Awad, E M
1999-01-01
In this work, we have studied the effect of the radiation damage caused by the incident particles on the activation energy of etching for CR-39 samples. The damage produced by the incident particle is expressed in terms of the linear energy transfer (LET). CR-39 samples from American Acrylic were irradiated to three different LET particles. These are N (LET sub 2 sub 0 sub 0 = 20 KeV/mu m) as a light particle, Fe (LET sub 2 sub 0 sub 0 = 110 KeV/mu m) as a medium particle and fission fragments (ff) from a sup 2 sup 5 sup 2 Cf source as heavy particles. In general the bulk etch rate was calculated using the weight difference method and the track etch rate was determined using the track geometry at various temperatures (50-90 deg. C) and concentrations (4-9 N) of the NaOH etchant. The average activation energy E sub b related to the bulk etch rate v sub b was calculated from 1n v sub b vs. 1/T. The average activation energy E sub t related to the track etch rate v sub t was estimated from 1n v sub t vs. 1/T. It...
Thekaekara, M. P.
1974-01-01
Instrumentation for solar irradiance monitoring, and radiation scales are discussed in a survey of incident solar energy data. The absolute accuracy and intrinsic reliability of the values of the solar constant and zero air mass solar spectrum proposed by the Institute of Environmental Sciences as an ASTM standard are evaluated. Extraterrestrial observations are used for deriving solar irradiance data at ground level for widely varying atmospheric parameters, with special reference to air pollution. The effects of diffuse sky radiance and those of varying slopes of the solar energy collecting surface are examined. Average values of solar energy available at different locations in the United States are included.
Energy doubler for a linear collider
Directory of Open Access Journals (Sweden)
S. Lee
2002-01-01
Full Text Available The concept of using short plasma sections several meters in length to double the energy of a linear collider just before the collision point is proposed and modeled. In this scenario the beams from each side of a linear collider are split into pairs of microbunches with the first driving a plasma wake that accelerates the second. The luminosity of the doubled collider is maintained by employing plasma lenses to reduce the spot size before collision.
Linear representation of energy-dependent Hamiltonians
Czech Academy of Sciences Publication Activity Database
Znojil, Miloslav
2004-01-01
Roč. 326, 1/2 (2004), s. 70-76 ISSN 0375-9601 R&D Projects: GA AV ČR IAA1048302 Institutional research plan: CEZ:AV0Z1048901 Keywords : energy-dependent Hamiltonians * Quasi-Hermitian linear representation Subject RIV: BE - Theoretical Physics Impact factor: 1.454, year: 2004
Incident energy dependence of pt correlations at relativistic energies
Adams, J; Ahammed, Z; Amonett, J; Anderson, B D; Arkhipkin, D; Averichev, G S; Badyal, S K; Bai, Y; Balewski, J; Barannikova, O; Barnby, L S; Baudot, J; Bekele, S; Belaga, V V; Bellingeri-Laurikainen, A; Bellwied, R; Berger, J; Bezverkhny, B I; Bharadwaj, S; Bhasin, A; Bhati, A K; Bhatia, V S; Bichsel, H; Bielcik, J; Bielcikova, J; Billmeier, A; Bland, L C; Blyth, C O; Bonner, B E; Botje, M; Boucham, A; Bouchet, J; Brandin, A V; Bravar, A; Bystersky, M; Cadman, R V; Cai, X Z; Caines, H; Calderón de la Barca-Sanchez, M; Castillo, J; Catu, O; Cebra, D; Chajecki, Z; Chaloupka, P; Chattopadhyay, S; Chen, H F; Chen, Y; Cheng, J; Cherney, M; Chikanian, A; Christie, W; Coffin, J P; Cormier, T M; Cramer, J G; Crawford, H J; Das, D; Das, S; Daugherity, M; De Moura, M M; Dedovich, T G; Derevshchikov, A A; Didenko, L; Dietel, T; Dogra, S M; Dong, W J; Dong, X; Draper, J E; Du, F; Dubey, A K; Dunin, V B; Dunlop, J C; Dutta, M R; Mazumdar; Eckardt, V; Edwards, W R; Efimov, L G; Emelianov, V; Engelage, J; Eppley, G; Erazmus, B; Estienne, M; Fachini, P; Faivre, J; Fatemi, R; Fedorisin, J; Filimonov, K; Filip, P; Finch, E; Fine, V; Fisyak, Yu; Fu, J; Gagliardi, C A; Gaillard, L; Gans, J; Ganti, M S; Geurts, F; Ghazikhanian, V; Ghosh, P; González, J E; Gos, H; Grachov, O; Grebenyuk, O; Grosnick, D P; Guertin, S M; Guo, Y; Sen-Gupta, A; Gutíerrez, T D; Hallman, T J; Hamed, A; Hardtke, D; Harris, J W; Heinz, M; Henry, T W; Hepplemann, S; Hippolyte, B; Hirsch, A; Hjort, E; Hoffmann, G W; Huang, H Z; Huang, S L; Hughes, E W; Humanic, T J; Igo, G; Ishihara, A; Jacobs, P; Jacobs, W W; Jedynak, M; Jiang, H; Jones, P G; Judd, E G; Kabana, S; Kang, K; Kaplan, M; Keane, D; Kechechyan, A; Khodyrev, V Yu; Kiryluk, J; Kisiel, A; Kislov, E M; Klay, J; Klein, S R; Koetke, D D; Kollegger, T; Kopytine, M; Kotchenda, L; Kowalik, K L; Krämer, M; Kravtsov, P; Kravtsov, V I; Krüger, K; Kuhn, C; Kulikov, A I; Kumar, A; Kutuev, R K; Kuznetsov, A A; Lamont, M A C; Landgraf, J M; Lange, S; Laue, F; Lauret, J; Lebedev, A; Lednicky, R; Lehocka, S; Le Vine, M J; Li, C; Li, Q; Li, Y; Lin, G; Lindenbaum, S J; Lisa, M A; Liu, F; Liu, H; Liu, L; Liu, Q J; Liu, Z; Ljubicic, T; Llope, W J; Long, H; Longacre, R S; López-Noriega, M; Love, W A; Lu, Y; Ludlam, T; Lynn, D; Ma, G L; Ma, J G; Ma, Y G; Magestro, D; Mahajan, S; Mahapatra, D P; Majka, R; Mangotra, L K; Manweiler, R; Margetis, S; Markert, C; Martin, L; Marx, J N; Matis, H S; Matulenko, Yu A; McClain, C J; McShane, T S; Meissner, F; Melnik, Yu M; Meschanin, A; Miller, M L; Minaev, N G; Mironov, C; Mischke, A; Mishra, D K; Mitchell, J; Mohanty, B; Molnár, L; Moore, C F; Morozov, D A; Munhoz, M G; Nandi, B K; Nayak, S K; Nayak, T K; Nelson, J M; Netrakanti, P K; Nikitin, V A; Nogach, L V; Nurushev, S B; Odyniec, Grazyna Janina; Ogawa, A; Okorokov, V; Oldenburg, M; Olson, D; Pal, S K; Panebratsev, Yu A; Panitkin, S Y; Pavlinov, A I; Pawlak, T; Peitzmann, T; Perevozchikov, V; Perkins, C; Peryt, W; Petrov, V A; Phatak, S C; Picha, R; Planinic, M; Pluta, J; Porile, N; Porter, J; Poskanzer, A M; Potekhin, M V; Potrebenikova, E V; Potukuchi, B V K S; Prindle, D; Pruneau, C A; Putschke, J; Rakness, G; Raniwala, R; Raniwala, S; Ravel, O; Ray, R L; Razin, S V; Reichhold, D M; Reid, J G; Reinnarth, J; Renault, G; Retière, F; Ridiger, A; Ritter, H G; Roberts, J B; Rogachevski, O V; Romero, J L; Rose, A; Roy, C; Ruan, L; Russcher, M; Sahoo, R; Sakrejda, I; Salur, S; Sandweiss, J; Sarsour, M; Savin, I; Sazhin, P S; Schambach, J; Scharenberg, R P; Schmitz, N; Schweda, K; Seger, J; Seyboth, P; Shahaliev, E; Shao, M; Shao, W; Sharma, M; Shen, W Q; Shestermanov, K E; Shimansky, S S; Sichtermann, E P; Simon, F; Singaraju, R N; Smirnov, N; Snellings, R; Sood, G; Sørensen, P; Sowinski, J; Speltz, J; Spinka, H M; Srivastava, B; Stadnik, A; Stanislaus, T D S; Stock, R; Stolpovsky, A; Strikhanov, M N; Stringfellow, B C; Suaide, A A P; Sugarbaker, E R; Suire, C; Sumbera, M; Surrow, B; Swanger, M; Symons, T J M; Szanto de Toledo, A; Tai, A; Takahashi, J; Tang, A H; Tarnowsky, T J; Thein, D; Thomas, J H; Timoshenko, S; Tokarev, M; Trentalange, S; Tribble, R E; Tsai, O D; Ulery, J; Ullrich, T; Underwood, D G; Van Buren, G; Van Leeuwen, M; Van der Molen, A M; Varma, R; Vasilevski, I M; Vasilev, A N; Vernet, R; Vigdor, S E; Viyogi, Y P; Vokal, S; Voloshin, S A; Waggoner, W T; Wang, F; Wang, G; Wang, X L; Wang, Y; Wang, Z M; Ward, H; Watson, J W; Webb, J C; Westfall, G D; Wetzler, A; Whitten, C; Wieman, H; Wissink, S W; Witt, R; Wood, J; Wu, J; Xu, N; Xu, Z; Xu, Z Z; Yamamoto, E; Yepes, P; Yurevich, V I; Zborovský, I; Zhang, H; Zhang, W M; Zhang, Y; Zhang, Z P; Zoulkarneev, R; Zoulkarneeva, Y; Zubarev, A N
2005-01-01
We present results for two-particle transverse momentum correlations, , as a function of event centrality for Au+Au collisions at sqrt(sNN) = 20, 62, 130, and 200 GeV at the Relativistic Heavy Ion Collider. We observe correlations decreasing with centrality that are similar at all four incident energies. The correlations multiplied by the multiplicity density increase with incident energy and the centrality dependence may show evidence of processes such as thermalization, minijet production, or the saturation of transverse flow. The square root of the correlations divided by the event-wise average transverse momentum per event shows little or no beam energy dependence and generally agrees with previous measurements at the Super Proton Synchrotron.
Asai, J
1999-01-01
In order to initiate the experiments using linearly polarized tagged photons at intermediate energies, it is imperative to know and to monitor the degree of polarization. The relationship is re-examined between the linear polarization of photons and the asymmetry ratio in pair production by such photons. An improved method is proposed in which pairs are prohibited from entering the cone region around the incident photon beam. By restricting the directions of pairs, the asymmetry ratio is much improved. (author)
Linear free energy relationship in reactions between diphenyl amine ...
Indian Academy of Sciences (India)
Home; Journals; Journal of Chemical Sciences; Volume 118; Issue 3. Linear free energy relationship in reactions between diphenyl amine and benzyl bromides. S Ranga Reddy P Manikyamba. Volume ... Keywords. Diphenyl amine; substituent effect; reaction constant; isokinetic temperature; linear free energy relationship.
Energy in one-dimensional linear waves
Energy Technology Data Exchange (ETDEWEB)
Repetto, C E; Roatta, A; Welti, R J, E-mail: welti@fceia.unr.edu.ar [Laboratorio de Vibraciones y Ondas, Departamento de Fisica, Escuela de Formacion Basica, Facultad de Ciencias Exactas, IngenierIa y Agrimensura (UNR), Pellegrini 250, S2000BTP Rosario (Argentina)
2011-11-15
This work is based on propagation phenomena that conform to the classical wave equation. General expressions of power, the energy conservation equation in continuous media and densities of the kinetic and potential energies are presented. As an example, we study the waves in a string and focused attention on the case of standing waves. The treatment is applicable to introductory science textbooks. (letters and comment)
Precision measurements of the SLC [Stanford Linear Collider] beam energy
International Nuclear Information System (INIS)
Kent, J.; King, M.; Von Zanthier, C.
1989-03-01
A method of precisely determining the beam energy in high energy linear colliders has been developed using dipole spectrometers and synchrotron radiation detectors. Beam lines implementing this method have been installed on the Stanford Linear Collider. An absolute energy measurement with an accuracy of better than δE/E = 5 /times/ 10/sup /minus/4/ can be achieved on a pulse-to-pulse basis. The operation of this system will be described. 4 refs., 3 figs., 1 tab
Energy balance in a system with quasispherical linear compression
International Nuclear Information System (INIS)
Es'kov, A.G.; Kozlov, N.P.; Kurtmullaev, R.K.; Semenov, V.N.; Khvesyuk, V.I.; Yaminskii, A.V.
1983-01-01
This letter reports the resists of some experimental studies and a numerical simulation of the Tor-linear fusion system, 1 in which a heavy plasma shell with a closed magnetic structure is compressed in a quasispherical manner. The parameters of the Tor-Linear, at the Kurchatov Institute of Atomic Energy in Moscow are as follows: The energy stored in the system which accelerates the linear is E = 0.5 MJ; the linear mass is m = 0.2 kg; the working volume of the linear module is 1.5 x 10 -3 m 3 ; the linear velocity is approx.10 3 m/s; the guiding field in the toriod in the linear is 1--10 x 10 21 m -3 ; and the intial volume of the plasma in the linear chamber is 2.5 x 10 -4 m 3 . In this series of experiments, new solutions were developed for all the systems of the plasma--linear complex of the Tor-Linear: to produce a plasma toroid, to transport it, and to trap it in the linear cavity
Economic MPC for a linear stochastic system of energy units
DEFF Research Database (Denmark)
Jørgensen, John Bagterp; Sokoler, Leo Emil; Standardi, Laura
2016-01-01
in addition to stochastic power producers such as wind turbines and solar power plants. Control of such large scale systems requires new control algorithms. In this paper, we formulate the control of such a system as an Economic Model Predictive Control (MPC) problem. When the power producers and controllable...... power consumers have linear dynamics, the Economic MPC may be expressed as a linear program. We provide linear models for a number of energy units in an energy system, formulate an Economic MPC for coordination of such a system. We indicate how advances in computational MPC makes the solutions...... of such large-scale models feasible in real-time. The system presented may serve as a benchmark for simulation and control of smart energy systems and we indicate how advances in computational MPC....
Energy conserving, linear scaling Born-Oppenheimer molecular dynamics.
Cawkwell, M J; Niklasson, Anders M N
2012-10-07
Born-Oppenheimer molecular dynamics simulations with long-term conservation of the total energy and a computational cost that scales linearly with system size have been obtained simultaneously. Linear scaling with a low pre-factor is achieved using density matrix purification with sparse matrix algebra and a numerical threshold on matrix elements. The extended Lagrangian Born-Oppenheimer molecular dynamics formalism [A. M. N. Niklasson, Phys. Rev. Lett. 100, 123004 (2008)] yields microcanonical trajectories with the approximate forces obtained from the linear scaling method that exhibit no systematic drift over hundreds of picoseconds and which are indistinguishable from trajectories computed using exact forces.
Krywonos, Andrey; Harvey, James E; Choi, Narak
2011-06-01
Scattering effects from microtopographic surface roughness are merely nonparaxial diffraction phenomena resulting from random phase variations in the reflected or transmitted wavefront. Rayleigh-Rice, Beckmann-Kirchhoff. or Harvey-Shack surface scatter theories are commonly used to predict surface scatter effects. Smooth-surface and/or paraxial approximations have severely limited the range of applicability of each of the above theoretical treatments. A recent linear systems formulation of nonparaxial scalar diffraction theory applied to surface scatter phenomena resulted first in an empirically modified Beckmann-Kirchhoff surface scatter model, then a generalized Harvey-Shack theory that produces accurate results for rougher surfaces than the Rayleigh-Rice theory and for larger incident and scattered angles than the classical Beckmann-Kirchhoff and the original Harvey-Shack theories. These new developments simplify the analysis and understanding of nonintuitive scattering behavior from rough surfaces illuminated at arbitrary incident angles.
Investigation of incomplete linear momentum transfer in heavy ion reactions at intermediate energies
International Nuclear Information System (INIS)
Leray, S.
1986-07-01
At intermediate energies, heavy ion central collisions lead to the incomplete fusion of the incident nuclei while part of the initial linear momentum is carried away by fast light particles. Experiments were performed with 30 MeV per nucleon neon and 20, 35 and 44 MeV per nucleon argon projectiles bombarding heavy targets. Results obtained with 30 MeV per nucleon neon and 20 MeV per nucleon argon beams are in good agreement with an empirical law established with lighter projectiles. On the contrary, 35 and 44 MeV per nucleon argon projectiles do not follow the same law and fission fragments progressively disappear. A simple model explains the evolution of the amount of transferred linear momentum versus incident energy. The disappearance of the fusion products of the composite system observed with argon projectiles beyond 35 MeV per nucleon is explained by a limitation of the excitation energy per nucleon which can be deposited in a nucleus. The limit is evaluated from nucleon binding energy in nuclei and probability to emit clusters and is in good agreement with experimental data. Because of the coupling between intrinsic motion of nucleons and relative motion of nuclei, some nucleons have a kinetic energy high enough to be emitted: a theoretical model is proposed which rather well fits the data concerning fast nucleons but cannot explain the measured amounts of transferred linear momentum. This is attributed to the existence of other mechanisms [fr
Effects of a power and photon energy of incident light on near-field etching properties
Yatsui, T.; Saito, H.; Nishioka, K.; Leuschel, B.; Soppera, O.; Nobusada, K.
2017-12-01
We developed a near-field etching technique for realizing an ultra-flat surfaces of various materials and structures. To elucidate the near-field etching properties, we have investigated the effects of power and the photon energy of the incident light. First, we established theoretically that an optical near-field with photon energy lower than the absorption edge of the molecules can induce molecular vibrations. We used nanodiamonds to study the power dependence of the near-field etching properties. From the topological changes of the nanodiamonds, we confirmed the linear-dependence of the etching volume with the incident power. Furthermore, we studied the photon energy dependence using TiO2 nanostriped structures, which revealed that a lower photon energy results in a lower etching rate.
International Nuclear Information System (INIS)
Yamamoto, K; Fujita, T; Kanda, K; Maenaka, K; Badel, A; Formosa, F
2014-01-01
In this study, the improvement of energy harvesting from wideband vibration with random change by using a combination of linear and nonlinear spring system is investigated. The system consists of curved beam spring for non-linear buckling, which supports the linear mass-spring resonator. Applying shock acceleration generates a snap through action to the buckling spring. From the FEM analysis, we showed that the snap through acceleration from the buckling action has no relationship with the applied shock amplitude and duration. We use this uniform acceleration as an impulse shock source for the linear resonator. It is easy to obtain the maximum shock response from the uniform snap through acceleration by using a shock response spectrum (SRS) analysis method. At first we investigated the relationship between the snap-through behaviour and an initial curved deflection. Then a time response result for non-linear springs with snap through and minimum force that makes a buckling behaviour were obtained by FEM analysis. By obtaining the optimum SRS frequency for linear resonator, we decided its resonant frequency with the MATLAB simulator
Effect of Integral Non-Linearity on Energy Calibration of ...
African Journals Online (AJOL)
The integral non-linearity (INL) of four spectroscopy systems, two integrated (A1 and A2) and two classical (B1 and B2) systems was determined using pulses from a random pulse generator. The effect of INL on the system's energy calibration was also determined. The effect is minimal in the classical system at high ...
Linear free energy relationship in reactions between diphenyl amine ...
Indian Academy of Sciences (India)
Unknown
Minimal structural effects observed are attributed to the fact that the isokinetic temperature of the reaction is close to the reaction temperature. Keywords. Diphenyl amine; substituent effect; reaction constant; isokinetic temperature; linear free energy relationship. 1. Introduction. Nucleophilic substitution at the benzylic carbon ...
Linear free energy relationship in reactions between diphenyl amine ...
Indian Academy of Sciences (India)
Unknown
close to the reaction temperature. Keywords. Diphenyl amine; substituent effect; reaction constant; isokinetic temperature; linear free energy relationship. 1. Introduction. Nucleophilic substitution at the benzylic carbon is of broad synthetic utility and has received considerably significant attention from organic chemists. Funda ...
Wu, Xiaocheng; Lang, Lingling; Ma, Wenjun; Song, Tie; Kang, Min; He, Jianfeng; Zhang, Yonghui; Lu, Liang; Lin, Hualiang; Ling, Li
2018-07-01
Dengue fever is an important infectious disease in Guangzhou, China; previous studies on the effects of weather factors on the incidence of dengue fever did not consider the linearity of the associations. This study evaluated the effects of daily mean temperature, relative humidity and rainfall on the incidence of dengue fever. A generalized additive model with splines smoothing function was performed to examine the effects of daily mean, minimum and maximum temperatures, relative humidity and rainfall on incidence of dengue fever during 2006-2014. Our analysis detected a non-linear effect of mean, minimum and maximum temperatures and relative humidity on dengue fever with the thresholds at 28°C, 23°C and 32°C for daily mean, minimum and maximum temperatures, 76% for relative humidity, respectively. Below the thresholds, there was a significant positive effect, the excess risk in dengue fever for each 1°C in the mean temperature at lag7-14days was 10.21%, (95% CI: 6.62% to 13.92%), 7.10% (95% CI: 4.99%, 9.26%) for 1°C increase in daily minimum temperature in lag 11days, and 2.27% (95% CI: 0.84%, 3.72%) for 1°C increase in daily maximum temperature in lag 10days; and each 1% increase in relative humidity of lag7-14days was associated with 1.95% (95% CI: 1.21% to 2.69%) in risk of dengue fever. Future prevention and control measures and epidemiology studies on dengue fever should consider these weather factors based on their exposure-response relationship. Copyright © 2018. Published by Elsevier B.V.
Non-linear and signal energy optimal asymptotic filter design
Directory of Open Access Journals (Sweden)
Josef Hrusak
2003-10-01
Full Text Available The paper studies some connections between the main results of the well known Wiener-Kalman-Bucy stochastic approach to filtering problems based mainly on the linear stochastic estimation theory and emphasizing the optimality aspects of the achieved results and the classical deterministic frequency domain linear filters such as Chebyshev, Butterworth, Bessel, etc. A new non-stochastic but not necessarily deterministic (possibly non-linear alternative approach called asymptotic filtering based mainly on the concepts of signal power, signal energy and a system equivalence relation plays an important role in the presentation. Filtering error invariance and convergence aspects are emphasized in the approach. It is shown that introducing the signal power as the quantitative measure of energy dissipation makes it possible to achieve reasonable results from the optimality point of view as well. The property of structural energy dissipativeness is one of the most important and fundamental features of resulting filters. Therefore, it is natural to call them asymptotic filters. The notion of the asymptotic filter is carried in the paper as a proper tool in order to unify stochastic and non-stochastic, linear and nonlinear approaches to signal filtering.
Separated-orbit bisected energy-recovered linear accelerator
Douglas, David R.
2015-09-01
A separated-orbit bisected energy-recovered linear accelerator apparatus and method. The accelerator includes a first linac, a second linac, and a plurality of arcs of differing path lengths, including a plurality of up arcs, a plurality of downgoing arcs, and a full energy arc providing a path independent of the up arcs and downgoing arcs. The up arcs have a path length that is substantially a multiple of the RF wavelength and the full energy arc includes a path length that is substantially an odd half-integer multiple of the RF wavelength. Operation of the accelerator includes accelerating the beam utilizing the linacs and up arcs until the beam is at full energy, at full energy executing a full recirculation to the second linac using a path length that is substantially an odd half-integer of the RF wavelength, and then decelerating the beam using the linacs and downgoing arcs.
Computational Modelling and Optimal Control of Ebola Virus Disease with non-Linear Incidence Rate
Takaidza, I.; Makinde, O. D.; Okosun, O. K.
2017-03-01
The 2014 Ebola outbreak in West Africa has exposed the need to connect modellers and those with relevant data as pivotal to better understanding of how the disease spreads and quantifying the effects of possible interventions. In this paper, we model and analyse the Ebola virus disease with non-linear incidence rate. The epidemic model created is used to describe how the Ebola virus could potentially evolve in a population. We perform an uncertainty analysis of the basic reproductive number R 0 to quantify its sensitivity to other disease-related parameters. We also analyse the sensitivity of the final epidemic size to the time control interventions (education, vaccination, quarantine and safe handling) and provide the cost effective combination of the interventions.
Non-linear absorption for concentrated solar energy transport
Energy Technology Data Exchange (ETDEWEB)
Jaramillo, O. A; Del Rio, J.A; Huelsz, G [Centro de Investigacion de Energia, UNAM, Temixco, Morelos (Mexico)
2000-07-01
In order to determine the maximum solar energy that can be transported using SiO{sub 2} optical fibers, analysis of non-linear absorption is required. In this work, we model the interaction between solar radiation and the SiO{sub 2} optical fiber core to determine the dependence of the absorption of the radioactive intensity. Using Maxwell's equations we obtain the relation between the refractive index and the electric susceptibility up to second order in terms of the electric field intensity. This is not enough to obtain an explicit expression for the non-linear absorption. Thus, to obtain the non-linear optical response, we develop a microscopic model of an harmonic driven oscillators with damp ing, based on the Drude-Lorentz theory. We solve this model using experimental information for the SiO{sub 2} optical fiber, and we determine the frequency-dependence of the non-linear absorption and the non-linear extinction of SiO{sub 2} optical fibers. Our results estimate that the average value over the solar spectrum for the non-linear extinction coefficient for SiO{sub 2} is k{sub 2}=10{sup -}29m{sup 2}V{sup -}2. With this result we conclude that the non-linear part of the absorption coefficient of SiO{sub 2} optical fibers during the transport of concentrated solar energy achieved by a circular concentrator is negligible, and therefore the use of optical fibers for solar applications is an actual option. [Spanish] Con el objeto de determinar la maxima energia solar que puede transportarse usando fibras opticas de SiO{sub 2} se requiere el analisis de absorcion no linear. En este trabajo modelamos la interaccion entre la radiacion solar y el nucleo de la fibra optica de SiO{sub 2} para determinar la dependencia de la absorcion de la intensidad radioactiva. Mediante el uso de las ecuaciones de Maxwell obtenemos la relacion entre el indice de refraccion y la susceptibilidad electrica hasta el segundo orden en terminos de intensidad del campo electrico. Esto no es
Attenuation of glazing energy using linear patterns on the glass surface
Directory of Open Access Journals (Sweden)
Shiang-Jiun Lin
2015-12-01
Full Text Available Glazing energy resulting from solar radiation can be the main source to vary the thermal field inside of a building. As the glass material is loaded by intensive solar radiation, the glazing energy, greatly induced, will result in the drastic increase in interior temperatures and yield the energy demand for air conditioning loads. Reducing energy consumption is imperative; therefore, this article presents the patterned glass technology which incorporates linearly and uniaxially symmetric patterns throughout the exterior surface of glass to attenuate the solar energy entering indoors. By imposing the patterns over the glass surface, the glazing energy can be reduced due to the increase in the incident angle and the decrease in the solar energy loading on the glass. The thermal performance of the linearly patterned glass is evaluated by computational fluid dynamics technique. Based on computational fluid dynamics–evaluated results, as the patterned glass is applied on the window opening, the interior solar heat is able to be decreased. Moreover, the glazing energy can be strongly associated with the pattern design. Increasing the patterned angle and decreasing the patterned space help reduce solar effect on the interior temperatures.
Directory of Open Access Journals (Sweden)
Zanxiang Nie
2017-01-01
Full Text Available Linear wave energy converters generate intrinsically intermittent power with variable frequency and amplitude. A composite energy storage system consisting of batteries and super capacitors has been developed and controlled by buck-boost converters. The purpose of the composite energy storage system is to handle the fluctuations and intermittent characteristics of the renewable source, and hence provide a steady output power. Linear wave energy converters working in conjunction with a system composed of various energy storage devices, is considered as a microsystem, which can function in a stand-alone or a grid connected mode. Simulation results have shown that by applying a boost H-bridge and a composite energy storage system more power could be extracted from linear wave energy converters. Simulation results have shown that the super capacitors charge and discharge often to handle the frequent power fluctuations, and the batteries charge and discharge slowly for handling the intermittent power of wave energy converters. Hardware systems have been constructed to control the linear wave energy converter and the composite energy storage system. The performance of the composite energy storage system has been verified in experiments by using electronics-based wave energy emulators.
Relationships between energy fluence and energy incident on, emitted by or imparted to a body.
Carlsson, C A
1979-11-01
From knowledge of the energy and angular distribution of the fluence around a body, the energy incident on, emitted by or imparted to a body can be calculated. The calculation is easily performed if the quantity 'vectorial fluence' is used. Examples taken from the literature are used to illustrate the erroneous results obtained by integrating energy fluence over area instead of integrating the scalar product of vectorial energy fluence and vectorial area.
Energy of linear quasi-neutral electrostatic drift waves
International Nuclear Information System (INIS)
Pfirsch, D.; Correa-Restrepo, D.
1992-01-01
An exact energy expression for linear quasi-neutral electrostatic perturbations is derived within the framework of dissipationless multi-fluid theory, valid for any geometry. Taking the mass as a tensor with, in general, different masses parallel and perpendicular to an ambient magnetic field allows one to treat the full dynamics and also to restrict consideration to parallel dynamics or to the completely adiabatic case. Application to slab configurations yields the result that in plane geometry the adiabatic approximation does not allow negative-energy perturbations, whereas inclusion of the parallel dynamics does. This is in agreement with a numerical study of drift-wave turbulence within the framework of collisional two-fluid theory by B. Scott. Unlike Scott, we consider a dissipationless theory. Whereas the nonlinear energy is just kinetic plus potential plus thermal energy, the energy of perturbations depends on constraints. In a multi-fluid quasi-neutral electrostatic theory, from which we start, such constraints are mass conservation and entropy conservation. The latter is violated if heat conduction, heat sources (e.g. Joule heating) and heat sinks play a role. Hence, the energy expressions obtained are, valid only when situations where this is not the case or where these phenomena do not influence the entropy constraint. The latter is the case if the heat conduction is infinitely large such that the equilibrium temperature profiles T ν (x) of the various particle species ν are independent of x and δT ν =0. A vanishing temperature perturbation results in an entropy-conserving theory if one takes the adiabatic coefficients γ ν =1. This is possible, however, only for the perturbations; the equilibrium energy would diverge. When we consider this case, we do it in the way that the γs are put equal to 1 only after having obtained the perturbed energy for general γs. (author) 7 refs
On the use of Lineal Energy Measurements to Estimate Linear Energy Transfer Spectra
Adams, David A.; Howell, Leonard W., Jr.; Adam, James H., Jr.
2007-01-01
This paper examines the error resulting from using a lineal energy spectrum to represent a linear energy transfer spectrum for applications in the space radiation environment. Lineal energy and linear energy transfer spectra are compared in three diverse but typical space radiation environments. Different detector geometries are also studied to determine how they affect the error. LET spectra are typically used to compute dose equivalent for radiation hazard estimation and single event effect rates to estimate radiation effects on electronics. The errors in the estimations of dose equivalent and single event rates that result from substituting lineal energy spectra for linear energy spectra are examined. It is found that this substitution has little effect on dose equivalent estimates in interplanetary quiet-time environment regardless of detector shape. The substitution has more of an effect when the environment is dominated by solar energetic particles or trapped radiation, but even then the errors are minor especially if a spherical detector is used. For single event estimation, the effect of the substitution can be large if the threshold for the single event effect is near where the linear energy spectrum drops suddenly. It is judged that single event rate estimates made from lineal energy spectra are unreliable and the use of lineal energy spectra for single event rate estimation should be avoided.
Feedback Linearization Controller for a Wind Energy Power System
Directory of Open Access Journals (Sweden)
Muthana Alrifai
2016-09-01
Full Text Available This paper deals with the control of a doubly-fed induction generator (DFIG-based variable speed wind turbine power system. A system of eight ordinary differential equations is used to model the wind energy conversion system. The generator has a wound rotor type with back-to-back three-phase power converter bridges between its rotor and the grid; it is modeled using the direct-quadrature rotating reference frame with aligned stator flux. An input-state feedback linearization controller is proposed for the wind energy power system. The controller guarantees that the states of the system track the desired states. Simulation results are presented to validate the proposed control scheme. Moreover, further simulation results are shown to investigate the robustness of the proposed control scheme to changes in some of the parameters of the system.
Internal high linear energy transfer (LET) targeted radiotherapy for cancer
International Nuclear Information System (INIS)
Allen, Barry J
2006-01-01
High linear energy transfer (LET) radiation for internal targeted therapy has been a long time coming on to the medical therapy scene. While fundamental principles were established many decades ago, the clinical implementation has been slow. Localized neutron capture therapy, and more recently systemic targeted alpha therapy, are at the clinical trial stage. What are the attributes of these therapies that have led a band of scientists and clinicians to dedicate so much of their careers? High LET means high energy density, causing double strand breaks in DNA, and short-range radiation, sparing adjacent normal tissues. This targeted approach complements conventional radiotherapy and chemotherapy. Such therapies fail on several fronts. Foremost is the complete lack of progress for the control of primary GBM, the holy grail for cancer therapies. Next is the inability to regress metastatic cancer on a systemic basis. This has been the task of chemotherapy, but palliation is the major application. Finally, there is the inability to inhibit the development of lethal metastatic cancer after successful treatment of the primary cancer. This review charts, from an Australian perspective, the developing role of local and systemic high LET, internal radiation therapy. (review)
Proton Linear Energy Transfer measurement using Emulsion Cloud Chamber
Shin, Jae-ik; Park, Seyjoon; Kim, Haksoo; Kim, Meyoung; Jeong, Chiyoung; Cho, Sungkoo; Lim, Young Kyung; Shin, Dongho; Lee, Se Byeong; Morishima, Kunihiro; Naganawa, Naotaka; Sato, Osamu; Kwak, Jungwon; Kim, Sung Hyun; Cho, Jung Sook; Ahn, Jung Keun; Kim, Ji Hyun; Yoon, Chun Sil; Incerti, Sebastien
2015-04-01
This study proposes to determine the correlation between the Volume Pulse Height (VPH) measured by nuclear emulsion and Linear Energy Transfer (LET) calculated by Monte Carlo simulation based on Geant4. The nuclear emulsion was irradiated at the National Cancer Center (NCC) with a therapeutic proton beam and was installed at 5.2 m distance from the beam nozzle structure with various thicknesses of water-equivalent material (PMMA) blocks to position with specific positions along the Bragg curve. After the beam exposure and development of the emulsion films, the films were scanned by S-UTS developed in Nagoya University. The proton tracks in the scanned films were reconstructed using the 'NETSCAN' method. Through this procedure, the VPH can be derived from each reconstructed proton track at each position along the Bragg curve. The VPH value indicates the magnitude of energy loss in proton track. By comparison with the simulation results obtained using Geant4, we found the correlation between the LET calculated by Monte Carlo simulation and the VPH measured by the nuclear emulsion.
Proton Linear Energy Transfer measurement using Emulsion Cloud Chamber
International Nuclear Information System (INIS)
Shin, Jae-ik; Park, Seyjoon; Kim, Haksoo; Kim, Meyoung; Jeong, Chiyoung; Cho, Sungkoo; Lim, Young Kyung; Shin, Dongho; Lee, Se Byeong; Morishima, Kunihiro; Naganawa, Naotaka; Sato, Osamu; Kwak, Jungwon; Kim, Sung Hyun; Cho, Jung Sook; Ahn, Jung Keun; Kim, Ji Hyun; Yoon, Chun Sil; Incerti, Sebastien
2015-01-01
This study proposes to determine the correlation between the Volume Pulse Height (VPH) measured by nuclear emulsion and Linear Energy Transfer (LET) calculated by Monte Carlo simulation based on Geant4. The nuclear emulsion was irradiated at the National Cancer Center (NCC) with a therapeutic proton beam and was installed at 5.2 m distance from the beam nozzle structure with various thicknesses of water-equivalent material (PMMA) blocks to position with specific positions along the Bragg curve. After the beam exposure and development of the emulsion films, the films were scanned by S-UTS developed in Nagoya University. The proton tracks in the scanned films were reconstructed using the ‘NETSCAN’ method. Through this procedure, the VPH can be derived from each reconstructed proton track at each position along the Bragg curve. The VPH value indicates the magnitude of energy loss in proton track. By comparison with the simulation results obtained using Geant4, we found the correlation between the LET calculated by Monte Carlo simulation and the VPH measured by the nuclear emulsion
Proton Linear Energy Transfer measurement using Emulsion Cloud Chamber
Energy Technology Data Exchange (ETDEWEB)
Shin, Jae-ik [Proton Therapy Center, National Cancer Center (Korea, Republic of); Division of Heavy Ion Clinical Research, Korea Institute of Radiological & Medical Sciences (KIRAMS), Seoul (Korea, Republic of); Park, Seyjoon [Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University, School of Medicine, Seoul (Korea, Republic of); Kim, Haksoo; Kim, Meyoung [Proton Therapy Center, National Cancer Center (Korea, Republic of); Jeong, Chiyoung [Department of Radiation Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul (Korea, Republic of); Cho, Sungkoo [Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University, School of Medicine, Seoul (Korea, Republic of); Lim, Young Kyung; Shin, Dongho [Proton Therapy Center, National Cancer Center (Korea, Republic of); Lee, Se Byeong, E-mail: sblee@ncc.re.kr [Proton Therapy Center, National Cancer Center (Korea, Republic of); Morishima, Kunihiro; Naganawa, Naotaka; Sato, Osamu [Department of Physics, Nagoya University, Nagoya (Japan); Kwak, Jungwon [Department of Radiation Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul (Korea, Republic of); Kim, Sung Hyun [Center for Underground Physics, Institute for Basic Science (IBS), Daejeon (Korea, Republic of); Cho, Jung Sook [Department of refinement education, Dongseo University, Busan (Korea, Republic of); Ahn, Jung Keun [Department of Physics, Korea University, Seoul (Korea, Republic of); Kim, Ji Hyun; Yoon, Chun Sil [Gyeongsang National University, Jinju (Korea, Republic of); Incerti, Sebastien [CNRS, IN2P3, CENBG, UMR 5797, F-33170 Gradignan (France); Université Bordeaux 1, CENBG, UMR 5797, F-33170 Gradignan (France)
2015-04-15
This study proposes to determine the correlation between the Volume Pulse Height (VPH) measured by nuclear emulsion and Linear Energy Transfer (LET) calculated by Monte Carlo simulation based on Geant4. The nuclear emulsion was irradiated at the National Cancer Center (NCC) with a therapeutic proton beam and was installed at 5.2 m distance from the beam nozzle structure with various thicknesses of water-equivalent material (PMMA) blocks to position with specific positions along the Bragg curve. After the beam exposure and development of the emulsion films, the films were scanned by S-UTS developed in Nagoya University. The proton tracks in the scanned films were reconstructed using the ‘NETSCAN’ method. Through this procedure, the VPH can be derived from each reconstructed proton track at each position along the Bragg curve. The VPH value indicates the magnitude of energy loss in proton track. By comparison with the simulation results obtained using Geant4, we found the correlation between the LET calculated by Monte Carlo simulation and the VPH measured by the nuclear emulsion.
Free-Free Transitions in the Presence of Laser Fields at Very Low Incident Electron Energy
Bhatia, A. K.; Sinha, Chandana
2010-01-01
We study the free-free transition in electron-hydrogenic systems in ground state in presence of an external laser field at very loud incident energies. The laser field is treated classically while the collision dynamics is treated quantum mechanically. The laser field is chosen to be monochromatic, linearly polarized and homogeneous. The incident electron is considered to be dressed by the laser in a nonperturbative manner by choosing a Volkov wave function for it. The scattering weave function for the electron is solved numerically by taking into account the effect of the electron exchange, short-range as well as of the long-range interactions to get the S and P wave phase shifts while for the higher angular momentum phase shifts the exchange approximation has only been considered. We calculate the laser assisted differential cross sections (LADCS) for the aforesaid free-free transition process for single photon absorption/emission. The laser intensity is chosen to be much less than the atomic field intensity. A strong suppression is noted in the LADCS as compared to the field free (FF) cross sections. Unlike the FF ones, the LADCS exhibit some oscillations having a distinct maximum at a low value of the scattering angle depending on the laser parameters as well as on the incident energies.
18 CFR 1316.9 - Nuclear energy hazards and nuclear incidents.
2010-04-01
... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Nuclear energy hazards... Text of Conditions and Certifications § 1316.9 Nuclear energy hazards and nuclear incidents. When so... documents or actions: Nuclear Energy Hazards and Nuclear Incidents (Applicable only to contracts for goods...
Apyan, A.; Badelek, B.; Ballestrero, S.; Biino, C.; Birol, I.; Cenci, P.; Connell, S.H.; Eichblatt, S.; Fonseca, T.; Freund, A.; Gorini, B.; Groess, R.; Ispirian, K.; Ketel, T.J.; Kononets, Yu.V.; Lopez, A.; Mangiarotti, A.; van Rens, B.; Sellschop, J.P.F.; Shieh, M.; Sona, P.; Strakhovenko, V.; Uggerhoj, E.; Uggerhj, Ulrik Ingerslev; Unel, G.; Velasco, M.; Vilakazi, Z.Z.; Wessely, O.; Kononets, Yu.V.
2003-01-01
The cross section for coherent pair production by linearly polarised photons in the 20-170 GeV energy range was measured for photon aligned incidence on ultra-high quality diamond and germanium crystals. The theoretical description of coherent bremsstrahlung and coherent pair production phenomena is an area of active theoretical debate and development. However, under our experimental conditions, the theory predicted the combined cross section and polarisation experimental observables very well indeed. In macroscopic terms, our experiment measured a birefringence effect in pair production in a crystal. This study of this effect also constituted a measurement of the energy dependent linear polarisation of photons produced by coherent bremsstrahlung in aligned crystals. New technologies for manipulating high energy photon beams can be realised based on an improved understanding of QED phenomena at these energies. In particular, this experiment demonstrates an efficient new polarimetry technique. The pair product...
An energy analysis of a linear concentrating photovoltaic system with an active cooling system
Kerzmann, Tony L.; Schaefer, Laura A.
2010-08-01
The recent focus on renewable energy has lead to an increased awareness of solar energy. Concentrating photovoltaic systems have seen a resurgence in research interest since their earlier pilot plant origins in the 1970s and 1980s. The use of concentration reduces the amount of expensive photovoltaic materials while maintaining a high level of incident solar radiation. This research combines the advantage of concentrating solar energy with high efficiency multijunction cells and an active cooling system to create a system that efficiently produces both electricity and heat. A linear concentrating photovoltaic system model was developed in order to simulate the system under actual solar and climatic conditions, where a number of different system variables can be adjusted. This simulation was used to evaluate the effects of domestic hot water use on a 6.2 kWp system. The results show the changes in solar cell efficiency, electricity produced, thermal energy produced, dollar value displaced, and global warming potential displaced as the domestic hot water use of the system is varied. This simulation can be used to find an optimal system for given input conditions and can be used to find optimal operating conditions for a given system size.
Linear energy transfer incorporated intensity modulated proton therapy optimization
Cao, Wenhua; Khabazian, Azin; Yepes, Pablo P.; Lim, Gino; Poenisch, Falk; Grosshans, David R.; Mohan, Radhe
2018-01-01
The purpose of this study was to investigate the feasibility of incorporating linear energy transfer (LET) into the optimization of intensity modulated proton therapy (IMPT) plans. Because increased LET correlates with increased biological effectiveness of protons, high LETs in target volumes and low LETs in critical structures and normal tissues are preferred in an IMPT plan. However, if not explicitly incorporated into the optimization criteria, different IMPT plans may yield similar physical dose distributions but greatly different LET, specifically dose-averaged LET, distributions. Conventionally, the IMPT optimization criteria (or cost function) only includes dose-based objectives in which the relative biological effectiveness (RBE) is assumed to have a constant value of 1.1. In this study, we added LET-based objectives for maximizing LET in target volumes and minimizing LET in critical structures and normal tissues. Due to the fractional programming nature of the resulting model, we used a variable reformulation approach so that the optimization process is computationally equivalent to conventional IMPT optimization. In this study, five brain tumor patients who had been treated with proton therapy at our institution were selected. Two plans were created for each patient based on the proposed LET-incorporated optimization (LETOpt) and the conventional dose-based optimization (DoseOpt). The optimized plans were compared in terms of both dose (assuming a constant RBE of 1.1 as adopted in clinical practice) and LET. Both optimization approaches were able to generate comparable dose distributions. The LET-incorporated optimization achieved not only pronounced reduction of LET values in critical organs, such as brainstem and optic chiasm, but also increased LET in target volumes, compared to the conventional dose-based optimization. However, on occasion, there was a need to tradeoff the acceptability of dose and LET distributions. Our conclusion is that the
Linear energy transfer incorporated intensity modulated proton therapy optimization.
Cao, Wenhua; Khabazian, Azin; Yepes, Pablo P; Lim, Gino; Poenisch, Falk; Grosshans, David R; Mohan, Radhe
2017-12-19
The purpose of this study was to investigate the feasibility of incorporating linear energy transfer (LET) into the optimization of intensity modulated proton therapy (IMPT) plans. Because increased LET correlates with increased biological effectiveness of protons, high LETs in target volumes and low LETs in critical structures and normal tissues are preferred in an IMPT plan. However, if not explicitly incorporated into the optimization criteria, different IMPT plans may yield similar physical dose distributions but greatly different LET, specifically dose-averaged LET, distributions. Conventionally, the IMPT optimization criteria (or cost function) only includes dose-based objectives in which the relative biological effectiveness (RBE) is assumed to have a constant value of 1.1. In this study, we added LET-based objectives for maximizing LET in target volumes and minimizing LET in critical structures and normal tissues. Due to the fractional programming nature of the resulting model, we used a variable reformulation approach so that the optimization process is computationally equivalent to conventional IMPT optimization. In this study, five brain tumor patients who had been treated with proton therapy at our institution were selected. Two plans were created for each patient based on the proposed LET-incorporated optimization (LETOpt) and the conventional dose-based optimization (DoseOpt). The optimized plans were compared in terms of both dose (assuming a constant RBE of 1.1 as adopted in clinical practice) and LET. Both optimization approaches were able to generate comparable dose distributions. The LET-incorporated optimization achieved not only pronounced reduction of LET values in critical organs, such as brainstem and optic chiasm, but also increased LET in target volumes, compared to the conventional dose-based optimization. However, on occasion, there was a need to tradeoff the acceptability of dose and LET distributions. Our conclusion is that the
DEFF Research Database (Denmark)
Ommen, Torben Schmidt; Markussen, Wiebke Brix; Elmegaard, Brian
2014-01-01
of selected units by 23%, while for a non-linear approach the increase can be higher than 39%. The results indicate a higher coherence between the two latter approaches, and that the MLP (mixed integer programming) optimisation is most appropriate from a viewpoint of accuracy and runtime. © 2014 Elsevier Ltd...
Bhatia, Anand
2012-01-01
We study the free-free transition in electron-helium ion in the ground state and embedded in a Debye potential in the presence of an external laser field at very low incident electron energies. The laser field is treated classically while the collision dynamics is treated quantum mechanically. The laser field is chosen as monochromatic, linearly polarized and homogeneous. The incident electron is considered to be dressed by the laser field in a nonperturbative manner by choosing Volkov wave function for it. The scattering wave function for the incident electron on the target embedded in a Debye potential is solved numerically by taking into account the effect of electron exchange. We calculate the laser-assisted differential and total cross sections for free-free transition for absorption/emission of a single photon or no photon exchange. The results will be presented at the conference.
Critical analysis of major incidents risks in civil nuclear energy
International Nuclear Information System (INIS)
2000-09-01
The differences existing between the PWR type reactors and the RBMK type reactors are explained as well as the risk associated to each type when it exists. The Ines scale, tool to give the level of an accident gravity comprises seven levels, the number seven is the most serious and corresponds to the Chernobyl accident; The number zero is of no consequence but must be mentioned as a matter of form. The incidents from 1 to 3 concern increasing incidents, affecting the nuclear power plant but not the external public. The accidents from 4 to 7 have a nature to affect the nuclear power plant and the environment. An efficient tool exists between nuclear operators it is made of the reports on incidents encountered by close reactors. Two others type reactors are coming, the high temperature type reactors and the fast neutrons reactors. different risks are evoked, terrorism, proliferation, transport and radioactive wastes. (N.C.)
Modeling a Linear Generator for Energy Harvesting Applications
2014-12-01
10 1. Free-piston Stirling Engine ...............................................................10 2. Crankless Internal Combustion...THIS PAGE INTENTIONALLY LEFT BLANK xi LIST OF FIGURES Figure 1. Linear motor propulsion system as shown in U.S. Patent No. 132, from [4...1 Figure 2. Free-piston Stirling engine
Quantum energy teleportation with a linear harmonic chain
International Nuclear Information System (INIS)
Nambu, Yasusada; Hotta, Masahiro
2010-01-01
A protocol of quantum energy teleportation is proposed for a one-dimensional harmonic chain. A coherent-state positive operator-valued measure (POVM) measurement is performed on coupled oscillators of the chain in the ground state accompanied by energy infusion to the system. This measurement consumes a part of the ground-state entanglement. Depending on the measurement result, a displacement operation is performed on a distant oscillator accompanied by energy extraction from the zero-point fluctuation of the oscillator. We find that the amount of consumed entanglement is bounded from below by a positive value that is proportional to the amount of teleported energy.
Extrapolations of nuclear binding energies from new linear mass relations
DEFF Research Database (Denmark)
Hove, D.; Jensen, A. S.; Riisager, K.
2013-01-01
We present a method to extrapolate nuclear binding energies from known values for neighboring nuclei. We select four specific mass relations constructed to eliminate smooth variation of the binding energy as function nucleon numbers. The fast odd-even variations are avoided by comparing nuclei...
Directory of Open Access Journals (Sweden)
Tengiz Mdzinarishvili
2009-12-01
Full Text Available A simple, computationally efficient procedure for analyses of the time period and birth cohort effects on the distribution of the age-specific incidence rates of cancers is proposed. Assuming that cohort effects for neighboring cohorts are almost equal and using the Log-Linear Age-Period-Cohort Model, this procedure allows one to evaluate temporal trends and birth cohort variations of any type of cancer without prior knowledge of the hazard function. This procedure was used to estimate the influence of time period and birth cohort effects on the distribution of the age-specific incidence rates of first primary, microscopically confirmed lung cancer (LC cases from the SEER9 database. It was shown that since 1975, the time period effect coefficients for men increase up to 1980 and then decrease until 2004. For women, these coefficients increase from 1975 up to 1990 and then remain nearly constant. The LC birth cohort effect coefficients for men and women increase from the cohort of 1890–94 until the cohort of 1925–29, then decrease until the cohort of 1950–54 and then remain almost unchanged. Overall, LC incidence rates, adjusted by period and cohort effects, increase up to the age of about 72–75, turn over, and then fall after the age of 75–78. The peak of the adjusted rates in men is around the age of 77–78, while in women, it is around the age of 72–73. Therefore, these results suggest that the age distribution of the incidence rates in men and women fall at old ages.
Kihara, G.; Kotsubo, Y.; Yoshimoto, Y.; Kinefuchi, I.; Takagi, S.
2016-11-01
The interaction between water molecules and solid surfaces has a great impact on water vapor flows in nanostructures. We conduct molecular beam scattering experiments covering the incident energy range corresponding to the thermal energy at room temperature to investigate the scattering behavior of water molecules on silicon and graphite surfaces. The incident energy dependence of the scattering distributions exhibits opposite trends on these surfaces. Molecular dynamics simulations reveal that the difference is caused by the inertia effect of the incident molecules and the surface corrugations.
Routing versus energy optimization in a linear network
Coenen, Tom Johannes Maria; van Ommeren, Jan C.W.; de Graaf, Maurits
In wireless networks, devices (or nodes) often have a limited battery supply to use for the sending and reception of transmissions. By allowing nodes to relay messages for other nodes, the distance that needs to be bridged can be reduced, thus limiting the energy needed for a transmission. However,
Energy Reflection from Gold Bombarded with keV Protons at Various Angles of Incidence
DEFF Research Database (Denmark)
Sørensen, H.
1976-01-01
The calorimetric deuterium film method operating at liquid‐helium temperature was used for measuring the energy reflection coefficient γ for 1–10‐keV protons incident on gold at angles of incidence up to 75°. H+2 and H+3 ions were used to obtain the lowest velocities. The growth with angle...
Power Take-Off with Integrated Resonator for Energy Extraction from Linear Motions
DEFF Research Database (Denmark)
2014-01-01
The invention relates to a magnetic gear for converting linear motion into rotational motion and vice versa. The present invention converts slow linear irregular oscillating motion of wave energy devices into torque on a high speed shaft for powering a generator while making the wave energy devic...... of sea or ocean waves into useful energy, such as electricity. The invention relates to the control and operation of a magnetic gear based motor/generator system. The invention provides a high force density electric powered linear actuator....
Shielding calculation for treatment rooms of high energy linear accelerator
International Nuclear Information System (INIS)
Elleithy, M.A.
2006-01-01
A review of German Institute of Standardization (DIN) scheme of the shielding calculation and the essential data required has been done for X-rays and electron beam in the energy range from 1 MeV to 50 MeV. Shielding calculation was done for primary and secondary radiations generated during X-ray operation of Linac. In addition, shielding was done against X-rays generated (Bremsstrahlung) by useful electron beams. The calculations also covered the neutrons generated from the interactions of useful X-rays (at energies above 8 MeV) with the surrounding. The present application involved the computation of shielding against the double scattered components of X-rays and neutrons in the maze area and the thickness of the paraffin wax of the room door. A new developed computer program was designed to assist shielding thickness calculations for a new Linac installation or in replacing an existing machine. The program used a combination of published tables and figures in computing the shielding thickness at different locations for all possible radiation situations. The DIN published data of 40 MeV accelerator room was compared with the program calculations. It was found that there is good agreement between both calculations. The developed program improved the accuracy and speed of calculation
Patt, P. J.
1985-01-01
The design of a coaxial linear magnetic spring which incorporates a linear motor to control axial motion and overcome system damping is presented, and the results of static and dynamic tests are reported. The system has nominal stiffness 25,000 N/m and is designed to oscillate a 900-g component over a 4.6-mm stroke in a Stirling-cycle cryogenic refrigerator being developed for long-service (5-10-yr) space applications (Stolfi et al., 1983). Mosaics of 10 radially magnetized high-coercivity SmCO5 segments enclosed in Ti cans are employed, and the device is found to have quality factor 70-100, corresponding to energy-storage efficiency 91-94 percent. Drawings, diagrams, and graphs are provided.
FOR N+ 56Fe REACTION AROUND INCIDENT ENERGIES OF
African Journals Online (AJOL)
Cross section calculations have been carried out by some earlier scientists independent of energy surface imaginary potential. These have been characterized by a lot of disparity between authors and literature values. In this work, special attention was devoted to the increase in the accuracy of the calculation of nuclear ...
Physics with linear colliders in the tev CM energy region
International Nuclear Information System (INIS)
Bulos, F.; Cook, V.; Hinchliffe, I.; Lane, K.; Pellet, D.; Perl, M.; Seiden, A.; Wiedemann, H.
1982-01-01
It may well be that the e/sup +/e/sup -/ physics beyond PEP and PETRA and up to 200 GeV CM energy will deal primarily with the verification of the standard model (SM) of weak and electromagnetic interactions. Various theoretical and experimental studies at workshops for contemplated accelerators (SLC, LEP I, Z 0 ) have assumed this. Beyond 200 GeV the picture is less clear. The absence of theoretical models with strong predictions comparable to the SM adds to the difficulty. In addition, the experimental verification of the SM itself is yet to come, and one is forced to make certain assumptions about the outcome. The following assumptions are made: Z 0 , W/sup +-/, light higgs (if M/sub H/ < 100 GeV) have all been discovered. The t quark has been discovered if its mass is < 100 GeV. QCD is basically the correct theory of the strong interactions. With these assumptions, the authors have produced an updated table of possible physics in the TeV region. This table was used as the basis for the study of specific physics. It contains best estimates of cross-section, promising signatures for final states, and some helpful comments
Hirzel, Simon; Hettesheimer, Tim; Schröter, Marcus
2014-01-01
Linear drives are broadly used in industrial automation, e.g. for material handling systems, assembly lines or machine tools. In many applications, both compressed-air powered pneumatic drives as well as linear electric drives can be used. The use of compressed air is generally associated with comparatively low energy efficiency. This has triggered a debate about the energy-related performance of alternative drive systems. In this paper, we contribute to this debate by providing insights into...
Dependence of ECH deposition profile on the modeling of incident wave energy
International Nuclear Information System (INIS)
Kritz, A.H.; Hsuan, H.; Matsuda, K.
1986-06-01
The ray tracing code, TORAY, is used to investigate the importance of modeling assumptions utilized in describing Electron Cyclotron Heating (ECH). In particular, we examine the dependence of the ECH deposition profile on the antenna pattern. We demonstrate that different assumptions for representing the incident wave energy by a finite number of rays lead to significantly different results for the energy deposition profile
Tackling non-linearities with the effective field theory of dark energy and modified gravity
Frusciante, Noemi; Papadomanolakis, Georgios
2017-12-01
We present the extension of the effective field theory framework to the mildly non-linear scales. The effective field theory approach has been successfully applied to the late time cosmic acceleration phenomenon and it has been shown to be a powerful method to obtain predictions about cosmological observables on linear scales. However, mildly non-linear scales need to be consistently considered when testing gravity theories because a large part of the data comes from those scales. Thus, non-linear corrections to predictions on observables coming from the linear analysis can help in discriminating among different gravity theories. We proceed firstly by identifying the necessary operators which need to be included in the effective field theory Lagrangian in order to go beyond the linear order in perturbations and then we construct the corresponding non-linear action. Moreover, we present the complete recipe to map any single field dark energy and modified gravity models into the non-linear effective field theory framework by considering a general action in the Arnowitt-Deser-Misner formalism. In order to illustrate this recipe we proceed to map the beyond-Horndeski theory and low-energy Hořava gravity into the effective field theory formalism. As a final step we derived the 4th order action in term of the curvature perturbation. This allowed us to identify the non-linear contributions coming from the linear order perturbations which at the next order act like source terms. Moreover, we confirm that the stability requirements, ensuring the positivity of the kinetic term and the speed of propagation for scalar mode, are automatically satisfied once the viability of the theory is demanded at linear level. The approach we present here will allow to construct, in a model independent way, all the relevant predictions on observables at mildly non-linear scales.
Vibration Energy Harvesting on Vehicle Suspension Using Rotary and Linear Electromagnetic Generator
Directory of Open Access Journals (Sweden)
Arif Indro Sultoni
2013-04-01
Full Text Available In this paper, we discuss comparation of vehicle vibration energy harvesting between rotary and linear electromagnetic generator. We construct the two model of energy harvester mechanism and then analyze both of energy absorbtion and vehicle comfortability. Furthermore, we analyze both of energy absorbtion and vehicle comfortability. Vehicle is modeled as quarter car. Rotarty generator harvests 2.5 x 10-4 Watt. The other hand, linear generator has viscous characteristic and capable to generates 90 Watts with 12 Volt power supply for 0.03 m amplitude of bumpy road input. Linear generator reduces oscillation with 1.2 sec settling time. It is more comfort than the angular which has 3 sec in settling time. With unnevenees road input, mean power of this generator is 64 Watt.
Cost-effectiveness and incidence of renewable energy promotion in Germany
Energy Technology Data Exchange (ETDEWEB)
Boehringer, Christoph [Oldenburg Univ. (Germany). Dept. of Economics; Landis, Florian [Eidgenoessische Technische Hochschule, Zurich (Switzerland); Tovar Reanos, Miguel Angel [Zentrum fuer Europaeische Wirtschaftsforschung GmbH (ZEW), Mannheim (Germany)
2017-08-01
Over the last decade Germany has boosted renewable energy in power production by means of massive subsidies. The flip side are very high electricity prices which raises concerns that the transition cost towards a renewable energy system will be mainly borne by poor households. In this paper, we combine computable general equilibrium and microsimulation analysis to investigate the cost-effectiveness and incidence of Germany's renewable energy promotion. We find that the regressive effects of renewable energy promotion could be ameliorated by alternative subsidy financing mechanisms which achieve the same level of electricity generation from renewable energy sources.
Linear accelerators for high energies. A report on the 1962 conference at Brookhaven
Energy Technology Data Exchange (ETDEWEB)
Blewett, John P.
1963-01-01
The linear accelerator was invented very early in the history of particle accelerators, but it has been one of the latest accelerators to be exploited. This is principally because of the very large quantities of radio-frequency power required to attain respectable energies in a reasonable distance. Radar developments during World War II resulted in production of the necessary megawatt oscillators or amplifiers, and linear accelerators, both for electrons and positive ions, are now operating in several centers. The electron linear accelerator has been extended to billion-volt energies, and in the Stanford two-mile version it will soon set new energy records between 20 and 40 BeV. The proton linear accelerator has had a less spectacular history. The highest energy yet achieved in a proton linac is about 70 MeV (at the University of Minnesota). Smaller proton linacs are in use as injectors for proton-synchrotrons, but no machine has been built or is under construction for the range above 100 MeV. This is because synchro-cyclotrons for this energy range are much cheaper and have been preferred for this reason, in spite of the fact that the beam from a synchro-cyclotron cannot be nearly as intense or as well collimated as the beam from a linear accelerator.
Beeby, Stephen P.; Wang, Leran; Zhu, Dibin; Weddell, Alex S.; Merrett, Geoff V.; Stark, Bernard; Szarka, Gyorgy; Al-Hashimi, Bashir M.
2013-07-01
The design of vibration energy harvesters (VEHs) is highly dependent upon the characteristics of the environmental vibrations present in the intended application. VEHs can be linear resonant systems tuned to particular frequencies or nonlinear systems with either bistable operation or a Duffing-type response. This paper provides detailed vibration data from a range of applications, which has been made freely available for download through the Energy Harvesting Network’s online data repository. In particular, this research shows that simulation is essential in designing and selecting the most suitable vibration energy harvester for particular applications. This is illustrated through C-based simulations of different types of VEHs, using real vibration data from a diesel ferry engine, a combined heat and power pump, a petrol car engine and a helicopter. The analysis shows that a bistable energy harvester only has a higher output power than a linear or Duffing-type nonlinear energy harvester with the same Q-factor when it is subjected to white noise vibration. The analysis also indicates that piezoelectric transduction mechanisms are more suitable for bistable energy harvesters than electromagnetic transduction. Furthermore, the linear energy harvester has a higher output power compared to the Duffing-type nonlinear energy harvester with the same Q factor in most cases. The Duffing-type nonlinear energy harvester can generate more power than the linear energy harvester only when it is excited at vibrations with multiple peaks and the frequencies of these peaks are within its bandwidth. Through these new observations, this paper illustrates the importance of simulation in the design of energy harvesting systems, with particular emphasis on the need to incorporate real vibration data.
International Nuclear Information System (INIS)
Antoniadis, I A; Venetsanos, D T; Papaspyridis, F G
2013-01-01
Dielectric elastomer based generators (DEGs) offer some unique properties over energy generators based on other materials. These properties include high energy density, high efficiency over a broad range of frequencies, low compliance, the ability to produce high strain, large area, low cost films with no toxic materials and wide range environmental tolerance. As further shown in this paper, DEG materials can also exhibit a non-linear dynamic behavior, enhancing broad-band energy transfer. More specifically, dielectric elastomer (DE) energy generating synergetic structures (DIESYS) are considered as dynamic energy absorbers. Two elementary characteristic DIESYS design concepts are examined, leading to a typical antagonistic configuration for in-plane oscillations and a typical synagonistic configuration for out-of-plane oscillations. Originally, all the DE elements of the structure are assumed to be always in tension during all the phases of the harvesting cycle, conforming to the traditional concept of operation of DE structures. As shown in this paper, the traditional always-in-tension concept results in a linear dynamic system response, despite the fact that the implemented (DE) parts are considered to have been made of a non-linear (hyperelastic) material. In contrast, the proposed loose-part concept ensures the appearance of a non-linear broad-band system response, enhancing energy transfer from the environmental source. (paper)
Improving the energy efficiency of sparse linear system solvers on multicore and manycore systems.
