WorldWideScience

Sample records for incident laser intensities

  1. The effects of laser beam incident angle and intensity distribution on Fabry-Perot etalon spectrum

    Science.gov (United States)

    Shen, Fahua; Wang, Yingying; Shi, Wenjuan; Chen, Ying; Liu, Mengling; Guo, Wenxin

    2017-11-01

    Fabry-Perot(F-P) etalon has important applications in laser detection, lidar and laser communication systems. In practical applications, the spectrum of the F-P etalon is affected by various factors, such as incident angle, divergence angle, spectral width, intensity distribution of the incident beam, absorption loss, surface defects of the plate and so on. The effects of the incident angle and the beam intensity distribution on F-P etalon spectrum are mainly analyzed. For the first time, taking into account both the beam incident angle and divergence angle, the precise analytical expression of the F-P etalon transmission spectrum is derived. For the Gaussian light intensity distribution, the precise analytical expression of the F-P etalon transmission spectrum is derived. The simulation analysis is carried out and the results are as follows. When the beam divergence angle is not zero, the incident angle increases, on the one hand, the center of the etalon spectrum is moved to the high frequency, and the frequency shift is linear with the square of the incident angle. The slope decreases with the increase of the divergence angle. On the other hand, resulting in peak reduction, spectral line broadening, and with the divergence angle increases, the more obvious the phenomenon. Considering the distribution of Gaussian light intensity, the spectrum of the etalon will be improved with the increase concentration of beam energy. On the one hand, the peak value is increased, the spectral line is narrowed and with the incidence angle increases, the degree of improvement is more obvious. On the one hand, the center of the spectrum moves toward the low frequency, but the larger the incident angle, the smaller the movement amount. The error of frequency discrimination or frequency locking by using the F-P etalon spectrum increases rapidly with the increase of the beam incident angle and beam divergence angle, and the Gaussian light intensity distribution beam can effectively

  2. Near-surface electron acceleration during intense laser-solid interaction in the grazing incidence regime

    Science.gov (United States)

    Serebryakov, D. A.; Nerush, E. N.; Kostyukov, I. Yu.

    2017-12-01

    When a relativistically intense p-polarized laser pulse is grazingly incident onto a planar solid-state target, a slightly superluminal field structure is formed near the target surface due to the incident and reflected waves superposition. This field structure can both extract the electrons from the target and accelerate them. It is theoretically shown that the acceleration is possible and stable for a wide range of electron initial conditions. Particle-in-cell simulations confirm that this mechanism can actually take place for realistic parameters. As a result, the electron bunches with a charge of tens of nC and GeV-level energy can be produced using a laser intensity 1021-1022 W/cm2. It is also shown that the presence of a preplasma can improve acceleration, which becomes possible because of more efficient electron injection into the accelerating field structure.

  3. Plasmas and intense laser light

    International Nuclear Information System (INIS)

    Kennedy, E.T.

    1984-01-01

    The present article begins with a description of the laser technology required to reach the high irradiances of interest and provides a brief outline of the more important diagnostic techniques used in investigating the plasmas. An introduction to plasma waves is given and the linear and nonlinear excitation of waves is discussed. The remainder of the article describes some of the experimental evidence supporting the interpretation of the plasma behaviour at high laser-light intensities in terms of the excitation of plasma waves and the subsequent heating of plasma by these waves. (author)

  4. Laser Incident Lessons Learned and Action List

    Energy Technology Data Exchange (ETDEWEB)

    Yarotski, Dmitry Anatolievitch [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-02-29

    On Thursday November 19, 2015, LANL postdoc received an eye injury from a reflected, nonvisible laser beam (Class 4, pulsed, wavelength 800 nanometer). The setup is configured to split the laser output into two work areas in which qualified operators conduct research experiments. During this incident, the laser output beam was being projected to both experimental work areas, although only one experimental area was actively being used. The second laser beam directed to the second work area was blocked by an inappropriate device (Plexiglas, reflective, non-normal incidence) that reflected substantial portion of the beam toward the first setup. In preparation for the measurements, worker stepped on the stepstool and decided to remove the laser goggles to better see the micrometer readings which were difficult to see due to insufficient lighting. Immediately, he noticed a flash of light in his eye. The operator quickly replaced the laser eye-wear and then, using an infrared viewer, located a stray laser beam being reflected from the plexiglas beam block. The operator did not think he had sustained any injury and continued working. Later that day, however, he noticed a blurry spot in the vision of his left eye. He notified his supervisor on Friday morning, November 20, 2015, and was taken by CINT management to Sandia National Laboratories (SNL) medical facility for evaluation. SNL Medical did not find any abnormalities, but referred the operator to a local ophthalmologist for further evaluation. Further evaluations by the ophthalmologist on November 21 and November 23 identified a small spot of inflammation near the fovea on the retina in his left eye. The ophthalmologist stated that this spot would most likely heal on its own and that the blurry spot on the operator's vision would go away. A follow-up visit was scheduled. The employee was released back to work without restrictions.

  5. Stimulated Raman backscattering at high laser intensities

    Energy Technology Data Exchange (ETDEWEB)

    Skoric, M.M. [Vinca Inst. of Nuclear Sciences, Belgrade (Yugoslavia); Tajima, Toshiki; Sasaki, Akira; Maluckov, A.; Jovanovic, M.

    1998-03-01

    Signatures of Stimulated Raman backscattering of a short-pulse high-intensity laser interacting with an underdense plasma are discussed. We introduce a nonlinear three-wave interaction model that accounts for laser pump depletion and relativistic detuning. A mechanism is revealed based on a generic route to chaos, that predicts a progressive increase of the backscatter complexity with a growing laser intensity. Importance of kinetic effects is outlined and demonstrated in fluid-hybrid and particle simulations. As an application, we show that spectral anomalies of the backscatter, predicted by the above model, are consistent with recent sub-picosecond, high-intensity laser gas-target measurements at Livermore and elsewhere. Finally, a recently proposed scheme for generation of ultra-short, low-prepulse laser pulses by Raman backscattering in a thin foil target, is shown. (author)

  6. Progress in Ultrafast Intense Laser Science VIII

    CERN Document Server

    Nisoli, Mauro; Hill, Wendell; III, III

    2012-01-01

    The PUILS series delivers up-to-date reviews of progress in Ultrafast Intense Laser Science, a newly emerging interdisciplinary research field spanning atomic and molecular physics, molecular science and optical science which has been stimulated by the recent developments in ultrafast laser technologies. Each volume compiles peer-reviewed articles authored by researchers at the forefront of each their own subfields of UILS. Every chapter opens with an overview of the topics to be discussed, so that researchers unfamiliar to the subfield as well as graduate students can grasp the importance and attractions of the research topic at hand. These are followed by reports of cutting-edge discoveries. This eighth volume covers a broad range of topics from this interdisciplinary research field, focusing on molecules interacting with ultrashort and intense laser fields, advanced technologies for the characterization of ultrashort laser pulses and their applications, laser plasma formation and laser acceleration.

  7. Progress in ultrafast intense laser science XII

    CERN Document Server

    Roso, Luis; Li, Ruxin; Mathur, Deepak; Normand, Didier

    2015-01-01

    This  volume covers a broad range of topics focusing on atoms, molecules, and clusters interacting in intense laser field, laser induced filamentation, and laser plasma interaction and application. The PUILS series delivers up-to-date reviews of progress in Ultrafast Intense Laser Science, a newly emerging interdisciplinary research field spanning atomic and molecular physics, molecular science, and optical science, which has been stimulated by the recent developments in ultrafast laser technologies. Each volume compiles peer-reviewed articles authored by researchers at the forefront of each their own subfields of UILS. Every chapter opens with an overview of the topics to be discussed, so that researchers unfamiliar to the subfield, as well as graduate students, can grasp the importance and attractions of the research topic at hand; these are followed by reports of cutting-edge discoveries. .

  8. Plasmas produced by incident laser in solids

    International Nuclear Information System (INIS)

    Oliveira Campos, D. de; Boeckelmann, H.K.

    1984-01-01

    The experimental arrangement for plasma production by incident laser in solids and a system of diagnostics are presented. The system of diagnostics allows: verify the plasma generation and expansion through the ultrahigh-speed photography; obtain measurements of temperature and density by spectroscopy (using an optical analyser of multichannels) and obtain measurements of kinetic energy of ions through his fly time, using a 'Faraday cup'. A vacuum system with an adsorption pump for pre-vacuum and ionic pump was used to reduce pressure and avoid mechanical vibrations and system contaminations. (M.C.K.) [pt

  9. Sensemaking in Military Critical Incidents: The Impact of Moral Intensity

    NARCIS (Netherlands)

    de Graaff, Miriam; Giebels, Ellen; Meijer, Dominique J.W.; Verweij, Desiree E.M.

    2016-01-01

    This study explores the relationship between moral intensity and the use of different sensemaking strategies in military critical incidents. First, narratives of military personnel were used to select prototypical high/low moral intensity critical incidents. In a follow-up, a scenario study was

  10. Progress in Ultrafast Intense Laser Science VI

    CERN Document Server

    Yamanouchi, Kaoru; Bandrauk, André D

    2010-01-01

    The PUILS series delivers up-to-date reviews of progress in Ultrafast Intense Laser Science, a newly emerging interdisciplinary research field spanning atomic and molecular physics, molecular science, and optical science, which has been stimulated by the recent developments in ultrafast laser technologies. Each volume compiles peer-reviewed articles authored by researchers at the forefront of each their own subfields of UILS. Every chapter opens with an overview of the topics to be discussed, so that researchers unfamiliar to the subfield, as well as graduate students, can grasp the importance and attractions of the research topic at hand; these are followed by reports of cutting-edge discoveries. This sixth volume covers a broad range of topics from this interdisciplinary research field, focusing on responses of molecules to ultrashort intense laser pulses, generation and characterization of attosecond pulses and high-order harmonics, and filamentation and laser-plasma interaction.

  11. High-intensity laser application in Orthodontics

    OpenAIRE

    Sant’Anna, Eduardo Franzotti; Araújo, Mônica Tirre de Souza; Nojima, Lincoln Issamu; Cunha, Amanda Carneiro da; Silveira, Bruno Lopes da; Marquezan, Mariana

    2017-01-01

    ABSTRACT Introduction: In dental practice, low-level laser therapy (LLLT) and high-intensity laser therapy (HILT) are mainly used for dental surgery and biostimulation therapy. Within the Orthodontic specialty, while LLLT has been widely used to treat pain associated with orthodontic movement, accelerate bone regeneration after rapid maxillary expansion, and enhance orthodontic tooth movement, HILT, in turn, has been seen as an alternative for addressing soft tissue complications associated ...

  12. Spin and radiation in intense laser fields

    International Nuclear Information System (INIS)

    Walser, M.W.; Urbach, D.J.; Hatsagortsyan, K.Z.; Hu, S.X.; Keitel, C.H.

    2002-01-01

    The spin dynamics and its reaction on the particle motion are investigated for free and bound electrons in intense linearly polarized laser fields. Employing both classical and quantum treatments we analytically evaluate the spin oscillation of free electrons in intense laser fields and indicate the effect of spin-orbit coupling on the motion of the electron. In Mott scattering an estimation for the spin oscillation is derived. In intense laser ion dynamics spin signatures are studied in detail with emphasis on high-order harmonic generation in the tunneling regime. First- and second-order calculations in the ratio of electron velocity and the speed of light show spin signatures in the radiation spectrum and spin-orbit effects in the electron polarization

  13. Aligning molecules with intense nonresonant laser fields

    DEFF Research Database (Denmark)

    Larsen, J.J.; Safvan, C.P.; Sakai, H.

    1999-01-01

    Molecules in a seeded supersonic beam are aligned by the interaction between an intense nonresonant linearly polarized laser field and the molecular polarizability. We demonstrate the general applicability of the scheme by aligning I2, ICl, CS2, CH3I, and C6H5I molecules. The alignment is probed...... by mass selective two dimensional imaging of the photofragment ions produced by femtosecond laser pulses. Calculations on the degree of alignment of I2 are in good agreement with the experiments. We discuss some future applications of laser aligned molecules....

  14. Progress in Ultrafast Intense Laser Science II

    CERN Document Server

    Yamanouchi, Kaoru; Agostini, Pierre; Ferrante, Gaetano

    2007-01-01

    This book series addresses a newly emerging interdisciplinary research field, Ultrafast Intense Laser Science, spanning atomic and molecular physics, molecular science, and optical science. Its progress is being stimulated by the recent development of ultrafast laser technologies. Highlights of this second volume include Coulomb explosion and fragmentation of molecules, control of chemical dynamics, high-order harmonic generation, propagation and filamentation, and laser-plasma interaction. All chapters are authored by foremost experts in their fields and the texts are written at a level accessible to newcomers and graduate students, each chapter beginning with an introductory overview.

  15. Progress in Ultrafast Intense Laser Science

    CERN Document Server

    Yamanouchi, Kaoru; Li, Ruxin; Chin, See Leang

    2009-01-01

    The PUILS series presents Progress in Ultrafast Intense Laser Science, a newly emerging interdisciplinary research field spanning atomic and molecular physics, molecular science, and optical science. PUILS has been stimulated by the recent development of ultrafast laser technologies. Each volume contains approximately 15 chapters, authored by researchers at the forefront. Each chapter opens with an overview of the topics to be discussed, so that researchers, who are not experts in the specific topics, as well as graduate students can grasp the importance and attractions of this sub-field of research, and these are followed by reports of cutting-edge discoveries. This fourth volume covers a broad range of topics from this interdisciplinary research field, focusing on strong field ionization of atoms; excitation, ionization and fragmentation of molecules; nonlinear intense optical phenomena and attosecond pulses; and laser - solid interactions and photoemission.

  16. Progress in ultrafast intense laser science XIII

    CERN Document Server

    III, Wendell; Paulus, Gerhard

    2017-01-01

    This thirteenth volume covers a broad range of topics from this interdisciplinary research field, focusing on atoms, molecules, and clusters interacting in intense laser field and high-order harmonics generation and their applications. The PUILS series delivers up-to-date reviews of progress in Ultrafast Intense Laser Science, the interdisciplinary research field spanning atomic and molecular physics, molecular science, and optical science, which has been stimulated by the recent developments in ultrafast laser technologies. Each volume compiles peer-reviewed articles authored by researchers at the forefront of each their own subfields of UILS. Every chapter opens with an overview of the topics to be discussed, so that researchers unfamiliar to the subfield, as well as graduate students, can grasp the importance and attractions of the research topic at hand; these are followed by reports of cutting-edge discoveries.   .

  17. High-intensity laser application in Orthodontics.

    Science.gov (United States)

    Sant'Anna, Eduardo Franzotti; Araújo, Mônica Tirre de Souza; Nojima, Lincoln Issamu; Cunha, Amanda Carneiro da; Silveira, Bruno Lopes da; Marquezan, Mariana

    2017-01-01

    In dental practice, low-level laser therapy (LLLT) and high-intensity laser therapy (HILT) are mainly used for dental surgery and biostimulation therapy. Within the Orthodontic specialty, while LLLT has been widely used to treat pain associated with orthodontic movement, accelerate bone regeneration after rapid maxillary expansion, and enhance orthodontic tooth movement, HILT, in turn, has been seen as an alternative for addressing soft tissue complications associated to orthodontic treatment. The aim of this study is to discuss HILT applications in orthodontic treatment. This study describes the use of HILT in surgical treatments such as gingivectomy, ulotomy, ulectomy, fiberotomy, labial and lingual frenectomies, as well as hard tissue and other dental restorative materials applications. Despite the many applications for lasers in Orthodontics, they are still underused by Brazilian practitioners. However, it is quite likely that this demand will increase over the next years - following the trend in the USA, where laser therapies are more widely used.

  18. Pediatric safety incidents from an intensive care reporting system.

    Science.gov (United States)

    Skapik, Julia Lynn; Pronovost, Peter J; Miller, Marlene R; Thompson, David A; Wu, Albert W

    2009-06-01

    Adverse events impose a great burden on patients and the health care system, but not enough is known about how to address incidents involving pediatric patients. This study examined the demographic factors, types of events, contributing system factors, and harm associated with incidents that occur in pediatric intensive care units. Cross-sectional analysis of 2 years of data on all pediatric safety incidents and near misses reported to the voluntary provider-recorded Intensive Care Unit Safety Reporting System in regards to harm and contributing factors. In 464 incidents reported from 23 intensive care units to the Intensive Care Unit Safety Reporting System, patients were physically injured in one third of incidents and harmed in some way in two thirds of incidents. Medication errors were the most common incident type, but were associated with less harm than other event types. Line, tube, and airway events comprised one third of incidents and were associated with more harm than other types. Patient contributing factors were a strong predictor of harm; training and education factors were also commonly cited. In multivariate analysis, patient factors were the strongest predictor of harm adjusting for age, sex, and race. Pediatric patients are commonly harmed in intensive care units. There are several potential ways to improve safety including protocols for high-risk procedures involving lines and tubes, improved monitoring, and staffing, training and communication initiatives. Providers may be able to identify patients at increased risk for harm and intervene to protect patient safety.

  19. Specialty-based, voluntary incident reporting in neonatal intensive care: description of 4846 incident reports

    NARCIS (Netherlands)

    Snijders, C.; van Lingen, R. A.; Klip, H.; Fetter, W. P. F.; van der Schaaf, T. W.; Molendijk, H. A.; Kok, J. H.; te Pas, E.; Pas, H.; van der Starre, C.; Bloemendaal, E.; Lopes Cardozo, R. H.; Molenaar, A. M.; Giezen, A.; Maat, H. E.; Molendijk, A.; Lavrijssen, S.; Mulder, A. L. M.; de Kleine, M. J. K.; Koolen, A. M. P.; Schellekens, M.; Verlaan, W.; Vrancken, S.; Schotman, L.; van der Zwaan, A.; van der Tuijn, Y.; Tibboel, D.; Kollen, B. J.

    2009-01-01

    OBJECTIVES: To examine the characteristics of incidents reported after introduction of a voluntary, non-punitive incident reporting system for neonatal intensive care units (NICUs) in the Netherlands; and to investigate which types of reported incident pose the highest risk to patients in the NICU.

  20. Nuclear Fusion Effects Induced in Intense Laser-Generated Plasmas

    Directory of Open Access Journals (Sweden)

    Lorenzo Torrisi

    2013-01-01

    Full Text Available Deutered polyethylene (CD2n thin and thick targets were irradiated in high vacuum by infrared laser pulses at 1015W/cm2 intensity. The high laser energy transferred to the polymer generates plasma, expanding in vacuum at supersonic velocity, accelerating hydrogen and carbon ions. Deuterium ions at kinetic energies above 4 MeV have been measured by using ion collectors and SiC detectors in time-of-flight configuration. At these energies the deuterium–deuterium collisions may induce over threshold fusion effects, in agreement with the high D-D cross-section valuesaround 3 MeV energy. At the first instants of the plasma generation, during which high temperature, density and ionacceleration occur, the D-D fusions occur as confirmed by the detection of mono-energetic protonsand neutrons with a kinetic energy of 3.0 MeV and 2.5 MeV, respectively, produced by the nuclear reaction. The number of fusion events depends strongly on the experimental set-up, i.e. on the laser parameters (intensity, wavelength, focal spot dimension, target conditions (thickness, chemical composition, absorption coefficient, presence of secondary targets and used geometry (incidence angle, laser spot, secondary target positions.A number of D-D fusion events of the order of 106÷7 per laser shot has been measured.

  1. Progress in ultrafast intense laser science

    CERN Document Server

    Yamanouchi, Kaoru; Mathur, Deepak

    2014-01-01

    The PUILS series delivers up-to-date reviews of progress in Ultrafast Intense Laser Science, a newly emerging interdisciplinary research field spanning atomic and molecular physics, molecular science, and optical science, which has been stimulated by the recent developments in ultrafast laser technologies. Each volume compiles peer-reviewed articles authored by researchers at the forefront of each their own subfields of UILS. Every chapter opens with an overview of the topics to be discussed, so that researchers unfamiliar to the subfield, as well as graduate students, can grasp the importance

  2. Design of high intensity laser ion source

    International Nuclear Information System (INIS)

    Maruyama, Toshiyuki; Mochizuki, Tetsuro; Nakagawa, Jun; Hattori, Toshiyuki; Hayashizaki, Noriyosu; Kashiwagi, Hirotsugu; Momota, Sadao; Shibuya, Shinji; Takeuchi, Takeshi

    2010-01-01

    The direct plasma injection scheme (DPIS) is the method that can extract intense and highly charged ions from laser ablation plasma. This DPIS can replace traditional ion sources such as ECR and EIBS in cancer therapy instrument and other instruments for research purpose because of its smaller size and easier operation. In this work, we report design of the laser ion source for DPIS that has been intended to use for practical application of heavy-ion accelerator. Special attention is paid on mechanism to supply heavy-ion beams stably with long mean time between maintenance. (author)

  3. Progress in ultrafast intense laser science XI

    CERN Document Server

    Yamanouchi, Kaoru; Martin, Philippe

    2014-01-01

    The PUILS series delivers up-to-date reviews of progress in Ultrafast Intense Laser Science, a newly emerging interdisciplinary research field spanning atomic and molecular physics, molecular science and optical science, which has been stimulated by the recent developments in ultrafast laser technologies. Each volume compiles peer-reviewed articles authored by researchers at the forefront of each their own subfields of UILS. Every chapter opens with an overview of the topics to be discussed, so that researchers unfamiliar to the subfield, as well as graduate students, can grasp the importance

  4. Focusing of Intense Laser via Parabolic Plasma Concave Surface

    Science.gov (United States)

    Zhou, Weimin; Gu, Yuqiu; Wu, Fengjuan; Zhang, Zhimeng; Shan, Lianqiang; Cao, Leifeng; Zhang, Baohan

    2015-12-01

    Since laser intensity plays an important role in laser plasma interactions, a method of increasing laser intensity - focusing of an intense laser via a parabolic plasma concave surface - is proposed and investigated by three-dimensional particle-in-cell simulations. The geometric focusing via a parabolic concave surface and the temporal compression of high harmonics increased the peak intensity of the laser pulse by about two orders of magnitude. Compared with the improvement via laser optics approaches, this scheme is much more economic and appropriate for most femtosecond laser facilities. supported by National Natural Science Foundation of China (Nos. 11174259, 11175165), and the Dual Hundred Foundation of China Academy of Engineering Physics

  5. Pondermotive absorption of a short intense laser pulse in a non-uniform plasma

    Energy Technology Data Exchange (ETDEWEB)

    Andreev, A.A.; Platonov, K.Yu. [Inst. for Laser Physics, SC `Vavilov State Optical Inst.` 12, Birzhevaya line, St Petersburg (Russian Federation); Tanaka, K.A.

    1998-03-01

    An analytical description of the pondermotive absorption mechanism at a short high intense laser pulse interaction with a strong inhomogeneous plasma is presented. The optimal conditions for the maximum of resonance absorption of laser pulse interaction with non-uniform plasma at normal incidence are founded. (author)

  6. High-intensity laser application in Orthodontics

    Directory of Open Access Journals (Sweden)

    Eduardo Franzotti Sant’Anna

    Full Text Available ABSTRACT Introduction: In dental practice, low-level laser therapy (LLLT and high-intensity laser therapy (HILT are mainly used for dental surgery and biostimulation therapy. Within the Orthodontic specialty, while LLLT has been widely used to treat pain associated with orthodontic movement, accelerate bone regeneration after rapid maxillary expansion, and enhance orthodontic tooth movement, HILT, in turn, has been seen as an alternative for addressing soft tissue complications associated to orthodontic treatment. Objective: The aim of this study is to discuss HILT applications in orthodontic treatment. Methods: This study describes the use of HILT in surgical treatments such as gingivectomy, ulotomy, ulectomy, fiberotomy, labial and lingual frenectomies, as well as hard tissue and other dental restorative materials applications. Conclusion: Despite the many applications for lasers in Orthodontics, they are still underused by Brazilian practitioners. However, it is quite likely that this demand will increase over the next years - following the trend in the USA, where laser therapies are more widely used.

  7. Using prepulsing: a useful way for increasing absorption efficiency of high intensity laser beam

    International Nuclear Information System (INIS)

    Peng Huimin; Zhang Guoping; Sheng Jiatian

    1990-01-01

    Using prepulse to irradiate target for increasing absorption efficiency of high intensity incident laser beam is considered and some theoretical simulations have been done. 1-D non-LTE radiative hydrodynamic code is used to simulate the interactions of laser beam with matter. A gaussian laser prepulse of wavelength 1.06 μm, FWHM 600 ps and peak intensity 1.5 x 10 12 W/cm 2 was used to irradiate 20 μm thick Au plate target, after 3ns a main gaussian pulse with wavelength 1.06 μm, FWHM 600 ps and peak intensity 3.0 x 10 14 W/cm 2 irradiated the expanding Au plasma. The responces of laser-produced plasma conditions are shown. By comparing with without prepulsing, under the condition of same main incident laser pulse, the absorption efficiency is increased from 0.36 to 0.60 and the laser-x-ray conversion efficiency is increased from 0.16 to 0.25. The electron temperature of hot plasma is also higher than without prepulsing, and the x-ray spectrum which is emitted from laser-produced hot plasma is harder and more intense than without prepulsing. The responces of laser-produced plasma for Fe target with prepulsing are shown as well. The conclusion is that using prepulsing is a useful way for getting high absorption laser beam

  8. Thermal dynamics-based mechanism for intense laser-induced ...

    Indian Academy of Sciences (India)

    Thermal dynamics-based mechanism for intense laser-induced material surface vaporization ... http://www.ias.ac.in/article/fulltext/pram/071/03/0529-0543 ... Laser material processing involving welding, ablation and cutting involves interaction of intense laser pulses of nanosecond duration with a condensed phase.

  9. The Incidence and Intensity of Formal Lifelong Learning

    DEFF Research Database (Denmark)

    Simonsen, Marianne; Skipper, Lars

    We exploit a rich high quality register-based employer-employee panel data set to investigate the incidence and intensity of government co-sponsored training for the Danish adult population. We focus specifically on training over the working life cycle and find that the levels of participation va...

  10. Free-Free Transitions in the Presence of Laser Fields at Very Low Incident Electron Energy

    Science.gov (United States)

    Bhatia, A. K.; Sinha, Chandana

    2010-01-01

    We study the free-free transition in electron-hydrogenic systems in ground state in presence of an external laser field at very loud incident energies. The laser field is treated classically while the collision dynamics is treated quantum mechanically. The laser field is chosen to be monochromatic, linearly polarized and homogeneous. The incident electron is considered to be dressed by the laser in a nonperturbative manner by choosing a Volkov wave function for it. The scattering weave function for the electron is solved numerically by taking into account the effect of the electron exchange, short-range as well as of the long-range interactions to get the S and P wave phase shifts while for the higher angular momentum phase shifts the exchange approximation has only been considered. We calculate the laser assisted differential cross sections (LADCS) for the aforesaid free-free transition process for single photon absorption/emission. The laser intensity is chosen to be much less than the atomic field intensity. A strong suppression is noted in the LADCS as compared to the field free (FF) cross sections. Unlike the FF ones, the LADCS exhibit some oscillations having a distinct maximum at a low value of the scattering angle depending on the laser parameters as well as on the incident energies.

  11. Laser and intense pulsed light hair removal technologies

    DEFF Research Database (Denmark)

    Haedersdal, M; Beerwerth, F; Nash, J F

    2011-01-01

    Light-based hair removal (LHR) is one of the fastest growing, nonsurgical aesthetic cosmetic procedures in the United States and Europe. A variety of light sources including lasers, e.g. alexandrite laser (755 nm), pulsed diode lasers (800, 810 nm), Nd:YAG laser (1064 nm) and broad-spectrum intense...

  12. Pulsed CO2 laser interaction with a metal surface at oblique incidence

    Science.gov (United States)

    McKay, J. A.; Schriempf, J. T.; Cronburg, T. L.; Eninger, J. E.; Woodroffe, J. A.

    1980-01-01

    Thermal fluence deposition and surface pressure generation produced by a CO2 laser pulse have been measured as a function of angle of incidence theta on sheet aluminum in air. The paper finds that air plasma ignition depends on the laser beam intensity I sub 0 only, not on the surface-normal flux (I sub 0)(cos theta). Conversely, the fluence deposition and surface pressure depend only on the product (I sub 0)(cos theta), and obey the square-root and two-thirds-power dependences observed with simple I sub 0 variation at normal incidence.

  13. Critical incidents connected to nurses’ leadership in Intensive Care Units

    Directory of Open Access Journals (Sweden)

    Elaine Cantarella Lima

    Full Text Available ABSTRACT Objective: The goal of this study is to analyze nurses’ leadership in intensive care units at hospitals in the state of São Paulo, Brazil, in the face of positive and negative critical incidents. Method: Exploratory, descriptive study, conducted with 24 nurses by using the Critical Incident Technique as a methodological benchmark. Results: Results were grouped into 61 critical incidents distributed into categories. Researchers came to the conclusion that leadership-related situations interfere with IC nurses’ behaviors. Among these situations they found: difficulty in the communication process; conflicts in the daily exercise of nurses’ activities; people management; and the setting of high quality care targets. Final considerations: Researchers identified a mixed leadership model, leading them to the conclusion that nurses’ knowledge and practice of contemporary leadership theories/styles are crucial because they facilitate the communication process, focusing on behavioral aspects and beliefs, in addition to valuing flexibility. This positively impacts the organization’s results.

  14. Influence of laser beam incidence angle on laser lap welding quality of galvanized steels

    Science.gov (United States)

    Mei, Lifang; Yan, Dongbing; Chen, Genyu; Wang, Zhenhui; Chen, Shuixuan

    2017-11-01

    Based on the characteristics of laser welded structural parts of auto bodies, the influence of variation in laser beam incidence angle on the lap welding performance of galvanized auto-body sheets was studied. Lap welding tests were carried out on the galvanized sheets for auto-body application at different laser beam incidence angles by using the optimal welding parameters obtained through orthogonal experiment. The effects of incidence angle variation on seam appearance, cross-sectional shape, joint mechanical properties and microstructure of weldments were analyzed. In addition, the main factors influencing the value of incidence angle were investigated. According to the results, the weld seams had a good appearance as well as a fine, and uniform microstructure when the laser beam incidence angle was smaller than the critical incidence angle, and thus they could withstand great tensile and shear loads. Moreover, all tensile-shear specimens were fractured in the base material zone. When the laser beam incidence angle was larger than the critical incidence angle, defects like shrinkage and collapse tended to emerge, thereby resulting in the deteriorated weldability of specimens. Meanwhile, factors like the type and thickness of sheet, weld width as well as inter-sheet gap all had a certain effect on the value of laser beam incidence angle. When the sheet thickness was small and the weld width was narrow, the laser beam incidence angle could be increased appropriately. At the same time, small changes in the inter-sheet gap could greatly impact the value of incidence angle. When the inter-sheet gap was small, the laser beam incidence angle should not be too large.

  15. Electrons and atoms in intense laser fields

    International Nuclear Information System (INIS)

    Davidovich, L.

    1982-11-01

    Several non-linear effects that show up when electrons and atoms interact with strong laser fields are considered. Thomson scattering, electron potential scattering in the presence of a laser beam, atomic ionization by strong laser fields, the refraction of electrons by laser beams and the Kapitza-Dirac effect are discussed. (Author) [pt

  16. Electrons and atoms in intense laser fields

    International Nuclear Information System (INIS)

    Davidovich, L.

    1982-01-01

    Several non-linear effects that show up when electrons and atoms interact with strong laser fields are considered. Thomson scattering, electron potential scattering in the presence of a laser beam, atomic ionization by strong laser fields, the refraction of electrons by laser beams and the Kapitza-Dirac effect are discussed. (Author) [pt

  17. Simple method of measuring laser peak intensity inside femtosecond laser filament in air.

    Science.gov (United States)

    Xu, Shengqi; Sun, Xiaodong; Zeng, Bin; Chu, Wei; Zhao, Jiayu; Liu, Weiwei; Cheng, Ya; Xu, Zhizhan; Chin, See Leang

    2012-01-02

    Measurement of laser intensity inside a femtosecond laser filament is a challenging task. In this work, we suggest a simple way to characterize laser peak intensity inside the filament in air. It is based on the signal ratio measurement of two nitrogen fluorescence lines, namely, 391 nm and 337 nm. Because of distinct excitation mechanisms, the signals of the two fluorescence lines increase with the laser intensity at different orders of nonlinearity. An empirical formula has been deduced according to which laser peak intensity could be simply determined by the fluorescence ratio.

  18. QED effects induced harmonics generation in extreme intense laser foil interaction

    Science.gov (United States)

    Yu, J. Y.; Yuan, T.; Liu, W. Y.; Chen, M.; Luo, W.; Weng, S. M.; Sheng, Z. M.

    2018-04-01

    A new mechanism of harmonics generation (HG) induced by quantum electrodynamics (QED) effects in extreme intense laser foil interaction is found and investigated by particle-in-cell (PIC) simulations. When two laser pulses with identical intensities of 1.6× {10}24 {{W}} {{{cm}}}-2 are counter-incident on a thin foil target, harmonics emission is observed in their reflected electromagnetic waves. Such harmonics radiation is excited due to transversely oscillating electric currents coming from the vibration of QED effect generated {e}-{e}+ pairs. The effects of laser intensity and polarization were studied. By distinguishing the cascade depth of generated photons and pairs, the influence of QED cascades on HG was analyzed. Although the current HG is not an efficient way for radiation source applications, it may provide a unique way to detect the QED processes in the near future ultra-relativistic laser solid interactions.

  19. Demonstration of up-conversion fluorescence from Ar clusters in intense free-electron-laser fields.

    Science.gov (United States)

    Iwayama, Hiroshi; Nagasono, Mitsuru; Harries, James R; Shigemasa, Eiji

    2012-10-08

    Extreme ultraviolet (EUV) fluorescence emitted from Ar clusters irradiated by intense EUV free electron laser (FEL) pulses has been investigated. The EUV fluorescence spectra display rich structure at wavelengths shorter than the incident FEL wavelength of 51 nm. The results suggest that multiply-charged ions are produced following the ion-electron recombination processes which occur in the nanoplasma created by multi-photon excitation during the intense EUV-FEL pulses.

  20. Hyper-Ramsey spectroscopy with probe-laser-intensity fluctuations

    Science.gov (United States)

    Beloy, K.

    2018-03-01

    We examine the influence of probe-laser-intensity fluctuations on hyper-Ramsey spectroscopy. We assume, as is appropriate for relevant cases of interest, that the probe-laser intensity I determines both the Rabi frequency (∝√{I } ) and the frequency shift to the atomic transition (∝I ) during probe-laser interactions with the atom. The spectroscopic signal depends on these two quantities that covary with fluctuations in the probe-laser intensity. Introducing a simple model for the fluctuations, we find that the signature robustness of the hyper-Ramsey method can be compromised. Taking the Yb+ electric octupole clock transition as an example, we quantify the clock error under different levels of probe-laser-intensity fluctuations.

  1. Three-dimensional laser pulse intensity diagnostic for photoinjectors

    Directory of Open Access Journals (Sweden)

    Heng Li

    2011-11-01

    Full Text Available Minimizing the electron-beam emittance of photoinjectors is an important task for maximizing the brightness of the next-generation x-ray facilities, such as free-electron lasers and energy recovery linacs. Optimally shaped laser pulses can significantly reduce emittance. A reliable diagnostic for the laser pulse intensity is required for this purpose. We demonstrate measurement of three-dimensional spatiotemporal intensity profiles, with spatial resolution of 20  μm and temporal resolution of 130 fs. The capability is illustrated by measurements of stacked soliton pulses and pulses from a dissipative-soliton laser.

  2. Study on laser welding of austenitic stainless steel by varying incident angle of pulsed laser beam

    Science.gov (United States)

    Kumar, Nikhil; Mukherjee, Manidipto; Bandyopadhyay, Asish

    2017-09-01

    In the present work, AISI 304 stainless steel sheets are laser welded in butt joint configuration using a robotic control 600 W pulsed Nd:YAG laser system. The objective of the work is of twofold. Firstly, the study aims to find out the effect of incident angle on the weld pool geometry, microstructure and tensile property of the welded joints. Secondly, a set of experiments are conducted, according to response surface design, to investigate the effects of process parameters, namely, incident angle of laser beam, laser power and welding speed, on ultimate tensile strength by developing a second order polynomial equation. Study with three different incident angle of laser beam 89.7 deg, 85.5 deg and 83 deg has been presented in this work. It is observed that the weld pool geometry has been significantly altered with the deviation in incident angle. The weld pool shape at the top surface has been altered from semispherical or nearly spherical shape to tear drop shape with decrease in incident angle. Simultaneously, planer, fine columnar dendritic and coarse columnar dendritic structures have been observed at 89.7 deg, 85.5 deg and 83 deg incident angle respectively. Weld metals with 85.5 deg incident angle has higher fraction of carbide and δ-ferrite precipitation in the austenitic matrix compared to other weld conditions. Hence, weld metal of 85.5 deg incident angle achieved higher micro-hardness of ∼280 HV and tensile strength of 579.26 MPa followed by 89.7 deg and 83 deg incident angle welds. Furthermore, the predicted maximum value of ultimate tensile strength of 580.50 MPa has been achieved for 85.95 deg incident angle using the developed equation where other two optimum parameter settings have been obtained as laser power of 455.52 W and welding speed of 4.95 mm/s. This observation has been satisfactorily validated by three confirmatory tests.

  3. Progress in Ultrafast Intense Laser Science Volume V

    CERN Document Server

    Yamanouchi, Kaoru; Ledingham, Kenneth

    2010-01-01

    The PUILS series delivers up-to-date reviews of progress in Ultrafast Intense Laser Science, a newly emerging interdisciplinary research field spanning atomic and molecular physics, molecular science, and optical science, which has been stimulated by the recent developments in ultrafast laser technologies. Each volume compiles peer-reviewed articles authored by researchers at the forefront of each their own subfields of UILS. Every chapter opens with an overview of the topics to be discussed, so that researchers unfamiliar to the subfield, as well as graduate students, can grasp the importance and attractions of the research topic at hand; these are followed by reports of cutting-edge discoveries. This fifth volume covers a broad range of topics from this interdisciplinary research field, focusing on coherent responses of gaseous and condensed matter to ultrashort intense laser pulses, propagation of intense laser pulses, and laser-plasma interaction and its applications.

  4. A pinhole camera for ultrahigh-intensity laser plasma experiments

    Science.gov (United States)

    Wang, C.; An, H. H.; Xiong, J.; Fang, Z. H.; Wang, Y. W.; Zhang, Z.; Hua, N.; Sun, J. R.; Wang, W.

    2017-11-01

    A pinhole camera is an important instrument for the detection of radiation in laser plasmas. It can monitor the laser focus directly and assist in the analysis of the experimental data. However, conventional pinhole cameras are difficult to use when the target is irradiated by an ultrahigh-power laser because of the high background of hard X-ray emission generated in the laser/target region. Therefore, an improved pinhole camera has been developed that uses a grazing-incidence mirror that enables soft X-ray imaging while avoiding the effect of hard X-ray from hot dense plasmas.

  5. Modulation instability of an intense laser beam in an unmagnetized ...

    Indian Academy of Sciences (India)

    Abstract. The modulation instability of an intense circularly polarized laser beam propagating in an unmagnetized, cold electron–positron–ion plasma is investigated. Adopting a generalized. Karpman method, a three-dimensional nonlinear equation is shown to govern the laser field. Then the conditions for modulation ...

  6. Modulation instability of an intense laser beam in an unmagnetized ...

    Indian Academy of Sciences (India)

    The modulation instability of an intense circularly polarized laser beam propagating in an unmagnetized, cold electron–positron–ion plasma is investigated. Adopting a generalized Karpman method, a three-dimensional nonlinear equation is shown to govern the laser field. Then the conditions for modulation instability and ...

  7. X-ray polarization measurements at relativistic laser intensities

    International Nuclear Information System (INIS)

    Beiersdorfer, P.; Shepherd, R.; Mancini, R.C.

    2004-01-01

    An effort has been started to measure the short pulse laser absorption and energy partition at relativistic laser intensities up to 10 21 W/cm 2 . Plasma polarization spectroscopy is expected to play an important role in determining fast electron generation and measuring the electron distribution function. (author)

  8. Progress in Ultrafast Intense Laser Science Volume I

    CERN Document Server

    Yamanouchi, Kaoru; Agostini, Pierre; Ferrante, Gaetano

    2006-01-01

    This is the first of a series of books on Ultrafast Intense Laser Science, a newly emerging interdisciplinary research field, spanning atomic and molecular physics, molecular science, and optical science. Its progress is being stimulated by the recent development of ultrafast laser technologies. Highlights of this volume include intense VUV laser--cluster interaction, resonance and chaos-assisted tunneling, and the effects of the carrier-envelope phase on high-order harmonic generation. All chapters are authored by foremost experts in their fields and the presentation is at a level accessible to newcomers and graduate students, each chapter beginning with an introductory overview.

  9. Applications of super - high intensity lasers in nuclear engineering

    International Nuclear Information System (INIS)

    Salomaa, R.; Hakola, A.; Santala, M.

    2007-01-01

    Laser-plasma interactions arising when a super intense ultrashort laser pulse impinges a solid target creates intense partly collimated and energy resolved photons, high energy electron and protons and neutrons. In addition the plasma plume can generate huge magnetic and electric fields. Also ultra short X-ray pulses are created. We have participated in some of such experiments at Rutherford and Max-Planck Institute and assessed the applications of such kind as laser-driven accelerators. This paper discusses applications in nuclear engineering (neutron sources, isotope separation, fast ignition and transmutation, etc). In particular the potential for extreme time resolution and to partial energy resolution are assessed

  10. Simulation of intense laser-dense matter interactions. X-ray production and laser absorption

    Energy Technology Data Exchange (ETDEWEB)

    Ueshima, Yutaka; Kishimoto, Yasuaki; Sasaki, Akira [Japan Atomic Energy Research Inst., Neyagawa, Osaka (Japan). Kansai Research Establishment; Sentoku, Yasuhiko; Tajima, Toshiki

    1998-03-01

    The development of short-pulse ultra high intensity lasers will enable us to generate short-pulse intense soft and hard X-rays. Acceleration of an electron in laser field generates intense illuminated located radiation, Larmor radiation, around KeV at 10{sup 18} W/cm{sup 2} with 100 TW and 1 {mu}m wave length laser. The Coulomb interaction between rest ions and relativistic electron generates broad energy radiation, bremsstrahlung emission, over MeV at 10{sup 18} W/cm{sup 2} with the same condition. These intense radiations come in short pulses of the same order as that of the irradiated laser. The generated intense X-rays, Larmor and bremsstrahlung radiation, can be applied to sources of short pulse X-ray, excitation source of inner-shell X-ray laser, position production and nuclear excitation, etc. (author)

  11. Dissociative Ionization of Argon Dimer by Intense Femtosecond Laser Pulses.

    Science.gov (United States)

    Cheng, Qian; Xie, Xiguo; Yuan, Zongqiang; Zhong, Xunqi; Liu, Yunquan; Gong, Qihuang; Wu, Chengyin

    2017-05-25

    We experimentally and theoretically studied dissociative ionization of argon dimer driven by intense femtosecond laser pulses. In the experiment, we measured the ion yield and the angular distribution of fragmental ions generated from the dissociative ionization channels of (1,1) (Ar 2 2+ → Ar + + Ar + ) and (2,1) (Ar 2 3+ → Ar 2+ + Ar + ) using a cold target recoil ion momentum spectroscopy. The channel ratio of (2,1)/(1,1) is 4.5-7.5 times of the yield ratio of double ionization to single ionization of argon monomer depending on the laser intensity. The measurement verified that the ionization of Ar + is greatly enhanced if there exists a neighboring Ar + separated by a critical distance. In addition, the fragmental ions exhibit an anisotropic angular distribution with the peak along the laser polarization direction and the full width at half maximum becomes broader with increasing laser intensity. Using a full three-dimensional classical ensemble model, we calculated the angle-dependent multiple ionization probability of argon dimer in intense laser fields. The results show that the experimentally observed anisotropic angular distribution of fragmental ions can be attributed to the angle-dependent enhanced ionization of the argon dimer in intense laser fields.

  12. The interaction of intense subpicosecond laser pulses with underdense plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Coverdale, Christine Ann [Univ. of California, Davis, CA (United States)

    1995-05-11

    Laser-plasma interactions have been of interest for many years not only from a basic physics standpoint, but also for their relevance to numerous applications. Advances in laser technology in recent years have resulted in compact laser systems capable of generating (psec), 1016 W/cm2 laser pulses. These lasers have provided a new regime in which to study laser-plasma interactions, a regime characterized by Lplasma ≥ 2LRayleigh > cτ. The goal of this dissertation is to experimentally characterize the interaction of a short pulse, high intensity laser with an underdense plasma (no ≤ 0.05ncr). Specifically, the parametric instability known as stimulated Raman scatter (SRS) is investigated to determine its behavior when driven by a short, intense laser pulse. Both the forward Raman scatter instability and backscattered Raman instability are studied. The coupled partial differential equations which describe the growth of SRS are reviewed and solved for typical experimental laser and plasma parameters. This solution shows the growth of the waves (electron plasma and scattered light) generated via stimulated Raman scatter. The dispersion relation is also derived and solved for experimentally accessible parameters. The solution of the dispersion relation is used to predict where (in k-space) and at what frequency (in ω-space) the instability will grow. Both the nonrelativistic and relativistic regimes of the instability are considered.

  13. Critical incidents connected to nurses' leadership in Intensive Care Units.

    Science.gov (United States)

    Lima, Elaine Cantarella; Bernardes, Andrea; Baldo, Priscila Lapaz; Maziero, Vanessa Gomes; Camelo, Silvia Helena Henriques; Balsanelli, Alexandre Pazetto

    2017-01-01

    The goal of this study is to analyze nurses' leadership in intensive care units at hospitals in the state of São Paulo, Brazil, in the face of positive and negative critical incidents. Exploratory, descriptive study, conducted with 24 nurses by using the Critical Incident Technique as a methodological benchmark. Results were grouped into 61 critical incidents distributed into categories. Researchers came to the conclusion that leadership-related situations interfere with IC nurses' behaviors. Among these situations they found: difficulty in the communication process; conflicts in the daily exercise of nurses' activities; people management; and the setting of high quality care targets. Researchers identified a mixed leadership model, leading them to the conclusion that nurses' knowledge and practice of contemporary leadership theories/styles are crucial because they facilitate the communication process, focusing on behavioral aspects and beliefs, in addition to valuing flexibility. This positively impacts the organization's results. Analisar a liderança do enfermeiro em Centros de Terapia Intensiva de hospitais localizados no interior do estado de São Paulo, diante de incidentes críticos positivos e negativos. Estudo exploratório, descritivo, realizado com 24 enfermeiros, que utilizou a Técnica do Incidente Crítico como referencial metodológico. Os resultados foram agrupados em 61 incidentes críticos distribuídos em categorias. Identificou-se que situações relacionadas à liderança interferem no comportamento do enfermeiro de Terapia Intensiva, dentre elas: dificuldade no processo de comunicação, conflitos existentes no dia a dia do exercício profissional, gerenciamento de pessoas e estabelecimento de metas para o alcance da assistência qualificada. Encontrou-se um modelo misto de liderança, o que permite concluir que o conhecimento e a prática dos enfermeiros acerca de teorias/estilos contemporâneos de liderança tornam-se fundamentais, pois

  14. Terrestrial Laser Scanning Intensity Correction by Piecewise Fitting and Overlap-Driven Adjustment

    Directory of Open Access Journals (Sweden)

    Teng Xu

    2017-10-01

    Full Text Available Terrestrial laser scanning sensors deliver not only three-dimensional geometric information of the scanned objects but also the intensity data of returned laser pulse. Recent studies have demonstrated potential applications of intensity data from Terrestrial Laser Scanning (TLS. However, the distance and incident angle effects distort the TLS raw intensity data. To overcome the distortions, a new intensity correction method by combining the piecewise fitting and overlap-driven adjustment approaches was proposed in this study. The distance effect is eliminated by the piecewise fitting approach. The incident angle effect is eliminated by overlap-driven adjustment using the Oren–Nayar model that employs the surface roughness parameter of the scanned object. The surface roughness parameter at a certain point in an overlapped region of the multi-station scans is estimated by using the raw intensity data from two different stations at the point rather than estimated by averaging the surface roughness at other positions for each kind of object, which eliminates the estimation deviation. Experimental results obtained by using a TLS sensor (Riegl VZ-400i demonstrate that the proposed method is valid and the deviations of the retrieved reflectance values from those measured by a spectrometer are all less than 3%.

  15. Dynamic imaging of molecular motion ultrashort intense laser pulses

    Science.gov (United States)

    Bandrauk, Andre D.

    2002-05-01

    The nonlinear nonperturbative response of atoms in intense laser fields has been extensively studied both experimentally and theoretically in the past twenty years leading to new unexpected effects such as Above Threshold Ionization, ATI, high order frequency generation etc. and these are documented in recent book The similar studies of molecules is a new chapter in the pursuit of laser control and manipulation of molecules. The nonlinear nonperturbative response of molecules to intense (Icm2 ) and ultrashort (V10 fs) laser pulses [2] is expected to yield new effects due to the extra degrees of freedom nuclear motion as compared to atoms [3], such as creation of Laser Induced Molecular Potentials, LIMP' s, Charge Resonance Enhanced Ionization, CREI [4] and molecular High Order Harmonic Generation [5]. These nonlinear nonperturbative in effects were seen in experiments [6] and were predicted and confirmed by high-level numerical simulations of appropriate time-dependent Schrodinger equations [3-5,7], TDSE's, of molecules in laser fields. Our recent supercomputer simulations of H2+ molecule dynamics in intense laser fields, [7-9] based on TDSE, also allowed us to propose two new molecular imaging techniques: a) LCEI, Laser Coulomb Explosion Imaging [8] and b) LPEI, Laser Photoelectron Imaging [9]. The first is based on the analysis of the kinetic energy of molecular fragments after Coulomb Explosion, CE, whereas the latter imaging uses the shape of ATI electron peaks, produced by an intense laser pulse. We describe summarily in the present communication these two imaging methods which were developed using high level supercomputer simulations

  16. Studies of intense-laser plasma instabilities

    Czech Academy of Sciences Publication Activity Database

    Láska, Leoš; Krása, Josef; Badziak, J.; Jungwirth, Karel; Krouský, Eduard; Margarone, Daniele; Parys, P.

    2013-01-01

    Roč. 272, May (2013), 94-98 ISSN 0169-4332 R&D Projects: GA MŠk(CZ) 7E09092; GA MŠk(CZ) LC528; GA AV ČR IAA100100715 Institutional research plan: CEZ:AV0Z10100523 Keywords : laser plasma instabilities * self-generated magnetic field * longitudinal structure of the expanding plasma Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 2.538, year: 2013

  17. Incident laser modulation of a repaired damage site with a rim in fused silica rear subsurface

    International Nuclear Information System (INIS)

    Li Li; Xiang Xia; Zu Xiao-Tao; Yuan Xiao-Dong; He Shao-Bo; Jiang Xiao-Dong; Zheng Wan-Guo

    2012-01-01

    Local CO 2 laser treatment has proved to be an effective method to prevent the 351-nm laser-induced damage sites in a fused silica surface from exponentially growing, which is responsible for limiting the lifetime of optics in high fluence laser systems. However, the CO 2 laser induced ablation crater is often surrounded by a raised rim at the edge, which can also result in the intensification of transmitted ultraviolet light that may damage the downstream optics. In this work, the three-dimensional finite-difference time-domain method is developed to simulate the distribution of electrical field intensity in the vicinity of the CO 2 laser mitigated damage site located in the exit subsurface of fused silica. The simulated results show that the repaired damage sites with raised rims cause more notable modulation to the incident laser than those without rims. Specifically, we present a theoretical model of using dimpled patterning to control the rim structure around the edge of repaired damage sites to avoid damage to downstream optics. The calculated results accord well with previous experimental results and the underlying physical mechanism is analysed in detail. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  18. Heating of underdense plasmas by intense lasers

    International Nuclear Information System (INIS)

    Kruer, W.L.

    1972-08-01

    In this note we show that two intense driving fields with frequency much greater than the electron plasma frequency (ω/sub pe/), but with a frequency separation of nearly ω/sub pe/, will couple electron and ion plasma waves and drive them unstable. 6 refs

  19. Improving the intensity of a focused laser beam

    Science.gov (United States)

    Haddadi, Sofiane; Fromager, Michael; Louhibi, Djelloul; Hasnaoui, Abdelkrim; Harfouche, Ali; Cagniot, Emmanuel; ńit-Ameur, Kamel

    2015-03-01

    Let us consider the family of symmetrical Laguerre-Gaus modes of zero azimuthal order which will be denoted as LGp0 . The latter is made up of central lobe surrounded by p concentric rings of light. The fundamental mode LG00 is a Gaussian beam of width W. The focusing of a LGp0 beam of power P by a converging lens of focal length f produces a focal spot keeping the LGp0 -shape and having a central intensity I0= 2PW2/(λf)2 whatever the value of the radial order p. Many applications of lasers (laser marking, laser ablation, …) seek nowadays for a focal laser spot with the highest as possible intensity. For a given power P, increasing intensity I0 can be achieved by increasing W and reducing the focal length f. However, this way of doing is in fact limited because the ratio W/f cannot increase indefinitely at the risk of introducing a huge truncation upon the edge of the lens. In fact, it is possible to produce a single-lobed focal spot with a central intensity of about p times the intensity I0. This result has been obtained by reshaping (rectification) a LGp0 beam thanks to a proper Binary Diffractive Optical Element (BDOE). In addition, forcing a laser cavity to oscillate upon a LGp0 can improve the power extract due to a mode volume increasing with the mode order p. This could allow envisaging an economy of scale in term of laser pumping power for producing a given intensity I0. In addition, we have demonstrated that a rectified LGp0 beam better stand the lens spherical aberration than the usual Gaussian beam.

  20. Hydrodynamic time scales for intense laser-heated clusters

    International Nuclear Information System (INIS)

    Parra, Enrique; Alexeev, Ilya; Fan, Jingyun; Kim, Kiong Y.; McNaught, Stuart J.; Milchberg, Howard M.

    2003-01-01

    Measurements are presented of x-ray (>1.5 keV) and extreme ultraviolet (EUV, λ equal to 2-44 nm) emission from argon clusters irradiated with constant-energy (50 mJ), variable-width laser pulses ranging from 100 fs to 10 ns. The results for clusters can be understood in terms of two time scales: a short time scale for optimal resonant absorption at the critical-density layer in the expanding plasma, and a longer time scale for the plasma to drop below critical density. We present a one-dimensional hydrodynamic model of the intense laser-cluster interaction in which the laser field is treated self-consistently. We find that nonuniform expansion of the heated material results in long-time resonance of the laser field at the critical-density plasma layer. These simulations explain the dependence of generation efficiency on laser pulse width

  1. High-Power, High-Intensity Laser Propagation and Interactions

    Science.gov (United States)

    2014-03-10

    Turbulence leads to an increase in spreading of the laser beam spot size, sR . In addition, turbulence leads to wandering of the laser beam centroid... SR is the increase in spot size (spreading), where  /)( sw RRR  . x R Rwander RST yspot size 20 Figure 13 shows the laser intensity...Ting and G. Joyce, Appl. Phys. Lett. 53, 2146 (1988). 55. T.M. Antonsen and P. Mora , Phys. Fluids B5, 1440 (1993). 56. P. Sprangle, J. Krall

  2. Study of laser preheating dependence on laser wavelength and intensity for MagLIF

    Science.gov (United States)

    Wei, M. S.; Harvey-Thompson, A. J.; Glinsky, M.; Nagayama, T.; Weis, M.; Geissel, M.; Peterson, K.; Fooks, J.; Krauland, C.; Giraldez, E.; Davies, J.; Campbell, E. M.; Bahr, R.; Edgell, D.; Stoeckl, C.; Glebov, V.; Emig, J.; Heeter, R.; Strozzi, D.

    2017-10-01

    The magnetized liner inertial fusion (MagLIF) scheme requires preheating underdense fuel to 100's eV temperature by a TW-scale long pulse laser via collisional absorption. To better understand how laser preheat scales with laser wavelength and intensity as well as to provide data for code validation, we have conducted a well-characterized experiment on OMEGA to directly compare laser propagation, energy deposition and laser plasma instabilities (LPI) using 2 ω (527 nm) and 3 ω (351 nm) lasers with intensity in the range of (1-5)x1014 Wcm-2. The laser beam (1 - 1.5 ns square pulse) enters the gas-filled plastic liner though a 2-µm thick polyimide window to heat an underdense Ar-doped deuterium gas with electron density of 5.5% of critical density. Laser propagation and plasma temperature are diagnosed by time-resolved 2D x-ray images and Ar emission spectroscopy, respectively. LPI is monitored by backscattering and hard x-ray diagnostics. The 2 ω beam propagation shows a noticeable larger lateral spread than the 3 ω beam, indicating laser spray due to filamentation. LPI is observed to increase with laser intensity and the 2 ω beam produces more hot electrons compared with the 3 ω beam under similar conditions. Results will be compared with radiation hydrodynamic simulations. Work supported by the U.S. DOE ARPA-E and NNSA.

  3. The generation of high-quality, intense ion beams by ultra-intense lasers

    CERN Document Server

    Roth, M; Audebert, Patrick; Blazevic, A; Brambrink, E; Cowan, T E; Fuchs, J; Gauthier, J C; Geissel, M; Hegelich, M; Karsch, S; Meyer-Ter-Vehn, J; Ruhl, H; Schlegel, T; Stephens, R B

    2002-01-01

    Intense beams of protons and heavy ions have been observed in ultra-intense laser-solid interaction experiments. Thereby, a considerable fraction of the laser energy is transferred to collimated beams of energetic ions (e.g. up to 50 MeV protons; 100 MeV fluorine), which makes these beams highly interesting for various applications. Experimental results indicate a very short-pulse duration and an excellent beam quality, leading to beam intensities in the TW range. To characterize the beam quality and its dependence on laser parameters and target conditions we performed experiments using the 100 TW laser system at Laboratoire pour l'Utilisation des Lasers Intenses at the Ecole Polytechnique, France, with focused intensities exceeding 10 sup 1 sup 9 W cm sup - sup 2. We found a strong dependence on the target rear surface conditions allowing to tailor the ion beam by an appropriate target design. We also succeeded in the generation of heavy ion beams by suppressing the proton amount at the target surface. We wi...

  4. Lasers and intense pulsed light (IPL) association with cancerous lesions.

    Science.gov (United States)

    Ash, Caerwyn; Town, Godfrey; Whittall, Rebecca; Tooze, Louise; Phillips, Jaymie

    2017-11-01

    The development and use of light and lasers for medical and cosmetic procedures has increased exponentially over the past decade. This review article focuses on the incidence of reported cases of skin cancer post laser or IPL treatment. The existing evidence base of over 25 years of laser and IPL use to date has not raised any concerns regarding its long-term safety with only a few anecdotal cases of melanoma post treatment over two decades of use; therefore, there is no evidence to suggest that there is a credible cancer risk. Although laser and IPL technology has not been known to cause skin cancer, this does not mean that laser and IPL therapies are without long-term risks. Light therapies and lasers to treat existing lesions and CO 2 laser resurfacing can be a preventative measure against BCC and SCC tumour formation by removing photo-damaged keratinocytes and encouraged re-epithelisation from stem cells located deeper in the epidermis. A review of the relevant literature has been performed to address the issue of long-term IPL safety, focussing on DNA damage, oxidative stress induction and the impact of adverse events.

  5. Atomic processes in plasmas under ultra-intense laser irradiation

    International Nuclear Information System (INIS)

    Schappert, G.T.; Casperson, D.E.; Cobble, J.A.; Comly, J.C.; Jones, L.A.; Kyrala, G.A.; LaGattuta, K.J.; Lee, P.H.Y.; Olson, G.L.; Taylor, A.J.

    1990-01-01

    Lasers delivering subpicosecond pulses with energies of a fraction of a Joule have made it possible to generate irradiance levels approaching 10 20 W/cm 2 . We presently operate two such systems, a KrF based excimer laser capable of producing a few 10 17 W/cm 2 at 248 nm with a repetition rate of 3--5 Hz and a XeCl based excimer laser capable of producing mid 10 19 W/cm 2 at 308 nm and 1 Hz. We will discuss some experimental results and the theory and modeling of the interaction of such intense laser pulses with aluminum. Because of a small ASE prepulse the high intensity interaction is not at the solid surface but rather at the n e =2x10 22 cm -3 (KrF) laser critical density of the blowoff plasma generated by the ASE. The transient behavior of the plasma following the energy deposition by the intense subpicosecond pulse can be viewed as the energy-impulse response of the plasma. Experimental results and modeling of the x-ray emission from this plasma are presented

  6. High energy bremsstrahlung in an intense laser field

    International Nuclear Information System (INIS)

    Schlessinger, L.; Wright, J.A.

    1980-02-01

    The cross section for bremsstrahlung emission and absorption by electrons in an intense laser field has been calculated in the Born approximation for the electron-ion potential. Typical numerical results are presented as a function of the ratio of the electron guiver energy to its energy and the ratio of the bremsstrahlung energy to the electron energy. The intense field correction factor for the rate of bremsstrahlung emission and absorption for electrons with a Boltzmann distribution of energies has been calculated. Numerical results for the correction factor are presented for the Boltzmann case as a function of the ratio of the electron quiver energy to its thermal energy and the ratio of the bremsstrahlung energy to the thermal energy. For typical laser fusion parameters, this correction factor which is the ratio of the thermal bremsstrahlung emission rate in the intense laser field to the rate at zero field can be quite significant. For a laser of wavelength 1.06 μm at an intensity of 3 x 10 15 w/cm 2 and an electron temperature of 1 keV, the correction factor varies from 0.98 at a bremsstrahlung energy of 100 V to greater than 5 at a bremsstrahlung energy of 10 keV

  7. Optimum laser intensity for the production of energetic deuterium ions from laser-cluster interaction

    Energy Technology Data Exchange (ETDEWEB)

    Bang, W.; Dyer, G.; Quevedo, H. J.; Bernstein, A. C.; Gaul, E.; Rougk, J.; Aymond, F.; Donovan, M. E.; Ditmire, T. [Department of Physics, Center for High Energy Density Science, C1510, University of Texas at Austin, Austin, Texas 78712 (United States)

    2013-09-15

    We measured, using Petawatt-level pulses, the average ion energy and neutron yield in high-intensity laser interactions with molecular clusters as a function of laser intensity. The interaction volume over which fusion occurred (1–10 mm{sup 3}) was larger than previous investigations, owing to the high laser power. Possible effects of prepulses were examined by implementing a pair of plasma mirrors. Our results show an optimum laser intensity for the production of energetic deuterium ions both with and without the use of the plasma mirrors. We measured deuterium plasmas with 14 keV average ion energies, which produced 7.2 × 10{sup 6} and 1.6 × 10{sup 7} neutrons in a single shot with and without plasma mirrors, respectively. The measured neutron yields qualitatively matched the expected yields calculated using a cylindrical plasma model.

  8. Optimum laser intensity for the production of energetic deuterium ions from laser-cluster interaction

    Science.gov (United States)

    Bang, W.; Dyer, G.; Quevedo, H. J.; Bernstein, A. C.; Gaul, E.; Rougk, J.; Aymond, F.; Donovan, M. E.; Ditmire, T.

    2013-09-01

    We measured, using Petawatt-level pulses, the average ion energy and neutron yield in high-intensity laser interactions with molecular clusters as a function of laser intensity. The interaction volume over which fusion occurred (1-10 mm3) was larger than previous investigations, owing to the high laser power. Possible effects of prepulses were examined by implementing a pair of plasma mirrors. Our results show an optimum laser intensity for the production of energetic deuterium ions both with and without the use of the plasma mirrors. We measured deuterium plasmas with 14 keV average ion energies, which produced 7.2 × 106 and 1.6 × 107 neutrons in a single shot with and without plasma mirrors, respectively. The measured neutron yields qualitatively matched the expected yields calculated using a cylindrical plasma model.

  9. Intensity dependence of electron gas kinetics in a laser corona

    Directory of Open Access Journals (Sweden)

    Mašek Martin

    2013-11-01

    Full Text Available In various experimental situations relevant to the laser fusion, such as plasma near the light entrance holes of hohlraum in the indirect drive experiments or more recently in the shock ignition direct drive a relatively long underdense plasma of corona type is encountered, which is subject to an intense nanosecond laser beam. The plasma is only weakly collisional and thus in the electron phase space a complicated kinetic evolution is going on, which is taking the electron gas fairly far from the thermal equilibrium and contributes to its unstable behaviour. These phenomena impede the absorption and thermalization of the incoming laser energy, create groups of fast electrons and also may lead to a non-linear reflection of the heating laser beam. One of the key processes leading to the electron acceleration is the stimulated Raman scattering (SRS in its non-linear phase. The SRS in the presence of electron-ion collisions requires a certain threshold intensity above which the mentioned non-dissipative phenomena can occur and develop to the stage, where they may become unpleasant for the fusion experiments. To assess this intensity limit a computational model has been developed based on the Vlasov-Maxwell kinetics describing such a plasma in 1D geometry. At a relatively high intensity of 1016 W/cm2 a number of non-linear phenomena are predicted by the code such as a saturation of Landau damping, which is then translated in an unfavourable time dependence of the reflected light intensity and formation of accelerated electron groups due to the electron trapping. The purpose of the present contribution is to map the intensity dependence of this non-linear development with the aim of assessing its weight in fusion relevant situations.

  10. Calculations of population transfer during intense laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Schafer, K.J.; Kulander, K.C.

    1993-08-01

    Recent experiments by several groups have examined the question of population transfer to resonantly excited states during intense short laser pulses, in particular the amount of population that remains ``trapped`` in excited states at the end of a laser pulse. In this chapter we present calculations of population transfer and resonant ionization in xenon at both 660 and 620 nm. At the longer wavelength, the seven photon channel closes at 2.5{times}10{sup 13} W/cm{sup 2}. Pulses with peak intensities higher than this result in ``Rydberg trapping``, the resonant transfer of population to a broad range of high-lying states. The amount of population transferred depends on both the peak intensity and pulse duration. At 620 mm there are numerous possible six photon resonances to states with p or f angular momentum. We have done a large number of calculations for 40 fs pulses at different peak intensities and have examined the population transferred to these low-lying resonant states as a function of the peak laser intensity. We do not have room to comment upon the resonantly enhanced ionized electron energy spectra that we also determine in the same calculations. Our calculations involve the direct numerical integration of the time-dependent Schroedinger equation for an atom interacting with a strong laser field. The time-dependent wave function of a given valence electron is calculated on a spatial grid using a one-electron pseudo potential. This single active electron approximation (SAE) has been shown to be a good approximation for the rare gases at the intensities and wavelengths that we will consider. The SAE potential we use has an explicit angular momentum dependence which allows us to reproduce all of the excited state energies for xenon quite well.

  11. Intense ion beams from laser plasma : production and application

    International Nuclear Information System (INIS)

    Bykovsky, Yu.A.; Kozlovsky, K.I.; Shikanov, A.E.

    1994-01-01

    The production of intense ion beams from plasma injectors using laser-induced plasma bundles are considered. Laser plasma bundles with quantity of ions about 10 sup 1 sup 5 - 10 sup 1 sup 6 imp sup -1 are created by interaction of laser irradiation ( q = 10 sup 9 - 10 sup 1 sup 3 W / cm sup 2, less than 'thermonuclear' intensities, lambda - 0.53 - 10.6 micro, E 0.1 - 10 J/ imp )with various solid targets in vacuum. By changing laser parameters and focusing conditions it is able to produce ions from very wide spectrum of chemical elements and of different charge. High density moving plasma gives the possibility to extract and to form in time up to 1 - 3 microsecond ion current equal 10-10 sup 3 A. Some types of such injector for radiation physics arrangements were elaborated. The main goals of the application of these equipment are the following : - acceleration of multiply charged ions in big accelerators; - ion implantation and material modification; - generation of intense pulse neutron fluxes; - vaporization of material and special layers creation. 4 refs., (author)

  12. Time-resolved explosion of intense-laser-heated clusters

    International Nuclear Information System (INIS)

    Kim, K.Y.; Alexeev, I.; Parra, E.; Milchberg, H.M.

    2003-01-01

    We investigate the femtosecond explosive dynamics of intense laser-heated argon clusters by measuring the cluster complex transient polarizability. The time evolution of the polarizability is characteristic of competition in the optical response between supercritical and subcritical density regions of the expanding cluster. The results are consistent with time-resolved Rayleigh scattering measurements, and bear out the predictions of a recent laser-cluster interaction model [H. M. Milchberg, S. J. McNaught, and E. Parra, Phys. Rev. E 64, 056402 (2001)

  13. Evaluation of the ocular protection for low intensity therapeutic lasers

    International Nuclear Information System (INIS)

    Cordon, Rosely

    2003-01-01

    The low intensity laser therapy (LILT) has been extensively used in medicine and dentistry presenting positive effects. However, the laser radiation can also cause adverse effects. Due to the ocular focalization property, in the wavelength from 400 to 1400 nm, the retina is more susceptible to damage by radiation than any other part of the human body. Then, the ocular protection is frequently emphasized. This protection must attenuate the radiation to a safe level. The International Electrotechnical Commission (IEC) standard IEC 60825-1 suggests safety requirements for medical laser equipment, including the ocular protection, based on maximum permissible exposure levels. The Brazilian legislation adopts a corresponding IEC standard, the NBR IEC 601.2.22, for safety requirements. The aim of this study was to analyze the adequacy of the ocular protectors furnished by four laser equipment manufacturers, commercially available in Brazil, commonly used for LILT. For this purpose, the laser equipment and the respective ocular protectors were characterized. The adequacy was verified according to the IEC standards. It was found, among other results, ocular protectors attenuating to safe levels the radiation emitted by the respective laser equipment, however, presenting inadequate visual transmission. Inefficient protection and protection indicated in cases where they were not necessary were also observed. (author)

  14. Incidence, progression and intensity of Bud Rot in Elaeis guineensis Jacq. in San Lorenzo, Ecuador

    Directory of Open Access Journals (Sweden)

    Fernando Rivas Figueroa

    2017-01-01

    Full Text Available BUD rot (BR is the most serious disease of oil palm in Latin America; in Equator has caused more than 150 million USD of losses. The aim of this work was to determine the incidence, progression and disease intensity of BR in E. guineensis. Incidence and disease progression was determined from data of oil palm enterprises: Palesema, PDA, Palpailón, Energy & Palma y Alespalma during 2006-2013. Disease intensity was determined at 2013. Incidence was 66.75 % and disease intensity was 46 %. Based on projections of accumulative incidence a polynomial equation was built that predicted 78.30 % of cumulative incidence for 2014, indicating exponential growth of BR from 2009 to 2013. Magnitude of damages based on incidence, disease progression and infection index indicated the occurrence of a lethal form of BR in San Lorenzo, province of Esmeraldas, Equator.

  15. Intensity and frequency stabilization of a laser diode by simultaneously controlling its temperature and current

    Science.gov (United States)

    Mu, Weiwei; Hu, Zhaohui; Wang, Jing; Zhou, Binquan

    2017-10-01

    Nuclear magnetic resonance gyroscope (NMRG) detects the angular velocity of the vehicle utilizing the interaction between the laser beam and the alkali metal atoms along with the noble gas atoms in the alkali vapor cell. In order to reach high precision inertial measurement target, semiconductor laser in NMRG should have good intensity and frequency stability. Generally, laser intensity and frequency are stabilized separately. In this paper, a new method to stabilize laser intensity and frequency simultaneously with double-loop feedback control is presented. Laser intensity is stabilized to the setpoint value by feedback control of laser diode's temperature. Laser frequency is stabilized to the Doppler absorption peak by feedback control of laser diode's current. The feedback control of current is a quick loop, hence the laser frequency stabilize quickly. The feedback control of temperature is a slow loop, hence the laser intensity stabilize slowly. With the feedback control of current and temperature, the laser intensity and frequency are stabilized finally. Additionally, the dependence of laser intensity and frequency on laser diode's current and temperature are analyzed, which contributes to choose suitable operating range for the laser diode. The advantage of our method is that the alkali vapor cell used for stabilizing laser frequency is the same one as the cell used for NMRG to operate, which helps to miniaturize the size of NMRG prototype. In an 8-hour continuous measurement, the long-term stability of laser intensity and frequency increased by two orders of magnitude and one order of magnitude respectively.

