component two-phase compressible flow

    KAUST Repository

    Kou, Jisheng

    2017-12-06

    In this paper, for the first time we propose two linear, decoupled, energy-stable numerical schemes for multi-component two-phase compressible flow with a realistic equation of state (e.g. Peng-Robinson equation of state). The methods are constructed based on the scalar auxiliary variable (SAV) approaches for Helmholtz free energy and the intermediate velocities that are designed to decouple the tight relationship between velocity and molar densities. The intermediate velocities are also involved in the discrete momentum equation to ensure a consistency relationship with the mass balance equations. Moreover, we propose a component-wise SAV approach for a multi-component fluid, which requires solving a sequence of linear, separate mass balance equations. We prove that the methods have the unconditional energy-dissipation feature. Numerical results are presented to verify the effectiveness of the proposed methods.

  19. Linear growth of children on a ketogenic diet: does the protein-to-energy ratio matter?

    Science.gov (United States)

    Nation, Judy; Humphrey, Maureen; MacKay, Mark; Boneh, Avihu

    2014-11-01

    Ketogenic diet is a structured effective treatment for children with intractable epilepsy. Several reports have indicated poor linear growth in children on the diet but the mechanism of poor growth has not been elucidated. We aimed to explore whether the protein to energy ratio plays a role in linear growth of children on ketogenic diet. Data regarding growth and nutrition were, retrospectively, collected from the clinical histories of 35 children who were treated with ketogenic diet for at least 6 months between 2002 and 2010. Patients were stratified into groups according to periods of satisfactory or poor linear growth. Poor linear growth was associated with protein or caloric intake of <80% recommended daily intake, and with a protein-to-energy ratio consistently ≤1.4 g protein/100 kcal even when protein and caloric intakes were adequate. We recommend a protein-to-energy ratio of 1.5 g protein/100 kcal be prescribed to prevent growth retardation. © The Author(s) 2013.

  20. Effect of Low-Energy Linear Shockwave Therapy on Erectile Dysfunction

    DEFF Research Database (Denmark)

    Fojecki, Grzegorz L; Thiessen, Stefan; Osther, Palle Jørn Sloth

    2017-01-01

    INTRODUCTION: Previous studies have shown that focal low-energy extracorporeal shockwave therapy (Li-ESWT) can have a positive effect in men with erectile dysfunction (ED). Linear Li-ESWT (LLi-ESWT) for ED has not been previously assessed in a randomized trial. AIM: To evaluate the treatment...... MEASURES: The primary outcome measurement was an increase of at least five points on the IIEF-EF score. The secondary outcome measurement was an increased EHS score to at least 3 in men with a score no higher than 2 at baseline. Data were analyzed by linear and logistic regression. RESULTS: Mean IIEF...

  1. Non-Linear Numerical Modeling and Experimental Testing of a Point Absorber Wave Energy Converter

    DEFF Research Database (Denmark)

    Zurkinden, Andrew Stephen; Ferri, Francesco; Beatty, S.

    2014-01-01

    the calculation of the non-linear hydrostatic restoring moment by a cubic polynomial function fit to laboratory test results. Moreover, moments due to viscous drag are evaluated on the oscillating hemisphere considering the horizontal and vertical drag force components. The influence on the motions of this non.......e. H/λ≤0.02. For steep waves, H/λ≥0.04 however, the relative velocities between the body and the waves increase thus requiring inclusion of the non-linear hydrostatic restoring moment to effectively predict the dynamics of the wave energy converter. For operation of the device with a passively damping...

  2. Shielding considerations for an electron linear accelerator complex for high energy physics and photonics research

    International Nuclear Information System (INIS)

    Holmes, J.A.; Huntzinger, C.J.

    1987-01-01

    Radiation shielding considerations for a major high-energy physics and photonics research complex which comprise a 50 MeV electron linear accelerator injector, a 1.0 GeV electron linear accelerator and a 1.3 GeV storage ring are discussed. The facilities will be unique because of the close proximity of personnel to the accelerator beam lines, the need to adapt existing facilities and shielding materials and the application of strict ALARA dose guidelines while providing maximum access and flexibility during a phased construction program

  3. Proper surface channelling of low energy argon ions incident on a nickel (110) crystal

    International Nuclear Information System (INIS)

    Evdokimov, I.N.; Berg, J.A. van den; Armour, D.G.

    1979-01-01

    The scattering behaviour of 6 keV argon ions from a nickel (110) surface has been investigated for specular reflection under grazing incidence conditions. The occurrence of an anomalously high energy loss has been confirmed and the transition from chain scattering at large scattering angles to a distinctly different type of scattering at small angles has been investigated. The characteristics of the low angle scattering phenomena, which dominate the observed spectra at scattering angles below about 18 0 , may be explained in terms of a surface hyperchannelling model in which the incident ions are confined to move within the shallow 'potential valleys' between two atomic rows in the surface. The critical angle for occurrence of this phenomena which is distinctly different from surface semichannelling has been evaluated with Lindhard's standard string potential. The experimentally measured critical angles are in good agreement with the calculated ones. (author)

  4. Is the development of nuclear energy likely to increase the incidence of genetic diseases for mankind

    International Nuclear Information System (INIS)

    Leonard, A.

    1976-01-01

    In a normal human population a relatively high number of individuals (+10%) are bearing genetic and chromosomal deficiencies. As a result of the difficulties encountered when carrying out valid epidemiological investigations, the observations made on the descent of irradiated subjects have not demonstrated that an exposure for a man to ionizing radiations increases the incidence of his deficiencies. That explains the need of having to use the results of experiments conducted on animals in order to evaluate this kind of hazard for mankind. The analysis of these experimental data allows us to conclude that under normal conditions of exploitation the expected development of the nuclear energy is not likely to increase significantly the incidence of genetic deficiencies for mankind. (G.C.)

  5. Linearity between temperature peak and bio-energy CO2 emission rates

    International Nuclear Information System (INIS)

    Cherubini, Francesco; Bright, Ryan M.; Stromman, Anders H.; Gasser, Thomas; Ciais, Philippe

    2014-01-01

    Many future energy and emission scenarios envisage an increase of bio-energy in the global primary energy mix. In most climate impact assessment models and policies, bio-energy systems are assumed to be carbon neutral, thus ignoring the time lag between CO 2 emissions from biomass combustion and CO 2 uptake by vegetation. Here, we show that the temperature peak caused by CO 2 emissions from bio-energy is proportional to the maximum rate at which emissions occur and is almost insensitive to cumulative emissions. Whereas the carbon-climate response (CCR) to fossil fuel emissions is approximately constant, the CCR to bio-energy emissions depends on time, biomass turnover times, and emission scenarios. The linearity between temperature peak and bio-energy CO 2 emission rates resembles the characteristic of the temperature response to short-lived climate forcers. As for the latter, the timing of CO 2 emissions from bio-energy matters. Under the international agreement to limit global warming to 2 C by 2100, early emissions from bio-energy thus have smaller contributions on the targeted temperature than emissions postponed later into the future, especially when bio-energy is sourced from biomass with medium (50-60 years) or long turnover times (100 years). (authors)

  6. The low-energy constants of the extended linear sigma model

    Energy Technology Data Exchange (ETDEWEB)

    Divotgey, Florian; Giacosa, Francesco; Kovacs, Peter; Rischke, Dirk H. [Institut fuer Theoretische Physik, Goethe-Universitaet Frankfurt am Main (Germany)

    2016-07-01

    The low-energy dynamics of Quantum Chromodynamics (QCD) is fully determined by the interactions of the (pseudo-) Nambu-Goldstone bosons of spontaneous chiral symmetry breaking, i.e., for two quark flavors, the pions. Pion dynamics is described by the low-energy effective theory of QCD, chiral perturbation theory (ChPT), which is based on the nonlinear realization of chiral symmetry. An alternative description is provided by the Linear Sigma Model, where chiral symmetry is linearly realized. An extended version of this model, the so-called extended Linear Sigma Model (eLSM) was recently developed which incorporates all J{sup P}=0{sup ±}, 1{sup ±} anti qq mesons up to 2 GeV in mass. A fit of the coupling constants of this model to experimentally measured masses and decay widths has a surprisingly good quality. In this talk, it is demonstrated that the low-energy limit of the eLSM, obtained by integrating out all fields which are heavier than the pions, assumes the same form as ChPT. Moreover, the low-energy constants (LECs) of the eLSM agree with those of ChPT.

  7. Balancing Energy and Performance in Dense Linear System Solvers for Hybrid ARM+GPU platforms

    Directory of Open Access Journals (Sweden)

    Juan P. Silva

    2016-04-01

    Full Text Available The high performance computing community has traditionally focused uniquely on the reduction of execution time, though in the last years, the optimization of energy consumption has become a main issue. A reduction of energy usage without a degradation of performance requires the adoption of energy-efficient hardware platforms accompanied by the development of energy-aware algorithms and computational kernels. The solution of linear systems is a key operation for many scientific and engineering problems. Its relevance has motivated an important amount of work, and consequently, it is possible to find high performance solvers for a wide variety of hardware platforms. In this work, we aim to develop a high performance and energy-efficient linear system solver. In particular, we develop two solvers for a low-power CPU-GPU platform, the NVIDIA Jetson TK1. These solvers implement the Gauss-Huard algorithm yielding an efficient usage of the target hardware as well as an efficient memory access. The experimental evaluation shows that the novel proposal reports important savings in both time and energy-consumption when compared with the state-of-the-art solvers of the platform.

  8. Analysis of bifurcation behavior of a piecewise linear vibrator with electromagnetic coupling for energy harvesting applications

    KAUST Repository

    El Aroudi, Abdelali

    2014-05-01

    Recently, nonlinearities have been shown to play an important role in increasing the extracted energy of vibration-based energy harvesting systems. In this paper, we study the dynamical behavior of a piecewise linear (PWL) spring-mass-damper system for vibration-based energy harvesting applications. First, we present a continuous time single degree of freedom PWL dynamical model of the system. Different configurations of the PWL model and their corresponding state-space regions are derived. Then, from this PWL model, extensive numerical simulations are carried out by computing time-domain waveforms, state-space trajectories and frequency responses under a deterministic harmonic excitation for different sets of system parameter values. Stability analysis is performed using Floquet theory combined with Filippov method, Poincaré map modeling and finite difference method (FDM). The Floquet multipliers are calculated using these three approaches and a good concordance is obtained among them. The performance of the system in terms of the harvested energy is studied by considering both purely harmonic excitation and a noisy vibrational source. A frequency-domain analysis shows that the harvested energy could be larger at low frequencies as compared to an equivalent linear system, in particular, for relatively low excitation intensities. This could be an advantage for potential use of this system in low frequency ambient vibrational-based energy harvesting applications. © 2014 World Scientific Publishing Company.

  9. A phenomenological biological dose model for proton therapy based on linear energy transfer spectra.

    Science.gov (United States)

    Rørvik, Eivind; Thörnqvist, Sara; Stokkevåg, Camilla H; Dahle, Tordis J; Fjaera, Lars Fredrik; Ytre-Hauge, Kristian S

    2017-06-01

    The relative biological effectiveness (RBE) of protons varies with the radiation quality, quantified by the linear energy transfer (LET). Most phenomenological models employ a linear dependency of the dose-averaged LET (LET d ) to calculate the biological dose. However, several experiments have indicated a possible non-linear trend. Our aim was to investigate if biological dose models including non-linear LET dependencies should be considered, by introducing a LET spectrum based dose model. The RBE-LET relationship was investigated by fitting of polynomials from 1st to 5th degree to a database of 85 data points from aerobic in vitro experiments. We included both unweighted and weighted regression, the latter taking into account experimental uncertainties. Statistical testing was performed to decide whether higher degree polynomials provided better fits to the data as compared to lower degrees. The newly developed models were compared to three published LET d based models for a simulated spread out Bragg peak (SOBP) scenario. The statistical analysis of the weighted regression analysis favored a non-linear RBE-LET relationship, with the quartic polynomial found to best represent the experimental data (P = 0.010). The results of the unweighted regression analysis were on the borderline of statistical significance for non-linear functions (P = 0.053), and with the current database a linear dependency could not be rejected. For the SOBP scenario, the weighted non-linear model estimated a similar mean RBE value (1.14) compared to the three established models (1.13-1.17). The unweighted model calculated a considerably higher RBE value (1.22). The analysis indicated that non-linear models could give a better representation of the RBE-LET relationship. However, this is not decisive, as inclusion of the experimental uncertainties in the regression analysis had a significant impact on the determination and ranking of the models. As differences between the models were

  10. Physics with linear colliders in the TeV CM energy region

    International Nuclear Information System (INIS)

    Bulos, F.; Cook, V.; Hinchliffe, I.; Lane, K.; Pellet, D.; Perl, M.; Seiden, A.; Wiedemann, H.

    1982-07-01

    From a technical point of view a linear collider of high energy and luminosity cannot be operated economically at the present date. A series of R and D efforts in different areas are required to produce the necessary technology for an economically feasible linear collider. No fundamental limits, however, have been found as yet that would prevent us from reaching the goals outlined in this report. Most of the critical component will be tested in a real like situation once the SLC comes into operation. Beyond that much R and D is required in rf-power sources to reduce the power consumption and in high gradient accelerating structures to minimize the required real estate and linear construction costs

  11. Econometrics analysis of consumer behaviour: a linear expenditure system applied to energy

    International Nuclear Information System (INIS)

    Giansante, C.; Ferrari, V.

    1996-12-01

    In economics literature the expenditure system specification is a well known subject. The problem is to define a coherent representation of consumer behaviour through functional forms easy to calculate. In this work it is used the Stone-Geary Linear Expenditure System and its multi-level decision process version. The Linear Expenditure system is characterized by an easy calculating estimation procedure, and its multi-level specification allows substitution and complementary relations between goods. Moreover, the utility function separability condition on which the Utility Tree Approach is based, justifies to use an estimation procedure in two or more steps. This allows to use an high degree of expenditure categories disaggregation, impossible to reach the Linear Expediture System. The analysis is applied to energy sectors

  12. Fluid circulating pump operated by same incident solar energy which heats energy collection fluid

    Science.gov (United States)

    Collins, E. R.

    1980-01-01

    The application of using a spacecraft solar powered pump terrestrially to reduce or eliminate the need for fossil fuel generated electricity for domestic solar hot water systems was investigated. A breadboard prototype model was constructed utilizing bimetals to convert thermal energy into mechanical motion by means of a toggle operated shutter mechanism. Although it did not meet expected thermal efficiency, the prototype model was sufficient to demonstrate the mechanical concept.

  13. Heating nuclei with light ions at GeV incident energies

    International Nuclear Information System (INIS)

    Pollacco, E.C.; Brzychczyk, J.; Volant, C.; Legrain, R.; Nalpas, L.; Bracken, D.S.; Kwiatkowski, K.; Morley, K.B.; Foxford, E.R.; Viola, V.E.; Yoder, N.R.

    1996-03-01

    Hot nuclei are studied, where through an appropriate choice of incident channel and event selection, dynamical effects are attenuated and multifragmentation is limited. Three preparatory results are discussed, the 3 He(1.8 GeV) + nat Ag can be described using and intranuclear cascade, INC, model; through a suitable selection of events a limit of the excitation energy that a nucleus can absorb without breaking into large pieces is given, it is shown, that corresponding alpha decay is consistent with an, evaporative process. (K.A.)

  14. Energy supply planning in Iran by using fuzzy linear programming approach (regarding uncertainties of investment costs)

    International Nuclear Information System (INIS)

    Sadeghi, Mehdi; Mirshojaeian Hosseini, Hossein

    2006-01-01

    For many years, energy models have been used in developed or developing countries to satisfy different needs in energy planning. One of major problems against energy planning and consequently energy models is uncertainty, spread in different economic, political and legal dimensions of energy planning. Confronting uncertainty, energy planners have often used two well-known strategies. The first strategy is stochastic programming, in which energy system planners define different scenarios and apply an explicit probability of occurrence to each scenario. The second strategy is Minimax Regret strategy that minimizes regrets of different decisions made in energy planning. Although these strategies have been used extensively, they could not flexibly and effectively deal with the uncertainties caused by fuzziness. 'Fuzzy Linear Programming (FLP)' is a strategy that can take fuzziness into account. This paper tries to demonstrate the method of application of FLP for optimization of supply energy system in Iran, as a case study. The used FLP model comprises fuzzy coefficients for investment costs. Following the mentioned purpose, it is realized that FLP is an easy and flexible approach that can be a serious competitor for other confronting uncertainties approaches, i.e. stochastic and Minimax Regret strategies. (author)

  15. The energy-momentum tensor for the linearized Maxwell-Vlasov and kinetic guiding center theories

    International Nuclear Information System (INIS)

    Pfirsch, D.; Morrison, P.J.; Texas Univ., Austin

    1990-02-01

    A modified Hamilton-Jacobi formalism is introduced as a tool to obtain the energy-momentum and angular-momentum tensors for any kind of nonlinear or linearized Maxwell-collisionless kinetic theories. The emphasis is on linearized theories, for which these tensors are derived for the first time. The kinetic theories treated - which need not be the same for all particle species in a plasma - are the Vlasov and kinetic guiding center theories. The Hamiltonian for the guiding center motion is taken in the form resulting from Dirac's constraint theory for non-standard Lagrangian systems. As an example of the Maxwell-kinetic guiding center theory, the second-order energy for a perturbed homogeneous magnetized plasma is calculated with initially vanishing field perturbations. The expression obtained is compared with the corresponding one of Maxwell-Vlasov theory. (orig.)

  16. The energy-momentum tensor for the linearized Maxwell-Vlasov and kinetic guiding center theories

    International Nuclear Information System (INIS)

    Pfirsch, D.; Morrison, P.J.

    1990-02-01

    A modified Hamilton-Jacobi formalism is introduced as a tool to obtain the energy-momentum and angular-momentum tensors for any king of nonlinear or linearized Maxwell-collisionless kinetic theories. The emphasis is on linearized theories, for which these tensors are derived for the first time. The kinetic theories treated --- which need not be the same for all particle species in a plasma --- are the Vlasov and kinetic guiding center theories. The Hamiltonian for the guiding center motion is taken in the form resulting from Dirac's constraint theory for non-standard Lagrangian systems. As an example of the Maxwell-kinetic guiding center theory, the second-order energy for a perturbed homogeneous magnetized plasma is calculated with initially vanishing field perturbations. The expression obtained is compared with the corresponding one of Maxwell-Vlasov theory. 11 refs

  17. Linear-scaling evaluation of the local energy in quantum Monte Carlo

    International Nuclear Information System (INIS)

    Austin, Brian; Aspuru-Guzik, Alan; Salomon-Ferrer, Romelia; Lester, William A. Jr.

    2006-01-01

    For atomic and molecular quantum Monte Carlo calculations, most of the computational effort is spent in the evaluation of the local energy. We describe a scheme for reducing the computational cost of the evaluation of the Slater determinants and correlation function for the correlated molecular orbital (CMO) ansatz. A sparse representation of the Slater determinants makes possible efficient evaluation of molecular orbitals. A modification to the scaled distance function facilitates a linear scaling implementation of the Schmidt-Moskowitz-Boys-Handy (SMBH) correlation function that preserves the efficient matrix multiplication structure of the SMBH function. For the evaluation of the local energy, these two methods lead to asymptotic linear scaling with respect to the molecule size

  18. Study of electron beam energy conversion at gyrocon-linear accelerator facility

    International Nuclear Information System (INIS)

    Karliner, M.M.; Makarov, I.G.; Ostreiko, G.N.

    2004-01-01

    A gyrocon together with the high-voltage 1.5 MeV accelerator ELIT-3A represents a power generator at 430 MHz serving for linear electron accelerator pulse driving. The facility description and results of calorimetric measurements of ELIT-3A electron beam power and accelerated beam at the end of accelerator are presented in the paper. The achieved energy conversion efficiency is about 55%

  19. Theoretical model application to the evaluation of fission neutron data up to 20 MeV incidence energy

    International Nuclear Information System (INIS)

    Ruben, A.; Maerten, H.; Seeliger, D.

    1990-01-01

    A complex statistical theory of fission neutron emission combined with a phenomenological fission model has been used to calculate fission neutron data for 238 U. Obtained neutron multiplicities and energy spectra as well as average fragment energies for incidence energies from threshold to 20 MeV (including multiple-chance fission) are compared with traditional data representations. (author). 19 refs, 6 figs

  20. Moeller scattering polarimetry for high energy e sup + e sup - linear colliders

    CERN Document Server

    Alexander, G

    2002-01-01

    The general features of the Moeller scattering and its use as an electron polarimeter are described and studied in view of the planned future high energy e sup + e sup - linear colliders. In particular the study concentrates on the TESLA collider which is planned to operate with longitudinal polarised beams at a centre of mass energy of the order of 0.5 TeV with a luminosity of 3.4x10 sup 3 sup 4 cm sup - sup 2 s sup - sup 1.

  1. Design and analysis of tubular permanent magnet linear generator for small-scale wave energy converter

    Science.gov (United States)

    Kim, Jeong-Man; Koo, Min-Mo; Jeong, Jae-Hoon; Hong, Keyyong; Cho, Il-Hyoung; Choi, Jang-Young

    2017-05-01

    This paper reports the design and analysis of a tubular permanent magnet linear generator (TPMLG) for a small-scale wave-energy converter. The analytical field computation is performed by applying a magnetic vector potential and a 2-D analytical model to determine design parameters. Based on analytical solutions, parametric analysis is performed to meet the design specifications of a wave-energy converter (WEC). Then, 2-D FEA is employed to validate the analytical method. Finally, the experimental result confirms the predictions of the analytical and finite element analysis (FEA) methods under regular and irregular wave conditions.

  2. Approximations for W-Pair Production at Linear-Collider Energies

    CERN Document Server

    Denner, A

    1997-01-01

    We determine the accuracy of various approximations to the O(alpha) corrections for on-shell W-pair production. While an approximation based on the universal corrections arising from initial-state radiation, from the running of alpha, and from corrections proportional to m_t^2 fails in the Linear-Collider energy range, a high-energy approximation improved by the exact universal corrections is sufficiently good above about 500GeV. These results indicate that in Monte Carlo event generators for off-shell W-pair production the incorporation of the universal corrections is not sufficient and more corrections should be included.

  3. Theoretical studies of MHD plasma molecules. I. Potential energy curves and dipole moments of linear KOH

    International Nuclear Information System (INIS)

    England, W.B.

    1978-01-01

    Uncorrelated and correlated potential energy curves and dipole moments are reported for linear KOH. The compound is found to be ionic, K + OH - . Minimum energy bond lengths are R/sub KO/=4.2913 au and R/sub OH/=1.7688 au, with an estimated accuracy of 2%. The corresponding dipole moment is 3.3 au (8.46 D) with a similar accuracy estimate. This is to our knowledge the first value ever reported for the KOH dipole moment, and the large value suggests that KOH will be an effective electron scatterer in MHD plasmas

  4. Further development of a track detector as the spectrometer of linear energy transfer

    International Nuclear Information System (INIS)

    Spurny, F.; Bednar, J.; Vlcek, B.; Botollier-Depois, J.F.

    1998-01-01

    Track revealing in a track etch detector is a phenomenon related to the linear energy transfer (LET) of the particle registered. The measurements of track parameters permit to determine the LET corresponding to each revealed track, i.e. LET spectrum. We have recently developed a spectrometer of LET based on the chemically etched polyallyldiglycolcarbonate (PADC). In this contribution the results obtained with such spectrometer in some neutron fields are presented, analyzed and discussed. Several radionuclide neutron sources have been used, LET spectrometer has been also exposed in high energy neutron reference fields at CERN and JINR Dubna, and on board aircraft. (author)

  5. High energy X-ray CT system using a linear accelerator for automobile parts inspection

    International Nuclear Information System (INIS)

    Kanamori, T.; Sukita, T.

    1995-01-01

    A high energy X-ray CT system (maximum photon energy: 0.95 MeV) has been developed for industrial use. This system employs a linear accelerator as an X-ray source. It is able to image the cross section of automobile parts and can be applied to a solidification analysis study of the cylinder head in an automobile. This paper describes the features of the system and application results which can be related to solidification analysis of the cylinder head when fabricated from an aluminum casting. Some cross-sectional images are also presented as evidence for nondestructive inspection of automobile parts. (orig.)

  6. Update of neutron dose yields as a function of energy for protons and deuterons incident on beryllium targets

    International Nuclear Information System (INIS)

    Ten Haken, R.K.; Awschalom, M.; Rosenberg, I.

    1982-11-01

    Neutron absorbed dose yields (absorbed dose rates per unit incident current on targets at a given SAD or SSD) increase with incident charged particle energy for both protons and deuterons. Analyses of neutron dose yield versus incident particle energy have been performed for both deuterons and protons. It is the purpose of this report to update those analyses by pooling all of the more recent published results and to reanalyze the trend of yield, Y, versus incident energy, E, which in the past has been described by an expression of the form Y = aE/sup b/, where a and b are empirical constants. From the reanalyzed trend it is concluded that for a given size cyclotron (E/sub p/ = 2E/sub d/), the dose yields using protons are higher than those using deuterons up to a proton energy E/sub p/ of 64 MeV

  7. A Correction of Random Incidence Absorption Coefficients for the Angular Distribution of Acoustic Energy under Measurement Conditions

    DEFF Research Database (Denmark)

    Jeong, Cheol-Ho

    2009-01-01

    Most acoustic measurements are based on an assumption of ideal conditions. One such ideal condition is a diffuse and reverberant field. In practice, a perfectly diffuse sound field cannot be achieved in a reverberation chamber. Uneven incident energy density under measurement conditions can cause...... discrepancies between the measured value and the theoretical random incidence absorption coefficient. Therefore the angular distribution of the incident acoustic energy onto an absorber sample should be taken into account. The angular distribution of the incident energy density was simulated using the beam...... tracing method for various room shapes and source positions. The averaged angular distribution is found to be similar to a Gaussian distribution. As a result, an angle-weighted absorption coefficient was proposed by considering the angular energy distribution to improve the agreement between...

  8. Deviation from an inverse cosine dependence of kinetic secondary electron emission for angle of incidence at keV energy

    International Nuclear Information System (INIS)

    Ohya, Kaoru; Kawata, Jun; Mori, Ichiro

    1989-01-01

    Incident angle dependence of kinetic secondary electron emission from metals resulting from incidence of keV ions is investigated by computer simulation with the TRIM Monte Carlo program of ion scattering in matter. The results show large deviations from the inverse cosine dependence, which derives from high-energy approximation, because of a series of elastic collisions of incident ions with metal atoms. In the keV energy region, the elastic collisions have two different effects on the angular dependence for relatively high-energy light ions and for low-energy heavy ions: they result in over- and under-inverse-cosine dependences, respectively. The properties are observed even with an experiment of the keV-neutral incidence on a contaminated surface. In addition, the effects of the thin oxide layer and roughness on the surface are examined with simplified models. (author)

  9. Energy storage and transfer with homopolar machine for a linear theta-pinch hybrid reactor

    International Nuclear Information System (INIS)

    Vogel, H.F.; Brennan, M.; Dase, W.G.; Tolk, K.M.; Weldon, W.F.

    1976-01-01

    The energy storage and transfer system for the compression coils of a linear theta-pinch hybrid reactor (LTPHR) are described. High efficiency and low cost are the principal requirements for the energy storage and transfer of 25MJ/m or 25GJ for a 1-km LTPHR. The circuit efficiency must be approximately 90%, and the cost for the circuit 5-6c/J. Scaling laws and simple relationships between circuit efficiency and cost-per-unit energy as a function of the half cycle time are presented. An important consideration concerns the pulse repetition rate of 2.25 pulses per second, 70x10 6 shots/yr, or 1.7x10 9 shots over the 25-yr plant life. Current interruption to initiate energy transfer is not feasible at this rate. Therefore, a simple ringing circuit with contactors to make and break at the periodically occurring zero-current instances, is considered

  10. Energy storage and transfer with homopolar machine for a linear theta-pinch hybrid reactor

    International Nuclear Information System (INIS)

    Vogel, H.F.; Brennan, M.; Dase, W.G.; Tolk, K.M.; Weldon, W.F.

    1975-12-01

    This report describes the energy storage and transfer system for the compression coil system of a linear theta-pinch hybrid reactor (LTPHR). High efficiency and low cost are the principal requirements for the energy storage and transfer of 25 MJ/m or 25 GJ for a 1-km LTPHR. The circuit efficiency must be approximately 90 percent, and the cost for the circuit 5 to 6 cents/J. Scaling laws and simple relationships between circuit efficiency and cost per unit energy as a function of the half cycle time are presented. Capacitors and homopolor machines are considered as energy storage elements with both functioning basically as capacitors. The advantage of the homopolar machine in this application is its relatively low cost, whereas that of capacitors is better efficiency

  11. Partitioning of late gestation energy expenditure in ewes using indirect calorimetry and a linear regression approach

    DEFF Research Database (Denmark)

    Kiani, Alishir; Chwalibog, André; Nielsen, Mette O

    2007-01-01

    Late gestation energy expenditure (EE(gest)) originates from energy expenditure (EE) of development of conceptus (EE(conceptus)) and EE of homeorhetic adaptation of metabolism (EE(homeorhetic)). Even though EE(gest) is relatively easy to quantify, its partitioning is problematic. In the present...... study metabolizable energy (ME) intake ranges for twin-bearing ewes were 220-440, 350- 700, 350-900 kJ per metabolic body weight (W0.75) at week seven, five, two pre-partum respectively. Indirect calorimetry and a linear regression approach were used to quantify EE(gest) and then partition to EE......(conceptus) and EE(homeorhetic). Energy expenditure of basal metabolism of the non-gravid tissues (EE(bmng)), derived from the intercept of the linear regression equation of retained energy [kJ/W0.75] and ME intake [kJ/W(0.75)], was 298 [kJ/ W0.75]. Values of the intercepts of the regression equations at week seven...

  12. LED Uniform Illumination Using Double Linear Fresnel Lenses for Energy Saving

    Directory of Open Access Journals (Sweden)

    Ngoc Hai Vu

    2017-12-01

    Full Text Available We present a linear Fresnel lens design for light-emitting diode (LED uniform illumination applications. The LED source is an array of LEDs. An array of collimating lens is applied to collimate output from the LED array. Two linear Fresnel lenses are used to redistribute the collimated beam along two dimensions in the illumination area. Collimating lens and linear Fresnel lens surfaces are calculated by geometrical optics and nonimaging optics. The collimated beam output from the collimating lens array is divided into many fragments. Each fragment is refracted by a segment of Fresnel lens and distributed over the illumination area, so that the total beam can be distributed to the illumination target uniformly. The simulation results show that this design has a compact structure, high optical efficiency of 82% and good uniformity of 76.9%. Some consideration of the energy savings and optical performance are discussed by comparison with other typical light sources. The results show that our proposed LED lighting system can reduce energy consumption five-times in comparison to using a conventional fluorescent lamp. Our research is a strong candidate for low cost, energy savings for indoor and outdoor lighting applications.

  13. Global control of reaction wheel pendulum through energy regulation and extended linearization of the state variables

    Directory of Open Access Journals (Sweden)

    Oscar D. Montoya-Giraldo

    2014-01-01

    Full Text Available This paper presents the design and simulation of a global controller for the Reaction Wheel Pendulum system using energy regulation and extended linearization methods for the state feedback. The proposed energy regulation is based on the gradual reduction of the energy of the system to reach the unstable equilibrium point. The signal input for this task is obtained from the Lyapunov stability theory. The extended state feedback controller design is used to get a smooth nonlinear function that extends the region of operation to a bigger range, in contrast with the static linear state feedback obtained through the method of approximate linearization around an operating point. The general designed controller operates with a switching between the two control signals depending upon the region of operation; perturbations are applied in the control signal and the (simulated measured variables to verify the robustness and efficiency of the controller. Finally, simulations and tests using the model of the reaction wheel pendulum system, allow to observe the versatility and functionality of the proposed controller in the entire operation region of the pendulum.

  14. Assessment of beam stability of high energy and low energy Varian medical linear accelerators

    International Nuclear Information System (INIS)

    Jayesh, K.; Mohan, R.; Joshi, R.C.; Ganesh, T.; Hegazy, M.; Oubaye, A.J.; AI Idrisi, Maha

    2008-01-01

    An accurate measurement of the dose delivered to the tumor in external beam radiotherapy is one of the primary responsibilities of a medical physicist. In general, such measurements have been based on the application of a dosimetry protocol and quality assurance procedures. Clinically one must be able to assess the beam quality, flatness and symmetry and variation in the output on daily basis. Flatness and symmetry are the main parameters for determining the pattern of a photon and electron beam produced by linear accelerators. The quality assurance in routine clinical practice of radiotherapy and consequently the treatment-outcome depends definitely on the physical parameters of treatment-delivery. Several recommendations from national and international associations are reported to define the limits for the beam parameters. The review of literature and various reports on quality assurance in radiotherapy show that for flatness, symmetry and output constancy the optimal level of deviation should be within ±3%

  15. Measurement of changes in linear accelerator photon energy through flatness variation using an ion chamber array

    International Nuclear Information System (INIS)

    Gao Song; Balter, Peter A.; Rose, Mark; Simon, William E.

    2013-01-01

    Purpose: To compare the use of flatness versus percent depth dose (PDD) for determining changes in photon beam energy for a megavoltage linear accelerator. Methods: Energy changes were accomplished by adjusting the bending magnet current by up to ±15% in 5% increments away from the value used clinically. Two metrics for flatness, relative flatness in the central 80% of the field (Flat) and average maximum dose along the diagonals normalized by central axis dose (F DN ), were measured using a commercially available planner ionization chamber array. PDD was measured in water at depths of 5 and 10 cm in 3 × 3 cm 2 and 10 × 10 cm 2 fields using a cylindrical chamber. Results: PDD was more sensitive to changes in energy when the beam energy was increased than when it was decreased. For the 18-MV beam in particular, PDD was not sensitive to energy reductions below the nominal energy. The value of Flat was found to be more sensitive to decreases in energy than to increases, with little sensitivity to energy increases above the nominal energy for 18-MV beams. F DN was the only metric that was found to be sensitive to both increases and reductions of energy for both the 6- and 18-MV beams. Conclusions: Flatness based metrics were found to be more sensitive to energy changes than PDD, In particular, F DN was found to be the most sensitive metric to energy changes for photon beams of 6 and 18 MV. The ionization chamber array allows this metric to be conveniently measured as part of routine accelerator quality assurance.

  16. Energy dependence of angular distributions of sputtered particles by ion-beam bombardment at normal incidence

    International Nuclear Information System (INIS)

    Matsuda, Yoshinobu; Ueda, Yasutoshi; Uchino, Kiichiro; Muraoka, Katsunori; Maeda, Mitsuo; Akazaki, Masanori; Yamamura, Yasunori.

    1986-01-01

    The angular distributions of sputtered Fe-atoms were measured using the laser fluorescence technique during Ar-ion bombardment for energies of 0.6, 1, 2 and 3 keV at normal incidence. The measured cosine distribution at 0.6 keV progressively deviated to an over-cosine distribution at higher energies, and at 3 keV the angular distribution was an overcosine distribution of about 20 %. The experimental results agree qualitatively with calculations by a recent computer simulation code, ACAT. The results are explained by the competition between surface scattering and the effects of primary knock-on atoms, which tend to make the angular distributions over-cosine and under-cosine, respectively. (author)

  17. The simultaneous measurement of energy and linear polarization of the scattered radiation in resonant inelastic soft x-ray scattering

    Energy Technology Data Exchange (ETDEWEB)

    Braicovich, L., E-mail: lucio.braicovich@polimi.it; Minola, M.; Dellea, G.; Ghiringhelli, G. [CNR-SPIN and Dipartimento di Fisica, Politecnico di Milano, piazza Leonardo Da Vinci 32, Milano I-20133 (Italy); Le Tacon, M. [Max-Planck-Institut für Festkörperforschung, Heisenbergstrasse 1, D-70569 Stuttgart (Germany); Moretti Sala, M.; Morawe, C.; Peffen, J.-Ch.; Yakhou, F.; Brookes, N. B. [European Synchrotron Radiation Facility, 71 Avenue des Martyrs, Grenoble F-38043 (France); Supruangnet, R. [Synchrotron Light Research Institute, Nakhon Ratchasima (Thailand)

    2014-11-15

    Resonant Inelastic X-ray Scattering (RIXS) in the soft x-ray range is an element-specific energy-loss spectroscopy used to probe the electronic and magnetic excitations in strongly correlated solids. In the recent years, RIXS has been progressing very quickly in terms of energy resolution and understanding of the experimental results, but the interpretation of spectra could further improve, sometimes decisively, from a full knowledge of the polarization of incident and scattered photons. Here we present the first implementation, in a high resolution soft-RIXS spectrometer used to analyze the scattered radiation, of a device allowing the measurement of the degree of linear polarization. The system, based on a graded W/B{sub 4}C multilayer mirror installed in proximity of the CCD detector, has been installed on the AXES spectrometer at the ESRF (European Synchrotron Radiation Facility); it has been fully characterized and it has been used for a demonstration experiment at the Cu L{sub 3} edge on a high-T{sub c} superconducting cuprate. The loss in efficiency suffered by the spectrometer equipped with this test facility was a factor 17.5. We propose also a more advanced version, suitable for a routine use on the next generation of RIXS spectrometers and with an overall efficiency up to 10%.

  18. Precise and fast beam energy measurement at the international linear collider

    Energy Technology Data Exchange (ETDEWEB)

    Viti, Michele

    2010-02-15

    The international Linear Collider (ILC) is an electron-positron collider with a center-of-mass energy between 200 and 500 GeV and a peak luminosity of 2 . 10{sup 34} cm{sup -2}s{sup -1}. For the physics program at this machine, an excellent bunch-by-bunch control of the beam energy is mandatory. Several techniques are foreseen to be implemented at the ILC in order to achieve this request. Energy spectrometers upstream and downstream of the electron/positron interaction point were proposed and the present default option for the upstream spectrometer is a beam position monitor based (BPM-based) spectrometer. In 2006/2007, a prototype of such a device was commissioned at the End Station A beam line at the Stanford Linear Accelerator Center (SLAC) in order to study performance and reliability. In addition, a novel method based on laser Compton backscattering has been proposed, since as proved at the Large Electron-Positron Collider (LEP) and the Stanford Linear Collider (SLC), complementary methods are necessary to cross-check the results of the BPM-based spectrometer. In this thesis, an overview of the experiment at End Station A is given, with emphasis on the performance of the magnets in the chicane and first energy resolution estimations. Also, the novel Compton backscattering method is discussed in details and found to be very promising. It has the potential to bring the beam energy resolution well below the requirement of {delta}E{sub b}/E{sub b}=10{sup -4}. (orig.)

  19. Linear free energy relationship applied to trivalent cations with lanthanum and actinium oxide and hydroxide structure

    International Nuclear Information System (INIS)

    Ragavan, Anpalaki J.

    2006-01-01

    Linear free energy relationships for trivalent cations with crystalline M 2 O 3 and, M(OH) 3 phases of lanthanides and actinides were developed from known thermodynamic properties of the aqueous trivalent cations, modifying the Sverjensky and Molling equation. The linear free energy relationship for trivalent cations is as ΔG f,MvX 0 =a MvX ΔG n,M 3+ 0 +b MvX +β MvX r M 3+ , where the coefficients a MvX , b MvX , and β MvX characterize a particular structural family of MvX, r M 3+ is the ionic radius of M 3+ cation, ΔG f,MvX 0 is the standard Gibbs free energy of formation of MvX and ΔG n,M 3+ 0 is the standard non-solvation free energy of the cation. The coefficients for the oxide family are: a MvX =0.2705, b MvX =-1984.75 (kJ/mol), and β MvX =197.24 (kJ/molnm). The coefficients for the hydroxide family are: a MvX =0.1587, b MvX =-1474.09 (kJ/mol), and β MvX =791.70 (kJ/molnm).

  20. ALICE EMCal Reconstructable Energy Non-Linearity From Test Beam Monte Carlo

    CERN Document Server

    Carter, Thomas Michael

    2017-01-01

    Calorimeters play many important roles in modern high energy physics detectors, such as event selection, triggering, and precision energy measurements. EMCal, in the case of the ALICE experiment provides triggering on high energy jets, improves jet quenching study measurement bias and jet energy resolution, and improves electron and photon measurements [3]. With the EMCal detector in the ALICE experiment taking on so many important roles, it is important to fully understand, characterize and model its interactions with particles. In 2010 SPS and PS electron test beam measurements were performed on an EMCal mini-module [2]. Alongside this, the test beam setup and geometry was recreated in Geant4 by Nico [1]. Figure 1 shows the reconstructable energy linearity for the SPS test beam data and that obtained from the test beam monte carlo, indicating the amount of energy deposit as hits in the EMCal module. It can be seen that for energies above ∼ 100 GeV there is a significant drop in the reconstructableenergym...

  1. The Ability of American Football Helmets to Manage Linear Acceleration With Repeated High-Energy Impacts.

    Science.gov (United States)

    Cournoyer, Janie; Post, Andrew; Rousseau, Philippe; Hoshizaki, Blaine

    2016-03-01

    Football players can receive up to 1400 head impacts per season, averaging 6.3 impacts per practice and 14.3 impacts per game. A decrease in the capacity of a helmet to manage linear acceleration with multiple impacts could increase the risk of traumatic brain injury. To investigate the ability of football helmets to manage linear acceleration with multiple high-energy impacts. Descriptive laboratory study. Laboratory. We collected linear-acceleration data for 100 impacts at 6 locations on 4 helmets of different models currently used in football. Impacts 11 to 20 were compared with impacts 91 to 100 for each of the 6 locations. Linear acceleration was greater after multiple impacts (91-100) than after the first few impacts (11-20) for the front, front-boss, rear, and top locations. However, these differences are not clinically relevant as they do not affect the risk for head injury. American football helmet performance deteriorated with multiple impacts, but this is unlikely to be a factor in head-injury causation during a game or over a season.

  2. Linearization effect in multifractal analysis: Insights from the Random Energy Model

    Science.gov (United States)

    Angeletti, Florian; Mézard, Marc; Bertin, Eric; Abry, Patrice

    2011-08-01

    The analysis of the linearization effect in multifractal analysis, and hence of the estimation of moments for multifractal processes, is revisited borrowing concepts from the statistical physics of disordered systems, notably from the analysis of the so-called Random Energy Model. Considering a standard multifractal process (compound Poisson motion), chosen as a simple representative example, we show the following: (i) the existence of a critical order q∗ beyond which moments, though finite, cannot be estimated through empirical averages, irrespective of the sample size of the observation; (ii) multifractal exponents necessarily behave linearly in q, for q>q∗. Tailoring the analysis conducted for the Random Energy Model to that of Compound Poisson motion, we provide explicative and quantitative predictions for the values of q∗ and for the slope controlling the linear behavior of the multifractal exponents. These quantities are shown to be related only to the definition of the multifractal process and not to depend on the sample size of the observation. Monte Carlo simulations, conducted over a large number of large sample size realizations of compound Poisson motion, comfort and extend these analyses.

  3. Energy demand forecasting in Iranian metal industry using linear and nonlinear models based on evolutionary algorithms

    International Nuclear Information System (INIS)

    Piltan, Mehdi; Shiri, Hiva; Ghaderi, S.F.

    2012-01-01

    Highlights: ► Investigating different fitness functions for evolutionary algorithms in energy forecasting. ► Energy forecasting of Iranian metal industry by value added, energy prices, investment and employees. ► Using real-coded instead of binary-coded genetic algorithm decreases energy forecasting error. - Abstract: Developing energy-forecasting models is known as one of the most important steps in long-term planning. In order to achieve sustainable energy supply toward economic development and social welfare, it is required to apply precise forecasting model. Applying artificial intelligent models for estimation complex economic and social functions is growing up considerably in many researches recently. In this paper, energy consumption in industrial sector as one of the critical sectors in the consumption of energy has been investigated. Two linear and three nonlinear functions have been used in order to forecast and analyze energy in the Iranian metal industry, Particle Swarm Optimization (PSO) and Genetic Algorithms (GAs) are applied to attain parameters of the models. The Real-Coded Genetic Algorithm (RCGA) has been developed based on real numbers, which is introduced as a new approach in the field of energy forecasting. In the proposed model, electricity consumption has been considered as a function of different variables such as electricity tariff, manufacturing value added, prevailing fuel prices, the number of employees, the investment in equipment and consumption in the previous years. Mean Square Error (MSE), Root Mean Square Error (RMSE), Mean Absolute Deviation (MAD) and Mean Absolute Percent Error (MAPE) are the four functions which have been used as the fitness function in the evolutionary algorithms. The results show that the logarithmic nonlinear model using PSO algorithm with 1.91 error percentage has the best answer. Furthermore, the prediction of electricity consumption in industrial sector of Turkey and also Turkish industrial sector

  4. A linear goal programming model for urban energy-economy-environment interaction

    Energy Technology Data Exchange (ETDEWEB)

    Kambo, N.S.; Handa, B.R. (Indian Inst. of Tech., New Delhi (India). Dept. of Mathematics); Bose, R.K. (Tata Energy Research Inst., New Delhi (India))

    1991-01-01

    This paper provides a comprehensive and systematic analysis of energy and pollution problems interconnected with the economic structure, by using a multi-objective sectoral end-use model for addressing regional energy policy issues. The multi-objective model proposed for the study is a 'linear goal programming (LGP)' technique of analysing a 'reference energy system (RES)' in a framework within which alternative policies and technical strategies may be evaluated. The model so developed has further been tested for the city of Delhi (India) for the period 1985 - 86, and a scenario analysis has been carried out by assuming different policy options. (orig./BWJ).

  5. High-Energy Beam Transport in the Hanford FMIT Linear Accelerator

    International Nuclear Information System (INIS)

    Melson, K.E.; Potter, R.C.; Liska, D.J.; Giles, P.M.; Wilson, M.T.; Cole, T.R.; Caldwell, C.J. Jr.

    1979-01-01

    The High-Energy Beam Transport (HEBT) for the Hanford Fusion Materials Irradiation Test (FMIT) Facility's Linear Accelerator must transport a large emittance, high-current, high-power continuous duty deuteron beam with a large energy spread. Both periodic and nonperiodic systems have been designed to transport and shape the beam as required by the liquid lithium target. An energy spreader system distributes the Bragg Peak within the lithium. A beam spreader and a beam stop have been provided for tune-up purposes. Characterizing the beam will require extensions of beam diagnostics techniques and non-interceptive sensors. Provisions are being made in the facility for suspending the transport system from overhead supports

  6. Application of TSEE characteristics to high energy radiation dosimetry around an electron linear accelerator

    International Nuclear Information System (INIS)

    Yamamoto, T.; Nakasaku, S.; Kawanishi, M.

    1986-01-01

    The response of the exoelectron dosemeter to the absorbed dose has been investigated with the LiF sample irradiated with high energy electrons from a linear accelerator and γ rays from a 60 Co source. The energy absorbed in the thin surface layer, which can be related to the origins of exoelectron emission, is, in general, smaller than the energy liberated there by primary radiation. In this paper the surface dose is calculated by the Monte Carlo Code EGS4. It is pointed out that the air layer in front of the sample also plays an important role by supplying secondary electrons to the surface region of the sample. The emission density of exoelectrons from a LiF single crystal for unit absorbed dose is found to be 5 x 10 4 electrons.cm -2 .Gy -1 , and nearly constant independent of the low LET radiation type. (author)

  7. Dietary Energy Density and Postmenopausal Breast Cancer Incidence in the Cancer Prevention Study II Nutrition Cohort.

    Science.gov (United States)

    Hartman, Terryl J; Gapstur, Susan M; Gaudet, Mia M; Shah, Roma; Flanders, W Dana; Wang, Ying; McCullough, Marjorie L

    2016-10-01

    Dietary energy density (ED) is a measure of diet quality that estimates the amount of energy per unit of food (kilocalories per gram) consumed. Low-ED diets are generally high in fiber and fruits and vegetables and low in fat. Dietary ED has been positively associated with body mass index (BMI) and other risk factors for postmenopausal breast cancer. We evaluated the associations of total dietary ED and energy-dense (high-ED) foods with postmenopausal breast cancer incidence. Analyses included 56,795 postmenopausal women from the Cancer Prevention Study II Nutrition Cohort with no previous history of breast or other cancers and who provided information on diet, lifestyle, and medical history in 1999. Multivariable-adjusted breast cancer incidence rate ratios (RRs and 95% CIs) were estimated for quintiles of total dietary ED and for the consumption of high-ED foods in Cox proportional hazards regression models. During a median follow-up of 11.7 y, 2509 invasive breast cancer cases were identified, including 1857 estrogen receptor-positive and 277 estrogen receptor-negative tumors. Median dietary ED was 1.5 kcal/g (IQR: 1.3-1.7 kcal/g). After adjusting for age, race, education, reproductive characteristics, and family history, high compared with low dietary ED was associated with a statistically significantly higher risk of breast cancer (RR for fifth quintile compared with first quintile: 1.20; 95% CI: 1.05, 1.36; P-trend = 0.03). The association between the amount of high-ED foods consumed and breast cancer risk was not statistically significant. We observed no differences by estrogen receptor status or effect modification by BMI, age, or physical activity. These results suggest a modest positive association between total dietary ED and risk of postmenopausal breast cancer. © 2016 American Society for Nutrition.