Anzt, H; Quintana-Ortí, E S
2014-06-28
While most recent breakthroughs in scientific research rely on complex simulations carried out in large-scale supercomputers, the power draft and energy spent for this purpose is increasingly becoming a limiting factor to this trend. In this paper, we provide an overview of the current status in energy-efficient scientific computing by reviewing different technologies used to monitor power draft as well as power- and energy-saving mechanisms available in commodity hardware. For the particular domain of sparse linear algebra, we analyse the energy efficiency of a broad collection of hardware architectures and investigate how algorithmic and implementation modifications can improve the energy performance of sparse linear system solvers, without negatively impacting their performance. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
Effect of linear energy on the properties of an AL alloy in DPMIG welding
Liao, Tianfa; Jin, Li; Xue, Jiaxiang
2018-01-01
The effect of different linear energy parameters on the DPMIG welding performance of AA1060 aluminium alloy is studied in this paper. The stability of the welding process is verified with a Labview electrical signal acquisition system, and the microstructure and tensile properties of the welded joint are studied via optical microscopy, scanning electron microscopy and electrical tensile tests. The test results show that the welding process for the DPMIG methods stable and that the weld beads appear as scales. Tensile strength results indicate that, with increasing linear energy, the tensile strength first increases and then decreases. The tensile strength of the joint is maximized when the linear energy is 120.5 J / mm-1.
Fitting and forecasting coupled dark energy in the non-linear regime
International Nuclear Information System (INIS)
Casas, Santiago; Amendola, Luca; Pettorino, Valeria; Vollmer, Adrian; Baldi, Marco
2016-01-01
We consider cosmological models in which dark matter feels a fifth force mediated by the dark energy scalar field, also known as coupled dark energy. Our interest resides in estimating forecasts for future surveys like Euclid when we take into account non-linear effects, relying on new fitting functions that reproduce the non-linear matter power spectrum obtained from N-body simulations. We obtain fitting functions for models in which the dark matter-dark energy coupling is constant. Their validity is demonstrated for all available simulations in the redshift range 0z=–1.6 and wave modes below 0k=1 h/Mpc. These fitting formulas can be used to test the predictions of the model in the non-linear regime without the need for additional computing-intensive N-body simulations. We then use these fitting functions to perform forecasts on the constraining power that future galaxy-redshift surveys like Euclid will have on the coupling parameter, using the Fisher matrix method for galaxy clustering (GC) and weak lensing (WL). We find that by using information in the non-linear power spectrum, and combining the GC and WL probes, we can constrain the dark matter-dark energy coupling constant squared, β 2 , with precision smaller than 4% and all other cosmological parameters better than 1%, which is a considerable improvement of more than an order of magnitude compared to corresponding linear power spectrum forecasts with the same survey specifications
Complex energy eigenvalues of a linear potential with a parabolical barrier
International Nuclear Information System (INIS)
Malherbe, J.B.
1978-01-01
The physical meaning and restrictions of complex energy eigenvalues are briefly discussed. It is indicated that a quasi-stationary phase describes an idealised disintegration system. Approximate resonance-eigenvalues of the one dimensional Schrodinger equation with a linear potential and parabolic barrier are calculated by means of Connor's semiclassical method. This method is based on the generalized WKB-method of Miller and Good. The results obtained confirm the correctness of a model representation which explains the unusual distribution of eigenvalues by certain other linear potentials in a complex energy level [af
DEFF Research Database (Denmark)
Høye, Ellen Marie; Skyt, Peter Sandegaard; Balling, Peter
2017-01-01
the observed quenching in proton beams. The dependency of dose response on linear energy transfer, as calculated through Monte Carlo simulations of the dosimeter, was investigated in 60 MeV proton beams. We found that the amount of quenching varied with the chemical composition: peak-to-plateau ratios (1cm...... chemical compositions of the dosimeter showed dose-rate dependency; however this was not dependent on the linear energy transfer. Track-structure theory was used to explain the observed quenching effects. In conclusion, this study shows that the silicone-based dosimeter has potential for use in measuring 3...
Systematics of threshold incident energy for deep sub-barrier fusion hindrance
International Nuclear Information System (INIS)
Ichikawa, Takatoshi; Hagino, Kouichi; Iwamoto, Akira
2007-01-01
We systematically evaluate the potential energy at the touching configuration for heavy-ion reactions using various potential models. We point out that the energy at the touching point, especially that estimated with the Krappe-Nix-Sierk (KNS) potential, strongly correlates with the threshold incident energy for steep falloff of fusion cross sections observed recently for several systems at extremely low energies. This clearly indicates that the steep fall-off phenomenon can be attributed to the dynamics after the target and projectile touch with each other, e.g., the tunneling process and the nuclear saturation property in the overlap region
Optimization of piezoelectric cantilever energy harvesters including non-linear effects
International Nuclear Information System (INIS)
Patel, R; McWilliam, S; Popov, A A
2014-01-01
This paper proposes a versatile non-linear model for predicting piezoelectric energy harvester performance. The presented model includes (i) material non-linearity, for both substrate and piezoelectric layers, and (ii) geometric non-linearity incorporated by assuming inextensibility and accurately representing beam curvature. The addition of a sub-model, which utilizes the transfer matrix method to predict eigenfrequencies and eigenvectors for segmented beams, allows for accurate optimization of piezoelectric layer coverage. A validation of the overall theoretical model is performed through experimental testing on both uniform and non-uniform samples manufactured in-house. For the harvester composition used in this work, the magnitude of material non-linearity exhibited by the piezoelectric layer is 35 times greater than that of the substrate layer. It is also observed that material non-linearity, responsible for reductions in resonant frequency with increases in base acceleration, is dominant over geometric non-linearity for standard piezoelectric harvesting devices. Finally, over the tested range, energy loss due to damping is found to increase in a quasi-linear fashion with base acceleration. During an optimization study on piezoelectric layer coverage, results from the developed model were compared with those from a linear model. Unbiased comparisons between harvesters were realized by using devices with identical natural frequencies—created by adjusting the device substrate thickness. Results from three studies, each with a different assumption on mechanical damping variations, are presented. Findings showed that, depending on damping variation, a non-linear model is essential for such optimization studies with each model predicting vastly differing optimum configurations. (paper)
Lindberg, Karen Byskov; Doorman, Gerard L.; Fischer, David; Korpås, Magnus; Ånestad, Astrid; Sartori, Igor
2016-01-01
According to EU’s Energy Performance of Buildings Directive (EPBD), all new buildings shall be nearly Zero Energy Buildings (ZEB) from 2018/2020. How the ZEB requirement is defined has large implications for the choice of energy technology when considering both cost and environmental issues. This paper presents a methodology for determining ZEB buildings’ cost optimal energy system design seen from the building owner’s perspective. The added value of this work is the inclusion of peak load ta...
On Energy Efficient Mobile Hydraulic Systems : with Focus on Linear Actuation
Heybroek, Kim
2017-01-01
In this dissertation, energy efficient hydraulic systems are studied. The research focuses on solutions for linear actuators in mobile applications, with emphasis on construction machines. Alongside the aspect of energy efficiency, the thesis deals with competing aspects in hydraulic system design found in the development of construction machines. Simulation models and controls for different concepts are developed, taking the whole machine into account. In line with this work, several proof o...
Modeling of non-linear CHP efficiency curves in distributed energy systems
DEFF Research Database (Denmark)
Milan, Christian; Stadler, Michael; Cardoso, Gonçalo
2015-01-01
Distributed energy resources gain an increased importance in commercial and industrial building design. Combined heat and power (CHP) units are considered as one of the key technologies for cost and emission reduction in buildings. In order to make optimal decisions on investment and operation...... for these technologies, detailed system models are needed. These models are often formulated as linear programming problems to keep computational costs and complexity in a reasonable range. However, CHP systems involve variations of the efficiency for large nameplate capacity ranges and in case of part load operation......, which can be even of non-linear nature. Since considering these characteristics would turn the models into non-linear problems, in most cases only constant efficiencies are assumed. This paper proposes possible solutions to address this issue. For a mixed integer linear programming problem two...
Exact solutions of linearized Schwinger endash Dyson equation of fermion self-energy
International Nuclear Information System (INIS)
Zhou, B.
1997-01-01
The Schwinger endash Dyson equation of fermion self-energy in the linearization approximation is solved exactly in a theory with gauge and effective four-fermion interactions. Different expressions for the independent solutions, which, respectively, submit to irregular and regular ultraviolet boundary condition are derived and expounded. copyright 1997 American Institute of Physics
Czech Academy of Sciences Publication Activity Database
Ponec, Robert; Girones, X.; Carbó-Dorca, R.
2002-01-01
Roč. 42, č. 3 (2002), s. 564-570 ISSN 0095-2338 R&D Projects: GA MŠk OC D9.20 Keywords : linear free energy relationships * molecular basis * nature of inductive Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.902, year: 2002
Competition Experiments as a Means of Evaluating Linear Free Energy Relationships
Mullins, Richard J.; Vedernikov, Andrei; Viswanathan, Rajesh
2004-01-01
The use of competition experiments as a means of evaluating linear free energy relationship in the undergraduate teaching laboratory is reported. The use of competition experiments proved to be a reliable method for the construction of Hammett plots with good correlation providing great flexibility with regard to the compounds and reactions that…
International Nuclear Information System (INIS)
Wee, Daehyun
2011-01-01
Highlights: → The effects of temperature dependent material properties on performance is studied. → The main simplification is to approximate the temperature profile with a linear one. → Accurate inclusion of the Thomson effect is essential to understand thermoelectrics. - Abstract: A novel approach to estimate energy conversion efficiency for a power-generating thermoelectric element, whose material properties possess both linear (first order) and nonlinear (second order) dependence on temperature, is developed by solving the differential equation governing its temperature distribution, which includes both the Joule heat and the Thomson effect. In order to obtain analytic expressions for power output and energy conversion efficiency, several steps of simplification are taken. Most notably, the material properties are evaluated with a linear temperature profile between the hot and cold ends. The model is further applied to a high-performance n-type half-Heusler alloy, matching the results of direct numerical analysis. The close correspondence between the proposed model and the numerical solution indeed proves that the approximations we have made are valid. The effect of linear and nonlinear components in the temperature dependence of material properties on the energy conversion efficiency is analyzed both qualitatively and quantitatively with the model. The results suggest that the accurate inclusion of the Thomson effect is essential to understand even the qualitative behavior of thermoelectric energy conversion.
Energy Technology Data Exchange (ETDEWEB)
Keerthisinghe, D., E-mail: darshika.keerthisinghe@wmich.edu [Department of Physics, Western Michigan University, Kalamazoo, MI 49008 (United States); Dassanayake, B.S. [Department of Physics, University of Peradeniya, Peradeniya (Sri Lanka); Wickramarachchi, S.J. [Department of Physics, Western Michigan University, Kalamazoo, MI 49008 (United States); Stolterfoht, N. [Helmholtz-Zentrum Berlin für Materialien und Energie, D-14109 Berlin (Germany); Tanis, J.A. [Department of Physics, Western Michigan University, Kalamazoo, MI 49008 (United States)
2016-09-01
Transmission of electrons through insulating polyethylene terephthalate (PET) nanocapillaries was observed as a function of charge deposition, angular and energy dependence. Two samples with capillary diameters 100 and 200 nm and pore densities 5 × 10{sup 8}/cm{sup 2} and 5 × 10{sup 7}/cm{sup 2}, respectively, were studied for incident electron energies of 300, 500 and 800 eV. Transmission and steady state of the electrons were attained after a time delay during which only a few electron counts were observed. The transmission through the capillaries depended on the tilt angle with both elastic and inelastic electrons going through. The guiding ability of electrons was found to increase with the incident energy in contrast to previous measurements in our laboratory for a similar PET foil.
Incident Energy Dependence of p_{t} Correlations at RHIC
Energy Technology Data Exchange (ETDEWEB)
Adams, J.; Aggarwal, M. M.; Ahammed, Z.; Amonett, J.; Anderson, B. D.; Arkhipkin, D.; Averichev, G. S.; Badyal, S. K.; Bai, Y.; Balewski, J.; Barannikova, O.; Barnby, L. S.; Baudot, J.; Bekele, S.; Belaga, V. V.; Bellwied, R.; Berger, J.; Bezverkhny, B. I; Bharadwaj, S.; Bhasin, A.; Bhati, A. K.; Bhatia, V. S.; Bichsel, H.; Billmeier, A.; Bland, L. C.; Blyth, C. O.; Bonner, B. E.; Botje, M.; Boucham, A.; Brandin, A. V.; Bravar, A.; Bystersky, M.; Cadman, R. V.; Cai, X. Z.; Caines, H.; Castillo, J.; Cebra, D.; Chajecki, Z.; Chaloupka, P.; Chattopadhyay, S.; Chen, H. F.; Chen, Y.; Cheng, J.; Cherney, M.; Chikanian, A.; Christie, W.; Coffin, J. P.; Cormier, T. M.; Cramer, J. G.; Crawford, H. J.; Das, D.; Das, S.; de Moura, M. M.; Derevschikov, A. A.; Didenko, L.; Dietel, T.; Dogra, S. M.; Dong, W. J.; Dong, X.; Draper, J. E.; Du, F.; Dubey, A. K.; Dunin, V. B.; Dunlop, J. C.; Dutta Mazumdar, M. R.; Eckardt, V.; Edwards, W. R.; Efimov, L. G.; Emelianov, V.; Engelage, J.; Eppley, G.; Erazmus, B.; Estienne, M.; Fachini, P.; Faivre, J.; Fatemi, R.; Fedorisin, J.; Filimonov, K.; Filip, P.; Finch, E.; Fine, V.; Fisyak, Y.; Fomenko, K.; Fu, J.; Gagliardi, C. A.; Gaillard, L.; Gans, J.; Ganti, M. S.; Gaudichet, L.; Geurts, F.; Ghazikhanian, V.; Ghosh, P.; Gonzalez, J. E.; Grachov, O.; Grebenyuk, O.; Grosnick, D.; Guertin, S. M.; Guo, Y.; Gupta, A.; Gutierrez, T. D.; Hallman, T. J.; Hamed, A.; Hardtke, D.; Harris, J. W.; Heinz, M.; Henry, T. W.; Hepplemann, S.; Hippolyte, B.; Hirsch, A.; Hjort, E.; Hoffmann, G. W.; Huang, H. Z.; Huang, S. L.; Hughes, E. W.; Humanic, T. J.; Igo, G.; Ishihara, A.; Jacobs, P.; Jacobs, W. W.; Janik, M.; Jiang, H.; Jones, P. G.; Judd, E. G.; Kabana, S.; Kang, K.; Kaplan, M.; Keane, D.; Khodyrev, V. Yu; Kiryluk, J.; Kisiel, A.; Kislov, E. M.; Klay, J.; Klein, S. R.; Koetke, D. D.; Kollegger, T.; Kopytine, M.; Kotchenda, L.; Kramer, M.; Kravtsov, P.; Kravtsov, V. I.; Krueger, K.; Kuhn, C.; Kulikov, A. I.; Kumar, A.; Kutuev, R. Kh
2005-10-01
We present results for two-particle transverse momentum correlations, Δp_{t,i}Δ_{t,j}, as a function of event centrality for Au+Au collisions at √(^{s}NN) = 20, 62, 130, and 200 GeV at the Relativistic Heavy Ion Collider. We observe correlations decreasing with centrality that are similar at all four incident energies. The correlations multiplied by the multiplicity density increase with incident energy and the centrality dependence may show evidence of processes such as thermalization, jet production, or the saturation of transverse flow. The square root of the correlations divided by the event-wise average transverse momentum per event shows little or no beam energy dependence and generally agrees with previous measurements at the Super Proton Synchrotron.
Energy dependence of ion-induced sputtering yields from monoatomic solids at normal incidence
International Nuclear Information System (INIS)
Yamamura, Yasunori; Tawara, Hiro.
1995-03-01
The yields of the ion-induced sputtering from monoatomic solids at normal incidence for various ion-target combinations are presented graphically as a function of the incident ion energy. In order to fill the lack of the experimental data, the sputtering yields are also calculated by the Monte Carlo simulation code ACAT for some ion-target combinations. Each graph shows available experimental data points and the ACAT data, together with the sputtering yields calculated by the present empirical formula, whose parameters are determined by the best-fit to available data. (author)
SYMMETRY PROPERTIES OF THE COULOMB POTENTIAL WITH A LINEAR DEPENDENCE ON ENERGY
Directory of Open Access Journals (Sweden)
Radu Budaca
2017-12-01
Full Text Available The D-dimensional Schr ̈odinger equation for a Coulomb potential with a coupling constant depending linearly on energy is analytically solved. The energy spectrum in the asymptotic regime of the slope parameter is found to be fully determined up to a scale only by its quantum numbers. The raising and lowering operators for this limiting model are determined from the recurrence properties of the associated solutions. It is shown that they satisfy the commutation relations of an SU(1,1 algebra and act on wave-functions which are normalized differently from the case of the usual bound state problem for an energy independent Coulomb potential.
An effective description of dark matter and dark energy in the mildly non-linear regime
Lewandowski, Matthew; Maleknejad, Azadeh; Senatore, Leonardo
2017-05-01
In the next few years, we are going to probe the low-redshift universe with unprecedented accuracy. Among the various fruits that this will bear, it will greatly improve our knowledge of the dynamics of dark energy, though for this there is a strong theoretical preference for a cosmological constant. We assume that dark energy is described by the so-called Effective Field Theory of Dark Energy, which assumes that dark energy is the Goldstone boson of time translations. Such a formalism makes it easy to ensure that our signatures are consistent with well-established principles of physics. Since most of the information resides at high wavenumbers, it is important to be able to make predictions at the highest wavenumber that is possible. The Effective Field Theory of Large-Scale Structure (EFTofLSS) is a theoretical framework that has allowed us to make accurate predictions in the mildly non-linear regime. In this paper, we derive the non-linear equations that extend the EFTofLSS to include the effect of dark energy both on the matter fields and on the biased tracers. For the specific case of clustering quintessence, we then perturbatively solve to cubic order the resulting non-linear equations and construct the one-loop power spectrum of the total density contrast.
Precise and fast beam energy measurement at the international linear collider
International Nuclear Information System (INIS)
Viti, Michele
2010-02-01
The international Linear Collider (ILC) is an electron-positron collider with a center-of-mass energy between 200 and 500 GeV and a peak luminosity of 2 . 10 34 cm -2 s -1 . For the physics program at this machine, an excellent bunch-by-bunch control of the beam energy is mandatory. Several techniques are foreseen to be implemented at the ILC in order to achieve this request. Energy spectrometers upstream and downstream of the electron/positron interaction point were proposed and the present default option for the upstream spectrometer is a beam position monitor based (BPM-based) spectrometer. In 2006/2007, a prototype of such a device was commissioned at the End Station A beam line at the Stanford Linear Accelerator Center (SLAC) in order to study performance and reliability. In addition, a novel method based on laser Compton backscattering has been proposed, since as proved at the Large Electron-Positron Collider (LEP) and the Stanford Linear Collider (SLC), complementary methods are necessary to cross-check the results of the BPM-based spectrometer. In this thesis, an overview of the experiment at End Station A is given, with emphasis on the performance of the magnets in the chicane and first energy resolution estimations. Also, the novel Compton backscattering method is discussed in details and found to be very promising. It has the potential to bring the beam energy resolution well below the requirement of ΔE b /E b =10 -4 . (orig.)
DEFF Research Database (Denmark)
Kiani, Alishir; Chwalibog, André; Nielsen, Mette O
2007-01-01
study metabolizable energy (ME) intake ranges for twin-bearing ewes were 220-440, 350- 700, 350-900 kJ per metabolic body weight (W0.75) at week seven, five, two pre-partum respectively. Indirect calorimetry and a linear regression approach were used to quantify EE(gest) and then partition to EE......(conceptus) and EE(homeorhetic). Energy expenditure of basal metabolism of the non-gravid tissues (EE(bmng)), derived from the intercept of the linear regression equation of retained energy [kJ/W0.75] and ME intake [kJ/W(0.75)], was 298 [kJ/ W0.75]. Values of the intercepts of the regression equations at week seven...
Linearly decoupled energy-stable numerical methods for multi-component two-phase compressible flow
Kou, Jisheng
2017-12-06
In this paper, for the first time we propose two linear, decoupled, energy-stable numerical schemes for multi-component two-phase compressible flow with a realistic equation of state (e.g. Peng-Robinson equation of state). The methods are constructed based on the scalar auxiliary variable (SAV) approaches for Helmholtz free energy and the intermediate velocities that are designed to decouple the tight relationship between velocity and molar densities. The intermediate velocities are also involved in the discrete momentum equation to ensure a consistency relationship with the mass balance equations. Moreover, we propose a component-wise SAV approach for a multi-component fluid, which requires solving a sequence of linear, separate mass balance equations. We prove that the methods have the unconditional energy-dissipation feature. Numerical results are presented to verify the effectiveness of the proposed methods.
Linear growth of children on a ketogenic diet: does the protein-to-energy ratio matter?
Nation, Judy; Humphrey, Maureen; MacKay, Mark; Boneh, Avihu
2014-11-01
Ketogenic diet is a structured effective treatment for children with intractable epilepsy. Several reports have indicated poor linear growth in children on the diet but the mechanism of poor growth has not been elucidated. We aimed to explore whether the protein to energy ratio plays a role in linear growth of children on ketogenic diet. Data regarding growth and nutrition were, retrospectively, collected from the clinical histories of 35 children who were treated with ketogenic diet for at least 6 months between 2002 and 2010. Patients were stratified into groups according to periods of satisfactory or poor linear growth. Poor linear growth was associated with protein or caloric intake of <80% recommended daily intake, and with a protein-to-energy ratio consistently ≤1.4 g protein/100 kcal even when protein and caloric intakes were adequate. We recommend a protein-to-energy ratio of 1.5 g protein/100 kcal be prescribed to prevent growth retardation. © The Author(s) 2013.
International Nuclear Information System (INIS)
Lee, W.W.
2004-01-01
During the regulation and deregulation processes, the US experienced, besides temporary price spikes, several unhappy incidences; natural gas shortage in mid-1970s, gas bubble in 1980s, California power crisis, and high natural gas price in 2000-2001. This paper focuses on the US natural gas and California electricity industries, especially on the above-mentioned four incidences. Through analyzing their causes and effects, this paper tries to deduce some lessons, which would be helpful to prevent and/or overcome other probable incidences in the US as well as in other countries in a process of deregulation or planning to introduce competition in their energy industries. Main lessons deduced are encouragement of investment, minimization of political consideration, transmission of price signal to all the market players, outlet for any market interference, diversification of trading options, and minimum ambiguity on responsibility between regulators as well as watching on general market situation and correcting its flaws in timely manner
International Nuclear Information System (INIS)
Wonwoo Lee
2004-01-01
During the regulation and deregulation processes, the US experienced, besides temporary price spikes, several unhappy incidences; natural gas shortage in mid-1970s, gas bubble in 1980s, California power crisis, and high natural gas price in 2000-2001. This paper focuses on the US natural gas and California electricity industries, especially on the above-mentioned four incidences. Through analyzing their causes and effects, this paper tries to deduce some lessons, which would be helpful to prevent and/or overcome other probable incidences in the US as well as in other countries in a process of deregulation or planning to introduce competition in their energy industries. Main lessons deduced are encouragement of investment, minimization of political consideration, transmission of price signal to all the market players, outlet for any market interference, diversification of trading options, and minimum ambiguity on responsibility between regulators as well as watching on general market situation and correcting its flaws in timely manner. (Author)
Effect of Low-Energy Linear Shockwave Therapy on Erectile Dysfunction
DEFF Research Database (Denmark)
Fojecki, Grzegorz L; Thiessen, Stefan; Osther, Palle Jørn Sloth
2017-01-01
MEASURES: The primary outcome measurement was an increase of at least five points on the IIEF-EF score. The secondary outcome measurement was an increased EHS score to at least 3 in men with a score no higher than 2 at baseline. Data were analyzed by linear and logistic regression. RESULTS: Mean IIEF......INTRODUCTION: Previous studies have shown that focal low-energy extracorporeal shockwave therapy (Li-ESWT) can have a positive effect in men with erectile dysfunction (ED). Linear Li-ESWT (LLi-ESWT) for ED has not been previously assessed in a randomized trial. AIM: To evaluate the treatment...
Non-Linear Numerical Modeling and Experimental Testing of a Point Absorber Wave Energy Converter
DEFF Research Database (Denmark)
Zurkinden, Andrew Stephen; Ferri, Francesco; Beatty, S.
2014-01-01
the calculation of the non-linear hydrostatic restoring moment by a cubic polynomial function fit to laboratory test results. Moreover, moments due to viscous drag are evaluated on the oscillating hemisphere considering the horizontal and vertical drag force components. The influence on the motions of this non.......e. H/λ≤0.02. For steep waves, H/λ≥0.04 however, the relative velocities between the body and the waves increase thus requiring inclusion of the non-linear hydrostatic restoring moment to effectively predict the dynamics of the wave energy converter. For operation of the device with a passively damping...
Analysis of incident-energy dependence of delayed neutron yields in actinides
Energy Technology Data Exchange (ETDEWEB)
Nasir, Mohamad Nasrun bin Mohd, E-mail: monasr211@gmail.com; Metorima, Kouhei, E-mail: kohei.m2420@hotmail.co.jp; Ohsawa, Takaaki, E-mail: ohsawa@mvg.biglobe.ne.jp; Hashimoto, Kengo, E-mail: kengoh@pp.iij4u.or.jp [Graduate School of Science and Engineering, Kindai University, Kowakae, Higashi-Osaka, 577-8502 (Japan)
2015-04-29
The changes of delayed neutron yields (ν{sub d}) of Actinides have been analyzed for incident energy up to 20MeV using realized data of precursor after prompt neutron emission, from semi-empirical model, and delayed neutron emission probability data (P{sub n}) to carry out a summation method. The evaluated nuclear data of the delayed neutron yields of actinide nuclides are still uncertain at the present and the cause of the energy dependence has not been fully understood. In this study, the fission yields of precursor were calculated considering the change of the fission fragment mass yield based on the superposition of fives Gaussian distribution; and the change of the prompt neutrons number associated with the incident energy dependence. Thus, the incident energy dependent behavior of delayed neutron was analyzed.The total number of delayed neutron is expressed as ν{sub d}=∑Y{sub i} • P{sub ni} in the summation method, where Y{sub i} is the mass yields of precursor i and P{sub ni} is the delayed neutron emission probability of precursor i. The value of Y{sub i} is derived from calculation of post neutron emission mass distribution using 5 Gaussian equations with the consideration of large distribution of the fission fragments. The prompt neutron emission ν{sub p} increases at higher incident-energy but there are two different models; one model says that the fission fragment mass dependence that prompt neutron emission increases uniformly regardless of the fission fragments mass; and the other says that the major increases occur at heavy fission fragments area. In this study, the changes of delayed neutron yields by the two models have been investigated.
El Aroudi, Abdelali
2014-05-01
Recently, nonlinearities have been shown to play an important role in increasing the extracted energy of vibration-based energy harvesting systems. In this paper, we study the dynamical behavior of a piecewise linear (PWL) spring-mass-damper system for vibration-based energy harvesting applications. First, we present a continuous time single degree of freedom PWL dynamical model of the system. Different configurations of the PWL model and their corresponding state-space regions are derived. Then, from this PWL model, extensive numerical simulations are carried out by computing time-domain waveforms, state-space trajectories and frequency responses under a deterministic harmonic excitation for different sets of system parameter values. Stability analysis is performed using Floquet theory combined with Filippov method, Poincaré map modeling and finite difference method (FDM). The Floquet multipliers are calculated using these three approaches and a good concordance is obtained among them. The performance of the system in terms of the harvested energy is studied by considering both purely harmonic excitation and a noisy vibrational source. A frequency-domain analysis shows that the harvested energy could be larger at low frequencies as compared to an equivalent linear system, in particular, for relatively low excitation intensities. This could be an advantage for potential use of this system in low frequency ambient vibrational-based energy harvesting applications. © 2014 World Scientific Publishing Company.
Econometrics analysis of consumer behaviour: a linear expenditure system applied to energy
International Nuclear Information System (INIS)
Giansante, C.; Ferrari, V.
1996-12-01
In economics literature the expenditure system specification is a well known subject. The problem is to define a coherent representation of consumer behaviour through functional forms easy to calculate. In this work it is used the Stone-Geary Linear Expenditure System and its multi-level decision process version. The Linear Expenditure system is characterized by an easy calculating estimation procedure, and its multi-level specification allows substitution and complementary relations between goods. Moreover, the utility function separability condition on which the Utility Tree Approach is based, justifies to use an estimation procedure in two or more steps. This allows to use an high degree of expenditure categories disaggregation, impossible to reach the Linear Expediture System. The analysis is applied to energy sectors
A phenomenological biological dose model for proton therapy based on linear energy transfer spectra.
Rørvik, Eivind; Thörnqvist, Sara; Stokkevåg, Camilla H; Dahle, Tordis J; Fjaera, Lars Fredrik; Ytre-Hauge, Kristian S
2017-06-01
The relative biological effectiveness (RBE) of protons varies with the radiation quality, quantified by the linear energy transfer (LET). Most phenomenological models employ a linear dependency of the dose-averaged LET (LET d ) to calculate the biological dose. However, several experiments have indicated a possible non-linear trend. Our aim was to investigate if biological dose models including non-linear LET dependencies should be considered, by introducing a LET spectrum based dose model. The RBE-LET relationship was investigated by fitting of polynomials from 1st to 5th degree to a database of 85 data points from aerobic in vitro experiments. We included both unweighted and weighted regression, the latter taking into account experimental uncertainties. Statistical testing was performed to decide whether higher degree polynomials provided better fits to the data as compared to lower degrees. The newly developed models were compared to three published LET d based models for a simulated spread out Bragg peak (SOBP) scenario. The statistical analysis of the weighted regression analysis favored a non-linear RBE-LET relationship, with the quartic polynomial found to best represent the experimental data (P = 0.010). The results of the unweighted regression analysis were on the borderline of statistical significance for non-linear functions (P = 0.053), and with the current database a linear dependency could not be rejected. For the SOBP scenario, the weighted non-linear model estimated a similar mean RBE value (1.14) compared to the three established models (1.13-1.17). The unweighted model calculated a considerably higher RBE value (1.22). The analysis indicated that non-linear models could give a better representation of the RBE-LET relationship. However, this is not decisive, as inclusion of the experimental uncertainties in the regression analysis had a significant impact on the determination and ranking of the models. As differences between the models were
International Nuclear Information System (INIS)
Sadeghi, Mehdi; Mirshojaeian Hosseini, Hossein
2006-01-01
For many years, energy models have been used in developed or developing countries to satisfy different needs in energy planning. One of major problems against energy planning and consequently energy models is uncertainty, spread in different economic, political and legal dimensions of energy planning. Confronting uncertainty, energy planners have often used two well-known strategies. The first strategy is stochastic programming, in which energy system planners define different scenarios and apply an explicit probability of occurrence to each scenario. The second strategy is Minimax Regret strategy that minimizes regrets of different decisions made in energy planning. Although these strategies have been used extensively, they could not flexibly and effectively deal with the uncertainties caused by fuzziness. 'Fuzzy Linear Programming (FLP)' is a strategy that can take fuzziness into account. This paper tries to demonstrate the method of application of FLP for optimization of supply energy system in Iran, as a case study. The used FLP model comprises fuzzy coefficients for investment costs. Following the mentioned purpose, it is realized that FLP is an easy and flexible approach that can be a serious competitor for other confronting uncertainties approaches, i.e. stochastic and Minimax Regret strategies. (author)
Large-scale linear system solver using secondary storage: Self-energy in hybrid nanostructures
Badia, J. M.; Movilla, J. L.; Climente, J. I.; Castillo, M.; Marqués, M.; Mayo, R.; Quintana-Ortí, E. S.; Planelles, J.
2011-02-01
We present a Fortran library which can be used to solve large-scale dense linear systems, Ax=b. The library is based on the LU decomposition included in the parallel linear algebra library PLAPACK and on its out-of-core extension POOCLAPACK. The library is complemented with a code which calculates the self-polarization charges and self-energy potential of axially symmetric nanostructures, following an induced charge computation method. Illustrative calculations are provided for hybrid semiconductor-quasi-metal zero-dimensional nanostructures. In these systems, the numerical integration of the self-polarization equations requires using a very fine mesh. This translates into very large and dense linear systems, which we solve for ranks up to 3×10. It is shown that the self-energy potential on the semiconductor-metal interface has important effects on the electronic wavefunction. Program summaryProgram title: HDSS (Huge Dense System Solver) Catalogue identifier: AEHU_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEHU_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 98 889 No. of bytes in distributed program, including test data, etc.: 1 009 622 Distribution format: tar.gz Programming language: Fortran 90, C Computer: Parallel architectures: multiprocessors, computer clusters Operating system: Linux/Unix Has the code been vectorized or parallelized?: Yes. 4 processors used in the sample tests; tested from 1 to 288 processors RAM: 2 GB for the sample tests; tested for up to 80 GB Classification: 7.3 External routines: MPI, BLAS, PLAPACK, POOCLAPACK. PLAPACK and POOCLAPACK are included in the distribution file. Nature of problem: Huge scale dense systems of linear equations, Ax=B, beyond standard LAPACK capabilities. Application to calculations of self-energy
Linear-scaling evaluation of the local energy in quantum Monte Carlo
International Nuclear Information System (INIS)
Austin, Brian; Aspuru-Guzik, Alan; Salomon-Ferrer, Romelia; Lester, William A. Jr.
2006-01-01
For atomic and molecular quantum Monte Carlo calculations, most of the computational effort is spent in the evaluation of the local energy. We describe a scheme for reducing the computational cost of the evaluation of the Slater determinants and correlation function for the correlated molecular orbital (CMO) ansatz. A sparse representation of the Slater determinants makes possible efficient evaluation of molecular orbitals. A modification to the scaled distance function facilitates a linear scaling implementation of the Schmidt-Moskowitz-Boys-Handy (SMBH) correlation function that preserves the efficient matrix multiplication structure of the SMBH function. For the evaluation of the local energy, these two methods lead to asymptotic linear scaling with respect to the molecule size
Hu, Pengcheng; Mao, Shuai; Tan, Jiu-Bin
2015-11-02
A measurement system with three degrees of freedom (3 DOF) that compensates for errors caused by incident beam drift is proposed. The system's measurement model (i.e. its mathematical foundation) is analyzed, and a measurement module (i.e. the designed orientation measurement unit) is developed and adopted to measure simultaneously straightness errors and the incident beam direction; thus, the errors due to incident beam drift can be compensated. The experimental results show that the proposed system has a deviation of 1 μm in the range of 200 mm for distance measurements, and a deviation of 1.3 μm in the range of 2 mm for straightness error measurements.
Linear and nonlinear causality between renewable energy consumption and economic growth in the USA
Xu, Haiyun
2016-01-01
This study aims to investigate Granger causality between renewable energy consumption (REC) and economic growth (EG) for USA. To accomplish this objective and to add the stronger evidence to the controversial issue, the tests were done under a new framework that embeds wavelet analysis, a novel tool, in nonlinear causality test approaches developed recently. The classical linear causality test procedure was also involved for comparison. The empirical data sources from the US...
Approximations for W-Pair Production at Linear-Collider Energies
Denner, A
1997-01-01
We determine the accuracy of various approximations to the O(alpha) corrections for on-shell W-pair production. While an approximation based on the universal corrections arising from initial-state radiation, from the running of alpha, and from corrections proportional to m_t^2 fails in the Linear-Collider energy range, a high-energy approximation improved by the exact universal corrections is sufficiently good above about 500GeV. These results indicate that in Monte Carlo event generators for off-shell W-pair production the incorporation of the universal corrections is not sufficient and more corrections should be included.
High energy X-ray CT system using a linear accelerator for automobile parts inspection
International Nuclear Information System (INIS)
Kanamori, T.; Sukita, T.
1995-01-01
A high energy X-ray CT system (maximum photon energy: 0.95 MeV) has been developed for industrial use. This system employs a linear accelerator as an X-ray source. It is able to image the cross section of automobile parts and can be applied to a solidification analysis study of the cylinder head in an automobile. This paper describes the features of the system and application results which can be related to solidification analysis of the cylinder head when fabricated from an aluminum casting. Some cross-sectional images are also presented as evidence for nondestructive inspection of automobile parts. (orig.)
International Nuclear Information System (INIS)
England, W.B.
1978-01-01
Uncorrelated and correlated potential energy curves and dipole moments are reported for linear KOH. The compound is found to be ionic, K + OH - . Minimum energy bond lengths are R/sub KO/=4.2913 au and R/sub OH/=1.7688 au, with an estimated accuracy of 2%. The corresponding dipole moment is 3.3 au (8.46 D) with a similar accuracy estimate. This is to our knowledge the first value ever reported for the KOH dipole moment, and the large value suggests that KOH will be an effective electron scatterer in MHD plasmas
Kim, Jeong-Man; Koo, Min-Mo; Jeong, Jae-Hoon; Hong, Keyyong; Cho, Il-Hyoung; Choi, Jang-Young
2017-05-01
This paper reports the design and analysis of a tubular permanent magnet linear generator (TPMLG) for a small-scale wave-energy converter. The analytical field computation is performed by applying a magnetic vector potential and a 2-D analytical model to determine design parameters. Based on analytical solutions, parametric analysis is performed to meet the design specifications of a wave-energy converter (WEC). Then, 2-D FEA is employed to validate the analytical method. Finally, the experimental result confirms the predictions of the analytical and finite element analysis (FEA) methods under regular and irregular wave conditions.
Moeller scattering polarimetry for high energy e sup + e sup - linear colliders
Alexander, G
2002-01-01
The general features of the Moeller scattering and its use as an electron polarimeter are described and studied in view of the planned future high energy e sup + e sup - linear colliders. In particular the study concentrates on the TESLA collider which is planned to operate with longitudinal polarised beams at a centre of mass energy of the order of 0.5 TeV with a luminosity of 3.4x10 sup 3 sup 4 cm sup - sup 2 s sup - sup 1.
FLUKA Monte Carlo for Basic Dosimetric Studies of Dual Energy Medical Linear Accelerator
Directory of Open Access Journals (Sweden)
K. Abdul Haneefa
2014-01-01
Full Text Available General purpose Monte Carlo code for simulation of particle transport is used to study the basic dosimetric parameters like percentage depth dose and dose profiles and compared with the experimental measurements from commercial dual energy medical linear accelerator. Varian Clinac iX medical linear accelerator with dual energy photon beams (6 and 15 MV is simulated using FLUKA. FLAIR is used to visualize and edit the geometry. Experimental measurements are taken for 100 cm source-to-surface (SSD in 50 × 50 × 50 cm3 PTW water phantom using 0.12 cc cylindrical ionization chamber. Percentage depth dose for standard square field sizes and dose profiles for various depths are studied in detail. The analysis was carried out using ROOT (a DATA analysis frame work developed at CERN system. Simulation result shows good agreement in percentage depth dose and beam profiles with the experimental measurements for Varian Clinac iX dual energy medical linear accelerator.
International Nuclear Information System (INIS)
Gao Song; Balter, Peter A.; Rose, Mark; Simon, William E.
2013-01-01
Purpose: To compare the use of flatness versus percent depth dose (PDD) for determining changes in photon beam energy for a megavoltage linear accelerator. Methods: Energy changes were accomplished by adjusting the bending magnet current by up to ±15% in 5% increments away from the value used clinically. Two metrics for flatness, relative flatness in the central 80% of the field (Flat) and average maximum dose along the diagonals normalized by central axis dose (F DN ), were measured using a commercially available planner ionization chamber array. PDD was measured in water at depths of 5 and 10 cm in 3 × 3 cm 2 and 10 × 10 cm 2 fields using a cylindrical chamber. Results: PDD was more sensitive to changes in energy when the beam energy was increased than when it was decreased. For the 18-MV beam in particular, PDD was not sensitive to energy reductions below the nominal energy. The value of Flat was found to be more sensitive to decreases in energy than to increases, with little sensitivity to energy increases above the nominal energy for 18-MV beams. F DN was the only metric that was found to be sensitive to both increases and reductions of energy for both the 6- and 18-MV beams. Conclusions: Flatness based metrics were found to be more sensitive to energy changes than PDD, In particular, F DN was found to be the most sensitive metric to energy changes for photon beams of 6 and 18 MV. The ionization chamber array allows this metric to be conveniently measured as part of routine accelerator quality assurance.
Precise and fast beam energy measurement at the international linear collider
Energy Technology Data Exchange (ETDEWEB)
Viti, Michele
2010-02-15
The international Linear Collider (ILC) is an electron-positron collider with a center-of-mass energy between 200 and 500 GeV and a peak luminosity of 2 . 10{sup 34} cm{sup -2}s{sup -1}. For the physics program at this machine, an excellent bunch-by-bunch control of the beam energy is mandatory. Several techniques are foreseen to be implemented at the ILC in order to achieve this request. Energy spectrometers upstream and downstream of the electron/positron interaction point were proposed and the present default option for the upstream spectrometer is a beam position monitor based (BPM-based) spectrometer. In 2006/2007, a prototype of such a device was commissioned at the End Station A beam line at the Stanford Linear Accelerator Center (SLAC) in order to study performance and reliability. In addition, a novel method based on laser Compton backscattering has been proposed, since as proved at the Large Electron-Positron Collider (LEP) and the Stanford Linear Collider (SLC), complementary methods are necessary to cross-check the results of the BPM-based spectrometer. In this thesis, an overview of the experiment at End Station A is given, with emphasis on the performance of the magnets in the chicane and first energy resolution estimations. Also, the novel Compton backscattering method is discussed in details and found to be very promising. It has the potential to bring the beam energy resolution well below the requirement of {delta}E{sub b}/E{sub b}=10{sup -4}. (orig.)
ALICE EMCal Reconstructable Energy Non-Linearity From Test Beam Monte Carlo
Carter, Thomas Michael
2017-01-01
Calorimeters play many important roles in modern high energy physics detectors, such as event selection, triggering, and precision energy measurements. EMCal, in the case of the ALICE experiment provides triggering on high energy jets, improves jet quenching study measurement bias and jet energy resolution, and improves electron and photon measurements [3]. With the EMCal detector in the ALICE experiment taking on so many important roles, it is important to fully understand, characterize and model its interactions with particles. In 2010 SPS and PS electron test beam measurements were performed on an EMCal mini-module [2]. Alongside this, the test beam setup and geometry was recreated in Geant4 by Nico [1]. Figure 1 shows the reconstructable energy linearity for the SPS test beam data and that obtained from the test beam monte carlo, indicating the amount of energy deposit as hits in the EMCal module. It can be seen that for energies above ∼ 100 GeV there is a signiﬁcant drop in the reconstructableenergym...
Energy Technology Data Exchange (ETDEWEB)
Braicovich, L., E-mail: lucio.braicovich@polimi.it; Minola, M.; Dellea, G.; Ghiringhelli, G. [CNR-SPIN and Dipartimento di Fisica, Politecnico di Milano, piazza Leonardo Da Vinci 32, Milano I-20133 (Italy); Le Tacon, M. [Max-Planck-Institut für Festkörperforschung, Heisenbergstrasse 1, D-70569 Stuttgart (Germany); Moretti Sala, M.; Morawe, C.; Peffen, J.-Ch.; Yakhou, F.; Brookes, N. B. [European Synchrotron Radiation Facility, 71 Avenue des Martyrs, Grenoble F-38043 (France); Supruangnet, R. [Synchrotron Light Research Institute, Nakhon Ratchasima (Thailand)
2014-11-15
Resonant Inelastic X-ray Scattering (RIXS) in the soft x-ray range is an element-specific energy-loss spectroscopy used to probe the electronic and magnetic excitations in strongly correlated solids. In the recent years, RIXS has been progressing very quickly in terms of energy resolution and understanding of the experimental results, but the interpretation of spectra could further improve, sometimes decisively, from a full knowledge of the polarization of incident and scattered photons. Here we present the first implementation, in a high resolution soft-RIXS spectrometer used to analyze the scattered radiation, of a device allowing the measurement of the degree of linear polarization. The system, based on a graded W/B{sub 4}C multilayer mirror installed in proximity of the CCD detector, has been installed on the AXES spectrometer at the ESRF (European Synchrotron Radiation Facility); it has been fully characterized and it has been used for a demonstration experiment at the Cu L{sub 3} edge on a high-T{sub c} superconducting cuprate. The loss in efficiency suffered by the spectrometer equipped with this test facility was a factor 17.5. We propose also a more advanced version, suitable for a routine use on the next generation of RIXS spectrometers and with an overall efficiency up to 10%.
International Nuclear Information System (INIS)
Ragavan, Anpalaki J.
2006-01-01
Linear free energy relationships for trivalent cations with crystalline M 2 O 3 and, M(OH) 3 phases of lanthanides and actinides were developed from known thermodynamic properties of the aqueous trivalent cations, modifying the Sverjensky and Molling equation. The linear free energy relationship for trivalent cations is as ΔG f,MvX 0 =a MvX ΔG n,M 3+ 0 +b MvX +β MvX r M 3+ , where the coefficients a MvX , b MvX , and β MvX characterize a particular structural family of MvX, r M 3+ is the ionic radius of M 3+ cation, ΔG f,MvX 0 is the standard Gibbs free energy of formation of MvX and ΔG n,M 3+ 0 is the standard non-solvation free energy of the cation. The coefficients for the oxide family are: a MvX =0.2705, b MvX =-1984.75 (kJ/mol), and β MvX =197.24 (kJ/molnm). The coefficients for the hydroxide family are: a MvX =0.1587, b MvX =-1474.09 (kJ/mol), and β MvX =791.70 (kJ/molnm).
Brekke, Stewart
2017-09-01
Einstein calculated the total energy at low speeds in the Special Theory of Relativity to be Etotal =m0c2 + 1 / 2m0v2 . However, the total energy must include the rotational and vibrational kinetic energies as well as the linear kinetic energies. If 1 / 2 Iω2 is the expression for the rotational kinetic energy of mass and 1 / 2 kx02 is the vibrational kinetic energy expression of a typical mass, the expression for the total energy of a mass at low speeds must be Etotal =m0c2 + 1 / 2m0v2 + 1 / 2 Iω2 + 1 / 2 kx02 . If this expression is correct, the relativistic kinetic energy of a mass. at low speeds must include the rotational and vibrational kinetic energies as well as the linear kinetic energies since according to Einstein K = (m -m0) c2 and therefore, K = 1 / 2m0v2 + 1 / 2 Iω2 + 1 / 2 kx02 .
International Nuclear Information System (INIS)
Piltan, Mehdi; Shiri, Hiva; Ghaderi, S.F.
2012-01-01
Highlights: ► Investigating different fitness functions for evolutionary algorithms in energy forecasting. ► Energy forecasting of Iranian metal industry by value added, energy prices, investment and employees. ► Using real-coded instead of binary-coded genetic algorithm decreases energy forecasting error. - Abstract: Developing energy-forecasting models is known as one of the most important steps in long-term planning. In order to achieve sustainable energy supply toward economic development and social welfare, it is required to apply precise forecasting model. Applying artificial intelligent models for estimation complex economic and social functions is growing up considerably in many researches recently. In this paper, energy consumption in industrial sector as one of the critical sectors in the consumption of energy has been investigated. Two linear and three nonlinear functions have been used in order to forecast and analyze energy in the Iranian metal industry, Particle Swarm Optimization (PSO) and Genetic Algorithms (GAs) are applied to attain parameters of the models. The Real-Coded Genetic Algorithm (RCGA) has been developed based on real numbers, which is introduced as a new approach in the field of energy forecasting. In the proposed model, electricity consumption has been considered as a function of different variables such as electricity tariff, manufacturing value added, prevailing fuel prices, the number of employees, the investment in equipment and consumption in the previous years. Mean Square Error (MSE), Root Mean Square Error (RMSE), Mean Absolute Deviation (MAD) and Mean Absolute Percent Error (MAPE) are the four functions which have been used as the fitness function in the evolutionary algorithms. The results show that the logarithmic nonlinear model using PSO algorithm with 1.91 error percentage has the best answer. Furthermore, the prediction of electricity consumption in industrial sector of Turkey and also Turkish industrial sector
Directory of Open Access Journals (Sweden)
Ateia Embarka
2008-01-01
Full Text Available It is well known that medical linear accelerators generate activation products when operated above certain electron (photon energies. The aim of the present work is to assess the activation behavior of a medium-energy radiotherapy linear accelerator by applying in situ gamma-ray spectrometry and dose measurements, and to estimate the additional dose to radiotherapy staff on the basis of these results. Spectral analysis was performed parallel to dose rate measurements in the isocenter of the linear accelerator, immediately after the termination of irradiation. The following radioisotopes were detected by spectral analysis: 28Al, 62Cu, 56Mn, 64Cu, 187W, and 57Ni. The short-lived isotopes such as 28Al and 62Cu are the most important factors of the clinical routine, while the contribution to the radiation dose of medium-lived isotopes such as 56Mn, 57Ni, 64Cu, and 187W increases during the working day. Measured dose rates at the isocenter ranged from 2.2 µSv/h to 10 µSv/h in various measuring points of interest for the members of the radiotherapy staff. Within the period of 10 minutes, the dose rate decreased to values of 0.8 µSv/h. According to actual workloads in radiotherapy departments, a realistic exposure scenario was set, resulting in a maximal additional annual whole body dose to the radiotherapy staff of about 3.5 mSv.
Linearization effect in multifractal analysis: Insights from the Random Energy Model
Angeletti, Florian; Mézard, Marc; Bertin, Eric; Abry, Patrice
2011-08-01
The analysis of the linearization effect in multifractal analysis, and hence of the estimation of moments for multifractal processes, is revisited borrowing concepts from the statistical physics of disordered systems, notably from the analysis of the so-called Random Energy Model. Considering a standard multifractal process (compound Poisson motion), chosen as a simple representative example, we show the following: (i) the existence of a critical order q∗ beyond which moments, though finite, cannot be estimated through empirical averages, irrespective of the sample size of the observation; (ii) multifractal exponents necessarily behave linearly in q, for q>q∗. Tailoring the analysis conducted for the Random Energy Model to that of Compound Poisson motion, we provide explicative and quantitative predictions for the values of q∗ and for the slope controlling the linear behavior of the multifractal exponents. These quantities are shown to be related only to the definition of the multifractal process and not to depend on the sample size of the observation. Monte Carlo simulations, conducted over a large number of large sample size realizations of compound Poisson motion, comfort and extend these analyses.
Cournoyer, Janie; Post, Andrew; Rousseau, Philippe; Hoshizaki, Blaine
2016-03-01
Football players can receive up to 1400 head impacts per season, averaging 6.3 impacts per practice and 14.3 impacts per game. A decrease in the capacity of a helmet to manage linear acceleration with multiple impacts could increase the risk of traumatic brain injury. To investigate the ability of football helmets to manage linear acceleration with multiple high-energy impacts. Descriptive laboratory study. Laboratory. We collected linear-acceleration data for 100 impacts at 6 locations on 4 helmets of different models currently used in football. Impacts 11 to 20 were compared with impacts 91 to 100 for each of the 6 locations. Linear acceleration was greater after multiple impacts (91-100) than after the first few impacts (11-20) for the front, front-boss, rear, and top locations. However, these differences are not clinically relevant as they do not affect the risk for head injury. American football helmet performance deteriorated with multiple impacts, but this is unlikely to be a factor in head-injury causation during a game or over a season.
Pulse-by-pulse energy measurement at the Stanford Linear Collider
International Nuclear Information System (INIS)
Blaylock, G.; Briggs, D.; Collins, B.; Petree, M.
1992-01-01
The stanford Linear Collider (SLC) collides a beam of electrons and positrons at 92 GeV. It is the first colliding linac, and produces Z 0 particles for High-Energy Physics measurements. The energy of each beam must be measured to one part in 10 4 on every collision (120 Hz). An Energy Spectrometer in each beam line after collision produces two stripes of high-energy synchrotron radiation with critical energy of a few MeV. The distance between these two stripes at an imaging plane measures the beam energy. The Wire- Imaging Synchrotron Radiation Detector (WISRD) system comprises a novel detector, data acquisition electronics, readout and analysis. The detector comprises an array of wires for each synchrotron stripe. The electronics measure secondary emission charge on each wire of each array. A Macintosh II (using THINK C, THINK Class Library) and DSP coprocessor (using ANSI C) acquire and analyze the data, and display and report the results for SLC operation
International Nuclear Information System (INIS)
Montoya Andrade, Dan-El; Villa Jaén, Antonio de la; García Santana, Agustín
2014-01-01
Highlights: • We considered the linear generator copper losses in the proposed MPC strategy. • We maximized the power transferred to the generator side power converter. • The proposed MPC increases the useful average power injected into the grid. • The stress level of the PTO system can be reduced by the proposed MPC. - Abstract: The amount of energy that a wave energy converter can extract depends strongly on the control strategy applied to the power take-off system. It is well known that, ideally, the reactive control allows for maximum energy extraction from waves. However, the reactive control is intrinsically noncausal in practice and requires some kind of causal approach to be applied. Moreover, this strategy does not consider physical constraints and this could be a problem because the system could achieve unacceptable dynamic values. These, and other control techniques have focused on the wave energy extraction problem in order to maximize the energy absorbed by the power take-off device without considering the possible losses in intermediate devices. In this sense, a reactive control that considers the linear generator copper losses has been recently proposed to increase the useful power injected into the grid. Among the control techniques that have emerged recently, the model predictive control represents a promising strategy. This approach performs an optimization process on a time prediction horizon incorporating dynamic constraints associated with the physical features of the power take-off system. This paper proposes a model predictive control technique that considers the copper losses in the control optimization process of point absorbers with direct drive linear generators. This proposal makes the most of reactive control as it considers the copper losses, and it makes the most of the model predictive control, as it considers the system constraints. This means that the useful power transferred from the linear generator to the power
Studer, P. A. (Inventor)
1982-01-01
A linear magnetic motor/generator is disclosed which uses magnetic flux to provide mechanical motion or electrical energy. The linear magnetic motor/generator includes an axially movable actuator mechanism. A permament magnet mechanism defines a first magnetic flux path which passes through a first end portion of the actuator mechanism. Another permament magnet mechanism defines a second magnetic flux path which passes through a second end portion of the actuator mechanism. A drive coil defines a third magnetic flux path passing through a third central portion of the actuator mechanism. A drive coil selectively adds magnetic flux to and subtracts magnetic flux from magnetic flux flowing in the first and second magnetic flux path.
Non-linear dynamics in biological microtubules: solitons and dissipation-free energy transfer
Mavromatos, Nick E.
2017-08-01
I review some recent developments concerning soliton solutions in biological microtubules and their significance in transferring energy without dissipation. I discuss various types of soliton solutions, as well as ‘spikes’, of the associated non-linear Lagrange equations describing the dynamics of a ‘pseudo-spin non-linear σ-model’ that models the dynamics of a microtubule system with dipole-dipole interactions. These results will hopefully contribute to a better understanding of the functional properties of microtubules, including the motor protein dynamics and the information transfer processes. With regards to the latter we also speculate on the use of microtubules as ‘logical’ gates. Our considerations are classical, but the soliton solutions may have a microscopic quantum origin, which we briefly touch upon.
Mass, momentum, and energy flux conservation between linear and nonlinear steady-state wave groups
Liu, Zeng; Xu, Dali; Liao, Shijun
2017-12-01
This paper provides a mass, momentum, and energy flux conservation analysis between the linear and nonlinear steady-state wave groups. Convergent high-order solutions for nonlinear wave groups with multiple steady-state near resonances in deep water have been obtained by means of the homotopy analysis method. The small divisors associated with nearly resonant components are transformed to singularities that are originally caused by exact resonances by a piecewise auxiliary linear operator. Both two primary components and other nearly resonant ones are considered in the initial guess to search for finite amplitude wave groups. It is found that as nonlinearity of wave groups increases, more wave components appear in the spectrum due to the nearly resonant interactions. The nonlinear wave fields change from the initial bi-chromatic waves that contain only two nontrivial primary components into the steady-state resonant waves that contain both two primary components and other nearly resonant ones. The conservation of mean rates of mass, momentum, and energy fluxes is established between the nonlinear wave groups and linear waves that are combined by two primary components with the same frequencies as in nonlinear wave groups. Comparison of the linear and nonlinear wave fields shows that the nearly resonant components influence the wave field distribution significantly: the nonlinear free surfaces have more peaked crests, steeper troughs, and more flatten wave nodes, and the related velocities at the crests and troughs increase more rapidly with the nonlinearity. All of these findings are helpful to enrich and deepen our understanding about nonlinear wave groups.
Using the fuzzy linear regression method to benchmark the energy efficiency of commercial buildings
International Nuclear Information System (INIS)
Chung, William
2012-01-01
Highlights: ► Fuzzy linear regression method is used for developing benchmarking systems. ► The systems can be used to benchmark energy efficiency of commercial buildings. ► The resulting benchmarking model can be used by public users. ► The resulting benchmarking model can capture the fuzzy nature of input–output data. -- Abstract: Benchmarking systems from a sample of reference buildings need to be developed to conduct benchmarking processes for the energy efficiency of commercial buildings. However, not all benchmarking systems can be adopted by public users (i.e., other non-reference building owners) because of the different methods in developing such systems. An approach for benchmarking the energy efficiency of commercial buildings using statistical regression analysis to normalize other factors, such as management performance, was developed in a previous work. However, the field data given by experts can be regarded as a distribution of possibility. Thus, the previous work may not be adequate to handle such fuzzy input–output data. Consequently, a number of fuzzy structures cannot be fully captured by statistical regression analysis. This present paper proposes the use of fuzzy linear regression analysis to develop a benchmarking process, the resulting model of which can be used by public users. An illustrative example is given as well.
Dongarra, Jack
2012-11-01
We propose to study the impact on the energy footprint of two advanced algorithmic strategies in the context of high performance dense linear algebra libraries: (1) mixed precision algorithms with iterative refinement allow to run at the peak performance of single precision floating-point arithmetic while achieving double precision accuracy and (2) tree reduction technique exposes more parallelism when factorizing tall and skinny matrices for solving over determined systems of linear equations or calculating the singular value decomposition. Integrated within the PLASMA library using tile algorithms, which will eventually supersede the block algorithms from LAPACK, both strategies further excel in performance in the presence of a dynamic task scheduler while targeting multicore architecture. Energy consumption measurements are reported along with parallel performance numbers on a dual-socket quad-core Intel Xeon as well as a quad-socket quad-core Intel Sandy Bridge chip, both providing component-based energy monitoring at all levels of the system, through the Power Pack framework and the Running Average Power Limit model, respectively. © 2012 IEEE.
Directory of Open Access Journals (Sweden)
Marc R Birtwistle
Full Text Available Numerous unimolecular, genetically-encoded Förster Resonance Energy Transfer (FRET probes for monitoring biochemical activities in live cells have been developed over the past decade. As these probes allow for collection of high frequency, spatially resolved data on signaling events in live cells and tissues, they are an attractive technology for obtaining data to develop quantitative, mathematical models of spatiotemporal signaling dynamics. However, to be useful for such purposes the observed FRET from such probes should be related to a biological quantity of interest through a defined mathematical relationship, which is straightforward when this relationship is linear, and can be difficult otherwise. First, we show that only in rare circumstances is the observed FRET linearly proportional to a biochemical activity. Therefore in most cases FRET measurements should only be compared either to explicitly modeled probes or to concentrations of products of the biochemical activity, but not to activities themselves. Importantly, we find that FRET measured by standard intensity-based, ratiometric methods is inherently non-linear with respect to the fraction of probes undergoing FRET. Alternatively, we find that quantifying FRET either via (1 fluorescence lifetime imaging (FLIM or (2 ratiometric methods where the donor emission intensity is divided by the directly-excited acceptor emission intensity (denoted R(alt is linear with respect to the fraction of probes undergoing FRET. This linearity property allows one to calculate the fraction of active probes based on the FRET measurement. Thus, our results suggest that either FLIM or ratiometric methods based on R(alt are the preferred techniques for obtaining quantitative data from FRET probe experiments for mathematical modeling purposes.
Design and analysis of an unconventional permanent magnet linear machine for energy harvesting
Zeng, Peng
This Ph.D. dissertation proposes an unconventional high power density linear electromagnetic kinetic energy harvester, and a high-performance two-stage interface power electronics to maintain maximum power abstraction from the energy source and charge the Li-ion battery load with constant current. The proposed machine architecture is composed of a double-sided flat type silicon steel stator with winding slots, a permanent magnet mover, coil windings, a linear motion guide and an adjustable spring bearing. The unconventional design of the machine is that NdFeB magnet bars in the mover are placed with magnetic fields in horizontal direction instead of vertical direction and the same magnetic poles are facing each other. The derived magnetic equivalent circuit model proves the average air-gap flux density of the novel topology is as high as 0.73 T with 17.7% improvement over that of the conventional topology at the given geometric dimensions of the proof-of-concept machine. Subsequently, the improved output voltage and power are achieved. The dynamic model of the linear generator is also developed, and the analytical equations of output maximum power are derived for the case of driving vibration with amplitude that is equal, smaller and larger than the relative displacement between the mover and the stator of the machine respectively. Furthermore, the finite element analysis (FEA) model has been simulated to prove the derived analytical results and the improved power generation capability. Also, an optimization framework is explored to extend to the multi-Degree-of-Freedom (n-DOF) vibration based linear energy harvesting devices. Moreover, a boost-buck cascaded switch mode converter with current controller is designed to extract the maximum power from the harvester and charge the Li-ion battery with trickle current. Meanwhile, a maximum power point tracking (MPPT) algorithm is proposed and optimized for low frequency driving vibrations. Finally, a proof
Investigation of 234U(n,f) as a Function of Incident Neutron Energy
Al-Adili, A.; Hambsch, F.-J.; Oberstedt, S.; Pomp, S.
2011-10-01
Measurements of the reaction 234U(n,f) have been performed at incident neutron energies from 0.2 MeV to 5 MeV at the 7 MV Van De Graaf accelerator at IRMM. A twin Frisch-grid ionization chamber was used for fission-fragment detection. Parallel digital and analogue data acquisitions were applied in order to compare the two techniques. First results on the angular anisotropy and preliminary mass distributions are presented along with a first comparison between the two techniques.
International Nuclear Information System (INIS)
Ruben, A.; Maerten, H.; Seeliger, D.
1990-01-01
A complex statistical theory of fission neutron emission combined with a phenomenological fission model has been used to calculate fission neutron data for 238 U. Obtained neutron multiplicities and energy spectra as well as average fragment energies for incidence energies from threshold to 20 MeV (including multiple-chance fission) are compared with traditional data representations. (author). 19 refs, 6 figs
Dual-Source Linear Energy Prediction (LINE-P) Model in the Context of WSNs.
Ahmed, Faisal; Tamberg, Gert; Le Moullec, Yannick; Annus, Paul
2017-07-20
Energy harvesting technologies such as miniature power solar panels and micro wind turbines are increasingly used to help power wireless sensor network nodes. However, a major drawback of energy harvesting is its varying and intermittent characteristic, which can negatively affect the quality of service. This calls for careful design and operation of the nodes, possibly by means of, e.g., dynamic duty cycling and/or dynamic frequency and voltage scaling. In this context, various energy prediction models have been proposed in the literature; however, they are typically compute-intensive or only suitable for a single type of energy source. In this paper, we propose Linear Energy Prediction "LINE-P", a lightweight, yet relatively accurate model based on approximation and sampling theory; LINE-P is suitable for dual-source energy harvesting. Simulations and comparisons against existing similar models have been conducted with low and medium resolutions (i.e., 60 and 22 min intervals/24 h) for the solar energy source (low variations) and with high resolutions (15 min intervals/24 h) for the wind energy source. The results show that the accuracy of the solar-based and wind-based predictions is up to approximately 98% and 96%, respectively, while requiring a lower complexity and memory than the other models. For the cases where LINE-P's accuracy is lower than that of other approaches, it still has the advantage of lower computing requirements, making it more suitable for embedded implementation, e.g., in wireless sensor network coordinator nodes or gateways.