  16. Coupled thermal-optic effects and electrical modulation mechanism of birefringence crystal with Gaussian laser incidence

    International Nuclear Information System (INIS)

    Zhou Ji; He Zhi-Hong; Ma Yu; Dong Shi-Kui

    2015-01-01

    We study the Gaussian laser transmission in lithium niobate crystal (LiNbO 3 ) by using the finite element method to solve the electromagnetic field’s frequency domain equation and energy equation. The heat generated is identified by calculating the transmission loss of the electromagnetic wave in the birefringence crystal, and the calculated value of the heat generated is substituted into the energy equation. The electromagnetic wave’s energy losses induced by its multiple refractions and reflections along with the resulting physical property changes of the lithium niobate crystal are considered. Influences of ambient temperature and heat transfer coefficient on refraction and walk-off angles of O-ray and E-ray in the cases of different incident powers and crystal thicknesses are analyzed. The E-ray electrical modulation instances, in which the polarized light waveform is adjusted to the rated condition via an applied electrical field in the cases of different ambient temperatures and heat transfer coefficients, are provided to conclude that there is a correlation between ambient temperature and applied electrical field intensity and a correlation between surface heat transfer coefficient and applied electrical field intensity. The applicable electrical modulation ranges without crystal breakdown are proposed. The study shows that the electrical field-adjustable heat transfer coefficient range becomes narrow as the incident power decreases and wide as the crystal thickness increases. In addition, it is pointed out that controlling the ambient temperature is easier than controlling the heat transfer coefficient. The results of the present study can be used as a quantitative theoretical basis for removing the adverse effects induced by thermal deposition due to linear laser absorption in the crystal, such as depolarization or wave front distortion, and indicate the feasibility of adjusting the refractive index in the window area by changing the heat transfer

  17. Advanced approaches to high intensity laser-driven ion acceleration

    International Nuclear Information System (INIS)

    Henig, Andreas

    2010-01-01

    Since the pioneering work that was carried out 10 years ago, the generation of highly energetic ion beams from laser-plasma interactions has been investigated in much detail in the regime of target normal sheath acceleration (TNSA). Creation of ion beams with small longitudinal and transverse emittance and energies extending up to tens of MeV fueled visions of compact, laser-driven ion sources for applications such as ion beam therapy of tumors or fast ignition inertial con finement fusion. However, new pathways are of crucial importance to push the current limits of laser-generated ion beams further towards parameters necessary for those applications. The presented PhD work was intended to develop and explore advanced approaches to high intensity laser-driven ion acceleration that reach beyond TNSA. In this spirit, ion acceleration from two novel target systems was investigated, namely mass-limited microspheres and nm-thin, free-standing diamond-like carbon (DLC) foils. Using such ultrathin foils, a new regime of ion acceleration was found where the laser transfers energy to all electrons located within the focal volume. While for TNSA the accelerating electric field is stationary and ion acceleration is spatially separated from laser absorption into electrons, now a localized longitudinal field enhancement is present that co-propagates with the ions as the accompanying laser pulse pushes the electrons forward. Unprecedented maximum ion energies were obtained, reaching beyond 0.5 GeV for carbon C 6+ and thus exceeding previous TNSA results by about one order of magnitude. When changing the laser polarization to circular, electron heating and expansion were shown to be efficiently suppressed, resulting for the first time in a phase-stable acceleration that is dominated by the laser radiation pressure which led to the observation of a peaked C 6+ spectrum. Compared to quasi-monoenergetic ion beam generation within the TNSA regime, a more than 40 times increase in

  18. Advanced approaches to high intensity laser-driven ion acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Henig, Andreas

    2010-04-26

    Since the pioneering work that was carried out 10 years ago, the generation of highly energetic ion beams from laser-plasma interactions has been investigated in much detail in the regime of target normal sheath acceleration (TNSA). Creation of ion beams with small longitudinal and transverse emittance and energies extending up to tens of MeV fueled visions of compact, laser-driven ion sources for applications such as ion beam therapy of tumors or fast ignition inertial con finement fusion. However, new pathways are of crucial importance to push the current limits of laser-generated ion beams further towards parameters necessary for those applications. The presented PhD work was intended to develop and explore advanced approaches to high intensity laser-driven ion acceleration that reach beyond TNSA. In this spirit, ion acceleration from two novel target systems was investigated, namely mass-limited microspheres and nm-thin, free-standing diamond-like carbon (DLC) foils. Using such ultrathin foils, a new regime of ion acceleration was found where the laser transfers energy to all electrons located within the focal volume. While for TNSA the accelerating electric field is stationary and ion acceleration is spatially separated from laser absorption into electrons, now a localized longitudinal field enhancement is present that co-propagates with the ions as the accompanying laser pulse pushes the electrons forward. Unprecedented maximum ion energies were obtained, reaching beyond 0.5 GeV for carbon C{sup 6+} and thus exceeding previous TNSA results by about one order of magnitude. When changing the laser polarization to circular, electron heating and expansion were shown to be efficiently suppressed, resulting for the first time in a phase-stable acceleration that is dominated by the laser radiation pressure which led to the observation of a peaked C{sup 6+} spectrum. Compared to quasi-monoenergetic ion beam generation within the TNSA regime, a more than 40 times

  19. Incidence of intravenous drug incompatibilities in intensive care units

    Czech Academy of Sciences Publication Activity Database

    Machotka, O.; Maňák, J.; Kuběna, Aleš Antonín; Vlček, J.

    2015-01-01

    Roč. 159, č. 4 (2015), s. 652-656 ISSN 1213-8118 Institutional support: RVO:67985556 Keywords : medical error * graph theory * graph coloring * drug administration * drug incompatibilities * applied combinatorics * decision theory * medical * medication safety * intensive care units Subject RIV: FN - Epidemiology, Contagious Diseases ; Clinical Immunology Impact factor: 0.924, year: 2015 http://library.utia.cas.cz/separaty/2014/E/kubena-0437509.pdf

  20. Exercise Intensity and Incidence of Metabolic Syndrome: The SUN Project.

    Science.gov (United States)

    Hidalgo-Santamaria, María; Fernandez-Montero, Alejandro; Martinez-Gonzalez, Miguel A; Moreno-Galarraga, Laura; Sanchez-Villegas, Almudena; Barrio-Lopez, María T; Bes-Rastrollo, Maira

    2017-04-01

    Emerging evidence suggests that vigorous physical activity may be associated with higher cardioprotective benefits than moderate physical activity. This study aimed to assess the long-term relationship between the intensity of leisure time physical activity (LTPA) and the risk of developing metabolic syndrome (MS) in a prospective cohort study. The Seguimiento Universidad de Navarra (SUN) Project comprises Spanish university graduates. Participants (n=10,145) initially free of MS were followed for a minimum of 6 years (2008-2014). Analysis was conducted in 2015. Physical activity was assessed though a validated questionnaire. The intensity of each physical activity was measured in METs. The intensity of LTPA was estimated by the ratio between total METs/week and total hours of LTPA/week, obtaining the mean METs/hour of LTPA. MS was defined according to the harmonizing definition. The association between the intensity of LTPA (METs/hour) and MS was assessed with logistic regression models adjusting for potential confounders. Among 10,145 participants initially free of any MS criteria, 412 new MS cases were observed. Vigorous LTPA was associated with a 37% relatively lower risk (AOR=0.63, 95% CI=0.44, 0.89) compared with light LTPA. For a given total energy expenditure, independent of the time spent on it, participants who performed vigorous LTPA exhibited a higher reduction in the risk of MS than those who performed light to moderate LTPA. Vigorous LTPA was significantly associated with lower risk of developing MS after a 6-year follow-up period. Copyright © 2016 American Journal of Preventive Medicine. Published by Elsevier Inc. All rights reserved.

  1. Signal intensity enhancement of laser ablated volume holograms

    Science.gov (United States)

    Versnel, J. M.; Williams, C.; Davidson, C. A. B.; Wilkinson, T. D.; Lowe, C. R.

    2017-11-01

    Conventional volume holographic gratings (VHGs) fabricated in photosensitive emulsions such as gelatin containing silver salts enable the facile visualization of the holographic image in ambient lighting. However, for the fabrication of holographic sensors, which require more defined and chemically-functionalised polymer matrices, laser ablation has been introduced to create the VHGs and thereby broaden their applications, although the replay signal can be challenging to detect in ambient lighting. When traditional photochemical bleaching solutions used to reduce light scattering and modulate refractive index within the VHG are applied to laser ablated volume holographic gratings, these procedures decrease the holographic peak intensity. This is postulated to occur because both light and dark fringes contain a proportion of metal particles, which upon solubilisation are converted immediately to silver iodide, yielding no net refractive index modulation. This research advances a hypothesis that the reduced intensity of holographic replay signals is linked to a gradient of different sized metal particles within the emulsion, which reduces the holographic signal and may explain why traditional bleaching processes result in a reduction in intensity. In this report, a novel experimental protocol is provided, along with simulations based on an effective medium periodic 1D stack, that offers a solution to increase peak signal intensity of holographic sensors by greater than 200%. Nitric acid is used to etch the silver nanoparticles within the polymer matrix and is thought to remove the smaller particles to generate more defined metal fringes containing a soluble metal salt. Once the grating efficiency has been increased, this salt can be converted to a silver halide, to modulate the refractive index and increase the intensity of the holographic signal. This new protocol has been tested in a range of polymer chemistries; those containing functional groups that help to

  2. Brief Report: Incidence of and Risk Factors for Autistic Disorder in Neonatal Intensive Care Unit Survivors.

    Science.gov (United States)

    Matsuishi, Toyojiro; Yamashita, Yushiro; Ohtani, Yasuyo; Ornitz, Edward; Kuriya, Norikazu; Murakami, Yoshihiko; Fukuda, Seiichi; Hashimoto, Takeo; Yamashita, Fumio

    1999-01-01

    Analysis of the incidence of autistic disorder (AD) among 5,271 children in a neonatal intensive care unit in Japan found that 18 children were later diagnosed with AD, an incidence more than twice as high as previously reported. Children with AD had a significantly higher history of the meconium aspiration syndrome than the controls. (Author/DB)

  3. Self-guiding of high-intensity laser pulses for laser wake field acceleration

    International Nuclear Information System (INIS)

    Umstader, D.; Liu, X.

    1992-01-01

    A means of self-guiding an ultrashort and high-intensity laser pulse is demonstrated both experimentally and numerically. Its relevance to the laser wake field accelerator concept is discussed. Self-focusing and multiple foci formation are observed when a high peak power (P>100 GW), 1 μm, subpicosecond laser is focused onto various gases (air or hydrogen). It appears to result from the combined effects of self-focusing by the gas, and de-focusing both by diffraction and the plasma formed in the central high-intensity region. Quasi-stationary computer simulations show the same multiple foci behavior as the experiments. The results suggest much larger nonlinear electronic susceptibilities of a gas near or undergoing ionization in the high field of the laser pulse. Although self-guiding of a laser beam by this mechanism appears to significantly extend its high-intensity focal region, small-scale self-focusing due to beam non-uniformity is currently a limitation

  4. Direct intensity calibration of X-ray grazing-incidence microscopes with home-lab source.

    Science.gov (United States)

    Li, Yaran; Xie, Qing; Chen, Zhiqiang; Xin, Qiuqi; Wang, Xin; Mu, Baozhong; Wang, Zhanshan; Liu, Shenye; Ding, Yongkun

    2018-01-01

    Direct intensity calibration of X-ray grazing-incidence microscopes is urgently needed in quantitative studies of X-ray emission from laser plasma sources in inertial confinement fusion. The existing calibration methods for single reflecting mirrors, crystals, gratings, filters, and X-ray detectors are not applicable for such X-ray microscopes due to the specific optical structure and the restrictions of object-image relation. This article presents a reliable and efficient method that can be performed using a divergent X-ray source and an energy dispersive Si-PIN (silicon positive-intrinsic-negative) detector in an ordinary X-ray laboratory. The transmission theory of X-ray flux in imaging diagnostics is introduced, and the quantities to be measured are defined. The calibration method is verified by a W/Si multilayer-coated Kirkpatrick-Baez microscope with a field of view of ∼95 μm at 17.48 keV. The mirror reflectance curve in the 1D coordinate is drawn with a peak value of 20.9% and an uncertainty of ∼6.0%.

  5. Direct intensity calibration of X-ray grazing-incidence microscopes with home-lab source

    Science.gov (United States)

    Li, Yaran; Xie, Qing; Chen, Zhiqiang; Xin, Qiuqi; Wang, Xin; Mu, Baozhong; Wang, Zhanshan; Liu, Shenye; Ding, Yongkun

    2018-01-01

    Direct intensity calibration of X-ray grazing-incidence microscopes is urgently needed in quantitative studies of X-ray emission from laser plasma sources in inertial confinement fusion. The existing calibration methods for single reflecting mirrors, crystals, gratings, filters, and X-ray detectors are not applicable for such X-ray microscopes due to the specific optical structure and the restrictions of object-image relation. This article presents a reliable and efficient method that can be performed using a divergent X-ray source and an energy dispersive Si-PIN (silicon positive-intrinsic-negative) detector in an ordinary X-ray laboratory. The transmission theory of X-ray flux in imaging diagnostics is introduced, and the quantities to be measured are defined. The calibration method is verified by a W/Si multilayer-coated Kirkpatrick-Baez microscope with a field of view of ˜95 μm at 17.48 keV. The mirror reflectance curve in the 1D coordinate is drawn with a peak value of 20.9% and an uncertainty of ˜6.0%.

  6. Relativistic electron mirrors from high intensity laser nanofoil interactions

    International Nuclear Information System (INIS)

    Kiefer, Daniel

    2012-01-01

    The reflection of a laser pulse from a mirror moving close to the speed of light could in principle create an X-ray pulse with unprecedented high brightness owing to the increase in photon energy and accompanying temporal compression by a factor of 4γ 2 , where γ is the Lorentz factor of the mirror. While this scheme is theoretically intriguingly simple and was first discussed by A. Einstein more than a century ago, the generation of a relativistic structure which acts as a mirror is demanding in many different aspects. Recently, the interaction of a high intensity laser pulse with a nanometer thin foil has raised great interest as it promises the creation of a dense, attosecond short, relativistic electron bunch capable of forming a mirror structure that scatters counter-propagating light coherently and shifts its frequency to higher photon energies. However, so far, this novel concept has been discussed only in theoretical studies using highly idealized interaction parameters. This thesis investigates the generation of a relativistic electron mirror from a nanometer foil with current state-of-the-art high intensity laser pulses and demonstrates for the first time the reflection from those structures in an experiment. To achieve this result, the electron acceleration from high intensity laser nanometer foil interactions was studied in a series of experiments using three inherently different high power laser systems and free-standing foils as thin as 3nm. A drastic increase in the electron energies was observed when reducing the target thickness from the micrometer to the nanometer scale. Quasi-monoenergetic electron beams were measured for the first time from ultrathin (≤5nm) foils, reaching energies up to ∝35MeV. The acceleration process was studied in simulations well-adapted to the experiments, indicating the transition from plasma to free electron dynamics as the target thickness is reduced to the few nanometer range. The experience gained from those

  7. Relativistic electron mirrors from high intensity laser nanofoil interactions

    Energy Technology Data Exchange (ETDEWEB)

    Kiefer, Daniel

    2012-12-21

    The reflection of a laser pulse from a mirror moving close to the speed of light could in principle create an X-ray pulse with unprecedented high brightness owing to the increase in photon energy and accompanying temporal compression by a factor of 4γ{sup 2}, where γ is the Lorentz factor of the mirror. While this scheme is theoretically intriguingly simple and was first discussed by A. Einstein more than a century ago, the generation of a relativistic structure which acts as a mirror is demanding in many different aspects. Recently, the interaction of a high intensity laser pulse with a nanometer thin foil has raised great interest as it promises the creation of a dense, attosecond short, relativistic electron bunch capable of forming a mirror structure that scatters counter-propagating light coherently and shifts its frequency to higher photon energies. However, so far, this novel concept has been discussed only in theoretical studies using highly idealized interaction parameters. This thesis investigates the generation of a relativistic electron mirror from a nanometer foil with current state-of-the-art high intensity laser pulses and demonstrates for the first time the reflection from those structures in an experiment. To achieve this result, the electron acceleration from high intensity laser nanometer foil interactions was studied in a series of experiments using three inherently different high power laser systems and free-standing foils as thin as 3nm. A drastic increase in the electron energies was observed when reducing the target thickness from the micrometer to the nanometer scale. Quasi-monoenergetic electron beams were measured for the first time from ultrathin (≤5nm) foils, reaching energies up to ∝35MeV. The acceleration process was studied in simulations well-adapted to the experiments, indicating the transition from plasma to free electron dynamics as the target thickness is reduced to the few nanometer range. The experience gained from those

  8. High Harmonic Radiation Generation and Attosecond pulse generation from Intense Laser-Solid Interactions

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Alexander Roy [Univ. of Michigan, Ann Arbor, MI (United States); Krushelnick, Karl [Univ. of Michigan, Ann Arbor, MI (United States)

    2016-09-08

    We have studied ion motion effects in high harmonic generation, including shifts to the harmonics which result in degradation of the attosecond pulse train, and how to mitigate them. We have examined the scaling with intensity of harmonic emission. We have also switched the geometry of the interaction to measure, for the first time, harmonics from a normal incidence interaction. This was performed by using a special parabolic reflector with an on axis hole and is to allow measurements of the attosecond pulses using standard techniques. Here is a summary of the findings: First high harmonic generation in laser-solid interactions at 1021 Wcm-2, demonstration of harmonic focusing, study of ion motion effects in high harmonic generation in laser-solid interactions, and demonstration of harmonic amplification.

  9. Frequency conversion of high-intensity, femtosecond laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Banks, P S

    1997-06-01

    Almost since the invention of the laser, frequency conversion of optical pulses via non- linear processes has been an area of active interest. However, third harmonic generation using ~(~1 (THG) in solids is an area that has not received much attention because of ma- terial damage limits. Recently, the short, high-intensity pulses possible with chirped-pulse amplification (CPA) laser systems allow the use of intensities on the order of 1 TW/cm2 in thin solids without damage. As a light source to examine single-crystal THG in solids and other high field inter- actions, the design and construction of a Ti:sapphire-based CPA laser system capable of ultimately producing peak powers of 100 TW is presented. Of special interest is a novel, all-reflective pulse stretcher design which can stretch a pulse temporally by a factor of 20,000. The stretcher design can also compensate for the added material dispersion due to propagation through the amplifier chain and produce transform-limited 45 fs pulses upon compression. A series of laser-pumped amplifiers brings the peak power up to the terawatt level at 10 Hz, and the design calls for additional amplifiers to bring the power level to the 100 TW level for single shot operation. The theory for frequency conversion of these short pulses is presented, focusing on conversion to the third harmonic in single crystals of BBO, KD*P, and d-LAP (deuterated I-arginine phosphate). Conversion efficiencies of up to 6% are obtained with 500 fs pulses at 1053 nm in a 3 mm thick BBO crystal at 200 GW/cm 2. Contributions to this process by unphasematched, cascaded second harmonic generation and sum frequency generation are shown to be very significant. The angular relationship between the two orders is used to measure the tensor elements of C = xt3)/4 with Crs = -1.8 x 1O-23 m2/V2 and .15Cri + .54Crs = 4.0 x 1O-23 m2/V2. Conversion efficiency in d-LAP is about 20% that in BBO and conversion efficiency in KD*P is 1% that of BBO. It is calculated

  10. Ionization of molecular hydrogen in ultrashort intense laser pulses

    International Nuclear Information System (INIS)

    Vanne, Yulian V.

    2010-01-01

    A novel ab initio numerical approach is developed and applied that solves the time-dependent Schroedinger equation describing two-electron diatomic molecules (e.g. molecular hydrogen) exposed to an intense ultrashort laser pulse. The method is based on the fixed-nuclei and the non-relativistic dipole approximations and aims to accurately describe both correlated electrons in full dimensionality. The method is applicable for a wide range of the laser pulse parameters and is able to describe both few-photon and many-photon single ionization processes, also in a non-perturbative regime. A key advantage of the method is its ability to treat the strong-field response of the molecules with arbitrary orientation of the molecular axis with respect to the linear-polarized laser field. Thus, this work reports on the first successful orientation-dependent analysis of the multiphoton ionization of H 2 performed by means of a full-dimensional numerical treatment. Besides the investigation of few-photon regime, an extensive numerical study of the ionization by ultrashort frequency-doubled Ti:sapphire laser pulses (400 nm) is presented. Performing a series of calculations for different internuclear separations, the total ionization yields of H 2 and D 2 in their ground vibrational states are obtained for both parallel and perpendicular orientations. A series of calculations for 800 nm laser pulses are used to test a popular simple interference model. Besides the discussion of the ab initio numerical method, this work considers different aspects related to the application of the strong-field approximation (SFA) for investigation of a strong-field response of an atomic and molecular system. Thus, a deep analysis of the gauge problem of SFA is performed and the quasistatic limit of the velocity-gauge SFA ionization rates is derived. The applications of the length-gauge SFA are examined and a recently proposed generalized Keldysh theory is criticized. (orig.)

  11. Ionization of molecular hydrogen in ultrashort intense laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Vanne, Yulian V.

    2010-03-18

    A novel ab initio numerical approach is developed and applied that solves the time-dependent Schroedinger equation describing two-electron diatomic molecules (e.g. molecular hydrogen) exposed to an intense ultrashort laser pulse. The method is based on the fixed-nuclei and the non-relativistic dipole approximations and aims to accurately describe both correlated electrons in full dimensionality. The method is applicable for a wide range of the laser pulse parameters and is able to describe both few-photon and many-photon single ionization processes, also in a non-perturbative regime. A key advantage of the method is its ability to treat the strong-field response of the molecules with arbitrary orientation of the molecular axis with respect to the linear-polarized laser field. Thus, this work reports on the first successful orientation-dependent analysis of the multiphoton ionization of H{sub 2} performed by means of a full-dimensional numerical treatment. Besides the investigation of few-photon regime, an extensive numerical study of the ionization by ultrashort frequency-doubled Ti:sapphire laser pulses (400 nm) is presented. Performing a series of calculations for different internuclear separations, the total ionization yields of H{sub 2} and D{sub 2} in their ground vibrational states are obtained for both parallel and perpendicular orientations. A series of calculations for 800 nm laser pulses are used to test a popular simple interference model. Besides the discussion of the ab initio numerical method, this work considers different aspects related to the application of the strong-field approximation (SFA) for investigation of a strong-field response of an atomic and molecular system. Thus, a deep analysis of the gauge problem of SFA is performed and the quasistatic limit of the velocity-gauge SFA ionization rates is derived. The applications of the length-gauge SFA are examined and a recently proposed generalized Keldysh theory is criticized. (orig.)

  12. USE OF LOW-INTENSITY LASER IRRADIATION IN IMPLANT DENTISTRY

    Directory of Open Access Journals (Sweden)

    Hristina Lalabonova

    2011-09-01

    Full Text Available The stability of dental implants is of great significance for successful osseointegration. The long-term retention of implants, however, depends on how strongly the epithelial and connective tissues adhere to its titanium surface, that is, on how efficiently the soft tissues seal the bone protecting it from the oral bacterial flora. The aim of the present study was to develop a technique that uses low-intensity laser irradiation to stimulate the growth of healthy peri-implant mucosa. The study yielded very good results.

  13. Multi-energy ion implantation from high-intensity laser

    Czech Academy of Sciences Publication Activity Database

    Cutroneo, Mariapompea; Torrisi, L.; Ullschmied, Jiří; Dudžák, Roman

    2016-01-01

    Roč. 61, č. 2 (2016), s. 109-113 ISSN 0029-5922. [PLASMA 2015 : International Conference on Research and Applications of Plasmas. Warsaw, 07.09.2015-11.09.2015] R&D Projects: GA MŠk(CZ) LM2011019; GA ČR(CZ) GBP108/12/G108 Institutional support: RVO:61389021 ; RVO:61389005 Keywords : high-intensity laser * implantation * material modification Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders; BL - Plasma and Gas Discharge Physics (UFP-V) Impact factor: 0.760, year: 2016

  14. Intensity statistics in a long random fiber Raman laser.

    Science.gov (United States)

    Ogorodnikov, L L; Vergeles, S S

    2018-02-15

    We study the output emission statistics of a random continuous-wave Raman fiber laser. The signal evolution is governed by a generalized nonlinear Schrödinger equation (NLSE) with inserted gain. The statistics are close to the Rayleigh one, and the deviations are caused by the Kerr nonlinearity. To characterize the deviations, we analytically find the mean of the squared output signal intensity, based on the kinetic theory. We show qualitative agreement with available experimental data and supplement the results with numerical calculations. With the limit of small gain, the kinetic theory gives a finite answer for the mean of squared intensity in the first and the second order with respect to small nonlinearity. The result is consistent with the fact that the NLSE is integrable in the case of zero gain and is applicable to any generalized NLSE if the inserted terms are effectively small.

  15. Enhancement of peak intensity in a filament core with spatiotemporally focused femtosecond laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Zeng Bin; Chu Wei; Li Guihua; Zhang Haisu; Ni Jielei [State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800 (China); Graduate School of Chinese Academy of Sciences, Beijing 100080 (China); Gao Hui; Liu Weiwei [Institute of Modern Optics, Nankai University, Tianjin, 300071 (China); Yao Jinping; Cheng Ya; Xu Zhizhan [State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800 (China); Chin, See Leang [Center for Optics, Photonics and Laser (COPL) and Department of Physics, Engineering Physics and Optics, Universite Laval, Quebec City, QC, G1V 0A6 (Canada)

    2011-12-15

    We demonstrate that the peak intensity in the filament core, which is inherently limited by the intensity clamping effect during femtosecond laser filamentation, can be significantly enhanced using spatiotemporally focused femtosecond laser pulses. In addition, the filament length obtained by spatiotemporally focused femtosecond laser pulses is {approx}25 times shorter than that obtained by a conventional focusing scheme, resulting in improved high spatial resolution.

  16. Laser Pulse Shaping for Ultrahigh Intensity Compton Scattering*

    Science.gov (United States)

    Troha, A. L.; Le Sage, G. P.; Bennett, C.; Kolner, B. H.; Heritage, J. P.; Hartemann, F. V.; Luhmann, N. C., Jr.

    1996-11-01

    At ultrahigh intensities, where the normalized vector potential associated with the laser wave exceeds unity, the electron axial velocity modulation due to radiation pressure yields nonlinear Compton backscattered spectra. For applications requiring a narrow Doppler upshifted linewidth, such as the future g-g collider or focused X-ray generation, this poses a serious problem. It is shown that temporal laser pulse shaping using holographic (spectral) filtering at the Fourier plane of a chirped pulse laser amplifier, or similar approaches, can alleviate this problem, and that this technique can be scaled to the required multi-TW range. In particular, Compton backscattered spectra are calculated in the case of the optical square pulses similar to those experimentally observed by Weiner et al. Issues such as nonlinear effects, higher-order dispersion, 3D effects and optical noise are also discussed. *Work supported in part by DoD/AFOSR (MURI) F49620-95-1-0253, AFOSR (ATRI) F30602-94-2-001, ARO DAAHO4-95-1-0336 and LLNL/LDRD DoE W-7405-ENG-48

  17. Alignment of the hydrogen molecule under intense laser fields.

    Science.gov (United States)

    Lopez, Gary V; Fournier, Martin; Jankunas, Justin; Spiliotis, Alexandros K; Rakitzis, T Peter; Chandler, David W

    2017-07-07

    Alignment of the electronically excited E,F state of the H 2 molecule is studied using the velocity mapping imaging technique. Photofragment images of H + due to the dissociation mechanism that follows the 2-photon excitation into the (E,F; ν = 0, J = 0) electronic state show a strong dependence on laser intensity, which is attributed to the high polarizability anisotropy of the H 2 (E,F) state. We observe a marked structure in the angular distribution, which we explain as the interference between the prepared J = 0 and Stark-mixed J = 2 rovibrational states of H 2 , as the laser intensity increases. Quantification of these effects allows us to extract the polarizability anisotropy of the H 2 (E,F J = 0) state yielding a value of 312 ± 82 a.u. (46 Å 3 ). By comparison, CS 2 has 10 Å 3 , I 2 has 7 Å 3 , and hydrochlorothiazide (C 7 H 8 ClN 3 O 4 S 2 ) has about 25 Å 3 meaning that we have created the most easily aligned molecule ever measured, by creating a mixed superposition state that is highly anisotropic in its polarizability.

  18. Alignment of the hydrogen molecule under intense laser fields

    Science.gov (United States)

    Lopez, Gary V.; Fournier, Martin; Jankunas, Justin; Spiliotis, Alexandros K.; Rakitzis, T. Peter; Chandler, David W.

    2017-07-01

    Alignment of the electronically excited E,F state of the H2 molecule is studied using the velocity mapping imaging technique. Photofragment images of H+ due to the dissociation mechanism that follows the 2-photon excitation into the (E,F; ν = 0, J = 0) electronic state show a strong dependence on laser intensity, which is attributed to the high polarizability anisotropy of the H2 (E,F) state. We observe a marked structure in the angular distribution, which we explain as the interference between the prepared J = 0 and Stark-mixed J = 2 rovibrational states of H2, as the laser intensity increases. Quantification of these effects allows us to extract the polarizability anisotropy of the H2 (E,F J = 0) state yielding a value of 312 ± 82 a.u. (46 Å3). By comparison, CS2 has 10 Å3, I2 has 7 Å3, and hydrochlorothiazide (C7H8ClN3O4S2) has about 25 Å3 meaning that we have created the most easily aligned molecule ever measured, by creating a mixed superposition state that is highly anisotropic in its polarizability.

  19. Coherent combs in ionization by intense and short laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Krajewska, K., E-mail: Katarzyna.Krajewska@fuw.edu.pl [Institute of Theoretical Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warszawa (Poland); Department of Physics and Astronomy, University of Nebraska, Lincoln, NE 68588-0299 (United States); Kamiński, J.Z., E-mail: Jerzy.Kaminski@fuw.edu.pl [Institute of Theoretical Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warszawa (Poland)

    2016-03-22

    Photoionization of positive ions by a train of intense, short laser pulses is investigated within the relativistic strong field approximation, using the velocity gauge. The formation of broad peak structures in the high-energy domain of photoelectrons is observed and interpreted. The emergence of coherent photoelectron energy combs within these structures is demonstrated, and it is interpreted as the consequence of the Fraunhofer-type interference/diffraction of probability amplitudes of ionization from individual pulses comprising the train. Extensions to the coherent angular combs are also studied, and effects related to the radiation pressure are presented. - Highlights: • We develop relativistic Strong-Field Approximation for ionization by intense and short laser pulses of arbitrary spectral compositions. • We show that the consistent interpretation of results is provided by the Keldysh-type saddle point analysis of probability amplitudes. • We derive a general Fraunhofer-type interference/diffraction formula for finite train of pulses. • We study the coherent combs in photoelectron probability distributions.

  20. Glacier Snowline Determination from Terrestrial Laser Scanning Intensity Data

    Directory of Open Access Journals (Sweden)

    Hannah Prantl

    2017-07-01

    Full Text Available Accurately identifying the extent of surface snow cover on glaciers is important for extrapolating end of year mass balance measurements, constraining the glacier surface radiative energy balance and evaluating model simulations of snow cover. Here, we use auxiliary information from Riegl VZ-6000 Terrestrial Laser Scanner (TLS return signals to accurately map the snow cover over a glacier throughout an ablation season. Three classification systems were compared, and we find that supervised classification based on TLS signal intensity alone is outperformed by a rule-based classification employing intensity, surface roughness and an associated optical image, which achieves classification accuracy of 68–100%. The TLS intensity signal shows no meaningful relationship with surface or bulk snow density. Finally, we have also compared our Snow Line Altitude (SLA derived from TLS with SLA derived from the model output, as well as one Landsat image. The results of the model output track the SLA from TLS well, however with a positive bias. In contrast, automatic Landsat-derived SLA slightly underestimates the SLA from TLS. To conclude, we demonstrate that the snow cover extent can be mapped successfully using TLS, although the snow mass remains elusive.

  1. High performance compact magnetic spectrometers for energetic ion and electron measurement in ultra intense short pulse laser solid interactions

    Energy Technology Data Exchange (ETDEWEB)

    Chen, H; Link, A; van Maren, R; Patel, P; Shepherd, R; Wilks, S C; Beiersdorfer, P

    2008-05-08

    Ultra intense short pulse lasers incident on solid targets can generate relativistic electrons that then accelerate energetic protons and ions. These fast electrons and ions can effectively heat the solid target, beyond the region of direct laser interaction, and are vital to realizing the fast ignition concept. To study these energetic ions and electrons produced from the laser-target interactions, we have developed a range of spectrometers that can cover a large energy range (from less than 0.1 MeV to above 100 MeV). They are physically compact and feature high performance and low cost. We will present the basic design of these spectrometers and their test results from recent laser experiments.

  2. The incidence of intensive care unit-acquired weakness syndromes: A systematic review.

    Science.gov (United States)

    Appleton, Richard Td; Kinsella, John; Quasim, Tara

    2015-05-01

    We conducted a literature review of the intensive care unit-acquired weakness syndromes (critical illness polyneuropathy, critical illness myopathy and critical illness neuromyopathy) with the primary objective of determining their incidence as a combined group. Studies were identified through MEDLINE, Embase, Cochrane Database and article reference list searches and were included if they evaluated the incidence of one or more of these conditions in an adult intensive care unit population. The incidence of an intensive care unit-acquired weakness syndrome in the included studies was 40% (1080/2686 patients, 95% confidence interval 38-42%). The intensive care unit populations included were heterogeneous though largely included patients receiving mechanical ventilation for seven or more days. Additional prespecified outcomes identified that the incidence of intensive care unit-acquired weakness varied with the diagnostic technique used, being lower with clinical (413/1276, 32%, 95% CI 30-35%) compared to electrophysiological techniques (749/1591, 47%, 95% CI 45-50%). Approximately a quarter of patients were not able to comply with clinical evaluation and this may be responsible for potential underreporting of this condition.

  3. Multiple ionization dynamics of molecules in intense laser fields

    International Nuclear Information System (INIS)

    Ichimura, Atsushi; Ohyama-Yamaguchi, Tomoko

    2005-01-01

    A classical field-ionization model is developed for sequential multiple ionization of diatomic and linear triatomic molecules exposed to intense (∼ 10 15 W/cm 2 ) laser fields. The distance R ion of Coulomb explosion is calculated for a combination of fragment charges, by considering nonadiabatic excitation followed by field ionization associated with the inner and outer saddle points. For diatomic molecules (N 2 , NO, and I 2 ), the model explains behaviors observed in experiments, as R ion (21→31) ion (21→22) between competing charge-asymmetric and symmetric channels, and even-odd fluctuation along a principal pathway. For a triatomic molecule CO 2 , a comparison of the model with an experiment suggests that charge-symmetric (or nearly symmetric) channels are dominantly populated. (author)

  4. Intensity noise properties of Nd:YVO 4 microchip lasers pumped with an amplitude squeezed diode laser

    Science.gov (United States)

    Becher, C.; Boller, K.-J.

    1998-02-01

    We report on intensity noise measurements of single-frequency Nd:YVO 4 microchip lasers optically pumped with amplitude squeezed light from an injection-locked diode laser. Calibrated homodyne measurements show a minimum intensity noise of 10.1 dB above the SQL at a frequency of 100 kHz. The measured intensity noise spectra are described with high accuracy by a theoretical model based on the quantum mechanical Langevin rate equations, including classical and quantum noise sources.

  5. Muonic atoms in super-intense laser fields

    International Nuclear Information System (INIS)

    Shahbaz, Atif

    2009-01-01

    Nuclear effects in hydrogenlike muonic atoms exposed to intense high-frequency laser fields have been studied. Systems of low nuclear charge number are considered where a nonrelativistic description applies. By comparing the radiative response for different isotopes we demonstrate characteristic signatures of the finite nuclear mass, size and shape in the high-harmonic spectra. Cutoff energies in the MeV domain can be achieved, offering prospects for the generation of ultrashort coherent γ-ray pulses. Also, the nucleus can be excited while the laser-driven muon moves periodically across it. The nuclear transition is caused by the time-dependent Coulomb field of the oscillating charge density of the bound muon. A closed-form analytical expression for electric multipole transitions is derived within a fully quantum mechanical approach and applied to various isotopes. The excitation probabilities are in general very small. We compare the process with other nuclear excitation mechanisms through coupling with atomic shells and discuss the prospects to observe it in experiment. (orig.)

  6. Low Intensity Laser Therapy Applied in the Healing of Wounds

    Science.gov (United States)

    Kahn, Fred; Matthews, Jeffrey

    2009-06-01

    Objective: The aim of this study was to determine the outcomes of Low Intensity Laser Therapy (LILT) on wound healing for patients presenting with pain, compromised neurological and physical function and tissue damage associated with vascular/diabetic ulcerations of the lower extremity. Methods: A retrospective case review of six patients treated with LILT (GaAlAs SLD, 660 nm, 750 mW, 3.6 J/cm2; GaAlAs SLD, 840 nm, 1,500 mW, 6.48 J/cm2; GaAlAs laser, 830 nm, 75 mW, 270 J/cm2) was conducted of clinical features including pain, measured by visual analogue scale (VAS), motor function, measured by range of motion (ROM) and visual outcome, measured by wound dimensions for six patients (n = 6; 5 males, 1 female; age = 67.83 years). Results: Significant progress with regard to alleviation of pain (ΔVAS = -5), improvements in motor function (ΔROM = +40%), epithelialization (wound closure rate = 3%/week) and complete wound closure was achieved. No recurrence of pathology at least one month post cessation of therapy was evident (x¯% reduction in wound area = 100%). Conclusions: LILT achieved consistent, effective and clear endpoints, was cost effective, created no adverse effects and ultimately led to the salvage of extremities.

  7. Ionization of H2(+) in intense laser fields

    Science.gov (United States)

    Mies, F. H.; Giusti-Suzor, A.; Kulander, K. C.; Schafer, K. J.

    1993-01-01

    The motivation for the present ionization calculations is to test the reliability of a recent study of H2(+) photodissociation which employed such a two electronic state model and neglected any competition with ionization. The photodissociation calculations indicate that in intense short pulsed laser fields appreciable populations of stable vibrational states can survive the pulse. This survival effect can be attributed to the trapping of portions of the initial vibrational wavepacket in transient laser-induced potential wells at intermediate R approximately 3-4 au distances. Since the calculated ionization rates exhibit a marked decrease at short R, they already lend some credence to the vibrational trapping effect. Having accurate R-dependent rates enables us to estimate the competitive influence of the ionization on the stabilized population, and may ultimately allow us to predict the contribution of the Coulomb 'explosion' channel to observed proton kinetic energy distributions. In this paper we will demonstrate the effectiveness of the two-state length gauge model in interpreting the ionization rates that we extract from the numerically exact solutions of the time-dependent Schroedinger equation. A more elaborate presentation of the theory and the results for the full range of distances and wavelengths will be presented elsewhere.

  8. Muonic atoms in super-intense laser fields

    Energy Technology Data Exchange (ETDEWEB)

    Shahbaz, Atif

    2009-01-28

    Nuclear effects in hydrogenlike muonic atoms exposed to intense high-frequency laser fields have been studied. Systems of low nuclear charge number are considered where a nonrelativistic description applies. By comparing the radiative response for different isotopes we demonstrate characteristic signatures of the finite nuclear mass, size and shape in the high-harmonic spectra. Cutoff energies in the MeV domain can be achieved, offering prospects for the generation of ultrashort coherent {gamma}-ray pulses. Also, the nucleus can be excited while the laser-driven muon moves periodically across it. The nuclear transition is caused by the time-dependent Coulomb field of the oscillating charge density of the bound muon. A closed-form analytical expression for electric multipole transitions is derived within a fully quantum mechanical approach and applied to various isotopes. The excitation probabilities are in general very small. We compare the process with other nuclear excitation mechanisms through coupling with atomic shells and discuss the prospects to observe it in experiment. (orig.)

  9. Analysis of contributing factors associated to related patients safety incidents in Intensive Care Medicine.

    Science.gov (United States)

    Martín Delgado, M C; Merino de Cos, P; Sirgo Rodríguez, G; Álvarez Rodríguez, J; Gutiérrez Cía, I; Obón Azuara, B; Alonso Ovies, Á

    2015-01-01

    To explore contributing factors (CF) associated to related critical patients safety incidents. SYREC study pos hoc analysis. A total of 79 Intensive Care Departments were involved. The study sample consisted of 1.017 patients; 591 were affected by one or more incidents. The CF were categorized according to a proposed model by the National Patient Safety Agency from United Kingdom that was modified. Type, class and severity of the incidents was analyzed. A total 2,965 CF were reported (1,729 were associated to near miss and 1,236 to adverse events). The CF group more frequently reported were related patients factors. Individual factors were reported more frequently in near miss and task related CF in adverse events. CF were reported in all classes of incidents. The majority of CF were reported in the incidents classified such as less serious, even thought CF patients factors were associated to serious incidents. Individual factors were considered like avoidable and patients factors as unavoidable. The CF group more frequently reported were patient factors and was associated to more severe and unavoidable incidents. By contrast, individual factors were associated to less severe and avoidable incidents. In general, CF most frequently reported were associated to near miss. Copyright © 2014 Elsevier España, S.L.U. and SEMICYUC. All rights reserved.

  10. Incidence and aetiology of renal phosphate loss in patients with hypophosphatemia in the intensive care unit.

    NARCIS (Netherlands)

    Bech, A.P.; Blans, M.; Telting, D.; Boer, H. de

    2013-01-01

    BACKGROUND: Hypophosphatemia is a common finding in patients in the intensive care unit (ICU). Its cause is often poorly understood. PURPOSE: The aim of this study was to understand the incidence of renal phosphate loss in ICU-related hypophosphatemia, and to examine the role of phosphaturic

  11. The Effect of Background Pressure on Electron Acceleration from Ultra-Intense Laser-Matter Interactions

    Science.gov (United States)

    Le, Manh; Ngirmang, Gregory; Orban, Chris; Morrison, John; Chowdhury, Enam; Roquemore, William

    2017-10-01

    We present two-dimensional particle-in-cell (PIC) simulations that investigate the role of background pressure on the acceleration of electrons from ultra intense laser interaction at normal incidence with liquid density ethylene glycol targets. The interaction was simulated at ten different pressures varying from 7.8 mTorr to 26 Torr. We calculated conversion efficiencies from the simulation results and plotted the efficiencies with respect to the background pressure. The results revealed that the laser to > 100 keV electron conversion efficiency remained flat around 0.35% from 7.8 mTorr to 1.2 Torr and increased exponentially from 1.2 Torr onward to about 1.47% at 26 Torr. Increasing the background pressure clearly has a dramatic effect on the acceleration of electrons from the target. We explain how electrostatic effects, in particular the neutralization of the target by the background plasma, allows electrons to escape more easily and that this effect is strengthened with higher densities. This work could facilitate the design of future experiments in increasing laser to electron conversion efficiency and generating substantial bursts of electrons with relativistic energies. This research is supported by the Air Force Office of Scientific Research under LRIR Project 17RQCOR504 under the management of Dr. Riq Parra and Dr. Jean-Luc Cambier. Support was also provided by the DOD HPCMP Internship Program.

  12. Simulation of QED effects in ultrahigh intensity laser-plasma interaction

    International Nuclear Information System (INIS)

    Kostyukov, I.; Nerush, E.

    2010-01-01

    Complete text of publication follows. Due to an impressive progress in laser technology, laser pulses with peak intensity of nearly 2 x 10 22 W/cm 2 are now available in laboratory. When the matter is irradiated by so intense laser pulses high energy density plasma is produced. Besides of fundamental interest such plasma is the efficient source of particles and radiation with extreme parameters that opens bright perspectives in developments of advanced particle accelerators, next generation of radiation sources, laboratory modelling of astrophysics phenomena etc. Even high laser intensity the radiation reaction and QED effects become important. One of the QED effects, which recently attracts much attention, is the electron-positron plasma creation in strong laser field. The plasma can be produced via electromagnetic cascades: the seeded charged particles is accelerated in the field of counter-propagating laser pulses, then they emit energetic photons, the photons by turn decay in the laser field and create electron-positron pairs. The pair particles accelerated in the laser field produce new generation of the photons and pairs. For self-consistent study of the electron-positron plasma dynamics in the laser field we develop 2D code based on particle-in-cell and Monte-Carlo methods. The electron, positron and photon dynamics as well as evolution of the plasma and laser fields are calculated by PIC technique while photon emission and pair production are calculated by Monte-Carlo method. We simulate pair production in the field of counter-propagating linearly polarized laser pulses. It is shown that for the laser intensity above threshold the plasma production becomes so intense that the laser pulse are strongly absorbed in the plasma. The laser intensity threshold and the rate of laser field absorption are calculated. Acknowledgements. This work has been supported by federal target 'The scientific and scientific-pedagogical personnel of innovation in Russia' and by

  13. Study of ultra-high gradient wakefield excitation by intense ultrashort laser pulses in plasma

    CERN Document Server

    Kotaki, H

    2002-01-01

    We investigate a mechanism of nonlinear phenomena in laser-plasma interaction, a laser wakefield excited by intense laser pulses, and the possibility of generating an intense bright electron source by an intense laser pulse. We need to understand and further employ some of these phenomena for our purposes. We measure self-focusing, filamentation, and the anomalous blueshift of the laser pulse. The ionization of gas with the self-focusing causes a broad continuous spectrum with blueshift. The normal blueshift depends on the laser intensity and the plasma density. We, however, have found different phenomenon. The laser spectrum shifts to fixed wavelength independent of the laser power and gas pressure above some critical power. We call the phenomenon 'anomalous blueshift'. The results are explained by the formation of filaments. An intense laser pulse can excite a laser wakefield in plasma. The coherent wakefield excited by 2 TW, 50 fs laser pulses in a gas-jet plasma around 10 sup 1 sup 8 cm sup - sup 3 is mea...

  14. Optimization of C5+ Balmer-α line intensity at 182 Å from laser ...

    Indian Academy of Sciences (India)

    http://www.ias.ac.in/article/fulltext/pram/068/01/0043-0049 ... xuv-spectroscopy; laser-produced plasma; flat-field grating spectrograph; Nd:phosphate glass laser. Abstract. Parametric dependence of the intensity of 182 Å Balmer- line (C5+; = 3 → 2), relevant to xuv soft X-ray lasing schemes, from laser-produced carbon ...

  15. Study of 2ω and 3/2ω harmonics in ultrashort high-intensity laser ...

    Indian Academy of Sciences (India)

    Intense laser pulses from such laser systems may have many pre-pulses like picosecond ... ultrashort laser–matter interaction, as well as to control the source parameters. In situ monitoring of ultrashort ... central wavelength of 790 nm with a bandwidth of 16 ± 2 nm after the compressor. The picosecond intensity contrast ...

  16. [Incidence of multi-resistant bacteria in Intensive Care Units of Chilean hospitals].

    Science.gov (United States)

    Acuña, M Paz; Cifuentes, Marcela; Silva, Francisco; Rojas, Álvaro; Cerda, Jaime; Labarca, Jaime

    2017-12-01

    Incidence of multi-resistant bacteria is an indicator that permits better estimation of the magnitude of bacterial resistance in hospitals. To evaluate the incidence of relevant multi-drug resistant bacteria in intensive care units (ICUs) of Chile. Participating hospitals submitted information about the number of isolates from infected or colonized patients with 7 epidemiologically relevant multi-resistant bacteria in adult and pediatric ICUs between January 1, 2014 and October 31, 2015 and the number of bed days occupied in these units in the same period was requested. With these data incidence was calculated per 1,000 patient days for each unit. Information from 20 adults and 9 pediatric ICUs was reviewed. In adult ICUs the bacteria with the highest incidence were K. pneumoniae ESBL [4.72 × 1,000 patient day (1.21-13.89)] and oxacillin -resistant S. aureus [3.85 (0.71-12.66)]. In the pediatric units the incidence was lower, highlighting K. pneumoniae ESBL [2.71 (0-7.11)] and carbapenem -resistant P. aeruginosa [1.61 (0.31-9.25)]. Important differences between hospitals in the incidence of these bacteria were observed. Incidence of multi-resistant bacteria in adult ICU was significantly higher than in pediatric ICU for most of the studied bacterias.

  17. Coherence properties of the harmonic generation in intense laser field

    International Nuclear Information System (INIS)

    Salieres, P.

    1995-01-01

    In this thesis is presented an experimental and theoretical study of the harmonic generation in intense field and coherence properties of this radiation. The first part reminds the main harmonic specter characteristics. Follow then experimental studies of the tray extension with the laser lighting, the harmonic generation by ions, and the influence of the laser field on the efficiency of generation. The second part presents the quantum model of the harmonic generation in tunnel regime that we have used for the calculation of the dipoles. We compare dependence in lighting of some harmonic, by insisting on the characteristic behavior of the atomic phase. The theory of the propagation is presented in third part. After the reminder of the case of a perturbative polarization, we develop the case of the polarization in tunnel regime. With the help of numerical simulations, we show the influence of the atomic phase on the agreement of phase, and therefore on the efficiency of conversion and profiles of generation in the medium. The importance of the geometry of the interaction is underlined. The part IV presents the study of the spatial coherence of the harmonic radiation. We develop first consequences of the theory of the agreement of phase for profiles of emission. Then the comparison with experimental profiles is detailed in function of the different parameters( order of non linearity, laser lighting, position of the focus by report in the gaseous medium). The study of the spectral and temporal coherence of the part V begins with the experimental effect investigation of the ionization on specters of the harmonic of weak order. We present then theoretical predictions of the preceding model for spectral and temporal profiles of the harmonic of highest order, generated in tunnel regime. The part VI is devoted to the UVX source aspect of the harmonic radiation. General characteristics (number of photons, agreement) are first detailed, then we present the first experiences

  18. High Intensity Laser Therapy (HILT) versus TENS and NSAIDs in low back pain: clinical study

    Science.gov (United States)

    Zati, Allesandro; Fortuna, Damiano; Valent, A.; Filippi, M. V.; Bilotta, Teresa W.

    2004-09-01

    Low back pain, caused by lumbar disc herniation, is prevalently treated with a conservative approach. In this study we valued the efficacy of High Intensity Laser Therapy (HILT), compared with accepted therapies such as TENS and NSAIDs. Laser therapy obtained similar results in the short term, but better clinical effect over time than TENS and NSAIDs. In conclusion high intensity laser therapy appears to be a interesting new treatment, worthy of further research.

  19. The 1989 progress report: Laboratory for the Utilization of High-Intensity Laser

    International Nuclear Information System (INIS)

    Fabre, E.

    1989-01-01

    The 1989 progress report of the laboratory for the Utilization of High-Intensity Lasers of the Polytechnic School (France) is presented. The investigations reported were performed in the following fields: laser-matter interactions in fusion experiments, particles' laser acceleration, picoseconds and femtoseconds interactions, low-flux interactions, development of hydrodynamic codes, laser chocks simulation codes, x-ray lasers, generation of high pressures, implosion physics at 0.26 microns, dense plasmas, material's hardening by laser radiation. The published papers, the conferences and the Laboratory staff are listed [fr

  20. Volumetric intensity dependence on the formation of molecular and atomic ions within a high intensity laser focus.

    Science.gov (United States)

    Robson, Lynne; Ledingham, Kenneth W D; McKenna, Paul; McCanny, Thomas; Shimizu, Seiji; Yang, Jiamin M; Wahlström, Claes-Göran; Lopez-Martens, Rodrigo; Varju, Katalin; Johnsson, Per; Mauritsson, Johan

    2005-01-01

    The mechanism of atomic and molecular ionization in intense, ultra-short laser fields is a subject which continues to receive considerable attention. An inherent difficulty with techniques involving the tight focus of a laser beam is the continuous distribution of intensities contained within the focus, which can vary over several orders of magnitude. The present study adopts time of flight mass spectrometry coupled with a high intensity (8 x 10(15) Wcm(-2)), ultra-short (20 fs) pulse laser in order to investigate the ionization and dissociation of the aromatic molecule benzene-d1 (C(6)H(5)D) as a function of intensity within a focused laser beam, by scanning the laser focus in the direction of propagation, while detecting ions produced only in a "thin" slice (400 and 800 microm) of the focus. The resultant TOF mass spectra varies significantly, highlighting the dependence on the range of specific intensities accessed and their volumetric weightings on the ionization/dissociation pathways accessed.

  1. Absorptivity modulation on wavy molten steel surfaces: The influence of laser wavelength and angle of incidence

    Science.gov (United States)

    Kaplan, A. F. H.

    2012-10-01

    The modulation of the angle-dependent Fresnel absorptivity across wavy molten steel surfaces during laser materials processing, like drilling, cutting, or welding, has been calculated. The absorptivity is strongly altered by the grazing angle of incidence of the laser beam on the processing front. Owing to its specific Brewster-peak characteristics, the 10.64 μm wavelength CO2-laser shows an opposite trend with respect to roughness and angle-of-incidence compared to lasers in the wavelength range of 532-1070 nm. Plateaus or rings of Brewster-peak absorptivity can lead to hot spots on a wavy surface, often in close proximity to cold spots caused by shadow domains.

  2. Study of ultra-high gradient wakefield excitation by intense ultrashort laser pulses in plasma

    International Nuclear Information System (INIS)

    Kotaki, Hideyuki

    2002-12-01

    We investigate a mechanism of nonlinear phenomena in laser-plasma interaction, a laser wakefield excited by intense laser pulses, and the possibility of generating an intense bright electron source by an intense laser pulse. We need to understand and further employ some of these phenomena for our purposes. We measure self-focusing, filamentation, and the anomalous blueshift of the laser pulse. The ionization of gas with the self-focusing causes a broad continuous spectrum with blueshift. The normal blueshift depends on the laser intensity and the plasma density. We, however, have found different phenomenon. The laser spectrum shifts to fixed wavelength independent of the laser power and gas pressure above some critical power. We call the phenomenon 'anomalous blueshift'. The results are explained by the formation of filaments. An intense laser pulse can excite a laser wakefield in plasma. The coherent wakefield excited by 2 TW, 50 fs laser pulses in a gas-jet plasma around 10 18 cm -3 is measured with a time-resolved frequency domain interferometer (FDI). The density distribution of the helium gas is measured with a time-resolved Mach-Zehnder interferometer to search for the optimum laser focus position and timing in the gas-jet. The results show an accelerating wakefield excitation of 20 GeV/m with good coherency, which is useful for ultrahigh gradient particle acceleration in a compact system. This is the first time-resolved measurement of laser wakefield excitation in a gas-jet plasma. The experimental results are compared with a Particle-in-Cell (PIC) simulation. The pump-probe interferometer system of FDI and the anomalous blueshift will be modified to the optical injection system as a relativistic electron beam injector. In 1D PIC simulation we obtain the results of high quality intense electron beam acceleration. These results illuminate the possibility of a high energy and a high quality electron beam acceleration. (author)

  3. Factors influencing the incidence of sinusitis in nasopharyngeal carcinoma patients after intensity-modulated radiation therapy.

    Science.gov (United States)

    Su, Yan-xia; Liu, Lan-ping; Li, Lei; Li, Xu; Cao, Xiu-juan; Dong, Wei; Yang, Xin-hua; Xu, Jin; Yu, Shui; Hao, Jun-fang

    2014-12-01

    The aim of the study was to investigate the incidence of sinusitis in nasopharyngeal carcinoma (NPC) patients before and after intensity-modulated radiation therapy (IMRT) and to analyze factors associated with the incidence of sinusitis following IMRT. We retrospectively analyzed 283 NPC patients who received IMRT in our hospital from March 2009 to May 2011. The diagnostic criteria for sinusitis are based on computed tomography (CT) or magnetic resonance imaging (MRI) findings. CT or MRI scans were performed before and after IMRT to evaluate the incidence of sinusitis. Factors influencing the incidence of sinusitis were analyzed by log-rank univariate and logistic multivariate analyses. Among the 283 NPC patients, 128 (45.2 %) suffered from sinusitis before radiotherapy. The incidence rates of sinusitis in patients with T1, T2, T3, and T4 NPC before radiotherapy were 22.6, 37.5, 46.8, and 61.3 %, respectively (χ 2 = 14.548, p = 0.002). Among the 155 NPC patients without sinusitis before radiotherapy, the incidence rates of sinusitis at the end of radiotherapy and at 1, 3, 6, 9, 12, and 18 months after radiotherapy were 32.9, 43.2, 61.3, 68.4, 73.5, 69.7, and 61.3 %, respectively (χ 2 = 86.461, p < 0.001). Univariate analysis showed that T stage, invasion of the nasal cavity, nasal irrigation, and radiation dose to the nasopharynx were associated with the incidence of sinusitis in NPC patients after IMRT (p = 0.003, 0.006, 0.002, and 0.020). Multivariate analysis showed that T stage, invasion of the nasal cavity, and nasal irrigation were influential factors for the incidence of sinusitis in NPC patients after IMRT (p = 0.002, 0.002, and 0.000). There was a higher incidence of sinusitis with higher T stage among NPC patients before radiotherapy, and the incidence of sinusitis in NPC patients after IMRT was high (45.2 %). The incidence of sinusitis increased rapidly within the first 3 months after IMRT, and the number of sinusitis cases peaked at 6-9 months after

  4. Ultrafast dynamics driven by intense light pulses from atoms to solids, from lasers to intense X-rays

    CERN Document Server

    Gräfe, Stefanie

    2016-01-01

    This book documents the recent vivid developments in the research field of ultrashort intense light pulses for probing and controlling ultrafast dynamics. The recent fascinating results in studying and controlling ultrafast dynamics in ever more complicated systems such as (bio-)molecules and structures of meso- to macroscopic sizes on ever shorter time-scales are presented. The book is written by some of the most eminent experimental and theoretical experts in the field. It covers the new groundbreaking research directions that were opened by the availability of new light sources such as fully controlled intense laser fields with durations down to a single oscillation cycle, short-wavelength laser-driven attosecond pulses and intense X-ray pulses from the upcoming free electron lasers. These light sources allowed the investigation of dynamics in atoms, molecules, clusters, on surfaces and very recently also in nanostructures and solids in new regimes of parameters which, in turn, led to the identification of...

  5. Apparatus and process for active pulse intensity control of laser beam

    Science.gov (United States)

    Wilcox, Russell B.

    1992-01-01

    An optically controlled laser pulse energy control apparatus and process is disclosed wherein variations in the energy of a portion of the laser beam are used to vary the resistance of a photodetector such as a photoresistor through which a control voltage is fed to a light intensity controlling device through which a second portion of the laser beam passes. Light attenuation means are provided to vary the intensity of the laser light used to control the resistance of the photodetector. An optical delay path is provided through which the second portion of the beam travels before reaching the light intensity controlling device. The control voltage is supplied by a variable power supply. The apparatus may be tuned to properly attenuate the laser beam passing through the intensity controlling device by adjusting the power supply, the optical delay path, or the light attenuating means.

  6. ANALYSIS AND MITIGATION OF X-RAY HAZARD GENERATED FROM HIGH INTENSITY LASER-TARGET INTERACTIONS

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, R.; Liu, J.C.; Prinz, A.A.; Rokni, S.H.; Woods, M.; Xia, Z.; /SLAC

    2011-03-21

    Interaction of a high intensity laser with matter may generate an ionizing radiation hazard. Very limited studies have been made, however, on the laser-induced radiation protection issue. This work reviews available literature on the physics and characteristics of laser-induced X-ray hazards. Important aspects include the laser-to-electron energy conversion efficiency, electron angular distribution, electron energy spectrum and effective temperature, and bremsstrahlung production of X-rays in the target. The possible X-ray dose rates for several femtosecond Ti:sapphire laser systems used at SLAC, including the short pulse laser system for the Matter in Extreme Conditions Instrument (peak power 4 TW and peak intensity 2.4 x 10{sup 18} W/cm{sup 2}) were analysed. A graded approach to mitigate the laser-induced X-ray hazard with a combination of engineered and administrative controls is also proposed.

  7. Free-Free Transitions of e-H System Inside a Dense Plasma Irradiated by a Laser Field at Very Low Incident Electron Energies

    Science.gov (United States)

    Bhatia, A. K.; Sinha, C.

    2012-01-01

    The free-free transition is studied for an electron-hydrogen in the ground state at low incident energies in the presence of an external homogenous, monochromatic, and linearly polarized laser-field inside a hot dense plasma.The effect of plasma screening is considered in the Debye-Huckel approximation. The calculations are performed in the soft photon limit, assuming that the plasma frequency is much higher than the laser frequency. The incident electron is considered to be dressed by the laser field in a nonperturbative manner by choosing the Volkov solutions in both the initial and final channels. The space part of the scattering wave function for the electron is solved numerically by taking into account the electron exchange. The laser-assisted differential and total cross sections are calculated for single-photon absorption /emission and no photon exchange in the soft photon limit, the laser intensity being much less than the atomic field intensity. The calculations have been carried out for various values of Debye parameter, ranging from 0.005 to 0.12. A strong suppression is noted in the laser-assisted cross sections as compared to the field-free situation. A significant difference is noted for the singlet and triplet cross sections. The suppression is much more in the triplet states.

  8. Analysis of induced stress on materials exposed to laser-plasma radiation during high-intensity laser experiments

    Science.gov (United States)

    Scisciò, M.; Barberio, M.; Liberatore, C.; Veltri, S.; Laramée, A.; Palumbo, L.; Legaré, F.; Antici, P.

    2017-11-01

    In this work, we investigate the damage produced in materials when exposed to a laser-generated plasma. The plasma was generated by interaction of a high-intensity laser with Oxygen. We demonstrate that the stress induced on the target surface of a Tantalum target (typical materials used as Plasma Facing Material) after 10 h of plasma exposure is equivalent to the stress induced during 1 h of conventional laser ablation using a pulsed 0.5 J laser. In both cases we obtain a surface erosion in the tens of μm, and a change in the surface roughness in the tens of nm for the stressed materials. The erosion rate of 1 nm/s, explained in terms of surface fragmentation at thermodynamic equilibrium, generates a slow damage to the materials exposed to the plasma. Our method allows indicating safety parameters for the maintenance of materials used in high-intensity laser experiments.

  9. Toward compact and ultra-intense laser driven soft x-ray lasers (Conference Presentation)

    Science.gov (United States)

    Sebban, Stéphane

    2017-05-01

    We report here recent work on an optical-field ionized (OFI), high-order harmonic-seeded EUV laser. The amplifying medium is a plasma of nickel-like krypton obtained by optical field ionization focusing a 1 J, 30 fs, circularly- polarized, infrared pulse into a krypton-filled gas cell or krypton gas jet. The lasing transition is the 3d94p (J=0) --> 3d94p (J=1) transition of Ni-like krypton ions at 32.8 nm and is pumped by collisions with hot electrons. The polarization of the HH-seeded EUV laser beam was studied using an analyzer composed of three grazing incidence EUV multilayer mirrors able to spin under vacuum. For linear polarization, the Malus law has been recovered while in the case of a circularly-polarized seed, the EUV signal is insensitive to the rotation of the analyzer, bearing testimony to circularly polarized. The gain dynamics was probed by seeding the amplifier with a high-order harmonic pulse at different delays. The gain duration monotonically decreased from 7 ps to an unprecedented shortness of 450 fs FWHM as the amplification peak rose from 150 to 1,200 with an increase of the plasma density from 3 × 1018 cm-3 up to 1.2 × 1020 cm-3. The integrated energy of the EUV laser pulse was also measured, and found to be around 2 μJ. It is to be noted that in the ASE mode, longer amplifiers were achieved (up to 3 cm), yielding EUV outputs up to 14 μJ.

  10. Trends in prostate cancer incidence and mortality: an analysis of mortality change by screening intensity.

    Science.gov (United States)

    Coldman, Andrew J; Phillips, Norman; Pickles, Thomas A

    2003-01-07

    The rate of death from prostate cancer has recently declined in many areas of the world. Over the past 15 years prostate-specific antigen (PSA) screening has increased in popularity, which has resulted in increases in the incidence of prostate cancer. Over the same period there have been changes in the management of the disease and, in particular, the use of androgen ablation. We set out to examine the relation between changes in prostate cancer incidence (a surrogate for PSA screening) and subsequent changes in mortality in regions using common treatment recommendations. We used data from prostate cancer cases and deaths reported to the British Columbia Cancer Registry during 1985-1999 to examine trends in incidence and mortality in 88 small health areas (SHAs) among men aged 50-74 years. We conducted 2 analyses. In the first we classified the SHAs by intensity of PSA screening (low, medium or high) according to their ranked age-standardized incidence rate of prostate cancer in 1990-1994 and examined subsequent trends in prostate cancer mortality. In the second analysis we examined the SHA-specific relative change in prostate cancer incidence between 1985-1989 and 1990-1994 and correlated it with the relative change in mortality for cases diagnosed after 1990. Between 1985-1989 and 1990-1994 the incidence of prostate cancer increased by 53.2% and 14.6% among men aged 50-74 and those 75 and over respectively. Between 1985-1989 and 1995-1999 prostate cancer mortality declined by 17.6% and 7.9% in the 2 age groups respectively. Among men aged 50-74 years SHAs with low, middle and high levels of screening had respective increases in prostate cancer incidence of 5.4%, 53.6% and 70.5% between 1985-1989 and 1990-1994. Corresponding decreases in mortality between 1985-1989 and 1995-1999 were 28.9%, 18.0% and 13.5%. Mortality declines were greatest in SHAs with low screening levels (p = 0.032). Before 1990 prostate cancer mortality was similar in the 3 screening groups (p

  11. Ultra-Intense, High Spatio-Temporal Quality Petawatt-Class Laser System and Applications

    Directory of Open Access Journals (Sweden)

    Hirofumi Kan

    2013-03-01

    Full Text Available This paper reviews techniques for improving the temporal contrast and spatial beam quality in an ultra-intense laser system that is based on chirped-pulse amplification (CPA. We describe the design, performance, and characterization of our laser system, which has the potential for achieving a peak power of 600 TW. We also describe applications of the laser system in the relativistically dominant regime of laser-matter interactions and discuss a compact, high efficiency diode-pumped laser system.

  12. Interaction of ultra-short ultra-intense laser pulses with under-dense plasmas

    International Nuclear Information System (INIS)

    Solodov, A.

    2000-12-01

    Different aspects of interaction of ultra-short ultra-intense laser pulses with underdense plasmas are studied analytically and numerically. These studies can be interesting for laser-driven electron acceleration in plasma, X-ray lasers, high-order harmonic generation, initial confinement fusion with fast ignition. For numerical simulations a fully-relativistic particle code WAKE was used, developed earlier at Ecole Polytechnique. It was modified during the work on the thesis in the part of simulation of ion motion, test electron motion, diagnostics for the field and plasma. The studies in the thesis cover the problems of photon acceleration in the plasma wake of a short intense laser pulse, phase velocity of the plasma wave in the Self-Modulated Laser Wake-Field Accelerator (SM LWFA), relativistic channeling of laser pulses with duration of the order of a plasma period, ion dynamics in the wake of a short intense laser pulse, plasma wave breaking. Simulation of three experiments on the laser pulse propagation in plasma and electron acceleration were performed. Among the main results of the thesis, it was found that reduction of the plasma wave phase velocity in the SM LWFA is crucial for electron acceleration, only if a plasma channel is used for the laser pulse guiding. Self-similar structures describing relativistic guiding of short laser pulses in plasmas were found and relativistic channeling of initially Gaussian laser pulses of a few plasma periods in duration was demonstrated. It was shown that ponderomotive force of a plasma wake excited by a short laser pulse forms a channel in plasma and plasma wave breaking in the channel was analyzed in detail. Effectiveness of electron acceleration by the laser field and plasma wave was compared and frequency shift of probe laser pulses by the plasma waves was found in conditions relevant to the current experiments. (author)

  13. Dose rate laser simulation tests adequacy: Shadowing and high intensity effects analysis

    International Nuclear Information System (INIS)

    Nikiforov, A.Y.; Skorobogatov, P.K.

    1996-01-01

    The adequacy of laser based simulation of the flash X-ray effects in microcircuits may be corrupted mainly due to laser radiation shadowing by the metallization and the non-linear absorption in a high intensity range. The numerical joint solution of the optical equations and the fundamental system of equations in a two-dimensional approximation were performed to adjust the application range of laser simulation. As a result the equivalent dose rate to laser intensity correspondence was established taking into account the shadowing as well as the high intensity effects. The simulation adequacy was verified in the range up to 4·10 11 rad(Si)/s with the comparative laser test of a specially designed test structure

  14. The role of lasers and intense pulsed light technology in dermatology

    Directory of Open Access Journals (Sweden)

    Husain Z

    2016-02-01

    Full Text Available Zain Husain,1 Tina S Alster1,2 1Department of Dermatology, Georgetown University Hospital, 2Washington Institute of Dermatologic Laser Surgery, Washington, DC, USA Abstract: The role of light-based technologies in dermatology has expanded dramatically in recent years. Lasers and intense pulsed light have been used to safely and effectively treat a diverse array of cutaneous conditions, including vascular and pigmented lesions, tattoos, scars, and undesired hair, while also providing extensive therapeutic options for cosmetic rejuvenation and other dermatologic conditions. Dermatologic laser procedures are becoming increasingly popular worldwide, and demand for them has fueled new innovations and clinical applications. These systems continue to evolve and provide enhanced therapeutic outcomes with improved safety profiles. This review highlights the important roles and varied clinical applications that lasers and intense pulsed light play in the dermatologic practice. Keywords: laser, intense pulsed light, treatment, dermatology, technology

  15. Use of Naturally Available Reference Targets to Calibrate Airborne Laser Scanning Intensity Data

    Directory of Open Access Journals (Sweden)

    Paula Litkey

    2009-04-01

    Full Text Available We have studied the possibility of calibrating airborne laser scanning (ALS intensity data, using land targets typically available in urban areas. For this purpose, a test area around Espoonlahti Harbor, Espoo, Finland, for which a long time series of ALS campaigns is available, was selected. Different target samples (beach sand, concrete, asphalt, different types of gravel were collected and measured in the laboratory. Using tarps, which have certain backscattering properties, the natural samples were calibrated and studied, taking into account the atmospheric effect, incidence angle and flying height. Using data from different flights and altitudes, a time series for the natural samples was generated. Studying the stability of the samples, we could obtain information on the most ideal types of natural targets for ALS radiometric calibration. Using the selected natural samples as reference, the ALS points of typical land targets were calibrated again and examined. Results showed the need for more accurate ground reference data, before using natural samples in ALS intensity data calibration. Also, the NIR camera-based field system was used for collecting ground reference data. This system proved to be a good means for collecting in situ reference data, especially for targets with inhomogeneous surface reflection properties.

  16. Laser warning receiver to identify the wavelength and angle of arrival of incident laser light

    Science.gov (United States)

    Sinclair; Michael B.; Sweatt, William C.

    2010-03-23

    A laser warning receiver is disclosed which has up to hundreds of individual optical channels each optically oriented to receive laser light from a different angle of arrival. Each optical channel has an optical wedge to define the angle of arrival, and a lens to focus the laser light onto a multi-wavelength photodetector for that channel. Each multi-wavelength photodetector has a number of semiconductor layers which are located in a multi-dielectric stack that concentrates the laser light into one of the semiconductor layers according to wavelength. An electrical signal from the multi-wavelength photodetector can be processed to determine both the angle of arrival and the wavelength of the laser light.

  17. From a quantum to a classical description of intense laser-atom physics with Bohmian trajectories

    International Nuclear Information System (INIS)

    Lai, X Y; Cai Qingyu; Zhan, M S

    2009-01-01

    In this paper, Bohmian mechanics is applied to intense laser-atom physics. The motion of an atomic electron in an intense laser field is obtained from the Bohm-Newton equation. We find that the quantum potential that dominates the quantum effect of a physical system becomes negligible as the electron is driven far from the parent ion by the intense laser field, i.e. the behavior of the electron smoothly tends towards classical soon after the electron is ionized. Our numerical calculations present direct positive evidence for semiclassical trajectory methods in intense laser-atom physics where the motion of the ionized electron is treated by classical mechanics, while quantum mechanics is needed before the ionization.

  18. A four-component Dirac theory of ionization of a hydrogen molecular ion in a super-intense laser field

    International Nuclear Information System (INIS)

    Faisal, F H M

    2009-01-01

    In this communication, a four-component Dirac theory of ionization of a hydrogen molecular ion, H + 2 , in a super-intense laser field is presented. Analytic expressions for the spin-specific as well as the total ionization currents emitted from the ground state of the ion are derived. The results are given for arbitrary intensity, frequency, wavenumber and polarization of the field, and for the up or down spin of the bound and ionized states of the electron. They also apply for the case of inner-shell ionization of analogous heavier diatomic molecular ions. The presence of molecular two-slit interference effect, first found in the non-relativistic case, the spin-flip ionization current, and an asymmetry of the up- and down-spin currents similar to that predicted in the atomic case, is found to hold for the present relativistic molecular ionic case as well. The possibility of controlling the spin of the dominant ionization current in any direction by simply selecting the handedness of a circularly polarized incident laser field is pointed out. Finally, we note that the present results obtained within the strong field 'KFR' ansatz open up the way for an analogous fully relativistic four-component treatment for ionization of polyatomic molecules and clusters in super-intense laser fields. (fast track communication)

  19. Oval-like hollow intensity distribution of tightly focused femtosecond laser pulses in air.

    Science.gov (United States)

    Li, Y T; Xi, T T; Hao, Z Q; Zhang, Z; Peng, X Y; Li, K; Jin, Z; Zheng, Z Y; Yu, Q Z; Lu, X; Zhang, J

    2007-12-24

    The propagation of a tightly focused femtosecond laser pulse in air has been investigated. Unlike long-distance self-guided propagation of short laser pulses, a novel oval-like hollow distribution of the laser intensity is observed in the experiments and reproduced by the numerical simulations. The formation of the hollow structures can be explained by the interplay between ionization-induced refraction and Kerr self-focusing.