  8. Considering linear generator copper losses on model predictive control for a point absorber wave energy converter

    International Nuclear Information System (INIS)

    Montoya Andrade, Dan-El; Villa Jaén, Antonio de la; García Santana, Agustín

    2014-01-01

    Highlights: • We considered the linear generator copper losses in the proposed MPC strategy. • We maximized the power transferred to the generator side power converter. • The proposed MPC increases the useful average power injected into the grid. • The stress level of the PTO system can be reduced by the proposed MPC. - Abstract: The amount of energy that a wave energy converter can extract depends strongly on the control strategy applied to the power take-off system. It is well known that, ideally, the reactive control allows for maximum energy extraction from waves. However, the reactive control is intrinsically noncausal in practice and requires some kind of causal approach to be applied. Moreover, this strategy does not consider physical constraints and this could be a problem because the system could achieve unacceptable dynamic values. These, and other control techniques have focused on the wave energy extraction problem in order to maximize the energy absorbed by the power take-off device without considering the possible losses in intermediate devices. In this sense, a reactive control that considers the linear generator copper losses has been recently proposed to increase the useful power injected into the grid. Among the control techniques that have emerged recently, the model predictive control represents a promising strategy. This approach performs an optimization process on a time prediction horizon incorporating dynamic constraints associated with the physical features of the power take-off system. This paper proposes a model predictive control technique that considers the copper losses in the control optimization process of point absorbers with direct drive linear generators. This proposal makes the most of reactive control as it considers the copper losses, and it makes the most of the model predictive control, as it considers the system constraints. This means that the useful power transferred from the linear generator to the power

  9. Linear magnetic motor/generator. [to generate electric energy using magnetic flux for spacecraft power supply

    Science.gov (United States)

    Studer, P. A. (Inventor)

    1982-01-01

    A linear magnetic motor/generator is disclosed which uses magnetic flux to provide mechanical motion or electrical energy. The linear magnetic motor/generator includes an axially movable actuator mechanism. A permament magnet mechanism defines a first magnetic flux path which passes through a first end portion of the actuator mechanism. Another permament magnet mechanism defines a second magnetic flux path which passes through a second end portion of the actuator mechanism. A drive coil defines a third magnetic flux path passing through a third central portion of the actuator mechanism. A drive coil selectively adds magnetic flux to and subtracts magnetic flux from magnetic flux flowing in the first and second magnetic flux path.

  10. Optimal linear generator with Halbach array for harvesting of vibration energy during human walking

    Directory of Open Access Journals (Sweden)

    Joonsoo Jun

    2016-05-01

    Full Text Available In IT business, the capacity of the battery in smartphone was drastically improved to digest various functions such as communication, Internet, e-banking, and entertainment. Although the capacity of the battery is improved, it still needs to be upgraded due to customer’s demands. In this article, we optimize the design of the linear generator with the Halbach array to improve the efficiency of harvesting vibration energy during human walking for the battery capacitance. We propose the optimal design of the tubular permanent magnet with the linear generator that uses a Halbach array. The approximate model is established using generic algorithm. Furthermore, we performed electromagnetic finite element analysis to predict the induced voltage.

  11. The linear attenuation coefficients as features of multiple energy CT image classification

    International Nuclear Information System (INIS)

    Homem, M.R.P.; Mascarenhas, N.D.A.; Cruvinel, P.E.

    2000-01-01

    We present in this paper an analysis of the linear attenuation coefficients as useful features of single and multiple energy CT images with the use of statistical pattern classification tools. We analyzed four CT images through two pointwise classifiers (the first classifier is based on the maximum-likelihood criterion and the second classifier is based on the k-means clustering algorithm) and one contextual Bayesian classifier (ICM algorithm - Iterated Conditional Modes) using an a priori Potts-Strauss model. A feature extraction procedure using the Jeffries-Matusita (J-M) distance and the Karhunen-Loeve transformation was also performed. Both the classification and the feature selection procedures were found to be in agreement with the predicted discrimination given by the separation of the linear attenuation coefficient curves for different materials

  12. Pulse-by-pulse energy measurement at the Stanford Linear Collider

    International Nuclear Information System (INIS)

    Blaylock, G.; Briggs, D.; Collins, B.; Petree, M.

    1992-01-01

    The stanford Linear Collider (SLC) collides a beam of electrons and positrons at 92 GeV. It is the first colliding linac, and produces Z 0 particles for High-Energy Physics measurements. The energy of each beam must be measured to one part in 10 4 on every collision (120 Hz). An Energy Spectrometer in each beam line after collision produces two stripes of high-energy synchrotron radiation with critical energy of a few MeV. The distance between these two stripes at an imaging plane measures the beam energy. The Wire- Imaging Synchrotron Radiation Detector (WISRD) system comprises a novel detector, data acquisition electronics, readout and analysis. The detector comprises an array of wires for each synchrotron stripe. The electronics measure secondary emission charge on each wire of each array. A Macintosh II (using THINK C, THINK Class Library) and DSP coprocessor (using ANSI C) acquire and analyze the data, and display and report the results for SLC operation

  13. Pulse-by-pulse energy measurement at the Stanford Linear Collider

    Science.gov (United States)

    Blaylock, G.; Briggs, D.; Collins, B.; Petree, M.

    1992-01-01

    The Stanford Linear Collider (SLC) collides a beam of electrons and positrons at 92 GeV. It is the first colliding linac, and produces Z(sup 0) particles for High-Energy Physics measurements. The energy of each beam must be measured to one part in 10(exp 4) on every collision (120 Hz). An Energy Spectrometer in each beam line after the collision produces two stripes of high-energy synchrotron radiation with critical energy of a few MeV. The distance between these two stripes at an imaging plane measures the beam energy. The Wire-Imaging Synchrotron Radiation Detector (WISRD) system comprises a novel detector, data acquisition electronics, readout, and analysis. The detector comprises an array of wires for each synchrotron stripe. The electronics measure secondary emission charge on each wire of each array. A Macintosh II (using THINK C, THINK Class Library) and DSP coprocessor (using ANSI C) acquire and analyze the data, and display and report the results for SLC operation.

  14. Energy footprint of advanced dense numerical linear algebra using tile algorithms on multicore architectures

    KAUST Repository

    Dongarra, Jack; Ltaief, Hatem; Luszczek, Piotr R.; Weaver, Vincent M.

    2012-01-01

    We propose to study the impact on the energy footprint of two advanced algorithmic strategies in the context of high performance dense linear algebra libraries: (1) mixed precision algorithms with iterative refinement allow to run at the peak performance of single precision floating-point arithmetic while achieving double precision accuracy and (2) tree reduction technique exposes more parallelism when factorizing tall and skinny matrices for solving over determined systems of linear equations or calculating the singular value decomposition. Integrated within the PLASMA library using tile algorithms, which will eventually supersede the block algorithms from LAPACK, both strategies further excel in performance in the presence of a dynamic task scheduler while targeting multicore architecture. Energy consumption measurements are reported along with parallel performance numbers on a dual-socket quad-core Intel Xeon as well as a quad-socket quad-core Intel Sandy Bridge chip, both providing component-based energy monitoring at all levels of the system, through the Power Pack framework and the Running Average Power Limit model, respectively. © 2012 IEEE.

  15. Energy footprint of advanced dense numerical linear algebra using tile algorithms on multicore architectures

    KAUST Repository

    Dongarra, Jack

    2012-11-01

    We propose to study the impact on the energy footprint of two advanced algorithmic strategies in the context of high performance dense linear algebra libraries: (1) mixed precision algorithms with iterative refinement allow to run at the peak performance of single precision floating-point arithmetic while achieving double precision accuracy and (2) tree reduction technique exposes more parallelism when factorizing tall and skinny matrices for solving over determined systems of linear equations or calculating the singular value decomposition. Integrated within the PLASMA library using tile algorithms, which will eventually supersede the block algorithms from LAPACK, both strategies further excel in performance in the presence of a dynamic task scheduler while targeting multicore architecture. Energy consumption measurements are reported along with parallel performance numbers on a dual-socket quad-core Intel Xeon as well as a quad-socket quad-core Intel Sandy Bridge chip, both providing component-based energy monitoring at all levels of the system, through the Power Pack framework and the Running Average Power Limit model, respectively. © 2012 IEEE.

  16. Thermal performance of a linear Fresnel reflector solar concentrator PV/T energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Gomaa, Mohamed R. [State Engineering University of Armenia (Armenia)], E-Mail: Dmoh_elbehary@yahoo.com

    2011-07-01

    This is a report on an investigation of photovoltaic/thermal (PV/T) collectors. Solar energy conversion efficiency was increased by taking advantage of PV/T collectors and low solar concentration technologies, combined into a PV/T system operated at elevated temperature. The main novelty is the coupling of a linear Fresnel mirror reflecting concentrator with a channel PV/T collector. Concentrator PV/T collectors can function at temperatures over 100 degrees celsius, and thus thermal energy can be made to drive processes such as refrigeration, desalination and steam production. Solar system analytical thermal performance gives efficiency values over 60%. Combined electric and thermal (CET) efficiency is high. A combined electric and heat power for the linear fresnel reflector approach that employs high performance CPV technology to produce both electricity and thermal energy at low to medium temperatures is presented. A well-functioning PV/T system can be designed and constructed with low concentration and a total efficiency of nearly 80% can be attained.

  17. Using the fuzzy linear regression method to benchmark the energy efficiency of commercial buildings

    International Nuclear Information System (INIS)

    Chung, William

    2012-01-01

    Highlights: ► Fuzzy linear regression method is used for developing benchmarking systems. ► The systems can be used to benchmark energy efficiency of commercial buildings. ► The resulting benchmarking model can be used by public users. ► The resulting benchmarking model can capture the fuzzy nature of input–output data. -- Abstract: Benchmarking systems from a sample of reference buildings need to be developed to conduct benchmarking processes for the energy efficiency of commercial buildings. However, not all benchmarking systems can be adopted by public users (i.e., other non-reference building owners) because of the different methods in developing such systems. An approach for benchmarking the energy efficiency of commercial buildings using statistical regression analysis to normalize other factors, such as management performance, was developed in a previous work. However, the field data given by experts can be regarded as a distribution of possibility. Thus, the previous work may not be adequate to handle such fuzzy input–output data. Consequently, a number of fuzzy structures cannot be fully captured by statistical regression analysis. This present paper proposes the use of fuzzy linear regression analysis to develop a benchmarking process, the resulting model of which can be used by public users. An illustrative example is given as well.

  18. Design and analysis of an unconventional permanent magnet linear machine for energy harvesting

    Science.gov (United States)

    Zeng, Peng

    This Ph.D. dissertation proposes an unconventional high power density linear electromagnetic kinetic energy harvester, and a high-performance two-stage interface power electronics to maintain maximum power abstraction from the energy source and charge the Li-ion battery load with constant current. The proposed machine architecture is composed of a double-sided flat type silicon steel stator with winding slots, a permanent magnet mover, coil windings, a linear motion guide and an adjustable spring bearing. The unconventional design of the machine is that NdFeB magnet bars in the mover are placed with magnetic fields in horizontal direction instead of vertical direction and the same magnetic poles are facing each other. The derived magnetic equivalent circuit model proves the average air-gap flux density of the novel topology is as high as 0.73 T with 17.7% improvement over that of the conventional topology at the given geometric dimensions of the proof-of-concept machine. Subsequently, the improved output voltage and power are achieved. The dynamic model of the linear generator is also developed, and the analytical equations of output maximum power are derived for the case of driving vibration with amplitude that is equal, smaller and larger than the relative displacement between the mover and the stator of the machine respectively. Furthermore, the finite element analysis (FEA) model has been simulated to prove the derived analytical results and the improved power generation capability. Also, an optimization framework is explored to extend to the multi-Degree-of-Freedom (n-DOF) vibration based linear energy harvesting devices. Moreover, a boost-buck cascaded switch mode converter with current controller is designed to extract the maximum power from the harvester and charge the Li-ion battery with trickle current. Meanwhile, a maximum power point tracking (MPPT) algorithm is proposed and optimized for low frequency driving vibrations. Finally, a proof

  19. Block level energy planning for domestic lighting - a multi-objective fuzzy linear programming approach

    Energy Technology Data Exchange (ETDEWEB)

    Jana, C. [Indian Inst. of Social Welfare and Business Management, Kolkata (India); Chattopadhyay, R.N. [Indian Inst. of Technology, Kharagpur (India). Rural Development Centre

    2004-09-01

    Creating provisions for domestic lighting is important for rural development. Its significance in rural economy is unquestionable since some activities, like literacy, education and manufacture of craft items and other cottage products are largely dependent on domestic lighting facilities for their progress and prosperity. Thus, in rural energy planning, domestic lighting remains a key sector for allocation of investments. For rational allocation, decision makers need alternative strategies for identifying adequate and proper investment structure corresponding to appropriate sources and precise devices. The present study aims at designing a model of energy utilisation by developing a decision support frame for an optimised solution to the problem, taking into consideration four sources and six devices suitable for the study area, namely Narayangarh Block of Midnapore District in India. Since the data available from rural and unorganised sectors are often ill-defined and subjective in nature, many coefficients are fuzzy numbers, and hence several constraints appear to be fuzzy expressions. In this study, the energy allocation model is initiated with three separate objectives for optimisation, namely minimising the total cost, minimising the use of non-local sources of energy and maximising the overall efficiency of the system. Since each of the above objective-based solutions has relevance to the needs of the society and economy, it is necessary to build a model that makes a compromise among the three individual solutions. This multi-objective fuzzy linear programming (MOFLP) model, solved in a compromising decision support frame, seems to be a more rational alternative than single objective linear programming model in rural energy planning. (author)

  20. Linear active disturbance rejection-based load frequency control concerning high penetration of wind energy

    International Nuclear Information System (INIS)

    Tang, Yanmei; Bai, Yan; Huang, Congzhi; Du, Bin

    2015-01-01

    Highlights: • A disturbance rejection solution to the load frequency control issue is proposed. • Several power systems with wind energy conversation system have been tested. • A tuning algorithm of the controller parameters was proposed. • The performance of the proposed approach is better than traditional controllers. - Abstract: A new grid load frequency control approach is proposed for the doubly fed induction generator based wind power plants. The load frequency control issue in a power system is undergoing fundamental changes due to the rapidly growing amount of wind energy conversation system, and concentrating on maintaining generation-load balance and disturbance rejection. The prominent feature of the linear active disturbance rejection control approach is that the total disturbance can be estimated and then eliminated in real time. And thus, it is a feasible solution to deal with the load frequency control issue. In this paper, the application of the linear active disturbance rejection control approach in the load frequency control issue for a complex power system with wind energy conversation system based on doubly fed induction generator is investigated. The load frequency control issue is formulated as a decentralized multi-objective optimization control problem, the solution to which is solved by the hybrid particle swarm optimization technique. To show the effectiveness of the proposed control scheme, the robust performance testing based on Monte-Carlo approach is carried out. The performance superiority of the system with the proposed linear active disturbance rejection control approach over that with the traditional proportional integral and fuzzy-proportional integral-based controllers is validated by the simulation results

  1. Beam generation and planar imaging at energies below 2.40 MeV with carbon and aluminum linear accelerator targets.

    Science.gov (United States)

    Parsons, David; Robar, James L

    2012-07-01

    Recent work has demonstrated improvement of image quality with low-Z linear accelerator targets and energies as low as 3.5 MV. In this paper, the authors lower the incident electron beam energy between 1.90 and 2.35 MeV and assess the improvement of megavoltage planar image quality with the use of carbon and aluminum linear accelerator targets. The bending magnet shunt current was adjusted in a Varian linear accelerator to allow selection of mean electron energy between 1.90 and 2.35 MeV. Linac set points were altered to increase beam current to allow experimental imaging in a practical time frame. Electron energy was determined through comparison of measured and Monte Carlo modeled depth dose curves. Planar image CNR and spatial resolution measurements were performed to quantify the improvement of image quality. Magnitudes of improvement are explained with reference to Monte Carlo generated energy spectra. After modifications to the linac, beam current was increased by a factor greater than four and incident electron energy was determined to have an adjustable range from 1.90 MeV to 2.35 MeV. CNR of cortical bone was increased by a factor ranging from 6.2 to 7.4 and 3.7 to 4.3 for thin and thick phantoms, respectively, compared to a 6 MV therapeutic beam for both aluminum and carbon targets. Spatial resolution was degraded slightly, with a relative change of 3% and 10% at 0.20 lp∕mm and 0.40 lp∕mm, respectively, when reducing energy from 2.35 to 1.90 MV. The percentage of diagnostic x-rays for the beams examined here, ranges from 46% to 54%. It is possible to produce a large fraction of diagnostic energy x-rays by lowering the beam energy below 2.35 MV. By lowering the beam energy to 1.90 MV or 2.35 MV, CNR improves by factors ranging from 3.7 to 7.4 compared to a 6 MV therapy beam, with only a slight degradation of spatial resolution when lowering the energy from 2.35 MV to 1.90 MV.

  2. Rate-Independent Processes with Linear Growth Energies and Time-Dependent Boundary Conditions

    Czech Academy of Sciences Publication Activity Database

    Kružík, Martin; Zimmer, J.

    2012-01-01

    Roč. 5, č. 3 (2012), s. 591-604 ISSN 1937-1632 R&D Projects: GA AV ČR IAA100750802 Grant - others:GA ČR(CZ) GAP201/10/0357 Institutional research plan: CEZ:AV0Z10750506 Keywords : concentrations * oscillations * time - dependent boundary conditions * rate-independent evolution Subject RIV: BA - General Mathematics http://library.utia.cas.cz/separaty/2011/MTR/kruzik-rate-independent processes with linear growth energies and time - dependent boundary conditions.pdf

  3. Uncertainties in linear energy transfer spectra measured with track-etched detectors in space

    Czech Academy of Sciences Publication Activity Database

    Pachnerová Brabcová, Kateřina; Ambrožová, Iva; Kolísková, Zlata; Malušek, Alexandr

    2013-01-01

    Roč. 713, JUN 11 (2013), s. 5-10 ISSN 0168-9002 R&D Projects: GA ČR GA205/09/0171; GA AV ČR IAA100480902; GA AV ČR KJB100480901; GA ČR GD202/09/H086 Institutional research plan: CEZ:AV0Z10480505 Institutional support: RVO:61389005 Keywords : CR-39 * linear energy transfer * uncertainty model * space dosimetry Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 1.316, year: 2013

  4. Minimum Energy Control of 2D Positive Continuous-Discrete Linear Systems

    Directory of Open Access Journals (Sweden)

    Kaczorek Tadeusz

    2014-09-01

    Full Text Available The minimum energy control problem for the 2D positive continuous-discrete linear systems is formulated and solved. Necessary and sufficient conditions for the reachability at the point of the systems are given. Sufficient conditions for the existence of solution to the problem are established. It is shown that if the system is reachable then there exists an optimal input that steers the state from zero boundary conditions to given final state and minimizing the performance index for only one step (q = 1. A procedure for solving of the problem is proposed and illustrated by a numerical example.

  5. Experience and development program for the I.V. Kurchatov Atomic Energy Institute electron linear accelerator

    International Nuclear Information System (INIS)

    Aref'ev, A.V.; Blokhov, M.V.; Gerasimov, V.F.

    1981-01-01

    A program of physical investigations and the corresponding requirements to accelerated beam parameters are discussed in brief. The state and working capacity of separate units and the accelerator as a whole for the 8-year operating period are analyzed. The aim and principal program points of linear electron accelerator modernization are defined. The program of accelerator modernization assumes: electron beam energy increase up to 100-120 MeV; mounting of three additional accelerating sections; clystron efficiency increase; development of a highly reliable modulator; stabilized power supply sources; a system of synchronous start-up; a focusing system; a beam separation system and etc [ru

  6. Linear energy transfer (LET) effects in the radiation-induced inactivation of papain

    International Nuclear Information System (INIS)

    Bisby, R.H.; Cundall, R.B.; Sims, H.E.; Burns, W.G.

    1977-01-01

    The inactivation of dilute aqueous solutions of papain by radiations of varying linear energy transfer has been studied in N 2 , N 2 0 and O 2 -saturated solutions. The results obtained with low LET radiation are very similar to those previously reported by Lin et al (Radiation Res.;62:438(1975)). The additional data obtained at higher LET, when radical product yields are reduced and the yield of hydrogen peroxide is increased, show that the hydrogen atom is more important in the inactivation of papain than previously considered. (author)

  7. Dual-Source Linear Energy Prediction (LINE-P) Model in the Context of WSNs.

    Science.gov (United States)

    Ahmed, Faisal; Tamberg, Gert; Le Moullec, Yannick; Annus, Paul

    2017-07-20

    Energy harvesting technologies such as miniature power solar panels and micro wind turbines are increasingly used to help power wireless sensor network nodes. However, a major drawback of energy harvesting is its varying and intermittent characteristic, which can negatively affect the quality of service. This calls for careful design and operation of the nodes, possibly by means of, e.g., dynamic duty cycling and/or dynamic frequency and voltage scaling. In this context, various energy prediction models have been proposed in the literature; however, they are typically compute-intensive or only suitable for a single type of energy source. In this paper, we propose Linear Energy Prediction "LINE-P", a lightweight, yet relatively accurate model based on approximation and sampling theory; LINE-P is suitable for dual-source energy harvesting. Simulations and comparisons against existing similar models have been conducted with low and medium resolutions (i.e., 60 and 22 min intervals/24 h) for the solar energy source (low variations) and with high resolutions (15 min intervals/24 h) for the wind energy source. The results show that the accuracy of the solar-based and wind-based predictions is up to approximately 98% and 96%, respectively, while requiring a lower complexity and memory than the other models. For the cases where LINE-P's accuracy is lower than that of other approaches, it still has the advantage of lower computing requirements, making it more suitable for embedded implementation, e.g., in wireless sensor network coordinator nodes or gateways.

  8. A parameterization scheme for the x-ray linear attenuation coefficient and energy absorption coefficient.

    Science.gov (United States)

    Midgley, S M

    2004-01-21

    A novel parameterization of x-ray interaction cross-sections is developed, and employed to describe the x-ray linear attenuation coefficient and mass energy absorption coefficient for both elements and mixtures. The new parameterization scheme addresses the Z-dependence of elemental cross-sections (per electron) using a simple function of atomic number, Z. This obviates the need for a complicated mathematical formalism. Energy dependent coefficients describe the Z-direction curvature of the cross-sections. The composition dependent quantities are the electron density and statistical moments describing the elemental distribution. We show that it is possible to describe elemental cross-sections for the entire periodic table and at energies above the K-edge (from 6 keV to 125 MeV), with an accuracy of better than 2% using a parameterization containing not more than five coefficients. For the biologically important elements 1 coefficients. At higher energies, the parameterization uses fewer coefficients with only two coefficients needed at megavoltage energies.

  9. Simulation of electron energy loss spectra of nanomaterials with linear-scaling density functional theory

    International Nuclear Information System (INIS)

    Tait, E W; Payne, M C; Ratcliff, L E; Haynes, P D; Hine, N D M

    2016-01-01

    Experimental techniques for electron energy loss spectroscopy (EELS) combine high energy resolution with high spatial resolution. They are therefore powerful tools for investigating the local electronic structure of complex systems such as nanostructures, interfaces and even individual defects. Interpretation of experimental electron energy loss spectra is often challenging and can require theoretical modelling of candidate structures, which themselves may be large and complex, beyond the capabilities of traditional cubic-scaling density functional theory. In this work, we present functionality to compute electron energy loss spectra within the onetep linear-scaling density functional theory code. We first demonstrate that simulated spectra agree with those computed using conventional plane wave pseudopotential methods to a high degree of precision. The ability of onetep to tackle large problems is then exploited to investigate convergence of spectra with respect to supercell size. Finally, we apply the novel functionality to a study of the electron energy loss spectra of defects on the (1 0 1) surface of an anatase slab and determine concentrations of defects which might be experimentally detectable. (paper)

  10. Leakage of the Siemens 160 MLC multileaf collimator on a dual energy linear accelerator

    International Nuclear Information System (INIS)

    Klueter, Sebastian; Sroka-Perez, Gabriele; Schubert, Kai; Debus, Juergen

    2011-01-01

    Multileaf collimators (MLCs) have been in clinical use for many years and meanwhile are commonly used to deliver intensity-modulated radiotherapy (IMRT) beams. For this purpose it is important to know their dosimetric properties precisely, one of them being inter- and intraleaf leakage. The Siemens 160 MLC features a single focus design with flat-sided and tilted leaves instead of tongue-and-groove. The leakage performance of the 160 MLC was investigated on a dual energy linear accelerator Siemens ARTISTE with 6 MV and 18 MV photon energies. While the intraleaf leakage amounted to nearly the same dose for 6 and for 18 MV, a much higher interleaf leakage for 6 MV was measured. It could be reduced by simply rotating the collimator, and also by changing the voltage applied to the beam steering coils. The leakage of the 160 MLC is shown to be sensitive to beam alignment. This is of special interest for dual energy accelerators, as the two focal spots of both energies, neither in position nor in shape, do not necessarily always coincide. As a consequence of that, a higher leakage can be expected for one out of two energies for the 160 MLC. (note)

  11. Linear programming optimization of nuclear energy strategy with sodium-cooled fast reactors

    International Nuclear Information System (INIS)

    Lee, Je Whan; Jeong, Yong Hoon; Chang, Yoon Il; Chang, Soon Heung

    2011-01-01

    Nuclear power has become an essential part of electricity generation to meet the continuous growth of electricity demand. A Sodium-cooled Fast Reactor (SFR) was developed to extend uranium resource utilization under a growing nuclear energy scenario while concomitantly providing a nuclear waste management solution. Key questions in this scenario are when to introduce SFRs and how many reactors should be introduced. In this study, a methodology using Linear Programming is employed in order to quantify an optimized growth pattern of a nuclear energy system comprising light water reactors and SFRs. The optimization involves tradeoffs between SFR capital cost premiums and the total system U3O8 price premiums. Optimum nuclear growth patterns for several scenarios are presented, as well as sensitivity analyses of important input parameters

  12. Latest astronomical constraints on some non-linear parametric dark energy models

    Science.gov (United States)

    Yang, Weiqiang; Pan, Supriya; Paliathanasis, Andronikos

    2018-04-01

    We consider non-linear redshift-dependent equation of state parameters as dark energy models in a spatially flat Friedmann-Lemaître-Robertson-Walker universe. To depict the expansion history of the universe in such cosmological scenarios, we take into account the large-scale behaviour of such parametric models and fit them using a set of latest observational data with distinct origin that includes cosmic microwave background radiation, Supernove Type Ia, baryon acoustic oscillations, redshift space distortion, weak gravitational lensing, Hubble parameter measurements from cosmic chronometers, and finally the local Hubble constant from Hubble space telescope. The fitting technique avails the publicly available code Cosmological Monte Carlo (COSMOMC), to extract the cosmological information out of these parametric dark energy models. From our analysis, it follows that those models could describe the late time accelerating phase of the universe, while they are distinguished from the Λ-cosmology.

  13. Profiling high performance dense linear algebra algorithms on multicore architectures for power and energy efficiency

    KAUST Repository

    Ltaief, Hatem

    2011-08-31

    This paper presents the power profile of two high performance dense linear algebra libraries i.e., LAPACK and PLASMA. The former is based on block algorithms that use the fork-join paradigm to achieve parallel performance. The latter uses fine-grained task parallelism that recasts the computation to operate on submatrices called tiles. In this way tile algorithms are formed. We show results from the power profiling of the most common routines, which permits us to clearly identify the different phases of the computations. This allows us to isolate the bottlenecks in terms of energy efficiency. Our results show that PLASMA surpasses LAPACK not only in terms of performance but also in terms of energy efficiency. © 2011 Springer-Verlag.

  14. Calculated fraction of an incident current pulse that will be accelerated by an electron linear accelerator and comparisons with experimental data

    International Nuclear Information System (INIS)

    Alsmiller, R.G. Jr.; Alsmiller, F.S.; Lewis, T.A.

    1986-05-01

    In a series of previous papers, calculated results obtained using a one-dimensional ballistic model were presented to aid in the design of a prebuncher for the Oak Ridge Electron Linear Accelerator. As part of this work, a model was developed to provide limits on the fraction of an incident current pulse that would be accelerated by the existing accelerator. In this paper experimental data on this fraction are presented and the validity of the model developed previously is tested by comparing calculated and experimental data. Part of the experimental data is used to fix the physical parameters in the model and then good agreement between the calculated results and the rest of the experimental data is obtained

  15. High linear-energy-transfer radiation can overcome radioresistance of glioma stem-like cells to low linear-energy-transfer radiation.

    Science.gov (United States)

    Hirota, Yuki; Masunaga, Shin-Ichiro; Kondo, Natsuko; Kawabata, Shinji; Hirakawa, Hirokazu; Yajima, Hirohiko; Fujimori, Akira; Ono, Koji; Kuroiwa, Toshihiko; Miyatake, Shin-Ichi

    2014-01-01

    Ionizing radiation is applied as the standard treatment for glioblastoma multiforme (GBM). However, radiotherapy remains merely palliative, not curative, because of the existence of glioma stem cells (GSCs), which are regarded as highly radioresistant to low linear-energy-transfer (LET) photons. Here we analyzed whether or not high-LET particles can overcome the radioresistance of GSCs. Glioma stem-like cells (GSLCs) were induced from the GBM cell line A172 in stem cell culture medium. The phenotypes of GSLCs and wild-type cells were confirmed using stem cell markers. These cells were irradiated with (60)Co gamma rays or reactor neutron beams. Under neutron-beam irradiation, high-LET proton particles can be produced through elastic scattering or nitrogen capture reaction. Radiosensitivity was assessed by a colony-forming assay, and the DNA double-strand breaks (DSBs) were assessed by a histone gamma-H2AX focus detection assay. In stem cell culture medium, GSLCs could form neurosphere-like cells and express neural stem cell markers (Sox2 and Musashi) abundantly in comparison with their parental cells. GSLCs were significantly more radioresistant to gamma rays than their parental cells, but neutron beams overcame this resistance. There were significantly fewer gamma-H2AX foci in the A172 GSLCs 24 h after irradiation with gamma rays than in their parental cultured cells, while there was no apparent difference following neutron-beam irradiation. High-LET radiation can overcome the radioresistance of GSLCs by producing unrepairable DNA DSBs. High-LET radiation therapy might have the potential to overcome GBM's resistance to X-rays in a clinical setting.

  16. High linear-energy-transfer radiation can overcome radioresistance of glioma stem-like cells to low linear-energy-transfer radiation

    International Nuclear Information System (INIS)

    Hirota, Yuki; Kawabata, Shinji; Kuroiwa, Toshihiko; Miyatake, Shin-ichi; Masunaga, Shin-ichiro; Kondo, Natsuko; Ono, Koji; Hirakawa, Hirokazu; Yajima, Hirohiko; Fujimori, Akira

    2014-01-01

    Ionizing radiation is applied as the standard treatment for glioblastoma multiforme (GBM). However, radiotherapy remains merely palliative, not curative, because of the existence of glioma stem cells (GSCs), which are regarded as highly radioresistant to low linear-energy-transfer (LET) photons. Here we analyzed whether or not high-LET particles can overcome the radioresistance of GSCs. Glioma stem-like cells (GSLCs) were induced from the GBM cell line A172 in stem cell culture medium. The phenotypes of GSLCs and wild-type cells were confirmed using stem cell markers. These cells were irradiated with 60 Co gamma rays or reactor neutron beams. Under neutron-beam irradiation, high-LET proton particles can be produced through elastic scattering or nitrogen capture reaction. Radiosensitivity was assessed by a colony-forming assay, and the DNA double-strand breaks (DSBs) were assessed by a histone gamma-H2AX focus detection assay. In stem cell culture medium, GSLCs could form neurosphere-like cells and express neural stem cell markers (Sox2 and Musashi) abundantly in comparison with their parental cells. GSLCs were significantly more radioresistant to gamma rays than their parental cells, but neutron beams overcame this resistance. There were significantly fewer gamma-H2AX foci in the A172 GSLCs 24 h after irradiation with gamma rays than in their parental cultured cells, while there was no apparent difference following neutron-beam irradiation. High-LET radiation can overcome the radioresistance of GSLCs by producing unrepairable DNA DSBs. High-LET radiation therapy might have the potential to overcome GBM's resistance to X-rays in a clinical setting. (author)

  17. Adaptive response of low linear energy transfer X-rays for protection against high linear energy transfer accelerated heavy ion-induced teratogenesis.

    Science.gov (United States)

    Wang, Bing; Ninomiya, Yasuharu; Tanaka, Kaoru; Maruyama, Kouichi; Varès, Guillaume; Eguchi-Kasai, Kiyomi; Nenoi, Mitsuru

    2012-12-01

    Adaptive response (AR) of low linear energy transfer (LET) irradiations for protection against teratogenesis induced by high LET irradiations is not well documented. In this study, induction of AR by X-rays against teratogenesis induced by accelerated heavy ions was examined in fetal mice. Irradiations of pregnant C57BL/6J mice were performed by delivering a priming low dose from X-rays at 0.05 or 0.30 Gy on gestation day 11 followed one day later by a challenge high dose from either X-rays or accelerated heavy ions. Monoenergetic beams of carbon, neon, silicon, and iron with the LET values of about 15, 30, 55, and 200 keV/μm, respectively, were examined. Significant suppression of teratogenic effects (fetal death, malformation of live fetuses, or low body weight) was used as the endpoint for judgment of a successful AR induction. Existence of AR induced by low-LET X-rays against teratogenic effect induced by high-LET accelerated heavy ions was demonstrated. The priming low dose of X-rays significantly reduced the occurrence of prenatal fetal death, malformation, and/or low body weight induced by the challenge high dose from either X-rays or accelerated heavy ions of carbon, neon or silicon but not iron particles. Successful AR induction appears to be a radiation quality event, depending on the LET value and/or the particle species of the challenge irradiations. These findings would provide a new insight into the study on radiation-induced AR in utero. © 2012 Wiley Periodicals, Inc.

  18. Dose conversion factors and linear energy transfer for irradiation of thin blood layers with low-energy X rays

    International Nuclear Information System (INIS)

    Verhaegen, F.; Seuntjens, J.

    1994-01-01

    For irradiation of thin samples of biological material with low-energy X rays, conversion of measured air kerma, free in air to average absorbed dose to the sample is necessary. In the present paper, conversion factors from measured air kerma to average absorbed dose in thin blood samples are given for four low-energy X-ray qualities (14-50 kVp). These factors were obtained by Monte Carlo simulation of a practical sample holder. Data for different thicknesses of the blood and backing layer are presented. The conversion factors are found to depend strongly on the thicknesses of the blood layer and backing layer. In radiobiological work, knowledge of linear energy transfer (LET) values for the radiation quality used is often required. Track-averaged LET values for low-energy X rays are presented in this work. It is concluded that the thickness of the sample does not influence the LET value appreciably, indicating that for all radiobiological purposes this value can be regarded as a constant throughout the sample. Furthermore, the large difference between the LET value for a 50 kV spectrum found in this work and the value given in ICRU Report 16 is pointed out. 16 refs., 7 figs., 1 tab

  19. Effects of energy chirp on bunch length measurement in linear accelerator beams

    Science.gov (United States)

    Sabato, L.; Arpaia, P.; Giribono, A.; Liccardo, A.; Mostacci, A.; Palumbo, L.; Vaccarezza, C.; Variola, A.

    2017-08-01

    The effects of assumptions about bunch properties on the accuracy of the measurement method of the bunch length based on radio frequency deflectors (RFDs) in electron linear accelerators (LINACs) are investigated. In particular, when the electron bunch at the RFD has a non-negligible energy chirp (i.e. a correlation between the longitudinal positions and energies of the particle), the measurement is affected by a deterministic intrinsic error, which is directly related to the RFD phase offset. A case study on this effect in the electron LINAC of a gamma beam source at the Extreme Light Infrastructure-Nuclear Physics (ELI-NP) is reported. The relative error is estimated by using an electron generation and tracking (ELEGANT) code to define the reference measurements of the bunch length. The relative error is proved to increase linearly with the RFD phase offset. In particular, for an offset of {{7}\\circ} , corresponding to a vertical centroid offset at a screen of about 1 mm, the relative error is 4.5%.

  20. The neutron dose equivalent around high energy medical electron linear accelerators

    Directory of Open Access Journals (Sweden)

    Poje Marina

    2014-01-01

    Full Text Available The measurement of neutron dose equivalent was made in four dual energy linear accelerator rooms. Two of the rooms were reconstructed after decommissioning of 60Co units, so the main limitation was the space. The measurements were performed by a nuclear track etched detectors LR-115 associated with the converter (radiator that consist of 10B and with the active neutron detector Thermo BIOREM FHT 742. The detectors were set at several locations to evaluate the neutron ambient dose equivalent and/or neutron dose rate to which medical personnel could be exposed. Also, the neutron dose dependence on collimator aperture was analyzed. The obtained neutron dose rates outside the accelerator rooms were several times smaller than the neutron dose rates inside the accelerator rooms. Nevertheless, the measured neutron dose equivalent was not negligible from the aspect of the personal dosimetry with almost 2 mSv a year per person in the areas occupied by staff (conservative estimation. In rooms with 15 MV accelerators, the neutron exposure to the personnel was significantly lower than in the rooms having 18 MV accelerators installed. It was even more pronounced in the room reconstructed after the 60Co decommissioning. This study confirms that shielding from the neutron radiation should be considered when building vaults for high energy linear accelerators, especially when the space constraints exist.

  1. A linear solvation energy relationship model of organic chemical partitioning to dissolved organic carbon.

    Science.gov (United States)

    Kipka, Undine; Di Toro, Dominic M

    2011-09-01

    Predicting the association of contaminants with both particulate and dissolved organic matter is critical in determining the fate and bioavailability of chemicals in environmental risk assessment. To date, the association of a contaminant to particulate organic matter is considered in many multimedia transport models, but the effect of dissolved organic matter is typically ignored due to a lack of either reliable models or experimental data. The partition coefficient to dissolved organic carbon (K(DOC)) may be used to estimate the fraction of a contaminant that is associated with dissolved organic matter. Models relating K(DOC) to the octanol-water partition coefficient (K(OW)) have not been successful for many types of dissolved organic carbon in the environment. Instead, linear solvation energy relationships are proposed to model the association of chemicals with dissolved organic matter. However, more chemically diverse K(DOC) data are needed to produce a more robust model. For humic acid dissolved organic carbon, the linear solvation energy relationship predicts log K(DOC) with a root mean square error of 0.43. Copyright © 2011 SETAC.

  2. Design and Experiment Analysis of a Direct-Drive Wave Energy Converter with a Linear Generator

    Directory of Open Access Journals (Sweden)

    Jing Zhang

    2018-03-01

    Full Text Available Coastal waves are an abundant nonpolluting and renewable energy source. A wave energy converter (WEC must be designed for efficient and steady operation in highly energetic ocean environments. A direct-drive wave energy conversion (D-DWEC system with a tubular permanent magnet linear generator (TPMLG on a wind and solar photovoltaic complementary energy generation platform is proposed to improve the conversion efficiency and reduce the complexity and device volume of WECs. The operating principle of D-DWECs is introduced, and detailed analyses of the proposed D-DWEC’s floater system, wave force characteristics, and conversion efficiency conducted using computational fluid dynamics are presented. A TPMLG with an asymmetric slot structure is designed to increase the output electric power, and detailed analyses of the magnetic field distribution, detent force characteristics, and no-load and load performances conducted using finite element analysis are discussed. The TPMLG with an asymmetric slot, which produces the same power as the TPMLG with a symmetric slot, has one fifth detent force of the latter. An experiment system with a prototype of the TPMLG with a symmetric slot is used to test the simulation results. The experiment and analysis results agree well. Therefore, the proposed D-DWEC fulfills the requirements of WEC systems.

  3. Improving the iterative Linear Interaction Energy approach using automated recognition of configurational transitions.

    Science.gov (United States)

    Vosmeer, C Ruben; Kooi, Derk P; Capoferri, Luigi; Terpstra, Margreet M; Vermeulen, Nico P E; Geerke, Daan P

    2016-01-01

    Recently an iterative method was proposed to enhance the accuracy and efficiency of ligand-protein binding affinity prediction through linear interaction energy (LIE) theory. For ligand binding to flexible Cytochrome P450s (CYPs), this method was shown to decrease the root-mean-square error and standard deviation of error prediction by combining interaction energies of simulations starting from different conformations. Thereby, different parts of protein-ligand conformational space are sampled in parallel simulations. The iterative LIE framework relies on the assumption that separate simulations explore different local parts of phase space, and do not show transitions to other parts of configurational space that are already covered in parallel simulations. In this work, a method is proposed to (automatically) detect such transitions during the simulations that are performed to construct LIE models and to predict binding affinities. Using noise-canceling techniques and splines to fit time series of the raw data for the interaction energies, transitions during simulation between different parts of phase space are identified. Boolean selection criteria are then applied to determine which parts of the interaction energy trajectories are to be used as input for the LIE calculations. Here we show that this filtering approach benefits the predictive quality of our previous CYP 2D6-aryloxypropanolamine LIE model. In addition, an analysis is performed of the gain in computational efficiency that can be obtained from monitoring simulations using the proposed filtering method and by prematurely terminating simulations accordingly.

  4. Seismic energy dissipation study of linear fluid viscous dampers in steel structure design

    Directory of Open Access Journals (Sweden)

    A. Ras

    2016-09-01

    Full Text Available Energy dissipation systems in civil engineering structures are sought when it comes to removing unwanted energy such as earthquake and wind. Among these systems, there is combination of structural steel frames with passive energy dissipation provided by Fluid Viscous Dampers (FVD. This device is increasingly used to provide better seismic protection for existing as well as new buildings and bridges. A 3D numerical investigation is done considering the seismic response of a twelve-storey steel building moment frame with diagonal FVD that have linear force versus velocity behaviour. Nonlinear time history, which is being calculated by Fast nonlinear analysis (FNA, of Boumerdes earthquake (Algeria, May 2003 is considered for the analysis and carried out using the SAP2000 software and comparisons between unbraced, braced and damped structure are shown in a tabulated and graphical format. The results of the various systems are studied to compare the structural response with and without this device of the energy dissipation thus obtained. The conclusions showed the formidable potential of the FVD to improve the dissipative capacities of the structure without increasing its rigidity. It is contributing significantly to reduce the quantity of steel necessary for its general stability.

  5. Scatter fractions from linear accelerators with x-ray energies from 6 to 24 MV.

    Science.gov (United States)

    Taylor, P L; Rodgers, J E; Shobe, J

    1999-08-01

    Computation of shielding requirements for a linear accelerator must take into account the amount of radiation scattered from the patient to areas outside the primary beam. Currently, the most frequently used data are from NCRP 49 that only includes data for x-ray energies up to 6 MV and angles from 30 degrees to 135 degrees. In this work we have determined by Monte Carlo simulation the scattered fractions of dose for a wide range of energies and angles of clinical significance including 6, 10, 18, and 24 MV and scattering angles from 10 degrees to 150 degrees. Calculations were made for a 400 cm2 circular field size impinging onto a spherical phantom. Scattered fractions of dose were determined at 1 m from the phantom. Angles from 10 degrees to 30 degrees are of concern for higher energies where the scatter is primarily in the forward direction. An error in scatter fraction may result in too little secondary shielding near the junction with the primary barrier. The Monte Carlo code ITS (Version 3.0) developed at Sandia National Laboratory and NIST was used to simulate scatter from the patient to the barrier. Of significance was the variation of calculated scattered dose with depth of measurement within the barrier indicating that accurate values may be difficult to obtain. Mean energies of scatter x-ray spectra are presented.

  6. Direct reactions induced by 16O on 208Pb at high incident energy

    International Nuclear Information System (INIS)

    Mermaz, M.C.

    1978-01-01

    Direct reactions induced by 16 O mainly on 208 Pb at 20 MeV/nucleon are reviewed. The quasi-elastic transfer reaction, such as one-proton and one-neutron transfer respectively leading to 209 Bi and 209 Pb single-particle-states, is first discussed, the fragmentation of 16 O projectile on heavy targets is then envisaged. The one-nucleon transfer can be described within the framework of one-step processes using the DWBA formalism to calculate the cross sections. At high incident energy (312.6 MeV), transfer reactions involving nucleons from the deeper 1p 3/2 orbit of 16 O are kinematically favoured and well observed. At 20 MeV/A and above, a large part of the reaction cross sections seems to be due to the fragmentation of the projectile; more especially, an abrasion-ablation model have to be used in order to explain the general trend of the data (energy spectra and angular distribution)

  7. The Non-Linear Effect of Chinese Financial Developments on Energy Supply Structures

    Directory of Open Access Journals (Sweden)

    Jian Chai

    2016-10-01

    Full Text Available Currently, oversupply coal and coal-based power in China poses a great challenge to energy structure optimization and emissions reduction. The energy industry, however, is closely linked to the financial sector. In view of this, using a non-linear Panel Smooth Transition Regression (PSTR model, this paper examines the threshold effects of financial developments on energy supply structures for 17 energy supply provinces in China observed over 2000–2014. The main results are: (1 The ratio of coal supply (LCSR specification is seen to be a four-regime PSTR model with added value in the financial industry/GDP (LFIR as the threshold variable. The LFIR and LCSR show a positive correlation, and the elastic coefficients change between 0.02 and ~0.085; the impact of financial institutions’ loan balance/GDP (LLAN on LCSR takes on an inverse U-shaped curve: first positive, then negative, and again positive with the financial crisis in 2008 as the turning point; (2 The ratio of thermal power generation (LTPG specification is seen to be a two-regime PSTR model with investment in the coal industry/GDP (LCIR as the threshold variable. Results show that LFIR has a negative effect on LTPG, and the coefficients in the low regime tend to be 0.344%, then gradually decrease to 0.051% in the high regime. The influence of LLAN on the LTPG is positive before and negative after the financial crisis. The influence of the foreign direct investment GDP proportion (LFDI, the degree of financial openness on the LCSR and LTPG both remain negative. Therefore, in the process of formulating energy conservation policies and adjusting energy-intensive industrial structures, the government should fully consider the effect of financial developments.

  8. A comparative study of generalized linear mixed modelling and artificial neural network approach for the joint modelling of survival and incidence of Dengue patients in Sri Lanka

    Science.gov (United States)

    Hapugoda, J. C.; Sooriyarachchi, M. R.

    2017-09-01

    Survival time of patients with a disease and the incidence of that particular disease (count) is frequently observed in medical studies with the data of a clustered nature. In many cases, though, the survival times and the count can be correlated in a way that, diseases that occur rarely could have shorter survival times or vice versa. Due to this fact, joint modelling of these two variables will provide interesting and certainly improved results than modelling these separately. Authors have previously proposed a methodology using Generalized Linear Mixed Models (GLMM) by joining the Discrete Time Hazard model with the Poisson Regression model to jointly model survival and count model. As Aritificial Neural Network (ANN) has become a most powerful computational tool to model complex non-linear systems, it was proposed to develop a new joint model of survival and count of Dengue patients of Sri Lanka by using that approach. Thus, the objective of this study is to develop a model using ANN approach and compare the results with the previously developed GLMM model. As the response variables are continuous in nature, Generalized Regression Neural Network (GRNN) approach was adopted to model the data. To compare the model fit, measures such as root mean square error (RMSE), absolute mean error (AME) and correlation coefficient (R) were used. The measures indicate the GRNN model fits the data better than the GLMM model.

  9. A code to determine the energy distribution, the incident energy and the flux of a beam of light ions into a stack of foils

    International Nuclear Information System (INIS)

    Sonzogni, A.A.; Romo, A.S.M.A.; Frosch, W.R.; Nassiff, S.J.

    1992-01-01

    The stacked-foil technique is one of the most used methods to obtain excitation functions of nuclear reactions using light ions as projectiles. The purpose of this program is the calculation of the energy of the beam in the stack, as well as to obtain the incident energy and the flux of the beam by using monitor excitation functions. (orig.)

  10. Emission of medium-heavy fragments in asymetric heavy ion collisions at intermediate and relativistic incident energies

    International Nuclear Information System (INIS)

    Milkau, T.U.E.

    1991-11-01

    For the study of the emission of medium-heavy fragments in asymmetric heavy ion collisions a series of experiments was performed and thereby following systems at intermediate and relativistic incident energies studied: 84 Kr+ 197 Au at E/A=35 MeV, 40 Ar+ 197 Au at E/A=30 MeV, respectively 220 MeV, and 12 C+ 197 Au at E/A=99 MeV, 301 MeV, 601 MeV, respectively 1105 MeV. In the experiments highly resolving detector telescopes with low thresholds were applied to the measurement of the energy and angular distributions of the medium-heavy fragments. The spectra were analyzed in the picture of longitudinally moving sources. Thereby beyond the production cross sections the angular distributions, the decreasement parameters in the high-energetic region of the energy spectra, and the position of the maxima were determined as characteristic parameters. The following picture resulted: The production cross sections for medium-heavy fragments showed a steep increasement and then a saturation, but with a strong projectile dependence. The charge distributions could be described by a power law, the parameter of which showed a universal dependence on the total incident energy. In the angular distributions the transition from an anisotropic emission at low energies to an isotropic emission from a nearly resting source at relativistic energies was distinctly to be recognized. The decreasement parameters of the energy distribution increased - for different projectiles differently strongly - logarithmically with growing incident energy. And the maxima of the energy distribution travelled with growing incident energy to smaller and smaller fragment energies. From this systematics a schematic model of the fragmentation can be obtained. (orig./HSI) [de

  11. Linear free energy relationships between aqueous phase hydroxyl radical reaction rate constants and free energy of activation.

    Science.gov (United States)

    Minakata, Daisuke; Crittenden, John

    2011-04-15

    The hydroxyl radical (HO(•)) is a strong oxidant that reacts with electron-rich sites on organic compounds and initiates complex radical chain reactions in aqueous phase advanced oxidation processes (AOPs). Computer based kinetic modeling requires a reaction pathway generator and predictions of associated reaction rate constants. Previously, we reported a reaction pathway generator that can enumerate the most important elementary reactions for aliphatic compounds. For the reaction rate constant predictor, we develop linear free energy relationships (LFERs) between aqueous phase literature-reported HO(•) reaction rate constants and theoretically calculated free energies of activation for H-atom abstraction from a C-H bond and HO(•) addition to alkenes. The theoretical method uses ab initio quantum mechanical calculations, Gaussian 1-3, for gas phase reactions and a solvation method, COSMO-RS theory, to estimate the impact of water. Theoretically calculated free energies of activation are found to be within approximately ±3 kcal/mol of experimental values. Considering errors that arise from quantum mechanical calculations and experiments, this should be within the acceptable errors. The established LFERs are used to predict the HO(•) reaction rate constants within a factor of 5 from the experimental values. This approach may be applied to other reaction mechanisms to establish a library of rate constant predictions for kinetic modeling of AOPs.