Spectrometry of linear energy transfer and dosimetry measurements on board space-and aircrafts
Czech Academy of Sciences Publication Activity Database
Spurný, František; Ploc, Ondřej; Jadrníčková, Iva
2009-01-01
Roč. 6, č. 1 (2009), s. 113-123 ISSN 1814-5957 R&D Projects: GA ČR GA202/04/0795; GA AV ČR KSK2067107 Grant - others:Evropské společenství(XE) FIGM-CT2000-00068; Evropské společenství(XE) ILSRA Institutional research plan: CEZ:AV0Z10480505 Keywords : spectrometry of linear energy transfer * dosimetry measurements * detectors Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders
Uncertainties in linear energy transfer spectra measured with track-etched detectors in space
Czech Academy of Sciences Publication Activity Database
Pachnerová Brabcová, Kateřina; Ambrožová, Iva; Kolísková, Zlata; Malušek, Alexandr
2013-01-01
Roč. 713, JUN 11 (2013), s. 5-10 ISSN 0168-9002 R&D Projects: GA ČR GA205/09/0171; GA AV ČR IAA100480902; GA AV ČR KJB100480901; GA ČR GD202/09/H086 Institutional research plan: CEZ:AV0Z10480505 Institutional support: RVO:61389005 Keywords : CR-39 * linear energy transfer * uncertainty model * space dosimetry Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 1.316, year: 2013
Rate-Independent Processes with Linear Growth Energies and Time-Dependent Boundary Conditions
Czech Academy of Sciences Publication Activity Database
Kružík, Martin; Zimmer, J.
2012-01-01
Roč. 5, č. 3 (2012), s. 591-604 ISSN 1937-1632 R&D Projects: GA AV ČR IAA100750802 Grant - others:GA ČR(CZ) GAP201/10/0357 Institutional research plan: CEZ:AV0Z10750506 Keywords : concentrations * oscillations * time-dependent boundary conditions * rate-independent evolution Subject RIV: BA - General Mathematics http://library.utia.cas.cz/separaty/2011/MTR/kruzik-rate-independent processes with linear growth energies and time-dependent boundary conditions.pdf
Leakage of the Siemens 160 MLC multileaf collimator on a dual energy linear accelerator
Energy Technology Data Exchange (ETDEWEB)
Klueter, Sebastian; Sroka-Perez, Gabriele; Schubert, Kai; Debus, Juergen, E-mail: sebastian.klueter@med.uni-heidelberg.de [Department of Radiation Oncology, University Hospital Heidelberg, Heidelberg (Germany)
2011-01-21
Multileaf collimators (MLCs) have been in clinical use for many years and meanwhile are commonly used to deliver intensity-modulated radiotherapy (IMRT) beams. For this purpose it is important to know their dosimetric properties precisely, one of them being inter- and intraleaf leakage. The Siemens 160 MLC features a single focus design with flat-sided and tilted leaves instead of tongue-and-groove. The leakage performance of the 160 MLC was investigated on a dual energy linear accelerator Siemens ARTISTE with 6 MV and 18 MV photon energies. While the intraleaf leakage amounted to nearly the same dose for 6 and for 18 MV, a much higher interleaf leakage for 6 MV was measured. It could be reduced by simply rotating the collimator, and also by changing the voltage applied to the beam steering coils. The leakage of the 160 MLC is shown to be sensitive to beam alignment. This is of special interest for dual energy accelerators, as the two focal spots of both energies, neither in position nor in shape, do not necessarily always coincide. As a consequence of that, a higher leakage can be expected for one out of two energies for the 160 MLC. (note)
DEFF Research Database (Denmark)
Jeong, Cheol-Ho
2009-01-01
Most acoustic measurements are based on an assumption of ideal conditions. One such ideal condition is a diffuse and reverberant field. In practice, a perfectly diffuse sound field cannot be achieved in a reverberation chamber. Uneven incident energy density under measurement conditions can cause...... discrepancies between the measured value and the theoretical random incidence absorption coefficient. Therefore the angular distribution of the incident acoustic energy onto an absorber sample should be taken into account. The angular distribution of the incident energy density was simulated using the beam...... tracing method for various room shapes and source positions. The averaged angular distribution is found to be similar to a Gaussian distribution. As a result, an angle-weighted absorption coefficient was proposed by considering the angular energy distribution to improve the agreement between...
Latest astronomical constraints on some non-linear parametric dark energy models
Yang, Weiqiang; Pan, Supriya; Paliathanasis, Andronikos
2018-04-01
We consider non-linear redshift-dependent equation of state parameters as dark energy models in a spatially flat Friedmann-Lemaître-Robertson-Walker universe. To depict the expansion history of the universe in such cosmological scenarios, we take into account the large-scale behaviour of such parametric models and fit them using a set of latest observational data with distinct origin that includes cosmic microwave background radiation, Supernove Type Ia, baryon acoustic oscillations, redshift space distortion, weak gravitational lensing, Hubble parameter measurements from cosmic chronometers, and finally the local Hubble constant from Hubble space telescope. The fitting technique avails the publicly available code Cosmological Monte Carlo (COSMOMC), to extract the cosmological information out of these parametric dark energy models. From our analysis, it follows that those models could describe the late time accelerating phase of the universe, while they are distinguished from the Λ-cosmology.
DEFF Research Database (Denmark)
Hernández, Adriana Carolina Luna; Aldana, Nelson Leonardo Diaz; Graells, Moises
2017-01-01
by using complex algorithms that, even so, do not consider the operation of the distributed energy resources. This paper presents the modeling and design of a modular energy management system and its integration to a grid-connected battery-based microgrid. The scheduling model is a power generation......-side strategy, defined as a general mixed-integer linear programming by taking into account two stages for proper charging of the storage units. This model is considered as a deterministic problem that aims to minimize operating costs and promote self-consumption based on 24-hour ahead forecast data....... The operation of the microgrid is complemented with a supervisory control stage that compensates any mismatch between the offline scheduling process and the real time microgrid operation. The proposal has been tested experimentally in a hybrid microgrid at the Microgrid Research Laboratory in Aalborg University....
Kaoui, Fawzi; Rocca, Dario
2016-01-01
A new approach was recently presented to compute correlation energies within the random phase approximation using Lanczos chains and an optimal basis set (Rocca 2014 J. Chem. Phys. 140 18A501). This novel method avoids the explicit calculation of conduction states and represents linear response functions on a compact auxiliary basis set obtained from the diagonalization of an approximate dielectric matrix that contains only the kinetic energy contribution. Here, we extend this formalism, originally implemented for molecular systems, to treat periodic solids. In particular, the approximate dielectric matrix used to build the auxiliary basis set is generalized to avoid unphysical negative gaps, that make the model inefficient. The numerical convergence of the method is discussed and the accuracy is demonstrated considering a set including three covalently bonded (C, Si, and SiC) and three weakly bonded (Ne, Ar, and Kr) solids.
Ltaief, Hatem
2011-08-31
This paper presents the power profile of two high performance dense linear algebra libraries i.e., LAPACK and PLASMA. The former is based on block algorithms that use the fork-join paradigm to achieve parallel performance. The latter uses fine-grained task parallelism that recasts the computation to operate on submatrices called tiles. In this way tile algorithms are formed. We show results from the power profiling of the most common routines, which permits us to clearly identify the different phases of the computations. This allows us to isolate the bottlenecks in terms of energy efficiency. Our results show that PLASMA surpasses LAPACK not only in terms of performance but also in terms of energy efficiency. © 2011 Springer-Verlag.
eTOX ALLIES: an automated pipeLine for linear interaction energy-based simulations.
Capoferri, Luigi; van Dijk, Marc; Rustenburg, Ariën S; Wassenaar, Tsjerk A; Kooi, Derk P; Rifai, Eko A; Vermeulen, Nico P E; Geerke, Daan P
2017-11-21
Computational methods to predict binding affinities of small ligands toward relevant biological (off-)targets are helpful in prioritizing the screening and synthesis of new drug candidates, thereby speeding up the drug discovery process. However, use of ligand-based approaches can lead to erroneous predictions when structural and dynamic features of the target substantially affect ligand binding. Free energy methods for affinity computation can include steric and electrostatic protein-ligand interactions, solvent effects, and thermal fluctuations, but often they are computationally demanding and require a high level of supervision. As a result their application is typically limited to the screening of small sets of compounds by experts in molecular modeling. We have developed eTOX ALLIES, an open source framework that allows the automated prediction of ligand-binding free energies requiring the ligand structure as only input. eTOX ALLIES is based on the linear interaction energy approach, an efficient end-point free energy method derived from Free Energy Perturbation theory. Upon submission of a ligand or dataset of compounds, the tool performs the multiple steps required for binding free-energy prediction (docking, ligand topology creation, molecular dynamics simulations, data analysis), making use of external open source software where necessary. Moreover, functionalities are also available to enable and assist the creation and calibration of new models. In addition, a web graphical user interface has been developed to allow use of free-energy based models to users that are not an expert in molecular modeling. Because of the user-friendliness, efficiency and free-software licensing, eTOX ALLIES represents a novel extension of the toolbox for computational chemists, pharmaceutical scientists and toxicologists, who are interested in fast affinity predictions of small molecules toward biological (off-)targets for which protein flexibility, solvent and binding site
International Nuclear Information System (INIS)
Verhaegen, F.; Seuntjens, J.
1994-01-01
For irradiation of thin samples of biological material with low-energy X rays, conversion of measured air kerma, free in air to average absorbed dose to the sample is necessary. In the present paper, conversion factors from measured air kerma to average absorbed dose in thin blood samples are given for four low-energy X-ray qualities (14-50 kVp). These factors were obtained by Monte Carlo simulation of a practical sample holder. Data for different thicknesses of the blood and backing layer are presented. The conversion factors are found to depend strongly on the thicknesses of the blood layer and backing layer. In radiobiological work, knowledge of linear energy transfer (LET) values for the radiation quality used is often required. Track-averaged LET values for low-energy X rays are presented in this work. It is concluded that the thickness of the sample does not influence the LET value appreciably, indicating that for all radiobiological purposes this value can be regarded as a constant throughout the sample. Furthermore, the large difference between the LET value for a 50 kV spectrum found in this work and the value given in ICRU Report 16 is pointed out. 16 refs., 7 figs., 1 tab
Wang, Bing; Ninomiya, Yasuharu; Tanaka, Kaoru; Maruyama, Kouichi; Varès, Guillaume; Eguchi-Kasai, Kiyomi; Nenoi, Mitsuru
2012-12-01
Adaptive response (AR) of low linear energy transfer (LET) irradiations for protection against teratogenesis induced by high LET irradiations is not well documented. In this study, induction of AR by X-rays against teratogenesis induced by accelerated heavy ions was examined in fetal mice. Irradiations of pregnant C57BL/6J mice were performed by delivering a priming low dose from X-rays at 0.05 or 0.30 Gy on gestation day 11 followed one day later by a challenge high dose from either X-rays or accelerated heavy ions. Monoenergetic beams of carbon, neon, silicon, and iron with the LET values of about 15, 30, 55, and 200 keV/μm, respectively, were examined. Significant suppression of teratogenic effects (fetal death, malformation of live fetuses, or low body weight) was used as the endpoint for judgment of a successful AR induction. Existence of AR induced by low-LET X-rays against teratogenic effect induced by high-LET accelerated heavy ions was demonstrated. The priming low dose of X-rays significantly reduced the occurrence of prenatal fetal death, malformation, and/or low body weight induced by the challenge high dose from either X-rays or accelerated heavy ions of carbon, neon or silicon but not iron particles. Successful AR induction appears to be a radiation quality event, depending on the LET value and/or the particle species of the challenge irradiations. These findings would provide a new insight into the study on radiation-induced AR in utero. © 2012 Wiley Periodicals, Inc.
Hirota, Yuki; Masunaga, Shin-Ichiro; Kondo, Natsuko; Kawabata, Shinji; Hirakawa, Hirokazu; Yajima, Hirohiko; Fujimori, Akira; Ono, Koji; Kuroiwa, Toshihiko; Miyatake, Shin-Ichi
2014-01-01
Ionizing radiation is applied as the standard treatment for glioblastoma multiforme (GBM). However, radiotherapy remains merely palliative, not curative, because of the existence of glioma stem cells (GSCs), which are regarded as highly radioresistant to low linear-energy-transfer (LET) photons. Here we analyzed whether or not high-LET particles can overcome the radioresistance of GSCs. Glioma stem-like cells (GSLCs) were induced from the GBM cell line A172 in stem cell culture medium. The phenotypes of GSLCs and wild-type cells were confirmed using stem cell markers. These cells were irradiated with (60)Co gamma rays or reactor neutron beams. Under neutron-beam irradiation, high-LET proton particles can be produced through elastic scattering or nitrogen capture reaction. Radiosensitivity was assessed by a colony-forming assay, and the DNA double-strand breaks (DSBs) were assessed by a histone gamma-H2AX focus detection assay. In stem cell culture medium, GSLCs could form neurosphere-like cells and express neural stem cell markers (Sox2 and Musashi) abundantly in comparison with their parental cells. GSLCs were significantly more radioresistant to gamma rays than their parental cells, but neutron beams overcame this resistance. There were significantly fewer gamma-H2AX foci in the A172 GSLCs 24 h after irradiation with gamma rays than in their parental cultured cells, while there was no apparent difference following neutron-beam irradiation. High-LET radiation can overcome the radioresistance of GSLCs by producing unrepairable DNA DSBs. High-LET radiation therapy might have the potential to overcome GBM's resistance to X-rays in a clinical setting.
Energy Technology Data Exchange (ETDEWEB)
Wickramarachchi, S.J. [Department of Physics, Western Michigan University, Kalamazoo, MI 49008 (United States); Ikeda, T. [RIKEN Nishina Center for Accelerator Based Science, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Dassanayake, B.S. [Department of Physics, Faculty of Science, University of Peradeniya (Sri Lanka); Keerthisinghe, D.; Tanis, J.A. [Department of Physics, Western Michigan University, Kalamazoo, MI 49008 (United States)
2016-09-01
An experimental study of electron transmission and guiding through a tapered glass capillary has been performed. Electrons were transmitted for tilt angles up to ∼6.5° and ∼9.5° (laboratory angles) for incident energies of 500 and 1000 eV, respectively. It is found that elastic and inelastic contributions give rise to distinguishable peaks in the transmitted profile. For 500 eV elastic transmission dominates the profile, while for 1000 eV both elastic and inelastic contributions are present. The transmission for both energies was studied as a function of the charge (time) deposition and found to be strongly dependent. Results suggest fundamental differences between 500 and 1000 eV incident electrons. For 500 eV the transmission slowly increases suggesting charge up of the capillary wall, reaching relative stability with infrequent breakdowns for all angles investigated. For 1000 eV for tilt angles near zero degrees the time dependent profile shows oscillations in the transmission, which never reached a stable condition, while for the larger angle investigated the transmission reached near equilibrium. Inelastic processes dominated the transmission for 1000 eV even at very small tilt angles, but was generally elastic (due to Coulomb deflection) for 500 eV even for the largest tilt angle measured.
Effects of energy chirp on bunch length measurement in linear accelerator beams
Sabato, L.; Arpaia, P.; Giribono, A.; Liccardo, A.; Mostacci, A.; Palumbo, L.; Vaccarezza, C.; Variola, A.
2017-08-01
The effects of assumptions about bunch properties on the accuracy of the measurement method of the bunch length based on radio frequency deflectors (RFDs) in electron linear accelerators (LINACs) are investigated. In particular, when the electron bunch at the RFD has a non-negligible energy chirp (i.e. a correlation between the longitudinal positions and energies of the particle), the measurement is affected by a deterministic intrinsic error, which is directly related to the RFD phase offset. A case study on this effect in the electron LINAC of a gamma beam source at the Extreme Light Infrastructure-Nuclear Physics (ELI-NP) is reported. The relative error is estimated by using an electron generation and tracking (ELEGANT) code to define the reference measurements of the bunch length. The relative error is proved to increase linearly with the RFD phase offset. In particular, for an offset of {{7}\\circ} , corresponding to a vertical centroid offset at a screen of about 1 mm, the relative error is 4.5%.
Energy Technology Data Exchange (ETDEWEB)
Rau, E.I. [Institute of Microelectronics Technology of Russian Academy of Science, 142432 Chernogolovka, Moscow District (Russian Federation)], E-mail: rau@phys.msu.ru; Fakhfakh, S. [LaMaCop, Faculte des Sciences, Route Soukra km 3, BP 802, CP 3018 Sfax (Tunisia); Andrianov, M.V.; Evstafeva, E.N. [Institute of Microelectronics Technology of Russian Academy of Science, 142432 Chernogolovka, Moscow District (Russian Federation); Jbara, O. [UTAP/LASSI, EA 3802, Faculte des Sciences, BP 1039, 51687 Reims Cedex 2 (France)], E-mail: omar.jbara@univ-reims.fr; Rondot, S.; Mouze, D. [UTAP/LASSI, EA 3802, Faculte des Sciences, BP 1039, 51687 Reims Cedex 2 (France)
2008-03-15
The purpose of this paper is to give some aspects of charging effects on dielectric materials submitted to continuous electron beam irradiation in a scanning electron microscope (SEM). When the dielectric is irradiated continuously, the so-called total yield approach (TYA) used to predict the sign of the charge appeared on electron irradiated insulators fails because the charge accumulated in the dielectric interferes with the electrons emission processes. Based on previous experimental and theoretical works found in the literature, an analysis of the evolution of the electron yield curves {sigma} = f(E{sub 0}) of insulators during irradiation is given. The aim of this work is firstly to determine experimentally the second crossover energy E{sub 2C} under continuous electron irradiation (charging conditions) and secondly to demonstrate that the charge balance occurs at this beam energy and not at E{sub 2} the energy deduced from non-charging conditions (pulse primary electron beam experiments) as commonly asserted. It is however possible to apply the TYA by substituting the critical energy E{sub 2} for E{sub 2C}. The experimental procedure is based on simultaneous time dependent measurements of surface potential, leakage current and displacement current. The study underlines the difference between the landing energy of primary electrons E{sub L} at the steady state and the second crossover energy, E{sub 2C}, for charged samples. Some preliminary results are also obtained concerning the influence of the incident beam density on the energy E{sub 2C}. The samples used for this study are PMMA, polycrystalline silicone dioxide (p-SiO{sub 2}), polycrystalline alumina (p-Al{sub 2}O{sub 3}) and soda lime glass (SLG)
International Nuclear Information System (INIS)
Rau, E.I.; Fakhfakh, S.; Andrianov, M.V.; Evstafeva, E.N.; Jbara, O.; Rondot, S.; Mouze, D.
2008-01-01
The purpose of this paper is to give some aspects of charging effects on dielectric materials submitted to continuous electron beam irradiation in a scanning electron microscope (SEM). When the dielectric is irradiated continuously, the so-called total yield approach (TYA) used to predict the sign of the charge appeared on electron irradiated insulators fails because the charge accumulated in the dielectric interferes with the electrons emission processes. Based on previous experimental and theoretical works found in the literature, an analysis of the evolution of the electron yield curves σ = f(E 0 ) of insulators during irradiation is given. The aim of this work is firstly to determine experimentally the second crossover energy E 2C under continuous electron irradiation (charging conditions) and secondly to demonstrate that the charge balance occurs at this beam energy and not at E 2 the energy deduced from non-charging conditions (pulse primary electron beam experiments) as commonly asserted. It is however possible to apply the TYA by substituting the critical energy E 2 for E 2C . The experimental procedure is based on simultaneous time dependent measurements of surface potential, leakage current and displacement current. The study underlines the difference between the landing energy of primary electrons E L at the steady state and the second crossover energy, E 2C , for charged samples. Some preliminary results are also obtained concerning the influence of the incident beam density on the energy E 2C . The samples used for this study are PMMA, polycrystalline silicone dioxide (p-SiO 2 ), polycrystalline alumina (p-Al 2 O 3 ) and soda lime glass (SLG)
Energy loss due to eddy current in linear transformer driver cores
Directory of Open Access Journals (Sweden)
A. A. Kim
2010-07-01
Full Text Available In linear transformer drivers [Phys. Rev. ST Accel. Beams 12, 050402 (2009PRABFM1098-440210.1103/PhysRevSTAB.12.050402; Phys. Rev. ST Accel. Beams 12, 050401 (2009PRABFM1098-440210.1103/PhysRevSTAB.12.050401] as well as any other linear induction accelerator cavities, ferromagnetic cores are used to prevent the current from flowing along the induction cavity walls which are in parallel with the load. But if the core is made of conductive material, the applied voltage pulse generates the eddy current in the core itself which heats the core and therefore also reduces the overall linear transformer driver (LTD efficiency. The energy loss due to generation of the eddy current in the cores depends on the specific resistivity of the core material, the design of the core, as well as on the distribution of the eddy current in the core tape during the remagnetizing process. In this paper we investigate how the eddy current is distributed in a core tape with an arbitrary shape hysteresis loop. Our model is based on the textbook knowledge related to the eddy current generation in ferromagnetics with rectangular hysteresis loop, and in usual conductors. For the reader’s convenience, we reproduce some most important details of this knowledge in our paper. The model predicts that the same core would behave differently depending on how fast the applied voltage pulse is: in the high frequency limit, the equivalent resistance of the core reduces during the pulse whereas in the low frequency limit it is constant. An important inference is that the energy loss due to the eddy current generation can be reduced by increasing the cross section of the core over the minimum value which is required to avoid its saturation. The conclusions of the model are confirmed with experimental observations presented at the end of the paper.
Linear and nonlinear causality between renewable energy consumption and economic growth in the USA
Directory of Open Access Journals (Sweden)
Haiyun Xu
2016-12-01
Full Text Available This study aims to investigate Granger causality between renewable energy consumption (REC and economic growth (EG for USA. To accomplish this objective and to add the stronger evidence to the controversial issue, the tests were done under a new framework that embeds wavelet analysis, a novel tool, in nonlinear causality test approaches developed recently. The classical linear causality test procedure was also involved for comparison. The empirical data sources from the USA Energy Information Administration and Economist Intelligence Unit (EIU CountryData database. Sample period is from January 1993 to October 2014. The results indicate significantly the existence of unidirectional causality from EG to REC and support the conservation hypothesis. In additional, further evidences show that the causal relationship among them is not constant and depends on the time scale or frequency ranges, and that wavelet analysis is an important aid to capture the nonlinear causality. This suggests that renewable energy limitations do not seem to damage economic growth. These results have implications of importance for research analysts as well as policy makers of energy economy.
Seismic energy dissipation study of linear fluid viscous dampers in steel structure design
Directory of Open Access Journals (Sweden)
A. Ras
2016-09-01
Full Text Available Energy dissipation systems in civil engineering structures are sought when it comes to removing unwanted energy such as earthquake and wind. Among these systems, there is combination of structural steel frames with passive energy dissipation provided by Fluid Viscous Dampers (FVD. This device is increasingly used to provide better seismic protection for existing as well as new buildings and bridges. A 3D numerical investigation is done considering the seismic response of a twelve-storey steel building moment frame with diagonal FVD that have linear force versus velocity behaviour. Nonlinear time history, which is being calculated by Fast nonlinear analysis (FNA, of Boumerdes earthquake (Algeria, May 2003 is considered for the analysis and carried out using the SAP2000 software and comparisons between unbraced, braced and damped structure are shown in a tabulated and graphical format. The results of the various systems are studied to compare the structural response with and without this device of the energy dissipation thus obtained. The conclusions showed the formidable potential of the FVD to improve the dissipative capacities of the structure without increasing its rigidity. It is contributing significantly to reduce the quantity of steel necessary for its general stability.
Brodu, Etienne; Bouzy, Emmanuel
2017-12-01
Transmission Kikuchi diffraction is an emerging technique aimed at producing orientation maps of the structure of materials with a nanometric lateral resolution. This study investigates experimentally the depth resolution of the on-axis configuration, via a twinned silicon bi-crystal sample specifically designed and fabricated. The measured depth resolution varies from 30 to 65 nm in the range 10-30 keV, with a close to linear dependence with incident energy and no dependence with the total sample thickness. The depth resolution is explained in terms of two mechanisms acting concomitantly: generation of Kikuchi diffraction all along the thickness of the sample, associated with continuous absorption on the way out. A model based on the electron mean free path is used to account for the dependence with incident energy of the depth resolution. In addition, based on the results in silicon, the use of the mean absorption coefficient is proposed to predict the depth resolution for any atomic number and incident energy.
Hartman, Terryl J; Gapstur, Susan M; Gaudet, Mia M; Shah, Roma; Flanders, W Dana; Wang, Ying; McCullough, Marjorie L
2016-10-01
Dietary energy density (ED) is a measure of diet quality that estimates the amount of energy per unit of food (kilocalories per gram) consumed. Low-ED diets are generally high in fiber and fruits and vegetables and low in fat. Dietary ED has been positively associated with body mass index (BMI) and other risk factors for postmenopausal breast cancer. We evaluated the associations of total dietary ED and energy-dense (high-ED) foods with postmenopausal breast cancer incidence. Analyses included 56,795 postmenopausal women from the Cancer Prevention Study II Nutrition Cohort with no previous history of breast or other cancers and who provided information on diet, lifestyle, and medical history in 1999. Multivariable-adjusted breast cancer incidence rate ratios (RRs and 95% CIs) were estimated for quintiles of total dietary ED and for the consumption of high-ED foods in Cox proportional hazards regression models. During a median follow-up of 11.7 y, 2509 invasive breast cancer cases were identified, including 1857 estrogen receptor-positive and 277 estrogen receptor-negative tumors. Median dietary ED was 1.5 kcal/g (IQR: 1.3-1.7 kcal/g). After adjusting for age, race, education, reproductive characteristics, and family history, high compared with low dietary ED was associated with a statistically significantly higher risk of breast cancer (RR for fifth quintile compared with first quintile: 1.20; 95% CI: 1.05, 1.36; P-trend = 0.03). The association between the amount of high-ED foods consumed and breast cancer risk was not statistically significant. We observed no differences by estrogen receptor status or effect modification by BMI, age, or physical activity. These results suggest a modest positive association between total dietary ED and risk of postmenopausal breast cancer. © 2016 American Society for Nutrition.
Energy Technology Data Exchange (ETDEWEB)
Giansanti, C.; Ferrari, V. [ENEA, Centro Ricerche Casaccia, Rome (Italy). Dip. Energia
1996-12-01
In economics literature the expenditure system specification is a well known subject. The problem is to define a coherent representation of consumer behaviour through functional forms easy to calculate. In this work it is used the Stone-Geary Linear Expenditure System and its multi-level decision process version. The Linear Expenditure system is characterized by an easy calculating estimation procedure, and its multi-level specification allows substitution and complementary relations between goods. Moreover, the utility function separability condition on which the Utility Tree Approach is based, justifies to use an estimation procedure in two or more steps. This allows to use an high degree of expenditure categories disaggregation, impossible to reach the Linear Expediture System. The analysis is applied to energy sectors.
Minakata, Daisuke; Crittenden, John
2011-04-15
The hydroxyl radical (HO(•)) is a strong oxidant that reacts with electron-rich sites on organic compounds and initiates complex radical chain reactions in aqueous phase advanced oxidation processes (AOPs). Computer based kinetic modeling requires a reaction pathway generator and predictions of associated reaction rate constants. Previously, we reported a reaction pathway generator that can enumerate the most important elementary reactions for aliphatic compounds. For the reaction rate constant predictor, we develop linear free energy relationships (LFERs) between aqueous phase literature-reported HO(•) reaction rate constants and theoretically calculated free energies of activation for H-atom abstraction from a C-H bond and HO(•) addition to alkenes. The theoretical method uses ab initio quantum mechanical calculations, Gaussian 1-3, for gas phase reactions and a solvation method, COSMO-RS theory, to estimate the impact of water. Theoretically calculated free energies of activation are found to be within approximately ±3 kcal/mol of experimental values. Considering errors that arise from quantum mechanical calculations and experiments, this should be within the acceptable errors. The established LFERs are used to predict the HO(•) reaction rate constants within a factor of 5 from the experimental values. This approach may be applied to other reaction mechanisms to establish a library of rate constant predictions for kinetic modeling of AOPs.
Evolution of the Prompt Dipole γ-RAY Emission with Incident Energy in Fusion Reactions
Pierroutsakou, D.; Martin, B.; Inglima, G.; Boiano, A.; de Rosa, A.; di Pietro, M.; La Commara, M.; Mordente, R.; Romoli, M.; Sandoli, M.; Trotta, M.; Vardaci, E.; Glodariu, T.; Mazzocco, M.; Signorini, C.; Stroe, L.; Agodi, C.; Alba, R.; Colonna, M.; Coniglione, R.; Del Zoppo, A.; di Toro, M.; Maiolino, C.; Pellegriti, N.; Piattelli, P.; Santonocito, D.; Sapienza, P.; Cardella, G.; de Filippo, E.; Pagano, A.; Pirrone, S.; Baran, V.
2005-12-01
We studied the prompt dipole γ-ray emission, associated with entrance channel charge asymmetry effects, as a function of incident energy in the 32,36S + 100,96Mo (Elab=6 MeV/nucleon) and 36,40Ar + 96,92Zr fusion reactions (Elab= 16 and 15 MeV/nucleon, respectively). With the above reaction pairs the 132Ce compound nucleus was formed, from entrance channels having different charge asymmetries, at an excitation energy of 117 and 304 MeV with identical spin distribution. By studying the differential γ-ray multiplicity spectra related to the above fusion reactions, it was shown that at the higher compound nucleus excitation energy the Giant Dipole Resonance γ-ray intensity increases by ~14% for the more charge asymmetric system while at the lower one no difference between the data was seen within the experimental uncertainties. Calculations based on a collective bremsstrahlung analysis of the reaction dynamics are presented and compared with the experimental findings.
Comparison of the linear bias models in the light of the Dark Energy Survey
Papageorgiou, A.; Basilakos, S.; Plionis, M.
2018-05-01
The evolution of the linear and scale independent bias, based on the most popular dark matter bias models within the Λ cold dark matter (ΛCDM) cosmology, is confronted to that of the Dark Energy Survey (DES) luminous red galaxies (LRGs). Applying a χ2 minimization procedure between models and data, we find that all the considered linear bias models reproduce well the LRG bias data. The differences among the bias models are absorbed in the predicted mass of the dark-matter halo in which LRGs live and which ranges between ˜6 × 1012 and 1.4 × 1013 h-1 M⊙, for the different bias models. Similar results, reaching however a maximum value of ˜2 × 1013 h-1 M⊙, are found by confronting the SDSS (2SLAQ) Large Red Galaxies clustering with theoretical clustering models, which also include the evolution of bias. This later analysis also provides a value of Ωm = 0.30 ± 0.01, which is in excellent agreement with recent joint analyses of different cosmological probes and the reanalysis of the Planck data.
Abrecht, David G; Schwantes, Jon M
2015-03-03
This paper extends the preliminary linear free energy correlations for radionuclide release performed by Schwantes et al., following the Fukushima-Daiichi Nuclear Power Plant accident. Through evaluations of the molar fractionations of radionuclides deposited in the soil relative to modeled radionuclide inventories, we confirm the initial source of the radionuclides to the environment to be from active reactors rather than the spent fuel pool. Linear correlations of the form In χ = −α ((ΔGrxn°(TC))/(RTC)) + β were obtained between the deposited concentrations, and the reduction potentials of the fission product oxide species using multiple reduction schemes to calculate ΔG°rxn (TC). These models allowed an estimate of the upper bound for the reactor temperatures of TC between 2015 and 2060 K, providing insight into the limiting factors to vaporization and release of fission products during the reactor accident. Estimates of the release of medium-lived fission products 90Sr, 121mSn, 147Pm, 144Ce, 152Eu, 154Eu, 155Eu, and 151Sm through atmospheric venting during the first month following the accident were obtained, indicating that large quantities of 90Sr and radioactive lanthanides were likely to remain in the damaged reactor cores.
Comparison of the linear bias models in the light of the Dark Energy Survey
Papageorgiou, A.; Basilakos, S.; Plionis, M.
2018-02-01
The evolution of the linear and scale independent bias, based on the most popular dark matter bias models within the ΛCDM cosmology, is confronted to that of the Dark Energy Survey (DES) Luminous Red Galaxies (LRGs). Applying a χ2 minimization procedure between models and data we find that all the considered linear bias models reproduce well the LRG bias data. The differences among the bias models are absorbed in the predicted mass of the dark-matter halo in which LRGs live and which ranges between ˜6 × 1012h-1M⊙ and 1.4 × 1013h-1M⊙, for the different bias models. Similar results, reaching however a maximum value of ˜2 × 1013h-1M⊙, are found by confronting the SDSS (2SLAQ) Large Red Galaxies clustering with theoretical clustering models, which also include the evolution of bias. This later analysis also provides a value of Ωm = 0.30 ± 0.01, which is in excellent agreement with recent joint analyses of different cosmological probes and the reanalysis of the Planck data.
Energy Technology Data Exchange (ETDEWEB)
Romanchuk, Anna Y.; Kalmykov, Stephan N. [Lomonosov Moscow State Univ., Moscow (Russian Federation). Dept. of Chemistry
2014-07-01
The sorption of actinides in different valence states - Am(III), Th(IV), Np(V) and U(VI) onto hematite have been revisited with the special emphasis on the equilibrium constants of formation of surface species. The experimental sorption data have been treated using surface complexation modeling from which the set of new values of equilibrium constants were obtained. Formation of inner sphere monodentate surface species adequately describes the pH-sorption edges for actinide ions indicative the ionic electrostatic nature of bonding with small or no covalency contribution. The linear free energy relationship representing the correlation between the hydrolysis constants and surface complexation constants has been developed for various cations including K(I), Li(I), Na(I), Ag(I), Tl(I), Sr(II), Cu(II), Co(II), La(III), Eu(III), Ga(III), Am(III), Th(IV), Np(V), U(VI). (orig.)
Solvent effects in ionic liquids: empirical linear energy-density relationships.
Cerda-Monje, A; Aizman, A; Tapia, R A; Chiappe, C; Contreras, R
2012-07-28
Multiparameter linear energy-density relationships to model solvent effects in room temperature ionic liquids (RTILs) are introduced and tested. The model incorporates two solvent dependent and two specific solute-solvent parameters represented by a set of electronic indexes derived from the conceptual density functional theory. The specific solute-solvent interactions are described in terms of the electronic chemical potential for proton migration between the anion or cation and the transition state structure of a specific reaction. These indexes provide a quantitative estimation of the hydrogen bond (HB) acceptor basicity and the hydrogen bond donor acidity of the ionic solvent, respectively. A sound quantitative scale of HB strength is thereby obtained. The solvent dependent contributions are described by the global electrophilicity of the cation and nucleophilicity of the anion forming the ionic liquid. The model is illustrated for the kinetics of cycloaddition of cyclopentadiene towards acrolein. In general, cation HB acidity outweighs the remaining parameters for this reaction.
Non-linear sputtering effects induced by MeV energy gold clusters
International Nuclear Information System (INIS)
Boussofiane-Baudin, K.; Brunelle, A.; Chaurand, P.; Della-Negra, S.; Depauw, J.; Le Beyec, Y.; Hakansson, P.
1993-09-01
Gold clusters Au n + with 1 < n ≤ 4, accelerated to MeV energies at the Orsay tandem accelerator, have been used to induce secondary ion emission from the surface of thin organic and inorganic films. A non-linear enhancement of the secondary ion yields is observed when cluster impacts are compared to single atom impacts at the same velocity. It has been shown that the collective effects propagate in the solid over a depth larger than 2000 A. The equilibrium charge state of cluster constituents after their passage through a thin carbon foil (1000 A) has been measured. The mean value for the cluster constituents is the same as for single atoms at the same velocity. (authors). 41 refs., 8 figs., 1 tab
High energy X-ray photon counting imaging using linear accelerator and silicon strip detectors
Energy Technology Data Exchange (ETDEWEB)
Tian, Y., E-mail: cycjty@sophie.q.t.u-tokyo.ac.jp [Department of Bioengineering, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Shimazoe, K.; Yan, X. [Department of Nuclear Engineering and Management, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Ueda, O.; Ishikura, T. [Fuji Electric Co., Ltd., Fuji, Hino, Tokyo 191-8502 (Japan); Fujiwara, T. [National Institute of Advanced Industrial Science and Technology, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568 (Japan); Uesaka, M.; Ohno, M. [Nuclear Professional School, the University of Tokyo, 2-22 Shirakata-shirane, Tokai, Ibaraki 319-1188 (Japan); Tomita, H. [Department of Quantum Engineering, Nagoya University, Furo, Chikusa, Nagoya 464-8603 (Japan); Yoshihara, Y. [Department of Nuclear Engineering and Management, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Takahashi, H. [Department of Bioengineering, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Department of Nuclear Engineering and Management, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan)
2016-09-11
A photon counting imaging detector system for high energy X-rays is developed for on-site non-destructive testing of thick objects. One-dimensional silicon strip (1 mm pitch) detectors are stacked to form a two-dimensional edge-on module. Each detector is connected to a 48-channel application specific integrated circuit (ASIC). The threshold-triggered events are recorded by a field programmable gate array based counter in each channel. The detector prototype is tested using 950 kV linear accelerator X-rays. The fast CR shaper (300 ns pulse width) of the ASIC makes it possible to deal with the high instant count rate during the 2 μs beam pulse. The preliminary imaging results of several metal and concrete samples are demonstrated.
Linear Energy Transfer (LET) spectra of cosmic radiation in low Earth orbit
Parnell, T. A.; Watts, J. W., Jr.; Akopova, A. B.; Magradze, N. V.; Dudkin, V. E.; Kovalev, E. E.; Potapov, Yu. V.; Benton, E. V.; Frank, A. L.; Benton, E. R.
1995-01-01
Integral linear energy transfer (LET) spectra of cosmic radiation (CR) particles were measured on five Cosmos series spacecraft in low Earth orbit (LEO). Particular emphasis is placed on results of the Cosmos 1887 biosatellite which carried a set of joint U.S.S.R.-U.S.A. radiation experiments involving passive detectors that included thermoluminescent detectors (TLD's), plastic nuclear track detectors (PNTD's), fission foils, nuclear photo-emulsions, etc. which were located both inside and outside the spacecraft. Measured LET spectra are compared with those theoretically calculated. Results show that there is some dependence of LET spectra on orbital parameters. The results are used to estimate the CR quality factor (QF) for the COSMOS 1887 mission.
Abdullah, Hewa; Abdallah, Hassan H.
2017-04-01
Carbon nanotubes represent one of the building blocks of innovation across most industries. Carbon nanotubes have many applications based on the aspect ratio, mechanical strength, electrical and thermal conductivity of these nano materials. In this study the adsorption of a single molecule of the some linear saturated hydrocarbons inside and on the surface of a tube of single-walled carbon nanotubes (SWCNT) was investigated using Density Function Theory (DFT). The results showed that all guest molecules prefer to be adsorbed into the surface of SWCNT rather than into the CNT tube. Upon adsorption of the guest molecules, the energy gap was considerably reduced, resulting in improved electrical conductivity. DOS and NBO analysis were performed to discover intermolecular interactions. Chemical reactivity was investigated in terms of chemical hardness, softness and absolute electronegativity
Lebrun, Philippe
2010-01-01
High-energy accelerators are large projects funded by public money, developed over the years and constructed via major industrial contracts both in advanced technology and in more conventional domains such as civil engineering and infrastructure, for which they often constitute one-of markets. Assessing their cost, as well as the risk and uncertainty associated with this assessment is therefore an essential part of project preparation and a justified requirement by the funding agencies. Stemming from the experience with large circular colliders at CERN, LEP and LHC, as well as with the Main Injector, the Tevatron Collider Experiments and Accelerator Upgrades, and the NOvA Experiment at Fermilab, we discuss sources of cost variance and derive cost risk assessment methods applicable to the future linear collider, through its two technical approaches for ILC and CLIC. We also address disparities in cost risk assessment imposed by regional differences in regulations, procedures and practices.
Energy Technology Data Exchange (ETDEWEB)
Brunckhorst, Elin
2009-02-26
The scope of this thesis was to develop a device for the detection of the photoneutron dose inside the high-energy photon field. The photoneutron contamination of a Siemens PRIMUS linear accelerator was investigated in detail in its 15 MV photon mode. The experimental examinations were performed with three ionisation chambers (a tissue equivalent chamber, a magnesium chamber and a {sup 10}B-coated magnesium chamber) and two types of thermoluminescence detectors (enriched with {sup 6}Li and {sup 7}Li, respectively). The detectors have different sensitivities to photons and neutrons and their combination allows the dose separation in a mixed neutron/photon field. The application of the ionisation chamber system, as well as the present TLD system for photoneutron detection in high-energy photon beams is a new approach. The TLD neutron sensitivity was found to be too low for a measurement inside the open photon field and the further investigation focused on the ionisation chambers. The three ionisation chambers were calibrated at different photon and neutron sources and a the borated magnesium chamber showed a very high response to thermal neutrons. For a cross check of the calibration, the three chambers were also used for dose separation of a boron neutron capture therapy beam where the exact determination of the thermal neutron dose is essential. Very accurate results were achieved for the thermal neutron dose component. At the linear accelerator the chamber system was reduced to a paired chamber system utilising the two magnesium chambers, since the fast neutron component was to small to be separated. The neutron calibration of the three chambers could not be applied, instead a conversion of measured thermal neutron signal by the borated chamber to Monte Carlo simulated total neutron dose was performed. Measurements for open fields in solid water and liquid water were performed with the paired chamber system. In larger depths the neutron dose could be determined
International Nuclear Information System (INIS)
Brunckhorst, Elin
2009-01-01
The scope of this thesis was to develop a device for the detection of the photoneutron dose inside the high-energy photon field. The photoneutron contamination of a Siemens PRIMUS linear accelerator was investigated in detail in its 15 MV photon mode. The experimental examinations were performed with three ionisation chambers (a tissue equivalent chamber, a magnesium chamber and a 10 B-coated magnesium chamber) and two types of thermoluminescence detectors (enriched with 6 Li and 7 Li, respectively). The detectors have different sensitivities to photons and neutrons and their combination allows the dose separation in a mixed neutron/photon field. The application of the ionisation chamber system, as well as the present TLD system for photoneutron detection in high-energy photon beams is a new approach. The TLD neutron sensitivity was found to be too low for a measurement inside the open photon field and the further investigation focused on the ionisation chambers. The three ionisation chambers were calibrated at different photon and neutron sources and a the borated magnesium chamber showed a very high response to thermal neutrons. For a cross check of the calibration, the three chambers were also used for dose separation of a boron neutron capture therapy beam where the exact determination of the thermal neutron dose is essential. Very accurate results were achieved for the thermal neutron dose component. At the linear accelerator the chamber system was reduced to a paired chamber system utilising the two magnesium chambers, since the fast neutron component was to small to be separated. The neutron calibration of the three chambers could not be applied, instead a conversion of measured thermal neutron signal by the borated chamber to Monte Carlo simulated total neutron dose was performed. Measurements for open fields in solid water and liquid water were performed with the paired chamber system. In larger depths the neutron dose could be determined with an
Energy Technology Data Exchange (ETDEWEB)
NONE
2000-09-01
The differences existing between the PWR type reactors and the RBMK type reactors are explained as well as the risk associated to each type when it exists. The Ines scale, tool to give the level of an accident gravity comprises seven levels, the number seven is the most serious and corresponds to the Chernobyl accident; The number zero is of no consequence but must be mentioned as a matter of form. The incidents from 1 to 3 concern increasing incidents, affecting the nuclear power plant but not the external public. The accidents from 4 to 7 have a nature to affect the nuclear power plant and the environment. An efficient tool exists between nuclear operators it is made of the reports on incidents encountered by close reactors. Two others type reactors are coming, the high temperature type reactors and the fast neutrons reactors. different risks are evoked, terrorism, proliferation, transport and radioactive wastes. (N.C.)
International Nuclear Information System (INIS)
Alsmiller, R.G. Jr.; Alsmiller, F.S.; Lewis, T.A.
1986-05-01
In a series of previous papers, calculated results obtained using a one-dimensional ballistic model were presented to aid in the design of a prebuncher for the Oak Ridge Electron Linear Accelerator. As part of this work, a model was developed to provide limits on the fraction of an incident current pulse that would be accelerated by the existing accelerator. In this paper experimental data on this fraction are presented and the validity of the model developed previously is tested by comparing calculated and experimental data. Part of the experimental data is used to fix the physical parameters in the model and then good agreement between the calculated results and the rest of the experimental data is obtained
Directory of Open Access Journals (Sweden)
Neil eHuefner
2014-05-01
Full Text Available Low linear energy transfer (LET gamma rays and high LET HZE (high atomic weight, high energy particles act as powerful mutagens in both plants and animals. DNA damage generated by HZE particles is more densely clustered than that generated by gamma rays. To understand the genetic requirements for resistance to high vs. low LET radiation, a series of Arabidopsis thaliana mutants were exposed to either 1GeV Fe nuclei or gamma radiation. A comparison of effects on the germination and subsequent growth of seedlings led us to conclude that the relative biological effectiveness (RBE of the two types of radiation (HZE vs. gamma are roughly 3:1. Similarly, in wild-type lines, loss of somatic heterozygosity was induced at an RBE of about a 2:1 (HZE vs. gamma. Checkpoint and repair defects, as expected, enhanced sensitivity to both agents. The replication fork checkpoint, governed by ATR, played a slightly more important role in resistance to HZE-induced mutagenesis than in resistance to gamma induced mutagenesis.
Shrestha, Prashanta; Smith, Mark Thomas; Bundy, Bradley Charles
2014-01-25
Site-specific incorporation of unnatural amino acids (uAAs) during protein synthesis expands the proteomic code through the addition of unique residue chemistry. This field provides a unique tool to improve pharmacokinetics, cancer treatments, vaccine development, proteomics and protein engineering. The limited ability to predict the characteristics of proteins with uAA-incorporation creates a need for a low-cost system with the potential for rapid screening. Escherichia coli-based cell-free protein synthesis is a compelling platform for uAA incorporation due to the open and accessible nature of the reaction environment. However, typical cell-free systems can be expensive due to the high cost of energizing reagents. By employing alternative energy sources, we reduce the cost of uAA-incorporation in CFPS by 55%. While alternative energy systems reduce cost, the time investment to develop gene libraries can remain cumbersome. Cell-free systems allow the direct use of PCR products known as linear expression templates, thus alleviating tedious plasmid library preparations steps. We report the specific costs of CFPS with uAA incorporation, demonstrate that LETs are suitable expression templates with uAA-incorporation, and consider the substantial reduction in labor intensity using LET-based expression for CFPS uAA incorporation. Copyright © 2013 Elsevier B.V. All rights reserved.
Minakata, Daisuke; Mezyk, Stephen P; Jones, Jace W; Daws, Brittany R; Crittenden, John C
2014-12-02
Aqueous phase advanced oxidation processes (AOPs) produce hydroxyl radicals (HO•) which can completely oxidize electron rich organic compounds. The proper design and operation of AOPs require that we predict the formation and fate of the byproducts and their associated toxicity. Accordingly, there is a need to develop a first-principles kinetic model that can predict the dominant reaction pathways that potentially produce toxic byproducts. We have published some of our efforts on predicting the elementary reaction pathways and the HO• rate constants. Here we develop linear free energy relationships (LFERs) that predict the rate constants for aqueous phase radical reactions. The LFERs relate experimentally obtained kinetic rate constants to quantum mechanically calculated aqueous phase free energies of activation. The LFERs have been applied to 101 reactions, including (1) HO• addition to 15 aromatic compounds; (2) addition of molecular oxygen to 65 carbon-centered aliphatic and cyclohexadienyl radicals; (3) disproportionation of 10 peroxyl radicals, and (4) unimolecular decay of nine peroxyl radicals. The LFERs correlations predict the rate constants within a factor of 2 from the experimental values for HO• reactions and molecular oxygen addition, and a factor of 5 for peroxyl radical reactions. The LFERs and the elementary reaction pathways will enable us to predict the formation and initial fate of the byproducts in AOPs. Furthermore, our methodology can be applied to other environmental processes in which aqueous phase radical-involved reactions occur.
International Nuclear Information System (INIS)
Sonzogni, A.A.; Romo, A.S.M.A.; Frosch, W.R.; Nassiff, S.J.
1992-01-01
The stacked-foil technique is one of the most used methods to obtain excitation functions of nuclear reactions using light ions as projectiles. The purpose of this program is the calculation of the energy of the beam in the stack, as well as to obtain the incident energy and the flux of the beam by using monitor excitation functions. (orig.)
Directory of Open Access Journals (Sweden)
Mario Gómez
2018-03-01
Full Text Available This paper analyzes the causal link between aggregated and disaggregated levels of energy consumption and economic growth in Mexico between 1965 and 2014, with the presence of structural breaks stemming from the series. To that end, unit root with structural breaks, cointegration, and linear and nonlinear causality tests are employed. The results show that there is a long-run relationship between production, capital, labor, and energy, and linear causal links from total and disaggregated energy consumption to economic growth. A nonlinear causality also exists from energy consumption, the transport sector, capital, and labor to output. These results support the growth hypothesis, which maintains that energy is an important input factor for economic activity and that energy conservation policies impact the economic growth in Mexico.
Hapugoda, J. C.; Sooriyarachchi, M. R.
2017-09-01
Survival time of patients with a disease and the incidence of that particular disease (count) is frequently observed in medical studies with the data of a clustered nature. In many cases, though, the survival times and the count can be correlated in a way that, diseases that occur rarely could have shorter survival times or vice versa. Due to this fact, joint modelling of these two variables will provide interesting and certainly improved results than modelling these separately. Authors have previously proposed a methodology using Generalized Linear Mixed Models (GLMM) by joining the Discrete Time Hazard model with the Poisson Regression model to jointly model survival and count model. As Aritificial Neural Network (ANN) has become a most powerful computational tool to model complex non-linear systems, it was proposed to develop a new joint model of survival and count of Dengue patients of Sri Lanka by using that approach. Thus, the objective of this study is to develop a model using ANN approach and compare the results with the previously developed GLMM model. As the response variables are continuous in nature, Generalized Regression Neural Network (GRNN) approach was adopted to model the data. To compare the model fit, measures such as root mean square error (RMSE), absolute mean error (AME) and correlation coefficient (R) were used. The measures indicate the GRNN model fits the data better than the GLMM model.
Meierbachtol, K.; Tovesson, F.; Duke, D. L.; Geppert-Kleinrath, V.; Manning, B.; Meharchand, R.; Mosby, S.; Shields, D.
2016-09-01
The average total kinetic energy (T K E ¯) in 239Pu(n ,f ) has been measured for incident neutron energies between 0.5 and 50 MeV. The experiment was performed at the Los Alamos Neutron Science Center (LANSCE) using the neutron time-of-flight technique, and the kinetic energy of fission fragments post-neutron emission was measured in a double Frisch-gridded ionization chamber. This represents the first experimental study of the energy dependence of T K E ¯ in 239Pu above neutron energies of 6 MeV.
He, Shan; Li, Xiaoli; Viant, Mark R; Yao, Xin
2009-09-01
This paper proposes a novel profiling method for SELDI-TOF and MALDI-TOF MS data that integrates a novel peak detection method based on modified smoothed non-linear energy operator, correlation-based peak selection and Bayesian additive regression trees. The peak detection and classification performance of the proposed approach is validated on two publicly available MS data sets, namely MALDI-TOF simulation data and high-resolution SELDI-TOF ovarian cancer data. The results compared favorably with three state-of-the-art peak detection algorithms and four machine-learning algorithms. For the high-resolution ovarian cancer data set, seven biomarkers (m/z windows) were found by our method, which achieved 97.30 and 99.10% accuracy at 25th and 75th percentiles, respectively, from 50 independent cross-validation samples, which is significantly better than other profiling and dimensional reduction methods. The results show that the method is capable of finding parsimonious sets of biologically meaningful biomarkers with better accuracy than existing methods. Supporting Information material and MATLAB/R scripts to implement the methods described in the article are available at: http://www.cs.bham.ac.uk/szh/SourceCode-for-Proteomics.zip.
International Nuclear Information System (INIS)
Nersisyan, H.B.; Zwicknagel, G.; Toepffer, C.
2003-01-01
The energy loss of a heavy ion moving in a magnetized electron plasma is considered within the linear response (LR) and binary collision (BC) treatments with the purpose to look for a connection between these two models. These two complementary approaches yield close results if no magnetic field is present, but there develop discrepancies with growing magnetic field at ion velocities that are lower than, or comparable with, the thermal velocity of the electrons. We show that this is a peculiarity of the Coulomb interaction which requires cutoff procedures to account for its singularity at the origin and its infinite range. The cutoff procedures in the LR and BC treatments are different as the order of integrations in velocity and in ordinary (Fourier) spaces is reversed in both treatments. While BC involves a velocity average of Coulomb logarithms, there appear in LR Coulomb logarithms of velocity averaged cutoffs. The discrepancies between LR and BC vanish, except for small contributions of collective modes, for smoothened potentials that require no cutoffs. This is shown explicitly with the help of an improved BC in which the velocity transfer is treated up to second order in the interaction in Fourier space
A non-linear 3D printed electromagnetic vibration energy harvester
International Nuclear Information System (INIS)
Constantinou, P; Roy, S
2015-01-01
This paper describes a novel electromagnetic energy harvester that exploits the low flexural modulus of ABS and comprises of a nonlinear mechanism to enhance the generated power and bandwidth. The device is printed using desktop additive manufacturing techniques (3D printing) that use thermoplastics. It has a ‘V’ spring topology and exhibits a softening spring non-linearity introduced through the magnetic arrangement, which introduces a monostable potential well. A model is presented and measurements correspond favourably. The produced prototype generates a peak power of approximately 2.5mW at a frame acceleration of 1g and has a power bandwidth of approximately 1.2→1.5Hz and 3.5→3.9Hz during up and down sweeps respectively. The device has a power density of 0.4mW/cm 3 at a frame acceleration of 1g and a density of 0.04mW/cm 3 from a generated power of 25μW at 0.1g. (paper)
Dynamic wedge, electron energy and beam profile Q.A. using an ionization chamber linear array
International Nuclear Information System (INIS)
Kenny, M.B.; Todd, S.P.
1996-01-01
Since the introduction of multi-modal linacs the quality assurance workload of a Physical Sciences department has increased dramatically. The advent of dynamic wedges has further complicated matters because of the need to invent accurate methods to perform Q.A. in a reasonable time. We have been using an ionization chamber linear array, the Thebes 7000 TM by Victoreen, Inc., for some years to measure X-ray and electron beam profiles. Two years ago we developed software to perform Q.A. on our dynamic wedges using the array and more recently included a routine to check electron beam energies using the method described by Rosenow, U.F. et al., Med. Phys. 18(1) 19-25. The integrated beam and profile management system has enabled us to maintain a comprehensive quality assurance programme on all our linaccs. Both our efficiency and accuracy have increased to the point where we are able to keep up with the greater number of tests required without an increase in staff or hours spent in quality assurance. In changing the processor from the Z80 of the Thebes console to the 486 of the PC we have also noticed a marked increase in the calibration stability of the array. (author)
International Nuclear Information System (INIS)
Rees, J.
1986-11-01
Scaling laws for linear colliders are considered for the case of laterally round Gaussian beams and for the case that mutual pinching of the beams can be ignored. Based on these assumptions, the relationship is found between the interaction area, beta function, beam emittance, and energy for a linear collider in order to show the need for substantial improvements in the feasible values of accelerator parameters to reach a center of mass energy of 0.7 TeV. Pinch is then taken into account
The United States Department of Energy (DOE) Computerized Accident/Incident Reporting System (CAIRS)
International Nuclear Information System (INIS)
Briscoe, G.J.
1993-01-01
The Department of Energy's (DOE) Computerized Accident/Incident Reporting System (CAIRS) is a comprehensive data base containing more than 50,000 investigation reports of injury/illness, property damage and vehicle accident cases representing safety data from 1975 to the present for more than 150 DOE contractor organizations. A special feature is that the text of each accident report is translated using a controlled dictionary and rigid sentence structure called Factor Relationship and Sequence of Events (FRASE) that enhances the ability to retrieve specific types of information and to perform detailed analyses. DOE summary and individual contractor reports are prepared quarterly and annually. In addition, ''Safety Performance Profile'' reports for individual organizations are prepared to provide advance information to appraisal teams, and special topical reports are prepared for areas of concern such as an increase in the number of security injuries or environmental releases. The data base is open to all DOE and Contractor registered users with no access restrictions other than that required by the Privacy Act
Regazzoni, V.; Acerbi, F.; Cozzi, G.; Ferri, A.; Fiorini, C.; Paternoster, G.; Piemonte, C.; Rucatti, D.; Zappalà, G.; Zorzi, N.; Gola, A.
2017-07-01
Fondazione Bruno Kessler (FBK) (Trento, Italy) has recently introduced High Density (HD) and Ultra High-Density (UHD) SiPMs, featuring very small micro-cell pitch. The high cell density is a very important factor to improve the linearity of the SiPM in high-dynamic-range applications, such as the scintillation light readout in high-energy gamma-ray spectroscopy and in prompt gamma imaging for proton therapy. The energy resolution at high energies is a trade-off between the excess noise factor caused by the non-linearity of the SiPM and the photon detection efficiency of the detector. To study these effects, we developed a new setup that simulates the LYSO light emission in response to gamma photons up to 30 MeV, using a pulsed light source. We measured the non-linearity and energy resolution vs. energy of the FBK RGB-HD e RGB-UHD SiPM technologies. We considered five different cell sizes, ranging from 10 μm up to 25 μm. With the UHD technology we were able to observe a remarkable reduction of the SiPM non-linearity, less than 5% at 5 MeV with 10 μm cells, which should be compared to a non-linearity of 50% with 25 μm-cell HD-SiPMs. With the same setup, we also measured the different components of the energy resolution (intrinsic, statistical, detector and electronic noise) vs. cell size, over-voltage and energy and we separated the different sources of excess noise factor.
Calculation of nuclear data for incident energies to 200 MeV with the FKK-GNASH code system
International Nuclear Information System (INIS)
Chadwick, M.B.; Young, P.G.
1993-02-01
We describe how the FKK-GNASH code system has been extended to calculate nucleon-induced reactions up to 200 MeV, and used to predict (p,xn) and (p,xp) cross sections on 208 Pb at incident energies of 25, 45, 80 and 160 MeV, for an intermediate energy code intercomparison. Details of the reaction mechanisms calculated by FKK-GNASH are given, and the calculational procedure is described
G W with linearized augmented plane waves extended by high-energy local orbitals
Jiang, Hong; Blaha, Peter
2016-03-01
Many-body perturbation theory in the G W approximation is currently the most accurate and robust first-principles approach to determine the electronic band structure of weakly correlated insulating materials without any empirical input. Recent G W results for ZnO with more careful investigation of the convergence with respect to the number of unoccupied states have led to heated debates regarding the numerical accuracy of previously reported G W results using either pseudopotential plane waves or all-electron linearized augmented plane waves (LAPWs). The latter has been arguably regarded as the most accurate scheme for electronic-structure theory for solids. This work aims to solve the ZnO puzzle via a systematic investigation of the effects of including high-energy local orbitals (HLOs) in the LAPW-based G W calculations of semiconductors. Using ZnO as the prototypical example, it is shown that the inclusion of HLOs has two main effects: it improves the description of high-lying unoccupied states by reducing the linearization errors of the standard LAPW basis, and in addition it provides an efficient way to achieve the completeness in the summation of states in G W calculations. By investigating the convergence of G W band gaps with respect to the number of HLOs for several other typical examples, it was found that the effects of HLOs are highly system-dependent, and in most cases the inclusion of HLOs changes the band gap by less than 0.2 eV. Compared to its effects on the band gap, the consideration of HLOs has even stronger effects on the G W correction to the valence-band maximum, which is of great significance for the G W prediction of the ionization potentials of semiconductors. By considering an extended set of semiconductors with relatively well-established experimental band gaps, it was found that in general using a HLO-enhanced LAPW basis significantly improves the agreement with experiment for both the band gap and the ionization potential, and overall
The effect of Moidal non-linear blending function for dual-energy CT on CT image quality
International Nuclear Information System (INIS)
Zhang Fan; Yang Li
2011-01-01
Objective: To compare the difference between linear blending and non-linear blending function for dual-energy CT, and to evaluate the effect on CT image quality. Methods: The model was made of a piece of fresh pork liver inserted with 5 syringes containing various concentrations of iodine solutions (16.3, 26.4, 48.7, 74.6 and 112.3 HU). Linear blending images were automatically reformatted after the model was scanned in the dual-energy mode. Non-linear blending images were reformatted using the software of optimal contrast in Syngo workstation. Images were divided into 3 groups, including linear blending group, non-linear blending group and 120 kV group. Contrast noise ratio (CNR) were measured and calculated respectively in the 3 groups and the different figure of merit (FOM) values between the groups were compared using one-way ANOVA. Twenty patients scanned in the dual-energy mode were randomly selected and the SNR of their liver, renal cortex, spleen, pancreas and abdominal aorta were measured. The independent sample t test was used to compare the difference of signal to noise ratio (SNR) between linear blending group and non linear blending group. Two readers' agreement score and single-blind method were used to investigate the conspicuity difference between linear blending group and non linear blending group. Results: With models of different CT values, the FOM values in non-linear blending group were 20.65± 8.18, 11.40±4.25, 1.60±0.82, 2.40±1.13, 45.49±17.86. In 74.6 HU and 112.3 HU models, the differences of the FOM values observed among the three groups were statistically significant (P<0.05), which were 0.30±0.06 and 14.43±4.59 for linear blending group, and 0.22±0.05 and 15.31±5.16 for 120 kV group. And non-linear blending group had a better FOM value. The SNR of renal cortex and abdominal aorta were 19.2±5.1 and 36.5±13.9 for non-linear blending group, while they were 12.4±3.8 and 22.6±7.0 for linear blending group. There were statistically
DEFF Research Database (Denmark)
López, Maria del Pilar Heras; Thomas, Sarah; Kramer, Morten Mejlhede
2017-01-01
Although linear theory is often used to analyse wave energy devices, it is in many cases too simplistic. Many wave energy converters (WECs) exceed the key linear theory assumption of small amplitudes of motion, and require the inclusion of non-linear forces. A common approach is to use a hybrid f...
Energy Technology Data Exchange (ETDEWEB)
Sahoo, G.S. [Health Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Tripathy, S.P., E-mail: sam.tripathy@gmail.com [Health Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Homi Bhabha National Institute, Mumbai 400094 (India); Molokanov, A.G.; Aleynikov, V.E. [Joint Institute for Nuclear Research, Dubna 141980 (Russian Federation); Sharma, S.D. [Homi Bhabha National Institute, Mumbai 400094 (India); Radiological Physics & Advisory Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Bandyopadhyay, T. [Health Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Homi Bhabha National Institute, Mumbai 400094 (India)
2016-05-11
In this work, we have used CR-39 detectors to estimate the LET (linear energy transfer) spectrum of secondary particles due to 171 MeV proton beam at different depths of water including the Bragg peak region. The measured LET spectra were compared with those obtained from FLUKA Monte Carlo simulation. The absorbed dose (D{sub LET}), dose equivalent (H{sub LET}) were estimated using the LET spectra. The values of D{sub LET} and H{sub LET} per incident proton fluence were found to increase with the increase in depth of water and were maximum at Bragg peak. - Highlights: • Measurement of LET spectrometry using CR-39 detectors at different depths of water. • Comparison of measured spectra with FLUKA Monte carlo simulation. • Absorbed dose and dose equivalent was found to increase with depth of water.