  20. Instabilities in superconductors and in intense laser produced plasma's

    International Nuclear Information System (INIS)

    Banerjee, Satyajit S.; Mohan, Shyam; Sinha, Jaivardhan; Kahaly, Subendhu; Ravindra Kumar, G.

    2007-01-01

    In this talk I will attempt to discuss phenomena's in two areas of physics which appear quite divorced from each other, viz., superconductivity and plasma's. The first portion of the talk will describe the behavior of a collection of vortices in superconductors in a random pinning environment. Vortices manifest themselves in a variety of systems, like in fluids and in type II superconductors. A collection of vortices inside superconductors behaves like an elastic media. Investigating this elastic medium of the vortex state is a convenient prototype for investigating similar physics in a wide variety of systems, viz., charge density waves, Wigner crystals, magnetic domains, etc. The behavior of all these systems can be generalized under, nature of elastic media in the presence of a random pinning environment and thermal fluctuations. Based on the idea that softer matter is easy to pin we have attempted to investigate how the vortex lattice disorders as its gets softer. Surprisingly we find evidence to two distinct types of instabilities in the vortex lattice instead of one. These two instabilities produce vastly different effects on certain quantities associated with the extent of disorder in the superconductor. It appears that prior to softening of the vortex state, a heterogeneously pinned state of the vortex matter appears, perhaps through a KT like transition. In the second part of the talk, I will attempt to describe some of our recent results pertaining to instabilities and the appearance of giant magnetic fields in plasma's. These results have been obtained with a high sensitivity magneto-optical imaging setup we have developed at IIT Kanpur. Using the setup, we investigate distribution of magnetic fields around dense solid plasmas generated by intense p-polarized laser (∼10 16 Wcm -2 , 100 fs) irradiation of magnetic tapes, using high sensitivity magneto optical imaging technique. We demonstrate giant axial magnetic fields and map out for the first time

  1. Study of 2ω and 3/2ω harmonics in ultrashort high-intensity laser ...

    Indian Academy of Sciences (India)

    An experimental study is presented on measurements of optical spectrum of the laser light scattered from solid surface irradiated by Ti:sapphire laser pulses up to an intensity of 1.2 × 1018 W cm-2. The spectrum has well-defined peaks at wavelengths corresponding to 2 and 3/2 radiations. The spectral features vary with ...

  2. Novel high-energy physics studies using intense lasers and plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Leemans, Wim P. [Univ. of California, Berkeley, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Bulanov, Stepan [Univ. of California, Berkeley, CA (United States); Esarey, Eric [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Schroeder, Carl [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2015-06-29

    In the framework of the project “Novel high-energy physics studies using intense lasers and plasmas” we conducted the study of ion acceleration and “flying mirrors” with high intensity lasers in order to develop sources of ion beams and high frequency radiation for different applications. Since some schemes of laser ion acceleration are also considered a good source of “flying mirrors”, we proposed to investigate the mechanisms of “mirror” formation. As a result we were able to study the laser ion acceleration from thin foils and near critical density targets. We identified several fundamental factors limiting the acceleration in the RPA regime and proposed the target design to compensate these limitations. In the case of near critical density targets, we developed a concept for the laser driven ion source for the hadron therapy. Also we studied the mechanism of “flying mirror” generation during the intense laser interaction with thin solid density targets. As for the laser-based positron creation and capture we initially proposed to study different regimes of positron beam generation and positron beam cooling. Since the for some of these schemes a good quality electron beam is required, we studied the generation of ultra-low emittance electron beams. In order to understand the fundamental physics of high energy electron beam interaction with high intensity laser pulses, which may affect the efficient generation of positron beams, we studied the radiation reaction effects.

  3. Ponderomotive dressing of doubly-excited states with intensity-controlled laser light

    Directory of Open Access Journals (Sweden)

    Ding Thomas

    2013-03-01

    Full Text Available We laser-dress several doubly-excited states in helium. Tuning the coupling-laser intensity from perturbative to the strong-coupling regime, we are able to measure phases imprinted on the two-electron wavefunctions, and observe a new continuum coupling mechanism.

  4. Comparison of High-Intensity Laser Therapy and Ultrasound Treatment in the Patients with Lumbar Discopathy

    OpenAIRE

    Boyraz, Ismail; Yildiz, Ahmet; Koc, Bunyamin; Sarman, Hakan

    2015-01-01

    The aim of the present study was to evaluate the efficiency of high intensity laser and ultrasound therapy in patients who were diagnosed with lumbar disc herniation and who were capable of performing physical exercises. 65 patients diagnosed with lumbar disc were included in the study. The patients were randomly divided into three groups: Group 1 received 10 sessions of high intensity laser to the lumbar region, Group 2 received 10 sessions of ultrasound, and Group 3 received medical therapy...

  5. Intense pulsed sources of ions and electrons produced by lasers

    International Nuclear Information System (INIS)

    Bourrabier, G.; Consoli, T.; Slama, L.

    1966-11-01

    We describe a device for the acceleration of the plasma burst produced by focusing a laser beam into a metal target. We extract the electrons and the ions from the plasma. The maximum current is around 2000 amperes during few microseconds. The study of the effect of the kind of the target on the characteristics of the current shows the great importance of the initial conditions that is the ionisation potential of the target and the energy laser. (authors) [fr

  6. Steplike intensity threshold behavior of extreme ionization in laser-driven xenon clusters.

    Science.gov (United States)

    Döppner, T; Müller, J P; Przystawik, A; Göde, S; Tiggesbäumker, J; Meiwes-Broer, K-H; Varin, C; Ramunno, L; Brabec, T; Fennel, T

    2010-07-30

    The generation of highly charged Xe(q+) ions up to q=24 is observed in Xe clusters embedded in helium nanodroplets and exposed to intense femtosecond laser pulses (λ=800  nm). Laser intensity resolved measurements show that the high-q ion generation starts at an unexpectedly low threshold intensity of about 10(14)  W/cm2. Above threshold, the Xe ion charge spectrum saturates quickly and changes only weakly for higher laser intensities. Good agreement between these observations and a molecular dynamics analysis allows us to identify the mechanisms responsible for the highly charged ion production and the surprising intensity threshold behavior of the ionization process.

  7. [Incidence of unplanned extubations in a neonatal intensive care unit. A before and after study].

    Science.gov (United States)

    Utrera Torres, M I; Moral Pumarega, M T; García Lara, N R; Melgar Bonís, A; Frías García, M E; Pallás Alonso, C R

    2014-05-01

    Unplanned extubations (UE) of mechanically ventilated newborns involves an undesirable increase in morbidity and mortality. A 2-stage study compared the frequency of UE in a Neonatal Intensive Care Unit before and after the implementation of a program of preventive measures to decrease UE. A before and after prospective study included all mechanically ventilated newborns participating in the 2 stage study from May-December 2011 and June-December 2012. In stage 1, the rate of UE per 100 intubated patient days was calculated and the characteristics of unplanned extubated newborns, circumstances of UE occurrence and need for re-intubation were studied. Consequently, a program of preventive measures for UE was designed and implemented, with the same variables being analysed in stage 2. No differences were found in patient characteristics during the two stages. Stage 1, incidence of UE was 5/100 intubated patient days; Stage 2, 4.5 UE/100 intubated patient days (P=.657). In both stages, most UE occurred during patient handling with re-intubation incidence at 77.4% and 67.7%, respectively. The combined rate of both stages during summer months of July, August and September was 6.2 UE/100 intubation days, in contrast with the remaining months of both stages: UE incidence rate, 3.4 UE/100 intubation days (p=.043). The implementation of a preventive measures program did not significantly reduce the incidence of UE. The summer period showed the highest incidence of UE. Copyright © 2013 Asociación Española de Pediatría. Published by Elsevier Espana. All rights reserved.

  8. High-intensity laser synchrotron x-ray source

    International Nuclear Information System (INIS)

    Pogorelsky, I.V.

    1995-10-01

    A laser interacting with a relativistic electron beam behaves like a virtual wiggler of an extremely short period equal to half of the laser wavelength. This approach opens a route to relatively compact, high-brightness x-ray sources alternative or complementary to conventional synchrotron light sources. Although not new, the Laser Synchrotron Light Source (LSLS) concept is still waiting for a convincing demonstration. Available at the BNL's Accelerator Test Facility (ATF), a high-brightness electron beam and the high-power C0 2 laser may be used as prototype LSLS brick stones. In a feasible demonstration experiment, 10-GW, 100-ps C0 2 laser beam will be brought to a head-on collision with a 10-ps, 0.5-nC, 70 MeV electron bunch. Flashes of well-collimated, up to 9.36-keV (∼ Angstrom) x-rays of 10-ps pulse duration, with a flux of ∼10 19 photons/sec will be produced via linear Compton backscattering. The x-ray spectrum is tunable proportionally to a variable e-beam energy. A natural short-term extension of the proposed experiment would be further enhancement of the x-ray flux to a 10 21 -10 22 photons/sec level, after the ongoing ATF CO 2 laser upgrade to 1 TW peak power and electron bunch shortening to 3 ps. The ATF LSLS x-ray beamline, exceeding by orders of magnitude the peak fluxes attained at the National Synchrotron Light Source (NSLS) x-ray storage ring, may become attractive for certain users, e.g., for biological x-ray microscopy. In addition, a terawatt CO 2 laser will enable harmonic multiplication of the x-ray spectrum via nonlinear Compton scattering

  9. Self-focusing of an intense laser pulse interacting with a periodic lattice of metallic nanoparticle

    International Nuclear Information System (INIS)

    Sepehri Javan, N.

    2015-01-01

    The motivation for the present work is the study of self-focusing of an intense laser beam propagating through a periodic array of metallic nanoparticle. Using a perturbative method, a wave equation describing the nonlinear interaction of a laser beam with nanoparticles is derived. Evolution of laser spot size with the Gaussian profile for the circular and linear polarizations is considered. It is found that, in the same intensity, the linear polarization in a special interval of frequency resonantly acts better than the circular one

  10. Ablation and transmission of thin solid targets irradiated by intense extreme ultraviolet laser radiation

    Directory of Open Access Journals (Sweden)

    V. Aslanyan

    2016-09-01

    Full Text Available The interaction of an extreme ultraviolet (EUV laser beam with a parylene foil was studied by experiments and simulation. A single EUV laser pulse of nanosecond duration focused to an intensity of 3 × 1010 W cm−2 perforated micrometer thick targets. The same laser pulse was simultaneously used to diagnose the interaction by a transmission measurement. A combination of 2-dimensional radiation-hydrodynamic and diffraction calculations was used to model the ablation, leading to good agreement with experiment. This theoretical approach allows predictive modelling of the interaction with matter of intense EUV beams over a broad range of parameters.

  11. Acceleration of electrons by high intensity laser radiation in a magnetic field

    OpenAIRE

    Melikian, Robert

    2013-01-01

    We consider the acceleration of electrons in vacuum by means of the circularly-polirized electromagnetic wave, propagating along a magnetic field. We show that the electron energy growth, when using ultra-short and ultra-intense laser pulses (10 ps, 10^{18} Bm/cm^2, CO_{2} laser) in the presence of a magnetic field, may reach up to the value 2,1 Gev. The growth of the electron energy is shown to increase proportionally with the increase of the laser intensity and the initial energy of the ele...

  12. Design and testing of low intensity laser biostimulator

    Directory of Open Access Journals (Sweden)

    Pallikarakis Nicolas E

    2005-01-01

    Full Text Available Abstract Background The non-invasive nature of laser biostimulation has made lasers an attractive alternative in Medical Acupuncture at the last 25 years. However, there is still an uncertainty as to whether they work or their effect is just placebo. Although a plethora of scientific papers published about the topic showing positive clinical results, there is still a lack of objective scientific proofs about the biostimulation effect of lasers in Medical Acupuncture. The objective of this work was to design and build a low cost portable laser device for stimulation of acupuncture points, considered here as small localized biosources (SLB, without stimulating any sensory nerves via shock or heat and to find out a suitable method for objectively evaluating its stimulating effect. The design is aimed for studying SLB potentials provoked by laser stimulus, in search for objective proofs of the biostimulation effect of lasers used in Medical Acupuncture. Methods The proposed biostimulator features two operational modes: program mode and stimulation mode and two output polarization modes: linearly and circularly polarized laser emission. In program mode, different user-defined stimulation protocols can be created and memorized. The laser output can be either continuous or pulse modulated. Each stimulation session consists of a pre-defined number of successive continuous or square pulse modulated sequences of laser emission. The variable parameters of the laser output are: average output power, pulse width, pulse period, and continuous or pulsed sequence duration and repetition period. In stimulation mode the stimulus is automatically applied according to the pre-programmed protocol. The laser source is 30 mW AlGaInP laser diode with an emission wavelength of 685 nm, driven by a highly integrated driver. The optical system designed for beam collimation and polarization change uses single collimating lens with large numerical aperture, linear polarizer

  13. Nucleotide excision repair pathway assessment in DNA exposed to low-intensity red and infrared lasers

    International Nuclear Information System (INIS)

    Fonseca, A.S.; Campos, V.M.A.; Magalhaes, L.A.G.; Paoli, F.

    2015-01-01

    Low-intensity lasers are used for prevention and management of oral mucositis induced by anticancer therapy, but the effectiveness of treatment depends on the genetic characteristics of affected cells. This study evaluated the survival and induction of filamentation of Escherichia coli cells deficient in the nucleotide excision repair pathway, and the action of T 4 endonuclease V on plasmid DNA exposed to low-intensity red and near-infrared laser light. Cultures of wild-type (strain AB1157) E. coli and strain AB1886 (deficient in uvrA protein) were exposed to red (660 nm) and infrared (808 nm) lasers at various fluences, powers and emission modes to study bacterial survival and filamentation. Also, plasmid DNA was exposed to laser light to study DNA lesions produced in vitro by T 4 endonuclease V. Low-intensity lasers: i) had no effect on survival of wild-type E. coli but decreased the survival of uvrA protein-deficient cells, ii) induced bacterial filamentation, iii) did not alter the electrophoretic profile of plasmids in agarose gels, and iv) did not alter the electrophoretic profile of plasmids incubated with T 4 endonuclease V. These results increase our understanding of the effects of laser light on cells with various genetic characteristics, such as xeroderma pigmentosum cells deficient in nucleotide excision pathway activity in patients with mucositis treated by low-intensity lasers. (author)

  14. Low-intensity red and infrared laser effects at high fluences on Escherichia coli cultures

    Energy Technology Data Exchange (ETDEWEB)

    Barboza, L.L.; Campos, V.M.A.; Magalhaes, L.A.G. [Instituto de Biologia Roberto Alcantara Gomes, Rio de Janeiro, RJ (Brazil). Departamento de Biofisica e Biometria; Paoli, F. [Universidade Federal de Juiz de Fora (UFJF), Juiz de Fora, MG (Brazil). Departamento de Morfologia; Fonseca, A.S., E-mail: adnfonseca@ig.com.br [Universidade Federal do Estado do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ (Brazil). Departamento de Ciencias Fisiologicas

    2015-10-15

    Semiconductor laser devices are readily available and practical radiation sources providing wavelength tenability and high monochromaticity. Low-intensity red and near-infrared lasers are considered safe for use in clinical applications. However, adverse effects can occur via free radical generation, and the biological effects of these lasers from unusually high fluences or high doses have not yet been evaluated. Here, we evaluated the survival, filamentation induction and morphology of Escherichia coli cells deficient in repair of oxidative DNA lesions when exposed to low-intensity red and infrared lasers at unusually high fluences. Cultures of wild-type (AB1157), endonuclease III-deficient (JW1625-1), and endonuclease IV-deficient (JW2146-1) E. coli, in exponential and stationary growth phases, were exposed to red and infrared lasers (0, 250, 500, and 1000 J/cm{sup 2}) to evaluate their survival rates, filamentation phenotype induction and cell morphologies. The results showed that low-intensity red and infrared lasers at high fluences are lethal, induce a filamentation phenotype, and alter the morphology of the E. coli cells. Low-intensity red and infrared lasers have potential to induce adverse effects on cells, whether used at unusually high fluences, or at high doses. Hence, there is a need to reinforce the importance of accurate dosimetry in therapeutic protocols. (author)

  15. Low-intensity red and infrared lasers on XPA and XPC gene expression

    Science.gov (United States)

    Fonseca, A. S.; Magalhães, L. A. G.; Mencalha, A. L.; Ferreira-Machado, S. C.; Geller, M.; Paoli, F.

    2014-09-01

    Laser devices emit monochromatic, coherent, and highly collimated intense beams of light that are useful for a number of biomedical applications. However, for low-intensity lasers, possible adverse effects of laser light on DNA are still controversial. In this work, the expression of XPA and XPC genes in skin and muscle tissue exposed to low-intensity red and infrared lasers was evaluated. Skin and muscle tissue of Wistar rats were exposed to low-intensity red and infrared lasers at different fluences in continuous mode emission. Skin and muscle tissue samples were withdrawn for total RNA extraction, cDNA synthesis, and evaluation of actin gene expression by quantitative polymerase chain reaction. Data obtained show that laser radiation alters the expression of XPA and XPC mRNA differently in skin and muscle tissue of Wistar rats, depending on physical (fluence and wavelength) and biological (tissue) parameters. Laser light could modify expression of genes related to the nucleotide excision repair pathway at fluences and wavelengths used in clinical protocols.

  16. Nucleotide excision repair pathway assessment in DNA exposed to low-intensity red and infrared lasers.

    Science.gov (United States)

    Fonseca, A S; Campos, V M A; Magalhães, L A G; Paoli, F

    2015-10-01

    Low-intensity lasers are used for prevention and management of oral mucositis induced by anticancer therapy, but the effectiveness of treatment depends on the genetic characteristics of affected cells. This study evaluated the survival and induction of filamentation of Escherichia coli cells deficient in the nucleotide excision repair pathway, and the action of T4endonuclease V on plasmid DNA exposed to low-intensity red and near-infrared laser light. Cultures of wild-type (strain AB1157) E. coli and strain AB1886 (deficient in uvrA protein) were exposed to red (660 nm) and infrared (808 nm) lasers at various fluences, powers and emission modes to study bacterial survival and filamentation. Also, plasmid DNA was exposed to laser light to study DNA lesions produced in vitro by T4endonuclease V. Low-intensity lasers:i) had no effect on survival of wild-type E. coli but decreased the survival of uvrA protein-deficient cells,ii) induced bacterial filamentation, iii) did not alter the electrophoretic profile of plasmids in agarose gels, andiv) did not alter the electrophoretic profile of plasmids incubated with T4 endonuclease V. These results increase our understanding of the effects of laser light on cells with various genetic characteristics, such as xeroderma pigmentosum cells deficient in nucleotide excision pathway activity in patients with mucositis treated by low-intensity lasers.

  17. Nucleotide excision repair pathway assessment in DNA exposed to low-intensity red and infrared lasers

    Energy Technology Data Exchange (ETDEWEB)

    Fonseca, A.S.; Campos, V.M.A.; Magalhaes, L.A.G., E-mail: adnfonseca@ig.com.br [Instituto de Biologia Roberto Alcantara Gomes, Rio de Janeiro, RJ (Brazil). Departamento de Biofisica e Biometria. Lab. de Ciencias Radiologicas; Paoli, F. [Universidade Federal de Juiz de Fora (UFJF), Juiz de Fora, MG (Brazil). Instituto de Ciencias Biologicas. Departamento de Morfologia

    2015-10-15

    Low-intensity lasers are used for prevention and management of oral mucositis induced by anticancer therapy, but the effectiveness of treatment depends on the genetic characteristics of affected cells. This study evaluated the survival and induction of filamentation of Escherichia coli cells deficient in the nucleotide excision repair pathway, and the action of T{sub 4} endonuclease V on plasmid DNA exposed to low-intensity red and near-infrared laser light. Cultures of wild-type (strain AB1157) E. coli and strain AB1886 (deficient in uvrA protein) were exposed to red (660 nm) and infrared (808 nm) lasers at various fluences, powers and emission modes to study bacterial survival and filamentation. Also, plasmid DNA was exposed to laser light to study DNA lesions produced in vitro by T{sub 4} endonuclease V. Low-intensity lasers: i) had no effect on survival of wild-type E. coli but decreased the survival of uvrA protein-deficient cells, ii) induced bacterial filamentation, iii) did not alter the electrophoretic profile of plasmids in agarose gels, and iv) did not alter the electrophoretic profile of plasmids incubated with T{sub 4} endonuclease V. These results increase our understanding of the effects of laser light on cells with various genetic characteristics, such as xeroderma pigmentosum cells deficient in nucleotide excision pathway activity in patients with mucositis treated by low-intensity lasers. (author)

  18. High-intensity laser diagnostics for OMEGA EP

    International Nuclear Information System (INIS)

    Bromage, J.; Zuegel, J.D.; Bahk, S.W.; Vickery, D.S.; Waxer, L.J.; Irwin, D.; Bagnoud, V.; Boni, R.; Moore, M.D.; Jungquist, R.; Stoeckl, C.

    2006-01-01

    OMEGA EP (Extended Performance) is a new high-energy peta-watt laser system under construction at the University of Rochester's Laboratory for Laser Energetics. This paper describes our designs for two diagnostics critical to OMEGA EP's mission. The focal-spot diagnostic (FSD) is responsible for characterizing the focal spot of OMEGA EP's off-axis parabolic mirror at full energy. The ultrafast temporal diagnostic (UTD) is responsible for characterizing pulse shapes of full-energy target shots ranging in width from < 1 to 100 ps as well as setting the desired pulse width before the shot. These diagnostics will enable, for the first time, complete spatial and temporal characterization of the focus of a high-energy peta-watt laser at full energy. (authors)

  19. Incidence and factors related to delirium in an intensive care unit.

    Science.gov (United States)

    Mori, Satomi; Takeda, Juliana Rumy Tsuchihashi; Carrara, Fernanda Souza Angotti; Cohrs, Cibelli Rizzo; Zanei, Suely Sueko Viski; Whitaker, Iveth Yamaguchi

    2016-01-01

    To identify the incidence of delirium, compare the demographic and clinical characteristics of patients with and without delirium, and verify factors related to delirium in critical care patients. Prospective cohort with a sample made up of patients hospitalized in the Intensive Care Unit (ICU) of a university hospital. Demographic, clinical variables and evaluation with the Confusion Assessment Method for Intensive Care Unit to identify delirium were processed to the univariate analysis and logistic regression to identify factors related to the occurrence of delirium. Of the total 149 patients in the sample, 69 (46.3%) presented delirium during ICU stay, whose mean age, severity of illness and length of ICU stay were statistically higher. The factors related to delirium were: age, midazolam, morphine and propofol. Results showed high incidence of ICU delirium associated with older age, use of sedatives and analgesics, emphasizing the need for relevant nursing care to prevent and identify early, patients presenting these characteristics. Identificar a incidência de delirium, comparar as características demográficas e clínicas dos pacientes com e sem delirium e verificar os fatores relacionados ao delirium em pacientes internados em Unidade de Terapia Intensiva (UTI). Coorte prospectiva, cuja amostra foi constituída de pacientes internados em UTI de um hospital universitário. Variáveis demográficas, clínicas e da avaliação com o Confusion Assessment Method for Intensive Care Unit para identificação de delirium foram processadas para análise univariada, e regressão logística para identificar fatores relacionados à ocorrência do delirium. Do total de 149 pacientes da amostra, 69 (46,3%) apresentaram delirium durante a internação na UTI, observando-se que a média da idade, o índice de gravidade e o tempo de permanência nas UTI foram estatisticamente maiores. Os fatores relacionados ao delirium foram: idade, midazolam, morfina e propofol. Os

  20. Interaction of high-intensity laser radiation with metals.

    Science.gov (United States)

    Linlor, W. I.

    1971-01-01

    The interaction is characterized by the production of plasma, within which the primary absorption occurs. Absorption of laser radiation by a plasma may occur by several processes. The absorption process called 'inverse bremsstrahlung' is discussed. The interaction of a laser beam with the plasma produced from a thick metal target was studied. The results of the measurements of the ion kinetic energies are presented in a graph. In addition to measurements with thick targets, information was also obtained with a thin foil of gold.

  1. Highly charged ions generated with intense laser beams

    Czech Academy of Sciences Publication Activity Database

    Krása, Josef; Jungwirth, Karel; Králiková, Božena; Láska, Leoš; Pfeifer, Miroslav; Rohlena, Karel; Skála, Jiří; Ullschmied, Jiří; Hnatowicz, Vladimír; Peřina, Vratislav; Badziak, J.; Parys, P.; Wolowski, J.; Woryna, E.; Szydlowski, A.

    2003-01-01

    Roč. 205, - (2003), s. 355-359 ISSN 0168-583X. [International Symposium on Swift Heavy Ions in Matter /5./. Taormina-Giardini Naxos, 22.05.2002-25.05.2002] R&D Projects: GA MŠk LN00A100 Grant - others:HPRI(XE) CT-1999-00053; IAEA(XE) 11535/RO Institutional research plan: CEZ:AV0Z2043910; CEZ:AV0Z1010921 Keywords : laser-produced plasma * highly charged ions * ion implantation * windowless electron multiplier Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.041, year: 2003

  2. The Incidence And Risk Factors Nosocomial Pneumonia In A Neuromedical Intensive Care Unit

    Directory of Open Access Journals (Sweden)

    Devragudi TS

    2001-01-01

    Full Text Available This retrospective study examined the incidence and factors influencing the occurrence of nonsocomial pneumonia (NP in a neuromedical intensive care unit (NICU. Of the 57 patients admitted to the NICU over one year, 26% developed nosocomial pneumonia. It was observed that the infected patients were significantly older than the noninfected (43+15 vs 22+18 years; p<0.001, had a longer NICU stay (33+31 vs 18+18 days: p=0.05 and needed longer duration of mechanical ventilation (20+25 vs 9 + 12 days: P<0.05. Patients with neuromuscular diseases had a trend towards higher incidence of NP than those with encephalopathy and therapeutic interventions such as plasmapheresis, blood transfusion and inotropic therapy did not influence the incidence of nosocomial pneumonia. The NICU mortality was not significantly influenced by nosocomial pneumonia. Pseudomonas aerugenosa was the predominant organism responsible for pneumonia. Nine percent of the tracheobronchial isolates were resistant to the routinely-tested antibiotics. In conclusion, nosocornial pneumonia is a common complication in a NICU and while it increases the duration of NICU stay, mortality appears to be uninfluenced.

  3. Proton emission from laser-generated plasmas at different intensities

    Czech Academy of Sciences Publication Activity Database

    Torrisi, L.; Cutroneo, M.; Cavallaro, S.; Giuffrida, L.; Margarone, Daniele

    2012-01-01

    Roč. 57, č. 2 (2012), s. 237-240 ISSN 0029-5922. [International Conference on Research and Applications of Plasmas (PLASMA). Warsaw, 12.09.2011-16.09.2011] Institutional support: RVO:68378271 Keywords : laser-generated plasma * hydrogenated targets * proton acceleration Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 0.507, year: 2012

  4. Thermal dynamics-based mechanism for intense laser-induced ...

    Indian Academy of Sciences (India)

    dynamics of laser surface vaporization process also lays the basis to analyse tech- nological processes like keyhole ..... positive again initiating a new period of vaporization (from t = 2.5 ns to t = 3.5 ns). The secondary ... Some of the assumptions associated with the adoption of equilibrium solutions are discussed by Chung ...

  5. Thomson scattering of polarized photons in an intense laser beam

    Energy Technology Data Exchange (ETDEWEB)

    Byung Yunn

    2006-02-21

    We present a theoretical analysis of the Thomson scattering of linearly and circularly polarized photons from a pulsed laser by electrons. The analytical expression for the photon distribution functions presented in this paper should be useful to designers of Thomson scattering experiments.

  6. Collisionless energy absorption in the short-pulse intense laser-cluster interaction

    International Nuclear Information System (INIS)

    Kundu, M.; Bauer, D.

    2006-01-01

    In a previous paper [Phys. Rev. Lett. 96, 123401 (2006)] we have shown by means of three-dimensional particle-in-cell simulations and a simple rigid-sphere model that nonlinear resonance absorption is the dominant collisionless absorption mechanism in the intense, short-pulse laser cluster interaction. In this paper we present a more detailed account of the matter. In particular we show that the absorption efficiency is almost independent of the laser polarization. In the rigid-sphere model, the absorbed energy increases by many orders of magnitude at a certain threshold laser intensity. The particle-in-cell results display maximum fractional absorption around the same intensity. We calculate the threshold intensity and show that it is underestimated by the common overbarrier ionization estimate

  7. Intensities of incident and transmitted ultraviolet-a rays through gafchromic films

    Directory of Open Access Journals (Sweden)

    Toshizo Katsuda

    2017-01-01

    Full Text Available Gafchromic films have been applied to X-ray dosimetry in diagnostic radiology. To correct nonuniformity errors in Gafchromic films, X-rays in the double-exposure technique can be replaced with ultraviolet (UV-A rays. Intensities of the incident and transmitted UV-A rays were measured. However, it is unclear whether the chemical color change of Gafchromic films affects the UV-A transmission intensity. Gafchromic EBT3 films were suitable to be used in this study because non-UV protection layers are present on both sides of the film. The film is placed between UV-A ray light-emitting diodes and a probe of a UV meter. Gafchromic EBT3 films were irradiated by UV-A rays for up to 60 min. Data for analysis were obtained in the subsequent 60 min. Images from before and after UV-A irradiation were subtracted. When using 375 nm UV-A, the mean ± standard deviation (SD of the pixel values in the subtracted image was remarkably high (11,194.15 ± 586.63. However, the UV-A transmissivity remained constant throughout the 60 min irradiation period. The mean ± SD UV-A transmission intensity was 184.48 ± 0.50 μm/cm2. Our findings demonstrate that color density changes in Gafchromic EBT3 films do not affect their UV-A transmission. Therefore, Gafchromic films were irradiated by UV-A rays as a preexposure.

  8. Grazing incidence metal mirrors as the final elements in a laser driver for inertial confinement fusion

    International Nuclear Information System (INIS)

    Bieri, R.L.; Guinan, M.W.

    1990-01-01

    Grazing incidence metal mirrors (GIMMs) have been examined to replace dielectric mirrors for the final elements in a laser beam line for an inertial confinement fusion reactor. For a laser driver with a wavelength from 250 to 500 nm in a 10-ns pulse, irradiated mirrors made of Al, Al alloys, or Mg were found to have calculated laser damage limits of 0.3--2.3 J/cm 2 of beam energy and neutron lifetime fluence limits of over 5 x 10 20 14 MeV n/cm 2 (or 2.4 full power years when used in a 1000-MW reactor) when used at grazing incidence (an angle of incidence of 85 degrees) and operated at room temperature or at 77 K. A final focusing system including mirrors made of Al alloy 7457 at room temperature or at liquid nitrogen temperatures used with a driver which delivers 5 MJ of beam energy in 32 beams would require 32 mirrors of roughly 10 m 2 each. This paper briefly reviews the methods used in calculating the damage limits for GIMMs and discusses critical issues relevant to the integrity and lifetime of such mirrors in a reactor environment. 10 refs., 3 figs., 1 tab

  9. Wavelength prediction of laser incident on amorphous silicon detector by neural network

    International Nuclear Information System (INIS)

    Esmaeili Sani, V.; Moussavi-Zarandi, A.; Kafaee, M.

    2011-01-01

    In this paper we present a method based on artificial neural networks (ANN) and the use of only one amorphous semiconductor detector to predict the wavelength of incident laser. Amorphous semiconductors and especially amorphous hydrogenated silicon, a-Si:H, are now widely used in many electronic devices, such as solar cells, many types of position sensitive detectors and X-ray imagers for medical applications. In order to study the electrical properties and detection characteristics of thin films of a-Si:H, n-i-p structures have been simulated by SILVACO software. The basic electronic properties of most of the materials used are known, but device modeling depends on a large number of parameters that are not all well known. In addition, the relationship between the shape of the induced anode current and the wavelength of the incident laser leads to complicated calculations. Soft data-based computational methods can model multidimensional non-linear processes and represent the complex input-output relation between the form of the output signal and the wavelength of incident laser.

  10. Wavelength prediction of laser incident on amorphous silicon detector by neural network

    Energy Technology Data Exchange (ETDEWEB)

    Esmaeili Sani, V., E-mail: vaheed_esmaeely80@yahoo.com [Amirkabir University of Technology, Faculty of Physics, P.O. Box 4155-4494, Tehran (Iran, Islamic Republic of); Moussavi-Zarandi, A.; Kafaee, M. [Amirkabir University of Technology, Faculty of Physics, P.O. Box 4155-4494, Tehran (Iran, Islamic Republic of)

    2011-10-21

    In this paper we present a method based on artificial neural networks (ANN) and the use of only one amorphous semiconductor detector to predict the wavelength of incident laser. Amorphous semiconductors and especially amorphous hydrogenated silicon, a-Si:H, are now widely used in many electronic devices, such as solar cells, many types of position sensitive detectors and X-ray imagers for medical applications. In order to study the electrical properties and detection characteristics of thin films of a-Si:H, n-i-p structures have been simulated by SILVACO software. The basic electronic properties of most of the materials used are known, but device modeling depends on a large number of parameters that are not all well known. In addition, the relationship between the shape of the induced anode current and the wavelength of the incident laser leads to complicated calculations. Soft data-based computational methods can model multidimensional non-linear processes and represent the complex input-output relation between the form of the output signal and the wavelength of incident laser.

  11. Guiding and focusing of fast electron beams produced by ultra-intense laser pulse using a double cone funnel target

    International Nuclear Information System (INIS)

    Zhang, Wen-shuai; Cai, Hong-bo; Zhu, Shao-ping

    2015-01-01

    A novel double cone funnel target design aiming at efficiently guiding and focusing fast electron beams produced in high intensity (>10 19  W/cm 2 ) laser-solid interactions is investigated via two-dimensional particle-in-cell simulations. The forward-going fast electron beams are shown to be directed and focused to a smaller size in comparison with the incident laser spot size. This plasma funnel attached on the cone target guides and focuses electrons in a manner akin to the control of liquid by a plastic funnel. Such device has the potential to add substantial design flexibility and prevent inefficiencies for important applications such as fast ignition. Two reasons account for the collimation of fast electron beams. First, the sheath electric fields and quasistatic magnetic fields inside the vacuum gap of the double cone provide confinement of the fast electrons in the laser-plasma interaction region. Second, the interface magnetic fields inside the beam collimator further guide and focus the fast electrons during the transport. The application of this technique to cone-guided fast ignition is considered, and it is shown that it can enhance the laser energy deposition in the compressed fuel plasma by a factor of 2 in comparison with the single cone target case

  12. A tesselation-based model for intensity estimation and laser plasma interactions calculations in three dimensions

    Science.gov (United States)

    Colaïtis, A.; Chapman, T.; Strozzi, D.; Divol, L.; Michel, P.

    2018-03-01

    A three-dimensional laser propagation model for computation of laser-plasma interactions is presented. It is focused on indirect drive geometries in inertial confinement fusion and formulated for use at large temporal and spatial scales. A modified tesselation-based estimator and a relaxation scheme are used to estimate the intensity distribution in plasma from geometrical optics rays. Comparisons with reference solutions show that this approach is well-suited to reproduce realistic 3D intensity field distributions of beams smoothed by phase plates. It is shown that the method requires a reduced number of rays compared to traditional rigid-scale intensity estimation. Using this field estimator, we have implemented laser refraction, inverse-bremsstrahlung absorption, and steady-state crossed-beam energy transfer with a linear kinetic model in the numerical code Vampire. Probe beam amplification and laser spot shapes are compared with experimental results and pf3d paraxial simulations. These results are promising for the efficient and accurate computation of laser intensity distributions in holhraums, which is of importance for determining the capsule implosion shape and risks of laser-plasma instabilities such as hot electron generation and backscatter in multi-beam configurations.

  13. Guidelines of care for vascular lasers and intense pulse light sources from the European Society for Laser Dermatology.

    Science.gov (United States)

    Adamič, M; Pavlović, M D; Troilius Rubin, A; Palmetun-Ekbäck, M; Boixeda, P

    2015-09-01

    Lasers and non-coherent intense pulse light sources (IPLS) are based on the principle of selective photothermolysis and can be used for the treatment of many vascular skin lesions. A variety of lasers has been developed for the treatment of congenital and acquired vascular lesions which incorporate these concepts into their design. Although laser and light sources are very popular due to their non-invasive nature, caution should be considered by practitioners and patients to avoid permanent side-effects. The aim of these guidelines is to give evidence-based recommendations for the use of lasers and IPLS in the treatment of vascular lesions. These guidelines were produced by a Consensus Panel made up of experts in the field of vascular laser surgery under the auspices of the European Society of Laser Dermatology. Recommendations on the use of vascular lasers and IPLS were made based on the quality of evidence for efficacy, safety, tolerability, cosmetic outcome, patient satisfaction/preference and, where appropriate, on the experts' opinion. The recommendations of these guidelines are graded according to the American College of Chest Physicians Task Force recommendations on Grading Strength of Recommendations and Quality of Evidence in Clinical Guidelines. Lasers and IPLS are very useful and sometimes the only available method to treat various vascular lesions. It is of a paramount importance that the type of laser or IPLS and their specific parameters are adapted to the indication but also that the treating physician is familiar with the device to be used. The crucial issue in treating vascular lesions is to recognize the immediate end-point after laser treatment. This is the single most important factor to ensure both the efficacy of the treatment and avoidance of serious side-effects. © 2015 European Academy of Dermatology and Venereology.

  14. Chalcogen doping of silicon via intense femtosecond-laser irradiation

    International Nuclear Information System (INIS)

    Sheehy, Michael A.; Tull, Brian R.; Friend, Cynthia M.; Mazur, Eric

    2007-01-01

    We have previously shown that doping silicon with sulfur via femtosecond-laser irradiation leads to near-unity absorption of radiation from ultraviolet wavelengths to below band gap short-wave infrared wavelengths. Here, we demonstrate that doping silicon with two other group VI elements (chalcogens), selenium and tellurium, also leads to near-unity broadband absorption. A powder of the chalcogen dopant is spread on the silicon substrate and irradiated with femtosecond-laser pulses. We examine and compare the resulting morphology, optical properties, and chemical composition for each chalcogen-doped substrate before and after thermal annealing. Thermal annealing reduces the absorption of below band gap radiation by an amount that correlates with the diffusivity of the chalcogen dopant used to make the sample. We propose a mechanism for the absorption of below band gap radiation based on defects in the lattice brought about by the femtosecond-laser irradiation and the presence of a supersaturated concentration of chalcogen dopant atoms. The selenium and tellurium doped samples show particular promise for use in infrared photodetectors as they retain most of their infrared absorptance even after thermal annealing-a necessary step in many semiconductor device manufacturing processes

  15. Efficient plasma production by intense laser irradiation of low density foam targets

    International Nuclear Information System (INIS)

    Tripathi, S.; Chaurasia, S.; Munda, D. S.; Gupta, N. K.; Dhareshwar, L. J.; Nataliya, B.

    2010-01-01

    Experimental investigations conducted on low density structured materials, such as foams have been presented in this paper. These low density foam targets having a density greater than the critical density of the laser produced plasma (ρ cr ≅3 mg·cm -3 at laser wavelength 1.06 μm) have been envisaged to have enhanced laser absorption. Experiments were done with an indigenously developed, focused 15 Joule/500 ps Nd: Glass laser at λ = 1064 nm. The focused laser intensity on the target was in the range of I≅10 13 -2x10 14 W/cm 2 . Laser absorption was determined by energy balance experiments. Laser energy absorption was observed to be higher than 85%. In another set of experiments, low density carbon foam targets of density 150 mg/cc were compared with the solid carbon targets. The x-ray emission in the soft x-ray region was observed to increase in foam target by about 1.8 times and 2.3 times in carbon foam and Pt doped foam as compared to solid carbon. Further, investigations were also carried out to measure the energy transmitted through the sub-critical density TAC foam targets having a density less than 3 mg/cc. Such targets have been proposed to be used for smoothening of intensity ripples in a high power laser beam profile. Transmission exceeding 1.87% has been observed and consistent with results from other laboratories.

  16. Incidence and preventability of adverse events requiring intensive care admission: a systematic review.

    Science.gov (United States)

    Vlayen, Annemie; Verelst, Sandra; Bekkering, Geertruida E; Schrooten, Ward; Hellings, Johan; Claes, Neree

    2012-04-01

    Adverse events are unintended patient injuries or complications that arise from health care management resulting in death, disability or prolonged hospital stay. Adverse events that require critical care are a considerable financial burden to the health care system, but also their global impact on patients and society is probably underestimated. The objectives of this systematic review were to synthesize the best available evidence regarding the estimates of the incidence and preventability of adverse events that necessitate intensive care admission, to determine the type and consequences [mortality, length of intensive care unit (ICU) stay and costs] of these adverse events. MEDLINE (from 1966 to present), EMBASE (from 1974 to present) and CENTRAL (version 1-2010) were searched for studies reporting on unplanned admissions on ICUs. Several other sources were searched for additional studies. Only quantitative studies that used chart review for the detection of adverse events requiring intensive care admission were considered for eligibility. For the purposes of this systematic review, ICUs were defined as specialized hospital facilities which provide continuous monitoring and intensive care for acutely ill patients. Studies that were published in the English, Dutch, German, French or Spanish language were eligible for inclusion. Two reviewers independently extracted data and assessed the methodological quality of the included studies. A total of 27 studies were reviewed. Meta-analysis of the data was not appropriate because of methodological and statistical heterogeneity between studies; therefore, results are presented in a descriptive way. The percentage of surgical and medical adverse events that required ICU admission ranged from 1.1% to 37.2%. ICU readmissions varied from 0% to 18.3%. Preventability of the adverse events varied from 17% to 76.5%. Preventable adverse events are further synthesized by type of event. Consequences of the adverse events included a

  17. Incidence of drug interactions in intensive care units in tertiary care settings: Classification, facts and measures.

    Science.gov (United States)

    Hasnain, Hina; Ali, Huma; Zafar, Farya; Sial, Ali Akbar; Alam, Shazia; Beg, Anwar Ejaz; Bushra, Rabia; Rizvi, Mehwish; Khan, Maqsood Ahmed; Shareef, Huma; Naqvi, Ghazala R; Tariq, Anum

    2018-03-01

    Drug-drug interactions (DDIs) are extremely significant concern, particularly in sensitive population including pediatric and geriatric. Propensity for the development of DDIs is high in patients admitted at intensive care units (ICU). This study was conducted to evaluate the DDIs incidence, facts and measures in ICU. From a total of 150 cases studied for ICU patients, with the mean age of 56.37±12.45 years, 55.33% were male and the rest were female 44.66%. The demographic information like age, gender and main diagnosis details of study participants that were extracted from the patients' clinical record. A statistically significant association between the drug interaction and the number of drugs prescribed per prescription was observed (pICU attributed high risk of adverse reactions due to use of multiple interventions to treat severity of disease condition. Such studies may be used to develop an effective tool for the diagnosis and management of DDIs.

  18. [Incidence of vitreoretinal pathologic conditions in myopic eyes after laser in situ keratomileusis].

    Science.gov (United States)

    Lin, Jijian; Xie, Xin; Du, Xinhua; Yang, Yabo; Yao, Ke

    2002-09-01

    To determine the incidence of vitreoretinal pathologic conditions in myopic eyes after laser in situ keratomileusis. Vitreoretinal pathologic conditions of 1981 consecutive eyes (995 patients) having undergone laser-assisted in situ keratomileusis for the correction of myopia were studied. Preoperative and postoperative basic examinations included visual acuity, manifest and cycloplegic refraction, slit-lamp microscope examination, applanation tonometry and a fundus examination after pupil dilatation by indirect ophthalmoscopy and biomicroscopy with spherical lens of + 90 diopters. Before laser in situ keratomileusis, preventive treatment was carried out for predisposing lesion of retinal detachment in 8 eyes: 6 eyes for lattice degeneration and 2 eyes for atrophic holes. Postoperative examinations were conducted at 1, 3 and 12 months and once a year thereafter. All eyes were followed up for >/= 12 months. Eyes were followed for a mean of (18.40 +/- 4.50) months (range 12 - 28) after the surgery. Sixteen eyes of 13 patients (0.81%) developed vitreoretinopathy after LASIK, including 6 eyes with lattice degeneration (0.30%) in which one of them had previous laser treatment, 2 with posterior vitreous detachment (0.10%), 2 with macular hemorrhage (0.10%), 4 with rhegmatogenous retinal detachment (0.20%), and 2 with retinal tear without retinal detachment (0.10%) in which one of them had previous laser treatment for lattice degeneration. Five patients were males (5 eyes involved). Others were females. Mean age of the group with vitreoretinal pathologic conditions was 31.80 +/- 5.85 years (range 22 to 43). The interval between refractive surgery and development of vitreoretinal complication was (10.38 +/- 6.20) months (range 1 to 24). The eyes that developed vitreoretinopathy had myopia -4.75 to -15.00 diopters (mean -9.45 +/- 2.61 D) before LASIK. The comparison of incidences of vitreoretinopathy after LASIK between the group of >/= -6.00 D and lattice degeneration and

  19. Free-Free Transitions in the Presence of Laser Fields and Debye Potential at Very Low Incident Electron Energies

    Science.gov (United States)

    Bhatia, Anand

    2012-01-01

    We study the free-free transition in electron-helium ion in the ground state and embedded in a Debye potential in the presence of an external laser field at very low incident electron energies. The laser field is treated classically while the collision dynamics is treated quantum mechanically. The laser field is chosen as monochromatic, linearly polarized and homogeneous. The incident electron is considered to be dressed by the laser field in a nonperturbative manner by choosing Volkov wave function for it. The scattering wave function for the incident electron on the target embedded in a Debye potential is solved numerically by taking into account the effect of electron exchange. We calculate the laser-assisted differential and total cross sections for free-free transition for absorption/emission of a single photon or no photon exchange. The results will be presented at the conference.

  20. Extremely intense laser-based electron acceleration in a plasma channel

    Science.gov (United States)

    Vranic, Marija; Fonseca, Ricardo A.; Silva, Luis O.

    2018-03-01

    Laser pulses of extreme intensities (I> {10}22 {{W}} {{cm}}-2) are about to become available in the laboratory. The prepulse of such a laser can induce a plasma expansion that generates a low-density channel in near-critical gas jets. We present a study of channel formation and subsequent direct laser acceleration of electrons within the pre-formed channel. Radiation reaction affects the acceleration in several ways. It first interferes with the motion of the return current on the channel walls. In addition, it reduces the radial expelling efficiency of the transverse ponderomotive force, leading to the radiative trapping of particles near the channel axis. These particles then interact with the peak laser intensity and can attain multi-GeV energies.

  1. Induction of subterahertz surface waves on a metal wire by intense laser interaction with a foil

    Science.gov (United States)

    Teramoto, Kensuke; Inoue, Shunsuke; Tokita, Shigeki; Yasuhara, Ryo; Nakamiya, Yoshihide; Nagashima, Takeshi; Mori, Kazuaki; Hashida, Masaki; Sakabe, Shuji

    2018-02-01

    We have demonstrated that a pulsed electromagnetic wave (Sommerfeld wave) of subterahertz frequency and 11-MV/m field strength can be induced on a metal wire by the interaction of an intense femtosecond laser pule with an adjacent metal foil at a laser intensity of 8.5 × 1018W /c m2 . The polarity of the electric field of this surface wave is opposite to that obtained by the direct interaction of the laser with the wire. Numerical simulations suggest that an electromagnetic wave associated with electron emission from the foil induces the surface wave. A tungsten wire is placed normal to an aluminum foil with a gap so that the wire is not irradiated and damaged by the laser pulse, thus making it possible to generate surface waves on the wire repeatedly.

  2. Measurements of magnetic fields generated in underdense plasmas by intense lasers

    International Nuclear Information System (INIS)

    Najmudin, Z.; Walton, B. R.; Mangles, S. P. D.; Dangor, A. E.; Krushelnick, K.; Fritzler, S.; Malka, V.; Faure, J.; Tatarakis, M.

    2006-01-01

    Measurements have been made of the magnetic field generated by the passage of high intensity short laser pulses through underdense plasmas. For a 30 fs, 1 J, 800 nm linearly-polarised laser pulse, an azimuthal magnetic field is observed at a radial extent of approximately 200 μm. The field is found to exceed 2.8 MG. For a 1 ps, 40 J, 1054 nm circularly-polarised laser pulse, a solenoidal field is observed that can exceed 7 MG. This solenoidal field is absent with linear polarised light, and hence can be considered as an Inverse Faraday effect. Both types of field are found to decay on the picosecond timescale. For both the azimuthal and solenoidal fields produced by such intense lasers, the production of energetic electrons by the interaction is thought to be vital for magnetic field generation

  3. HOT ELECTRON ENERGY DISTRIBUTIONS FROM ULTRA-INTENSE LASER SOLID INTERACTIONS

    Energy Technology Data Exchange (ETDEWEB)

    Chen, H; Wilks, S C; Kruer, W; Patel, P; Shepherd, R

    2008-10-08

    Measurements of electron energy distributions from ultra-intense (>10{sup 19} W/cm{sup 2}) laser-solid interactions using an electron spectrometer are presented. These measurements were performed on the Vulcan petawatt laser at Rutherford Appleton Laboratory and the Callisto laser at Lawrence Livermore National Laboratory. The effective hot electron temperatures (T{sub hot}) have been measured for laser intensities (I{lambda}{sup 2}) from 10{sup 18} W/cm{sup 2} {micro}m{sup 2} to 10{sup 21} W/cm{sup 2} {micro}m{sup 2} for the first time, and T{sub hot} is found to increase as (I{lambda}{sup 2}){sup 0.34} {+-} 0.4. This scaling agrees well with the empirical scaling published by Beg et al. (1997), and is explained by a simple physical model that gives good agreement with experimental results and particle-in-cell simulations.

  4. Radiation Dose Measurement for High-Intensity Laser Interactions with Solid Targets at SLAC

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Taiee [SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2015-09-25

    A systematic study of photon and neutron radiation doses generated in high-intensity laser-solid interactions is underway at SLAC National Accelerator Laboratory. We found that these laser-solid experiments are being performed using a 25 TW (up to 1 J in 40 fs) femtosecond pulsed Ti:sapphire laser at the Linac Coherent Light Source’s (LCLS) Matter in Extreme Conditions (MEC) facility. Additionally, radiation measurements were performed with passive and active detectors deployed at various locations inside and outside the target chamber. Results from radiation dose measurements for laser-solid experiments at SLAC MEC in 2014 with peak intensity between 1018 to 7.1x1019 W/cm2 are presented.

  5. Numerical studies of acceleration of thorium ions by a laser pulse of ultra-relativistic intensity

    Science.gov (United States)

    Domanski, Jaroslaw; Badziak, Jan

    2018-01-01

    One of the key scientific projects of ELI-Nuclear Physics is to study the production of extremely neutron-rich nuclides by a new reaction mechanism called fission-fusion using laser-accelerated thorium (232Th) ions. This research is of crucial importance for understanding the nature of the creation of heavy elements in the Universe; however, they require Th ion beams of very high beam fluencies and intensities which are inaccessible in conventional accelerators. This contribution is a first attempt to investigate the possibility of the generation of intense Th ion beams by a fs laser pulse of ultra-relativistic intensity. The investigation was performed with the use of fully electromagnetic relativistic particle-in-cell code. A sub-μm thorium target was irradiated by a circularly polarized 20-fs laser pulse of intensity up to 1023 W/cm2, predicted to be attainable at ELI-NP. At the laser intensity 1023 W/cm2 and an optimum target thickness, the maximum energies of Th ions approach 9.3 GeV, the ion beam intensity is > 1020 W/cm2 and the total ion fluence reaches values 1019 ions/cm2. The last two values are much higher than attainable in conventional accelerators and are fairly promising for the planned ELI-NP experiment.

  6. Incidence of and Risk Factors for Mastoiditis after Intensity Modulated Radiotherapy in Nasopharyngeal Carcinoma.

    Directory of Open Access Journals (Sweden)

    Ji-Jin Yao

    Full Text Available To report the incidence of and risk factors for mastoiditis after intensity-modulated radiotherapy (IMRT in nasopharyngeal carcinoma (NPC.Retrospective analysis of pretreatment and follow-up magnetic resonance imaging (MRI data for 451 patients with NPC treated with IMRT at a single institution. The diagnosis of mastoiditis was based on MRI; otomastoid opacification was rated as Grade 0 (none, 1 (mild, 2 (moderate or 3 (severe by radiologists blinded to clinical outcome. This study mainly focused on severe mastoiditis; patients were divided into three groups: the G0M (Grade 0 mastoiditis before treatment group, G1-2M (Grade 1 to 2 mastoiditis before treatment group and G3M (Grade 3 mastoiditis before treatment group. The software SAS9.3 program was used to analyze the data.For the entire cohort, the incidence of Grade 3 mastoiditis was 20% before treatment and 31%, 19% and 17% at 3, 12 and 24 months after radiotherapy, respectively. In the G0M group, the incidence of severe mastoiditis was 0% before treatment and 23%, 15% and 13% at 3, 12 and 24 months after radiotherapy, respectively. Multivariate analysis revealed T category (OR=0.68, 95% CI = 0.469 to 0.984, time (OR=0.668, 95% CI = 0.59 to 0.757 and chemotherapy (OR=0.598, 95% CI = 0.343 to 0.934 were independent factors associated with severe mastoiditis in the G0M group after treatment.Mastoiditis, as diagnosed by MRI, occurs as a progressive process that regresses and resolves over time in patients with NPC treated using IMRT.

  7. Magnetic field generation during intense laser channelling in underdense plasma

    Energy Technology Data Exchange (ETDEWEB)

    Smyth, A. G.; Sarri, G.; Doria, D.; Kar, S.; Borghesi, M. [School of Mathematics and Physics, The Queen' s University of Belfast, University Road, Belfast BT7 1NN (United Kingdom); Vranic, M.; Guillaume, E.; Silva, L. O.; Vieira, J. [GoLP/IPFN, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon (Portugal); Amano, Y.; Habara, H.; Tanaka, K. A. [Graduate School of Engineering Osaka University. Suita, Osaka 5650871 (Japan); Heathcote, R.; Norreys, P. A. [STFC Rutherford Appleton Laboratory, Didcot, Oxon OX1 0Qx (United Kingdom); Hicks, G.; Najmudin, Z.; Nakamura, H. [Blackett Laboratory, Imperial College London, Prince Consort Road, London SW7 2BZ (United Kingdom)

    2016-06-15

    Channel formation during the propagation of a high-energy (120 J) and long duration (30 ps) laser pulse through an underdense deuterium plasma has been spatially and temporally resolved via means of a proton imaging technique, with intrinsic resolutions of a few μm and a few ps, respectively. Conclusive proof is provided that strong azimuthally symmetric magnetic fields with a strength of around 0.5 MG are created inside the channel, consistent with the generation of a collimated beam of relativistic electrons. The inferred electron beam characteristics may have implications for the cone-free fast-ignition scheme of inertial confinement fusion.

  8. Generation and characterisation of warm dense matter with intense lasers

    Science.gov (United States)

    Riley, D.

    2018-01-01

    In this paper I discuss the subject of warm dense matter (WDM), which, apart from being of academic interest and relevant to inertial fusion capsules, is a subject of importance to those who wish to understand the formation and structure of planetary interiors and other astrophysical bodies. I broadly outline some key properties of WDM and go on to discuss various methods of generating samples in the laboratory using large laser facilities and outline some common techniques of diagnosis. It is not intended as a comprehensive review but rather a brief outline for scientists new to the field and those with an interest but not working in the field directly.

  9. Aluminium Lyman ŕ group formation at high-intensity, high-energy laser-matter interaction

    Czech Academy of Sciences Publication Activity Database

    Renner, Oldřich; Rosmej, F. B.; Krouský, Eduard; Sondhauss, P.; Kalachnikov, M. P.; Nickels, P. V.; Uschmann, I.; Förster, E.

    2001-01-01

    Roč. 71, - (2001), s. 623-634 ISSN 0022-4073 R&D Projects: GA MŠk LA 055 Grant - others:CZ-DE Bilateral Cooperation in Science(XC) CZE-00-008 Institutional research plan: CEZ:AV0Z1010921 Keywords : laser-produced plasma * x-ray spectra * absolute and relative intensities * autoionization Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.493, year: 2001

  10. DNA fragmentation and nuclear phenotype in tendons exposed to low-intensity infrared laser

    Science.gov (United States)

    de Paoli, Flavia; Ramos Cerqueira, Larissa; Martins Ramos, Mayara; Campos, Vera M.; Ferreira-Machado, Samara C.; Geller, Mauro; de Souza da Fonseca, Adenilson

    2015-03-01

    Clinical protocols are recommended in device guidelines outlined for treating many diseases on empirical basis. However, effects of low-intensity infrared lasers at fluences used in clinical protocols on DNA are controversial. Excitation of endogenous chromophores in tissues and free radicals generation could be described as a consequence of laser used. DNA lesions induced by free radicals cause changes in DNA structure, chromatin organization, ploidy degrees and cell death. In this work, we investigated whether low-intensity infrared laser therapy could alter the fibroblasts nuclei characteristics and induce DNA fragmentation. Tendons of Wistar rats were exposed to low-intensity infrared laser (830 nm), at different fluences (1, 5 and 10 J/cm2), in continuous wave (power output of 10mW, power density of 79.6 mW/cm2). Different frequencies were analyzed for the higher fluence (10 J/cm2), at pulsed emission mode (2.5, 250 and 2500 Hz), with the laser source at surface of skin. Geometric, densitometric and textural parameters obtained for Feulgen-stained nuclei by image analysis were used to define nuclear phenotypes. Significant differences were observed on the nuclear phenotype of tendons after exposure to laser, as well as, high cell death percentages was observed for all fluences and frequencies analyzed here, exception 1 J/cm2 fluence. Our results indicate that low-intensity infrared laser can alter geometric, densitometric and textural parameters in tendon fibroblasts nuclei. Laser can also induce DNA fragmentation, chromatin lost and consequently cell death, using fluences, frequencies and emission modes took out from clinical protocols.

  11. Free-Free Transitions of the e-H System Inside a Dense Plasma Irradiated by a Laser Field at Very Low Incident-Electron Energies

    Science.gov (United States)

    Bhatia, A. K.; Sinha, C.

    2012-01-01

    The free-free transition is studied for an electron-hydrogen atom in ground state when a low-energy electron (external) is injected into hydrogenic plasma in the presence of an external homogenous, monochromatic, and linearly polarized laser field. The effect of plasma screening is considered in the Debye-Huckel approximation. The calculations are performed in the soft photon limit. The incident electron is considered to be dressed by the laser field in a nonperturbative manner by choosing the Volkov solutions in both the initial and final channels. The space part of the scattering wave function for the electron is solved numerically by taking into account the electron exchange. The laser-assisted differential and total cross sections are calculated for single-photon absorption or emission and no-photon exchange in the soft photon limit, the laser intensity being much less than the atomic field intensity. The calculations have been carried out for various values of Debye parameter, ranging from 0.005 to 0.12. A strong suppression is noted in the laser-assisted cross sections as compared to the field-free situation. A significant difference is noted for the singlet and triplet cross sections. The suppression is much more in the triplet states.

  12. Therapeutic low-intensity red laser for herpes labialis on plasmid survival and bacterial transformation.

    Science.gov (United States)

    Sergio, Luiz Philippe da Silva; Marciano, Roberta da Silva; Teixeira, Gleica Rocha; Canuto, Keila da Silva; Polignano, Giovanni Augusto Castanheira; Guimarães, Oscar Roberto; Geller, Mauro; de Paoli, Flavia; da Fonseca, Adenilson de Souza

    2013-05-01

    A low-intensity laser is used in treating herpes labialis based on the biostimulative effect, albeit the photobiological basis is not well understood. In this work experimental models based on Escherichia coli cultures and plasmids were used to evaluate effects of low-intensity red laser on DNA at fluences for treatment of herpes labialis. To this end, survival and transformation efficiency of plasmids in E. coli AB1157 (wild type), BH20 (fpg/mutM(-)) and BW9091 (xthA(-)), content of the supercoiled form of plasmid DNA, as well as nucleic acids and protein content from bacterial cultures exposed to the laser, were evaluated. The data indicate low-intensity red laser: (i) alters the survival of plasmids in wild type, fpg/mutM(-) and xthA(-)E. coli cultures depending of growth phase, (ii) alters the content of the supercoiled form of plasmids in the wild type and fpg/mutM(-)E. coli cells, (iii) alters the content of nucleic acids and proteins in wild type E. coli cells, (iv) alters the transformation efficiency of plasmids in wild type and fpg/mutM(-)E. coli competent cells. These data could be used to understand positive effects of low-intensity lasers on herpes labialis treatment.

  13. Ion energy distributions from laser-generated plasmas at two different intensities

    Science.gov (United States)

    Ceccio, Giovanni; Torrisi, Lorenzo; Okamura, Masahiro; Kanesue, Takeshi; Ikeda, Shunsuke

    2018-01-01

    Laser-generated non-equilibrium plasmas were analyzed at Brookhaven National Laboratory (NY, USA) and MIFT Messina University (Italy). Two laser intensities of 1012 W/cm2 and 109 W/cm2, have been employed to irradiate Al and Al with Au coating targets in high vacuum conditions. Ion energy distributions were obtained using electrostatic analyzers coupled with ion collectors. Time of flight measurements were performed by changing the laser irradiation conditions. The study was carried out to provide optimum keV ions injection into post acceleration systems. Possible applications will be presented.

  14. Développement d’un laser XUV collisionnel à plasma OFI ultrabref et intense

    OpenAIRE

    Depresseux, Adrien

    2015-01-01

    Collisionally-pumped “OFI” plasma-based soft X-ray lasers are achieved by focusing an ultra-intense infrared laser pulse into a gas. The resulting laser-plasma interaction allows the generation of a plasma column in population inversion, made of multi-charged ions and energetic electrons. We are interested in the emission from the 3d94dJ=0 → 3d94pJ=1 atomic transition of krypton IX (Nickel-like) at 32.8 nm. When this plasma is seeded by an external high-harmonic source, the resulting emission...

  15. Interaction of intense laser pulses with neutral gases and preformed plasmas

    International Nuclear Information System (INIS)

    Mackinnon, A. J.; Borghesi, M.; Iwase, A.; Jones, M. W.; Willi, O.

    1998-01-01

    The interaction of a high intensity laser pulse with a neutral gas or preformed plasma has been studied over a wide range of target and laser conditions. It was found that the propagation of 2ps laser pulses (λ=1.054μm, P=5-10TW, I∼5x10 14 -1x10 14 -1x10 18 Wcm -2 ) in neutral gases with atomic densities greater than 0.001 of critical was strongly influenced by ionisation induced refraction. Preformed density channels were effective in overcoming refraction but the channel length was found to be limited by ionization induced defocusing of the prepulse

  16. A flexible, on-line magnetic spectrometer for ultra-intense laser produced fast electron measurement

    Science.gov (United States)

    Ge, Xulei; Yuan, Xiaohui; Yang, Su; Deng, Yanqing; Wei, Wenqing; Fang, Yuan; Gao, Jian; Liu, Feng; Chen, Min; Zhao, Li; Ma, Yanyun; Sheng, Zhengming; Zhang, Jie

    2018-04-01

    We have developed an on-line magnetic spectrometer to measure energy distributions of fast electrons generated from ultra-intense laser-solid interactions. The spectrometer consists of a sheet of plastic scintillator, a bundle of non-scintillating plastic fibers, and an sCMOS camera recording system. The design advantages include on-line capturing ability, versatility of detection arrangement, and resistance to harsh in-chamber environment. The validity of the instrument was tested experimentally. This spectrometer can be applied to the characterization of fast electron source for understanding fundamental laser-plasma interaction physics and to the optimization of high-repetition-rate laser-driven applications.

  17. Laser-driven proton sources and their applications: femtosecond intense laser plasma driven simultaneous proton and x-ray imaging

    Energy Technology Data Exchange (ETDEWEB)

    Nishiuchi, M; Daido, H; Yogo, A; Sagisaka, A; Ogura, K; Orimo, S; Mori, M; Ma, J; Pirozhkov, A S; Kiriyama, H; Kanazawa, S; Kondo, S; Yamamoto, Y; Shimoura, T; Tanoue, M; Nakai, Y; Akutsu, A; Nagashima, A; Bulanov, S V; Esirkepov, T Z [Advanced Photon Research Center, JAEA, Kizugawa-shi, Kyoto (Japan)], E-mail: nishiuchi.mamiko@jaea.go.jp (and others)

    2008-05-01

    We have performed simultaneous proton and X-ray imaging with an ultra-short and high-intensity Ti: Sap laser system. More than 10{sup 10} protons, whose maximum energy reaches 2.5 MeV, were delivered within a {approx}ps bunch. At the same time, keV X-ray is generated at almost the same place where protons are emitted. We have performed the simultaneous imaging of the copper mesh by using proton and x-ray beams, in practical use of the characteristics of the laser produced plasma that it can provide those beams simultaneously without any serious problems on synchronization.

  18. Time Integrated Soft X-ray Imaging in High Intensity Laser Experiments (thesis)

    Energy Technology Data Exchange (ETDEWEB)

    Stafford, David [Univ. of California, Davis, CA (United States)

    2009-01-01

    2009 marks a significant achievement and the dawn of a new era in high intensity laser research with the final commissioning of all 192 beams at the National Ignition Facility (NIF). NIF is a department of energy (DOE) funded project more than 10 years in the making located at the Lawrence Livermore National Laboratory (LLNL). The following research was done as one of many preliminary experiments done to prepare for these historic events. The primary focus of the experimental campaign this paper addresses is to test and develop a thermal x-radiation source using a short pulse laser. This data is hoped to provide information about the thermal transport mechanisms important in the development of prediction models in High Energy Density (HED) science. One of several diagnostics fielded was a soft x-ray imager (SXRI) which is detailed in this paper. The SXRI will be used to measure the relative size of the heated region and also the relative level of specific x-ray emissions among several shot and target configurations. The laser system used was the Titan laser located in the Jupiter Laser Facility (JLF) at Lawrence Livermore National Laboratory (LLNL). Titan uses the JLF Janus Nd:glass laser west frontend system with a Optical Parametric Chirped Pulse Amplification (OPCPA) in place of the nanosecond oscillator. The system is capable of producing laser intensities of over a petawatt with several tens of joules delivered in the beam.

  19. Electron Acceleration by Beating of Two Intense Cross-Focused Hollow Gaussian Laser Beams in Plasma

    Science.gov (United States)

    Mahmoud, Saleh T.; Gauniyal, Rakhi; Ahmad, Nafis; Rawat, Priyanka; Purohit, Gunjan

    2018-01-01

    This paper presents propagation of two cross-focused intense hollow Gaussian laser beams (HGBs) in collisionless plasma and its effect on the generation of electron plasma wave (EPW) and electron acceleration process, when relativistic and ponderomotive nonlinearities are simultaneously operative. Nonlinear differential equations have been set up for beamwidth of laser beams, power of generated EPW, and energy gain by electrons using WKB and paraxial approximations. Numerical simulations have been carried out to investigate the effect of typical laser-plasma parameters on the focusing of laser beams in plasmas and further its effect on power of excited EPW and acceleration of electrons. It is observed that focusing of two laser beams in plasma increases for higher order of hollow Gaussian beams, which significantly enhanced the power of generated EPW and energy gain. The amplitude of EPW and energy gain by electrons is found to enhance with an increase in the intensity of laser beams and plasma density. This study will be useful to plasma beat wave accelerator and in other applications requiring multiple laser beams. Supported by United Arab Emirates University for Financial under Grant No. UPAR (2014)-31S164

  20. Incidence of anaerobic bacteria in patients with suspected pneumonia in surgical Intensive Care Unit.

    Science.gov (United States)

    Clavier, T; Gouin, P; Frebourg, N; Rey, N; Royon, V; Bergis, A; Hobeika, S; Dureuil, B; Veber, B

    2014-10-01

    Few studies have investigated the incidence of pulmonary anaerobes in a specific population in surgical Intensive Care Unit (ICU). The objective of this work was to determine the incidence of anaerobes in surgical ICU patients with suspected pneumonia. This was a prospective observational, single-center study. Analysis was based on data collected over 30 months from the surgical ICU of a tertiary care hospital (Rouen University Hospital), including data on risk factors for anaerobes in the lungs. Patients with suspected pneumonia (community-acquired or nosocomial) were included. Bacteriological sampling was performed by protected distal bronchial sampling (PDBS) with minilavage under bronchoscopy. Aerobic and anaerobic cultures were performed for each sample. Clinicians were only aware of aerobic results. Univariate and multivariate statistical analysis compared groups with and without anaerobes. A total of 134 samples were obtained from 117 patients. Surgery was performed on 74 patients (63.2%), within 24 hours of admission. Fifty-four patients (46.2%) had a chest trauma and 20 patients (17.1%) were admitted for a digestive pathology. Average age was 53.6±20.9 years and sex ratio was 5.9 (100 men/17 women). Average SAPS II was 41.6±15.1, median length of ICU stay was 23 days (25th percentile=13, 75th percentile=33), and median duration of mechanical ventilation was 21 days (25th percentile=11, 75th percentile=28). Mortality rate in ICU was 14.5%. After sampling, diagnosis of pneumonia was confirmed in 70 cases (52.2%). Anaerobe cultures were positive in 11 samples taken from 11 different patients (overall incidence 8.2%). Aerobic bacteria were also involved in 9 patients (81.8%). In univariate analysis, enteral feeding (P=0.02) and absence of catecholamines at time of sampling (P=0.003) were significantly associated with the presence of anaerobes in PDBS. Enteral nutrition was also found to be a risk factor in multivariate analysis (OR=11.8, 95% CI [1.36 to 102

  1. Evaluation of the ocular protection for low intensity therapeutic lasers; Avaliacao da protecao ocular para lasers terapeuticos em baixa intensidade

    Energy Technology Data Exchange (ETDEWEB)

    Cordon, Rosely

    2003-07-01

    The low intensity laser therapy (LILT) has been extensively used in medicine and dentistry presenting positive effects. However, the laser radiation can also cause adverse effects. Due to the ocular focalization property, in the wavelength from 400 to 1400 nm, the retina is more susceptible to damage by radiation than any other part of the human body. Then, the ocular protection is frequently emphasized. This protection must attenuate the radiation to a safe level. The International Electrotechnical Commission (IEC) standard IEC 60825-1 suggests safety requirements for medical laser equipment, including the ocular protection, based on maximum permissible exposure levels. The Brazilian legislation adopts a corresponding IEC standard, the NBR IEC 601.2.22, for safety requirements. The aim of this study was to analyze the adequacy of the ocular protectors furnished by four laser equipment manufacturers, commercially available in Brazil, commonly used for LILT. For this purpose, the laser equipment and the respective ocular protectors were characterized. The adequacy was verified according to the IEC standards. It was found, among other results, ocular protectors attenuating to safe levels the radiation emitted by the respective laser equipment, however, presenting inadequate visual transmission. Inefficient protection and protection indicated in cases where they were not necessary were also observed. (author)

  2. Weakness acquired in the intensive care unit. Incidence, risk factors and their association with inspiratory weakness. Observational cohort study.

    Science.gov (United States)

    Ballve, Ladislao Pablo Diaz; Dargains, Nahuel; Inchaustegui, José García Urrutia; Bratos, Antonella; Percaz, Maria de Los Milagros; Ardariz, Cesar Bueno; Cagide, Sabrina; Balestrieri, Carolina; Gamarra, Claudio; Paz, Dario; Rotela, Eliana; Muller, Sebastian; Bustos, Fernando; Castro, Ricard Aranda; Settembrino, Esteban

    2017-01-01

    This paper sought to determine the accumulated incidence and analyze the risk factors associated with the development of weakness acquired in the intensive care unit and its relationship to inspiratory weakness. We conducted a prospective cohort study at a single center, multipurpose medical-surgical intensive care unit. We included adult patients who required mechanical ventilation ≥ 24 hours between July 2014 and January 2016. No interventions were performed. Demographic data, clinical diagnoses, the factors related to the development of intensive care unit -acquired weakness, and maximal inspiratory pressure were recorded. Of the 111 patients included, 66 developed intensive care unit -acquired weakness, with a cumulative incidence of 40.5% over 18 months. The group with intensive care unit-acquired weakness were older (55.9 ± 17.6 versus 45.8 ± 16.7), required more mechanical ventilation (7 [4 - 10] days versus 4 [2 - 7.3] days), and spent more time in the intensive care unit (15.5 [9.2 - 22.8] days versus 9 [6 - 14] days). More patients presented with delirium (68% versus 39%), hyperglycemia > 3 days (84% versus 59%), and positive balance > 3 days (73.3% versus 37%). All comparisons were significant at p 5 days as independent predictors of intensive care unit-acquired weakness. Low maximal inspiratory pressure was associated with intensive care unit-acquired weakness (p intensive care unit-acquired weakness. The intensive care unit acquired weakness is a condition with a high incidence in our environment. The development of intensive care unit-acquired weakness was associated with age, delirium, hyperglycemia, and mechanical ventilation > 5 days. The maximum inspiratory pressure value of ≥ 36cmH2O was associated with a high diagnostic value to exclude the presence of intensive care unit -acquired weakness.

