WorldWideScience

Sample records for incident electron kinetic

  1. Electron Kinetics in Hypersonic Plasmas, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The goal of this SBIR project is to advance the state-of-the-art in computations of hypersonic plasmas by adding high-fidelity kinetic models for electrons. Electron...

  2. Transport Theory for Kinetic Emission of Secondary Electrons from Solids

    DEFF Research Database (Denmark)

    Schou, Jørgen

    1980-01-01

    Kinetic secondary electron emission from a solid target resulting from incidence of keV electrons or keV and MeV ions is treated theoretically on the basis of ionization cascade theory. The energy and angular distribution and the yield of secondary electrons are calculated for a random target...... a spectrum which shows good agreement with experimental data. The electron- and proton-induced yields from aluminum are evaluated on the basis of existing low-energy-electron stopping-power data. The agreement with existing experimental data is good. Also, experimental yields from electrons, protons...

  3. Kinetic theory of free electron lasers

    Energy Technology Data Exchange (ETDEWEB)

    Hafizi, B. [Naval Research Lab., Washington, DC (United States); Roberson, C.W. [Office of Naval Research, Arlington, VA (United States)

    1995-12-31

    We have developed a relativistic kinetic theory of free electron lasers (FELs). The growth rate, efficiency, filling factor and radius of curvature of the radiation wave fronts are determined. We have used the theory to examine the effects of beam compression on growth rate. The theory has been extended to include self field effects on FEL operation. These effects are particularly important in compact, low voltage FELs. The surprising result is that the self field contribution to the beam quality is opposite to the emittance contribution. Hence self fields can improve beam quality, particularly in compact, low voltage FELs.

  4. Radiation produced by electrons incident on molecules

    International Nuclear Information System (INIS)

    Moehlman, G.R.

    1977-01-01

    The work described in this thesis deals with light intensity measurements of emission spectra (1850-9000 A) produced by a continuous or pulsed beam of monoenergetic electrons (0 - 2000 eV) incident on a variety of molecular gases like H 2 , D 2 , H 2 O, HCl, NH 3 and several hydrocarbons. The emission spectra are dominated by fluorescence from excited fragments produced via dissociative excitation, besides fluorescence from excited parent molecules themselves. The experimental results thus obtained are expressed in terms of emission cross sections and lifetimes

  5. Metamaterial characterization using Boltzmann's kinetic equation for electrons

    DEFF Research Database (Denmark)

    Novitsky, Andrey; Zhukovsky, Sergei; Novitsky, D.

    2013-01-01

    Statistical properties of electrons in metals are taken into consideration to describe the microscopic motion of electrons. Assuming degenerate electron gas in metal, we introduce the Boltzmann kinetic equation to supplement Maxwell's equations. The solution of these equations clearly shows...

  6. Electron kinetics modeling in a weakly ionized gas

    International Nuclear Information System (INIS)

    Boeuf, Jean-Pierre

    1985-01-01

    This work presents some features of electron kinetics in a weakly ionized gas. After a summary of the basis and recent developments of the kinetic theory, and a review of the most efficient numerical techniques for solving the Boltzmann equation, several aspects of electron motion in gases are analysed. Relaxation phenomena toward equilibrium under a uniform electric field, and the question of the existence of the hydrodynamic regime are first studied. The coupling between electron kinetics and chemical kinetics due to second kind collisions in Nitrogen is then analysed; a quantitative description of the evolution of the energy balance, accounting for electron-molecule as well as molecule-molecule energy transfer is also given. Finally, electron kinetics in space charge distorted, highly non uniform electric fields (glow discharges, streamers propagation) is investigated with microscopic numerical methods based on Boltzmann and Poisson equations. (author) [fr

  7. Classical Antiferromagnetism in Kinetically Frustrated Electronic Models

    Science.gov (United States)

    Sposetti, C. N.; Bravo, B.; Trumper, A. E.; Gazza, C. J.; Manuel, L. O.

    2014-05-01

    We study, by means of the density matrix renormalization group, the infinite U Hubbard model—with one hole doped away from half filling—in triangular and square lattices with frustrated hoppings, which invalidate Nagaoka's theorem. We find that these kinetically frustrated models have antiferromagnetic ground states with classical local magnetization in the thermodynamic limit. We identify the mechanism of this kinetic antiferromagnetism with the release of the kinetic energy frustration, as the hole moves in the established antiferromagnetic background. This release can occur in two different ways: by a nontrivial spin Berry phase acquired by the hole, or by the effective vanishing of the hopping amplitude along the frustrating loops.

  8. Kinetic electrons in global electromagnetic gyrokinetic particle simulations

    Science.gov (United States)

    Nishimura, Y.; Wang, W.