Online Energy Management of City Cars with Multi-Objective Linear Parameter-Varying L2-Gain Control
Hong, Boe-Shong; Wu, Mei-Hung
2015-01-01
This work aims at online regulating transient current out of the batteries of small-sized electric cars that transport people and goods around cities. In a city with heavy traffic, transient current dominates the energy economy and propulsion capability, which are in opposition to each other. In order to manage the trade-off between energy consumption per distance and propulsion capability in transience, the authors improve on previous work on multi-objective linear parameter-varying (LPV) L2...
International Nuclear Information System (INIS)
Giantsoudi, Drosoula; Grassberger, Clemens; Craft, David; Niemierko, Andrzej; Trofimov, Alexei; Paganetti, Harald
2013-01-01
Purpose: To investigate the feasibility and potential clinical benefit of linear energy transfer (LET) guided plan optimization in intensity modulated proton therapy (IMPT). Methods and Materials: A multicriteria optimization (MCO) module was used to generate a series of Pareto-optimal IMPT base plans (BPs), corresponding to defined objectives, for 5 patients with head-and-neck cancer and 2 with pancreatic cancer. A Monte Carlo platform was used to calculate dose and LET distributions for each BP. A custom-designed MCO navigation module allowed the user to interpolate between BPs to produce deliverable Pareto-optimal solutions. Differences among the BPs were evaluated for each patient, based on dose–volume and LET–volume histograms and 3-dimensional distributions. An LET-based relative biological effectiveness (RBE) model was used to evaluate the potential clinical benefit when navigating the space of Pareto-optimal BPs. Results: The mean LET values for the target varied up to 30% among the BPs for the head-and-neck patients and up to 14% for the pancreatic cancer patients. Variations were more prominent in organs at risk (OARs), where mean LET values differed by a factor of up to 2 among the BPs for the same patient. An inverse relation between dose and LET distributions for the OARs was typically observed. Accounting for LET-dependent variable RBE values, a potential improvement on RBE-weighted dose of up to 40%, averaged over several structures under study, was noticed during MCO navigation. Conclusions: We present a novel strategy for optimizing proton therapy to maximize dose-averaged LET in tumor targets while simultaneously minimizing dose-averaged LET in normal tissue structures. MCO BPs show substantial LET variations, leading to potentially significant differences in RBE-weighted doses. Pareto-surface navigation, using both dose and LET distributions for guidance, provides the means for evaluating a large variety of deliverable plans and aids in
Reoptimization of Intensity Modulated Proton Therapy Plans Based on Linear Energy Transfer
Energy Technology Data Exchange (ETDEWEB)
Unkelbach, Jan, E-mail: junkelbach@mgh.harvard.edu [Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts (United States); Botas, Pablo [Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts (United States); Faculty of Physics, Ruprecht-Karls-Universität Heidelberg, Heidelberg (Germany); Giantsoudi, Drosoula; Gorissen, Bram L.; Paganetti, Harald [Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts (United States)
2016-12-01
Purpose: We describe a treatment plan optimization method for intensity modulated proton therapy (IMPT) that avoids high values of linear energy transfer (LET) in critical structures located within or near the target volume while limiting degradation of the best possible physical dose distribution. Methods and Materials: To allow fast optimization based on dose and LET, a GPU-based Monte Carlo code was extended to provide dose-averaged LET in addition to dose for all pencil beams. After optimizing an initial IMPT plan based on physical dose, a prioritized optimization scheme is used to modify the LET distribution while constraining the physical dose objectives to values close to the initial plan. The LET optimization step is performed based on objective functions evaluated for the product of LET and physical dose (LET×D). To first approximation, LET×D represents a measure of the additional biological dose that is caused by high LET. Results: The method is effective for treatments where serial critical structures with maximum dose constraints are located within or near the target. We report on 5 patients with intracranial tumors (high-grade meningiomas, base-of-skull chordomas, ependymomas) in whom the target volume overlaps with the brainstem and optic structures. In all cases, high LET×D in critical structures could be avoided while minimally compromising physical dose planning objectives. Conclusion: LET-based reoptimization of IMPT plans represents a pragmatic approach to bridge the gap between purely physical dose-based and relative biological effectiveness (RBE)-based planning. The method makes IMPT treatments safer by mitigating a potentially increased risk of side effects resulting from elevated RBE of proton beams near the end of range.
Directory of Open Access Journals (Sweden)
Aamir Hussain
2016-06-01
Full Text Available This paper presents the design optimization of linear permanent magnet (PM generator for wave energy conversion using finite element method (FEM. A linear PM generator with triangular-shaped magnet is proposed, which has higher electromagnetic characteristics, superior performance and low weight as compared to conventional linear PM generator with rectangular shaped magnet. The Individual Parameter (IP optimization technique is employed in order to optimize and achieve optimum performance of linear PM generator. The objective function, optimization variables; magnet angle,M_θ(∆ (θ, the pole-width ratio, P_w ratio(τ_p/τ_mz,, and split ratio between translator and stator, δ_a ratio(R_m/R_e, and constraints are defined. The efficiency and its main parts; copper and iron loss are computed using time-stepping FEM. The optimal values after optimization are presented which yields highest efficiency. Key
Ayan, Ahmet Sedat; Akgun, Ugur; Anderson, E Walter; Bagoly, Zsolt; Bencze, Gyorgy; Brücken, P; Debreczeni, Gergely; Dumanoglu, Isa; Eskut, Eda; Fenyvesi, Andras; Gavrilov, Vladimir; Gribushin, Andrey; Hajdu, Csaba; Hauptman, John M; Kayis, A; Kolosov, Victor; Kuleshov, Sergey; Merlo, Jean-Pierre; Miller, Michael; McCliment, Edward; Molnár, Jozsef; Nikitin, A; Önel, Y M; Onengüt, G; Osborne, David; Ozdes-Koca, N; Pikalov, Vladimir; Polatoz, A; Schmidth, I; Serin, Meltem; Sever, Ramazan; Stolin, Viatcheslav; Ulyanov, A; Umashev, A; Uzunian, S; Vesztergombi, Gyorgy; Winn, Dave; Yershov, A A; Zálán, Peter; Zeyrek, Mehmet
2003-01-01
The first pre-production-prototype (PPP-I) of the quartz fiber calorimeter of the CMS detector has been tested at CERN.The calorimeter consists of quartz fibers embedded in an iron matrix. Results are presented on the energy resolution of the prototype for electron and pions and the signal uniformity and linearity.
Image quality optimization and evaluation of linearly mixed images in dual-source, dual-energy CT
International Nuclear Information System (INIS)
Yu Lifeng; Primak, Andrew N.; Liu Xin; McCollough, Cynthia H.
2009-01-01
In dual-source dual-energy CT, the images reconstructed from the low- and high-energy scans (typically at 80 and 140 kV, respectively) can be mixed together to provide a single set of non-material-specific images for the purpose of routine diagnostic interpretation. Different from the material-specific information that may be obtained from the dual-energy scan data, the mixed images are created with the purpose of providing the interpreting physician a single set of images that have an appearance similar to that in single-energy images acquired at the same total radiation dose. In this work, the authors used a phantom study to evaluate the image quality of linearly mixed images in comparison to single-energy CT images, assuming the same total radiation dose and taking into account the effect of patient size and the dose partitioning between the low-and high-energy scans. The authors first developed a method to optimize the quality of the linearly mixed images such that the single-energy image quality was compared to the best-case image quality of the dual-energy mixed images. Compared to 80 kV single-energy images for the same radiation dose, the iodine CNR in dual-energy mixed images was worse for smaller phantom sizes. However, similar noise and similar or improved iodine CNR relative to 120 kV images could be achieved for dual-energy mixed images using the same total radiation dose over a wide range of patient sizes (up to 45 cm lateral thorax dimension). Thus, for adult CT practices, which primarily use 120 kV scanning, the use of dual-energy CT for the purpose of material-specific imaging can also produce a set of non-material-specific images for routine diagnostic interpretation that are of similar or improved quality relative to single-energy 120 kV scans.
Neutron emission cross sections on 93Nb at 20 MeV incident energy
International Nuclear Information System (INIS)
Marcinkowski, A.; Kielan, D.
1991-01-01
Over the last years fully quantum-mechanical theories of nuclear reactions have been developed that provide, at least in principle, parameter-free methods of calculating double-differential continuum cross sections. The DWBA-based theory of direct processes to the continuum was derived by Tamura et al. The statistical theory of Feshback, Kerman and Koonin (FKK) introduced two reaction types in parallel as complementary mechanisms contributing to the preequilibrium decay. The multistep compound mechanism (MSC) results in symmetric angular distributions of the emitted particles, whereas the multistep direct mechanism (MSD) gives rise to the forward-peaked angular distributions. The theories of the MSC reactions differ in that the FKK theory incorporates the ''never come back'' hypothesis, which allowed the formulation of an applicable model that was successfully used in practical calculations. On the other hand the FKK theory of the MSD reactions differs conceptually from the theory of Tamura et al. and from the more general theory developed most recently by Nishioka et al. The latter theories were shown to be founded upon a postulated chaos located in the residual nucleus. In contrast, the theory of FKK assumes a chaotic interaction of the continuum particle to be emitted with the residual nucleus. The continuum or leading-particle statistics of the FKK theory results in the simple, convolution like, MSD cross section formula, which facilitates numerical calculations. Nevertheless two-step statistical DWBA calculations have been also performed. This paper extends the application of the FKK theory to the 93 Nb(n,xn) reaction at 20 MeV incident energy. (author). 14 refs, 1 fig
Chatillon, A; Granier, Th; Laurent, B; Taïeb, J; Noda, S; Haight, R C; Devlin, M; Nelson, R O; O’Donnell, J M
2010-01-01
Prompt fission neutron spectra in the neutron-induced fission of 239Pu have been measured for incident neutron energies from 1 to 200 MeV at the Los Alamos Neutron Science Center. Preliminary results are discussed and compared to theoretical model calculation.
DEFF Research Database (Denmark)
Xydis, George; Koroneos, C.
2012-01-01
In the present paper the mismatch between the energy supply levels and the end use, in a broader sense, was studied for the Hellenic energy system. The ultimate objective was to optimize the way to meet the country's energy needs in every different administrative and geographical region using...... renewable energy sources (RES) and at the same time to define the remaining available space for energy recovery units from municipal solid waste (MSW) in each region to participate in the energy system. Based on the results of the different scenarios examined for meeting the electricity needs using linear...... programming and by using the exergoeconomic analysis the penetration grade was found for the proposed energy recovery units from MSWs in each region....
Ebihara, Y.; Tanaka, T.
2017-12-01
One explanation for SAPS/SAID is the poleward ionospheric electric field arising from a pair of Region 1 and Region 2 field-aligned currents (FACs). At substorm expansion onset, the FACs are intensified, resulting in intensification of energy incident on the auroral and sub-auroral ionosphere. Where does the energy comes from? Based on the results obtained by the global magnetohydrodynamics (MHD) simulation, we present energy flow and energy conversion associated with the Region 1 and Region 2 FACs that are intensified at the onset of substorm expansion. The cusp/mantle region transmits electromagnetic energy to almost the entire region of the magnetosphere. A part of electromagnetic energy is stored in the lobe in the growth phase. When reconnection takes place in the near-Earth tail region, the stored energy is released in addition to the continuously supplied one from the cusp/mantle dynamo. Two types of pathways of energy seem to be involved in the generation of the near-Earth dynamo that is associated with FACs at the expansion onset. The first type is related to the earthward fast flow in the plasma sheet. The electromagnetic energy coming from the lobe splits into the thermal energy and the kinetic energy. The kinetic energy is then converted to the thermal energy and the electromagnetic energy, in association of flow braking. The second type is that the plasma coming from the lobe goes into the inner magnetosphere directly. The electromagnetic energy is converted to the thermal energy, followed by the electromagnetic energy at off-equator. The near-Earth dynamo region seems to be embedded in the magnetospheric convection system. In this sense, the expansion onset may be regarded as a sudden, local intensification of the convection.
International Nuclear Information System (INIS)
Iwamoto, Osamu
2013-01-01
A nuclear reaction calculation code CCONE, which was developed for nuclear data evaluation for JENDL/AC-2008 and JENDL-4, has been upgraded to improve the prediction accuracy for calculated cross sections at nucleon incident energies higher than 20 MeV. Multiple particle emission, in which nucleons and complex particles up to α-particle are involved, from pre-equilibrium reaction process was implemented based on the sequential-decay calculations for all produced exciton states within the framework of the two-component exciton model. The effect of velocity-change of particle-emitting nuclei on the multiple emission in preequilibrium and compound processes, which was not included in the previous evaluations, was taken into account to obtain spectra in the laboratory system using an average velocity approximation for each composite/compound nucleus. Calculated nucleon emission spectra at nucleon incident energies from 20 to 200 MeV were compared with experimental and evaluated data for the proton- and neutron-induced reactions on 27 Al. The present results are in good agreement with experimental data. It was found that their predictions were better than those of JENDL/HE-2007 especially for low emission energies at high incident energies. (author)
Passino, Dora R.M.; Hickey, James P.; Frank, Anthony M.
1988-01-01
In the Laurentian Great Lakes, more than 300 contaminants have been identified in fish, other biota, water, and sediment. Current hazard assessment of these chemicals by the National Fisheries Research Center-Great Lakes is based on their toxicity, occurrence in the environment, and source. Although scientists at the Center have tested over 70 chemicals with the crustacean Daphnia pulex, the number of experimental data needed to screen the huge array of chemicals in the Great Lakes exceeds the practical capabilities of conducting bioassays. This limitation can be partly circumvented, however, by using mathematical models based on quantitative structure-activity relationships (QSAR) to provide rapid, inexpensive estimates of toxicity. Many properties of chemicals, including toxicity, bioaccumulation and water solubility are well correlated and can be predicted by equations of the generalized linear solvation energy relationships (LSER). The equation we used to model solute toxicity is Toxicity = constant + mVI/100 + s (π* + dδ) + bβm + aαm where VI = intrinsic (Van der Waals) molar volume; π* = molecular dipolarity/polarizability; δ = polarizability 'correction term'; βm = solute hydrogen bond acceptor basicity; and αm = solute hydrogen bond donor acidity. The subscript m designates solute monomer values for α and β. We applied the LSER model to 48-h acute toxicity data (measured as immobilization) for six classes of chemicals detected in Great Lakes fish. The following regression was obtained for Daphnia pulex (concentration = μM): log EC50 = 4.86 - 4.35 VI/100; N = 38, r2 = 0.867, sd = 0.403 We also used the LSER modeling approach to analyze to a large published data set of 24-h acute toxicity for Daphnia magna; the following regression resulted, for eight classes of compounds (concentration = mM): log EC50 = 3.88 - 4.52 VI/100 - 1.62 π* + 1.66 βm - 0.916 αm; N = 62, r2 = 0.859, sd = 0.375 In addition we developed computer software that identifies
Stjernschantz, E.M.; Marelius, J.; Medina, C.; Jacobsson, M.; Vermeulen, N.P.E.; Oostenbrink, C.
2006-01-01
An extensive evaluation of the linear interaction energy (LIE) method for the prediction of binding affinity of docked compounds has been performed, with an emphasis on its applicability in lead optimization. An automated setup is presented, which allows for the use of the method in an industrial
Lin, Chung-Yon; Lim, Stephanie; Anslyn, Eric V
2016-07-06
Linear free energy relationship (LFER) parameters are routinely used to parametrize physicochemical effects while investigating reaction mechanisms. In this Communication, we describe an alternate application for LFERs: training sets for model building in an analytical application. In this study, the sterics, quantified by Charton parameters (Δv), of nine secondary chiral alcohol analytes were correlated to the circular dichroism output from a chiral alcohol optical sensor. To test the validity of the model, the correlative linear model was applied to determine the enantiomeric excess of samples of two alcohols without a priori knowledge of a calibration curve. The error in this method was comparable to those of previous experimental methods (<5%).
International Nuclear Information System (INIS)
Agodi, C.; Alba, R.; Anzalone, A.; Coniglione, R.; Zoppo, A. del; Finocchiaro, P.; Maiolino, C.; Papa, M.; Piattelli, P.; Sapienza, P.; Wang, Q.; DeRosa, A.; Fioretto, E.; Inglima, G.; Romoli, M.; Sandoli, M.
1991-01-01
Photons emitted in the 28 Si+ 64 Ni and 32 S+ 64 Ni reactions at 143 MeV and 156 MeV incident energy respectively, have been detected in coincidence with the ejected charged fragments. An array of 48 BaF 2 γ-rays detector and 6 solid state silicon detector telescopes have been used. Photon energy spectra measured in the energy range from 2 to 20 MeV in coincidence with ejectiles coming from deep inelastic reactions, are consistent with statistical emission from the reaction products. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Agodi, C.; Alba, R.; Anzalone, A.; Coniglione, R.; Zoppo, A. del; Finocchiaro, P.; Maiolino, C.; Papa, M.; Piattelli, P.; Sapienza, P.; Wang, Q. (Istituto Nazionale di Fisica Nucleare, Catania (Italy). Lab. Nazionale del Sud); Bellia, G.; Cavallaro, S.; Migneco, E.; Pappalardo, G.; Rizzo, F.; Russo, G. (Catania Univ. (Italy). Dipt. di Fisica Istituto Nazionale di Fisica Nucleare, Catania (Italy). Lab. Nazionale del Sud); Cardella, G.; Wang, G.S. (Istituto Nazionale di Fisica Nucleare, Catania (Italy)); DeRosa, A.; Fioretto, E.; Inglima, G.; Romoli, M.; Sandoli, M. (Naples-2 Univ. (Italy). Dipt. di Scienze Fisiche Istituto Nazionale di Fisica Nucleare, Naples (Italy))
1991-11-01
Photons emitted in the {sup 28}Si+{sup 64}Ni and {sup 32}S+{sup 64}Ni reactions at 143 MeV and 156 MeV incident energy respectively, have been detected in coincidence with the ejected charged fragments. An array of 48 BaF{sub 2} {gamma}-rays detector and 6 solid state silicon detector telescopes have been used. Photon energy spectra measured in the energy range from 2 to 20 MeV in coincidence with ejectiles coming from deep inelastic reactions, are consistent with statistical emission from the reaction products. (orig.).
Study of the (16O,12C) reaction on even nickel isotopes at 60 MeV incident energy
International Nuclear Information System (INIS)
Berthier, B.
1979-01-01
Experimental results and Exact Finite Range DWBA analysis (EFR-DWBA) of ( 16 O, 12 C) transfer reactions on even nickel isotopes are presented. It is shown EFR-DWBA calculations which reproduce ( 16 O, 12 C) transfer data using optical model parameters deduced from elastic scattering analysis. The 58 Ni, 60 Ni, 62 Ni, 64 Ni( 16 O, 12 C) 62 Zn, 64 Zn, 66 Zn, 68 Zn reactions at 60 MeV incident energy leading to the ground state and the 2 + and 3 - low lying states in zinc isotopes and the 58 Ni, 60 Ni, 62 Ni, 64 Ni + 16 O elastic scattering at 60 MeV incident energy and 64 Zn, 66 Zn, 68 Zn + 12 C elastic scattering at 54 MeV in the range of scattering angles theta(c.m.)=17 0 - 100 0 have been measured
Jacobsen, Joseph J.
One focal point of concern, policy and a new research will involve identifying individual and organizational facilitative and obstructive factors within the context of energy innovation diffusion in the U.S. This interdisciplinary intersection of people, technology and change is one of serious consequence and has broad implications that span national security, energy infrastructure, the economy, organizational change, education and the environment. This study investigates facilities and plant managers' energy innovation information seeking and energy adoption evolution. The participants are managers who consume more electrical energy than all other groups in the world and are among the top users of natural gas and oil in the United States. The research calls upon the Theory of Planned Behavior, the Diffusion of Innovations and nonlinear dynamics in a study of adoption patterns for 13 energy-related innovations. Cusp catastrophe models and power laws were compared to linear multiple regression to examine and characterize data. Findings reveal that innovation adoption and information seeking differences are slight between private and public sector facilities and plant managers and that the group as a whole may resist change. Of the 13 innovations, some exhibit very strong cusp catastrophe distributions while support for multiple linear regression and the power law were found.
Gou, F.; Gleeson, M. A.; Kleyn, A. W.
2006-01-01
We have simulated CF scattering from Si(100) using the molecular dynamics method. Translational energy loss spectra are presented. The shape of the energy loss distribution as a result of internal energy release is analyzed. At the classical turning point, the internal energy of the molecule is
Economic planning for electric energy systems: a multi objective linearized approach for solution
International Nuclear Information System (INIS)
Mata Medeiros Branco, T. da.
1986-01-01
The economic planning problem associated to the expansion and operation of electrical power systems is considered in this study, represented for a vectorial objective function in which the minimization of resources involved and maximization of attended demand constitute goals to be satisfied. Supposing all the variables involved with linear characteristic and considering the conflict existing among the objectives to be achieved, in order to find a solution, a multi objective linearized approach is proposed. This approximation utilizes the compromise programming technique and linear programming methods. Generation and transmission are simultaneously considered into the optimization process in which associated losses and the capacity of each line are included. Illustrated examples are also presented with results discussed. (author)
B.A.J. van Tuijl; Piet Sonneveld; J. Campen; Gert-Jan Swinkels; H.J.J. Janssen; G.P.A Bot
2011-01-01
A new type of greenhouse with linear Fresnel lenses in the cover performing as a concentrated photovoltaic (CPV) system is presented. The CPV system retains all direct solar radiation, while diffuse solar radiation passes through and enters into the greenhouse cultivation system. The removal of all
Inaniwa, Taku; Kanematsu, Nobuyuki; Noda, Koji; Kamada, Tadashi
2017-06-01
The biological effect of charged-particle beams depends on both dose and particle spectrum. As one of the physical quantities describing the particle spectrum of charged-particle beams, we considered the linear energy transfer (LET) throughout this study. We investigated a new therapeutic technique using two or more ion species in one treatment session, which we call an intensity modulated composite particle therapy (IMPACT), for optimizing the physical dose and dose-averaged LET distributions in a patient as its proof of principle. Protons and helium, carbon, and oxygen ions were considered as ion species for IMPACT. For three cubic targets of 4 × 4 × 4, 8 × 8 × 8, and 12 × 12 × 12 cm3, defined at the center of the water phantom of 20 × 20 × 20 cm3, we made IMPACT plans of two composite fields with opposing and orthogonal geometries. The prescribed dose to the target was fixed at 1 Gy, while the prescribed LET to the target was varied from 1 keV µm-1 to 120 keV µm-1 to investigate the range of LET valid for prescription. The minimum and maximum prescribed LETs, (L T_min, L T_max), by the opposing-field geometry, were (3 keV µm-1, 115 keV µm-1), (2 keV µm-1, 84 keV µm-1),and (2 keV µm-1, 66 keV µm-1), while those by the orthogonal-field geometry were (8 keV µm-1, 98 keV µm-1), (7 keV µm-1, 72 keV µm-1), and (8 keV µm-1, 57 keV µm-1) for the three targets, respectively. To show the proof of principle of IMPACT in a clinical situation, we made IMPACT plans for a prostate case. In accordance with the prescriptions, the LETs in prostate, planning target volume (PTV), and rectum could be adjusted at 80 keV µm-1, at 50 keV µm-1, and below 30 keV µm-1, respectively, while keeping the dose to the PTV at 2 Gy uniformly. IMPACT enables the optimization of the dose and the LET distributions in a patient, which will maximize the
Directory of Open Access Journals (Sweden)
Vanhoy J.R.
2017-01-01
Full Text Available Neutron inelastic scattering cross sections measured directly through (n,n or deduced from γ-ray production cross sections following inelastic neutron scattering (n,n′γ are a focus of basic and applied research at the University of Kentucky Accelerator Laboratory (www.pa.uky.edu/accelerator. For nuclear data applications, angle-integrated cross sections are desired over a wide range of fast neutron energies. Several days of experimental beam time are required for a data set at each incident neutron energy, which limits the number of angular distributions that can be measured in a reasonable amount of time. Approximations can be employed to generate cross sections with a higher energy resolution, since at 125o, the a2P2 term of the Legendre expansion is identically zero and the a4P4 is assumed to be very small. Provided this assumption is true, a single measurement at 125o would produce the γ-ray production cross section. This project tests these assumptions and energy dependences using the codes CINDY/SCAT and TALYS/ECIS06/SCAT. It is found that care must be taken when interpreting γ-ray excitation functions as cross sections when the incident neutron energy is < 1000 keV above threshold or before the onset of feeding.
Vanhoy, J. R.; Ramirez, A. P.; Alcorn-Dominguez, D. K.; Hicks, S. F.; Peters, E. E.; McEllistrem, M. T.; Mukhopadhyay, S.; Yates, S. W.
2017-09-01
Neutron inelastic scattering cross sections measured directly through (n,n) or deduced from γ-ray production cross sections following inelastic neutron scattering (n,n'γ) are a focus of basic and applied research at the University of Kentucky Accelerator Laboratory (www.pa.uky.edu/accelerator). For nuclear data applications, angle-integrated cross sections are desired over a wide range of fast neutron energies. Several days of experimental beam time are required for a data set at each incident neutron energy, which limits the number of angular distributions that can be measured in a reasonable amount of time. Approximations can be employed to generate cross sections with a higher energy resolution, since at 125o, the a2P2 term of the Legendre expansion is identically zero and the a4P4 is assumed to be very small. Provided this assumption is true, a single measurement at 125o would produce the γ-ray production cross section. This project tests these assumptions and energy dependences using the codes CINDY/SCAT and TALYS/ECIS06/SCAT. It is found that care must be taken when interpreting γ-ray excitation functions as cross sections when the incident neutron energy is < 1000 keV above threshold or before the onset of feeding.
Bhatia, A. K.; Sinha, C.
2012-01-01
The free-free transition is studied for an electron-hydrogen in the ground state at low incident energies in the presence of an external homogenous, monochromatic, and linearly polarized laser-field inside a hot dense plasma.The effect of plasma screening is considered in the Debye-Huckel approximation. The calculations are performed in the soft photon limit, assuming that the plasma frequency is much higher than the laser frequency. The incident electron is considered to be dressed by the laser field in a nonperturbative manner by choosing the Volkov solutions in both the initial and final channels. The space part of the scattering wave function for the electron is solved numerically by taking into account the electron exchange. The laser-assisted differential and total cross sections are calculated for single-photon absorption /emission and no photon exchange in the soft photon limit, the laser intensity being much less than the atomic field intensity. The calculations have been carried out for various values of Debye parameter, ranging from 0.005 to 0.12. A strong suppression is noted in the laser-assisted cross sections as compared to the field-free situation. A significant difference is noted for the singlet and triplet cross sections. The suppression is much more in the triplet states.
On the rank 1 convexity of stored energy functions of physically linear stress-strain relations
Czech Academy of Sciences Publication Activity Database
Šilhavý, Miroslav; Bertram, A.; Böhlke, T.
2007-01-01
Roč. 86, č. 3 (2007), s. 235-243 ISSN 0374-3535 Institutional research plan: CEZ:AV0Z10190503 Keywords : generalized linear elastic law s * generalized strain measures * rank 1 convexity Subject RIV: BA - General Mathematics Impact factor: 0.743, year: 2007
Performance of a concentrated photovoltaic energy system with static linear Fresnel lenses
Sonneveld, P.J.; Swinkels, G.L.A.M.; Tuijl, van B.A.J.; Janssen, H.J.J.; Campen, J.B.; Bot, G.P.A.
2011-01-01
A new type of greenhouse with linear Fresnel lenses in the cover performing as a concentrated photovoltaic (CPV) system is presented. The CPV system retains all direct solar radiation, while diffuse solar radiation passes through and enters into the greenhouse cultivation system. The removal of all
Event-shape of dileptons plus missing energy at a linear collider as ...
Indian Academy of Sciences (India)
at a linear collider as a supersymmetry/Arkani-. Hamed–Dimopoulos–Dvali discriminant. PROBIR ROY. Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400 005, India. E-mail: probir@theory.tifr.res.in. Abstract. An event-shape analysis of the dileptons in the process e+e− → l+l−E/, studied in ILC or ...
International Nuclear Information System (INIS)
Yao, Hai; He, Wenjun; Huda, Walter; Mah, Eugene
2015-01-01
This study estimated the energy incident on patients in radiography, mammography and CT using data related to X-ray beam quantity and quality. The total X-ray beam quantity is the average Air Kerma multiplied by the X-ray beam area and expressed as the Kerma-Area Product (Gy cm -2 ). The X-ray beam quality primarily depends on the target material (and anode angle), X-ray voltage (and ripple) as well as X-ray beam filtration. For any X-ray spectra, dividing total energy (fluence x mean energy) by the X-ray beam Kerma-Area Product yields the energy per Kerma-Area Product value (ε/KAP). Published data on X-ray spectra characteristics and energy fluence per Air Kerma conversion factors were used to determine 1/KAP factors. In radiography, ε/KAP increased from 6 mJ Gy -1 cm -2 at the lowest X-ray tube voltage (50 kV) to 25 mJ Gy -1 cm -2 at the highest X-ray tube voltage (140 kV). 1/KAP values ranged between 1 and 5 mJ Gy -1 cm -2 in mammography and between 24 and 42 mJ Gy -1 cm -2 in CT. Changes in waveform ripple resulted in variations in ε/KAP of up to 15 %, similar to the effect of changes resulting in the choice of anode angle. For monoenergetic X-ray photons, there was a sigmoidal-type increase in ε/KAP from 2 mJ Gy -1 cm -2 at 20 keV to 42 mJ Gy -1 cm -2 at 80 keV. However, between 80 and 150 keV, the ε/KAP shows variations with changing photon energy of <10 %. Taking the average spectrum energy to consist of monoenergetic X rays generally overestimates the true value of ε/KAP. This study illustrated that the energy incident on a patient in any area of radiological imaging can be estimated from the total X-ray beam intensity (KAP) when X-ray beam quality is taken into account. Energy incident on the patient can be used to estimate the energy absorbed by the patient and the corresponding patient effective dose. (authors)
Arida, Maya Ahmad
In 1972 sustainable development concept existed and during The years it became one of the most important solution to save natural resources and energy, but now with rising energy costs and increasing awareness of the effect of global warming, the development of building energy saving methods and models become apparently more necessary for sustainable future. According to U.S. Energy Information Administration EIA (EIA), today buildings in the U.S. consume 72 percent of electricity produced, and use 55 percent of U.S. natural gas. Buildings account for about 40 percent of the energy consumed in the United States, more than industry and transportation. Of this energy, heating and cooling systems use about 55 percent. If energy-use trends continue, buildings will become the largest consumer of global energy by 2025. This thesis proposes procedures and analysis techniques for building energy system and optimization methods using time series auto regression artificial neural networks. The model predicts whole building energy consumptions as a function of four input variables, dry bulb and wet bulb outdoor air temperatures, hour of day and type of day. The proposed model and the optimization process are tested using data collected from an existing building located in Greensboro, NC. The testing results show that the model can capture very well the system performance, and The optimization method was also developed to automate the process of finding the best model structure that can produce the best accurate prediction against the actual data. The results show that the developed model can provide results sufficiently accurate for its use in various energy efficiency and saving estimation applications.
Alternatives to linear analysis of energy balance data from lactating dairy cows
Kebreab, E.; France, J.; Agnew, R.E.; Yan, T.; Dhanoa, M.S.; Dijkstra, J.; Beever, D.E.; Reynolds, C.K.
2003-01-01
The current energy requirements system used in the United Kingdom for lactating dairy cows utilizes key parameters such as metabolizable energy intake (MEI) at maintenance (MEm), the efficiency of utilization of MEI for 1) maintenance, 2) milk production (k(l)), 3) growth (k(g)), and the efficiency
Czech Academy of Sciences Publication Activity Database
Haslinger, Jaroslav; Repin, S.; Sysala, Stanislav
2016-01-01
Roč. 61, č. 5 (2016), s. 527-564 ISSN 0862-7940 R&D Projects: GA MŠk LQ1602 Institutional support: RVO:68145535 Keywords : functionals with linear growth * limit load * truncation method * perfect plasticity Subject RIV: BA - General Mathematics Impact factor: 0.618, year: 2016 http://link.springer.com/article/10.1007/s10492-016-0146-6
Broadband Rotational Energy Harvesting with Non-linear Oscillator and Piezoelectric Transduction
International Nuclear Information System (INIS)
Fu, H; Yeatman, E M
2016-01-01
Rotational energy is widely distributed in many industrial and domestic applications, such as ventilation systems, moving vehicles and miniature turbines. This paper reports the design and implementation of a bi-stable rotational energy harvester with wide bandwidth and low operating frequency. The rotational energy is converted into electricity by magnetic plucking of a piezoelectric cantilever using a driving magnet mounted on a rotating host. The bistable condition is achieved by introducing a fixed magnet above the tip magnet at the cantilever's free end. The repulsive magnetic force between the magnets creates two equilibrium positions for the piezoelectric beam. The harvester is designed to operate in the high energy orbit (interwell vibration mode) to extract more energy from the rotational energy source. Harvesters with and without bistability are compared experimentally, showing the difference of power extraction on both the output power and bandwidth. The method proposed in this paper provides a simple and efficient way to extract rotational energy from the ambient environment. (paper)
Linearized potential flow analysis of a 40 chamber, oscillating water column wave energy device
DEFF Research Database (Denmark)
Bingham, Harry B.; Read, Robert
. The calculations are compared to model-scale measurements in a slack-moored condition, and generally good agreement is found. Work is in progress to move the solution to the time-domain and include a more sophisticated PTO model which includes nonlinear and air compressability effects in the turbine....... coefficient to represent the air turbine Power Take Off (PTO) system is found for each condition by iterating to find the consistent response-damping pair for a given frequency and incident wave ampli- tude. The absorbed power is estimated based on the pressure in each chamber and the PTO damping coefficient...
Nguyen, Bao H.
This thesis is a collection of five self contained empirical macroeconomic papers on the asymmetric effects of energy price shocks on various economies. Chapter 1 formally determines the number of regime changes in the US natural gas market by employing a MS-VAR model. Estimated using Bayesian methods, three regimes are identified for the period 1980 - 2016, namely, before the Decontrol Act, after the Decontrol Act and the Recession. The results show that the natural gas market tends to be much more sensitive to market fundamental shocks occurring in a Recession regime than in the other regimes. Augmenting the model by incorporating the price of crude oil, the results reveal that the impacts of oil price shocks on natural gas prices are relatively small. Chapter 2 provides new empirical evidence on the asymmetric reactions of the U.S. natural gas market and the U.S. economy to its market fundamental shocks in different phases of the business cycle. To this end, we employ a ST-VAR model to capture the asymmetric responses depending on economic conditions. Our results indicate that in contrast to the prediction made by a linear VAR model, the STVAR model provides a plausible explanation to the behavior of the U.S. natural gas market, which asymmetrically reacts in bad times and good times. Chapter 3 examines the relationship between China's economic growth and global oil market fluctuations between 1992Q1 and 2015Q3. We find that: (1) the time varying parameter VAR with stochastic volatility provides a better fit as compared to it's constant counterparts; (2) the impacts of intertemporal global oil price shocks on China's output are often small and temporary in nature; (3) oil supply and specific oil demand shocks generally produce negative movements in China's GDP growth whilst oil demand shocks tend to have positive effects; (4) domestic output shocks have no significant impact on price or quantity movements within the global oil market. Chapter 4 examines the
Sayyed, M. I.; Elhouichet, H.
2017-01-01
The gamma ray energy absorption (EABF) and exposure buildup factors (EBF) of (100-x)TeO2-xB2O3 glass systems (where x=5, 10, 15, 20, 22.5 and 25 mol%) have been calculated in the energy region 0.015-15 MeV up to a penetration depth of 40 mfp (mean free path). The five parameters (G-P) fitting method has been used to estimate both EABF and EBF values. Variations of EABF and EBF with incident photon energy and penetration depth have been studied. It was found that EABF and EBF values were higher in the intermediate energy region, for all the glass systems. Furthermore, boro-tellurite glass with 5 mol% B2O3, was found to present the lowest EABF and EBF values, hence it is superior gamma-ray shielding material. The results indicate that the boro-tellurite glasses can be used as radiation shielding materials.
International Nuclear Information System (INIS)
Okuno, E.; Cruz, M.T. da
1984-01-01
The effective energy of one X or gamma ray beam can be determined by means of two thermoluminescent (TL) dosemeters mounted between suitable filters. However, it has been observed that personnel monitors exposed to two different energy ionizing radiations provide different effective energies depeding on the type of TL phosphor used. This fact could be a powerful tool for identifying exposures to radiation with quite different effective energies which are very common in practice. Two types of TL dosemeters were used : pellets of cold pressed natural fluoride and NaCl developed in our own laboratory, and LiF, TLD-100 from Harshaw Chemical Co.. Experimental results obtained with these combined dosemeters after irradiation with different sets of exposures and energy values of ionizing radiations are also presented. (Author) [pt
Prompt Dipole gamma -Ray Emission in Fusion Heavy-Ion Collisions: Incident Energy Dependence
Martin, B.; Pierroutsakou, D.; Inglima, G.; Boiano, A.; de Rosa, A.; La Commara, M.; Romoli, M.; Sandoli, M.; Agodi, C.; Alba, R.; Coniglione, R.; Del Zoppo, A.; Maiolino, C.; Piattelli, P.; Santonocito, D.; Sapienza, P.; Cardella, G.; de Filippo, E.; Pagano, A.; Pirrone, S.; Glodariu, T.; Mazzocco, M.; Signorini, C.
2007-04-01
The evolution with beam energy of the prompt dipole radiation, related with entrance channel charge asymmetry effects, was studied in the fusion reactions: 36Ar+96Zr and 40Ar+92Zr at Elab=16 and 15.1 MeV/u, respectively. Both reactions populate, through entrance channels having different charge asymmetries, the same compound nucleus at the same average excitation energy and with identical spin distribution. By studying the gamma -ray energy spectra of the considered reactions, and by comparing the present result with previous ones obtained at lower energies, we deduce that the prompt dipole gamma -ray emission presents a maximum value at 9 MeV/u and decreases toward lower and higher energies. Moreover, the centroid and the width of the preequilibrium dipole component were found to remain constant, within the errors, by increasing the beam energy.
International Nuclear Information System (INIS)
Tang Hongqing; Qi Bujia; Zhou Zuying; Sa Jun; Ke Zunjian; Sui Qingchang; Xia Haihong; Shen Guanren
1992-01-01
The status and technique of double differential cross section measurement of secondary neutrons in the incident neutron energy range 9 to 13 MeV is reviewed with emphasis on the work done at CIAE. There are scarce measurements of secondary neutron double differential cross sections in this energy region up to now. A main difficulty for this is lack of an applicable monoenergetic neutron source. When monoenergetic neutron energy reaches 8 Me/v, the break-up neutrons from the d + D or p + T reaction starts to become significant. It is difficult to get a pure secondary neutron spectrum induced only by monoenergetic neutrons. To solve this problem an abnormal fast neutron TOF facility was designed and tested. Double differential neutron emission cross sections of 238 U and 209 Bi at 10 MeV were obtained by combining the data measured by both normal and abnormal TOF spectrometers and a good agreement between measurement and calculation was achieved
International Nuclear Information System (INIS)
MacFarlane, R.E.; Stewart, L.; Hale, G.M.; Dunford, C.L.
1984-04-01
This rewrite of Data Formats and Procedures for the Evaluated Nuclear Data File, ENDF pertains to the latest version, ENDF/B-VI. Earlier versions provided representations for neutron cross sections and distributions, photon production from neutron reactions, a limited amount of charged-particle production from neutron reactions, photo-atomic interaction data, thermal neutron scattering data, and radionuclide production and decay data (including fission products). This version allows higher incident energies, adds more complete descriptions of the distributions of emitted particles, and provides for incident charged particles and photo-nuclear data by partitioning the ENDF library into sublibraries. Decay data, fission product yield data, thermal scattering data, and photo-atomic data have also been formally placed in sublibraries. In addition, this rewrite represents an extensive update to the Version V manual
Online Energy Management of City Cars with Multi-Objective Linear Parameter-Varying L2-Gain Control
Directory of Open Access Journals (Sweden)
Boe-Shong Hong
2015-09-01
Full Text Available This work aims at online regulating transient current out of the batteries of small-sized electric cars that transport people and goods around cities. In a city with heavy traffic, transient current dominates the energy economy and propulsion capability, which are in opposition to each other. In order to manage the trade-off between energy consumption per distance and propulsion capability in transience, the authors improve on previous work on multi-objective linear parameter-varying (LPV L2-gain control. The observer embedded into this multi-objective controller no longer assumes Kalman-filtering structure, and structural conservatism is thus removed. A full-spectrum set of experiments is performed. The results reveal that the feedback design significantly improves energy-motion management.
International Nuclear Information System (INIS)
Forger, M.; Mannheim Univ.; Laartz, J.; Schaeper, U.
1994-01-01
The recently derived current algrbra of classical non-linear sigma models on arbitrary Riemannian manifolds is extended to include the energy-momentum tensor. It is found that in two dimensions the energy-momentum tensor θ μv , the Noether current j μ associated with the global symmetry of the theory and the composite field j appearing as the coefficient of the Schwinger term in the current algebra, together with the derivatives of j μ and j, generte a closed algebra. The subalgebra generated by the light-cone components of the energy-momentum tensor consists of two commuting copies of the Virasoro algebra, with central charge c=0, reflecting the classical conformal invariance of the theory, but the current algebra part and the semidirect product structure are quite different from the usual Kac-Moody/Sugawara type contruction. (orig.)
Ponomarev, A. L.; Brenner, D.; Hlatky, L. R.; Sachs, R. K.
2000-01-01
DNA double-strand breaks (DSBs) produced by densely ionizing radiation are not located randomly in the genome: recent data indicate DSB clustering along chromosomes. Stochastic DSB clustering at large scales, from > 100 Mbp down to random-walk, coarse-grained polymer model for chromatin is combined with a simple track structure model in Monte Carlo software called DNAbreak and is applied to data on alpha-particle irradiation of V-79 cells. The chromatin model neglects molecular details but systematically incorporates an increase in average spatial separation between two DNA loci as the number of base-pairs between the loci increases. Fragment-size distributions obtained using DNAbreak match data on large fragments about as well as distributions previously obtained with a less mechanistic approach. Dose-response relations, linear at small doses of high linear energy transfer (LET) radiation, are obtained. They are found to be non-linear when the dose becomes so large that there is a significant probability of overlapping or close juxtaposition, along one chromosome, for different DSB clusters from different tracks. The non-linearity is more evident for large fragments than for small. The DNAbreak results furnish an example of the RLC (randomly located clusters) analytic formalism, which generalizes the broken-stick fragment-size distribution of the random-breakage model that is often applied to low-LET data.
International Nuclear Information System (INIS)
Wouters, Carmen; Fraga, Eric S.; James, Adrian M.
2015-01-01
The integration of distributed generation units and microgrids in the current grid infrastructure requires an efficient and cost effective local energy system design. A mixed-integer linear programming model is presented to identify such optimal design. The electricity as well as the space heating and cooling demands of a small residential neighbourhood are satisfied through the consideration and combined use of distributed generation technologies, thermal units and energy storage with an optional interconnection with the central grid. Moreover, energy integration is allowed in the form of both optimised pipeline networks and microgrid operation. The objective is to minimise the total annualised cost of the system to meet its yearly energy demand. The model integrates the operational characteristics and constraints of the different technologies for several scenarios in a South Australian setting and is implemented in GAMS. The impact of energy integration is analysed, leading to the identification of key components for residential energy systems. Additionally, a multi-microgrid concept is introduced to allow for local clustering of households within neighbourhoods. The robustness of the model is shown through sensitivity analysis, up-scaling and an effort to address the variability of solar irradiation. - Highlights: • Distributed energy system planning is employed on a small residential scale. • Full energy integration is employed based on microgrid operation and tri-generation. • An MILP for local clustering of households in multi-microgrids is developed. • Micro combined heat and power units are key components for residential microgrids
Experimental verification and optimization of a linear electromagnetic energy harvesting device
Mullen, Christopher; Lee, Soobum
2017-04-01
Implementation of energy harvesting technology can provide a sustainable, remote power source for soldiers by reducing the battery weight and allowing them to stay in the field for longer periods of time. Among multiple energy conversion principles, electromagnetic induction can scavenge energy from wasted kinematic and vibration energy found from human motion. Hip displacement during human gait acts as a base excitation for an energy harvesting backpack system. The placement of a permanent magnet in this vibration environment results in relative motion of the magnet to the coil of copper wire, which induces an electric current. This current can be saved to a battery or capacitor bank installed on the backpack to be used to power electronic devices. The purpose of this research is to construct a reliable simulation model for an electromagnetic vibration energy harvester and use it for a multi-variable optimization algorithm to identify an optimal coil and magnet layout for highest power output. Key components of the coupled equations of motion such as the magnetic flux density and coil inductance are obtained using ANSYS multi-physics software or by measuring them. These components are fed into a harvester simulation model (e.g. coupled field equations of motion for the backpack harvester) that generates the electrical power output. The developed simulation model is verified with a case study including an experimental test. Then the optimal design parameters in the simulation model (e.g., magnet layout, coil width, outer coil diameter, external load resistance) are identified for maximum power. Results from this study will pave the way for a more efficient energy harvesting backpack while providing better insight into the efficiency of magnet and coil layout for electromagnetic applications.
Jouypazadeh, Hamidreza; Farrokhpour, Hossein; Solimannejad, Mohammad
2017-05-01
This work evaluated the reliability of the one-dimensional potential energy surface for calculating the spectroscopic properties (rovibrational constants and rotational line energies) of hydrogen bonds in linear bonded complexes by comparing theoretical results with the corresponding experimental results. For this purpose, two hydrogen bonded complexes were selected: the HCN···HCN homodimer and the HCN···HF heterodimer. The one-dimensional potential energy surfaces related to the hydrogen bonds in these complexes were calculated using different computational methods and basis sets. The calculated potential curve of each complex was fitted to an analytical one-dimensional potential function to obtain the potential parameters. The obtained analytical potential function of each complex was used in a two-particle Schrödinger equation to obtain the rovibrational energy levels of the hydrogen bond. Using the calculated rovibrational levels, the rovibrational spectra and constants of each complex were calculated and compared with experimental data available from the literature. Compared with experimental data, the calculated one-dimensional potential energy surface at the QCISD/aug-cc-pVDZ level of theory was found to predict the spectroscopic properties of hydrogen bonds better than the potential curves obtained using other computational methods, especially for the HCN···HCN homodimer complex. Generally, the results obtained for the HCN···HCN homodimer complex were closer to experimental data than those obtained for the HCN···HF heterodimer complex. The investigation performed in this work showed that the one-dimensional potential curve related to the hydrogen bond between two linear molecules can be used to predict the spectroscopic constants of hydrogen bonds. Graphical abstract Potential energy curves of HCN···HCN and HCN···HF complexes calculated at the different computational levels.
Estimates of emittance dilution and stability in high-energy linear accelerators
Directory of Open Access Journals (Sweden)
T. O. Raubenheimer
2000-12-01
Full Text Available In this paper, we present a series of analytic expressions to predict the beam dynamics in a long linear accelerator. These expressions can be used to model the linac optics, calculate the magnitude of the wakefields, estimate the emittance dilution due to misaligned accelerator components, and estimate the stability and jitter limitations. The analytic expressions are based on the results of simple physics models and are useful to understand the parameter sensitivities. They are also useful when using simple codes or spreadsheets to optimize a linac system.
A distributed multi-agent linear biobjective algorithm for energy flow optimization in microgrids
DEFF Research Database (Denmark)
Brehm, Robert; Top, Søren; Mátéfi-Tempfli, Stefan
2016-01-01
consisting of local energy resources and storage capacities is presented which is based on the auction algorithm for assignment problems originally introduced by Bertsekas in 1979 [1]. It is shown that the topology of a microgrid can be represented as a bipartite graph and mathematically be described...... as a classical transportation problem. This allows applying an auction algorithm scheme in a distributed way where each energy supply system node is either a source or a sink and is represented by an individual acting agent. The single-objective approach is extended towards bi-objectivity to build a framework...... which gives each agent freedom and authority to intelligently influence the global decision making (optimization) with respect to its own individual objectives and therefore a distributed bi-objective optimization for the energy flow in the microgrid with individual agent objectives is achieved...
Can a Linear Sigma Model Describe Walking Gauge Theories at Low Energies?
Gasbarro, Andrew
2018-03-01
In recent years, many investigations of confining Yang Mills gauge theories near the edge of the conformal window have been carried out using lattice techniques. These studies have revealed that the spectrum of hadrons in nearly conformal ("walking") gauge theories differs significantly from the QCD spectrum. In particular, a light singlet scalar appears in the spectrum which is nearly degenerate with the PNGBs at the lightest currently accessible quark masses. This state is a viable candidate for a composite Higgs boson. Presently, an acceptable effective field theory (EFT) description of the light states in walking theories has not been established. Such an EFT would be useful for performing chiral extrapolations of lattice data and for serving as a bridge between lattice calculations and phenomenology. It has been shown that the chiral Lagrangian fails to describe the IR dynamics of a theory near the edge of the conformal window. Here we assess a linear sigma model as an alternate EFT description by performing explicit chiral fits to lattice data. In a combined fit to the Goldstone (pion) mass and decay constant, a tree level linear sigma model has a Χ2/d.o.f. = 0.5 compared to Χ2/d.o.f. = 29.6 from fitting nextto-leading order chiral perturbation theory. When the 0++ (σ) mass is included in the fit, Χ2/d.o.f. = 4.9. We remark on future directions for providing better fits to the σ mass.
International Nuclear Information System (INIS)
Ekel, P.Y.; Galperin, E.A.
2003-01-01
Models for multicriteria resource allocation are constructed with the specific box-triangular structure of a feasible region. The method of balance set equations is extended for the satisfaction level representation of the cost function space including the case of linearly dependent cost functions. On this basis, different goal criteria on the balance set are investigated for linear cases. Procedures for determining the balance set and finding goal-optimal Pareto solutions are illustrated on examples. The results of the paper are of universal character and can find wide applications in allocating diverse types of resources on the multiobjective basis in planning and control of complex systems including load management and energy market problems. (Author)
Linear and nonlinear effects at low energy ion bombardment of solid xenon
DEFF Research Database (Denmark)
Dutkiewicz, L.; Pedrys, R.; Schou, Jørgen
1996-01-01
Elastic sputtering of crystalline xenon by 20-750 eV Xe ions has been studied with molecular dynamics. The nonlinear effects are dominant at 250 eV ion bombardment. They result in a partly amorphization of the impact volume as well as in a considerable reduction of the surface binding energy...
Energy- and particle-confinement properties of an end-plugged, linear, theta pinch
International Nuclear Information System (INIS)
Commisso, R.J.; Bartsch, R.R.; Ekdahl, C.A.; McKenna, K.F.; Siemon, R.E.
1979-01-01
Experiments show that axial confinement of plasma in a straight theta-pinch solenoid is improved by placing solid lithium deuteride plugs at the ends. The energy confinement is increased nearly threefold in agreement with theoretical estimates which assume classical electron thermal conduction and no convective losses. The confinement of deuterium ions is explained by classical Coulomb collisions in the ablated lithium deuteride plasma
The energy and the linear momentum of space-times in general relativity
International Nuclear Information System (INIS)
Schoen, R.; Yau, S.T.
1981-01-01
We extend our previous proof of the positive mass conjecture to allow a more general asymptotic condition proposed by York. Hence we are able to prove that for an isolated physical system, the energy momentum four vector is a future timelike vector unless the system is trivial. Furthermore, we allow singularities of the type of black holes. (orig.)
Leijon, Jennifer
2016-01-01
In this project, the wave energy converter (WEC) designed at Seabased AB and Uppsala University was modelled in the program MATLAB. In order to increase the average output power, the WEC should be controlled. Therefore, the simulation tool was used to investigate damping strategies where the damping coefficient was changed at different times of the wave period. The tests showed that a suitable damping strategy, matched to the sea state at the specific location of the site and the overall WEC ...
Energy Reflection Coefficients for 5-10 keV He Ions Incident on Au, Ag, and Cu
DEFF Research Database (Denmark)
Schou, Jørgen; Sørensen, H.; Littmark, U.
1978-01-01
The calorimetric deuterium-film method was used for measurements of the energy reflection coefficient γ for normal incidence of 5-10 keV He ions on Cu, Ag and Au. A theoretical calculation of γ by means of transport theory gives fair agreement with the experimental results. The experimental data...... the experimental and theoretical results for the He ions are in acceptable agreement with other experimental and theoretical results. For He ions, the experimental γ-values are 20-30% above the values for hydrogen ions for the same value of ε...
Intermediate energy nuclear physics at the MIT-Bates linear accelerator Center
International Nuclear Information System (INIS)
Alarcon, R.
2001-01-01
The MlT-Bates linear accelerator center is a University-based laboratory carrying out frontier research in electromagnetic nuclear physics. The research program is focussed on the flavor structure, charge distribution, shape, size and polarizability of the nucleon; the spin and electromagnetic structure of light nuclei; and the origin of the elements. The Bates research program has three central thrusts: the SAMPLE experiments to probe the flavor structure of the proton using parity-violating electron scattering at back angles; the OOPS (out-of-plane spectrometer system) program which uses out-of-plane detection to probe nucleon and few-body nuclear structure; and the BLAST (Bates large acceptance spectrometer toroid) program which will use a new spectrometer under construction to measure electron scattering from internal gas targets in the south hall ring. (Author)
Dziedzic, J; Hill, Q; Skylaris, C-K
2013-12-07
We present a method for the calculation of four-centre two-electron repulsion integrals in terms of localised non-orthogonal generalised Wannier functions (NGWFs). Our method has been implemented in the ONETEP program and is used to compute the Hartree-Fock exchange energy component of Hartree-Fock and Density Functional Theory (DFT) calculations with hybrid exchange-correlation functionals. As the NGWFs are optimised in situ in terms of a systematically improvable basis set which is equivalent to plane waves, it is possible to achieve large basis set accuracy in routine calculations. The spatial localisation of the NGWFs allows us to exploit the exponential decay of the density matrix in systems with a band gap in order to compute the exchange energy with a computational effort that increases linearly with the number of atoms. We describe the implementation of this approach in the ONETEP program for linear-scaling first principles quantum mechanical calculations. We present extensive numerical validation of all the steps in our method. Furthermore, we find excellent agreement in energies and structures for a wide variety of molecules when comparing with other codes. We use our method to perform calculations with the B3LYP exchange-correlation functional for models of myoglobin systems bound with O2 and CO ligands and confirm that the same qualitative behaviour is obtained as when the same myoglobin models are studied with the DFT+U approach which is also available in ONETEP. Finally, we confirm the linear-scaling capability of our method by performing calculations on polyethylene and polyacetylene chains of increasing length.
International Nuclear Information System (INIS)
Dziedzic, J.; Hill, Q.; Skylaris, C.-K.
2013-01-01
We present a method for the calculation of four-centre two-electron repulsion integrals in terms of localised non-orthogonal generalised Wannier functions (NGWFs). Our method has been implemented in the ONETEP program and is used to compute the Hartree-Fock exchange energy component of Hartree-Fock and Density Functional Theory (DFT) calculations with hybrid exchange-correlation functionals. As the NGWFs are optimised in situ in terms of a systematically improvable basis set which is equivalent to plane waves, it is possible to achieve large basis set accuracy in routine calculations. The spatial localisation of the NGWFs allows us to exploit the exponential decay of the density matrix in systems with a band gap in order to compute the exchange energy with a computational effort that increases linearly with the number of atoms. We describe the implementation of this approach in the ONETEP program for linear-scaling first principles quantum mechanical calculations. We present extensive numerical validation of all the steps in our method. Furthermore, we find excellent agreement in energies and structures for a wide variety of molecules when comparing with other codes. We use our method to perform calculations with the B3LYP exchange-correlation functional for models of myoglobin systems bound with O 2 and CO ligands and confirm that the same qualitative behaviour is obtained as when the same myoglobin models are studied with the DFT+U approach which is also available in ONETEP. Finally, we confirm the linear-scaling capability of our method by performing calculations on polyethylene and polyacetylene chains of increasing length
International Nuclear Information System (INIS)
Hadzi-Kostova, B.; Styczynski, Z.
2003-01-01
This paper presents the results of the investigation concerning the behavior of digital protection devices implemented in a power system that contains dispersed energy resources such as wind power plants, fuel cells and photovoltaic; and non-linear loads. The study combines basic knowledge from the fields of power quality and protection technique. The goal is to test and analyse the impact of the new electrical environment on the different types of protection algorithms that can be implemented in the protection devices. A comparison of the different protection algorithms concerning their output results is presented. (Author)
Development of Linear Mode Detection for Top-down Ion Implantation of Low Energy Sb Donors
Pacheco, Jose; Singh, Meenakshi; Bielejec, Edward; Lilly, Michael; Carroll, Malcolm
2015-03-01
Fabrication of donor spin qubits for quantum computing applications requires deterministic control over the number of implanted donors and the spatial accuracy to within which these can be placed. We present an ion implantation and detection technique that allows us to deterministically implant a single Sb ion (donor) with a resulting volumetric distribution of performed, in part, at the Center for Integrated Nanotechnologies, a U.S. DOE Office of Basic Energy Sciences user facility. The work was supported by Sandia National Laboratories Directed Research and Development Program. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a Lockheed-Martin Company, for the U. S. Department of Energy under Contract No. DE-AC04-94AL85000.
Combining high frequency data with non-linear models for forecasting energy market volatility
Czech Academy of Sciences Publication Activity Database
Baruník, Jozef; Křehlík, Tomáš
2016-01-01
Roč. 55, č. 1 (2016), s. 222-242 ISSN 0957-4174 R&D Projects: GA ČR(CZ) GBP402/12/G097 Institutional support: RVO:67985556 Keywords : artificial neural networks * realized volatility * multiple-step-ahead forecasts * energy markets Subject RIV: AH - Economics Impact factor: 3.928, year: 2016 http://library.utia.cas.cz/separaty/2016/E/barunik-0456185.pdf
Event-shape of dileptons plus missing energy at a linear collider as ...
Indian Academy of Sciences (India)
Event-shape of dileptons plus missing energy ... (100 GeV). The production of a pair of charged sleptons ˜l±. L,R and their subsequent decays into l± ˜χ0. 1 lead to our signal in this scenario. Signal sensitivity to tan β turns out to be very mild .... For an integrated luminosity of 100 fb−1 (ILC) and 1000 fb−1 (CLIC), a minimum.
... News Physician Resources Professions Site Index A-Z Linear Accelerator A linear accelerator (LINAC) customizes high energy x-rays or ... ensured? What is this equipment used for? A linear accelerator (LINAC) is the device most commonly used ...
French energy resources and needs. Incidence on the development of the national nuclear programme
International Nuclear Information System (INIS)
Martin, Roger.
1977-01-01
The energy flux diagram for France in 1970, underlines the disparity observed between the utilization factors in the final stage: 75% for the domestic and tertiary sector, 75% for industry and siderurgy, 65% for agriculture, and 25% for transports. The total utilization factor is 47.5% (124.4 MTEC used for 137.6 MTEC unused; the unit used being the Million of Tons Equivalent to Coal. Two dates are arbitrarily envisaged (1985 and 2000) in the evolution of the French energy technology and structure. The energy flux diagram predicted for 1985 should asked to atom nearly a quarter of the resources, with an enhanced part from hydraulics (+30%) and should involve geothermy, heat wastes and solar energy. An extrapolation predicts a spectacular-growth for 2000 due to the uranium share as a compensation to the decrease in that from oil, as for the transformation stage a neat increase in the electricity share is predicted together with 'tele-heat' and hydrogen production and, at the stage of utilization the mass penetration of 'tele-heat', especially of nuclear origin. The problem of the evolution of energy resources is also discussed [fr
Meng, Yilin; Roux, Benoît
2015-08-11
The weighted histogram analysis method (WHAM) is a standard protocol for postprocessing the information from biased umbrella sampling simulations to construct the potential of mean force with respect to a set of order parameters. By virtue of the WHAM equations, the unbiased density of state is determined by satisfying a self-consistent condition through an iterative procedure. While the method works very effectively when the number of order parameters is small, its computational cost grows rapidly in higher dimension. Here, we present a simple and efficient alternative strategy, which avoids solving the self-consistent WHAM equations iteratively. An efficient multivariate linear regression framework is utilized to link the biased probability densities of individual umbrella windows and yield an unbiased global free energy landscape in the space of order parameters. It is demonstrated with practical examples that free energy landscapes that are comparable in accuracy to WHAM can be generated at a small fraction of the cost.
Directory of Open Access Journals (Sweden)
Kant Eliab Kanyarusoke
2018-01-01
Full Text Available A new mechanism interconverting linear and rotary motion was investigated for energy transfers among its components. It employed a gear-rack set, a Hooke coupling and a specially designed bladder-valve system that regulated the motion. The purpose was to estimate individual component mechanical efficiencies as they existed in the prototype so that future reengineering of the mechanism could be properly targeted. Theoretical modelling of the mechanism was first done to obtain equations for efficiencies of the key components. Two-stage experimentation followed when running a solar tracker. The first stage produced data for inputting into the model to determine the efficiencies’ theoretical variation with the Hooke coupling shaft angle. The second one verified results of the Engineering Equation Solver (EES software solutions of the model. It was found that the energy transfer to focus on was that between the Hooke coupling and the output shaft because its efficiency was below 4%
International Nuclear Information System (INIS)
Barber, D.P.; Ripken, G.; Schmidt, F.
1987-05-01
We investigate the motion of protons of arbitrary energy (below and above transition energy) in a storage ring. The motion is described both in terms of the fully six-dimensional formalism with the canonical variables x, p x , z, p z , σ = s - v 0 . t, η = ΔE/E 0 = p σ and in terms of a dispersion formalism with new variables x, p x , z, p z , σ, p σ . Since the dispersion function is introduced into the equations of motion via a canonical transformation the symplectic structure of these equations is completely preserved. In this formulation it is then possible to define three uncoupled linear (unperturbed) oscillation modes which are described by phase ellipses. Perturbations manifest themselves as deviations from these ellipses. The equations of motion are solved within the framework of the fully six-dimensional formalism. (orig.)
Linder, Mats; Ranganathan, Anirudh; Brinck, Tore
2013-02-12
We present a structure-based parametrization of the Linear Interaction Energy (LIE) method and show that it allows for the prediction of absolute protein-ligand binding energies. We call the new model "Adapted" LIE (ALIE) because the α and β coefficients are defined by system-dependent descriptors and do therefore not require any empirical γ term. The best formulation attains a mean average deviation of 1.8 kcal/mol for a diverse test set and depends on only one fitted parameter. It is robust with respect to additional fitting and cross-validation. We compare this new approach with standard LIE by Åqvist and co-workers and the LIE + γSASA model (initially suggested by Jorgensen and co-workers) against in-house and external data sets and discuss their applicabilities.
Linear energy transfer effects on time profiles of scintillation of Ce-doped LiCaAlF6 crystals
International Nuclear Information System (INIS)
Yanagida, Takayuki; Koshimizu, Masanori; Kurashima, Satoshi; Iwamatsu, Kazuhiro; Kimura, Atsushi; Taguchi, Mitsumasa; Fujimoto, Yutaka; Asai, Keisuke
2015-01-01
We measured temporal profiles of the scintillation of Ce-doped LiCaAlF 6 scintillator crystals at different linear energy transfers (LETs). Based on the comparison of high-LET temporal profiles with those at low LET, a fast component was observed only at low LET. The disappearance of the fast component at high LET is tentatively ascribed to the quenching of excited states at crystal defects owing to the interaction between excited states via the Auger process. In addition, the rise and the initial decay behavior were dependent on the LET. This LET-dependent behavior is explained by an acceleration process and a deceleration process in energy transfer at high LET. The LET-dependent temporal profiles provide the basis for a discrimination technique of gamma-ray and neutron detection events using these scintillators based on the nuclear reaction, 6 Li(n,α)t.