  3. Coulomb explosion of H2 induced by a sub-10 fs intense laser pulse

    International Nuclear Information System (INIS)

    Saugout, S.

    2006-12-01

    This work presents an experimental and theoretical study of the interaction of H2 with an intense sub-10 fs-laser pulse. The ejection of the two electrons of the molecule by the laser pulse leads to the fragmentation of the physical sys em in two protons. This process is called Coulomb Explosion. The electronic and nuclear dynamics can be analyzed by measuring the kinetic energy spectra as a function of different laser parameters. This dynamics is also analyzed through a non-perturbative, double active electron theoretical model, based on the resolution of the time dependent Schroedinger equation. In this model, the internuclear distance is treated as a quantum variable. The experimental and theoretical results enlight the translation of the kinetic energy spectra towards a higher energy when the pulse duration decreases. Experimentally, laser pulses from 40 to 10 fs were used and down to 1 fs using theoretical simulations. This study shows that, for laser pulses shorter than 4 fs, the carrier envelope phase becomes a crucial parameter. Furthermore, the molecular dynamics of H2 in intense laser field is sensitive to the peak intensity of the pulse. The experimental and theoretical results show that, as the intensity increases, the kinetic energy spectra are centered around a higher energy. In addition, the presence of two double ionization regimes is theoretically demonstrated for a pulse duration of 4 fs. The H 2 molecule is also sensitive to the temporal shape of the laser pulse. This sensitivity allows for the detection of pre- or post-pulses by measuring the experimental kinetic energy spectra. Finally, the different double ionization processes are studied. The results show that the electron rescattering influences the femtosecond nuclear dynamics. (author)

  4. Side-pumped Nd:YVO4 cw laser with grazing-incidence small angle configuration

    International Nuclear Information System (INIS)

    Camargo, Fabiola de Almeida

    2006-01-01

    Within the existing variety of laser cavity geometries and gain materials there is one combination that is particularly interesting because of its reduced complexity and high efficiency: the edge-pumped slab-laser using grazing-incidence geometry and a gain media with a very high pump absorption cross-section. In this work we studied a diode side-pumped Nd:YVO 4 cw laser. We describe a single and a multiple bounce laser configurations. We demonstrate 22 W of multimode output power for 35 watts of pump power with a single pass through the gain media. A high optical-to-optical conversion efficiency of 63% and a slope efficiency of 74% with a very compact and simple Nd:YVO 4 cavity that uses joint stability zones was achieved. The beam quality was M 2 = 26 x 11 in the horizontal and vertical direction, respectively. With a double pass configuration we achieved 17 watts with a better beam quality of M 2 = 3,4 x 3,7, in the horizontal and vertical direction, respectively. (author)

  5. Interaction of xenon clusters with intense sub-cycle laser pulses

    Science.gov (United States)

    Venkat, Prachi; Holkundkar, Amol R.

    2016-12-01

    In this work, we have studied the interaction dynamics of the intense sub-cycle laser with the Xe2600 (Xenon) cluster by using a molecular dynamic code. The code is benchmarked against a couple of experimental works on Xe clusters. In the sub-cycle regime, the plane wave prescription of the laser pulse is not adequate, giving unrealistic field profiles, and hence in this study, we have relied on complex-source based sub-cycle pulsed beam model, which is an exact solution of Maxwell's equations. In order to see the effect of the sub-cycle pulses, the laser pulse duration is varied from 0.2 to 1 laser cycle while keeping the pulse energy conserved (by varying the peak amplitude with pulse duration). It has been observed that for the same laser energy the more energetic ions are obtained for sub-cycle pulses. Although the cluster explosion is symmetric, higher charge states are observed along the direction of laser polarization. The conversion efficiency of the energy absorbed per atom to average kinetic energy is found to be maximum for the shortest pulse duration of 0.2 laser cycle. The scaling law for maximum ion energy, total energy absorbed, and average kinetic energy of the ions with laser pulse duration is also deduced.

  6. Guiding of short, intense laser pulses through solid guides and preformed plasma channels

    International Nuclear Information System (INIS)

    Borghesi, M.; Mackinnon, A.J.; Gaillard, R.; Malka, G.; Vickers, C.; Willi, O.; Blanchot, N.; Miquel, J.L.; Canaud, B.; Davies, J.R.; Malka, G.; Offenberger, A.A.

    2000-01-01

    In a series of experiments carried out at the Rutherford Appleton Laboratory, Chilton (UK) and at the Commissariat a l'Energie Atomique, Limeil (France), various techniques of guiding ultra-intense laser pulses over distances exceeding the natural diffraction length were investigated. Efficient guiding was demonstrated both through density channels formed in an underdense plasma by an intense prepulse and through solid guides (hollow capillary tubes). Indication of collimated fast electron propagation though solid targets has also been obtained. (authors)

  7. Effect of Gastric Acid Suppressant Prophylaxis on Incidence of Gastrointestinal Bleeding in Pediatric Intensive Care Unit

    Directory of Open Access Journals (Sweden)

    Tahoora Abdollahi

    2016-11-01

    Full Text Available Background: Critically ill children admitted to pediatric intensive care unit (PICU are at increased risk of gastrointestinal bleeding due to stress related mucosal injury. Reducing gastric acid by acid suppressant medication is the accepted prophylaxis treatment, but there is not any definitive guideline for using prophylaxis in PICU patients. The present study aimed to assess the effect of Proton Pump Inhibitor (PPI and H2 Blocker (H2B prophylaxis on gastrointestinal bleeding in admitted patients of PICU, Mashhad- Iran.Materials and Methods: In this study, 100 patients admitted in PICU divided into two equal groups on the first day of admission. They received ranitidine or pantoprazole as prophylaxis of stress ulcer. Those patients who had history of gastrointestinal bleeding or coagulation disorder were excluded. 100 PICU patients who had not received prophylaxis during last 6 months retrospectively evaluated as control of the study. Data were collected as demographic characteristics, admission reason, definitive diagnosis, receiving corticosteroid and mechanical ventilation in each patient. Gastrointestinal bleeding (hematemesis, coffee ground aspirate, and melena and clinically significant gastrointestinal bleeding were daily monitored. Data analyzed through descriptive statistical tests, Chi-square, logistic regression, t-test and using SPSS-16 software.Results: Among 204 patients (control group=105 and case group=99, incidence of gastrointestinal bleeding (GB was 13.2% in which 6.9% of cases presented with clinically significant gastrointestinal bleeding (CSGB. Loss of consciousness and respiratory distress were the main reason of admission. There was no significant differences between the incidence of (GB and (CSGB in experimental and control groups (P>0.05 as well as ranitidine and pantoprazole prophylaxis (P>0.05. Significant risk factors of (GB were mechanical ventilation and loss of consciousness and corticosteroid therapy

  8. Incidence, characteristics, and survival following cardiopulmonary resuscitation in the quaternary neonatal intensive care unit.

    Science.gov (United States)

    Foglia, Elizabeth E; Langeveld, Robert; Heimall, Lauren; Deveney, Alyson; Ades, Anne; Jensen, Erik A; Nadkarni, Vinay M

    2017-01-01

    The contemporary characteristics and outcomes of cardiopulmonary resuscitation (CPR) in the neonatal intensive care unit (NICU) are poorly described. The objectives of this study were to determine the incidence, interventions, and outcomes of CPR in a quaternary referral NICU. Retrospective observational study of infants who received chest compressions for resuscitation in the Children's Hospital of Philadelphia NICU between April 1, 2011 and June 30, 2015. Patient, event, and survival characteristics were abstracted from the medical record and the hospital-wide resuscitation database. The primary outcome was survival to hospital discharge. Univariable and multivariable analyses were performed to identify patient and event factors associated with survival to discharge. There were 1.2 CPR events per 1000 patient days. CPR was performed in 113 of 5046 (2.2%) infants admitted to the NICU during the study period. The median duration of chest compressions was 2min (interquartile range 1, 6min). Adrenaline was administered in 34 (30%) CPR events. Of 113 infants with at least one CPR event, 69 (61%) survived to hospital discharge. Factors independently associated with decreased survival to hospital discharge were inotrope treatment prior to CPR (adjusted Odds Ratio [aOR] 0.14, 95% Confidence Interval [CI] 0.04, 0.54), and adrenaline administration during CPR (aOR 0.14, 95% CI 0.04, 0.50). Although it was not uncommon, the incidence of CPR was low (CPR and adrenaline administration during CPR were less likely to survive to hospital discharge. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  9. Incidence of acute kidney injury in the neonatal intensive care unit.

    Science.gov (United States)

    Youssef, Doaa; Abd-Elrahman, Hadeel; Shehab, Mohamed M; Abd-Elrheem, Mohamed

    2015-01-01

    The aim of this work is to study the incidence of acute kidney injury (AKI) in neonates admitted to the neonatal intensive care unit (NICU) over a six-month period from September 2011 to March 2012. This prospective study was performed on 250 neonates admitted to the NICU at the Children's Hospital, Faculty of Medicine, Zagazig University. All neonates were subjected to detailed history taking, including pre-natal, natal and post-natal history, with stress on symptoms suggestive of AKI. All neonates were examined thoroughly and the following investigations were performed: Blood urea nitrogen (BUN), serum creatinine, sodium, potassium, calcium, complete blood count, C-reactive protein, arterial blood gases, urine sodium and urine creatinine. AKI was diagnosed in 27 cases (10.8%), including 12 females and 15 males. 40.7% of the AKI cases were born after full-term pregnancy while 59.3% were pre-term babies. 29.6% of the AKI cases had oliguria, and there was male sex predominance, with a male-female ratio of 1.3:1. The cause of AKI was pre-renal in 96.3% and intrinsic renal in 3.7% of the cases. The predisposing factors for AKI were sepsis in 63% of the cases, respiratory distress syndrome in 55.6%, mechanical ventilation in 51.9%, peri-natal asphyxia in 18.5%, dehydration in 14.8%, surgical operation in 11.1%, congenital heart disease in 7.4%, sub-galeal hematoma in 3.7%, polycythemia in 3.7% and intra-ventricular hemorrhage in 3.7% of the cases. Our data suggest that pre-renal failure was the most common form of AKI in our patients. Early recognition of risk factors such as sepsis, peri-natal asphyxia or peri-operative problems and rapid effective treatment of contributing conditions will reduce the incidence of AKI in the neonatal period.

  10. Automatic Detection of Vehicles Using Intensity Laser and Anaglyph Image

    Directory of Open Access Journals (Sweden)

    Hideo Araki

    2006-12-01

    Full Text Available In this work is presented a methodology to automatic car detection motion presents in digital aerial image on urban area using intensity, anaglyph and subtracting images. The anaglyph image is used to identify the motion cars on the expose take, because the cars provide red color due the not homology between objects. An implicit model was developed to provide a digital pixel value that has the specific propriety presented early, using the ratio between the RGB color of car object in the anaglyph image. The intensity image is used to decrease the false positive and to do the processing to work into roads and streets. The subtracting image is applied to decrease the false positives obtained due the markings road. The goal of this paper is automatically detect motion cars presents in digital aerial image in urban areas. The algorithm implemented applies normalization on the left and right images and later form the anaglyph with using the translation. The results show the applicability of proposed method and it potentiality on the automatic car detection and presented the performance of proposed methodology.

  11. Molecular electron recollision dynamics in intense circularly polarized laser pulses

    Science.gov (United States)

    Bandrauk, André D.; Yuan, Kai-Jun

    2018-04-01

    Extreme UV and x-ray table top light sources based on high-order harmonic generation (HHG) are focused now on circular polarization for the generation of circularly polarized attosecond pulses as new tools for controlling electron dynamics, such as charge transfer and migration and the generation of attosecond quantum electron currents for ultrafast magneto-optics. A fundamental electron dynamical process in HHG is laser induced electron recollision with the parent ion, well established theoretically and experimentally for linear polarization. We discuss molecular electron recollision dynamics in circular polarization by theoretical analysis and numerical simulation. The control of the polarization of HHG with circularly polarized ionizing pulses is examined and it is shown that bichromatic circularly polarized pulses enhance recollision dynamics, rendering HHG more efficient, especially in molecules because of their nonspherical symmetry. The polarization of the harmonics is found to be dependent on the compatibility of the rotational symmetry of the net electric field created by combinations of bichromatic circularly polarized pulses with the dynamical symmetry of molecules. We show how the field and molecule symmetry influences the electron recollision trajectories by a time-frequency analysis of harmonics. The results, in principle, offer new unique controllable tools in the study of attosecond molecular electron dynamics.

  12. Low intensity infrared laser affects expression of oxidative DNA repair genes in mitochondria and nucleus

    Science.gov (United States)

    Fonseca, A. S.; Magalhães, L. A. G.; Mencalha, A. L.; Geller, M.; Paoli, F.

    2014-11-01

    Practical properties and physical characteristics of low intensity lasers have made possible their application to treat soft tissue diseases. Excitation of intracellular chromophores by red and infrared radiation at low energy fluences with increase of mitochondrial metabolism is the basis of the biostimulation effect but free radicals can be produced. DNA lesions induced by free radicals are repaired by the base excision repair pathway. In this work, we evaluate the expression of POLγ and APEX2 genes related to repair of mitochondrial and nuclear DNA, respectively. Skin and muscle tissue of Wistar rats were exposed to low intensity infrared laser at different fluences. One hour and 24 hours after laser exposure, tissue samples were withdrawn for total RNA extraction, cDNA synthesis, and evaluation of POLγ and APEX2 mRNA expression by real time quantitative polymerase chain reaction. Skin and muscle tissue of Wistar rats exposed to laser radiation show different expression of POLγ and APEX2 mRNA depending of the fluence and time after exposure. Our study suggests that a low intensity infrared laser affects expression of genes involved in repair of oxidative lesions in mitochondrial and nuclear DNA.

  13. Atomic motion in a high-intensity standing wave laser field

    International Nuclear Information System (INIS)

    Saez Ramdohr, L.F.

    1987-01-01

    This work discusses the effect of a high-intensity standing wave laser field on the motion of neutral atoms moving with a relatively high velocity. The analysis involves a detailed calculation of the force acting on the atoms and the calculation of the diffusion tensor associated with the fluctuations of the quantum force operator. The high-intensity laser field limit corresponds to a Rabi frequency much greater than the natural rate of the atom. The general results are valid for any atomic velocity. Results are then specialized to the case of slow and fast atoms where the Doppler shift of the laser frequency due to the atomic motion is either smaller or larger than the natural decay rate of the atom. The results obtained for the force and diffusion tensor are applied to a particular ideal experiment that studies the evolution of a fast atomic beam crossing a high-intensity laser beam. The theories developed previously, for a similar laser configuration, discuss only the low atomic velocities case and not the more realistic case of fast atoms. Here, an approximate solution of the equation for the distribution is obtained. Starting from the approximate distribution function, the deflection angle and dispersion angle for the atomic beam with respect to the free motion are calculated

  14. Characterization of a proton beam driven by a high-intensity laser

    International Nuclear Information System (INIS)

    Sagisaka, Akito; Daido, Hiroyuki; Ogura, Koichi; Orimo, Satoshi; Hayashi, Yukio; Mori, Michiaki; Nishiuchi, Mamiko; Yogo, Akifumi; Kado, Masataka; Fukumi, Atsushi; Li, Zhong; Pirozhkov, Alexander S.; Nakamura, Shu

    2007-01-01

    High-energy protons are observed with a 3 μm thick tantalum target irradiated with a high intensity laser. The maximum proton energy is ∼900 keV. The half angle of the generated proton beam (>500 keV) is about 10deg. Characterization of the proton beam will significantly contribute to the proton applications. (author)

  15. Proton acceleration in two-species targets irradiated by an ultra-intense femtosecond laser pulse

    Science.gov (United States)

    Domański, J.; Badziak, J.; Jabłoński, S.

    2018-01-01

    This paper presents results of two-dimensional particle-in-cell simulations of proton acceleration at the interactions of a 130 fs, linearly polarized laser pulse of intensity from the range 1021 –1023 W/cm2, predicted for the ELI (Extreme Light Infrastructure) lasers, with thin hydrocarbon (CH) or hydride (ErH3) targets. It is shown that for the targets of the areal density σ > 0.1 mg/cm2 and laser intensities below 1022 W/cm2 a higher efficiency of proton acceleration is achieved for hydride targets. However for the highest, ultra-relativistic laser intensities (~ 1023 W/cm2) considerably higher proton energies and proton beam intensities are achieved for thin (σ ≤ 0.1 mg/cm2) CH targets. In this case, at short distances from the irradiated CH target ( 1021 W/cm2 and > 1012 A/cm2, respectively, which are much higher than those attainable in conventional accelerators. Such proton beams can open the door for new areas of research in nuclear physics and high energy-density physics as well as can be useful for materials research.

  16. Study of 2ω and 3/2ω harmonics in ultrashort high-intensity laser ...

    Indian Academy of Sciences (India)

    The 3/2ω emission depends on the plasma density scale length. The growth rate of the two-plasmon decay instability in an inhomogeneous plasma increases with plasma scale length at the quarter critical density. It appears that the foot of the laser pulse, tens of ps before the peak of the pulse, has enough intensity to create.

  17. High-intensity laser therapy during chronic degenerative tenosynovitis experimentally induced in broiler chickens

    Science.gov (United States)

    Fortuna, Damiano; Rossi, Giacomo; Bilotta, Teresa W.; Zati, Allesandro; Gazzotti, Valeria; Venturini, Antonio; Pinna, Stefania; Serra, Christian; Masotti, Leonardo

    2002-10-01

    The aims of this study was the safety and the efficacy of High Intensity Laser Therapy (HILT) on chronic degenerative tenosynovitis. We have effectuated the histological evaluation and seroassay (C reactive protein) on 18 chickens affect by chronic degenerative tenosynovitis experimentally induced. We have been employed a Nd:YAG laser pulsed wave; all irradiated subjects received the same total energy (270 Joule) with a fluence of 7,7 J/cm2 and intensity of 10,7 W/cm2. The histological findings revealed a distinct reduction of the mineralization of the choral matrix, the anti-inflammatory effect of the laser, the hyperplasia of the synoviocytes and ectasia of the lymphatic vessels.

  18. Isochoric heating of reduced mass targets by ultra-intense laser produced relativistic electrons

    Energy Technology Data Exchange (ETDEWEB)

    Neumayer, P; Lee, H J; Offerman, D; Shipton, E; Kemp, A; Kritcher, A L; Doppner, T; Back, C A; Glenzer, S H

    2009-02-04

    We present measurements of the chlorine K-alpha emission from reduced mass targets, irradiated with ultra-high intensity laser pulses. Chlorinated plastic targets with diameters down to 50 micrometers and mass of a few 10{sup -8} g were irradiated with up to 7 J of laser energy focused to intensities of several 10{sup 19} W/cm{sup 2}. The conversion of laser energy to K-alpha radiation is measured, as well as high resolution spectra that allow observation of line shifts, indicating isochoric heating of the target up to 18 eV. A zero-dimensional 2-temperature equilibration model, combined with electron impact K-shell ionization and post processed spectra from collisional radiative calculations reproduces the observed K-alpha yields and line shifts, and shows the importance of target expansion due to the hot electron pressure.

  19. Alignment-dependent ionization of molecular hydrogen in intense laser fields

    International Nuclear Information System (INIS)

    Vanne, Yulian V.; Saenz, Alejandro

    2010-01-01

    The alignment dependence of the ionization behavior of H 2 exposed to intense ultrashort laser pulses is investigated on the basis of solutions of the full time-dependent Schroedinger equation within the fixed-nuclei and dipole approximation. The total ionization yields as well as the energy-resolved electron spectra have been calculated for a parallel and a perpendicular orientation of the molecular axis with respect to the polarization axis of linear polarized laser pulses. For most, but not all considered laser peak intensities, the parallel aligned molecules are easier to ionize. Furthermore, it is shown that the velocity formulation of the strong-field approximation predicts a simple interference pattern for the ratio of the energy-resolved electron spectra obtained for the two orientations, but this is not confirmed by the full ab initio results.

  20. Higher order mode laser beam intensity fluctuations in strong oceanic turbulence

    Science.gov (United States)

    Baykal, Yahya

    2017-05-01

    Intensity fluctuations of the higher order mode laser beams are evaluated when these beams propagate in a medium exhibiting strong oceanic turbulence. Our formulation involves the modified Rytov solution that extends the Rytov solution to cover strong turbulence as well, and our recently reported expression that relates the atmospheric turbulence structure constant to the oceanic turbulence parameters and oceanic wireless optical communication link parameters. The variations of the intensity fluctuations are reported against the changes of the ratio of temperature to salinity contributions to the refractive index spectrum, rate of dissipation of kinetic energy per unit mass of fluid, rate of dissipation of mean-squared temperature, viscosity and the source size of the higher order mode laser beam. Our results indicate that under any oceanic turbulence parameters, it is advantageous to employ higher order laser modes in reducing the scintillation noise in wireless optical communication links operating in a strongly turbulent ocean.

  1. Ultra-intense, short pulse laser-plasma interactions with applications to the fast ignitor

    International Nuclear Information System (INIS)

    Wilks, S.C.; Kruer, W.L.; Young, P.E.; Hammer, J.; Tabak, M.

    1995-04-01

    Due to the advent of chirped pulse amplification (CPA) as an efficient means of creating ultra-high intensity laser light (I > 5x10 17 W/cm 2 ) in pulses less than a few picoseconds, new ideas for achieving ignition and gain in DT targets with less than 1 megajoule of input energy are currently being pursued. Two types of powerful lasers are employed in this scheme: (1) channeling beams and (2) ignition beams. The current state of laser-plasma interactions relating to this fusion scheme will be discussed. In particular, plasma physics issues in the ultra-intense regime are crucial to the success of this scheme. We compare simulation and experimental results in this highly nonlinear regime

  2. Directional enhancement of selected high-order-harmonics from intense laser irradiated blazed grating targets.

    Science.gov (United States)

    Zhang, Guobo; Chen, Min; Liu, Feng; Yuan, Xiaohui; Weng, Suming; Zheng, Jun; Ma, Yanyun; Shao, Fuqiu; Sheng, Zhengming; Zhang, Jie

    2017-10-02

    Relativistically intense laser solid target interaction has been proved to be a promising way to generate high-order harmonics, which can be used to diagnose ultrafast phenomena. However, their emission direction and spectra still lack tunability. Based upon two-dimensional particle-in-cell simulations, we show that directional enhancement of selected high-order-harmonics can be realized using blazed grating targets. Such targets can select harmonics with frequencies being integer times of the grating frequency. Meanwhile, the radiation intensity and emission area of the harmonics are increased. The emission direction is controlled by tailoring the local blazed structure. Theoretical and electron dynamics analysis for harmonics generation, selection and directional enhancement from the interaction between multi-cycle laser and grating target are carried out. These studies will benefit the generation and application of laser plasma-based high order harmonics.

  3. Incidence and aetiology of renal phosphate loss in patients with hypophosphatemia in the intensive care unit.

    Science.gov (United States)

    Bech, Anneke; Blans, Michiel; Telting, Darryl; de Boer, Hans

    2013-10-01

    Hypophosphatemia is a common finding in patients in the intensive care unit (ICU). Its cause is often poorly understood. The aim of this study was to understand the incidence of renal phosphate loss in ICU-related hypophosphatemia, and to examine the role of phosphaturic hormones in its etiology. Plasma phosphate levels were measured on day 1, 3, 5 and 7 in 290 consecutive patients admitted to the ICU. Renal phosphate handling and phosphaturic hormones were studied in a subset of patients with phosphate levels Renal phosphate loss was defined as a TmP/gfr patients. This mainly occurred within the first 3 days of stay and in patients with serum creatinine levels Renal phosphate loss was present in 80% of patients who developed hypophosphatemia, and was not related to serum levels of parathyroid hormone (PTH), PTH-related protein (PTH-rp), fibroblast growth factor 23 (FGF-23), or calcitonin. Hypophosphatemia in the ICU is commonly associated with renal phosphate loss. It mainly occurs within the first 3 days of admission, in particular in patients with preserved renal function. Renal phosphate loss is not explained by elevated PTH, PTH-rp, FGF-23 or calcitonin levels.

  4. Intense laser driven collision-less shock and ion acceleration in magnetized plasmas

    Science.gov (United States)

    Mima, K.; Jia, Q.; Cai, H. B.; Taguchi, T.; Nagatomo, H.; Sanz, J. R.; Honrubia, J.

    2016-05-01

    The generation of strong magnetic field with a laser driven coil has been demonstrated by many experiments. It is applicable to the magnetized fast ignition (MFI), the collision-less shock in the astrophysics and the ion shock acceleration. In this paper, the longitudinal magnetic field effect on the shock wave driven by the radiation pressure of an intense short pulse laser is investigated by theory and simulations. The transition of a laminar shock (electro static shock) to the turbulent shock (electromagnetic shock) occurs, when the external magnetic field is applied in near relativistic cut-off density plasmas. This transition leads to the enhancement of conversion of the laser energy into high energy ions. The enhancement of the conversion efficiency is important for the ion driven fast ignition and the laser driven neutron source. It is found that the total number of ions reflected by the shock increases by six time when the magnetic field is applied.

  5. Electrons trajectories around a bubble regime in intense laser plasma interaction

    International Nuclear Information System (INIS)

    Lu, Ding; Xie, Bai-Song; Ali Bake, Muhammad; Sang, Hai-Bo; Zhao, Xue-Yan; Wu, Hai-Cheng

    2013-01-01

    Some typical electrons trajectories around a bubble regime in intense laser plasma interaction are investigated theoretically. By considering a modification of the fields and ellipsoid bubble shape due to the presence of residual electrons in the bubble regime, we study in detail the electrons nonlinear dynamics with or without laser pulse. To examine the electron dynamical behaviors, a set of typical electrons, which locate initially at the front of the bubble, on the transverse edge and at the bottom of the bubble respectively, are chosen for study. It is found that the range of trapped electrons in the case with laser pulse is a little narrower than that without laser pulse. The partial phase portraits for electrons around the bubble are presented numerically and their characteristic behaviors are discussed theoretically. Implication of our results on the high quality electron beam generation is also discussed briefly

  6. Channeling of multikilojoule high-intensity laser beams in an inhomogeneous plasma

    Science.gov (United States)

    Ivancic, S.; Haberberger, D.; Habara, H.; Iwawaki, T.; Anderson, K. S.; Craxton, R. S.; Froula, D. H.; Meyerhofer, D. D.; Stoeckl, C.; Tanaka, K. A.; Theobald, W.

    2015-05-01

    Channeling experiments were performed that demonstrate the transport of high-intensity (>10 18W /cm2), multikilojoule laser light through a millimeter-sized, inhomogeneous (˜300 -μ m density scale length) laser-produced plasma up to overcritical density, which is an important step forward for the fast-ignition concept. The background plasma density and the density depression inside the channel were characterized with a novel optical probe system. The channel progression velocity was measured, which agrees well with theoretical predictions based on large scale particle-in-cell simulations, confirming scaling laws for the required channeling laser energy and laser pulse duration, which are important parameters for future integrated fast-ignition channeling experiments.

  7. Theoretical Modeling of Intensity Noise in InGaN Semiconductor Lasers

    Science.gov (United States)

    2014-01-01

    This paper introduces modeling and simulation of the noise properties of the blue-violet InGaN laser diodes. The noise is described in terms of the spectral properties of the relative intensity noise (RIN). We examine the validity of the present noise modeling by comparing the simulated results with the experimental measurements available in literature. We also compare the obtained noise results with those of AlGaAs lasers. Also, we examine the influence of gain suppression on the quantum RIN. In addition, we examine the changes in the RIN level when describing the gain suppression by the case of inhomogeneous spectral broadening. The results show that RIN of the InGaN laser is nearly 9 dB higher than that of the AlGaAs laser. PMID:25147848

  8. Theoretical Modeling of Intensity Noise in InGaN Semiconductor Lasers

    Directory of Open Access Journals (Sweden)

    Moustafa Ahmed

    2014-01-01

    Full Text Available This paper introduces modeling and simulation of the noise properties of the blue-violet InGaN laser diodes. The noise is described in terms of the spectral properties of the relative intensity noise (RIN. We examine the validity of the present noise modeling by comparing the simulated results with the experimental measurements available in literature. We also compare the obtained noise results with those of AlGaAs lasers. Also, we examine the influence of gain suppression on the quantum RIN. In addition, we examine the changes in the RIN level when describing the gain suppression by the case of inhomogeneous spectral broadening. The results show that RIN of the InGaN laser is nearly 9 dB higher than that of the AlGaAs laser.

  9. Correction of spectral and temporal phases for ultra-intense lasers; Correction des phases spectrale et temporelle pour les lasers ultra-intenses

    Energy Technology Data Exchange (ETDEWEB)

    Salmon, E

    2000-12-15

    The discovery of new regimes of interaction between laser and matter requires to produce laser pulses presenting higher luminous flux density. The only solutions that allow us to reach important power (about ten peta-watts) imply the correction of non-linear effects before compressing the laser pulse so that we do not transfer the phase modulation to the amplitude modulation. The aim of this work is the correction of the spectral phase through the modulation of the temporal phase. The first chapter is dedicated to the review of the physical phenomena involved in the interaction of ultra-intense laser pulse with matter. The peta-watt laser operating on the LIL (integrated laser line), the prototype line of the Megajoule Laser, is described in the second chapter. The third chapter presents the method used and optimized for getting an absolute measurement of the spectral phase in our experimental configuration. The fourth chapter details the analogy existing between the spatial domain and the temporal domain particularly between diffraction and dispersion. This analogy has allowed us to benefit from the knowledge cumulated in the spatial domain, particularly the treatment of the aberrations and their impact on the focal spot and to use it in the temporal domain. The principle of the phase correction is exposed in the fifth chapter. We have formalized the correspondence of the phase modulation between temporal domain and the spectral domain for strongly stretched pulses. In this way a modulation of the temporal phase is turned into a modulation of the spectral phase. All the measurements concerning phases and modulation spectral phase correction are presented in the sixth chapter. In the last chapter we propose an extension of the temporal phase correction by correcting non-linear effects directly in the temporal phase. This correction will improve the performances of the peta-watt laser. Numerical simulations show that the temporal phase correction can lead to a

  10. Carrier-envelope phase-dependent ionization of Xe in intense, ultrafast (two-cycle) laser fields

    Science.gov (United States)

    Vasa, Parinda; Dharmadhikari, Aditya K.; Mathur, Deepak

    2018-01-01

    We report an experimental study that shows the dependence of the tunnel ionization of Xe by two-cycle, intense, near infrared light on the carrier-envelope-phase (CEP) of incident laser pulses. At low values of the optical field (E), the ionization yield is found to be maximum for cos-like pulses; the CEP dependence of the ion yield becomes stronger for higher charge states. At higher E-values, the CEP dependence either washes out or flips. A simple phenomenological model is used to confirm that our results fall within the ambit of the current understanding of ionization dynamics in strong, ultrashort optical fields. In the observed tunnel ionization of Xe, CEP effects appear to persist for longer, eight-cycle, pulses. Electron rescattering is observed to play a relatively unimportant role in the observed CEP dependence. These results provide fresh perspectives in the ionization mechanisms of multielectron systems in the few-cycle regime.

  11. Experimental study of proton acceleration with ultra-high intensity, high contrast laser beam

    International Nuclear Information System (INIS)

    Flacco, A.

    2008-07-01

    This thesis reports experimental work in the domain of laser-matter interaction to study the production of energetic proton beams. The ion beams accelerated by laser have been increasing in quality, in energy and in repeatability as laser technology keeps improving. The presence of the pedestal before the high peak laser pulse introduces many unknowns in the accelerating conditions that are created on the front and on the rear surface of the target. The first part of the experimental activities is focused to a better comprehension and the experimental validation of the interaction of a 'pedestal-like', moderate intensity, laser pulse on Aluminum targets. The developed interferometric technique proved to be reliable and produced a complete set of maps of the early stages of the plasma expansion. The reflectometry experiment stresses the importance of the quality of the metallic targets and underlines some obscure points on the behaviour of the rear surface of the illuminated foil. For instance the reflectometry measurements on the thicker targets are significantly different from what is foreseen by the simulations about the timescale of the shock break out. In the second part, the XPW laser pulse is used in ion acceleration from thin metal foils. The laser and target parameters are varied to put in evidence the dependence of the ion beam to the experimental condition. In conclusion I can say that first, during the variation of the target thickness, an optimum is put in evidence. Secondly, the correlation between the laser pulse duration and the proton cutoff energy is qualitatively different between thicker (15 μm) and thinner (1.5 μm, 3 μm) targets. For the first, an optimal pulse duration exists while for the seconds, no variation is found - in the searched space - from the monotonic decreasing of the cutoff energy with the peak intensity. The experimental results put however in evidence some points that are not completely understood. (A.C.)

  12. Comparison of the effect of diode laser versus intense pulsed light in axillary hair removal.

    Science.gov (United States)

    Ormiga, Patricia; Ishida, Cleide Eiko; Boechat, Alvaro; Ramos-E-Silva, Marcia

    2014-10-01

    Devices such as diode laser and intense pulsed light (IPL) are in constant development aiming at permanent hair removal, but there are few comparative studies between these technologies. The objective was to comparatively assess axillary hair removal performed by diode laser and IPL and to obtain parameters of referred pain and evolution response for each method. A comparative prospective, double-blind, and randomized study of axillary hair removal performed by the diode laser and IPL was conducted in 21 females. Six sessions were held with application of the diode laser in one axilla and the IPL in the other, with intervals of 30 days and follow-up of 6 months after the last session. Clinical photographs and digital dermoscopy for hair counts in predefined and fixed fields of the treated areas were performed before, 2 weeks after the sixth session, and 6 months after the end of treatment. A questionnaire to assess the pain was applied. The number of hair shafts was significantly reduced with the diode laser and IPL. The diode laser was more effective, although more painful than the IPL. No serious, adverse, or permanent effects were observed with both technologies. Both diode laser and the IPL are effective, safe, and able to produce lasting results in axillary hair removal.

  13. Role of Density Profiles for the Nonlinear Propagation of Intense Laser Beam through Plasma Channel

    Directory of Open Access Journals (Sweden)

    Sonu Sen

    2014-01-01

    Full Text Available In this work role of density profiles for the nonlinear propagation of intense laser beam through plasma channel is analyzed. By employing the expression for the dielectric function of different density profile plasma, a differential equation for beamwidth parameter is derived under WKB and paraxial approximation. The laser induces modifications of the dielectric function through nonlinearities. It is found that density profiles play vital role in laser-plasma interaction studies. To have numerical appreciation of the results the propagation equation for plasma is solved using the fourth order Runge-Kutta method for the initial plane wave front of the beam, using boundary conditions. The spot size of the laser beam decreases as the beam penetrates into the plasma and significantly adds self-focusing in plasma. This causes the laser beam to become more focused by reduction of diffraction effect, which is an important phenomenon in inertial confinement fusion and also for the understanding of self-focusing of laser pulses. Numerical computations are presented and discussed in the form of graphs for typical parameters of laser-plasma interaction.

  14. Pragmatic development of a laser ion source for intense highly-charged ion beam

    International Nuclear Information System (INIS)

    Shibuya, Shinji; Takeuchi, Takeshi; Maruyama, Toshiyuki; Mochizuki, Tetsuro; Nakagawa, Jun

    2010-01-01

    Recently, applications of high-charge-state (including fully stripped) heavy-ion beams have been attracting interest in both physics and industry. To enhance their usefulness, more intense beams are required. Cancer therapy using carbon ions is a particularly promising heavy-ion beam application. Due to advances in laser technology, the laser ion source (LIS) has become one of the most popular sources for generating highly charged and intense heavy-ion beams. The project to develop a high-intensity LIS was started on June 2009. In our project, whose ultimate goal is to apply a heavy-ion accelerator for cancer therapy, we have almost completed designing the LIS, and manufacturing will commence soon. We intend to measure the source performance by performing plasma and beam tests up until the end of March 2011. We will report the outline and a progress of the project. (author)

  15. Exploring Ultrahigh-Intensity Laser-Plasma Interaction Physics with QED Particle-in-Cell Simulations

    Science.gov (United States)

    Luedtke, S. V.; Yin, L.; Labun, L. A.; Albright, B. J.; Stark, D. J.; Bird, R. F.; Nystrom, W. D.; Hegelich, B. M.

    2017-10-01

    Next generation high-intensity lasers are reaching intensity regimes where new physics-quantum electrodynamics (QED) corrections to otherwise classical plasma dynamics-becomes important. Modeling laser-plasma interactions in these extreme settings presents a challenge to traditional particle-in-cell (PIC) codes, which either do not have radiation reaction or include only classical radiation reaction. We discuss a semi-classical approach to adding quantum radiation reaction and photon production to the PIC code VPIC. We explore these intensity regimes with VPIC, compare with results from the PIC code PSC, and report on ongoing work to expand the capability of VPIC in these regimes. This work was supported by the U.S. DOE, Los Alamos National Laboratory Science program, LDRD program, NNSA (DE-NA0002008), and AFOSR (FA9550-14-1-0045). HPC resources provided by TACC, XSEDE, and LANL Institutional Computing.

  16. Ensemble of ultra-high intensity attosecond pulses from laser-plasma interaction

    International Nuclear Information System (INIS)

    Bulanov, S.S.; Maksimchuk, A.; Krushelnick, K.; Popov, K.I.; Bychenkov, V.Yu.; Rozmus, W.

    2010-01-01

    The efficient generation of intense X-rays and γ-radiation is studied. The scheme is based on the relativistic mirror concept, i.e., a flying thin plasma slab interacts with a counterpropagating laser pulse, reflecting part of it in the form of an intense ultra-short electromagnetic pulse having an up-shifted frequency. In the proposed scheme a series of relativistic mirrors is generated in the interaction of the intense laser with a thin foil target as the pulse tears off and accelerates thin electron layers. A counterpropagating pulse is reflected by these flying layers in the form of an ensemble of ultra-short pulses resulting in a significant energy gain of the reflected radiation due to the momentum transfer from flying layers.

  17. Risk factors for the incidence of delirium in cerebrovascular patients in a Neurosurgery Intensive Care Unit: A prospective study.

    Science.gov (United States)

    Wang, Jun; Ji, Yuanyuan; Wang, Ning; Chen, Wenjin; Bao, Yuehong; Qin, Qinpu; Xiao, Qian; Li, Shulan

    2018-01-01

    To explore the incidence of delirium in cerebrovascular patients admitted in our Neurosurgery Intensive Care Unit and analyse the risk factors leading to delirium. Delirium is one of the most common mental disorders in general hospitals, but the incidence of different kinds of diseases and studies varies. Cerebrovascular patients in our Neurosurgery Intensive Care Unit are high-risk groups for delirium; identifying risk factors for delirium and taking early interventions are crucial for patient prognosis. A prospective study. A convenience sampling method was used to collect data from 128 patients in the Neurosurgery Intensive Care Unit of Xuanwu Hospital, Capital Medical University, Beijing, China, between May 2016-January 2017. Researchers used Confusion Assessment Method for the Intensive Care Unit (Chinese version) to assess each patient's delirium statement twice a day at regular times. We also collected other independent data variables and followed up the short-term clinical outcomes daily. On the basis of Confusion Assessment Method for the Intensive Care Unit evaluation, patients were divided into a delirium group and a nondelirium group. The prevalence of delirium among the 128 patients was 42.2%. Multivariate analysis showed that severity of illness, fever, the use of physical restraints and sleep deprivation were independent predictors of delirium in cerebrovascular patients in the Neurosurgery Intensive Care Unit. Cerebrovascular patients in the Neurosurgery Intensive Care Unit with a critical condition, fever or use of physical restraints or experiencing sleep deprivation were more prone to delirium. Cerebrovascular patients in the Neurosurgery Intensive Care Unit showed a high incidence of delirium. There are many risk factors leading to delirium, some of which are independent predictors of intensive care delirium. Patients with delirium will suffer various adverse effects upon their short-term clinical outcomes. Therefore, nurses should pay close

  18. Analysis of processes participating during intense iodine-laser-beam interactions with laser-produced plasmas

    Czech Academy of Sciences Publication Activity Database

    Láska, Leoš; Badziak, J.; Jungwirth, Karel; Kalal, M.; Krása, Josef; Krouský, Eduard; Kubeš, P.; Margarone, Daniele; Parys, P.; Pfeifer, Miroslav; Rohlena, Karel; Rosinski, M.; Ryč, L.; Skála, Jiří; Torrisi, L.; Ullschmied, Jiří; Velyhan, Andriy; Wolowski, J.

    2010-01-01

    Roč. 165, 6-10 (2010), s. 463-471 ISSN 1042-0150 R&D Projects: GA MŠk(CZ) LC528; GA AV ČR IAA100100715 EU Projects: European Commission(XE) 228334 - LASERLAB-EUROPE Institutional research plan: CEZ:AV0Z10100523; CEZ:AV0Z20430508 Keywords : laser plasma * non-linear processes * magnetic self-focusing * pinching Subject RIV: BH - Optics, Masers, Lasers Impact factor: 0.660, year: 2010

  19. Qualitative tissue differentiation by analysing the intensity ratios of atomic emission lines using laser induced breakdown spectroscopy (LIBS): prospects for a feedback mechanism for surgical laser systems.

    Science.gov (United States)

    Kanawade, Rajesh; Mahari, Fanuel; Klämpfl, Florian; Rohde, Maximilian; Knipfer, Christian; Tangermann-Gerk, Katja; Adler, Werner; Schmidt, Michael; Stelzle, Florian

    2015-01-01

    The research work presented in this paper focuses on qualitative tissue differentiation by monitoring the intensity ratios of atomic emissions using 'Laser Induced Breakdown Spectroscopy' (LIBS) on the plasma plume created during laser tissue ablation. The background of this study is to establish a real time feedback control mechanism for clinical laser surgery systems during the laser ablation process. Ex-vivo domestic pig tissue samples (muscle, fat, nerve and skin) were used in this experiment. Atomic emission intensity ratios were analyzed to find a characteristic spectral line for each tissue. The results showed characteristic elemental emission intensity ratios for the respective tissues. The spectral lines and intensity ratios of these specific elements varied among the different tissue types. The main goal of this study is to qualitatively and precisely identify different tissue types for tissue specific laser surgery. © 2015 The Authors. Journal of Biophotonics published by WILEY-VCH Verlag.

  20. Incidence of acute kidney injury in the neonatal intensive care unit

    Directory of Open Access Journals (Sweden)

    Doaa Youssef

    2015-01-01

    Full Text Available The aim of this work is to study the incidence of acute kidney injury (AKI in neonates admitted to the neonatal intensive care unit (NICU over a six-month period from September 2011 to March 2012. This prospective study was performed on 250 neonates admitted to the NICU at the Children′s Hospital, Faculty of Medicine, Zagazig University. All neonates were subjected to detailed history taking, including pre-natal, natal and post-natal history, with stress on symptoms suggestive of AKI. All neonates were examined thoroughly and the following investigations were performed: Blood urea nitrogen (BUN, serum creatinine, sodium, potassium, calcium, complete blood count, C-reactive protein, arterial blood gases, urine sodium and urine creatinine. AKI was diagnosed in 27 cases (10.8%, including 12 females and 15 males. 40.7% of the AKI cases were born after full-term pregnancy while 59.3% were pre-term babies. 29.6% of the AKI cases had oliguria, and there was male sex predominance, with a male-female ratio of 1.3:1. The cause of AKI was pre-renal in 96.3% and intrinsic renal in 3.7% of the cases. The predisposing factors for AKI were sepsis in 63% of the cases, respiratory distress syndrome in 55.6%, mechanical ventilation in 51.9%, peri-natal asphyxia in 18.5%, dehydration in 14.8%, surgical operation in 11.1%, congenital heart disease in 7.4%, sub-galeal hematoma in 3.7%, polycythemia in 3.7% and intra-ventricular hemorrhage in 3.7% of the cases. Our data suggest that pre-renal failure was the most common form of AKI in our patients. Early recognition of risk factors such as sepsis, peri-natal asphyxia or peri-operative problems and rapid effective treatment of contributing conditions will reduce the incidence of AKI in the neonatal period.

  1. Near Field Intensity Trends of Main Laser Alignment Images in the National Ignition Facility (NIF)

    Energy Technology Data Exchange (ETDEWEB)

    Leach, R R; Beltsar, I; Burkhart, S; Lowe-Webb, R; Kamm, V M; Salmon, T; Wilhelmsen, K

    2015-01-22

    The National Ignition Facility (NIF) utilizes 192 high-energy laser beams focused with enough power and precision on a hydrogen-filled spherical, cryogenic target to potentially initiate a fusion reaction. NIF has been operational for six years; during that time, thousands of successful laser firings or shots have been executed. Critical instrument measurements and camera images are carefully recorded for each shot. The result is a massive and complex database or ‘big data’ archive that can be used to investigate the state of the laser system at any point in its history or to locate and track trends in the laser operation over time. In this study, the optical light throughput for more than 1600 NIF shots for each of the 192 main laser beams and 48 quads was measured over a three year period from January 2009 to October 2012. The purpose was to verify that the variation in the transmission of light through the optics over time performed within design expectations during this time period. Differences between average or integrated intensity from images recorded by the input sensor package (ISP) and by the output sensor package (OSP) in the NIF beam-line were examined. A metric is described for quantifying changes in the integrated intensity measurements and was used to view potential trends. Results are presented for the NIF input and output sensor package trends and changes over the three year time-frame.

  2. Ion acceleration from intense laser-generated plasma: methods, diagnostics and possible applications

    Directory of Open Access Journals (Sweden)

    Torrisi Lorenzo

    2015-06-01

    Full Text Available Many parameters of non-equilibrium plasma generated by high intensity and fast lasers depend on the pulse intensity and the laser wavelength. In conditions favourable for the target normal sheath acceleration (TNSA regime the ion acceleration from the rear side of the target can be enhanced by increasing the thin foil absorbance through the use of nanoparticles and nanostructures promoting the surface plasmon resonance effect. In conditions favourable for the backward plasma acceleration (BPA regime, when thick targets are used, a special role is played by the laser focal position with respect to the target surface, a proper choice of which may result in induced self-focusing effects and non-linear acceleration enhancement. SiC detectors employed in the time-of-flight (TOF configuration and a Thomson parabola spectrometer permit on-line diagnostics of the ion streams emitted at high kinetic energies. The target composition and geometry, apart from the laser parameters and to the irradiation conditions, allow further control of the plasma characteristics and can be varied by using advanced targets to reach the maximum ion acceleration. Measurements using advanced targets with enhanced the laser absorption effect in thin films are presented. Applications of accelerated ions in the field of ion source, hadrontherapy and nuclear physics are discussed.

  3. Effectiveness of High Intensity Laser Therapy for Reduction of Pain in Knee Osteoarthritis

    Directory of Open Access Journals (Sweden)

    Anna Angelova

    2016-01-01

    Full Text Available Introduction. Osteoarthritis is the most common type of arthritis. It is the main cause of chronic musculoskeletal pain and disability among the elderly population. Aim. This is a pilot, randomized clinical study about the effect of high intensity laser therapy in patients with osteoarthritis of the knee (OA of the knee. Material and Method. 72 patients (aged between 39 and 83 years with (clinically and radiographically proved OA of the knee were included in the study. They were randomized in two groups: therapeutic (test one (n=37, 65,11 ± 1,40 (mean ± SD years old; patients were treated with HILT and control group (n=35, 64,71 ± 1,98; patients receive sham laser. Both groups had seven sessions of treatment. VAS and dolorimetry were used for assessment of pain before and after the therapy. Pedobarometric analysis (static and dynamic was used to assess comparatively the contact surface area and maximum pressure under the heel. Results. Pain levels measured by VAS and dolorimetry decreased significantly in the therapeutic group after seven days of treatment (p< 0,001. Conclusion. The results after seven days of treatment show more intensive and cumulative effect after the application of high intensity laser therapy in comparison to sham laser. This is the reason why HILT can be a method of choice in the treatment of gonarthrosis.

  4. Intra-pulse transition between ion acceleration mechanisms in intense laser-foil interactions

    Science.gov (United States)

    Padda, H.; King, M.; Gray, R. J.; Powell, H. W.; Gonzalez-Izquierdo, B.; Stockhausen, L. C.; Wilson, R.; Carroll, D. C.; Dance, R. J.; MacLellan, D. A.; Yuan, X. H.; Butler, N. M. H.; Capdessus, R.; Borghesi, M.; Neely, D.; McKenna, P.

    2016-06-01

    Multiple ion acceleration mechanisms can occur when an ultrathin foil is irradiated with an intense laser pulse, with the dominant mechanism changing over the course of the interaction. Measurement of the spatial-intensity distribution of the beam of energetic protons is used to investigate the transition from radiation pressure acceleration to transparency-driven processes. It is shown numerically that radiation pressure drives an increased expansion of the target ions within the spatial extent of the laser focal spot, which induces a radial deflection of relatively low energy sheath-accelerated protons to form an annular distribution. Through variation of the target foil thickness, the opening angle of the ring is shown to be correlated to the point in time transparency occurs during the interaction and is maximized when it occurs at the peak of the laser intensity profile. Corresponding experimental measurements of the ring size variation with target thickness exhibit the same trends and provide insight into the intra-pulse laser-plasma evolution.

  5. Influence of the incidence angle on the morphology of enamel and dentin under Er:YAG laser irradiation

    International Nuclear Information System (INIS)

    Junqueira Junior, Duilio Naves

    2002-01-01

    The purpose of this study is to make an in vitro evaluation, using scanning electron microscopy, of the influence of the laser beam irradiation angle on the enamel and dentin morphology. These tissues were both irradiated by Er:YAG Laser, with the same energy parameter. Twenty-four incisive bovine teeth were used, separated in eight groups, four of enamel, and four of dentin, with three specimens in each group. Each specimen was submitted to three laser applications, varying the incidence angle, between the laser and the tooth surface, at 90, 50 and 20 degrees. The applied frequency was 2 Hz, with 20 pulses in each application. The KaVo Key Laser 3 was employed, wavelength at 2940 nm, adjustable energy from 40 to 600 mJ and repetition rate from 1 to 25 Hz. The groups were distributed according to the energy parameter as follows - enamel: 250 mJ; 300 mJ; 350 mJ and 400 mJ; dentin: 200 mJ; 250 mJ; 300 mJ and 350 mJ. The results evidenced the Laser incidence angle importance; it is an essential parameter in the protocol of utilization and it should not be disregarded. The observations of this study allow to conclude that the Laser incidence angle has direct influence on the morphological aspect of the alterations produced in enamel and dentin. (author)

  6. Proposed development of novel diagnostics for intense, ultrafast laser-plasma experiments at JAEA-KPSI

    International Nuclear Information System (INIS)

    Bolton, Paul R.; Tatchyn, Roman; Fukuda, Yuji; Kando, Masaki; Daito, Izuru; Ma, Jinglong; Chen, Liming; Pirozhkov, Alexander; Tajima, Toshiki

    2007-01-01

    Development of new diagnostics is critical for future laser-plasma accelerators, laser-driven light sources and for x-ray FELs. Recent laser wakefield electron acceleration developments and novel beam-based light source schemes (such as free electron lasers) obviate the need for next generation ultrafast diagnostics, capable of temporal resolution of a few femtoseconds (and in some cases attoseconds) for laser pulses (high order harmonics), x-ray pulses and electron bunches. Single shot detection capability in noninvasive and parasitic modes is also important. Alterations of laser pulse spectra and the associated dynamics can be informative diagnostics. The portion of a high intensity laser pulse that is transmitted through a self-induced underdense plasma (such as in laser wakefield acceleration LWFA schemes) carries the effects of plasma processes it has experienced. A distinction between the self-modulated laser wakefield (SMLWF) acceleration regime and the forced laser wakefield (FLWF) acceleration regime is in the spectral signature of the transmitted ir laser pulse. The former regime generates sidebands from stimulated Raman forward scattering (SRS-F) and the latter exhibits general spectral broadening that evidences ir laser pulse compression. Transmitted spectral effects can diagnose these acceleration regimes. Existing noninvasive electro-optic (EO) schemes for detection of ultrashort electron bunches are limited by material properties to temporal resolution at the 50-100 femtosecond level. While timing jitter at conventional accelerators is of this order (or greater), single bunch longitudinal profile measurements can require improvement of at least an order of magnitude. A new FO technique is described here which monitors enhancement and associated dynamics of spectral components in a probe pulse. Three correlation schemes for detecting ultrashort x-ray pulses are described. Two-photon absorption in tailored ion targets is proposed for scanning auto

  7. The effects of low-intensity laser irradiation on the fatigue induced by dysfunction of mitochondria

    Science.gov (United States)

    Xu, Xiao-Yang; Liu, Timon C.; Duan, Rui; Liu, Xiao-Guang

    2003-12-01

    Exercise-induced fatigue has long been an important field in sports medicine. The electron leak of mitochondrial respiratory chain during the ATP synthesis integrated with proton leak and O-.2 can decrease the efficiency of ATP synthesis in mitochondria. And the exercise-induced fatigue occur followed by the decrease of performance. If the dysfunction of mitochondria can be avoided, the fatigue during the exercise may be delayed and the performance may be enhanced. Indeed there are some kind of materials can partially prevent the decrease of ATP synthesis efficiency in mitochondria. But the side effects and safety of these materials is still needed to be studied. Low intensity laser can improve the mitochondria function. It is reasonable to consider that low intensity laser therapy may become the new and more effective way to delay or elimination the fatigue induced by dysfunction of mitochondria. Because the effect of laser irradiation may not be controlled exactly when study in vivo, we use electrical stimulation of C2C12 muscle cells in culture to define the effect of low intensity laser on the dysfunction of mitochondria, and to define the optimal laser intensity to prevent the decrease of ATP synthesis efficiency. Our study use the C2C12 muscle cells in culture to define some of the mechanisms involved in the contractile-induced changes of mitochondrial function firstly in sports medicine and may suggest a useful study way to other researchers. We also give a new way to delay or eliminating the fatigue induced by dysfunction of mitochondria without side effect.

  8. Tests of a grazing-incidence ring resonator free-electron laser

    International Nuclear Information System (INIS)

    Dowell, D.H.; Laucks, M.L.; Lowrey, A.R.; Adamski, J.L.; Pistoresi, D.J.; Shoffstall, D.R.; Bentz, M.P.; Burns, R.H.; Guha, J.; Sun, K.; Tomita, W.

    1991-01-01

    This paper reports on the Boeing free-electron laser (FEL) optical cavity that has been changed from a simple concentric cavity using two spherical mirrors to a larger grazing-incidence ring resonator. The new resonator consists of two mirror telescopes located at each end of the wiggler with a round-trip path length of approximately 133 m. Each telescope is a grazing-incidence hyperboloid followed by a normal-incidence paraboloid. Initial tests showed that poorly positioned ring focus and unreliable pointing alignment resulted in reduced and structured FEL output. (First lasing operation occurred on March 23 and 24, 1990.) Later efforts concentrated on improving the resonator alignment techniques and lowering the single-pass losses. FEL performance and reliability have significantly improved due to better ring alignment. The alignment procedure and recent lasing results are described. The effect the electron beam has on lasing is also discussed. Measurements are presented showing how FEL temporal output and wavelength are sensitive to electron beam energy variations

  9. Photolysis of phosphodiester bonds in plasmid DNA by high intensity UV laser irradiation

    International Nuclear Information System (INIS)

    Croke, D.T.; Blau, Werner; OhUigin, Colm; Kelly, J.M.; McConnell, D.J.

    1988-01-01

    The cleavage of phosphodiester bonds in DNA exposed to high intensity UV laser pulses in aerated aqueous solution has been investigated using a krypton fluoride excimer laser (248 nm) and bacterial plasmid DNA. The dependence of strand breakage on fluence and intensity has been studied in detail and shows that the process is non-linear with respect to intensity. The relationship between the quantum yield for strand breakage and intensity shows that the strand breakage reaction involves two-photon excitation of DNA bases. The quantum yield rises with intensity from a lower value of 7 x 10 -5 until a maximum value of 4.5 x 10 -4 is attained at intensities of 10 11 W m -2 and above. This value is approximately fifty-fold higher than the quantum yield for strand breakage induced by exposure to low density UV irradiation (254 nm, 12 W m -2 ). DNA sequencing experiments have shown that strand breakage occurs by the specific cleavage of the phosphodiester bond which lies immediately 3' to guanine residues in the DNA, leaving some alkali-labile remnant attached to the terminal phosphate. A mechanism for DNA strand breakage which involves the generation of guanine radical cations is proposed. (author)

  10. Self-Guiding of Ultrashort Relativistically Intense Laser Pulses to the Limit of Nonlinear Pump Depletion

    International Nuclear Information System (INIS)

    Ralph, J. E.; Marsh, K. A.; Pak, A. E.; Lu, W.; Clayton, C. E.; Fang, F.; Joshi, C.; Tsung, F. S.; Mori, W. B.

    2009-01-01

    A study of self-guiding of ultra short, relativistically intense laser pulses is presented. Here, the laser pulse length is on the order of the nonlinear plasma wavelength and the normalized vector potential is greater than one. Self-guiding of ultrashort laser pulses over tens of Rayliegh lengths is possible when driving a highly nonlinear wake. In this case, self-guiding is limited by nonlinear pump depletion. Erosion of the pulse due to diffraction at the head of the laser pulse is minimized for spot sizes close to the blow-out radius. This is due to the slowing of the group velocity of the photons at the head of the laser pulse. Using an approximately 10 TW Ti:Sapphire laser with a pulse length of approximately 50 fs, experimental results are presented showing self-guiding over lengths exceeding 30 Rayliegh lengths in various length Helium gas jets. Fully explicit 3D PIC simulations supporting the experimental results are also presented.

  11. Studies of Ion Acceleration from Thin Solid-Density Targets on High-Intensity Lasers

    Science.gov (United States)

    Willis, Christopher R.

    Over the past two decades, a number of experiments have been performed demonstrating the acceleration of ions from the interaction of an intense laser pulse with a thin, solid density target. These ions are accelerated by quasi-static electric fields generated by energetic electrons produced at the front of the target, resulting in ion energies up to tens of MeV. These ions have been widely studied for a variety of potential applications ranging from treatment of cancer to the production of neutrons for advanced radiography techniques. However, realization of these applications will require further optimization of the maximum energy, spectrum, or species of the accelerated ions, which has been a primary focus of research to date. This thesis presents two experiments designed to optimize several characteristics of the accelerated ion beam. The first of these experiments took place on the GHOST laser system at the University of Texas at Austin, and was designed to demonstrate reliable acceleration of deuterium ions, as needed for the most efficient methods of neutron generation from accelerated ions. This experiment leveraged cryogenically cooled targets coated in D2 O ice to suppress the protons which typically dominate the accelerated ions, producing as many as 2 x 1010 deuterium ions per 1 J laser shot, exceeding the proton yield by an average ratio of 5:1. The second major experiment in this work was performed on the Scarlet laser system at The Ohio State University, and studied the accelerated ion energy, yield, and spatial distribution as a function of the target thickness. In principle, the peak energy increases with decreasing target thickness, with the thinnest targets accessing additional acceleration mechanisms which provide favorable scaling with the laser intensity. However, laser prepulse characteristics provide a lower bound for the target thickness, yielding an optimum target thickness for ion acceleration which is dependent on the laser system. This

  12. Classical-trajectory simulation of accelerating neutral atoms with polarized intense laser pulses

    Science.gov (United States)

    Xia, Q. Z.; Fu, L. B.; Liu, J.

    2013-03-01

    In the present paper, we perform the classical trajectory Monte Carlo simulation of the complex dynamics of accelerating neutral atoms with linearly or circularly polarized intense laser pulses. Our simulations involve the ion motion as well as the tunneling ionization and the scattering dynamics of valence electron in the combined Coulomb and electromagnetic fields, for both helium (He) and magnesium (Mg). We show that for He atoms, only linearly polarized lasers can effectively accelerate the atoms, while for Mg atoms, we find that both linearly and circularly polarized lasers can successively accelerate the atoms. The underlying mechanism is discussed and the subcycle dynamics of accelerating trajectories is investigated. We have compared our theoretical results with a recent experiment [Eichmann Nature (London)NATUAS0028-083610.1038/nature08481 461, 1261 (2009)].

  13. Low-intensity laser irradiation use for oral and lip precancer treatment

    Science.gov (United States)

    Kunin, Anatoly A.; Podolskaya, Elana E.; Stepanov, Nicolay N.; Petrov, Anatoly; Erina, Stanislava V.; Pankova, Svetlana N.

    1996-09-01

    Precancer and background diseases of the oral mucosa and lips, such as lichen planus, chronic ulcers and fissures, meteorological heilit, lupus erythematosus, after radiation heilit were treated by low-intensity laser irradiation. Laser therapy of the over-mentioned diseases was combined with medicinal treatment. All the patients were selected and treated in the limits of dispensary system. THe choice of diagnostic methods were made according to each concrete nosological form. A great attention was paid to the goal- directly sanitation of the oral cavity and treatment of attended internal diseases. The etiological factors were revealed and statistically analyzed. The results received during our researches demonstrated high effectiveness of laser irradiation combined with medicinal therapy in the treatment of oral mucosa and lips precancer diseases.

  14. Proton driven acceleration by intense laser pulses irradiating thin hydrogenated targets

    Energy Technology Data Exchange (ETDEWEB)

    Torrisi, L., E-mail: lorenzo.torrisi@unime.it [Dip.to di Fisica, Università di Messina, V.le F.S. D’Alcontres 31, 98166 S. Agata, Messina (Italy); INFN-Laboratori Nazionali del Sud, Via S. Sofia 44, 95123 Catania (Italy); Cutroneo, M.; Cavallaro, S.; Giuffrida, L.; Andò, L.; Cirrone, P. [INFN-Laboratori Nazionali del Sud, Via S. Sofia 44, 95123 Catania (Italy); Bertuccio, G.; Puglisi, D. [Dip.to di Ing. Elettronica e Sci. dell’Informaz., Pol. di Milano,V. Ponzio34, 20133 Milano (Italy); Calcagno, L. [Dip.to di Fisica, Università di Catania, Via S. Sofia 44, 95123 Catania (Italy); Verona, C. [Dip.to di Ing. Meccanica, Univ. Roma “Tor Vergata”, V. del Politecnico 1, Roma (Italy); Picciotto, A. [Fondazione Bruno Kessler–IRST, Via Sommarive 18, 38050 Povo, Trento (Italy); Krasa, J.; Margarone, D.; Velyhan, A.; Laska, L.; Krousky, E.; Pfeiffer, M.; Skala, J.; Ullschmied, J. [Institute of Physics, ASCR, v.v.i., 182 21 Prague 8 (Czech Republic); Wolowski, J. [Institute of Plasma Physics and Laser Microfusion, IPPLM,23 Hery Str. 01-497 Warsaw (Poland); and others

    2013-05-01

    The Asterix iodine laser of the PALS laboratory in Prague, operating at 1315 nm fundamental frequency, 300 ps pulse duration, 600 J maximum pulse energy and 10{sup 16} W/cm{sup 2} intensity, is employed to irradiate thin hydrogenated targets placed in high vacuum. Different metallic and polymeric targets allow to generate multi-energetic and multi-specie ion beams showing peculiar properties. The plasma obtained by the laser irradiation is monitored, in terms of properties of the emitted charge particles, by using time-of-flight techniques and Thomson parabola spectrometer (TPS). A particular attention is given to the proton beam production in terms of the maximum energy, emission yield and angular distribution as a function of the laser energy, focal position (FP), target thickness and composition.

  15. Perturbative diffusion theory formalism for interpreting temporal light intensity changes during laser interstitial thermal therapy.

    Science.gov (United States)

    Chin, Lee C L; Whelan, William M; Vitkin, I Alex

    2007-03-21

    In an effort to understand dynamic optical changes during laser interstitial thermal therapy (LITT), we utilize the perturbative solution of the diffusion equation in heterogeneous media to formulate scattering weight functions for cylindrical line sources. The analysis explicitly shows how changes in detected interstitial light intensity are associated with the extent and location of the volume of thermal coagulation during treatment. Explanations for previously reported increases in optical intensity observed early during laser heating are clarified using the model and demonstrated with experimental measurements in ex vivo bovine liver tissue. This work provides an improved understanding of interstitial optical signal changes during LITT and indicates the sensitivity and potential of interstitial optical monitoring of thermal damage.

  16. Using self-generated harmonics as a diagnostic of high intensity laser-produced plasmas

    International Nuclear Information System (INIS)

    Krushelnick, K; Watts, I; Tatarakis, M; Gopal, A; Wagner, U; Beg, F N; Clark, E L; Clarke, R J; Dangor, A E; Norreys, P A; Wei, M S; Zepf, M

    2002-01-01

    The interaction of high intensity laser pulses (up to I∼10 20 W cm -2 ) with plasmas can generate very high order harmonics of the laser frequency (up to the 75th order have been observed). Measurements of the properties of these harmonics can provide important insights into the plasma conditions which exist during such interactions. For example, observations of the spectrum of the harmonic emission can provide information of the dynamics of the critical surface as well as information on relativistic non-linear optical effects in the plasma. However, most importantly, observations of the polarization properties of the harmonics can provide a method to measure the ultra-strong magnetic fields (greater than 350 MG) which can be generated during these interactions. It is likely that such techniques can be scaled to provide a significant amount of information from experiments at even higher intensities

  17. Characterisation of Intensity Values on Terrestrial Laser Scanning for Recording Enhancement

    Science.gov (United States)

    Balaguer-Puig, M.; Molada-Tebar, A.; Marqués-Mateu, A.; Lerma, J. L.

    2017-08-01

    Mapping surveys based on terrestrial laser scanning (TLS) are common nowadays for different purposes such as documentation of cultural heritage assets. The chance to extract relevant information from TLS surveys depends not only on the fast acquisition of XYZ coordinates, but also on the meaningful intensity values of the fired objects. TLS behaviour depends on several known factors such as distance, texture, roughness, colour and albedo. This paper seeks to find out the mathematical relationship between the TLS intensity values and the colorimetric data using a colour chart. In order to do so, objective colour specification based on well-known colour spaces is needed. The approach used here started with scanning a colour chart containing a number of colour patches with known chromatic and reflection characteristics. After several transformations, the results allowed us to characterise the intensity behaviour of a time-of-flight laser scanner. The characterisation of the intensity values are tested indoor on the colour chart and outdoor on an archaeological shelter. Promising results are obtained to enhance the behaviour of the intensity values coming from the TLS.

  18. Comparative Study of Diode Laser Versus Neodymium-Yttrium Aluminum: Garnet Laser Versus Intense Pulsed Light for the Treatment of Hirsutism.

    Science.gov (United States)

    Puri, Neerja

    2015-01-01

    Lasers are widely used for the treatment of hirsutism. But the choice of the right laser for the right skin type is very important. Before starting with laser therapy, it is important to assess the skin type, the fluence, the pulse duration and the type of laser to be used. To compare the efficacy and side effects of Diode laser, Neodymium-yttrium aluminum - garnet (Nd: YAG) laser and intense pulsed light (IPL) on 30 female patients of hirsutism. Thirty female patients with hirsutism were selected for a randomised controlled study. The patients were divided into three groups of 10 patients each. In group I patients diode laser was used, in group II patients long pulsed Nd: YAG laser was used and in group III, IPL was used. The patients were evaluated and result graded according to a 4-point scale as excellent, >75% reduction; good, 50-75% reduction; fair; 25-50% reduction; and poor, diode laser group, followed by 35% hair reduction in the Nd: Yag laser group and 10% hair reduction in the IPL group. The percentage of hair reduction after four sessions of treatment was maximum (64%) in the diode laser group, followed by 62% hair reduction in the Nd: Yag laser group and 48% hair reduction in the IPL group. The percentage of hair reduction after eight sessions of treatment was maximum (92%) in the diode laser group, followed by 90% hair reduction in the Nd: YAG group and 70% hair reduction in the IPL group. To conclude for the Indian skin with dark hairs, the diode laser still stands the test of time. But, since the diode laser has a narrow margin of safety, proper pre and post-procedure cooling is recommended. Although, the side effects of Nd: YAG laser are less as compared to the diode laser, it is less efficacious as compared to the diode laser.

  19. Relativistic classical and quantum dynamics in intense crossed laser beams of various polarizations

    Directory of Open Access Journals (Sweden)

    M. Verschl

    2007-02-01

    Full Text Available The dynamics of an electron in crossed laser fields is investigated analytically. Two different standing wave configurations are compared. The counterpropagating laser waves are either linearly or circularly polarized. Both configurations have in common that there are one-dimensional trajectories on which the electron can oscillate with vanishing Lorentz force. The dynamics is analyzed for the situations when the electron moves in the vicinity of these ideal axes. If the laser intensities imply nonrelativistic electron dynamics, the system is described quantum mechanically. A semiclassical treatment renders the strongly relativistic regime accessible as well. To describe relativistic wave packets, the results of the classical analysis are employed for a Monte Carlo ensemble. This allows for a comparison of the wave packet dynamics for both configurations in the strongly relativistic regime. It is found for certain cases that relativity slows down the dynamics, i.e., for higher laser intensities, wave packet spreading and the drift away from the ideal axis of vanishing Lorentz force are shown to be increasingly suppressed.

  20. Effects of low intensity laser in in vitro bacterial culture and in vivo infected wounds

    Directory of Open Access Journals (Sweden)

    Pâmela Rosa Pereira

    Full Text Available OBJECTIVE: to compare the effects of low intensity laser therapy on in vitro bacterial growth and in vivo in infected wounds, and to analyze the effectiveness of the AsGa Laser technology in in vivo wound infections. METHODS: in vitro: Staphylococcus aureus were incubated on blood agar plates, half of them being irradiated with 904 nm wavelength laser and dose of 3J/cm2 daily for seven days. In vivo: 32 male Wistar rats were divided into control group (uninfected and Experimental Group (Infected. Half of the animals had their wounds irradiated. RESULTS: in vitro: there was no statistically significant variation between the experimental groups as for the source plates and the derived ones (p>0.05. In vivo: there was a significant increase in the deposition of type I and III collagen in the wounds of the infected and irradiated animals when assessed on the fourth day of the experiment (p=0.034. CONCLUSION: low-intensity Laser Therapy applied with a wavelength of 904nm and dose 3J/cm2 did not alter the in vitro growth of S. aureus in experimental groups; in vivo, however, it showed significant increase in the deposition of type I and III collagen in the wound of infected and irradiated animals on the fourth day of the experiment.

  1. Optimization of the electron beam properties from intense laser pulses interacting with structured gas jets

    Science.gov (United States)

    Swanson, K. K.; Tsai, H.-E.; Barber, S. K.; Lehe, R.; Mao, H.-S.; Steinke, S.; van Tilborg, J.; Nakamura, K.; Geddes, C. G. R.; Schroeder, C. B.; Esarey, E.; Leemans, W. P.

    2017-05-01

    Laser plasma acceleration has been intensely investigated for its ability to produce energetic, ultrashort electron bunches in a compact distance. A high intensity laser pulse propagating through a plasma expels the electrons from the optical axis via the ponderomotive force, leaving behind a column of ions and driving a density wake. The accelerating electric fields present in the wake can reach several orders of magnitude greater than those found in radio-frequency cavities, allowing for compact systems much smaller than those using conventional accelerators. This compact source can provide electrons for various applications including stages for a high energy collider or for production of x-ray pulses from coherent undulator radiation. However, these applications require tunable, stable and high-quality electron beams. We report on a study of controlled injection along a shock-induced density downramp of laser-plasma- accelerated electrons through precision tailoring of the density profile produced from a mm-scale gas jet. Using BELLA Center's TREX Ti:Sapphire laser, the effects of the plasma density profile and the tilt of the shock front on the beam spatial profile, steering, and energy were investigated experimentally. To explain these rela- tionships, we propose simple models which agree well with experimental results. Using this technique, electron beam quality was tailored, allowing for the production of high-quality electron beams with percent-level energy spreads over a range of energies.