  12. Solvatochromism and linear solvation energy relationship of the kinase inhibitor SKF86002

    Science.gov (United States)

    Khattab, Muhammad; Van Dongen, Madeline; Wang, Feng; Clayton, Andrew H. A.

    2017-01-01

    We studied the spectroscopic characteristics of SKF86002, an anti-inflammatory and tyrosine kinase inhibitor drug candidate. Two conformers SKF86002A and SKF86002B are separated by energy barriers of 19.68 kJ·mol- 1 and 6.65 kJ·mol- 1 due to H-bonds, and produce the three major UV-Vis absorption bands at 325 nm, 260 nm and 210 nm in cyclohexane solutions. This environment-sensitive fluorophore exhibited emission in the 400-500 nm range with a marked response to changes in environment polarity. By using twenty-two solvents for the solvatochromism study, it was noticed that solvent polarity, represented by dielectric constant, was well correlated with the emission wavelength maxima of SKF86002. Thus, the SKF86002 fluorescence peak red shifted in aprotic solvents from 397.5 nm in cyclohexane to 436 nm in DMSO. While the emission maximum in hydrogen donating solvents ranged from 420 nm in t-butanol to 446 nm in N-methylformamide. Employing Lippert-Mataga, Bakhshiev and Kawski models, we found that one linear correlation provided a satisfactory description of polarity effect of 18 solvents on the spectral changes of SKF86002 with R2 values 0.78, 0.80 and 0.80, respectively. Additionally, the multicomponent linear regression analysis of Kamlet-Taft (R2 = 0.94) revealed that solvent acidity, basicity and polarity accounted for 31%, 24% and 45% of solvent effects on SKF86002 emission, respectively. While Catalán correlation (R2 = 0.92) revealed that solvatochromic change of SKF86002 emission was attributed to changes in solvent dipolarity (71%), solvent polarity (12%), solvent acidity (11%) and solvent basicity (6%). Plot of Reichardt transition energies and emission energies of SKF86002 in 18 solvents showed also a linear correlation with R2 = 0.90. The dipole moment difference between excited and ground state was calculated to be 3.4-3.5 debye.

  13. Solvatochromism and linear solvation energy relationship of the kinase inhibitor SKF86002.

    Science.gov (United States)

    Khattab, Muhammad; Van Dongen, Madeline; Wang, Feng; Clayton, Andrew H A

    2017-01-05

    We studied the spectroscopic characteristics of SKF86002, an anti-inflammatory and tyrosine kinase inhibitor drug candidate. Two conformers SKF86002A and SKF86002B are separated by energy barriers of 19.68kJ·mol(-1) and 6.65kJ·mol(-1) due to H-bonds, and produce the three major UV-Vis absorption bands at 325nm, 260nm and 210nm in cyclohexane solutions. This environment-sensitive fluorophore exhibited emission in the 400-500nm range with a marked response to changes in environment polarity. By using twenty-two solvents for the solvatochromism study, it was noticed that solvent polarity, represented by dielectric constant, was well correlated with the emission wavelength maxima of SKF86002. Thus, the SKF86002 fluorescence peak red shifted in aprotic solvents from 397.5nm in cyclohexane to 436nm in DMSO. While the emission maximum in hydrogen donating solvents ranged from 420nm in t-butanol to 446nm in N-methylformamide. Employing Lippert-Mataga, Bakhshiev and Kawski models, we found that one linear correlation provided a satisfactory description of polarity effect of 18 solvents on the spectral changes of SKF86002 with R(2) values 0.78, 0.80 and 0.80, respectively. Additionally, the multicomponent linear regression analysis of Kamlet-Taft (R(2)=0.94) revealed that solvent acidity, basicity and polarity accounted for 31%, 24% and 45% of solvent effects on SKF86002 emission, respectively. While Catalán correlation (R(2)=0.92) revealed that solvatochromic change of SKF86002 emission was attributed to changes in solvent dipolarity (71%), solvent polarity (12%), solvent acidity (11%) and solvent basicity (6%). Plot of Reichardt transition energies and emission energies of SKF86002 in 18 solvents showed also a linear correlation with R(2)=0.90. The dipole moment difference between excited and ground state was calculated to be 3.4-3.5debye. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Review of relative biological effectiveness dependence on linear energy transfer for low-LET radiations

    International Nuclear Information System (INIS)

    Hunter, Nezahat; Muirhead, Colin R

    2009-01-01

    Information on Japanese A-bomb survivors exposed to gamma radiation has been used to estimate cancer risks for the whole range of photon (x-rays) and electron energies which are commonly encountered by radiation workers in the work place or by patients and workers in diagnostic radiology. However, there is some uncertainty regarding the radiation effectiveness of various low-linear energy transfer (low-LET) radiations (x-rays, gamma radiation and electrons). In this paper we review information on the effectiveness of low-LET radiations on the basis of epidemiological and in vitro radiobiological studies. Data from various experimental studies for chromosome aberrations and cell transformation in human lymphocytes and from epidemiological studies of the Japanese A-bomb survivors, patients medically exposed to radiation for diagnostic and therapeutic procedures, and occupational exposures of nuclear workers are considered. On the basis of in vitro cellular radiobiology, there is considerable evidence that the relative biological effectiveness (RBE) of high-energy low-LET radiation (gamma radiation, electrons) is less than that of low-energy low-LET radiation (x-rays, betas). This is a factor of about 3 to 4 for 29 kVp x-rays (e.g. as in diagnostic radiation exposures of the female breast) and for tritium beta-rays (encountered in parts of the nuclear industry) relative to Co-60 gamma radiation and 2-5 MeV gamma-rays (as received by the Japanese A-bomb survivors). In epidemiological studies, although for thyroid and breast cancer there appears to be a small tendency for the excess relative risks to decrease as the radiation energy increases for low-LET radiations, it is not statistically feasible to draw any conclusion regarding an underlying dependence of cancer risk on LET for the nominally low-LET radiations. (review)

  15. Linear energy relationships for the octahedral preference of Mg, Ca and transition metal ions.

    Science.gov (United States)

    Pontikis, George; Borden, James; Martínek, Václav; Florián, Jan

    2009-04-16

    The geometry, atomic charges, force constants, and relative energies of the symmetric and distorted M(2+)(H(2)O)(4)(F(-))(2), M(3+)(H(2)O)(4)(F(-))(2), M(2+)(H(2)O)(3)(F(-))(2), and M(3+)(H(2)O)(3)(F(-))(2) metal complexes, M = Mg, Ca, Co, Cu, Fe, Mn, Ni, Zn, Cr, V, were calculated by using the B3LYP/TZVP density functional method in both gas phase and aqueous solution, modeled using the polarized continuum model. The deformation energy associated with moving one water ligand 12 degrees from the initial "octahedral" arrangement, in which all O-M-O, O-M-F, and F-M-F angles are either 90 degrees or 180 degrees, was calculated to examine the angular ligand flexibility. For all M(2+)(H(2)O)(4)(F(-))(2) complexes, this distortion increased the energy of the complex in proportion to the electrostatic potential-derived (ESP) charge of the metal, and in proportion to D(-10), where D is the distance from the distorted ligand to its closest neighbor. The octahedral stability was further examined by calculating the energies for the removal of a water ligand from the octahedral complex to form a square-pyramidal or trigonal-bipyramidal complex. The octahedral preference, defined as the negative of the corresponding binding energy of the ligand, was found to linearly correlate with the ESP charge of the metal in both the gas phase and aqueous solution. The obtained results indicate that quantum-mechanical covalent effects are of secondary importance for both the flexibility and the octahedral preference of M(2+)(H(2)O)(4)(F(-))(2) and M(3+)(H(2)O)(4)(F(-))(2) complexes. This conclusion and supporting data are important for the development of consistent molecular mechanical force fields of the studied metal ions.

  16. Radiobiological characterization of different energy-photon beams used in radiotherapy from linear accelerator

    International Nuclear Information System (INIS)

    Elata, A.; Hassan, A. M. E.; Ali, E.; Calzolari, P.; Bettega, D.

    2009-02-01

    The main objective of this study was to perform a radiobiological characterization of different energy photon beams (6 MV and 15 MV) from linear accelerator used in radiotherapy, and comparison of different treatment modalities, with special regard to late effects of radiation. Using two end points, cell survival and micronucleus induction, in the biological system (Chines hamster V79 cell line). Chromosomes number was counted and found to be 22 chromosomes per cell. Cells were kept in confluent growth for two days and then exposed to two photon beams and immediately after irradiation were counted and re seeded in different numbered for each dose. For evaluation of surviving fraction samples were incubated at 37o C for 6 days, five samples were counted for each dose. At the same time three samples were seeded for the micronuclei frequency and incubated at 37o C after 24 hours cytochalasin-B was added to block cells in cytokinesis. The survival curve showed similar curves for the two beams and decreased with dose. The micronuclei frequency was positively correlated with dose and the energy of the photon. This indicates the presence of low dose of photoneutrons produced by using high energy photon beams. (Author)

  17. Scaling behavior of ground-state energy cluster expansion for linear polyenes

    Science.gov (United States)

    Griffin, L. L.; Wu, Jian; Klein, D. J.; Schmalz, T. G.; Bytautas, L.

    Ground-state energies for linear-chain polyenes are additively expanded in a sequence of terms for chemically relevant conjugated substructures of increasing size. The asymptotic behavior of the large-substructure limit (i.e., high-polymer limit) is investigated as a means of characterizing the rapidity of convergence and consequent utility of this energy cluster expansion. Consideration is directed to computations via: simple Hückel theory, a refined Hückel scheme with geometry optimization, restricted Hartree-Fock self-consistent field (RHF-SCF) solutions of fixed bond-length Parisier-Parr-Pople (PPP)/Hubbard models, and ab initio SCF approaches with and without geometry optimization. The cluster expansion in what might be described as the more "refined" approaches appears to lead to qualitatively more rapid convergence: exponentially fast as opposed to an inverse power at the simple Hückel or SCF-Hubbard levels. The substructural energy cluster expansion then seems to merit special attention. Its possible utility in making accurate extrapolations from finite systems to extended polymers is noted.

  18. Towards Automated Binding Affinity Prediction Using an Iterative Linear Interaction Energy Approach

    Directory of Open Access Journals (Sweden)

    C. Ruben Vosmeer

    2014-01-01

    Full Text Available Binding affinity prediction of potential drugs to target and off-target proteins is an essential asset in drug development. These predictions require the calculation of binding free energies. In such calculations, it is a major challenge to properly account for both the dynamic nature of the protein and the possible variety of ligand-binding orientations, while keeping computational costs tractable. Recently, an iterative Linear Interaction Energy (LIE approach was introduced, in which results from multiple simulations of a protein-ligand complex are combined into a single binding free energy using a Boltzmann weighting-based scheme. This method was shown to reach experimental accuracy for flexible proteins while retaining the computational efficiency of the general LIE approach. Here, we show that the iterative LIE approach can be used to predict binding affinities in an automated way. A workflow was designed using preselected protein conformations, automated ligand docking and clustering, and a (semi-automated molecular dynamics simulation setup. We show that using this workflow, binding affinities of aryloxypropanolamines to the malleable Cytochrome P450 2D6 enzyme can be predicted without a priori knowledge of dominant protein-ligand conformations. In addition, we provide an outlook for an approach to assess the quality of the LIE predictions, based on simulation outcomes only.

  19. A statistical theory of cell killing by radiation of varying linear energy transfer

    International Nuclear Information System (INIS)

    Hawkins, R.B.

    1994-01-01

    A theory is presented that provides an explanation for the observed features of the survival of cultured cells after exposure to densely ionizing high-linear energy transfer (LET) radiation. It starts from a phenomenological postulate based on the linear-quadratic form of cell survival observed for low-LET radiation and uses principles of statistics and fluctuation theory to demonstrate that the effect of varying LET on cell survival can be attributed to random variation of dose to small volumes contained within the nucleus. A simple relation is presented for surviving fraction of cells after exposure to radiation of varying LET that depends on the α and β parameters for the same cells in the limit of low-LET radiation. This relation implies that the value of β is independent of LET. Agreement of the theory with selected observations of cell survival from the literature is demonstrated. A relation is presented that gives relative biological effectiveness (RBE) as a function of the α and β parameters for low-LET radiation. Measurements from microdosimetry are used to estimate the size of the subnuclear volume to which the fluctuation pertains. 11 refs., 4 figs., 2 tabs

  20. Collective behaviour of linear perturbation waves observed through the energy density spectrum

    Energy Technology Data Exchange (ETDEWEB)

    Scarsoglio, S [Department of Water Engineering, Politecnico di Torino (Italy); De Santi, F; Tordella, D, E-mail: stefania.scarsoglio@polito.it [Department of Aeronautics and Space Engineering, Politecnico di Torino (Italy)

    2011-12-22

    We consider the collective behaviour of small three-dimensional transient perturbations in sheared flows. In particular, we observe their varied life history through the temporal evolution of the amplification factor. The spectrum of wave vectors considered fills the range from the size of the external flow scale to the size of the very short dissipative waves. We observe that the amplification factor distribution is scale-invariant. In the condition we analyze, the system is subject to all the physical processes included in the linearized Navier-Stokes equations. With the exception of the nonlinear interaction, these features are the same as those characterizing the turbulent state. The linearized perturbative system offers a great variety of different transient behaviours associated to the parameter combination present in the initial conditions. For the energy spectrum computed by freezing each wave at the instant where its asymptotic condition is met, we ask whether this system is able to show a power-law scaling analogous to the Kolmogorov argument. At the moment, for at least two typical shear flows, the bluff-body wake and the plane Poiseuille flow, the answer is yes.

  1. Linear free energy correlations for fission product release from the Fukushima-Daiichi nuclear accident.

    Science.gov (United States)

    Abrecht, David G; Schwantes, Jon M

    2015-03-03

    This paper extends the preliminary linear free energy correlations for radionuclide release performed by Schwantes et al., following the Fukushima-Daiichi Nuclear Power Plant accident. Through evaluations of the molar fractionations of radionuclides deposited in the soil relative to modeled radionuclide inventories, we confirm the initial source of the radionuclides to the environment to be from active reactors rather than the spent fuel pool. Linear correlations of the form In χ = −α ((ΔGrxn°(TC))/(RTC)) + β were obtained between the deposited concentrations, and the reduction potentials of the fission product oxide species using multiple reduction schemes to calculate ΔG°rxn (TC). These models allowed an estimate of the upper bound for the reactor temperatures of TC between 2015 and 2060 K, providing insight into the limiting factors to vaporization and release of fission products during the reactor accident. Estimates of the release of medium-lived fission products 90Sr, 121mSn, 147Pm, 144Ce, 152Eu, 154Eu, 155Eu, and 151Sm through atmospheric venting during the first month following the accident were obtained, indicating that large quantities of 90Sr and radioactive lanthanides were likely to remain in the damaged reactor cores.

  2. Comparison of the linear bias models in the light of the Dark Energy Survey

    Science.gov (United States)

    Papageorgiou, A.; Basilakos, S.; Plionis, M.

    2018-05-01

    The evolution of the linear and scale independent bias, based on the most popular dark matter bias models within the Λ cold dark matter (ΛCDM) cosmology, is confronted to that of the Dark Energy Survey (DES) luminous red galaxies (LRGs). Applying a χ2 minimization procedure between models and data, we find that all the considered linear bias models reproduce well the LRG bias data. The differences among the bias models are absorbed in the predicted mass of the dark-matter halo in which LRGs live and which ranges between ˜6 × 1012 and 1.4 × 1013 h-1 M⊙, for the different bias models. Similar results, reaching however a maximum value of ˜2 × 1013 h-1 M⊙, are found by confronting the SDSS (2SLAQ) Large Red Galaxies clustering with theoretical clustering models, which also include the evolution of bias. This later analysis also provides a value of Ωm = 0.30 ± 0.01, which is in excellent agreement with recent joint analyses of different cosmological probes and the reanalysis of the Planck data.

  3. Dosimetric aspects of the therapeutic photon beams from a dual-energy linear accelerator

    International Nuclear Information System (INIS)

    Al-Ghazi, M.S.A.L.; Arjune, B.; Fiedler, J.A.; Sharma, P.D.

    1988-01-01

    Parameters of the photon beams (6 and 20 MV) from a dual-energy linear accelerator (Mevatron-KD, Siemens Medical Laboratories, CA) are presented. The depth dose characteristics of the photon beams are d/sub max/ of 1.8 and 3.8 cm and percentage depth dose of 68% and 80% at 10-cm depth and 100-cm source--surface distance for a field size of 10 x 10 cm 2 for 6 and 20 MV, respectively. The 6 and 20 MV beams were found to correspond to nominal accelerating potentials of 4.7 and 17 MV, respectively. The stability of output is within +- 1% and flatness and symmetry are within +- 3%. These figures compare favorably with the manufacturer's specifications

  4. High energy X-ray photon counting imaging using linear accelerator and silicon strip detectors

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Y., E-mail: cycjty@sophie.q.t.u-tokyo.ac.jp [Department of Bioengineering, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Shimazoe, K.; Yan, X. [Department of Nuclear Engineering and Management, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Ueda, O.; Ishikura, T. [Fuji Electric Co., Ltd., Fuji, Hino, Tokyo 191-8502 (Japan); Fujiwara, T. [National Institute of Advanced Industrial Science and Technology, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568 (Japan); Uesaka, M.; Ohno, M. [Nuclear Professional School, the University of Tokyo, 2-22 Shirakata-shirane, Tokai, Ibaraki 319-1188 (Japan); Tomita, H. [Department of Quantum Engineering, Nagoya University, Furo, Chikusa, Nagoya 464-8603 (Japan); Yoshihara, Y. [Department of Nuclear Engineering and Management, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Takahashi, H. [Department of Bioengineering, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Department of Nuclear Engineering and Management, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan)

    2016-09-11

    A photon counting imaging detector system for high energy X-rays is developed for on-site non-destructive testing of thick objects. One-dimensional silicon strip (1 mm pitch) detectors are stacked to form a two-dimensional edge-on module. Each detector is connected to a 48-channel application specific integrated circuit (ASIC). The threshold-triggered events are recorded by a field programmable gate array based counter in each channel. The detector prototype is tested using 950 kV linear accelerator X-rays. The fast CR shaper (300 ns pulse width) of the ASIC makes it possible to deal with the high instant count rate during the 2 μs beam pulse. The preliminary imaging results of several metal and concrete samples are demonstrated.

  5. High energy X-ray photon counting imaging using linear accelerator and silicon strip detectors

    International Nuclear Information System (INIS)

    Tian, Y.; Shimazoe, K.; Yan, X.; Ueda, O.; Ishikura, T.; Fujiwara, T.; Uesaka, M.; Ohno, M.; Tomita, H.; Yoshihara, Y.; Takahashi, H.

    2016-01-01

    A photon counting imaging detector system for high energy X-rays is developed for on-site non-destructive testing of thick objects. One-dimensional silicon strip (1 mm pitch) detectors are stacked to form a two-dimensional edge-on module. Each detector is connected to a 48-channel application specific integrated circuit (ASIC). The threshold-triggered events are recorded by a field programmable gate array based counter in each channel. The detector prototype is tested using 950 kV linear accelerator X-rays. The fast CR shaper (300 ns pulse width) of the ASIC makes it possible to deal with the high instant count rate during the 2 μs beam pulse. The preliminary imaging results of several metal and concrete samples are demonstrated.

  6. Solvent effects in ionic liquids: empirical linear energy-density relationships.

    Science.gov (United States)

    Cerda-Monje, A; Aizman, A; Tapia, R A; Chiappe, C; Contreras, R

    2012-07-28

    Multiparameter linear energy-density relationships to model solvent effects in room temperature ionic liquids (RTILs) are introduced and tested. The model incorporates two solvent dependent and two specific solute-solvent parameters represented by a set of electronic indexes derived from the conceptual density functional theory. The specific solute-solvent interactions are described in terms of the electronic chemical potential for proton migration between the anion or cation and the transition state structure of a specific reaction. These indexes provide a quantitative estimation of the hydrogen bond (HB) acceptor basicity and the hydrogen bond donor acidity of the ionic solvent, respectively. A sound quantitative scale of HB strength is thereby obtained. The solvent dependent contributions are described by the global electrophilicity of the cation and nucleophilicity of the anion forming the ionic liquid. The model is illustrated for the kinetics of cycloaddition of cyclopentadiene towards acrolein. In general, cation HB acidity outweighs the remaining parameters for this reaction.

  7. Linear solvation energy relationships: "rule of thumb" for estimation of variable values

    Science.gov (United States)

    Hickey, James P.; Passino-Reader, Dora R.

    1991-01-01

    For the linear solvation energy relationship (LSER), values are listed for each of the variables (Vi/100, π*, &betam, αm) for fundamental organic structures and functional groups. We give the guidelines to estimate LSER variable values quickly for a vast array of possible organic compounds such as those found in the environment. The difficulty in generating these variables has greatly discouraged the application of this quantitative structure-activity relationship (QSAR) method. This paper present the first compilation of molecular functional group values together with a utilitarian set of the LSER variable estimation rules. The availability of these variable values and rules should facilitate widespread application of LSER for hazard evaluation of environmental contaminants.

  8. One Year assessment of shielding for a multi-energy linear accelerator

    International Nuclear Information System (INIS)

    Lee, Jae Gi; Carlson, Joel; Lee, Hyun Seok; Ye, Sung Joon; Chung, Jin Beom; Kim, Jae Sung; Kim, Jung In

    2014-01-01

    In 2005, the publication of Report No. 151 of the National Council on Radiation Protection and Measurements (NCRP) suggested shielding methodologies along with shielding data. Recently, intensity modulated radiation therapy (IMRT) and volumetric modulated arc therapy (VMAT) have become more widely used for cancer treatment. Thus, we analyzed shielding parameters for a multi-energy medical linear accelerator using the VMAT technique. Calculated total workload was similar to the recommendation of NCRP Report No. 49 and No. 51. However, these results were higher than the previous results in the NCRP Report No. 151. Also, the VMAT technique uses an intensity modulated beams with various gantry angles so that scattered and leakage doses should be carefully considered by retrospective analysis using the treatment data from each facility

  9. One Year assessment of shielding for a multi-energy linear accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jae Gi; Carlson, Joel; Lee, Hyun Seok; Ye, Sung Joon [Seoul National University Graduate School of Convergence Science and Technology, Seoul (Korea, Republic of); Chung, Jin Beom; Kim, Jae Sung [Dept. of Radiation Oncology, Seoul National University Bundang Hospital, Seoul (Korea, Republic of); Kim, Jung In [Dept. of of Radiation Oncology, Seoul National University Hospital, Seoul (Korea, Republic of)

    2014-11-15

    In 2005, the publication of Report No. 151 of the National Council on Radiation Protection and Measurements (NCRP) suggested shielding methodologies along with shielding data. Recently, intensity modulated radiation therapy (IMRT) and volumetric modulated arc therapy (VMAT) have become more widely used for cancer treatment. Thus, we analyzed shielding parameters for a multi-energy medical linear accelerator using the VMAT technique. Calculated total workload was similar to the recommendation of NCRP Report No. 49 and No. 51. However, these results were higher than the previous results in the NCRP Report No. 151. Also, the VMAT technique uses an intensity modulated beams with various gantry angles so that scattered and leakage doses should be carefully considered by retrospective analysis using the treatment data from each facility.

  10. Non-linear sputtering effects induced by MeV energy gold clusters

    International Nuclear Information System (INIS)

    Boussofiane-Baudin, K.; Brunelle, A.; Chaurand, P.; Della-Negra, S.; Depauw, J.; Le Beyec, Y.; Hakansson, P.

    1993-09-01

    Gold clusters Au n + with 1 < n ≤ 4, accelerated to MeV energies at the Orsay tandem accelerator, have been used to induce secondary ion emission from the surface of thin organic and inorganic films. A non-linear enhancement of the secondary ion yields is observed when cluster impacts are compared to single atom impacts at the same velocity. It has been shown that the collective effects propagate in the solid over a depth larger than 2000 A. The equilibrium charge state of cluster constituents after their passage through a thin carbon foil (1000 A) has been measured. The mean value for the cluster constituents is the same as for single atoms at the same velocity. (authors). 41 refs., 8 figs., 1 tab

  11. Assessing Risk in Costing High-energy Accelerators: from Existing Projects to the Future Linear Collider

    CERN Document Server

    Lebrun, Philippe

    2010-01-01

    High-energy accelerators are large projects funded by public money, developed over the years and constructed via major industrial contracts both in advanced technology and in more conventional domains such as civil engineering and infrastructure, for which they often constitute one-of markets. Assessing their cost, as well as the risk and uncertainty associated with this assessment is therefore an essential part of project preparation and a justified requirement by the funding agencies. Stemming from the experience with large circular colliders at CERN, LEP and LHC, as well as with the Main Injector, the Tevatron Collider Experiments and Accelerator Upgrades, and the NOvA Experiment at Fermilab, we discuss sources of cost variance and derive cost risk assessment methods applicable to the future linear collider, through its two technical approaches for ILC and CLIC. We also address disparities in cost risk assessment imposed by regional differences in regulations, procedures and practices.

  12. The United States Department of Energy (DOE) Computerized Accident/Incident Reporting System (CAIRS)

    International Nuclear Information System (INIS)

    Briscoe, G.J.

    1993-01-01

    The Department of Energy's (DOE) Computerized Accident/Incident Reporting System (CAIRS) is a comprehensive data base containing more than 50,000 investigation reports of injury/illness, property damage and vehicle accident cases representing safety data from 1975 to the present for more than 150 DOE contractor organizations. A special feature is that the text of each accident report is translated using a controlled dictionary and rigid sentence structure called Factor Relationship and Sequence of Events (FRASE) that enhances the ability to retrieve specific types of information and to perform detailed analyses. DOE summary and individual contractor reports are prepared quarterly and annually. In addition, ''Safety Performance Profile'' reports for individual organizations are prepared to provide advance information to appraisal teams, and special topical reports are prepared for areas of concern such as an increase in the number of security injuries or environmental releases. The data base is open to all DOE and Contractor registered users with no access restrictions other than that required by the Privacy Act

  13. Imaging ultrasonic dispersive guided wave energy in long bones using linear radon transform.

    Science.gov (United States)

    Tran, Tho N H T; Nguyen, Kim-Cuong T; Sacchi, Mauricio D; Le, Lawrence H

    2014-11-01

    Multichannel analysis of dispersive ultrasonic energy requires a reliable mapping of the data from the time-distance (t-x) domain to the frequency-wavenumber (f-k) or frequency-phase velocity (f-c) domain. The mapping is usually performed with the classic 2-D Fourier transform (FT) with a subsequent substitution and interpolation via c = 2πf/k. The extracted dispersion trajectories of the guided modes lack the resolution in the transformed plane to discriminate wave modes. The resolving power associated with the FT is closely linked to the aperture of the recorded data. Here, we present a linear Radon transform (RT) to image the dispersive energies of the recorded ultrasound wave fields. The RT is posed as an inverse problem, which allows implementation of the regularization strategy to enhance the focusing power. We choose a Cauchy regularization for the high-resolution RT. Three forms of Radon transform: adjoint, damped least-squares, and high-resolution are described, and are compared with respect to robustness using simulated and cervine bone data. The RT also depends on the data aperture, but not as severely as does the FT. With the RT, the resolution of the dispersion panel could be improved up to around 300% over that of the FT. Among the Radon solutions, the high-resolution RT delineated the guided wave energy with much better imaging resolution (at least 110%) than the other two forms. The Radon operator can also accommodate unevenly spaced records. The results of the study suggest that the high-resolution RT is a valuable imaging tool to extract dispersive guided wave energies under limited aperture. Copyright © 2014 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  14. Free energy of activation. Definition, properties, and dependent variables with special reference to linear free energy relations

    International Nuclear Information System (INIS)

    Levine, R.D.

    1979-01-01

    The reaction rate constant is expressed as Z exp(-G/sub a//RT). Z is the binary collision frequency. G/sub a/, the free energy of activation, is shown to be the difference between the free energy of the reactive reactants and the free energy of all reactants. The results are derived from both a statistical mechanical and a collision theoretic point of view. While the later is more suitable for an ab-initio computation of the reaction rate, it is the former that lends itself to the search of systematics and of correlations and to compaction of data. Different thermodynamic-like routes to the characterization of G/sub a/ are thus explored. The two most promising ones appear to be the use of thermodynamic type cycles and the changes of dependent variables using the Legendre transform technique. The dependence of G/sub a/ on ΔG 0 , the standard free energy change in the reaction, is examined from the later point of view. It is shown that one can rigorously express this dependence as G/sub a/ = αΔG 0 + G/sub a/ 0 M(α). Here α is the Bronsted slope, α = -par. delta ln k(T)/par. delta(ΔG 0 /RT), G/sub a/ 0 is independent of ΔG 0 and M(α), the Legendre transform of G/sub a/, is a function only of α. For small changes in ΔG 0 , the general result reduces to the familiar ''linear'' free energy relation delta G/sub a/ = α delta ΔG 0 . It is concluded from general considerations that M(α) is a symmetric, convex function of α and hence that α is a monotonically increasing function of ΔG 0 . Experimental data appear to conform well to the form α = 1/[1 + exp(-ΔG 0 /G/sub s/ 0 )]. A simple interpretation of the ΔG 0 dependence of G/sub a/, based on an interpolation of the free energy from that of the reagents to that of the products, is offered. 4 figures, 69 references

  15. Experimental investigations of the neutron contamination in high-energy photon fields at medical linear accelerators

    International Nuclear Information System (INIS)

    Brunckhorst, Elin

    2009-01-01

    The scope of this thesis was to develop a device for the detection of the photoneutron dose inside the high-energy photon field. The photoneutron contamination of a Siemens PRIMUS linear accelerator was investigated in detail in its 15 MV photon mode. The experimental examinations were performed with three ionisation chambers (a tissue equivalent chamber, a magnesium chamber and a 10 B-coated magnesium chamber) and two types of thermoluminescence detectors (enriched with 6 Li and 7 Li, respectively). The detectors have different sensitivities to photons and neutrons and their combination allows the dose separation in a mixed neutron/photon field. The application of the ionisation chamber system, as well as the present TLD system for photoneutron detection in high-energy photon beams is a new approach. The TLD neutron sensitivity was found to be too low for a measurement inside the open photon field and the further investigation focused on the ionisation chambers. The three ionisation chambers were calibrated at different photon and neutron sources and a the borated magnesium chamber showed a very high response to thermal neutrons. For a cross check of the calibration, the three chambers were also used for dose separation of a boron neutron capture therapy beam where the exact determination of the thermal neutron dose is essential. Very accurate results were achieved for the thermal neutron dose component. At the linear accelerator the chamber system was reduced to a paired chamber system utilising the two magnesium chambers, since the fast neutron component was to small to be separated. The neutron calibration of the three chambers could not be applied, instead a conversion of measured thermal neutron signal by the borated chamber to Monte Carlo simulated total neutron dose was performed. Measurements for open fields in solid water and liquid water were performed with the paired chamber system. In larger depths the neutron dose could be determined with an

  16. Experimental investigations of the neutron contamination in high-energy photon fields at medical linear accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Brunckhorst, Elin

    2009-02-26

    The scope of this thesis was to develop a device for the detection of the photoneutron dose inside the high-energy photon field. The photoneutron contamination of a Siemens PRIMUS linear accelerator was investigated in detail in its 15 MV photon mode. The experimental examinations were performed with three ionisation chambers (a tissue equivalent chamber, a magnesium chamber and a {sup 10}B-coated magnesium chamber) and two types of thermoluminescence detectors (enriched with {sup 6}Li and {sup 7}Li, respectively). The detectors have different sensitivities to photons and neutrons and their combination allows the dose separation in a mixed neutron/photon field. The application of the ionisation chamber system, as well as the present TLD system for photoneutron detection in high-energy photon beams is a new approach. The TLD neutron sensitivity was found to be too low for a measurement inside the open photon field and the further investigation focused on the ionisation chambers. The three ionisation chambers were calibrated at different photon and neutron sources and a the borated magnesium chamber showed a very high response to thermal neutrons. For a cross check of the calibration, the three chambers were also used for dose separation of a boron neutron capture therapy beam where the exact determination of the thermal neutron dose is essential. Very accurate results were achieved for the thermal neutron dose component. At the linear accelerator the chamber system was reduced to a paired chamber system utilising the two magnesium chambers, since the fast neutron component was to small to be separated. The neutron calibration of the three chambers could not be applied, instead a conversion of measured thermal neutron signal by the borated chamber to Monte Carlo simulated total neutron dose was performed. Measurements for open fields in solid water and liquid water were performed with the paired chamber system. In larger depths the neutron dose could be determined

  17. Calculation of nuclear data for incident energies to 200 MeV with the FKK-GNASH code system

    International Nuclear Information System (INIS)

    Chadwick, M.B.; Young, P.G.

    1993-02-01

    We describe how the FKK-GNASH code system has been extended to calculate nucleon-induced reactions up to 200 MeV, and used to predict (p,xn) and (p,xp) cross sections on 208 Pb at incident energies of 25, 45, 80 and 160 MeV, for an intermediate energy code intercomparison. Details of the reaction mechanisms calculated by FKK-GNASH are given, and the calculational procedure is described

  18. Structural properties and growth evolution of diamond-like carbon films with different incident energies: A molecular dynamics study

    International Nuclear Information System (INIS)

    Li, Xiaowei; Ke, Peiling; Zheng, He; Wang, Aiying

    2013-01-01

    Structural properties and growth evolution of diamond-like carbon (DLC) films with different incident energies were investigated systematically by the molecular dynamics simulation using a Tersoff interatomic potential for carbon-carbon interaction. The results revealed that the density, sp 3 fraction and residual compressive stress as a function of incident energy increased firstly and then decreased; when the incident energy was 70 eV/atom, the density could reach to 3.0 g/cm 3 with the maximal compressive stress of 15.5 GPa. Structure analysis indicated that the deviation of both bond angles and lengths from the equilibrium position led to the generation of a large residual stress, while the high compressive stress mainly attributed to the decrease of both bond angles and lengths among carbon atoms. The growth of DLC films underwent a formation process of “Line-Net” structure accompanied with the interaction of many atomic motion mechanisms, and the “Point” stage was only found for DLC films with low incident energy.

  19. Effect of linear temperature dependence of thermoelectric properties on energy conversion efficiency

    International Nuclear Information System (INIS)

    Yamashita, Osamu

    2008-01-01

    New thermal rate equations were developed by taking the temperature dependences of the electrical resistivity ρ and thermal conductivity κ of the thermoelectric (TE) materials into the thermal rate equations on the assumption that they vary linearly with temperature T. The relative energy conversion efficiency η/η 0 for a single TE element was formulated by approximate analysis, where η and η 0 are the energy conversion efficiencies derived from the new and conventional thermal rate equations, respectively. Applying it to Si-Ge alloys, the temperature dependence of ρ is stronger than that of κ, so the former has a more significant effect on η/η 0 than the latter. However, the degree of contribution from both of them to η/η 0 was a little lower than 1% at the temperature difference ΔT of 600 K. When the temperature dependence of κ was increased to become equal to that of ρ, however, it was found that η/η 0 is increased by about 10% at ΔT = 600 K. It is clarified here that the temperature dependences of ρ and κ are also important factors for an improvement in η

  20. Electronic torsional sound in linear atomic chains: Chemical energy transport at 1000 km/s

    Energy Technology Data Exchange (ETDEWEB)

    Kurnosov, Arkady A.; Rubtsov, Igor V.; Maksymov, Andrii O.; Burin, Alexander L., E-mail: aburin@tulane.edu [Department of Chemistry, Tulane University, New Orleans, Louisiana 70118 (United States)

    2016-07-21

    We investigate entirely electronic torsional vibrational modes in linear cumulene chains. The carbon nuclei of a cumulene are positioned along the primary axis so that they can participate only in the transverse and longitudinal motions. However, the interatomic electronic clouds behave as a torsion spring with remarkable torsional stiffness. The collective dynamics of these clouds can be described in terms of electronic vibrational quanta, which we name torsitons. It is shown that the group velocity of the wavepacket of torsitons is much higher than the typical speed of sound, because of the small mass of participating electrons compared to the atomic mass. For the same reason, the maximum energy of the torsitons in cumulenes is as high as a few electronvolts, while the minimum possible energy is evaluated as a few hundred wavenumbers and this minimum is associated with asymmetry of zero point atomic vibrations. Theory predictions are consistent with the time-dependent density functional theory calculations. Molecular systems for experimental evaluation of the predictions are proposed.

  1. Cell-free unnatural amino acid incorporation with alternative energy systems and linear expression templates.

    Science.gov (United States)

    Shrestha, Prashanta; Smith, Mark Thomas; Bundy, Bradley Charles

    2014-01-25

    Site-specific incorporation of unnatural amino acids (uAAs) during protein synthesis expands the proteomic code through the addition of unique residue chemistry. This field provides a unique tool to improve pharmacokinetics, cancer treatments, vaccine development, proteomics and protein engineering. The limited ability to predict the characteristics of proteins with uAA-incorporation creates a need for a low-cost system with the potential for rapid screening. Escherichia coli-based cell-free protein synthesis is a compelling platform for uAA incorporation due to the open and accessible nature of the reaction environment. However, typical cell-free systems can be expensive due to the high cost of energizing reagents. By employing alternative energy sources, we reduce the cost of uAA-incorporation in CFPS by 55%. While alternative energy systems reduce cost, the time investment to develop gene libraries can remain cumbersome. Cell-free systems allow the direct use of PCR products known as linear expression templates, thus alleviating tedious plasmid library preparations steps. We report the specific costs of CFPS with uAA incorporation, demonstrate that LETs are suitable expression templates with uAA-incorporation, and consider the substantial reduction in labor intensity using LET-based expression for CFPS uAA incorporation. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Electronic torsional sound in linear atomic chains: Chemical energy transport at 1000 km/s

    Science.gov (United States)

    Kurnosov, Arkady A.; Rubtsov, Igor V.; Maksymov, Andrii O.; Burin, Alexander L.

    2016-07-01

    We investigate entirely electronic torsional vibrational modes in linear cumulene chains. The carbon nuclei of a cumulene are positioned along the primary axis so that they can participate only in the transverse and longitudinal motions. However, the interatomic electronic clouds behave as a torsion spring with remarkable torsional stiffness. The collective dynamics of these clouds can be described in terms of electronic vibrational quanta, which we name torsitons. It is shown that the group velocity of the wavepacket of torsitons is much higher than the typical speed of sound, because of the small mass of participating electrons compared to the atomic mass. For the same reason, the maximum energy of the torsitons in cumulenes is as high as a few electronvolts, while the minimum possible energy is evaluated as a few hundred wavenumbers and this minimum is associated with asymmetry of zero point atomic vibrations. Theory predictions are consistent with the time-dependent density functional theory calculations. Molecular systems for experimental evaluation of the predictions are proposed.

  3. Development of linear free energy relationships for aqueous phase radical-involved chemical reactions.

    Science.gov (United States)

    Minakata, Daisuke; Mezyk, Stephen P; Jones, Jace W; Daws, Brittany R; Crittenden, John C

    2014-12-02

    Aqueous phase advanced oxidation processes (AOPs) produce hydroxyl radicals (HO•) which can completely oxidize electron rich organic compounds. The proper design and operation of AOPs require that we predict the formation and fate of the byproducts and their associated toxicity. Accordingly, there is a need to develop a first-principles kinetic model that can predict the dominant reaction pathways that potentially produce toxic byproducts. We have published some of our efforts on predicting the elementary reaction pathways and the HO• rate constants. Here we develop linear free energy relationships (LFERs) that predict the rate constants for aqueous phase radical reactions. The LFERs relate experimentally obtained kinetic rate constants to quantum mechanically calculated aqueous phase free energies of activation. The LFERs have been applied to 101 reactions, including (1) HO• addition to 15 aromatic compounds; (2) addition of molecular oxygen to 65 carbon-centered aliphatic and cyclohexadienyl radicals; (3) disproportionation of 10 peroxyl radicals, and (4) unimolecular decay of nine peroxyl radicals. The LFERs correlations predict the rate constants within a factor of 2 from the experimental values for HO• reactions and molecular oxygen addition, and a factor of 5 for peroxyl radical reactions. The LFERs and the elementary reaction pathways will enable us to predict the formation and initial fate of the byproducts in AOPs. Furthermore, our methodology can be applied to other environmental processes in which aqueous phase radical-involved reactions occur.

  4. Wave power - Sustainable energy or environmentally costly? A review with special emphasis on linear wave energy converters

    Energy Technology Data Exchange (ETDEWEB)

    Langhamer, Olivia [Dept. of Animal Ecology, UU, Norbyvaegen 18D, S-75236 Uppsala (Sweden); Swedish Centre for Renewable Electric Energy Conversion, Division for Electricity, Aangstroem Laboratory, Uppsala University, Box 534, S-75121 Uppsala (Sweden); Haikonen, Kalle; Sundberg, Jan [Swedish Centre for Renewable Electric Energy Conversion, Division for Electricity, Aangstroem Laboratory, Uppsala University, Box 534, S-75121 Uppsala (Sweden)

    2010-05-15

    Generating electricity from waves is predicted to be a new source of renewable energy conversion expanding significantly, with a global potential in the range of wind and hydropower. Several wave power techniques are on the merge of commercialisation, and thus evoke questions of environmental concern. Conservation matters are to some extent valid independent of technique but we mainly focus on point absorbing linear generators. By giving examples from the Lysekil project, run by Uppsala University and situated on the Swedish west coast, we demonstrate ongoing and future environmental studies to be performed along with technical research and development. We describe general environmental aspects generated by wave power projects; issues also likely to appear in Environmental Impact Assessment studies. Colonisation patterns and biofouling are discussed with particular reference to changes of the seabed and alterations due to new substrates. A purposeful artificial reef design to specially cater for economically important or threatened species is also discussed. Questions related to fish, fishery and marine mammals are other examples of topics where, e.g. no-take zones, marine bioacoustics and electromagnetic fields are important areas. In this review we point out areas in which studies likely will be needed, as ventures out in the oceans also will give ample opportunities for marine environmental research in general and in areas not previously studied. Marine environmental and ecological aspects appear to be unavoidable for application processes and in post-deployment studies concerning renewable energy extraction. Still, all large-scale renewable energy conversion will cause some impact mainly by being area demanding. An early incorporation of multidisciplinary and high quality research might be a key for new ocean-based techniques. (author)

  5. Linear and Nonlinear Causality between Energy Consumption and Economic Growth: The Case of Mexico 1965–2014

    Directory of Open Access Journals (Sweden)

    Mario Gómez

    2018-03-01

    Full Text Available This paper analyzes the causal link between aggregated and disaggregated levels of energy consumption and economic growth in Mexico between 1965 and 2014, with the presence of structural breaks stemming from the series. To that end, unit root with structural breaks, cointegration, and linear and nonlinear causality tests are employed. The results show that there is a long-run relationship between production, capital, labor, and energy, and linear causal links from total and disaggregated energy consumption to economic growth. A nonlinear causality also exists from energy consumption, the transport sector, capital, and labor to output. These results support the growth hypothesis, which maintains that energy is an important input factor for economic activity and that energy conservation policies impact the economic growth in Mexico.

  6. A Novel Four-Dimensional Energy-Saving and Emission-Reduction System and Its Linear Feedback Control

    Directory of Open Access Journals (Sweden)

    Minggang Wang

    2012-01-01

    Full Text Available This paper reports a new four-dimensional energy-saving and emission-reduction chaotic system. The system is obtained in accordance with the complicated relationship between energy saving and emission reduction, carbon emission, economic growth, and new energy development. The dynamics behavior of the system will be analyzed by means of Lyapunov exponents and equilibrium points. Linear feedback control methods are used to suppress chaos to unstable equilibrium. Numerical simulations are presented to show these results.

  7. Neutron emission cross sections on 93Nb at 20 MeV incident energy

    International Nuclear Information System (INIS)

    Marcinkowski, A.; Kielan, D.

    1991-01-01

    Over the last years fully quantum-mechanical theories of nuclear reactions have been developed that provide, at least in principle, parameter-free methods of calculating double-differential continuum cross sections. The DWBA-based theory of direct processes to the continuum was derived by Tamura et al. The statistical theory of Feshback, Kerman and Koonin (FKK) introduced two reaction types in parallel as complementary mechanisms contributing to the preequilibrium decay. The multistep compound mechanism (MSC) results in symmetric angular distributions of the emitted particles, whereas the multistep direct mechanism (MSD) gives rise to the forward-peaked angular distributions. The theories of the MSC reactions differ in that the FKK theory incorporates the ''never come back'' hypothesis, which allowed the formulation of an applicable model that was successfully used in practical calculations. On the other hand the FKK theory of the MSD reactions differs conceptually from the theory of Tamura et al. and from the more general theory developed most recently by Nishioka et al. The latter theories were shown to be founded upon a postulated chaos located in the residual nucleus. In contrast, the theory of FKK assumes a chaotic interaction of the continuum particle to be emitted with the residual nucleus. The continuum or leading-particle statistics of the FKK theory results in the simple, convolution like, MSD cross section formula, which facilitates numerical calculations. Nevertheless two-step statistical DWBA calculations have been also performed. This paper extends the application of the FKK theory to the 93 Nb(n,xn) reaction at 20 MeV incident energy. (author). 14 refs, 1 fig

  8. Ionisation differential cross section measurements for N2 at low incident energy in coplanar and non-coplanar geometries

    International Nuclear Information System (INIS)

    Sakaamini, Ahmad; Murray, Andrew James; Amami, Sadek; Madison, Don; Ning, Chuangang

    2016-01-01

    Ionisation triple differential cross sections have been determined experimentally and theoretically for the neutral molecule N 2 over a range of geometries from coplanar to the perpendicular plane. Data were obtained at incident electron energies ∼10 and ∼20 eV above the ionisation potential of the 3 σ g , 1 π u and 2 σ g states, using both equal and non-equal outgoing electron energies. The data were taken with the incident electron beam in the scattering plane ( ψ = 0°), at 45° to this plane and orthogonal to the plane ( ψ = 90°). The set of nine measured differential cross sections at a given energy were then inter-normalised to each other. The data are compared to new calculations using various distorted wave methods, and differences between theory and experiment are discussed. (paper)

  9. A linear programming approach for the optimal planning of a future energy system. Potential contribution of energy recovery from municipal solid wastes

    DEFF Research Database (Denmark)

    Xydis, George; Koroneos, C.

    2012-01-01

    In the present paper the mismatch between the energy supply levels and the end use, in a broader sense, was studied for the Hellenic energy system. The ultimate objective was to optimize the way to meet the country's energy needs in every different administrative and geographical region using...... renewable energy sources (RES) and at the same time to define the remaining available space for energy recovery units from municipal solid waste (MSW) in each region to participate in the energy system. Based on the results of the different scenarios examined for meeting the electricity needs using linear...

  10. High resolution measurement of the 238U neutron capture yield for incident neutron energies between 1 and 100 keV

    International Nuclear Information System (INIS)

    Macklin, R.L.; Perez, R.B.; de Saussure, G.; Ingle, R.W.

    1987-01-01

    Measurements of the capture gamma-ray spectrum of three U-238 metallic samples of areal densities, N = 0.0124, 0.0031, and 0.00057 at/b, were performed by placing a sample at the center of the Oak Ridge Electron Linear Accelerator liquid scintillator tank. Five measurements of the time of flight spectrum were performed for each sample thickness. Measurements were done with and without aluminum filters in the beam, at both 800 and 400 pulses per second to determine the energy-dependent background which arises from pulse overlap and room return. The fifth measurement had a polyethylene plug in the beam to determine the constant background due to cosmic rays and long-lived radioactivities in the sample and surrounding materials. The shape of the incident neutron spectrum was determined by the count rate of a 1-mm-thick Li-6 glass scintillation monitor placed upstream of the liquid scintillator

  11. Energy measurement of prompt fission neutrons in 239Pu(n,f) for incident neutron energies from 1 to 200 MeV

    CERN Document Server

    Chatillon, A; Granier, Th; Laurent, B; Taïeb, J; Noda, S; Haight, R C; Devlin, M; Nelson, R O; O’Donnell, J M

    2010-01-01

    Prompt fission neutron spectra in the neutron-induced fission of 239Pu have been measured for incident neutron energies from 1 to 200 MeV at the Los Alamos Neutron Science Center. Preliminary results are discussed and compared to theoretical model calculation.

  12. Primary processes in radiation chemistry. LET (Linear Energy Transfer) effect in water radiolysis

    International Nuclear Information System (INIS)

    Trupin-Wasselin, V.

    2000-01-01

    The effect of ionizing radiations on aqueous solutions leads to water ionization and then to the formation of radical species and molecular products (e - aq , H . , OH . , H 2 O 2 , H 2 ). It has been shown that the stopping power, characterized by the LET value (Linear Energy Transfer) becomes different when the nature of the ionizing radiations is different. Few data are nowadays available for high LET radiations such as protons and high energy heavy ions. These particles have been used to better understand the primary processes in radiation chemistry. The yield of a chemical dosimeter (the Fricke dosimeter) and those of the hydrogen peroxide have been determined for different LET. The effect of the dose rate on the Fricke dosimeter yield and on the H 2 O 2 yield has been studied too. When the dose rate increases, an increase of the molecular products yield is observed. At very high dose rate, this yield decreases on account of the attack of the molecular products by radicals. The H 2 O 2 yield in alkaline medium decreases when the pH reaches 12. This decrease can be explained by a slowing down of the H 2 O 2 formation velocity in alkaline medium. Superoxide radical has also been studied in this work. A new detection method: the time-resolved chemiluminescence has been perfected for this radical. This technique is more sensitive than the absorption spectroscopy. Experiments with heavy ions have allowed to determine the O 2 .- yield directly in the irradiation cell. The experimental results have been compared with those obtained with a Monte Carlo simulation code. (O.M.)

  13. Energy harvesting with stacked dielectric elastomer transducers: Nonlinear theory, optimization, and linearized scaling law

    Science.gov (United States)

    Tutcuoglu, A.; Majidi, C.