International Nuclear Information System (INIS)
Minezawa, Noriyuki
2014-01-01
Examining photochemical processes in solution requires understanding the solvent effects on the potential energy profiles near conical intersections (CIs). For that purpose, the CI point in solution is determined as the crossing between nonequilibrium free energy surfaces. In this work, the nonequilibrium free energy is described using the combined method of linear-response free energy and collinear spin-flip time-dependent density functional theory. The proposed approach reveals the solvent effects on the CI geometries of stilbene in an acetonitrile solution and those of thymine in water. Polar acetonitrile decreases the energy difference between the twisted minimum and twisted-pyramidalized CI of stilbene. For thymine in water, the hydrogen bond formation stabilizes significantly the CI puckered at the carbonyl carbon atom. The result is consistent with the recent simulation showing that the reaction path via this geometry is open in water. Therefore, the present method is a promising way of identifying the free-energy crossing points that play an essential role in photochemistry of solvated molecules
Collisional effects on ion energy and angular distributions incident on RF-biased electrodes
International Nuclear Information System (INIS)
Qiu Huatan; Wang Younian; Ma Tengcai
2002-01-01
Taking into account elastic collisions and charge-exchange collisions between ions and neutral particles, the authors established a self-consistent model describing the dynamics of radio-frequency (RF) sheath driven by a sinusoidal current source, and also, using the Monte-Carlo Method, simulated energy and angle distributions of ions bombarding on RF-biased substrates. It has been shown from numerical results that as increasing the discharge pressure, bimodal-peaks distributions for the ion energy become gradually a single-peak distribution, and low-energy ions increase. The authors also found that the angle distribution of ions is narrow and almost do not change with increasing the discharge pressure
Modeling of a Permanent Magnet Linear Generator for Wave-Energy Conversion
Tom, Nathan
2015-05-31
© 2015 by ASME. This paper begins with a brief review of the equation of motion for a generic floating body with modification to incorporate the influence of a power-take-off (PTO) unit. Since the damping coefficient is considered the dominant contribution to the PTO reaction force, the optimum non time-varying values are presented for all frequencies, recovering the well-known impedance-matching principle at the resonance condition of the coupled system. The construction of a laboratory-scale permanent magnet linear generator (PMLG), developed at the University of California at Berkeley, is discussed along with the basic electromagnetic equations used to model its performance. Modeling of the PMLG begins with a lumped magnetic circuit analysis, which provides an analytical solution to predict the magnetic flux available for power conversion. The voltage generated across each phase of the stator, induced by the motion of the armature, provides an estimate for the electromagnetic damping as a function of the applied resistive load. The performance of the PMLG and the validation of the proposed analytical model is completed by a set of dry-bench tests. Results from the bench test showed good agreement with the described electromechanical model, thus providing an analytical solution that can assist in further optimization of the PMLG.
International Nuclear Information System (INIS)
Prada-Sanchez, J.M.; Febrero-Bande, M.; Gonzalez-Manteiga, W.; Costos-Yanez, T.; Bermudez-Cela, J.L.; Lucas-Dominguez, T.
2000-01-01
Atmospheric SO 2 concentrations at sampling stations near the fossil fuel fired power station at As Pontes (La Coruna, Spain) were predicted using a model for the corresponding time series consisting of a self-explicative term and a linear combination of exogenous variables. In a supplementary simulation study, models of this kind behaved better than the corresponding pure self-explicative or pure linear regression models. (Author)
International Nuclear Information System (INIS)
Mashayekh, Salman; Stadler, Michael; Cardoso, Gonçalo; Heleno, Miguel
2017-01-01
Highlights: • This paper presents a MILP model for optimal design of multi-energy microgrids. • Our microgrid design includes optimal technology portfolio, placement, and operation. • Our model includes microgrid electrical power flow and heat transfer equations. • The case study shows advantages of our model over aggregate single-node approaches. • The case study shows the accuracy of the integrated linearized power flow model. - Abstract: Optimal microgrid design is a challenging problem, especially for multi-energy microgrids with electricity, heating, and cooling loads as well as sources, and multiple energy carriers. To address this problem, this paper presents an optimization model formulated as a mixed-integer linear program, which determines the optimal technology portfolio, the optimal technology placement, and the associated optimal dispatch, in a microgrid with multiple energy types. The developed model uses a multi-node modeling approach (as opposed to an aggregate single-node approach) that includes electrical power flow and heat flow equations, and hence, offers the ability to perform optimal siting considering physical and operational constraints of electrical and heating/cooling networks. The new model is founded on the existing optimization model DER-CAM, a state-of-the-art decision support tool for microgrid planning and design. The results of a case study that compares single-node vs. multi-node optimal design for an example microgrid show the importance of multi-node modeling. It has been shown that single-node approaches are not only incapable of optimal DER placement, but may also result in sub-optimal DER portfolio, as well as underestimation of investment costs.
Zhong, Hui-Teng; Yang, Xue-Xia; Song, Xing-Tang; Guo, Zhen-Yue; Yu, Fan
2017-11-01
In this work, we introduced the design, demonstration, and discussion of a wideband metamaterial array with polarization-independent and wide-angle for harvesting ambient electromagnetic (EM) energy and wireless power transfer. The array consists of unit cells with one square ring and four metal bars. In comparison to the published metamaterial arrays for harvesting EM energy or wireless transfer, this design had the wide operation bandwidth with the HPBW (Half Power Band Width) of 110% (6.2 GHz-21.4 GHz), which overcomes the narrow-band operation induced by the resonance characteristic of the metamaterial. On the normal incidence, the simulated maximum harvesting efficiency was 96% and the HPBW was 110% for the random polarization wave. As the incident angle increases to 45°, the maximum efficiency remained higher than 88% and the HPBW remained higher than 83% for the random polarization wave. Furthermore, the experimental verification of the designed metamaterial array was conducted, and the measured results were in reasonable agreement with the simulated ones.
International Nuclear Information System (INIS)
Kheymits, M D; Leonov, A A; Zverev, V G; Galper, A M; Arkhangelskaya, I V; Arkhangelskiy, A I; Yurkin, Yu T; Bakaldin, A V; Suchkov, S I; Topchiev, N P; Dalkarov, O D
2016-01-01
The GAMMA-400 gamma-ray space-based telescope has as its main goals to measure cosmic γ-ray fluxes and the electron-positron cosmic-ray component produced, theoretically, in dark-matter-particles decay or annihilation processes, to search for discrete γ-ray sources and study them in detail, to examine the energy spectra of diffuse γ-rays — both galactic and extragalactic — and to study gamma-ray bursts (GRBs) and γ-rays from the active Sun. Scientific goals of GAMMA-400 telescope require fine angular resolution. The telescope is of a pair-production type. In the converter-tracker, the incident gamma-ray photon converts into electron-positron pair in the tungsten layer and then the tracks are detected by silicon- strip position-sensitive detectors. Multiple scattering processes become a significant obstacle in the incident-gamma direction reconstruction for energies below several gigaelectronvolts. The method of utilising this process to improve the resolution is proposed in the presented work. (paper)
Introduction to high-energy physics and the Stanford Linear Accelerator Center (SLAC)
Energy Technology Data Exchange (ETDEWEB)
Clearwater, S.
1983-03-01
The type of research done at SLAC is called High Energy Physics, or Particle Physics. This is basic research in the study of fundamental particles and their interactions. Basic research is research for the sake of learning something. Any practical application cannot be predicted, the understanding is the end in itself. Interactions are how particles behave toward one another, for example some particles attract one another while others repel and still others ignore each other. Interactions of elementary particles are studied to reveal the underlying structure of the universe.
Constrained Optimal Stochastic Control of Non-Linear Wave Energy Point Absorbers
DEFF Research Database (Denmark)
Sichani, Mahdi Teimouri; Chen, Jian-Bing; Kramer, Morten
2014-01-01
are enforced on the motion of the floater to prevent it from hitting the bottom of the sea or to make unacceptable jumps out of the water. The applied control law, which is of the feedback type with feedback from the displacement, velocity, and acceleration of the floater, contains two unprovided gain......The paper deals with the stochastic optimal control of a wave energy point absorber with strong nonlinear buoyancy forces using the reactive force from the electric generator on the absorber as control force. The considered point absorber has only one degree of freedom, heave motion, which is used...
e+e-→e-ν-bareud-bar from LEP to linear collider energies
International Nuclear Information System (INIS)
Kurihara, Y.; Shimizu, Y.; Perret-Gallix, D.
1994-12-01
The complete tree level cross-section for the process e + e - → e - ν-bar e ud-bar is computed using the GRACE system, a program package for automatic amplitude calculation. Special attention is brought to the gauge violation problem induced by the finite width of the W-boson. The preserved gauge scheme is introduced and an event generator including double-resonant, single-resonant and non-resonant diagrams with no need for a cut on the electron polar angle is built. A mono jet event rate estimation based on this process at LEP-I energy is discussed. (author). 11 refs., 9 figs
Introduction to high-energy physics and the Stanford Linear Accelerator Center (SLAC)
International Nuclear Information System (INIS)
Clearwater, S.
1983-03-01
The type of research done at SLAC is called High Energy Physics, or Particle Physics. This is basic research in the study of fundamental particles and their interactions. Basic research is research for the sake of learning something. Any practical application cannot be predicted, the understanding is the end in itself. Interactions are how particles behave toward one another, for example some particles attract one another while others repel and still others ignore each other. Interactions of elementary particles are studied to reveal the underlying structure of the universe
International Nuclear Information System (INIS)
Rath, J.; Freeman, A.J.
1975-01-01
A detailed study of the generalized susceptibility chi(vector q) of Sc metal determined from an accurate augmented-plane-wave method calculation of its energy-band structure is presented. The calculations were done by means of a computational scheme for chi(vector q) derived as an extension of the work of Jepsen and Andersen and Lehmann and Taut on the density-of-states problem. The procedure yields simple analytic expressions for the chi(vector q) integral inside a tetrahedral microzone of the Brillouin zone which depends only on the volume of the tetrahedron and the differences of the energies at its corners. Constant-matrix-element results have been obtained for Sc which show very good agreement with the results of Liu, Gupta, and Sinha (but with one less peak) and exhibit a first maximum in chi(vector q) at (0, 0, 0.31) 2π/c [vs (0, 0, 0.35) 2π/c obtained by Liu et al.] which relates very well to dilute rare-earth alloy magnetic ordering at vector q/sub m/ = (0, 0, 0.28) 2π/c and to the kink in the LA-phonon dispersion curve at (0, 0, 0.27) 2π/c. (U.S.)
DEFF Research Database (Denmark)
Joensen, K. D.; Christensen, Finn Erland; Schnopper, H. W.
1993-01-01
The authors present a concept of continuously graded multilayer structures for medium-sized X-ray telescopes which is based on several material combinations. They show that the theoretical reflectivity characteristics of these structures make them very advantageous when applied to high energy X-r...
Jacobson, Daniel; Stratt, Richard M.
2014-05-01
Because the geodesic pathways that a liquid follows through its potential energy landscape govern its slow, diffusive motion, we suggest that these pathways are logical candidates for the title of a liquid's "inherent dynamics." Like their namesake "inherent structures," these objects are simply features of the system's potential energy surface and thus provide views of the system's structural evolution unobstructed by thermal kinetic energy. This paper shows how these geodesic pathways can be computed for a liquid of linear molecules, allowing us to see precisely how such molecular liquids mix rotational and translational degrees of freedom into their dynamics. The ratio of translational to rotational components of the geodesic path lengths, for example, is significantly larger than would be expected on equipartition grounds, with a value that scales with the molecular aspect ratio. These and other features of the geodesics are consistent with a picture in which molecular reorientation adiabatically follows translation—molecules largely thread their way through narrow channels available in the potential energy landscape.
Evaluation of 242Pu data for the incident neutron energy range 0.1 - 6 MeV
International Nuclear Information System (INIS)
Vladuca, G.; Sin, M.; Tudora, A.
1996-11-01
This report presents the models and the procedures used for the calculation of the quantities required by Files 3, 4 and 5 of ENDF-6 for 242 Pu. These quantities are the integrated cross sections for the total, fission, scattering and gamma-capture reactions and the angular and energy distributions of the scattered neutrons for the incident neutron energies 0.01/6 MeV. The direct mechanism was treated with the coupled-channel method using a deformed optical potential defined by a set of actinide region parameters established by the authors. For the compound nucleus calculations, a new HRTW version of the statistical model extended to describe the fission at subbarrier energies was used. To describe the continuous part of the transition states spectrum, analytical expressions have been established. The energy distributions of the scattered neutrons have been calculated with an author's version of the Los Alamos model. The agreement of the calculations with the existing experimental data is good. (author)
Energy Technology Data Exchange (ETDEWEB)
Kreitzer, B R; Houck, T L; Luchterhand, O C
2011-07-19
This paper addresses thermal drift in sodium thiosulfate liquid resistors and their replacement with linear disk resistors from HVR Advanced Power Components. Sodium thiosulfate resistors in the FXR induction linear accelerator application have a temperature coefficient of {approx}1.8%/C. The FXR Marx banks send an 8kJ pulse through eight 524 cm{sup 3} liquid resistors at a repetition rate of up to 1 every 45 seconds. Every pulse increases the temperature of the solution by {approx}0.4 C which produces a 0.7% change in resistance. The typical cooling rate is {approx}0.4 C per minute which results in {approx}0.1% energy drop per pulse during continuous pulsed operations. A radiographic accelerator is extraordinarily sensitive to energy variations. Changes in beam energy produce movement in beam transport, changes in spot size, and large dose variations. If self-heating were the only problem, we could predict the increase in input voltage required to compensate for the energy loss. However, there are other variables that influence the temperature of the resistors such as focus magnet heating, changes in room temperature, changes in cooling water, where the cell is located, etc. Additionally not all of the resistors have equivalent cooling rates and as many as 32 resistors are driven from a single power source. The FXR accelerator group elected to replace the sodium thiosulfate resistors with HVR Linear Disk Resistors in a stack type configuration. With data limited for these resistors when used in oil and at low resistance values, a full characterization needed to be performed. High currents (up to 15kA), high voltages (up to 400kV), and Fast Rise times (<10ns) made a resistor choice difficult. Other solid resistors have been tried and had problems at the connection points and with the fact that the resistivity changed as they absorbed oil. The selected HVR resistors have the advantage of being manufactured with the oil impregnated in to them so this characteristic
International Nuclear Information System (INIS)
Kreitzer, B.R.; Houck, T.L.; Luchterhand, O.C.
2011-01-01
This paper addresses thermal drift in sodium thiosulfate liquid resistors and their replacement with linear disk resistors from HVR Advanced Power Components. Sodium thiosulfate resistors in the FXR induction linear accelerator application have a temperature coefficient of ∼1.8%/C. The FXR Marx banks send an 8kJ pulse through eight 524 cm 3 liquid resistors at a repetition rate of up to 1 every 45 seconds. Every pulse increases the temperature of the solution by ∼0.4 C which produces a 0.7% change in resistance. The typical cooling rate is ∼0.4 C per minute which results in ∼0.1% energy drop per pulse during continuous pulsed operations. A radiographic accelerator is extraordinarily sensitive to energy variations. Changes in beam energy produce movement in beam transport, changes in spot size, and large dose variations. If self-heating were the only problem, we could predict the increase in input voltage required to compensate for the energy loss. However, there are other variables that influence the temperature of the resistors such as focus magnet heating, changes in room temperature, changes in cooling water, where the cell is located, etc. Additionally not all of the resistors have equivalent cooling rates and as many as 32 resistors are driven from a single power source. The FXR accelerator group elected to replace the sodium thiosulfate resistors with HVR Linear Disk Resistors in a stack type configuration. With data limited for these resistors when used in oil and at low resistance values, a full characterization needed to be performed. High currents (up to 15kA), high voltages (up to 400kV), and Fast Rise times (<10ns) made a resistor choice difficult. Other solid resistors have been tried and had problems at the connection points and with the fact that the resistivity changed as they absorbed oil. The selected HVR resistors have the advantage of being manufactured with the oil impregnated in to them so this characteristic is minimized while still
Shin, Yung C.; Bailey, Neil; Katinas, Christopher; Tan, Wenda
2018-01-01
This paper presents an overview of vertically integrated comprehensive predictive modeling capabilities for directed energy deposition processes, which have been developed at Purdue University. The overall predictive models consist of vertically integrated several modules, including powder flow model, molten pool model, microstructure prediction model and residual stress model, which can be used for predicting mechanical properties of additively manufactured parts by directed energy deposition processes with blown powder as well as other additive manufacturing processes. Critical governing equations of each model and how various modules are connected are illustrated. Various illustrative results along with corresponding experimental validation results are presented to illustrate the capabilities and fidelity of the models. The good correlations with experimental results prove the integrated models can be used to design the metal additive manufacturing processes and predict the resultant microstructure and mechanical properties.
LENUS (Irish Health Repository)
Bahari, Syah
2007-07-01
Fracture of the distal radius from low energy trauma is a common presentation to orthopaedic trauma services. This fragility type fracture is associated with underlying osteoporosis. Osteoporosis is a \\'silent disease\\' where fragility fracture is a common presentation. Orthopaedic surgeons may be the only physician that these patients encounter. We found a high percentage of female patients who sustained a fragility fracture of the distal radius have an underlying osteoporosis. Further management of osteoporosis is important to prevent future fragility fractures.
Influence of the incident particle energy on the fission product mass distribution
International Nuclear Information System (INIS)
Gomes, I. C.
1998-01-01
For 238 U targets and the five elements considered here, the best yields of neutron-rich isotopes are obtained from neutrons in the 2-20 MeV range. High energy beams of neutrons, protons, and deuterons have comparable integral yields per element to neutrons below 20 MeV, but the distributions are peaked at lower neutron numbers. This is presumably due to a higher neutron multiplicity in the pre-equilibrium stage and/or the compound nucleus/fission stage. For 235 U targets there are high yields predicted especially for thermal neutrons, and also for the fast neutron spectrum. For the high energy neutrons, protons, and deuterons 235 U has no advantage over 238 U. A detailed comparison of the relative advantages of 235 U and 238 U for radioactive beam applications is beyond the scope of this study and will be addressed in the future. The present work is the first step of a more detailed analysis of various possible one- and two-step target geometry calculated with the LAHET code system. It is intended to serve as a guide in choosing geometry and beams for future studies. It is desirable to extend this study to higher beam energies, e.g. 200 to 1000 MeV, but at this time there is very little data against which to benchmark the analysis. Additional data would also permit comparisons of isotope yields beyond the tails of the distributions presented here, to even more neutron rich isotopes
The economic concept of elasticity and their incidence in the Colombian energy market
International Nuclear Information System (INIS)
Perez Bedoya, Edigson
1997-01-01
There are two factors that affect the elasticity, in the first place the readiness of substitutes and in second place, the number of uses that can be given, the more numerous and better they are the substitutes, will be better the elasticity. The goods that have scarce and bad substitutes will Always spread to have small elasticity. The goods with many substitutes will spread to have great elasticity; if the demand is classified in elastic or inelastic it is an important consideration, especially for the energy politics, in the relative thing to market of specific goods, in this case the electric power. If the coefficient of elasticity of the electric power was very elastic, this would imply that an increase in the rate will generate a reduction proportionally in the energy consumption bigger, the companies that they offer or they distribute energy in the case of the electricity for example, they would obtain a smaller entrance for the sale of the electric power kWh. In the practice it is difficult that it happens, for the difficulty of finding substitutes for the electric power, in other words because the elasticity of the electric power demand is inelastic. If the national government establishes a minimum rate above the price of the market balance, the kWh sales, they could decrease, the same as the entrance of the companies of the electric sector, unless the guarantee price is accompanied by minimum quotas of purchase
Inner-shell excitation in heavy ion collisions up to intermediate incident energies
International Nuclear Information System (INIS)
Reus, T. de.
1987-04-01
Electronic excitations in collisions of very heavy ions with a total nuclear charge Z greater than 1/α ≅ 137 at bombarding energies reaching from 3.6 MeV/n up to 100 MeV/n are the subject of this thesis. The dynamical behaviour of the electron-positron-field is described within a semiclassical model, which is reviewed and extended to include electronic interactions via a mean field. A detailed comparison with experimental data of K-vacancy formation, δ-electron and positron emission shows an improved agreement compared with former calculations. Structures in spectra of positrons emitted in sub- and supercritical collision are discussed in two respects: Firstly as a signal of the vacuum decay in supercritical electromagnetic fields which evolve in the vicinity of long living giant nuclear molecules. Secondly as an atomic effect, which might be related to an instaneous formation of molecular 1sσ- and 2p 1/2 σ- levels. However, beyond this speculation the emission spectra of electrons and positrons in deep inelastic reactions have proven to be a powerful tool for measuring nuclear reaction or delay times in the order of 10 -21 s. This property was transfered to the domain of intermediate energy collisions. In first order perturbation theory we derived a scaling law, exhibiting how nuclear stopping times could be extracted from the emission spectra of high energetic δ-electrons. Quantitative calculations within a coupled channel code have been carried out for the system Pb+Pb, yielding cross sections of up to 20 nb for the emission of electrons with a kinetic energy of 50 MeV in 60 MeV/n-collisions. (orig./HSI)
Bhatia, A. K.; Sinha, C.
2012-01-01
The free-free transition is studied for an electron-hydrogen atom in ground state when a low-energy electron (external) is injected into hydrogenic plasma in the presence of an external homogenous, monochromatic, and linearly polarized laser field. The effect of plasma screening is considered in the Debye-Huckel approximation. The calculations are performed in the soft photon limit. The incident electron is considered to be dressed by the laser field in a nonperturbative manner by choosing the Volkov solutions in both the initial and final channels. The space part of the scattering wave function for the electron is solved numerically by taking into account the electron exchange. The laser-assisted differential and total cross sections are calculated for single-photon absorption or emission and no-photon exchange in the soft photon limit, the laser intensity being much less than the atomic field intensity. The calculations have been carried out for various values of Debye parameter, ranging from 0.005 to 0.12. A strong suppression is noted in the laser-assisted cross sections as compared to the field-free situation. A significant difference is noted for the singlet and triplet cross sections. The suppression is much more in the triplet states.
Neutron-induced electronic failures around a high-energy linear accelerator
International Nuclear Information System (INIS)
Kry, Stephen F.; Johnson, Jennifer L.; White, R. Allen; Howell, Rebecca M.; Kudchadker, Rajat J.; Gillin, Michael T.
2011-01-01
Purpose: After a new in-vault CT-on-rails system repeatedly malfunctioned following use of a high-energy radiotherapy beam, we investigated the presence and impact of neutron radiation on this electronic system, as well as neutron shielding options. Methods: We first determined the CT scanner's failure rate as a function of the number of 18 MV monitor units (MUs) delivered. We then re-examined the failure rate with both 2.7-cm-thick and 7.6-cm-thick borated polyethylene (BPE) covering the linac head for neutron shielding. To further examine shielding options, as well as to explore which neutrons were relevant to the scanner failure, Monte Carlo simulations were used to calculate the neutron fluence and spectrum in the bore of the CT scanner. Simulations included BPE covering the CT scanner itself as well as covering the linac head. Results: We found that the CT scanner had a 57% chance of failure after the delivery of 200 MUs. While the addition of neutron shielding to the accelerator head reduced this risk of failure, the benefit was minimal and even 7.6 cm of BPE was still associated with a 29% chance of failure after the delivery of 200 MU. This shielding benefit was achieved regardless of whether the linac head or CT scanner was shielded. Additionally, it was determined that fast neutrons were primarily responsible for the electronic failures. Conclusions: As illustrated by the CT-on-rails system in the current study, physicists should be aware that electronic systems may be highly sensitive to neutron radiation. Medical physicists should therefore monitor electronic systems that have not been evaluated for potential neutron sensitivity. This is particularly relevant as electronics are increasingly common in the therapy vault and newer electronic systems may exhibit increased sensitivity.
Ravichandran, Ramamoorthy; Binukumar, John Pichy; Al Amri, Iqbal; Davis, Cheriyathmanjiyil Antony
2016-03-08
Diamond detectors (DD) are preferred in small field dosimetry of radiation beams because of small dose profile penumbras, better spatial resolution, and tissue-equivalent properties. We investigated a commercially available 'microdiamond' detector in realizing absorbed dose from first principles. A microdiamond detector, type TM 60019 with tandem electrometer is used to measure absorbed doses in water, nylon, and PMMA phantoms. With sensitive volume 0.004 mm3, radius 1.1mm, thickness 1 x10(-3) mm, the nominal response is 1 nC/Gy. It is assumed that the diamond detector could collect total electric charge (nC) developed during irradiation at 0 V bias. We found that dose rate effect is less than 0.7% for changing dose rate by 500 MU/min. The reproducibility in obtaining readings with diamond detector is found to be ± 0.17% (1 SD) (n = 11). The measured absorbed doses for 6 MV and 15 MV photons arrived at using mass energy absorption coefficients and stop-ping power ratios compared well with Nd, water calibrated ion chamber measured absorbed doses within 3% in water, PMMA, and nylon media. The calibration factor obtained for diamond detector confirmed response variation is due to sensitivity due to difference in manufacturing process. For electron beams, we had to apply ratio of electron densities of water to carbon. Our results qualify diamond dosimeter as a transfer standard, based on long-term stability and reproducibility. Based on micro-dimensions, we recommend these detectors for pretreatment dose verifications in small field irradiations like stereotactic treatments with image guidance.
International Nuclear Information System (INIS)
Vlahostergios, Z.; Yakinthos, K.; Goulas, A.
2009-01-01
We present an effort to model the separation-induced transition on a flat plate with a semi-circular leading edge, using a cubic non-linear eddy-viscosity model combined with the laminar kinetic energy. A non-linear model, compared to a linear one, has the advantage to resolve the anisotropic behavior of the Reynolds-stresses in the near-wall region and it provides a more accurate expression for the generation of turbulence in the transport equation of the turbulence kinetic energy. Although in its original formulation the model is not able to accurately predict the separation-induced transition, the inclusion of the laminar kinetic energy increases its accuracy. The adoption of the laminar kinetic energy by the non-linear model is presented in detail, together with some additional modifications required for the adaption of the laminar kinetic energy into the basic concepts of the non-linear eddy-viscosity model. The computational results using the proposed combined model are shown together with the ones obtained using an isotropic linear eddy-viscosity model, which adopts also the laminar kinetic energy concept and in comparison with the existing experimental data.
Moualeu, Leolein Patrick Gouemeni
Runway-independent aircraft are expected to be the future for short-haul flights by improving air transportation and reducing area congestion encountered in airports. The Vehicle Systems Program of NASA identified a Large Civil Tilt-Rotor, equipped with variable-speed power-turbine engines, as the best concept. At cruise altitude, the engine rotor-speed will be reduced by as much as the 50% of take-off speed. The large incidence variation in the low pressure turbine associated with the change in speed can be detrimental to the engine performance. Low pressure turbine blades in cruise altitude are more predisposed to develop regions of boundary layer separation. Typical phenomenon such as impinging wakes on downstream blades and mainstream turbulences enhance the complexity of the flow in low pressure turbines. It is therefore important to be able to understand the flow behavior to accurately predict the losses. Research facilities are seldom able to experimentally reproduce low Reynolds numbers at relevant engine Mach number. Having large incidence swing as an additional parameter in the investigation of the boundary layer development, on a low pressure turbine blade, makes this topic unique and as a consequence requires a unique facility to conduct the experimental research. The compressible flow wind tunnel facility at the University of North Dakota had been updated to perform steady state experiments on a modular-cascade, designed to replicate a large variation of the incidence angles. The high speed and low Reynolds number facility maintained a sealed and closed loop configuration for each incidence angle. The updated facility is capable to produce experimental Reynolds numbers as low as 45,000 and as high as 570,000 at an exit Mach number of 0.72. Pressure and surface temperature measurements were performed at these low pressure turbine conditions. The present thesis investigates the boundary layer development on the surface of an Incidence-tolerant blade. The
International Nuclear Information System (INIS)
Casanovas, Joseph.
1975-01-01
This study deals with ionization of some non polar dielectric liquids by radiations of very different linear energy transfers. Provided that some experimental precautions are taken the extrapolated free ion yields, Gsub(fi)sup(o), are in agreement with the clearing field ion yields. The Gsub(fi)sup(o) values are given for ten liquids irradiated by 60 Co γ rays and 210 Po α particles and the variation Gsub(fi) with temperature (10 deg C -1 ) are discussed. A similar study is carried out for some binary alkane-alkane and alkane electronegative compounds (CCl 4 , c-C 8 F 16 O) mixtures. Some hypothesis are presented in order to explain the free ion yield ''inhibition'' in those mixtures. Using the ONSAGER theory and the high field curves, Gsub(fi)=f(E), an attempt is made to determine the distribution function, F(r), of ion separation distances for each liquid. It is shown that ionization chambers filled with an alkane or an alkane-CCl 4 mixture in good proportions can be used for the dosimetry of X-rays of energy higher than 100 keV and the determination of the depth dose curve in a plexiglas phantom irradiated by the high energy electrons beams (10 MeV to 30 MeV) used in radiotherapy [fr
Design of a non-linear power take-off simulator for model testing of rotating wave energy devices
Energy Technology Data Exchange (ETDEWEB)
Lopes, M.F.P.; Henriques, J.C.C.; Lopes, Miguel C.; Gato, L.M.C. [IDMEC - Instituto de Engenharia Mecanica, Instituto Superior Tecnico, Universidade Tecnica de Lisboa, Lisboa (Portugal); Dente Antonio [CIE3 - Center for Innovation in Electrical and Energy Engineering, Lisboa (Portugal)
2009-07-01
Eddy current brakes provide a versatile way of simulating the power take-off system (PTO) in the model testing of wave energy converters at small scale. These are based on the principle that a conductive material moving perpendicularly to a magnetic field generates a braking force proportional to its velocity. This was applied in the design of the PTO simulator of a bottom-hinged flap wave energy converter model, at 1/16 scale. The efforts put into the accurate dynamic simulation of the device led to the development of a controllable PTO simulator, which can be applied to other small scale rotating wave energy device models. A special power source was built to provide the required controllable current intensity to feed the magnetic field generating coils. Different non-linear damping PTO characteristic curves can be simulated by basing the current control on real-time velocity measurement. The calibration of the system was done by connecting the device to a constant rotating speed motor and measuring the resistent torque produced by the PTO with a torquemeter for different values of current intensity through the coils.
Neutron scattering on natural iron at incident energies between 9.4 and 15.2 MeV
International Nuclear Information System (INIS)
Schmidt, D.; Mannhart, W.; Klein, H.; Nolte, R.
1994-11-01
Neutrons were scattered on a sample of natural iron at 12 incident energies in the range between 9.4 MeV and 15.2 MeV. Differential cross sections of the elastic scattering (natural iron) and of the inelastic scattering to the first excited level of 56 Fe (Q=-0.847 MeV) were determined for angles between 12.5 deg and 160 deg with total uncertainties between of 3% and 10%. Legendre polynomial least-squares fits resulted in integrated cross sections with uncertainties of 2% (elastic data) and 7% (inelastic data). The cross sections obtained in this work were compared with data from the literature. Inelastic scattering cross sections were determined within the scope of a pseudolevel analysis up to excitation energies of nearly 5.5 MeV. At higher excitation energies the scattering spectrum is contaminated by scattered breakup neutrons from the D+d source used hampering an analysis of the data. (orig.) [de
International Nuclear Information System (INIS)
Takatoshi, Ichikawa; Kouichi, Hagino; Akira, Iwamoto
2011-01-01
We propose a novel extension of the standard coupled-channel (CC) model in order to account for the steep falloff of fusion cross sections at deep-subbarrier incident energies. We introduce a damping factor in the coupling potential in the CC model, simulating smooth transitions from sudden to adiabatic states in deep- subbarrier fusion reactions. The CC model extended with the damping factor can reproduce well not only the steep falloff of the fusion cross section but also the saturation of the logarithmic derivatives for the fusion cross sections at deep-subbarrier energies for the 16 O+ 208 Pb, 64 Ni+ 64 Ni, and 58 Ni+ 58 Ni reactions at the deep-subbarrier energies. The important point in our model is that the transition takes place at different places for each Eigen channel. We conclude that the smooth transition from the two-body to the adiabatic one-body potential is responsible for the steep falloff of the fusion cross section
International Nuclear Information System (INIS)
Fassnacht, P.
1984-01-01
We have studied pion production in nucleus-nucleus collisions at foward angles for about twenty projectile target combinations. The incident energies were below or around 300 MeV/nucleon which is the threshold of the elementary reaction NN → NNπ. The study of the inclusive spectra shows some new ideas: shell effects in pion production, collective resonances excitations. These spectra have been analyzed following different models: hard-scattering models which describe the interaction on the basis of the elementary reaction NN → NNπ, statistical model and the pionic cloud model which is a coherent description of the interaction. In the study of the exclusive reactions, we established some empiric rules concerning the cross-section variations. These exclusive spectra were then analyzed in the framework of two-models: the semi-phenomenological model and the pionic fusion [fr
Abramov, R. V.
2011-12-01
Chaotic multiscale dynamical systems are common in many areas of science, one of the examples being the interaction of the low-frequency dynamics in the atmosphere with the fast turbulent weather dynamics. One of the key questions about chaotic multiscale systems is how the fast dynamics affects chaos at the slow variables, and, therefore, impacts uncertainty and predictability of the slow dynamics. Here we demonstrate that the linear slow-fast coupling with the total energy conservation property promotes the suppression of chaos at the slow variables through the rapid mixing at the fast variables, both theoretically and through numerical simulations. A suitable mathematical framework is developed, connecting the slow dynamics on the tangent subspaces to the infinite-time linear response of the mean state to a constant external forcing at the fast variables. Additionally, it is shown that the uncoupled dynamics for the slow variables may remain chaotic while the complete multiscale system loses chaos and becomes completely predictable at the slow variables through increasing chaos and turbulence at the fast variables. This result contradicts the common sense intuition, where, naturally, one would think that coupling a slow weakly chaotic system with another much faster and much stronger chaotic system would result in general increase of chaos at the slow variables.
International Nuclear Information System (INIS)
Turner, W.C.; Barrett, D.M.; Sampayan, S.E.
1991-01-01
In this paper the authors attempt to motivate the development of modeling tools for linear induction accelerator components by giving examples of performance limitations related to energy sweep. The most pressing issues is the development of an accurate model of the switching behavior of large magnetic cores at high dB/dt in the accelerator and magnetic compression modulators. Ideally one would like to have a model with as few parameters as possible that allows the user to choose the core geometry and magnetic material and perhaps a few parameters characterizing the switch model. Beyond this, the critical modeling tasks are: simulation of a magnetic compression modulator, modeling the reset dynamics of a magnetic compression modulator, modeling the loading characteristics of a linear induction accelerator cell, and modeling the electron injector current including the dynamics of feedback modulation and beam loading in an accelerator cell. Of course in the development of these models care should be given to benchmarking them against data from experimental systems. Beyond that one should aim for tools that have predictive power so that they can be used as design tools and not merely to replicate existing data
Energy Technology Data Exchange (ETDEWEB)
Grossi, G.F.; Durante, M.; Gialanella, G. [Dipartimento di Scienze Fisiche, Univ. di Napoli and Istituto Nazionale di Fisica Nucleare, Sezione di Napoli (Italy); Pugliese, M. [Servizio di Radioprotezione, Univ. di Napoli (Italy); Mosse, I. [Institute of Genetics and Cytology of Belarus Academy of Sciences, Minsk (Belarus)
1998-04-01
The search for effective radioprotectors is of major concern in the medical, military, environmental, and space sciences. Conventional radioprotectors are generally effective only during a single irradiation and display their radioprotective properties only at high, toxic concentrations. In addition, they reduce somatic radiation effects but are poorly efficient in protecting from hereditary stochastic radiation effects. In this respect, the pigment melanin merits attention. Experiments referring to potential melanin effects on the ionising radiation response have been carried out with different biological systems, both in vivo and in vitro. In this paper, we present results on the response to high- and low-linear energy transfer (LET) radiation of a human mammary epithelial cell line, H184B5 F5-1 M/10, supplemented by melanin. The incorporation of auto-oxidative (l-dopa) melanin was linear for concentrations from 3 to 10 {mu}g/ml in the growth medium. Concentrations of up to 250 {mu}g/ml did not significantly impair the cells proliferative ability. No significant protective effect of melanin on the survival of cultured cells after exposure to alpha-particles (130 keV/{mu}m) or x-rays was observed. (orig.) With 2 figs., 3 tabs., 35 refs.
International Nuclear Information System (INIS)
Lumbiny, B J; Islam, M A; Rahman, M; Hui, Z; Quader, M A
2014-01-01
Tetracoordinated organophosphorous compounds were synthesized, characterized and nucleophilic substitution reaction were investigated by varying substituents around phosphorous centre or in nucleophile considering its utility in biological and environmental system. The reactivity is expressed in terms of second-order rate constant, k 2 and measured conductometrically. Linear Free Energy Relationship (LFER) tools mainly Hammett (ρ), Brönsted (β) LFER coefficients and deuterium kinetic isotope effects (KIEs) being determined for the pyridinolysis of 4 – chlorophenyl 4 – methoxy phenyl chlorophosphate, 1 in acetonitrile at 5.0 °C. The experimental data's were compared with those of structurally similar organophosphorous compounds reported earlier in quest for the mechanistic information. Nice linear correlation being found for Hammett (logk 2 vs σ x ), having negative value of the ρ X = −5.85 and Brönsted (logk 2 vs pK a(x) ) plots having large positive value for β X = 1.18 for 1 can be interpreted as S N 2 process with greater extent of bond formation in transition state (TS) of 1. The observed k H /k D values of 1 is 1.00 ± 0.05 and net KIE, 1.32 suggests the primary KIE and indicates frontside nucleophilic attack through the partial deprotonation of pyridine occurs by the hydrogen bonding in the rate-determining step.
Yamamoto, Seiichi; Koyama, Shuji; Yabe, Takuya; Komori, Masataka; Tada, Junki; Ito, Shiori; Toshito, Toshiyuki; Hirata, Yuho; Watanabe, Kenichi
2018-03-01
Luminescence of water during irradiations of proton-beams or X-ray photons lower energy than the Cerenkov-light threshold is promising for range estimation or the distribution measurements of beams. However it is not yet obvious whether the intensities and distributions are stable with the water conditions such as temperature or addition of solvable materials. It remains also unclear whether the luminescence of water linearly increases with the irradiated proton or X-ray energies. Consequently we measured the luminescence of water during irradiations of proton-beam or X-ray photons lower energy than the Cerenkov-light threshold with different water conditions and energies to evaluate the stability and linearity of luminescence of water. We placed a water phantom set with a proton therapy or X-ray system, luminescence images of water with different conditions and energies were measured with a high-sensitivity cooled charge coupled device (CCD) camera during proton or X-ray irradiations to the water phantom. In the stability measurements, imaging was made for different temperatures of water and addition of inorganic and organic materials to water. In the linearity measurements for the proton, we irradiated with four different energies below Cerenkov light threshold. In the linearity measurements for the X-ray, we irradiated X-ray with different supplied voltages. We evaluated the depth profiles for the luminescence images and evaluated the light intensities and distributions. The results showed that the luminescence of water was quite stable with the water conditions. There were no significant changes of intensities and distributions with the different temperatures. Results from the linearity experiments showed that the luminescence of water linearly increased with their energies. We confirmed that luminescence of water is stable with conditions of water. We also confirmed that the luminescence of water linearly increased with their energies.
International Nuclear Information System (INIS)
Eltayeb, A.E.H.
2009-02-01
The main objective of this study is to perform radiobiological characterization of two different photon beam energies, 6 MV and 15 MV, from linear accelerator used in radiotherapy, with special regard to late effects of radiation. Two end-points, namely cell survival and micronucleus induction were used for the characterization. Chinese hamster V 79 lung fibroblast cell line to prepare cell culture and to perform the innervate experiments. chromosomes number was counted and found to be 22 chromosomes per cell, this result is in complete agreement with expected 11 pairs of chromosomes representing the genome of this species. Cells were kept in confluent growth for two days and then exposed to two photon beam energies, 6 and 15 MV respectively. Different dose rates were used for the two beam energies, 0.25, 0.5, 1.0, 2.0, 4.0, 7.0 Gy. Cells were counted immediately after irradiation and re seeded, the seeded number of cells was calculated to the dose rate used. Another set of unirradiated cells treated the same as the experimental set was used as a control group. The plating efficiency (PE) was calculated for the control group, then cells were incubated at 37 o C for 6 days to construct the survival curve, five samples were counted per dose and the mean was calculated. The two survival curves are similar for photon beam energies (6 and 15 MV) and the surviving fraction was decreased with dose rate. The two curves showed similar values of α and β parameters, this result is expected for the same radiation type (X-ray). For the micronuclei assay three samples for each dose were seeded and incubated at 37 o C for 24 hours then Cytochalasin-B was added to block cells in cytokinesis phase of the mitosis. The micronuclei number was counted and plotted with dose. A significant positive correlation was found between dose and micronuclei frequency (P=0.00), moreover, the micronuclei frequency is relatively higher with 15 MV compared with 6 MV energy. This indicates the
Kuess, Peter; Georg, Dietmar; Palmans, Hugo; Lechner, Wolfgang
2016-08-01
For commercially available linear accelerators (Linacs), the electron energies of flattening filter free (FFF) and flattened (FF) beams are either identical or the electron energy of the FFF beam is increased to match the percentage depth dose curve (PDD) of the FF beam (in reference geometry). This study focuses on the primary dose components of FFF beams for both kinds of settings, studied on the same Linac. The measurements were conducted on a VersaHD Linac (Elekta, Crawley, UK) for both FF and FFF beams with nominal energies of 6 and 10 MV. In the clinical setting of the VersaHD, the energy of FFFM (Matched) beams is set to match the PDDs of the FF beams. In contrast the incident electron beam of the FFFU beam was set to the same energy as for the FF beam. Half value layers (HVLs) and a dual parameter beam quality specifier (DPBQS) were determined. For the 6 MV FFFM beam, HVL and DPBQS values were very similar compared to those of the 6 MV FF beam, while for the 10 MV FFFM and FF beams, only %dd(10)x and HVL values were comparable (differences below 1.5%). This shows that matching the PDD at one depth does not guarantee other beam quality dependent parameters to be matched. For FFFU beams, all investigated beam quality specifiers were significantly different compared to those for FF beams of the same nominal accelerator potential. The DPBQS of the 6 MV FF and FFFM beams was equal within the measurement uncertainty and was comparable to published data of a machine with similar TPR20,10 and %dd(10)x. In contrast to that, the DPBQS's two parameters of the 10 MV FFFM beam were substantially higher compared to those for the 10 MV FF beam. PDD-matched FF and FFF beams of both nominal accelerator potentials were observed to have similar HVL values, indicating similarity of their primary dose components. Using the DPBQS revealed that the mean attenuation coefficient was found to be the same within the uncertainty of 0.8% for 6 MV FF and 6 MV FFFM beams, while for 10 MV
International Nuclear Information System (INIS)
Kuess, Peter; Georg, Dietmar; Lechner, Wolfgang; Palmans, Hugo
2016-01-01
Purpose: For commercially available linear accelerators (Linacs), the electron energies of flattening filter free (FFF) and flattened (FF) beams are either identical or the electron energy of the FFF beam is increased to match the percentage depth dose curve (PDD) of the FF beam (in reference geometry). This study focuses on the primary dose components of FFF beams for both kinds of settings, studied on the same Linac. Methods: The measurements were conducted on a VersaHD Linac (Elekta, Crawley, UK) for both FF and FFF beams with nominal energies of 6 and 10 MV. In the clinical setting of the VersaHD, the energy of FFF M (Matched) beams is set to match the PDDs of the FF beams. In contrast the incident electron beam of the FFF U beam was set to the same energy as for the FF beam. Half value layers (HVLs) and a dual parameter beam quality specifier (DPBQS) were determined. Results: For the 6 MV FFF M beam, HVL and DPBQS values were very similar compared to those of the 6 MV FF beam, while for the 10 MV FFF M and FF beams, only %dd(10) x and HVL values were comparable (differences below 1.5%). This shows that matching the PDD at one depth does not guarantee other beam quality dependent parameters to be matched. For FFF U beams, all investigated beam quality specifiers were significantly different compared to those for FF beams of the same nominal accelerator potential. The DPBQS of the 6 MV FF and FFF M beams was equal within the measurement uncertainty and was comparable to published data of a machine with similar TPR 20,10 and %dd(10) x . In contrast to that, the DPBQS’s two parameters of the 10 MV FFF M beam were substantially higher compared to those for the 10 MV FF beam. Conclusions: PDD-matched FF and FFF beams of both nominal accelerator potentials were observed to have similar HVL values, indicating similarity of their primary dose components. Using the DPBQS revealed that the mean attenuation coefficient was found to be the same within the uncertainty of
International Nuclear Information System (INIS)
Kawata, Jun; Ohya, Kaoru.
1994-01-01
A Monte Carlo simulation of the secondary electron emission from beryllium is combined with a model of bowl structure for surface roughness, for analyzing the difference between the electron emissions for normal and oblique incidences. At normal incidence, with increasing the roughness parameter H/W, the primary energy E pm at which the maximum electron yield occurs becomes higher, and at more than the E pm , the decrease in the yield is slower; where H and W are the depth and width of the bowl structure, respectively. The dispersion of incident angle to the microscopic surface causes a small increase in the yield at oblique incidence, whereas the blocking of primary electrons from bombarding the bottom of the structure causes an opposite trend. The strong anisotropy in the polar angular distribution with respect to the azimuthal angle is calculated at oblique incidence. (author)
Velazquez-Marti, B.; Annevelink, E.
2008-01-01
Many linear programming models have been developed to model the logistics of bio-energy chains. These models help to determine the best set-up of bio-energy chains. Most of them use network structures built up from nodes with one or more depots, and arcs connecting these depots. Each depot is source
Velazquez-Marti, B.; Annevelink, E.
2008-01-01
Many linear programming models have been developed to model the logistics of bio-energy chains. These models help to determine the best set-up of bio-energy chains. Most of them use network structures built up from nodes with one or more depots, and arcs connecting these depots. Each depot is source
Abreu, M C; Alexa, C; Arnaldi, R; Ataian, M R; Baglin, C; Baldit, A; Bedjidian, Marc; Beolè, S; Boldea, V; Bordalo, P; Borges, G; Bussière, A; Capelli, L; Castanier, C; Castor, J I; Chaurand, B; Chevrot, I; Cheynis, B; Chiavassa, E; Cicalò, C; Claudino, T; Comets, M P; Constans, N; Constantinescu, S; Cortese, P; De Falco, A; De Marco, N; Dellacasa, G; Devaux, A; Dita, S; Drapier, O; Ducroux, L; Espagnon, B; Fargeix, J; Force, P; Gallio, M; Gavrilov, Yu K; Gerschel, C; Giubellino, P; Golubeva, M B; Gonin, M; Grigorian, A A; Grigorian, S; Grossiord, J Y; Guber, F F; Guichard, A; Gulkanian, H R; Hakobyan, R S; Haroutunian, R; Idzik, M; Jouan, D; Karavitcheva, T L; Kluberg, L; Kurepin, A B; Le Bornec, Y; Lourenço, C; Macciotta, P; MacCormick, M; Marzari-Chiesa, A; Masera, M; Masoni, A; Monteno, M; Musso, A; Petiau, P; Piccotti, A; Pizzi, J R; Prado da Silva, W L; Prino, F; Puddu, G; Quintans, C; Ramello, L; Ramos, S; Rato-Mendes, P; Riccati, L; Romana, A; Santos, H; Saturnini, P; Scalas, E; Scomparin, E; Serci, S; Shahoyan, R; Sigaudo, F; Silva, S; Sitta, M; Sonderegger, P; Tarrago, X; Topilskaya, N S; Usai, G L; Vercellin, Ermanno; Villatte, L; Willis, N
2002-01-01
The charged particle distributions $dN_{ch}/d\\eta$ have been measured by the NA50 experiment in Pb--Pb collisions at the CERN SPS. Measurements have been done at incident energies of 158 and 40 GeV per nucleon over a broad impact parameter range. Results obtained with two independent centrality estimators, namely the neutral transverse energy $E_T$ and the forward energy $E_{ZDC}$, are reported.}
Piattelli, P.; Santonocito, D.; Blumenfeld, Y.; Suomijärvi, T.; Agodi, C.; Alamanos, N.; Alba, R.; Auger, F.; Bellia, G.; Chomaz, Ph.; Colonna, M.; Coniglione, R.; del Zoppo, A.; Finocchiaro, P.; Frascaria, N.; Gillibert, A.; Le Faou, J. H.; Loukachine, K.; Maiolino, C.; Migneco, E.; Roynette, J. C.; Sapienza, P.; Scarpaci, J. A.
1998-12-01
High energy -rays ( MeV) have been measured in coincidence with heavy residues emitted in reactions induced by a 37 MeV/u Ar beam on a Mo target.The -ray yield increases strongly with increasing linear momentum transfer indicating the importance of two-body collisions in the transfer mechanism. The high energy -ray multiplicity has been used to correlate the linear momentum transfer to the impact parameter. This correlation is compared to dynamical BNV simulations to show the essential role of two body nucleon-nucleon collisions at these bombarding energies.
International Nuclear Information System (INIS)
Joubert-Doriol, Loïc; Ryabinkin, Ilya G.; Izmaylov, Artur F.
2013-01-01
In molecular systems containing conical intersections (CIs), a nontrivial geometric phase (GP) appears in the nuclear and electronic wave functions in the adiabatic representation. We study GP effects in nuclear dynamics of an N-dimensional linear vibronic coupling (LVC) model. The main impact of GP on low-energy nuclear dynamics is reduction of population transfer between the local minima of the LVC lower energy surface. For the LVC model, we proposed an isometric coordinate transformation that confines non-adiabatic effects within a two-dimensional subsystem interacting with an N − 2 dimensional environment. Since environmental modes do not couple electronic states, all GP effects originate from nuclear dynamics within the subsystem. We explored when the GP affects nuclear dynamics of the isolated subsystem, and how the subsystem-environment interaction can interfere with GP effects. Comparing quantum dynamics with and without GP allowed us to devise simple rules to determine significance of the GP for nuclear dynamics in this model
Toyokawa, Masakazu; Yahiro, Masanobu; Matsumoto, Takuma; Kohno, Michio
2018-02-01
An important current subject is to clarify the properties of chiral three-nucleon forces (3NFs) not only in nuclear matter but also in scattering between finite-size nuclei. Particularly for elastic scattering, this study has just started and the properties are not understood for a wide range of incident energies (E_in). We investigate basic properties of chiral 3NFs in nuclear matter with positive energies by using the Brueckner-Hartree-Fock method with chiral two-nucleon forces at N3LO and 3NFs at NNLO, and analyze the effects of chiral 3NFs on 4He elastic scattering from targets ^{208}Pb, ^{58}Ni, and ^{40}Ca over a wide range of 30 ≲ E_in/A_P ≲ 200 MeV by using the g-matrix folding model, where A_P is the mass number of the projectile. In symmetric nuclear matter with positive energies, chiral 3NFs make the single-particle potential less attractive and more absorptive. The effects mainly come from the Fujita-Miyazawa 2π-exchange 3NF and become slightly larger as E_in increases. These effects persist in the optical potentials of 4He scattering. As for the differential cross sections of 4He scattering, chiral-3NF effects are large for E_in/A_P ≳ 60 MeV and improve the agreement of the theoretical results with the measured ones. Particularly for E_in/A_P ≳ 100 MeV, the folding model reproduces measured differential cross sections pretty well. Cutoff (Λ) dependence is investigated for both nuclear matter and 4He scattering by considering two cases of Λ=450 and 550 MeV. The uncertainty coming from the dependence is smaller than chiral-3NF effects even at E_in/A_P=175 MeV.
Chen, Liangwen; Tang, Huangqi; Du, Yan; Dai, Zhangyu; Wang, Ting; Wu, Lijun; Zhou, Libin; Bian, Po
2018-03-01
Heavy-ion radiation has attracted extensive attention as an effective cancer therapy because of the varying energy deposition along its track and its high cell-killing effect. Reproductive cell death (RCD), also known as clonogenic death, is an important mode of death of the cancer cells after radiotherapy. Although RCD induced by heavy-ion irradiation with various linear energy transfers has been demonstrated using clonogenic assay in vitro, little is known about the distribution of RCD across the range of heavy-ion irradiation at the level of whole organisms. In this study, a vulval tissue model of Caenorhabditis elegans was for the first time used to assess RCD in vivo induced by carbon-ion irradiation. A polymethyl methacrylate wedge was designed to provide a gradually varying thickness of shielding, so worms could be exposed to the entire range of carbon-ion irradiation. The carbon-ion irradiation led to a significant induction of RCD over the entire range in a dose-dependent manner. The biological peak did not correspond to the physical Bragg peak and moved forward, rather than spread forward, as radiation dose increased. The degree and shape of the range-distribution of RCD were also affected by the developmental stages of the worms. The gene mutations in DNA-damage checkpoints did not affect the responses of mutant worms positioned in biological peaks, compared to wild-type worms, but decreased radio-sensitivity in the entrance region. An increased induction of RCD was observed in the worms impaired in homologous recombination (HR), but not in non-homologous end jointing pathway, suggesting a crucial role of HR repair in vulval cells of C. elegans in dealing with the carbon-ion-induced DNA damage. These unique manifestations of RCD in vivo in response to carbon-ion irradiation might provide new clues for further investigating the biological effects of heavy-ion irradiation. Copyright © 2018 Elsevier B.V. All rights reserved.
International Nuclear Information System (INIS)
Marsolat, F; De Marzi, L; Mazal, A; Pouzoulet, F
2016-01-01
In proton therapy, the relative biological effectiveness (RBE) depends on various types of parameters such as linear energy transfer (LET). An analytical model for LET calculation exists (Wilkens’ model), but secondary particles are not included in this model. In the present study, we propose a correction factor, L sec , for Wilkens’ model in order to take into account the LET contributions of certain secondary particles. This study includes secondary protons and deuterons, since the effects of these two types of particles can be described by the same RBE-LET relationship. L sec was evaluated by Monte Carlo (MC) simulations using the GATE/GEANT4 platform and was defined by the ratio of the LET d distributions of all protons and deuterons and only primary protons. This method was applied to the innovative Pencil Beam Scanning (PBS) delivery systems and L sec was evaluated along the beam axis. This correction factor indicates the high contribution of secondary particles in the entrance region, with L sec values higher than 1.6 for a 220 MeV clinical pencil beam. MC simulations showed the impact of pencil beam parameters, such as mean initial energy, spot size, and depth in water, on L sec . The variation of L sec with these different parameters was integrated in a polynomial function of the L sec factor in order to obtain a model universally applicable to all PBS delivery systems. The validity of this correction factor applied to Wilkens’ model was verified along the beam axis of various pencil beams in comparison with MC simulations. A good agreement was obtained between the corrected analytical model and the MC calculations, with mean-LET deviations along the beam axis less than 0.05 keV μm −1 . These results demonstrate the efficacy of our new correction of the existing LET model in order to take into account secondary protons and deuterons along the pencil beam axis. (paper)
Inozemtsev, K O; Kushin, V V; Tolochek, R V; Shurshakov, V A
2015-01-01
The paper presents the results of measuring biologically significant characteristics of space radiation (spectra of linear energy transfer (LET), absorbed and equivalent doses and averaged quality factors) inside the descend capsule of biosatellite Bion-M1 in space experiment Bioradiation. Measurements combined the use of thermoluminescent detectors DTG-4 (TDL) and solid state nuclear track detectors CR-39 (Tastrak) (SSNTD). Differential and integral LET spectra of high-LET space radiation were determined in 4 points inside spacecraft using passive detectors assembles (PDA). Total absorbed dose rates for PDA boxes No 1-4 made up 2.4 ± 0.2; 1.1 ± 0.1; 1.6 ± 0.2; 2.0 ± 0.1 mGy/d respectively, whereas total equivalent dose rates estimated based on ICRP Publication 60 recommendations made up 3.4 ± 0.2; 2.0 ± 0.1; 2.6 ± 0.2; 3.1 ± 0.1 mSv/d respectively. Values of the averaged quality factor for different PDSs were in the range between 1.4 and 1.8.
Directory of Open Access Journals (Sweden)
Hassan Barati
2011-10-01
Full Text Available In this paper a new bidding strategy become modeling to day-ahead markets. The proposed algorithm is related to the point of view of a generation company (Genco that its end is maximized its benefit as a participant in sale markets of active power and spinning reserve. In this method, hourly forecasted energy price (FEP and forecasted reserve price (FRP is used as a reference to model the possible and probable price strategies of Gencos. A bi-level optimization problem That first level, is used to maximize the individual Genco’s payoffs for obtaining the optimal offered quantity of Gencos. The second one, uses the results of the upper sub-problem and minimizes the consumer’s payment with regard to the technical and network constraints, which leads to the awarded generation of the Gencos. In this paper use of the game theory in exist optimization model. The paper proposes a linear programming approach. A six bus system is employed to illustrate the application of the proposed method and to show its high precision and capabilities.
Directory of Open Access Journals (Sweden)
Fogliata Antonella
2011-09-01
Full Text Available Abstract Background A new-generation low-energy linear accelerator (UNIQUE was introduced in the clinical arena during 2009 by Varian Medical Systems. The world's first UNIQUE was installed at Oncology Institute of Southern Switzerland and put into clinical operation in June 2010. The aim of the present contribution was to report experience about its commissioning and first year results from clinical operation. Methods Commissioning data, beam characteristics and the modeling into the treatment planning system were summarized. Imaging system of UNIQUE included a 2D-2D matching capability and tests were performed to identify system repositioning capability. Finally, since the system is capable of delivering volumetric modulated arc therapy with RapidArc, a summary of the tests performed for such modality to assess its performance in preclinical settings and during clinical usage was included. Results Isocenter virtual diameter was measured as less than 0.2 mm. Observed accuracy of isocenter determination and repositioning for 2D-2D matching procedures in image guidance was Conclusions The results of the commissioning tests and of the first period of clinical operation, resulted meeting specifications and having good margins respect to tolerances. UNIQUE was put into operation for all delivery techniques; in particular, as shown by the pre-treatment quality assurance results, it enabled accurate and safe delivery of RapidArc plans.
Stenzel, Angelika; Goss, Kai-Uwe; Endo, Satoshi
2013-02-05
Polyparameter linear free energy relationships (pp-LFERs) can predict partition coefficients for a multitude of environmental and biological phases with high accuracy. In this work, the pp-LFER substance descriptors of 40 established and alternative flame retardants (e.g., polybrominated diphenyl ethers, hexabromocyclododecane, bromobenzenes, trialkyl phosphates) were determined experimentally. In total, 251 data for gas-chromatographic (GC) retention times and liquid/liquid partition coefficients (K) were measured and used to calibrate the pp-LFER substance descriptors. Substance descriptors were validated through a comparison between predicted and experimental log K for the systems octanol/water (K(ow)), water/air (K(wa)), organic carbon/water (K(oc)) and liposome/water (K(lipw)), revealing a high reliability of pp-LFER predictions based on our descriptors. For instance, the difference between predicted and experimental log K(ow) was <0.3 log units for 17 out of 21 compounds for which experimental values were available. Moreover, we found an indication that the H-bond acceptor value (B) depends on the solvent for some compounds. Thus, for predicting environmentally relevant partition coefficients it is important to determine B values using measurements in aqueous systems. The pp-LFER descriptors calibrated in this study can be used to predict partition coefficients for which experimental data are unavailable, and the predicted values can serve as references for further experimental measurements.
Energy Technology Data Exchange (ETDEWEB)
1990-05-01
The proposed Department of Energy (DOE) action is financial and technical support of construction and initial operation of an agricultural commodity irradiator (principally for meat), employing a dual mode electron beam generator capable of producing x-rays, at the Iowa State University Linear Accelerator located at Ames, Iowa. The planned pilot commercial-scale facility would be used for the following activities: conducting irradiation research on agricultural commodities, principally meats; in the future, after the pilot phase, as schedules permit, possibly conducting research on other, non-edible materials; evaluating effects of irradiation on nutritional and sensory quality of agricultural products; demonstrating the efficiency of the process to control or eliminate pathogens, and/or to prolong the commodities' post-harvest shelf-life via control or elimination of bacteria, fungi, and/or insects; providing information to the public on the benefits, safety and risks of irradiated agricultural commodities; determining consumer acceptability of the irradiated products; providing data for use by regulatory agencies in developing protocols for various treatments of Iowa agricultural commodities; and training operators, maintenance and quality control technicians, scientists, engineers, and staff of regulatory agencies in agricultural commodity irradiation technology. 14 refs., 5 figs.
Planeta, Josef; Karásek, Pavel; Hohnová, Barbora; Sťavíková, Lenka; Roth, Michal
2012-08-10
Biphasic solvent systems composed of an ionic liquid (IL) and supercritical carbon dioxide (scCO(2)) have become frequented in synthesis, extractions and electrochemistry. In the design of related applications, information on interphase partitioning of the target organics is essential, and the infinite-dilution partition coefficients of the organic solutes in IL-scCO(2) systems can conveniently be obtained by supercritical fluid chromatography. The data base of experimental partition coefficients obtained previously in this laboratory has been employed to test a generalized predictive model for the solute partition coefficients. The model is an amended version of that described before by Hiraga et al. (J. Supercrit. Fluids, in press). Because of difficulty of the problem to be modeled, the model involves several different concepts - linear solvation energy relationships, density-dependent solvent power of scCO(2), regular solution theory, and the Flory-Huggins theory of athermal solutions. The model shows a moderate success in correlating the infinite-dilution solute partition coefficients (K-factors) in individual IL-scCO(2) systems at varying temperature and pressure. However, larger K-factor data sets involving multiple IL-scCO(2) systems appear to be beyond reach of the model, especially when the ILs involved pertain to different cation classes. Copyright © 2012 Elsevier B.V. All rights reserved.
On the modelling of linear-assisted DC-DC voltage regulators for photovoltaic solar energy systems
Martínez-García, Herminio; García-Vílchez, Encarna
2017-11-01
This paper shows the modelling of linear-assisted or hybrid (linear & switching) DC/DC voltage regulators. In this kind of regulators, an auxiliary linear regulator is used, which objective is to cancel the ripple at the output voltage and provide fast responses for load variations. On the other hand, a switching DC/DC converter, connected in parallel with the linear regulator, allows to supply almost the whole output current demanded by the load. The objective of this topology is to take advantage of the suitable regulation characteristics that series linear voltage regulators have, but almost achieving the high efficiency that switching DC/DC converters provide. Linear-assisted DC/DC regulators are feedback systems with potential instability. Therefore, their modelling is mandatory in order to obtain design guidelines and assure stability of the implemented power supply system.
Directory of Open Access Journals (Sweden)
Mohammad Amin Mosleh-Shirazi
2016-04-01
Full Text Available Introduction In this study, we aimed to assess the medium-term energy stability of a 6MV Elekta CompactTM linear accelerator. To the best of our knowledge, this is the first published article to evaluate this linear accelerator in terms of energy stability. As well as investigating the stability of the linear accelerator energy over a period of several weeks, the results will be useful for estimation of the required tolerance values for the beam quality factor (BQF of the PTW QUICKCHECK weblineTM (QCW daily checking device. Materials and Methods Over a 13 week period of routine clinical service, 52 daily readings of BQF were taken and then analyzed for a 10×10 cm2 field. Results No decreasing or increasing trend in BQF was observed over the study period. The mean BQF value was estimated at 5.4483 with a standard deviation (SD of 0.0459 (0.8%. The mean value was only 0.1% different from the baseline value. Conclusion The results of this medium-term stability study of the Elekta Compact linear accelerator energy showed that 96.2% of the observed BQF values were within ±1.3% of the baseline value. This can be considered to be within the recommended tolerance for linear accelerator photon beam energy. If an approach of applying ±3 SD is taken, the tolerance level for BQF may be suggested to be set at ±2.5%. However, further research is required to establish a relationship between BQF value and the actual changes in beam energy and penetrative quality.