  2. The study towards high intensity high charge state laser ion sources.

    Science.gov (United States)

    Zhao, H Y; Jin, Q Y; Sha, S; Zhang, J J; Li, Z M; Liu, W; Sun, L T; Zhang, X Z; Zhao, H W

    2014-02-01

    As one of the candidate ion sources for a planned project, the High Intensity heavy-ion Accelerator Facility, a laser ion source has been being intensively studied at the Institute of Modern Physics in the past two years. The charge state distributions of ions produced by irradiating a pulsed 3 J/8 ns Nd:YAG laser on solid targets of a wide range of elements (C, Al, Ti, Ni, Ag, Ta, and Pb) were measured with an electrostatic ion analyzer spectrometer, which indicates that highly charged ions could be generated from low-to-medium mass elements with the present laser system, while the charge state distributions for high mass elements were relatively low. The shot-to-shot stability of ion pulses was monitored with a Faraday cup for carbon target. The fluctuations within ±2.5% for the peak current and total charge and ±6% for pulse duration were demonstrated with the present setup of the laser ion source, the suppression of which is still possible.

  3. Particle simulations of high-intensity laser interaction with cone targets

    Science.gov (United States)

    Nikolić, L.; Škorić, M. M.; Ishiguro, S.; Sakagami, H.; Vidal, F.; Johnston, T.

    2008-05-01

    Hollow cone-shaped overdense plasma targets were used to investigate the generation and transport of fast particles in a high-intensity laser-matter interaction. Using 2d PIC simulations we examine cone, cone-wire and cone with an open tip target designs. Localization of electron jets and an angular spread are found in all cases of the laser-cone interaction. However, in the cone-wire geometry, at later times, the charge separation and radial electric fields around the wire collimate electron streams with an electron hot spot at the front end of the wire. The main mechanism of the electron transport in the targets is the reflection of electrons from the potential walls of the cone surface, and no significant surface electron transport is observed. Furthermore, the presence of harmonics in the reflected light suggests that the field intensity in the cone can be enhanced not only by simple multiple reflection but also by the field modulation due to harmonics generation. Moreover, it is found that the laser interaction with the open-tip cone can efficiently generate trains of short (laser axis.

  4. Weibel instability mediated collisionless shocks using intense laser-driven plasmas

    Science.gov (United States)

    Palaniyappan, Sasikumar; Fiuza, Federico; Huang, Chengkun; Gautier, Donald; Ma, Wenjun; Schreiber, Jorg; Raymer, Abel; Fernandez, Juan; Shimada, Tom; Johnson, Randall

    2017-10-01

    The origin of cosmic rays remains a long-standing challenge in astrophysics and continues to fascinate physicists. It is believed that ``collisionless shocks'' - where the particle Coulomb mean free path is much larger that the shock transition - are a dominant source of energetic cosmic rays. These shocks are ubiquitous in astrophysical environments such as gamma-ray bursts, supernova remnants, pulsar wind nebula and coronal mass ejections from the sun. A particular type of electromagnetic plasma instability known as Weibel instability is believed to be the dominant mechanism behind the formation of these collisionless shocks in the cosmos. The understanding of the microphysics behind collisionless shocks and their particle acceleration is tightly related with nonlinear basic plasma processes and remains a grand challenge. In this poster, we will present results from recent experiments at the LANL Trident laser facility studying collisionless shocks using intense ps laser (80J, 650 fs - peak intensity of 1020 W/cm2) driven near-critical plasmas using carbon nanotube foam targets. A second short pulse laser driven protons from few microns thick gold foil is used to radiograph the main laser-driven plasma. Work supported by the LDRD program at LANL.

  5. Analysis of plasma channels in mm-scale plasmas formed by high intensity laser beams

    International Nuclear Information System (INIS)

    Murakami, R; Habara, H; Iwawaki, T; Uematsu, Y; Tanaka, K A; Ivancic, S; Anderson, K; Haberberger, D; Stoeckl, C; Theobald, W; Sakagami, H

    2016-01-01

    A plasma channel created by a high intensity infrared laser beam was observed in a long scale-length plasma (L ∼ 240 μm) with the angular filter refractometry technique, which indicated a stable channel formation up to the critical density. We analyzed the observed plasma channel using a rigorous ray-tracing technique, which provides a deep understanding of the evolution of the channel formation. (paper)

  6. Theoretical and experimental analysis of rare earth whispering gallery mode laser relative intensity noise

    Science.gov (United States)

    Ceppe, Jean-Baptiste; Mortier, Michel; Féron, Patrice; Dumeige, Yannick

    2017-12-01

    The relative intensity noise (RIN) of a solid state whispering-gallery-mode class-B laser is studied both theoretically and experimentally under different pumping regimes. In particular, we show that harmonics of the spiking frequency are observed in the RIN spectrum. A rate equation model including Langevin forces and the nonlinear coupling between inverted ion and photon number fluctuations has been developed to reproduce the experimental results and to extract relevant physical parameters from the fitting of the RIN spectrum.

  7. Incidence of MRI intensity changes in the knee meniscus. Comparing asymptomatic and symptomatic knees without meniscal lesion

    International Nuclear Information System (INIS)

    Nozaki, Hiroyuki; Iso, Yoshinori; Furufu, Teruo; Suguro, Toru

    2004-01-01

    MRI has become the most frequently used imaging technique in diagnosing knee joint diseases. However, a number of factors may change the intensity of the meniscus on MR images, even in normal knees. The question remains when and to what degree the change in intensity appears with age, how aging is related to MR image grades, and how the development of symptoms is related to a change in intensity. To answer these questions, the present study investigated MR images of the menisci of asymptomatic volunteers and patients with knee diseases other than meniscal lesions to determine intrameniscal intensity changes. 163 knees in 133 subjects who underwent MRI for the knee joint (s) were examined. The coronal and the sagittal planes were imaged with T1 weighted imaging and GE slice thickness of 5 mm. MR images were classified as Grade 0 to 4. In knees of patients under 40 years of age, a change in intensity was only rarely observed in the menisci of normal knees, though it was frequently observed in those of symptomatic knees. By contrast, in the knees of patients 40 years or older, a change in intensity was frequently observed in the menisci of both normal and symptomatic knees. MRI is useful because of its convenience, low invasiveness, and high diagnostic ability. However, MR images of the meniscus should be read carefully, because the incidence of changes in intensity increases with aging or inflammation, and in symptomatic knees, the intensity change is occasionally exaggerated resulting in incorrect diagnosis. (author)

  8. Electromagnetic cascade in high-energy electron, positron, and photon interactions with intense laser pulses

    Science.gov (United States)

    Bulanov, S. S.; Schroeder, C. B.; Esarey, E.; Leemans, W. P.

    2013-06-01

    The interaction of high-energy electrons, positrons, and photons with intense laser pulses is studied in head-on collision geometry. It is shown that electrons and/or positrons undergo a cascade-type process involving multiple emissions of photons. These photons can consequently convert into electron-positron pairs. As a result charged particles quickly lose their energy developing an exponentially decaying energy distribution, which suppresses the emission of high-energy photons, thus reducing the number of electron-positron pairs being generated. Therefore, this type of interaction suppresses the development of the electromagnetic avalanche-type discharge, i.e., the exponential growth of the number of electrons, positrons, and photons does not occur in the course of interaction. The suppression will occur when three-dimensional effects can be neglected in the transverse particle orbits, i.e., for sufficiently broad laser pulses with intensities that are not too extreme. The final distributions of electrons, positrons, and photons are calculated for the case of a high-energy e-beam interacting with a counterstreaming, short intense laser pulse. The energy loss of the e-beam, which requires a self-consistent quantum description, plays an important role in this process, as well as provides a clear experimental observable for the transition from the classical to quantum regime of interaction.

  9. Generation, shaping, compression, characterization and application of intense ultrashort laser pulses

    CERN Document Server

    Cheng, Z

    2001-01-01

    Recently, the development of intense ultrashort laser pulses has attracted much interest because of their significant applications in many fields of science and technology. This thesis contributes to the generation, shaping, compression, characterization and application of intense ultrashort laser pulses as follows: 1. Laser pulses of 17.5-fs with a peak power of 0.1-TW at 1-kHz repetition rate have been generated by a compact single-stage ten-pass Ti:sapphire amplifier system with a high-order-dispersion-mirror compensator and a spectral shaping for the first time. The experimental results are in reasonable agreement with numerical calculations. 2. The first experimental study on arbitrary shaping of intense ultrashort pulses has been conducted in a kHz amplifier system capable of generating 27 fs pulses by using an acousto-optic programmable dispersive filter (AOPDF). 17-fs transform-limited pulses have been achieved and arbitrary shaping of these 17-fs pulses has been demonstrated both in the temporal and ...

  10. Heart rate-based training intensity and its impact on injury incidence among elite-level professional soccer players.

    Science.gov (United States)

    Owen, Adam L; Forsyth, Jacky J; Wong, Del P; Dellal, Alexandre; Connelly, Sean P; Chamari, Karim

    2015-06-01

    Elite-level professional soccer players are suggested to have increased physical, technical, tactical, and psychological capabilities when compared with their subelite counterparts. Ensuring these players remain at the elite level generally involves training many different bodily systems to a high intensity or level within a short duration. This study aimed to examine whether an increase in training volume at high-intensity levels was related to injury incidence, or increased the odds of sustaining an injury. Training intensity was monitored through time spent in high-intensity (T-HI) and very high-intensity (T-VHI) zones of 85-injuries were recorded over 2 consecutive seasons. Twenty-three, elite professional male soccer players (mean ± SD age, 25.6 ± 4.6 years; stature, 181.8 ± 6.8 cm; and body mass, 79.3 ± 8.1 kg) were studied throughout the 2-years span of the investigation. The results showed a mean total injury incidence of 18.8 (95% confidence interval [CI], 14.7-22.9) injuries per 1,000 hours of exposure. Significant correlations were found between training volume at T-HI and injury incidence (r = 0.57, p = 0.005). Further analysis revealed how players achieving more time in the T-VHI zone during training increased the odds of sustaining a match injury (odds ratio = 1.87; 95% CI, 1.12-3.12, p = 0.02) but did not increase the odds of sustaining a training injury. Reducing the number of competitive match injuries among elite-level professional players may be possible if greater focus is placed on the training intensity and volume over a period of time ensuring the potential reduction of fatigue or overuse injuries. In addition, it is important to understand the optimal training load at which adaptation occurs without raising the risk of injury.

  11. Toward compact and ultra-intense laser-based soft x-ray lasers

    Science.gov (United States)

    Sebban, S.; Depresseux, A.; Oliva, E.; Gautier, J.; Tissandier, F.; Nejdl, J.; Kozlova, M.; Maynard, G.; Goddet, J. P.; Tafzi, A.; Lifschitz, A.; Kim, H. T.; Jacquemot, S.; Rousseau, P.; Zeitoun, P.; Rousse, A.

    2018-01-01

    We report here recent work on an optical field ionized (OFI), high-order harmonic-seeded EUV laser. The amplifying medium is a plasma of nickel-like krypton obtained by OFI when focusing a 1 J, 30 fs, circularly-polarized, infrared pulse into a krypton-filled gas cell or krypton gas jet. The lasing transition is the 3d94d (J = 0) → 3d94p (J = 1) transition of Ni-like krypton ions at 32.8 nm and is pumped by collisions with hot electrons. The gain dynamics was probed by seeding the amplifier with a high-order harmonic pulse at different delays. The gain duration monotonically decreased from 7 ps to an unprecedented shortness of 450 fs full width at half-maximum as the amplification peak rose from 150 to 1200 with an increase of the plasma density from 3 × 1018 to 1.2 × 1020 cm-3. The integrated energy of the EUV laser pulse was also measured, and found to be around 2 μJ. It is to be noted that in the ASE mode, longer amplifiers were achieved (up to 2 cm), yielding EUV outputs up to 14 μJ.

  12. Self-focusing and its related interactions at very high laser intensities for fast ignition at Osaka University

    International Nuclear Information System (INIS)

    Tanaka, K.A.; Kodama, R.; Izumi, N.; Takahashi, K.; Heya, M.; Fujita, H.; Kato, Y.; Kitagawa, Y.; Mima, K.; Miyanaga, N.; Norimatsu, T.; Sentoku, Y.; Sunahara, A.; Takabe, H.; Yamanaka, T.; Koase, T.; Iwatani, T.; Ohtani, F.; Miyakoshi, T.; Habara, H.; Tanpo, M.; Tohyama, S.; Weber, F.A.; Barbee, T.W.; Dasilva, L.B.; Dasilva, L.B.

    2000-01-01

    At the Institute of Laser Engineering, various type of experiments related to fast ignition were performed with the 12-beam laser system GEKKO XII and the newly added 100 TW beams line. Using both X-ray and UV laser probes, drilling via ponderomotive laser light self-focusing was studied to show drilling well into the overdense plasma over a distance of 100 μm at a self-focused laser intensity of 10 18 W/cm 2 . This type of self-focusing accelerated electrons up to 0.1 to 1 MeV and was also applied to an imploding shell. (authors)

  13. Study of processes of decomposition of modified low-molecular polymer stirosil in the field of intense continuous laser radiation

    Science.gov (United States)

    Zaponov, A. E.; Sakharov, M. V.; Tsibikov, Z. S.

    2018-01-01

    This article covers the theoretical and experimental studies of the processes of modified low-molecular polymer (MLP) stirosil decomposition in the field of intense continuous laser radiation. The mass loss rate of the MLP per unit surface area as a function of average laser radiation power density in the exposure area was obtained, as well as the polymer decomposition depth as a function of laser radiation power density under fixed duration of the laser exposure. To describe the decomposition processes, the calculation model of continuous laser radiation effect on the MLP stirosil was developed and verified with the use of obtained experimental data.

  14. Study of an intense proton beam profiler based on laser absorption; Etude d'un profileur optique de faisceaux intenses de protons par absorption laser

    Energy Technology Data Exchange (ETDEWEB)

    Pottin, B

    2001-10-01

    Among the challenges of high current proton accelerators, the development of new beam diagnostics is of major importance. The main difficulty for these instruments, is the beam power which deteriorates any instruments used to catch it. The chosen detectors are therefore 'non-interceptive systems. After an introduction concerning characteristics of the used accelerator (chapter I), parameters defining a beam of particles are presented (chapter II). Among these ones, the profile is an important beam characteristic for its transport. After the description of the different types of beam profilers, their problematic application to intense beams is discussed. New physical phenomena have to be used for profilers. Thus, we have prospected optical luminescence phenomena. The light produced during the interaction of protons with the residual gas and/or locally injected is a source of informations on beam characteristics. In chapters III and IV, there is an experimental and theoretical analysis of the luminescence. Chapter V is a direct application of spectroscopic measurements to estimate the output of protons with a non-interceptive technique. With the spectral analysis, the idea of a profiler based on laser absorption is developed. This presentation is both theoretical and experimental (chapters 6 and 7). The laser absorption needs the use of metastable states we define in the chapter 6. The evolution of the metastable states, with time and space, has been rigorously studied to discuss the concept of an optical profiler. Chapter VII presents all the necessary instrumentation for the use of a laser and the first measurements with the beam. At the thesis end, the first recorded profile is presented. An experimental critic is presented with a description of the different sources of errors and the proposed cures. (author)

  15. Persistent postoperative pain after cardiac surgery: a systematic review with meta-analysis regarding incidence and pain intensity.

    Science.gov (United States)

    Guimarães-Pereira, Luís; Reis, Pedro; Abelha, Fernando; Azevedo, Luís Filipe; Castro-Lopes, José Manuel

    2017-10-01

    Persistent postoperative pain (PPP) has been described as a complication of cardiac surgery (CS). We aimed to study PPP after CS (PPPCS) by conducting a systematic review of the literature regarding its incidence, intensity, location, and the presence of neuropathic pain, according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses. The review comprised 3 phases: a methodological assessment of 6 different databases identifying potential articles and screening for inclusion criteria by 2 independent reviewers; data extraction; and study quality assessment. Meta-analysis was used to estimate the pooled incidence rates using a random effects model. We have identified 442 potentially relevant studies through database searching. A total of 23 studies (involving 11,057 patients) met our inclusion criteria. Persistent postoperative pain affects 37% patients in the first 6 months after CS, and it remains present more than 2 years after CS in 17%. The reported incidence of PPP during the first 6 months after CS increased in recent years. Globally, approximately half of the patients with PPPCS reported moderate to severe pain. Chest is the main location of PPPCS followed by the leg; neuropathic pain is present in the majority of the patients. This is the first systematic review and meta-analysis to provide estimates regarding incidence and intensity of PPPCS, which elucidates its relevance. There is an urgent need for adequate treatment and follow-up in patients with PPPCS.

  16. Experimental platform for investigations of high-intensity laser plasma interactions in the magnetic field of a pulsed power generator

    Science.gov (United States)

    Ivanov, V. V.; Maximov, A. V.; Swanson, K. J.; Wong, N. L.; Sarkisov, G. S.; Wiewior, P. P.; Astanovitskiy, A. L.; Covington, A. M.

    2018-03-01

    An experimental platform for the studying of high-intensity laser plasma interactions in strong magnetic fields has been developed based on the 1 MA Zebra pulsed power generator coupled with the 50-TW Leopard laser. The Zebra generator produces 100-300 T longitudinal and transverse magnetic fields with different types of loads. The Leopard laser creates plasma at an intensity of 1019 W/cm2 in the magnetic field of coil loads. Focusing and targeting systems are integrated in the vacuum chamber of the pulsed power generator and protected from the plasma debris and strong mechanical shock. The first experiments with plasma at laser intensity >2 × 1018 W/cm2 demonstrated collimation of the laser produced plasma in the axial magnetic field strength >100 T.

  17. Optical Frequency Optimization of a High Intensity Laser Power Beaming System Utilizing VMJ Photovoltaic Cells

    Science.gov (United States)

    Raible, Daniel E.; Dinca, Dragos; Nayfeh, Taysir H.

    2012-01-01

    An effective form of wireless power transmission (WPT) has been developed to enable extended mission durations, increased coverage and added capabilities for both space and terrestrial applications that may benefit from optically delivered electrical energy. The high intensity laser power beaming (HILPB) system enables long range optical 'refueling" of electric platforms such as micro unmanned aerial vehicles (MUAV), airships, robotic exploration missions and spacecraft platforms. To further advance the HILPB technology, the focus of this investigation is to determine the optimal laser wavelength to be used with the HILPB receiver, which utilizes vertical multi-junction (VMJ) photovoltaic cells. Frequency optimization of the laser system is necessary in order to maximize the conversion efficiency at continuous high intensities, and thus increase the delivered power density of the HILPB system. Initial spectral characterizations of the device performed at the NASA Glenn Research Center (GRC) indicate the approximate range of peak optical-to-electrical conversion efficiencies, but these data sets represent transient conditions under lower levels of illumination. Extending these results to high levels of steady state illumination, with attention given to the compatibility of available commercial off-the-shelf semiconductor laser sources and atmospheric transmission constraints is the primary focus of this paper. Experimental hardware results utilizing high power continuous wave (CW) semiconductor lasers at four different operational frequencies near the indicated band gap of the photovoltaic VMJ cells are presented and discussed. In addition, the highest receiver power density achieved to date is demonstrated using a single photovoltaic VMJ cell, which provided an exceptionally high electrical output of 13.6 W/sq cm at an optical-to-electrical conversion efficiency of 24 percent. These results are very promising and scalable, as a potential 1.0 sq m HILPB receiver of

  18. Generation of ultra-intense and ultra-short laser pulses with high temporal contrast

    International Nuclear Information System (INIS)

    Julien, A.

    2006-03-01

    The topic of this thesis work concerns the design and the characterization of an efficient device devoted to the temporal contrast improvement for ultra-intense femtosecond laser pulses. The contrast is defined as the intensity ratio between the main femtosecond pulse and its nanosecond pedestal. This pedestal is the amplified spontaneous emission (ASE), inherent with laser amplification mechanism. The ASE background has dramatic effects for laser-matter interactions on a solid target. The presented work consists in the theoretical and experimental study of a temporal filter based on a third order nonlinear effect acting on the pulse polarization. We have studied several kinds of nonlinear filters. The selected device is based on the process of cross-polarized wave generation (XPW) in crystals with an anisotropic third-order nonlinear susceptibility. This nonlinear filter has been experimented on various femtosecond systems. It allows a contrast improvement of several orders of magnitude, as demonstrated by temporal profiles measurements on a large intensity dynamic. A device to improve the nonlinear process conversion efficiency, it means the filter transmission, has also been achieved. This method is based on constructive interferences between XPW signals generated in different crystals. This setup has made it possible to reach experimentally the maximum theoretical efficiency ( >20%) and in the same time ensures the system stability. At least, we have demonstrated that the filter preserves, or even improves, spectral and spatial qualities of the laser pulse. These results are thus particularly promising and allow contemplating the implementation of the filter in current femtosecond systems. (author)

  19. Self-resonant wakefield excitation by intense laser pulse in plasmas

    International Nuclear Information System (INIS)

    Andreev, N.E.; Pogosova, A.A.; Gorbunov, L.M.; Ramazashvili, R.R.; Kirsanov, V.I.

    1993-01-01

    It is demonstrated by theoretical analysis and numerical calculations that in an underdense plasma the process of three-dimensional evolution of the short and strong laser pulse (with duration equal to several plasma periods) leads to compression and self-modulation of the pulse, so that during a fairly long period of time beats of pulse amplitude generates resonantly a strong and stable plasma wakefield. The intensity of the wake-field is so high that it can provide a new promising outlook for the plasma based accelerator concept. Linear analysis of dispersion relation predicts that taking into account transverse component of wavenumber considerably increases the growth rate of resonance instability of the pulse. The numerical simulations demonstrate that considered self-focusing and resonant-modulation instability are essentially three dimensional processes. Laser field evolution in each transverse cross section of the pulse is synchronized by the regular structure of plasma wave that is excited by the pulse. The considered effect of resonant modulation has a threshold. For the pulses with the intensity below the threshold the refraction dominates and no modulation appears. The studied phenomenon can be referred to as the Self-Resonant Wakefield (SRWF) excitation that is driven by self-focusing and self-modulation of laser pulse with quite a moderate initial duration. In fact, this method of excitation differs from both suggested in Ref.1 (PBWA) and in Refs.2,3 (LWFA), being even more than the combination of these concepts. Unlike the first scheme it does not require initially the two-frequency laser pulse, since the modulation here appears in the most natural way due to evolution of the pulse. In contrast with the LWFA, the considered SRWF generation scheme gives the possibility to raise the intensity of wake-excitation due to pulse self-focusing ( initial stage) and self modulation (second stage)

  20. Assessing Pathologies on Villamayor Stone (salamanca, Spain) by Terrestrial Laser Scanner Intensity Data

    Science.gov (United States)

    García-Talegón, J.; Calabrés, S.; Fernández-Lozano, J.; Iñigo, A. C.; Herrero-Fernández, H.; Arias-Pérez, B.; González-Aguilera, D.

    2015-02-01

    This paper deals with the assessing of pathologies in façades using a variety of intensity data provided by different terrestrial laser scanner. In particular, a complex building built in the Villamayor Stone that is to be candidate as a Global Heritage Stone Resource has been chosen as study case. The Villamayor Stone were quarrying for the construction and ornamentation of monuments in Salamanca, declared World Heritage City by UNESCO in 1988. The objective of this paper is to assess the pathologies of Villamayor Stone and compare the results obtained through the laser techniques with the classical techniques of mapped pathologies (i.e. visual inspection). For that intensity data coming from laser scanners will be used as non-destructive techniques applied to the façades and several retired plaques (after of building restoration) of Villamayor Stone with pathologies (fissures, scales, loss of matter, humidity/biological colonization) carried to the laboratory. Subsequently it will perform different comparisons between the accuracy reached with the different sensors and a high precision model setup on laboratory which performs as "ground truth". In particular, the following objectives will be pursued: i) accuracy assessment of the results obtained in in situ and laboratory; ii) an automation or semi-automation of the detection of pathologies in Villamayor Stone; iii) discriminate the different types of Villamayor Stone used in the façades in function of the radiometric response; iv) establish a methodology for detection and assessing of pathologies based on laser scanner intensity data applied to monuments and modern buildings built in Villamayor Stone.

  1. Generation of shock fronts in the interaction of the short pulses of intense laser light in supercritical plasma

    International Nuclear Information System (INIS)

    Lopez V, V.E.

    2004-01-01

    these being of important consequence in the effective absorption of the energy of a laser in the plasma. In this work we begin with a simulation program of particles that is based on the code ES1 (Electrostatic Program in one dimension) which modified for to implement the initial conditions as well as for diverse diagnostics. This code initializes a system of charged particles to which are applied external electric and magnetic fields. Later on its are analyzed the codes EM1 and EM1BND for periodic systems and enclosed systems. with the presence of electric and magnetic fields, having by this way an electromagnetic program. In the following chapter the energy absorption it is studied for solid densities of plasma with intensities among 10 20 and 10 21 W/cm 2 simulations made by J. Denavit in 1992. One of the results but important it corresponds to the case of an intensity pulse of 10 21 W/cm 2 and a wavelength of 0.8 μ m with normal incidence in a sheet of carbon in which the ions acquire speeds ∼ 10 8 m/s. The energy of the electrons is ∼ 20 keV having in this case an absorption of ∼ 1%. This efficiency increases to intensities but high. It is presented this way results of shock fronts under certain parameters. For finish, each one of the subroutines of the Program ES1 was studied (Electrostatic, 1-dimension), which is explained in the chapter 2, where the phase space diagram is used to study the dynamics of the particles. Once explained the structure of the program it will continue to make simulations changing certain parameters, to obtain by this way a diagnostic of the interaction physics. (Author)

  2. Transverse Dynamics and Energy Tuning of Fast Electrons Generated in Sub-Relativistic Intensity Laser Pulse Interaction with Plasmas

    OpenAIRE

    Mori, M.; Kando, M.; Daito, I.; Kotaki, H.; Hayashi, Y.; Yamazaki, A.; Ogura, K.; Sagisaka, A.; Koga, J.; Nakajima, K.; Daido, H.; Bulanov, S. V.; Kimura, T.

    2006-01-01

    The regimes of quasi-mono-energetic electron beam generation were experimentally studied in the sub-relativistic intensity laser plasma interaction. The observed electron acceleration regime is unfolded with two-dimensional-particle-in-cell simulations of laser-wakefield generation in the self-modulation regime.

  3. Transverse dynamics and energy tuning of fast electrons generated in sub-relativistic intensity laser pulse interaction with plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Mori, M. [Advanced Photon Research Center, Quantum Beam Science Directorate, Japan Atomic Energy Agency, Umemidai 8-1, Kizu, Kyoto 619-0215 (Japan)]. E-mail: mori.michiaki@jaea.go.jp; Kando, M. [Advanced Photon Research Center, Quantum Beam Science Directorate, Japan Atomic Energy Agency, Umemidai 8-1, Kizu, Kyoto 619-0215 (Japan); Daito, I. [Advanced Photon Research Center, Quantum Beam Science Directorate, Japan Atomic Energy Agency, Umemidai 8-1, Kizu, Kyoto 619-0215 (Japan); Kotaki, H. [Advanced Photon Research Center, Quantum Beam Science Directorate, Japan Atomic Energy Agency, Umemidai 8-1, Kizu, Kyoto 619-0215 (Japan); Hayashi, Y. [Advanced Photon Research Center, Quantum Beam Science Directorate, Japan Atomic Energy Agency, Umemidai 8-1, Kizu, Kyoto 619-0215 (Japan); Yamazaki, A. [Advanced Photon Research Center, Quantum Beam Science Directorate, Japan Atomic Energy Agency, Umemidai 8-1, Kizu, Kyoto 619-0215 (Japan); Ogura, K. [Advanced Photon Research Center, Quantum Beam Science Directorate, Japan Atomic Energy Agency, Umemidai 8-1, Kizu, Kyoto 619-0215 (Japan); Sagisaka, A. [Advanced Photon Research Center, Quantum Beam Science Directorate, Japan Atomic Energy Agency, Umemidai 8-1, Kizu, Kyoto 619-0215 (Japan); Koga, J. [Advanced Photon Research Center, Quantum Beam Science Directorate, Japan Atomic Energy Agency, Umemidai 8-1, Kizu, Kyoto 619-0215 (Japan); Nakajima, K. [Advanced Photon Research Center, Quantum Beam Science Directorate, Japan Atomic Energy Agency, Umemidai 8-1, Kizu, Kyoto 619-0215 (Japan); Daido, H. [Advanced Photon Research Center, Quantum Beam Science Directorate, Japan Atomic Energy Agency, Umemidai 8-1, Kizu, Kyoto 619-0215 (Japan); Bulanov, S.V.; Kimura, T. [Advanced Photon Research Center, Quantum Beam Science Directorate, Japan Atomic Energy Agency, Umemidai 8-1, Kizu, Kyoto 619-0215 (Japan)

    2006-07-31

    The regimes of quasi-monoenergetic electron beam generation were experimentally studied in the sub-relativistic intensity laser plasma interaction. The observed electron acceleration regime is unfolded with two-dimensional-particle-in-cell simulations of laser-wakefield generation in the self-modulation regime.

  4. On the multiphoton emission during U.V. and X-ray absorption by atoms in intense laser fields

    International Nuclear Information System (INIS)

    Miranda, L.C.M.

    1981-09-01

    A discussion of the u.v. and x-ray absorption cross section by a hydrogen atom in the presence of an intense i.r. laser field is presented, taking into account the influence of laser field on the electronic states. (Author) [pt

  5. Multiply ionization of diethyl ether clusters by 532 nm nanosecond laser: The influence of laser intensity and the electron energy distribution

    International Nuclear Information System (INIS)

    Zhang Nazhen; Wang Weiguo; Zhao Wuduo; Han Fenglei; Li Haiyang

    2010-01-01

    Graphical abstract: The formation mechanism for multiply charged ions (C q+ and O q+ (q = 2-4)) were investigated experimentally and theoretically using a dual polarity time-of-flight mass spectrometer when diethyl ether clusters interacted with nanosecond laser pulse. - Abstract: The formation mechanism for multiply charged ions (C q+ and O q+ (q = 2-4)) were investigated using a dual polarity time-of-flight mass spectrometer when diethyl ether clusters interacted with nanosecond laser pulse. The signal intensity of multiply charged ions and electron energy was measured experimentally. It was shown that the intensity of multiply charged ions increased about 50 times when laser intensity increased from 7.6 x 10 9 to 7.0 x 10 10 W/cm 2 , then saturated as laser intensity increased further. It is interesting that the evolution of the mean value of electron energy was same to that of multiply charged ions. The theoretical calculation showed the ionization potential of atomic ions could be significantly decreased due to the effect of Coulomb screening especially at low laser intensity. It indicated that the electron ionization combined with Coulomb screening effect could explain the production of multiply charged ions in nanosecond laser field.

  6. Intensity phase coherence in three-mode Fabry-Pacute erot lasers

    International Nuclear Information System (INIS)

    Nguyen, B.A.; Mandel, P.

    1996-01-01

    We study analytically the intensity phase coherence in a three-mode Fabry-Pacute erot laser. We consider in detail the case of a central mode with maximum gain and two side modes with smaller but equal gains. This laser is characterized by three relaxation oscillation frequencies Ω R double-prime approx-gt Ω L1 double-prime approx-gt Ω L2 double-prime . In the framework of a linearized theory, the laser dynamics is, respectively, inphased and perfectly antiphased at Ω R double-prime and Ω L2 double-prime , irrespective of the modal gains. At Ω L1 double-prime the antiphase is only partial if the side mode gains are smaller than the central mode gain. Analytic gain- and pump-dependent relations between the three frequencies and between the heights of the peaks in the power spectra at these frequencies are established. We also derive universal relations between the peaks of the power spectra of the modal and the total intensities at the same frequencies that do not involve any parameter at all. copyright 1996 The American Physical Society

  7. Probing ultrafast dynamics of solid-density plasma generated by high-contrast intense laser pulses

    Science.gov (United States)

    Jana, Kamalesh; Blackman, David R.; Shaikh, Moniruzzaman; Lad, Amit D.; Sarkar, Deep; Dey, Indranuj; Robinson, Alex P. L.; Pasley, John; Ravindra Kumar, G.

    2018-01-01

    We present ultrafast dynamics of solid-density plasma created by high-contrast (picosecond contrast ˜10-9), high-intensity (˜4 × 1018 W/cm2) laser pulses using time-resolved pump-probe Doppler spectrometry. Experiments show a rapid rise in blue-shift at early time delay (2-4.3 ps) followed by a rapid fall (4.3-8.3 ps) and then a slow rise in blue-shift at later time delays (>8.3 ps). Simulations show that the early-time observations, specifically the absence of any red-shifting of the reflected probe, can only be reproduced if the front surface is unperturbed by the laser pre-pulse at the moment that the high intensity pulse arrives. A flexible diagnostic which is capable of diagnosing the presence of low-levels of pre-plasma formation would be useful for potential applications in laser-produced proton and ion production, such as cancer therapy and security imaging.

  8. Development of the theragnostic optical system for a high-intensity laser therapy (HILT).

    Science.gov (United States)

    Lee, Sangkwan; Kim, Tae-Hoon; Youn, Jong-In

    2014-09-01

    Recently, high-intensity laser therapy (HILT) has been introduced for muscle disorders, but its efficacy has not been confirmed due to the absence of quantitative assessments and treatment feedback data in real-time. In this clinical study, a theragnostic optical system comprised of a high-intensity laser and a non-invasive optical monitoring system was developed to assess spasticity. To avoid interference between the two different light sources, the therapeutic wavelength for HILT was selected at 808 nm, one of the isosbestic points. The monitoring system based on a near-infrared spectroscopy (NIRS) was utilized for measuring hemoglobin concentrations according to a modified Beer-Lambert's law. The transitory HILT effect was evaluated from patients experiencing spasticity after stroke. Our results showed the proportionate relationship between manual muscle testing grades and the HILT effect on hemiplegic patients. The developed system proved to be useful for the simultaneous assessment and treatment of spasticity, and it holds promise for real-time monitoring of hemoglobin concentrations during laser therapy.

  9. Incidence and Risk Factors of Retinopathy of Prematurity in Two Neonatal Intensive Care Units in North and South China

    Science.gov (United States)

    Chen, Yi; Xun, Deng; Wang, Ya-Cong; Wang, Bin; Geng, Shao-Hui; Chen, Hui; Li, Yan-Tao; Li, Xiao-Xin

    2015-01-01

    Background: To investigate the incidence and risk factors of retinopathy of prematurity (ROP) in two Neonatal Intensive Care Units in North and South of China, respectively. Methods: We studied data concerning 472 infants with gestational age (GA) ≤34 weeks or birth weight (BW) ≤2000 g who were admitted to the Zhujiang Hospital of Southern Medical University and the Fourth Hospital of Shijiazhuang between January 1, 2011 and December 31, 2011. Clinical information about perinatal neonates was collected and was confirmed by reviewing medical charts. The incidence and severity of ROP were assessed in the screened population. Main outcome measures are the incidence and severity of ROP. The relationship of clinical risk factors and the development of ROP were analyzed. Results: The overall incidence of ROP was 12.7%, and the overall incidence of type 1 ROP was 2.3%; 9.4% of infants in Zhujiang Hospital had ROP compared to 15.0% infants in the Fourth Hospital of Shijiazhuang developed ROP, and the difference is statistically significant. ROP was significantly associated with GA (odds ratio [OR]: 0.77 [0.62–0.95], P = 0.015), BW (OR: 0.998 [0.996–0.999], P = 0.008), maternal supplemental oxygen administration before and during delivery (OR: 4.27 [1.21–15.10], P = 0.024) and preeclampsia (OR: 6.07 [1.73–21.36] P = 0.005). The risk factors for ROP are different in two hospitals. In Zhujiang Hospital, BW is the independent risk factors for ROP while GA, BW and preeclampsia in the Fourth Hospital in Shijiazhuang Conclusions: Retinopathy of prematurity incidence is different based on area. Incidence of ROP is still high in China. More efforts need to prevent ROP. PMID:25836612

  10. Incidence and long-term outcomes of adult patients with diabetic ketoacidosis admitted to intensive care: A retrospective cohort study.

    Science.gov (United States)

    Ramaesh, Aksha

    2016-08-01

    Diabetic ketoacidosis is a life-threatening but avoidable complication of diabetes mellitus often managed in intensive care units. The risk of emergency hospital readmission in patients surviving an intensive care unit episode of diabetic ketoacidosis is unknown. We aimed to report the cumulative incidence of emergency hospital readmission and costs in all patients surviving an intensive care unit episode of diabetic ketoacidosis in Scotland. We used a national six-year cohort of survivors of first diabetic ketoacidosis admissions to Scottish intensive care units (1 January 2005-31 December 2010) identified in the Scottish Intensive Care Society Audit Group registry linked to acute hospital and death records (follow-up censored 31 December 2010). Diabetic ketoacidosis-related emergency readmissions were identified using International Classification of Disease-10 codes. During the study period, 386 patients were admitted to intensive care units in Scotland with diabetic ketoacidosis (admission rate 1.5/100,000 Scottish population). Median age was 44 (IQR 29-56); 51% male; 55% required no organ support on admission. Mortality after intensive care unit admission was 8% at 30 days, 18% at one year, and 35% at five years. A total of 349 patients survived their first intensive care unit diabetic ketoacidosis admission [mean (SD) age 42.5 (18.1) years; 50.4% women; 46.1% required ≥1 organ support]. Following hospital discharge, cumulative incidence of 90-day, one-year, and five-year diabetic ketoacidosis readmission (all-cause readmission) was 13.8% (31.8%), 29.7% (58.9%) and 46.4% (82.6%). Diabetic ketoacidosis in patients requiring intensive care unit admission is associated with high risk of long-term mortality and high hospital costs. An understanding of the precipitating causes of diabetic ketoacidosis in patients admitted to intensive care units may allow patients who are at high risk to be targeted, potentially reducing future morbidity and the substantial burden

  11. Acceleration of Charged Particles by High Intensity Few-Cycle Laser Pulses

    CERN Document Server

    Schramm, Ulrich; Geissler, Michael; Grüner, Florian; Habs, Dietrich; Karsch, Stefan; Krausz, Ferenc; Meyer-ter-Vehn, J; Schmid, K; Schreiber, J; Tsakiris, George; Veisz, Laszlo; Witte, Klaus

    2005-01-01

    Only recently a breakthrough in laser plasma acceleration has been achieved with the observation of intense (nC) mono-energetic (10% relative width) electron beams in the 100MeV energy range.* Above the wave-breaking threshold the electrons are trapped and accelerated in a single wake of the laser pulse, called bubble, according to PIC simulations.** However, pulse energis varied from shot-to-shot in the experiments. At the MPQ Garching we prepare the stable acceleration of electrons by this bubble regime by the use of 10TW few-cycle laser pulse. As the pulse lenght of 5-10fs remains below the plasma period also at higher plama densities, we expect the scheme to be more stable and efficient. The status of the experiment will be reported. Further, we exploit a colliding beam setup existing at the Jena multi TW laser system for the investigation of the positron generation in the electron-electron collision or in the collision of hard X-rays resulting from Thomson backscattering. The presentation of results on h...

  12. Emission spectra from super-critical rippled plasma density profiles illuminated by intense laser pulses

    International Nuclear Information System (INIS)

    Ondarza R, R.; Boyd, T.J.M.

    2000-01-01

    High-order harmonic emission from the interaction of intense femtosecond laser pulses with super-critical plasmas characterized by a rippled density profile at the vacuum-plasma interface has been observed from particle-in-cell (PIC) simulations. A plasma simulation box several laser wavelengths in extent was prepared with a rippled density of a fraction of a laser wavelength. Emission spectra at the very initial stage of the interaction were recorded with spectral characteristics dissimilar to those previously reported in the literature. The reflected light spectra were characterized by a strong emission at the plasma line and by a series of harmonics at multiples of the ripple frequency. Harmonic spectra were obtained for different values of the plasma ripple frequency. In all cases the harmonics were emitted at the precise multiple harmonic number of the ripple frequency. Another important feature apparent from the simulations was that the emission peaks appeared to havea complex structure as compared with those for unrippled plasmas. For the cases when the plasma was rippled the peaks that corresponded to the multiples of the rippled density typically showed a double peak for the first few harmonics. The reflected emission plots for the main laser pulse showed strong emission at the plasma frequency and at multiples of that frequency as reported by the authors in the literature. (Author)

  13. Laser-induced photo emission detection: data acquisition based on light intensity counting

    Science.gov (United States)

    Yulianto, N.; Yudasari, N.; Putri, K. Y.

    2017-04-01

    Laser Induced Breakdown Detection (LIBD) is one of the quantification techniques for colloids. There are two ways of detection in LIBD: optical detection and acoustic detection. LIBD is based on the detection of plasma emission due to the interaction between particle and laser beam. In this research, the changing of light intensity during plasma formations was detected by a photodiode sensor. A photo emission data acquisition system was built to collect and transform them into digital counts. The real-time system used data acquisition device National Instrument DAQ 6009 and LABVIEW software. The system has been tested on distilled water and tap water samples. The result showed 99.8% accuracy by using counting technique in comparison to the acoustic detection with sample rate of 10 Hz, thus the acquisition system can be applied as an alternative method to the existing LIBD acquisition system.

  14. Detection and quantification of dental plaque based on laser-induced autofluorescence intensity ratio values.

    Science.gov (United States)

    Joseph, Betsy; Prasanth, Chandra Sekhar; Jayanthi, Jayaraj L; Presanthila, Janam; Subhash, Narayanan

    2015-04-01

    The aim of this study was to evaluate the applicability of laser-induced autofluorescence (LIAF) spectroscopy to detect and quantify dental plaque. LIAF spectra were recorded in situ from dental plaque (0–3 grades of plaque index) in 300 patients with 404 nm diode laser excitation. The fluorescence intensity ratio of the emission peaks was calculated from the LIAF spectral data following which their scatter plots were drawn and the area under the receiver operating characteristics were calculated. The LIAF spectrum of clinically invisible grade-1 plaque showed a prominent emission peak at 510 nm with a satellite peak around 630 nm in contrast to grade 0 that has a single peak around 500 nm. The fluorescence intensity ratio (F510/F630) has a decreasing trend with increase in plaque grade and the ratio values show statistically significant differences (p<0.01) between different grades. An overall sensitivity and specificity of 100% each was achieved for discrimination between grade-0 and grade-1 plaque. The clinical significance of this study is that the diagnostic algorithm developed based on fluorescence spectral intensity ratio (F510/F630) would be useful to precisely identify minute amounts of plaque without the need for disclosing solutions and to convince patients of the need for proper oral hygiene and homecare practices.

  15. Development of a laser ion source for production of high-intensity heavy-ion beams

    Science.gov (United States)

    Kashiwagi, H.; Yamada, K.; Kurashima, S.

    2017-09-01

    A laser ion source has been developed as a high-intensity source for the ion implanter and the single pulsed beam of the azimuthally varying field cyclotron at TIARA. Highly charged beams of C5+ and C6+ ions and low-charged beams of heavy ions such as C, Al, Ti, Cu, Au, and Pt are required for the single-pulse acceleration in the cyclotron and for the ion implanter, respectively. In the vacuum chamber of the ion source, a target holder on a three-dimensional linear-motion stage provides a fresh surface for each laser shot. A large-sized target with a maximum size of 300 mm × 135 mm is mounted on the holder for long-term operation. The ion current (ion charge flux) in the laser-produced plasma is measured by a Faraday cup and time-of-flight spectra of each charge state are measured using a 90° cylindrical electrostatic analyzer just behind the Faraday cup. Carbon-plasma-generation experiments indicate that the source produces intense high- and low-charged pulsed ion beams. At a laser energy of 483 mJ (2.3 × 1013 W/cm2), average C6+ current of 13 mA and average C5+ current of 23 mA were obtained over the required time duration for single-pulse acceleration in the cyclotron (49 ns for C6+ and 80 ns for C5+). Furthermore, at 45 mJ (2.1 × 1012 W/cm2), an average C2+ current of 1.6 mA over 0.88 μs is obtained.

  16. Incidence of infection for preterm twins cared for in cobedding in the neonatal intensive-care unit.

    Science.gov (United States)

    LaMar, Kim; Dowling, Donna A

    2006-01-01

    To describe the incidence of infection in a group of cobedded preterm twin infants and compare it to the incidence of infection in a cohort of preterm twin infants cared for in the same institution prior to the onset of cobedding. Retrospective descriptive design. Tertiary, referral neonatal intensive-care unit in the Midwest. Preterm twin infants between 23 and 35 weeks gestational age. Data from 1997 to 2001 (cobedding) compared to data from 1992 to 1996 (no cobedding). Infection as evidenced by positive blood, cerebrospinal fluid, or urine culture or radiographic evidence of pneumonia or necrotizing enterocolitis. Independent samples t test found the cobedded and non-cobedded infants to be homogenous in demographic data. A 2-way analysis of variance demonstrated no significant effects for cobedded infants on number of sepsis evaluations or number of positive blood cultures. There was a statistically significant difference for number of positive blood cultures at discharge reflecting the increased number of positive blood cultures in the non-cobedded infants. Finally, there were no statistically significant differences found between cobedded and non-cobedded for the presence of pneumonia or necrotizing enterocolitis. Cobedding of preterm twins cared for in the intensive-care nursery was not associated with an increased incidence of infection. Prospective studies are needed on cobedding before a change in practice is implemented.

  17. Quasi-classical model of non-destructive wavepacket manipulation by intense ultrashort nonresonant laser pulses

    International Nuclear Information System (INIS)

    Bryan, W A; Nemeth, G R A J; Calvert, C R; King, R B; Greenwood, J B; Williams, I D; Newell, W R

    2010-01-01

    A quasi-classical model (QCM) of nuclear wavepacket generation, modification and imaging by three intense ultrafast near-infrared laser pulses has been developed. Intensities in excess of 10 13 W cm -2 are studied, the laser radiation is non-resonant and pulse durations are in the few-cycle regime, hence significantly removed from the conditions typical of coherent control and femtochemistry. The 1sσ ground state of the D 2 precursor is projected onto the available electronic states in D 2 + (1sσ g ground and 2pσ u dissociative) and D + +D + (Coulomb explosion) by tunnel ionization by an ultrashort 'pump' pulse, and relative populations are found numerically. A generalized non-adiabatic treatment allows the dependence of the initial vibrational population distribution on laser intensity to be calculated. The wavepacket is approximated as a classical ensemble of particles moving on the 1sσ g potential energy surface (PES), and hence follow trajectories of different amplitudes and frequencies depending on the initial vibrational state. The 'control' pulse introduces a time-dependent polarization of the molecular orbital, causing the PES to be modified according to the dynamic Stark effect and the transition dipole. The trajectories adjust in amplitude, frequency and phase-offset as work is done on or by the resulting force; comparing the perturbed and unperturbed trajectories allows the final vibrational state populations and phases to be determined. The action of the 'probe' pulse is represented by a discrete internuclear boundary, such that elements of the ensemble at a larger internuclear separation are assumed to be photodissociated. The vibrational populations predicted by the QCM are compared to recent quantum simulations (Niederhausen and Thumm 2008 Phys. Rev. A 77 013404), and a remarkable agreement has been found. The applicability of this model to femtosecond and attosecond time-scale experiments is discussed and the relation to established

  18. Electron Parametric Instabilities Driven by Relativistically Intense Laser Light in Plasma

    Science.gov (United States)

    Barr, H. C.; Mason, P.; Parr, D. M.

    1999-08-01

    A unified treatment of electron parametric instabilities driven by ultraintense laser light in plasma is described. It is valid for any intensity, polarization, plasma density, and scattering geometry. The method is applied to linearly polarized light in both underdense plasma and overdense plasma accessible by self-induced transparency. New options arise which are hybrids of stimulated Raman scattering, the two plasmon decay, the relativistic modulational and filamentation instabilities, and stimulated harmonic generation. There is vigorous growth over a wide range of wave numbers and harmonics.

  19. Application and generation of large amplitude plasma waves by beating of two intense laser beams

    International Nuclear Information System (INIS)

    Salomaa, R.R.E.; Karttunen, S.J.

    1986-01-01

    Large amplitude plasma waves which can be created by heating two intense laser beams are applicable e.g., to particle acceleration, to induction of plasma currents, and to plasma heating. A central issue in these applications is the nonlinear behaviour of the plasmon. We present a theory model where nonlinear frequency shifts in the plasmon evolution and formation of electromagnetic cascades by inelastic plasmon-photon scattering are accounted. The analytical temporal solution can be constructed in terms of Bessel functions and elliptic integrals. Implications of the results to the applications and further needs to refine the model are discussed. A suggestion for broadening the light spectrum in laserfusion is made. (orig.)

  20. Effects of nuclear vibration on the ionization process of H2+ in ultrashort intense laser field

    International Nuclear Information System (INIS)

    Phan, Ngoc-Loan; Nguyen, Ngoc-Ty; Truong, Tran-Chau

    2015-01-01

    By numerically solving the time-dependent Schrödinger equation, we calculate the ionization probability of a vibrating H 2 + exposed to ultrashort intense laser fields. The results show that the ionization probability increases by time and gets a saturation value. We also find that with some first vibration levels, the ionization probability from a higher vibration level is larger than that from a lower one. However, with higher vibration levels, at a certain level the ionization probability will take maximum and decrease with next levels. (paper)

  1. Double ionization of molecule H2 in intense ultrashort laser fields

    International Nuclear Information System (INIS)

    Le, Thu-Thuy; Nguyen, Ngoc-Ty

    2015-01-01

    By solving numerically the time-dependent Schrödinger equation (TDSE), we have calculated the double ionization probability when a vibrating hydrogen molecule interacts with intense ultrashort laser pulses. The results show that in the case of vibrating nuclei the double ionization probability is higher than that of the fixed nuclei. Additionally, the double ionization probability is larger if the molecule is vibrating in a higher level. This is due to the decreasing of ionization potential when the inter-nuclei separation increases. (paper)

  2. On the importance of damping phenomena in clusters irradiated by intense laser fields

    International Nuclear Information System (INIS)

    Megi, F; Belkacem, M; Bouchene, M A; Suraud, E; Zwicknagel, G

    2003-01-01

    We study the dynamics of large clusters irradiated by intense and short laser pulses, within the framework of the nanoplasma model. Particular attention is paid to the influence of electron-surface collisions, which have not been considered in previous versions of the model. We show that they dominate inverse bremsstrahlung collisions when plasmon resonance occurs. The dynamics of the cluster changes considerably and the predictions of the model are significantly modified. Moreover, there is no evidence for the presence of highly charged ions and the hydrodynamic pressure is found to be smaller than the Coulomb one

  3. Synthesis of polyynes by intense femtosecond laser irradiation of SWCNTs suspended in methanol

    Science.gov (United States)

    Zhao, Junwei; Zhang, Yifan; Fang, Yanghao; Fan, Zhengfu; Ma, Guohong; Liu, Yi; Zhao, Xinluo

    2017-08-01

    Polyyne samples C2nH2 (n = 4-6) were synthesized by irradiating single-wall carbon nanotubes in methanol with intense femtosecond laser pulses. For obtaining isolated polyynes (C8H2, C10H2, and C12H2), the original solution was separated by high performance liquid chromatography. The surface-enhanced Raman scattering spectra of isolated polyynes in Ag colloid have been investigated with naturally drying time, and clear peaks in the region of β band for the isolated C8H2 were observed at 1910 and 1958 cm-1 in the damp-dried Ag colloid samples for the first time.

  4. Target surface area effects on hot electron dynamics from high intensity laser-plasma interactions

    Science.gov (United States)

    Zulick, C.; Raymond, A.; McKelvey, A.; Chvykov, V.; Maksimchuk, A.; Thomas, A. G. R.; Willingale, L.; Yanovsky, V.; Krushelnick, K.

    2016-06-01

    Reduced surface area targets were studied using an ultra-high intensity femtosecond laser in order to determine the effect of electron sheath field confinement on electron dynamics. X-ray emission due to energetic electrons was imaged using a {K}α imaging crystal. Electrons were observed to travel along the surface of wire targets, and were slowed mainly by the induced fields. Targets with reduced surface areas were correlated with increased hot electron densities and proton energies. Hybrid Vlasov-Fokker-Planck simulations demonstrated increased electric sheath field strength in reduced surface area targets.

  5. Influence of the incidence angle on the morphology of enamel and dentin under Er:YAG laser irradiation; Estudo da influencia da angulacao do feixe laser na morfologia de esmalte e dentina irradiados com laser de Er:YAG

    Energy Technology Data Exchange (ETDEWEB)

    Junqueira Junior, Duilio Naves

    2002-07-01

    The purpose of this study is to make an in vitro evaluation, using scanning electron microscopy, of the influence of the laser beam irradiation angle on the enamel and dentin morphology. These tissues were both irradiated by Er:YAG Laser, with the same energy parameter. Twenty-four incisive bovine teeth were used, separated in eight groups, four of enamel, and four of dentin, with three specimens in each group. Each specimen was submitted to three laser applications, varying the incidence angle, between the laser and the tooth surface, at 90, 50 and 20 degrees. The applied frequency was 2 Hz, with 20 pulses in each application. The KaVo Key Laser 3 was employed, wavelength at 2940 nm, adjustable energy from 40 to 600 mJ and repetition rate from 1 to 25 Hz. The groups were distributed according to the energy parameter as follows - enamel: 250 mJ; 300 mJ; 350 mJ and 400 mJ; dentin: 200 mJ; 250 mJ; 300 mJ and 350 mJ. The results evidenced the Laser incidence angle importance; it is an essential parameter in the protocol of utilization and it should not be disregarded. The observations of this study allow to conclude that the Laser incidence angle has direct influence on the morphological aspect of the alterations produced in enamel and dentin. (author)

  6. Incidence and Outcomes of Anterior Chamber Gas Bubble during Femtosecond Flap Creation for Laser-Assisted In Situ Keratomileusis

    Directory of Open Access Journals (Sweden)

    Sloan W. Rush

    2015-01-01

    Full Text Available Purpose. To report the incidence and outcomes of anterior chamber gas bubble formation during femtosecond laser flap creation for laser-assisted in situ keratomileusis (LASIK. Methods. The charts of 2,886 consecutive eyes that underwent femtosecond LASIK from May 2011 through August 2014 were retrospectively reviewed. The incidence, preoperative characteristics, intraoperative details, and postoperative outcomes were analyzed in subjects developing anterior chamber gas bubble formation during the procedure. Results. A total of 4 cases (0.14% developed anterior chamber gas bubble formation during femtosecond laser flap creation. In all four cases, the excimer laser was unable to successfully track the pupil immediately following the anterior chamber bubble formation, temporarily postponing the completion of the procedure. There was an ethnicity predilection of anterior chamber gas formation toward Asians (p=0.0055. An uncorrected visual acuity of 20/20 was ultimately achieved in all four cases without further complications. Conclusions. Anterior chamber gas bubble formation during femtosecond laser flap creation for LASIK is an uncommon event that typically results in a delay in treatment completion; nevertheless, it does influence final positive visual outcome.

  7. Incidence and outcome from adult cardiac arrest occurring in the intensive care unit: a systematic review of the literature.

    Science.gov (United States)

    Efendijev, Ilmar; Nurmi, Jouni; Castrén, Maaret; Skrifvars, Markus B

    2014-04-01

    Significant amount of data on the incidence and outcome of out-of-hospital and in-hospital cardiac arrest have been published. Cardiac arrest occurring in the intensive care unit has received less attention. To evaluate and summarize current knowledge of intensive care unit cardiac arrest including quality of data, and results focusing on incidence and patient outcome. We conducted a literature search of the PubMed, CINAHL and Cochrane databases with the following search terms (medical subheadings): heart arrest AND intensive care unit OR critical care OR critical care nursing OR monitored bed OR monitored ward OR monitored patient. We included articles published from the 1st of January 1990 till 31st of December 2012. After exclusion of all duplicates and irrelevant articles we evaluated quality of studies using a predefined quality assessment score and summarized outcome data. The initial search yielded 794 articles of which 780 were excluded. Three papers were added after a manual search of the eligible studies' references. One paper was identified manually from the literature published after our initial search was completed, thus the final sample consisted of 18 papers. Of the studies included thirteen were retrospective, two based on prospective registries and three were focused prospective studies. All except two studies were from a single institution. Six studies reported the incidence of intensive care unit cardiac arrest, which varied from 5.6 to 78.1 cardiac arrests per 1000 intensive care unit admissions. The most frequently reported initial cardiac arrest rhythms were non-shockable. Patient outcome was variable with survival to hospital discharge being in the range of 0-79% and long-term survival ranging from 1 to 69%. Nine studies reported neurological status of survivors, which was mostly favorable, either no neurological sequelae or cerebral performance score mostly of 1-2. Studies focusing on post cardiac surgery patients reported the best long

  8. Controlling double ionization of atoms in an intense bichromatic laser pulse

    International Nuclear Information System (INIS)

    Kamor, A.; Uzer, T.; Mauger, F.; Chandre, C.

    2011-01-01

    We consider the classical dynamics of a two-electron system subjected to an intense bichromatic linearly polarized laser pulse. By varying the parameters of the field, such as the phase lag and the relative amplitude between the two colors of the field, we observe several trends from the statistical analysis of a large ensemble of trajectories initially in the ground-state energy of the helium atom: high sensitivity of the sequential double-ionization component, low sensitivity of the intensities where nonsequential double ionization occurs, while the corresponding yields can vary drastically. All these trends hold irrespective of which parameter is varied: the phase lag or the relative amplitude. We rationalize these observations by an analysis of the phase-space structures that drive the dynamics of this system and determine the extent of double ionization. These trends turn out to be mainly regulated by the dynamics of the inner electron.

  9. Ab initio calculation of the thermodynamic properties of InSb under intense laser irradiation

    International Nuclear Information System (INIS)

    Feng, ShiQuan; Cheng, XinLu; Zhao, JianLing; Zhang, Hong

    2013-01-01

    In this paper, phonon spectra of InSb at different electronic temperatures are presented. Based on the phonon dispersion relationship, we further perform a theoretical investigation of the thermodynamic properties of InSb under intense laser irradiation. The phonon entropy, phonon heat capacity, and phonon contribution to Helmholtz free energy and internal energy of InSb are calculated as functions of temperature at different electronic temperatures. The abrupt change in the phonon entropy- temperature curve from T e = 0.75 to 1.0 eV provides an indication of InSb undergoing a phase transition from solid to liquid. It can be considered as a collateral evidence of non-thermal melting for InSb under intense electronic excitation effect

  10. Ab initio calculation of the thermodynamic properties of InSb under intense laser irradiation

    Science.gov (United States)

    Feng, ShiQuan; Zhao, JianLing; Cheng, XinLu; Zhang, Hong

    2013-07-01

    In this paper, phonon spectra of InSb at different electronic temperatures are presented. Based on the phonon dispersion relationship, we further perform a theoretical investigation of the thermodynamic properties of InSb under intense laser irradiation. The phonon entropy, phonon heat capacity, and phonon contribution to Helmholtz free energy and internal energy of InSb are calculated as functions of temperature at different electronic temperatures. The abrupt change in the phonon entropy- temperature curve from Te = 0.75 to 1.0 eV provides an indication of InSb undergoing a phase transition from solid to liquid. It can be considered as a collateral evidence of non-thermal melting for InSb under intense electronic excitation effect.

  11. Single mode operation in a pulsed Ti:sapphire laser oscillator with a grazing-incidence four-mirror cavity

    CERN Document Server

    Ko, D K; Binks, D J; Gloster, L A W; King, T A

    1998-01-01

    We demonstrate stable single mode operation in a pulsed Ti:sapphire laser oscillator with a novel grazing-incidence four-mirror coupled cavity. This cavity consists of a grating, a gain medium, and four mirrors and, therefore, has a four-arm interferometer configuration. Through the interferometric effect, we could suppress the adjacent modes and obtain stable single mode operation with a bandwidth of < 200 MHz. We also have developed a general analysis of the laser modes and the threshold conditions for configuration and the experimental results agree well with the theoretical predictions.

  12. Comparison of high-intensity laser therapy and ultrasound treatment in the patients with lumbar discopathy.

    Science.gov (United States)

    Boyraz, Ismail; Yildiz, Ahmet; Koc, Bunyamin; Sarman, Hakan

    2015-01-01

    The aim of the present study was to evaluate the efficiency of high intensity laser and ultrasound therapy in patients who were diagnosed with lumbar disc herniation and who were capable of performing physical exercises. 65 patients diagnosed with lumbar disc were included in the study. The patients were randomly divided into three groups: Group 1 received 10 sessions of high intensity laser to the lumbar region, Group 2 received 10 sessions of ultrasound, and Group 3 received medical therapy for 10 days and isometric lumbar exercises. The efficacy of the treatment modalities was compared with the assessment of the patients before the therapy at the end of the therapy, and in third month after the therapy. Comparing the changes between groups, statically significant difference was observed in MH (mental health) parameter before treatment between Groups 1 and 2 and in MH parameter and VAS score in third month of the therapy between Groups 2 and 3. However, the evaluation of the patients after ten days of treatment did not show significant differences between the groups compared to baseline values. We found that HILT, ultrasound, and exercise were efficient therapies for lumbar discopathy but HILT and ultrasound had longer effect on some parameters.

  13. Comparison of High-Intensity Laser Therapy and Ultrasound Treatment in the Patients with Lumbar Discopathy

    Directory of Open Access Journals (Sweden)

    Ismail Boyraz

    2015-01-01

    Full Text Available The aim of the present study was to evaluate the efficiency of high intensity laser and ultrasound therapy in patients who were diagnosed with lumbar disc herniation and who were capable of performing physical exercises. 65 patients diagnosed with lumbar disc were included in the study. The patients were randomly divided into three groups: Group 1 received 10 sessions of high intensity laser to the lumbar region, Group 2 received 10 sessions of ultrasound, and Group 3 received medical therapy for 10 days and isometric lumbar exercises. The efficacy of the treatment modalities was compared with the assessment of the patients before the therapy at the end of the therapy, and in third month after the therapy. Comparing the changes between groups, statically significant difference was observed in MH (mental health parameter before treatment between Groups 1 and 2 and in MH parameter and VAS score in third month of the therapy between Groups 2 and 3. However, the evaluation of the patients after ten days of treatment did not show significant differences between the groups compared to baseline values. We found that HILT, ultrasound, and exercise were efficient therapies for lumbar discopathy but HILT and ultrasound had longer effect on some parameters.

  14. The impact of normal saline on the incidence of exposure keratopathy in patients hospitalized in intensive care units

    Directory of Open Access Journals (Sweden)

    Zohreh Davoodabady

    2018-01-01

    Full Text Available Background: Patients in the intensive care unit (ICU have impaired ocular protective mechanisms that lead to an increased risk of ocular surface diseases including exposure keratopathy (EK. This study was designed to evaluate the effect of normal saline (NS on the incidence and severity of EK in critically ill patients. Materials and Methods: This single-blind randomized controlled trial was conducted on 50 patients admitted to ICUs. The participants were selected through purposive sampling. One eye of each patient, randomly was allocated to intervention group (standard care with NS and the other eye to control group (standard care. In each patient, one eye (control group randomly received standard care and the other eye (intervention group received NS every 6 h in addition to standard care. The presence and severity of keratopathy was assessed daily until day 7 of hospitalization using fluorescein and an ophthalmoscope with cobalt blue filter. Chi-square test was used for statistical analysis in SPSS software. Results: Before the study ( first day there were no statistically significant differences in the incidence and severity of EK between groups. Although, the incidence and severity of EK after the study (7th day was higher in the intervention group compared to the control group, their differences were not statistically significant. Although, the incidence and severity of EK, from the 1st day until the 7th, increased within both groups, this increase was statistically significant only in the intervention (NS group. Conclusions: The use of NS as eye care in patients hospitalized in ICUs can increase the incidence and severity of EK and is not recommended.

  15. Changes in the Incidence of Candidiasis in Neonatal Intensive Care Units

    Science.gov (United States)

    Aliaga, Sofia; Clark, Reese H.; Laughon, Matthew; Walsh, Thomas J.; Hope, William W.; Benjamin, Daniel K.; Kaufman, David; Arrieta, Antonio; Benjamin, Daniel K.

    2014-01-01

    OBJECTIVE: Neonatal invasive candidiasis is associated with significant morbidity and mortality. We describe the association between invasive candidiasis and changes in use of antifungal prophylaxis, empirical antifungal therapy, and broad-spectrum antibacterial antibiotics over time. METHODS: We examined data from 709 325 infants at 322 NICUs managed by the Pediatrix Medical Group from 1997 to 2010. We determined the cumulative incidence of invasive candidiasis and use of antifungal prophylaxis, broad-spectrum antibacterial antibiotics, and empirical antifungal therapy by year. RESULTS: We identified 2063 (0.3%) infants with 2101 episodes of invasive candidiasis. Over the study period, the annual incidence of invasive candidiasis decreased from 3.6 episodes per 1000 patients to 1.4 episodes per 1000 patients among all infants, from 24.2 to 11.6 episodes per 1000 patients among infants with a birth weight of 750–999 g, and from 82.7 to 23.8 episodes per 1000 patients among infants with a birth weight candidiasis in the NICU decreased over the 14-year study period. Increased use of fluconazole prophylaxis and empirical antifungal therapy, along with decreased use of broad-spectrum antibacterial antibiotics, may have contributed to this observation. PMID:24446441

  16. INCIDENCE OF INFECTION ASSOCIATED TO CENTRAL VENOUS CATHETERS IN A NEONATAL INTENSIVE CARE UNIT

    Directory of Open Access Journals (Sweden)

    Adriana Teixeira Reis

    2011-07-01

    Full Text Available Trata-se de um estudo transversal e retrospectivo que objetivou  identificar o tipo de cateter venoso central (CVC mais utilizado na Unidade de Terapia Intensiva Neonatal (UTIN de um hospital público universitário do estado do Rio de Janeiro, estratificado por peso de nascimento e apresentar as densidades de incidência de infecção associadas aos dispositivos.  Os dados foram coletados através de análise documental nos meses de junho e julho de 2008, referentes ao período de julho a dezembro de 2007, totalizando um registro de 712 cateteres-dia. Foi verificado o cateter central de inserção periférica (CCIP/PICC como o dispositivo mais utilizado na unidade, seguido do cateter venoso umbilical e da dissecção venosa. A densidade de incidência das infecções primárias da corrente sanguínea foi cerca de oito vezes maior nos recém-nascidos com peso ≤ 1.500g, sendo o cateter umbilical o dispositivo mais associado a essas infecções.

  17. Comparative study of diode laser versus neodymium-yttrium aluminum: garnet laser versus intense pulsed light for the treatment of hirsutism

    Directory of Open Access Journals (Sweden)

    Neerja Puri

    2015-01-01

    Full Text Available Introduction: Lasers are widely used for the treatment of hirsutism. But the choice of the right laser for the right skin type is very important. Before starting with laser therapy, it is important to assess the skin type, the fluence, the pulse duration and the type of laser to be used. Aims: To compare the efficacy and side effects of Diode laser, Neodymium-yttrium aluminum - garnet (Nd: YAG laser and intense pulsed light (IPL on 30 female patients of hirsutism. Materials and Methods: Thirty female patients with hirsutism were selected for a randomised controlled study. The patients were divided into three groups of 10 patients each. In group I patients diode laser was used, in group II patients long pulsed Nd: YAG laser was used and in group III, IPL was used. The patients were evaluated and result graded according to a 4-point scale as excellent, >75% reduction; good, 50-75% reduction; fair; 25-50% reduction; and poor, <25% reduction in hair density. Results: It was seen that the percentage of hair reduction after two sessions of treatment was maximum (40% in the diode laser group, followed by 35% hair reduction in the Nd: Yag laser group and 10% hair reduction in the IPL group. The percentage of hair reduction after four sessions of treatment was maximum (64% in the diode laser group, followed by 62% hair reduction in the Nd: Yag laser group and 48% hair reduction in the IPL group. The percentage of hair reduction after eight sessions of treatment was maximum (92% in the diode laser group, followed by 90% hair reduction in the Nd: YAG group and 70% hair reduction in the IPL group. Conclusions: To conclude for the Indian skin with dark hairs, the diode laser still stands the test of time. But, since the diode laser has a narrow margin of safety, proper pre and post-procedure cooling is recommended. Although, the side effects of Nd: YAG laser are less as compared to the diode laser, it is less efficacious as compared to the diode laser.

  18. Morphological and animal study of titanium dental implant surface induced by blasting and high intensity pulsed Nd-glass laser

    Energy Technology Data Exchange (ETDEWEB)

    Karacs, A.; Joob Fancsaly, A.; Divinyi, T.; Peto, G.; Kovach, G

    2003-03-03

    Machined dental implants of titanium were blasted with Al{sub 2}O{sub 3} powder of 250 {mu}m particle size. The surface was irradiated in vacuum with a Nd-glass pulsed laser at 1-3 J pulse energies. The morphology of these surfaces was investigated by optical and scanning electron microscopy. The low intensity laser treatment resulted in some new irregularities but we can observe the blasted elements and caves from the original blasted surface too. The blasted elements were washed out and a new surface morphology was induced by the high intensity laser treatment. The osseointegration was determined by measuring the removal torque in the rabbit experiments. The results were referred to the as machined surface. The blasting slightly increased the removal torque. The laser irradiation increased the removal torque significantly, more by a factor of 1.5 compared to the reference at high laser intensity. This shows the influence of the surface morphology on the osseointegration. The combination of the blasting with the laser irradiation is considered a method to determine the morphology optimal for the osseointegration because the pulsed laser irradiation caused modifications of the micrometer sized surface elements and decreases possible surface contamination.

  19. Morphological and animal study of titanium dental implant surface induced by blasting and high intensity pulsed Nd-glass laser

    International Nuclear Information System (INIS)

    Karacs, A.; Joob Fancsaly, A.; Divinyi, T.; Peto, G.; Kovach, G.

    2003-01-01

    Machined dental implants of titanium were blasted with Al 2 O 3 powder of 250 μm particle size. The surface was irradiated in vacuum with a Nd-glass pulsed laser at 1-3 J pulse energies. The morphology of these surfaces was investigated by optical and scanning electron microscopy. The low intensity laser treatment resulted in some new irregularities but we can observe the blasted elements and caves from the original blasted surface too. The blasted elements were washed out and a new surface morphology was induced by the high intensity laser treatment. The osseointegration was determined by measuring the removal torque in the rabbit experiments. The results were referred to the as machined surface. The blasting slightly increased the removal torque. The laser irradiation increased the removal torque significantly, more by a factor of 1.5 compared to the reference at high laser intensity. This shows the influence of the surface morphology on the osseointegration. The combination of the blasting with the laser irradiation is considered a method to determine the morphology optimal for the osseointegration because the pulsed laser irradiation caused modifications of the micrometer sized surface elements and decreases possible surface contamination

  20. Comparison of Square and Radial Geometries for High Intensity Laser Power Beaming Receivers

    Science.gov (United States)

    Raible, Daniel E.; Fast, Brian R.; Dinca, Dragos; Nayfeh, Taysir H.; Jalics, Andrew K.

    2012-01-01

    In an effort to further advance a realizable form of wireless power transmission (WPT), high intensity laser power beaming (HILPB) has been developed for both space and terrestrial applications. Unique optical-to-electrical receivers are employed with near infrared (IR-A) continuous-wave (CW) semiconductor lasers to experimentally investigate the HILPB system. In this paper, parasitic feedback, uneven illumination and the implications of receiver array geometries are considered and experimental hardware results for HILPB are presented. The TEM00 Gaussian energy profile of the laser beam presents a challenge to the effectiveness of the receiver to perform efficient photoelectric conversion, due to the resulting non-uniform illumination of the photovoltaic cell arrays. In this investigation, the geometry of the receiver is considered as a technique to tailor the receiver design to accommodate the Gaussian beam profile, and in doing so it is demonstrated that such a methodology is successful in generating bulk receiver output power levels reaching 25 W from 7.2 sq cm of photovoltaic cells. These results are scalable, and may be realized by implementing receiver arraying and utilizing higher power source lasers to achieve a 1.0 sq m receiver capable of generating over 30 kW of electrical power. This type of system would enable long range optical "refueling" of electric platforms, such as MUAV s, airships, robotic exploration missions and provide power to spacecraft platforms which may utilize it to drive electric means of propulsion. In addition, a smaller HILPB receiver aperture size could be utilized to establish a robust optical communications link within environments containing high levels of background radiance, to achieve high signal to noise ratios.

  1. Tailoring Ion Charge State Distribution in Tetramethyltin Clusters under Influence of Moderate Intensity Picosecond Laser Pulse: Role of Laser Wavelength and Rate of Energy Deposition

    Science.gov (United States)

    Sharma, Pramod; Das, Soumitra; Vatsa, Rajesh K.