    2014-12-01

    Using principles of damped harmonic oscillation with continuous media, we examine electrostatic energy harvesting with a "soft-matter" array of dielectric elastomer (DE) transducers. The array is composed of infinitely thin and deformable electrodes separated by layers of insulating elastomer. During vibration, it deforms longitudinally, resulting in a change in the capacitance and electrical enthalpy of the charged electrodes. Depending on the phase of electrostatic loading, the DE array can function as either an actuator that amplifies small vibrations or a generator that converts these external excitations into electrical power. Both cases are addressed with a comprehensive theory that accounts for the influence of viscoelasticity, dielectric breakdown, and electromechanical coupling induced by Maxwell stress. In the case of a linearized Kelvin-Voigt model of the dielectric, we obtain a closed-form estimate for the electrical power output and a scaling law for DE generator design. For the complete nonlinear model, we obtain the optimal electrostatic voltage input for maximum electrical power output.

  14. A non-linear 3D printed electromagnetic vibration energy harvester

    International Nuclear Information System (INIS)

    Constantinou, P; Roy, S

    2015-01-01

    This paper describes a novel electromagnetic energy harvester that exploits the low flexural modulus of ABS and comprises of a nonlinear mechanism to enhance the generated power and bandwidth. The device is printed using desktop additive manufacturing techniques (3D printing) that use thermoplastics. It has a ‘V’ spring topology and exhibits a softening spring non-linearity introduced through the magnetic arrangement, which introduces a monostable potential well. A model is presented and measurements correspond favourably. The produced prototype generates a peak power of approximately 2.5mW at a frame acceleration of 1g and has a power bandwidth of approximately 1.2→1.5Hz and 3.5→3.9Hz during up and down sweeps respectively. The device has a power density of 0.4mW/cm 3 at a frame acceleration of 1g and a density of 0.04mW/cm 3 from a generated power of 25μW at 0.1g. (paper)

  15. Electromagnetic Linear Vibration Energy Harvester Using Sliding Permanent Magnet Array and Ferrofluid as a Lubricant

    Directory of Open Access Journals (Sweden)

    Song Hee Chae

    2017-09-01

    Full Text Available We present an electromagnetic linear vibration energy harvester with an array of rectangular permanent magnets as a springless proof mass. Instead of supporting the magnet assembly with spring element, ferrofluid has been used as a lubricating material. When external vibration is applied laterally to the harvester, magnet assembly slides back and forth on the channel with reduced friction and wear due to ferrofluid, which significantly improves the long-term reliability of the device. Electric power is generated across an array of copper windings formed at the bottom of the aluminum housing. A proof-of-concept harvester has been fabricated and tested with a vibration exciter at various input frequencies and accelerations. For the device where 5 μL of ferrofluid was used for lubrication, maximum output power of 493 μW has been generated, which was 4.37% higher than that without ferrofluid. Long-term reliability improvement due to ferrofluid lubrication has also been verified. For the device with ferrofluid, 1.02% decrease of output power has been observed, in contrast to 59.73% decrease of output power without ferrofluid after 93,600 cycles.

  16. Dynamic wedge, electron energy and beam profile Q.A. using an ionization chamber linear array

    International Nuclear Information System (INIS)

    Kenny, M.B.; Todd, S.P.

    1996-01-01

    Since the introduction of multi-modal linacs the quality assurance workload of a Physical Sciences department has increased dramatically. The advent of dynamic wedges has further complicated matters because of the need to invent accurate methods to perform Q.A. in a reasonable time. We have been using an ionization chamber linear array, the Thebes 7000 TM by Victoreen, Inc., for some years to measure X-ray and electron beam profiles. Two years ago we developed software to perform Q.A. on our dynamic wedges using the array and more recently included a routine to check electron beam energies using the method described by Rosenow, U.F. et al., Med. Phys. 18(1) 19-25. The integrated beam and profile management system has enabled us to maintain a comprehensive quality assurance programme on all our linaccs. Both our efficiency and accuracy have increased to the point where we are able to keep up with the greater number of tests required without an increase in staff or hours spent in quality assurance. In changing the processor from the Z80 of the Thebes console to the 486 of the PC we have also noticed a marked increase in the calibration stability of the array. (author)

  17. Bounding the electrostatic free energies associated with linear continuum models of molecular solvation.

    Science.gov (United States)

    Bardhan, Jaydeep P; Knepley, Matthew G; Anitescu, Mihai

    2009-03-14

    The importance of electrostatic interactions in molecular biology has driven extensive research toward the development of accurate and efficient theoretical and computational models. Linear continuum electrostatic theory has been surprisingly successful, but the computational costs associated with solving the associated partial differential equations (PDEs) preclude the theory's use in most dynamical simulations. Modern generalized-Born models for electrostatics can reproduce PDE-based calculations to within a few percent and are extremely computationally efficient but do not always faithfully reproduce interactions between chemical groups. Recent work has shown that a boundary-integral-equation formulation of the PDE problem leads naturally to a new approach called boundary-integral-based electrostatics estimation (BIBEE) to approximate electrostatic interactions. In the present paper, we prove that the BIBEE method can be used to rigorously bound the actual continuum-theory electrostatic free energy. The bounds are validated using a set of more than 600 proteins. Detailed numerical results are presented for structures of the peptide met-enkephalin taken from a molecular-dynamics simulation. These bounds, in combination with our demonstration that the BIBEE methods accurately reproduce pairwise interactions, suggest a new approach toward building a highly accurate yet computationally tractable electrostatic model.

  18. Bounding the electrostatic free energies associated with linear continuum models of molecular solvation.

    Energy Technology Data Exchange (ETDEWEB)

    Bardhan, J. P.; Knepley, M. G.; Anitescu, M. (Biosciences Division); ( MCS); (Rush Univ.)

    2009-03-01

    The importance of electrostatic interactions in molecular biology has driven extensive research toward the development of accurate and efficient theoretical and computational models. Linear continuum electrostatic theory has been surprisingly successful, but the computational costs associated with solving the associated partial differential equations (PDEs) preclude the theory's use in most dynamical simulations. Modern generalized-Born models for electrostatics can reproduce PDE-based calculations to within a few percent and are extremely computationally efficient but do not always faithfully reproduce interactions between chemical groups. Recent work has shown that a boundary-integral-equation formulation of the PDE problem leads naturally to a new approach called boundary-integral-based electrostatics estimation (BIBEE) to approximate electrostatic interactions. In the present paper, we prove that the BIBEE method can be used to rigorously bound the actual continuum-theory electrostatic free energy. The bounds are validated using a set of more than 600 proteins. Detailed numerical results are presented for structures of the peptide met-enkephalin taken from a molecular-dynamics simulation. These bounds, in combination with our demonstration that the BIBEE methods accurately reproduce pairwise interactions, suggest a new approach toward building a highly accurate yet computationally tractable electrostatic model.

  19. A Selective-Awakening MAC Protocol for Energy-Efficient Data Forwarding in Linear Sensor Networks

    Directory of Open Access Journals (Sweden)

    Iclia Villordo-Jimenez

    2018-01-01

    Full Text Available We introduce the Selective-Awakening MAC (SA-MAC protocol which is a synchronized duty-cycled protocol with pipelined scheduling for Linear Sensor Networks (LSNs. In the proposed protocol, nodes selectively awake depending on node density and traffic load conditions and on the state of the buffers of the receiving nodes. In order to characterize the performance of the proposed protocol, we present a Discrete-Time Markov Chain-based analysis that is validated through extensive discrete-event simulations. Our results show that SA-MAC significantly outperforms previous proposals in terms of energy consumption, throughput, and packet loss probability. This is particularly true under high node density and high traffic load conditions, which are expected to be common scenarios in the context of IoT applications. We also present an analysis by grade (i.e., the number of hops to the sink, which is located at one end of the LSN that reveals that LSNs exhibit heterogeneous performance depending on the nodes’ grade. Such results can be used as a design guideline for future LSN implementations.

  20. Low and high linear energy transfer radiation sensitization of HCC cells by metformin

    International Nuclear Information System (INIS)

    Kim, Eun Ho; Jung, Won-Gyun; Kim, Mi-Sook; Cho, Chul-Koo; Jeong, Youn Kyoung; Jeong, Jae-Hoon

    2014-01-01

    The purpose of this study was to investigate the efficacy of metformin as a radiosensitizer for use in combination therapy for human hepatocellular carcinoma (HCC). Three human HCC cell lines (Huh7, HepG2, Hep3B) and a normal human hepatocyte cell line were treated with metformin alone or with radiation followed by metformin. In vitro tests were evaluated by clonogenic survival assay, FACS analysis, western blotting, immunofluorescence and comet assay. Metformin significantly enhanced radiation efficacy under high and low Linear Energy Transfer (LET) radiation conditions in vitro. In combination with radiation, metformin abrogated G2/M arrest and increased the cell population in the sub-G1 phase and the ROS level, ultimately increasing HCC cellular apoptosis. Metformin inhibits the repair of DNA damage caused by radiation. The radiosensitizing effects of metformin are much higher in neutron (high LET)-irradiated cell lines than in γ (low LET)-irradiated cell lines. Metformin only had a moderate effect in normal hepatocytes. Metformin enhances the radiosensitivity of HCC, suggesting it may have clinical utility in combination cancer treatment with high-LET radiation. (author)

  1. Pathway and conversion of energy incident on auroral and sub-auroral ionosphere at substorm expansion onset

    Science.gov (United States)

    Ebihara, Y.; Tanaka, T.

    2017-12-01

    One explanation for SAPS/SAID is the poleward ionospheric electric field arising from a pair of Region 1 and Region 2 field-aligned currents (FACs). At substorm expansion onset, the FACs are intensified, resulting in intensification of energy incident on the auroral and sub-auroral ionosphere. Where does the energy comes from? Based on the results obtained by the global magnetohydrodynamics (MHD) simulation, we present energy flow and energy conversion associated with the Region 1 and Region 2 FACs that are intensified at the onset of substorm expansion. The cusp/mantle region transmits electromagnetic energy to almost the entire region of the magnetosphere. A part of electromagnetic energy is stored in the lobe in the growth phase. When reconnection takes place in the near-Earth tail region, the stored energy is released in addition to the continuously supplied one from the cusp/mantle dynamo. Two types of pathways of energy seem to be involved in the generation of the near-Earth dynamo that is associated with FACs at the expansion onset. The first type is related to the earthward fast flow in the plasma sheet. The electromagnetic energy coming from the lobe splits into the thermal energy and the kinetic energy. The kinetic energy is then converted to the thermal energy and the electromagnetic energy, in association of flow braking. The second type is that the plasma coming from the lobe goes into the inner magnetosphere directly. The electromagnetic energy is converted to the thermal energy, followed by the electromagnetic energy at off-equator. The near-Earth dynamo region seems to be embedded in the magnetospheric convection system. In this sense, the expansion onset may be regarded as a sudden, local intensification of the convection.

  2. A note on the relationship between the emittance, the beta function and the energy in a linear collider

    International Nuclear Information System (INIS)

    Rees, J.

    1986-11-01

    Scaling laws for linear colliders are considered for the case of laterally round Gaussian beams and for the case that mutual pinching of the beams can be ignored. Based on these assumptions, the relationship is found between the interaction area, beta function, beam emittance, and energy for a linear collider in order to show the need for substantial improvements in the feasible values of accelerator parameters to reach a center of mass energy of 0.7 TeV. Pinch is then taken into account

  3. The time-walk of analog constant fraction discriminators using very fast scintillator detectors with linear and non-linear energy response

    Energy Technology Data Exchange (ETDEWEB)

    Regis, J.-M., E-mail: regis@ikp.uni-koeln.de [Institut fuer Kernphysik der Universitaet zu Koeln, Zuelpicher Str. 77, 50937 Koeln (Germany); Rudigier, M.; Jolie, J.; Blazhev, A.; Fransen, C.; Pascovici, G.; Warr, N. [Institut fuer Kernphysik der Universitaet zu Koeln, Zuelpicher Str. 77, 50937 Koeln (Germany)

    2012-08-21

    The electronic {gamma}-{gamma} fast timing technique allows for direct nuclear lifetime determination down to the few picoseconds region by measuring the time difference between two coincident {gamma}-ray transitions. Using high resolution ultra-fast LaBr{sub 3}(Ce) scintillator detectors in combination with the recently developed mirror symmetric centroid difference method, nuclear lifetimes are measured with a time resolving power of around 5 ps. The essence of the method is to calibrate the energy dependent position (centroid) of the prompt response function of the setup which is obtained for simultaneously occurring events. This time-walk of the prompt response function induced by the analog constant fraction discriminator has been determined by systematic measurements using different photomultiplier tubes and timing adjustments of the constant fraction discriminator. We propose a universal calibration function which describes the time-walk or the combined {gamma}-{gamma} time-walk characteristics, respectively, for either a linear or a non-linear amplitude versus energy dependency of the scintillator detector output pulses.

  4. Characterization of high density SiPM non-linearity and energy resolution for prompt gamma imaging applications

    Science.gov (United States)

    Regazzoni, V.; Acerbi, F.; Cozzi, G.; Ferri, A.; Fiorini, C.; Paternoster, G.; Piemonte, C.; Rucatti, D.; Zappalà, G.; Zorzi, N.; Gola, A.

    2017-07-01

    Fondazione Bruno Kessler (FBK) (Trento, Italy) has recently introduced High Density (HD) and Ultra High-Density (UHD) SiPMs, featuring very small micro-cell pitch. The high cell density is a very important factor to improve the linearity of the SiPM in high-dynamic-range applications, such as the scintillation light readout in high-energy gamma-ray spectroscopy and in prompt gamma imaging for proton therapy. The energy resolution at high energies is a trade-off between the excess noise factor caused by the non-linearity of the SiPM and the photon detection efficiency of the detector. To study these effects, we developed a new setup that simulates the LYSO light emission in response to gamma photons up to 30 MeV, using a pulsed light source. We measured the non-linearity and energy resolution vs. energy of the FBK RGB-HD e RGB-UHD SiPM technologies. We considered five different cell sizes, ranging from 10 μm up to 25 μm. With the UHD technology we were able to observe a remarkable reduction of the SiPM non-linearity, less than 5% at 5 MeV with 10 μm cells, which should be compared to a non-linearity of 50% with 25 μm-cell HD-SiPMs. With the same setup, we also measured the different components of the energy resolution (intrinsic, statistical, detector and electronic noise) vs. cell size, over-voltage and energy and we separated the different sources of excess noise factor.

  5. The effect of Moidal non-linear blending function for dual-energy CT on CT image quality

    International Nuclear Information System (INIS)

    Zhang Fan; Yang Li

    2011-01-01

    Objective: To compare the difference between linear blending and non-linear blending function for dual-energy CT, and to evaluate the effect on CT image quality. Methods: The model was made of a piece of fresh pork liver inserted with 5 syringes containing various concentrations of iodine solutions (16.3, 26.4, 48.7, 74.6 and 112.3 HU). Linear blending images were automatically reformatted after the model was scanned in the dual-energy mode. Non-linear blending images were reformatted using the software of optimal contrast in Syngo workstation. Images were divided into 3 groups, including linear blending group, non-linear blending group and 120 kV group. Contrast noise ratio (CNR) were measured and calculated respectively in the 3 groups and the different figure of merit (FOM) values between the groups were compared using one-way ANOVA. Twenty patients scanned in the dual-energy mode were randomly selected and the SNR of their liver, renal cortex, spleen, pancreas and abdominal aorta were measured. The independent sample t test was used to compare the difference of signal to noise ratio (SNR) between linear blending group and non linear blending group. Two readers' agreement score and single-blind method were used to investigate the conspicuity difference between linear blending group and non linear blending group. Results: With models of different CT values, the FOM values in non-linear blending group were 20.65± 8.18, 11.40±4.25, 1.60±0.82, 2.40±1.13, 45.49±17.86. In 74.6 HU and 112.3 HU models, the differences of the FOM values observed among the three groups were statistically significant (P<0.05), which were 0.30±0.06 and 14.43±4.59 for linear blending group, and 0.22±0.05 and 15.31±5.16 for 120 kV group. And non-linear blending group had a better FOM value. The SNR of renal cortex and abdominal aorta were 19.2±5.1 and 36.5±13.9 for non-linear blending group, while they were 12.4±3.8 and 22.6±7.0 for linear blending group. There were statistically

  6. Incident energy and target dependence of interaction cross sections and density distribution of neutron drip-line nuclei

    International Nuclear Information System (INIS)

    Shimoura, S.

    1992-01-01

    The relation between nuclear density distribution and interaction cross section is discussed in terms of Glauber model. Based on the model, density distribution of neutron drip-line nucleus 11 Be and 11 Li is determined experimentally from incident energy dependence of interaction cross sections of 11 Be and 11 Li on light targets. The obtained distributions have long tails corresponding to neutron halos of loosely bound neutrons. (Author)

  7. Optimization of Linear Permanent Magnet (PM Generator with Triangular-Shaped Magnet for Wave Energy Conversion using Finite Element Method

    Directory of Open Access Journals (Sweden)

    Aamir Hussain

    2016-06-01

    Full Text Available This paper presents the design optimization of linear permanent magnet (PM generator for wave energy conversion using finite element method (FEM. A linear PM generator with triangular-shaped magnet is proposed, which has higher electromagnetic characteristics, superior performance and low weight as compared to conventional linear PM generator with rectangular shaped magnet. The Individual Parameter (IP optimization technique is employed in order to optimize and achieve optimum performance of linear PM generator. The objective function, optimization variables; magnet angle,M_θ(∆ (θ, the pole-width ratio, P_w ratio(τ_p/τ_mz,, and split ratio between translator and stator, δ_a ratio(R_m/R_e, and constraints are defined. The efficiency and its main parts; copper and iron loss are computed using time-stepping FEM. The optimal values after optimization are presented which yields highest efficiency. Key

  8. Linear Energy Transfer-Guided Optimization in Intensity Modulated Proton Therapy: Feasibility Study and Clinical Potential

    Energy Technology Data Exchange (ETDEWEB)

    Giantsoudi, Drosoula, E-mail: dgiantsoudi@partners.org [Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts (United States); Grassberger, Clemens; Craft, David; Niemierko, Andrzej; Trofimov, Alexei; Paganetti, Harald [Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts (United States)

    2013-09-01

    Purpose: To investigate the feasibility and potential clinical benefit of linear energy transfer (LET) guided plan optimization in intensity modulated proton therapy (IMPT). Methods and Materials: A multicriteria optimization (MCO) module was used to generate a series of Pareto-optimal IMPT base plans (BPs), corresponding to defined objectives, for 5 patients with head-and-neck cancer and 2 with pancreatic cancer. A Monte Carlo platform was used to calculate dose and LET distributions for each BP. A custom-designed MCO navigation module allowed the user to interpolate between BPs to produce deliverable Pareto-optimal solutions. Differences among the BPs were evaluated for each patient, based on dose–volume and LET–volume histograms and 3-dimensional distributions. An LET-based relative biological effectiveness (RBE) model was used to evaluate the potential clinical benefit when navigating the space of Pareto-optimal BPs. Results: The mean LET values for the target varied up to 30% among the BPs for the head-and-neck patients and up to 14% for the pancreatic cancer patients. Variations were more prominent in organs at risk (OARs), where mean LET values differed by a factor of up to 2 among the BPs for the same patient. An inverse relation between dose and LET distributions for the OARs was typically observed. Accounting for LET-dependent variable RBE values, a potential improvement on RBE-weighted dose of up to 40%, averaged over several structures under study, was noticed during MCO navigation. Conclusions: We present a novel strategy for optimizing proton therapy to maximize dose-averaged LET in tumor targets while simultaneously minimizing dose-averaged LET in normal tissue structures. MCO BPs show substantial LET variations, leading to potentially significant differences in RBE-weighted doses. Pareto-surface navigation, using both dose and LET distributions for guidance, provides the means for evaluating a large variety of deliverable plans and aids in

  9. Modeling bioaccumulation in humans using poly-parameter linear free energy relationships (PPLFERS)

    Energy Technology Data Exchange (ETDEWEB)

    Undeman, Emma, E-mail: emma.undeman@itm.su.se; Czub, Gertje; McLachlan, Michael S.

    2011-04-01

    Chemical partition coefficients between environmental media and biological tissues are a key component of bioaccumulation models. The single-parameter linear free energy relationships (spLFERs) commonly used for predicting partitioning are often derived using apolar chemicals and may not accurately capture polar chemicals. In this study, a poly-parameter LFER (ppLFER) based model of organic chemical bioaccumulation in humans is presented. Chemical partitioning was described by an air-body partition coefficient that was a volume weighted average of ppLFER based partition coefficients for the major organs and tissues constituting the human body. This model was compared to a spLFER model treating the body as a mixture of lipid ({approx} octanol) and water. Although model agreement was good for hydrophobic chemicals (average difference 15% for log K{sub OW} > 4 and log K{sub OA} > 8), the ppLFER model predicted {approx} 90% lower body burdens for hydrophilic chemicals (log K{sub OW} < 0). This was mainly due to lower predictions of muscle and adipose tissue sorption capacity for these chemicals. A comparison of the predicted muscle and adipose tissue sorption capacities of hydrophilic chemicals with measurements indicated that the ppLFER and spLFER models' uncertainties were similar. Consequently, little benefit from the implementation of ppLFERs in this model was identified. - Research Highlights: {yields}Implementation of ppLFERs resulted in on average 90% lower predicted body burdens. {yields}Uncertainties in spLFER and ppLFER predictions were similar. {yields}The benefit from implementation of ppLFERs in bioaccumulation models was limited.

  10. Reoptimization of Intensity Modulated Proton Therapy Plans Based on Linear Energy Transfer

    Energy Technology Data Exchange (ETDEWEB)

    Unkelbach, Jan, E-mail: junkelbach@mgh.harvard.edu [Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts (United States); Botas, Pablo [Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts (United States); Faculty of Physics, Ruprecht-Karls-Universität Heidelberg, Heidelberg (Germany); Giantsoudi, Drosoula; Gorissen, Bram L.; Paganetti, Harald [Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts (United States)

    2016-12-01

    Purpose: We describe a treatment plan optimization method for intensity modulated proton therapy (IMPT) that avoids high values of linear energy transfer (LET) in critical structures located within or near the target volume while limiting degradation of the best possible physical dose distribution. Methods and Materials: To allow fast optimization based on dose and LET, a GPU-based Monte Carlo code was extended to provide dose-averaged LET in addition to dose for all pencil beams. After optimizing an initial IMPT plan based on physical dose, a prioritized optimization scheme is used to modify the LET distribution while constraining the physical dose objectives to values close to the initial plan. The LET optimization step is performed based on objective functions evaluated for the product of LET and physical dose (LET×D). To first approximation, LET×D represents a measure of the additional biological dose that is caused by high LET. Results: The method is effective for treatments where serial critical structures with maximum dose constraints are located within or near the target. We report on 5 patients with intracranial tumors (high-grade meningiomas, base-of-skull chordomas, ependymomas) in whom the target volume overlaps with the brainstem and optic structures. In all cases, high LET×D in critical structures could be avoided while minimally compromising physical dose planning objectives. Conclusion: LET-based reoptimization of IMPT plans represents a pragmatic approach to bridge the gap between purely physical dose-based and relative biological effectiveness (RBE)-based planning. The method makes IMPT treatments safer by mitigating a potentially increased risk of side effects resulting from elevated RBE of proton beams near the end of range.

  11. Linear Energy Transfer-Guided Optimization in Intensity Modulated Proton Therapy: Feasibility Study and Clinical Potential

    International Nuclear Information System (INIS)

    Giantsoudi, Drosoula; Grassberger, Clemens; Craft, David; Niemierko, Andrzej; Trofimov, Alexei; Paganetti, Harald

    2013-01-01

    Purpose: To investigate the feasibility and potential clinical benefit of linear energy transfer (LET) guided plan optimization in intensity modulated proton therapy (IMPT). Methods and Materials: A multicriteria optimization (MCO) module was used to generate a series of Pareto-optimal IMPT base plans (BPs), corresponding to defined objectives, for 5 patients with head-and-neck cancer and 2 with pancreatic cancer. A Monte Carlo platform was used to calculate dose and LET distributions for each BP. A custom-designed MCO navigation module allowed the user to interpolate between BPs to produce deliverable Pareto-optimal solutions. Differences among the BPs were evaluated for each patient, based on dose–volume and LET–volume histograms and 3-dimensional distributions. An LET-based relative biological effectiveness (RBE) model was used to evaluate the potential clinical benefit when navigating the space of Pareto-optimal BPs. Results: The mean LET values for the target varied up to 30% among the BPs for the head-and-neck patients and up to 14% for the pancreatic cancer patients. Variations were more prominent in organs at risk (OARs), where mean LET values differed by a factor of up to 2 among the BPs for the same patient. An inverse relation between dose and LET distributions for the OARs was typically observed. Accounting for LET-dependent variable RBE values, a potential improvement on RBE-weighted dose of up to 40%, averaged over several structures under study, was noticed during MCO navigation. Conclusions: We present a novel strategy for optimizing proton therapy to maximize dose-averaged LET in tumor targets while simultaneously minimizing dose-averaged LET in normal tissue structures. MCO BPs show substantial LET variations, leading to potentially significant differences in RBE-weighted doses. Pareto-surface navigation, using both dose and LET distributions for guidance, provides the means for evaluating a large variety of deliverable plans and aids in

  12. Physics Case and Challenges for the Vertex Tracker at Future High Energy $e^{+}e^{-}$ Linear Colliders

    CERN Document Server

    Battaglia, Marco

    2001-01-01

    The physics programme of high energy e+e- linear colliders relies on the accurate identification of fermions in order to study in details the profile of the Higgs boson, search for new particles and probe the multi-TeV mass region by means of precise electro-weak measurements and direct searches.

  13. Physics case and challenges for the Vertex Tracker at future high energy e sup + e sup - linear colliders

    CERN Document Server

    Battaglia, Marco

    2001-01-01

    The physics programme of high energy e sup + e sup - linear colliders relies on the accurate identification of fermions in order to study in detail the profile of the Higgs boson, search for new particles and probe the multi-TeV mass region by means of precise electro-weak measurements and direct searches.

  14. Physics case and challenges for the Vertex Tracker at future high energy e{sup +}e{sup -} linear colliders

    Energy Technology Data Exchange (ETDEWEB)

    Battaglia, M. E-mail: marco.battaglia@cern.ch

    2001-11-01

    The physics programme of high energy e{sup +}e{sup -} linear colliders relies on the accurate identification of fermions in order to study in detail the profile of the Higgs boson, search for new particles and probe the multi-TeV mass region by means of precise electro-weak measurements and direct searches.

  15. Free-Free Transitions of e-H System Inside a Dense Plasma Irradiated by a Laser Field at Very Low Incident Electron Energies

    Science.gov (United States)

    Bhatia, A. K.; Sinha, C.

    2012-01-01

    The free-free transition is studied for an electron-hydrogen in the ground state at low incident energies in the presence of an external homogenous, monochromatic, and linearly polarized laser-field inside a hot dense plasma.The effect of plasma screening is considered in the Debye-Huckel approximation. The calculations are performed in the soft photon limit, assuming that the plasma frequency is much higher than the laser frequency. The incident electron is considered to be dressed by the laser field in a nonperturbative manner by choosing the Volkov solutions in both the initial and final channels. The space part of the scattering wave function for the electron is solved numerically by taking into account the electron exchange. The laser-assisted differential and total cross sections are calculated for single-photon absorption /emission and no photon exchange in the soft photon limit, the laser intensity being much less than the atomic field intensity. The calculations have been carried out for various values of Debye parameter, ranging from 0.005 to 0.12. A strong suppression is noted in the laser-assisted cross sections as compared to the field-free situation. A significant difference is noted for the singlet and triplet cross sections. The suppression is much more in the triplet states.

  16. Image quality optimization and evaluation of linearly mixed images in dual-source, dual-energy CT

    International Nuclear Information System (INIS)

    Yu Lifeng; Primak, Andrew N.; Liu Xin; McCollough, Cynthia H.

    2009-01-01

    In dual-source dual-energy CT, the images reconstructed from the low- and high-energy scans (typically at 80 and 140 kV, respectively) can be mixed together to provide a single set of non-material-specific images for the purpose of routine diagnostic interpretation. Different from the material-specific information that may be obtained from the dual-energy scan data, the mixed images are created with the purpose of providing the interpreting physician a single set of images that have an appearance similar to that in single-energy images acquired at the same total radiation dose. In this work, the authors used a phantom study to evaluate the image quality of linearly mixed images in comparison to single-energy CT images, assuming the same total radiation dose and taking into account the effect of patient size and the dose partitioning between the low-and high-energy scans. The authors first developed a method to optimize the quality of the linearly mixed images such that the single-energy image quality was compared to the best-case image quality of the dual-energy mixed images. Compared to 80 kV single-energy images for the same radiation dose, the iodine CNR in dual-energy mixed images was worse for smaller phantom sizes. However, similar noise and similar or improved iodine CNR relative to 120 kV images could be achieved for dual-energy mixed images using the same total radiation dose over a wide range of patient sizes (up to 45 cm lateral thorax dimension). Thus, for adult CT practices, which primarily use 120 kV scanning, the use of dual-energy CT for the purpose of material-specific imaging can also produce a set of non-material-specific images for routine diagnostic interpretation that are of similar or improved quality relative to single-energy 120 kV scans.

  17. Before the Ring: synthesis of linear organic molecules in astrophysical ices by low energy electron impact

    Science.gov (United States)

    Huels, Michael A.; Bass Andrew, D.; Mirsaleh-Kohan, Nasrin; Sanche, Leon

    The question of the origin for the building blocks of life, either synthesized here on earth, or in space [1], has been the subject of much debate, experimental investigation, or astronomical observation, much of it stimulated by the early experiments of Miller [2], and subsequent space radiation related variations thereof [3-5]. And while the precise details of the formation of even the simplest biomolecules that make up life on earth still remain shrouded inmystery, one of the notions that persist throughout the debate is that the building blocks of life, such as amino-acids, or even the cyclic components of RNA and DNA, or other cyclic hydrocarbons (e.g. PHAs), where synthesized via radiolysis [6] either in the earths proto-atmosphere, its early oceans, or in the near interstellar space surrounding the early earth. Here we provide experimental evidence for the hypothesis that interactions of low energy secondary electrons and ions, formed during the radiolysis of matter, with atoms and molecules in the medium, may have played, and may still play an important role in the chemical transformation of astrophysical or planetary surface ices [7], where they lead to the synthesis of more complex chemical species from less complex, naturally occurring components. We report the synthesis and desorption of new chemical species from simple molecular surface ices, containing CH4 / CD4 , C2 D2 , O2 , CO, CO2 , or N2 in various combination mixtures, irradiated by low energy (CO+ (n = 1-3), among others. The formation of all these linear, pre-biotic molecular species, produced here by electron initiated cation-reactions in simple molecular films, suggests that similar mechanisms likely precede the synthesis of life's most basic cyclic molecular components in planetary, or astrophysical surface ices that are continuously subjected to the types of space radiations (UV, X-or -ray, or heavy ions) that can generate such low energy secondary electrons. [Funded by NSERC and Canadian

  18. Project of the electron linear accelerator on the biperiodical accelerating structure with deep energy retuning in a pulse mode

    International Nuclear Information System (INIS)

    Bogdanovich, B.Yu.; Zavadtsev, D.A.; Kaminskij, V.I.; Sobenin, N.P.; Fadin, A.I.; Zavadtsev, A.A.

    2001-01-01

    The schemes of the electron linear accelerator (ELA), realized on the basis of a biperiodical accelerating structure and ensuring the possibility of deep retuning of the beam energy in a pulse mode, are considered. Advantages and shortcomings of the proposed methods of pulse regulation of the electron energy are discussed. A project of a two-section ELA with two levels of energy (10 and 4 MeV) is presented as a base version. The beam dynamics is calculated for two versions of the ELA. Their main parameters are given [ru

  19. Design of a bolometer for total-energy measurement of the linear coherent light source pulsed X-ray laser

    International Nuclear Information System (INIS)

    Friedrich, S.; Li, L.; Ott, L.L.; Kolgani, Rajeswari M.; Yong, G.J.; Ali, Z.A.; Drury, O.B.; Ables, E.; Bionta, R.M.

    2006-01-01

    We are developing a cryogenic bolometer to measure the total energy of the linear coherent light source (LCLS) free electron X-ray laser to be built at the Stanford Linear Accelerator Center. The laser will produce ultrabright X-ray pulses in the energy range between 0.8 and 8 keV with ∼10 12 photons per ∼200 fs pulse at a repeat interval of 8 ms, and will be accompanied by a halo of spontaneous undulator radiation. The bolometer is designed to determine the total energy of each laser pulse to within (1- x ) Sr x MnO 3 sensor array at the metal-insulator transition, where the composition x is adjusted to produce the desired transition temperature. We discuss design considerations and material choices, and present numerical simulations of the thermal response

  20. Linearly decoupled energy-stable numerical methods for multi-component two-phase compressible flow

    KAUST Repository

    Kou, Jisheng; Sun, Shuyu; Wang, Xiuhua

    2017-01-01

    involved in the discrete momentum equation to ensure a consistency relationship with the mass balance equations. Moreover, we propose a component-wise SAV approach for a multi-component fluid, which requires solving a sequence of linear, separate mass

  1. High linear energy transfer degradation studies simulating alpha radiolysis of TRU solvent extraction processes

    Energy Technology Data Exchange (ETDEWEB)

    Pearson, Jeremy [Department of Chemical Engineering and Materials Science - University of California Irvine, 916 Engineering Tower, Irvine, CA, 92697 (United States); Miller, George [Department of Chemistry- University of California Irvine, 2046D PS II, Irvine, CA, 92697 (United States); Nilsson, Mikael [Department of Chemical Engineering and Materials Science - University of California Irvine, 916 Engineering Tower, Irvine, CA, 92697 (United States)

    2013-07-01

    Treatment of used nuclear fuel through solvent extraction separation processes is hindered by radiolytic damage from radioactive isotopes present in used fuel. The nature of the damage caused by the radiation may depend on the radiation type, whether it be low linear energy transfer (LET) such as gamma radiation or high LET such as alpha radiation. Used nuclear fuel contains beta/gamma emitting isotopes but also a significant amount of transuranics which are generally alpha emitters. Studying the respective effects on matter of both of these types of radiation will allow for accurate prediction and modeling of process performance losses with respect to dose. Current studies show that alpha radiation has milder effects than that of gamma. This is important to know because it will mean that solvent extraction solutions exposed to alpha radiation may last longer than expected and need less repair and replacement. These models are important for creating robust, predictable, and economical processes that have strong potential for mainstream adoption on the commercial level. The effects of gamma radiation on solvent extraction ligands have been more extensively studied than the effects of alpha radiation. This is due to the inherent difficulty in producing a sufficient and confluent dose of alpha particles within a sample without leaving the sample contaminated with long lived radioactive isotopes. Helium ion beam and radioactive isotope sources have been studied in the literature. We have developed a method for studying the effects of high LET radiation in situ via {sup 10}B activation and the high LET particles that result from the {sup 10}B(n,a){sup 7}Li reaction which follows. Our model for dose involves solving a partial differential equation representing absorption by 10B of an isentropic field of neutrons penetrating a sample. This method has been applied to organic solutions of TBP and CMPO, two ligands common in TRU solvent extraction treatment processes. Rates

  2. Linear solvation energy relationships for toxicity of selected organic chemicals to Daphnia pulex and Daphnia magna

    Science.gov (United States)

    Passino, Dora R.M.; Hickey, James P.; Frank, Anthony M.

    1988-01-01

    In the Laurentian Great Lakes, more than 300 contaminants have been identified in fish, other biota, water, and sediment. Current hazard assessment of these chemicals by the National Fisheries Research Center-Great Lakes is based on their toxicity, occurrence in the environment, and source. Although scientists at the Center have tested over 70 chemicals with the crustacean Daphnia pulex, the number of experimental data needed to screen the huge array of chemicals in the Great Lakes exceeds the practical capabilities of conducting bioassays. This limitation can be partly circumvented, however, by using mathematical models based on quantitative structure-activity relationships (QSAR) to provide rapid, inexpensive estimates of toxicity. Many properties of chemicals, including toxicity, bioaccumulation and water solubility are well correlated and can be predicted by equations of the generalized linear solvation energy relationships (LSER). The equation we used to model solute toxicity is Toxicity = constant + mVI/100 + s (π* + dδ) + bβm + aαm where VI = intrinsic (Van der Waals) molar volume; π* = molecular dipolarity/polarizability; δ = polarizability 'correction term'; βm = solute hydrogen bond acceptor basicity; and αm = solute hydrogen bond donor acidity. The subscript m designates solute monomer values for α and β. We applied the LSER model to 48-h acute toxicity data (measured as immobilization) for six classes of chemicals detected in Great Lakes fish. The following regression was obtained for Daphnia pulex (concentration = μM): log EC50 = 4.86 - 4.35 VI/100; N = 38, r2 = 0.867, sd = 0.403 We also used the LSER modeling approach to analyze to a large published data set of 24-h acute toxicity for Daphnia magna; the following regression resulted, for eight classes of compounds (concentration = mM): log EC50 = 3.88 - 4.52 VI/100 - 1.62 π* + 1.66 βm - 0.916 αm; N = 62, r2 = 0.859, sd = 0.375 In addition we developed computer software that identifies

  3. Are automated molecular dynamics simulations and binding free energy calculations realistic tools in lead optimization? An evaluation of the linear interaction energy (LIE) method

    NARCIS (Netherlands)

    Stjernschantz, E.M.; Marelius, J.; Medina, C.; Jacobsson, M.; Vermeulen, N.P.E.; Oostenbrink, C.

    2006-01-01

    An extensive evaluation of the linear interaction energy (LIE) method for the prediction of binding affinity of docked compounds has been performed, with an emphasis on its applicability in lead optimization. An automated setup is presented, which allows for the use of the method in an industrial

  4. Preliminary proposals for extending the ENDF format to allow incident charged particles and energy-angle correlation for emitted particles

    International Nuclear Information System (INIS)

    MacFarlane, R.E.; Stewart, L.; Hale, G.M.; Dunford, C.L.

    1984-04-01

    This rewrite of Data Formats and Procedures for the Evaluated Nuclear Data File, ENDF pertains to the latest version, ENDF/B-VI. Earlier versions provided representations for neutron cross sections and distributions, photon production from neutron reactions, a limited amount of charged-particle production from neutron reactions, photo-atomic interaction data, thermal neutron scattering data, and radionuclide production and decay data (including fission products). This version allows higher incident energies, adds more complete descriptions of the distributions of emitted particles, and provides for incident charged particles and photo-nuclear data by partitioning the ENDF library into sublibraries. Decay data, fission product yield data, thermal scattering data, and photo-atomic data have also been formally placed in sublibraries. In addition, this rewrite represents an extensive update to the Version V manual

  5. Measurement of double differential cross sections of secondary neutrons in the incident energy range 9-13 MeV

    International Nuclear Information System (INIS)

    Tang Hongqing; Qi Bujia; Zhou Zuying; Sa Jun; Ke Zunjian; Sui Qingchang; Xia Haihong; Shen Guanren

    1992-01-01

    The status and technique of double differential cross section measurement of secondary neutrons in the incident neutron energy range 9 to 13 MeV is reviewed with emphasis on the work done at CIAE. There are scarce measurements of secondary neutron double differential cross sections in this energy region up to now. A main difficulty for this is lack of an applicable monoenergetic neutron source. When monoenergetic neutron energy reaches 8 Me/v, the break-up neutrons from the d + D or p + T reaction starts to become significant. It is difficult to get a pure secondary neutron spectrum induced only by monoenergetic neutrons. To solve this problem an abnormal fast neutron TOF facility was designed and tested. Double differential neutron emission cross sections of 238 U and 209 Bi at 10 MeV were obtained by combining the data measured by both normal and abnormal TOF spectrometers and a good agreement between measurement and calculation was achieved

  6. Variation of energy absorption and exposure buildup factors with incident photon energy and penetration depth for boro-tellurite (B2O3-TeO2) glasses

    Science.gov (United States)

    Sayyed, M. I.; Elhouichet, H.

    2017-01-01

    The gamma ray energy absorption (EABF) and exposure buildup factors (EBF) of (100-x)TeO2-xB2O3 glass systems (where x=5, 10, 15, 20, 22.5 and 25 mol%) have been calculated in the energy region 0.015-15 MeV up to a penetration depth of 40 mfp (mean free path). The five parameters (G-P) fitting method has been used to estimate both EABF and EBF values. Variations of EABF and EBF with incident photon energy and penetration depth have been studied. It was found that EABF and EBF values were higher in the intermediate energy region, for all the glass systems. Furthermore, boro-tellurite glass with 5 mol% B2O3, was found to present the lowest EABF and EBF values, hence it is superior gamma-ray shielding material. The results indicate that the boro-tellurite glasses can be used as radiation shielding materials.

  7. Effective energies and exposure determinations of two different energy X-ray beams incident on a personnel monitor

    International Nuclear Information System (INIS)

    Okuno, E.; Cruz, M.T. da

    1984-01-01

    The effective energy of one X or gamma ray beam can be determined by means of two thermoluminescent (TL) dosemeters mounted between suitable filters. However, it has been observed that personnel monitors exposed to two different energy ionizing radiations provide different effective energies depeding on the type of TL phosphor used. This fact could be a powerful tool for identifying exposures to radiation with quite different effective energies which are very common in practice. Two types of TL dosemeters were used : pellets of cold pressed natural fluoride and NaCl developed in our own laboratory, and LiF, TLD-100 from Harshaw Chemical Co.. Experimental results obtained with these combined dosemeters after irradiation with different sets of exposures and energy values of ionizing radiations are also presented. (Author) [pt

  8. Innovation information seeking and innovation adoption: Facilities and plant managers' energy outlook comparing linear to nonlinear models

    Science.gov (United States)

    Jacobsen, Joseph J.

    One focal point of concern, policy and a new research will involve identifying individual and organizational facilitative and obstructive factors within the context of energy innovation diffusion in the U.S. This interdisciplinary intersection of people, technology and change is one of serious consequence and has broad implications that span national security, energy infrastructure, the economy, organizational change, education and the environment. This study investigates facilities and plant managers' energy innovation information seeking and energy adoption evolution. The participants are managers who consume more electrical energy than all other groups in the world and are among the top users of natural gas and oil in the United States. The research calls upon the Theory of Planned Behavior, the Diffusion of Innovations and nonlinear dynamics in a study of adoption patterns for 13 energy-related innovations. Cusp catastrophe models and power laws were compared to linear multiple regression to examine and characterize data. Findings reveal that innovation adoption and information seeking differences are slight between private and public sector facilities and plant managers and that the group as a whole may resist change. Of the 13 innovations, some exhibit very strong cusp catastrophe distributions while support for multiple linear regression and the power law were found.

  9. Mixed-integer linear program for an optimal hybrid energy network topology

    NARCIS (Netherlands)

    Mazairac, L.A.J.; Salenbien, R.; de Vries, B.

    2015-01-01

    Existing networks do not have the quantitative and qualitative capacity to facilitate the transition towards distributed renewable energy sources. Irregular production of energy over time at different locations will alter the current patters of energy flow, necessitating the implementation of short-

  10. Economic planning for electric energy systems: a multi objective linearized approach for solution

    International Nuclear Information System (INIS)

    Mata Medeiros Branco, T. da.

    1986-01-01

    The economic planning problem associated to the expansion and operation of electrical power systems is considered in this study, represented for a vectorial objective function in which the minimization of resources involved and maximization of attended demand constitute goals to be satisfied. Supposing all the variables involved with linear characteristic and considering the conflict existing among the objectives to be achieved, in order to find a solution, a multi objective linearized approach is proposed. This approximation utilizes the compromise programming technique and linear programming methods. Generation and transmission are simultaneously considered into the optimization process in which associated losses and the capacity of each line are included. Illustrated examples are also presented with results discussed. (author)

  11. A point kernel shielding code, PKN-HP, for high energy proton incident

    Energy Technology Data Exchange (ETDEWEB)

    Kotegawa, Hiroshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1996-06-01

    A point kernel integral technique code PKN-HP, and the related thick target neutron yield data have been developed to calculate neutron and secondary gamma-ray dose equivalents in ordinary concrete and iron shields for fully stopping length C, Cu and U-238 target neutrons produced by 100 MeV-10 GeV proton incident in a 3-dimensional geometry. The comparisons among calculation results of the present code and other calculation techniques, and measured values showed the usefulness of the code. (author)

  12. Calculations on precompound reactions with alpha particles, A(α,α')X, at incident energies around 500 MeV

    International Nuclear Information System (INIS)

    Rittershausen, W.

    1987-01-01

    The model of Chiang et al. (1980) for nucleon induced precompound reactions, a generalization of the Glauber theory to lower energetical processes, was extended to heavier projectiles the elementary differential cross section of which may furthermore (at fixed incident energy) depend on the momentum transfer. The so modified model was applied to reactions of the type A(α,α')X at an incident energy of about 100 MeV/nucleon, excitation energies of the nucleus in the range 6 to 60 MeV, and for scattering angles from 3 to 6 0 . Thereby the Glauber coefficients were determined by means of the optical potentials known for the treated experiments. Local nucleon momentum distributions in the target nucleus were taken from calculations of Durand et al. (1982). The momentum distributions of the alpha particles after the first α-N collision were both for normalously and for homogeneously distributed nucleon momenta calculated analytically. The distributions after the second collision were determined by folding. For the control of these results and for the eventual calculation of the distributions after more than two collisions a Monte Carlo routine was written. The additional deviation of the alpha particles in real-valued potentials of the target nucleus were regarded. The results in which no free parameter occurs agree quite well in the shape with measured data. In one case it is also valid for the absolute quantities. (orig.) [de

  13. Energy performance of a concentrated photovoltaic energy system with static linear Fresnel lenses integrated in a greenhouse

    NARCIS (Netherlands)

    B.A.J. van Tuijl; Piet Sonneveld; J. Campen; Gert-Jan Swinkels; H.J.J. Janssen; G.P.A Bot

    2011-01-01

    A new type of greenhouse with linear Fresnel lenses in the cover performing as a concentrated photovoltaic (CPV) system is presented. The CPV system retains all direct solar radiation, while diffuse solar radiation passes through and enters into the greenhouse cultivation system. The removal of all

  14. Electron impact excitation of helium: A ploarization correlation study of the 31P state at 40 eV incident energy

    International Nuclear Information System (INIS)

    Harris, C.L.; Dorio, L.A.; Neill, P.A.

    1996-01-01

    Recently the Convergent Close-Coupling calculations, (CCC), of Fursa and Bray have been very successful predicting the behavior of the electron impact coherence parameters (EICP) for electron impact excitation of helium. In the present experimental study the linear Stokes parameters P 1 and P 2 have been measured for He(3 1 P) excitation using the polarization correlation technique. Data will be presented for electron impact energies of 40eV and 50eV. At present no other experimental data is available at 40eV. At 50eV angular correlation data measured using the VUV 3 1 P-1 1 S photons are available only out to a maximum electron scattering angle of 85 degrees. Due to the disadvantageous differential cross section and 40:1 branching ratio in favor of the VUV decay, the uncertainties in the present data are large. However, at selected electron scattering angles they are sufficient to distinguish the lack of convergence of the CCC predictions for the 69 state calculations (CCC69) in comparison with the 75 state model (CCC75). In particular at 50 eV incident electron energy and 120 degrees scattering angle the charge cloud alignment angles predicted by the two calculations differ by 90 degrees

  15. Modeling of the thermal physical process and study on the reliability of linear energy density for selective laser melting

    Science.gov (United States)

    Xiang, Zhaowei; Yin, Ming; Dong, Guanhua; Mei, Xiaoqin; Yin, Guofu

    2018-06-01

    A finite element model considering volume shrinkage with powder-to-dense process of powder layer in selective laser melting (SLM) is established. Comparison between models that consider and do not consider volume shrinkage or powder-to-dense process is carried out. Further, parametric analysis of laser power and scan speed is conducted and the reliability of linear energy density as a design parameter is investigated. The results show that the established model is an effective method and has better accuracy allowing for the temperature distribution, and the length and depth of molten pool. The maximum temperature is more sensitive to laser power than scan speed. The maximum heating rate and cooling rate increase with increasing scan speed at constant laser power and increase with increasing laser power at constant scan speed as well. The simulation results and experimental result reveal that linear energy density is not always reliable using as a design parameter in the SLM.

  16. Influence of linear-energy-dependent density of states on two-band superconductors: Three-square-well model approach

    International Nuclear Information System (INIS)

    Ogbuu, O.A.; Abah, O.C.; Asomba, G.C.; Okoye, C.M.I.

    2011-01-01

    We derived the transition temperature and the isotope exponent of two-band superconductor. We employed Bogoliubov-Valatin formalism assuming a three-square-well potential. The effect of linear-energy-dependent electronic DOS in superconductors is considered. The relevance of the studies to MgB 2 is analyzed. We have derived the expressions for the transition temperature and the isotope effect exponent within the framework of Bogoliubov-Valatin two-band formalism using a linear-energy-dependent electronic density of states assuming a three-square-well potentials model. Our results show that the approach could be used to account for a wide range of values of the transition temperature and isotope effect exponent. The relevance of the present calculations to MgB 2 is analyzed.

  17. Energy Reflection Coefficients for 5-10 keV He Ions Incident on Au, Ag, and Cu

    DEFF Research Database (Denmark)

    Schou, Jørgen; Sørensen, H.; Littmark, U.

    1978-01-01

    The calorimetric deuterium-film method was used for measurements of the energy reflection coefficient γ for normal incidence of 5-10 keV He ions on Cu, Ag and Au. A theoretical calculation of γ by means of transport theory gives fair agreement with the experimental results. The experimental data...... the experimental and theoretical results for the He ions are in acceptable agreement with other experimental and theoretical results. For He ions, the experimental γ-values are 20-30% above the values for hydrogen ions for the same value of ε...

  18. On the rank 1 convexity of stored energy functions of physically linear stress-strain relations

    Czech Academy of Sciences Publication Activity Database

    Šilhavý, Miroslav; Bertram, A.; Böhlke, T.