The In Vitro Response of Tissue Stem Cells to Irradiation With Different Linear Energy Transfers
Energy Technology Data Exchange (ETDEWEB)
Nagle, Peter W.; Hosper, Nynke A. [Department of Cell Biology, University of Groningen, University Medical Center Groningen, Groningen (Netherlands); Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen (Netherlands); Ploeg, Emily M. [Department of Cell Biology, University of Groningen, University Medical Center Groningen, Groningen (Netherlands); Goethem, Marc-Jan van [Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen (Netherlands); KVI-Center for Advanced Radiation Research, University of Groningen, Groningen (Netherlands); Brandenburg, Sytze [KVI-Center for Advanced Radiation Research, University of Groningen, Groningen (Netherlands); Langendijk, Johannes A. [Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen (Netherlands); Chiu, Roland K. [Department of Cell Biology, University of Groningen, University Medical Center Groningen, Groningen (Netherlands); Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen (Netherlands); Coppes, Robert P., E-mail: r.p.coppes@umcg.nl [Department of Cell Biology, University of Groningen, University Medical Center Groningen, Groningen (Netherlands); Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen (Netherlands)
2016-05-01
Purpose: A reduction in the dose, irradiated volume, and sensitivity of, in particular, normal tissue stem cells is needed to advance radiation therapy. This could be obtained with the use of particles for radiation therapy. However, the radiation response of normal tissue stem cells is still an enigma. Therefore, in the present study, we developed a model to investigate the in vitro response of stem cells to particle irradiation. Methods and Materials: We used the immortalized human salivary gland (HSG) cell line resembling salivary gland (SG) cells to translate the radiation response in 2-dimensional (2D) to 3-dimensional (3D) conditions. This response was subsequently translated to the response of SG stem cells (SGSCs). Dispersed single cells were irradiated with photons or carbon ions at different linear energy transfers (LETs; 48.76 ± 2.16, 149.9 ± 10.8, and 189 ± 15 keV/μm). Subsequently, 2D or 3D clonogenicity was determined by counting the colonies or secondary stem cell-derived spheres in Matrigel. γH2AX immunostaining was used to assess DNA double strand break repair. Results: The 2D response of HSG cells showed a similar increase in dose response to increasing higher LET irradiation as other cell lines. The 3D response of HSG cells to increasing LET irradiation was reduced compared with the 2D response. Finally, the response of mouse SGSCs to photons was similar to the 3D response of HSG cells. The response to higher LET irradiation was reduced in the stem cells. Conclusions: Mouse SGSC radiosensitivity seems reduced at higher LET radiation compared with transformed HSG cells. The developed model to assess the radiation response of SGSCs offers novel possibilities to study the radiation response of normal tissue in vitro.
Directory of Open Access Journals (Sweden)
Nevy Triditha Putri
2016-12-01
Full Text Available Intraoral periapical radiograph examination is the additional examination which is the most widely used in Dentistry. This radiograph examination using an x-ray ionizing radiation with low LET (Linear Energy Transfer, and may affect submandibular salivary gland. Ionizing radiation exposure can cause damage by inducing a series of changes at the molecular and cellular level. This study aimed to prove the effects of x-ray ionizing radiation with low LET towards the catalase activity of Rattus norvegicus strain Wistar’s submandibular gland. The subjects were 28 male Wistar rats and divided into 4 groups (n=7. Three groups were exposed 4, 8 and 14 times to radiation with 0.002 µSv for each exposure. The catalase activity of each rat was examined by a spectrophotometer. Data were analyzed using one-way ANOVA followed by Bonferroni test. The results showed the average of catalase activity on Wistar rat’s submandibular gland, respectively for: 0.150±0.0895 (KK, 0.1405±0.0607 (K1, 0.1228±0.0290 (K2, 0.1227±0.0556 (K3. Data showed significant differences of catalase activity between test groups, but showed not significant differences of catalase activity between each groups of Rattus norvegicus strain Wistar’s submandibular gland. In this study concluded decreased catalase activity of Rattus norvegicus strain Wistar’s submandibular gland resulting from x-rays ionizing radiation by 4 times, 8 times and 14 times exposures.
Patel, Rutulkumar; Arakawa, Hiroyuki; Radivoyevitch, Tomas; Gerson, Stanton L; Welford, Scott M
2017-12-01
Efforts to protect astronauts from harmful galactic cosmic radiation (GCR) require a better understanding of the effects of GCR on human health. In particular, little is known about the lasting effects of GCR on the central nervous system (CNS), which may lead to behavior performance deficits. Previous studies have shown that high-linear energy transfer (LET) radiation in rodents leads to short-term declines in a variety of behavior tests. However, the lasting impact of low-, medium- and high-LET radiation on behavior are not fully defined. Therefore, in this study C57BL/6 male mice were irradiated with 100 or 250 cGy of γ rays (LET ∼0.3 KeV/μm), 10 or 100 cGy of 1 H at 1,000 MeV/n (LET ∼0.2 KeV/μm), 28 Si at 300 MeV/n (LET ∼69 KeV/μm) or 56 Fe at 600 MeV/n (LET of ∼180 KeV/μm), and behavior metrics were collected at 5 and 9 months postirradiation to analyze differences among radiation qualities and doses. A significant dose effect was observed on recognition memory and activity levels measured 9 months postirradiation, regardless of radiation source. In contrast, we observed that each ion species had a distinct effect on anxiety, motor coordination and spatial memory at extended time points. Although 28 Si and 56 Fe are both regarded as high-LET particles, they were shown to have different detrimental effects on behavior. In summary, our findings suggest that GCR not only affects the CNS in the short term, but also has lasting damaging effects on the CNS that can cause sustained declines in behavior performance.
Luehrs, Dean C.; Hickey, James P.; Nilsen, Peter E.; Godbole, K.A.; Rogers, Tony N.
1995-01-01
A linear solvation energy relationship has been found for 353 values of the limiting adsorption coefficients of diverse chemicals: log K = −0.37 + 0.0341Vi − 1.07β + D + 0.65P with R = 0.951, s = 0.51, n = 353, and F = 818.0, where Vi is the intrinsic molar volume; β is a measure of the hydrogen bond acceptor strength of the solute; D is an index parameter for the research group which includes the effects of the different types of carbon used, the temperature, and the length of time allowed for the adsorption equilibrium to be established; and P is an index parameter for the flatness of the molecule. P is defined to be unity if there is an aromatic system in the molecule or if there is a double bond or series of conjugated double bonds with no more that one non-hydrogen atom beyond the double bond and zero otherwise. A slightly better fit is obtained if the two-thirds power of Vi is used as a measure of the surface area in place of the volume term: log K = −1.75 + 0.227V2/3 − 1.10β + D + 0.60P with R = 0.954, s = 0.49, n = 353, and F = 895.39. This is the first quantitative measure of the effect of the shape of the molecule on its tendency to be adsorbed on activated carbon.
Directory of Open Access Journals (Sweden)
Kotaro Ishii
Full Text Available A heavy-ion beam has been recognized as an effective mutagen for plant breeding and applied to the many kinds of crops including rice. In contrast with X-ray or γ-ray, the heavy-ion beam is characterized by a high linear energy transfer (LET. LET is an important factor affecting several aspects of the irradiation effect, e.g. cell survival and mutation frequency, making the heavy-ion beam an effective mutagen. To study the mechanisms behind LET-dependent effects, expression profiling was performed after heavy-ion beam irradiation of imbibed rice seeds. Array-based experiments at three time points (0.5, 1, 2 h after the irradiation revealed that the number of up- or down-regulated genes was highest 2 h after irradiation. Array-based experiments with four different LETs at 2 h after irradiation identified LET-independent regulated genes that were up/down-regulated regardless of the value of LET; LET-dependent regulated genes, whose expression level increased with the rise of LET value, were also identified. Gene ontology (GO analysis of LET-independent up-regulated genes showed that some GO terms were commonly enriched, both 2 hours and 3 weeks after irradiation. GO terms enriched in LET-dependent regulated genes implied that some factor regulates genes that have kinase activity or DNA-binding activity in cooperation with the ATM gene. Of the LET-dependent up-regulated genes, OsPARP3 and OsPCNA were identified, which are involved in DNA repair pathways. This indicates that the Ku-independent alternative non-homologous end-joining pathway may contribute to repairing complex DNA legions induced by high-LET irradiation. These findings may clarify various LET-dependent responses in rice.
Ishii, Kotaro; Kazama, Yusuke; Morita, Ryouhei; Hirano, Tomonari; Ikeda, Tokihiro; Usuda, Sachiko; Hayashi, Yoriko; Ohbu, Sumie; Motoyama, Ritsuko; Nagamura, Yoshiaki; Abe, Tomoko
2016-01-01
A heavy-ion beam has been recognized as an effective mutagen for plant breeding and applied to the many kinds of crops including rice. In contrast with X-ray or γ-ray, the heavy-ion beam is characterized by a high linear energy transfer (LET). LET is an important factor affecting several aspects of the irradiation effect, e.g. cell survival and mutation frequency, making the heavy-ion beam an effective mutagen. To study the mechanisms behind LET-dependent effects, expression profiling was performed after heavy-ion beam irradiation of imbibed rice seeds. Array-based experiments at three time points (0.5, 1, 2 h after the irradiation) revealed that the number of up- or down-regulated genes was highest 2 h after irradiation. Array-based experiments with four different LETs at 2 h after irradiation identified LET-independent regulated genes that were up/down-regulated regardless of the value of LET; LET-dependent regulated genes, whose expression level increased with the rise of LET value, were also identified. Gene ontology (GO) analysis of LET-independent up-regulated genes showed that some GO terms were commonly enriched, both 2 hours and 3 weeks after irradiation. GO terms enriched in LET-dependent regulated genes implied that some factor regulates genes that have kinase activity or DNA-binding activity in cooperation with the ATM gene. Of the LET-dependent up-regulated genes, OsPARP3 and OsPCNA were identified, which are involved in DNA repair pathways. This indicates that the Ku-independent alternative non-homologous end-joining pathway may contribute to repairing complex DNA legions induced by high-LET irradiation. These findings may clarify various LET-dependent responses in rice.
Fast MinMax energy-based phase correction method for NMR spectra with linear phase distortion
Zieliński, Tomasz P.; Duda, Krzysztof; Ostrowska, Katarzyna
2017-08-01
This paper addresses the problem of phase correction of dense NMR spectra on the example of the etoxy derivative of the fused heterocyclic system 5,6,10b-triazaacephenanthrylene (TAAP-OEt). A new estimation method for the linear phase correction coefficients is proposed that successfully extends the min-max (minimization of maximum errors) approach of Siegel (1981). Distinctive to the Siegel method, the smallest values of the real part of the discrete Fourier transform (DFT) spectrum are maximized, not for the whole spectrum but only for DFT bins near the peaks selected by a new energy-based criterion. Additionally, the method makes use of two one-parameter optimizations for finding the phase correction line coefficients and not the single two-parameter search. The new method is demonstrated to be precise, fast and robust against additive noise. The method's properties are verified in comparison with the state-of-the-art algorithms of Chen et al. (2002) and Bao et al. (2013) for laboratory recorded TAAP-OEt FID data and for simulated TAAP-OEt signal consisting of the sum of more than 100 complex damped exponentials. Extensive simulations were also conducted on the set of test signals derived from the TAAP-OEt signal by deterministic and pseudorandom manipulation of its content. The components of the signal model were identified by the Bertocco-Yoshida Interpolated DFT (IpDFT) algorithm with a spectral leakage correction. Simulated signals were embedded in the additive Gaussian noise, and the noise-robustness of all of the algorithms was evaluated. The obtained results demonstrate that the proposed method outperforms the Chen and the Bao algorithms, being more than 100 times faster than the Bao method (for a signal having 216 samples).
Sanguanmith, Sunuchakan; Meesungnoen, Jintana; Muroya, Yusa; Lin, Mingzhang; Katsumura, Yosuke; Jay-Gerin, Jean-Paul
2012-12-28
In the spirit of the radiation chemical "spur model", the lifetime of a spur (τ(s)) is an important indicator of overlapping spurs and the establishment of homogeneity in the distribution of reactive species created by the action of low linear energy transfer (LET) radiation (such as fast electrons or γ irradiation). In fact, τ(s) gives the time required for the changeover from nonhomogeneous spur kinetics to homogeneous kinetics in the bulk solution, thus defining the so-called primary (or "escape") radical and molecular yields of radiolysis, which are obviously basic to the quantitative understanding of any irradiated chemical system. In this work, τ(s) and its temperature dependence have been determined for the low-LET radiolysis of deaerated 0.4 M aqueous solutions of H(2)SO(4) and pure liquid water up to 350 °C using a simple model of energy deposition initially in spurs, followed by random diffusion of the species of the spur during track expansion until spur overlap is complete. Unlike our previous τ(s) calculations, based on irradiated Fricke dosimeter simulations, the current model is free from any effects due to the presence of oxygen or the use of scavengers. In acidic solutions, the spur lifetime values thus obtained are in very good agreement with our previous calculations (after making appropriate corrections, however, to account for the possibility of competition between oxygen and Fe(2+) ions for H˙ atoms in the Fricke dosimeter, an effect which was not included in our original simulations). In this way, we confirm the validity of our previous approach. As expected, in the case of pure, oxygen-free water, our calculated times required to reach complete spur overlap are essentially the same (within uncertainty limits) as those found in acidic solutions. This explicitly reflects the fact that the diffusion coefficients for the hydrated electron and the H˙ atom that are involved in the overall calculation of the lifetime of spurs in neutral or
International Nuclear Information System (INIS)
Takada, Hiroshi; Yoshizawa, Nobuaki; Ishibashi, Kenji.
1996-08-01
For the OECD/NEA code intercomparison, nuclide production cross sections of 16 O, 27 Al, nat Fe, 59 Co, nat Zr and 197 Au for the proton incidence with energies of 20 MeV to 5 GeV are calculated with the HETC-3STEP code based on the intranuclear cascade evaporation model including the preequilibrium and high energy fission processes. In the code, the level density parameter derived by Ignatyuk, the atomic mass table of Audi and Wapstra and the mass formula derived by Tachibana et al. are newly employed in the evaporation calculation part. The calculated results are compared with the experimental ones. It is confirmed that HETC-3STEP reproduces the production of the nuclides having the mass number close to that of the target nucleus with an accuracy of a factor of two to three at incident proton energies above 100 MeV for nat Zr and 197 Au. However, the HETC-3STEP code has poor accuracy on the nuclide production at low incident energies and the light nuclide production through the fragmentation process induced by protons with energies above hundreds of MeV. Therefore, further improvement is required. (author)
Markov, Vadym V.; Boichenko, Alexander P.; Loginova, Lidia P.
2012-01-01
The Linear Solvation Energy Relationships (LSER) have been successfully used for the modeling of partition and retention of the set of test compounds in different systems. The properties of micellar chromatographic systems with the mobile phases on the basis of sodium dodecylsulphate modified (ODS)
International Nuclear Information System (INIS)
Cassignol, C.; Ranc, G.
1960-01-01
A new cathode sputtering theory at high energy is presented which has been elaborated in taking in account the non-linearity of this phenomenon with the density of the impinging ions. This theory allows to predict the influence of target temperature on the rate of cathode sputtering. This influence is experimentally demonstrated. (author) [fr
Directory of Open Access Journals (Sweden)
Ljubenov Vladan L.
2014-01-01
Full Text Available In this paper we present the results of calculations and analyses of the integral particle reflection coefficient of photons for oblique photon incidence on planar targets, in the domain of initial photon energies from 100 keV to 300 keV. The results are based on the Monte Carlo simulations of the photon reflection from water, concrete, aluminum, iron, and copper materials, performed by the MCNP code. It has been observed that the integral particle reflection coefficient as a function of the ratio of total cross-section of photons and effective atomic number of target material shows universal behavior for all the analyzed shielding materials in the selected energy domain. Analytical formulas for different angles of photon incidence have been proposed, which describe the reflection of photons for all the materials and energies analyzed.
Spurný, F; Pachnerová Brabcová, K; Ploc, O; Ambrožová, I; Mrázová, Z
2011-02-01
Active mobile dosimetry unit (Liulin), passive plastic nuclear track detectors (PNTD) and thermoluminescent detectors (TLD) were exposed in a C290 MeV/n beam at HIMAC-BIO (NIRS, Japan). Two different types of beam configuration were used--monoenergetic beam (MONO) and spread-out Bragg peak (SOBP); the detectors were placed at several depths from the entrance up to the depths behind the Bragg peak. Relative response of TLDs in beams has been studied as a function of the depth, and it was re-proved that it can depend on the linear energy transfer (LET). Liulin measures energy deposition in Si; the spectra of energy deposited in Si can be transformed to the spectra of lineal energy or LET. PNTDs are able to determine the LET of registered particles directly. The limitation of both methods is in the range in which they can determine the LET-Liulin is able to measure perpendicularly incident charged particles up to ∼35 keV/µm (in water), PNTD can measure from ∼7 to 400 keV/µm, independently of the registration angle. The results from both methods are compared and combined for both beams' configuration, and a good agreement is observed.
International Nuclear Information System (INIS)
Siddayao, C.M.; Percebois, J.R.
1992-01-01
By changing the natural environment, energy resource use has repercussions for human welfare. So do policies that are proposed to deal with concerns over global climate warming, particularly with respect to carbon dioxide (CO 2 ). Among the major policy options identified are reduction of emission from fossil fuel consumption, as well as more rigorous forest management to avoid further deforestation. The basic approach to reducing carbon emissions from fossil fuels is through the efficient use of energy. Fuel switching, pollution prevention technologies, and the 'polluter pays' principle are also among the policy strategies often discussed. One of the proposed economic policy instruments in the 'polluter pays' category that could lead to more efficient use of energy and at the same time deal with the CO 2 problem is the carbon tax. This paper will focus on the incidence of the tax in the different sectors of a developing country and suggest the key issues in analyzing this incidence. This introduction will include a brief background discussion on the greenhouse gas (GHG) issue which has led to the proposal for the carbon tax. In section II, the incidence of the carbon tax will be reviewed. In section III, the key analytical issues for analyzing incidence of the tax on a sector-by-sector analysis of a national tax will be raised. In this version of this paper, the intended quantitative analysis is not presented; we hope to have partial results by the time of conference. 31 refs., 1 fig., 3 tabs
International Nuclear Information System (INIS)
Sethi, Roshan V.; Giantsoudi, Drosoula; Raiford, Michael; Malhi, Imran; Niemierko, Andrzej; Rapalino, Otto; Caruso, Paul; Yock, Torunn I.; Tarbell, Nancy J.; Paganetti, Harald; MacDonald, Shannon M.
2014-01-01
Purpose: The pattern of failure in medulloblastoma patients treated with proton radiation therapy is unknown. For this increasingly used modality, it is important to ensure that outcomes are comparable to those in modern photon series. It has been suggested this pattern may differ from photons because of variations in linear energy transfer (LET) and relative biological effectiveness (RBE). In addition, the use of matching fields for delivery of craniospinal irradiation (CSI) may influence patterns of relapse. Here we report the patterns of failure after the use of protons, compare it to that in the available photon literature, and determine the LET and RBE values in areas of recurrence. Methods and Materials: Retrospective review of patients with medulloblastoma treated with proton radiation therapy at Massachusetts General Hospital (MGH) between 2002 and 2011. We documented the locations of first relapse. Discrete failures were contoured on the original planning computed tomography scan. Monte Carlo calculation methods were used to estimate the proton LET distribution. Models were used to estimate RBE values based on the LET distributions. Results: A total of 109 patients were followed for a median of 38.8 months (range, 1.4-119.2 months). Of the patients, 16 experienced relapse. Relapse involved the supratentorial compartment (n=8), spinal compartment (n=11), and posterior fossa (n=5). Eleven failures were isolated to a single compartment; 6 failures in the spine, 4 failures in the supratentorium, and 1 failure in the posterior fossa. The remaining patients had multiple sites of disease. One isolated spinal failure occurred at the spinal junction of 2 fields. None of the 70 patients treated with an involved-field-only boost failed in the posterior fossa outside of the tumor bed. We found no correlation between Monte Carlo-calculated LET distribution and regions of recurrence. Conclusions: The most common site of failure in patients treated with protons for
Alsanea, Fahed; Therriault-Proulx, Francois; Sawakuchi, Gabriel; Beddar, Sam
2018-02-15
Currently, no detectors are capable of simultaneously measuring dose and linear energy transfer (LET) in real time. In this study, we evaluated the feasibility of exploiting the difference in the response of various organic plastic scintillation detectors to measure LET and dose in therapeutic proton beams. The hypothesis behind this work was that the ratio of the responses of different scintillators exposed to the same proton beam can be used to obtain a LET vs ratio calibration curve that can then be used to infer LET under any other measurement conditions. We first used similar scintillators with different ionization quenching factors. LET values for different irradiation conditions were calculated using a validated Monte Carlo model of the proton beam line. The quenching factors in the Birks equation for different scintillators as a function of LET were obtained from measurements in a 100-MeV pristine proton beam. We then used four different organic scintillation materials - polystyrene (BCF-12), poly (methyl methacrylate), polyvinyltoluene, and a liquid scintillator - for which the LET response varied with regard to not only quenching but also differences in material density and relative stopping power. We simultaneously exposed the four different organic scintillators and a plane-parallel ion chamber to passively scattered proton beams at fluence-averaged LET. Comparisons to the expected values obtained from the Monte Carlo simulations were made on the basis of both dose and LET. The maximum difference in the quenching factor was 20%, resulting in a 5% change in LET with a response ratio over a range of 5 keV/μm. Among all the scintillators investigated, the ratio of PMMA to BCF-12 provided the best correlation with LET values and was therefore used to construct the LET calibration curve. The expected LET values in the validation set were within 2% ± 6%, which resulted in dose accuracy of 1.5% ± 5.8% for the range of LET values investigated in this
Energy Technology Data Exchange (ETDEWEB)
Welsch, Dominic Markus
2010-03-10
The High-Energy Storage Ring (HESR) is part of the upcoming Facility for Antiproton and Ion Research (FAIR) which is planned as a major extension to the present facility of the Helmholtzzentrum fuer Schwerionenforschung (GSI) in Darmstadt. The HESR will provide antiprotons in the momentum range from 1.5 to 15 GeV/c for the internal target experiment PANDA. The demanding requirements of PANDA in terms of beam quality and luminosity together with a limited production rate of antiprotons call for a long beam life time and a minimum of beam loss. Therefore, an effective closed orbit correction and a sufficiently large dynamic aperture of the HESR are crucial. With this thesis I present my work on both of these topics. The expected misalignments of beam guiding magnets have been estimated and used to simulate the closed orbit in the HESR. A closed orbit correction scheme has been developed for different ion optical settings of the HESR and numerical simulations have been performed to validate the scheme. The proposed closed orbit correction method which uses the orbit response matrix has been benchmarked at the Cooler Synchrotron COSY of the Forschungszentrum Juelich. A chromaticity correction scheme for the HESR consisting of sextupole magnets has been developed to reduce tune spread and thus to minimize the emittance growth caused by betatron resonances. The chromaticity correction scheme has been optimized through dynamic aperture calculations. The estimated field errors of the HESR dipole and quadrupole magnets have been included in the non-linear beam dynamics studies. Investigations concerning their optimization have been carried out. The ion optical settings of the HESR have been improved using dynamic aperture calculations and the technique of frequency map analysis. The related diffusion coefficient was also used to predict long-term stability based on short-term particle tracking. With a reasonable reduction of the quadrupole magnets field errors and a
Energy Technology Data Exchange (ETDEWEB)
Sethi, Roshan V. [Harvard Medical School, Massachusetts General Hospital, Boston, Massachusetts (United States); Giantsoudi, Drosoula; Raiford, Michael; Malhi, Imran; Niemierko, Andrzej [Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts (United States); Rapalino, Otto; Caruso, Paul [Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts (United States); Yock, Torunn I.; Tarbell, Nancy J.; Paganetti, Harald [Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts (United States); MacDonald, Shannon M., E-mail: smacdonald@partners.org [Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts (United States)
2014-03-01
Purpose: The pattern of failure in medulloblastoma patients treated with proton radiation therapy is unknown. For this increasingly used modality, it is important to ensure that outcomes are comparable to those in modern photon series. It has been suggested this pattern may differ from photons because of variations in linear energy transfer (LET) and relative biological effectiveness (RBE). In addition, the use of matching fields for delivery of craniospinal irradiation (CSI) may influence patterns of relapse. Here we report the patterns of failure after the use of protons, compare it to that in the available photon literature, and determine the LET and RBE values in areas of recurrence. Methods and Materials: Retrospective review of patients with medulloblastoma treated with proton radiation therapy at Massachusetts General Hospital (MGH) between 2002 and 2011. We documented the locations of first relapse. Discrete failures were contoured on the original planning computed tomography scan. Monte Carlo calculation methods were used to estimate the proton LET distribution. Models were used to estimate RBE values based on the LET distributions. Results: A total of 109 patients were followed for a median of 38.8 months (range, 1.4-119.2 months). Of the patients, 16 experienced relapse. Relapse involved the supratentorial compartment (n=8), spinal compartment (n=11), and posterior fossa (n=5). Eleven failures were isolated to a single compartment; 6 failures in the spine, 4 failures in the supratentorium, and 1 failure in the posterior fossa. The remaining patients had multiple sites of disease. One isolated spinal failure occurred at the spinal junction of 2 fields. None of the 70 patients treated with an involved-field-only boost failed in the posterior fossa outside of the tumor bed. We found no correlation between Monte Carlo-calculated LET distribution and regions of recurrence. Conclusions: The most common site of failure in patients treated with protons for
Energy Technology Data Exchange (ETDEWEB)
Santos, G.B.; Pinheiro Neto, D.; Lisita, L.R.; Machado, P.C.M.; Oliveira, J.V.M. [Universidade Federal de Goias (UFG), Goiania, GO (Brazil). Escola de Engenharia Eletrica e de Computacao], Emails: guilhermebsantos@gmail.com, daywes@gmail.com, lrlisi-ta@gmail.com, pcesar@eee.ufg.br, joao.eee@gmail.com
2009-07-01
This paper analyzes the behavior of a electronic meter of single-phase in the laboratory when it is subjected to a environment with linear loads and nonlinear loads kind residential and commercial. It differs from correlated studies mainly for making use of real loads encountered in day-to-day, rather than as sources of electronic loads how has been observed in the state of the art. The comparison of results is made based on high precision energy pattern developed by virtual instrumentation means.
Energy and linear-momentum dissipation in the fusion reaction of 165Ho + 20Ne at 30 MeV/nucleon
Hilscher, D.; Rossner, H.; Gamp, A.; Jahnke, U.; Cheynis, B.; Chambon, B.; Drain, D.; Pastor, C.; Giorni, A.; Morand, C.; Dauchy, A.; Stassi, P.; Petitt, G.
1987-07-01
Neutron energy spectra were measured at angles between 14° and 159° in coincidence with evaporation residues as a function of linear-momentum transfer in reactions of 165Ho with 600 MeV 20Ne. In addition, angular distributions and absolute cross sections for elastic scattering, fission, and evaporation residues have been measured. The preequilibrium component of the neutron spectra has been parametrized with a hot-moving-source fit. For the highest linear-momentum transfer the forward-to-backward anisotropy in the angular distribution is smallest and the quality of the fit is best. From the temperature and multiplicity of evaporated neutrons the level density parameter of nuclei with A~=180 has been determined to be a=A/(10.5+/-1) MeV-1 at excitation energies of 300 to 400 MeV.
Energy Technology Data Exchange (ETDEWEB)
Get' man, V.A.; Gorbenko, V.G.; Grushin, V.F.; Derkach, A.Y.; Zhebrovskii, Y.V.; Karnaukhov, I.M.; Kolesnikov, L.Y.; Luchanin, A.A.; Rubashkin, A.L.; Sanin, V.M.; Sorokin, P.V.; Sporov, E.A.; Telegin, Y.N.; Shalatskii, S.V.
1980-10-01
A technique for measurement of the polarization observables ..sigma.., P, and T for the reaction ..gamma..p..-->..n..pi../sup +/ in a doubly polarized experiment (polarized proton target + linearly polarized photon beam) is described. Measurements of the angular distributions of these observables in the range of pion emission angles 30--150/sup 0/ are presented for four photon energies from 300 to 420 MeV. Inclusion of the new experimental data in an energy-independent multipole analysis of photoproduction from protons permits a more reliable selection of solutions to be made.
Directory of Open Access Journals (Sweden)
Elena Vital'evna Bykova
2011-09-01
Full Text Available This paper describes the concept of energy security and a system of indicators for its monitoring. The indicator system includes more than 40 parameters that reflect the structure and state of fuel and energy complex sectors (fuel, electricity and heat & power, as well as takes into account economic, environmental and social aspects. A brief description of the structure of the computer system to monitor and analyze energy security is given. The complex contains informational, analytical and calculation modules, provides applications for forecasting and modeling energy scenarios, modeling threats and determining levels of energy security. Its application to predict the values of the indicators and methods developed for it are described. This paper presents a method developed by conventional nonlinear mathematical programming needed to address several problems of energy and, in particular, the prediction problem of the security. An example of its use and implementation of this method in the application, "Prognosis", is also given.
Linear Algebra and Linear Models
Indian Academy of Sciences (India)
Linear Algebra and Linear. Models. Kalyan Das. Linear Algebra and linear Models. (2nd Edn) by R P Bapat. Hindustan Book Agency, 1999 pp.xiii+180, Price: Rs.135/-. This monograph provides an introduction to the basic aspects of the theory oflinear estima- tion and that of testing linear hypotheses. The primary objective ...
Shilov, Georgi E
1977-01-01
Covers determinants, linear spaces, systems of linear equations, linear functions of a vector argument, coordinate transformations, the canonical form of the matrix of a linear operator, bilinear and quadratic forms, Euclidean spaces, unitary spaces, quadratic forms in Euclidean and unitary spaces, finite-dimensional space. Problems with hints and answers.
DEFF Research Database (Denmark)
Federico, de Bosio; Hernández, Adriana Carolina Luna; de Sousa Ribeiro, Luiz Antonio
2016-01-01
This paper proposes an optimization-based decision support strategy to enhance the management of the distributed energy sources of an islanded microgrid. The solutions provided by the optimization algorithm are compared with the current strategy, already implemented in a real site microgrid on Le...... on Lencois’ island/Brazil. Significant economic and energy savings are achieved when the optimal management of the diesel generator is performed.......This paper proposes an optimization-based decision support strategy to enhance the management of the distributed energy sources of an islanded microgrid. The solutions provided by the optimization algorithm are compared with the current strategy, already implemented in a real site microgrid...
Directory of Open Access Journals (Sweden)
Ilana Pereira da Costa Cunha
2017-10-01
Full Text Available This is a feasibility study for the generation of wave energy by means of a transverse flux machine connected to a device for converting wave energy known as Point Absorber. The article contains literature review on the topic and analysis of data obtained by means of a prototype built in the laboratory. Based on the results, the study concludes that this use is feasible.
Directory of Open Access Journals (Sweden)
de Pontes B. R.
2012-07-01
Full Text Available In this paper, we deal with the research of a vibrating model of an energy harvester device, including the nonlinearities in the model of the piezoelectric coupling and the non-ideal excitation. We show, using numerical simulations, in the analysis of the dynamic responses, that the harvested power is influenced by non-linear vibrations of the structure. Chaotic behavior was also observed, causing of the loss of energy throughout the simulation time. Using a perturbation technique, we find an approximate analytical solution for the non-ideal system. Then, we apply both two control techniques, to keep the considered system, into a stable condition. Both the State Dependent Ricatti Equation (SDRE control as the feedback control by changing the energy of the oscillator, were efficient in controlling of the considered non-ideal system.
Al-Adili, A.; Hambsch, F.-J.; Pomp, S.; Oberstedt, S.; Vidali, M.
2016-03-01
This work investigates the neutron-induced fission of 234U and the fission-fragment properties for neutron energies between En=0.2 and 5.0 MeV with a special highlight on the prominent vibrational resonance at En=0.77 MeV. Angular, energy, and mass distributions were determined based on the double-energy technique by means of a twin Frisch-grid ionization chamber. The experimental data are parametrized in terms of fission modes based on the multimodal random neck-rupture model. The main results are a verified strong angular anisotropy and fluctuations in the energy release as a function of incident-neutron energy.
International Nuclear Information System (INIS)
Delage, M-E; Lecavalier, M-E; Lariviere, D; Allen, C; Beaulieu, L
2014-01-01
Purpose: Structure and energy transfer mechanisms confer colloidal quantum dots (cQDs) interesting properties, among them their potential as scintillators. CdSe multi-shell cQDs in powder were investigated under photons irradiation. The purpose of this work is to characterize signal to dose linearity, stability with time and to quantify the dependence of their light output with beam energy. Methods: The cQDs are placed at the extremity of a non-scintillating plastic collecting fiber, with the other extremity connected to an Apogee U2000C CCD camera. The CCD camera collects the fluorescence light from irradiated cQDs from which the delivered dose is extracted. This signal is corrected for Cerenkov contamination at MV energies using the chromatic technique. The detector was irradiated with two devices: Xstrahl 200 orthovoltage unit for 120, 180 and 220 kVp and a Varian Clinac iX for 6 and 23 MV. Results: Linear output response with varying dose is observed for all beam energies with R2 factors > 0,999. Reproducibility measurements were performed at 120 kVp: the same set-up was irradiated at different time intervals (one week and three months). The results showed only a small relative decrease of light output of 3,2 % after a combine deposited dose of approximately 95 Gy. CdSe nanocrystals response has been studied as a function of beam energy. The output increases with decreasing energy from 120 kVp to 6 MV and increase again for 23 MV. This behavior could be explained in part by the cQDs high-Z composition. Conclusion: The fluorescence light output of CdSe cQDs was found to be linear as a function of dose. The results suggest stability of the scintillation output of cQDs over time. The specific composition of cQDs is the main cause of the observed energy dependence. We will further look into particle beam dependence of the cQDs. Bourse d'excellence aux etudes graduees du CRC (Centre de Recherche sur le Cancer, Universite Laval) Bourse d'excellence aux
Kobayashi, Masato
2014-02-28
The analytical gradient for the atomic-orbital-based Hartree-Fock-Bogoliubov (HFB) energy functional, the modified form of which was proposed by Staroverov and Scuseria to account for the static electron correlation [J. Chem. Phys. 117, 11107 (2002)], is derived. Interestingly, the Pulay force for the HFB energy is expressed with the same formula as that for the Hartree-Fock method. The efficiency of the present HFB energy gradient is demonstrated in the geometry optimizations of conjugated and biradical systems. The geometries optimized by using the HFB method with the appropriate factor ζ, which controls the degree of static correlation included, are found to show good agreement with those obtained by using a complete active-space self-consistent field method, although they are significantly dependent on ζ.
Tan, Yimin; Lin, Kejian; Zu, Jean W.
2018-05-01
Halbach permanent magnet (PM) array has attracted tremendous research attention in the development of electromagnetic generators for its unique properties. This paper has proposed a generalized analytical model for linear generators. The slotted stator pole-shifting and implementation of Halbach array have been combined for the first time. Initially, the magnetization components of the Halbach array have been determined using Fourier decomposition. Then, based on the magnetic scalar potential method, the magnetic field distribution has been derived employing specially treated boundary conditions. FEM analysis has been conducted to verify the analytical model. A slotted linear PM generator with Halbach PM has been constructed to validate the model and further improved using piece-wise springs to trigger full range reciprocating motion. A dynamic model has been developed to characterize the dynamic behavior of the slider. This analytical method provides an effective tool in development and optimization of Halbach PM generator. The experimental results indicate that piece-wise springs can be employed to improve generator performance under low excitation frequency.
International Nuclear Information System (INIS)
Walter, J.B.; Rebka, G.A. Jr.
1979-03-01
A subroutine, SCATPI, was written which calculates π + p elastic differential cross sections for incident pion kinetic energies between 90 and 310 MeV for π - p. The calculation is based upon the phase shift analysis of Carter, Bugg, and Carter, and is reliable to about 2% for π + p and 3% for π - p differential cross sections. SCATPI also calculates other scattering parameters for the π+-p systems. The calculations are compared with the measurements used in the phase shift analysis, and with selected recent measurements. The use of SCATPI is described. 14 figures, 4 tables
Jutier, L.; Léonard, C.; Gatti, F.
2009-04-01
For electronically degenerate states of linear tetra-atomic molecules, a new method is developed for the variational treatment of the Renner-Teller and spin-orbit couplings. The approach takes into account all rotational and vibrational degrees of freedom, the dominant couplings between the corresponding angular momenta as well as the couplings with the electronic and electron spin angular momenta. The complete rovibrational kinetic energy operator is expressed in Jacobi coordinates, where the rovibrational angular momenta ĴN have been replaced by L̂ez-Ŝ and the spin-orbit coupling has been described by the perturbative term ASO×L̂ezṡŜz. Attention has been paid on the electronic wave functions, which require additional phase for linear tetra-atomic molecules. Our implemented rovibrational basis functions and the integration of the different parts of the total Hamiltonian operator are described. This new variational approach is tested on the electronic ground state X Π2u of HCCH+ for which new six-dimensional potential energy surfaces have been computed using the internally contracted multireference configuration interaction method and the cc-pV5Z basis set. The calculated rovibronic energies and their comparisons with previous theoretical and experimental works are presented in the next paper.
Bordin, Chiara; Anuta, Harold Oghenetejiri; Crossland, Andrew; Gutierrez, Isabel Lascurain; Dent, Chris J.; Vigo, D.
2017-01-01
Storage technologies and storage integration are currently key topics of research in energy systems, due to the resulting possibilities for reducing the costs of renewables integration. Off-grid power systems in particular have received wide attention around the world, as they allow electricity
International Nuclear Information System (INIS)
Takatsuka, Ichiro
1984-01-01
The simulation studies of the unusual cosmic ray families found by the experiment at Mt. Chacaltaya were performed. Those families have a larger number of hadrons than the normal families, or are the families with big transverse extension. The former is called Centauro or Mini-centauro, and the latter is called Binocular and Chiron. In the first simulation, the process was calculated, in which the Lorentz transformation of π-meson multiple production (C-jet) in the energy region of 10 14 eV was made, and the jet with raised energy was combined, and the families were formed. The second simulation was made for the energy region more than 300 TeV, in which the nucleon-antinucleon multiple production with large transverse momentum and the B particle multiple production with larger transverse momentum were assumed. The data used were the C-jet data observed at Mt. Chacaltaya. For the simulation, all the primary particles were considered to be protons. The results of the present simulation study showed that the families with strong hadron components observed at Mt. Chacaltaya might be the new type hadron multiple production such as nucleon-antinucleon multiple production or B-particle multiple production. The total energy of all the families increased with the energy of the primary particles. There are a few families having the same extent of energy and spread as the Chiron. (Kato, T.)
Czech Academy of Sciences Publication Activity Database
Planeta, Josef; Karásek, Pavel; Hohnová, Barbora; Šťavíková, Lenka; Roth, Michal
2012-01-01
Roč. 1250, SI (2012), s. 54-62 ISSN 0021-9673 R&D Projects: GA ČR(CZ) GAP206/11/0138; GA ČR(CZ) GAP106/12/0522; GA ČR(CZ) GPP503/11/P523 Institutional research plan: CEZ:AV0Z40310501 Keywords : ionic liquid * supercritical carbon dioxide * solvation energy model Subject RIV: BJ - Thermodynamics Impact factor: 4.612, year: 2012
Alam, Murad; Kakar, Rohit; Nodzenski, Michael; Ibrahim, Omer; Disphanurat, Wareeporn; Bolotin, Diana; Borovicka, Judy H; Pace, Natalie; Alster, Tina S; Arndt, Kenneth A; Beer, Kenneth R; Berlin, Joshua M; Bernstein, Leonard J; Brightman, Lori A; Butterwick, Kimberly; Cox, Sue Ellen; Chotzen, Vera; Fabi, Sabrina G; Fitzpatrick, Richard E; Geronemus, Roy G; Goldman, Mitchel P; Groff, William F; Kaminer, Michael S; Kilmer, Suzanne; Rohrer, Thomas E; Tanzi, Elizabeth L; Silva, Susan K; Yoo, Simon S; Weinkle, Susan H; Strasswimmer, John; Poon, Emily; Dover, Jeffrey S
2015-03-01
Common noninvasive to minimally invasive cosmetic dermatologic procedures are widely believed to be safe given the low incidence of reported adverse events, but reliable incidence data regarding adverse event rates are unavailable to date. To assess the incidence of adverse events associated with noninvasive to minimally invasive cosmetic dermatologic procedures, including those involving laser and energy devices, as well as injectable neurotoxins and fillers. A multicenter prospective cohort study (March 28, 2011, to December 30, 2011) of procedures performed using laser and energy devices, as well as injectable neurotoxins and soft-tissue augmentation materials, among 8 geographically dispersed US private and institutional dermatology outpatient clinical practices focused on cosmetic dermatology, with a total of 23 dermatologists. Participants represented a consecutive sample of 20 399 cosmetic procedures. Data acquisition was for 3 months (13 weeks) per center, with staggered start dates to account for seasonal variation. Web-based data collection daily at each center to record relevant procedures, by category type and subtype. Adverse events were detected by (1) initial observation by participating physicians or staff; (2) active ascertainment from patients, who were encouraged to self-report after their procedure; and (3) follow-up postprocedural phone calls to patients by staff, if appropriate. When adverse events were not observed by physicians but were suspected, follow-up visits were scheduled within 24 hours to characterize these events. Detailed information regarding each adverse event was entered into an online form. The main outcome was the total incidence of procedure-related adverse events (total adverse events divided by total procedures performed), as verified by clinical examination. Forty-eight adverse events were reported, for a rate of 0.24% (95% CI, 0.18%-0.31%). Overall, 36 procedures resulted in at least 1 adverse event, for a rate of 0
Polarized proton induced pion production on 10B at 200, 225, 250 and 260 MeV incident energies
International Nuclear Information System (INIS)
Ziegler, W.; Auld, E.G.; Falk, W.R.; Giles, G.L.; Jones, G.; Lolos, G.J.; McParland, B.
1985-02-01
The angular distributions of both the differential cross-section and the analyzing power are presented for the 10 B(p,π) 11 B reaction leading to the ground and first excited states of 11 B. The differential cross-section shows very little angular structure or energy dependence, but the analyzing power exhibits a considerable energy dependence for both states. This dependence, similar to that observed for the 12 C(p,π + ) 13 C reaction, may be a signature of the fact that single-particle final states are involved
Linear energy transfer effects on time profiles of scintillation of Ce-doped LiCaAlF{sub 6} crystals
Energy Technology Data Exchange (ETDEWEB)
Yanagida, Takayuki [Graduate School of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama-Cho, Ikoma, Nara 630-0192 (Japan); Koshimizu, Masanori [Department of Applied Chemistry, Graduate School of Engineering, Tohoku University, 6-6-07 Aoba, Aramaki, Aoba-ku, Sendai 980-8579 (Japan); Kurashima, Satoshi [Takasaki Advanced Radiation Research Institute, Japan Atomic Energy Agency, 1233 Watanuki, Takasaki, Gunma 370-1292 (Japan); Iwamatsu, Kazuhiro [Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Kimura, Atsushi; Taguchi, Mitsumasa [Quantum Beam Science Directorate, Japan Atomic Energy Agency, 1233 Watanuki, Takasaki, Gunma 370-1292 (Japan); Fujimoto, Yutaka; Asai, Keisuke [Department of Applied Chemistry, Graduate School of Engineering, Tohoku University, 6-6-07 Aoba, Aramaki, Aoba-ku, Sendai 980-8579 (Japan)
2015-12-15
We measured temporal profiles of the scintillation of Ce-doped LiCaAlF{sub 6} scintillator crystals at different linear energy transfers (LETs). Based on the comparison of high-LET temporal profiles with those at low LET, a fast component was observed only at low LET. The disappearance of the fast component at high LET is tentatively ascribed to the quenching of excited states at crystal defects owing to the interaction between excited states via the Auger process. In addition, the rise and the initial decay behavior were dependent on the LET. This LET-dependent behavior is explained by an acceleration process and a deceleration process in energy transfer at high LET. The LET-dependent temporal profiles provide the basis for a discrimination technique of gamma-ray and neutron detection events using these scintillators based on the nuclear reaction, {sup 6}Li(n,α)t.
Directory of Open Access Journals (Sweden)
Valeria Boscaino
2017-01-01
Full Text Available In this paper, we propose a reliability-oriented design of a linear generator-based prototype of a wave energy conversion (WEC, useful for the production of hydrogen in a sheltered water area like Mediterranean Sea. The hydrogen production has been confirmed by a lot of experimental testing and simulations. The system design is aimed to enhance the robustness and reliability and is based on an analysis of the main WEC failures reported in literature. The results of this analysis led to some improvements that are applied to a WEC system prototype for hydrogen production and storage. The proposed WEC system includes the electrical linear generator, the power conversion system, and a sea-water electrolyzer. A modular architecture is conceived to provide ease of extension of the power capability of the marine plant. The experimental results developed on the permanent magnet linear electric generator have allowed identification of the stator winding typology and, consequently, ability to size the power electronics system. The produced hydrogen has supplied a low-power fuel cell stack directly connected to the hydrogen output from the electrolyzer. The small-scale prototype is designed to be installed, in the near future, into the Mediterranean Sea. As shown by experimental and simulation results, the small-scale prototype is suitable for hydrogen production and storage from sea water in this area.
Directory of Open Access Journals (Sweden)
Erik Lejerskog
2014-01-01
Full Text Available The aim of this paper is to analyze how a permanent magnet linear generator for wave power behaves when the stator slots are closed. The usual design of stator geometry is to use open slots to maintain a low magnetic leakage flux between the stator teeth. By doing this, harmonics are induced in the magnetic flux density in the air-gap due to slotting. The closed slots are designed to cause saturation, to keep the permeability low. This reduces the slot harmonics in the magnetic flux density, but will also increase the flux leakage between the stator teeth. An analytical model has been created to study the flux through the closed slots and the result compared with finite element simulations. The outcome shows a reduction of the cogging force and a reduction of the harmonics of the magnetic flux density in the air-gap. It also shows a small increase of the total magnetic flux entering the stator and an increased magnetic flux leakage through the closed slots.
DEFF Research Database (Denmark)
Olsen, J. Staun; Buras, B.; Jensen, T.
1978-01-01
Polarization measurements of the primary X-ray beam produced by thick copper and tungsten anodes are reported and formulas derived for integrated intensities of Bragg reflections in energy-dispersive diffractometry with the polarization of the primary beam taken into account. It was found...
International Nuclear Information System (INIS)
Bengtsson, J.
1988-01-01
A tensor equation has been used to derive the equations of motion for the curvilinear coordinate system customarily used for particle accelerators. A Hamiltonian formalism, expanded to third order in the canonical variables, has also been developed to describe the transverse motion in an accelerator. Time-dependent perturbation theory has been applied and computerized using a computer-algebra system. In particular, the perturbations due to magnetic sextupoles have been calculated to second power in the sextupole strength. The frequency spectra for the horizontal and the vertical betatron motion close to a single resonance have been calculated using time-independent perturbation theory. It has been shown that information about excited resonances and the type of driving field can be derived from the spectra. In particular, it is possible to obtain the amplitude and the phase of a given resonance. The results have been used to study the perturbations in the Low Energy Antiproton Ring (LEAR) at CERN. (orig.)
International Nuclear Information System (INIS)
Bengtsson, J.
1988-01-01
A tensor equation has been used to derive the equations of motion for the curvilinear coordinate system customary used for accelerators. A Hamiltonian formalism, expanded to third order in the canonical variables, describing the transverse motion in an acceleration has also been developed. Time-dependent perturbation theory has been applied and computerized using a computer algebra system. In particular, the perturbations due to magnetic sextupoles have been calculated to second power in the sextupole strength. The frequency spectra for the betatron motion close to a single resonance has been calculated by using time-independent perturbation theory. It has been shown that information about excited resonances and the type of driving field can be derived from the spectra. In particular, it is possible to obtain the amplitude and the phase of a given resonance. The results have been used to study the perturbations in the Low Energy Antiproton Ring, LEAR at CERN. (With 67 refs.) (author)
International Nuclear Information System (INIS)
Jacoby, B.A.
1981-01-01
The results of an experimental study of particle and thermal loss processes from a 50-cm long theta pinch are presented. The plasma was generated with a 40-mTorr fill of deuterium in a 3.81 cm radius discharge tube; 67% Z-preionization was followed by a main current discharge that produced a 23-kG peak magnetic field in 4.75 μsec. The electron density and temperature in the plasma column at the end of dynamic implosion were characterized by 1.0 x 10 16 cm -3 and 20 eV, respectively. This was followed by adiabatic compression which occurred with the particle and energy loss of interest. The diagnostics employed in this experiment were Thomson scattering, continuum radiation spectroscopy, local magnetic-field probes, local pressure probes, and diamagnetic loops. Axial temperature and density profiles were mapped from the coil into the end region
International Nuclear Information System (INIS)
Borderie, B.; Gulminelli, F.; Rivet, M.F.; Dore, D.; Tassan-Got, L.; Bacri, Ch.O.; Ouatizerga, A.; Plagnol, E.; Squalli, M.; Chbihi, A.; Auger, G.; Benlliure, J.; Ecomard, P.; Le Fevre, A.; Marie, N.; Rosato, E.; Saint-Laurent, F.; Wieleczko, J.P.; Durand, D.; Bougault, R.; Brou, R.; Colin, J.; Cussol, D.; Laforest, R.; Lecolley, J.F.; Lefort, T.; Lopez, O.; Louvel, M.; Metivier, V.; Peter, J.; Steckmeyer, J.C.; Tamain, B.; Vient, E.; Parlog, M.; Bisquer, E.; Demeyer, A.; Guinet, D.; Lautesse, P.; Lebreton, L.; Charvet, J.L.; Dayras, R.; De Filippo, E.; Legrain, R.; Nalpas, L.; Volant, C.; Eudes, Ph.; Gourio, D.; Laville, J.L.; Rahmani, A.; Reposeur, T.
1997-01-01
Vaporization events, where all species have atomic numbers lower than 3, and deexcitation properties of quasi-projectiles involved in binary dissipative collisions between 36 Ar and 58 Ni are studied with the multidetector INDRA. Kinematical properties and chemical composition (mean values and variances) of vaporizing sources are derived over the excitation energy per nucleon range 8-28 MeV. These data are found in good agreement with the results of a model describing a gas of fermions and bosons in thermal and chemical equilibrium, which strongly suggests that thermodynamical equilibrium has been reached even for such sources produced in very extreme conditions of collisions. Finally, removing the constraint on atomic numbers lower than 3, the evolution of the chemical composition of quasi-projectiles is presented over the excitation energy range 0-25 AMeV. (authors)
The secondary neutrons spectra of 235U, 238U for incident energy range 1-2.5 MeV
International Nuclear Information System (INIS)
Kornilov, N.V.; Kagalenko, A.B.; Balitsky, A.V.; Baryba, V.Ja.; Androsenko, P.A.; Androsenko, A.A.
1993-01-01
Spectra of inelastic scattered neutrons and fission neutrons were measured with neutron time of flight spectrometer. The solid tritium target was used as a neutron source. The energy distribution of neutrons on the sample was calculated with Monte-Carlo code, taking into account interaction income protons inside target and reaction kinematics. The detector efficiency was determined with 252 Cf source. The multiple scattering and absorption corrections were calculated with codes packet BRAND. Our results confirm ENDF/B-6 data library. (author)
International Nuclear Information System (INIS)
Suwono.
1978-01-01
A linear gate providing a variable gate duration from 0,40μsec to 4μsec was developed. The electronic circuity consists of a linear circuit and an enable circuit. The input signal can be either unipolar or bipolar. If the input signal is bipolar, the negative portion will be filtered. The operation of the linear gate is controlled by the application of a positive enable pulse. (author)
Linearization Method and Linear Complexity
Tanaka, Hidema
We focus on the relationship between the linearization method and linear complexity and show that the linearization method is another effective technique for calculating linear complexity. We analyze its effectiveness by comparing with the logic circuit method. We compare the relevant conditions and necessary computational cost with those of the Berlekamp-Massey algorithm and the Games-Chan algorithm. The significant property of a linearization method is that it needs no output sequence from a pseudo-random number generator (PRNG) because it calculates linear complexity using the algebraic expression of its algorithm. When a PRNG has n [bit] stages (registers or internal states), the necessary computational cost is smaller than O(2n). On the other hand, the Berlekamp-Massey algorithm needs O(N2) where N(≅2n) denotes period. Since existing methods calculate using the output sequence, an initial value of PRNG influences a resultant value of linear complexity. Therefore, a linear complexity is generally given as an estimate value. On the other hand, a linearization method calculates from an algorithm of PRNG, it can determine the lower bound of linear complexity.
10B and 6Li nuclear data measurements for incident neutron energies up to 3 MeV
BEVILACQUA RICCARDO; HAMBSCH Franz-Josef; BENCARDINO RAFFAELE; GIORGINIS GEORGIOS; VIDALI Marzio; LAMIA L.; RUSKOV I.
2012-01-01
We present experimental methods for the measurement of the 10B(n,α)7Li and the 6Li(n,t)4He reactions for neutron energies up to 3 MeV, and preliminary data for the 10B(n,α0)/10B(n,α1γ) branching ratios. The experimental facilities were installed at GELINA and the Van de Graaff generator of the Institute for Reference Materials and Measurement of the European Commission. Our results show the need to investigate the MeV region for these reactions, since the ENDF/B-VII.1 evaluation agrees with o...
Doke, T; Hara, K; Hayashi, T; Kikuchi, J; Suzuki, S; Terasawa, K
2004-01-01
The distributions of linear energy transfer for LET (LET/sub water/) in front of the 80-cm-thick concrete side shield at the CERN-EU high- energy reference field (CERF) facility were measured with a Si detector telescope named real-time radiation monitoring device-III (RRMD-III) covered with and without a 1 cm-thick acrylic plate. In these measurements, a difference of about 20% in the absorbed dose between the two LET/sub water/ distributions was observed as a result of protons, deuterons and tritons recoiled by neutrons. The LET/sub water/ distribution obtained using RRMD-III without the 1-cm-thick acrylic plate is compared with lineal energy distributions obtained using the dosimetric telescope (DOSTEL) detector under the same conditions. These dose equivalents are also compared with that obtained using HANDI TEPC which is used as the standard at the CERF facility. (26 refs).
Said-Houari, Belkacem
2017-01-01
This self-contained, clearly written textbook on linear algebra is easily accessible for students. It begins with the simple linear equation and generalizes several notions from this equation for the system of linear equations and introduces the main ideas using matrices. It then offers a detailed chapter on determinants and introduces the main ideas with detailed proofs. The third chapter introduces the Euclidean spaces using very simple geometric ideas and discusses various major inequalities and identities. These ideas offer a solid basis for understanding general Hilbert spaces in functional analysis. The following two chapters address general vector spaces, including some rigorous proofs to all the main results, and linear transformation: areas that are ignored or are poorly explained in many textbooks. Chapter 6 introduces the idea of matrices using linear transformation, which is easier to understand than the usual theory of matrices approach. The final two chapters are more advanced, introducing t...
Drongelen AW van; Roszek B; Hilbers-Modderman ESM; Kallewaard M; Wassenaar C; LGM
2002-01-01
This RIVM study was performed to gain insight into wheelchair-related incidents with powered and manual wheelchairs reported to the USA FDA, the British MDA and the Dutch Center for Quality and Usability Research of Technical Aids (KBOH). The data in the databases do not indicate that incidents with
10B and 6Li Nuclear Data Measurements for Incident Neutron Energies up to 3 MeV
Bevilacqua, R.; Hambsch, F.-J.; Bencardino, R.; Giorginis, G.; Vidali, M.; Lamia, L.; Ruskov, I.
2014-05-01
We present experimental methods for the measurement of the 10B(n,α)7Li and the 6Li(n,t)4He reactions for neutron energies up to 3 MeV, and preliminary data for the 10B(n,α0)/10B(n,α1γ) branching ratios. The experimental facilities were installed at GELINA and the Van de Graaff generator of the Institute for Reference Materials and Measurement of the European Commission. Our results show the need to investigate the MeV region for these reactions, since the ENDF/B-VII.1 evaluation agrees with our data up to 1.3 MeV and overestimates above this limit.
International Nuclear Information System (INIS)
Keehan, S; Taylor, M; Franich, R; Smith, R; Dunn, L; Kron, T
2015-01-01
Purpose: To assess the risk posed by neutron induced activation of components in medical linear accelerators (linacs) following the delivery of high monitor unit 18 MV photon beams such as used in TBI. Methods: Gamma spectroscopy was used to identify radioisotopes produced in components of a Varian 21EX and an Elekta Synergy following delivery of photon beams. Dose and risk estimates for TBI were assessed using dose deliveries from an actual patient treatment. A 1 litre spherical ion chamber (PTW, Germany) has been used to measure the dose at the beam exit window and at the total body irradiation (TBI) treatment couch following large and small field beams with long beam-on times. Measurements were also made outside of the closed jaws to quantify the benefit of the attenuation provided by the jaws. Results: The radioisotopes produced in the linac head have been identified as 187 W, 56 Mn, 24 Na and 28 Al, which have half-lives from between 2.3 min to 24 hours. The dose at the beam exit window following an 18 MV 2197 MU TBI beam delivery was 12.6 µSv in ten minutes. The dose rate at the TBI treatment couch 4.8 m away is a factor of ten lower. For a typical TBI delivered in six fractions each consisting of four beams and an annual patient load of 24, the annual dose estimate for a staff member at the treatment couch for ten minutes is 750 µSv. This can be further reduced by a factor of about twelve if the jaws are closed before entering the room, resulting in a dose estimate of 65 µSv. Conclusion: The dose resulting from the activation products for a representative TBI workload at our clinic of 24 patients per year is 750 µSv, which can be further reduced to 65 µSv by closing the jaws
International Nuclear Information System (INIS)
Dapor, Maurizio
2005-01-01
Carbon films are deposited on various substrates (polymers, polyester fabrics, polyester yarns, metal alloys) both for experimental and technological motivations (medical devices, biocompatible coatings, food package and so on). Computational studies of the penetration of electron beams in supported thin film of carbon are very useful in order to compare the simulated results with analytical techniques data (obtained by scanning electron microscopy and/or Auger electron spectroscopy) and investigate the film characteristics. In the present paper, the few keV electron depth distribution and backscattering coefficient for the special case of film of carbon deposited on aluminium are investigated, by a Monte Carlo simulation, as a function of the incidence angle and primary electron energy. The simulated results can be used as a way to evaluate the carbon film thickness by a set of measurements of the backscattering coefficient
Neutron production in deuteron-induced reactions on Li, Be, and C at an incident energy of 102 MeV
Directory of Open Access Journals (Sweden)
Araki Shouhei
2017-01-01
Full Text Available Double-differential cross sections (DDXs of deuteron-induced neutron production reactions on Li, Be, and C at 102 MeV were measured at forward angles (≤ 25∘ by means of a time of flight method with NE213 liquid organic scintillators at the Research Center of Nuclear Physics, Osaka University. The experimental results were compared with model calculations with PHITS and DEURACS. The DEURACS calculation reproduces the experimental DDXs for C at very forward angles than the PHITS one. Moreover, the incident energy dependence of the Li(d,xn reaction was investigated by adding the DDX data measured previously at 25 and 40 MeV.
Photoproduction of π+π-π0 on hydrogen with linearly polarized photons of energy 20-70 GeV
International Nuclear Information System (INIS)
Lasalle, J.C.; Patrick, G.N.; Storr, K.M.; Atkinson, M.; Axon, T.J.; Barberis, D.; Brodbeck, T.J.; Brookes, G.R.; Bunn, J.J.; Bussey, P.J.; Clegg, A.B.; Dainton, J.B.; Davenport, M.; Dickinson, B.; Dieckmann, B.; Donnachie, A.; Ellison, R.J.; Flower, P.; Flynn, P.J.; Galbraith, W.; Heinloth, K.; Henderson, R.C.W.; Hughes-Jones, R.E.; Hutton, J.S.; Ibbotson, M.; Jakob, H.P.; Jung, M.; Kemp, M.A.R.; Kumar, B.R.; Laberrigue, J.; Lafferty, G.D.; Lane, J.B.; Levy, J.M.; Liebenau, V.; McClatchey, R.H.; Mercer, D.; Morris, J.A.G.; Morris, J.V.; Newton, D.; Paterson, C.; Paul, E.; Raine, C.; Reidenbach, M.; Rotscheidt, H.; Schloesser, A.; Sharp, P.H.; Skillicorn, I.O.; Smith, K.M.; Thompson, R.J.; Vaissiere, C. de la; Waite, A.P.; Worsell, M.F.; Yiou, T.P.
1984-01-01
Results on photoproduction of π + π - π 0 in the photon energy range 20-70 GeV are presented. For the ω meson, the production cross-section is found to be 1010 +- 15 (statistical) +- 290 (systematic) nb and is constant over the incident photon energy range. Spin-density matrix elements are evaluated for ω meson production. The PHI meson is observed with a total photoproduction cross section (corrected for branching ratio to π + π - π 0 ) of 610 +- 35 +- 170 nb. A third resonance, at 1.67 GeV, is seen in the mass spectrum and its interpretation is discussed. The production of a braod π + π - π 0 continuum, mainly via rhoπ, and peaking at 1.2 GeV, contributes with a cross section of about 2.5 μb. The spin-parity content is analysed by the moments of the π + π - π 0 decay angular distribution in the helicity frame and by maximum likelihood fits to the π + π - π 0 Dalitz plot. It is found that production of Jsup(P) = 1 - states accounts for less than half of the total mass spectrum above 900 MeV. There is a broad enhancement in the 1 + wave around 1.15 GeV indicating photoproduction of the H(1190) meson. (orig.)
Jang, Jaewoong; Yamamoto, Masashi; Uesaka, Mitsuru
2017-10-01
The most frequently used radionuclide in diagnostic nuclear medicine, 99mTc, is generally obtained by the decay of its parent radionuclide, 99Mo. Recently, concerns have been raised over shortages of 99Mo/99mTc, owing to aging of the research reactors which have been supplying practically all of the global demand for 99Mo in a centralized fashion. In an effort to prevent such 99Mo/99mTc supply disruption and, furthermore, to ameliorate the underlying instability of the centralized 99Mo/99mTc supply chain, we designed an X -band electron linear accelerator which can be distributed over multiple regions, whereby 99Mo/99mTc can be supplied with improved accessibility. The electron beam energy was designed to be 35 MeV, at which an average beam power of 9.1 kW was calculated by the following beam dynamics analysis. Subsequent radioactivity modeling suggests that 11 of the designed electron linear accelerators can realize self-sufficiency of 99Mo/99mTc in Japan.