    2017-07-01

    Systematic manipulation of ionic-outcome in laser-cluster interaction process has been realized for studies carried out on tetramethyltin (TMT) clusters under picosecond laser conditions, determined by choice of laser wavelength and intensity. As a function of laser intensity, TMT clusters exhibit gradual enhancement in overall ionization of its cluster constituents, up to a saturation level of ionization, which was distinct for different wavelengths (266, 355, and 532 nm). Simultaneously, systematic appearance of higher multiply charged atomic ions and shift in relative abundance of multiply charged atomic ions towards higher charge state was observed, using time-of-flight mass spectrometer. At saturation level, multiply charged atomic ions up to (C2+, Sn2+) at 266 nm, (C4+, Sn4+) at 355 nm, and (C4+, Sn6+) at 532 nm were detected. In addition, at 355 nm intra-cluster ion chemistry within the ionized cluster leads to generation of molecular hydrogen ion (H2 +) and triatomic molecular hydrogen ion (H3 +). Generation of multiply charged atomic ions is ascribed to efficient coupling of laser pulse with the cluster media, facilitated by inner-ionized electrons produced within the cluster, at the leading edge of laser pulse. Role of inner-ionized electrons is authenticated by measuring kinetic energy distribution of electrons liberated upon disintegration of excessively ionized cluster, under the influence of picosecond laser pulse.

  2. EVALUATION OF THE THERAPEUTIC EFFICACY OF HIGH-INTENSITY PULSED-PERIODIC LASER RADIATION (CLINICAL AND EXPERIMENTAL OBSERVATIONS

    Directory of Open Access Journals (Sweden)

    V. V. Sokolov

    2016-01-01

    Full Text Available From the experience of clinical observations, we have shown a high therapeutic effectiveness of the medical laser KULON-MED in: cosmetics, non-cancer inflammatory diseases of the gastrointestinal tract and cancer (cancer of the stomach and colon as at different wavelengths, and with different types of photosensitizers. In the area of anti-tumor photodynamic therapy (PDT, based on experimental studies, we have showed the high antitumor (sarcoma S‑37 effectiveness of the laser (with the inhibition of tumor growth of up to 100% for repetitively pulsed irradiation mode, and for mode fractionation doses laser radiation. In addition, significant differences are shown in the effectiveness of anticancer PDT methods in the application of high-intensity lasers, continuous and pulsed caused fundamental properties of laser radiation characteristics – time structure of the radiation pulses. Thus, for the first time we have shown that the time of high-intensity laser pulses structure significantly affects therapeutic efficacy laser system, and hence on the mechanisms of interaction of laser radiation with biological tissue.

  3. Effect of nocturnal sound reduction on the incidence of delirium in intensive care unit patients: An interrupted time series analysis.

    Science.gov (United States)

    van de Pol, Ineke; van Iterson, Mat; Maaskant, Jolanda

    2017-08-01

    Delirium in critically-ill patients is a common multifactorial disorder that is associated with various negative outcomes. It is assumed that sleep disturbances can result in an increased risk of delirium. This study hypothesized that implementing a protocol that reduces overall nocturnal sound levels improves quality of sleep and reduces the incidence of delirium in Intensive Care Unit (ICU) patients. This interrupted time series study was performed in an adult mixed medical and surgical 24-bed ICU. A pre-intervention group of 211 patients was compared with a post-intervention group of 210 patients after implementation of a nocturnal sound-reduction protocol. Primary outcome measures were incidence of delirium, measured by the Intensive Care Delirium Screening Checklist (ICDSC) and quality of sleep, measured by the Richards-Campbell Sleep Questionnaire (RCSQ). Secondary outcome measures were use of sleep-inducing medication, delirium treatment medication, and patient-perceived nocturnal noise. A significant difference in slope in the percentage of delirium was observed between the pre- and post-intervention periods (-3.7% per time period, p=0.02). Quality of sleep was unaffected (0.3 per time period, p=0.85). The post-intervention group used significantly less sleep-inducing medication (psound-reduction protocol. However, reported sleep quality did not improve. Copyright © 2017. Published by Elsevier Ltd.

  4. The incidence rate and mortality of malignant brain tumors after 10 years of intensive cell phone use in Taiwan.

    Science.gov (United States)

    Hsu, Min-Huei; Syed-Abdul, Shabbir; Scholl, Jeremiah; Jian, Wen-Shan; Lee, Peisan; Iqbal, Usman; Li, Yu-Chuan

    2013-11-01

    The issue of whether cell phone usage can contribute toward the development of brain tumors has recently been reignited with the International Agency for Research on Cancer classifying radiofrequency electromagnetic fields as 'possibly' carcinogenic to humans in a WHO report. To our knowledge, this is the largest study reporting on the incidence and mortality of malignant brain tumors after long-term use of the cell phone by more than 23 million users. A population-based study was carried out the numbers of cell phone users were collected from the official statistics provided by the National Communication Commission. According to National Cancer Registry, there were 4 incidences and 4 deaths due to malignant neoplasms in Taiwan during the period 2000-2009. The 10 years of observational data show that the intensive user rate of cell phones has had no significant effect on the incidence rate or on the mortality of malignant brain tumors in Taiwan. In conclusion, we do not detect any correlation between the morbidity/mortality of malignant brain tumors and cell phone use in Taiwan. We thus urge international agencies to publish only confirmatory reports with more applicable conclusions in public. This will help spare the public from unnecessary worries.

  5. Worrisome trends in incidence and mortality of candidemia in intensive care units (Paris area, 2002-2010).

    Science.gov (United States)

    Lortholary, Olivier; Renaudat, Charlotte; Sitbon, Karine; Madec, Yoann; Denoeud-Ndam, Lise; Wolff, Michel; Fontanet, Arnaud; Bretagne, Stéphane; Dromer, Françoise

    2014-09-01

    To analyze trends in incidence and mortality of candidemia in intensive care units (ICUs) vs. non-ICU hospitalized patients and to determine risk factors for infection by specific species and for death. Active hospital-based surveillance program of incident episodes of candidemia due to common species in 24 tertiary care hospitals in the Paris area, France between October 2002 and September 2010. Among 2,507 adult cases included, 2,571 Candida isolates were collected and species were C. albicans (56 %), C. glabrata (18.6 %), C. parapsilosis (11.5 %), C. tropicalis (9.3 %), C. krusei (2.9 %), and C. kefyr (1.8 %). Candidemia occurred in ICU in 1,206 patients (48.1 %). When comparing ICU vs. non-ICU patients, the former had significantly more frequent surgery during the past 30 days, were more often preexposed to fluconazole and treated with echinocandin, and were less frequently infected with C. parapsilosis. Risk factors and age remained unchanged during the study period. A significant increased incidence in the overall population and ICU was found. The odds of being infected with a given species in ICU was influenced by risk factors and preexposure to fluconazole and caspofungin. Echinocandins initial therapy increased over time in ICU (4.6 % first year of study, to 48.5 % last year of study, p candidemia and death in ICU patients in the Paris area.

  6. Disposable diapers decrease the incidence of neonatal infections compared to cloth diapers in a level II neonatal intensive care unit.

    Science.gov (United States)

    Babu, M Chowdary; Tandur, Baswaraj; Sharma, Deepak; Murki, Srinivas

    2015-08-01

    To study whether disposable diapers decrease the incidence of neonatal infections compared with cloth diapers in a level II neonatal intensive care unit (NICU). All neonates admitted to the NICU and having duration of stay >48 h were enrolled. Those babies with signs and symptoms of infection were screened with septic screen and/or blood culture. The primary outcome of the study was incidence of probable sepsis. Of 253 babies enrolled in the study period, probable sepsis was present in 101 (39.9%) infants in the total study group and was higher in cloth diaper group as compared with disposable diaper group (p = 0.01). For an average NICU stay of 6 days, cloth diapers would cost Rs. 241 vs. Rs. 162 for disposable diaper for any infant. Usage of disposable diapers decrease the incidence of probable sepsis in babies admitted to NICU. It is also cost effective to use disposable diapers in the NICU. © The Author [2015]. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  7. Multi-charged heavy ion acceleration from the ultra-intense short pulse laser system interacting with the metal target.

    Science.gov (United States)

    Nishiuchi, M; Sakaki, H; Maeda, S; Sagisaka, A; Pirozhkov, A S; Pikuz, T; Faenov, A; Ogura, K; Kanasaki, M; Matsukawa, K; Kusumoto, T; Tao, A; Fukami, T; Esirkepov, T; Koga, J; Kiriyama, H; Okada, H; Shimomura, T; Tanoue, M; Nakai, Y; Fukuda, Y; Sakai, S; Tamura, J; Nishio, K; Sako, H; Kando, M; Yamauchi, T; Watanabe, Y; Bulanov, S V; Kondo, K

    2014-02-01

    Experimental demonstration of multi-charged heavy ion acceleration from the interaction between the ultra-intense short pulse laser system and the metal target is presented. Al ions are accelerated up to 12 MeV/u (324 MeV total energy). To our knowledge, this is far the highest energy ever reported for the case of acceleration of the heavy ions produced by the laser energy of 200 TW class Ti:sapphire laser system. Adding to that, thanks to the extraordinary high intensity laser field of ∼10(21) W cm(-2), the accelerated ions are almost fully stripped, having high charge to mass ratio (Q/M).

  8. Numerical investigation of the threshold intensity dependence on gas pressure in the breakdown of xenon by different laser wavelengths

    Science.gov (United States)

    Gamal, Yosr E. E.-D.; Abd El Hameid Mahmoud, Mohamed; Dawood, Nagia D. A.

    2014-07-01

    We report a theoretical analysis of the measurements that carried out to study the breakdown of xenon gas over a wide pressure range induced by laser source operating at different wavelengths. The study provided an investigation of the effect of laser wavelength as well as gas pressure on the physical processes associated with this phenomenon. To this aim a modified electron cascade model is applied. The model based on the numerical solution of the time dependent Boltzmann equation for the electron energy distribution function (EEDF) simultaneously with a set of rate equations which describe the rate of change of the formed excited states population. Comparison between the calculated and measured threshold intensities for the experimentally tested laser wavelengths and gas pressure range is obtained. Furthermore computations of the EEDF and its parameters showed the actual correlation between the gain and loss processes which determine the threshold breakdown intensity of xenon and the two experimentally tested parameters; laser wavelength and gas pressure.

  9. Incidence of moisture-associated skin damage in an intensive care unit.

    Science.gov (United States)

    Valls-Matarín, J; Del Cotillo-Fuente, M; Ribal-Prior, R; Pujol-Vila, M; Sandalinas-Mulero, I

    To determine the incidence of moisture-associated skin damage (MASD) in the nappy area, identify predisposing factors and know the preventive measures and nursing records. Descriptive longitudinal study (June 2014-April 2015) in a general ICU. Patients whose stay >48hours and without skin lesions were included. The skin was assessed daily until the appearance of MASD, discharge or a maximum of 14 days. Demographics, stay, MASD type, incontinence, number and consistency of stools, obesity, Braden scale and prevention were recorded. 145 patients (66.2% male) were studied, median age was 69 (P 25 =56.5, P 75 =76) and median length of stay was five days (P 25 =3, P 75 =11.25), 29.9% were obese. Incontinence-associated dermatitis (IAD) was detected in 26.2% and intertriginous dermatitis (ITD) in 15.9%. MASD was recorded in 23.8%. The variables causing IAD to develop were faecal incontinence, number of stools, liquid stools, and stay. Those for ITD were obesity and score on the Braden scale. Multivariate analysis selected faecal incontinence (OR=5.4, CI95%: 1.1-26) and the number of stools (OR=1.1, CI95%:1.0-1.2) as independent variables for developing IAD and obesity (OR=2.8, CI95%:1.0-8.2) and Braden (OR=0.8, CI95%:0.7-1.0) for developing ITD. Prevention to 23.8% of obese and 42.9% of incontinent was performed. There is a high incidence in MASD. Faecal incontinence and higher number of stools are the risk factors for developing IAD. Obesity and a lower score on the Braden scale may affect susceptibility to ITD. Recording of MASD and its prevention in patients at risk is insufficient. Copyright © 2016 Sociedad Española de Enfermería Intensiva y Unidades Coronarias (SEEIUC). Publicado por Elsevier España, S.L.U. All rights reserved.

  10. Increased T2 signal intensity in the distal clavicle: incidence and clinical implications

    International Nuclear Information System (INIS)

    Fiorella, D.; Helms, C.A.; Speer, K.P.

    2000-01-01

    Objective. The objectives of the current study were (1) to quantify the incidence of increased T2 signal in the distal clavicle and (2) to assess the clinical significance of this finding in patients with chronic acromioclavicular (AC) joint pain.Design and patients. Eight patients (five male and three female, 15-41 years of age) with disabling shoulder pain localized to the AC joint and marked increased T2 signal in the distal clavicle are presented. These eight patients underwent MR examination over a 25 month period (August 1996 to September 1998). The dictated reports of all shoulder MR examinations conducted over this same time period were reviewed retrospectively for the presence of signal abnormality in the distal cla-vicle. Clinical data and, in five patients, findings at shoulder arthroscopy or open surgery, were correlated with the results of MR imaging. One patient underwent arthroscopy on both shoulders.Results. The selected eight patients each presented clinically with disabling shoulder pain localized to the AC joint. One patient is presented twice, as both shoulders were symptomatic (n=9). Plain film examination (9/9) failed to indicate a structural cause of shoulder pain in any of the patients. MR examination demonstrated abnormally increased T2 signal in the distal clavicle in all nine cases and no other cause for AC joint pain. Three patients responded to a course of conservative therapy. Six experienced refractory pain despite conservative therapy. Resection of the distal clavicle was performed in five of the six cases. All patients who underwent resection of the distal clavicle experienced complete resolution of AC joint pain. A retrospective review of the dictated reports for all shoulder MR imaging examinations performed at out institution over a 25 month period (August 1996 to September 1998; n=761) demonstrated a 12.5% incidence of abnormally increased T2 signal in the distal clav-icle.Conclusions. Increased T2 signal in the distal clavicle

  11. Increased T2 signal intensity in the distal clavicle: incidence and clinical implications

    Energy Technology Data Exchange (ETDEWEB)

    Fiorella, D.; Helms, C.A. [Dept. of Radiology, Duke Univ., Durham, NC (United States); Speer, K.P. [Dept. of Orthopedic Surgery, Duke Univ., Durham, NC (United States)

    2000-12-01

    Objective. The objectives of the current study were (1) to quantify the incidence of increased T2 signal in the distal clavicle and (2) to assess the clinical significance of this finding in patients with chronic acromioclavicular (AC) joint pain.Design and patients. Eight patients (five male and three female, 15-41 years of age) with disabling shoulder pain localized to the AC joint and marked increased T2 signal in the distal clavicle are presented. These eight patients underwent MR examination over a 25 month period (August 1996 to September 1998). The dictated reports of all shoulder MR examinations conducted over this same time period were reviewed retrospectively for the presence of signal abnormality in the distal cla-vicle. Clinical data and, in five patients, findings at shoulder arthroscopy or open surgery, were correlated with the results of MR imaging. One patient underwent arthroscopy on both shoulders.Results. The selected eight patients each presented clinically with disabling shoulder pain localized to the AC joint. One patient is presented twice, as both shoulders were symptomatic (n=9). Plain film examination (9/9) failed to indicate a structural cause of shoulder pain in any of the patients. MR examination demonstrated abnormally increased T2 signal in the distal clavicle in all nine cases and no other cause for AC joint pain. Three patients responded to a course of conservative therapy. Six experienced refractory pain despite conservative therapy. Resection of the distal clavicle was performed in five of the six cases. All patients who underwent resection of the distal clavicle experienced complete resolution of AC joint pain. A retrospective review of the dictated reports for all shoulder MR imaging examinations performed at out institution over a 25 month period (August 1996 to September 1998; n=761) demonstrated a 12.5% incidence of abnormally increased T2 signal in the distal clav-icle.Conclusions. Increased T2 signal in the distal clavicle

  12. Communication: Ionization and Coulomb explosion of xenon clusters by intense, few-cycle laser pulses.

    Science.gov (United States)

    Mathur, D; Rajgara, F A

    2010-08-14

    Intense, ultrashort pulses of 800 nm laser light (12 fs, approximately 4 optical cycles) of peak intensity 5x10(14) W cm(-2) have been used to irradiate gas-phase Xe(n) clusters (n=500-25,000) so as to induce multiple ionization and subsequent Coulomb explosion. Energy distributions of exploding ions are measured in the few-cycle domain that does not allow sufficient time for the cluster to undergo expansion due to Coulombic and hydrodynamic pressures. This results in overall dynamics that appear to be significantly different to those in the many-cycle regime. One manifestation is that the maximum ion energies are measured to be much lower than those obtained when longer pulses of the same intensity are used. Ion yields are cluster-size independent but polarization dependent in that they are significantly larger when the polarization is perpendicular to the detection axis than along it. This unexpected behavior is qualitatively rationalized in terms of a spatially anisotropic shielding effect induced by the electronic charge cloud within the cluster.

  13. Comparison between Epidural Block vs. High Intensity Laser Therapy for Controlling Chronic Low Back Pain

    Directory of Open Access Journals (Sweden)

    Badiozaman Radpay

    2016-01-01

    Full Text Available Background: Chronic low back pain is among a wide spread musculoskeletal conditions that is related to disability with high economy cost. There are several treatment modalities for controlling chronic low back pain (CLBP, among them high intensity laser therapy (HILT and epidural blocks (EB use more commonly. This study aimed to evaluate the benefits and hazards of each of these two methods.Materials and Methods: We designed a randomized controlled double blind study during 24 months.101 patients divided in 2 groups (52 in EB and 49 in HILT group. Pain intensity was assessed by using faces pain scales (FPS and LINKERT questionaries' before procedure and during one, four, 12, and 24 weeks after beginning the procedures.Results: There were no differences between two groups in FPS lumber tenderness, straight leg rising test (SLRT, paresthesia, deep tendon reflex (DTR, and imaging changes. Motor problems seem was less in HILT group comparing EB.Conclusion: This study showed both EB and HILT approaches can control the pain intensity and motor activities in CLBP patients. Future studies will clarify the precise importance of each these methods.

  14. Focusing and transport of high-intensity multi-MeV proton bunches from a compact laser-driven source

    Science.gov (United States)

    Busold, S.; Schumacher, D.; Deppert, O.; Brabetz, C.; Frydrych, S.; Kroll, F.; Joost, M.; Al-Omari, H.; Blažević, A.; Zielbauer, B.; Hofmann, I.; Bagnoud, V.; Cowan, T. E.; Roth, M.

    2013-10-01

    Laser ion acceleration provides for compact, high-intensity ion sources in the multi-MeV range. Using a pulsed high-field solenoid, for the first time high-intensity laser-accelerated proton bunches could be selected from the continuous exponential spectrum and delivered to large distances, containing more than 109 particles in a narrow energy interval around a central energy of 9.4 MeV and showing ≤30mrad envelope divergence. The bunches of only a few nanoseconds bunch duration were characterized 2.2 m behind the laser-plasma source with respect to arrival time, energy width, and intensity as well as spatial and temporal bunch profile.

  15. Focusing and transport of high-intensity multi-MeV proton bunches from a compact laser-driven source

    Directory of Open Access Journals (Sweden)

    S. Busold

    2013-10-01

    Full Text Available Laser ion acceleration provides for compact, high-intensity ion sources in the multi-MeV range. Using a pulsed high-field solenoid, for the first time high-intensity laser-accelerated proton bunches could be selected from the continuous exponential spectrum and delivered to large distances, containing more than 10^{9} particles in a narrow energy interval around a central energy of 9.4 MeV and showing ≤30  mrad envelope divergence. The bunches of only a few nanoseconds bunch duration were characterized 2.2 m behind the laser-plasma source with respect to arrival time, energy width, and intensity as well as spatial and temporal bunch profile.

  16. Photoionization cross-section of donor impurity in spherical quantum dots under electric and intense laser fields

    International Nuclear Information System (INIS)

    Burileanu, L.M.

    2014-01-01

    Using a perturbative method we have investigated the behavior of the binding energy and photoionization cross-section of a donor impurity in spherical GaAs–GaAlAs quantum dots under the influence of electric and intense high-frequency laser fields. The dependencies of the binding energy and photoionization cross-section on electric and laser field strength, dot radius and impurity position were investigated. Our results show that the amplitude of photoionization cross-section grows with the dot radius increase and the peak of the cross-section blue shifts with the laser intensity increment. We have found that the binding energy is not a monotonically function of laser intensity: it decreases or increases depending on electric field regime. The studied effects are even more pronounced as the quantum dot radius is smaller. -- Highlights: • A photoionization cross-section study in quantum dots under laser and electric fields. • The photoionization cross-section peaks are red shifted by the electric field. • The photoionization cross-section peaks are blue shifted by the laser field. • The combined effects of applied fields strongly affect the binding energy

  17. Analytical model for electromagnetic radiation from a wakefield excited by intense short laser pulses in an unmagnetized plasma

    Energy Technology Data Exchange (ETDEWEB)

    Chen Ziyu; Chen Shi; Dan Jiakun; Li Jianfeng; Peng Qixian, E-mail: ziyuch@gmail.com [Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang 621900 (China)

    2011-10-15

    A simple one-dimensional analytical model for electromagnetic emission from an unmagnetized wakefield excited by an intense short-pulse laser in the nonlinear regime has been developed in this paper. The expressions for the spectral and angular distributions of the radiation have been derived. The model suggests that the origin of the radiation can be attributed to the violent sudden acceleration of plasma electrons experiencing the accelerating potential of the laser wakefield. The radiation process could help to provide a qualitative interpretation of existing experimental results, and offers useful information for future laser wakefield experiments.

  18. Analytical model for electromagnetic radiation from a wakefield excited by intense short laser pulses in an unmagnetized plasma

    International Nuclear Information System (INIS)

    Chen Ziyu; Chen Shi; Dan Jiakun; Li Jianfeng; Peng Qixian

    2011-01-01

    A simple one-dimensional analytical model for electromagnetic emission from an unmagnetized wakefield excited by an intense short-pulse laser in the nonlinear regime has been developed in this paper. The expressions for the spectral and angular distributions of the radiation have been derived. The model suggests that the origin of the radiation can be attributed to the violent sudden acceleration of plasma electrons experiencing the accelerating potential of the laser wakefield. The radiation process could help to provide a qualitative interpretation of existing experimental results, and offers useful information for future laser wakefield experiments.

  19. Generation of quantum beams in large clusters irradiated by Super-Intense, high - contrast femtosecond laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Faenov, A.Ya.; Pikuz, T.A. [Quantum Beam Science Directorate, Japan Atomic Energy Agency, Kyoto (Japan); Joint Institute for High Temperatures RAS, Moscow (Russian Federation); Fukuda, Y.; Nakamura, T.; Bulanov, S.V.; Hayashi, Y.; Kotaki, H.; Pirozhkov, A.S.; Kawachi, T.; Kando, M. [Quantum Beam Science Directorate, Japan Atomic Energy Agency, Kyoto (Japan); Skobelev, I.Yu.; Fortov, V.E. [Joint Institute for High Temperatures RAS, Moscow (Russian Federation); Chen, L.M.; Zhang, L.; Yan, W.C.; Yuan, D.W.; Mao, J.Y.; Wang, Z.H.; Ma, J.L. [Institute of Physics, Chinese Academy of Sciences, Beijing (China); Kato, Y. [The Graduate School for the Creation of New Photonics Industries, Hamamatsu, Shizuoka (Japan)

    2013-02-15

    A short review of our experimental studies on generation of photon and particle beams in submicron clusters irradiated by intense, high-contrast ({proportional_to} 10{sup 8}-10{sup 10}) femtosecond laser pulses is presented. It is shown that highlyefficient laser-cluster interaction allows creating bright sources of X-ray, high-energy electron and ion beams. The examples of applications of femtosecond-laser-produced cluster plasmas (FLPCP) for X-ray and ion beams radiography are presented. (copyright 2013 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  20. Vibronic Rabi resonances in harmonic and hard-wall ion traps for arbitrary laser intensity and detuning

    International Nuclear Information System (INIS)

    Lizuain, I.; Muga, J. G.

    2007-01-01

    We investigate laser-driven vibronic transitions of a single two-level atomic ion in harmonic and hard-wall traps. In the Lamb-Dicke regime, for tuned or detuned lasers with respect to the internal frequency of the ion, and weak or strong laser intensities, the vibronic transitions occur at well-isolated Rabi resonances, where the detuning-adapted Rabi frequency coincides with the transition frequency between vibrational modes. These vibronic resonances are characterized as avoided crossings of the dressed levels (eigenvalues of the full Hamiltonian). Their peculiarities due to symmetry constraints and trapping potential are also examined

  1. MeV proton acceleration at kHz repetition rate from ultra-intense laser liquid interaction

    Science.gov (United States)

    Morrison, John T.; Feister, Scott; Frische, Kyle D.; Austin, Drake R.; Ngirmang, Gregory K.; Murphy, Neil R.; Orban, Chris; Chowdhury, Enam A.; Roquemore, W. M.

    2018-02-01

    Laser acceleration of ions to ≳MeV energies has been achieved on a variety of Petawatt laser systems, raising the prospect of ion beam applications using compact ultra-intense laser technology. However, translation from proof-of-concept laser experiment into real-world application requires MeV-scale ion energies and an appreciable repetition rate (>Hz). We demonstrate, for the first time, proton acceleration up to 2 MeV energies at a kHz repetition rate using a milli-joule-class short-pulse laser system. In these experiments, 5 mJ of ultrashort-pulse laser energy is delivered at an intensity near 5× {10}18 {{W}} {cm}}-2 onto a thin-sheet, liquid-density target. Key to this effort is a flowing liquid ethylene glycol target formed in vacuum with thicknesses down to 400 nm and full recovery at 70 μs, suggesting its potential use at ≫kHz rate. Novel detectors and experimental methods tailored to high-repetition-rate ion acceleration by lasers were essential to this study and are described. In addition, particle-in-cell simulations of the laser–plasma interaction show good agreement with experimental observations.

  2. Clinical evaluation of dentin hypersensitivity treatment with the low intensity Gallium-Aluminum-Arsenide laser - AsGaAl.

    Science.gov (United States)

    Gentile, Luciana Chucre; Greghi, Sebastião Luiz Aguiar

    2004-12-01

    The dentin hypersensitivity is a painful condition rather prevalent in the general population. There are several ways of treatment for such condition, including the low intensity lasers. The proposal of this study was to verify the effectiveness of the Gallium-Aluminum-Arsenide diode laser in the treatment of this painful condition, using a placebo as control. Thirty-two patients were selected, 22 females and 10 males, with ages ranging from 20 to 52 years old. The 32 patients were randomly distributed into two groups, treated and control; the sample consisted of 68 teeth, 35 in the treated group and 33 in the control group. The treated group was exposed to six laser applications with intervals from 48 to 72 hours, and the control group received, as placebo, applications of a curing light. A significant reduction was observed in the pain condition between the initial phase and after six laser applications; however, such reduction could also be observed for the control group exposed to the placebo. Therapy with the low intensity Gallium-Aluminum-Arsenide laser - AsGaAl induces a statistically significant reduction in the painful condition after each application and between the beginning and end of treatment, although there was no statistically significant difference between the treated group (laser) and the control group (placebo) at the end of treatment and after the mediate evaluation results (after 6 weeks), this way impairing the real measurement of laser effectiveness and placebo effect.

  3. Numerical simulations of single and double ionization of H2 in short intense laser pulses

    International Nuclear Information System (INIS)

    Baier, Silvio

    2008-01-01

    Rescattering is the dominant process leading to double ionization in atoms and molecules interacting with linearly polarized laser pulses with wavelengths around 800 nm and in an intensity regime of 10 14 to 10 15 W/cm 2 . Using numerical integrations of the two-electron Schroedinger equation of the Hydrogen molecule in appropriate reduced dimensions two mechanisms, namely correlated emission of the electrons and excitation followed by field ionization after rescattering, could be identified and characterized. With the help of a planar model in reduced dimensions these mechanisms were quantitatively compared by their dependence on the molecular alignment with respect to the polarization axis. Two additional mechanisms, which are also related to rescattering, could be identified as well. (orig.)

  4. Experimental observation of parametric instabilities at laser intensities relevant for shock ignition

    Czech Academy of Sciences Publication Activity Database

    Cristoforetti, G.; Colaïtis, A.; Antonelli, L.; Atzeni, S.; Baffigi, F.; Batani, D.; Barbato, F.; Boutoux, G.; Dudžák, Roman; Koester, P.; Krouský, Eduard; Labate, L.; Nicolaï, P.; Renner, Oldřich; Skoric, M.; Tikhonchuk, V.; Gizzi, L.A.

    2017-01-01

    Roč. 117, č. 3 (2017), č. článku 35001. ISSN 0295-5075 R&D Projects: GA MŠk(CZ) LC528; GA MŠk LM2010014; GA MŠk EF15_008/0000162 EU Projects: European Commission(XE) 633053 - EUROfusion Grant - others:EU - ICT(XE) COST Action IC1208; ELI Beamlines(XE) CZ.02.1.01/0.0/0.0/15_008/0000162 Institutional support: RVO:61389021 ; RVO:68378271 Keywords : laser intensity regime * Stimulated Brillouin Scattering (SBS) * Stimulated Raman Scattering (SRS) * Two-Plasmon Decay (TPD) Subject RIV: BL - Plasma and Gas Discharge Physics; BL - Plasma and Gas Discharge Physics (FZU-D) OBOR OECD: Fluids and plasma physics (including surface physics); Fluids and plasma physics (including surface physics) (FZU-D) Impact factor: 1.957, year: 2016 https:// doi . org /10.1209/0295-5075/117/35001

  5. Observation of neutrons in the interaction of high intensity laser pulses with solid targets

    Directory of Open Access Journals (Sweden)

    Tayyab M.

    2013-11-01

    Full Text Available We report an experimental study on fusion neutron generation from deuterated polyethylene (CD2n target irradiated by 400 mJ, 45 femtosecond laser pulses focused to an intensity >1018 W/cm2. The fusion neutron signal has been detected using a CR-39 detector, a bubble detector, and also confirmed by a neutron time of flight detector. In addition, substantial bremsstrahlung X-ray radiation of MeV energy was also observed. These MeV X-rays have been used to trigger (γ, n reaction in Be and Cu targets and the resulting photo-neutrons were detected on a BF3 and a bubble detector.

  6. Experimental observation of strong radiation reaction in the field of an ultra-intense laser

    Science.gov (United States)

    Sarri, G.; Poder, K.; Tamburini, M.; di Piazza, A.; Keitel, C. H.; Zepf, M.

    2017-10-01

    Describing radiation reaction in an electromagnetic field is one of the most fundamental outstanding problems in electrodynamics. It consists of determining the dynamics of a charged particle fully taking into account self-forces (loosely referred to as radiation reaction) resulting from the radiation fields generated by the particle whilst it is accelerated. Radiation reaction has only been invoked to explain the radiative properties of powerful astrophysical objects, such as pulsars and quasars. From a theoretical standpoint, this phenomenon is subject of fervent debate and this impasse is worsened by the lack of experimental data, due to extremely high fields required to trigger these effects. Here, we report on the first experimental evidence of strong radiation reaction during the interaction of an ultra-relativistic electron beam with an intense laser field, beyond a purely classical description.

  7. Traditional Chinese medicine on the effects of low-intensity laser irradiation on cells

    Science.gov (United States)

    Liu, Timon C.; Duan, Rui; Li, Yan; Cai, Xiongwei

    2002-04-01

    In previous paper, process-specific times (PSTs) are defined by use of molecular reaction dynamics and time quantum theory established by TCY Liu et al., and the change of PSTs representing two weakly nonlinearly coupled bio-processes are shown to be parallel, which is called time parallel principle (TPP). The PST of a physiological process (PP) is called physiological time (PT). After the PTs of two PPs are compared with their Yin-Yang property of traditional Chinese medicine (TCM), the PST model of Yin and Yang (YPTM) was put forward: for two related processes, the process of small PST is Yin, and the other process is Yang. The Yin-Yang parallel principle (YPP) was put forward in terms of YPTM and TPP, which is the fundamental principle of TCM. In this paper, we apply it to study TCM on the effects of low intensity laser on cells, and successfully explained observed phenomena.

  8. Amplification properties of vacuum ultraviolet Ar*2 produced by infrared high-intensity laser.

    Science.gov (United States)

    Kaku, Masanori; Harano, Shinya; Matsumoto, Ryota; Katto, Masahito; Kubodera, Shoichi

    2011-07-15

    We report optical amplification of Ar(2)* at 126 nm, pumped by optical-field-induced ionization (OFI) created by an infrared high-intensity laser. A gain-length product of 0.84 was obtained by using multipass amplification with a vacuum ultraviolet (VUV) cavity. The gain-length product was increased up to 4.3 through the use of single-pass amplification with a VUV reflector and a hollow 5.0 cm-long fiber. Similar small signal gain coefficients of 0.84 and 0.86 cm(-1) were obtained in two different experiments, in which OFI Ar plasma gain media were produced in free space filled with Ar and inside an Ar-filled hollow fiber. © 2011 Optical Society of America

  9. Interrogation of orbital structure by elliptically polarized intense femtosecond laser pulses

    International Nuclear Information System (INIS)

    Abu-samha, M.; Madsen, L. B.

    2011-01-01

    We solve the three-dimensional time-dependent Schroedinger equation and present investigations of the imprint of the orbital angular node in photoelectron momentum distributions of an aligned atomic p-type orbital following ionization by an intense elliptically polarized laser pulse of femtosecond duration. We investigate the role of light ellipticity and the alignment angle of the major polarization axis of the external field relative to the probed orbital by studying radial and angular momentum distributions, the latter at a fixed narrow interval of final momenta close to the peak of the photoelectron momentum distribution. In general only the angular distributions carry a clear signature of the orbital symmetry. Our study shows that circular polarization gives the most clear imprints of orbital nodes. These findings are insensitive to pulse duration.

  10. Interrogation of orbital structure by elliptically polarized intense femtosecond laser pulses

    DEFF Research Database (Denmark)

    Abu-Samha, Mahmoud; Madsen, Lars Bojer

    2011-01-01

    We solve the three-dimensional time-dependent Schrödinger equation and present investigations of the imprint of the orbital angular node in photoelectron momentum distributions of an aligned atomic p-type orbital following ionization by an intense elliptically polarized laser pulse of femtosecond...... duration. We investigate the role of light ellipticity and the alignment angle of the major polarization axis of the external field relative to the probed orbital by studying radial and angular momentum distributions, the latter at a fixed narrow interval of final momenta close to the peak...... of the photoelectron momentum distribution. In general only the angular distributions carry a clear signature of the orbital symmetry. Our study shows that circular polarization gives the most clear imprints of orbital nodes. These findings are insensitive to pulse duration....

  11. Laser intensity modulated real time monitoring cell growth sensor for bioprocess applications

    Science.gov (United States)

    Kishore, P.; Babu, P. Ravindra; Devi, V. Rama; Maunika, T.; Soujanya, P.; Kishore, P. V. N.; Dinakar, D.

    2016-04-01

    This article proposes an optical method for monitoring the growth of Escherichia coli in Luria Bertani medium and Saccharomyces cereviciae in YPD. Suitable light is selected which on interaction with the analyte under consideration, gets adsorption / scattered. Required electronic circuitry is designed to drive the laser source and to detect the intensity of light using Photo-detector. All these components are embedded and arranged in a proper way and monitored the growth of the microbs in real time. The sensors results are compared with standard techniques such as colorimeter, Nephelometer and hemocytometer. The experimental results are in good agreement with the existed techniques and well suitable for real time monitoring applications of the growth of the microbs.

  12. Formation and fragmentation of quadruply charged molecular ions by intense femtosecond laser pulses.

    Science.gov (United States)

    Yatsuhashi, Tomoyuki; Nakashima, Nobuaki

    2010-07-22

    We investigated the formation and fragmentation of multiply charged molecular ions of several aromatic molecules by intense nonresonant femtosecond laser pulses of 1.4 mum with a 130 fs pulse duration (up to 2 x 10(14) W cm(-2)). Quadruply charged states were produced for 2,3-benzofluorene and triphenylene molecular ion in large abundance, whereas naphthalene and 1,1'-binaphthyl resulted only in up to triply charged molecular ions. The laser wavelength was nonresonant with regard to the electronic transitions of the neutral molecules, and the degree of fragmentation was strongly correlated with the absorption of the singly charged cation radical. Little fragmentation was observed for naphthalene (off-resonant with cation), whereas heavy fragmentation was observed in the case of 1,1'-binaphthyl (resonant with cation). The degree of H(2) (2H) and 2H(2) (4H) elimination from molecular ions increased as the charge states increased in all the molecules examined. A striking difference was found between triply and quadruply charged 2,3-benzofluorene: significant suppression of molecular ions with loss of odd number of hydrogen was observed in the quadruply charged ions. The Coulomb explosion of protons in the quadruply charged state and succeeding fragmentation resulted in the formation of triply charged molecular ions with an odd number of hydrogens. The hydrogen elimination mechanism in the highly charged state is discussed.

  13. Flow angle dependent photoacoustic Doppler power spectra under intensity-modulated continuous wave laser excitation

    Directory of Open Access Journals (Sweden)

    Yu Tong

    2016-02-01

    Full Text Available Photoacoustic Doppler (PAD power spectra showing an evident Doppler shift represent the major characteristics of the continuous wave-excited or burst wave-excited versions of PAD flow measurements. In this paper, the flow angle dependences of the PAD power spectra are investigated using an experiment setup that was established based on intensity-modulated continuous wave laser excitation. The setup has an overall configuration that is similar to a previously reported configuration, but is more sophisticated in that it accurately aligns the laser illumination with the ultrasound detection process, and in that it picks up the correct sample position. In the analysis of the power spectra data, we find that the background power spectra can be extracted by combining the output signals from the two channels of the lock-in amplifier, which is very useful for identification of the PAD power spectra. The power spectra are presented and analyzed in opposite flow directions, at different flow speeds, and at different flow angles. The power spectra at a 90° flow angle show the unique properties of symmetrical shapes due to PAD broadening. For the other flow angles, the smoothed power spectra clearly show a flow angle cosine relationship.

  14. Nonsequential multiphoton double ionization of He in intense laser - a QED approach

    International Nuclear Information System (INIS)

    Bhattacharyya, S.; Mazumder, Mina; Chakrabarti, J.; Faisal, F.H.M.

    2010-01-01

    The non-sequential muItiphoton double ionization (NSDI) of He in intense laser field is not yet completely understood, more so for spin resolved currents. We are tempted to use QED and Feynman diagram to obtain spin polarized currents. Hartree-Fock (HF) ground-state correlated wave function of He atom is considered in circularly polarized laser. In QED approach one of the electrons is directly ionized by photon absorption while the second electron is shaken off due to the change in the internal potential of the atom. In He-atom the two ionized electrons can only be in the singlet spin state. Spin-symmetric and spin-flip transitions are eventually possible for the direct and the shake-off electrons. In an ensemble of (HF type) He-atoms the ionized Volkov electrons may acquire 4 pairs of momenta indicating e-e correlation in the final state. Coulomb correction is taken care off through the Sommerfeld factor

  15. Heavy-Tailed Fluctuations in the Spiking Output Intensity of Semiconductor Lasers with Optical Feedback.

    Directory of Open Access Journals (Sweden)

    Boon Leong Lan

    Full Text Available Although heavy-tailed fluctuations are ubiquitous in complex systems, a good understanding of the mechanisms that generate them is still lacking. Optical complex systems are ideal candidates for investigating heavy-tailed fluctuations, as they allow recording large datasets under controllable experimental conditions. A dynamical regime that has attracted a lot of attention over the years is the so-called low-frequency fluctuations (LFFs of semiconductor lasers with optical feedback. In this regime, the laser output intensity is characterized by abrupt and apparently random dropouts. The statistical analysis of the inter-dropout-intervals (IDIs has provided many useful insights into the underlying dynamics. However, the presence of large temporal fluctuations in the IDI sequence has not yet been investigated. Here, by applying fluctuation analysis we show that the experimental distribution of IDI fluctuations is heavy-tailed, and specifically, is well-modeled by a non-Gaussian stable distribution. We find a good qualitative agreement with simulations of the Lang-Kobayashi model. Moreover, we uncover a transition from a less-heavy-tailed state at low pump current to a more-heavy-tailed state at higher pump current. Our results indicate that fluctuation analysis can be a useful tool for investigating the output signals of complex optical systems; it can be used for detecting underlying regime shifts, for model validation and parameter estimation.

  16. Experimental Evidence of Radiation Reaction in the Collision of a High-Intensity Laser Pulse with a Laser-Wakefield Accelerated Electron Beam

    Directory of Open Access Journals (Sweden)

    J. M. Cole

    2018-02-01

    Full Text Available The dynamics of energetic particles in strong electromagnetic fields can be heavily influenced by the energy loss arising from the emission of radiation during acceleration, known as radiation reaction. When interacting with a high-energy electron beam, today’s lasers are sufficiently intense to explore the transition between the classical and quantum radiation reaction regimes. We present evidence of radiation reaction in the collision of an ultrarelativistic electron beam generated by laser-wakefield acceleration (ϵ>500  MeV with an intense laser pulse (a_{0}>10. We measure an energy loss in the postcollision electron spectrum that is correlated with the detected signal of hard photons (γ rays, consistent with a quantum description of radiation reaction. The generated γ rays have the highest energies yet reported from an all-optical inverse Compton scattering scheme, with critical energy ϵ_{crit}>30  MeV.

  17. Experimental Evidence of Radiation Reaction in the Collision of a High-Intensity Laser Pulse with a Laser-Wakefield Accelerated Electron Beam

    Science.gov (United States)

    Cole, J. M.; Behm, K. T.; Gerstmayr, E.; Blackburn, T. G.; Wood, J. C.; Baird, C. D.; Duff, M. J.; Harvey, C.; Ilderton, A.; Joglekar, A. S.; Krushelnick, K.; Kuschel, S.; Marklund, M.; McKenna, P.; Murphy, C. D.; Poder, K.; Ridgers, C. P.; Samarin, G. M.; Sarri, G.; Symes, D. R.; Thomas, A. G. R.; Warwick, J.; Zepf, M.; Najmudin, Z.; Mangles, S. P. D.

    2018-02-01

    The dynamics of energetic particles in strong electromagnetic fields can be heavily influenced by the energy loss arising from the emission of radiation during acceleration, known as radiation reaction. When interacting with a high-energy electron beam, today's lasers are sufficiently intense to explore the transition between the classical and quantum radiation reaction regimes. We present evidence of radiation reaction in the collision of an ultrarelativistic electron beam generated by laser-wakefield acceleration (ɛ >500 MeV ) with an intense laser pulse (a0>10 ). We measure an energy loss in the postcollision electron spectrum that is correlated with the detected signal of hard photons (γ rays), consistent with a quantum description of radiation reaction. The generated γ rays have the highest energies yet reported from an all-optical inverse Compton scattering scheme, with critical energy ɛcrit>30 MeV .

  18. Incidence of Candida species colonization in neonatal intensive care unit at Riyadh Hospital, Saudi Arabia

    Directory of Open Access Journals (Sweden)

    Mohammed S. Alhussaini

    2016-10-01

    Full Text Available Background: Candida species are important hospital-acquired pathogens in infants admitted to the neonatal intensive care unit (NICU. This study was performed in the NICU of Saudi Arabian Hospital, Riyadh region, KSA to analyze patterns of neonatal Candida colonization as well as to determine the potential risk factors.Methods: Weekly surveillance fungal cultures of anal area, oral cavity, umbilicus and ear canal of neonates were performed from birth until their discharge from the hospital. Colonization was analyzed for timing, site, species, birth weight and gestational age. Potential environmental reservoirs and hands of health care workers (HCWs were also cultured monthly for fungi. Antifungal susceptibility of the identified isolates was also determined.Results: One hundred subjects have been recruited in this study. The overall colonization rate was 51%. Early colonization was found in 27 (27% neonates whereas 24 (24% neonates were lately colonized during their stay in NICU. Colonization was more in preterm neonates than in full and post term. Perianal area and oral cavity were the most frequent colonized sites. C. albicans was the main spp. (58.8% isolated from the neonates followed by C. tropicalis (17.6%, C. glabrata (15.6%, and C. krusei (2%. Of the 51 isolated Candida spp., 68.6% were sensitive to fluconazole, 80% to itraconazole and 64.7% to ketoconazole, while only 33% were sensitive to amphotericin B.Conclusion: Candida has emerged as a common cause of infections in infants admitted to NICU, and C. albicans is the most commonly isolated candidal species. Neonatal infections caused by non- albicans species occur at a later age during their stay in NICU.

  19. Diarréia nosocomial em unidade de terapia intensiva: incidência e fatores de risco Nosocomial diarrhea in the intensive care unit: incidence and risk factors

    Directory of Open Access Journals (Sweden)

    Sérvulo Luiz Borges

    2008-06-01

    Full Text Available RACIONAL: Diarréia nosocomial parece ser comum em unidades de terapia intensiva, embora sua epidemiologia seja pouco documentada em nosso meio. OBJETIVO: Determinar a incidência e fatores de risco de diarréia entre pacientes adultos internados em unidade de terapia intensiva. MÉTODOS: Foram incluídos prospectivamente 457 pacientes no período entre outubro de 2005 e outubro de 2006. Dados demográficos, clínicos e bioquímicos, bem como aspecto e número de evacuações eram registrados diariamente até a saída do paciente do setor. RESULTADOS: Diarréia ocorreu em 135 (29,5% pacientes, durando em média 5,4 dias. O tempo do seu início em relação à internação foi de 17,8 dias e casos similares de diarréia no mesmo período foram registrados em 113 (83,7% pacientes. A mortalidade hospitalar foi maior nos pacientes com diarréia do que naqueles sem esta intercorrência. Na análise multivariada através de modelo de regressão logística, apenas o número de antibióticos (OR 1,65; IC 95% = 1,39-1,95 e o número de dias de antibioticoterapia (OR 1,16; IC 95% = 1,12-1,20 associaram-se estatisticamente com a ocorrência de diarréia. Cada dia de acréscimo a mais da antibioticoterapia aumentou em 16% o risco de diarréia (IC 12% a 20%, enquanto a adição de um antibiótico a mais ao esquema antimicrobiano aumentou as chances de ocorrência de diarréia em 65% (IC 39% a 95%. CONCLUSÃO: A incidência de diarréia nosocomial na unidade de terapia intensiva é elevada (29,5%. Os principais fatores de risco para sua ocorrência foram número de antibióticos prescritos e duração da antibioticoterapia. Além das precauções entéricas, a prescrição judiciosa e limitada de antimicrobianos, provavelmente reduzirá a ocorrência de diarréia neste setor.BACKGROUND: Nosocomial diarrhea seems to be common at intensive care units, although its epidemiology be poorly documented in Brazil. AIM: To determine the incidence and risk factors of

  20. Multiple time scales in modeling the incidence of infections acquired in intensive care units

    Directory of Open Access Journals (Sweden)

    Martin Wolkewitz

    2016-09-01

    Full Text Available Abstract Background When patients are admitted to an intensive care unit (ICU their risk of getting an infection will be highly depend on the length of stay at-risk in the ICU. In addition, risk of infection is likely to vary over calendar time as a result of fluctuations in the prevalence of the pathogen on the ward. Hence risk of infection is expected to depend on two time scales (time in ICU and calendar time as well as competing events (discharge or death and their spatial location. The purpose of this paper is to develop and apply appropriate statistical models for the risk of ICU-acquired infection accounting for multiple time scales, competing risks and the spatial clustering of the data. Methods A multi-center data base from a Spanish surveillance network was used to study the occurrence of an infection due to Methicillin-resistant Staphylococcus aureus (MRSA. The analysis included 84,843 patient admissions between January 2006 and December 2011 from 81 ICUs. Stratified Cox models were used to study multiple time scales while accounting for spatial clustering of the data (patients within ICUs and for death or discharge as competing events for MRSA infection. Results Both time scales, time in ICU and calendar time, are highly associated with the MRSA hazard rate and cumulative risk. When using only one basic time scale, the interpretation and magnitude of several patient-individual risk factors differed. Risk factors concerning the severity of illness were more pronounced when using only calendar time. These differences disappeared when using both time scales simultaneously. Conclusions The time-dependent dynamics of infections is complex and should be studied with models allowing for multiple time scales. For patient individual risk-factors we recommend stratified Cox regression models for competing events with ICU time as the basic time scale and calendar time as a covariate. The inclusion of calendar time and stratification by ICU

  1. Comparative evaluation of the effects of high-intensity and low-intensity laser radiation on microcirculation among patients with knee arthritis

    Science.gov (United States)

    Kulchitskaya, D. B.; Konchugova, T. V.; E Fedorova, N.

    2017-04-01

    Sixty patients with knee arthritis aged from 40 to 75 years old were examined. The patients were randomly divided into two groups: 1st group (30 patients) received high intensity laser radiation; 2nd group (20 patients) received low intensity laser radiation. As a result of the conducted research it was found that high intensity laser radiation is more efficient and leads to more vivid positive changes in the microcirculation of patients with knee arthritis. The changes in microcirculation were based on the normalization of the myogenic and neurogenic tonus of the arterioles, strengthening oscillation of the endothelial range. As a result of local mechanisms activation of tissue blood flow there occurs adequate modulation of the microcirculatory bloodstream, which is aimed at the elimination of congestive phenomena in the capillary and venular level of the microcirculation bloodstream. We should note that in the long-term more significant were the positive changes in the state of the venular level of the microcirculation bloodstream. in constructing both.

  2. Laser-plasma accelerators, acceleration of particles through laser-matter interaction at ultra-high intensity

    International Nuclear Information System (INIS)

    Lefebvre, E.

    2010-01-01

    This series of slides overviews the development of powerful lasers for inertial confinement fusion (Icf) at NIF (National Ignition Facility, Usa) and LMJ (Laser Megajoule, France) facilities. Then the principle of laser wakefield acceleration is presented and the possibility of designing compact accelerators delivering 200 GeV/m while conventional RF accelerators reach only 50 MeV/m, is considered. This technical breakthrough will bring important gains in terms of size, cost and new uses for accelerators. While Icf will use nanosecond (10 -9 s) laser pulses, wakefield accelerators will use femtosecond (10 -15 s) laser pulses which means more power but less energy. The electrons accelerated by laser can produce a multi-MeV X radiation useful for industrial radiography or cancer treatment. (A.C.)

  3. Effects of the low-intensity red laser radiation on the fluoride uptake in enamel. A clinical trial

    International Nuclear Information System (INIS)

    Nakasone, Regina Keiko

    2004-01-01

    Fluoride has been the most important preventive method on development of the caries. This in vivo study evaluated the effects of low-intensity red laser radiation on the fluoride uptake in enamel. Ten healthy participants were recruited for this study. The two maxillary central incisors of each volunteer to be biopsied were used and divided into 4 groups: group G C (control, which was untreated; group G F (fluoride), which received topical acidulated phosphate fluoride (APF) 1,23% treatment for 4 minutes; group G LF (laser + fluoride), which was irradiated with a low-intensity diode laser (λ= 660 nm and dose= 6 J/cm 2 ) with APF application after irradiation and group G FL (fluoride + laser), which received APF before irradiation using the same parameters as G LF . The determination of fluoride was performed using a fluoride ion electrode after an acid-etch enamel biopsy. The results show a significant increase of the fluoride uptake in enamel for groups G F , G LF and G FL when compared to control group. Although a percentage increase of 57% was observed for G LF with respect to G F , there were no statistical differences among treated groups. These findings suggest that low-intensity laser radiation used before APF could be employed in the clinical practice to prevent dental caries. (author)

  4. International Conference on the Interaction of atoms, molecules and plasmas with intense ultrashort laser pulses. Book of abstracts

    International Nuclear Information System (INIS)

    2006-01-01

    International Conference on the Interaction of atoms, molecules and plasmas with intense ultrashort laser pulses was held in Hungary in 2006. This conference which joined the ULTRA COST activity ('Laser-matter interactions with ultra-short pulses, high-frequency pulses and ultra-intense pulses. From attophysics to petawatt physics') and the XTRA ('Ultrashort XUV Pulses for Time-Resolved and Non-Linear Applications') Marie-Curie Research Training Network, intends to offer a possibility to the members of both of these activities to exchange ideas on recent theoretical and experimental results on the interaction of ultrashort laser pulses with matter giving a broad view from theoretical models to practical and technical applications. Ultrashort laser pulses reaching extra high intensities open new windows to obtain information about molecular and atomic processes. These pulses are even able to penetrate into atomic scalelengths not only by generating particles of ultrahigh energy but also inside the spatial and temporal atomic scalelengths. New regimes of laser-matter interaction were opened in the last decade with an increasing number of laboratories and researchers in these fields. (S.I.)

  5. Au–C allotrope nano-composite films at extreme conditions generated by intense ultra-short laser

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Saif A., E-mail: khansaifahmad@gmail.com [Inter-University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi 110067 (India); Saravanan, K. [Department of Physics, Tamkang University, Tamsui 251, Taiwan (China); Tayyab, M.; Bagchi, S. [Laser Plasma Division, Raja Ramanna Centre for Advanced Technology, Indore 452013 (India); Avasthi, D.K. [Inter-University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi 110067 (India); Amity University, Noida 201313, Uttar Pradesh (India)

    2016-07-15

    Structural evolution of gold–carbon allotrope nano-composite films under relativistically intense, ultra-short laser pulse irradiation is studied in this work. Au–C nano-composite films, having 4 and 10 at.% of Au, were deposited by co-sputtering technique on silicon substrates. Au–C{sub 60} NC films with 2.5 at.% Au were deposited on 12 μm thick Al foil using co-evaporation technique. These samples were radiated with single pulse from 45 fs, 10 TW Ti:Sapphire Laser at RRCAT at an intensity of 3 × 10{sup 18} W cm{sup −2}. The morphological and compositional changes were investigated using scanning electron microscopy (SEM) and Rutherford back-scattering spectrometry (RBS) techniques. Laser pulse created three morphologically distinct zones around the point of impact on samples with silicon substrates. The gold content in 600 μm circular region around a point of impact is found to reduce by a factor of five. Annular rings of ∼70 nm in diameter were observed in case of Au–C NC film after irradiation. Laser pulse created a hole of about 400 μm in the sample with Al foil as substrate and wavy structures of 6 μm wavelength are found to be created around this hole. The study shows radial variation in nano-structure formation with varying local intensity of laser pulse.

  6. Two-color phase control of high-order harmonic generation in intense laser fields

    International Nuclear Information System (INIS)

    Telnov, D.A.; Wang, J.; Chu, S.

    1995-01-01

    We present a time-independent generalized Floquet approach for nonperturbative treatment of high-order harmonic generation (HG) in intense onea (i) determination of the complex quasienergy eigenvalue and eigenfunction by means of the non-Hermitian Floquet formalism, wherein the Floquet Hamiltonian is discretized by the complex-scaling generalized pseudospectral technique [Wang, Chu, and Laughlin, Phys. Rev. A 50, 3208 (1994)], and (ii) calculation of the HG rates based on the approach that implies the classical treatment of the electromagnetic field and quantal treatment of the atom. The method is applied to the nonperturbative study of HG by the hydrogen atom in strong laser fields with the fundamental frequencies 532 and 775 nm and their third harmonics. The results show a strong dependence on the relative phase δ between the fundamental frequency field and its harmonic. For the intensities used in calculations (1x10 13 and 5x10 13 W/cm 2 for the fundamental frequency 532 nm and 1x10 13 and 3x10 13 W/cm 2 for the fundamental frequency 775 nm, the harmonic intensity being 10 and 100 times weaker), the total photon emission rate has its maximum at δ=0 and minimum at δ=π. However, this tendency, while valid for the first several HG peaks, is reversed for the higher HG peaks. The HG spectrum for δ=π is broader and the peak heights decrease more slowly compared to the case of δ=0. These results have their analog in the multiphoton above-threshold detachment study performed recently for H - ions [Telnov, Wang, and Chu, Phys. Rev. A 51, 4797 (1995)

  7. Intense high-contrast femtosecond K-shell x-ray source from laser-driven Ar clusters.

    Science.gov (United States)

    Chen, L M; Liu, F; Wang, W M; Kando, M; Mao, J Y; Zhang, L; Ma, J L; Li, Y T; Bulanov, S V; Tajima, T; Kato, Y; Sheng, Z M; Wei, Z Y; Zhang, J

    2010-05-28

    Bright Ar quasimonochromatic K-shell x ray with very little background has been generated using an Ar clustering gas jet target irradiated with a 30 fs ultrahigh-contrast laser, with a measured flux of 2.2×10(11)   photons/J into 4π. This intense x-ray source critically depends on the laser contrast and intensity. The optimization of source output with interaction length is addressed. Simulations point to a nonlinear resonant mechanism of electron heating during the early stage of laser interaction, resulting in enhanced x-ray emission. The x-ray pulse duration is expected to be only 10 fs, opening the possibility for single-shot ultrafast keV x-ray imaging applications.

  8. A study of the effect of low intensity laser therapy on the osseointegration of hydroxyapatite implants

    International Nuclear Information System (INIS)

    Rajab, A.A.

    1999-01-01

    Three significant developments over the last decade in the maxillofacial region have been the predictable use of dental implants, the employment of hydroxyapatite as an implant coating, with a potential for more rapid osseointegration, and the introduction of Low Intensity Laser Therapy (LILT) for the enhancement of healing. Implants, although proving a major advance in prosthetics have the disadvantage that loading has to be delayed for a period, which in the case of the mouth needs to be 3 - 6 months after insertion. Hydroxyapatite offers the possibility of a shortened period of delay. Low Intensity Laser Therapy (LILT) has been shown to accelerate the healing of bony fractures, both experimentally and clinically. This thesis sets out to evaluate whether LILT could enhance the process of osseointegration, particularly when used with ceramic hydroxyapatite implants in an animal model. If so, this could provide a future clinical combination which would allow earlier loading of hydroxyapatite coated dental implants and also their counterparts in femoral head replacement. There has been virtually no research work undertaken on this aspect. An animal research study has been undertaken to investigate the effect of LILT on the osseointegration of endosseous implants. HA ceramic implants were inserted in two different anatomical sites, namely the mandible and femur in 40 rabbits. The animals were divided into three groups, comprising a low energy laser group (25 J/cm 2 per treatment), a high energy group (125 J/cm 2 per treatment ) and a control group. Animals were sacrificed at four and twelve weeks, with equivalent numbers of representatives of the three groups. The evolved method of evaluation involved radiographic methods (plain x-ray, radiovisiography RVG and the innovative technique of x-ray microtomography XMT), mechanical push out testing (Instron machine) and histological examination (qualitative and quantitative histomorphometry). The conclusions of the study

  9. A study of the effect of low intensity laser therapy on the osseointegration of hydroxyapatite implants

    Energy Technology Data Exchange (ETDEWEB)

    Rajab, A.A

    1999-07-01

    Three significant developments over the last decade in the maxillofacial region have been the predictable use of dental implants, the employment of hydroxyapatite as an implant coating, with a potential for more rapid osseointegration, and the introduction of Low Intensity Laser Therapy (LILT) for the enhancement of healing. Implants, although proving a major advance in prosthetics have the disadvantage that loading has to be delayed for a period, which in the case of the mouth needs to be 3 - 6 months after insertion. Hydroxyapatite offers the possibility of a shortened period of delay. Low Intensity Laser Therapy (LILT) has been shown to accelerate the healing of bony fractures, both experimentally and clinically. This thesis sets out to evaluate whether LILT could enhance the process of osseointegration, particularly when used with ceramic hydroxyapatite implants in an animal model. If so, this could provide a future clinical combination which would allow earlier loading of hydroxyapatite coated dental implants and also their counterparts in femoral head replacement. There has been virtually no research work undertaken on this aspect. An animal research study has been undertaken to investigate the effect of LILT on the osseointegration of endosseous implants. HA ceramic implants were inserted in two different anatomical sites, namely the mandible and femur in 40 rabbits. The animals were divided into three groups, comprising a low energy laser group (25 J/cm{sup 2} per treatment), a high energy group (125 J/cm{sup 2} per treatment ) and a control group. Animals were sacrificed at four and twelve weeks, with equivalent numbers of representatives of the three groups. The evolved method of evaluation involved radiographic methods (plain x-ray, radiovisiography RVG and the innovative technique of x-ray microtomography XMT), mechanical push out testing (Instron machine) and histological examination (qualitative and quantitative histomorphometry). The conclusions of

  10. Development of experiments for high-intensity laser plasma interaction in a magnetic field of the pulsed power generator

    Science.gov (United States)

    Ivanov, V. V.; Swanson, K. J.; Maximov, A. V.; Betti, R.; Sawada, H.; Mancini, R. C.; Sentoku, Y.; Wiewior, P. P.; Astanovitskiy, A. L.; Nalajala, V.; Chalyy, O.; Dmitriev, O.; Wong, N.

    2017-10-01

    Experiments were developed for investigation of the laser plasma interaction in the megagauss magnetic field of the 1MA Zebra pulsed power generator coupled with a 50TW laser. These experiments are relevant to astrophysical plasmas, particle and x-ray generation, and isochoric heating in a strong magnetic field. Magnetic fields in loads were measured with Faraday rotation in a glass sample placed near the load. 1-3MG longitudinal and transversal magnetic fields were measured in different loads. Impact of the fast rising magnetic field on metal laser targets was demonstrated. Focusing and targeting laser systems were integrated into the chamber of the Zebra generator. Shots at intensity of >1018 W/cm2 demonstrated collimation of plasma and generation of jets on the front and rear sides of the foil target in the axial magnetic field. Work was supported by the DOE Grant DE-SC0016500 and DOE/NNSA Grant DE-NA 0002075.

  11. Optimization of the Laser Hardening Process by Adapting the Intensity Distribution to Generate a Top-hat Temperature Distribution Using Freeform Optics

    Directory of Open Access Journals (Sweden)

    Fritz Klocke

    2017-06-01

    Full Text Available Laser hardening is a surface hardening process which enables high quality results due to the controllability of the energy input. The hardened area is determined by the heat distribution caused by the intensity profile of the laser beam. However, commonly used top-hat laser beams do not provide an ideal temperature profile. Therefore, in this paper the beam profile, and thus the temperature profile, is optimized using freeform optics. The intensity distribution is modified to generate a top-hat temperature profile on the surface. The results of laser hardening with the optimized distribution are thereupon compared with results using a top-hat intensity distribution.

  12. High-Intensity Laser-to-Hot-Electron Conversion Efficiency from 1 to 2100 J Using the OMEGA EP Laser System

    Science.gov (United States)

    Nilson, P. M.

    2010-11-01

    Intense laser--matter interactions generate high-current electron beams. The laser-electron conversion efficiency is an important parameter for fast ignition and for developing intense x-ray sources for flash-radiography and x-ray-scattering experiments. These applications may require kilojoules of laser energy focused to greater than 10^18 W/cm^2 with pulse durations of tens of picoseconds. Previous experiments have measured the conversion efficiency with picosecond and subpicosecond laser pulses with energies up to ˜500 J. The research extends conversion-efficiency measurements to 1- to 10-ps laser pulses with energies up to 2100 J using the OMEGA EP Laser System and shows that the conversion efficiency is constant (20±10%) over the entire range The conversion efficiency is measured for interactions with finite-mass, thin-foil targets. A collimated electron jet exits the target rear surface and initiates rapid target charging, causing the majority of laser-accelerated electrons to recirculate (reflux) within the target. The total fast-electron energy is inferred from K-photon spectroscopy. Time-resolved x-ray emission data suggest that electrons are accelerated into the target over the entire laser-pulse duration with approximately constant conversion. This work provides significant insight into high-intensity laser--target interactions. This work was supported by the U.S. Department of Energy Office of Inertial Confinement Fusion under Cooperative Agreement Nos. DE-FC52-08NA28302 and DE-FC02-04ER54789. [4pt] In collaboration with R. Betti, A. A. Solodov (LLE/FSC), R. S. Craxton, J. A. Delettrez, C. Dorrer, L. Gao, P. A. Jaanimagi, J. H. Kelly, B. E. Kruschwitz, D. D. Meyerhofer, J. F. Myatt, T. C. Sangster, C. Stoeckl, W. Theobald, B. Yaakobi, J. D. Zuegel (LLE), A. J. MacKinnon, P. K. Patel (LLNL), K. U. Akli (General Atomics), L. Willingale, K. M. Krushelnick (U. of Michigan).

  13. Effects of the low-intensity laser therapy on the prevention of dental caries induced in rats

    International Nuclear Information System (INIS)

    Mueller, Karin Praia

    2004-01-01

    The purpose of this study was to investigate the effects of low intensity laser therapy, associated or not to an acidulated phosphate fluoride, on the prevention of dental caries induced in rats. It was used 40 wistar rats, female, weaned with 18 days, fed with a cariogenic diet during 48 days and inoculated orally with Streptococcus mutans by three consecutive days starting from the second day of the diet. On the fifth day of experiment the animals were divided into five groups: G c (control) the animas were no submitted to any treatment; G L (laser) irradiation with low power laser (GaAlAs, λ=660 nm, P=30 mW, Δt=5 sec, 5 J/cm 2 ); G F (fluoride) topical application of acidulated phosphate fluoride (APF 1,23%) for four minutes; G LF (laser + fluoride) irradiation with low power laser followed by topical application of acidulated phosphate fluoride; G FL (fluoride + laser) topical application of acidulated phosphate fluoride followed by low power laser. The animals were sacrificed after 48 days; the molars were extracted and prepared to determine the dental caries lesions area by optical microscopy, enamel microhardness and analysis of the calcium and phosphorus ratio (Ca/P) by energy dispersive spectroscopy. The results were statistically analyzed by ANOVA (p LF was smaller than that for G F and G FL groups but no statistical difference was observed. There was no significant statistical difference between the microhardness of the G C and G L groups and among G FL , G LF and G F groups. Regarding to the calcium and phosphorus ratio, it was not observed significant statistical differences among the groups. These findings suggest that low-intensity laser radiation associated with acidulated phosphate fluoride reduces the caries area and could be an alternative in the prevention of the dental caries. (author)

  14. Fragmentation of endohedral fullerene H o3N @C80 in an intense femtosecond near-infrared laser field

    Science.gov (United States)

    Xiong, Hui; Fang, Li; Osipov, Timur; Kling, Nora G.; Wolf, Thomas J. A.; Sistrunk, Emily; Obaid, Razib; Gühr, Markus; Berrah, Nora

    2018-02-01

    The fragmentation of gas phase endohedral fullerene, H o3N @C80 , was investigated using femtosecond near-infrared laser pulses with an ion velocity map imaging spectrometer. We observed that H o+ abundance associated with carbon cage opening dominates at an intensity of 1.1 ×1014W /c m2 . As the intensity increases, the H o+ yield associated with multifragmentation of the carbon cage exceeds the prominence of H o+ associated with the gentler carbon cage opening. Moreover, the power law dependence of H o+ on laser intensity indicates that the transition of the most likely fragmentation mechanisms occurs around 2.0 ×1014W /c m2 .

  15. Transrectal high-intensity focused ultrasound (HIFU) treatment of localized prostate cancer: Review of technical incidents and morbidity after 5 years of use

    OpenAIRE

    RIPERT, Thomas; AZEMAR, Marie Dominique; MENARD, Johann; BAYOUD, Younes; MESSAOUDI, Rabah; DUVAL, François; STAERMAN, Frédéric

    2010-01-01

    Abstract OBJECTIVE To report on technical incidents, and early and late complications, occurring on high-intensity focused ultrasound (HIFU) treatment of patients with localized prostate cancer. PATIENTS AND METHODS We performed a retrospective review of patients who were treated by Ablatherm? in our centre. We recorded all technical incidents, treatment discontinuations, and early (< 1 month) and late complications. RESULTS A total of 74 HIFU procedures were perfor...

  16. Incidence of severe sepsis and septic shock in German intensive care units: the prospective, multicentre INSEP study.

    Science.gov (United States)

    2016-12-01

    To estimate the incidence density, point prevalence and outcome of severe sepsis and septic shock in German intensive care units (ICUs). In a prospective, multicentre, longitudinal observational study, all patients already on the ICU at 0:00 on 4 November 2013 and all patients admitted to a participating ICU between 0:00 on 4 November 2013 and 2359 hours on 1 December 2013 were included. The patients were followed up for the occurrence of severe sepsis or septic shock (SEPSIS-1 definitions) during their ICU stay. A total of 11,883 patients from 133 ICUs at 95 German hospitals were included in the study, of whom 1503 (12.6 %) were diagnosed with severe sepsis or septic shock. In 860 cases (57.2 %) the infections were of nosocomial origin. The point prevalence was 17.9 % (95 % CI 16.3-19.7).The calculated incidence rate of severe sepsis or septic shock was 11.64 (95 % CI 10.51-12.86) per 1000 ICU days. ICU mortality in patients with severe sepsis/septic shock was 34.3 %, compared with 6 % in those without sepsis. Total hospital mortality of patients with severe sepsis or septic shock was 40.4 %. Classification of the septic shock patients using the new SEPSIS-3 definitions showed higher ICU and hospital mortality (44.3 and 50.9 %). Severe sepsis and septic shock continue to be a frequent syndrome associated with high hospital mortality. Nosocomial infections play a major role in the development of sepsis. This study presents a pragmatic, affordable and feasible method for the surveillance of sepsis epidemiology. Implementation of the new SEPSIS-3 definitions may have a major effect on future epidemiological data.

  17. Incidence and Outcomes of Central Nervous System Hemophagocytic Lymphohistiocytosis Relapse after Reduced-Intensity Conditioning Hematopoietic Stem Cell Transplantation.

    Science.gov (United States)

    Lounder, Dana T; Khandelwal, Pooja; Chandra, Sharat; Jordan, Michael B; Kumar, Ashish R; Grimley, Michael S; Davies, Stella M; Bleesing, Jack J; Marsh, Rebecca A

    2017-05-01

    Hemophagocytic lymphohistiocytosis (HLH) is an immune regulatory disorder that commonly presents with central nervous system (CNS) involvement. The only cure for genetic HLH is hematopoietic stem cell transplantation (HSCT), typically treated with reduced-intensity conditioning (RIC) regimens. We sought to estimate the incidence of CNS relapse after RIC HSCT, determine risk factors, and evaluate outcomes. We performed a retrospective chart review of 94 consecutive children and young adults with primary HLH who received RIC HSCT. CNS relapse within 1 year after transplantation was diagnosed by review of clinical symptoms, cerebral spinal fluid (CSF), and radiologic findings. Four (4.25%) patients developed symptoms of possible CNS HLH after HSCT and 3 patients were diagnosed. Eight patients underwent screening lumbar puncture because of history of active CNS disease at the onset of the conditioning regimen and 4 had evidence of continued disease. The overall incidence of CNS relapse and continued CNS disease after RIC HSCT was 8%. All patients with CNS disease after HSCT responded to CNS-directed therapy. Whole blood donor chimerism at the time of CNS relapse was low at 1% to 34%, but it remained high at 88% to 100% for patients with continued CNS disease. Overall survival for patients with CNS relapse was 50%, compared with 75% for patients without CNS disease (P = .079). Our data suggest that a low level of donor chimerism or active CNS disease at the time of transplantation increase the risk of CNS HLH after HSCT. Surveillance CSF evaluation after allogeneic RIC HSCT should be considered in patients with risk factors and CNS-directed treatment should be initiated if appropriate. Copyright © 2017 The American Society for Blood and Marrow Transplantation. Published by Elsevier Inc. All rights reserved.

  18. Incidence and Risk Factors for Intensive Care Unit–related Post-traumatic Stress Disorder in Veterans and Civilians

    Science.gov (United States)

    Jackson, James C.; Morandi, Alessandro; Girard, Timothy D.; Hughes, Christopher G.; Thompson, Jennifer L.; Kiehl, Amy L.; Elstad, Mark R.; Wasserstein, Mitzi L.; Goodman, Richard B.; Beckham, Jean C.; Chandrasekhar, Rameela; Dittus, Robert S.; Ely, E. Wesley; Pandharipande, Pratik P.

    2016-01-01

    Rationale: The incidence and risk factors of post-traumatic stress disorder (PTSD) related to the intensive care unit (ICU) experience have not been reported in a mixed veteran and civilian cohort. Objectives: To describe the incidence and risk factors for ICU-related PTSD in veterans and civilians. Methods: This is a prospective, observational, multicenter cohort enrolling adult survivors of critical illness after respiratory failure and/or shock from three Veterans Affairs and one civilian hospital. After classifying those with/without preexisting PTSD (i.e., PTSD before hospitalization), we then assessed all subjects for ICU-related PTSD at 3 and 12 months post hospitalization. Measurements and Main Results: Of 255 survivors, 181 and 160 subjects were assessed for ICU-related PTSD at 3- and 12-month follow-up, respectively. A high probability of ICU-related PTSD was found in up to 10% of patients at either follow-up time point, whether assessed by PTSD Checklist Event-Specific Version (score ≥ 50) or item mapping using the Diagnostic and Statistical Manual of Mental Disorders-IV (DSM-IV). In the multivariable regression, preexisting PTSD was independently associated with ICU-related PTSD at both 3 and 12 months (P < 0.001), as was preexisting depression (P < 0.03), but veteran status was not a consistent independent risk factor for ICU-related PTSD (3-month P = 0.01, 12-month P = 0.48). Conclusions: This study found around 1 in 10 ICU survivors experienced ICU-related PTSD (i.e., PTSD anchored to their critical illness) in the year after hospitalization. Preexisting PTSD and depression were strongly associated with ICU-related PTSD. PMID:26735627

  19. Incidence of Peri-implant Diseases on Implants With and Without Laser-Microgrooved Collar: A 5-Year Retrospective Study Carried Out in Private Practice Patients.