    2007-01-01

    Roč. 86, č. 3 (2007), s. 235-243 ISSN 0374-3535 Institutional research plan: CEZ:AV0Z10190503 Keywords : generalized linear elastic law s * generalized strain measures * rank 1 convexity Subject RIV: BA - General Mathematics Impact factor: 0.743, year: 2007

  19. Mixed-Integer-Linear-Programming-Based Energy Management System for Hybrid PV-Wind-Battery Microgrids

    DEFF Research Database (Denmark)

    Hernández, Adriana Carolina Luna; Aldana, Nelson Leonardo Diaz; Graells, Moises

    2017-01-01

    -side strategy, defined as a general mixed-integer linear programming by taking into account two stages for proper charging of the storage units. This model is considered as a deterministic problem that aims to minimize operating costs and promote self-consumption based on 24-hour ahead forecast data...

  20. Profiling high performance dense linear algebra algorithms on multicore architectures for power and energy efficiency

    KAUST Repository

    Ltaief, Hatem; Luszczek, Piotr R.; Dongarra, Jack

    2011-01-01

    This paper presents the power profile of two high performance dense linear algebra libraries i.e., LAPACK and PLASMA. The former is based on block algorithms that use the fork-join paradigm to achieve parallel performance. The latter uses fine

  1. Suppression of chaos at slow variables by rapidly mixing fast dynamics through linear energy-preserving coupling

    OpenAIRE

    Abramov, Rafail V.

    2011-01-01

    Chaotic multiscale dynamical systems are common in many areas of science, one of the examples being the interaction of the low-frequency dynamics in the atmosphere with the fast turbulent weather dynamics. One of the key questions about chaotic multiscale systems is how the fast dynamics affects chaos at the slow variables, and, therefore, impacts uncertainty and predictability of the slow dynamics. Here we demonstrate that the linear slow-fast coupling with the total energy conservation prop...

  2. Effects of incident energy and angle on carbon cluster ions implantation on silicon substrate: a molecular dynamics study

    Science.gov (United States)

    Wei, Ye; Sang, Shengbo; Zhou, Bing; Deng, Xiao; Chai, Jing; Ji, Jianlong; Ge, Yang; Huo, Yuanliang; Zhang, Wendong

    2017-09-01

    Carbon cluster ion implantation is an important technique in fabricating functional devices at micro/nanoscale. In this work, a numerical model is constructed for implantation and implemented with a cutting-edge molecular dynamics method. A series of simulations with varying incident energies and incident angles is performed for incidence on silicon substrate and correlated effects are compared in detail. Meanwhile, the behavior of the cluster during implantation is also examined under elevated temperatures. By mapping the nanoscopic morphology with variable parameters, numerical formalism is proposed to explain the different impacts on phrase transition and surface pattern formation. Particularly, implantation efficiency (IE) is computed and further used to evaluate the performance of the overall process. The calculated results could be properly adopted as the theoretical basis for designing nano-structures and adjusting devices’ properties. Project supported by the National Natural Science Foundation of China (Nos. 51622507, 61471255, 61474079, 61403273, 51502193, 51205273), the Natural Science Foundation of Shanxi (Nos. 201601D021057, 201603D421035), the Youth Foundation Project of Shanxi Province (Nos. 2015021097), the Doctoral Fund of MOE of China (No. 20131402110013), the National High Technology Research and Development Program of China (No. 2015AA042601), and the Specialized Project in Public Welfare from The Ministry of Water Resources of China (Nos. 1261530110110).

  3. The economic concept of the elasticity and their incidence in the Colombian energy market

    International Nuclear Information System (INIS)

    Perez Bedoya, Edigson

    1996-01-01

    The topic that is presented denotes a singular importance mainly for those who have to planning and to project the energetic sector. The Colombian energy basket has been increased, from this perspective and now the development and the taking of decisions cannot manage in isolate form, the reason of the report, more than ever it incorporates the concept of economic elasticity. This is not more than the compass that allows decanting, if the variations of the prices in the energy basket will have (x) or (y) result in the final consumer. The elasticity finally measures the reactions that from the offer and demand of energy can be unchained by a certain stimulus politics in the energy market

  4. An Application of Non-Linear Autoregressive Neural Networks to Predict Energy Consumption in Public Buildings

    Directory of Open Access Journals (Sweden)

    Luis Gonzaga Baca Ruiz

    2016-08-01

    Full Text Available This paper addresses the problem of energy consumption prediction using neural networks over a set of public buildings. Since energy consumption in the public sector comprises a substantial share of overall consumption, the prediction of such consumption represents a decisive issue in the achievement of energy savings. In our experiments, we use the data provided by an energy consumption monitoring system in a compound of faculties and research centers at the University of Granada, and provide a methodology to predict future energy consumption using nonlinear autoregressive (NAR and the nonlinear autoregressive neural network with exogenous inputs (NARX, respectively. Results reveal that NAR and NARX neural networks are both suitable for performing energy consumption prediction, but also that exogenous data may help to improve the accuracy of predictions.

  5. Modeling of the thermal physical process and study on the reliability of linear energy density for selective laser melting

    Directory of Open Access Journals (Sweden)

    Zhaowei Xiang

    2018-06-01

    Full Text Available A finite element model considering volume shrinkage with powder-to-dense process of powder layer in selective laser melting (SLM is established. Comparison between models that consider and do not consider volume shrinkage or powder-to-dense process is carried out. Further, parametric analysis of laser power and scan speed is conducted and the reliability of linear energy density as a design parameter is investigated. The results show that the established model is an effective method and has better accuracy allowing for the temperature distribution, and the length and depth of molten pool. The maximum temperature is more sensitive to laser power than scan speed. The maximum heating rate and cooling rate increase with increasing scan speed at constant laser power and increase with increasing laser power at constant scan speed as well. The simulation results and experimental result reveal that linear energy density is not always reliable using as a design parameter in the SLM. Keywords: Selective laser melting, Volume shrinkage, Powder-to-dense process, Numerical modeling, Thermal analysis, Linear energy density

  6. Large Higgs energy region in Higgs associated top pair production at the Linear Collider

    International Nuclear Information System (INIS)

    Farrell, Cailin; Hoang, Andre H.

    2005-01-01

    The process e + e - →ttH is considered in the kinematic end point region where the Higgs energy is close to its maximal energy. In perturbative QCD, using the loop expansion, the amplitudes are plagued by Coulomb singularities that need to be resummed. We show that the QCD dynamics in this end point region is governed by nonrelativistic heavy quarkonium dynamics, and we use a nonrelativistic effective theory to compute the Higgs energy distribution at leading and next-to-leading-logarithmic approximation in the nonrelativistic expansion. Updated numbers for the total cross section including the summations in the Higgs energy end point region are presented

  7. Spectroscopic properties of the S1 state of linear carotenoids after excess energy excitation

    Science.gov (United States)

    Kuznetsova, Valentyna; Southall, June; Cogdell, Richard J.; Fuciman, Marcel; Polívka, Tomáš

    2017-09-01

    Properties of the S1 state of neurosporene, spheroidene and lycopene were studied after excess energy excitation in the S2 state. Excitation of carotenoids into higher vibronic levels of the S2 state generates excess vibrational energy in the S1 state. The vibrationally hot S1 state relaxes faster when carotenoid is excited into the S2 state with excess energy, but the S1 lifetime remains constant regardless of which vibronic level of the S2 state is excited. The S∗ signal depends on excitation energy only for spheroidene, which is likely due to asymmetry of the molecule, facilitating conformations responsible for the S∗ signal.

  8. The Role of the International Atomic Energy Agency in a Response to Nuclear and Radiological Incidents and Emergencies

    Energy Technology Data Exchange (ETDEWEB)

    Buglova, E.; Baciu, F., E-mail: E.Buglova@iaea.org [International Atomic Energy Agency (IAEA), Department of Nuclear Safety and Security, Wagramer Strasse 5, P.O. Box 100, 1400 Vienna (Austria)

    2014-10-15

    Full text: The role of the International Atomic Energy Agency (IAEA) in a response to nuclear and radiological incidents and emergencies has been defined and further expanded through the IAEA Statute, the Convention on Early Notification of a Nuclear Accident, the Convention on Assistance in the Case of a Nuclear Accident or Radiological Emergency, the Convention on Physical Protection of Nuclear Material, IAEA safety standards, relevant decisions by Policy Making Organs of the IAEA, inter-agency agreements and other documents such as the IAEA Action Plan on Nuclear Safety. The IAEA Secretariat fulfils its roles through the Agency's Incident and Emergency System (IES) and the Incident and Emergency Centre (IEC). The IEC is the global focal point for international preparedness and response to nuclear and radiological safety or security related incidents, emergencies, threats or events of media interest and for coordination of International assistance. During a response the IEC performs and facilitates for Member States many specific functions which include: prompt notification; official information exchange; assessment of potential consequences; prognosis of emergency progression; provision, facilitation and coordination of International assistance; provision of timely, accurate and easily understandable public information; coordination of inter-agency response at the International level. Through officially designated contact points of Member States the IEC is able to communicate at any time with national authorities to ensure the prompt and successful sharing of information and resources. The IEC routinely performs internal exercising of all aspects of the IAEA response and in cooperation with Member States, the IAEA organizes and facilitates the conduct of large scale international exercises to practice cooperation and coordination. This presentation outlines in detail the specific functions of the IAEA IEC during a response. (author)

  9. Use of linear free energy relationship to predict Gibbs free energies of formation of pyrochlore phases (CaMTi2O7)

    International Nuclear Information System (INIS)

    Xu, H.; Wang, Y.

    1999-01-01

    In this letter, a linear free energy relationship is used to predict the Gibbs free energies of formation of crystalline phases of pyrochlore and zirconolite families with stoichiometry of MCaTi 2 O 7 (or, CaMTi 2 O 7 ,) from the known thermodynamic properties of aqueous tetravalent cations (M 4+ ). The linear free energy relationship for tetravalent cations is expressed as ΔG f,M v X 0 =a M v X ΔG n,M 4+ 0 +b M v X +β M v X r M 4+ , where the coefficients a M v X , b M v X , and β M v X characterize a particular structural family of M v X, r M 4+ is the ionic radius of M 4+ cation, ΔG f,M v X 0 is the standard Gibbs free energy of formation of M v X, and ΔG n,M 4+ 0 is the standard non-solvation energy of cation M 4+ . The coefficients for the structural family of zirconolite with the stoichiometry of M 4+ CaTi 2 O 7 are estimated to be: a M v X =0.5717, b M v X =-4284.67 (kJ/mol), and β M v X =27.2 (kJ/mol nm). The coefficients for the structural family of pyrochlore with the stoichiometry of M 4+ CaTi 2 O 7 are estimated to be: a M v X =0.5717, b M v X =-4174.25 (kJ/mol), and β M v X =13.4 (kJ/mol nm). Using the linear free energy relationship, the Gibbs free energies of formation of various zirconolite and pyrochlore phases are calculated. (orig.)

  10. Event-shape of dileptons plus missing energy at a linear collider as ...

    Indian Academy of Sciences (India)

    This talk is based on work done with Partha Konar [1]. New physics is widely expected to emerge at TeV energies on the basis of naturalness, gauge hierarchy ... a measurable quantity, needs to have robust features distinguishing between them. Such is not the case with the lepton energy spectrum here. For appropriate ...

  11. French energy resources and needs. Incidence on the development of the national nuclear programme

    International Nuclear Information System (INIS)

    Martin, Roger.

    1977-01-01

    The energy flux diagram for France in 1970, underlines the disparity observed between the utilization factors in the final stage: 75% for the domestic and tertiary sector, 75% for industry and siderurgy, 65% for agriculture, and 25% for transports. The total utilization factor is 47.5% (124.4 MTEC used for 137.6 MTEC unused; the unit used being the Million of Tons Equivalent to Coal. Two dates are arbitrarily envisaged (1985 and 2000) in the evolution of the French energy technology and structure. The energy flux diagram predicted for 1985 should asked to atom nearly a quarter of the resources, with an enhanced part from hydraulics (+30%) and should involve geothermy, heat wastes and solar energy. An extrapolation predicts a spectacular-growth for 2000 due to the uranium share as a compensation to the decrease in that from oil, as for the transformation stage a neat increase in the electricity share is predicted together with 'tele-heat' and hydrogen production and, at the stage of utilization the mass penetration of 'tele-heat', especially of nuclear origin. The problem of the evolution of energy resources is also discussed [fr

  12. Photodisintegration of aligned deuterons at astrophysical energies using linearly polarized photons

    International Nuclear Information System (INIS)

    Shilpashree, S.P.; Sirsi, Swarnamala; Ramachandran, G.

    2013-01-01

    Following the model independent approach to deuteron photodisintegration with linearly polarized γ-rays, we show that the measurements of the tensor analyzing powers on aligned deuterons along with the differential cross-section involve five different linear combinations of the isovector E1 ν j ; j = 0, 1, 2 amplitudes interfering with the isoscalar M1 s and E2 s amplitudes. This is of current interest in view of the recent experimental finding [M. A. Blackston et al., Phys. Rev. C78 (2008) 034003] that the three E1 ν j amplitudes are distinct and also the reported experimental observation [B. D. Sawatzky, Ph.D. thesis, University of Virginia (2005)] on the front–back (polar angle) asymmetry in the differential cross-section. (author)

  13. Energy principles for linear dissipative systems with application to resistive MHD stability

    International Nuclear Information System (INIS)

    Pletzer, A.

    1997-04-01

    A formalism for the construction of energy principles for dissipative systems is presented. It is shown that dissipative systems satisfy a conservation law for the bilinear Hamiltonian provided the Lagrangian is time invariant. The energy on the other hand, differs from the Hamiltonian by being quadratic and by having a negative definite time derivative (positive power dissipation). The energy is a Lyapunov functional whose definiteness yields necessary and sufficient stability criteria. The stability problem of resistive magnetohydrodynamic (MHD) is addressed: the energy principle for ideal MHD is generalized and the stability criterion by Tasso is shown to be necessary in addition to sufficient for real growth rates. An energy principle is found for the inner layer equations that yields the resistive stability criterion D R <0 in the incompressible limit, whereas the tearing mode criterion Δ'<0 is shown to result from the conservation law of the bilinear concomitant in the resistive layer. (author) 1 fig., 25 refs

  14. Guaranteed and computable bounds of the limit load for variational problems with linear growth energy functionals

    Czech Academy of Sciences Publication Activity Database

    Haslinger, Jaroslav; Repin, S.; Sysala, Stanislav

    2016-01-01

    Roč. 61, č. 5 (2016), s. 527-564 ISSN 0862-7940 R&D Projects: GA MŠk LQ1602 Institutional support: RVO:68145535 Keywords : functionals with linear growth * limit load * truncation method * perfect plasticity Subject RIV: BA - General Mathematics Impact factor: 0.618, year: 2016 http://link.springer.com/article/10.1007/s10492-016-0146-6

  15. Prediction of SO{sub 2} pollution incidents near a power station using partially linear models and an historical matrix of predictor-response vectors

    Energy Technology Data Exchange (ETDEWEB)

    Prada-Sanchez, J.M.; Febrero-Bande, M.; Gonzalez-Manteiga, W. [Universidad de Santiago de Compostela, Dept. de Estadistica e Investigacion Operativa, Santiago de Compostela (Spain); Costos-Yanez, T. [Universidad de Vigo, Dept. de Estadistica e Investigacion Operativa, Orense (Spain); Bermudez-Cela, J.L.; Lucas-Dominguez, T. [Laboratorio, Central Termica de As Pontes, La Coruna (Spain)

    2000-07-01

    Atmospheric SO{sub 2} concentrations at sampling stations near the fossil fuel fired power station at As Pontes (La Coruna, Spain) were predicted using a model for the corresponding time series consisting of a self-explicative term and a linear combination of exogenous variables. In a supplementary simulation study, models of this kind behaved better than the corresponding pure self-explicative or pure linear regression models. (Author)

  16. Prediction of SO2 pollution incidents near a power station using partially linear models and an historical matrix of predictor-response vectors

    International Nuclear Information System (INIS)

    Prada-Sanchez, J.M.; Febrero-Bande, M.; Gonzalez-Manteiga, W.; Costos-Yanez, T.; Bermudez-Cela, J.L.; Lucas-Dominguez, T.

    2000-01-01

    Atmospheric SO 2 concentrations at sampling stations near the fossil fuel fired power station at As Pontes (La Coruna, Spain) were predicted using a model for the corresponding time series consisting of a self-explicative term and a linear combination of exogenous variables. In a supplementary simulation study, models of this kind behaved better than the corresponding pure self-explicative or pure linear regression models. (Author)

  17. Collisional effects on ion energy and angular distributions incident on RF-biased electrodes

    International Nuclear Information System (INIS)

    Qiu Huatan; Wang Younian; Ma Tengcai

    2002-01-01

    Taking into account elastic collisions and charge-exchange collisions between ions and neutral particles, the authors established a self-consistent model describing the dynamics of radio-frequency (RF) sheath driven by a sinusoidal current source, and also, using the Monte-Carlo Method, simulated energy and angle distributions of ions bombarding on RF-biased substrates. It has been shown from numerical results that as increasing the discharge pressure, bimodal-peaks distributions for the ion energy become gradually a single-peak distribution, and low-energy ions increase. The authors also found that the angle distribution of ions is narrow and almost do not change with increasing the discharge pressure

  18. Method of incident low-energy gamma-ray direction reconstruction in the GAMMA-400 gamma-ray space telescope

    International Nuclear Information System (INIS)

    Kheymits, M D; Leonov, A A; Zverev, V G; Galper, A M; Arkhangelskaya, I V; Arkhangelskiy, A I; Yurkin, Yu T; Bakaldin, A V; Suchkov, S I; Topchiev, N P; Dalkarov, O D

    2016-01-01

    The GAMMA-400 gamma-ray space-based telescope has as its main goals to measure cosmic γ-ray fluxes and the electron-positron cosmic-ray component produced, theoretically, in dark-matter-particles decay or annihilation processes, to search for discrete γ-ray sources and study them in detail, to examine the energy spectra of diffuse γ-rays — both galactic and extragalactic — and to study gamma-ray bursts (GRBs) and γ-rays from the active Sun. Scientific goals of GAMMA-400 telescope require fine angular resolution. The telescope is of a pair-production type. In the converter-tracker, the incident gamma-ray photon converts into electron-positron pair in the tungsten layer and then the tracks are detected by silicon- strip position-sensitive detectors. Multiple scattering processes become a significant obstacle in the incident-gamma direction reconstruction for energies below several gigaelectronvolts. The method of utilising this process to improve the resolution is proposed in the presented work. (paper)

  19. Wideband metamaterial array with polarization-independent and wide incident angle for harvesting ambient electromagnetic energy and wireless power transfer

    Science.gov (United States)

    Zhong, Hui-Teng; Yang, Xue-Xia; Song, Xing-Tang; Guo, Zhen-Yue; Yu, Fan

    2017-11-01

    In this work, we introduced the design, demonstration, and discussion of a wideband metamaterial array with polarization-independent and wide-angle for harvesting ambient electromagnetic (EM) energy and wireless power transfer. The array consists of unit cells with one square ring and four metal bars. In comparison to the published metamaterial arrays for harvesting EM energy or wireless transfer, this design had the wide operation bandwidth with the HPBW (Half Power Band Width) of 110% (6.2 GHz-21.4 GHz), which overcomes the narrow-band operation induced by the resonance characteristic of the metamaterial. On the normal incidence, the simulated maximum harvesting efficiency was 96% and the HPBW was 110% for the random polarization wave. As the incident angle increases to 45°, the maximum efficiency remained higher than 88% and the HPBW remained higher than 83% for the random polarization wave. Furthermore, the experimental verification of the designed metamaterial array was conducted, and the measured results were in reasonable agreement with the simulated ones.

  20. Essays in the Application of Linear and Non-linear Bayesian VAR Models to the Macroeconomic Impacts of Energy Price Shocks

    Science.gov (United States)

    Nguyen, Bao H.

    This thesis is a collection of five self contained empirical macroeconomic papers on the asymmetric effects of energy price shocks on various economies. Chapter 1 formally determines the number of regime changes in the US natural gas market by employing a MS-VAR model. Estimated using Bayesian methods, three regimes are identified for the period 1980 - 2016, namely, before the Decontrol Act, after the Decontrol Act and the Recession. The results show that the natural gas market tends to be much more sensitive to market fundamental shocks occurring in a Recession regime than in the other regimes. Augmenting the model by incorporating the price of crude oil, the results reveal that the impacts of oil price shocks on natural gas prices are relatively small. Chapter 2 provides new empirical evidence on the asymmetric reactions of the U.S. natural gas market and the U.S. economy to its market fundamental shocks in different phases of the business cycle. To this end, we employ a ST-VAR model to capture the asymmetric responses depending on economic conditions. Our results indicate that in contrast to the prediction made by a linear VAR model, the STVAR model provides a plausible explanation to the behavior of the U.S. natural gas market, which asymmetrically reacts in bad times and good times. Chapter 3 examines the relationship between China's economic growth and global oil market fluctuations between 1992Q1 and 2015Q3. We find that: (1) the time varying parameter VAR with stochastic volatility provides a better fit as compared to it's constant counterparts; (2) the impacts of intertemporal global oil price shocks on China's output are often small and temporary in nature; (3) oil supply and specific oil demand shocks generally produce negative movements in China's GDP growth whilst oil demand shocks tend to have positive effects; (4) domestic output shocks have no significant impact on price or quantity movements within the global oil market. Chapter 4 examines the

  1. Calculated performance of iron--argon and iron--plastic calorimeters for incident hadrons with energies of 5 to 75 GeV

    International Nuclear Information System (INIS)

    Gabriel, T.A.; Schmidt, W.

    1976-02-01

    The calculated responses of iron--argon and iron--plastic calorimeters for incident hadrons with energies of 5 to 75 GeV are presented. The responses calculated are energy resolution vs energy, energy resolution vs the thickness of the sampling plates, the angular and spatial root-mean-square deviations (i.e., the ability to determine the incident particle's entrance angle and impact point), and the spatial properties of the average and individual hadronic cascades. Some comparisons are made with experimental data; however, the main purpose of this paper is to provide specific design information for these types of calorimeters

  2. Design of a bolometer for total-energy measurement of the linear coherent light source pulsed X-ray laser

    Energy Technology Data Exchange (ETDEWEB)

    Friedrich, S. [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore CA 94550 (United States)]. E-mail: Friedrich1@llnl.gov; Li, L. [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore CA 94550 (United States); Ott, L.L. [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore CA 94550 (United States); Kolgani, Rajeswari M. [Department of Physics, Geosciences and Astronomy, Towson University, 8000 York Avenue, Towson MD 21252 (United States); Yong, G.J. [Department of Physics, Geosciences and Astronomy, Towson University, 8000 York Avenue, Towson MD 21252 (United States); Ali, Z.A. [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore CA 94550 (United States); Drury, O.B. [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore CA 94550 (United States); Ables, E. [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore CA 94550 (United States); Bionta, R.M. [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore CA 94550 (United States)

    2006-04-15

    We are developing a cryogenic bolometer to measure the total energy of the linear coherent light source (LCLS) free electron X-ray laser to be built at the Stanford Linear Accelerator Center. The laser will produce ultrabright X-ray pulses in the energy range between 0.8 and 8 keV with {approx}10{sup 12} photons per {approx}200 fs pulse at a repeat interval of 8 ms, and will be accompanied by a halo of spontaneous undulator radiation. The bolometer is designed to determine the total energy of each laser pulse to within <0.1%, taking into account thermal and mechanical stress to prevent melting in the LCLS beam due to its high energy density. We propose to use a magnetoresistive Nd{sub (1-} {sub x} {sub )}Sr {sub x} MnO{sub 3} sensor array at the metal-insulator transition, where the composition x is adjusted to produce the desired transition temperature. We discuss design considerations and material choices, and present numerical simulations of the thermal response.

  3. Adaptive LINE-P: An Adaptive Linear Energy Prediction Model for Wireless Sensor Network Nodes.

    Science.gov (United States)

    Ahmed, Faisal; Tamberg, Gert; Le Moullec, Yannick; Annus, Paul

    2018-04-05

    In the context of wireless sensor networks, energy prediction models are increasingly useful tools that can facilitate the power management of the wireless sensor network (WSN) nodes. However, most of the existing models suffer from the so-called fixed weighting parameter, which limits their applicability when it comes to, e.g., solar energy harvesters with varying characteristics. Thus, in this article we propose the Adaptive LINE-P (all cases) model that calculates adaptive weighting parameters based on the stored energy profiles. Furthermore, we also present a profile compression method to reduce the memory requirements. To determine the performance of our proposed model, we have used real data for the solar and wind energy profiles. The simulation results show that our model achieves 90-94% accuracy and that the compressed method reduces memory overheads by 50% as compared to state-of-the-art models.

  4. On the energy-momentum tensor in non-linear σ-models with torsion

    International Nuclear Information System (INIS)

    Dorn, H.; Otto, H.J.

    1987-10-01

    We study the renormalization properties of the energy-momentum tensor in a σ-model with torsion. Our normal product version contains besides the classical expression and the trace anomaly an off diagonal term proportional to the squared torsion. Specialized to a group manifold this term is crucial to reproduce the correct perturbative expansion of the energy-momentum tensor in Sugawara form. (orig.)

  5. LETTERS AND COMMENTS: Energy in one-dimensional linear waves in a string

    Science.gov (United States)

    Burko, Lior M.

    2010-09-01

    We consider the energy density and energy transfer in small amplitude, one-dimensional waves on a string and find that the common expressions used in textbooks for the introductory physics with calculus course give wrong results for some cases, including standing waves. We discuss the origin of the problem, and how it can be corrected in a way appropriate for the introductory calculus-based physics course.

  6. A polymer, random walk model for the size-distribution of large DNA fragments after high linear energy transfer radiation

    Science.gov (United States)

    Ponomarev, A. L.; Brenner, D.; Hlatky, L. R.; Sachs, R. K.

    2000-01-01

    DNA double-strand breaks (DSBs) produced by densely ionizing radiation are not located randomly in the genome: recent data indicate DSB clustering along chromosomes. Stochastic DSB clustering at large scales, from > 100 Mbp down to simulations and analytic equations. A random-walk, coarse-grained polymer model for chromatin is combined with a simple track structure model in Monte Carlo software called DNAbreak and is applied to data on alpha-particle irradiation of V-79 cells. The chromatin model neglects molecular details but systematically incorporates an increase in average spatial separation between two DNA loci as the number of base-pairs between the loci increases. Fragment-size distributions obtained using DNAbreak match data on large fragments about as well as distributions previously obtained with a less mechanistic approach. Dose-response relations, linear at small doses of high linear energy transfer (LET) radiation, are obtained. They are found to be non-linear when the dose becomes so large that there is a significant probability of overlapping or close juxtaposition, along one chromosome, for different DSB clusters from different tracks. The non-linearity is more evident for large fragments than for small. The DNAbreak results furnish an example of the RLC (randomly located clusters) analytic formalism, which generalizes the broken-stick fragment-size distribution of the random-breakage model that is often applied to low-LET data.

  7. The algebra of the energy-momentum tensor and the Noether currents in classical non-linear sigma models

    International Nuclear Information System (INIS)

    Forger, M.; Mannheim Univ.; Laartz, J.; Schaeper, U.

    1994-01-01

    The recently derived current algrbra of classical non-linear sigma models on arbitrary Riemannian manifolds is extended to include the energy-momentum tensor. It is found that in two dimensions the energy-momentum tensor θ μv , the Noether current j μ associated with the global symmetry of the theory and the composite field j appearing as the coefficient of the Schwinger term in the current algebra, together with the derivatives of j μ and j, generte a closed algebra. The subalgebra generated by the light-cone components of the energy-momentum tensor consists of two commuting copies of the Virasoro algebra, with central charge c=0, reflecting the classical conformal invariance of the theory, but the current algebra part and the semidirect product structure are quite different from the usual Kac-Moody/Sugawara type contruction. (orig.)

  8. Online Energy Management of City Cars with Multi-Objective Linear Parameter-Varying L2-Gain Control

    Directory of Open Access Journals (Sweden)

    Boe-Shong Hong

    2015-09-01

    Full Text Available This work aims at online regulating transient current out of the batteries of small-sized electric cars that transport people and goods around cities. In a city with heavy traffic, transient current dominates the energy economy and propulsion capability, which are in opposition to each other. In order to manage the trade-off between energy consumption per distance and propulsion capability in transience, the authors improve on previous work on multi-objective linear parameter-varying (LPV L2-gain control. The observer embedded into this multi-objective controller no longer assumes Kalman-filtering structure, and structural conservatism is thus removed. A full-spectrum set of experiments is performed. The results reveal that the feedback design significantly improves energy-motion management.

  9. Linear triangular optimization technique and pricing scheme in residential energy management systems

    Science.gov (United States)

    Anees, Amir; Hussain, Iqtadar; AlKhaldi, Ali Hussain; Aslam, Muhammad

    2018-06-01

    This paper presents a new linear optimization algorithm for power scheduling of electric appliances. The proposed system is applied in a smart home community, in which community controller acts as a virtual distribution company for the end consumers. We also present a pricing scheme between community controller and its residential users based on real-time pricing and likely block rates. The results of the proposed optimization algorithm demonstrate that by applying the anticipated technique, not only end users can minimise the consumption cost, but it can also reduce the power peak to an average ratio which will be beneficial for the utilities as well.

  10. Estimates of emittance dilution and stability in high-energy linear accelerators

    Directory of Open Access Journals (Sweden)

    T. O. Raubenheimer

    2000-12-01

    Full Text Available In this paper, we present a series of analytic expressions to predict the beam dynamics in a long linear accelerator. These expressions can be used to model the linac optics, calculate the magnitude of the wakefields, estimate the emittance dilution due to misaligned accelerator components, and estimate the stability and jitter limitations. The analytic expressions are based on the results of simple physics models and are useful to understand the parameter sensitivities. They are also useful when using simple codes or spreadsheets to optimize a linac system.

  11. Evaluation of 242Pu data for the incident neutron energy range 0.1 - 6 MeV

    International Nuclear Information System (INIS)

    Vladuca, G.; Sin, M.; Tudora, A.

    1996-11-01

    This report presents the models and the procedures used for the calculation of the quantities required by Files 3, 4 and 5 of ENDF-6 for 242 Pu. These quantities are the integrated cross sections for the total, fission, scattering and gamma-capture reactions and the angular and energy distributions of the scattered neutrons for the incident neutron energies 0.01/6 MeV. The direct mechanism was treated with the coupled-channel method using a deformed optical potential defined by a set of actinide region parameters established by the authors. For the compound nucleus calculations, a new HRTW version of the statistical model extended to describe the fission at subbarrier energies was used. To describe the continuous part of the transition states spectrum, analytical expressions have been established. The energy distributions of the scattered neutrons have been calculated with an author's version of the Los Alamos model. The agreement of the calculations with the existing experimental data is good. (author)

  12. The trapping of potassium atoms by a polycrystalline tungsten surface as a function of energy and angle of incidence. ch. 1

    International Nuclear Information System (INIS)

    Hurkmans, A.; Overbosch, E.G.; Olander, D.R.; Los, J.

    1976-01-01

    The trapping probability of potassium atoms on a polycrystalline tungsten surface has been measured as a function of the angle of incidence and as a function of the energy of the incoming atoms. Below an energy of 1 eV the trapping was complete; above 20 eV only reflection occurred. The trapping probability increased with increasing angle of incidence. The measurements are compared with a simple model of the fraction of atoms initially trapped. The model, a one-dimensional cube model including a Boltzmann distribution of the velocities of oscillating surface atoms, partially explains the data. The trapping probability as a function of incoming energy is well described for normal incidence, justifying the inclusion of thermal motion of the surface atoms in the model. The angular dependence can be explained in a qualitative way, although there is a substantial discrepancy for large angles of incidence, showing the presence of surface structure. (Auth.)

  13. Predictive modeling capabilities from incident powder and laser to mechanical properties for laser directed energy deposition

    Science.gov (United States)

    Shin, Yung C.; Bailey, Neil; Katinas, Christopher; Tan, Wenda

    2018-01-01

    This paper presents an overview of vertically integrated comprehensive predictive modeling capabilities for directed energy deposition processes, which have been developed at Purdue University. The overall predictive models consist of vertically integrated several modules, including powder flow model, molten pool model, microstructure prediction model and residual stress model, which can be used for predicting mechanical properties of additively manufactured parts by directed energy deposition processes with blown powder as well as other additive manufacturing processes. Critical governing equations of each model and how various modules are connected are illustrated. Various illustrative results along with corresponding experimental validation results are presented to illustrate the capabilities and fidelity of the models. The good correlations with experimental results prove the integrated models can be used to design the metal additive manufacturing processes and predict the resultant microstructure and mechanical properties.

  14. Predictive modeling capabilities from incident powder and laser to mechanical properties for laser directed energy deposition

    Science.gov (United States)

    Shin, Yung C.; Bailey, Neil; Katinas, Christopher; Tan, Wenda

    2018-05-01

    This paper presents an overview of vertically integrated comprehensive predictive modeling capabilities for directed energy deposition processes, which have been developed at Purdue University. The overall predictive models consist of vertically integrated several modules, including powder flow model, molten pool model, microstructure prediction model and residual stress model, which can be used for predicting mechanical properties of additively manufactured parts by directed energy deposition processes with blown powder as well as other additive manufacturing processes. Critical governing equations of each model and how various modules are connected are illustrated. Various illustrative results along with corresponding experimental validation results are presented to illustrate the capabilities and fidelity of the models. The good correlations with experimental results prove the integrated models can be used to design the metal additive manufacturing processes and predict the resultant microstructure and mechanical properties.

  15. "Osteoporosis and orthopods" incidences of osteoporosis in distal radius fracture from low energy trauma.

    LENUS (Irish Health Repository)

    Bahari, Syah

    2007-07-01

    Fracture of the distal radius from low energy trauma is a common presentation to orthopaedic trauma services. This fragility type fracture is associated with underlying osteoporosis. Osteoporosis is a \\'silent disease\\' where fragility fracture is a common presentation. Orthopaedic surgeons may be the only physician that these patients encounter. We found a high percentage of female patients who sustained a fragility fracture of the distal radius have an underlying osteoporosis. Further management of osteoporosis is important to prevent future fragility fractures.

  16. Design and simulation of a short, variable-energy 4 to 10 MV S-band linear accelerator waveguide.

    Science.gov (United States)

    Baillie, Devin; Fallone, B Gino; Steciw, Stephen

    2017-06-01

    To modify a previously designed, short, 10 MV linac waveguide, so that it can produce any energy from 4 to 10 MV. The modified waveguide is designed to be a drop-in replacement for the 6 MV waveguide used in the author's current linear accelerator-magnetic resonance imager (Linac-MR). Using our group's previously designed short 10 MV linac as a starting point, the port was moved to the fourth cavity, the shift to the first coupling cavity was removed and a tuning cylinder added to the first coupling cavity. Each cavity was retuned using finite element method (FEM) simulations to resonate at the desired frequency. FEM simulations were used to determine the RF field distributions for various tuning cylinder depths, and electron trajectories were computed using a particle-in-cell model to determine the required RF power level and tuning cylinder depth to produce electron energy distributions for 4, 6, 8, and 10 MV photon beams. Monte Carlo simulations were then used to compare the depth dose profiles with those produced by published electron beam characteristics for Varian linacs. For each desired photon energy, the electron beam energy was within 0.5% of the target mean energy, the depth of maximum dose was within 1.5 mm of that produced by the Varian linac, and the ratio of dose at 10 cm depth to 20 cm depth was within 1%. A new 27.5 cm linear accelerator waveguide design capable of producing any photon energy between 4 and 10 MV has been simulated, however coupling port design and the implications of increased electron beam current at 10 MV remain to be investigated. For the specific cases of 4, 6, and 10 MV, this linac produces depth dose profiles similar to those produced by published spectra for Varian linacs. © 2017 American Association of Physicists in Medicine.

  17. Influence of the incident particle energy on the fission product mass distribution

    International Nuclear Information System (INIS)

    Gomes, I. C.

    1998-01-01

    For 238 U targets and the five elements considered here, the best yields of neutron-rich isotopes are obtained from neutrons in the 2-20 MeV range. High energy beams of neutrons, protons, and deuterons have comparable integral yields per element to neutrons below 20 MeV, but the distributions are peaked at lower neutron numbers. This is presumably due to a higher neutron multiplicity in the pre-equilibrium stage and/or the compound nucleus/fission stage. For 235 U targets there are high yields predicted especially for thermal neutrons, and also for the fast neutron spectrum. For the high energy neutrons, protons, and deuterons 235 U has no advantage over 238 U. A detailed comparison of the relative advantages of 235 U and 238 U for radioactive beam applications is beyond the scope of this study and will be addressed in the future. The present work is the first step of a more detailed analysis of various possible one- and two-step target geometry calculated with the LAHET code system. It is intended to serve as a guide in choosing geometry and beams for future studies. It is desirable to extend this study to higher beam energies, e.g. 200 to 1000 MeV, but at this time there is very little data against which to benchmark the analysis. Additional data would also permit comparisons of isotope yields beyond the tails of the distributions presented here, to even more neutron rich isotopes

  18. The economic concept of elasticity and their incidence in the Colombian energy market

    International Nuclear Information System (INIS)

    Perez Bedoya, Edigson

    1997-01-01

    There are two factors that affect the elasticity, in the first place the readiness of substitutes and in second place, the number of uses that can be given, the more numerous and better they are the substitutes, will be better the elasticity. The goods that have scarce and bad substitutes will Always spread to have small elasticity. The goods with many substitutes will spread to have great elasticity; if the demand is classified in elastic or inelastic it is an important consideration, especially for the energy politics, in the relative thing to market of specific goods, in this case the electric power. If the coefficient of elasticity of the electric power was very elastic, this would imply that an increase in the rate will generate a reduction proportionally in the energy consumption bigger, the companies that they offer or they distribute energy in the case of the electricity for example, they would obtain a smaller entrance for the sale of the electric power kWh. In the practice it is difficult that it happens, for the difficulty of finding substitutes for the electric power, in other words because the elasticity of the electric power demand is inelastic. If the national government establishes a minimum rate above the price of the market balance, the kWh sales, they could decrease, the same as the entrance of the companies of the electric sector, unless the guarantee price is accompanied by minimum quotas of purchase

  19. An energy integrated, multi-microgrid, MILP (mixed-integer linear programming) approach for residential distributed energy system planning – A South Australian case-study

    International Nuclear Information System (INIS)

    Wouters, Carmen; Fraga, Eric S.; James, Adrian M.

    2015-01-01

    The integration of distributed generation units and microgrids in the current grid infrastructure requires an efficient and cost effective local energy system design. A mixed-integer linear programming model is presented to identify such optimal design. The electricity as well as the space heating and cooling demands of a small residential neighbourhood are satisfied through the consideration and combined use of distributed generation technologies, thermal units and energy storage with an optional interconnection with the central grid. Moreover, energy integration is allowed in the form of both optimised pipeline networks and microgrid operation. The objective is to minimise the total annualised cost of the system to meet its yearly energy demand. The model integrates the operational characteristics and constraints of the different technologies for several scenarios in a South Australian setting and is implemented in GAMS. The impact of energy integration is analysed, leading to the identification of key components for residential energy systems. Additionally, a multi-microgrid concept is introduced to allow for local clustering of households within neighbourhoods. The robustness of the model is shown through sensitivity analysis, up-scaling and an effort to address the variability of solar irradiation. - Highlights: • Distributed energy system planning is employed on a small residential scale. • Full energy integration is employed based on microgrid operation and tri-generation. • An MILP for local clustering of households in multi-microgrids is developed. • Micro combined heat and power units are key components for residential microgrids

  20. Can a Linear Sigma Model Describe Walking Gauge Theories at Low Energies?

    Science.gov (United States)

    Gasbarro, Andrew

    2018-03-01

    In recent years, many investigations of confining Yang Mills gauge theories near the edge of the conformal window have been carried out using lattice techniques. These studies have revealed that the spectrum of hadrons in nearly conformal ("walking") gauge theories differs significantly from the QCD spectrum. In particular, a light singlet scalar appears in the spectrum which is nearly degenerate with the PNGBs at the lightest currently accessible quark masses. This state is a viable candidate for a composite Higgs boson. Presently, an acceptable effective field theory (EFT) description of the light states in walking theories has not been established. Such an EFT would be useful for performing chiral extrapolations of lattice data and for serving as a bridge between lattice calculations and phenomenology. It has been shown that the chiral Lagrangian fails to describe the IR dynamics of a theory near the edge of the conformal window. Here we assess a linear sigma model as an alternate EFT description by performing explicit chiral fits to lattice data. In a combined fit to the Goldstone (pion) mass and decay constant, a tree level linear sigma model has a Χ2/d.o.f. = 0.5 compared to Χ2/d.o.f. = 29.6 from fitting nextto-leading order chiral perturbation theory. When the 0++ (σ) mass is included in the fit, Χ2/d.o.f. = 4.9. We remark on future directions for providing better fits to the σ mass.

  1. Box-triangular multiobjective linear programs for resource allocation with application to load management and energy market problems

    International Nuclear Information System (INIS)

    Ekel, P.Y.; Galperin, E.A.

    2003-01-01

    Models for multicriteria resource allocation are constructed with the specific box-triangular structure of a feasible region. The method of balance set equations is extended for the satisfaction level representation of the cost function space including the case of linearly dependent cost functions. On this basis, different goal criteria on the balance set are investigated for linear cases. Procedures for determining the balance set and finding goal-optimal Pareto solutions are illustrated on examples. The results of the paper are of universal character and can find wide applications in allocating diverse types of resources on the multiobjective basis in planning and control of complex systems including load management and energy market problems. (Author)

  2. Heat transfer measurements on an incidence-tolerant low pressure turbine blade in a high speed linear cascade at low to moderate Reynolds numbers

    Science.gov (United States)

    Moualeu, Leolein Patrick Gouemeni

    Runway-independent aircraft are expected to be the future for short-haul flights by improving air transportation and reducing area congestion encountered in airports. The Vehicle Systems Program of NASA identified a Large Civil Tilt-Rotor, equipped with variable-speed power-turbine engines, as the best concept. At cruise altitude, the engine rotor-speed will be reduced by as much as the 50% of take-off speed. The large incidence variation in the low pressure turbine associated with the change in speed can be detrimental to the engine performance. Low pressure turbine blades in cruise altitude are more predisposed to develop regions of boundary layer separation. Typical phenomenon such as impinging wakes on downstream blades and mainstream turbulences enhance the complexity of the flow in low pressure turbines. It is therefore important to be able to understand the flow behavior to accurately predict the losses. Research facilities are seldom able to experimentally reproduce low Reynolds numbers at relevant engine Mach number. Having large incidence swing as an additional parameter in the investigation of the boundary layer development, on a low pressure turbine blade, makes this topic unique and as a consequence requires a unique facility to conduct the experimental research. The compressible flow wind tunnel facility at the University of North Dakota had been updated to perform steady state experiments on a modular-cascade, designed to replicate a large variation of the incidence angles. The high speed and low Reynolds number facility maintained a sealed and closed loop configuration for each incidence angle. The updated facility is capable to produce experimental Reynolds numbers as low as 45,000 and as high as 570,000 at an exit Mach number of 0.72. Pressure and surface temperature measurements were performed at these low pressure turbine conditions. The present thesis investigates the boundary layer development on the surface of an Incidence-tolerant blade. The

  3. A distributed multi-agent linear biobjective algorithm for energy flow optimization in microgrids

    DEFF Research Database (Denmark)

    Brehm, Robert; Top, Søren; Mátéfi-Tempfli, Stefan

    2016-01-01

    consisting of local energy resources and storage capacities is presented which is based on the auction algorithm for assignment problems originally introduced by Bertsekas in 1979 [1]. It is shown that the topology of a microgrid can be represented as a bipartite graph and mathematically be described...... as a classical transportation problem. This allows applying an auction algorithm scheme in a distributed way where each energy supply system node is either a source or a sink and is represented by an individual acting agent. The single-objective approach is extended towards bi-objectivity to build a framework...

  4. Inner-shell excitation in heavy ion collisions up to intermediate incident energies

    International Nuclear Information System (INIS)

    Reus, T. de.

    1987-04-01

    Electronic excitations in collisions of very heavy ions with a total nuclear charge Z greater than 1/α ≅ 137 at bombarding energies reaching from 3.6 MeV/n up to 100 MeV/n are the subject of this thesis. The dynamical behaviour of the electron-positron-field is described within a semiclassical model, which is reviewed and extended to include electronic interactions via a mean field. A detailed comparison with experimental data of K-vacancy formation, δ-electron and positron emission shows an improved agreement compared with former calculations. Structures in spectra of positrons emitted in sub- and supercritical collision are discussed in two respects: Firstly as a signal of the vacuum decay in supercritical electromagnetic fields which evolve in the vicinity of long living giant nuclear molecules. Secondly as an atomic effect, which might be related to an instaneous formation of molecular 1sσ- and 2p 1/2 σ- levels. However, beyond this speculation the emission spectra of electrons and positrons in deep inelastic reactions have proven to be a powerful tool for measuring nuclear reaction or delay times in the order of 10 -21 s. This property was transfered to the domain of intermediate energy collisions. In first order perturbation theory we derived a scaling law, exhibiting how nuclear stopping times could be extracted from the emission spectra of high energetic δ-electrons. Quantitative calculations within a coupled channel code have been carried out for the system Pb+Pb, yielding cross sections of up to 20 nb for the emission of electrons with a kinetic energy of 50 MeV in 60 MeV/n-collisions. (orig./HSI)

  5. Beyond the International Linear Collider Driven by FEL with Energy Recovery at 5-10TeV

    CERN Document Server

    Hajima, R

    2005-01-01

    The international linear collider (ILC) at the extreme high energy frontier provides the best hope for the scientist to probe the finenst structure of matter and its origin and perhaps even the origin of the Universe. The technology that employs is based on superconducting RF technology. This technology may usher in a new era for the development of superconducting accelerator technology. On the other hand, the gradient that is allowed in such an accelerator is limited. If one wishes something beyond this after one learns the physics at such high energies(~0.5TeV) and utilizing such technology, one may need a new way to employ the supeconducting technology in providing high gradient compact accelerators. Inspired by a former work of 5-TeV colliders based on solid-state tera-watt lasers [1], we explore 5-10 TeV linear colliders driven by free-electron lasers equipped with energy-recovery system. A preliminary design study suggests that a 5-10 TeV collider with the luminosity of 10(34) can be realized by multi-s...

  6. Design and Analysis of a Linear Hybrid Excitation Flux-Switching Generator for Direct Drive Wave Energy Converters

    Directory of Open Access Journals (Sweden)

    Lei Huang

    2013-01-01

    Full Text Available Linear generators have the advantage of a simple structure of the secondary, which is suitable for the application of wave energy conversion. Based on the vernier hybrid machines (VHMs, widely used for direct drive wave energy converters, this paper proposes a novel hybrid excitation flux-switching generator (LHEFSG, which can effectively improve the performance of this kind of generators. DC hybrid excitation windings and multitooth structure were used in the proposed generator to increase the magnetic energy and overcome the disadvantages of easily irreversible demagnetization of VHMs. Firstly, the operation principle and structure of the proposed generator are introduced. Secondly, by using the finite element method, the no-load performance of the proposed generator is analyzed and composed with ones of conventional VHM. In addition, the on-load performance of the proposed generator is obtained by finite element analysis (FEA. A dislocation of pole alignments method is implemented to reduce the cogging force. Lastly, a prototype of the linear flux-switching generator is used to verify the correctness of FEA results. All the results validate that the proposed generator has better performance than its counterparts.

  7. Free-Free Transitions of the e-H System Inside a Dense Plasma Irradiated by a Laser Field at Very Low Incident-Electron Energies

    Science.gov (United States)

    Bhatia, A. K.; Sinha, C.

    2012-01-01

    The free-free transition is studied for an electron-hydrogen atom in ground state when a low-energy electron (external) is injected into hydrogenic plasma in the presence of an external homogenous, monochromatic, and linearly polarized laser field. The effect of plasma screening is considered in the Debye-Huckel approximation. The calculations are performed in the soft photon limit. The incident electron is considered to be dressed by the laser field in a nonperturbative manner by choosing the Volkov solutions in both the initial and final channels. The space part of the scattering wave function for the electron is solved numerically by taking into account the electron exchange. The laser-assisted differential and total cross sections are calculated for single-photon absorption or emission and no-photon exchange in the soft photon limit, the laser intensity being much less than the atomic field intensity. The calculations have been carried out for various values of Debye parameter, ranging from 0.005 to 0.12. A strong suppression is noted in the laser-assisted cross sections as compared to the field-free situation. A significant difference is noted for the singlet and triplet cross sections. The suppression is much more in the triplet states.

  8. A non-linear steady state characteristic performance curve for medium temperature solar energy collectors

    Science.gov (United States)

    Eames, P. C.; Norton, B.

    A numerical simulation model was employed to investigate the effects of ambient temperature and insolation on the efficiency of compound parabolic concentrating solar energy collectors. The limitations of presently-used collector performance characterization curves were investigated and a new approach proposed.

  9. Comment on 'Energy in one-dimensional linear waves in a string'

    International Nuclear Information System (INIS)

    Butikov, Eugene I

    2011-01-01

    In this communication we comment on numerous erroneous statements in a recent letter to this journal by Burko (Eur. J. Phys. 2010 31 L71-7) concerning the energy transferred by transverse waves in a stretched string. (letters and comments)

  10. Energy- and particle-confinement properties of an end-plugged, linear, theta pinch

    International Nuclear Information System (INIS)

    Commisso, R.J.; Bartsch, R.R.; Ekdahl, C.A.; McKenna, K.F.; Siemon, R.E.

    1979-01-01

    Experiments show that axial confinement of plasma in a straight theta-pinch solenoid is improved by placing solid lithium deuteride plugs at the ends. The energy confinement is increased nearly threefold in agreement with theoretical estimates which assume classical electron thermal conduction and no convective losses. The confinement of deuterium ions is explained by classical Coulomb collisions in the ablated lithium deuteride plasma

  11. The energy and the linear momentum of space-times in general relativity

    International Nuclear Information System (INIS)

    Schoen, R.; Yau, S.T.