Stoll, R R
1968-01-01
Linear Algebra is intended to be used as a text for a one-semester course in linear algebra at the undergraduate level. The treatment of the subject will be both useful to students of mathematics and those interested primarily in applications of the theory. The major prerequisite for mastering the material is the readiness of the student to reason abstractly. Specifically, this calls for an understanding of the fact that axioms are assumptions and that theorems are logical consequences of one or more axioms. Familiarity with calculus and linear differential equations is required for understand
Luo, Bingcheng; Wang, Xiaohui; Tian, Enke; Song, Hongzhou; Wang, Hongxian; Li, Longtu
2017-06-14
A novel lead-free (1 - x)CaTiO 3 -xBiScO 3 linear dielectric ceramic with enhanced energy-storage density was fabricated. With the composition of BiScO 3 increasing, the dielectric constant of (1 - x)CaTiO 3 -xBiScO 3 ceramics first increased and then decreased after the composition x > 0.1, while the dielectric loss decreased first and increased. For the composition x = 0.1, the polarization was increased into 12.36 μC/cm 2 , 4.6 times higher than that of the pure CaTiO 3 . The energy density of 0.9CaTiO 3 -0.1BiScO 3 ceramic was 1.55 J/cm 3 with the energy-storage efficiency of 90.4% at the breakdown strength of 270 kV/cm, and the power density was 1.79 MW/cm 3 . Comparison with other lead-free dielectric ceramics confirmed the superior potential of CaTiO 3 -BiScO 3 ceramics for the design of ceramics capacitors for energy-storage applications. First-principles calculations revealed that Sc subsitution of Ti-site induced the atomic displacement of Ti ions in the whole crystal lattice, and lattice expansion was caused by variation of the bond angles and lenghths. Strong hybridization between O 2p and Ti 3d was observed in both valence band and conduction band; the hybridization between O 2p and Sc 3d at high conduction band was found to enlarge the band gap, and the static dielectric tensors were increased, which was the essential for the enhancement of polarization and dielectric properties.
International Nuclear Information System (INIS)
Meer, R. van; Gritsenko, O. V.; Baerends, E. J.
2014-01-01
Time dependent density matrix functional theory in its adiabatic linear response formulation delivers exact excitation energies ω α and oscillator strengths f α for two-electron systems if extended to the so-called phase including natural orbital (PINO) theory. The Löwdin-Shull expression for the energy of two-electron systems in terms of the natural orbitals and their phases affords in this case an exact phase-including natural orbital functional (PILS), which is non-primitive (contains other than just J and K integrals). In this paper, the extension of the PILS functional to N-electron systems is investigated. With the example of an elementary primitive NO functional (BBC1) it is shown that current density matrix functional theory ground state functionals, which were designed to produce decent approximations to the total energy, fail to deliver a qualitatively correct structure of the (inverse) response function, due to essential deficiencies in the reconstruction of the two-body reduced density matrix (2RDM). We now deduce essential features of an N-electron functional from a wavefunction Ansatz: The extension of the two-electron Löwdin-Shull wavefunction to the N-electron case informs about the phase information. In this paper, applications of this extended Löwdin-Shull (ELS) functional are considered for the simplest case, ELS(1): one (dissociating) two-electron bond in the field of occupied (including core) orbitals. ELS(1) produces high quality ω α (R) curves along the bond dissociation coordinate R for the molecules LiH, Li 2 , and BH with the two outer valence electrons correlated. All of these results indicate that response properties are much more sensitive to deficiencies in the reconstruction of the 2RDM than the ground state energy, since derivatives of the functional with respect to both the NOs and the occupation numbers need to be accurate
Liesen, Jörg
2015-01-01
This self-contained textbook takes a matrix-oriented approach to linear algebra and presents a complete theory, including all details and proofs, culminating in the Jordan canonical form and its proof. Throughout the development, the applicability of the results is highlighted. Additionally, the book presents special topics from applied linear algebra including matrix functions, the singular value decomposition, the Kronecker product and linear matrix equations. The matrix-oriented approach to linear algebra leads to a better intuition and a deeper understanding of the abstract concepts, and therefore simplifies their use in real world applications. Some of these applications are presented in detailed examples. In several ‘MATLAB-Minutes’ students can comprehend the concepts and results using computational experiments. Necessary basics for the use of MATLAB are presented in a short introduction. Students can also actively work with the material and practice their mathematical skills in more than 300 exerc...
Searle, Shayle R
2012-01-01
This 1971 classic on linear models is once again available--as a Wiley Classics Library Edition. It features material that can be understood by any statistician who understands matrix algebra and basic statistical methods.
Berberian, Sterling K
2014-01-01
Introductory treatment covers basic theory of vector spaces and linear maps - dimension, determinants, eigenvalues, and eigenvectors - plus more advanced topics such as the study of canonical forms for matrices. 1992 edition.
Solow, Daniel
2014-01-01
This text covers the basic theory and computation for a first course in linear programming, including substantial material on mathematical proof techniques and sophisticated computation methods. Includes Appendix on using Excel. 1984 edition.
International Nuclear Information System (INIS)
Butterfield, M.T.; Crapper, M.D.; Noakes, T.C.Q.; Bailey, P.; Jackson, G.J.; Woodruff, D.P.
2000-01-01
Applications of the techniques of normal-incidence x-ray standing wave (NIXSW) and medium-energy ion scattering (MEIS) to the elucidation of the structure of an ultrathin metallic film, Co on Cu(111), are reported. NIXSW and MEIS are shown to yield valuable and complementary information on the structure of such systems, yielding both the local stacking sequence and the global site distribution. For the thinnest films of nominally two layers, the first layer is of entirely fcc registry with respect to the substrate, but in the outermost layer there is significant occupation of hcp local sites. For films up to 8 monolayers (ML) thick, the interlayer spacing of the Co layers is 0.058±0.006 Aa smaller than the Cu substrate (111) layer spacing. With increasing coverage, the coherent fraction of the (1(bar sign)11) NIXSW decreases rapidly, indicating that the film does not grow in a fcc continuation beyond two layers. For films in this thickness range, hcp-type stacking dominates fcc twinning by a ratio of 2:1. The variation of the (1(bar sign)11) NIXSW coherent fraction with thickness shows that the twinning occurs close to the Co/Cu interface. For thicker films of around 20 ML deposited at room temperature, medium-energy ion scattering measurements reveal a largely disordered structure. Upon annealing to 300 deg. C the 20-ML films order into a hcp structure
Johnson, Daniel; Chen, Yong; Ahmad, Salahuddin
2015-01-01
The factors influencing carbon ion therapy can be predicted from accurate knowledge about the production of secondary particles from the interaction of carbon ions in water/tissue-like materials, and subsequently the interaction of the secondary particles in the same materials. The secondary particles may have linear energy transfer (LET) values that potentially increase the relative biological effectiveness of the beam. Our primary objective in this study was to classify and quantify the secondary particles produced, their dose averaged LETs, and their dose contributions in the absorbing material. A 1 mm diameter carbon ion pencil beam with energies per nucleon of 155, 262, and 369 MeV was used in a geometry and tracking 4 Monte Carlo simulation to interact in a 27 L water phantom containing 3000 rectangular detector voxels. The dose-averaged LET and the dose contributions of primary and secondary particles were calculated from the simulation. The results of the simulations show that the secondary particles that contributed a major dose component had LETs 600 keV/µm contributed only <0.3% of the dose.
Directory of Open Access Journals (Sweden)
Daniel Johnson
2015-01-01
Full Text Available The factors influencing carbon ion therapy can be predicted from accurate knowledge about the production of secondary particles from the interaction of carbon ions in water/tissue-like materials, and subsequently the interaction of the secondary particles in the same materials. The secondary particles may have linear energy transfer (LET values that potentially increase the relative biological effectiveness of the beam. Our primary objective in this study was to classify and quantify the secondary particles produced, their dose averaged LETs, and their dose contributions in the absorbing material. A 1 mm diameter carbon ion pencil beam with energies per nucleon of 155, 262, and 369 MeV was used in a geometry and tracking 4 Monte Carlo simulation to interact in a 27 L water phantom containing 3000 rectangular detector voxels. The dose-averaged LET and the dose contributions of primary and secondary particles were calculated from the simulation. The results of the simulations show that the secondary particles that contributed a major dose component had LETs 600 keV/µm contributed only <0.3% of the dose.
Directory of Open Access Journals (Sweden)
Vahid Baradaran
2018-03-01
Full Text Available One of the most important operational issues in urban drinking water production and distribution systems is to assign a plan for running hours of water supplying electric pumps. The cost of consuming electricity in these pumps allocates most of water and wastewater companies operational costs to itself which is dependent to their running hours. In this paper, meanwhile having a field study in Sistan rural water and wastewater company, the constraints for specifying electric pumps operational time in water supplying resources such as restrictions in fulfilling demand, supply potable water with suitable quality and uselessness of electric pumps have been identified. Due to uncertainty and fuzziness of the constraints, a linear programming model with fuzzy restrictions for determining electric pumps running hours per day is submitted with the aim to minimize electricity consumption and cost. After collecting and using required data for model, it proved that using the proposed model could reduce the costs of electrical energy and increase productivity up to 23 percent per month. The proposed mathematical fuzzy programming is able to specify electric pumps scheduling plan for water supply resources with the aim to reduce the costs of consuming energy.
Jin, Chao; Glawdel, Tomasz; Ren, Carolyn L.; Emelko, Monica B.
2015-12-01
Deposition of colloidal- and nano-scale particles on surfaces is critical to numerous natural and engineered environmental, health, and industrial applications ranging from drinking water treatment to semi-conductor manufacturing. Nano-scale surface roughness-induced hydrodynamic impacts on particle deposition were evaluated in the absence of an energy barrier to deposition in a parallel plate system. A non-linear, non-monotonic relationship between deposition surface roughness and particle deposition flux was observed and a critical roughness size associated with minimum deposition flux or “sag effect” was identified. This effect was more significant for nanoparticles (work provides 1) a first comprehensive framework for describing the hydrodynamic impacts of nano-scale surface roughness on particle deposition by unifying hydrodynamic forces (using the most current approaches for describing flow field profiles and hydrodynamic retardation effects) with appropriately modified expressions for DLVO interaction energies, and gravity forces in one model and 2) a foundation for further describing the impacts of more complicated scales of deposition surface roughness on particle deposition.
Study of the cross-section of the reaction D + D → 4He + γ with incident energies below 6 MeV
International Nuclear Information System (INIS)
Degre, A.
1969-01-01
The measurement of the cross-section of the reaction D(d,γ) 4 He has been made for getting some information concerning the nuclear structure of 4 He and the existence of the d+d final state in the photo-decay of 4 He. The E1 transition is forbidden because of the selection rules of the isobaric spin which makes this reaction a useful tool for looking for a 2 + , T=0 state. In the reaction D(d,γ) 4 He, the photon is produced in an electrical quadrupolar transition which makes us expect a very low value for the cross-section, certainly in the magnitude order of 0.01 micro-barn (10 -32 cm 2 ) and a very important background noise (chiefly from cosmic origin). The measurement of this cross-section requires a dedicated efficient equipment. The incident deuteron beam is produced by a 5.5 MeV Van de Graaff accelerator, the beam intensity is about 1 μA and we use a gaseous deuterium target. The gamma detector is based on NaI(Tl) crystal combined with an XP-1031 photomultiplier. The NaI(Tl) crystal is surrounded by a scintillating plastic allowing the detection of anti-coincidence events and as a consequence the reduction of the cosmic background. We have measured the value of the differential cross-section at different angles: 0, 45, 90 and 135 degrees (Center of mass frame) for an incident energy of 3.64 MeV. We have added our results to others previously published in the literature, we see that they are complementary and as a whole show the non-existence of fine structure in the excitation curve
Olive, David J
2017-01-01
This text covers both multiple linear regression and some experimental design models. The text uses the response plot to visualize the model and to detect outliers, does not assume that the error distribution has a known parametric distribution, develops prediction intervals that work when the error distribution is unknown, suggests bootstrap hypothesis tests that may be useful for inference after variable selection, and develops prediction regions and large sample theory for the multivariate linear regression model that has m response variables. A relationship between multivariate prediction regions and confidence regions provides a simple way to bootstrap confidence regions. These confidence regions often provide a practical method for testing hypotheses. There is also a chapter on generalized linear models and generalized additive models. There are many R functions to produce response and residual plots, to simulate prediction intervals and hypothesis tests, to detect outliers, and to choose response trans...
Edwards, Harold M
1995-01-01
In his new undergraduate textbook, Harold M Edwards proposes a radically new and thoroughly algorithmic approach to linear algebra Originally inspired by the constructive philosophy of mathematics championed in the 19th century by Leopold Kronecker, the approach is well suited to students in the computer-dominated late 20th century Each proof is an algorithm described in English that can be translated into the computer language the class is using and put to work solving problems and generating new examples, making the study of linear algebra a truly interactive experience Designed for a one-semester course, this text adopts an algorithmic approach to linear algebra giving the student many examples to work through and copious exercises to test their skills and extend their knowledge of the subject Students at all levels will find much interactive instruction in this text while teachers will find stimulating examples and methods of approach to the subject
Energy Technology Data Exchange (ETDEWEB)
Castells, Cecilia B.; Reta, Mario R
2003-07-17
Principal component analysis (PCA) was used to extract the number of factors which can describe the 737 gas-liquid partition coefficients of five linear, four branched, and two cyclic alkanes in 67 common solvents. Based on the reconstruction of partition coefficient data matrix, we concluded that the experimental dataset could readily be reduced to two relevant factors. Using only these two factors, there were no errors larger than 3%, 7 cases had errors larger than 2%, and in 34 cases, errors were between 1 and 2%. n-Hexane and ethylcyclohexane were chosen as the test factors, and all other partition coefficients were expressed in terms of these two test factors. Prediction of the logarithmic partition coefficient of these alkanes in seven chemically different solvents, which were originally excluded from the data matrix, was excellent: the root mean square error was 0.064, only in 11 cases the errors were larger than 1%, and only 3 had errors larger than 4%. Linear solvation energy relationships (LSERs) using both theoretical and empirical solvent parameters were used to explain the molecular interactions responsible for partition. Several combinations of parameters were tried but the standard deviations were not less than 0.31. This could be attributed to the model itself, imprecisions in the data matrix or in some of the LSER parameters. Solvent cohesive parameters and surface tension in combination with polarity-polarizability or dispersion parameters perform the best. Finally, the two principal component factors were rotated onto the most relevant physicochemical parameters that control the gas-liquid partitioning phenomena.
International Nuclear Information System (INIS)
Francois, P.
1996-01-01
We undertook a study programme at the end of 1991. To start with, we performed some exploratory studies aimed at learning some preliminary lessons on this type of analysis: Assessment of the interest of probabilistic incident analysis; possibility of using PSA scenarios; skills and resources required. At the same time, EPN created a working group whose assignment was to define a new approach for analysis of incidents on NPPs. This working group gave thought to both aspects of Operating Feedback that EPN wished to improve: Analysis of significant incidents; analysis of potential consequences. We took part in the work of this group, and for the second aspects, we proposed a method based on an adaptation of the event-tree method in order to establish a link between existing PSA models and actual incidents. Since PSA provides an exhaustive database of accident scenarios applicable to the two most common types of units in France, they are obviously of interest for this sort of analysis. With this method we performed some incident analyses, and at the same time explores some methods employed abroad, particularly ASP (Accident Sequence Precursor, a method used by the NRC). Early in 1994 EDF began a systematic analysis programme. The first, transient phase will set up methods and an organizational structure. 7 figs
Romano, F; Cirrone, G A P; Cuttone, G; Rosa, F Di; Mazzaglia, S E; Petrovic, I; Fira, A Ristic; Varisano, A
2014-06-21
Fluence, depth absorbed dose and linear energy transfer (LET) distributions of proton and carbon ion beams have been investigated using the Monte Carlo code Geant4 (GEometry ANd Tracking). An open source application was developed with the aim to simulate two typical transport beam lines, one used for ocular therapy and cell irradiations with protons and the other for cell irradiations with carbon ions. This tool allows evaluation of the primary and total dose averaged LET and predict their spatial distribution in voxelized or sliced geometries. In order to reproduce the LET distributions in a realistic way, and also the secondary particles' contributions due to nuclear interactions were considered in the computations. Pristine and spread-out Bragg peaks were taken into account both for proton and carbon ion beams, with the maximum energy of 62 MeV/n. Depth dose distributions were compared with experimental data, showing good agreement. Primary and total LET distributions were analysed in order to study the influence of contributions of secondary particles in regions at different depths. A non-negligible influence of high-LET components was found in the entrance channel for proton beams, determining the total dose averaged LET by the factor 3 higher than the primary one. A completely different situation was obtained for carbon ions. In this case, secondary particles mainly contributed in the tail that is after the peak. The results showed how the weight of light and heavy secondary ions can considerably influence the computation of LET depth distributions. This has an important role in the interpretation of results coming from radiobiological experiments and, therefore, in hadron treatment planning procedures.
Directory of Open Access Journals (Sweden)
Kwon Joong Yong
2016-05-01
Full Text Available Radiolabeled antibodies (mAbs provide efficient tools for cancer therapy. The combination of low energy β−-emissions (500 keVmax; 130 keVave along with a γ-emission for imaging makes 177Lu (T1/2 = 6.7 day a suitable radionuclide for radioimmunotherapy (RIT of tumor burdens possibly too large to treat with α-particle radiation. RIT with 177Lu-trastuzumab has proven to be effective for treatment of disseminated HER2 positive peritoneal disease in a pre-clinical model. To elucidate mechanisms originating from this RIT therapy at the molecular level, tumor bearing mice (LS-174T intraperitoneal xenografts were treated with 177Lu-trastuzumab comparatively to animals treated with a non-specific control, 177Lu-HuIgG, and then to prior published results obtained using 212Pb-trastuzumab, an α-particle RIT agent. 177Lu-trastuzumab induced cell death via DNA double strand breaks (DSB, caspase-3 apoptosis, and interfered with DNA-PK expression, which is associated with the repair of DNA non-homologous end joining damage. This contrasts to prior results, wherein 212Pb-trastuzumab was found to down-regulate RAD51, which is involved with homologous recombination DNA damage repair. 177Lu-trastuzumab therapy was associated with significant chromosomal disruption and up-regulation of genes in the apoptotic process. These results suggest an inhibition of the repair mechanism specific to the type of radiation damage being inflicted by either high or low linear energy transfer radiation. Understanding the mechanisms of action of β−- and α-particle RIT comparatively through an in vivo tumor environment offers real information suitable to enhance combination therapy regimens involving α- and β−-particle RIT for the management of intraperitoneal disease.
Greinert, R; Harder, D
1997-06-01
Experimental data for the induction of dicentric chromosomes in phytohemagglutinin (PHA)-stimulated human T lymphocytes by 241Am alpha-particles obtained by Schmid et al. have been analyzed in the light of biophysical theory. As usual in experiments with alpha-particles, the relative variance of the intercellular distribution of the number of aberrations per cell exceeds unity, and the multiplicity of the aberrations per particle traversal through the cell is understood as the basic effect causing this overdispersion. However, the clearly expressed dose dependence of the relative variance differs from the dose-independent relative variance predicted by the multiplicity effect alone. Since such dose dependence is often observed in experiments with alpha-particles, protons, and high-energy neutrons, the interpretation of the overdispersion needs to be supplemented. In a new, more general statistical model, the distribution function of the number of aberrations is interpreted as resulting from the convolution of a Poisson distribution for the spontaneous aberrations with the overdispersed distributions for the aberrations caused by intratrack or intertrack lesion interaction, and the fluctuation of the cross-sectional area of the cellular chromatin must also be considered. Using a suitable mathematical formulation of the resulting dose-dependent over-dispersion, the mean number lambda 1 of the aberrations produced by a single particle traversal through the cell nucleus and the mean number lambda 2 of the aberrations per pairwise approach between two alpha-particle tracks could be estimated. Coefficient alpha of the dose-proportional yield component, when compared between 241Am alpha-particle irradiation and 137Cs gamma-ray exposure, is found to increase approximately in proportion to dose-mean restricted linear energy transfer, which indicates an underlying pairwise molecular lesion interaction on the nanometer scale.
Heavy mesons production study in the reaction antip + d → 3He+X at an incident energy of 1450 MeV
International Nuclear Information System (INIS)
Loireleux, E.
1990-02-01
Study of heavy meson production in the antip + d → 3 He + X reaction has been performed at the Laboratoire National Saturne synchrotron at 1450 MeV incident energy. The helium 3 particles have been detected by means of the SPES III spectrometer in an angular range between -0.2 0 and 21 0 and for momenta between 600 MeV/c and 1400 MeV/c. In the first part of this work, we give a summary of the different experimental and theoretical results already obtained on the subject during the last twenty years. The second part of this thesis is devoted to the description of the experimental set-up by which this experiment was conducted, that is the spectrometer, the two kinds of wires chambers, the trigger and the read-out electronics associated with each detector. The calibration of the different parts of the detection and the beam characteristics - intensity and polarization - is studied in the third part. There is also a discussion about the data reduction and then the extraction of results obtained with the help of two and three pion phase spaces simulations in the spectrometer. The results are presented in the last part of this work. The differential cross sections and the analyzing powers have been established for the centre of mass angles varying in step of 10 degrees for the mesons π 0 , η and ω. A conclusion which indicates the prospects for a near future closes this thesis [fr
Keehan, S; Taylor, M L; Smith, R L; Dunn, L; Kron, T; Franich, R D
2016-12-01
Production of radioisotopes in medical linear accelerators (linacs) is of concern when the beam energy exceeds the threshold for the photonuclear interaction. Staff and patients may receive a radiation dose as a result of the induced radioactivity in the linac. Gamma-ray spectroscopy was used to identify the isotopes produced following the delivery of 18 MV photon beams from a Varian 21EX and an Elekta Synergy. The prominent radioisotopes produced include 187 W, 63 Zn, 56 Mn, 24 Na and 28 Al in both linac models. The dose rate was measured at the beam exit window (12.6 µSv in the first 10 min) following 18 MV total body irradiation (TBI) beams. For a throughput of 24 TBI patients per year, staff members are estimated to receive an annual dose of up to 750 μSv at the patient location. This can be further reduced to 65 μSv by closing the jaws before re-entering the treatment bunker. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
International Nuclear Information System (INIS)
Li, Mei-syue; Wu, Siang Chen; Shih, Yang-hsin
2016-01-01
Highlights: • LSER equations successfully predicted VOC sorption on MCNT at different humidity. • The five parameters in LSER could be narrowed down to three ones. • Main interaction is dispersion and partly dipolarity as well as hydrogen-bonds. • With increasing RH, it changes to cavity formation and hydrogen-bond basicity. • This approach can facilitate the VOC control design and the fate prediction. - Abstract: Multiwall carbon nanotubes (MWCNTs) have been used as an adsorbent for evaluating the gas/solid partitioning of selected volatile organic compounds (VOCs). In this study, 15 VOCs were probed to determine their gas/solid partitioning coefficient (Log K d ) using inverse gas chromatography at different relative humidity (RH) levels. Interactions between MWCNTs and VOCs were analyzed by regressing the observed Log K d with the linear solvation energy relationship (LSER). The results demonstrate that the MWCNT carbonyl and carboxyl groups provide high adsorption capacity for the VOCs (Log K d 3.72–5.24 g/kg/g/L) because of the π-/n-electron pair interactions and hydrogen-bond acidity. The increasing RH gradually decreased the Log K d and shifted the interactions to dipolarity/polarizability, hydrogen-bond basicity, and cavity formation. The derived LSER equations provided adequate fits of Log K d , which is useful for VOC-removal processes and fate prediction of VOC contaminants by MWCNT adsorption in the environment.
Li, Jie; Sun, Jin; Cui, Shengmiao; He, Zhonggui
2006-11-03
Linear solvation energy relationships (LSERs) amended by the introduction of a molecular electronic factor were employed to establish quantitative structure-retention relationships using immobilized artificial membrane (IAM) chromatography, in particular ionizable solutes. The chromatographic indices, log k(IAM), were determined by HPLC on an IAM.PC.DD2 column for 53 structurally diverse compounds, including neutral, acidic and basic compounds. Unlike neutral compounds, the IAM chromatographic retention of ionizable compounds was affected by their molecular charge state. When the mean net charge per molecule (delta) was introduced into the amended LSER as the sixth variable, the LSER regression coefficient was significantly improved for the test set including ionizable solutes. The delta coefficients of acidic and basic compounds were quite different indicating that the molecular electronic factor had a markedly different impact on the retention of acidic and basic compounds on IAM column. Ionization of acidic compounds containing a carboxylic group tended to impair their retention on IAM, while the ionization of basic compounds did not have such a marked effect. In addition, the extra-interaction with the polar head of phospholipids might cause a certain change in the retention of basic compounds. A comparison of calculated and experimental retention indices suggested that the semi-empirical LSER amended by the addition of a molecular electronic factor was able to reproduce adequately the experimental retention factors of the structurally diverse solutes investigated.
Taraba, Lukáš; Křížek, Tomáš; Hodek, Ondřej; Kalíková, Květa; Coufal, Pavel
2017-02-01
A polyaniline coating was used to modify the surface of bare silica gel and octadecyl silica stationary phases to characterize the properties of altered materials. It was assumed that the mixed-mode retention was established on the basis of the polyaniline chemical structure and its combination with the original sorbents. Polyaniline was deposited onto the original surfaces during the chemical polymerization of aniline hydrochloride. The prepared materials were slurry packed into capillary columns and systematic chromatographic characterization was performed using the linear solvation energy relationship, also employing descriptors that allow inclusion of ionic interactions in the proposed retention mechanism. The retention times of 80 solutes with various chemical structures were measured in the hydrophilic interaction liquid chromatography mode. The obtained results demonstrated the significant contribution of the polyaniline coating to the retention mechanism under the given conditions; the assumed mixed-mode retention was confirmed. The dominant retention interaction for both modified stationary phases was based on the protonation of nitrogen atoms in the polyaniline structure, leading to suitable retention and selectivity for the hydrophilic analytes, especially anionic and zwitterionic species. Thus, especially, the polyaniline-coated bare silica gel sorbent seems to be promising for potential applications related to the separation of polar compounds. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Karloff, Howard
1991-01-01
To this reviewer’s knowledge, this is the first book accessible to the upper division undergraduate or beginning graduate student that surveys linear programming from the Simplex Method…via the Ellipsoid algorithm to Karmarkar’s algorithm. Moreover, its point of view is algorithmic and thus it provides both a history and a case history of work in complexity theory. The presentation is admirable; Karloff's style is informal (even humorous at times) without sacrificing anything necessary for understanding. Diagrams (including horizontal brackets that group terms) aid in providing clarity. The end-of-chapter notes are helpful...Recommended highly for acquisition, since it is not only a textbook, but can also be used for independent reading and study. —Choice Reviews The reader will be well served by reading the monograph from cover to cover. The author succeeds in providing a concise, readable, understandable introduction to modern linear programming. —Mathematics of Computing This is a textbook intend...
Cortés-Giraldo, M A; Carabe, A
2015-04-07
We compare unrestricted dose average linear energy transfer (LET) maps calculated with three different Monte Carlo scoring methods in voxelized geometries irradiated with proton therapy beams with three different Monte Carlo scoring methods. Simulations were done with the Geant4 (Geometry ANd Tracking) toolkit. The first method corresponds to a step-by-step computation of LET which has been reported previously in the literature. We found that this scoring strategy is influenced by spurious high LET components, which relative contribution in the dose average LET calculations significantly increases as the voxel size becomes smaller. Dose average LET values calculated for primary protons in water with voxel size of 0.2 mm were a factor ~1.8 higher than those obtained with a size of 2.0 mm at the plateau region for a 160 MeV beam. Such high LET components are a consequence of proton steps in which the condensed-history algorithm determines an energy transfer to an electron of the material close to the maximum value, while the step length remains limited due to voxel boundary crossing. Two alternative methods were derived to overcome this problem. The second scores LET along the entire path described by each proton within the voxel. The third followed the same approach of the first method, but the LET was evaluated at each step from stopping power tables according to the proton kinetic energy value. We carried out microdosimetry calculations with the aim of deriving reference dose average LET values from microdosimetric quantities. Significant differences between the methods were reported either with pristine or spread-out Bragg peaks (SOBPs). The first method reported values systematically higher than the other two at depths proximal to SOBP by about 15% for a 5.9 cm wide SOBP and about 30% for a 11.0 cm one. At distal SOBP, the second method gave values about 15% lower than the others. Overall, we found that the third method gave the most consistent
Jaworski, N W; Liu, D W; Li, D F; Stein, H H
2016-07-01
. The DE, ME, and NE of wheat bran determined using the difference procedure were 2,168, 2,117, and 896 kcal/kg, respectively, and these values were within the 95% confidence interval of the DE (2,285 kcal/kg), ME (2,217 kcal/kg), and NE (961 kcal/kg) estimated by linear regression. In conclusion, increasing the inclusion of wheat bran in a corn-soybean meal based diet reduced energy and nutrient digestibility and heat production as well as DE, ME, and NE of diets, but values for DE, ME, and NE for wheat bran determined using the difference procedure were not different from values determined using linear regression.
Bourlès, Henri
2013-01-01
Linear systems have all the necessary elements (modeling, identification, analysis and control), from an educational point of view, to help us understand the discipline of automation and apply it efficiently. This book is progressive and organized in such a way that different levels of readership are possible. It is addressed both to beginners and those with a good understanding of automation wishing to enhance their knowledge on the subject. The theory is rigorously developed and illustrated by numerous examples which can be reproduced with the help of appropriate computation software. 60 exe
DEFF Research Database (Denmark)
Andersen, O. Krogh
1975-01-01
Two approximate methods for solving the band-structure problem in an efficient and physically transparent way are presented and discussed in detail. The variational principle for the one-electron Hamiltonian is used in both schemes, and the trial functions are linear combinations of energy......-independent augmented plane waves (APW) and muffin-tin orbitals (MTO), respectively. The secular equations are therefore eigenvalue equations, linear in energy. The trial functions are defined with respect to a muffin-tin (MT) potential and the energy bands depend on the potential in the spheres through potential...... parameters which describe the energy dependence of the logarithmic derivatives. Inside the spheres, the energy-independent APW is that linear combination of an exact solution, at the arbitrary but fixed energy Eν, and its energy derivative which matches continuously and differentiably onto the plane...
Radiation incidents in dentistry
International Nuclear Information System (INIS)
Lovelock, D.J.
1996-01-01
Most dental practitioners act as their own radiographer and radiologist, unlike their medical colleagues. Virtually all dental surgeons have a dental X-ray machine for intraoral radiography available to them and 40% of dental practices have equipment for dental panoramic tomography. Because of the low energy of X-ray equipment used in dentistry, radiation incidents tend to be less serious than those associated with other aspects of patient care. Details of 47 known incidents are given. The advent of the 1985 and 1988 Ionising Radiation Regulations has made dental surgeons more aware of the hazards of radiation. These regulations, and general health and safety legislation, have led to a few dental surgeons facing legal action. Because of the publicity associated with these court cases, it is expected that there will be a decrease in radiation incidents arising from the practice of dentistry. (author)
Directory of Open Access Journals (Sweden)
sariano ferni
2017-07-01
Full Text Available Background: Background: Intraoral radiography use some lower LET (Linear Energy Transfer and could penetrate submandibular salivary gland. Radiography have negative impact which is decrease catalase enzyme of human body. Brown algae (Sargassum sp. has a flavonoid antioxidant, polysaccharides as Fucoidan and alginat (Na-alginat can be used for immunomodulator, antioxidative and activation modulation of immune. Purpose: To knowing effectiveness of brown algae (Sargassum sp. on activity catalase enzyme submandibular salivary gland Rattus Novergicus strain Wistar with irradiation low LET. Material and Methods: 28 samples of Rattus Novergicus strain Wistar, weight 200gr, age 2-3months, gender male, sample divide into 4 groups, K1 (control with brown algae dosage 0,018mg/kgbw K2 (use brown algae and irradiation 4 times, K3 (use brown algae and irradiation 8 times, K4 (use brown algae and irradiation 14 times. Brown algae been given 7days before apply irradiotion on day 8, then did euthanasia and took submandibular salivary gland. After that did measurement activity of catalase enzyme and counted by spectrophotometer with 240 λ. Result: Data were analyze by Shapiro-wilk, One Way ANOVA and Bonferroni. The activity of catalase enzyme have increased; 0,2586 ± 0,1050 (K1, 0,2595 ± 0,0630 (K2, 0,3252 ± 0,1663 (K3, 0,3668 ± 0,0852 (K4 but theres no significant differences activity of catalase enzyme between one group to other group. Conclusion: Brown algae dosage 0,018mg/kgbw can’t increase activity of catalase enzyme on Rattus Novergicus strain Wistar.
Tom, Nathan
2015-01-01
To further maximize power absorption in both regular and irregular ocean wave environments, nonlinear-model-predictive control (NMPC) was applied to a model-scale point absorber developed at the University of California Berkeley, Berkeley, CA, USA. The NMPC strategy requires a power-takeoff (PTO) unit that could be turned on and off, as the generator would be inactive for up to 60% of the wave period. To confirm the effectiveness of this NMPC strategy, an in-house-designed permanent magnet linear generator (PMLG) was chosen as the PTO. The time-varying performance of the PMLG was first characterized by dry-bench tests, using mechanical relays to control the electromagnetic conversion process. The on/off sequencing of the PMLG was tested under regular and irregular wave excitation to validate NMPC simulations using control inputs obtained from running the choice optimizer offline. Experimental results indicate that successful implementation was achieved and absorbed power using NMPC was up to 50% greater than the passive system, which utilized no controller. Previous investigations into MPC applied to wave energy converters have lacked the experimental results to confirm the reported gains in power absorption. However, after considering the PMLG mechanical-to-electrical conversion efficiency, the electrical power output was not consistently maximized. To improve output power, a mathematical relation between the efficiency and damping magnitude of the PMLG was inserted in the system model to maximize the electrical power output through continued use of NMPC which helps separate this work from previous investigators. Of significance, results from latter simulations provided a damping time series that was active over a larger portion of the wave period requiring the actuation of the applied electrical load, rather than on/off control.
Energy Technology Data Exchange (ETDEWEB)
Pirlepesov, F.; Shin, J.; Moskvin, V. P.; Gray, J.; Hua, C.; Gajjar, A.; Krasin, M. J.; Merchant, T. E.; Farr, J. B. [St. Jude Children’s Research Hospital, Memphis, TN (United States); Li, Z. [University of Florida Proton Therapy Institute, Jacksonville, FL (United States)
2015-06-15
Purpose: Dose weighted Linear Energy Transfer (LETd) analysis of critical structures may be useful in understanding the side effects of the proton therapy. The objective is to analyze the differences between LETd and dose distributions in brain tumor patients receiving double scattering proton therapy, to quantify LETd variation in critical organs, and to identify beam arrangements contributing to high LETd in critical organs. Methods: Monte Carlo simulations of 9 pediatric brain tumor patients were performed. The treatment plans were reconstructed with the TOPAS Monte Carlo code to calculate LETd and dose. The beam data were reconstructed proximal to the aperture of the double scattering nozzle. The dose and LETd to target and critical organs including brain stem, optic chiasm, lens, optic nerve, pituitary gland, and hypothalamus were computed for each beam. Results: Greater variability in LETd compared to dose was observed in the brainstem for patients with a variety of tumor types including 5 patients with tumors located in the posterior fossa. Approximately 20%–44% brainstem volume received LETd of 5kev/µm or greater from beams within gantry angles 180°±30° for 5 patients treated with a 3 beam arrangement. Critical organs received higher LETd when located in the vicinity of the beam distal edge. Conclusion: This study presents a novel strategy in the evaluation of the proton treatment impact on critical organs. While the dose to critical organs is confined below the required limits, the LETd may have significant variation. Critical organs in the vicinity of beam distal edge receive higher LETd and depended on beam arrangement, e.g. in posterior fossa tumor treatment, brainstem receive higher LETd from posterior-anterior beams. This study shows importance of the LETd analysis of the radiation impact on the critical organs in proton therapy and may be used to explain clinical imaging observations after therapy.
Panagopoulos, Dimitri; Jahnke, Annika; Kierkegaard, Amelie; MacLeod, Matthew
2015-10-20
The sorption of cyclic volatile methyl siloxanes (cVMS) to organic matter has a strong influence on their fate in the aquatic environment. We report new measurements of the partition ratios between freshwater sediment organic carbon and water (KOC) and between Aldrich humic acid dissolved organic carbon and water (KDOC) for three cVMS, and for three polychlorinated biphenyls (PCBs) that were used as reference chemicals. Our measurements were made using a purge-and-trap method that employs benchmark chemicals to calibrate mass transfer at the air/water interface in a fugacity-based multimedia model. The measured log KOC of octamethylcyclotetrasiloxane (D4), decamethylcyclopentasiloxane (D5), and dodecamethylcyclohexasiloxane (D6) were 5.06, 6.12, and 7.07, and log KDOC were 5.05, 6.13, and 6.79. To our knowledge, our measurements for KOC of D6 and KDOC of D4 and D6 are the first reported. Polyparameter linear free energy relationships (PP-LFERs) derived from training sets of empirical data that did not include cVMS generally did not predict our measured partition ratios of cVMS accurately (root-mean-squared-error (RMSE) for logKOC 0.76 and for logKDOC 0.73). We constructed new PP-LFERs that accurately describe partition ratios for the cVMS as well as for other chemicals by including our new measurements in the existing training sets (logKOC RMSEcVMS: 0.09, logKDOC RMSEcVMS: 0.12). The PP-LFERs we have developed here should be further evaluated and perhaps recalibrated when experimental data for other siloxanes become available.
International Nuclear Information System (INIS)
Da Rocha, C.A.; Wilets, L.
1997-01-01
Complex mass poles, or ghost poles, are present in the Hartree-Fock solution of the Schwinger-Dyson equation for the nucleon propagator in renormalizable models with Yukawa-type meson-nucleon couplings, as shown many years ago by Brown, Puff and Wilets (BPW). These ghosts violate basic theorems of quantum field theory and their origin is related to the ultraviolet behavior of the model interactions. Recently, Krein et.al, proved that the ghosts disappear when vertex corrections are included in a self-consistent way, softening the interaction sufficiently in the ultraviolet region. In previous studies of πN scattering using ''dressed'' nucleon propagator and bare vertices, did by Nutt and Wilets in the 70's (NW), it was found that if these poles are explicitly included, the value of the isospin-even amplitude A (+) is satisfied within 20% at threshold. The absence of a theoretical explanation for the ghosts and the lack of chiral symmetry in these previous studies led us to re-investigate the subject using the approach of the linear σ-model and study the interplay of low-energy theorems for πN scattering and ghost poles. For bare interaction vertices we find that ghosts are present in this model as well and that the A (+) value is badly described. As a first approach to remove these complex poles, we dress the vertices with phenomenological form factors and a reasonable agreement with experiment is achieved. In order to fix the two cutoff parameters, we use the A (+) value for the chiral limit (m π →0) and the experimental value of the isoscalar scattering length. Finally, we test our model by calculating the phase shifts for the S waves and we find a good agreement at threshold. (orig.)
Rifai, Eko Aditya; van Dijk, Marc; Vermeulen, Nico P. E.; Geerke, Daan P.
2018-01-01
Computational protein binding affinity prediction can play an important role in drug research but performing efficient and accurate binding free energy calculations is still challenging. In the context of phase 2 of the Drug Design Data Resource (D3R) Grand Challenge 2 we used our automated eTOX ALLIES approach to apply the (iterative) linear interaction energy (LIE) method and we evaluated its performance in predicting binding affinities for farnesoid X receptor (FXR) agonists. Efficiency was obtained by our pre-calibrated LIE models and molecular dynamics (MD) simulations at the nanosecond scale, while predictive accuracy was obtained for a small subset of compounds. Using our recently introduced reliability estimation metrics, we could classify predictions with higher confidence by featuring an applicability domain (AD) analysis in combination with protein-ligand interaction profiling. The outcomes of and agreement between our AD and interaction-profile analyses to distinguish and rationalize the performance of our predictions highlighted the relevance of sufficiently exploring protein-ligand interactions during training and it demonstrated the possibility to quantitatively and efficiently evaluate if this is achieved by using simulation data only.
Rifai, Eko Aditya; van Dijk, Marc; Vermeulen, Nico P E; Geerke, Daan P
2018-01-01
Computational protein binding affinity prediction can play an important role in drug research but performing efficient and accurate binding free energy calculations is still challenging. In the context of phase 2 of the Drug Design Data Resource (D3R) Grand Challenge 2 we used our automated eTOX ALLIES approach to apply the (iterative) linear interaction energy (LIE) method and we evaluated its performance in predicting binding affinities for farnesoid X receptor (FXR) agonists. Efficiency was obtained by our pre-calibrated LIE models and molecular dynamics (MD) simulations at the nanosecond scale, while predictive accuracy was obtained for a small subset of compounds. Using our recently introduced reliability estimation metrics, we could classify predictions with higher confidence by featuring an applicability domain (AD) analysis in combination with protein-ligand interaction profiling. The outcomes of and agreement between our AD and interaction-profile analyses to distinguish and rationalize the performance of our predictions highlighted the relevance of sufficiently exploring protein-ligand interactions during training and it demonstrated the possibility to quantitatively and efficiently evaluate if this is achieved by using simulation data only.
Reduction of Linear Programming to Linear Approximation
Vaserstein, Leonid N.
2006-01-01
It is well known that every Chebyshev linear approximation problem can be reduced to a linear program. In this paper we show that conversely every linear program can be reduced to a Chebyshev linear approximation problem.
Requia, Weeberb J; Adams, Matthew D; Koutrakis, Petros
2017-04-15
Numerous studies have reported an association between fine particulate matter (PM 2.5 ) and human health. Often these relationships are influenced by environmental factor that varies spatially and/or temporally. To our knowledge, there are no studies in Canada that have considered energy generation and fuel sales as PM 2.5 effects modifiers. Determining exposure and disease-specific risk factors over space and time is crucial for disease prevention and control. In this study, we evaluated the association of PM 2.5 with diabetes, asthma, and High Blood Pressure (HBP) incidence in Canada. Then we explored the impact of the energy generation and fuel sales on association changes. We fit an age-period-cohort as the study design, and we applied an over-dispersed Poisson regression model to estimate the risk. We conducted a sensitivity analysis to explore the impact of variation in clean energy rates and fuel sales on outcomes changes. The study included 117 health regions in Canada between 2007 and 2014. Our findings showed strong association of PM 2.5 with diabetes, asthma, and HBP incidence. A two-year increase of 10μg/m 3 in PM 2.5 was associated with an increased risk of 5.34% (95% CI: 2.28%; 12.53%) in diabetes incidence, 2.24% (95% CI: 0.93%; 5.38%) in asthma incidence, and 8.29% (95% CI: 3.44%; 19.98%) in HBP incidence. Our sensitivity analysis findings suggest higher risks of diabetes, asthma and HBP incidence when there is low clean energy generation. On the other hand, we found lower risk when we considered high rate of clean energy generation. For example, considering only diabetes incidence, we found that the risk in health regions with low rates of clean electricity is approximately 700% higher than the risk in health regions with high rates of clean electricity. Furthermore, our analysis suggested that the risk in regions with low fuel sales is 66% lower than the risk is health regions with low rates of clean electricity. Our study provides support for
Energy Technology Data Exchange (ETDEWEB)
Sharpe, Robin Arthur; Kingsep, Alexander S. (Kurchatov Institute, Moscow, Russia); Smith, David Lewis; Olson, Craig Lee; Ottinger, Paul F. (Naval Research Laboratory, Washington, DC); Schumer, Joseph Wade (Naval Research Laboratory, Washington, DC); Welch, Dale Robert (Voss Scientific, Albuquerque, NM); Kim, Alexander (High Currents Institute, Tomsk, Russia); Kulcinski, Gerald L. (University of Wisconsin, Madison, WI); Kammer, Daniel C. (University of Wisconsin, Madison, WI); Rose, David Vincent (Voss Scientific, Albuquerque, NM); Nedoseev, Sergei L. (Kurchatov Institute, Moscow, Russia); Pointon, Timothy David; Smirnov, Valentin P. (Kurchatov Institute, Moscow, Russia); Turgeon, Matthew C.; Kalinin, Yuri G. (Kurchatov Institute, Moscow, Russia); Bruner, Nichelle " Nicki" (Voss Scientific, Albuquerque, NM); Barkey, Mark E. (University of Alabama, Tuscaloosa, AL); Guthrie, Michael (University of Wisconsin, Madison, WI); Thoma, Carsten (Voss Scientific, Albuquerque, NM); Genoni, Tom C. (Voss Scientific, Albuquerque, NM); Langston, William L.; Fowler, William E.; Mazarakis, Michael Gerrassimos
2007-01-01
Z-Pinch Inertial Fusion Energy (Z-IFE) complements and extends the single-shot z-pinch fusion program on Z to a repetitive, high-yield, power plant scenario that can be used for the production of electricity, transmutation of nuclear waste, and hydrogen production, all with no CO{sub 2} production and no long-lived radioactive nuclear waste. The Z-IFE concept uses a Linear Transformer Driver (LTD) accelerator, and a Recyclable Transmission Line (RTL) to connect the LTD driver to a high-yield fusion target inside a thick-liquid-wall power plant chamber. Results of RTL and LTD research are reported here, that include: (1) The key physics issues for RTLs involve the power flow at the high linear current densities that occur near the target (up to 5 MA/cm). These issues include surface heating, melting, ablation, plasma formation, electron flow, magnetic insulation, conductivity changes, magnetic field diffusion changes, possible ion flow, and RTL mass motion. These issues are studied theoretically, computationally (with the ALEGRA and LSP codes), and will work at 5 MA/cm or higher, with anode-cathode gaps as small as 2 mm. (2) An RTL misalignment sensitivity study has been performed using a 3D circuit model. Results show very small load current variations for significant RTL misalignments. (3) The key structural issues for RTLs involve optimizing the RTL strength (varying shape, ribs, etc.) while minimizing the RTL mass. Optimization studies show RTL mass reductions by factors of three or more. (4) Fabrication and pressure testing of Z-PoP (Proof-of-Principle) size RTLs are successfully reported here. (5) Modeling of the effect of initial RTL imperfections on the buckling pressure has been performed. Results show that the curved RTL offers a much greater buckling pressure as well as less sensitivity to imperfections than three other RTL designs. (6) Repetitive operation of a 0.5 MA, 100 kV, 100 ns, LTD cavity with gas purging between shots and automated operation is
Energy Technology Data Exchange (ETDEWEB)
Pinot, Y. [Université de Haute Alsace, Laboratoire Physique et Mécanique Textiles (EA 4365), F-68093 Mulhouse (France); Pac, M.-J., E-mail: marie-jose.pac@uha.fr [Université de Haute Alsace, Laboratoire Physique et Mécanique Textiles (EA 4365), F-68093 Mulhouse (France); Henry, P. [Université de Haute Alsace, Laboratoire Physique et Mécanique Textiles (EA 4365), F-68093 Mulhouse (France); Rousselot, C. [Université de Franche-Comté, FEMTO-ST (UMR CNRS 6174), F-25211 Montbéliard (France); Odarchenko, Ya.I.; Ivanov, D.A. [Université de Haute Alsace, Institut de Science des Matériaux de Mulhouse (UMR 7361 CNRS), F-68093 Mulhouse (France); Ulhaq-Bouillet, C.; Ersen, O. [Université de Strasbourg, Institut de Physique et Chimie des Matériaux de Strasbourg (UMR CNRS 7504), F-67087 Strasbourg (France); Tuilier, M.-H. [Université de Haute Alsace, Laboratoire Physique et Mécanique Textiles (EA 4365), F-68093 Mulhouse (France)
2015-02-27
The properties at different scales of Ti{sub 1−x}Al{sub x}N films deposited by reactive magnetron sputtering from TiAl sintered (S) targets produced by powder metallurgy are compared with those of a set of films previously deposited in the same conditions from mosaic targets (M) made of pure Ti and Al metals. For compositions close to the hcp/fcc transition (around x = 0.6), the friction behaviour, growth directions and organization of crystallized domains are found to be sensitive to the type of target used. The resistance to crack creation is higher for Ti{sub 0.54}Al{sub 0.46}N (S) and Ti{sub 0.38}Al{sub 0.62}N (S) than for Ti{sub 0.50}Al{sub 0.50}N (M) and Ti{sub 0.32}Al{sub 0.68}N (M). From the measurement of mechanical properties, toughness, and wear volumes and from the observation of wear tracks, it is found that films prepared from sintered targets exhibit a better wear resistance. Grazing incidence X-ray diffraction and electron energy loss spectroscopy in Transmission Electronic Microscopy are used to investigate the long- and short-range orders within the films. The morphology of Ti{sub 0.54}Al{sub 0.46}N (S) film can be considered as an array of crystalline domains having reciprocal-space vectors 111 and 200 directed along the meridian but with random in-plane orientation. Ti{sub 0.38}Al{sub 0.62}N (S) Al-rich film presents a random orientation of the crystalline domains whereas Ti{sub 0.32}Al{sub 0.68}N (M) deposited from composite targets exhibits a well-oriented fibrillar structure. The N K-edge Electron Energy Loss Near Edge Spectra are discussed with previous results of Extended X-ray Absorption Fine Structure Spectroscopy, which has evidenced different values of Al–N and Ti–N bond lengths, either octahedral (cubic-like) or tetrahedral (hexagonal-like) within Ti{sub 0.50}Al{sub 0.50}N (M) and Ti{sub 0.32}Al{sub 0.68}N (M) films. For similar compositions, films deposited from sintered alloys contain more nitrogen atoms in octahedral cubic
Ogawa, Yasuhiro
2016-02-25
Most radiation biologists/radiation oncologists have long accepted the concept that the biologic effects of radiation principally involve damage to deoxyribonucleic acid (DNA), which is the critical target, as described in "Radiobiology for the Radiologist", by E.J. Hall and A.J. Giaccia [1]. Although the concepts of direct and indirect effects of radiation are fully applicable to low-LET (linear energy transfer) radioresistant tumor cells/normal tissues such as osteosarcoma cells and chondrocytes, it is believed that radiation-associated damage to DNA does not play a major role in the mechanism of cell death in low-LET radiosensitive tumors/normal tissues such as malignant lymphoma cells and lymphocytes. Hall and Giaccia describe lymphocytes as very radiosensitive, based largely on apoptosis subsequent to irradiation. As described in this review, apoptosis of lymphocytes and lymphoma cells is actually induced by the "hydrogen peroxide (H₂O₂) effect", which I propose in this review article for the first time. The mechanism of lymphocyte death via the H₂O₂ effect represents an ideal model to develop the enhancement method of radiosensitivity for radiation therapy of malignant neoplasms. In terms of imitating the high radiosensitivity of lymphocytes, osteosarcoma cells (representative of low-LET radioresistant cells) might be the ideal model for indicating the conversion of cells from radioresistant to radiosensitive utilizing the H₂O₂ effect. External beam radiation such as X-rays and high-energy electrons for use in modern radiotherapy are generally produced using a linear accelerator. We theorized that when tumors are irradiated in the presence of H₂O₂, the activities of anti-oxidative enzymes such as peroxidases and catalase are blocked and oxygen molecules are produced at the same time via the H₂O₂ effect, resulting in oxidative damage to low-LET radioresistant tumor cells, thereby rendering them highly sensitive to irradiation. In this
Directory of Open Access Journals (Sweden)
Yasuhiro Ogawa
2016-02-01
Full Text Available Most radiation biologists/radiation oncologists have long accepted the concept that the biologic effects of radiation principally involve damage to deoxyribonucleic acid (DNA, which is the critical target, as described in “Radiobiology for the Radiologist”, by E.J. Hall and A.J. Giaccia [1]. Although the concepts of direct and indirect effects of radiation are fully applicable to low-LET (linear energy transfer radioresistant tumor cells/normal tissues such as osteosarcoma cells and chondrocytes, it is believed that radiation-associated damage to DNA does not play a major role in the mechanism of cell death in low-LET radiosensitive tumors/normal tissues such as malignant lymphoma cells and lymphocytes. Hall and Giaccia describe lymphocytes as very radiosensitive, based largely on apoptosis subsequent to irradiation. As described in this review, apoptosis of lymphocytes and lymphoma cells is actually induced by the “hydrogen peroxide (H2O2 effect”, which I propose in this review article for the first time. The mechanism of lymphocyte death via the H2O2 effect represents an ideal model to develop the enhancement method of radiosensitivity for radiation therapy of malignant neoplasms. In terms of imitating the high radiosensitivity of lymphocytes, osteosarcoma cells (representative of low-LET radioresistant cells might be the ideal model for indicating the conversion of cells from radioresistant to radiosensitive utilizing the H2O2 effect. External beam radiation such as X-rays and high-energy electrons for use in modern radiotherapy are generally produced using a linear accelerator. We theorized that when tumors are irradiated in the presence of H2O2, the activities of anti-oxidative enzymes such as peroxidases and catalase are blocked and oxygen molecules are produced at the same time via the H2O2 effect, resulting in oxidative damage to low-LET radioresistant tumor cells, thereby rendering them highly sensitive to irradiation. In this
Energy Technology Data Exchange (ETDEWEB)
Bracalente, Candelaria; Ibañez, Irene L. [Departamento de Micro y Nanotecnología, Comisión Nacional de Energía Atómica, San Martín, Buenos Aires (Argentina); Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires (Argentina); Molinari, Beatriz [Departamento de Radiobiología, Comisión Nacional de Energía Atómica, San Martín, Buenos Aires (Argentina); Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires (Argentina); Palmieri, Mónica [Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires (Argentina); Kreiner, Andrés [Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires (Argentina); Gerencia de Investigación y Aplicaciones, Comisión Nacional de Energía Atómica, San Martín, Buenos Aires (Argentina); Escuela de Ciencia y Tecnología, Universidad Nacional de San Martín, San Martín, Buenos Aires (Argentina); Valda, Alejandro [Escuela de Ciencia y Tecnología, Universidad Nacional de San Martín, San Martín, Buenos Aires (Argentina); and others
2013-11-15
Purpose: To evaluate the cell response to DNA double-strand breaks induced by low and high linear energy transfer (LET) radiations when the catalytic subunit of DNA-dependent protein kinase (DNA-PKcs), an essential protein of the nonhomologous end-joining repair pathway, lacks kinase activity. Methods and Materials: CHO10B2, a Chinese hamster ovary cell line, and its derived radiosensitive mutant cell line, irs-20, lacking DNA-PKcs activity, were evaluated after 0 to 3 Gy of γ-rays, plateau and Bragg peak protons, and lithium beams by clonogenic assay, and as a measurement of double-strand breaks, phosphorylated H2AX (γH2AX) foci number and size were quantified by immunocytofluorescence. Results: Irs-20 exhibited greater radiosensitivity and a higher amount of γH2AX foci than CHO10B2 at 6 hours after irradiation for all types of radiations. Remarkably, CHO10B2 and irs-20 maintained their difference in radiosensitivity after high-LET radiation. Six hours after low-LET radiations, irs-20 did not reach basal levels of γH2AX at high doses, whereas CHO10B2 recovered basal levels for all doses. After high-LET radiation, only CHO10B2 exhibited a reduction in γH2AX foci, but it never reached basal levels. Persistent foci in irs-20 confirmed a repair deficiency. Interestingly, after 30 minutes of high-LET radiation both cell lines exhibited large foci (size >0.9 μm{sup 2}) related to the damage nature, whereas at 6 hours irs-20 showed a higher amount of large foci than CHO10B2, with a 7-fold increase at 3 Gy, that could also be associated to radiosensitivity. Conclusions: We demonstrated, for the first time, an association between deficient DNA-PKcs activity and not only high levels of H2AX phosphorylation but also persistence and size increase of γH2AX foci after high-LET irradiation.
Monzen, Satoru; Yoshino, Hironori; Kasai-Eguchi, Kiyomi; Kashiwakura, Ikuo
2013-01-01
Exposure of hematopoietic stem/progenitor cells (HSPCs) to ionizing radiation causes a marked suppression of mature functional blood cell production in a linear energy transfer (LET)- and/or dose-dependent manner. However, little information about LET effects on the proliferation and differentiation of HSPCs has been reported. With the aim of characterizing the effects of different types of LET radiations on human myeloid hematopoiesis, in vitro hematopoiesis in Human CD34(+) cells exposed to carbon-ion beams or X-rays was compared. Highly purified CD34(+) cells exposed to each form of radiation were plated onto semi-solid culture for a myeloid progenitor assay. The surviving fractions of total myeloid progenitors, colony-forming cells (CFC), exposed to carbon-ion beams were significantly lower than of those exposed to X-rays, indicating that CFCs are more sensitive to carbon-ion beams (D(0) = 0.65) than to X-rays (D(0) = 1.07). Similar sensitivities were observed in granulocyte-macrophage and erythroid progenitors, respectively. However, the sensitivities of mixed-type progenitors to both radiation types were similar. In liquid culture for 14 days, no significant difference in total numbers of mononuclear cells was observed between non-irradiated control culture and cells exposed to 0.5 Gy X-rays, whereas 0.5 Gy carbon-ion beams suppressed cell proliferation to 4.9% of the control, a level similar to that for cells exposed to 1.5 Gy X-rays. Cell surface antigens associated with terminal maturation, such as CD13, CD14, and CD15, on harvest from the culture of X-ray-exposed cells were almost the same as those from the non-irradiated control culture. X-rays increased the CD235a(+) erythroid-related fraction, whereas carbon-ion beams increased the CD34(+)CD38(-) primitive cell fraction and the CD13(+)CD14(+/-)CD15(-) fraction. These results suggest that carbon-ion beams inflict severe damage on the clonal growth of myeloid HSPCs, although the intensity of cell surface
Jelena, Žakula; Lela, Korićanac; Otilija, Keta; Danijela, Todorović; Cirrone Giuseppe, A P; Francesco, Romano; Giacomo, Cuttone; Ivan, Petrović; Aleksandra, Ristić-Fira
2016-05-01
The main goal when treating malignancies with radiation is to deprive tumour cells of their reproductive potential. One approach is to induce tumour cell apoptosis. This study was conducted to evaluate the ability of carbon ions ( [12] C) to induce apoptosis and cell cycle arrest in human HTB140 melanoma cells. In this in vitro study, human melanoma HTB140 cells were irradiated with the 62 MeV/n carbon ( [12] C) ion beam, having two different linear energy transfer (LET) values: 197 and 382 keV/μm. The dose range was 2 to 16 Gy. Cell viability was estimated by the sulforhodamine B assay seven days after irradiation. The cell cycle and apoptosis were evaluated 48 h after irradiation using flow cytometry. At the same time point, protein and gene expression of apoptotic regulators were estimated using the Western blot and q-PCR methods, respectively. Cell viability experiments indicated strong anti-tumour effects of [12] C ions. The analysis of cell cycle showed that [12] C ions blocked HTB140 cells in G2 phase and induced the dose dependent increase of apoptosis. The maximum value of 21.8 per cent was attained after irradiation with LET of 197 keV/μm at the dose level of 16 Gy. Pro-apoptotic effects of [12] C ions were confirmed by changes of key apoptotic molecules: the p53, Bax, Bcl-2, poly ADP ribose polymerase (PARP) as well as nuclear factor kappa B (NFκB). At the level of protein expression, the results indicated significant increases of p53, NFκB and Bax/Bcl-2 ratio and PARP cleavage. The Bax/Bcl-2 mRNA ratio was also increased, while no change was detected in the level of NFκB mRNA. The present results indicated that anti-tumour effects of [12] C ions in human melanoma HTB140 cells were accomplished through induction of the mitochondrial apoptotic pathway as well as G2 arrest.
Energy Technology Data Exchange (ETDEWEB)
Trupin-Wasselin, V
2000-07-11
The effect of ionizing radiations on aqueous solutions leads to water ionization and then to the formation of radical species and molecular products (e{sup -}{sub aq}, H{sup .}, OH{sup .}, H{sub 2}O{sub 2}, H{sub 2}). It has been shown that the stopping power, characterized by the LET value (Linear Energy Transfer) becomes different when the nature of the ionizing radiations is different. Few data are nowadays available for high LET radiations such as protons and high energy heavy ions. These particles have been used to better understand the primary processes in radiation chemistry. The yield of a chemical dosimeter (the Fricke dosimeter) and those of the hydrogen peroxide have been determined for different LET. The effect of the dose rate on the Fricke dosimeter yield and on the H{sub 2}O{sub 2} yield has been studied too. When the dose rate increases, an increase of the molecular products yield is observed. At very high dose rate, this yield decreases on account of the attack of the molecular products by radicals. The H{sub 2}O{sub 2} yield in alkaline medium decreases when the pH reaches 12. This decrease can be explained by a slowing down of the H{sub 2}O{sub 2} formation velocity in alkaline medium. Superoxide radical has also been studied in this work. A new detection method: the time-resolved chemiluminescence has been perfected for this radical. This technique is more sensitive than the absorption spectroscopy. Experiments with heavy ions have allowed to determine the O{sub 2}{sup .-} yield directly in the irradiation cell. The experimental results have been compared with those obtained with a Monte Carlo simulation code. (O.M.)
International Nuclear Information System (INIS)
Meister, F.; Ott, F.
2002-01-01
This chapter gives an overview of the current energy economy in Austria. The Austrian political aims of sustainable development and climate protection imply a reorientation of the Austrian energy policy as a whole. Energy consumption trends (1993-1998), final energy consumption by energy carrier (indexed data 1993-1999), comparative analysis of useful energy demand (1993 and 1999) and final energy consumption of renewable energy sources by sector (1996-1999) in Austria are given. The necessary measures to be taken in order to reduce the energy demand and increased the use of renewable energy are briefly mentioned. Figs. 5. (nevyjel)
Pittavino, M; Dreyfus, A; Heuer, C; Benschop, J; Wilson, P; Collins-Emerson, J; Torgerson, P R; Furrer, R
2017-09-01
Additive Bayesian Network (ABN) is a graphical model which extends Generalized Linear Modelling (GLM) to multiple dependent variables. The present study compares results from GLM with those from ABN analysis used to identify factors associated with Leptospira interrogans sv Pomona (Pomona) infection by exploring the advantages and disadvantages of these two methodologies, to corroborate inferences informing health and safety measures at abattoirs in New Zealand (NZ). In a cohort study in four sheep slaughtering abattoirs in NZ, sera were collected twice a year from 384 meat workers and tested by Microscopic Agglutination with a 91% sensitivity and 94% specificity for Pomona. The study primarily addressed the effect of work position, personal protective equipment (PPE) and non-work related exposures such as hunting on a new infection with Pomona. Significantly associated with Pomona were "Work position" and two "Abattoirs" (GLM), and "Work position" (ABN). The odds of Pomona infection (OR, [95% CI]) was highest at stunning and hide removal (ABN 41.0, [6.9-1044.2]; GLM 57.0, [6.9-473.3]), followed by removal of intestines, bladder, and kidneys (ABN 30.7, [4.9-788.4]; GLM 33.8, [4.2-271.1]). Wearing a facemask, glasses or gloves (PPE) did not result as a protective factor in GLM or ABN. The odds of Pomona infection was highest at stunning and hide removal. PPE did not show any indication of being protective in GLM or ABN. In ABN all relationships between variables are modelled; hence it has an advantage over GLM due to its capacity to capture the natural complexity of data more effectively. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
International Nuclear Information System (INIS)
Meister, F.
2001-01-01
This chapter of the environmental control report deals with the environmental impact of energy production, energy conversion, atomic energy and renewable energy. The development of the energy consumption in Austria for the years 1993 to 1999 is given for the different energy types. The development of the use of renewable energy sources in Austria is given, different domestic heat-systems are compared, life cycles and environmental balance are outlined. (a.n.)
Linear Algebra and Smarandache Linear Algebra
Vasantha, Kandasamy
2003-01-01
The present book, on Smarandache linear algebra, not only studies the Smarandache analogues of linear algebra and its applications, it also aims to bridge the need for new research topics pertaining to linear algebra, purely in the algebraic sense. We have introduced Smarandache semilinear algebra, Smarandache bilinear algebra and Smarandache anti-linear algebra and their fuzzy equivalents. Moreover, in this book, we have brought out the study of linear algebra and vector spaces over finite p...
Design of an intense positron source for linear colliders
International Nuclear Information System (INIS)
Ida, H.; Yamada, K.; Funahashi, Y.