    2005-10-01

    Employing an electromagnetic gyrokinetic simulation model,ootnotetextZ. Lin and L. Chen, Phys. Plasmas 8, 1447 (2001). kinetic electron dynamics in global tokamak geometry is investigated. The massless fluid electron model is developed as a base. We further evolve gyrokinetic equations for non-adiabatic kinetic electrons. To obtain the magnetic perturbation, the fluid-kinetic hybrid electron model^1 employs the inverse of the Faraday's law. Instead, the Ampere's law is used as a closure relation to avoid uncertainties in estimating ue|, the moment of the electron velocities. The physics goal is to investigate the finite beta effects on the turbulent transport, as well as α particle driven turbulence.ootnotetextI. Holod, Z. Lin, et al., this conference. This work is supported by Department of Energy (DOE) Cooperative Agreement No. DE-FC02-03ER54695 (UCI), DOE Contract No. DE-AC02-76CH03073 (PPPL).

  9. Nonequilibrium electron energy-loss kinetics in metal clusters

    CERN Document Server

    Guillon, C; Fatti, N D; Vallee, F

    2003-01-01

    Ultrafast energy exchanges of a non-Fermi electron gas with the lattice are investigated in silver clusters with sizes ranging from 4 to 26 nm using a femtosecond pump-probe technique. The results yield evidence for a cluster-size-dependent slowing down of the short-time energy losses of the electron gas when it is strongly athermal. A constant rate is eventually reached after a few hundred femtoseconds, consistent with the electron gas internal thermalization kinetics, this behaviour reflecting evolution from an individual to a collective electron-lattice type of coupling. The timescale of this transient regime is reduced in small nanoparticles, in agreement with speeding up of the electron-electron interactions with size reduction. The experimental results are in quantitative agreement with numerical simulations of the electron kinetics.

  10. A nonlinear bounce kinetic equation for trapped electrons

    International Nuclear Information System (INIS)

    Gang, F.Y.

    1990-03-01

    A nonlinear bounce averaged drift kinetic equation for trapped electrons is derived. This equation enables one to compute the nonlinear response of the trapped electron distribution function in terms of the field-line projection of a potential fluctuation left-angle e -inqθ φ n right-angle b . It is useful for both analytical and computational studies of the nonlinear evolution of short wavelength (n much-gt 1) trapped electron mode-driven turbulence. 7 refs

  11. Kinetic Alfven waves and electron physics. II. Oblique slow shocks

    International Nuclear Information System (INIS)

    Yin, L.; Winske, D.; Daughton, W.

    2007-01-01

    One-dimensional (1D) particle-in-cell (PIC; kinetic ions and electrons) and hybrid (kinetic ions; adiabatic and massless fluid electrons) simulations of highly oblique slow shocks (θ Bn =84 deg. and β=0.1) [Yin et al., J. Geophys. Res., 110, A09217 (2005)] have shown that the dissipation from the ions is too weak to form a shock and that kinetic electron physics is required. The PIC simulations also showed that the downstream electron temperature becomes anisotropic (T e parallel )>T e perpendicular ), as observed in slow shocks in space. The electron anisotropy results, in part, from the electron acceleration/heating by parallel electric fields of obliquely propagating kinetic Alfven waves (KAWs) excited by ion-ion streaming, which cannot be modeled accurately in hybrid simulations. In the shock ramp, spiky structures occur in density and electron parallel temperature, where the ion parallel temperature decreases due to the reduction of the ion backstreaming speed. In this paper, KAW and electron physics in oblique slow shocks are further examined under lower electron beta conditions. It is found that as the electron beta is reduced, the resonant interaction between electrons and the wave parallel electric fields shifts to the tail of the electron velocity distribution, providing more efficient parallel heating. As a consequence, for β e =0.02, the electron physics is shown to influence the formation of a θ Bn =75 deg. shock. Electron effects are further enhanced at a more oblique shock angle (θ Bn =84 deg.) when both the growth rate and the range of unstable modes on the KAW branch increase. Small-scale electron and ion phase-space vortices in the shock ramp formed by electron-KAW interactions and the reduction of the ion backstreaming speed, respectively, are observed in the simulations and confirmed in homogeneous geometries in one and two spatial dimensions in the accompanying paper [Yin et al., Phys. Plasmas 14, 062104 (2007)]. Results from this study

  12. Thermodynamic, kinetic and electronic structure aspects of a charge ...

    Indian Academy of Sciences (India)

    Thermodynamic, kinetic and electronic structure aspects of a charge-transfer active bichromophoric organofullerene. K SENTHIL KUMAR and ARCHITA PATNAIK. ∗. Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, India e-mail: archita59@yahoo.com. MS received 11 January 2012; ...