    1981-01-01

    We extend our previous proof of the positive mass conjecture to allow a more general asymptotic condition proposed by York. Hence we are able to prove that for an isolated physical system, the energy momentum four vector is a future timelike vector unless the system is trivial. Furthermore, we allow singularities of the type of black holes. (orig.)

  12. Direct reactions in inverse kinematics for nuclear structure studies far off stability at low incident energies

    International Nuclear Information System (INIS)

    Egelhof, P.

    1997-02-01

    The investigation of light-ion induced direct reactions with exotic beams in inverse kinematics gives access to a wide field of nuclear structure studies in the region far off stability. The present contribution will focus on the investigation of few-nucleon transfer reactions, which turn out to be most favourably studied with good-quality low-energy radioactive beams, as provided by the new generation of radioactive beam facilities presently planned or under construction at Caen, Grenoble, Munich, and elsewhere. An overview on the physics motivation, basically concerning nuclear structure and nuclear astrophysics questions, is given. Of particular interest are the nuclear shell model in the region far off stability, the two-body residual interaction in nuclei, the structure of halo nuclei, as well as the understanding of the r-process scenario. The experimental conditions, along with the experimental concept, for such measurements are discussed with particular emphasis on the kinematical conditions, the observables, as well as the appropriate detection schemes. The concept of a large solid angle TPC ionization chamber as an active target for experiments with low-energy radioactive beams is presented. It turns out to be a highly effective detection scheme, well suited for the present experimental conditions, at least for light exotic beams up to Z∼20. (orig.)

  13. Non-linear vibrating systems excited by a nonideal energy source with a large slope characteristic

    Science.gov (United States)

    González-Carbajal, Javier; Domínguez, Jaime

    2017-11-01

    This paper revisits the problem of an unbalanced motor attached to a fixed frame by means of a nonlinear spring and a linear damper. The excitation provided by the motor is, in general, nonideal, which means it is affected by the vibratory response. Since the system behaviour is highly dependent on the order of magnitude of the motor characteristic slope, the case of large slope is considered herein. Some Perturbation Methods are applied to the system of equations, which allows transforming the original 4D system into a much simpler 2D system. The fixed points of this reduced system and their stability are carefully studied. We find the existence of a Hopf bifurcation which, to the authors' knowledge, has not been addressed before in the literature. These analytical results are supported by numerical simulations. We also compare our approach and results with those published by other authors.

  14. Intermediate energy nuclear physics at the MIT-Bates linear accelerator Center

    International Nuclear Information System (INIS)

    Alarcon, R.

    2001-01-01

    The MlT-Bates linear accelerator center is a University-based laboratory carrying out frontier research in electromagnetic nuclear physics. The research program is focussed on the flavor structure, charge distribution, shape, size and polarizability of the nucleon; the spin and electromagnetic structure of light nuclei; and the origin of the elements. The Bates research program has three central thrusts: the SAMPLE experiments to probe the flavor structure of the proton using parity-violating electron scattering at back angles; the OOPS (out-of-plane spectrometer system) program which uses out-of-plane detection to probe nucleon and few-body nuclear structure; and the BLAST (Bates large acceptance spectrometer toroid) program which will use a new spectrometer under construction to measure electron scattering from internal gas targets in the south hall ring. (Author)

  15. Evolution of direct mechanisms with incident energy from the Coulomb-barrier to relativistic energies. - Two-center effects in nucleon transfer between nuclei. - Signatures of nucleon promotion in heavy ion reactions at barrier energies

    International Nuclear Information System (INIS)

    Oertzen, W. von; Voit, H.; Imanishi, B.

    1988-10-01

    This report contains a review article considering the evolution of direct mechanisms with incident energy in heavy ion reactions and two theoretical articles concerning two-center effects in transfer reactions between heavy ions and the nucleon promotion in heavy ion reactions. See hints under the relevant topics. (HSI)

  16. Effects of geometric non-linearity on energy release rates in a realistic wind turbine blade cross section

    DEFF Research Database (Denmark)

    Eder, Martin Alexander; Bitsche, Robert; Belloni, Federico

    2015-01-01

    Most wind turbine rotor blades comprise several adhesively connected sub-components typically made from glass fibre reinforced polymer composite materials. It is a well-known fact that wind turbine blades are prone to fail in their adhesive joints. However, owing to the complexity...... of their structural behaviour, little is known about the root causes of adhesive joint failure. This paper investigates the effects of geometrical non-linearity on energy release rates (ERRs) of transversely oriented cracks present in the adhesive joints of a wind turbine rotor blade. Utilising a computationally...

  17. Bateman's dual system revisited: quantization, geometric phase and relation with the ground-state energy of the linear harmonic oscillator

    International Nuclear Information System (INIS)

    Blasone, Massimo; Jizba, Petr

    2004-01-01

    By using the Feynman-Hibbs prescription for the evolution amplitude, we quantize the system of a damped harmonic oscillator coupled to its time-reversed image, known as Bateman's dual system. The time-dependent quantum states of such a system are constructed and discussed entirely in the framework of the classical theory. The corresponding geometric (Pancharatnam) phase is calculated and found to be directly related to the ground-state energy of the 1D linear harmonic oscillator to which the 2D system reduces under appropriate constraint

  18. Smooth transition from sudden to adiabatic states in heavy-ion fusion reactions at deep-subbarrier incident energies

    International Nuclear Information System (INIS)

    Takatoshi, Ichikawa; Kouichi, Hagino; Akira, Iwamoto

    2011-01-01

    We propose a novel extension of the standard coupled-channel (CC) model in order to account for the steep falloff of fusion cross sections at deep-subbarrier incident energies. We introduce a damping factor in the coupling potential in the CC model, simulating smooth transitions from sudden to adiabatic states in deep- subbarrier fusion reactions. The CC model extended with the damping factor can reproduce well not only the steep falloff of the fusion cross section but also the saturation of the logarithmic derivatives for the fusion cross sections at deep-subbarrier energies for the 16 O+ 208 Pb, 64 Ni+ 64 Ni, and 58 Ni+ 58 Ni reactions at the deep-subbarrier energies. The important point in our model is that the transition takes place at different places for each Eigen channel. We conclude that the smooth transition from the two-body to the adiabatic one-body potential is responsible for the steep falloff of the fusion cross section

  19. Neutron scattering on natural iron at incident energies between 9.4 and 15.2 MeV

    International Nuclear Information System (INIS)

    Schmidt, D.; Mannhart, W.; Klein, H.; Nolte, R.

    1994-11-01

    Neutrons were scattered on a sample of natural iron at 12 incident energies in the range between 9.4 MeV and 15.2 MeV. Differential cross sections of the elastic scattering (natural iron) and of the inelastic scattering to the first excited level of 56 Fe (Q=-0.847 MeV) were determined for angles between 12.5 deg and 160 deg with total uncertainties between of 3% and 10%. Legendre polynomial least-squares fits resulted in integrated cross sections with uncertainties of 2% (elastic data) and 7% (inelastic data). The cross sections obtained in this work were compared with data from the literature. Inelastic scattering cross sections were determined within the scope of a pseudolevel analysis up to excitation energies of nearly 5.5 MeV. At higher excitation energies the scattering spectrum is contaminated by scattered breakup neutrons from the D+d source used hampering an analysis of the data. (orig.) [de

  20. Charged pion coherent production in nucleus-nucleus collisions at incident energies between 86 and 330 MeV/nucleon

    International Nuclear Information System (INIS)

    Fassnacht, P.

    1984-01-01

    We have studied pion production in nucleus-nucleus collisions at foward angles for about twenty projectile target combinations. The incident energies were below or around 300 MeV/nucleon which is the threshold of the elementary reaction NN → NNπ. The study of the inclusive spectra shows some new ideas: shell effects in pion production, collective resonances excitations. These spectra have been analyzed following different models: hard-scattering models which describe the interaction on the basis of the elementary reaction NN → NNπ, statistical model and the pionic cloud model which is a coherent description of the interaction. In the study of the exclusive reactions, we established some empiric rules concerning the cross-section variations. These exclusive spectra were then analyzed in the framework of two-models: the semi-phenomenological model and the pionic fusion [fr

  1. Elastic scattering analysis of p + 40Ca at incident energies from threshold to 48.4 MeV and nuclear matter radius

    International Nuclear Information System (INIS)

    Ismail, Atef; Lee, Yen Cheong; Tammam, M.

    2015-01-01

    Proton elastic scattering at various incident energies is one method to study nuclear density distributions and nuclear radii. Single folding potential describing the p-scattering on 40 Ca over a broad energy range 9–48.4 MeV is constructed. The resulting potential does not need any renormalization to fit the measured elastic scattering angular distributions and total reaction cross-sections. Furthermore, correlation between volume integral and proton incident energy is discussed. Theoretical calculations are in a good agreement with existing experimental data. (author)

  2. Development of Linear Mode Detection for Top-down Ion Implantation of Low Energy Sb Donors

    Science.gov (United States)

    Pacheco, Jose; Singh, Meenakshi; Bielejec, Edward; Lilly, Michael; Carroll, Malcolm

    2015-03-01

    Fabrication of donor spin qubits for quantum computing applications requires deterministic control over the number of implanted donors and the spatial accuracy to within which these can be placed. We present an ion implantation and detection technique that allows us to deterministically implant a single Sb ion (donor) with a resulting volumetric distribution of performed, in part, at the Center for Integrated Nanotechnologies, a U.S. DOE Office of Basic Energy Sciences user facility. The work was supported by Sandia National Laboratories Directed Research and Development Program. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a Lockheed-Martin Company, for the U. S. Department of Energy under Contract No. DE-AC04-94AL85000.

  3. Stochastic linear dynamical programming in order to apply it in energy modelling

    Energy Technology Data Exchange (ETDEWEB)

    El Hachem, S

    1995-11-01

    This thesis contributes to the development of new algorithms for the computation of stochastic dynamic problem and its mini-maxi variant for the case of imperfect knowledge on random data. The proposed algorithms are scenarios aggregation type. It also contributes to integrate these algorithms in a decision support approach and to discuss the stochastic modeling of two energy problems: the refining and the portfolio gas contracts. (author). 112 refs., 5 tabs.

  4. Combining high frequency data with non-linear models for forecasting energy market volatility

    Czech Academy of Sciences Publication Activity Database

    Baruník, Jozef; Křehlík, Tomáš

    2016-01-01

    Roč. 55, č. 1 (2016), s. 222-242 ISSN 0957-4174 R&D Projects: GA ČR(CZ) GBP402/12/G097 Institutional support: RVO:67985556 Keywords : artificial neural networks * realized volatility * multiple-step-ahead forecasts * energy markets Subject RIV: AH - Economics Impact factor: 3.928, year: 2016 http://library.utia.cas.cz/separaty/2016/E/barunik-0456185.pdf

  5. Dependence of secondary electron emission on the incident angle and the energy of primary electrons bombarding bowl-structured beryllium surfaces

    International Nuclear Information System (INIS)

    Kawata, Jun; Ohya, Kaoru.

    1994-01-01

    A Monte Carlo simulation of the secondary electron emission from beryllium is combined with a model of bowl structure for surface roughness, for analyzing the difference between the electron emissions for normal and oblique incidences. At normal incidence, with increasing the roughness parameter H/W, the primary energy E pm at which the maximum electron yield occurs becomes higher, and at more than the E pm , the decrease in the yield is slower; where H and W are the depth and width of the bowl structure, respectively. The dispersion of incident angle to the microscopic surface causes a small increase in the yield at oblique incidence, whereas the blocking of primary electrons from bombarding the bottom of the structure causes an opposite trend. The strong anisotropy in the polar angular distribution with respect to the azimuthal angle is calculated at oblique incidence. (author)

  6. Efficient Determination of Free Energy Landscapes in Multiple Dimensions from Biased Umbrella Sampling Simulations Using Linear Regression.

    Science.gov (United States)

    Meng, Yilin; Roux, Benoît

    2015-08-11

    The weighted histogram analysis method (WHAM) is a standard protocol for postprocessing the information from biased umbrella sampling simulations to construct the potential of mean force with respect to a set of order parameters. By virtue of the WHAM equations, the unbiased density of state is determined by satisfying a self-consistent condition through an iterative procedure. While the method works very effectively when the number of order parameters is small, its computational cost grows rapidly in higher dimension. Here, we present a simple and efficient alternative strategy, which avoids solving the self-consistent WHAM equations iteratively. An efficient multivariate linear regression framework is utilized to link the biased probability densities of individual umbrella windows and yield an unbiased global free energy landscape in the space of order parameters. It is demonstrated with practical examples that free energy landscapes that are comparable in accuracy to WHAM can be generated at a small fraction of the cost.

  7. A non-linear canonical formalism for the coupled synchro-betatron motion of protons with arbitrary energy

    International Nuclear Information System (INIS)

    Barber, D.P.; Ripken, G.; Schmidt, F.

    1987-05-01

    We investigate the motion of protons of arbitrary energy (below and above transition energy) in a storage ring. The motion is described both in terms of the fully six-dimensional formalism with the canonical variables x, p x , z, p z , σ = s - v 0 . t, η = ΔE/E 0 = p σ and in terms of a dispersion formalism with new variables x, p x , z, p z , σ, p σ . Since the dispersion function is introduced into the equations of motion via a canonical transformation the symplectic structure of these equations is completely preserved. In this formulation it is then possible to define three uncoupled linear (unperturbed) oscillation modes which are described by phase ellipses. Perturbations manifest themselves as deviations from these ellipses. The equations of motion are solved within the framework of the fully six-dimensional formalism. (orig.)

  8. Component Energy Efficiencies in a Novel Linear to Rotary Motion Inter-conversion Hydro-mechanism Running a Solar Tracker

    Directory of Open Access Journals (Sweden)

    Kant Eliab Kanyarusoke

    2018-01-01

    Full Text Available A new mechanism interconverting linear and rotary motion was investigated for energy transfers among its components. It employed a gear-rack set, a Hooke coupling and a specially designed bladder-valve system that regulated the motion. The purpose was to estimate individual component mechanical efficiencies as they existed in the prototype so that future reengineering of the mechanism could be properly targeted. Theoretical modelling of the mechanism was first done to obtain equations for efficiencies of the key components. Two-stage experimentation followed when running a solar tracker. The first stage produced data for inputting into the model to determine the efficiencies’ theoretical variation with the Hooke coupling shaft angle. The second one verified results of the Engineering Equation Solver (EES software solutions of the model. It was found that the energy transfer to focus on was that between the Hooke coupling and the output shaft because its efficiency was below 4%

  9. Linear energy transfer effects on time profiles of scintillation of Ce-doped LiCaAlF6 crystals

    International Nuclear Information System (INIS)

    Yanagida, Takayuki; Koshimizu, Masanori; Kurashima, Satoshi; Iwamatsu, Kazuhiro; Kimura, Atsushi; Taguchi, Mitsumasa; Fujimoto, Yutaka; Asai, Keisuke

    2015-01-01

    We measured temporal profiles of the scintillation of Ce-doped LiCaAlF 6 scintillator crystals at different linear energy transfers (LETs). Based on the comparison of high-LET temporal profiles with those at low LET, a fast component was observed only at low LET. The disappearance of the fast component at high LET is tentatively ascribed to the quenching of excited states at crystal defects owing to the interaction between excited states via the Auger process. In addition, the rise and the initial decay behavior were dependent on the LET. This LET-dependent behavior is explained by an acceleration process and a deceleration process in energy transfer at high LET. The LET-dependent temporal profiles provide the basis for a discrimination technique of gamma-ray and neutron detection events using these scintillators based on the nuclear reaction, 6 Li(n,α)t.

  10. Modeling of a Permanent Magnet Linear Generator for Wave-Energy Conversion

    KAUST Repository

    Tom, Nathan; Son, Daewoong; Belissen, Valentin; Yeung, Ronald W.

    2015-01-01

    © 2015 by ASME. This paper begins with a brief review of the equation of motion for a generic floating body with modification to incorporate the influence of a power-take-off (PTO) unit. Since the damping coefficient is considered the dominant contribution to the PTO reaction force, the optimum non time-varying values are presented for all frequencies, recovering the well-known impedance-matching principle at the resonance condition of the coupled system. The construction of a laboratory-scale permanent magnet linear generator (PMLG), developed at the University of California at Berkeley, is discussed along with the basic electromagnetic equations used to model its performance. Modeling of the PMLG begins with a lumped magnetic circuit analysis, which provides an analytical solution to predict the magnetic flux available for power conversion. The voltage generated across each phase of the stator, induced by the motion of the armature, provides an estimate for the electromagnetic damping as a function of the applied resistive load. The performance of the PMLG and the validation of the proposed analytical model is completed by a set of dry-bench tests. Results from the bench test showed good agreement with the described electromechanical model, thus providing an analytical solution that can assist in further optimization of the PMLG.

  11. Modeling of a Permanent Magnet Linear Generator for Wave-Energy Conversion

    KAUST Repository

    Tom, Nathan

    2015-05-31

    © 2015 by ASME. This paper begins with a brief review of the equation of motion for a generic floating body with modification to incorporate the influence of a power-take-off (PTO) unit. Since the damping coefficient is considered the dominant contribution to the PTO reaction force, the optimum non time-varying values are presented for all frequencies, recovering the well-known impedance-matching principle at the resonance condition of the coupled system. The construction of a laboratory-scale permanent magnet linear generator (PMLG), developed at the University of California at Berkeley, is discussed along with the basic electromagnetic equations used to model its performance. Modeling of the PMLG begins with a lumped magnetic circuit analysis, which provides an analytical solution to predict the magnetic flux available for power conversion. The voltage generated across each phase of the stator, induced by the motion of the armature, provides an estimate for the electromagnetic damping as a function of the applied resistive load. The performance of the PMLG and the validation of the proposed analytical model is completed by a set of dry-bench tests. Results from the bench test showed good agreement with the described electromechanical model, thus providing an analytical solution that can assist in further optimization of the PMLG.

  12. A mixed integer linear programming approach for optimal DER portfolio, sizing, and placement in multi-energy microgrids

    International Nuclear Information System (INIS)

    Mashayekh, Salman; Stadler, Michael; Cardoso, Gonçalo; Heleno, Miguel

    2017-01-01

    Highlights: • This paper presents a MILP model for optimal design of multi-energy microgrids. • Our microgrid design includes optimal technology portfolio, placement, and operation. • Our model includes microgrid electrical power flow and heat transfer equations. • The case study shows advantages of our model over aggregate single-node approaches. • The case study shows the accuracy of the integrated linearized power flow model. - Abstract: Optimal microgrid design is a challenging problem, especially for multi-energy microgrids with electricity, heating, and cooling loads as well as sources, and multiple energy carriers. To address this problem, this paper presents an optimization model formulated as a mixed-integer linear program, which determines the optimal technology portfolio, the optimal technology placement, and the associated optimal dispatch, in a microgrid with multiple energy types. The developed model uses a multi-node modeling approach (as opposed to an aggregate single-node approach) that includes electrical power flow and heat flow equations, and hence, offers the ability to perform optimal siting considering physical and operational constraints of electrical and heating/cooling networks. The new model is founded on the existing optimization model DER-CAM, a state-of-the-art decision support tool for microgrid planning and design. The results of a case study that compares single-node vs. multi-node optimal design for an example microgrid show the importance of multi-node modeling. It has been shown that single-node approaches are not only incapable of optimal DER placement, but may also result in sub-optimal DER portfolio, as well as underestimation of investment costs.

  13. Introduction to high-energy physics and the Stanford Linear Accelerator Center (SLAC)

    International Nuclear Information System (INIS)

    Clearwater, S.

    1983-03-01

    The type of research done at SLAC is called High Energy Physics, or Particle Physics. This is basic research in the study of fundamental particles and their interactions. Basic research is research for the sake of learning something. Any practical application cannot be predicted, the understanding is the end in itself. Interactions are how particles behave toward one another, for example some particles attract one another while others repel and still others ignore each other. Interactions of elementary particles are studied to reveal the underlying structure of the universe

  14. Constrained Optimal Stochastic Control of Non-Linear Wave Energy Point Absorbers

    DEFF Research Database (Denmark)

    Sichani, Mahdi Teimouri; Chen, Jian-Bing; Kramer, Morten

    2014-01-01

    to extract energy. Constrains are enforced on the control force to prevent large structural stresses in the floater at specific hot spots with the risk of inducing fatigue damage, or because the demanded control force cannot be supplied by the actuator system due to saturation. Further, constraints...... are enforced on the motion of the floater to prevent it from hitting the bottom of the sea or to make unacceptable jumps out of the water. The applied control law, which is of the feedback type with feedback from the displacement, velocity, and acceleration of the floater, contains two unprovided gain...

  15. Introduction to high-energy physics and the Stanford Linear Accelerator Center (SLAC)

    Energy Technology Data Exchange (ETDEWEB)

    Clearwater, S.

    1983-03-01

    The type of research done at SLAC is called High Energy Physics, or Particle Physics. This is basic research in the study of fundamental particles and their interactions. Basic research is research for the sake of learning something. Any practical application cannot be predicted, the understanding is the end in itself. Interactions are how particles behave toward one another, for example some particles attract one another while others repel and still others ignore each other. Interactions of elementary particles are studied to reveal the underlying structure of the universe.

  16. e+e-→e-ν-bareud-bar from LEP to linear collider energies

    International Nuclear Information System (INIS)

    Kurihara, Y.; Shimizu, Y.; Perret-Gallix, D.

    1994-12-01

    The complete tree level cross-section for the process e + e - → e - ν-bar e ud-bar is computed using the GRACE system, a program package for automatic amplitude calculation. Special attention is brought to the gauge violation problem induced by the finite width of the W-boson. The preserved gauge scheme is introduced and an event generator including double-resonant, single-resonant and non-resonant diagrams with no need for a cut on the electron polar angle is built. A mono jet event rate estimation based on this process at LEP-I energy is discussed. (author). 11 refs., 9 figs

  17. Technical Note: On the impact of the incident electron beam energy on the primary dose component of flattening filter free photon beams.

    Science.gov (United States)

    Kuess, Peter; Georg, Dietmar; Palmans, Hugo; Lechner, Wolfgang

    2016-08-01

    For commercially available linear accelerators (Linacs), the electron energies of flattening filter free (FFF) and flattened (FF) beams are either identical or the electron energy of the FFF beam is increased to match the percentage depth dose curve (PDD) of the FF beam (in reference geometry). This study focuses on the primary dose components of FFF beams for both kinds of settings, studied on the same Linac. The measurements were conducted on a VersaHD Linac (Elekta, Crawley, UK) for both FF and FFF beams with nominal energies of 6 and 10 MV. In the clinical setting of the VersaHD, the energy of FFFM (Matched) beams is set to match the PDDs of the FF beams. In contrast the incident electron beam of the FFFU beam was set to the same energy as for the FF beam. Half value layers (HVLs) and a dual parameter beam quality specifier (DPBQS) were determined. For the 6 MV FFFM beam, HVL and DPBQS values were very similar compared to those of the 6 MV FF beam, while for the 10 MV FFFM and FF beams, only %dd(10)x and HVL values were comparable (differences below 1.5%). This shows that matching the PDD at one depth does not guarantee other beam quality dependent parameters to be matched. For FFFU beams, all investigated beam quality specifiers were significantly different compared to those for FF beams of the same nominal accelerator potential. The DPBQS of the 6 MV FF and FFFM beams was equal within the measurement uncertainty and was comparable to published data of a machine with similar TPR20,10 and %dd(10)x. In contrast to that, the DPBQS's two parameters of the 10 MV FFFM beam were substantially higher compared to those for the 10 MV FF beam. PDD-matched FF and FFF beams of both nominal accelerator potentials were observed to have similar HVL values, indicating similarity of their primary dose components. Using the DPBQS revealed that the mean attenuation coefficient was found to be the same within the uncertainty of 0.8% for 6 MV FF and 6 MV FFFM beams, while for 10 MV

  18. Technical Note: On the impact of the incident electron beam energy on the primary dose component of flattening filter free photon beams

    International Nuclear Information System (INIS)

    Kuess, Peter; Georg, Dietmar; Lechner, Wolfgang; Palmans, Hugo

    2016-01-01

    Purpose: For commercially available linear accelerators (Linacs), the electron energies of flattening filter free (FFF) and flattened (FF) beams are either identical or the electron energy of the FFF beam is increased to match the percentage depth dose curve (PDD) of the FF beam (in reference geometry). This study focuses on the primary dose components of FFF beams for both kinds of settings, studied on the same Linac. Methods: The measurements were conducted on a VersaHD Linac (Elekta, Crawley, UK) for both FF and FFF beams with nominal energies of 6 and 10 MV. In the clinical setting of the VersaHD, the energy of FFF M (Matched) beams is set to match the PDDs of the FF beams. In contrast the incident electron beam of the FFF U beam was set to the same energy as for the FF beam. Half value layers (HVLs) and a dual parameter beam quality specifier (DPBQS) were determined. Results: For the 6 MV FFF M beam, HVL and DPBQS values were very similar compared to those of the 6 MV FF beam, while for the 10 MV FFF M and FF beams, only %dd(10) x and HVL values were comparable (differences below 1.5%). This shows that matching the PDD at one depth does not guarantee other beam quality dependent parameters to be matched. For FFF U beams, all investigated beam quality specifiers were significantly different compared to those for FF beams of the same nominal accelerator potential. The DPBQS of the 6 MV FF and FFF M beams was equal within the measurement uncertainty and was comparable to published data of a machine with similar TPR 20,10 and %dd(10) x . In contrast to that, the DPBQS’s two parameters of the 10 MV FFF M beam were substantially higher compared to those for the 10 MV FF beam. Conclusions: PDD-matched FF and FFF beams of both nominal accelerator potentials were observed to have similar HVL values, indicating similarity of their primary dose components. Using the DPBQS revealed that the mean attenuation coefficient was found to be the same within the uncertainty of

  19. Backscatter dose from metallic materials due to obliquely incident high-energy photon beams

    International Nuclear Information System (INIS)

    Nadrowitz, Roger; Feyerabend, Thomas

    2001-01-01

    If metallic material is exposed to ionizing radiation of sufficient high energy, an increase in dose due to backscatter radiation occurs in front of this material. Our purpose in this study was to quantify these doses at variable distances between scattering materials and the detector at axial beam angles between 0 deg. (zero angle in beams eye view) and 90 deg. . Copper, silver and lead sheets embedded in a phantom of perspex were exposed to 10 MV-bremsstrahlung. The detector we developed is based on the fluorescence property of pyromellitic acid (1,2,4,5 benzenetetracarboxylic acid) after exposure to ionizing radiation. Our results show that the additional doses and the corresponding dose distribution in front of the scattering materials depend quantitatively and qualitatively on the beam angle. The backscatter dose increases with varying beam angle from 0 deg. to 90 deg. up to a maximum at 55 deg. for copper and silver. At angles of 0 deg. and 55 deg. the integral backscatter doses over a tissue-equivalent depth of 2 mm are 11.2% and 21.6% for copper and 24% and 28% for silver, respectively. In contrast, in front of lead there are no obvious differences of the measured backscatter doses at angles between 0 deg. and 55 deg. With a further increase of the beam angle from 55 deg. to 90 deg. the backscatter dose decreases steeply for all three materials. In front of copper a markedly lower penetrating depth of the backscattered electrons was found for an angle of 0 deg. compared to 55 deg. This dependence from the beam angle was less pronounced in front of silver and not detectable in front of lead. In conclusion, the dependence of the backscatter dose from the angle between axial beam and scattering material must be considered, as higher scattering doses have to be considered than previously expected. This may have a clinical impact since the surface of metallic implants is usually curved

  20. Backscatter dose from metallic materials due to obliquely incident high-energy photon beams

    Energy Technology Data Exchange (ETDEWEB)

    Nadrowitz, Roger; Feyerabend, Thomas [Medical University of Luebeck, Germany, Department of Radiotherapy and Nuclear Medicine, Ratzeburger Allee 160, Luebeck, D-23538 (Germany)

    2001-06-01

    If metallic material is exposed to ionizing radiation of sufficient high energy, an increase in dose due to backscatter radiation occurs in front of this material. Our purpose in this study was to quantify these doses at variable distances between scattering materials and the detector at axial beam angles between 0 deg. (zero angle in beams eye view) and 90 deg. . Copper, silver and lead sheets embedded in a phantom of perspex were exposed to 10 MV-bremsstrahlung. The detector we developed is based on the fluorescence property of pyromellitic acid (1,2,4,5 benzenetetracarboxylic acid) after exposure to ionizing radiation. Our results show that the additional doses and the corresponding dose distribution in front of the scattering materials depend quantitatively and qualitatively on the beam angle. The backscatter dose increases with varying beam angle from 0 deg. to 90 deg. up to a maximum at 55 deg. for copper and silver. At angles of 0 deg. and 55 deg. the integral backscatter doses over a tissue-equivalent depth of 2 mm are 11.2% and 21.6% for copper and 24% and 28% for silver, respectively. In contrast, in front of lead there are no obvious differences of the measured backscatter doses at angles between 0 deg. and 55 deg. With a further increase of the beam angle from 55 deg. to 90 deg. the backscatter dose decreases steeply for all three materials. In front of copper a markedly lower penetrating depth of the backscattered electrons was found for an angle of 0 deg. compared to 55 deg. This dependence from the beam angle was less pronounced in front of silver and not detectable in front of lead. In conclusion, the dependence of the backscatter dose from the angle between axial beam and scattering material must be considered, as higher scattering doses have to be considered than previously expected. This may have a clinical impact since the surface of metallic implants is usually curved.

  1. Generalized magnetic susceptibilities in metals: application of the analytic tetrahedron linear energy method to Sc

    International Nuclear Information System (INIS)

    Rath, J.; Freeman, A.J.

    1975-01-01

    A detailed study of the generalized susceptibility chi(vector q) of Sc metal determined from an accurate augmented-plane-wave method calculation of its energy-band structure is presented. The calculations were done by means of a computational scheme for chi(vector q) derived as an extension of the work of Jepsen and Andersen and Lehmann and Taut on the density-of-states problem. The procedure yields simple analytic expressions for the chi(vector q) integral inside a tetrahedral microzone of the Brillouin zone which depends only on the volume of the tetrahedron and the differences of the energies at its corners. Constant-matrix-element results have been obtained for Sc which show very good agreement with the results of Liu, Gupta, and Sinha (but with one less peak) and exhibit a first maximum in chi(vector q) at (0, 0, 0.31) 2π/c [vs (0, 0, 0.35) 2π/c obtained by Liu et al.] which relates very well to dilute rare-earth alloy magnetic ordering at vector q/sub m/ = (0, 0, 0.28) 2π/c and to the kink in the LA-phonon dispersion curve at (0, 0, 0.27) 2π/c. (U.S.)

  2. Uncertainty and sensitivity analysis of the effect of the mean energy and FWHM of the initial electron fluence on the Bremsstrahlung photon spectra of linear accelerators

    International Nuclear Information System (INIS)

    Juste, B.; Miró, R.; Verdú, G.; Macián, R.

    2012-01-01

    A calculation of the correct dose in radiation therapy requires an accurate description of the radiation source because uncertainties in characterization of the linac photon spectrum are propagated through the dose calculations. Unfortunately, detailed knowledge of the initial electron beam parameters is not readily available, and many researchers adjust the initial electron fluence values by trial-and-error methods. The main goal of this work was to develop a methodology to characterize the fluence of initial electrons before they hit the tungsten target of an Elekta Precise medical linear accelerator. To this end, we used a Monte Carlo technique to analyze the influence of the characteristics of the initial electron beam on the distribution of absorbed dose from a 6 MV linac photon beam in a water phantom. The technique is based on calculations with Software for Uncertainty and Sensitivity Analysis (SUSA) and Monte Carlo simulations with the MCNP5 transport code. The free parameters used in the SUSA calculations were the mean energy and full-width-at-half-maximum (FWHM) of the initial electron distribution. A total of 93 combinations of these parameters gave initial electron fluence configurations. The electron spectra thus obtained were used in a simulation of the electron transport through the target of the linear accelerator, which produced different photon (Bremsstrahlung) spectra. The simulated photon spectra were compared with the 6-MV photon spectrum provided by the linac manufacturer (Elekta). This comparison revealed how the mean energy and FWHM of the initial electron fluence affect the spectrum of the generated photons. This study has made it possible to fine-tune the examined electron beam parameters to obtain the resulted absorbed doses with acceptable accuracy (error <1%). - Highlights: ► Mean energy and radial spread are important parameters for simulating the incident electron beam in radiation therapy. ► Errors in determining the electron

  3. The inherent dynamics of a molecular liquid: Geodesic pathways through the potential energy landscape of a liquid of linear molecules

    Science.gov (United States)

    Jacobson, Daniel; Stratt, Richard M.

    2014-05-01

    Because the geodesic pathways that a liquid follows through its potential energy landscape govern its slow, diffusive motion, we suggest that these pathways are logical candidates for the title of a liquid's "inherent dynamics." Like their namesake "inherent structures," these objects are simply features of the system's potential energy surface and thus provide views of the system's structural evolution unobstructed by thermal kinetic energy. This paper shows how these geodesic pathways can be computed for a liquid of linear molecules, allowing us to see precisely how such molecular liquids mix rotational and translational degrees of freedom into their dynamics. The ratio of translational to rotational components of the geodesic path lengths, for example, is significantly larger than would be expected on equipartition grounds, with a value that scales with the molecular aspect ratio. These and other features of the geodesics are consistent with a picture in which molecular reorientation adiabatically follows translation—molecules largely thread their way through narrow channels available in the potential energy landscape.

  4. Linear and nonlinear causal relationship between energy consumption and economic growth in China: New evidence based on wavelet analysis

    Science.gov (United States)

    2018-01-01

    The energy-growth nexus has important policy implications for economic development. The results from many past studies that investigated the causality direction of this nexus can lead to misleading policy guidance. Using data on China from 1953 to 2013, this study shows that an application of causality test on the time series of energy consumption and national output has masked a lot of information. The Toda-Yamamoto test with bootstrapped critical values and the newly proposed non-linear causality test reveal no causal relationship. However, a further application of these tests using series in different time-frequency domain obtained from wavelet decomposition indicates that while energy consumption Granger causes economic growth in the short run, the reverse is true in the medium term. A bidirectional causal relationship is found for the long run. This approach has proven to be superior in unveiling information on the energy-growth nexus that are useful for policy planning over different time horizons. PMID:29782534

  5. Pseudorapidity distributions of charged particles as a function of centrality in Pb-Pb collisions at 158 and 40 GeV per nucleon incident energy

    CERN Document Server

    Abreu, M C; Alexa, C; Arnaldi, R; Ataian, M R; Baglin, C; Baldit, A; Bedjidian, Marc; Beolè, S; Boldea, V; Bordalo, P; Borges, G; Bussière, A; Capelli, L; Castanier, C; Castor, J I; Chaurand, B; Chevrot, I; Cheynis, B; Chiavassa, E; Cicalò, C; Claudino, T; Comets, M P; Constans, N; Constantinescu, S; Cortese, P; De Falco, A; De Marco, N; Dellacasa, G; Devaux, A; Dita, S; Drapier, O; Ducroux, L; Espagnon, B; Fargeix, J; Force, P; Gallio, M; Gavrilov, Yu K; Gerschel, C; Giubellino, P; Golubeva, M B; Gonin, M; Grigorian, A A; Grigorian, S; Grossiord, J Y; Guber, F F; Guichard, A; Gulkanian, H R; Hakobyan, R S; Haroutunian, R; Idzik, M; Jouan, D; Karavitcheva, T L; Kluberg, L; Kurepin, A B; Le Bornec, Y; Lourenço, C; Macciotta, P; MacCormick, M; Marzari-Chiesa, A; Masera, M; Masoni, A; Monteno, M; Musso, A; Petiau, P; Piccotti, A; Pizzi, J R; Prado da Silva, W L; Prino, F; Puddu, G; Quintans, C; Ramello, L; Ramos, S; Rato-Mendes, P; Riccati, L; Romana, A; Santos, H; Saturnini, P; Scalas, E; Scomparin, E; Serci, S; Shahoyan, R; Sigaudo, F; Silva, S; Sitta, M; Sonderegger, P; Tarrago, X; Topilskaya, N S; Usai, G L; Vercellin, Ermanno; Villatte, L; Willis, N

    2002-01-01

    The charged particle distributions $dN_{ch}/d\\eta$ have been measured by the NA50 experiment in Pb--Pb collisions at the CERN SPS. Measurements have been done at incident energies of 158 and 40 GeV per nucleon over a broad impact parameter range. Results obtained with two independent centrality estimators, namely the neutral transverse energy $E_T$ and the forward energy $E_{ZDC}$, are reported.}

  6. Comparative study originated photoneutrons different energy linear accelerators, manufacturer and model

    International Nuclear Information System (INIS)

    Exposito, M. R.; Terron, J. A.; Domingo, C.; Amgarou, K.; Garcia-Fuente, M. J.; Gonzalez-Soto, J.; Legares, J. I.; Gomez, F.; Sanchez-Doblado, F.

    2011-01-01

    Pollution neutron radiotherapy with photon beams of energy greater than 10 MV represents a major inconvenience for patients in treatment, given the increased likelihood of developing a second radiation-induced cancer. Most of these neutrons are generated in the accelerator head as a result of the interaction of photons with heavy metals. As a result, knowledge of the effect on patients in the fields of neutrons from the accelerator should lead to improvements in design and selection of components from manufacturers. For this purpose, we have performed comparative measurements of the neutron fields present in both the patient (represented by an anthropomorphic phantom) and in the treatment room, considering almost all types of machines currently operating in the world.

  7. Investigation of migrant-polymer interaction in pharmaceutical packaging material using the linear interaction energy algorithm.

    Science.gov (United States)

    Feenstra, Peter; Brunsteiner, Michael; Khinast, Johannes

    2014-10-01

    The interaction between drug products and polymeric packaging materials is an important topic in the pharmaceutical industry and often associated with high costs because of the required elaborative interaction studies. Therefore, a theoretical prediction of such interactions would be beneficial. Often, material parameters such as the octanol water partition coefficient are used to predict the partitioning of migrant molecules between a solvent and a polymeric packaging material. Here, we present the investigation of the partitioning of various migrant molecules between polymers and solvents using molecular dynamics simulations for the calculation of interaction energies. Our results show that the use of a model for the interaction between the migrant and the polymer at atomistic detail can yield significantly better results when predicting the polymer solvent partitioning than a model based on the octanol water partition coefficient. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  8. Suppressing Thermal Energy Drift In The LLNL Flash X-Ray Accelerator Using Linear Disk Resistor Stacks

    Energy Technology Data Exchange (ETDEWEB)

    Kreitzer, B R; Houck, T L; Luchterhand, O C

    2011-07-19

    This paper addresses thermal drift in sodium thiosulfate liquid resistors and their replacement with linear disk resistors from HVR Advanced Power Components. Sodium thiosulfate resistors in the FXR induction linear accelerator application have a temperature coefficient of {approx}1.8%/C. The FXR Marx banks send an 8kJ pulse through eight 524 cm{sup 3} liquid resistors at a repetition rate of up to 1 every 45 seconds. Every pulse increases the temperature of the solution by {approx}0.4 C which produces a 0.7% change in resistance. The typical cooling rate is {approx}0.4 C per minute which results in {approx}0.1% energy drop per pulse during continuous pulsed operations. A radiographic accelerator is extraordinarily sensitive to energy variations. Changes in beam energy produce movement in beam transport, changes in spot size, and large dose variations. If self-heating were the only problem, we could predict the increase in input voltage required to compensate for the energy loss. However, there are other variables that influence the temperature of the resistors such as focus magnet heating, changes in room temperature, changes in cooling water, where the cell is located, etc. Additionally not all of the resistors have equivalent cooling rates and as many as 32 resistors are driven from a single power source. The FXR accelerator group elected to replace the sodium thiosulfate resistors with HVR Linear Disk Resistors in a stack type configuration. With data limited for these resistors when used in oil and at low resistance values, a full characterization needed to be performed. High currents (up to 15kA), high voltages (up to 400kV), and Fast Rise times (<10ns) made a resistor choice difficult. Other solid resistors have been tried and had problems at the connection points and with the fact that the resistivity changed as they absorbed oil. The selected HVR resistors have the advantage of being manufactured with the oil impregnated in to them so this characteristic

  9. Suppressing Thermal Energy Drift In The LLNL Flash X-Ray Accelerator Using Linear Disk Resistor Stacks

    International Nuclear Information System (INIS)

    Kreitzer, B.R.; Houck, T.L.; Luchterhand, O.C.

    2011-01-01

    This paper addresses thermal drift in sodium thiosulfate liquid resistors and their replacement with linear disk resistors from HVR Advanced Power Components. Sodium thiosulfate resistors in the FXR induction linear accelerator application have a temperature coefficient of ∼1.8%/C. The FXR Marx banks send an 8kJ pulse through eight 524 cm 3 liquid resistors at a repetition rate of up to 1 every 45 seconds. Every pulse increases the temperature of the solution by ∼0.4 C which produces a 0.7% change in resistance. The typical cooling rate is ∼0.4 C per minute which results in ∼0.1% energy drop per pulse during continuous pulsed operations. A radiographic accelerator is extraordinarily sensitive to energy variations. Changes in beam energy produce movement in beam transport, changes in spot size, and large dose variations. If self-heating were the only problem, we could predict the increase in input voltage required to compensate for the energy loss. However, there are other variables that influence the temperature of the resistors such as focus magnet heating, changes in room temperature, changes in cooling water, where the cell is located, etc. Additionally not all of the resistors have equivalent cooling rates and as many as 32 resistors are driven from a single power source. The FXR accelerator group elected to replace the sodium thiosulfate resistors with HVR Linear Disk Resistors in a stack type configuration. With data limited for these resistors when used in oil and at low resistance values, a full characterization needed to be performed. High currents (up to 15kA), high voltages (up to 400kV), and Fast Rise times (<10ns) made a resistor choice difficult. Other solid resistors have been tried and had problems at the connection points and with the fact that the resistivity changed as they absorbed oil. The selected HVR resistors have the advantage of being manufactured with the oil impregnated in to them so this characteristic is minimized while still

  10. Linear Colliders

    International Nuclear Information System (INIS)

    Alcaraz, J.

    2001-01-01

    After several years of study e''+ e''- linear colliders in the TeV range have emerged as the major and optimal high-energy physics projects for the post-LHC era. These notes summarize the present status form the main accelerator and detector features to their physics potential. The LHC era. These notes summarize the present status, from the main accelerator and detector features to their physics potential. The LHC is expected to provide first discoveries in the new energy domain, whereas an e''+ e''- linear collider in the 500 GeV-1 TeV will be able to complement it to an unprecedented level of precision in any possible areas: Higgs, signals beyond the SM and electroweak measurements. It is evident that the Linear Collider program will constitute a major step in the understanding of the nature of the new physics beyond the Standard Model. (Author) 22 refs

  11. Nodal structure and phase shifts of zero-incident-energy wave functions: Multiparticle single-channel scattering

    International Nuclear Information System (INIS)

    Iwinski, Z.R.; Rosenberg, L.; Spruch, L.

    1986-01-01

    For potential scattering, with delta/sub L/(k) the phase shift modulo π for an incident wave number k, Levinson's theorem gives delta/sub L/(0)-delta/sub L/(infinity) in terms of N/sub L/, the number of bound states of angular momentum L, for delta/sub L/(k) assumed to be a continuous function of k. N/sub L/ also determines the number of nodes of the zero-energy wave function u/sub L/(r). A knowledge of the nodal structure and of the absolute value of delta/sub L/(0) is very useful in theoretical studies of low-energy potential scattering. Two preliminary attempts, one formal and one ''physical,'' are made to extend the above results to single-channel scattering by a compound system initially in its ground state. The nodal structure will be of greater interest to us here than an extension of Levinson's theorem

  12. Application of a linear free energy relationship to crystalline solids of MO2 and M(OH)4

    International Nuclear Information System (INIS)

    Xu Huifang; Barton, L.L.

    1999-01-01

    In this letter, a linear free energy relationship developed by Sverjensky and Molling is used to predict the Gibbs free energies of formation of crystalline phases of M 4+ O 2 and M 4+ (OH) 4 from the known thermodynamic properties of aqueous tetravalent cations (M 4+ ). The modified Sverjensky and Molling equation for tetravalent cations is expressed as ΔG 0 f,M v X = a M v X ΔG 0 n,M 4+ + b M v X + β M v X r M 4+ , where the coefficients a M v X , b M v X and β M v X characterize a particular structural family of M v X, r M 4+ is the ionic radius of M 4+ cation, ΔG 0 f,M v X is the standard Gibbs free energy of formation of M v X, and ΔG 0 n,M 4+ is the standard non-solvation energy of cation M 4+ . By fitting the equation to the existing thermodynamic data, the coefficients in the equation for the MO 2 family minerals are estimated to be: a M v X = 0.670, β M v X = 32 (kcal/mol A), and b = -430.02 (kcal/mol). The constrained relationship can be used to predict the standard Gibbs free energies of formation of crystalline phases and fictive phases (i.e., phases which are thermodynamically unstable and do not occur at standard conditions) within the isostructural families of M 4+ O 2 and M 4+ (OH) 4 if the standard Gibbs free energies of formation of the tetravalent cations are known. (orig.)

  13. SU-E-T-782: Using Light Output From Doped Plastic Scintillators to Resolve the Linear Energy Transfer Spectrum of Clinical Electron Beams

    International Nuclear Information System (INIS)

    Nusrat, H; Pang, G; Ahmad, S; Keller, B; Sarfehnia, A

    2015-01-01

    Purpose: This research seeks to develop a portable, clinically-suitable linear energy transfer (LET) detector. In radiotherapy, absorbed dose is commonly used to measure the amount of delivered radiation, though, it is not a good indicator of actual biological damage. LET is the energy absorbed per unit length by a medium along charged particle’s pathway; studies have shown that LET correlates well with relative biological effectiveness (RBE). Methods: According to Birks’ law, light output of plastic scintillators is stopping-power dependent. This dependency can be varied through doping by various high-Z elements. By measuring light output signals of differently doped plastic scintillators (represented by column vector S, where each row corresponds to different scintillator material), the fluence of charged particles of a given LET (represented by column vector Φ, where each row corresponds to different LET bins) can be unfolded by S=R*Φ where R is system response matrix (each row represents a different scintillator, each column corresponds to different electron LET). Monte Carlo (MC) GEANT4.10.1 was used to evaluate ideal detector response of BC408 scintillating material doped with various concentrations of several high Z dopants. Measurements were performed to validate MC. Results: Signal for 1%-lead doped BC408 and the non-doped scintillator was measured experimentally by guiding light emitted by the scintillator (via in-house made taper, fiber system) to a PMT and then an electrometer. Simulations of 1%Pb-doped scintillator to non-doped scintillator revealed 9.3% reduction in light output for 6 MeV electrons which compared well (within uncertainty) with measurements showing 10% reduction (6MeV electrons). Conclusion: Measurements were used to validate MC simulation of light output from doped scintillators. The doping of scintillators is a viable technique to induce LET dependence. Our goal is to use this effect to resolve the LET spectrum of an incident

  14. Guaiacol hydrodeoxygenation mechanism on Pt(111): insights from density functional theory and linear free energy relations.

    Science.gov (United States)

    Lee, Kyungtae; Gu, Geun Ho; Mullen, Charles A; Boateng, Akwasi A; Vlachos, Dionisios G

    2015-01-01

    Density functional theory is used to study the adsorption of guaiacol and its initial hydrodeoxygenation (HDO) reactions on Pt(111). Previous Brønsted-Evans-Polanyi (BEP) correlations for small open-chain molecules are inadequate in estimating the reaction barriers of phenolic compounds except for the side group (methoxy) carbon-dehydrogenation. New BEP relations are established using a select group of phenolic compounds. These relations are applied to construct a potential-energy surface of guaiacol-HDO to catechol. Analysis shows that catechol is mainly produced via dehydrogenation of the methoxy functional group followed by the CHx (x<3) removal of the functional group and hydrogenation of the ring carbon, in contrast to a hypothesis of a direct demethylation path. Dehydroxylation and demethoxylation are slow, implying that phenol is likely produced from catechol but not through its direct dehydroxylation followed by aromatic carbon-ring hydrogenation. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Preliminary grouping in a strong-current linear ion accelerator with a low injection energy

    International Nuclear Information System (INIS)

    Enal'skii, V.A.; Osipov, V.V.; Fedotov, A.P.; Shembel, B.K.

    1984-08-01

    The results of the numerical calculations show that, in strong-current accelerators with a low injection energy and a large increase in the velocity of the particles on the gaps: (1) the effect of the space charge, with grouping of the particles, may be weakened, to a considerable extent, by the utilization of large grouping voltages. In this case, the coefficient of grouping may exceed the corresponding values, given by the kinematic theory. (2) The spread of the velocities of the grouped particles, increased within certain limits, does not hinder the subsequent effective capture of the latter in a synchronous acceleration mode, because of the expanded region of capture, which is characteristic for a similar accelerator. (3) With small values of the generalized parameter of the space charge (q less than or equal to 0.3), one may, for calculation of the buncher, make use of the results of the kinematic theory with a known approximation. With values of q > 0.5, good results are provided by the theory of German and Kompaneets. In the intermediate range, for determination of the optimal drift length and the coefficient of grouping, it is necessary to utilize numerical methods of calculation. 9 references, 4 figures

  16. Effects of chiral three-nucleon forces on 4He-nucleus scattering in a wide range of incident energies

    Science.gov (United States)

    Toyokawa, Masakazu; Yahiro, Masanobu; Matsumoto, Takuma; Kohno, Michio

    2018-02-01

    An important current subject is to clarify the properties of chiral three-nucleon forces (3NFs) not only in nuclear matter but also in scattering between finite-size nuclei. Particularly for elastic scattering, this study has just started and the properties are not understood for a wide range of incident energies (E_in). We investigate basic properties of chiral 3NFs in nuclear matter with positive energies by using the Brueckner-Hartree-Fock method with chiral two-nucleon forces at N3LO and 3NFs at NNLO, and analyze the effects of chiral 3NFs on 4He elastic scattering from targets ^{208}Pb, ^{58}Ni, and ^{40}Ca over a wide range of 30 ≲ E_in/A_P ≲ 200 MeV by using the g-matrix folding model, where A_P is the mass number of the projectile. In symmetric nuclear matter with positive energies, chiral 3NFs make the single-particle potential less attractive and more absorptive. The effects mainly come from the Fujita-Miyazawa 2π-exchange 3NF and become slightly larger as E_in increases. These effects persist in the optical potentials of 4He scattering. As for the differential cross sections of 4He scattering, chiral-3NF effects are large for E_in/A_P ≳ 60 MeV and improve the agreement of the theoretical results with the measured ones. Particularly for E_in/A_P ≳ 100 MeV, the folding model reproduces measured differential cross sections pretty well. Cutoff (Λ) dependence is investigated for both nuclear matter and 4He scattering by considering two cases of Λ=450 and 550 MeV. The uncertainty coming from the dependence is smaller than chiral-3NF effects even at E_in/A_P=175 MeV.