    Science.gov (United States)

    Guarnieri, Renzo; Grande, Maurizio; Zuffetti, Francesco; Testori, Tiziano

    To retrospectively evaluate the incidence of peri-implant mucositis and peri-implantitis around dental implants with the same body design and surface but different collar surface (laser-microgrooved vs not laser-microgrooved) after 5 years of loading in private practice patients. The study was carried out on patients at a private dental clinic enrolled in a periodontal maintenance program, who received at least one implant with a laser-microgrooved collar surface and one implant without a laser-microgrooved collar surface. Clinical variables such as plaque, pocket depth, bleeding on probing, suppuration, and radiographic marginal bone loss at > 5 years around implants were investigated. The correlation between the prevalence of peri-implant mucositis/peri-implantitis and biotype, keratinized tissue width, prosthetic connection type, and prosthetic design type was also analyzed. A total of 166 implants in 74 patients were investigated. At the end of the 5-year follow-up period, 38 implants presented peri-implant mucositis, accounting for 22.8% of the total, affecting a total of 24 patients (32.4%), while 13 implants (7.8%) in 10 patients (13.5%) were diagnosed with peri-implantitis. Sixteen of 82 laser-microgrooved implants (19.5%) and 24 of 84 implants (28.5%) without a laser-microgrooved collar presented peri-implant mucositis, while 3 of 82 (3.6%) of laser-microgrooved implants and 10 of 84 (11.9%) implants without a laser-microgrooved collar demonstrated peri-implantitis. Differences in implant-based incidence of peri-implant diseases between implants with and without a laser-microgrooved collar were statistically significant (P implants with a laser-microgrooved collar, compared with implants without a laser-microgrooved collar, presented a statistically significantly lower incidence of peri-implant diseases.

  20. Intensity Noise Transfer Through a Diode-pumped Titanium Sapphire Laser System

    DEFF Research Database (Denmark)

    Tawfieq, Mahmoud; Hansen, Anders Kragh; Jensen, Ole Bjarlin

    2017-01-01

    In this paper, we investigate the noise performance and transfer in a titanium sapphire (Ti:S) laser system. This system consists of a DBR tapered diode laser, which is frequency doubled in two cascaded nonlinear crystals and used to pump the Ti:S laser oscillator. This investigation includes...

  1. Femtosecond quantum fluid dynamics of helium atom under an intense laser field

    International Nuclear Information System (INIS)

    Dey, B.K.

    1998-01-01

    A comprehensive, nonperturbative, time-dependent quantum mechanical (TDQM) approach is proposed for studying the dynamics of a helium atom under an intense, ultrashort (femtoseconds) laser pulse. The method combines quantum fluid dynamics (QFD) and density functional theory. It solves a single generalized nonlinear Schroedinger equation of motion (EOM), involving time and three space variables, which is obtained from two QFD equations, namely, a continuity equation and an Euler-type equation. A highly accurate finite difference scheme along with a stability analysis is presented for numerically solving the EOM. Starting from the ground-state Hartree-Fock density for He at t = 0, the EOM yields the time-dependent (TD) electron density, effective potential surface, difference density, difference effective potential, ground-state probability, left-angle r right-angle, magnetic susceptibility, polarizability, flux, etc. By a Fourier transformation of the TD dipole moment along the linearly polarized-field direction, the power and rate spectra for photoemission are calculated. eleven mechanistic routes for photoemission are identified, which include high harmonic generation as well as many other spectral transitions involving ionized, singly excited, doubly excited (autoionizing), and continuum He states, based on the evolution of the system up to a particular time. Intimate connections between photoionization and photoemission are clearly observed through computer visualizations. Apart from being consistent with current experimental and theoretical results, the present results offer certain predictions on spectral transitions which are open to experimental verification

  2. Neon in ultrashort and intense x-rays from free electron lasers

    Science.gov (United States)

    Buth, Christian; Beerwerth, Randolf; Obaid, Razib; Berrah, Nora; Cederbaum, Lorenz S.; Fritzsche, Stephan

    2018-03-01

    We theoretically examine neon atoms in ultrashort and intense x-rays from free electron lasers and compare our results with data from experiments conducted at the Linac Coherent Light Source. For this purpose, we treat in detail the electronic structure in all possible nonrelativistic cationic configurations using a relativistic multiconfiguration approach. The interaction with the x-rays is described in rate-equation approximation. To understand the mechanisms of the interaction, a path analysis is devised which allows us to investigate what sequences of photoionization and decay processes lead to a specific configuration and with what probability. Thereby, we uncover a connection to the mathematics of graph theory and formal languages. In detail, we study the ion yields and find that plain rate equations do not provide a satisfactory description. We need to extend the rate equations for neon to incorporate double Auger decay of a K-shell vacancy and photoionization shake off for neutral neon. Shake off is included for valence and core ionization; the former has hitherto been overlooked but has important consequences for the ion yields from an x-ray energy below the core ionization threshold. Furthermore, we predict the photon yields from XUV and x-ray fluorescence these allow one insights into the configurations populated by the interaction with the x-rays. Finally, we discover that inaccuracies in those Auger decay widths employed in previous studies have only a minor influence on ion and photon yields.

  3. High Energy K(alpha) Radiography Using High-intensity, Short-pulse Lasers

    Energy Technology Data Exchange (ETDEWEB)

    Park, H; Izumi, N; Key, M H; King, J A; Koch, J A; Landen, O L; Patel, P K; Price, D F; Remington, B A; Robey, H F; Snavely, R A; Tabak, M; Town, R J; Wickersham, J E; Stoeckl, C; Storm, M; Theobald, W; Chambers, D M; Eagelton, R; Goldsack, T; Clarke, R J; Heathcote, R; Giraldez, E; Nikroo, A; Steinman, D A; Stephens, R B; Zhang, B B

    2005-11-16

    We have performed experiments using Callisto, the Vulcan 100 TW and the Vulcan Petawatt high intensity lasers to understand the characteristics of high energy, K{alpha} x-ray sources and to implement workable radiography solutions at 20-100 keV. Our measurements show that the K{alpha} size from a simple foil target is larger than 60 {micro}m, far larger than the experiment resolution requirement. The total K{alpha} yield is independent of target thicknesses verifying that refluxing plays a major role in photon generation. Smaller radiating volumes emit brighter K{alpha} radiation. 1-D radiography experiments using small-edge-on foils resolved 10 {micro}m features with high contrast. We tested a variety of small volume 2-D point sources such as cones, wires, and embedded wires, measuring photon yields and comparing our measurements with predictions from hybrid-PIC LSP simulations. In addition to high-energy, high-resolution backlighters, future experiments will also need imaging detectors and diagnostic tools that are workable in the 20-100 keV energy range. An initial look at some of these detector issues is also presented.

  4. Selective breaking of bonds in water with intense, 2-cycle, infrared laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Mathur, D., E-mail: atmol1@tifr.res.in; Dharmadhikari, A. K. [Tata Institute of Fundamental Research, 1 Homi Bhabha Road, Mumbai 400 005 (India); Dota, K. [Tata Institute of Fundamental Research, 1 Homi Bhabha Road, Mumbai 400 005 (India); Centre for Atomic and Molecular Physics, Manipal University, Manipal 576 104 (India); Dey, D.; Tiwari, A. K. [Indian Institute of Science Education and Research Kolkata, Mohanpur 741 246 (India); Dharmadhikari, J. A. [Centre for Atomic and Molecular Physics, Manipal University, Manipal 576 104 (India); De, S. [Saha Institute of Nuclear Physics, Bidhan Nagar, Kolkata 700 064 (India); Vasa, P. [Department of Physics, Indian Institute of Technology Bombay, Mumbai 400 076 (India)

    2015-12-28

    One of the holy grails of contemporary science has been to establish the possibility of preferentially breaking one of several bonds in a molecule. For instance, the two O–H bonds in water are equivalent: given sufficient energy, either one of them is equally likely to break. We report bond-selective molecular fragmentation upon application of intense, 2-cycle pulses of 800 nm laser light: we demonstrate up to three-fold enhancement for preferential bond breaking in isotopically substituted water (HOD). Our experimental observations are rationalized by means of ab initio computations of the potential energy surfaces of HOD, HOD{sup +}, and HOD{sup 2+} and explorations of the dissociation limits resulting from either O–H or O–D bond rupture. The observations we report present a formidable theoretical challenge that need to be taken up in order to gain insights into molecular dynamics, strong field physics, chemical physics, non-adiabatic processes, mass spectrometry, and time-dependent quantum chemistry.

  5. Relativistic electron transport in wire and foil targets driven by intense short pulse lasers

    Science.gov (United States)

    Mason, R. J.; Stephens, R. B.; Wei, M.; Freeman, R. R.; Hill, J.; van Woerkom, L. D.

    2006-10-01

    We model intense laser driven electron transport in wires and foils with the new implicit hybrid code e-PLAS. We focus on background plasma heating for Fast Ignitor applications. The model tracks collisional relativistic PIC electrons undergoing scatter and drag in a background plasma of colliding cold electron and ion Eulerian fluids. Application to 10 μm diameter, 250 μm long, fully ionized carbon wires with an attached cone [Kodama et al. Nature 432 1005 (2004)], exposed to 1 ps, 10^19 W/cm^2 pulses in a 30 μm centered spot, directly calculates resistive Joule heating of the background electrons in the wire to 1.7 KeV. 150 MG magnetic fields arise at the wire surfaces corresponding to hot electron flow outside the wire and a return electron flow just within it. Shorter wires (25 μm) exhibit hot electron recycling. Preliminary simulations indicate that reduction of the cone to a 30 μm diameter nail head produces little change in these results. We also report on tapered wires, wires attached to foils, and the modifying effects of pre-plasma on electron transport into the foils.

  6. Comparative Study Between Intense Pulsed Light IPLAND Pulsed Dye Laser In The Treatment Of Striae Distensae

    International Nuclear Information System (INIS)

    El-Khalafawy, Gh.M.K.A.

    2013-01-01

    Pulsed dye laser (PDL) and Intense Pulsed Light (IPL) have been used to treat Striae Distensae (SD). Thirty patients with age ranging from 14 - 42 years were included in this study. Twenty patients were treated on one side of their bodies with PDL and on the other side with IPL while seven patients were treated on both sides by IPL and three patients were treated on both sides by PDL for five sessions with four weeks interval between sessions. Skin biopsies were stained with H and E, Masson Trichrome, Orcein, Alcian blue and anti-collagen I Α1. After both PDL and IPL treatments striae width was decreased and the texture was improved in a highly significant manners where P value was 0.001. Collagen expression was increased in a highly significant manner and P values were <0.001 and 0.004 after PDL and IPL treatments respectively. However, PDL induced expression of collagen I in a highly significant manner compared to the treatment with IPL where P values were <0.001 and 0.193 respectively. Striae rubra gave a superior response with either PDL or IPL compared to striae alba which was evaluated clinically by the width, color and texture, although the histological changes could not verify this consequence. Both PDL and IPL can enhance the clinical picture of striae through collagen stimulation therapeutic modalities

  7. Hot-electron production and suprathermal heat flux scaling with laser intensity from the two-plasmon–decay instability

    International Nuclear Information System (INIS)

    Vu, H. X.; DuBois, D. F.; Myatt, J. F.; Russell, D. A.

    2012-01-01

    The fully kinetic reduced-description particle-in-cell (RPIC) method has been applied to simulations of two-plasmon–decay (TPD) instability, driven by crossed laser beams, in an inhomogeneous plasma for parameters consistent with recent direct-drive experiments related to laser-driven inertial fusion. The nonlinear saturated state is characterized by very spiky electric fields, with Langmuir cavitation occurring preferentially inside density channels produced by the ponderomotive beating of the crossed laser beams and the primary TPD Langmuir waves (LWs). The heated electron distribution function is, in all cases, bi-Maxwellian, with instantaneous hot-electron temperatures in the range 60–100 keV. The net hot-electron energy flux out of the system is a small fraction (∼1% to 2%) of the input laser intensity in these simulations. Scalings of the hot-electron temperature and suprathermal heat flux as functions of the laser intensity are obtained numerically from RPIC simulations. These simulations lead to the preliminary conclusion that Langmuir cavitation and collapse provide dissipation by producing suprathermal electrons, which stabilize the system in saturation and drive the LW spectrum to the small dissipation scales at the Landau cutoff. The Langmuir turbulence originates at an electron density 0.241× the laser's critical density, where the crossed laser beams excite a “triad” mode—a common forward LW plus a pair of backward LWs. Remnants of this “triad” evolve in k-space and dominate the time-averaged energy spectrum. At times exceeding 10 ps, the excited Langmuir turbulence spreads toward lower densities. Comparisons of RPIC simulations with the extended Zakharov model are presented in appropriate regimes, and the necessary requirements for the validity of a quasi-linear Zakharov model (where the spatially averaged electron-velocity distribution is evolved) are verified by RPIC simulation results.

  8. LASER APPLICATIONS AND OTHER TOPICS IN QUANTUM ELECTRONICS: Channeling of microwave radiation in a double line containing a plasma filament produced by intense femtosecond laser pulses in air

    Science.gov (United States)

    Bogatov, N. A.; Kuznetsov, A. I.; Smirnov, A. I.; Stepanov, A. N.

    2009-10-01

    The channeling of microwave radiation is demonstrated experimentally in a double line in which a plasma filament produced in air by intense femtosecond laser pulses serves as one of the conductors. It is shown that during the propagation of microwave radiation in this line, ultrashort pulses are formed, their duration monotonically decreasing with increasing the propagation length (down to the value comparable with the microwave field period). These effects can be used for diagnostics of plasma in a filament.

  9. Generation of shock fronts in the interaction of short pulses of intense laser light in supercritical plasma

    International Nuclear Information System (INIS)

    Lopez V, V.E.; Ondarza R, R.

    2004-01-01

    The investigation of the laser interaction with plasma has been carried out mainly in laboratories of Europe, Japan and United States during the last decades. This studies concern the propagation of intense light laser in a non homogeneous plasma, the radiation absorption and the generation of suprathermal electrons, among others. Numerical simulations made by Denavit, for radiation pulses for up of 10 20 W/cm 2 on solid targets, have allowed to observe the generation of ionic crash fronts with high propagation speeds. In this work it is expanded the study of this effect through algorithms of particles simulation. (Author)

  10. Interferometric study of the effect of laser intensity and polarization on the cold-drawing of virgin polypropylene fibres

    Science.gov (United States)

    Shams El-Din, M. A.; El-Tawargy, A. S.

    2017-11-01

    With the aid of the Mach-Zehnder interferometer, the drawability of polypropylene fibres (PP) was optically studied. The effect of varying the intensity of He-Ne laser on PP opto-mechanical properties was investigated. The state of polarization of the used laser was found to influence the optical and mechanical properties of PP fibres, such as the refractive index, elongation at break, work of rupture and the stress-strain curves. As a key finding, it is found that the PP fibres break at different draw ratios when the state of polarization is changed from 0° to 90°.

  11. Experimental studies of interaction of the intense long laser pulse with a laser-created Ta plasma

    Czech Academy of Sciences Publication Activity Database

    Láska, Leoš; Jungwirth, Karel; Krása, Josef; Krouský, Eduard; Pfeifer, Miroslav; Rohlena, Karel; Skála, Jiří; Ullschmied, Jiří; Velyhan, Andriy; Kubeš, P.; Badziak, J.; Parys, P.; Rosinski, M.; Ryc, L.; Wolowski, J.

    2006-01-01

    Roč. 56, Suppl. B (2006), B506-B514 ISSN 0011-4626. [Symposium on Plasma Physics and Technology /22./. Prague, 26.06.2006-29.06.2006] R&D Projects: GA AV ČR IAA1010405 Institutional research plan: CEZ:AV0Z10100523; CEZ:AV0Z20430508 Keywords : laser plasma * non-linear processes * self- focusing Subject RIV: BH - Optics, Masers, Lasers Impact factor: 0.568, year: 2006

  12. Damage thresholds for blaze diffraction gratings and grazing incidence optics at an X-ray free-electron laser.

    Science.gov (United States)

    Krzywinski, Jacek; Conley, Raymond; Moeller, Stefan; Gwalt, Grzegorz; Siewert, Frank; Waberski, Christoph; Zeschke, Thomas; Cocco, Daniele

    2018-01-01

    The Linac Coherent Light Source is upgrading its machine to high repetition rate and to extended ranges. Novel coatings, with limited surface oxidation, which are able to work at the carbon edge, are required. In addition, high-resolution soft X-ray monochromators become necessary. One of the big challenges is to design the mirror geometry and the grating profile to have high reflectivity (or efficiency) and at the same time survive the high peak energy of the free-electron laser pulses. For these reasons the experimental damage threshold, at 900 eV, of two platinum-coated gratings with different blazed angles has been investigated. The gratings were tested at 1° grazing incidence. To validate a model for which the damage threshold on the blaze grating can be estimated by calculating the damage threshold of a mirror with an angle of incidence identical to the angle of incidence on the grating plus the blaze angle, tests on Pt-coated substrates have also been performed. The results confirmed the prediction. Uncoated silicon, platinum and SiB 3 (both deposited on a silicon substrate) were also investigated. In general, the measured damage threshold at grazing incidence is higher than that calculated under the assumption that there is no energy transport from the volume where the photons are absorbed. However, it was found that, for the case of the SiB 3 coating, the grazing incidence condition did not increase the damage threshold, indicating that the energy transport away from the extinction volume is negligible.

  13. Results after implementation of a protocol on the incidence of urinary tract infection in an intensive care unit 1

    Science.gov (United States)

    Miranda, Anna Letícia; de Oliveira, Ana Lúcia Lyrio; Nacer, Daiana Terra; Aguiar, Cynthia Adalgisa Mesojedovas

    2016-01-01

    ABSTRACT Objective: to compare the results of urinary tract infection incidence, by means of the rate of indwelling urethral catheter use, and to identify microorganisms in urine cultures and surveillance cultures before and after the implementation of a clinical protocol for intensive care unit patients . Method: urinary tract infection is defined as a positive urine culture > 105 CFU/mL, notified by the hospital infection control service, six months before and after the implementation of the protocol. The sample consisted of 47 patients, 28 reported before and 19 after implementation. The protocol established in the institution is based on the Ministry of Health manual to prevent healthcare-related infections; the goal is patient safety and improving the quality of health services. Results: a negative linear correlation was observed between the later months of implementation and the reduction of reported cases of urinary tract infection, using the Spearman rank order coefficient (p = 0.045), and a reduction in the number of urine culture microorganisms (p = 0.026) using the Fisher exact test. Conclusion: educational interventions with implementation protocols in health institutions favor the standardization of maintenance of the invasive devices, which may reduce colonization and subsequent infections. PMID:27627125

  14. Cavitation dynamics and directional microbubble ejection induced by intense femtosecond laser pulses in liquids

    Science.gov (United States)

    Faccio, D.; Tamošauskas, G.; Rubino, E.; Darginavičius, J.; Papazoglou, D. G.; Tzortzakis, S.; Couairon, A.; Dubietis, A.

    2012-09-01

    We study cavitation dynamics when focusing ring-shaped femtosecond laser beams in water. This focusing geometry reduces detrimental nonlinear beam distortions and enhances energy deposition within the medium, localized at the focal spot. We observe remarkable postcollapse dynamics of elongated cavitation bubbles with high-speed ejection of microbubbles out of the laser focal region. Bubbles are ejected along the laser axis in both directions (away and towards the laser). The initial shape of the cavitation bubble is also seen to either enhance or completely suppress jet formation during collapse. In the absence of jetting, microbubble ejection occurs orthogonal to the laser propagation axis.

  15. Cavitation dynamics and directional microbubble ejection induced by intense femtosecond laser pulses in liquids.

    Science.gov (United States)

    Faccio, D; Tamošauskas, G; Rubino, E; Darginavičius, J; Papazoglou, D G; Tzortzakis, S; Couairon, A; Dubietis, A

    2012-09-01

    We study cavitation dynamics when focusing ring-shaped femtosecond laser beams in water. This focusing geometry reduces detrimental nonlinear beam distortions and enhances energy deposition within the medium, localized at the focal spot. We observe remarkable postcollapse dynamics of elongated cavitation bubbles with high-speed ejection of microbubbles out of the laser focal region. Bubbles are ejected along the laser axis in both directions (away and towards the laser). The initial shape of the cavitation bubble is also seen to either enhance or completely suppress jet formation during collapse. In the absence of jetting, microbubble ejection occurs orthogonal to the laser propagation axis.

  16. Characterization of high intensity Ni-like X-ray lasers and their application experiment

    Energy Technology Data Exchange (ETDEWEB)

    Tang, H.J.; Daido, H.; Suzuki, M. [Osaka Univ., Suita (Japan). Inst. of Laser Engineering; Japan Atomic Energy Research Inst., Kyoto (Japan). Advanced Photon Research Center; Yamagami, S.; Nagai, K.; Norimatsu, T.; Mima, K.; Yamanaka, T. [Osaka Univ., Suita (Japan). Inst. of Laser Engineering; Kato, Y.; Sasaki, A.; Hasegawa, N. [Japan Atomic Energy Research Inst., Kyoto (Japan). Advanced Photon Research Center; Wang, S.; Gu, Y.; Huang, G. [National Lab. on High Power Laser and Physics, Shanghai, SH (China); Carillon, A.; Ros, D.; Fourcade, P.; Jamelot, G. [Lab. de Spectroscopie Atomique et Ionique, Univ. Paris-Sud, Orsay (France); Joyeux, D.; Phalippou, D. [Lab. Charles Fabry, CNRS, Inst. d' Optique, Orsay (France); Murai, K. [Osaka National Research Inst., Ikeda, Osaka (Japan); Butzbach, R.; Uschmann, I.; Foerster, E. [IOQ, Friedrich-Schiller Univ., Jena (Germany); Namikawa, K.; Tai, R. [Tokyo Gakugei Univ., Koganei (Japan); Koike, F. [Kitasato Univ., Sagamihara, Kanagawa (Japan). School of Medicine; Takenaka, H. [NTT Advanced Technology, Musashino (Japan); Zhang, G. [Inst. of Applied Physics and Computational Mathematics, Beijing, BJ (China); Choi, I.W. [Korea Advanced Inst. of Science and Technology, Taejon (Korea)

    2001-07-01

    At the Institute of Laser Engineering, Osaka University, we have obtained Ni-like X-ray lasers of various atomic number elements, including many shorter wavelength Ni-like lasing lines around 5 nm. The saturated amplification of Ni-like Ag lasing line at the wavelength of 13.9 nm have been observed. Using these X-ray lasers, we are preparing the application experiments such as probing a laser-produced plasma with an X-ray laser interferometer. (orig.)

  17. Effects of a Low-Intensity Laser on Dental Implant Osseointegration: Removal Torque and Resonance Frequency Analysis in Rabbits.

    Science.gov (United States)

    Blay, Alberto; Blay, Claudia C; Tunchel, Samy; Gehrke, Sergio Alexandre; Shibli, Jamil Awad; Groth, Eduardo B; Zezell, Denise M

    2016-08-01

    The objective of this study was to investigate how a low-intensity laser affects the stability and reverse torque resistance of dental implants installed in the tibia of rabbits. Thirty rabbits received 60 dental implants with the same design and surface treatment, one in each proximal metaphysis of the tibia. Three groups were prepared (n = 10 animals each): conventional osseointegration without treatment (control group), surgical sites irradiated with a laser beam emitted in the visible range of 680 nm (Lg1 group), surgical sites irradiated with a laser beam with a wavelength in the infrared range of 830 nm (Lg2 group). Ten irradiation sessions were performed 48 hours apart; the first session was during the immediate postoperative period. Irradiation energy density was 4 J/cm(2) per point in 2 points on each side of the tibias. The resonance frequency and removal torque values were measured at 2 time points after the implantations (3 and 6 weeks). Both laser groups (Lg1 and Lg2) presented a significant difference between resonance frequency analysis values at the baseline and the values obtained after 3 and 6 weeks (P > .05). Although the removal torque values of all groups increased after 6 weeks (P < .05), both laser groups presented greater mean values than those of the control group (P < .01). Photobiomodulation using laser irradiation with wavelengths of 680 and 830 nm had a better degree of bone integration than the control group after 6 weeks of observation time.

  18. Radiation Generation from Ultra Intense Laser Plasma Interactions with Solid Density Plasmas for Active Interrogation of Nuclear Materials

    Science.gov (United States)

    Zulick, Calvin Andrew

    The development of short pulse high power lasers has led to interest in laser based particle accelerators. Laser produced plasmas have been shown to support quasi-static TeV/m acceleration gradients which are more than four orders of magnitude stronger than conventional accelerators. These high gradients have the potential to allow compact particle accelerators for active interrogation of nuclear material. In order to better understand this application, several experiments have been conducted at the HERCULES and Lambda Cubed lasers as the Center for Ultrafast Optical Science at the University of Michigan. Electron acceleration and bremsstrahlung generation were studied on the Lambda Cubed laser. The scaling of the intensity, angular, and material dependence of bremsstrahlung radiation from an intense (I > 10 18 W/cm2 ) laser-solid interaction has been characterized at energies between 100 keV and 1 MeV. These were the first high resolution (lambda / d lambda > 100) measurements of bremsstrahlung photons from a relativistic laser plasma interaction. The electron populations and bremsstrahlung temperatures were modeled in the particle-in-cell code OSIRIS and the Monte Carlo code MCNPX and were in good agreement with the experimental results. Proton acceleration was studied on the HERCULES laser. The effect of three dimensional perturbations of electron sheaths on proton acceleration was investigated through the use of foil, grid, and wire targets. Hot electron density, as measured with an imaging Cu Kalpha crystal, increased as the target surface area was reduced and was correlated to an increase in the temperature of the accelerated proton beam. Additionally, experiments at the HERCULES laser facility have produced directional neutron beams with energies up to 16.8 (+/-0.3) MeV using (d,n) and (p,n) reactions. Efficient (d,n) reactions required the selective acceleration of deuterons through the introduction of a deuterated plastic or cryogenically frozen D2O layer

  19. Sources of high energy particles obtained with intense lasers for applications in nuclear physics; Sources de particules de hautes energies obtenues avec des lasers intenses pour applications a la physique nucleaire

    Energy Technology Data Exchange (ETDEWEB)

    Gerbaux, M

    2007-12-15

    This experimental study concerns the characterization of the beams of electrons and protons with energies above a few MeV produced in the interaction of an ultra-intense (10{sup 19} W/cm{sup 2}) laser beam with a 10 {mu}m thick solid target. This work was issued in the framework to use these beams in nuclear physics experiments. It was hence necessary to know quantitatively the characteristics of these particle beams. Laser accelerated particle beams have very different characteristics from conventional ones produced in accelerators, especially on account of their transience and intensity as well as their continuous energy distribution. These properties make their characterization complex and led us to develop methods combining measurements with diodes spectrometers, radiochromic films, nuclear activation of chosen materials and Monte-Carlo simulations. These methods have been employed on 2 different facilities but with similar characteristics for the study of the electron beams as a function of the target material. The angular aperture of the electron beam appears to be strongly dependent on the atomic number of the target. An experiment was also carried out to characterize at each shot the proton beam produced with the LULI 100 TW laser facility. This experiment also proved the possibility to induce nuclear reactions in plasma and to measure quantitatively the reaction rate in order to scale an experiment on the perturbation of the nucleus electronic-shells coupling via a strong electromagnetic field due to the laser. (author)

  20. 30th Course of the International School of Quantum Electronics on Atoms, Solids and Plasmas in Super-Intense Laser Fields

    CERN Document Server

    Joachain, Charles; Martellucci, Sergio; Chester, Arthur; Atoms, Solids and Plasmas in Super-intense Laser Fields "Ettore Majorana"

    2000-01-01

    The recent developement of high power lasers, delivering femtosecond pulses of 20 2 intensities up to 10 W/cm , has led to the discovery of new phenomena in laser interactions with matter. At these enormous laser intensities, atoms, and molecules are exposed to extreme conditions and new phenomena occur, such as the very rapid multi photon ionization of atomic systems, the emission by these systems of very high order harmonics of the exciting laser light, the Coulomb explosion of molecules, and the acceleration of electrons close to the velocity of light. These phenomena generate new behaviour of bulk matter in intense laser fields, with great potential for wide ranging applications which include the study of ultra-fast processes, the development of high-frequency lasers, and the investigation of the properties of plasmas and condensed matter under extreme conditions of temperature and pressure. In particular, the concept of the "fast ignitor" approach to inertial confinement fusion (ICF) has been p...

  1. Surface morphological changes on the human dental enamel and cement after the Er:YAG laser irradiation at different incidence angles

    International Nuclear Information System (INIS)

    Tannous, Jose Trancoso

    2001-01-01

    This is a morphological analysis study through SEM of the differences of the laser tissue interaction as a function of the laser beam irradiation angle, under different parameters of energy. Fourteen freshly extracted molars stored in a 0,9% sodium chloride solution were divided in seven pairs and were irradiated with 100, 200, 300, 400, 500, 600 and 700 mJ per pulse, respectively. Each sample received three enamel irradiations and three cement irradiations, either in the punctual or in the contact mode, one near to the other, with respectively 30, 45 and 90 inclinations degrees of dental surface-laser-beam incidence. Four Er:YAG pulses (2,94 μm, 7-20 Hz, 0,1-1 J energy/pulse - Opus 20 - Opus Dent) with water cooling system (0,4 ml/s) were applied. After the laser irradiation the specimens were analysed through scanning electron microscope (SEM). The results were analysed by SEM micrographs showing a great difference on the laser tissue interaction characteristics as a function of the irradiation angle of the laser beam. All the observations led to conclude that, considering the laser parameters used, the incidence angle variation is a very important parameter regarding the desired morphological effects. This represents an extremely relevant detail on the technical description of the Er:YAG laser irradiation protocols on dental tissues. (author)

  2. Rotational Coherence Encoded in an “Air-Laser” Spectrum of Nitrogen Molecular Ions in an Intense Laser Field

    Directory of Open Access Journals (Sweden)

    Haisu Zhang

    2013-10-01

    Full Text Available We investigate lasing action in aligned nitrogen molecular ions (N_{2}^{+} produced in an intense laser field. We find that, besides the population inversion between the B^{2}Σ_{u}^{+}-X^{2}Σ_{g}^{+} states, which is responsible for the observed simulated amplification of a seed pulse, a rotational wave packet in the ground vibrational state (v=0 of the excited electronic B^{2}Σ_{u}^{+} state has been created in N_{2}^{+}. The rotational coherence can faithfully encode its characteristics into the amplified seed pulses, enabling reconstruction of rotational wave packets of molecules in a single-shot detection manner from the frequency-resolved laser spectrum. Our results suggest that the air laser can potentially provide a promising tool for remote characterization of coherent molecular rotational wave packets.

  3. TWAC facility and the use of the laser ion source for production of intense heavy ion beams

    CERN Document Server

    Sharkov, B Yu; Shumshurov, A V; Meshcheryakov, N D; Rudskoy, I; Homenko, S; Makarov, K; Rörich, V; Stepanov, A; Satov, Yu A; Haseroth, H; Kugler, H; Lisi, N; Scrivens, R

    1999-01-01

    Current activities on upgrading of the ITEP heavy ion accelerator complex in the framework of the ITEP-TWAC project are reported. The project being in progress since 1997 is aiming at production of intense (100 kJ/100 ns) heavy ion beams. The basic idea of the project is the application of the non-Liouvillian technique in an existing accelerator facility based on a heavy ion synchrotron for its adaptation to heavy ion fusion related experiments. Special attention is paid to the results on generation of highly charged medium mass and heavy ions in the laser produced plasma. Development of key elements of the laser ion source based on the use of a 100 J repetition rate CO/sub 2/-laser for filling of ITEP and CERN accelerator facilities in the single turn injection mode is presented. (4 refs).

  4. Enhanced target normal sheath acceleration of protons from intense laser interaction with a cone-tube target

    Directory of Open Access Journals (Sweden)

    K. D. Xiao

    2016-01-01

    Full Text Available Laser driven proton acceleration is proposed to be greatly enhanced by using a cone-tube target, which can be easily manufactured by current 3D-print technology. It is observed that energetic electron bunches are generated along the tube and accelerated to a much higher temperature by the combination of ponderomotive force and longitudinal electric field which is induced by the optical confinement of the laser field. As a result, a localized and enhanced sheath field is produced at the rear of the target and the maximum proton energy is about three-fold increased based on the two-dimentional particle-in-cell simulation results. It is demonstrated that by employing this advanced target scheme, the scaling of the proton energy versus the laser intensity is much beyond the normal target normal sheath acceleration (TNSA case.

  5. Laser polarization dependence of proton emission from a thin foil target irradiated by a 70 fs, intense laser pulse

    International Nuclear Information System (INIS)

    Fukumi, A.; Nishiuchi, M.; Daido, H.; Li, Z.; Sagisaka, A.; Ogura, K.; Orimo, S.; Kado, M.; Hayashi, Y.; Mori, M.; Bulanov, S.V.; Esirkepov, T.; Nemoto, K.; Oishi, Y.; Nayuki, T.; Fujii, T.; Noda, A.; Nakamura, S.

    2005-01-01

    A study of proton emission from a 3-μm-thick Ta foil target irradiated by p-, s-, and circularly polarized laser pulses with respect to the target plane has been carried out. Protons with energies up to 880 keV were observed in the target normal direction under the irradiation by the p-polarized laser pulse, which yielded the highest efficiency for proton emission. In contrast, s- and circularly polarized laser pulses gave the maximum energies of 610 and 680 keV, respectively. The difference in the maximum energy between the p- and s-polarized cases was associated with the difference between the sheath fields estimated from electron spectra

  6. Ultra High Intensity laser produced fast electron transport in under-dense and over-dense matter

    International Nuclear Information System (INIS)

    Manclossi, Mauro

    2006-01-01

    This thesis is related to inertial fusion research, and particularly concerns the approach to fast ignition, which is based on the use of ultra-intense laser pulses to ignite the thermonuclear fuel. Until now, the feasibility of this scheme has not been proven and depends on many fundamental aspects of the underlying physics, which are not yet fully understood and which are also very far from controls. The main purpose of this thesis is the experimental study of transport processes in the material over-dense (solid) and under-dense (gas jet) of a beam of fast electrons produced by pulse laser at a intensity of some 10 19 Wcm -2 . (author)

  7. Anti-Stokes scattering and Stokes scattering of stimulated Brillouin scattering cascade in high-intensity laser-plasma interaction

    Science.gov (United States)

    Feng, Q. S.; Liu, Z. J.; Zheng, C. Y.; Xiao, C. Z.; Wang, Q.; Zhang, H. C.; Cao, L. H.; He, X. T.

    2017-07-01

    Anti-Stokes scattering and Stokes scattering in stimulated Brillouin scattering (SBS) cascades have been researched using the Vlasov-Maxwell simulation. In high-intensity laser-plasma interactions, stimulated anti-Stokes Brillouin scattering (SABS) will occur after second stage SBS rescattering. The mechanism of SABS has been put forward to explain this phenomenon. In the early phase of SBS evolution, only first stage SBS appears and total SBS reflectivity comes from first stage SBS. However, when high-stage SBS and SABS occur, SBS reflectivity will display burst behavior and the total reflectivity comes from the SBS cascade and SABS superimposition. The SABS will compete with the SBS rescattering to determine the total SBS reflectivity. Thus, SBS rescattering including SABS is an important saturation mechanism of SBS and should be taken into account in high-intensity laser-plasma interaction.

  8. Particle sources with high-intensity lasers: a tool for plasma diagnostics and an innovative source for applications

    International Nuclear Information System (INIS)

    Fritzler, S.

    2003-09-01

    This work is an experimental study on particle generation with high-intensity lasers. This document is divided into 4 parts, whereas the first is dedicated to theoretical basics of particle generation and acceleration mechanisms during relativistic laser plasma interactions, the 3 other parts cover experimental studies on neutron, electron as well as proton generation. In the first part basic laser and plasma characteristics will be introduced as well as physical processes of interest during the interaction of a relativistic high-intensity laser with an underdense / overdense plasma. In the second part we introduce methodological basics of neutron generation by D(d,n)He 3 reactions since this can reveal information about ion kinetics and possible ion heating mechanisms in plasmas. Subsequently the set-up for this experiment, pursued in the underdense regime, will be described in detail. The experimental results will be discussed for the gas jet interaction as well as for the beam target model since it was deduced that plasma ions are heated during the interaction to fusion temperatures of about 1 keV. The third part describes the generation of an electron beam with an energy up to 200 MeV in a new regime termed 'forced laser Wakefield'. Here, the presented experimental results were for the first time fully explained and even extended by the numerical modelling of this interaction in terms of energy, yield, angular divergence, emittance as well as bunch length of this electron beam. In the last part we present a 10 MeV proton beam generation using foil targets and a 10 Hz laser. Again the kinematic simulation of this experiment is in agreement with the experimental results by means of yield and angular divergence

  9. Characteristic x-ray emission from undermines plasmas irradiated by ultra-intense lasers

    Energy Technology Data Exchange (ETDEWEB)

    Niemann, Christoph [Univ. of California, Los Angeles, CA (United States)

    2012-05-05

    Between FY09 and FY11 we have conducted more than a dozen three-week experimental campaigns at high-power laser facilities around the world to investigate laser-channeling through x-ray and optical imaging and the conversion from laser-energy to xrays. We have performed simultaneous two-wavelength x-ray imaging (K-alpha and He-alpha) to distinguish the hot-plasma region (hot-spot) from the laser-produced electrons (K-alpha). In addition, we have initiated a new collaboration with SNL and have performed first shots on the 100 TW beamlet chamber to commission a fast x-ray streak camera to be used to investigate the temporal evolution of our K-alpha sources. We also collaborated on campaigns at the Rutherford Appleton Laboratory (UK) and the LANL Trident laser to employ laser produced x-ray sources for Thomson scattering off dense matter.

  10. Anomalous alignment dependence of the third-order harmonic of H2+ ions in intense laser fields

    Science.gov (United States)

    Jin, Ying-Jun; Tong, Xiao-Min; Toshima, Nobuyuki

    2012-11-01

    We studied the high-harmonic generation of H2+ ions in an intense laser field by solving the time-dependent Schrödinger equation in prolate spheroidal coordinates. By analyzing the power spectra of the harmonics with the electric field polarized along the molecular axis, we found that the yield of the third-order harmonic drops by several orders of magnitude at a specified aligned angle between the laser polarization direction and the molecular axis. The laser polarization angle of the minimum depends on the internuclear distance and it disappears both in the separated- and united-atom limits. This infers that the minimum is associated with the molecular symmetry. By decomposing individual contributions of the σ and π states, we identified that the minimum is attributed to the cancellation of the induced dipole moments of the σ and π states, like a dynamical Cooper minimum, but the position of the minimum can be tuned by the laser intensity for a given internuclear distance.

  11. Compton harmonic resonances, stochastic instabilities, quasilinear diffusion, and collisionless damping with ultra-high intensity laser waves

    International Nuclear Information System (INIS)

    Rax, J.M.

    1992-04-01

    The dynamics of electrons in two-dimensional, linearly or circularly polarized, ultra-high intensity (above 10 18 W/cm 2 ) laser waves, is investigated. The Compton harmonic resonances are identified as the source of various stochastic instabilities. Both Arnold diffusion and resonance overlap are considered. The quasilinear kinetic equation, describing the evolution of the electron distribution function, is derived, and the associated collisionless damping coefficient is calculated. The implications of these new processes are considered and discussed

  12. Effects of low-intensity laser therapy on the rate of orthodontic tooth movement: A clinical trial

    OpenAIRE

    Kansal, Ankur; Kittur, Nandan; Kumbhojkar, Vinayak; Keluskar, Kanhoba Mahabaleshwar; Dahiya, Parveen

    2014-01-01

    Background: Low-intensity laser therapy (LILT) can be utilized for different treatments in the field of orthodontics and dentofacial orthopedics. The aim of the present study was to evaluate the efficacy of LILT on (1) the rate of canine movement during canine retraction phase and (2) evaluate the radiographic changes occurring during LILT around the irradiated area. Materials and Methods: A total of 10 patients of both genders were included for this study. One quadrant of the upper arch ...

  13. Super-intense laser-solid interaction, anomalous transport and its possible implications for the fast ignitor concept

    Energy Technology Data Exchange (ETDEWEB)

    Mulser, P.; Hain, S.; Ruhl, H. [Theoretical Quantum Electronics, TQE, Darmstadt Univertisy of Tehnology, Darmstadt (Germany); Cornolti, F. [Pisa Univ. (Italy). Dipt. di Fisica

    2000-07-01

    The mechanism of collective absorption of super-intense laser beams is explained in physical terms and Vlasov simulation results for plane targets are presented. In deformed targets absorption is considerably increased. The energy transport from the critical surface into the overdense plasma assumes a filamentary or, depending on the critical surface deformation, mono-filament structure. Ifs possible consequences for the fast ignitor concept are discussed. (authors)

  14. Low intensity laser therapy and functional orthopedics contribution in pain and temporo mandibular dysfunction treatment

    International Nuclear Information System (INIS)

    Lollato, Renata Fronzaglia

    2003-01-01

    Temporo Mandibular Dysfunction (TMD) is a term used to describe disorders which involve temporomandibular joint (TMJ), masticatory muscles, and associated structures, isolatedly or not, whose most frequent symptoms pain. Its etiology involve controversies, and among risk factors is Class 11 malocclusion. A lot of techniques are used for TMD treatment, and the most recent are Low Intensity Laser Therapy (LILT) and Functional Orthopedics (FO). The aim of this study was to evaluate pain and buccal mobility in subjects with Class II malocclusion and TMD symptoms, treated with LILT and FO associated or not. Eighteen subjects were selected and divided in three groups. Group 1 was treated with LILT, λ = 780 nm, 70 mW, 15 J/cm 2 per point, in six sessions during two weeks. The application was in three points around the TMJ and in masticatory muscles: masseter, temporalis, sternomastoid and trapezius, on both sides when there was pain. Palpation was made before and five minutes after application and subjects answered a questionnaire with a score for pain evaluation. Group 2 received functional orthopedics aparatology Planas Indirect Composed Plates, and was evaluated once a week during two weeks, after palpation and following the same score as group 1. Group 3 received both therapies at the same time, and the first application coincided with the aparatology installation. The evaluation followed the parameters of group 1. The results were statically analyzed , and in general form did not show significant differences. There was remission of pain symptoms in ali of the groups, and group 3 showed more rapidly results. This fact leaded us to a conclusion that the association of the LILT with FO was the best treatment for the pain symptoms remission in TMD. (author)

  15. Beat wave current drive with intense pulsed free-electron lasers

    International Nuclear Information System (INIS)

    Cohen, B.I.; Cohen, R.H.; Logan, B.G.; McCay Nevins, W.; Smith, G.R.; Kluge, A.V.; Kritz, A.H.

    1988-01-01

    High power free-electron lasers make possible new methods for driving current in toroidal devices with electromagnetic waves. Earlier considerations of beat wave current drive are applied to a hot magnetized plasma and an arbitrary beat wave. Here the beating of two electromagnetic waves resonantly excites a low frequency beat wave that accelerates and heats electrons and leads to a current. The absolute current drive efficiency depends non-linearly on the two pump wave intensities and is constrained by the Manley-Rowe relations. Accessibility at high plasma densities is not a difficulty, but a degree of frequency tunability of the wave sources is required. Particle simulations indicate that there is a good coupling to an electron velocity tail for a Langmuir beat wave with a phase velocity 1.5 to 3 times (T e /m e ) 1/2 , so that all of the high frequency wave source is absorbed and the beat wave damps completely on the electrons. A novel diagnostic, based on an analytical solution for the linearized Fokker-Planck equation describing electron scattering and slowing down, is added to the particle code. This permits the computation of the current drive efficiency, including both the non-linear beat wave coupling and the collisional relaxation of the electron distribution. A realistic scenario for a beat wave current drive experiment in the Livermore Microwave Tokamak Experiment is calculated using the TORAY toroidal ray tracing code, and the scaling to an engineering test reactor plasma is described. (author). 23 refs, 8 figs

  16. Optimal design and fabrication method for antireflection coatings for P-polarized 193 nm laser beam at large angles of incidence (68°-74°).

    Science.gov (United States)

    Jin, Jingcheng; Jin, Chunshui; Li, Chun; Deng, Wenyuan; Chang, Yanhe

    2013-09-01

    Most of the optical axes in modern systems are bent for optomechanical considerations. Antireflection (AR) coatings for polarized light at oblique incidence are widely used in optical surfaces like prisms or multiform lenses to suppress undesirable reflections. The optimal design and fabrication method for AR coatings with large-angle range (68°-74°) for a P-polarized 193 nm laser beam is discussed in detail. Experimental results showed that after coating, the reflection loss of a P-polarized laser beam at large angles of incidence on the optical surfaces is reduced dramatically, which could greatly improve the output efficiency of the optical components in the deep ultraviolet vacuum range.

  17. Electrons in a relativistic-intensity laser field: generation of zeptosecond electromagnetic pulses and energy spectrum of the accelerated electrons

    International Nuclear Information System (INIS)

    Andreev, A A; Galkin, A L; Kalashnikov, M P; Korobkin, V V; Romanovsky, Mikhail Yu; Shiryaev, O B

    2011-01-01

    We study the motion of an electron and emission of electromagnetic waves by an electron in the field of a relativistically intense laser pulse. The dynamics of the electron is described by the Newton equation with the Lorentz force in the right-hand side. It is shown that the electrons may be ejected from the interaction region with high energy. The energy spectrum of these electrons and the technique of using the spectrum to assess the maximal intensity in the focus are analysed. It is found that electromagnetic radiation of an electron moving in an intense laser field occurs within a small angle around the direction of the electron trajectory tangent. The tangent quickly changes its direction in space; therefore, electromagnetic radiation of the electron in the far-field zone in a certain direction in the vicinity of the tangent is a short pulse with a duration as short as zeptoseconds. The calculation of the temporary and spectral distribution of the radiation field is carried out. (superintense laser fields)

  18. Incidence and Severity of Prescribing Errors in Parenteral Nutrition for Pediatric Inpatients at a Neonatal and Pediatric Intensive Care Unit

    Directory of Open Access Journals (Sweden)

    Theresa Hermanspann

    2017-06-01

    Full Text Available ObjectivesPediatric inpatients are particularly vulnerable to medication errors (MEs, especially in highly individualized preparations like parenteral nutrition (PN. Aside from prescribing via a computerized physician order entry system (CPOE, we evaluated the effect of cross-checking by a clinical pharmacist to prevent harm from PN order errors in a neonatal and pediatric intensive care unit (NICU/PICU.MethodsThe incidence of prescribing errors in PN in a tertiary level NICU/PICU was surveyed prospectively between March 2012 and July 2013 (n = 3,012 orders. A pharmacist cross-checked all PN orders prior to preparation. Errors were assigned to seven different error-type categories. Three independent experts from different academic tertiary level NICUs judged the severity of each error according to the National Coordinating Council for Medication Error Reporting and Prevention (NCC MERP Index (categories A–I.ResultsThe error rate was 3.9% for all 3,012 orders (118 prescribing errors in 111 orders. 77 (6.0%, 1,277 orders errors occurred in the category concentration range, all concerning a relative overdose of calcium gluconate for peripheral infusion. The majority of all events (60% were assigned to categories C and D (without major harmful consequences while 28% could not be assigned due to missing majority decision. Potential harmful consequences requiring interventions (category E could have occurred in 12% of assessments.ConclusionNext to systematic application of clinical guidelines and prescribing via CPOE, order review by a clinical pharmacist is still required to effectively reduce MEs and thus to prevent minor and major adverse drug events with the aim to enhance medication safety.

  19. Laser-matter interaction at high intensity and high temporal contrast; Interaction laser matiere a haut flux et fort contraste temporel

    Energy Technology Data Exchange (ETDEWEB)

    Doumy, G

    2006-01-15

    The continuous progress in the development of laser installations has already lead to ultra-short pulses capable of achieving very high focalized intensities (I > 10{sup 18} W/cm{sup 2}). At these intensities, matter presents new non-linear behaviours, due to the fact that the electrons are accelerated to relativistic speeds. The experimental access to this interaction regime on solid targets has long been forbidden because of the presence, alongside the femtosecond pulse, of a pedestal (mainly due to the amplified spontaneous emission (ASE) which occurs in the laser chain) intense enough to modify the state of the target. In this thesis, we first characterized, both experimentally and theoretically, a device which allows an improvement of the temporal contrast of the pulse: the Plasma Mirror. It consists in adjusting the focusing of the pulse on a dielectric target, so that the pedestal is mainly transmitted, while the main pulse is reflected by the overcritical plasma that it forms at the surface. The implementation of such a device on the UHI 10 laser facility (CEA Saclay - 10 TW - 60 fs) then allowed us to study the interaction between ultra-intense, high contrast pulses with solid targets. In a first part, we managed to generate and characterize dense plasmas resulting directly from the interaction between the main pulse and very thin foils (100 nm). This characterization was realized by using an XUV source obtained by high order harmonics generation in a rare gas jet. In a second part, we studied experimentally the phenomenon of high order harmonics generation on solid targets, which is still badly understood, but could potentially lead to a new kind of energetic ultra-short XUV sources. (author)

  20. Generation of ultra-intense and ultra-short laser pulses with high temporal contrast; Generation d'impulsions laser ultra-breves et ultra-intenses a contraste temporel eleve

    Energy Technology Data Exchange (ETDEWEB)

    Julien, A

    2006-03-15

    The topic of this thesis work concerns the design and the characterization of an efficient device devoted to the temporal contrast improvement for ultra-intense femtosecond laser pulses. The contrast is defined as the intensity ratio between the main femtosecond pulse and its nanosecond pedestal. This pedestal is the amplified spontaneous emission (ASE), inherent with laser amplification mechanism. The ASE background has dramatic effects for laser-matter interactions on a solid target. The presented work consists in the theoretical and experimental study of a temporal filter based on a third order nonlinear effect acting on the pulse polarization. We have studied several kinds of nonlinear filters. The selected device is based on the process of cross-polarized wave generation (XPW) in crystals with an anisotropic third-order nonlinear susceptibility. This nonlinear filter has been experimented on various femtosecond systems. It allows a contrast improvement of several orders of magnitude, as demonstrated by temporal profiles measurements on a large intensity dynamic. A device to improve the nonlinear process conversion efficiency, it means the filter transmission, has also been achieved. This method is based on constructive interferences between XPW signals generated in different crystals. This setup has made it possible to reach experimentally the maximum theoretical efficiency ( >20%) and in the same time ensures the system stability. At least, we have demonstrated that the filter preserves, or even improves, spectral and spatial qualities of the laser pulse. These results are thus particularly promising and allow contemplating the implementation of the filter in current femtosecond systems. (author)

  1. Study of helium and beryllium atoms with strong and short laser field; Etude des atomes d'helium et de beryllium en champ laser intense et bref

    Energy Technology Data Exchange (ETDEWEB)

    Laulan, St

    2004-09-01

    We present a theoretical study of the interaction between a two-active electron atom and an intense (10{sup 14} to 10{sup 15} W/cm{sup 2}) and ultrashort (from a few 10{sup -15} to a few 10{sup -18} s) laser field. In the first part, we describe the current experimental techniques able to produce a coherent radiation of high power in the UV-XUV regime and with femtosecond time duration. A theoretical model of a laser pulse is defined with such characteristics. Then, we develop a numerical approach based on B-spline functions to describe the atomic structure of the two-active electron system. A spectral non perturbative method is proposed to solve the time dependent Schroedinger equation. We focalize our attention on the description of the atomic double continuum states. Finally, we expose results on the double ionization of helium and beryllium atoms with intense and short laser field. In particular, we present total cross section calculations and ejected electron energy distributions in the double continuum after one- and two-photon absorption. (author)

  2. Effects of low intensity laser acupoint irradiation on inhibiting islet beta-cell apoptosis in rats with type 2 diabetes

    Science.gov (United States)

    Xiong, Guoxin; Xiong, Leilei; Li, Xinzhong

    2016-09-01

    To investigate the effects of low intensity semiconductor laser acupoint irradiation on inhibiting islet beta-cell apoptosis in rats with type 2 diabetes, a method using a high-fat diet and low-dose intraperitoneal injections of streptozotocin established a type 2 diabetes mellitus rat model. Model rats were randomly divided into a laser acupoint irradiation group, rosiglitazone control group, and placebo group; each group had 10 rats. In addition, 10 normal male rats were selected for the normal control group. The Housanli, Neiting and Yishu acupoints of the rats in the laser acupoint irradiation group were irradiated with a 10 mW semiconductor laser; each point was irradiated for 15 min, once every 2 d over 28 d, for a total of 14 episodes of irradiation. The rosiglitazone group rats were given rosiglitazone (0.2 mg kg-1) intragastrically; the placebo group rats were given 0.9% brine (0.2 mg kg-1) intragastrically, once daily, for four consecutive weeks. The change of fasting blood glucose was determined before and after each treatment. The islet beta-cell apoptosis was determined. The islet beta-cell apoptosis rates of the laser acupoint irradiation group and the rosiglitazone group were significantly lower than the rate of the placebo group. Even though the rate was lower in the laser acupoint irradiation group than in the rosiglitazone group, there was no significant difference between them. It is shown that acupoint irradiation with a semiconductor laser can effectively inhibit islet beta-cell apoptosis in rats with type 2 diabetes.

  3. High energy density physics with intense ion and laser beams. Annual report 2003

    Energy Technology Data Exchange (ETDEWEB)

    Weyrich, K. (comp.)

    2004-07-01

    The following topics are dealt with: Laser plasma physics, plasma spectroscopy, beam interaction experiments, atomic and radiation physics, pulsed power applications, beam transport and accelerator research and development, properties of dense plasma, instabilities in beam-plasma interaction, beam transport in dense plasmas, short-pulse laser-matter interaction. (HSI)

  4. Optimization of C5+ Balmer-α line intensity at 182 Å from laser ...

    Indian Academy of Sciences (India)

    Results of both these studies can be used for line focusing geometry. Experiments were performed using a 2.5 GW, 4 ns Nd:phosphate glass laser sys- tem. The laser beam (λ = 1.054 µm) was focused normally on a planar polyethylene target using a 400 mm plano-convex lens in a plasma chamber evacuated to 10−4. Torr.

  5. Observation of enhanced soft x-ray emission using nitrogen clusters ionized by intense, femtosecond laser

    Czech Academy of Sciences Publication Activity Database

    Mocek, Tomáš; Park, J. J.; Kim, Ch. M.; Kim, H. T.; Lee, D. G.; Hong, K. H.; Nam, Ch. H.

    2003-01-01

    Roč. 93, č. 5 (2003), s. 3105-3107 ISSN 0021-8979 R&D Projects: GA MŠk LN00A100 Institutional research plan: CEZ:AV0Z1010921 Keywords : clusters * femtosecond laser s * x-ray spectroscopy Subject RIV: BH - Optics, Masers, Laser s Impact factor: 2.171, year: 2003

  6. Current status of the driver laser system for intense terahertz wave generation

    International Nuclear Information System (INIS)

    Tanaka, Momoko; Ochi, Yoshihiro; Kosuge, Atsushi; Okada, Hajime; Kiriyama, Hiromitsu; Mori, Michiaki; Tsubouchi, Masaaki; Nagashima, Keisuke

    2014-01-01

    We have constructed a high power kHz laser system using Yb:YAG thin-disk as a gain medium for a driver laser of THz wave generation. A 4-bounce regenerative amplifier is constructed and output energy up to 10 mJ is obtained. Using compressed pulse, we demonstrated THz wave generation with LiNbO 3 crystal. (author)

  7. Effects of radiation reaction in the interaction between cluster media and high intensity lasers in the radiation dominant regime

    Science.gov (United States)

    Iwata, Natsumi; Nagatomo, Hideo; Fukuda, Yuji; Matsui, Ryutaro; Kishimoto, Yasuaki

    2016-06-01

    Interaction between media composed of clusters and high intensity lasers in the radiation dominant regime, i.e., intensity of 10 22 - 23 W / cm 2 , is studied based on the particle-in-cell simulation that includes the radiation reaction. By introducing target materials that have the same total mass but different internal structures, i.e., uniform plasma and cluster media with different cluster radii, we investigate the effect of the internal structure on the interaction dynamics, high energy radiation emission, and its reaction. Intense radiation emission is found in the cluster media where electrons exhibit non-ballistic motions suffering from strong accelerations by both the penetrated laser field and charge separation field of clusters. As a result, the clustered structure increases the energy conversion into high energy radiations significantly at the expense of the conversion into particles, while the total absorption rate into radiation and particles remains unchanged from the absorption rate into particles in the case without radiation reaction. The maximum ion energy achieved in the interaction with cluster media is found to be decreased through the radiation reaction to electrons into the same level with that achieved in the interaction with the uniform plasma. The clustered structure thus enhances high energy radiation emission rather than the ion acceleration in the considered intensity regime.

  8. Numerical study of threshold intensity dependence on gas pressure in the breakdown of molecular hydrogen induced by excimer laser

    Science.gov (United States)

    Gamal, Yosr E. E.-D.; Nassef, O. Aied

    2017-10-01

    In the present work, a numerical analysis is performed to investigate the threshold intensity dependence on gas pressure in laser spark ignition of the H2 plasma. The analysis considered the experimental measurements that were carried out by Yagi and Huo [Appl. Opt. 35, 3183 (1996)]. In their experiment, H2 in a pressure range of 150-3000 Torr is irradiated by a focused excimer laser source using a 96 cm lens at a wavelength of 248 nm and a pulse duration of 20 ns. The study, based on a modified electron cascade model [K. A. Hamam et al., J. Mod. Phys. 4, 311 (2013)], solves numerically a time-dependent energy equation for the distribution of the electron energy as well as a set of rate equations that describe the change in the formed excited molecule population. This model enabled the determination of the threshold intensity as a function of gas pressure. The validity of the model was tested by comparing the calculated thresholds with the experimentally measured ones. Moreover, the calculation of the electron energy distribution function and its parameters justified the role of the electron gain and loss processes in controlling the value of threshold intensity in relation to the gas pressure. The effect of loss processes on the threshold intensity is also presented.

  9. Tuning excitation laser wavelength for secondary resonance in low-intensity phase-selective laser-induced breakdown spectroscopy for in-situ analytical measurement of nanoaerosols

    Science.gov (United States)

    Xiong, Gang; Li, Shuiqing; Tse, Stephen D.

    2018-02-01

    In recent years, a novel low-intensity phase-selective laser-induced breakdown spectroscopy (PS-LIBS) technique has been developed for unique elemental-composition identification of aerosolized nanoparticles, where only the solid-phase nanoparticles break down, forming nanoplasmas, without any surrounding gas-phase breakdown. Additional work has demonstrated that PS-LIBS emissions can be greatly enhanced with secondary resonant excitation by matching the excitation laser wavelength with an atomic transition line in the formed nanoplasma, thereby achieving low limits of detection. In this work, a tunable dye laser is employed to investigate the effects of excitation wavelength and irradiance on in-situ PS-LIBS measurements of TiO2 nanoaerosols. The enhancement factor by resonant excitation can be 220 times greater than that for non-resonant cases under similar conditions. Moreover, the emitted spectra are unique for the selected resonant transition lines for a given element, suggesting the potential to make precise phase-selective and analyte-selective measurements of nanoparticles in a multicomponent multiphase system. The enhancement factor by resonant excitation is highly sensitive to excitation laser wavelength, with narrow excitation spectral windows, i.e., 0.012 to 0.023 nm (FWHM, full width at half maximum) for Ti (I) neutral atomic lines, and 0.051 to 0.139 nm (FWHM) for Ti (II) single-ionized atomic lines. Boltzmann analysis of the emission intensities, temporal response of emissions, and emission dependence on excitation irradiance are investigated to understand aspects of the generated nanoplasmas such as temperature, local thermodynamic equilibrium (LTE), and excitation mechanism.

  10. Advanced laser-backlit grazing-incidence x-ray imaging systems for inertial confinement fusion research. II. Tolerance analysis

    International Nuclear Information System (INIS)

    Bennett, Guy R.; Folta, James A.

    2001-01-01

    Two example ultrahigh-spatial resolution laser-backlit grazing-incidence x-ray microscope designs for inertial confinement fusion (ICF) research have been described [Appl. Opt. 40, 4570 (2001)]. Here details of fabrication, assembly, and optical surface errors that are characteristic of present state-of-the-art superpolished multilayer-coated spherical mirrors are given. They indicate that good image qualities can be expected; in particular, <0.5-μm spatial resolution at very high x-ray energies (up to 25 keV) appears to be feasible. Existing ICF imaging diagnostics approach ∼2 μm spatial at low (<2 keV) energy. The improvement in resolution compared with that of other grazing-incidence devices is attributed to a fortuitous residual on-axis aberration dependence on short wavelengths; recent advances in mirror fabrication, including a new thin-film deposition technique to correct figure errors precisely in one dimension; and novel design. For even higher resolution, a means of creating precise aspherical mirrors of spheric-quality microroughness may be possible by use of the same deposition technique

  11. [Survival and success rate of dental implants treated with high intensity laser].

    Science.gov (United States)

    Joób-Fancsaly, Arpád; Divinyi, Tamás; Karacs, Albert; Koncz, Szilvia; Pető, Gábor; Sulyok, Lili

    2015-09-01

    Clinical and radiological evaluations were conducted in patients with high energy Nd : glass laser-treated dental implants. These patients underwent dental implantation surgery between 1997 and 2006. Strict success criteria were used for the examination and analysis of implants. Based on clinical and radiological evaluation, success and survival rates of laser surface treated dental implants were similar to those of sandblasted, acid-etched surface implants frequently reported in the literature. Specific surface morphology and high degree of purity of laser surface treated dental implants ensure excellent osseointegration and a good clinical performance also on the long-term.

  12. Low-intensity red and infrared lasers affect mRNA expression of DNA nucleotide excision repair in skin and muscle tissue.

    Science.gov (United States)

    Sergio, Luiz Philippe S; Campos, Vera Maria A; Vicentini, Solange C; Mencalha, Andre Luiz; de Paoli, Flavia; Fonseca, Adenilson S

    2016-04-01

    Lasers emit light beams with specific characteristics, in which wavelength, frequency, power, fluence, and emission mode properties determine the photophysical, photochemical, and photobiological responses. Low-intensity lasers could induce free radical generation in biological tissues and cause alterations in macromolecules, such as DNA. Thus, the aim of this work was to evaluate excision repair cross-complementing group 1 (ERCC1) and excision repair cross-complementing group 2 (ERCC2) messenger RNA (mRNA) expression in biological tissues exposed to low-intensity lasers. Wistar rat (n = 28, 4 for each group) skin and muscle were exposed to low-intensity red (660 nm) and near-infrared (880 nm) lasers at different fluences (25, 50, and 100 J/cm(2)), and samples of these tissues were withdrawn for RNA extraction, cDNA synthesis, and gene expression evaluation by quantitative polymerase chain reaction. Laser exposure was in continuous wave and power of 100 mW. Data show that ERCC1 and ERCC2 mRNA expressions decrease in skin (p laser, but increase in muscle tissue (p  0.05), but ERCC2 mRNA expression decreases in skin (p laser. Our results show that ERCC1 and ERCC2 mRNA expression is differently altered in skin and muscle tissue exposed to low-intensity lasers depending on wavelengths and fluences used in therapeutic protocols.

  13. Classifying and assembling two-dimensional X-ray laser diffraction patterns of a single particle to reconstruct the three-dimensional diffraction intensity function: resolution limit due to the quantum noise

    International Nuclear Information System (INIS)

    Tokuhisa, Atsushi; Taka, Junichiro; Kono, Hidetoshi; Go, Nobuhiro

    2012-01-01

    A new algorithm is developed for reconstructing the high-resolution three-dimensional diffraction intensity function of a globular biological macromolecule from many quantum-noise-limited two-dimensional X-ray laser diffraction patterns, each for an unknown orientation. The structural resolution is expressed as a function of the incident X-ray intensity and quantities characterizing the target molecule. A new two-step algorithm is developed for reconstructing the three-dimensional diffraction intensity of a globular biological macromolecule from many experimentally measured quantum-noise-limited two-dimensional X-ray laser diffraction patterns, each for an unknown orientation. The first step is classification of the two-dimensional patterns into groups according to the similarity of direction of the incident X-rays with respect to the molecule and an averaging within each group to reduce the noise. The second step is detection of common intersecting circles between the signal-enhanced two-dimensional patterns to identify their mutual location in the three-dimensional wavenumber space. The newly developed algorithm enables one to detect a signal for classification in noisy experimental photon-count data with as low as ∼0.1 photons per effective pixel. The wavenumber of such a limiting pixel determines the attainable structural resolution. From this fact, the resolution limit due to the quantum noise attainable by this new method of analysis as well as two important experimental parameters, the number of two-dimensional patterns to be measured (the load for the detector) and the number of pairs of two-dimensional patterns to be analysed (the load for the computer), are derived as a function of the incident X-ray intensity and quantities characterizing the target molecule

  14. Relativistic effects in ultra-high-intensity laser-plasma interaction: electron parametric instabilities and ponderomotive force

    International Nuclear Information System (INIS)

    Quesnel, Brice

    1998-01-01

    This research thesis reports a theoretical and numeric study of the behaviour of two non linear phenomena of the laser-plasma interaction physics in a relativistic regime: the electronic parametric instabilities, and the ponderomotive force. In a first part, the author establishes the three-dimensional scattering relationship of electron parametric instabilities for a circularly polarised wave propagating in a homogeneous and cold plasma, without limitations of wave intensity, nor of plasma density. Results are verified by comparison with those of two-dimensional numerical simulations. The Weibel instability is also briefly studied in relativistic regime. In the second part, the author establishes an expression of the ponderomotive force exerted by an ultra-intense laser pulse in the vacuum about the focus point. A numerical code of integration of equations of motion of an electron in the laser field is used for the different expressions corresponding different approximation degrees. Results are used to interpret a recent experiment, and to critic other theoretical works [fr

  15. Stopping and Coulomb explosion of energetic carbon clusters in a plasma irradiated by an intense laser field

    Science.gov (United States)

    Wang, Guiqiu; Wang, Younian

    2015-09-01

    The interaction of a charged particle beam with a plasma is a very important subject of relevance for many fields of physics, such as inertial confinement fusion (ICF) driven by ion or electron beams, high energy density physics, and related astrophysical problems. Recently, a promising ICF scheme has been proposed, in which the plasma target is irradiated simultaneously by intense laser and ion beams. For molecular ion or cluster, slowing down process will company the Coulomb explosion phenomenon. In this paper, we present a study of the effects of intense radiation field (RF) on the interaction of energetic carbon clusters in a plasma. The emphasis is laid on the dynamic polarization and correlation effects of the constituent ions within the cluster in order to disclose the role of the vicinage effects on the Coulomb explosion and energy deposition of the clusters in plasma. On the other hand, affecting of a strong laser field on the cluster propagating in plasma is considered, the influence of a large range of laser parameters and plasma parameters on the Coulomb explosion and stopping power are discussed. This work is supported by the National Natural Science Foundation of China (11375034), and the Fundamental Research Funds for the Central Universities of China (3132015144, 3132014337).

  16. Multielectron dissociative ionization of methane and formaldehyde molecules with optimally tailored intense femtosecond laser pulses

    Science.gov (United States)

    Irani, E.; Anvari, A.; Sadighi-Bonabi, R.; Monfared, M.

    2017-10-01

    The multielectron dissociative ionization of CH4 and CH2O molecules has been investigated using optimum convolution of different dual tailored short laser pulses. Based on three dimensional molecular dynamics simulations and TDDFT approach, the dissociation probability is enhanced by designing the dual chirped-chirped laser pulses and chirped-ordinary laser pulses for formaldehyde molecule. However, it is interesting to notice that the sensitivity of enhanced dissociation probability into different tailored laser pulses is not significant for methane molecule. In this presented modifications, time variation of bond length, velocity, time dependent electron localization function and evolution of the efficient occupation states are presented to analyze the time evolution of molecular dynamics. This work is proved to be a potential way to reduce the controlling costs with a currently available pulse shaping technology.

  17. Creating intense polarized electron beam via laser stripping and spin-orbit interaction

    International Nuclear Information System (INIS)

    Danilov, V.; Ptitsyn, V.; Gorlov, T.

    2010-01-01

    The recent advance in laser field make it possible to excite and strip electrons with definite spin from hydrogen atoms. The sources of hydrogen atoms with orders of magnitude higher currents (than that of the conventional polarized electron cathods) can be obtained from H - sources with good monochromatization. With one electron of H - stripped by a laser, the remained electron is excited to upper state (2P 3/2 and 2P 1/2 ) by a circular polarization laser light from FEL. Then, it is excited to a high quantum number (n=7) with mostly one spin direction due to energy level split of the states with a definite direction of spin and angular momentum in an applied magnetic field and then it is stripped by a strong electric field of an RF cavity. This paper presents combination of lasers and fields to get high polarization and high current electron source.

  18. Plasma emission spectroscopy of solids irradiated by intense XUV pulses from a free electron laser

    Czech Academy of Sciences Publication Activity Database

    Dzelzainis, T.W.J.; Chalupský, Jaromír; Fajardo, M.; Fäustlin, R.; Heimann, P.A.; Hájková, Věra; Juha, Libor; Jurek, Karel; Khattak, F.Y.; Kozlová, Michaela; Krzywinski, J.; Lee, R. W.; Nagler, B.; Nelson, A.J.; Rosmej, F.B.; Soberierski, R.; Toleikis, S.; Tschentscher, T.; Vinko, S.M.; Wark, J. S.; Whitcher, T.; Riley, D.

    2010-01-01

    Roč. 6, č. 1 (2010), 109-112 ISSN 1574-1818 R&D Projects: GA MŠk LC510; GA MŠk(CZ) LC528; GA MŠk LA08024; GA AV ČR IAAX00100903 Institutional research plan: CEZ:AV0Z10100523; CEZ:AV0Z10100521 Keywords : XUV emission spectroscopy * free-electron laser * warm dense matter Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.206, year: 2010

  19. Hydrodynamic characteristics of high Z doped plastic targets irradiated by intense laser beams

    International Nuclear Information System (INIS)

    Pant, H.C.; Dhareshwar, L.J.; Shirsat, T.S.; Naik, P.A.; Nandwana, P.D.

    1990-01-01

    This paper reports on an enhanced spatial smoothing of ablative motion, stability and ablation pressure of laser irradiated thin plastic foil targets doped with tungsten that have been observed. Optical shadowgraphy and rear side cone calorimeter technique were used for measurement of foil motion and kinetic energy of accelerated target. Laser irradiance used in the experiment was in the range of 10 11 --10 13 W/cm 2 at 1.06 μm wavelength

  20. The Incidence of Central Serous Chorioretinopathy after Photorefractive Keratectomy and Laser In Situ Keratomileusis

    Directory of Open Access Journals (Sweden)

    Majid Moshirfar

    2012-01-01

    A chart review was performed to identify all patients with CSCR and a previous history of LASIK or PRK. Results. Over the 6-year study period, 1 of 4,876 eyes which had LASIK or PRK at the Moran Eye Center was diagnosed with CSCR. One other patient was referred from an outside center, developed CSCR symptoms one month after PRK. Both patients were managed conservatively with a final visual acuity of 20/20 or better. All other patients presented 4 or more years after refractive surgery. Conclusions. We report the first 2 CSCR cases developing within one month after PRK. The low incidence argues against a causal association. Topical corticosteroids or anxiety may elevate cortisol levels presenting therapeutic challenges for the management of CSCR after PRK or LASIK.