1994-01-01
The Japan Linear Collider (JLC) requires an intense positron source of 8x10 11 particles per rf-pulse. A computer simulation reveals the possibility of such an intense positron source using 'conventional' technology. In order to relax the limitation of the incident electron energy density due to thermal stress in the converter target, the incident beam radius is enlarged within the range so as not to reduce the positron capture efficiency. A pre-damping ring and beam transport system to the pre-damping ring, which have a large transverse acceptance, play important roles for a high capture efficiency. A prototype positron source has been designed and installed at downstream of 1.54 GeV S-band linac in Accelerator Test Facility (ATF) in order to carry out experiments to develop the essential technology for JLC. The simulated results will be tested in experiments with the prototype positron source. (author)
International Nuclear Information System (INIS)
Bondia, Ripsy; Ghosh, Sajal; Kanjilal, Kakali
2016-01-01
Increasing greenhouse gas emissions, exhaustibility and geo-politics induced price volatility of crude oil has magnified the importance of looking for alternative sources of energy. In this paper, we investigate the long term relationship of stock prices of alternative energy companies with oil prices in a multivariate framework. To this end, we use threshold cointegration tests, which endogenously incorporate possible regime shifts in long run relationship of underlying variables. In contrast to the findings of the previous study by Managi and Okimoto (2013), our results indicate presence of cointegration among the variables with two endogenous structural breaks. This study confirms that ignoring the presence of structural breaks in a long time series data, as has been done in previous study, can produce misleading results. In terms of causality, while the stock prices of alternative energy companies are impacted by technology stock prices, oil prices and interest rates in the short run, there is no causality running towards prices of alternative energy stock prices in the long run. The study discusses the possible reasons behind the empirical findings and concludes with a discussion on short run and long run investment opportunities for the investors. - Highlights: • Cointegration between alternative energy companies stock price and oil price. • Threshold cointegration tests are employed. • Cointegration among the variables exists with two endogenous structural breaks. • Alternative energy companies stock price impacted by oil prices in short run. • No causality running towards prices of alternative energy stock prices in long run.
Energy Technology Data Exchange (ETDEWEB)
Drake, D.M.; Auchampaugh, G.F.; Arthur, E.D.; Ragan, C.E.; Young, P.G.
1976-08-01
Beryllium neutron-production cross sections were measured using the time-of-flight technique at incident neutron energies of 5.9, 10.1, and 14.2 MeV, and at laboratory angles of 25, 27.5, 30, 35, 45, 60, 80, 100, 110, 125, and 145/sup 0/. The differential elastic and inelastic cross sections are presented. Inelastic is defined here as those reactions that proceed through the states at 1.69-, 2.43-, 2.8-, and 3.06-MeV excitation energy in /sup 9/Be. Comparison of emission energy spectra with calculations using the ENDF/B-IV beryllium cross sections shows that the ENDF/B cross sections strongly overemphasize the low lying states in /sup 9/Be.
Grazing incidence beam expander
Energy Technology Data Exchange (ETDEWEB)
Akkapeddi, P.R.; Glenn, P.; Fuschetto, A.; Appert, Q.; Viswanathan, V.K.
1985-01-01
A Grazing Incidence Beam Expander (GIBE) telescope is being designed and fabricated to be used as an equivalent end mirror in a long laser resonator cavity. The design requirements for this GIBE flow down from a generic Free Electron Laser (FEL) resonator. The nature of the FEL gain volume (a thin, pencil-like, on-axis region) dictates that the output beam be very small. Such a thin beam with the high power levels characteristic of FELs would have to travel perhaps hundreds of meters or more before expanding enough to allow reflection from cooled mirrors. A GIBE, on the other hand, would allow placing these optics closer to the gain region and thus reduces the cavity lengths substantially. Results are presented relating to optical and mechanical design, alignment sensitivity analysis, radius of curvature analysis, laser cavity stability analysis of a linear stable concentric laser cavity with a GIBE. Fabrication details of the GIBE are also given.
International Nuclear Information System (INIS)
Bobin, J.L.
1996-01-01
Object of sciences and technologies, energy plays a major part in economics and relations between nations. Jean-Louis Bobin, physicist, analyses the relations between man and energy and wonders about fears that delivers nowadays technologies bound to nuclear energy and about the fear of a possible shortage of energy resources. (N.C.). 17 refs., 14 figs., 2 tabs
Linear and non-linear optics of condensed matter
International Nuclear Information System (INIS)
McLean, T.P.
1977-01-01
Part I - Linear optics: 1. General introduction. 2. Frequency dependence of epsilon(ω, k vector). 3. Wave-vector dependence of epsilon(ω, k vector). 4. Tensor character of epsilon(ω, k vector). Part II - Non-linear optics: 5. Introduction. 6. A classical theory of non-linear response in one dimension. 7. The generalization to three dimensions. 8. General properties of the polarizability tensors. 9. The phase-matching condition. 10. Propagation in a non-linear dielectric. 11. Second harmonic generation. 12. Coupling of three waves. 13. Materials and their non-linearities. 14. Processes involving energy exchange with the medium. 15. Two-photon absorption. 16. Stimulated Raman effect. 17. Electro-optic effects. 18. Limitations of the approach presented here. (author)
Wangler, Thomas P
2008-01-01
Thomas P. Wangler received his B.S. degree in physics from Michigan State University, and his Ph.D. degree in physics and astronomy from the University of Wisconsin. After postdoctoral appointments at the University of Wisconsin and Brookhaven National Laboratory, he joined the staff of Argonne National Laboratory in 1966, working in the fields of experimental high-energy physics and accelerator physics. He joined the Accelerator Technology Division at Los Alamos National Laboratory in 1979, where he specialized in high-current beam physics and linear accelerator design and technology. In 2007
Foland, Andrew Dean
2007-01-01
Energy is the central concept of physics. Unable to be created or destroyed but transformable from one form to another, energy ultimately determines what is and isn''t possible in our universe. This book gives readers an appreciation for the limits of energy and the quantities of energy in the world around them. This fascinating book explores the major forms of energy: kinetic, potential, electrical, chemical, thermal, and nuclear.
Contaminated Mexican steel incident
International Nuclear Information System (INIS)
1985-01-01
This report documents the circumstances contributing to the inadvertent melting of cobalt 60 (Co-60) contaminated scrap metal in two Mexican steel foundries and the subsequent distribution of contaminated steel products into the United States. The report addresses mainly those actions taken by US Federal and state agencies to protect the US population from radiation risks associated with the incident. Mexico had much more serious radiation exposure and contamination problems to manage. The United States Government maintained a standing offer to provide technical and medical assistance to the Mexican Government. The report covers the tracing of the source to its origin, response actions to recover radioactive steel in the United States, and return of the contaminated materials to Mexico. The incident resulted in significant radiation exposures within Mexico, but no known significant exposure within the United States. Response to the incident required the combined efforts of the Nuclear Regulatory Commission (NRC), Department of Energy, Department of Transportation, Department of State, and US Customs Service (Department of Treasury) personnel at the Federal level and representatives of all 50 State Radiation Control Programs and, in some instances, local and county government personnel. The response also required a diplomatic interface with the Mexican Government and cooperation of numerous commercial establishments and members of the general public. The report describes the factual information associated with the event and may serve as information for subsequent recommendations and actions by the NRC. 8 figures
Acoustic emission linear pulse holography
Collins, H.D.; Busse, L.J.; Lemon, D.K.
1983-10-25
This device relates to the concept of and means for performing Acoustic Emission Linear Pulse Holography, which combines the advantages of linear holographic imaging and Acoustic Emission into a single non-destructive inspection system. This unique system produces a chronological, linear holographic image of a flaw by utilizing the acoustic energy emitted during crack growth. The innovation is the concept of utilizing the crack-generated acoustic emission energy to generate a chronological series of images of a growing crack by applying linear, pulse holographic processing to the acoustic emission data. The process is implemented by placing on a structure an array of piezoelectric sensors (typically 16 or 32 of them) near the defect location. A reference sensor is placed between the defect and the array.
International Nuclear Information System (INIS)
1976-01-01
This report covers the activity of the Linear Accelerator Laboratory during the period June 1974-June 1976. The activity of the Laboratory is essentially centered on high energy physics. The main activities were: experiments performed with the colliding rings (ACO), construction of the new colliding rings and beginning of the work at higher energy (DCI), bubble chamber experiments with the CERN PS neutrino beam, counter experiments with CERN's PS and setting-up of equipment for new experiments with CERN's SPS. During this period a project has also been prepared for an experiment with the new PETRA colliding ring at Hamburg. On the other hand, intense collaboration with the LURE Laboratory, using the electron synchrotron radiation emitted by ACO and DCI, has been developed [fr
Acoustic emission linear pulse holography
International Nuclear Information System (INIS)
Collins, H.D.; Busse, L.J.; Lemon, D.K.
1983-01-01
This paper describes the emission linear pulse holography which produces a chronological linear holographic image of a flaw by utilizing the acoustic energy emitted during crack growth. A thirty two point sampling array is used to construct phase-only linear holograms of simulated acoustic emission sources on large metal plates. The concept behind the AE linear pulse holography is illustrated, and a block diagram of a data acquisition system to implement the concept is given. Array element spacing, synthetic frequency criteria, and lateral depth resolution are specified. A reference timing transducer positioned between the array and the inspection zone and which inititates the time-of-flight measurements is described. The results graphically illustrate the technique using a one-dimensional FFT computer algorithm (ie. linear backward wave) for an AE image reconstruction
Stansby, Peter; Carpintero Moreno, Efrain; Stallard, Timothy
2017-01-01
The moored three-float line absorber WEC M4 has been developed to optimise power capture through experiments and linear diffraction modelling. With the progression down wave from small to medium to large floats, the device heads naturally into the wave direction. The bow and mid floats are rigidly connected by a beam and a beam from the stern float is connected to the hinge point above the mid float for power take off (PTO). Increasing the bow to mid float spacing to be more than 50% greater ...
International Nuclear Information System (INIS)
Emma, P.
1995-01-01
The Stanford Linear Collider (SLC) is the first and only high-energy e + e - linear collider in the world. Its most remarkable features are high intensity, submicron sized, polarized (e - ) beams at a single interaction point. The main challenges posed by these unique characteristics include machine-wide emittance preservation, consistent high intensity operation, polarized electron production and transport, and the achievement of a high degree of beam stability on all time scales. In addition to serving as an important machine for the study of Z 0 boson production and decay using polarized beams, the SLC is also an indispensable source of hands-on experience for future linear colliders. Each new year of operation has been highlighted with a marked improvement in performance. The most significant improvements for the 1994-95 run include new low impedance vacuum chambers for the damping rings, an upgrade to the optics and diagnostics of the final focus systems, and a higher degree of polarization from the electron source. As a result, the average luminosity has nearly doubled over the previous year with peaks approaching 10 30 cm -2 s -1 and an 80% electron polarization at the interaction point. These developments as well as the remaining identifiable performance limitations will be discussed
Energy Technology Data Exchange (ETDEWEB)
Walter, J.B.; Rebka, G.A. Jr.
1979-03-01
A subroutine, SCATPI, was written which calculates ..pi../sup +/p elastic differential cross sections for incident pion kinetic energies between 90 and 310 MeV for ..pi../sup -/p. The calculation is based upon the phase shift analysis of Carter, Bugg, and Carter, and is reliable to about 2% for ..pi../sup +/p and 3% for ..pi../sup -/p differential cross sections. SCATPI also calculates other scattering parameters for the ..pi..+-p systems. The calculations are compared with the measurements used in the phase shift analysis, and with selected recent measurements. The use of SCATPI is described. 14 figures, 4 tables.
Directory of Open Access Journals (Sweden)
Manoel Garcia Neto
2003-06-01
Full Text Available O objetivo deste trabalho foi verificar a incidência de ascite em avós, matrizes e frangos de corte, de uma mesma linhagem comercial, alimentados com ração de alto nível energético, de um dia a 39 dias de idade. Todas as aves foram criadas como frangos de corte, recebendo ração ad libitum com 3.050 kcal/EM; foram utilizadas aves da linha fêmea e linha macho e frangos de corte. Um total de 2.700 aves foram usadas, alojadas ao acaso em um galpão experimental de 8x76 m, utilizando-se 27 boxes de 3x3,5 m, com 100 aves por divisão, sendo três repetições por tratamento, em esquema fatorial. A incidência de ascite não dependeu da categoria genética das aves.The objective of this work was to verify the incidence of ascites on grand parents, breeders and commercial broilers from the same genetic strain of birds, fed with high energy level ration, from the first day of age to 39 days old. All birds were grown as commercial broilers receiving a ration ad libitum with 3,050 kcal/ME; birds from female line, male line and commercial broilers were tested. A total of 2,700 birds were housed at random in a experimental facility of 8x76 m, with 27 compartments of 3x3.5 m each and 100 birds per division. A factorial design was used with three replications per treatment. The incidence of ascites was not dependent on genetic category.
International Nuclear Information System (INIS)
Capozzoli, Alfonso; Piscitelli, Marco Savino; Neri, Francesco; Grassi, Daniele; Serale, Gianluca
2016-01-01
Highlights: • 100 Healthcare Centres were analyzed to assess energy consumption reference values. • A novel robust methodology for energy benchmarking process was proposed. • A Linear Mixed Effect estimation Model was used to treat heterogeneous datasets. • A nondeterministic approach was adopted to consider the uncertainty in the process. • The methodology was developed to be upgradable and generalizable to other datasets. - Abstract: The current EU energy efficiency directive 2012/27/EU defines the existing building stocks as one of the most promising potential sector for achieving energy saving. Robust methodologies aimed to quantify the potential reduction of energy consumption for large building stocks need to be developed. To this purpose, a benchmarking analysis is necessary in order to support public planners in determining how well a building is performing, in setting credible targets for improving performance or in detecting abnormal energy consumption. In the present work, a novel methodology is proposed to perform a benchmarking analysis particularly suitable for heterogeneous samples of buildings. The methodology is based on the estimation of a statistical model for energy consumption – the Linear Mixed Effects Model –, so as to account for both the fixed effects shared by all individuals within a dataset and the random effects related to particular groups/classes of individuals in the population. The groups of individuals within the population have been classified by resorting to a supervised learning technique. Under this backdrop, a Monte Carlo simulation is worked out to compute the frequency distribution of annual energy consumption and identify a reference value for each group/class of buildings. The benchmarking analysis was tested for a case study of 100 out-patient Healthcare Centres in Northern Italy, finally resulting in 12 different frequency distributions for space and Domestic Hot Water heating energy consumption, one for
Resent advance in electron linear accelerators
International Nuclear Information System (INIS)
Takeda, Seishi; Tsumori, Kunihiko; Takamuku, Setsuo; Okada, Toichi; Hayashi, Koichiro; Kawanishi, Masaharu
1986-01-01
In recently constructed electron linear accelerators, there has been remarkable advance both in acceleration of a high-current single bunch electron beam for radiation research and in generation of high accelerating gradient for high energy accelerators. The ISIR single bunch electron linear accelerator has been modified an injector to increase a high-current single bunch charge up to 67 nC, which is ten times greater than the single bunch charge expected in early stage of construction. The linear collider projects require a high accelerating gradient of the order of 100 MeV/m in the linear accelerators. High-current and high-gradient linear accelerators make it possible to obtain high-energy electron beam with small-scale linear accelerators. The advance in linear accelerators stimulates the applications of linear accelerators not only to fundamental research of science but also to industrial uses. (author)
Robertson, William C
2002-01-01
Confounded by kinetic energy? Suspect that teaching about simple machines isn t really so simple? Exasperated by electricity? If you fear the study of energy is beyond you, this entertaining book will do more than introduce you to the topic. It will help you actually understand it. At the book s heart are easy-to-grasp explanations of energy basics work, kinetic energy, potential energy, and the transformation of energy and energy as it relates to simple machines, heat energy, temperature, and heat transfer. Irreverent author Bill Robertson suggests activities that bring the basic concepts of energy to life with common household objects. Each chapter ends with a summary and an applications section that uses practical examples such as roller coasters and home heating systems to explain energy transformations and convection cells. The final chapter brings together key concepts in an easy-to-grasp explanation of how electricity is generated. Energy is the second book in the Stop Faking It! series published by NS...
DEFF Research Database (Denmark)
Hansen, Ann-Brit E; Gerstoft, Jan; Kronborg, Gitte
2012-01-01
OBJECTIVE:: To compare fracture risk in persons with and without HIV-infection and to examine the influence of HAART initiation on risk of fracture. DESIGN:: Population-based nationwide cohort study using Danish registries. METHODS:: Outcome measures were time to first fracture at any site, time....../HCV-coinfected patients had increased risk of low-energy fracture, IRR of 1.6 (95% CI; 1.4-1.8) and 3.8 (95% CI; 3.0-4.9). However, only HIV/HCV-coinfected patients had increased risk of high-energy fracture, IRR of 2.4 (95 %CI; 2.0-2.9). Among HIV-monoinfected patients the risk of low-energy fracture was only...
Mirmiran, Parvin; Bahadoran, Zahra; Delshad, Hossein; Azizi, Fereidoun
2014-05-01
Increased consumption of energy-dense, nutrient-poor snacks is one of the major, growing concerns in relation to the alarming trend of overweight, obesity, and metabolic disorders worldwide. The aim of this study was to investigate whether consumption of energy-dense snacks could affect the occurrence of metabolic syndrome after 3 y of follow-up in adults. This longitudinal study was conducted within the framework of the Tehran Lipid and Glucose Study between 2006 and 2008 and 2009 and 2011, on 1466 adults, ages 19 to 70 y. The usual intake of participants was measured using a validated semiquantitative food frequency questionnaire at baseline. Biochemical and anthropometric measurements were assessed at baseline and 3 y later. Multiple logistic regression models were used to estimate the occurrence of metabolic syndrome (MetS) in each quartile of energy-dense snacks. Participants in the highest quartile of energy-dense snack consumption were significantly younger (33.8 versus 43.1 y; P consumption of salty snacks increased more than 50% (OR, 1.56; 95% CI, 1.01-2.40). Consumption of soft drinks had a borderline effect on the risk for MetS. More than 361 kcal/d from total energy-dense snacks independently increased the occurrence of MetS in the fourth compared the first quartile category (OR, 1.53; 95% CI, 1.03-2.29). The findings of this study demonstrated that higher consumption of energy-dense snacks could be a dietary risk factor for development of MetS. Copyright © 2014 Elsevier Inc. All rights reserved.
The linear-non-linear frontier for the Goldstone Higgs
International Nuclear Information System (INIS)
Gavela, M.B.; Saa, S.; Kanshin, K.; Machado, P.A.N.
2016-01-01
The minimal SO(5)/SO(4) σ-model is used as a template for the ultraviolet completion of scenarios in which the Higgs particle is a low-energy remnant of some high-energy dynamics, enjoying a (pseudo) Nambu-Goldstone-boson ancestry. Varying the σ mass allows one to sweep from the perturbative regime to the customary non-linear implementations. The low-energy benchmark effective non-linear Lagrangian for bosons and fermions is obtained, determining as well the operator coefficients including linear corrections. At first order in the latter, three effective bosonic operators emerge which are independent of the explicit soft breaking assumed. The Higgs couplings to vector bosons and fermions turn out to be quite universal: the linear corrections are proportional to the explicit symmetry-breaking parameters. Furthermore, we define an effective Yukawa operator which allows a simple parametrization and comparison of different heavy-fermion ultraviolet completions. In addition, one particular fermionic completion is explored in detail, obtaining the corresponding leading low-energy fermionic operators. (orig.)
The linear-non-linear frontier for the Goldstone Higgs
Energy Technology Data Exchange (ETDEWEB)
Gavela, M.B.; Saa, S. [IFT-UAM/CSIC, Universidad Autonoma de Madrid, Departamento de Fisica Teorica y Instituto de Fisica Teorica, Madrid (Spain); Kanshin, K. [Universita di Padova, Dipartimento di Fisica e Astronomia ' G. Galilei' , Padua (Italy); INFN, Padova (Italy); Machado, P.A.N. [IFT-UAM/CSIC, Universidad Autonoma de Madrid, Departamento de Fisica Teorica y Instituto de Fisica Teorica, Madrid (Spain); Fermi National Accelerator Laboratory, Theoretical Physics Department, Batavia, IL (United States)
2016-12-15
The minimal SO(5)/SO(4) σ-model is used as a template for the ultraviolet completion of scenarios in which the Higgs particle is a low-energy remnant of some high-energy dynamics, enjoying a (pseudo) Nambu-Goldstone-boson ancestry. Varying the σ mass allows one to sweep from the perturbative regime to the customary non-linear implementations. The low-energy benchmark effective non-linear Lagrangian for bosons and fermions is obtained, determining as well the operator coefficients including linear corrections. At first order in the latter, three effective bosonic operators emerge which are independent of the explicit soft breaking assumed. The Higgs couplings to vector bosons and fermions turn out to be quite universal: the linear corrections are proportional to the explicit symmetry-breaking parameters. Furthermore, we define an effective Yukawa operator which allows a simple parametrization and comparison of different heavy-fermion ultraviolet completions. In addition, one particular fermionic completion is explored in detail, obtaining the corresponding leading low-energy fermionic operators. (orig.)
International Nuclear Information System (INIS)
2003-01-01
In the framework of the National Debate on the energies in a context of a sustainable development some associations for the environment organized a debate on the nuclear interest facing the renewable energies. The first part presents the nuclear energy as a possible solution to fight against the greenhouse effect and the associated problem of the wastes management. The second part gives information on the solar energy and the possibilities of heat and electric power production. A presentation of the FEE (French wind power association) on the situation and the development of the wind power in France, is also provided. (A.L.B.)
Perfect transmission at oblique incidence by trigonal warping in graphene P-N junctions
Zhang, Shu-Hui; Yang, Wen
2018-01-01
We develop an analytical mode-matching technique for the tight-binding model to describe electron transport across graphene P-N junctions. This method shares the simplicity of the conventional mode-matching technique for the low-energy continuum model and the accuracy of the tight-binding model over a wide range of energies. It further reveals an interesting phenomenon on a sharp P-N junction: the disappearance of the well-known Klein tunneling (i.e., perfect transmission) at normal incidence and the appearance of perfect transmission at oblique incidence due to trigonal warping at energies beyond the linear Dirac regime. We show that this phenomenon arises from the conservation of a generalized pseudospin in the tight-binding model. We expect this effect to be experimentally observable in graphene and other Dirac fermions systems, such as the surface of three-dimensional topological insulators.
Feedback systems for linear colliders
Hendrickson, L; Himel, Thomas M; Minty, Michiko G; Phinney, N; Raimondi, Pantaleo; Raubenheimer, T O; Shoaee, H; Tenenbaum, P G
1999-01-01
Feedback systems are essential for stable operation of a linear collider, providing a cost-effective method for relaxing tight tolerances. In the Stanford Linear Collider (SLC), feedback controls beam parameters such as trajectory, energy, and intensity throughout the accelerator. A novel dithering optimization system which adjusts final focus parameters to maximize luminosity contributed to achieving record performance in the 1997-98 run. Performance limitations of the steering feedback have been investigated, and improvements have been made. For the Next Linear Collider (NLC), extensive feedback systems are planned as an intregal part of the design. Feedback requiremetns for JLC (the Japanese Linear Collider) are essentially identical to NLC; some of the TESLA requirements are similar but there are significant differences. For NLC, algorithms which incorporate improvements upon the SLC implementation are being prototyped. Specialized systems for the damping rings, rf and interaction point will operate at hi...
Vanilla Technicolor at Linear Colliders
DEFF Research Database (Denmark)
T. Frandsen, Mads; Jarvinen, Matti; Sannino, Francesco
2011-01-01
We analyze the reach of Linear Colliders (LC)s for models of dynamical electroweak symmetry breaking. We show that LCs can efficiently test the compositeness scale, identified with the mass of the new spin-one resonances, till the maximum energy in the center-of-mass of the colliding leptons...
Foundations of linear and generalized linear models
Agresti, Alan
2015-01-01
A valuable overview of the most important ideas and results in statistical analysis Written by a highly-experienced author, Foundations of Linear and Generalized Linear Models is a clear and comprehensive guide to the key concepts and results of linear statistical models. The book presents a broad, in-depth overview of the most commonly used statistical models by discussing the theory underlying the models, R software applications, and examples with crafted models to elucidate key ideas and promote practical model building. The book begins by illustrating the fundamentals of linear models,
International Nuclear Information System (INIS)
Hultgren, R.O.
1990-07-01
Sometime between April 28, 1988, and June 5, 1988, a 22-inch long by 2.625-inch diameter doubly encapsulated cesium-137 irradiation source began leaking in the RSI-Decatur, Georgia, irradiation facility. By November 1988 when the source was isolated, between 7 and 8 curies (0.4 grams) leaked. This source was one of 1576 produced at Hanford to isolate the highly radioactive elements of wastes stored in single-walled tanks there. The capsule was designed for long term storage in a benign controlled pool environment on the Hanford reservation. An investigation was conducted to evaluate the cause of the incident, the management and administrative matters including leasing and licensing, the capsule design and manufacture, and the capsule qualification process. This Appendix presents transcripts of oral testimony taken during this investigation and is include as an integral part of the factual data upon which the Findings of this report are based. The transcriptions in every case were made available to the individuals involved for correction of factual misstatements and to be cleaned of verbal idiosyncrasies that detract from the meaning of the text
Nuclear data evaluations of neutron and proton incidence on Zr, Nb, and W for energy up to 200 MeV
International Nuclear Information System (INIS)
Kunieda, Satoshi; Shigyo, Nobuhiro; Ishibashi, Kenji
2003-01-01
Neutron and proton nuclear data were evaluated on Zr, Nb, and W for energy up to 200 MeV. To execute optical model calculations, spherical optical potentials were developed to reproduce experimental data for many elements. The GNASH nuclear model code was used to evaluate light-particle production cross sections. For neutron emission, giant resonance correction came to be performed in the code system. (author)
Energy Technology Data Exchange (ETDEWEB)
Bordenave-Montesquieu, D.; Dagnac, R. (Toulouse-3 Univ., 31 (France). Centre de Physique Atomique)
1992-06-14
We studied the single-electron capture as well as the direct processes occurring when a He[sup 2+] ion is scattered by a He target. Doubly differential cross sections were measured for single-electron capture with a collision energy ranging from 2 to 8 keV and a scattering angle varying from 10' to 3[sup o]30' (laboratory frame). Single-electron capture into excited states of He[sup +] was found to be the dominant process, confirming a previous experimental study. Elastic scattering and ionization differential cross sections were measured for E = 6 keV. (Author).
International Nuclear Information System (INIS)
Herbach, Claus-Michael; Enke, Michael; Boehm, Andreas
2002-01-01
Absolute production cross sections have been measured simultaneously for neutrons and light charged particles in 0.8-2.5 GeV proton induced spallation reactions for a series of target nuclei from aluminum up to uranium. The high detection efficiency both for neutral and charged evaporative particles provides an event-wise access to the amount of projectile energy dissipated into nuclear excitation. Various intra nuclear cascade plus evaporation models have been confronted with the experimental data showing large discrepancies for hydrogen and helium production. (author)
Koester, Robert P; Skoneczka, Jeffrey A; Cary, Troy R; Diers, Brian W; Ainsworth, Elizabeth A
2014-07-01
Soybean (Glycine max Merr.) is the world's most widely grown leguminous crop and an important source of protein and oil for food and feed. Soybean yields have increased substantially throughout the past century, with yield gains widely attributed to genetic advances and improved cultivars as well as advances in farming technology and practice. Yet, the physiological mechanisms underlying the historical improvements in soybean yield have not been studied rigorously. In this 2-year experiment, 24 soybean cultivars released between 1923 and 2007 were grown in field trials. Physiological improvements in the efficiencies by which soybean canopies intercepted light (εi), converted light energy into biomass (εc), and partitioned biomass into seed (εp) were examined. Seed yield increased by 26.5kg ha(-1) year(-1), and the increase in seed yield was driven by improvements in all three efficiencies. Although the time to canopy closure did not change in historical soybean cultivars, extended growing seasons and decreased lodging in more modern lines drove improvements in εi. Greater biomass production per unit of absorbed light resulted in improvements in εc. Over 84 years of breeding, soybean seed biomass increased at a rate greater than total aboveground biomass, resulting in an increase in εp. A better understanding of the physiological basis for yield gains will help to identify targets for soybean improvement in the future. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.
International Nuclear Information System (INIS)
Cardena R, A. R.; Vega R, J. L.; Apaza V, D. G.
2015-10-01
The progress in cancer treatment systems in heterogeneities of human body has had obstacles by the lack of a suitable experimental model test. The only option is to develop simulated theoretical models that have the same properties in interfaces similar to human tissues, to know the radiation behavior in the interaction with these materials. In this paper we used the Monte Carlo method by Penelope code based solely on studies for the cancer treatment as well as for the calibration of beams and their various interactions in mannequins. This paper also aims the construction, simulation and characterization of an equivalent object to the tissues of the human body with various heterogeneities, we will later use to control and plan experientially doses supplied in treating tumors in radiotherapy. To fulfill the objective we study the ionizing radiation and the various processes occurring in the interaction with matter; understanding that to calculate the dose deposited in tissues interfaces (percentage depth dose) must be taken into consideration aspects such as the deposited energy, irradiation fields, density, thickness, tissue sensitivity and other items. (Author)
Rabin, Bernard M; Carrihill-Knoll, Kirsty L; Miller, Marshall G; Shukitt-Hale, Barbara
2018-02-01
Exposure to particles of high energy and charge (HZE particles) can produce decrements in cognitive performance. A series of experiments exposing rats to different HZE particles was run to evaluate whether the performance decrement was dependent on the age of the subject at the time of irradiation. Fischer 344 rats that were 2-, 11- and 15/16-months of age were exposed to 16 O, 48 Ti, or 4 He particles at the NASA Space Radiation Laboratory at Brookhaven National Laboratory. As previously observed following exposure to 56 Fe particles, exposure to the higher LET 48 Ti particles produced a disruption of cognitive performance at a lower dose in the older subjects compared to the dose needed to disrupt performance in the younger subjects. There were no age related changes in the dose needed to produce a disruption of cognitive performance following exposure to lower LET 16 O or 4 He particles. The threshold for the rats exposed to either 16 O or 4 He particles was similar at all ages. Because the 11- and 15-month old rats are more representative of the age of astronauts (45-55 years old) the present results indicate that particle LET may be a critical factor in estimating the risk of developing a cognitive deficit following exposure to space radiation on exploratory class missions. Copyright © 2017 The Committee on Space Research (COSPAR). All rights reserved.
Rabin, Bernard M.; Carrihill-Knoll, Kirsty L.; Miller, Marshall G.; Shukitt-Hale, Barbara
2018-02-01
Exposure to particles of high energy and charge (HZE particles) can produce decrements in cognitive performance. A series of experiments exposing rats to different HZE particles was run to evaluate whether the performance decrement was dependent on the age of the subject at the time of irradiation. Fischer 344 rats that were 2-, 11- and 15/16-months of age were exposed to 16O, 48Ti, or 4He particles at the NASA Space Radiation Laboratory at Brookhaven National Laboratory. As previously observed following exposure to 56Fe particles, exposure to the higher LET 48Ti particles produced a disruption of cognitive performance at a lower dose in the older subjects compared to the dose needed to disrupt performance in the younger subjects. There were no age related changes in the dose needed to produce a disruption of cognitive performance following exposure to lower LET 16O or 4He particles. The threshold for the rats exposed to either 16O or 4He particles was similar at all ages. Because the 11- and 15-month old rats are more representative of the age of astronauts (45-55 years old) the present results indicate that particle LET may be a critical factor in estimating the risk of developing a cognitive deficit following exposure to space radiation on exploratory class missions.
Challenges in future linear colliders
Chattopadhyay, S
2002-01-01
For decades, electron-positron colliders have been complementing proton-proton colliders. But the circular LEP, the largest e/sup -/e /sup +/ collider, represented an energy limit beyond which energy losses to synchrotron radiation necessitate moving to e/sup -/e/sup + / linear colliders (LCs), thereby raising new challenges for accelerator builders. Japanese-American, German, and European collaborations have presented options for the "Future Linear Collider " (FLC). Key accelerator issues for any FLC option are the achievement of high enough energy and luminosity. Damping rings, taking advantage of the phenomenon of synchrotron radiation, have been developed as the means for decreasing beam size, which is crucial for ensuring a sufficiently high rate of particle-particle collisions. Related challenges are alignment and stability in an environment where even minute ground motion can disrupt performance, and the ability to monitor beam size. The technical challenges exist within a wider context of socioeconomi...
Directory of Open Access Journals (Sweden)
Feng Chung Wu
2004-12-01
Full Text Available Objetivo: Apresentação do teste biomecânico Energia Total de Ruptura para o estudo da resistência intrínseca de material biológico com propriedade viscoelástica não-linear representado neste trabalho por segmento íntegro de cólon descendente de rato. Métodos: Implementação do teste biomecânico Energia Total de Ruptura e do Sistema de Aquisição e Análise de dados Biomecânicos - SABI 2.0. Para esse fim, foram utilizados conceitos físico-mecânicos, computacionais e biomecânicos e como corpos de teste, 15 espécimes de cólon descendente de ratos. Resultados: O teste biomecânico Energia Total de Ruptura permitiu o cálculo da energia total acumulada necessária para promover a ruptura dos corpos de prova durante os ensaios mecânicos. Por meio da automatização e gerenciamento da aquisição e análise dos dados capturados foi possível a geração de gráficos e relatórios descritivos e estatísticos. Conclusão: Fundamentado em conceitos físico-mecânicos, computacionais e biomecânicos, o teste Energia Total de Ruptura pôde proporcionar análise matemática do comportamento dos segmentos de cólon descendente de ratos durante os ensaios, demonstrando ser um possível método de medição da resistência intrínseca desse material biológico com propriedade viscoelástica não-linear.Purpose: Presentation of the Total Energy of Rupture biomechanical test to evaluate the intrinsic resistance of the rat’s left colon which presents a non-linear viscoelastic property. Methods: Implementation of Total Energy of Rupture test (ETR and the Biomechanical Data Acquisition and Analysis System (SABI 2.0 based on physic-mechanical, computational and biomechanical concepts. Fifteen specimens of Wistar adults rat’s left colon where considered for experiments. Results: Using the TER biomechanical test it was possible calculate the accumulated total energy necessary to promote the specimens rupture during the mechanical trial. It was
Biltekin, Fatih; Yeginer, Mete; Ozyigit, Gokhan
2015-07-01
We analysed the effects of field size, depth, beam modifier and beam type on the amount of in-field and out-of-field neutron contamination for medical linear accelerators (linacs). Measurements were carried out for three high-energy medical linacs of Elekta Synergy Platform, Varian Clinac DHX High Performance and Philips SL25 using bubble detectors. The photo-neutron measurements were taken in the first two linacs with 18 MV nominal energy, whereas the electro-neutrons were measured in the three linacs with 9 MeV, 10 MeV, 15 MeV and 18 MeV. The central neutron doses increased with larger field sizes as a dramatic drop off was observed in peripheral areas. Comparing with the jaws-shaped open-field of 10 × 10 cm, the motorised and physical wedges contributed to neutron contamination at central axis by 60% and 18%, respectively. The similar dose increment was observed in MLC-shaped fields. The contributions of MLCs were in the range of 55-59% and 19-22% in Elekta and Varian linacs comparing with 10 × 10 and 20 × 20 cm open fields shaped by the jaws, respectively. The neutron doses at shallow depths were found to be higher than the doses found at deeper regions. The electro-neutron dose at the 18 MeV energy was higher than the doses at the electron energies of 15 MeV and 9 MeV by a factor of 3 and 50, respectively. The photo- and electro-neutron dose should be taken into consideration in the radiation treatment with high photon and electron energies. Copyright © 2015 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
International Nuclear Information System (INIS)
Bizard, G.; Brou, R.
1985-01-01
Heavy residues created in the reaction Ar+Ag at 35 MeV/u have been detected at various forward angles. Their velocity spectra (quite different from the corresponding spectra measured at 27 MeV/u) show that these events result both from central and peripheral reactions and that the fusion component has dramatically decreased. Coincident light charged particles spectra have been obtained in a large solid angle forward hodoscope. The analysis of these spectra allows to differentiate peripheral and central collisions. The proton spectra are analysed in terms of emitting sources. There is no need for a participant zone in peripheral reactions. Instead protons are emitted either from the target-like or from the projectile-like fragments. However projectile sequential emission is not sufficient to explain all the high energy protons
High density linear systems for fusion power
International Nuclear Information System (INIS)
Ellis, W.R.; Krakowski, R.A.
1975-01-01
The physics and technological limitations and uncertainties associated with the linear theta pinch are discussed in terms of a generalized energy balance, which has as its basis the ratio (Q/sub E/) of total electrical energy generated to net electrical energy consumed. Included in this total is the virtual energy of bred fissile fuel, if a hybrid blanket is used, as well as the actual of real energy deposited in the blanket by the fusion neutron. The advantages and disadvantages of the pulsed operation demanded by the linear theta pinch are also discussed
Al-Adili, Ali; Hambsch, Franz-Josef; Stephan, Pomp; Stephan, Oberstedt; Vidali, M.
2016-01-01
This work investigates the neutron-induced fission of 234U and the fission-fragment properties for neutron energies between n = 0.2 MeV and 5.0 MeV with a special highlight on the prominent vibrational resonance at n = 0.77 MeV. Angular-, energy- and mass distributions were determined based on the double-energy (2E) technique by means of a Twin Frisch-Grid Ionization Chamber. The experimental data are parametrized in terms of fission modes based on the Multi-Modal Random Neck-Rupture model...
Vanilla technicolor at linear colliders
Frandsen, Mads T.; Järvinen, Matti; Sannino, Francesco
2011-08-01
We analyze the reach of linear colliders for models of dynamical electroweak symmetry breaking. We show that linear colliders can efficiently test the compositeness scale, identified with the mass of the new spin-one resonances, until the maximum energy in the center of mass of the colliding leptons. In particular we analyze the Drell-Yan processes involving spin-one intermediate heavy bosons decaying either leptonically or into two standard model gauge bosons. We also analyze the light Higgs production in association with a standard model gauge boson stemming also from an intermediate spin-one heavy vector.
Montgomery County of Maryland — This dataset contains the monthly summary data indicating incident occurred in each fire station response area. The summary data is the incident count broken down by...
Police Incident Reports Written
Town of Chapel Hill, North Carolina — This table contains incident reports filed with the Chapel Hill Police Department. Multiple incidents may have been reported at the same time. The most serious...
Three kinds of high-energy Pb ion tracks on the LiF crystal surface at grazing angles of incidence
Vorobyova, I V
2002-01-01
Tracks induced on a surface of a LiF crystal by Pb ions with energy of 4.46 MeV/u were studied by the method of shadow replica electron microscopy. The irradiation was carried out at angles of 0.5 deg. and 2 deg. relative to the surface plane of the crystal. Lengths and widths of three kinds of tracks were compared: (1) surface tracks which are formed on a pure crystal surface; (2) island tracks which are formed in an island film of gold (with island radius and separation of <=5 nm) deposited on the crystal surface prior to irradiation and (3) island tracks which are formed in the same island film pressed against the crystal surface by the carbon layer. It was established: (1) At angle of irradiation of 0.5 deg. , the surface track formation is initiated at a point where the ion has not yet crossed the crystal surface, but rather moves above the surface plane at a distance of <=1 nm. (2) When the island track is formed in the free island film, the islands completely removed from the track zone. (3) When...
Cyber Incidents Involving Control Systems
Energy Technology Data Exchange (ETDEWEB)
Robert J. Turk
2005-10-01
information available to Department of Homeland Security (DHS) and others who require it. This report summarizes the rise in frequency of cyber attacks, describes the perpetrators, and identifies the means of attack. This type of analysis, when used in conjunction with vulnerability analyses, can be used to support a proactive approach to prevent cyber attacks. CSSC will use this document to evolve a standardized approach to incident reporting and analysis. This document will be updated as needed to record additional event analyses and insights regarding incident reporting. This report represents 120 cyber security incidents documented in a number of sources, including: the British Columbia Institute of Technology (BCIT) Industrial Security Incident Database, the 2003 CSI/FBI Computer Crime and Security Survey, the KEMA, Inc., Database, Lawrence Livermore National Laboratory, the Energy Incident Database, the INL Cyber Incident Database, and other open-source data. The National Memorial Institute for the Prevention of Terrorism (MIPT) database was also interrogated but, interestingly, failed to yield any cyber attack incidents. The results of this evaluation indicate that historical evidence provides insight into control system related incidents or failures; however, that the limited available information provides little support to future risk estimates. The documented case history shows that activity has increased significantly since 1988. The majority of incidents come from the Internet by way of opportunistic viruses, Trojans, and worms, but a surprisingly large number are directed acts of sabotage. A substantial number of confirmed, unconfirmed, and potential events that directly or potentially impact control systems worldwide are also identified. Twelve selected cyber incidents are presented at the end of this report as examples of the documented case studies (see Appendix B).
Magnetic x-ray linear dichroism in resonant and non-resonant Gd 4f photoemission
Energy Technology Data Exchange (ETDEWEB)
Mishra, S.; Gammon, W.J.; Pappas, D.P. [Virginia Commonwealth Univ., Richmond, VA (United States)] [and others
1997-04-01
The enhancement of the magnetic linear dichroism in resonant 4f photoemission (MLDRPE) is studied from a 50 monolayer film of Gd/Y(0001). The ALS at beamline 7.0.1 provided the source of linearly polarized x-rays used in this study. The polarized light was incident at an angle of 30 degrees relative to the film plane, and the sample magnetization was perpendicular to the photon polarization. The linear dichroism of the 4f core levels is measured as the photon energy is tuned through the 4d-4f resonance. The authors find that the MLDRPE asymmetry is strongest at the resonance. Near the threshold the asymmetry has several features which are out of phase with the fine structure of the total yield.
Incident Information Management Tool
Pejovic, Vladimir
2015-01-01
Flaws of\tcurrent incident information management at CMS and CERN\tare discussed. A new data\tmodel for future incident database is\tproposed and briefly described. Recently developed draft version of GIS-‐based tool for incident tracking is presented.
The effects of laser beam incident angle and intensity distribution on Fabry-Perot etalon spectrum
Shen, Fahua; Wang, Yingying; Shi, Wenjuan; Chen, Ying; Liu, Mengling; Guo, Wenxin
2017-11-01
Fabry-Perot(F-P) etalon has important applications in laser detection, lidar and laser communication systems. In practical applications, the spectrum of the F-P etalon is affected by various factors, such as incident angle, divergence angle, spectral width, intensity distribution of the incident beam, absorption loss, surface defects of the plate and so on. The effects of the incident angle and the beam intensity distribution on F-P etalon spectrum are mainly analyzed. For the first time, taking into account both the beam incident angle and divergence angle, the precise analytical expression of the F-P etalon transmission spectrum is derived. For the Gaussian light intensity distribution, the precise analytical expression of the F-P etalon transmission spectrum is derived. The simulation analysis is carried out and the results are as follows. When the beam divergence angle is not zero, the incident angle increases, on the one hand, the center of the etalon spectrum is moved to the high frequency, and the frequency shift is linear with the square of the incident angle. The slope decreases with the increase of the divergence angle. On the other hand, resulting in peak reduction, spectral line broadening, and with the divergence angle increases, the more obvious the phenomenon. Considering the distribution of Gaussian light intensity, the spectrum of the etalon will be improved with the increase concentration of beam energy. On the one hand, the peak value is increased, the spectral line is narrowed and with the incidence angle increases, the degree of improvement is more obvious. On the one hand, the center of the spectrum moves toward the low frequency, but the larger the incident angle, the smaller the movement amount. The error of frequency discrimination or frequency locking by using the F-P etalon spectrum increases rapidly with the increase of the beam incident angle and beam divergence angle, and the Gaussian light intensity distribution beam can effectively
Linear Back-Drive Differentials
Waydo, Peter
2003-01-01
Linear back-drive differentials have been proposed as alternatives to conventional gear differentials for applications in which there is only limited rotational motion (e.g., oscillation). The finite nature of the rotation makes it possible to optimize a linear back-drive differential in ways that would not be possible for gear differentials or other differentials that are required to be capable of unlimited rotation. As a result, relative to gear differentials, linear back-drive differentials could be more compact and less massive, could contain fewer complex parts, and could be less sensitive to variations in the viscosities of lubricants. Linear back-drive differentials would operate according to established principles of power ball screws and linear-motion drives, but would utilize these principles in an innovative way. One major characteristic of such mechanisms that would be exploited in linear back-drive differentials is the possibility of designing them to drive or back-drive with similar efficiency and energy input: in other words, such a mechanism can be designed so that a rotating screw can drive a nut linearly or the linear motion of the nut can cause the screw to rotate. A linear back-drive differential (see figure) would include two collinear shafts connected to two parts that are intended to engage in limited opposing rotations. The linear back-drive differential would also include a nut that would be free to translate along its axis but not to rotate. The inner surface of the nut would be right-hand threaded at one end and left-hand threaded at the opposite end to engage corresponding right- and left-handed threads on the shafts. A rotation and torque introduced into the system via one shaft would drive the nut in linear motion. The nut, in turn, would back-drive the other shaft, creating a reaction torque. Balls would reduce friction, making it possible for the shaft/nut coupling on each side to operate with 90 percent efficiency.
Classifying Linear Canonical Relations
Lorand, Jonathan
2015-01-01
In this Master's thesis, we consider the problem of classifying, up to conjugation by linear symplectomorphisms, linear canonical relations (lagrangian correspondences) from a finite-dimensional symplectic vector space to itself. We give an elementary introduction to the theory of linear canonical relations and present partial results toward the classification problem. This exposition should be accessible to undergraduate students with a basic familiarity with linear algebra.
Energy Technology Data Exchange (ETDEWEB)
Peterson, David; Stofleth, Jerome H.; Saul, Venner W.
2017-07-11
Linear shaped charges are described herein. In a general embodiment, the linear shaped charge has an explosive with an elongated arrowhead-shaped profile. The linear shaped charge also has and an elongated v-shaped liner that is inset into a recess of the explosive. Another linear shaped charge includes an explosive that is shaped as a star-shaped prism. Liners are inset into crevices of the explosive, where the explosive acts as a tamper.
Lawson, C. L.; Krogh, F. T.; Gold, S. S.; Kincaid, D. R.; Sullivan, J.; Williams, E.; Hanson, R. J.; Haskell, K.; Dongarra, J.; Moler, C. B.
1982-01-01
The Basic Linear Algebra Subprograms (BLAS) library is a collection of 38 FORTRAN-callable routines for performing basic operations of numerical linear algebra. BLAS library is portable and efficient source of basic operations for designers of programs involving linear algebriac computations. BLAS library is supplied in portable FORTRAN and Assembler code versions for IBM 370, UNIVAC 1100 and CDC 6000 series computers.
Vertex Tracking at a Future Linear Collider
Battaglia, Marco
2011-01-01
The anticipated physics program at an high energy e+e- linear collider places special emphasis on the accuracy in extrapolating charged particle tracks to their production vertex to tag heavy quarks and leptons. This paper reviews physics motivations and performance requirements, sensor R&D directions and current results of the studies for a vertex tracker at a future linear collider.
Photon Linear Collider Gamma-Gamma Summary
International Nuclear Information System (INIS)
Gronberg, J.
2012-01-01
High energy photon - photon collisions can be achieved by adding high average power short-pulse lasers to the Linear Collider, enabling an expanded physics program for the facility. The technology required to realize a photon linear collider continues to mature. Compton back-scattering technology is being developed around the world for low energy light source applications and high average power lasers are being developed for Inertial Confinement Fusion.
Hagedorn, Peter
1982-01-01
Thoroughly revised and updated, the second edition of this concise text provides an engineer's view of non-linear oscillations, explaining the most important phenomena and solution methods. Non-linear descriptions are important because under certain conditions there occur large deviations from the behaviors predicted by linear differential equations. In some cases, completely new phenomena arise that are not possible in purely linear systems. The theory of non-linear oscillations thus has important applications in classical mechanics, electronics, communications, biology, and many other branches of science. In addition to many other changes, this edition has a new section on bifurcation theory, including Hopf's theorem.
International Nuclear Information System (INIS)
Briggs, R.J.
1986-06-01
The development of linear induction accelerators has been motivated by applications requiring high-pulsed currents of charged particles at voltages exceeding the capability of single-stage, diode-type accelerators and at currents too high for rf accelerators. In principle, one can accelerate charged particles to arbitrarily high voltages using a multi-stage induction machine, but the 50-MeV, 10-kA Advanced Test Accelerator (ATA) at LLNL is the highest voltage machine in existence at this time. The advent of magnetic pulse power systems makes sustained operation at high-repetition rates practical, and this capability for high-average power is very likely to open up many new applications of induction machines in the future. This paper surveys the US induction linac technology with primary emphasis on electron machines. A simplified description of how induction machines couple energy to the electron beam is given, to illustrate many of the general issues that bound the design space of induction linacs
International Nuclear Information System (INIS)
Briggs, R.J.
1986-01-01
The development of linear induction accelerators has been motivated by applications requiring high-pulsed currents of charged particles at voltages exceeding the capability of single-stage, diode-type accelerators and at currents too high for r.f. accelerators. In principle, one can accelerate charged particles to arbitrarily high voltages using a multi-stage induction machine, but the 50-MeV, 10-kA Advanced Test Accelerator (ATA) at LLNL is the highest voltage machine in existence at this time. The advent of magnetic pulse power systems makes sustained operation at high-repetition rates practical, and this capability for high-average power in very likely to open up many new applications of induction machines in the future. The US induction linac technology is surveyed with primary emphasis on electron machines. A simplified description of how induction machines couple energy to the electron beam is given, to illustrate many of the general issues that bound the design space of induction linacs. A key issue in all high-intensity linacs is that of beam instability
International Nuclear Information System (INIS)
Richards, J.A.
1977-01-01
A linear particle accelerator which provides a pulsed beam of charged particles of uniform energy is described. The accelerator is in the form of an evacuated dielectric tube, inside of which a particle source is located at one end of the tube, with a target or window located at the other end of the dielectric tube. Along the length of the tube are externally located pairs of metal plates, each insulated from each other in an insulated housing. Each of the plates of a pair are connected to an electrical source of voltage of opposed polarity, with the polarity of the voltage of the plates oriented so that the plate of a pair, nearer to the particle source, is of the opposed polarity to the charge of the particle emitted by the source. Thus, a first plate about the tube located nearest the particle source, attracts a particle which as it passes through the tube past the first plate is then repelled by the reverse polarity of the second plate of the pair to continue moving towards the target
[Skin cancer incidence in Zacatecas].
Pinedo-Vega, José Luis; Castañeda-López, Rosalba; Dávila-Rangel, J Ignacio; Mireles-García, Fernando; Ríos-Martínez, Carlos; López-Saucedo, Adrián
2014-01-01
Skin cancer is the most frequent cancer related to ultraviolet radiation. The aim was to estimate the incidence of skin cancer type, melanoma and non-melanoma in Zacatecas, Mexico. An epidemiological study was carried out during the period from 2008 to 2012. The data were obtained from the Instituto Mexicano del Seguro Social (IMSS), Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado (ISSSTE), Secretaría de Salud de Zacatecas (SSZ) and a private source, the Centro Médico Alameda. The incidence and the global prevalence were estimated. We studied 958 skin cancer cases, histopathologically confirmed. The cases were distributed as: 63.6 % basal cell carcinomas, 25.8 % squamous cell carcinomas, and 10.6 % melanoma. Significantly higher proportions were observed in women in the basal cell carcinomas (60.4 %) and squamous cell carcinomas (53.4 %). However, in the case of melanoma, the major proportion was observed in men (55.9 %). The more frequent skin cancer location was the face and for basal cell carcinoma was the nose (53 %); for squamous cell carcinomas were the lips (36 %), and for melanoma it was also the nose (40 %). The skin cancer incidence was estimated in 20 cases for each 100 000 inhabitants. Linear regression analysis showed that the skin cancer is increasing at an annual rate of 10.5 %. The anatomical location indicates that solar UV radiation is a risk factor, since the face is the zone with major exposure to solar radiation.
International Nuclear Information System (INIS)
Okumusoglu, N. T.; Gorur, F. Korkmaz; Birchall, J.; Soukhovitskii, E. Sh.; Capote, R.; Quesada, J. M.; Chiba, S.
2007-01-01
Elastic and inelastic scattering of unpolarized and polarized protons by 40 Ar nuclei for incident energies between 20 and 50 MeV has been studied by reanalyzing experimental scattering spectra for the 2 + (1.46 MeV) and 3 - (3.68 MeV) levels in the angular range 30 degree sign -160 degree sign for incident protons of energies of 25.1, 32.5, and 40.7 MeV. An isospin dependent soft-rotator coupled-channels optical model with the potential containing a dispersive term with a nonlocal contribution is used to analyze the data
Dynamics and acceleration in linear structures
International Nuclear Information System (INIS)
Le Duff, J.
1985-06-01
Basic methods of linear acceleration are reviewed. Both cases of non relativistic and ultra relativistic particles are considered. Induction linac, radiofrequency quadrupole are mentioned. Fundamental parameters of accelerating structures are recalled; they are transit time factor, shunt impedance, quality factor and stored energy, phase velocity and group velocity, filling time, space harmonics in loaded waveguides. Energy gain in linear accelerating structures is considered through standing wave structures and travelling wave structures. Then particle dynamics in linear accelerators is studied: longitudinal motion, transverse motion and dynamics in RFQ
Linearly constrained minimax optimization
DEFF Research Database (Denmark)
Madsen, Kaj; Schjær-Jacobsen, Hans
1978-01-01
We present an algorithm for nonlinear minimax optimization subject to linear equality and inequality constraints which requires first order partial derivatives. The algorithm is based on successive linear approximations to the functions defining the problem. The resulting linear subproblems...... are solved in the minimax sense subject to the linear constraints. This ensures a feasible-point algorithm. Further, we introduce local bounds on the solutions of the linear subproblems, the bounds being adjusted automatically, depending on the quality of the linear approximations. It is proved...... that the algorithm will always converge to the set of stationary points of the problem, a stationary point being defined in terms of the generalized gradients of the minimax objective function. It is further proved that, under mild regularity conditions, the algorithm is identical to a quadratically convergent...
Blyth, T S
2002-01-01
Basic Linear Algebra is a text for first year students leading from concrete examples to abstract theorems, via tutorial-type exercises. More exercises (of the kind a student may expect in examination papers) are grouped at the end of each section. The book covers the most important basics of any first course on linear algebra, explaining the algebra of matrices with applications to analytic geometry, systems of linear equations, difference equations and complex numbers. Linear equations are treated via Hermite normal forms which provides a successful and concrete explanation of the notion of linear independence. Another important highlight is the connection between linear mappings and matrices leading to the change of basis theorem which opens the door to the notion of similarity. This new and revised edition features additional exercises and coverage of Cramer's rule (omitted from the first edition). However, it is the new, extra chapter on computer assistance that will be of particular interest to readers:...
Efficient Non Linear Loudspeakers
DEFF Research Database (Denmark)
Petersen, Bo R.; Agerkvist, Finn T.
2006-01-01
Loudspeakers have traditionally been designed to be as linear as possible. However, as techniques for compensating non linearities are emerging, it becomes possible to use other design criteria. This paper present and examines a new idea for improving the efficiency of loudspeakers at high levels...... by changing the voice coil layout. This deliberate non-linear design has the benefit that a smaller amplifier can be used, which has the benefit of reducing system cost as well as reducing power consumption....
Matrices and linear transformations
Cullen, Charles G
1990-01-01
""Comprehensive . . . an excellent introduction to the subject."" - Electronic Engineer's Design Magazine.This introductory textbook, aimed at sophomore- and junior-level undergraduates in mathematics, engineering, and the physical sciences, offers a smooth, in-depth treatment of linear algebra and matrix theory. The major objects of study are matrices over an arbitrary field. Contents include Matrices and Linear Systems; Vector Spaces; Determinants; Linear Transformations; Similarity: Part I and Part II; Polynomials and Polynomial Matrices; Matrix Analysis; and Numerical Methods. The first
Directory of Open Access Journals (Sweden)
Clara Matiko Ueda
2010-10-01
Full Text Available In Brazil, the production of sweet oranges has been threatened by the Citrus Variegated Chlorosis (CVC incited by the gram-negative bacterium Xylella fastidiosa (Wells. Commercial citrus groves in two counties at the Northwestern Paraná state were evaluated to estimate the disease progression by using parameterizations of nonlinear models. Groves of Citrus sinensis Osbeck, variety “Pêra”, “Valência”, “Natal” and “Folha Murcha” had all the plants evaluated for the presence of disease symptoms. Thereafter, different parameterizations of the Logistic and Gompertz models were fitted to these data. The goodness of fit was evaluated by the intrinsic (IN and parameter-effects (PE curvatures of Bates and Watts, the bias of Box and the Hougaard measures of skewness. In Loanda, the best model was the Fermi-Dirac, and in Nova Esperança the data were best fitted to the parameterization L5, which is also a parameterization from the Logistic model.A citricultura é afetada por diversas doenças, dentre as quais a Clorose Variegada dos Citros (CVC causada pela bactéria Xylella fastidiosa (Wells. Para a região noroeste do Estado do Paraná, onde foi avaliada a CVC, propõe-se encontrar modelos não-lineares de curvas de progresso de incidência da CVC que representem o percentual de plantas acometidas pela doença. Para avaliar o comprometimento dos pomares com relação à doença, foram escolhidos pomares comerciais em dois municípios, onde foi determinada a proporção de plantas doentes. Foram selecionados talhões de laranja doce (Citrus sinensis Osbeck nas variedades “Pêra”, “Valência”, “Natal” e “Folha Murcha” e a avaliação de todas as plantas do talhão foi realizada visualmente em relação à presença ou à ausência de sintomas de CVC. Para estimar o modelo que melhor se ajustou aos dados de progresso da proporção da doença em cada talhão, foram considerados modelos não-lineares decrescimento sigmoidal
Faraway, Julian J
2014-01-01
A Hands-On Way to Learning Data AnalysisPart of the core of statistics, linear models are used to make predictions and explain the relationship between the response and the predictors. Understanding linear models is crucial to a broader competence in the practice of statistics. Linear Models with R, Second Edition explains how to use linear models in physical science, engineering, social science, and business applications. The book incorporates several improvements that reflect how the world of R has greatly expanded since the publication of the first edition.New to the Second EditionReorganiz
Carr, Joseph
1996-01-01
The linear IC market is large and growing, as is the demand for well trained technicians and engineers who understand how these devices work and how to apply them. Linear Integrated Circuits provides in-depth coverage of the devices and their operation, but not at the expense of practical applications in which linear devices figure prominently. This book is written for a wide readership from FE and first degree students, to hobbyists and professionals.Chapter 1 offers a general introduction that will provide students with the foundations of linear IC technology. From chapter 2 onwa
Superconducting linear accelerator cryostat
International Nuclear Information System (INIS)
Ben-Zvi, I.; Elkonin, B.V.; Sokolowski, J.S.
1984-01-01
A large vertical cryostat for a superconducting linear accelerator using quarter wave resonators has been developed. The essential technical details, operational experience and performance are described. (author)
The evaluation of multi-element personal dosemeters using the linear programming method
International Nuclear Information System (INIS)
Kragh, P.; Ambrosi, P.; Boehm, J.; Hilgers, G.
1996-01-01
Multi-element dosemeters are frequently used in individual monitoring. Each element can be regarded as an individual dosemeter with its own individual dose measurement value. In general, the individual dose values of one dosemeter vary according to the exposure conditions, i. e. the energy and angle of incidence of the radiation. The (final) dose measurement value of the personal dosemeter is calculated from the individual dose values by means of an evaluation algorithm. The best possible dose value, i.e. that of the smallest systematic (type B) uncertainty if the exposure conditions are changed in the dosemeter's rated range of use, is obtained by the method of linear programming. (author)
JET VELOCITY OF LINEAR SHAPED CHARGES
Directory of Open Access Journals (Sweden)
Vječislav Bohanek
2012-12-01
Full Text Available Shaped explosive charges with one dimension significantly larger than the other are called linear shaped charges. Linear shaped charges are used in various industries and are applied within specific technologies for metal cutting, such as demolition of steel structures, separating spent rocket fuel tanks, demining, cutting holes in the barriers for fire service, etc. According to existing theories and models efficiency of linear shaped charges depends on the kinetic energy of the jet which is proportional to square of jet velocity. The original method for measuring velocity of linear shaped charge jet is applied in the aforementioned research. Measurements were carried out for two different linear materials, and the results are graphically presented, analysed and compared. Measurement results show a discrepancy in the measured velocity of the jet for different materials with the same ratio between linear and explosive mass (M/C per unit of surface, which is not described by presented models (the paper is published in Croatian.
Apsimon, R. J.; Atkinson, M.; Baake, M.; Bagdasarian, L. S.; Barberis, D.; Brodbeck, T. J.; Brook, N.; Charity, T.; Clegg, A. B.; Coyle, P.; Danaher, S.; Danagulian, S.; Davenport, M.; Dickinson, B.; Diekmann, B.; Donnachie, A.; Doyle, A. T.; Eades, J.; Ellison, R. J.; Flower, P. S.; Foster, J. M.; Galbraith, W.; Galumian, P. I.; Gapp, C.; Gebert, F.; Hallewell, G.; Heinloth, K.; Henderson, R. C. W.; Hickman, M. T.; Hoeger, C.; Holzkamp, A.; Holzkamp, S.; Hughes-Jones, R. E.; Ibbotson, M.; Jakob, H. P.; Joseph, D.; Keemer, N. R.; Kingler, J.; Koersgen, G.; Kolya, S. D.; Lafferty, G. D.; McCann, H.; McClatchey, R.; McManus, C.; Mercer, D.; Morris, J. A. G.; Morris, J. V.; Newton, D.; O'Connor, A.; Oedingen, R.; Oganesian, A. G.; Ottewell, P. J.; Paterson, C. N.; Paul, E.; Reid, D.; Rotscheidt, H.; Sharp, P. H.; Soeldner-Rembold, S.; Thacker, N. A.; Thompson, L.; Thompson, R. J.; Waterhouse, J.; Weigend, A. S.; Wilson, G. W.
1990-03-01
Energy-flow distributions for charged hadrons from interactions of photons, pions and kaons on hydrogen are presented as functions of Σ p {T/2} in the event plane. Data cover the range 0.0<Σ p {/T in 2}<10.0(GeV/c)2 and 0.0< x F <1.0 for beam momenta from 65 to 170 GeV/c. The comparisons between photon-and hadron-induced data show an excess of events with larger Σ p {/T in 2} for the photon-induced data. Using the hadron-induced data to parameterise the hadronic behaviour of the photon, the differences between cross sections are used to measure the contribution of the point-like photon interactions. Quantitative calculations of the point-like photon interactions using the Lund Monte-Carlo program LUCIFER, based on QCD, are in agreement with the data.
Acute incidents during anaesthesia
African Journals Online (AJOL)
Incidents can occur during induction, maintenance and emergence from anaesthesia. The following acute critical incidents are discussed in this article: • Anaphylaxis. • Aspiration ..... Already used in South Africa and Malawi, a scale-up of the technique is under way in Tanzania, Rwanda and Ghana. The report found that.
International Nuclear Information System (INIS)
Rogner, H.H.
1989-01-01
The submitted sections on linear programming are extracted from 'Theorie und Technik der Planung' (1978) by W. Blaas and P. Henseler and reformulated for presentation at the Workshop. They consider a brief introduction to the theory of linear programming and to some essential aspects of the SIMPLEX solution algorithm for the purposes of economic planning processes. 1 fig
International Nuclear Information System (INIS)
Richter, B.
1985-01-01
A report is given on the goals and progress of the SLAC Linear Collider. The author discusses the status of the machine and the detectors and give an overview of the physics which can be done at this new facility. He also gives some ideas on how (and why) large linear colliders of the future should be built
Linear Logical Voting Protocols
DEFF Research Database (Denmark)
DeYoung, Henry; Schürmann, Carsten
2012-01-01
. In response, we promote linear logic as a high-level language for both specifying and implementing voting protocols. Our linear logical specifications of the single-winner first-past-the-post (SW- FPTP) and single transferable vote (STV) protocols demonstrate that this approach leads to concise...