  17. Separation-induced boundary layer transition: Modeling with a non-linear eddy-viscosity model coupled with the laminar kinetic energy equation

    International Nuclear Information System (INIS)

    Vlahostergios, Z.; Yakinthos, K.; Goulas, A.

    2009-01-01

    We present an effort to model the separation-induced transition on a flat plate with a semi-circular leading edge, using a cubic non-linear eddy-viscosity model combined with the laminar kinetic energy. A non-linear model, compared to a linear one, has the advantage to resolve the anisotropic behavior of the Reynolds-stresses in the near-wall region and it provides a more accurate expression for the generation of turbulence in the transport equation of the turbulence kinetic energy. Although in its original formulation the model is not able to accurately predict the separation-induced transition, the inclusion of the laminar kinetic energy increases its accuracy. The adoption of the laminar kinetic energy by the non-linear model is presented in detail, together with some additional modifications required for the adaption of the laminar kinetic energy into the basic concepts of the non-linear eddy-viscosity model. The computational results using the proposed combined model are shown together with the ones obtained using an isotropic linear eddy-viscosity model, which adopts also the laminar kinetic energy concept and in comparison with the existing experimental data.

  18. Diamond detector in absorbed dose measurements in high-energy linear accelerator photon and electron beams.

    Science.gov (United States)

    Ravichandran, Ramamoorthy; Binukumar, John Pichy; Al Amri, Iqbal; Davis, Cheriyathmanjiyil Antony

    2016-03-08

    Diamond detectors (DD) are preferred in small field dosimetry of radiation beams because of small dose profile penumbras, better spatial resolution, and tissue-equivalent properties. We investigated a commercially available 'microdiamond' detector in realizing absorbed dose from first principles. A microdiamond detector, type TM 60019 with tandem electrometer is used to measure absorbed doses in water, nylon, and PMMA phantoms. With sensitive volume 0.004 mm3, radius 1.1mm, thickness 1 x10(-3) mm, the nominal response is 1 nC/Gy. It is assumed that the diamond detector could collect total electric charge (nC) developed during irradiation at 0 V bias. We found that dose rate effect is less than 0.7% for changing dose rate by 500 MU/min. The reproducibility in obtaining readings with diamond detector is found to be ± 0.17% (1 SD) (n = 11). The measured absorbed doses for 6 MV and 15 MV photons arrived at using mass energy absorption coefficients and stop-ping power ratios compared well with Nd, water calibrated ion chamber measured absorbed doses within 3% in water, PMMA, and nylon media. The calibration factor obtained for diamond detector confirmed response variation is due to sensitivity due to difference in manufacturing process. For electron beams, we had to apply ratio of electron densities of water to carbon. Our results qualify diamond dosimeter as a transfer standard, based on long-term stability and reproducibility. Based on micro-dimensions, we recommend these detectors for pretreatment dose verifications in small field irradiations like stereotactic treatments with image guidance.

  19. Neutron-induced electronic failures around a high-energy linear accelerator

    International Nuclear Information System (INIS)

    Kry, Stephen F.; Johnson, Jennifer L.; White, R. Allen; Howell, Rebecca M.; Kudchadker, Rajat J.; Gillin, Michael T.

    2011-01-01

    Purpose: After a new in-vault CT-on-rails system repeatedly malfunctioned following use of a high-energy radiotherapy beam, we investigated the presence and impact of neutron radiation on this electronic system, as well as neutron shielding options. Methods: We first determined the CT scanner's failure rate as a function of the number of 18 MV monitor units (MUs) delivered. We then re-examined the failure rate with both 2.7-cm-thick and 7.6-cm-thick borated polyethylene (BPE) covering the linac head for neutron shielding. To further examine shielding options, as well as to explore which neutrons were relevant to the scanner failure, Monte Carlo simulations were used to calculate the neutron fluence and spectrum in the bore of the CT scanner. Simulations included BPE covering the CT scanner itself as well as covering the linac head. Results: We found that the CT scanner had a 57% chance of failure after the delivery of 200 MUs. While the addition of neutron shielding to the accelerator head reduced this risk of failure, the benefit was minimal and even 7.6 cm of BPE was still associated with a 29% chance of failure after the delivery of 200 MU. This shielding benefit was achieved regardless of whether the linac head or CT scanner was shielded. Additionally, it was determined that fast neutrons were primarily responsible for the electronic failures. Conclusions: As illustrated by the CT-on-rails system in the current study, physicists should be aware that electronic systems may be highly sensitive to neutron radiation. Medical physicists should therefore monitor electronic systems that have not been evaluated for potential neutron sensitivity. This is particularly relevant as electronics are increasingly common in the therapy vault and newer electronic systems may exhibit increased sensitivity.

  20. Measurement of secondary neutrons and gamma rays produced by neutron interactions in aluminum over the incident energy range 1 to 20 MeV

    International Nuclear Information System (INIS)

    Morgan, G.L.

    1975-11-01

    The spectra of secondary neutrons and gamma rays produced by neutron interaction in a thin sample (approximately 1/6 mean free path) of aluminum have been measured as a function of the incident neutron energy over the range 1 to 20 MeV. Data were taken at an angle of 125 0 . A linac (ORELA) was used as a neutron source with a 47-m flight path. Incident energy was determined by time-of-flight, while secondary spectra were determined by pulse-height unfolding techniques. The results of the measurements are presented in forms suitable for comparison to calculations based on the evaluated data files. (6 tables, 4 figures)

  1. Short primary linear drive designed for synchronous and induction operation mode with on-board energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Fernandes Neto, Tobias Rafael

    2012-06-28

    The idea of a flexible industrial manufacturing system for the transfer of material, tooling, processing/filling, etc., in which several vehicles can travel with high speed, high degree of independency and high precision is proposed in this thesis. Such flexible systems show a meaningful economic potential for modern manufacturing systems. The basic concept is that a linear motor has the secondary part fixed to the track while the primary (moving winding) travels along the track (short primary topology). The same principle can work in the other way around, arranging the primary in segments and letting the secondary (carrier) to move from segment to segment (long primary topology). The concept's implementation involves technical issues, such as: the position measurement, the energy and information transfer, the individual position and speed control of the vehicle in which varying speeds increase the possibility of collision, and the smooth transition between segments or different types of the secondary. Finally, multiple vehicles traveling at high speed, high positioning repeatability and rapid acceleration rates increase the production throughout and the reliability compared to conventional manufacturing conveyor systems. As an example, a transporting and processing system based on linear drives is a continuous and closed structure with multiple loops, which permits the safe transport of fragile loads. Although such solutions often need higher investment costs, the lack of mechanical coupling parts and wearing elements in these motors greatly increases their reliability. The long primary topology allows a passive and lightweight vehicle (secondary), avoiding brushes and cables to transfer energy and information. For long distances, the primary is arranged in several electrical independent segments. On the other hand, the short primary configuration uses the winding mounted on the moving part (active vehicle) to produce the traveling wave, the secondary as

  2. Design of a non-linear power take-off simulator for model testing of rotating wave energy devices

    Energy Technology Data Exchange (ETDEWEB)

    Lopes, M.F.P.; Henriques, J.C.C.; Lopes, Miguel C.; Gato, L.M.C. [IDMEC - Instituto de Engenharia Mecanica, Instituto Superior Tecnico, Universidade Tecnica de Lisboa, Lisboa (Portugal); Dente Antonio [CIE3 - Center for Innovation in Electrical and Energy Engineering, Lisboa (Portugal)

    2009-07-01

    Eddy current brakes provide a versatile way of simulating the power take-off system (PTO) in the model testing of wave energy converters at small scale. These are based on the principle that a conductive material moving perpendicularly to a magnetic field generates a braking force proportional to its velocity. This was applied in the design of the PTO simulator of a bottom-hinged flap wave energy converter model, at 1/16 scale. The efforts put into the accurate dynamic simulation of the device led to the development of a controllable PTO simulator, which can be applied to other small scale rotating wave energy device models. A special power source was built to provide the required controllable current intensity to feed the magnetic field generating coils. Different non-linear damping PTO characteristic curves can be simulated by basing the current control on real-time velocity measurement. The calibration of the system was done by connecting the device to a constant rotating speed motor and measuring the resistent torque produced by the PTO with a torquemeter for different values of current intensity through the coils.

  3. Cross-sectional imaging of large and dense materials by high energy X-ray CT using linear accelerator

    International Nuclear Information System (INIS)

    Kanamori, Takahiro; Kamata, Shouji; Ito, Shinichi.

    1989-01-01

    A prototype high energy X-ray CT (computed tomography) system has been developed which employs a linear accelerator as the X-ray source (max. photon energy: 12 MeV). One problem encountered in development of this CT system was to reduce the scattered photons from adjacent detectors, i.e. crosstalk, due to high energy X-rays. This crosstalk was reduced to 2% by means of detector shields using tungsten spacers. Spatial resolution was not affected by such small crosstalk as confirmed by numerical simulations. A second problem was to reduce the scattered photons from the test object. This was done using collimators. A third concern was to realize a wide dynamic range data processing which would allow applications to large and dense objects. This problem was solved by using a sample and hold data acquisition method to reduce the dark current of the photo detectors. The dynamic range of this system was experimentally confirmed over 60 dB. It was demonstrated that slits (width: 2 mm) in an iron object (diameter: 25 cm) could be imaged by this prototype CT system. (author)

  4. Critical system issues and modeling requirements - the problem of beam energy sweep in an electron linear induction accelerator

    International Nuclear Information System (INIS)

    Turner, W.C.; Barrett, D.M.; Sampayan, S.E.

    1991-01-01

    In this paper the authors attempt to motivate the development of modeling tools for linear induction accelerator components by giving examples of performance limitations related to energy sweep. The most pressing issues is the development of an accurate model of the switching behavior of large magnetic cores at high dB/dt in the accelerator and magnetic compression modulators. Ideally one would like to have a model with as few parameters as possible that allows the user to choose the core geometry and magnetic material and perhaps a few parameters characterizing the switch model. Beyond this, the critical modeling tasks are: simulation of a magnetic compression modulator, modeling the reset dynamics of a magnetic compression modulator, modeling the loading characteristics of a linear induction accelerator cell, and modeling the electron injector current including the dynamics of feedback modulation and beam loading in an accelerator cell. Of course in the development of these models care should be given to benchmarking them against data from experimental systems. Beyond that one should aim for tools that have predictive power so that they can be used as design tools and not merely to replicate existing data

  5. Suppression of chaos at slow variables by rapidly mixing fast dynamics through linear energy-preserving coupling

    Science.gov (United States)

    Abramov, R. V.

    2011-12-01

    Chaotic multiscale dynamical systems are common in many areas of science, one of the examples being the interaction of the low-frequency dynamics in the atmosphere with the fast turbulent weather dynamics. One of the key questions about chaotic multiscale systems is how the fast dynamics affects chaos at the slow variables, and, therefore, impacts uncertainty and predictability of the slow dynamics. Here we demonstrate that the linear slow-fast coupling with the total energy conservation property promotes the suppression of chaos at the slow variables through the rapid mixing at the fast variables, both theoretically and through numerical simulations. A suitable mathematical framework is developed, connecting the slow dynamics on the tangent subspaces to the infinite-time linear response of the mean state to a constant external forcing at the fast variables. Additionally, it is shown that the uncoupled dynamics for the slow variables may remain chaotic while the complete multiscale system loses chaos and becomes completely predictable at the slow variables through increasing chaos and turbulence at the fast variables. This result contradicts the common sense intuition, where, naturally, one would think that coupling a slow weakly chaotic system with another much faster and much stronger chaotic system would result in general increase of chaos at the slow variables.

  6. Establishing linear solvation energy relationships between VOCs and monolayer-protected gold nanoclusters using quartz crystal microbalance.

    Science.gov (United States)

    Li, Chi-Lin; Lu, Chia-Jung

    2009-08-15

    Linear solvation energy relationships (LSERs) have been recognized as a useful model for investigating the chemical forces behind the partition coefficients between vapor molecules and absorbents. This study is the first to determine the solvation properties of monolayer-protected gold nanoclusters (MPCs) with different surface ligands. The ratio of partition coefficients/MPC density (K/rho) of 18 volatile organic compounds (VOCs) for four different MPCs obtained through quartz crystal microbalance (QCM) experiments were used for the LSER model calculations. LSER modeling results indicate that all MPC surfaces showed a statistically significant (pattraction, 4-methoxythiophenol-capped MPCs can also interact with polar organics (s=1.04). Showing a unique preference for the hydrogen bond basicity of vapors (b=1.11), 2-benzothiazolethiol-capped MPCs provide evidence of an intra-molecular, proton-shift mechanism on surface of nano-gold.

  7. Non-linear multi-objective model for planning water-energy modes of Novosibirsk Hydro Power Plant

    Science.gov (United States)

    Alsova, O. K.; Artamonova, A. V.

    2018-05-01

    This paper presents a non-linear multi-objective model for planning and optimizing of water-energy modes for the Novosibirsk Hydro Power Plant (HPP) operation. There is a very important problem of developing a strategy to improve the scheme of water-power modes and ensure the effective operation of hydropower plants. It is necessary to determine the methods and criteria for the optimal distribution of water resources, to develop a set of models and to apply them to the software implementation of a DSS (decision-support system) for managing Novosibirsk HPP modes. One of the possible versions of the model is presented and investigated in this paper. Experimental study of the model has been carried out with 2017 data and the task of ten-day period planning from April to July (only 12 ten-day periods) was solved.

  8. Low dielectric and low surface free energy flexible linear aliphatic alkoxy core bridged bisphenol cyanate ester based POSS nanocomposites

    Directory of Open Access Journals (Sweden)

    Muthukaruppan eAlagar

    2013-10-01

    Full Text Available The aim of the present work is to develop a new type of flexible linear aliphatic alkoxy core bridged bisphenol cyanate ester (AECE based POSS nanocomposites for low k applications. The POSS-AECE nanocomposites were developed by incorporating varying weight percentages (0, 5 and 10 wt % of octakis (dimethylsiloxypropylglycidylether silsesquioxane (OG-POSS into cyanate esters. Data from thermal and dielectric studies imply that the POSS reinforced nanocomposite exhibits higher thermal stability and low dielectric value of k=2.4 (10 wt% POSS-AECE4 compared than those of neat AECE. From the contact angle measurement, it is inferred that, the increase in the percentage incorporation of POSS in to AECE, the values of water contact angle was enhanced. Further, the value of surface free energy was lower when compared to that of neat AECE. The molecular level dispersion of POSS into AECE was ascertained from SEM and TEM analyses.

  9. Radiobiological Characterization of Two Photon-Beam Energies 6 and 15 MV used in Radiotherapy From Linear Accelerator

    International Nuclear Information System (INIS)

    Eltayeb, A.E.H.

    2009-02-01

    The main objective of this study is to perform radiobiological characterization of two different photon beam energies, 6 MV and 15 MV, from linear accelerator used in radiotherapy, with special regard to late effects of radiation. Two end-points, namely cell survival and micronucleus induction were used for the characterization. Chinese hamster V 79 lung fibroblast cell line to prepare cell culture and to perform the innervate experiments. chromosomes number was counted and found to be 22 chromosomes per cell, this result is in complete agreement with expected 11 pairs of chromosomes representing the genome of this species. Cells were kept in confluent growth for two days and then exposed to two photon beam energies, 6 and 15 MV respectively. Different dose rates were used for the two beam energies, 0.25, 0.5, 1.0, 2.0, 4.0, 7.0 Gy. Cells were counted immediately after irradiation and re seeded, the seeded number of cells was calculated to the dose rate used. Another set of unirradiated cells treated the same as the experimental set was used as a control group. The plating efficiency (PE) was calculated for the control group, then cells were incubated at 37 o C for 6 days to construct the survival curve, five samples were counted per dose and the mean was calculated. The two survival curves are similar for photon beam energies (6 and 15 MV) and the surviving fraction was decreased with dose rate. The two curves showed similar values of α and β parameters, this result is expected for the same radiation type (X-ray). For the micronuclei assay three samples for each dose were seeded and incubated at 37 o C for 24 hours then Cytochalasin-B was added to block cells in cytokinesis phase of the mitosis. The micronuclei number was counted and plotted with dose. A significant positive correlation was found between dose and micronuclei frequency (P=0.00), moreover, the micronuclei frequency is relatively higher with 15 MV compared with 6 MV energy. This indicates the

  10. The incidence of injuries in young people: II. Log-linear multivariable models for risk factors in a collaborative study in Brazil, Chile, Cuba and Venezuela.

    Science.gov (United States)

    Bangdiwala, S I; Anzola-Pérez, E

    1990-03-01

    Injuries and accidents are acknowledged as leading causes of morbidity and mortality among children and adolescents in the developing countries of the world. The Pan American Health Organization sponsored a collaborative study in four selected countries in Latin America to study the extent of the problem as well as to examine the potential risk factors associated with selected non-fatal injuries in the countries. The study subjects were injured children and adolescents (0-19 years of age) presenting at the study hospitals in chosen urban centres, as well as injured that were surveyed in households in the catchment areas of the hospitals. Study methods and descriptive frequency results were presented earlier. In this paper, log-linear multivariate regression models are used to examine the potentiating effects within country of several measured variables on specific types of injuries. The significance of risk factors varied between countries; however, some general patterns emerged. Falls were more likely in younger children, and occurred at home. The main risk factor for home accidents was the age of the child. The education of the head of the household was an important risk factor for the type of injury suffered. The likelihood of traffic accident injury varied with time of day and day of the week, but also was more likely in higher educated households. The results found are consistent with those found in other studies in the developed world and suggest specific areas of concern for health planners to address.

  11. Mathematical algorithm to relate digital maps of distribution of biomass with algorithms of linear programming to optimize bio-energy delivery chains

    NARCIS (Netherlands)

    Velazquez-Marti, B.; Annevelink, E.

    2008-01-01

    Many linear programming models have been developed to model the logistics of bio-energy chains. These models help to determine the best set-up of bio-energy chains. Most of them use network structures built up from nodes with one or more depots, and arcs connecting these depots. Each depot is source

  12. Mathematical algorithm to transform digital biomass distribution maps into linear programming networks in order to optimize bio-energy delivery chains

    NARCIS (Netherlands)

    Velazquez-Marti, B.; Annevelink, E.

    2008-01-01

    Many linear programming models have been developed to model the logistics of bio-energy chains. These models help to determine the best set-up of bio-energy chains. Most of them use network structures built up from nodes with one or more depots, and arcs connecting these depots. Each depot is source

  13. Geometric phase effects in low-energy dynamics near conical intersections: A study of the multidimensional linear vibronic coupling model

    International Nuclear Information System (INIS)

    Joubert-Doriol, Loïc; Ryabinkin, Ilya G.; Izmaylov, Artur F.

    2013-01-01

    In molecular systems containing conical intersections (CIs), a nontrivial geometric phase (GP) appears in the nuclear and electronic wave functions in the adiabatic representation. We study GP effects in nuclear dynamics of an N-dimensional linear vibronic coupling (LVC) model. The main impact of GP on low-energy nuclear dynamics is reduction of population transfer between the local minima of the LVC lower energy surface. For the LVC model, we proposed an isometric coordinate transformation that confines non-adiabatic effects within a two-dimensional subsystem interacting with an N − 2 dimensional environment. Since environmental modes do not couple electronic states, all GP effects originate from nuclear dynamics within the subsystem. We explored when the GP affects nuclear dynamics of the isolated subsystem, and how the subsystem-environment interaction can interfere with GP effects. Comparing quantum dynamics with and without GP allowed us to devise simple rules to determine significance of the GP for nuclear dynamics in this model

  14. Metasurface integrated high energy efficient and high linearly polarized InGaN/GaN light emitting diode.

    Science.gov (United States)

    Wang, Miao; Xu, Fuyang; Lin, Yu; Cao, Bing; Chen, Linghua; Wang, Chinhua; Wang, Jianfeng; Xu, Ke

    2017-07-06

    We proposed and demonstrated an integrated high energy efficient and high linearly polarized InGaN/GaN green LED grown on (0001) oriented sapphire with combined metasurface polarizing converter and polarizer system. It is different from those conventional polarized light emissions generated with plasmonic metallic grating in which at least 50% high energy loss occurs inherently due to high reflection of the transverse electric (TE) component of an electric field. A reflecting metasurface, with a two dimensional elliptic metal cylinder array (EMCA) that functions as a half-wave plate, was integrated at the bottom of a LED such that the back-reflected TE component, that is otherwise lost by a dielectric/metal bi-layered wire grids (DMBiWG) polarizer on the top emitting surface of the LED, can be converted to desired transverse magnetic (TM) polarized emission after reflecting from the metasurface. This significantly enhances the polarized light emission efficiency. Experimental results show that extraction efficiency of the polarized emission can be increased by 40% on average in a wide angle of ±60° compared to that with the naked bottom of sapphire substrate, or 20% compared to reflecting Al film on the bottom of a sapphire substrate. An extinction ratio (ER) of average value 20 dB within an angle of ±60° can be simultaneously obtained directly from an InGaN/GaN LED. Our results show the possibility of simultaneously achieving a high degree of polarization and high polarization extraction efficiency at the integrated device level. This advances the field of GaN LED toward energy efficiency, multi-functional applications in illumination, display, medicine, and light manipulation.

  15. HETC-3STEP calculations of proton induced nuclide production cross sections at incident energies between 20 MeV and 5 GeV

    Energy Technology Data Exchange (ETDEWEB)

    Takada, Hiroshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Yoshizawa, Nobuaki; Ishibashi, Kenji

    1996-08-01

    For the OECD/NEA code intercomparison, nuclide production cross sections of {sup 16}O, {sup 27}Al, {sup nat}Fe, {sup 59}Co, {sup nat}Zr and {sup 197}Au for the proton incidence with energies of 20 MeV to 5 GeV are calculated with the HETC-3STEP code based on the intranuclear cascade evaporation model including the preequilibrium and high energy fission processes. In the code, the level density parameter derived by Ignatyuk, the atomic mass table of Audi and Wapstra and the mass formula derived by Tachibana et al. are newly employed in the evaporation calculation part. The calculated results are compared with the experimental ones. It is confirmed that HETC-3STEP reproduces the production of the nuclides having the mass number close to that of the target nucleus with an accuracy of a factor of two to three at incident proton energies above 100 MeV for {sup nat}Zr and {sup 197}Au. However, the HETC-3STEP code has poor accuracy on the nuclide production at low incident energies and the light nuclide production through the fragmentation process induced by protons with energies above hundreds of MeV. Therefore, further improvement is required. (author)

  16. HETC-3STEP calculations of proton induced nuclide production cross sections at incident energies between 20 MeV and 5 GeV

    International Nuclear Information System (INIS)

    Takada, Hiroshi; Yoshizawa, Nobuaki; Ishibashi, Kenji.

    1996-08-01

    For the OECD/NEA code intercomparison, nuclide production cross sections of 16 O, 27 Al, nat Fe, 59 Co, nat Zr and 197 Au for the proton incidence with energies of 20 MeV to 5 GeV are calculated with the HETC-3STEP code based on the intranuclear cascade evaporation model including the preequilibrium and high energy fission processes. In the code, the level density parameter derived by Ignatyuk, the atomic mass table of Audi and Wapstra and the mass formula derived by Tachibana et al. are newly employed in the evaporation calculation part. The calculated results are compared with the experimental ones. It is confirmed that HETC-3STEP reproduces the production of the nuclides having the mass number close to that of the target nucleus with an accuracy of a factor of two to three at incident proton energies above 100 MeV for nat Zr and 197 Au. However, the HETC-3STEP code has poor accuracy on the nuclide production at low incident energies and the light nuclide production through the fragmentation process induced by protons with energies above hundreds of MeV. Therefore, further improvement is required. (author)

  17. Angular distribution of thick-target bremsstrahlung produced by electrons with initial energies ranging from 10 to 20 keV incident on Ag

    Energy Technology Data Exchange (ETDEWEB)

    Gonzales, D.; Cavness, B.; Williams, S. [Department of Physics, Angelo State University, San Angelo, Texas 76909 (United States)

    2011-11-15

    Experimental results are presented comparing the intensities of the bremsstrahlung produced by electrons with initial energies ranging from 10 to 20 keV incident on a thick Ag target, measured at forward angles in the range of 0 degree sign to 55 degree sign . When the data are corrected for attenuation due to photon absorption within the target, the results indicate that the detected radiation is distributed anisotropically only at photon energies k that are approximately equal to the initial energy of the incident electrons E{sub 0}. The results of our experiments suggest that, as k/E{sub 0}{yields} 0, the detected radiation essentially becomes isotropic due primarily to the scattering of electrons within the target. A comparison to the theory of Kissel et al.[At. Data Nucl. Data Tables 28, 381 (1983)] suggests that the angular distribution of bremsstrahlung emitted by electrons incident on thick targets is similar to the angular distribution of bremsstrahlung emitted by electrons incident on free-atom targets only when k/E{sub 0}{approx_equal} 1. The experimental data also are in approximate agreement with the angular distribution predictions of the Monte Carlo program penelope.

  18. Energy and the global warming issue in developing countries: analyzing the incidence of the fuel carbon tax and its policy implications

    International Nuclear Information System (INIS)

    Siddayao, C.M.; Percebois, J.R.

    1992-01-01

    By changing the natural environment, energy resource use has repercussions for human welfare. So do policies that are proposed to deal with concerns over global climate warming, particularly with respect to carbon dioxide (CO 2 ). Among the major policy options identified are reduction of emission from fossil fuel consumption, as well as more rigorous forest management to avoid further deforestation. The basic approach to reducing carbon emissions from fossil fuels is through the efficient use of energy. Fuel switching, pollution prevention technologies, and the 'polluter pays' principle are also among the policy strategies often discussed. One of the proposed economic policy instruments in the 'polluter pays' category that could lead to more efficient use of energy and at the same time deal with the CO 2 problem is the carbon tax. This paper will focus on the incidence of the tax in the different sectors of a developing country and suggest the key issues in analyzing this incidence. This introduction will include a brief background discussion on the greenhouse gas (GHG) issue which has led to the proposal for the carbon tax. In section II, the incidence of the carbon tax will be reviewed. In section III, the key analytical issues for analyzing incidence of the tax on a sector-by-sector analysis of a national tax will be raised. In this version of this paper, the intended quantitative analysis is not presented; we hope to have partial results by the time of conference. 31 refs., 1 fig., 3 tabs

  19. Integral particle reflection coefficient for oblique incidence of photons as universal function in the domain of initial energies up to 300 keV

    Directory of Open Access Journals (Sweden)

    Ljubenov Vladan L.

    2014-01-01

    Full Text Available In this paper we present the results of calculations and analyses of the integral particle reflection coefficient of photons for oblique photon incidence on planar targets, in the domain of initial photon energies from 100 keV to 300 keV. The results are based on the Monte Carlo simulations of the photon reflection from water, concrete, aluminum, iron, and copper materials, performed by the MCNP code. It has been observed that the integral particle reflection coefficient as a function of the ratio of total cross-section of photons and effective atomic number of target material shows universal behavior for all the analyzed shielding materials in the selected energy domain. Analytical formulas for different angles of photon incidence have been proposed, which describe the reflection of photons for all the materials and energies analyzed.

  20. Energies and media nr 27. Conditions for the nuclear sector. Incidents this summer in France, Belgium and Germany

    International Nuclear Information System (INIS)

    2008-10-01

    After some comments on recent events in the nuclear sector (agreement between India and the USA, new programs in different countries, activity of French companies abroad), this issue comments the worrying accumulation of incidents which occurred in several French nuclear installations in France (notably on the Tricastin site). It comments the actions of the French nuclear safety authority (ASN), the incident classification, delays in public information, problems faced on fuel assemblies, the issue of subcontracting. Incidents which occurred in Belgium (leakage of radioactive iodine) and Germany (water in an ancient salt and potash mine) are also commented

  1. Analytical linear energy transfer model including secondary particles: calculations along the central axis of the proton pencil beam

    International Nuclear Information System (INIS)

    Marsolat, F; De Marzi, L; Mazal, A; Pouzoulet, F

    2016-01-01

    In proton therapy, the relative biological effectiveness (RBE) depends on various types of parameters such as linear energy transfer (LET). An analytical model for LET calculation exists (Wilkens’ model), but secondary particles are not included in this model. In the present study, we propose a correction factor, L sec , for Wilkens’ model in order to take into account the LET contributions of certain secondary particles. This study includes secondary protons and deuterons, since the effects of these two types of particles can be described by the same RBE-LET relationship. L sec was evaluated by Monte Carlo (MC) simulations using the GATE/GEANT4 platform and was defined by the ratio of the LET d distributions of all protons and deuterons and only primary protons. This method was applied to the innovative Pencil Beam Scanning (PBS) delivery systems and L sec was evaluated along the beam axis. This correction factor indicates the high contribution of secondary particles in the entrance region, with L sec values higher than 1.6 for a 220 MeV clinical pencil beam. MC simulations showed the impact of pencil beam parameters, such as mean initial energy, spot size, and depth in water, on L sec . The variation of L sec with these different parameters was integrated in a polynomial function of the L sec factor in order to obtain a model universally applicable to all PBS delivery systems. The validity of this correction factor applied to Wilkens’ model was verified along the beam axis of various pencil beams in comparison with MC simulations. A good agreement was obtained between the corrected analytical model and the MC calculations, with mean-LET deviations along the beam axis less than 0.05 keV μm −1 . These results demonstrate the efficacy of our new correction of the existing LET model in order to take into account secondary protons and deuterons along the pencil beam axis. (paper)

  2. Evaluating the environmental fate of pharmaceuticals using a level III model based on poly-parameter linear free energy relationships

    International Nuclear Information System (INIS)

    Zukowska, Barbara; Breivik, Knut; Wania, Frank

    2006-01-01

    We recently proposed how to expand the applicability of multimedia models towards polar organic chemicals by expressing environmental phase partitioning with the help of poly-parameter linear free energy relationships (PP-LFERs). Here we elaborate on this approach by applying it to three pharmaceutical substances. A PP-LFER-based version of a Level III fugacity model calculates overall persistence, concentrations and intermedia fluxes of polar and non-polar organic chemicals between air, water, soil and sediments at steady-state. Illustrative modeling results for the pharmaceuticals within a defined coastal region are presented and discussed. The model results are highly sensitive to the degradation rate in water and the equilibrium partitioning between organic carbon and water, suggesting that an accurate description of this particular partitioning equilibrium is essential in order to obtain reliable predictions of environmental fate. The PP-LFER based modeling approach furthermore illustrates that the greatest mobility in aqueous phases may be experienced by pharmaceuticals that combines a small molecular size with strong H-acceptor properties

  3. Evaluating the environmental fate of pharmaceuticals using a level III model based on poly-parameter linear free energy relationships

    Energy Technology Data Exchange (ETDEWEB)

    Zukowska, Barbara [Department of Analytical Chemistry, Chemical Faculty, Gdansk University of Technology, 11/12 G. Narutowicza St., 80-952 Gdansk (Poland); Breivik, Knut [NILU- Norwegian Institute for Air Research, P.O. Box 100, NO-2027 Kjeller (Norway)]. E-mail: knut.breivik@nilu.no; Wania, Frank [Department of Physical and Environmental Sciences, University of Toronto at Scarborough, 1265 Military Trail, Scarborough, Ontario, M1C 1A4 (Canada)

    2006-04-15

    We recently proposed how to expand the applicability of multimedia models towards polar organic chemicals by expressing environmental phase partitioning with the help of poly-parameter linear free energy relationships (PP-LFERs). Here we elaborate on this approach by applying it to three pharmaceutical substances. A PP-LFER-based version of a Level III fugacity model calculates overall persistence, concentrations and intermedia fluxes of polar and non-polar organic chemicals between air, water, soil and sediments at steady-state. Illustrative modeling results for the pharmaceuticals within a defined coastal region are presented and discussed. The model results are highly sensitive to the degradation rate in water and the equilibrium partitioning between organic carbon and water, suggesting that an accurate description of this particular partitioning equilibrium is essential in order to obtain reliable predictions of environmental fate. The PP-LFER based modeling approach furthermore illustrates that the greatest mobility in aqueous phases may be experienced by pharmaceuticals that combines a small molecular size with strong H-acceptor properties.

  4. Determination of polyparameter linear free energy relationship (pp-LFER) substance descriptors for established and alternative flame retardants.

    Science.gov (United States)

    Stenzel, Angelika; Goss, Kai-Uwe; Endo, Satoshi

    2013-02-05

    Polyparameter linear free energy relationships (pp-LFERs) can predict partition coefficients for a multitude of environmental and biological phases with high accuracy. In this work, the pp-LFER substance descriptors of 40 established and alternative flame retardants (e.g., polybrominated diphenyl ethers, hexabromocyclododecane, bromobenzenes, trialkyl phosphates) were determined experimentally. In total, 251 data for gas-chromatographic (GC) retention times and liquid/liquid partition coefficients (K) were measured and used to calibrate the pp-LFER substance descriptors. Substance descriptors were validated through a comparison between predicted and experimental log K for the systems octanol/water (K(ow)), water/air (K(wa)), organic carbon/water (K(oc)) and liposome/water (K(lipw)), revealing a high reliability of pp-LFER predictions based on our descriptors. For instance, the difference between predicted and experimental log K(ow) was <0.3 log units for 17 out of 21 compounds for which experimental values were available. Moreover, we found an indication that the H-bond acceptor value (B) depends on the solvent for some compounds. Thus, for predicting environmentally relevant partition coefficients it is important to determine B values using measurements in aqueous systems. The pp-LFER descriptors calibrated in this study can be used to predict partition coefficients for which experimental data are unavailable, and the predicted values can serve as references for further experimental measurements.

  5. Optimal Bidding Strategy of Generation Companies (GenCos in Energy and Spinning Reserve Markets Using Linear Programming

    Directory of Open Access Journals (Sweden)

    Hassan Barati

    2011-10-01

    Full Text Available In this paper a new bidding strategy become modeling to day-ahead markets. The proposed algorithm is related to the point of view of a generation company (Genco that its end is maximized its benefit as a participant in sale markets of active power and spinning reserve. In this method, hourly forecasted energy price (FEP and forecasted reserve price (FRP is used as a reference to model the possible and probable price strategies of Gencos. A bi-level optimization problem That first level, is used to maximize the individual Genco’s payoffs for obtaining the optimal offered quantity of Gencos. The second one, uses the results of the upper sub-problem and minimizes the consumer’s payment with regard to the technical and network constraints, which leads to the awarded generation of the Gencos. In this paper use of the game theory in exist optimization model. The paper proposes a linear programming approach. A six bus system is employed to illustrate the application of the proposed method and to show its high precision and capabilities.

  6. Development of polyparameter linear free energy relationship models for octanol-air partition coefficients of diverse chemicals.

    Science.gov (United States)

    Jin, Xiaochen; Fu, Zhiqiang; Li, Xuehua; Chen, Jingwen

    2017-03-22

    The octanol-air partition coefficient (K OA ) is a key parameter describing the partition behavior of organic chemicals between air and environmental organic phases. As the experimental determination of K OA is costly, time-consuming and sometimes limited by the availability of authentic chemical standards for the compounds to be determined, it becomes necessary to develop credible predictive models for K OA . In this study, a polyparameter linear free energy relationship (pp-LFER) model for predicting K OA at 298.15 K and a novel model incorporating pp-LFERs with temperature (pp-LFER-T model) were developed from 795 log K OA values for 367 chemicals at different temperatures (263.15-323.15 K), and were evaluated with the OECD guidelines on QSAR model validation and applicability domain description. Statistical results show that both models are well-fitted, robust and have good predictive capabilities. Particularly, the pp-LFER model shows a strong predictive ability for polyfluoroalkyl substances and organosilicon compounds, and the pp-LFER-T model maintains a high predictive accuracy within a wide temperature range (263.15-323.15 K).

  7. Linear Energy Transfer Painting With Proton Therapy: A Means of Reducing Radiation Doses With Equivalent Clinical Effectiveness

    International Nuclear Information System (INIS)

    Fager, Marcus; Toma-Dasu, Iuliana; Kirk, Maura; Dolney, Derek; Diffenderfer, Eric S.; Vapiwala, Neha; Carabe, Alejandro

    2015-01-01

    Purpose: The purpose of this study was to propose a proton treatment planning method that trades physical dose (D) for dose-averaged linear energy transfer (LET d ) while keeping the radiobiologically weighted dose (D RBE ) to the target the same. Methods and Materials: The target is painted with LET d by using 2, 4, and 7 fields aimed at the proximal segment of the target (split target planning [STP]). As the LET d within the target increases with increasing number of fields, D decreases to maintain the D RBE the same as the conventional treatment planning method by using beams treating the full target (full target planning [FTP]). Results: The LET d increased 61% for 2-field STP (2STP) compared to FTP, 72% for 4STP, and 82% for 7STP inside the target. This increase in LET d led to a decrease of D with 5.3 ± 0.6 Gy for 2STP, 4.4 ± 0.7 Gy for 4STP, and 5.3 ± 1.1 Gy for 7STP, keeping the DRBE at 90% of the volume (DRBE, 90) constant to FTP. Conclusions: LET d painting offers a method to reduce prescribed dose at no cost to the biological effectiveness of the treatment

  8. Linear Energy Transfer Painting With Proton Therapy: A Means of Reducing Radiation Doses With Equivalent Clinical Effectiveness

    Energy Technology Data Exchange (ETDEWEB)

    Fager, Marcus, E-mail: Marcus.Fager@UPHS.UPenn.edu [Department of Radiation Oncology, School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania (United States); Medical Radiation Physics, Stockholm University, Stockholm (Sweden); Toma-Dasu, Iuliana [Medical Radiation Physics, Stockholm University and Karolinska Institutet, Stockholm (Sweden); Kirk, Maura; Dolney, Derek; Diffenderfer, Eric S.; Vapiwala, Neha [Department of Radiation Oncology, School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania (United States); Carabe, Alejandro, E-mail: Alejandro.Carabe-Fernandez@UPHS.UPenn.edu [Department of Radiation Oncology, School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania (United States)

    2015-04-01

    Purpose: The purpose of this study was to propose a proton treatment planning method that trades physical dose (D) for dose-averaged linear energy transfer (LET{sub d}) while keeping the radiobiologically weighted dose (D{sub RBE}) to the target the same. Methods and Materials: The target is painted with LET{sub d} by using 2, 4, and 7 fields aimed at the proximal segment of the target (split target planning [STP]). As the LET{sub d} within the target increases with increasing number of fields, D decreases to maintain the D{sub RBE} the same as the conventional treatment planning method by using beams treating the full target (full target planning [FTP]). Results: The LET{sub d} increased 61% for 2-field STP (2STP) compared to FTP, 72% for 4STP, and 82% for 7STP inside the target. This increase in LET{sub d} led to a decrease of D with 5.3 ± 0.6 Gy for 2STP, 4.4 ± 0.7 Gy for 4STP, and 5.3 ± 1.1 Gy for 7STP, keeping the DRBE at 90% of the volume (DRBE, 90) constant to FTP. Conclusions: LET{sub d} painting offers a method to reduce prescribed dose at no cost to the biological effectiveness of the treatment.

  9. Environmental Assessment for US Department of Energy support of an Iowa State University Linear Accelerator Facility at Ames, Iowa

    Energy Technology Data Exchange (ETDEWEB)

    1990-05-01

    The proposed Department of Energy (DOE) action is financial and technical support of construction and initial operation of an agricultural commodity irradiator (principally for meat), employing a dual mode electron beam generator capable of producing x-rays, at the Iowa State University Linear Accelerator located at Ames, Iowa. The planned pilot commercial-scale facility would be used for the following activities: conducting irradiation research on agricultural commodities, principally meats; in the future, after the pilot phase, as schedules permit, possibly conducting research on other, non-edible materials; evaluating effects of irradiation on nutritional and sensory quality of agricultural products; demonstrating the efficiency of the process to control or eliminate pathogens, and/or to prolong the commodities' post-harvest shelf-life via control or elimination of bacteria, fungi, and/or insects; providing information to the public on the benefits, safety and risks of irradiated agricultural commodities; determining consumer acceptability of the irradiated products; providing data for use by regulatory agencies in developing protocols for various treatments of Iowa agricultural commodities; and training operators, maintenance and quality control technicians, scientists, engineers, and staff of regulatory agencies in agricultural commodity irradiation technology. 14 refs., 5 figs.

  10. Commissioning and early experience with a new-generation low-energy linear accelerator with advanced delivery and imaging functionalities

    Directory of Open Access Journals (Sweden)

    Fogliata Antonella

    2011-09-01

    Full Text Available Abstract Background A new-generation low-energy linear accelerator (UNIQUE was introduced in the clinical arena during 2009 by Varian Medical Systems. The world's first UNIQUE was installed at Oncology Institute of Southern Switzerland and put into clinical operation in June 2010. The aim of the present contribution was to report experience about its commissioning and first year results from clinical operation. Methods Commissioning data, beam characteristics and the modeling into the treatment planning system were summarized. Imaging system of UNIQUE included a 2D-2D matching capability and tests were performed to identify system repositioning capability. Finally, since the system is capable of delivering volumetric modulated arc therapy with RapidArc, a summary of the tests performed for such modality to assess its performance in preclinical settings and during clinical usage was included. Results Isocenter virtual diameter was measured as less than 0.2 mm. Observed accuracy of isocenter determination and repositioning for 2D-2D matching procedures in image guidance was Conclusions The results of the commissioning tests and of the first period of clinical operation, resulted meeting specifications and having good margins respect to tolerances. UNIQUE was put into operation for all delivery techniques; in particular, as shown by the pre-treatment quality assurance results, it enabled accurate and safe delivery of RapidArc plans.

  11. /sup 58/Ni(/sup 16/O, /sup 12/C)/sup 62/Zn reaction at an incident energy 80 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Okuma, Yasuhiko [Osaka Univ., Suita (Japan). Research Center for Nuclear Physics; Motobayashi, Tooru; Takimoto, Kiyohiko; Shimoura, Susumu; Ogino, Kouya; Fukada, Mamoru; Suehiro, Teruo; Matsuki, Seishi; Yanabu, Takuji

    1983-03-01

    Cross section angular distributions for the /sup 16/O + /sup 58/Ni elastic scattering and the /sup 58/Ni(/sup 16/O, /sup 12/C)/sup 62/Zn- 3.8416 MeV reaction leading to the discrete and continuum states at an incident energy Esub(lab)(/sup 16/O) = 80 MeV have been measured. The eight low-lying single and double energy levels were observed in the energy spectra of the /sup 58/Ni(/sup 16/O, /sup 12/C)/sup 62/Zn reaction. Populations of these levels have the cross sections of 1-200 ..mu..b/sr. The ground state cross section was proved to change with the incident energy by comparing the present data with the other 46 and 60 MeV data. The cross section angular distribution for the ground state transition changes also with the incident energy. The data points for the 46 MeV show a typical bell shape angular distribution. The angular distribution for the 60 MeV reveals a forward peaked and pronounced oscillation pattern, while that for the 80 MeV shows an oscillation damping with the angle and then a monotonous fall on the angle. Optical model parameters were deduced from the best fit to the measurements of the /sup 16/O + /sup 58/Ni elastic scattering. The EFR-DWBA calculations of the (/sup 16/O, /sup 12/C) results were performed with reasonable fits for the cross section angular distributions of observed energy levels. The optical model parameters giving good representations of the ..cap alpha..-transfer data have the property that the real diffuseness parameter has a large value almost equal to the radius parameter. The inclusion of Coulomb correction in the transfer interaction causes a reduction of 0.9 times in cross section, but no change in angular distribution. The dependence of the angular distribution shape on the incident energy can be reproduced by the EFR-DWBA calculation even if only one parameter set is used in the calculation over the wide incident energy range.

  12. On the tenth value distance of the photon field along the maze of high-energy linear accelerator vaults.

    Science.gov (United States)

    Han, Zhaohui; Chin, Lee M

    2018-03-01

    There is a wide range in the reported photon tenth value distance (TVD) in the maze of high-energy linear accelerator vaults. In order to gain insight into the appropriate use of the TVD value during door design, we performed measurements of the photon dose in the maze of four vaults. In addition, our study represents the first to describe a scenario where an inner borated polyethylene (BPE) door for neutron shielding is installed in the maze downstream to Point A, the point on the maze centerline that is just visible from the isocenter. The measurements were made along the maze centerline at 1 m above the floor. In all cases, the accelerator operated at a nominal energy of 15 MV. Of the four vaults, three were equipped with an inner BPE door at a distance of 1.0-2.1 m downstream to Point A. The door was made of 10.16 cm (4″) BPE sandwiched between two 0.635 cm (1/4″) steel face plates. The photon dose in the maze without a BPE door decreases exponentially with a characteristic TVD of 6 m beyond a distance of 2.5 m from Point A. The presence of a BPE door in an identical vault not only reduces the photon intensity in the maze by about an order of magnitude, but also softens the energy spectrum with a shortened TVD of 4.7 m, significantly lessening the shielding burden at the outer maze entrance. In contrast to the common use of Point A as the reference point to specify distance, the photon dose in the maze with a BPE door located downstream to Point A can be satisfactorily described as exponential functions of the distance measured from the door, which shows good consistency among the three vaults of different room parameters. © 2018 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.

  13. On the modelling of linear-assisted DC-DC voltage regulators for photovoltaic solar energy systems

    Science.gov (United States)

    Martínez-García, Herminio; García-Vílchez, Encarna

    2017-11-01

    This paper shows the modelling of linear-assisted or hybrid (linear & switching) DC/DC voltage regulators. In this kind of regulators, an auxiliary linear regulator is used, which objective is to cancel the ripple at the output voltage and provide fast responses for load variations. On the other hand, a switching DC/DC converter, connected in parallel with the linear regulator, allows to supply almost the whole output current demanded by the load. The objective of this topology is to take advantage of the suitable regulation characteristics that series linear voltage regulators have, but almost achieving the high efficiency that switching DC/DC converters provide. Linear-assisted DC/DC regulators are feedback systems with potential instability. Therefore, their modelling is mandatory in order to obtain design guidelines and assure stability of the implemented power supply system.

  14. Electron-impact rotationally elastic total cross sections for H2CO and HCOOH over a wide range of incident energy (0.01-2000 eV)

    International Nuclear Information System (INIS)

    Vinodkumar, Minaxi; Bhutadia, Harshad; Antony, Bobby; Mason, Nigel

    2011-01-01

    This paper reports computational results of the total cross sections for electron impact on H 2 CO and HCOOH over a wide range of electron impact energies from 0.01 eV to 2 keV. The total cross section is presented as sum of the elastic and electronic excitation cross sections for incident energies. The calculation uses two different methodologies, below the ionization threshold of the target the cross section is calculated using the UK molecular R-matrix code through the Quantemol-N software package while cross sections at higher energies are evaluated using the spherical complex optical potential formalism. The two methods are found to be consistent at the transition energy (∼15 eV). The present results are, in general, found to be in good agreement with previous experimental and theoretical results (wherever available) and, thus, the present results can serve as a benchmark for the cross section over a wide range of energy.

  15. Measurement of prompt neutron spectra from the "2"3"9Pu(n, f ) fission reaction for incident neutron energies from 1 to 200 MeV

    International Nuclear Information System (INIS)

    Chatillon, A.; Belier, G.; Granier, T.; Laurent, B.; Morillon, B.; Taieb, J.; Haight, R.C.; Devlin, M.; Nelson, R.O.; Noda, R.S.; O'Donnell, J.M.

    2014-01-01

    Prompt fission neutron spectra in the neutron-induced fission of "2"3"9Pu have been measured for incident neutron energies from 1 to 200 MeV at the Los Alamos Neutron Science Center. Mean energies deduced from the prompt fission neutron spectra (PFNS) lead to the observation of the opening of the second chance fission at 7 MeV and to indications for the openings of fission channels of third and fourth chances. Moreover, the general trend of the measured PFNS is well reproduced by the different models. The comparison between data and models presents, however, two discrepancies. First, the prompt neutron mean energy seems constant for neutron energy, at least up to 7 MeV, whereas in the theoretical calculations it is continuously increasing. Second, data disagree with models on the shape of the high energy part of the PFNS, where our data suggest a softer spectrum than the predictions. (authors)

  16. Cross measurements of linear momentum transfer and energy dissipation in collisions between 290 MeV 20Ne and 238U

    International Nuclear Information System (INIS)

    Galin, J.; Ingold, G.; Jahnke, U.; Hilscher, D.; Lehmann, M.; Rossner, H.; Schwinn, E.

    1988-01-01

    The 20 Ne+U reactions are investigated at 290 MeV bombarding energy. The linear momentum transfer and excitation energy are deduced eventwise from the respective measurements of the folding angle between correlated fission fragments and the neutron multiplicity. A simple incomplete fusion picture is shown to essentially account for the data. The sensitivity of the two measurements in order to infer the violence of a collision is discussed in details. (orig.)