  1. Effects of low-intensity laser therapy on the rate of orthodontic tooth movement: A clinical trial

    Science.gov (United States)

    Kansal, Ankur; Kittur, Nandan; Kumbhojkar, Vinayak; Keluskar, Kanhoba Mahabaleshwar; Dahiya, Parveen

    2014-01-01

    Background: Low-intensity laser therapy (LILT) can be utilized for different treatments in the field of orthodontics and dentofacial orthopedics. The aim of the present study was to evaluate the efficacy of LILT on (1) the rate of canine movement during canine retraction phase and (2) evaluate the radiographic changes occurring during LILT around the irradiated area. Materials and Methods: A total of 10 patients of both genders were included for this study. One quadrant of the upper arch was considered control group (CG) and received mechanical activation of the canine teeth with 150 g. The opposite quadrant received the same mechanical activation and was also irradiated with a diode emitting light (gallium-arsenide laser) at 904 nm, for 10 s at 12 mW, at 4.2 J/cm2. Laser application was done on 1st day, 3rd, 7th, 14th, 21th, 28th, 35th, 42nd, 49th, 56th day respectively during the canine retraction phase. Distance was measured on 1st day, 35th day and 63rd day and appliance activation was done on 1st and 35th day. Results were analyzed using t-test with the significance level set at P laser group (LG). Conclusion: There was no statistically significant difference in the rate of tooth movement during canine retraction between the LG and the CG. There was no evidence of any pathologic changes in the radiograph following LILT. PMID:25225562

  2. Deuteron-induced reactions generated by intense lasers for PET isotope production

    Science.gov (United States)

    Kimura, Sachie; Bonasera, Aldo

    2011-05-01

    We investigate the feasibility of using laser accelerated protons/deuterons for positron emission tomography (PET) isotope production by means of the nuclear reactions 11B(p, n) 11C and 10B(d, n) 11C. The second reaction has a positive Q-value and no energy threshold. One can, therefore, make use of the lower energy part of the laser-generated deuterons, which includes the majority of the accelerated deuterons. By assuming that the deuteron spectra are similar to the proton spectra, the 11C produced from the reaction 10B(d, n) 11C is estimated to be 7.4×10 9 per laser-shot at the Titan laser at Lawrence Livermore National Laboratory. Meanwhile a high-repetition table-top laser irradiation is estimated to generate 3.5×10 711C per shot from the same reaction. In terms of the 11C activity, it is about 2×10 4 Bq per shot. If this laser delivers kHz, the activity is integrated to 1 GBq after 3 min. The number is sufficient for the practical application in medical imaging for PET.

  3. Electron Generation and Transport in Intense Relativistic Laser-Plasma Interactions Relevant to Fast Ignition ICF

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Tammy Yee Wing [Univ. of California, San Diego, CA (United States)

    2010-01-01

    The reentrant cone approach to Fast Ignition, an advanced Inertial Confinement Fusion scheme, remains one of the most attractive because of the potential to efficiently collect and guide the laser light into the cone tip and direct energetic electrons into the high density core of the fuel. However, in the presence of a preformed plasma, the laser energy is largely absorbed before it can reach the cone tip. Full scale fast ignition laser systems are envisioned to have prepulses ranging between 100 mJ to 1 J. A few of the imperative issues facing fast ignition, then, are the conversion efficiency with which the laser light is converted to hot electrons, the subsequent transport characteristics of those electrons, and requirements for maximum allowable prepulse this may put on the laser system. This dissertation examines the laser-to-fast electron conversion efficiency scaling with prepulse for cone-guided fast ignition. Work in developing an extreme ultraviolet imager diagnostic for the temperature measurements of electron-heated targets, as well as the validation of the use of a thin wire for simultaneous determination of electron number density and electron temperature will be discussed.

  4. PIC Simulations of Ultra Intense Laser Pulses Propagating Through Overdense Plasma for Fast-Ignitor and Radiography Applications

    Science.gov (United States)

    Lasinski, Barbara F.

    1998-11-01

    Particle-in-Cell codes are uniquely suited to model the interaction of ultra intense laser beams with overdense plasmas. We describe our Zohar simulations whose parameters are guided by present high intensity experiments to explore both fast-ignitorfootnote M. Tabak, J. Hammer, M. E. Glinsky, W. L. Kruer, S. C. Wilks, J. Woodworth, E. M. Campbell, M. D Perry, and R. J. Mason, Phys. Plasmas 1, 1626 (1994). and radiographyfootnote S. P. Hatchett, S. Wilks, B. F. Lasinski, and M. Perry, presented at the 28^th Anomalous Absorption Conference, June 14-18, 1998. applications. The ρ r of the simulated plasma slabs and the time scale of the ZOHAR modeling are roughly comparable to present short pulse experiments with thin CH foils and high laser intensity. Complex low frequency magnetic field structures, narrow channel formation, beam deflection, and harmonic generation are all evident in these simulations. Absorption fractions are high and we verify the predicted scaling for T_hot.footnote S. C. Wilks, W. L. Kruer, M. Tabak, and A. B. Langdon, Phys. Rev. Lett. 69, 1383 (1992). Our recent work has emphasized our particle tracking diagnostics which allow us to explore the nature of the currents that produce and interact with these static magnetic fields which are larger than 10^9 G for simulations at 10^21 W/cm^2 in a 50nc plasma. Particle orbits at various stages of channel formation provide a more complete understanding of the hot electron generation as the short pulse, high intensity laser penetrates overdense plasma. We identify particles which constitute the current in the narrow channel. The forward going electrons are partially confined in the channel by the low frequency magnetic field. In contrast, the return current particles on the outside of the channel are defocused by the high magnetic field and move away from the channel. Electrons continuously move in toward the channel and replenish the return current. Results on the spectra and angular distribution of the

  5. Generation of shock fronts in the interaction of the short pulses of intense laser light in supercritical plasma; Generacion de frentes de choque en la interaccion de pulsos cortos de luz laser intensa en plasmas supercriticos

    Energy Technology Data Exchange (ETDEWEB)

    Lopez V, V.E

    2004-07-01

    these being of important consequence in the effective absorption of the energy of a laser in the plasma. In this work we begin with a simulation program of particles that is based on the code ES1 (Electrostatic Program in one dimension) which modified for to implement the initial conditions as well as for diverse diagnostics. This code initializes a system of charged particles to which are applied external electric and magnetic fields. Later on its are analyzed the codes EM1 and EM1BND for periodic systems and enclosed systems. with the presence of electric and magnetic fields, having by this way an electromagnetic program. In the following chapter the energy absorption it is studied for solid densities of plasma with intensities among 10{sup 20} and 10{sup 21} W/cm{sup 2} simulations made by J. Denavit in 1992. One of the results but important it corresponds to the case of an intensity pulse of 10{sup 21} W/cm{sup 2} and a wavelength of 0.8 {mu} m with normal incidence in a sheet of carbon in which the ions acquire speeds {approx} 10{sup 8} m/s. The energy of the electrons is {approx} 20 keV having in this case an absorption of {approx} 1%. This efficiency increases to intensities but high. It is presented this way results of shock fronts under certain parameters. For finish, each one of the subroutines of the Program ES1 was studied (Electrostatic, 1-dimension), which is explained in the chapter 2, where the phase space diagram is used to study the dynamics of the particles. Once explained the structure of the program it will continue to make simulations changing certain parameters, to obtain by this way a diagnostic of the interaction physics. (Author)

  6. Incidence of epithelial ingrowth in primary and retreatment laser in situ keratomileusis.

    Science.gov (United States)

    Caster, Andrew I; Friess, David W; Schwendeman, Frank J

    2010-01-01

    To analyze the risk for clinically significant epithelial ingrowth after primary laser in situ keratomileusis (LASIK) and flap-lift retreatment LASIK. Private practice, Beverly Hills, California, USA. All cases of primary and flap-lift retreatment LASIK performed by the same surgeon in a single surgical center between January 2004 and June 2007 were retrospectively reviewed. Cases that subsequently developed clinically significant epithelial ingrowth, defined as epithelial ingrowth impeding on the visual axis and negatively affecting uncorrected or corrected distance visual acuity, were identified and analyzed. Clinically significant epithelial ingrowth occurred in none of the 3866 primary LASIK cases and in 15 (2.3%) of the 646 flap-lift retreatment cases (P<.0001). Clinically significant ingrowth was more frequent when flap-lift retreatment was performed 3 or more years after primary LASIK (7.7% versus 1.0%) (P = .0001). Patient age and sex did not have a statistically significant effect on the epithelial ingrowth rate. There was a nonsignificant trend toward increased epithelial ingrowth after flap-lift retreatment of Automated Corneal Shaper (ACS) microkeratome flaps. Flap-lift retreatment performed 3 or more years after primary LASIK led to a higher risk of clinically significant epithelial ingrowth than primary LASIK or earlier flap-lift retreatment. The author has no financial or proprietary interest in any material or method mentioned. Copyright 2010 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  7. Modelling properties of hard x-rays generated by the interaction between relativistic electrons and very intense laser beams

    International Nuclear Information System (INIS)

    Popa, Alexandru

    2009-01-01

    In a previous paper we presented a calculation model for high harmonic generation by relativistic Thomson scattering of the electromagnetic radiation by free electrons. In this paper we present a similar model for the calculation of the energies of hard x-rays (20- 200 keV) resulted from the interaction between relativistic electrons (20-100 MeV) and very intense laser beams. Starting from the relativistic equations of motion of an electron in the electromagnetic field we show that the Lienard-Wiechert equation leads to electromagnetic waves whose frequencies are in the domain of hard x-rays. When the relativistic parameter of the laser beam is greater than unity, the model predicts the existence of harmonics of the above frequencies. Our theoretical values are in good agreement with experimental values of the x-ray energies from the literature and predict accurately their angular distribution.

  8. Hydrogen migration within a water molecule: formation of HD+ upon irradiation of HOD with intense, ultrashort laser pulses

    Science.gov (United States)

    Mathur, Deepak; Dharmadhikari, Aditya K.; Dharmadhikari, Jayashree A.; Vasa, Parinda

    2017-08-01

    We have carried out velocity map imaging experiments on HOD molecules irradiated by 10 fs long pulses of intense (˜1 PW cm-2) laser light (800 nm). We have detected HD+ ions as a signature of unimolecular hydrogen migration within the water molecule; ion momentum maps measured at different laser polarizations yield evidence that such hydrogen migration occurs on ultrafast timescales. We have been able to utilize the momentum maps to deduce that (i) the HD+ ion that is formed is vibrationally excited, and (ii) that the electronic state of the precursor HOD2+ dication has an essentially linear geometrical structure with elongated O-H and O-D bonds. Our results are in agreement with expectations from ab initio quantum chemical computations of potential energy surfaces of the lowest-energy states of HOD, HOD+ and HOD2+.

  9. Interaction of an atom subject to an intense laser field with its own radiation field and nonlocality of electromagnetic interaction

    International Nuclear Information System (INIS)

    Gainutdinov, R Kh; Mutygullina, A A

    2009-01-01

    We discuss the interaction of an atom subject to an intense driving laser field with its own radiation field. In contrast to the states of bare atoms, the energy difference between some dressed states with the same total angular momentum, its projection and parity may be very small. The self-interaction of a combined atom-laser system associated with nonradiative transitions between such states is effectively strong. We show that the contribution to the radiative shift of the sidebands of the Mollow spectrum, which comes from such processes, is very significant and may be much larger than the trivial Lamb shift, which is the simple redistribution of the Lamb shifts of the corresponding bare states. In the final part, we discuss the possibility that in the Mollow spectrum nonlocality of electromagnetic interaction, which in other cases is hidden in the regularization and renormalization procedures, can manifest itself explicitly.

  10. Multiphoton double ionization of Ar in intense extreme ultraviolet laser fields studied by shot-by-shot photoelectron spectroscopy.

    Science.gov (United States)

    Hikosaka, Y; Fushitani, M; Matsuda, A; Tseng, C-M; Hishikawa, A; Shigemasa, E; Nagasono, M; Tono, K; Togashi, T; Ohashi, H; Kimura, H; Senba, Y; Yabashi, M; Ishikawa, T

    2010-09-24

    Photoelectron spectroscopy has been performed to study the multiphoton double ionization of Ar in an intense extreme ultraviolet laser field (hν ∼ 21  eV, ∼ 5  TW/cm²), by using a free electron laser (FEL). Three distinct peaks identified in the observed photoelectron spectra clearly show that the double ionization proceeds sequentially via the formation of Ar(+): Ar+hν→Ar (+) + e⁻ and Ar²(+) + 2hν→Ar(+) + e⁻. Shot-by-shot recording of the photoelectron spectra allows simultaneous monitoring of FEL spectrum and the multiphoton process for each FEL pulse, revealing that the two-photon ionization from Ar(+) is significantly enhanced by intermediate resonances in Ar(+).

  11. Monte Carlo simulation on hard X-ray dose produced in interaction between high intensity laser and solid target

    International Nuclear Information System (INIS)

    Yang Bo; Qiu Rui; Li Junli; Zhang Hui

    2014-01-01

    The X-ray dose produced in the interaction between high intensity laser and solid target was studied by simulation using Monte Carlo code. Compared with experimental results, the calculation model was verified. The calculation model was used to study the effect on X-ray dose with different electron temperatures, target materials (including Au, Cu and PE) and thicknesses. The results indicate that the X-ray dose is mainly determined by the electron temperature, and will be affected by the target parameters. X-ray dose of Au is about 1.2 times that of Cu, and is about 5 times that of PE (polyethylene). In addition, compared with other target thickness, when target thickness is the mean range of electron in the target, X-ray dose is relatively large. These results will provide references on evaluating the ionizing radiation dose for laser devices. (authors)

  12. Incidence of venous leg ulcer healing and recurrence after treatment with endovenous laser ablation.

    Science.gov (United States)

    Marston, William A; Crowner, Jason; Kouri, Ana; Kalbaugh, Corey A

    2017-07-01

    The Effect of Surgery and Compression on Healing and Recurrence (ESCHAR) trial previously reported that patients with venous leg ulcers treated with saphenous stripping experienced a significantly reduced incidence of ulcer recurrence compared with patients treated with compression therapy. Most patients with leg ulcers and saphenous insufficiency are currently treated with endovenous thermal ablation (EVTA), but little information is available on the long-term results after EVTA in Clinical, Etiology, Anatomy, and Pathophysiology (CEAP) clinical class 5 (C5) and class 6 (C6) patients. We retrospectively reviewed all CEAP C5 or C6 patients treated with EVTA to define the incidence of ulcer healing and recurrence. Patients with active ulcers were managed weekly in a comprehensive wound center until healed. After healing, patients were treated with compression stockings and returned at 6-month intervals for follow-up. Time to healing and time to ulcer recurrence were determined by Kaplan-Meier survival analysis. Risk factors were assessed to determine their association with ulcer recurrence. EVTA of the great saphenous vein (n = 146), small saphenous vein (n = 20), or both (n = 7) was performed on 173 limbs with active (n = 72) or healed (n = 101) ulcers. Deep venous insufficiency was present in 54 cases (31.2%). Concomitant phlebectomy was performed in 59 limbs (34%). Median follow-up time was 25.2 months after EVTA. Venous ulcers healed after EVTA in 57% of cases at 3 months, 74% at 6 months, and 78% at 12 months. Ulcers recurred in 9% of patients at 1 year after EVTA, 20% at 2 years, and 29% at 3 years of follow-up. Ulcers recurred significantly more often in patients with deep venous insufficiency and in patients who did not undergo phlebectomy of associated varicose veins at the time of EVTA. Ulcers recurred in a minority of CEAP clinical C5 and C6 patients after EVTA of the saphenous veins. Ulcer recurrence was less frequent in patients without

  13. Overview of non-invasive factors (low level laser and low intensity pulsed ultrasound) accelerating tooth movement during orthodontic treatment.

    Science.gov (United States)

    Jawad, Mohammed Mahmood; Husein, Adam; Alam, Mohammad Khursheed; Hassan, Rozita; Shaari, Rumaizi

    2014-01-01

    The need for orthodontic treatment is increasing all the time. As the treatment is time consuming ranging from a year to several years, any method of reducing the period of treatment and increasing the quality of the tissue will be beneficial to patients. The use of non-invasive techniques such as low level laser therapy and low intensity pulsed ultasound in accelerating orthodontic tooth movement are promising. Thus, this overview study will help to generate more understanding about the background information and the possible applications of them in daily orthodontics, depending on previous literature searching for reviews and original research articles.

  14. S-matrix theory of two-electron momentum distribution produced by double ionization in intense laser fields.

    Science.gov (United States)

    Becker, A; Faisal, F

    2001-03-26

    Recently observed momentum distribution of doubly charged recoil-ions of atoms produced by femtosecond infrared laser pulses is analyzed using the so-called intense-field many-body S-matrix theory. Observed characteristics of the momentum distributions, parallel and perpendicular to the polarization axis, are reproduced by the theory. It is shown that correlated energy-sharing between the two electrons in the intermediate state and their 'Volkov-dressing' in the final state, can explain the origin of these characteristics.

  15. Frustration of direct photoionization of Ar clusters in intense extreme ultraviolet pulses from a free electron laser

    International Nuclear Information System (INIS)

    Iwayama, H; Nagaya, K; Yao, M; Fukuzawa, H; Liu, X-J; Pruemper, G; Ueda, K; Motomura, K; Saito, N; Rudenko, A; Okunishi, M; Shimada, K; Harada, T; Toyoda, M; Yanagihara, M; Yamamoto, M; Ullrich, J; Foucar, L; Czasch, A; Doerner, R

    2009-01-01

    We have measured the kinetic energies of fragment ions from Ar clusters (average cluster size (N)∼ 10-600) exposed to intense extreme ultraviolet free electron laser pulses (λ ∼ 61 nm, I∼ 1.3x 10 11 W cm -2 ). For small clusters ((N)∼ 200. Considering how many photoelectrons can escape from the cluster, it was found that the size dependence of the ion kinetic energy exhibited the frustration of direct photoionization, which resulted from the strong Coulomb potential of the highly ionized cluster.

  16. Proton driven acceleration by intense laser pulses irradiating thin hydrogenated targets

    Czech Academy of Sciences Publication Activity Database

    Torrisi, L.; Cutroneo, M.; Cavallaro, S.; Giuffrida, L.; Andò, L.; Cirrone, P.; Bertuccio, G.; Puglisi, D.; Calcagno, L.; Verona, C.; Picciotto, A.; Krása, Josef; Margarone, Daniele; Velyhan, Andriy; Láska, Leoš; Krouský, Eduard; Pfeifer, Miroslav; Skála, Jiří; Ullschmied, Jiří; Wolowski, J.; Badziak, J.; Rosinski, M.; Ryc, L.; Szydlowski, A.

    2013-01-01

    Roč. 272, May (2013), s. 2-5 ISSN 0169-4332 R&D Projects: GA MŠk ED1.1.00/02.0061; GA MŠk EE2.3.20.0279; GA MŠk EE.2.3.20.0087; GA MŠk(CZ) 7E09092; GA MŠk(CZ) LC528 Grant - others:ELI Beamlines(XE) CZ.1.05/1.1.00/02.0061; OPVK 3 Laser Zdroj(XE) CZ.1.07/2.3.00/20.0279; OP VK 2 LaserGen(XE) CZ.1.07/2.3.00/20.0087; 7FP LASERLAB-EUROPE(XE) 228334 Program:EE; FP7 Institutional support: RVO:68378271 Keywords : laser-matter-interaction * plasma * proton-acceleration * hydrogenated-target Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 2.538, year: 2013

  17. Heating of heat-conducting targets by laser pulses with a high-intensity leading spike

    Science.gov (United States)

    Ageev, V. P.; Burdin, S. G.; Konov, V. I.; Uglov, S. A.; Chapliev, N. I.

    1983-04-01

    The results of an analysis of the solution of a one-dimensional heat conduction equation are used to study the specific features of the thermal effects of laser pulses with a leading spike on a target. Simple criteria are obtained for establishing the ability of a pulse to cause a given increase in the target surface temperature during the leading edge of a spike and also during the tail of the laser pulse. A study is made of the influence of the inhomogeneity of the distribution of surface heat sources on the realization of processes characterized by a threshold in respect of the temperature of the irradiated surface. The results obtained are compared with the experimental delay time in the process of initiation of an air breakdown plasma by interaction of CO2 laser pulses with a metal target.

  18. Deuterium–deuterium nuclear reaction induced by high intensity laser pulses

    Czech Academy of Sciences Publication Activity Database

    Torrisi, L.; Cavallaro, S.; Cutroneo, M.; Giuffrida, L.; Krása, Josef; Margarone, Daniele; Velyhan, Andriy; Kravarik, J.; Ullschmied, Jiří; Wolowski, J.; Szydlowski, A.; Rosinski, M.

    2013-01-01

    Roč. 272, May (2013), s. 42-45 ISSN 0169-4332 R&D Projects: GA MŠk ED1.1.00/02.0061; GA MŠk EE2.3.20.0279; GA MŠk EE.2.3.20.0087; GA MŠk(CZ) LC528 Grant - others:ELI Beamlines(XE) CZ.1.05/1.1.00/02.0061; OPVK 3 Laser Zdroj(XE) CZ.1.07/2.3.00/20.0279; OP VK 2 LaserGen(XE) CZ.1.07/2.3.00/20.0087; 7FP LASERLAB-EUROPE(XE) 228334 Program:EE; FP7 Keywords : D–D fusion * cross-section * laser-plasma Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 2.538, year: 2013

  19. Ultrashort x-ray pulse generation by nonlinear Thomson scattering of a relativistic electron with an intense circularly polarized laser pulse

    Directory of Open Access Journals (Sweden)

    F. Liu

    2012-07-01

    Full Text Available The nonlinear Thomson scattering of a relativistic electron with an intense laser pulse is calculated numerically. The results show that an ultrashort x-ray pulse can be generated by an electron with an initial energy of 5 MeV propagating across a circularly polarized laser pulse with a duration of 8 femtosecond and an intensity of about 1.1×10^{21}  W/cm^{2}, when the detection direction is perpendicular to the propagation directions of both the electron and the laser beam. The optimal values of the carrier-envelop phase and the intensity of the laser pulse for the generation of a single ultrashort x-ray pulse are obtained and verified by our calculations of the radiation characteristics.

  20. Results after implementation of a protocol on the incidence of urinary tract infection in an intensive care unit.

    Science.gov (United States)

    Miranda, Anna Letícia; Oliveira, Ana Lúcia Lyrio de; Nacer, Daiana Terra; Aguiar, Cynthia Adalgisa Mesojedovas

    2016-09-09

    to compare the results of urinary tract infection incidence, by means of the rate of indwelling urethral catheter use, and to identify microorganisms in urine cultures and surveillance cultures before and after the implementation of a clinical protocol for intensive care unit patients . urinary tract infection is defined as a positive urine culture > 105 CFU/mL, notified by the hospital infection control service, six months before and after the implementation of the protocol. The sample consisted of 47 patients, 28 reported before and 19 after implementation. The protocol established in the institution is based on the Ministry of Health manual to prevent healthcare-related infections; the goal is patient safety and improving the quality of health services. a negative linear correlation was observed between the later months of implementation and the reduction of reported cases of urinary tract infection, using the Spearman rank order coefficient (p = 0.045), and a reduction in the number of urine culture microorganisms (p = 0.026) using the Fisher exact test. educational interventions with implementation protocols in health institutions favor the standardization of maintenance of the invasive devices, which may reduce colonization and subsequent infections. comparar os resultados da incidência de infecção do trato urinário, por meio da taxa de utilização do cateter vesical de demora e identificar os micro-organismos na urocultura e cultura de vigilância antes e após a implementação de um protocolo assistencial em pacientes internados em unidade de terapia intensiva. definiu-se infecção do trato urinário pacientes com urocultura positiva >105 UFC/mL, notificados pelo Serviço de Controle de Infecção Hospitalar, seis meses antes e após a implementação do protocolo. A amostra foi constituída por 47 pacientes, sendo 28 notificados antes e 19 após. O protocolo, criado na instituição, é baseado no manual do Ministério da Saúde na prevenção de

  1. Self-compression of intense short laser pulses in relativistic magnetized plasma

    Energy Technology Data Exchange (ETDEWEB)

    Olumi, M.; Maraghechi, B., E-mail: behrouz@aut.ac.ir [Department of Physics, Amirkabir University of Technology, Post code 15916-34311 Tehran (Iran, Islamic Republic of)

    2014-11-15

    The compression of a relativistic Gaussian laser pulse in a magnetized plasma is investigated. By considering relativistic nonlinearity and using non-linear Schrödinger equation with paraxial approximation, a second-order differential equation is obtained for the pulse width parameter (in time) to demonstrate the longitudinal pulse compression. The compression of laser pulse in a magnetized plasma can be observed by the numerical solution of the equation for the pulse width parameter. The effects of magnetic field and chirping are investigated. It is shown that in the presence of magnetic field and negative initial chirp, compression of pulse is significantly enhanced.

  2. Characterization and application of a laser-driven intense pulsed neutron source using Trident

    Energy Technology Data Exchange (ETDEWEB)

    Vogel, Sven C. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-08-25

    A team of Los Alamos researchers supported a final campaign to use the Trident laser to produce neutrons, contributed their multidisciplinary expertise to experimentally assess if laser-driven neutron sources can be useful for MaRIE. MaRIE is the Laboratory’s proposed experimental facility for the study of matter-radiation interactions in extremes. Neutrons provide a radiographic probe that is complementary to x-rays and protons, and can address imaging challenges not amenable to those beams. The team's efforts characterize the Laboratory’s responsiveness, flexibility, and ability to apply diverse expertise where needed to perform successful complex experiments.

  3. Effects of low intensity laser radiation on osteointegration mechanism of implants: study 'in vivo'

    International Nuclear Information System (INIS)

    Blay, Alberto

    2001-01-01

    The purpose of this study is to determine whether the process of bone integration of implants placed in rabbit tibia is changed in any way if the region is radiated with laser, as compared to the time required for the bone integration process without radiation. Thirty adult male white New Zealand rabbits were submitted to implant surgery, for subsequent evaluation of the removal torque and resonance frequency. Each animal received two implants of pure titanium, one in each proximal metaphysics of the tibia, which were inserted with a 40 Ncm torque, and their initial stability was also monitored by means of a resonance frequency analyzer. The rabbits were then divided into 3 groups: one control group and two laser groups. The groups were evaluated in regard to removal torque and resonance frequency of the implants, after 3 and 6 weeks. One of the laser groups was radiated with a laser beam of a wavelength in the infrared range (830 nm) and the other group was radiated with a laser beam emitted in the visible range (680 nm). Ten radiation sessions were performed, 48 hours apart, the first of them during the immediate post-operation period. Radiation energy density was 4 J/cm 2 per point, and there were two points at each side of the tibia. Results of the statistical analysis of the resonance frequency indicated that for both laser groups there was a significant difference between frequency values at the time of implant and the values obtained after 3 and 6 weeks. Furthermore, the results obtained for the removal torque of the three groups showed a statistically significant difference after a period of 6 weeks; removal torque values for the laser groups were, in the average, much greater than those of the control group. From these results it is possible to conclude that implants in rabbit tibia, that were exposed to laser radiation with wavelengths of 680 nm and 830 nm, had a better degree of bone integration than the control group.(author)

  4. Investigation of the threshold intensity versus gas pressure in the breakdown of helium by 248 nm laser radiation

    Science.gov (United States)

    Gamal, Yosr E. E.-D.; Abdellatif, Galila

    2014-10-01

    An investigation of the unexpectedly strong dependence of the threshold intensity on the gas pressure in the experimental study on the breakdown of He by short laser wavelength (Turcu et al., in Opt Commun, 134:66-68, 1997) is presented. A modified electron cascade model is applied (Evans and Gamal, in J Phys D Appl Phys, 13:1447-1458, 1980). Computations revealed reasonable agreement between the calculated thresholds and the measured ones. Moreover, the calculated electron energy distribution function and its parameters proved that multiphoton ionization of ground and excited atoms is the main source for the seed electrons, which contributes to the breakdown of helium. The effect of diffusion losses over pressures <1,000 Torr elucidated the origin of the strong dependence of the threshold intensity on the gas pressure. Collisional ionization dominates only at high pressures. No evidence for recombination losses is observed for pressures up to 3,000 Torr.

  5. Liquid Atomization Induced by Pulse Laser Reflection underneath Liquid Surface

    Science.gov (United States)

    Utsunomiya, Yuji; Kajiwara, Takashi; Nishiyama, Takashi; Nagayama, Kunihito; Kubota, Shiro; Nakahara, Motonao

    2009-05-01

    We observed a novel effect of pulse laser reflection at the interface between transparent materials with different refractive indices. The electric field intensity doubles when a laser beam is completely reflected from a material with a higher refractive index to a material with a lower index. This effect appreciably reduces pulse laser ablation threshold of transparent materials. We performed experiments to observe the entire ablation process for laser incidence on the water-air interface using pulse laser shadowgraphy with high-resolution film; the minimum laser fluence for laser ablation at the water-air interface was approximately 12-16 J/cm2. We confirmed that this laser ablation occurs only when the laser beam is incident on the water-air interface from water. Many slender liquid ligaments extend like a milk crown and seem to be atomized at the tip. Their detailed structures can be resolved only by pulse laser photography using high-resolution film.

  6. Research Thinking of Low-intensity laser For the Treatment of Menopausal Syndrome

    International Nuclear Information System (INIS)

    Chen, G Z; Wang, X Y; Xu, Y X; Li, L J; Liu, S H

    2011-01-01

    Female climacteric syndrome is a clinical syndrome due to autonomic nerve dysfunction occurring in women during climacteric period, which may affect their physical and mental health. Therefore, how to pass climacteric period for women without any problems, avoid or reduce the occurrence of climacteric syndrome, prevent geriatric diseases and improve life quality is a key issue now for great attention. Looking for a convenient, effective, and safer method without toxic-side effects to control the disease is a modern medical problem. By analyzing the relationship between laser technology and traditional acupuncture and moxibustion, the advantage and the existing problems on acupuncture and moxibustion for the treatment of menopausal syndrome, the application of laser methods for the mechanism research on TCM diagnosis and treatment of menopausal syndrome was discussed. It's pointed out that the laser acupuncture is safe and effective to treat menopausal syndrome. Breakthrough will be achieved from the research of the selection of the acupoint prescription and mechanism of Acupuncture and Moxibustion for the treatment of menopausal syndrome by utilizing the advantage of interdisciplinary intersection. Laser technology will make the development of acupuncture and moxibustion science possess an unprecedented field.

  7. Research Thinking of Low-intensity laser For the Treatment of Menopausal Syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Chen, G Z; Wang, X Y [Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, 510405 (China); Xu, Y X; Li, L J [Acupuncture and Massage College, Guangzhou University of Chinese Medicine, Guangzhou, 510405 (China); Liu, S H, E-mail: xuyx1968@163.com [South China Normal University, Guangzhou, 510631 (China)

    2011-02-01

    Female climacteric syndrome is a clinical syndrome due to autonomic nerve dysfunction occurring in women during climacteric period, which may affect their physical and mental health. Therefore, how to pass climacteric period for women without any problems, avoid or reduce the occurrence of climacteric syndrome, prevent geriatric diseases and improve life quality is a key issue now for great attention. Looking for a convenient, effective, and safer method without toxic-side effects to control the disease is a modern medical problem. By analyzing the relationship between laser technology and traditional acupuncture and moxibustion, the advantage and the existing problems on acupuncture and moxibustion for the treatment of menopausal syndrome, the application of laser methods for the mechanism research on TCM diagnosis and treatment of menopausal syndrome was discussed. It's pointed out that the laser acupuncture is safe and effective to treat menopausal syndrome. Breakthrough will be achieved from the research of the selection of the acupoint prescription and mechanism of Acupuncture and Moxibustion for the treatment of menopausal syndrome by utilizing the advantage of interdisciplinary intersection. Laser technology will make the development of acupuncture and moxibustion science possess an unprecedented field.

  8. Photoelectron angular distributions from polar molecules probed by intense femtosecond lasers

    DEFF Research Database (Denmark)

    Abu-Samha, Mahmoud; Madsen, Lars Bojer

    2010-01-01

    -active-electron and frozen-nuclei approximations. Our analysis shows that for the HF and LiF molecules, anisotropies in the molecular potential and the probed orbital lead to enhanced ionization during laser half cycles with the field pointing antiparallel to the permanent dipole of the dipole term in a multipolar expansion...

  9. Kinetic magnetization by fast electrons in laser-produced plasmas at sub-relativistic intensities

    Science.gov (United States)

    Pisarczyk, Tadeusz; Gus'kov, Sergey Yu.; Chodukowski, Tomasz; Dudzak, Roman; Korneev, Philipp; Demchenko, Nicolai N.; Kalinowska, Zofia; Dostal, Jan; Zaras-Szydlowska, Agnieszka; Borodziuk, Stefan; Juha, Libor; Cikhardt, Jakub; Krasa, Josef; Klir, Daniel; Cikhardtova, Balzhima; Kubes, Pavel; Krousky, Eduard; Krus, Miroslav; Ullschmied, Jiri; Jungwirth, Karel; Hrebicek, Jan; Medrik, Tomas; Golasowski, Jiri; Pfeifer, Miroslav; Renner, Oldrich; Singh, Sushil; Kar, Satyabrata; Ahmed, Hamad; Skala, Jiri; Pisarczyk, Pawel

    2017-10-01

    The problem of spontaneous magnetic field generation with nanosecond laser pulses raises a series of fundamental questions, including the intrinsic magnetization mechanisms in laser-driven plasmas and the understanding of charge-discharge processes in the irradiated target. These two issues are tightly bound as the charge-discharge processes are defined by the currents, which have in turn a feedback by magnetic fields in the plasma. Using direct polaro-interferometric measurements and theoretical analysis, we show that at parameters related to the PALS laser system ( 1.315 μ m, 350 ps, and 1016 W/cm2), fast electrons play a decisive role in the generation of magnetic fields in the laser-driven plasma. Spatial distributions of electric currents were calculated from the measured magnetic field and plasma density distributions. The obtained results revealed the characteristics of strong currents observed in capacitor-coil magnetic generation schemes and open a new approach to fundamental studies related to magnetized plasmas.

  10. Research Thinking of Low-intensity laser For the Treatment of Menopausal Syndrome

    Science.gov (United States)

    Chen, G. Z.; Xu, Y. X.; Wang, X. Y.; Liu, S. H.; Li, L. J.

    2011-02-01

    Female climacteric syndrome is a clinical syndrome due to autonomic nerve dysfunction occurring in women during climacteric period, which may affect their physical and mental health. Therefore, how to pass climacteric period for women without any problems, avoid or reduce the occurrence of climacteric syndrome, prevent geriatric diseases and improve life quality is a key issue now for great attention. Looking for a convenient, effective, and safer method without toxic-side effects to control the disease is a modern medical problem. By analyzing the relationship between laser technology and traditional acupuncture and moxibustion, the advantage and the existing problems on acupuncture and moxibustion for the treatment of menopausal syndrome, the application of laser methods for the mechanism research on TCM diagnosis and treatment of menopausal syndrome was discussed. It's pointed out that the laser acupuncture is safe and effective to treat menopausal syndrome. Breakthrough will be achieved from the research of the selection of the acupoint prescription and mechanism of Acupuncture and Moxibustion for the treatment of menopausal syndrome by utilizing the advantage of interdisciplinary intersection. Laser technology will make the development of acupuncture and moxibustion science possess an unprecedented field.

  11. Use of an intense microwave laser to dissociate a diatomic molecule ...

    Indian Academy of Sciences (India)

    taking such a large space grid is that, if molecular disso- ciation is to be achieved, the probability density for the system under the influence of the laser field would have to spread fairly rapidly over a large distance and thus encroach into the vibrational continuum. Furthermore, the use of a large computation grid eliminates ...

  12. Strong electromagnetic pulses generated in high-intensity laser-matter interactions

    Science.gov (United States)

    Rączka, P.; Dubois, J.-L.; Hulin, S.; Rosiński, M.; Zaraś-Szydłowska, A.; Badziak, J.

    2018-01-01

    Results are reported of an experiment performed at the Eclipse laser facility in CELIA, Bordeaux, on the generation of strong electromagnetic pulses. Measurements were performed of the target neutralization current, the total target charge and the tangential component of the magnetic field for the laser energies ranging from 45 mJ to 92 mJ with the pulse duration approximately 40 fs, and for the pulse durations ranging from 39 fs to 1000 fs, with the laser energy approximately 90 mJ. It was found that the values obtained for thick (mm scale) Cu targets are visibly higher than values reported in previous experiments, which is argued to be a manifestation of a strong dependence of the target electric polarization process on the laser contrast and hence on the amount of preplasma. It was also found that values obtained for thin (μm scale) Al foils were visibly higher than values for thick Cu targets, especially for pulse durations longer than 100 fs. The correlations between the total target charge versus the maximum value of the target neutralization current, and the maximum value of the tangential component of the magnetic field versus the total target charge were analysed. They were found to be in very good agreement with correlations seen in data from previous experiments, which provides a good consistency check on our experimental procedures.

  13. Uniformity of the soft-x-ray emissions from gold foils irradiated by OMEGA laser beams determined by a two-mirror normal-incidence microscope with multilayer coatings

    International Nuclear Information System (INIS)

    Seely, John F.; Boehly, Thomas; Pien, Gregory; Bradley, David

    1998-01-01

    A two-mirror normal-incidence microscope with multilayer coatings was used to image the soft-x-ray emissions from planar foils irradiated by OMEGA laser beams. The bandpass of the multilayer coatings was centered at a wavelength of 48.3 Angstrom (257-eV energy) and was 0.5 Angstrom wide. Five overlapping OMEGA beams, without beam smoothing, were typically incident on the gold foils. The total energy was 1500 J, and the focused intensity was 6x10 13 Wcm -2 . The 5.8x magnified images were recorded by a gated framing camera at various times during the 3-ns laser pulse. A pinhole camera imaged the x-ray emission in the energy range of >2 keV. On a spatial scale of 10 μm, it was found that the soft-x-ray images at 257 eV were quite uniform and featureless. In contrast, the hard-x-ray images in the energy range of >2 kev were highly nonuniform with numerous features of size 150 μm. copyright 1998 Optical Society of America

  14. The relationship among pressure ulcer risk factors, incidence and nursing documentation in hospital-acquired pressure ulcer patients in intensive care units.

    Science.gov (United States)

    Li, Dan

    2016-08-01

    To explore the quality/comprehensiveness of nursing documentation of pressure ulcers and to investigate the relationship between the nursing documentation and the incidence of pressure ulcers in four intensive care units. Pressure ulcer prevention requires consistent assessments and documentation to decrease pressure ulcer incidence. Currently, most research is focused on devices to prevent pressure ulcers. Studies have rarely considered the relationship among pressure ulcer risk factors, incidence and nursing documentation. Thus, a study to investigate this relationship is needed to fill this information gap. A retrospective, comparative, descriptive, correlational study. A convenience sample of 196 intensive care units patients at the selected medical centre comprised the study sample. All medical records of patients admitted to intensive care units between the time periods of September 1, 2011 through September 30, 2012 were audited. Data used in the analysis included 98 pressure ulcer patients and 98 non-pressure ulcer patients. The quality and comprehensiveness of pressure ulcer documentation were measured by the modified European Pressure Ulcer Advisory Panel Pressure Ulcers Assessment Instrument and the Comprehensiveness in Nursing Documentation instrument. The correlations between quality/comprehensiveness of pressure ulcer documentation and incidence of pressure ulcers were not statistically significant. Patients with pressure ulcers had longer length of stay than patients without pressure ulcers stay. There were no statistically significant differences in quality/comprehensiveness scores of pressure ulcer documentation between dayshift and nightshift. This study revealed a lack of quality/comprehensiveness in nursing documentation of pressure ulcers. This study demonstrates that staff nurses often perform poorly on documenting pressure ulcer appearance, staging and treatment. Moreover, nursing documentation of pressure ulcers does not provide a complete

  15. The hypoalgesic effects of low-intensity infrared laser therapy: a study on 555 cases

    Science.gov (United States)

    Tam, Giuseppe

    2004-09-01

    Objective: Low energy lasers are widely used to treat a variety of musculoskeletal conditions. The aim of this clinical study is to determine the action of the IR diode laser 904 nm pulsed on pain reduction therapy. Summary Background Data: With respect to pain, has been shown the Low power density laser increases the endorphin synthesis in the dorsal posterior horn of the spinal cord stopping the production of bradykinin and serotonin. Besides laser causes local vasodilatation of the capillaries and an improved circulation of drainage liquids in interstitial space causing an analgesic effect. Additionally, laser interferes in the cytochines (TNF-α, interleukin-1 and interleukin-6) that drive inflammation in the arthritis and are secreted from CD4 e T cells. Methods: Treatment was carried out on 555 cases and 525 patients (322 women and 203 men) in the period between 1987 and 2002. The patients, whose age ranged from 25 to 70, with a mean age of 45 years, were suffering from rheumatic, degenerative and traumatic pathologies. The majority of the patients had been seen by orthopaedists and rheumatologists and had undergone x-ray, ultrasound scanning, Tac, RM examination. All patients had received drug-based treatment and/or physiotherapy with poor results. Two thirds were experiencing acute symptomatic pain, while the others presented a chronic pathology with recurrent crises. We used a pulsed IR diode laser, GaAs 904 nm, maximum power 60 W, frequency impulse 1300 Hz, pulsed duration 200 nanoseconds; peak power per pulse 27W; maximal energy density: 9J/cm2; total number of Joules per treatment session: 10-75J/cm2, chronic 12-90J/cm2. Average number of applications: 12; maximum number of applications: 20. Results: In the evaluation of the results the following parameters have been considered: disappearance of spontaneous and induced pain (Likert scale, Rolland Morris disability scale, dynamometer). The pathologies treated were osteoarthritis in general, epicondylitis

  16. Influence of ionizing radiation on optical hardness of transparent dielectrics to action of huge intensity laser light

    International Nuclear Information System (INIS)

    Bedilov, M.R.; Khalilov, R.A.

    2006-01-01

    Full text: This paper presents results of researches of optical hardness of γ -irradiated with doze 10 4 - 10 9 rad alkali-silicate (K, GLS, LGS) and quartz (KU, KV, KSG) glasses against influence of radiation neodymium laser with intensity q = 0,1-1000 GWt/cm 2 . It is observed, that the laser produces damage of surface and volume of investigated glasses before and after γ-irradiation. This damage has threshold character and is always accompanied by a bright luminescence of plasma. Definition of threshold values of intensity superficial q s and volumetric q d laser produced damage was made by the complex method - fixing the moment of damage of transparent dielectric by simultaneous registration of the laser impulse which has passed through plasma of breakdown, mass-charge spectrum of ions of plasma and measuring the energy falling on the glass, and of penetrated and mirror-image radiations; and by optical microscopy. This method of research of influence γ-induced in transparent dielectric radiating defects on its optical stability against influence of laser radiation allows not only to define values q s and q d in the investigated interval of dozes, but also to investigate in details physical phenomena taking place in this process of interaction. On the basis of the received data quantitative characteristics of optical durability of the investigated glasses on wave length of λ1,06 microns depending on dozes of γ-irradiation and intensity of laser radiation are made. Doze dependences of charge and power spectra and quantitative characteristics of ions of plasma of breakdown were investigated at q≥ q s . In the investigated interval of dozes of γ- irradiation and intensity of laser radiation by a method of optical microscopy the morphology of occurring laser damage as surfaces, and volume of glass is also studied. It is found, that γ -induced defects in investigated glasses strongly effect on thresholds of damage q s and q d and on characteristics of ions

  17. INCIDENCE, OUTCOME AND RISK FACTORS FOR SEPSIS--A TWO YEAR RETROSPECTIVE STUDY AT SURGICAL INTENSIVE CARE UNIT OF A TEACHING HOSPITAL IN PAKISTAN.

    Science.gov (United States)

    Asghar, All; Hashmi, Madiha; Rashid, Saima; Khan, Fazal Hameed

    2016-01-01

    Sepsis is amongst the leading causes of admission to the intensive care units and is associated with a high mortality. However, data from developing countries is scares. Aim of conducting this study was to determine the incidence, outcome and risk factors for sepsis on admission to surgical intensive care unit (SICU) of a teaching hospital in Pakistan. Two year retrospective observational study included all consecutive adult admissions to the surgical intensive care unit (SICU) of a University Hospital, from January 2012 to December 2013. Two hundred and twenty-nine patients met the inclusion criteria. Average age of the patients was 46.35 ± 18.23 years (16-85), mean Acute Physiology and Chronic Health Evaluation II (APACHE II) score was 15.92 ± 8.13 and males were 67.6%. Median length of ICU stay was 4 [IQR 5]. 43% patients fulfilled the criteria of sepsis at the time of admission to the SICU and incidence of severe sepsis/septic shock was 35%. Abdominal sepsis was the most frequent source of infection (57.5%). The overall intensive care unit mortality was 32.31% but the mortality of sepsis-group was 51.15% as compared to 17.7% of the non- sepsis group. Stepwise logistic regression model showed that increasing age, female gender, non-operative admission, admission under general surgery and co-morbidities like ischaemic heart disease and chronic kidney disease were significant predictors of sepsis. The incidence of sepsis and severe sepsis/septic shock, on admission to SICU is high and mortality of the sepsis group is nearly three times the mortality of the non-sepsis group.

  18. Incidence, outcome and risk factors for sepsis - a two year retrospective study at surgical intensive care unit of a teaching hospital in Pakistan

    International Nuclear Information System (INIS)

    Asghar, A.; Hashmi, M.; Rashid, S.; Khan, F.H.

    2016-01-01

    Background: Sepsis is amongst the leading causes of admission to the intensive care units and is associated with a high mortality. However, data from developing countries is scarse. Aim of conducting this study was to determine the incidence, outcome and risk factors for sepsis on admission to surgical intensive care unit (SICU) of a teaching hospital in Pakistan. Methods: Two year retrospective observational study included all consecutive adult admissions to the surgical intensive care unit (SICU) of a University Hospital, from January 2012 to December 2013. Results: Two hundred and twenty-nine patients met the inclusion criteria. Average age of the patients was 46.35±18.23 years (16-85), mean Acute Physiology and Chronic Health Evaluation II (APACHE II) score was 15.92±8.13 and males were 67.6 percentage. Median length of ICU stay was 4 [IQR 5]. 43 percentage patients fulfilled the criteria of sepsis at the time of admission to the SICU and incidence of severe sepsis/septic shock was 35 percentage. Abdominal sepsis was the most frequent source of infection (57.5 percentage). The overall intensive care unit mortality was 32.31 percentage but the mortality of sepsis-group was 51.15 percentage as compared to 17.7 percentage of the non-sepsis group. Stepwise logistic regression model showed that increasing age, female gender, non-operative admission, admission under general surgery and co-morbidities like ischaemic heart disease and chronic kidney disease were significant predictors of sepsis. Conclusion: The incidence of sepsis and severe sepsis/septic shock, on admission to SICU is high and mortality of the sepsis group is nearly three times the mortality of the non-sepsis group. (author)

  19. Investigation of optical properties of an overdense magnetized plasma lens in the interaction with high-intensity Gaussian laser pulses

    Science.gov (United States)

    Ghorbanalilu, M.; Shokri, B.

    2018-03-01

    Self-focusing of a high-intensity circularly polarized Gaussian laser pulse by an overdense magnetized thin plasma lens is numerically investigated. The quasi-static axial magnetic field can be produced by inverse Faraday effect (IFE) mechanism in laser-plasma interaction. It has been shown that the inclusion of self-transparency, ponderomotive force, and magnetic field effects significantly affect the self-focusing properties. When the strength of the magnetic field increases, the self-focusing property is enhanced for the right and is weakened for the left-handed circularly polarized laser pulse. The ponderomotive force repels electrons from the axis and drives electron cavitation and as a result further lowers the plasma frequency. When the influence of the ponderomotive force is taken into account, self-focusing for both polarizations is strongly affected. The clear difference between the effects of the right- and left-handed circularly polarized pulses may lead us to use them for different experimental applications.

  20. Light dark matter candidates in intense laser pulses II: the relevance of the spin degrees of freedom

    Energy Technology Data Exchange (ETDEWEB)

    Villalba-Chávez, S.; Müller, C. [Institut für Theoretische Physik I, Heinrich-Heine-Universität DüsseldorfUniversitätsstr. 1, 40225 Düsseldorf (Germany)

    2016-02-03

    Optical searches assisted by the field of a laser pulse might allow for exploring a variety of not yet detected dark matter candidates such as hidden-photons and scalar minicharged particles. These hypothetical degrees of freedom may be understood as a natural consequence of extensions of the Standard Model incorporating a hidden U(1)-gauge sector. In this paper, we study the effects induced by both candidates on the propagation of a probe electromagnetic wave in the vacuum polarized by a long laser pulse of moderate intensity, this way complementing our previous study [http://dx.doi.org/10.1007/JHEP06(2015)177]. We describe how the absence of a spin in the scalar charged carriers modifies the photon-paraphoton oscillations as compared with a fermionic minicharge model. In particular, we find that the regime close to their lowest threshold mass might provide the most stringent upper limit for minicharged scalars. The pure-laser based experiment investigated here could allow for excluding a sector in the parameter space of the particles which has not been experimentally ruled out by setups driven by dipole magnets. We explain how the sign of the ellipticity and rotation of the polarization plane acquired by a probe photon — in combination with their dependencies on the pulse parameters — can be exploited to elucidate the quantum statistics of the charge carriers.

  1. Gingival healing after gingivectomy procedure and low intensity laser irradiation. A clinical and biometrical study in anima nobile

    International Nuclear Information System (INIS)

    Amorim, Jose Claudio Faria

    2001-01-01

    For the present study seven patients presenting periodontal disease were selected in a way that they required the performance of gingivectomy procedure in the region of premolars in both sides, being this in the upper or lower region. After the surgical procedure one side was submitted to low intensity laser radiation, wavelength 685 nm, power 50 mW and fluency of 4J/cm 2 , contact mode. The other side was used as a control, not receiving any laser irradiation. Healing process for both sides, was clinically and biometrically evaluated and compared using photographs for the periods: pre-operative, immediate post-operative, 3, 7,14,21, 28 and 35 days. The analysis was performed by 3 specialists in Periodontology considering aspects of healing. Results were submitted to statistical analysis. Biometrical evaluation showed improvement of healing for the period of 21 and 28 days in the lased group. Clinical evaluation showed better reparation mainly after the third day for the active group. Laser group was considered to present an improved healing when compared to the control group. (author)

  2. Radio and chemioinduced oral mucositis treatment: comparison between conventional drug protocol and treatments with low intensity lasers

    International Nuclear Information System (INIS)

    Alencar, Anelise Ribeiro Peixoto

    2011-01-01

    In this clinical study verified the effects of low intensity laser in the prevention and treatment of oral mucositis radio and/or chemical induced. Thirty one patients with head and neck cancer were selected before being submitted to cancer exclusive radiotherapy or radio and associated chemotherapy. The patients were distributed into three randomly groups as follows: group 1- (control) conventional medicine treatment; group 2 - conventional medicine treatment and daily laser therapy as soon as grade two oral mucositis appeared; group 3 - conventional medicine treatment and daily laser therapy to be initiated immediately before radiotherapy sessions.The irradiation parameters were: wavelength of 660nm, potency of 100mW, continuous mode, punctual application, 2J energy on thirty pre-determined 30 points, with 20s of exposure per point. The control group received medical treatment which consisted in using a set of preventive and therapeutic approach for acute radiation-induced adverse effects. Results were evaluated observing occurrence and grade of oral mucositis, score of pain, loss of body mass, use of nasogastric sound line, internment and interruption of oncologic treatment due to oral mucositis. The results showed that the preventive protocol as used was the most effective in prevention and treatment of oral mucositis and that its daily application contributed in relieving the painful symptomatology so collaborating to maintain and/or bettering the life quality of oncologic patients. (author)

  3. Incidence and predictors of readmission to the cardiac surgery intensive care unit: A retrospective cohort study in Greece

    Directory of Open Access Journals (Sweden)

    Konstantinos Giakoumidakis

    2014-01-01

    Conclusions: One intraoperative and three preoperative variables are associated strongly with higher probability for ICU readmission. Shorter CPB duration could contribute to lower ICU readmission incidence. In addition, the early identification of high risk patients for readmission in the cardiac surgery ICU could encourage both the more efficient healthcare planning and resources allocation.

  4. Which aspects of safety culture predict incident reporting behavior in neonatal intensive care units? A multilevel analysis

    NARCIS (Netherlands)

    Snijders, Cathelijne; Kollen, Boudewijn J.; van Lingen, Richard A.; Fetter, Willem P. F.; Molendijk, Harry; Kok, J. H.; te Pas, E.; Pas, H.; van der Starre, C.; Bloemendaal, E.; Lopes Cardozo, R. H.; Molenaar, A. M.; Giezen, A.; van Lingen, R. A.; Maat, H. E.; Molendijk, A.; Snijders, C.; Lavrijssen, S.; Mulder, A. L. M.; de Kleine, M. J. K.; Koolen, A. M. P.; Schellekens, M.; Verlaan, W.; Vrancken, S.; Fetter, W. P. F.; Schotman, L.; van der Zwaan, A.; van der Tuijn, Y.; Tibboel, D.; van der Schaaf, T. W.; Klip, H.; Kollen, B. J.

    2009-01-01

    OBJECTIVES: Safety culture assessments are increasingly used to evaluate patient-safety programs. However, it is not clear which aspects of safety culture are most relevant in understanding incident reporting behavior, and ultimately improving patient safety. The objective of this study was to

  5. Unified understanding of tunneling ionization and stabilization of atomic hydrogen in circularly and linearly polarized intense laser fields

    International Nuclear Information System (INIS)

    Miyagi, Haruhide; Someda, Kiyohiko

    2010-01-01

    On the basis of the Floquet formalism, the ionization mechanisms of atomic hydrogen in circularly and linearly polarized intense laser fields are discussed. By using the complex scaling method in the velocity gauge, the pole positions of the scattering-matrix on the complex quasienergy Riemann surface are calculated, and pole trajectories with respect to the variation of the laser intensity are obtained. In the low-frequency regime, the pole trajectory exhibits a smooth ponderomotive energy shift in the case of circular polarization. In contrast, the smoothness is lost in the case of linear polarization. In the high-frequency regime, the pole trajectories exhibit the stabilization phenomenon for both the types of polarization. These observations are elucidated by a unified picture based on the analysis of the adiabatic potentials for the radial motion of the electron in the acceleration gauge. The ionization in the case of circular polarization of the low-frequency regime is governed by the electron tunneling through a barrier of a single adiabatic potential. The stabilization in the high-frequency regime can be explained by the change in the avoided crossings among the adiabatic potential curves. The transition between the different frequency regimes is explicable by the change in the structure of the adiabatic potentials. The difference caused by the type of polarization is ascribable to the difference in the space-time symmetry.

  6. Anti-Stokes scattering and Stokes scattering of stimulated Brillouin scattering cascade in high-intensity laser-plasmas interaction

    Science.gov (United States)

    Feng, Qingsong; Zheng, Chunyang; Liu, Zhanjun; Xiao, Chengzhuo; Wang, Qing; Cao, Lihua; He, Xiantu

    2017-10-01

    The anti-Stokes scattering and Stokes scattering in stimulated Brillouin scattering (SBS) cascade have been researched by the Vlasov-Maxwell simulation. In the high-intensity laser-plasmas interaction, the stimulated anti-Stokes Brillouin scattering (SABS) will occur after the second stage SBS rescattering. The mechanism of SABS has been put forward to explain this phenomenon. In the early time of SBS evolution, only the first stage SBS appears, and the total SBS reflectivity comes from the first stage SBS. However, when the high-stage SBS and SABS occur, the SBS reflectivity will appear a burst behavior, and the total reflectivity comes from the SBS cascade and SABS superimposition. The SABS will compete with the SBS rescattering to determine the total SBS reflectivity. Thus, the SBS rescattering including the SABS is an important saturation mechanism of SBS, and should be taken into account in the high-intensity laser-plasmas interaction. This research was supported by the National Natural Science Foundation of China (Grant Nos. 11375032, 11575035, 11475030 and 11435011), National Basic Research Program of China (Grant No. 2013CB834101) and Science Challenge Project, No. TZ2016005.

  7. Comparison of high‐intensity sound and mechanical vibration for cleaning porous titanium cylinders fabricated using selective laser melting

    Science.gov (United States)

    Seiffert, Gary; Sutcliffe, Chris

    2015-01-01

    Abstract Orthopedic components, such as the acetabular cup in total hip joint replacement, can be fabricated using porous metals, such as titanium, and a number of processes, such as selective laser melting. The issue of how to effectively remove loose powder from the pores (residual powder) of such components has not been addressed in the literature. In this work, we investigated the feasibility of two processes, acoustic cleaning using high‐intensity sound inside acoustic horns and mechanical vibration, to remove residual titanium powder from selective laser melting‐fabricated cylinders. With acoustic cleaning, the amount of residual powder removed was not influenced by either the fundamental frequency of the horn used (75 vs. 230 Hz) or, for a given horn, the number of soundings (between 1 and 20). With mechanical vibration, the amount of residual powder removed was not influenced by the application time (10 vs. 20 s). Acoustic cleaning was found to be more reliable and effective in removal of residual powder than cleaning with mechanical vibration. It is concluded that acoustic cleaning using high‐intensity sound has significant potential for use in the final preparation stages of porous metal orthopedic components. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 117–123, 2017. PMID:26426906

  8. Comparison of high-intensity sound and mechanical vibration for cleaning porous titanium cylinders fabricated using selective laser melting.

    Science.gov (United States)

    Seiffert, Gary; Hopkins, Carl; Sutcliffe, Chris

    2017-01-01

    Orthopedic components, such as the acetabular cup in total hip joint replacement, can be fabricated using porous metals, such as titanium, and a number of processes, such as selective laser melting. The issue of how to effectively remove loose powder from the pores (residual powder) of such components has not been addressed in the literature. In this work, we investigated the feasibility of two processes, acoustic cleaning using high-intensity sound inside acoustic horns and mechanical vibration, to remove residual titanium powder from selective laser melting-fabricated cylinders. With acoustic cleaning, the amount of residual powder removed was not influenced by either the fundamental frequency of the horn used (75 vs. 230 Hz) or, for a given horn, the number of soundings (between 1 and 20). With mechanical vibration, the amount of residual powder removed was not influenced by the application time (10 vs. 20 s). Acoustic cleaning was found to be more reliable and effective in removal of residual powder than cleaning with mechanical vibration. It is concluded that acoustic cleaning using high-intensity sound has significant potential for use in the final preparation stages of porous metal orthopedic components. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 117-123, 2017. © 2015 The Authors Journal of Biomedical Materials Research Part B: Applied Biomaterials Published by Wiley Periodicals, Inc.

  9. Intensity limits for propagation of 0.527 μm laser beams through large-scale-length plasmas for inertial confinement fusion

    International Nuclear Information System (INIS)

    Niemann, C.; Divol, L.; Froula, D.H.; Gregori, G.; Jones, O.; Kirkwood, R.K.; MacKinnon, A.J.; Meezan, N.B.; Moody, J.D.; Sorce, C.; Suter, L.J.; Glenzer, S.H.; Bahr, R.; Seka, W.

    2005-01-01

    We have established the intensity limits for propagation of a frequency-doubled (2ω, 527 nm) high intensity interaction beam through an underdense large-scale-length plasma. We observe good beam transmission at laser intensities at or below 2x10 14 W/cm 2 and a strong reduction at intensities up to 10 15 W/cm 2 due to the onset of parametric scattering instabilities. We show that temporal beam smoothing by spectral dispersion allows a factor of 2 higher intensities while keeping the beam spray constant, which establishes frequency-doubled light as an option for ignition and burn in inertial confinement fusion experiments

  10. Energetic ion bunches produced in under-dense plasmas by an intense laser pulse (Conference Presentation)

    Science.gov (United States)

    Moreau, Julien Guillaume; d'Humières, Emmanuel; Nuter, Rachel; Tikhonchuk, Vladimir T.

    2017-05-01

    The mechanisms of the laser acceleration of ions in under-dense or near-critical plasmas (gas, foams) are at their early stage of development [1, 2, 3]. They offer a better laser/electron coupling than in solid targets resulting in a more efficient ion acceleration. They also enable a high repetition rate operation and reduce the formation of debris which could damage the interaction chamber. Our work deals with this interaction regime and focuses on understanding how electrons and ions absorb energy from the laser pulse in low density plasmas. This interaction regime involves various non linear processes that strongly modify the particle distribution functions and induce strong non-local effects. The numerical simulations were performed with the Particle-In-Cell (PIC) code OCEAN [4]. By one dimensional PIC simulations, we have shown [5] that the interaction of a 1 ps long relativistic laser pulse with a under-critical homogeneous (0.5 n_c) plasma leads to a very high plasma absorption reaching 68 % of the laser pulse energy. By a very detailed analysis of the electrostatic and electromagnetic wave spectra in the plasma and a confrontation with the theory [6], we have demonstrated that this energy transfer originates from the process of stimulated Raman scattering in the relativistic regime. Due to the increase of the effective mass of the electrons oscillating in the relativistic laser wave, this instability occurs in plasmas with a density significantly larger than the quarter of critical density and permits a homogeneous electron heating all along the plasma followed by an efficient ion acceleration at the plasma edges. We also have observed the formation of cavities [7], which lead to the formation of quasi-monoenergetic bunches of ions inside the plasma. References [1] A. Macchi, M. Borghesi and M. Passoni, Rev. Mod. Phys. 85 (2013), p. 751. [2] L. Willingale et al, Phys. Rev. Lett. 96 (2006), p. 245002. [3] E d'Humières et al, Journal of Physics : Conference

  11. In vitro effect of low intensity laser on the cytotoxicity produced by substances released by bleaching gel

    Directory of Open Access Journals (Sweden)

    Caroline Maria Gomes Dantas

    2010-12-01

    Full Text Available This in vitro study aimed to analyze the effect of different parameters of phototherapy with low intensity laser on the viability of human dental pulp fibroblasts under the effect of substances released by bleaching gel. Cells were seeded into 96 wells plates (1 x 10³ cells/well and placed in contact with culture medium conditioned by a 35 % hydrogen peroxide bleaching gel for 40 minutes, simulating the clinical condition of the in-office bleaching treatment. Cells cultured in ideal growth conditions served as positive control group (PC, and the cells grown in conditioned medium and non-irradiated served as negative control group (NC. Cells grown in conditioned medium were submitted to a single irradiation with a diode laser (40 mW, 0.04 cm² emitting at visible red (660 nm; RL or near infrared (780 nm; NIR using punctual technique, in contact mode and energy densities of 4, 6 or 10 J/cm². The cell viability was analyzed through the MTT reduction assay immediately and 24 hours after the irradiation. The data was compared by ANOVA followed by the Tukey's test (p < 0.05. The cell viability increased significantly in 24 hours within each group. The PC presented cell viability significantly higher than NC in both experimental times. Only the NIR/10 J/cm² group presented cell viability similar to that of PC in 24 hours. The phototherapy with low intensity laser in defined parameters is able to compensate the cytotoxic effects of substances released by 35 % hydrogen peroxide bleaching gel.

  12. Effects of low-intensity laser therapy on the rate of orthodontic tooth movement: A clinical trial

    Directory of Open Access Journals (Sweden)

    Ankur Kansal

    2014-01-01

    Full Text Available Background: Low-intensity laser therapy (LILT can be utilized for different treatments in the field of orthodontics and dentofacial orthopedics. The aim of the present study was to evaluate the efficacy of LILT on (1 the rate of canine movement during canine retraction phase and (2 evaluate the radiographic changes occurring during LILT around the irradiated area. Materials and Methods: A total of 10 patients of both genders were included for this study. One quadrant of the upper arch was considered control group (CG and received mechanical activation of the canine teeth with 150 g. The opposite quadrant received the same mechanical activation and was also irradiated with a diode emitting light (gallium-arsenide laser at 904 nm, for 10 s at 12 mW, at 4.2 J/cm 2 . Laser application was done on 1 st day, 3 rd , 7 th , 14 th , 21 th , 28 th , 35 th , 42 nd , 49 th , 56 th day respectively during the canine retraction phase. Distance was measured on 1 st day, 35 th day and 63 rd day and appliance activation was done on 1 st and 35 th day. Results were analyzed using t-test with the significance level set at P < 0.01. Results: Mean value obtained from 1 st to 63 rd day was 3.30 ± 2.36 mm for CG and 3.53 ± 2.30 mm for laser group (LG. Conclusion: There was no statistically significant difference in the rate of tooth movement during canine retraction between the LG and the CG. There was no evidence of any pathologic changes in the radiograph following LILT.

  13. X-rays diagnostics of the hot electron energy distribution in the intense laser interaction with metal targets

    Science.gov (United States)

    Kostenko, O. F.; Andreev, N. E.; Rosmej, O. N.

    2018-03-01

    A two-temperature hot electron energy distribution has been revealed by modeling of bremsstrahlung emission, measured by the radiation attenuation and half-shade methods, and Kα emission from a massive silver cylinder irradiated by a subpicosecond s-polarized laser pulse with a peak intensity of about 2 × 1019 W/cm2. To deduce parameters of the hot electron spectrum, we have developed semi-analytical models of generation and measurements of the x-rays. The models are based on analytical expressions and tabulated data on electron stopping power as well as cross-sections of generation and absorption of the x-rays. The Kα emission from thin silver foils deposited on low-Z substrates, both conducting and nonconducting, has been used to verify the developed models and obtained hot electron spectrum. The obtained temperatures of the colder and hotter electron components are in agreement with the values predicted by kinetic simulations of the cone-guided approach to fast ignition [Chrisman et al., Phys. Plasmas 15, 056309 (2008)]. The temperature of the low-energy component of the accelerated electron spectrum is well below the ponderomotive scaling and Beg's law. We have obtained relatively low conversion efficiency of laser energy into the energy of hot electrons propagating through the solid target of about 2%. It is demonstrated that the assumption about a single-temperature hot electron energy distribution with the slope temperature described by the ponderomotive scaling relationship, without detailed analysis of the hot electron spectrum, can lead to strong overestimation of the laser-to-electron energy-conversion efficiency, in particular, the conversion efficiency of laser energy into the high-temperature component of the hot electron distribution.

  14. Investigation of the interaction of high intensity laser light with solids and hot plasma using X-ray spectroscopic technique

    International Nuclear Information System (INIS)

    Zigler, A.

    1978-06-01

    This work investigates the properties of high power laser-produced plasmas by developing and applying x-ray spectroscopic methods which utilize spatial resolution. The shadow techniques which were developed in this work yield a high spatial resolution of 5-15μm together with an adequate X-ray spectral resolution for single shots of laser power flux of 2.10 13 W/cm -2 . The intensity distribution in the source is calculated from the partial shadow by numerical differentiation. The main advantage of the present method is the ability to obtain spatial information simultaneously for strong and weak spectral lines for a single shot of medium power laser. Plasma parameters were derived from H-like and He-like lines and their inner-shell satellites, which were obtained from Mg, Al and Si targets. Using shadow techniques, the sizes of the emitting regions of the various spectral lines were measured; the spatial variation of the ionization stage, the electron temperature and density were investigated. A constant electron temperature of (250+-50)eV and electron density scale-length of about 50μm were derived for an expanding plasma. An experimental investigation of the possible origin and the mechanisms responsible for the Ksub(α) radiation in laser-produced plasma was carried out. It is shown that the Ksub(α) radiation was generated by fast suprathermal electrons and originated inside the target behind the interaction zone of the shock and heat waves. Energy penetration depth and hot plasma expansion were tested by using multilayer targets, thin foils and achieving a two-dimensional spatially resolved X-ray Al spectrum. (B.G.)

  15. Vapor deposition of polystyrene thin films by intense laser vibrational excitation

    DEFF Research Database (Denmark)

    Bubb, D.M.; Papantonakis, M.R.; Horwitz, J.S.

    2002-01-01

    Polystyrene films were deposited using resonant infrared pulsed laser depositions (RIR-PLD). Thin films were grown on Si(1 1 1) wafers and NaCl substrates and analyzed by Fourier transform infrared spectroscopy (FTIR) and gel permeation chromatography (GPC). The depositions were carried out...... in vacuum (10(-4)-10(-5) Torr) at wavelengths 3.28, 3.30, 3.42 and 3.48 mum which are resonant with CH2 stretching modes in the polymer. We also attempted to deposit a films using non-resonant infrared (RIR) excitation (2.90 mum). At this wavelength no films were deposited, and evidence for laser......-induced damage to the target can be seen. RIR-PLD is a fundamentally new approach to polymer thin film growth as the absorption of radiation resonant with vibrational modes allow the energy to be deposited into the polymer and transfers between macromolecules in such a way as to promote efficient, non...

  16. Ionization of oriented carbonyl sulfide molecules by intense circularly polarized laser pulses

    DEFF Research Database (Denmark)

    Dimitrovski, Darko; Abu-Samha, Mahmoud; Madsen, Lars Bojer

    2011-01-01

    We present combined experimental and theoretical results on strong-field ionization of oriented carbonyl sulfide molecules by circularly polarized laser pulses. The obtained molecular frame photoelectron angular distributions show pronounced asymmetries perpendicular to the direction...... of the molecular electric dipole moment. These findings are explained by a tunneling model invoking the laser-induced Stark shifts associated with the dipoles and polarizabilities of the molecule and its unrelaxed cation. The focus of the present article is to understand the strong-field ionization of one......-dimensionally-oriented polar molecules, in particular asymmetries in the emission direction of the photoelectrons. In the following article [Phys. Rev. A 83, 023406 (2011)] the focus is to understand strong-field ionization from three-dimensionally-oriented asymmetric top molecules, in particular the suppression of electron...

  17. High-contrast, high-intensity petawatt-class laser and applications

    Czech Academy of Sciences Publication Activity Database

    Kiriyama, H.; Mori, M.; Pirozhkov, A.S.; Ogura, K.; Sagisaka, A.; Kon, A.; Esirkepov, T.Z.; Hayashi, Y.; Kotaki, H.; Kanasaki, M.; Sakaki, H.; Fukuda, Y.; Koga, J.; Nishiuchi, M.; Kando, M.; Bulanov, S.; Kondo, K.; Bolton, P.R.; Slezák, Ondřej; Vojna, David; Sawicka-Chyla, Magdalena; Jambunathan, Venkatesan; Lucianetti, Antonio; Mocek, Tomáš

    2015-01-01

    Roč. 21, č. 1 (2015), s. 1601118 ISSN 0018-9197 R&D Projects: GA MŠk ED2.1.00/01.0027; GA MŠk EE2.3.20.0143; GA MŠk EE2.3.30.0057 Grant - others:HILASE(XE) CZ.1.05/2.1.00/01.0027; OP VK 6(XE) CZ.1.07/2.3.00/20.0143; OP VK 4 POSTDOK(XE) CZ.1.07/2.3.00/30.0057 Institutional support: RVO:68378271 Keywords : petawatt laser * applications * Ti:saphire * ASE Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.843, year: 2015

  18. Intense source of spin-polarized electrons using laser-induced optical pumping

    International Nuclear Information System (INIS)

    Gray, L.G.; Giberson, K.W.; Cheng, C.; Keiffer, R.S.; Dunning, F.B.; Walters, G.K.

    1983-01-01

    A source of spin-polarized electrons based on a laser-pumped flowing helium afterglow is described. He(2 3 S) atoms contained in the afterglow are optically pumped using circularly polarized 1.08-μm (2 3 S→2 3 P) radiation provided by a NaF (F 2+ )( color-center laser. Spin angular momentum conservation in subsequent chemi-ionization reactions with CO 2 produces polarized electrons that are extracted from the afterglow. At low currents, < or approx. =1 μA, polarizations of approx.70%--80% are achieved. At higher currents the polarization decreases, falling to approx.40% at 50 μA. The spin polarization can be simply reversed (P→-P) and the source is suitable for use in the majority of low-energy spin-dependent scattering experiments proposed to date

  19. Radiation reaction induced spiral attractors in ultra-intense colliding laser beams

    Directory of Open Access Journals (Sweden)

    Zheng Gong

    2016-11-01

    Full Text Available The radiation reaction effects on electron dynamics in counter-propagating circularly polarized laser beams are investigated through the linearization theorem and the results are in great agreement with numeric solutions. For the first time, the properties of fixed points in electron phase-space were analyzed with linear stability theory, showing that center nodes will become attractors if the classical radiation reaction is considered. Electron dynamics are significantly affected by the properties of the fixed points and the electron phase-space densities are found to be increasing exponentially near the attractors. The density growth rates are derived theoretically and further verified by particle-in-cell simulations, which can be detected in experiments to explore the effects of radiation reaction qualitatively. The attractor can also facilitate realizing a series of nanometer-scaled flying electron slices via adjusting the colliding laser frequencies.

  20. Momentum distributions of selected rare-gas atoms probed by intense femtosecond laser pulses

    DEFF Research Database (Denmark)

    Abu-Samha, Mahmoud; Madsen, Lars Bojer

    2011-01-01

    We provide a direct comparison between numerical and experimental (Rudenko et al 2004 J. Phys. B: At. Mol. Opt. Phys. 37 L407) photoelectron momentum distributions in strong-field ionization of selected rare-gas atoms (He, Ne and Ar), probed by femtosecond linearly polarized laser pulses. The cal......We provide a direct comparison between numerical and experimental (Rudenko et al 2004 J. Phys. B: At. Mol. Opt. Phys. 37 L407) photoelectron momentum distributions in strong-field ionization of selected rare-gas atoms (He, Ne and Ar), probed by femtosecond linearly polarized laser pulses....... The calculations are performed by solving the time-dependent Schrödinger equation within the single-active-electron approximation, and focal-volume effects are taken into account by appropriately averaging the results. The resulting momentum distributions are in quantitative agreement with the experimental...