  17. Medium-Term Stability of the Photon Beam Energy of An Elekta CompactTM Linear Accelerator Based on Daily Measurements of Beam Quality Factor

    Directory of Open Access Journals (Sweden)

    Mohammad Amin Mosleh-Shirazi

    2016-04-01

    Full Text Available Introduction In this study, we aimed to assess the medium-term energy stability of a 6MV Elekta CompactTM linear accelerator. To the best of our knowledge, this is the first published article to evaluate this linear accelerator in terms of energy stability. As well as investigating the stability of the linear accelerator energy over a period of several weeks, the results will be useful for estimation of the required tolerance values for the beam quality factor (BQF of the PTW QUICKCHECK weblineTM (QCW daily checking device. Materials and Methods Over a 13 week period of routine clinical service, 52 daily readings of BQF were taken and then analyzed for a 10×10 cm2 field. Results No decreasing or increasing trend in BQF was observed over the study period. The mean BQF value was estimated at 5.4483 with a standard deviation (SD of 0.0459 (0.8%. The mean value was only 0.1% different from the baseline value. Conclusion The results of this medium-term stability study of the Elekta Compact linear accelerator energy showed that 96.2% of the observed BQF values were within ±1.3% of the baseline value. This can be considered to be within the recommended tolerance for linear accelerator photon beam energy. If an approach of applying ±3 SD is taken, the tolerance level for BQF may be suggested to be set at ±2.5%. However, further research is required to establish a relationship between BQF value and the actual changes in beam energy and penetrative quality.

  18. Spectra of linear energy transfer and other dosimetry characteristics as measured in C290 MeV/n MONO and SOBP ion beams at HIMAC-BIO (NIRS (Japan)) with different detectors

    International Nuclear Information System (INIS)

    Spurny, F.; Pachnerovy Brabcovy, K.; Ploc, O.; Ambrozovy, I.; Mrazova, Z.

    2011-01-01

    Active mobile dosimetry unit (Liulin), passive plastic nuclear track detectors (PNTD) and thermoluminescent detectors (TLD) were exposed in a C290 MeV/n beam at HIMAC-BIO (NIRS (Japan)). Two different types of beam configuration were used-monoenergetic beam (MONO) and spread-out Bragg peak (SOBP); the detectors were placed at several depths from the entrance up to the depths behind the Bragg peak. Relative response of TLDs in beams has been studied as a function of the depth, and it was re-proved that it can depend on the linear energy transfer (LET). Liulin measures energy deposition in Si; the spectra of energy deposited in Si can be transformed to the spectra of lineal energy or LET. PNTDs are able to determine the LET of registered particles directly. The limitation of both methods is in the range in which they can determine the LET-Liulin is able to measure perpendicularly incident charged particles up to ∼35 keV/μm (in water), PNTD can measure from ∼7 to 400 keV/μm, independently of the registration angle. The results from both methods are compared and combined for both beams' configuration, and a good agreement is observed. (authors)

  19. Investigation of a tubular dual-stator flux-switching permanent-magnet linear generator for free-piston energy converter

    Science.gov (United States)

    Sui, Yi; Zheng, Ping; Tong, Chengde; Yu, Bin; Zhu, Shaohong; Zhu, Jianguo

    2015-05-01

    This paper describes a tubular dual-stator flux-switching permanent-magnet (PM) linear generator for free-piston energy converter. The operating principle, topology, and design considerations of the machine are investigated. Combining the motion characteristic of free-piston Stirling engine, a tubular dual-stator PM linear generator is designed by finite element method. Some major structural parameters, such as the outer and inner radii of the mover, PM thickness, mover tooth width, tooth width of the outer and inner stators, etc., are optimized to improve the machine performances like thrust capability and power density. In comparison with conventional single-stator PM machines like moving-magnet linear machine and flux-switching linear machine, the proposed dual-stator flux-switching PM machine shows advantages in higher mass power density, higher volume power density, and lighter mover.

  20. The effect of low LET (Linear Energy Transfer ionizing radiation to catalase activity of Wistar’s submandibular gland

    Directory of Open Access Journals (Sweden)

    Nevy Triditha Putri

    2016-12-01

    Full Text Available Intraoral periapical radiograph examination is the additional examination which is the most widely used in Dentistry. This radiograph examination using an x-ray ionizing radiation with low LET (Linear Energy Transfer, and may affect submandibular salivary gland. Ionizing radiation exposure can cause damage by inducing a series of changes at the molecular and cellular level. This study aimed to prove the effects of x-ray ionizing radiation with low LET towards the catalase activity of Rattus norvegicus strain Wistar’s submandibular gland. The subjects were 28 male Wistar rats and divided into 4 groups (n=7. Three groups were exposed 4, 8 and 14 times to radiation with 0.002 µSv for each exposure. The catalase activity of each rat was examined by a spectrophotometer. Data were analyzed using one-way ANOVA followed by Bonferroni test. The results showed the average of catalase activity on Wistar rat’s submandibular gland, respectively for: 0.150±0.0895 (KK, 0.1405±0.0607 (K1, 0.1228±0.0290 (K2, 0.1227±0.0556 (K3. Data showed significant differences of catalase activity between test groups, but showed not significant differences of catalase activity between each groups of Rattus norvegicus strain Wistar’s submandibular gland. In this study concluded decreased catalase activity of Rattus norvegicus strain Wistar’s submandibular gland resulting from x-rays ionizing radiation by 4 times, 8 times and 14 times exposures.

  1. The In Vitro Response of Tissue Stem Cells to Irradiation With Different Linear Energy Transfers

    Energy Technology Data Exchange (ETDEWEB)

    Nagle, Peter W.; Hosper, Nynke A. [Department of Cell Biology, University of Groningen, University Medical Center Groningen, Groningen (Netherlands); Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen (Netherlands); Ploeg, Emily M. [Department of Cell Biology, University of Groningen, University Medical Center Groningen, Groningen (Netherlands); Goethem, Marc-Jan van [Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen (Netherlands); KVI-Center for Advanced Radiation Research, University of Groningen, Groningen (Netherlands); Brandenburg, Sytze [KVI-Center for Advanced Radiation Research, University of Groningen, Groningen (Netherlands); Langendijk, Johannes A. [Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen (Netherlands); Chiu, Roland K. [Department of Cell Biology, University of Groningen, University Medical Center Groningen, Groningen (Netherlands); Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen (Netherlands); Coppes, Robert P., E-mail: r.p.coppes@umcg.nl [Department of Cell Biology, University of Groningen, University Medical Center Groningen, Groningen (Netherlands); Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen (Netherlands)

    2016-05-01

    Purpose: A reduction in the dose, irradiated volume, and sensitivity of, in particular, normal tissue stem cells is needed to advance radiation therapy. This could be obtained with the use of particles for radiation therapy. However, the radiation response of normal tissue stem cells is still an enigma. Therefore, in the present study, we developed a model to investigate the in vitro response of stem cells to particle irradiation. Methods and Materials: We used the immortalized human salivary gland (HSG) cell line resembling salivary gland (SG) cells to translate the radiation response in 2-dimensional (2D) to 3-dimensional (3D) conditions. This response was subsequently translated to the response of SG stem cells (SGSCs). Dispersed single cells were irradiated with photons or carbon ions at different linear energy transfers (LETs; 48.76 ± 2.16, 149.9 ± 10.8, and 189 ± 15 keV/μm). Subsequently, 2D or 3D clonogenicity was determined by counting the colonies or secondary stem cell-derived spheres in Matrigel. γH2AX immunostaining was used to assess DNA double strand break repair. Results: The 2D response of HSG cells showed a similar increase in dose response to increasing higher LET irradiation as other cell lines. The 3D response of HSG cells to increasing LET irradiation was reduced compared with the 2D response. Finally, the response of mouse SGSCs to photons was similar to the 3D response of HSG cells. The response to higher LET irradiation was reduced in the stem cells. Conclusions: Mouse SGSC radiosensitivity seems reduced at higher LET radiation compared with transformed HSG cells. The developed model to assess the radiation response of SGSCs offers novel possibilities to study the radiation response of normal tissue in vitro.

  2. The In Vitro Response of Tissue Stem Cells to Irradiation With Different Linear Energy Transfers

    International Nuclear Information System (INIS)

    Nagle, Peter W.; Hosper, Nynke A.; Ploeg, Emily M.; Goethem, Marc-Jan van; Brandenburg, Sytze; Langendijk, Johannes A.; Chiu, Roland K.; Coppes, Robert P.

    2016-01-01

    Purpose: A reduction in the dose, irradiated volume, and sensitivity of, in particular, normal tissue stem cells is needed to advance radiation therapy. This could be obtained with the use of particles for radiation therapy. However, the radiation response of normal tissue stem cells is still an enigma. Therefore, in the present study, we developed a model to investigate the in vitro response of stem cells to particle irradiation. Methods and Materials: We used the immortalized human salivary gland (HSG) cell line resembling salivary gland (SG) cells to translate the radiation response in 2-dimensional (2D) to 3-dimensional (3D) conditions. This response was subsequently translated to the response of SG stem cells (SGSCs). Dispersed single cells were irradiated with photons or carbon ions at different linear energy transfers (LETs; 48.76 ± 2.16, 149.9 ± 10.8, and 189 ± 15 keV/μm). Subsequently, 2D or 3D clonogenicity was determined by counting the colonies or secondary stem cell-derived spheres in Matrigel. γH2AX immunostaining was used to assess DNA double strand break repair. Results: The 2D response of HSG cells showed a similar increase in dose response to increasing higher LET irradiation as other cell lines. The 3D response of HSG cells to increasing LET irradiation was reduced compared with the 2D response. Finally, the response of mouse SGSCs to photons was similar to the 3D response of HSG cells. The response to higher LET irradiation was reduced in the stem cells. Conclusions: Mouse SGSC radiosensitivity seems reduced at higher LET radiation compared with transformed HSG cells. The developed model to assess the radiation response of SGSCs offers novel possibilities to study the radiation response of normal tissue in vitro.

  3. Linear Energy Transfer-Dependent Change in Rice Gene Expression Profile after Heavy-Ion Beam Irradiation.

    Directory of Open Access Journals (Sweden)

    Kotaro Ishii

    Full Text Available A heavy-ion beam has been recognized as an effective mutagen for plant breeding and applied to the many kinds of crops including rice. In contrast with X-ray or γ-ray, the heavy-ion beam is characterized by a high linear energy transfer (LET. LET is an important factor affecting several aspects of the irradiation effect, e.g. cell survival and mutation frequency, making the heavy-ion beam an effective mutagen. To study the mechanisms behind LET-dependent effects, expression profiling was performed after heavy-ion beam irradiation of imbibed rice seeds. Array-based experiments at three time points (0.5, 1, 2 h after the irradiation revealed that the number of up- or down-regulated genes was highest 2 h after irradiation. Array-based experiments with four different LETs at 2 h after irradiation identified LET-independent regulated genes that were up/down-regulated regardless of the value of LET; LET-dependent regulated genes, whose expression level increased with the rise of LET value, were also identified. Gene ontology (GO analysis of LET-independent up-regulated genes showed that some GO terms were commonly enriched, both 2 hours and 3 weeks after irradiation. GO terms enriched in LET-dependent regulated genes implied that some factor regulates genes that have kinase activity or DNA-binding activity in cooperation with the ATM gene. Of the LET-dependent up-regulated genes, OsPARP3 and OsPCNA were identified, which are involved in DNA repair pathways. This indicates that the Ku-independent alternative non-homologous end-joining pathway may contribute to repairing complex DNA legions induced by high-LET irradiation. These findings may clarify various LET-dependent responses in rice.

  4. Linear Energy Transfer-Dependent Change in Rice Gene Expression Profile after Heavy-Ion Beam Irradiation.

    Science.gov (United States)

    Ishii, Kotaro; Kazama, Yusuke; Morita, Ryouhei; Hirano, Tomonari; Ikeda, Tokihiro; Usuda, Sachiko; Hayashi, Yoriko; Ohbu, Sumie; Motoyama, Ritsuko; Nagamura, Yoshiaki; Abe, Tomoko

    2016-01-01

    A heavy-ion beam has been recognized as an effective mutagen for plant breeding and applied to the many kinds of crops including rice. In contrast with X-ray or γ-ray, the heavy-ion beam is characterized by a high linear energy transfer (LET). LET is an important factor affecting several aspects of the irradiation effect, e.g. cell survival and mutation frequency, making the heavy-ion beam an effective mutagen. To study the mechanisms behind LET-dependent effects, expression profiling was performed after heavy-ion beam irradiation of imbibed rice seeds. Array-based experiments at three time points (0.5, 1, 2 h after the irradiation) revealed that the number of up- or down-regulated genes was highest 2 h after irradiation. Array-based experiments with four different LETs at 2 h after irradiation identified LET-independent regulated genes that were up/down-regulated regardless of the value of LET; LET-dependent regulated genes, whose expression level increased with the rise of LET value, were also identified. Gene ontology (GO) analysis of LET-independent up-regulated genes showed that some GO terms were commonly enriched, both 2 hours and 3 weeks after irradiation. GO terms enriched in LET-dependent regulated genes implied that some factor regulates genes that have kinase activity or DNA-binding activity in cooperation with the ATM gene. Of the LET-dependent up-regulated genes, OsPARP3 and OsPCNA were identified, which are involved in DNA repair pathways. This indicates that the Ku-independent alternative non-homologous end-joining pathway may contribute to repairing complex DNA legions induced by high-LET irradiation. These findings may clarify various LET-dependent responses in rice.

  5. Linear Interaction Energy Based Prediction of Cytochrome P450 1A2 Binding Affinities with Reliability Estimation.

    Directory of Open Access Journals (Sweden)

    Luigi Capoferri

    Full Text Available Prediction of human Cytochrome P450 (CYP binding affinities of small ligands, i.e., substrates and inhibitors, represents an important task for predicting drug-drug interactions. A quantitative assessment of the ligand binding affinity towards different CYPs can provide an estimate of inhibitory activity or an indication of isoforms prone to interact with the substrate of inhibitors. However, the accuracy of global quantitative models for CYP substrate binding or inhibition based on traditional molecular descriptors can be limited, because of the lack of information on the structure and flexibility of the catalytic site of CYPs. Here we describe the application of a method that combines protein-ligand docking, Molecular Dynamics (MD simulations and Linear Interaction Energy (LIE theory, to allow for quantitative CYP affinity prediction. Using this combined approach, a LIE model for human CYP 1A2 was developed and evaluated, based on a structurally diverse dataset for which the estimated experimental uncertainty was 3.3 kJ mol-1. For the computed CYP 1A2 binding affinities, the model showed a root mean square error (RMSE of 4.1 kJ mol-1 and a standard error in prediction (SDEP in cross-validation of 4.3 kJ mol-1. A novel approach that includes information on both structural ligand description and protein-ligand interaction was developed for estimating the reliability of predictions, and was able to identify compounds from an external test set with a SDEP for the predicted affinities of 4.6 kJ mol-1 (corresponding to 0.8 pKi units.

  6. A study on the integration of contactless energy transfer in the end teeth of a PM synchronous linear motor

    NARCIS (Netherlands)

    Krop, D.C.J.; Lomonova, E.A.; Jansen, J.W.; Paulides, J.J.H.

    2009-01-01

    Linear motors find their utilization in an increasing number of industrial applications. Permanent magnet linear synchronous motors (PMLSMs) are favorable in many applications due to their servo characteristics, robustness, and high force density. The major disadvantage of moving coil type PMLSMs is

  7. LINEAR SOLVATION ENERGY RELATIONSHIPS FOR CHARACTERIZATION OF MLC SYSTEMS WITH SODIUM DODECYL SULPHATE MOBILE PHASES MODIFIED BY ALIPHATIC ALCOHOLS OR CARBOXYLIC ACIDS

    NARCIS (Netherlands)

    Markov, Vadym V.; Boichenko, Alexander P.; Loginova, Lidia P.

    2012-01-01

    The Linear Solvation Energy Relationships (LSER) have been successfully used for the modeling of partition and retention of the set of test compounds in different systems. The properties of micellar chromatographic systems with the mobile phases on the basis of sodium dodecylsulphate modified (ODS)

  8. Track detection on the cells exposed to high Linear Energy Transfer heavy-ions by Cr-39 plastic and terminal deoxynucleotidyl transferase(Td T)

    International Nuclear Information System (INIS)

    Mehnati, P.; Keshtkar, A.; Mesbahi, A.; Sasaki, H.

    2006-01-01

    The fatal effect of ionizing radiation on cells depends on Linear Energy Transfer level. The distribution of ionizing radiation is sparse and homogeneous for low Linear Energy Transfer radiations such as X or y, but it is dense and concentrated for high Linear Energy Transfer radiation such as heavy-ions radiation. Materials and Methods: Chinese hamster ovary cells (CHO-K1) were exposed to 4 Gy Fe-ion 2000 keV/μm. The Cr-39 is a special and sensitive plastic used to verify exact position of heavy-ions traversal. Terminal deoxynucleotidyl transferase is an enzyme labeled with [3 H ] d ATP for detection of cellular DNA damage by autoradiography assay. Results: The track of heavy ions traversals presented by pit size was almost similar for all different doses of radiation. No pits to show the track of traversal were found in 20% of the cell nuclei of the irradiation. Apparently these fractions of cells wave not hit by heavy ions. Conclusion: This study indicated the possible usefulness of both the Cr-39 plastics and DNA labeling with Terminal deoxynucleotidyl transferase method for evaluating the biological effect of heavy-ions in comparison with low Linear Energy Transfer ionizing radiation

  9. Asymmetry of the cross section of the reaction. gamma. n. --> pi. /sup -/p induced by linearly polarized photons with energies 0. 8--1. 75 GeV

    Energy Technology Data Exchange (ETDEWEB)

    Adamyan, V.V.; Akopyan, G.G.; Vartapetyan, G.A.; Galumyan, P.I.; Grabskii, V.O.; Karapetyan, V.V.; Karapetyan, G.V.; Oktanyan, V.K.

    1985-10-25

    The asymmetry of the cross section ..sigma.. of the reaction ..gamma..n..--> pi../sup -/p induced by linearly polarized photons in the energy range 0.8--1.75 GeV and at c.m. angles of 45--90/sup 0/ is measured. The measurement results are consistent with the predictions of the existing phenomenological analyses.

  10. On the non-linear nature of the variation, with intensity, of high energy cathode sputtering, and the variation of the latter with temperature (1960)

    International Nuclear Information System (INIS)

    Cassignol, C.; Ranc, G.

    1960-01-01

    A new cathode sputtering theory at high energy is presented which has been elaborated in taking in account the non-linearity of this phenomenon with the density of the impinging ions. This theory allows to predict the influence of target temperature on the rate of cathode sputtering. This influence is experimentally demonstrated. (author) [fr

  11. Experimental cross sections for light-charged particle production induced by neutrons with energies between 25 and 65 MeV incident on aluminum

    International Nuclear Information System (INIS)

    Benck, S.; Slypen, I.; Meulders, J.P.; Corcalciuc, V.

    2001-01-01

    Experimental double-differential cross sections (d 2 σ/dΩdE) for fast neutron-induced proton, deuteron, triton, and alpha-particle production on aluminum are reported, at several incident neutron energies between 25 and 65 MeV, for outgoing particle energies above the experimental energy thresholds. Angular distributions were measured at laboratory angles between 20 deg. and 160 deg. . Reliable extrapolated spectra are derived for very forward (2.5 deg. and 10 deg. ) and very backward angles (170 deg. and 177.5 deg. ). Based on these experimental data, energy-differential (dσ/dE), angle-differential (dσ/dΩ), and total production cross sections (σ T ) are reported for each outgoing particle

  12. Experimental investigation of the photoneutron production out of the high-energy photon fields at linear accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yeon Su; Yoon, In Ha; Bae, Sun Myeong; Kang, Tae Young; Baek, Geum Mun; Kim, Sung Hwan; Nam, Uk Won; Lee, Jae Jin; Park, Yeong Sik [Dept. of Radiation Oncology, ASAN Medical Center, Seoul (Korea, Republic of)

    2014-12-15

    Photoneutron dose in high-energy photon radiotherapy at linear accelerator increase the risk for secondary cancer. The purpose of this investigation is to evaluate the dose variation of photoneutron with different treatment method, flattening filter, dose rate and gantry angle in radiation therapy with high-energy photon beam (E≥8 MeV). TrueBeam STxTM(Ver1.5, Varian, USA) and Korea Tissue Equivalent Proportional Counter (KTEPC) were used to detect the photoneutron dose out of the high-energy photon field. Complex Patient plans using Eclipse planning system (Version 10.0, Varian, USA) was used to experiment with different treatment technique(IMRT, VMAT), condition of flattening filter and three different dose rate. Scattered photoneutron dose was measured at eight different gantry angles with open field (Field size : 5×5cm). The mean values of the detected photoneutron dose from IMRT and VMAT were 449.7 μSv, 2940.7 μSv. The mean values of the detected photoneutron dose with Flattening Filter(FF) and Flattening Filter Free(FFF) were measured as 2940.7 μSv, 232.0 μSv. The mean values of the photoneutron dose for each test plan (case 1, case 2 and case 3) with FFF at the three different dose rate (400, 1200, 2400 MU/min) were 3242.5 μSv, 3189.4 μSv, 3191.2 μSv with case 1, 3493.2 μSv, 3482.6 μSv, 3477.2 μSv with case 2 and 4592.2 μSv, 4580.0 μSv, 4542.3 μSv with case 3, respectively. The mean values of the photoneutron dose at eight different gantry angles ( 0° , 45°, 90°, 135°, 180°, 225°, 270° , 315°) were measured as 3.2 μSv, 4.3 μSv, 5.3 μSv, 11.3 μSv, 14.7 μSv, 11.2 μSv, 3.7 μSv, 3.0 μSv at 10 MV and as 373.7 μSv, 369.6 μSv, 384.4 μSv, 423.6 μSv, 447.1 μSv, 448.0 μSv, 384.5 μSv, 377.3 μSv at 15MV. As a result, it is possible to reduce photoneutron dose using FFF mode and VMAT method with TrueBeam STxTM. The risk for secondary cancer of the patients will be decreased with continuous evaluation of the photoneutron dose.

  13. On the non-linear nature of the variation, with intensity, of high energy cathode sputtering, and the variation of the latter with temperature (1960); Sur le caractere non lineaire en fonction de l'intensite de la pulverisation cathodique a haute energie et sa variation en fonction de la temperature (1960)

    Energy Technology Data Exchange (ETDEWEB)

    Cassignol, C; Ranc, G [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1960-07-01

    A new cathode sputtering theory at high energy is presented which has been elaborated in taking in account the non-linearity of this phenomenon with the density of the impinging ions. This theory allows to predict the influence of target temperature on the rate of cathode sputtering. This influence is experimentally demonstrated. (author) [French] On presente, au sujet de la pulverisation cathodique a haute energie, une theorie qui tient compte de la non-linearite de la variation de ce phenomene avec la densite des ions incidents. Cette theorie permet de predire l'influence de la temperature de la cible sur la vitesse de pulverisation cathodique. On demontre l'existence de cette influence par une methode experimentale. (auteur)

  14. Investigation and optimization of transverse non-linear beam dynamics in the high-energy storage ring HESR

    Energy Technology Data Exchange (ETDEWEB)

    Welsch, Dominic Markus

    2010-03-10

    The High-Energy Storage Ring (HESR) is part of the upcoming Facility for Antiproton and Ion Research (FAIR) which is planned as a major extension to the present facility of the Helmholtzzentrum fuer Schwerionenforschung (GSI) in Darmstadt. The HESR will provide antiprotons in the momentum range from 1.5 to 15 GeV/c for the internal target experiment PANDA. The demanding requirements of PANDA in terms of beam quality and luminosity together with a limited production rate of antiprotons call for a long beam life time and a minimum of beam loss. Therefore, an effective closed orbit correction and a sufficiently large dynamic aperture of the HESR are crucial. With this thesis I present my work on both of these topics. The expected misalignments of beam guiding magnets have been estimated and used to simulate the closed orbit in the HESR. A closed orbit correction scheme has been developed for different ion optical settings of the HESR and numerical simulations have been performed to validate the scheme. The proposed closed orbit correction method which uses the orbit response matrix has been benchmarked at the Cooler Synchrotron COSY of the Forschungszentrum Juelich. A chromaticity correction scheme for the HESR consisting of sextupole magnets has been developed to reduce tune spread and thus to minimize the emittance growth caused by betatron resonances. The chromaticity correction scheme has been optimized through dynamic aperture calculations. The estimated field errors of the HESR dipole and quadrupole magnets have been included in the non-linear beam dynamics studies. Investigations concerning their optimization have been carried out. The ion optical settings of the HESR have been improved using dynamic aperture calculations and the technique of frequency map analysis. The related diffusion coefficient was also used to predict long-term stability based on short-term particle tracking. With a reasonable reduction of the quadrupole magnets field errors and a

  15. Patterns of Failure After Proton Therapy in Medulloblastoma; Linear Energy Transfer Distributions and Relative Biological Effectiveness Associations for Relapses

    International Nuclear Information System (INIS)

    Sethi, Roshan V.; Giantsoudi, Drosoula; Raiford, Michael; Malhi, Imran; Niemierko, Andrzej; Rapalino, Otto; Caruso, Paul; Yock, Torunn I.; Tarbell, Nancy J.; Paganetti, Harald; MacDonald, Shannon M.

    2014-01-01

    Purpose: The pattern of failure in medulloblastoma patients treated with proton radiation therapy is unknown. For this increasingly used modality, it is important to ensure that outcomes are comparable to those in modern photon series. It has been suggested this pattern may differ from photons because of variations in linear energy transfer (LET) and relative biological effectiveness (RBE). In addition, the use of matching fields for delivery of craniospinal irradiation (CSI) may influence patterns of relapse. Here we report the patterns of failure after the use of protons, compare it to that in the available photon literature, and determine the LET and RBE values in areas of recurrence. Methods and Materials: Retrospective review of patients with medulloblastoma treated with proton radiation therapy at Massachusetts General Hospital (MGH) between 2002 and 2011. We documented the locations of first relapse. Discrete failures were contoured on the original planning computed tomography scan. Monte Carlo calculation methods were used to estimate the proton LET distribution. Models were used to estimate RBE values based on the LET distributions. Results: A total of 109 patients were followed for a median of 38.8 months (range, 1.4-119.2 months). Of the patients, 16 experienced relapse. Relapse involved the supratentorial compartment (n=8), spinal compartment (n=11), and posterior fossa (n=5). Eleven failures were isolated to a single compartment; 6 failures in the spine, 4 failures in the supratentorium, and 1 failure in the posterior fossa. The remaining patients had multiple sites of disease. One isolated spinal failure occurred at the spinal junction of 2 fields. None of the 70 patients treated with an involved-field-only boost failed in the posterior fossa outside of the tumor bed. We found no correlation between Monte Carlo-calculated LET distribution and regions of recurrence. Conclusions: The most common site of failure in patients treated with protons for

  16. Dependence of Parameters of Laser-Produced Au Plasmas on the Incident Laser Energy of Sub-Nanosecond and Picosecond Laser Pulses

    International Nuclear Information System (INIS)

    Woryna, E.; Badziak, J.; Makowski, J.; Parys, P.; Vankov, A.B.; Wolowski, J.; Krasa, J.; Laska, L.; Rohlena, K.

    2001-01-01

    The parameters of Au plasma as functions of laser energy for ps pulses are presented and compared with the ones for sub-ns pulses at nearly the same densities of laser energy. The experiments were performed at the IPPLM with the use of CPA (chirped pulse amplification) Nd:glass laser system. Thick Au foil targets were irradiated by normally incident focused laser beams with maximum intensities of 8x10 16 and 2x10 14 W/cm 2 for ps and sub-ns laser pulses, respectively. The characteristics of ion streams were investigated with the use of ion diagnostics methods based on the time-of flight technique. In these experiments the laser energies were changed in the range from 90 to 700 mJ and the measurements were performed at a given focus position FP = 0 and along the target normal for both the laser pulses. The charge carried by the ions, the maximum ion velocities of fast and thermal ion groups, the maximum ion current density as well as the area of photopeak in dependence on the incident laser energy for sub-ns and ps pulses were investigated and discussed. (author)

  17. Performance of the tariffs of a single-phase electric energy meter, type electronic, operating with non-linear loads; Desempenho tarifario do medidor monofasico de energia eletrica do tipo eletronico operando com cargas nao-lineares

    Energy Technology Data Exchange (ETDEWEB)

    Santos, G.B.; Pinheiro Neto, D.; Lisita, L.R.; Machado, P.C.M.; Oliveira, J.V.M. [Universidade Federal de Goias (UFG), Goiania, GO (Brazil). Escola de Engenharia Eletrica e de Computacao], Emails: guilhermebsantos@gmail.com, daywes@gmail.com, lrlisi-ta@gmail.com, pcesar@eee.ufg.br, joao.eee@gmail.com

    2009-07-01

    This paper analyzes the behavior of a electronic meter of single-phase in the laboratory when it is subjected to a environment with linear loads and nonlinear loads kind residential and commercial. It differs from correlated studies mainly for making use of real loads encountered in day-to-day, rather than as sources of electronic loads how has been observed in the state of the art. The comparison of results is made based on high precision energy pattern developed by virtual instrumentation means.

  18. Evaluation of great saphenous vein occlusion rate and clinical outcome in patients undergoing laser thermal ablation with a 1470-nm bare fiber laser with low linear endovenous energy density

    Directory of Open Access Journals (Sweden)

    Walter Junior Boim Araujo

    2015-12-01

    Full Text Available Abstract Background Water-specific 1470-nm lasers enable vein ablation at lower energy densities and with fewer side effects because they target interstitial water in the vessel wall. Objectives To determine great saphenous vein (GSV occlusion rate after thermal ablation with 1470-nm laser using 7W power and to evaluate clinical outcomes and complications. Method Nineteen patients (31 GSVs underwent thermal ablation. Follow-up duplex scanning, clinical evaluation using the Venous Clinical Severity Score (VCSS, and evaluation of procedure-related complications were performed at 3-5 days after the procedure and at 30 and 180 days. Results Mean patient age was 46 years and 17 of the patients were female (89.47%. Of 31 limbs treated, 2 limbs were clinical class C2, 19 were C3, 9 were C4, and 1 limb was C5 according to the Clinical-Etiology-Anatomy-Pathophysiology (CEAP classification. Mean linear endovenous energy density was 33.53 J/cm. The GSV occlusion rate was 93.5% immediately after treatment, 100% at 3-5 days and 100% at 30 days after treatment and 87.1% 180 days after treatment. There was a significant reduction in VCSS at all time points. Conclusions The data from this study support the possibility that the incidence of complications can be reduced without significantly affecting the clinical outcomes, by using lower energy density. However, this appears to be at the cost of reduced efficacy in terms of GSV occlusion rates.

  19. Investigation of the fission fragment properties of the reaction 238U(N,F) at incident neutron energies up to 5.8 MeV

    International Nuclear Information System (INIS)

    Vives, F.

    1998-01-01

    The 238 U(n,f) reaction has been studied at various incident neutrons energies from 1,2 at 5,8 MeV. The author shows that the vibrational resonances presence in the cross section threshold area and the protons parity effect, lead to variations in the fission fragments properties. The mass, the total kinetic energy (TKE) and the fragments angular distribution have been obtained thanks a ionisation double chamber use. Mass function changes in the mass and kinetic energy distributions and their respectively contributions to the TKE variations, have also been studied. The two-dimension distributions adjustments mass-TKE have been compared to the theoretical calculus, compiled with the multi-modal random neck-rupture model: two solutions are possible. Meanwhile, only one leads to significant physical interpretation in terms of layers effects. (A.L.B.)

  20. Measurement of neutron-production double-differential cross sections for high-energy pion-incident reaction

    International Nuclear Information System (INIS)

    Iwamoto, Yousuke; Iga, Kiminori; Kitsuki, Hirohiko

    2000-01-01

    Double-differential neutron-production yields for 870-MeV π + , π - and 2.1-GeV π + incident on iron and lead targets were measured with NE213 liquid scintillators by time-of-flight technique. The two-gate integration method was used for the pulse shape discrimination between neutrons and gamma-rays. Neutron detection efficiencies were derived from the calculation results of SCINFUL and CECIL codes. The experimental results were compared with the calculation including the neutron transport in the actual thickness target by the contribution use of both NMTC/JAERI97 and MCNPX. (author)

  1. SCATPI, a subroutine for calculating πN cross sections and polarizations for incident pion kinetic energies between 90 and 300 MeV

    International Nuclear Information System (INIS)

    Walter, J.B.; Rebka, G.A. Jr.

    1979-03-01

    A subroutine, SCATPI, was written which calculates π + p elastic differential cross sections for incident pion kinetic energies between 90 and 310 MeV for π - p. The calculation is based upon the phase shift analysis of Carter, Bugg, and Carter, and is reliable to about 2% for π + p and 3% for π - p differential cross sections. SCATPI also calculates other scattering parameters for the π+-p systems. The calculations are compared with the measurements used in the phase shift analysis, and with selected recent measurements. The use of SCATPI is described. 14 figures, 4 tables

  2. Energy drink exposures reported to Texas poison centers: Analysis of adverse incidents in relation to total sales, 2010-2014.

    Science.gov (United States)

    Borron, Stephen W; Watts, Susan H; Herrera, Jessica; Larson, Joshua; Baeza, Salvador; Kingston, Richard L

    2018-05-21

    The ill-defined term "energy drink" includes a disparate group of products (beverages, shots, concentrates, and workout powders) having large differences in caffeine content and concentration and intended use. Hence, inaccurate conclusions may be drawn when describing adverse events associated with "energy drinks". The FDA is considering new regulation of these products but product specificity is needed to evaluate safety. To help address this, we queried Texas Poison Center Network data for single substance exposures to "energy drinks" from 2010 to 2014, then analyzed adverse events by product type. We specifically compared energy beverage exposures with sales data for the same time period to evaluate the safety profile of this category of energy drinks. Among 855 documented "energy drink" exposures, poison center-determined outcome severity revealed 291 with no/minimal effects, 417 judged nontoxic or minor/not followed, 64 moderate and 4 major effects, and no deaths. Serious complications included 2 seizures and 1 episode of ventricular tachycardia. Outcome severity by category for beverages: 11 moderate/1 major effects (none in children energy drinks". Copyright © 2018 Elsevier Inc. All rights reserved.

  3. Linear collider: a preview

    Energy Technology Data Exchange (ETDEWEB)

    Wiedemann, H.

    1981-11-01

    Since no linear colliders have been built yet it is difficult to know at what energy the linear cost scaling of linear colliders drops below the quadratic scaling of storage rings. There is, however, no doubt that a linear collider facility for a center of mass energy above say 500 GeV is significantly cheaper than an equivalent storage ring. In order to make the linear collider principle feasible at very high energies a number of problems have to be solved. There are two kinds of problems: one which is related to the feasibility of the principle and the other kind of problems is associated with minimizing the cost of constructing and operating such a facility. This lecture series describes the problems and possible solutions. Since the real test of a principle requires the construction of a prototype I will in the last chapter describe the SLC project at the Stanford Linear Accelerator Center.

  4. Linear collider: a preview

    International Nuclear Information System (INIS)

    Wiedemann, H.

    1981-11-01

    Since no linear colliders have been built yet it is difficult to know at what energy the linear cost scaling of linear colliders drops below the quadratic scaling of storage rings. There is, however, no doubt that a linear collider facility for a center of mass energy above say 500 GeV is significantly cheaper than an equivalent storage ring. In order to make the linear collider principle feasible at very high energies a number of problems have to be solved. There are two kinds of problems: one which is related to the feasibility of the principle and the other kind of problems is associated with minimizing the cost of constructing and operating such a facility. This lecture series describes the problems and possible solutions. Since the real test of a principle requires the construction of a prototype I will in the last chapter describe the SLC project at the Stanford Linear Accelerator Center

  5. Production of positive pions from polarized protons by linearly polarized photons in the energy region 300--420 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Get' man, V.A.; Gorbenko, V.G.; Grushin, V.F.; Derkach, A.Y.; Zhebrovskii, Y.V.; Karnaukhov, I.M.; Kolesnikov, L.Y.; Luchanin, A.A.; Rubashkin, A.L.; Sanin, V.M.; Sorokin, P.V.; Sporov, E.A.; Telegin, Y.N.; Shalatskii, S.V.

    1980-10-01

    A technique for measurement of the polarization observables ..sigma.., P, and T for the reaction ..gamma..p..-->..n..pi../sup +/ in a doubly polarized experiment (polarized proton target + linearly polarized photon beam) is described. Measurements of the angular distributions of these observables in the range of pion emission angles 30--150/sup 0/ are presented for four photon energies from 300 to 420 MeV. Inclusion of the new experimental data in an energy-independent multipole analysis of photoproduction from protons permits a more reliable selection of solutions to be made.

  6. FY 2000 report on the results of the technology development of energy use reduced machine tools, etc. Development of the linear motor system for realization of energy conservation and commercialization; 2000 nendo energy shiyo gorika kosaku kiki nado gijutsu kaihatsu seika hokokusho. Shoeneka to jitsuyoka wo jitsugensuru linear motor system no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    In relation to the drive system of machine tools widely used as production facilities for automobiles, home electric appliances, etc., the R and D were made of a high efficiency linear motor system of which attention was paid to energy rationalization and environmental loads, and the FY 2000 results were summed up. In the study of the development of the system, studies were made not only on the lowering of heating, cost reduction and heightening of speed, but on the mechanism and control by which machine natural vibration can relatively be cut off, technology of damping for cutting vibration, technology to meet the deformation, etc. by cutting loads, sliding loads, and acceleration of accelerating/decelerating, technology to reduce the machine weight, etc. In the study of the basic technology of linear motor, the finite element method analysis was conducted on the typical linear motor. Concerning the control system, specs were studied which can deal with natural vibration and cutting vibration of the machine system. As to the development of the steel scale type linear encoder, scale sample for evaluation of basic characteristics was designed/trially manufactured. In the study of the detection optical system, the design/trial manufacture of photodiode array were made. (NEDO)

  7. Analysis and monitoring of energy security and prediction of indicator values using conventional non-linear mathematical programming

    Directory of Open Access Journals (Sweden)

    Elena Vital'evna Bykova

    2011-09-01

    Full Text Available This paper describes the concept of energy security and a system of indicators for its monitoring. The indicator system includes more than 40 parameters that reflect the structure and state of fuel and energy complex sectors (fuel, electricity and heat & power, as well as takes into account economic, environmental and social aspects. A brief description of the structure of the computer system to monitor and analyze energy security is given. The complex contains informational, analytical and calculation modules, provides applications for forecasting and modeling energy scenarios, modeling threats and determining levels of energy security. Its application to predict the values of the indicators and methods developed for it are described. This paper presents a method developed by conventional nonlinear mathematical programming needed to address several problems of energy and, in particular, the prediction problem of the security. An example of its use and implementation of this method in the application, "Prognosis", is also given.

  8. Linear algebra

    CERN Document Server

    Shilov, Georgi E

    1977-01-01

    Covers determinants, linear spaces, systems of linear equations, linear functions of a vector argument, coordinate transformations, the canonical form of the matrix of a linear operator, bilinear and quadratic forms, Euclidean spaces, unitary spaces, quadratic forms in Euclidean and unitary spaces, finite-dimensional space. Problems with hints and answers.

  9. Low energy positron diffraction from Cu(111): Importance of surface loss processes at large angles of incidence

    International Nuclear Information System (INIS)

    Lessor, D.L.; Duke, C.B.; Lippel, P.H.; Brandes, G.R.; Canter, K.F.; Horsky, T.N.

    1990-10-01

    Intensities of positrons specularly diffracted from Cu(111) were measured at the Brandeis positron beam facility and analyzed in the energy range 8eV i = 4eV. At lower energies strong energy dependences occur associated both with multiple elastic scattering phenomena within atomic layers of Cu parallel to the surface and with the thresholds of inelastic channels (e.g., plasmon creation). Use of the free electron calculation of V i shows that energy dependence of inelastic processes is necessary to obtain a satisfactory description of the absolute magnitude of the diffracted intensities below E = 50eV. Detailed comparison of the calculated and observed diffraction intensities reveals the necessity of incorporating surface loss processes explicitly into the model in order to achieve a quantitative description of the measured intensities for E 40 degree. 30 refs., 5 figs., 1 tab

  10. Simulation of hadron multiple production by cosmic-ray protons in the incident energy region of 1015 eV

    International Nuclear Information System (INIS)

    Takatsuka, Ichiro

    1984-01-01

    The simulation studies of the unusual cosmic ray families found by the experiment at Mt. Chacaltaya were performed. Those families have a larger number of hadrons than the normal families, or are the families with big transverse extension. The former is called Centauro or Mini-centauro, and the latter is called Binocular and Chiron. In the first simulation, the process was calculated, in which the Lorentz transformation of π-meson multiple production (C-jet) in the energy region of 10 14 eV was made, and the jet with raised energy was combined, and the families were formed. The second simulation was made for the energy region more than 300 TeV, in which the nucleon-antinucleon multiple production with large transverse momentum and the B particle multiple production with larger transverse momentum were assumed. The data used were the C-jet data observed at Mt. Chacaltaya. For the simulation, all the primary particles were considered to be protons. The results of the present simulation study showed that the families with strong hadron components observed at Mt. Chacaltaya might be the new type hadron multiple production such as nucleon-antinucleon multiple production or B-particle multiple production. The total energy of all the families increased with the energy of the primary particles. There are a few families having the same extent of energy and spread as the Chiron. (Kato, T.)

  11. Excitation energy and angular momentum of quasiprojectiles produced in the Xe+Sn collisions at incident energies between 25 and 50 MeV/nucleon

    International Nuclear Information System (INIS)

    Steckmeyer, J.C.; Genouin-Duhamel, E.; Vient, E.; Colin, J.; Durand, D.; Auger, G.; Bacri, C.O.; Bellaize, N.; Borderie, B.; Bougault, R.; Bouriquet, B.; Brou, R.; Buchet, P.; Charvet, J.L.; Chbihi, A.; Cussol, D.; Dayras, R.; De Cesare, N.; Demeyer, A.; Dore, D.; Frankland, J.D.; Galichet, E.; Gerlic, E.; Guinet, D.; Hudan, S.; Lautesse, P.; Lavaud, F.; Laville, J.L.; Lecolley, J.F.; Leduc, C.; Legrain, R.; Le Neindre, N.; Lopez, O.; Louvel, M.; Maskay, A.M.; Nalpas, L.; Normand, J.; Parlog, M.; Pawlowski, P.; Plagnol, E.; Rivet, M.F.; Rosato, E.; Saint-Laurent, F.; Tabacaru, G.; Tamain, B.; Tassan-Got, L.; Tirel, O.; Turzo, K.; Vigilante, M.; Volant, C.; Wieleczko, J.P.

    2001-01-01

    The excitation energy and angular momentum transferred to quasiprojectiles have been measured in the 129 Xe+ nat Sn collisions at bombarding energies between 25 and 50 MeV/nucleon. The excitation energy of quasiprojectiles has been determined from the kinetic energy of all decay products (calorimetry). It increases with the violence of the collision, approaching 10 MeV/nucleon in the most dissipative ones. The angular momentum has been deduced from the kinetic energies and angular distributions of the emitted light charged particles (p, d, t, 3 He and α). The (apparent) spin value decreases with the violence of the collision. Larger spin values are observed at the lowest bombarding energy. Data are compared with the predictions of dynamical and statistical models. They reproduce the data in a quantitative way indicating that large spin values are transferred to quasiprojectiles during the interaction. The results show that the one-body dissipation formalism still applies at intermediate bombarding energies and low-energy dissipations. With the increase of the energy, the data seem to be better described when the two-body interaction is accounted for

  12. Wheelchair incidents

    NARCIS (Netherlands)

    Drongelen AW van; Roszek B; Hilbers-Modderman ESM; Kallewaard M; Wassenaar C; LGM

    2002-01-01

    This RIVM study was performed to gain insight into wheelchair-related incidents with powered and manual wheelchairs reported to the USA FDA, the British MDA and the Dutch Center for Quality and Usability Research of Technical Aids (KBOH). The data in the databases do not indicate that incidents with

  13. Dual Energy Computed Tomography to Evaluate Hepatocellular Carcinoma Treated with Transcatheter Arterial Chemo-Embolization: Comparison between the Linear Blending and Nonlinear Moidal Blending Methods

    International Nuclear Information System (INIS)

    Shin, Sang Soo; Kim, Hyeong Wook; Lee, Daun; Kang, Heoung Keun; Kim, Jin Woong; Heo, Suk Hee; Jeong, Yong Yeon; Seon, Hyun Ju

    2012-01-01

    To compare the linear blending image with the nonlinear moidal blending image using dual energy CT for the evaluation of the viable portion of hepatocellular carcinoma (HCC) after transcatheter arterial chemoembolization (TACE). One-hundred and twenty three HCC patients incompletely treated after TACE were enrolled in this study. The dual energy mode (80 kVp and Sn140 kVp) was only applied in the late arterial phase scanning. A paired t-test was used to compare the lesion-to-liver contrast-to-noise ratio (CNR) and the image noise between the two blending images. Lesion conspicuity, image sharpness, image noise and the overall image quality between the two blending images were compared using the Wilcoxon matched-pair signed-ranks test. The lesion-to-liver CNR was significantly higher on the moidal blending image (5.6 ± 3.2) than on the linear blending image (2.7 ± 1.6) (p < 0.001). The image noise was significantly lower on the moidal blending image (10.9 ± 3.5) than on the linear blending image (17.5 ± 5.5) (p < 0.001). The lesion conspicuity and overall image quality were significantly better on the moidal blending image for both reviewers (p < 0.001). However, with respect to image sharpness, the linear blending image was significantly better for both reviewers (p < 0.01). The nonlinear moidal blending image of dual energy CT showed an increased lesion-to-liver CNR, decreased noise and improved overall image quality for the evaluation of the viable portion of HCC after TACE.

  14. Polarized proton induced pion production on 10B at 200, 225, 250 and 260 MeV incident energies

    International Nuclear Information System (INIS)

    Ziegler, W.; Auld, E.G.; Falk, W.R.; Giles, G.L.; Jones, G.; Lolos, G.J.; McParland, B.

    1985-02-01

    The angular distributions of both the differential cross-section and the analyzing power are presented for the 10 B(p,π) 11 B reaction leading to the ground and first excited states of 11 B. The differential cross-section shows very little angular structure or energy dependence, but the analyzing power exhibits a considerable energy dependence for both states. This dependence, similar to that observed for the 12 C(p,π + ) 13 C reaction, may be a signature of the fact that single-particle final states are involved

  15. Inclusive break-up reactions of 6Li at an incident energy of 26 MeV/nucleon

    International Nuclear Information System (INIS)

    Shyam, R.; Machner, H.; Neumann, B.; Rebel, H.; Gils, H.J.; Planeta, R.; Buschmann, J.; Klewe-Nebenius, H.; Zagromski, S.

    1982-01-01

    Inclusive charged particle spectra were measured from nuclear reactions induced by 156 MeV 6 Li on 40 Ca. At forward angles the spectra exhibit broad break-up distributions centered around the energy corresponding to the beam velocity. The double differential cross sections together with previous results for a 208 Pb target were analyzed in the framework of the DWBA approach to projectile break-up taking into account elastic and inelastic reactions of the break-up fragments. The high energy tails of the background due to preequilibrium emission of complex charged particles were estimated on the basis of the coalescence model. (orig.) [de

  16. Inclusive break-up reactions of 6Li at an incident energy of 26 MeV/nucleon

    International Nuclear Information System (INIS)

    Neumann, B.; Rebel, H.; Gils, H.J.; Planeta, R.; Buschmann, J.; Klewe-Nebenius, H.; Zagromski, S.; Shyam, R.; Machner, H.

    1982-01-01

    Inclusive charged particle spectra were measured from nuclear reactions induced by 156 MeV 6 Li on 40 Ca. At forward angles the spectra exhibit broad break-up distributions centered around the energy corresponding to the beam velocity. The double differential cross sections together with previous results for a 208 Pb target were analyzed in the framework of the DWBA approach to projectile break-up taking into account elastic and inelastic reactions of the break-up fragments. The high energy tails of the background due to preequilibrium emission of complex charged particles were estimated on the basis of the coalescence model. (orig.)

  17. The electron beam characteristics of energies up to 20 MeV and comparison of electron parameters of linear accelerators

    International Nuclear Information System (INIS)

    Awada, M.; Elleithy, M.A.; ElWihady, G.F.; Mostafa, K.A.

    2005-01-01

    The electron beams characteristics studded for the energies 4-20 MeV of Varian 23 EX ,experimental results are presented and compared with the published data. The CADD curves are measured for all energies and carried out the PDD of different applicator sizes ,that compared with the PDD of in the BJR. The quality beam parameters are determined from the CADD curves and calculated the yielded parameters of the corresponding electron energies which compared with the published data of other accelerators and theoretical Monte-Carlo calculation. The beam profiles are measured at different depths to construct the isodose distribution

  18. Feasibility Study for Using a Linear Transverse Flux Machine as part of the Structure of Point Absorber Wave Energy Converter

    Directory of Open Access Journals (Sweden)

    Ilana Pereira da Costa Cunha

    2017-10-01

    Full Text Available This is a feasibility study for the generation of wave energy by means of a transverse flux machine connected to a device for converting wave energy known as Point Absorber. The article contains literature review on the topic and analysis of data obtained by means of a prototype built in the laboratory. Based on the results, the study concludes that this use is feasible.

  19. Benefits of up-wave measurements in linear short-term wave forecasting for wave energy applications

    OpenAIRE

    Paparella, Francesco; Monk, Kieran; Winands, Victor; Lopes, Miguel; Conley, Daniel; Ringwood, John

    2014-01-01

    The real-time control of wave energy converters requires the prediction of the wave elevation at the location of the device in order to maximize the power extracted from the waves. One possibility is to predict the future wave elevation by combining its past history with the spatial information coming from a sensor which measures the free surface elevation upwave of the wave energy converter. As an application example, the paper focuses on the prediction of the wave eleva...

  20. Analysis and Improvement of the Energy Management of an Isolated Microgrid in Lencois Island based on a Linear Optimization Approach

    DEFF Research Database (Denmark)

    Federico, de Bosio; Hernández, Adriana Carolina Luna; de Sousa Ribeiro, Luiz Antonio

    2016-01-01

    This paper proposes an optimization-based decision support strategy to enhance the management of the distributed energy sources of an islanded microgrid. The solutions provided by the optimization algorithm are compared with the current strategy, already implemented in a real site microgrid on Le...... on Lencois’ island/Brazil. Significant economic and energy savings are achieved when the optimal management of the diesel generator is performed....