  13. Potential and Kinetic Electron Emissions from HOPG Surface Irradiated by Highly Charged Xenon and Neon Ions

    International Nuclear Information System (INIS)

    Yu-Yu, Wang; Yong-Tao, Zhao; Jian-Rong, Sun; De-Hui, Li; Jin-Yu, Li; Ping-Zhi, Wang; Guo-Qing, Xiao; Abdul, Qayyum

    2011-01-01

    Highly charged 129 Xe q+ (q = 10−30) and 40 Ne q+ (q = 4−8) ion-induced secondary electron emissions on the surface of highly oriented pyrolytic graphite (HOPG) are reported. The total secondary electron yield is measured as a function of the potential energy of incident ions. The experimental data are used to separate contributions of kinetic and potential electron yields. Our results show that about 4.5% and 13.2% of ion's potential energies are consumed in potential electron emission due to different Xe q+ -HOPG and Ne q+ -HOPG combinations. A simple formula is introduced to estimate the fraction of ion's potential energy for potential electron emission. (atomic and molecular physics)

  14. Kinetics of luminescence decay in electron-irradiated sapphire crystals

    Energy Technology Data Exchange (ETDEWEB)

    Caulfield, Kevin J.; Cooper, Ronald [Department of Chemistry, University of Melbourne, Parkville, VIC (Australia); Boas, John F. [Australian Radiation Laboratory, Yallambie, VIC (Australia)

    1997-07-28

    The kinetics of luminescence decay in electron-irradiated sapphire ({alpha}-Al{sub 2}O{sub 3}) single crystals have been investigated using time-resolved luminescence spectroscopy. The data, observed over timescales from tens of nanoseconds to tens of milliseconds, characteristically feature a rapid decay of intensity punctuated by discrete plateau regions. Simple theoretical models, invoking such theories as first- or second-order mechanisms, rate laws or power-law dependences, are unable to explain these features. A theoretical model comprising bimolecular electron - hole recombination, together with unimolecular electron detrapping from two discrete traps, qualitatively accounts for these features. (author)

  15. A kinetic model for runaway electrons in the ionosphere

    Directory of Open Access Journals (Sweden)

    G. Garcia

    2006-09-01

    Full Text Available Electrodynamic models and measurements with satellites and incoherent scatter radars predict large field aligned current densities on one side of the auroral arcs. Different authors and different kinds of studies (experimental or modeling agree that the current density can reach up to hundreds of µA/m2. This large current density could be the cause of many phenomena such as tall red rays or triggering of unstable ion acoustic waves. In the present paper, we consider the issue of electrons moving through an ionospheric gas of positive ions and neutrals under the influence of a static electric field. We develop a kinetic model of collisions including electrons/electrons, electrons/ions and electrons/neutrals collisions. We use a Fokker-Planck approach to describe binary collisions between charged particles with a long-range interaction. We present the essential elements of this collision operator: the Langevin equation for electrons/ions and electrons/electrons collisions and the Monte-Carlo and null collision methods for electrons/neutrals collisions. A computational example is given illustrating the approach to equilibrium and the impact of the different terms (electrons/electrons and electrons/ions collisions on the one hand and electrons/neutrals collisions on the other hand. Then, a parallel electric field is applied in a new sample run. In this run, the electrons move in the z direction parallel to the electric field. The first results show that all the electron distribution functions are non-Maxwellian. Furthermore, runaway electrons can carry a significant part of the total current density, up to 20% of the total current density.

  16. A kinetic model for runaway electrons in the ionosphere

    Directory of Open Access Journals (Sweden)

    G. Garcia

    2006-09-01

    Full Text Available Electrodynamic models and measurements with satellites and incoherent scatter radars predict large field aligned current densities on one side of the auroral arcs. Different authors and different kinds of studies (experimental or modeling agree that the current density can reach up to hundreds of µA/m2. This large current density could be the cause of many phenomena such as tall red rays or triggering of unstable ion acoustic waves. In the present paper, we consider the issue of electrons moving through an ionospheric gas of positive ions and neutrals under the influence of a static electric field. We develop a kinetic model of collisions including electrons/electrons, electrons/ions and electrons/neutrals collisions. We use a Fokker-Planck approach to describe binary collisions between charged particles with a long-range interaction. We present the essential elements of this collision operator: the Langevin equation for electrons/ions and electrons/electrons collisions and the Monte-Carlo and null collision methods for electrons/neutrals collisions. A computational example is given illustrating the approach to equilibrium and the impact of the different terms (electrons/electrons and electrons/ions collisions on the one hand and electrons/neutrals collisions on the other hand. Then, a parallel electric field is applied in a new sample run. In this run, the electrons move in the z direction parallel to the electric field. The first results show that all the electron distribution functions are non-Maxwellian. Furthermore, runaway electrons can carry a significant part of the total current density, up to 20% of the total current density.

  17. Human ceruloplasmin. Intramolecular electron transfer kinetics and equilibration

    DEFF Research Database (Denmark)

    Farver, O; Bendahl, L; Skov, L K

    1999-01-01

    Pulse radiolytic reduction of disulfide bridges in ceruloplasmin yielding RSSR(-) radicals induces a cascade of intramolecular electron transfer (ET) processes. Based on the three-dimensional structure of ceruloplasmin identification of individual kinetically active disulfide groups and type 1 (T1...... and indeed electron equilibration between T1A and the trinuclear copper center in the domain 1-6 interface takes place with a rate constant of 2.9 +/- 0.6 s(-1). The equilibrium constant is 0.17. Following reduction of T1A Cu(II), another ET process takes place between RSSR(-) and T1B copper(II) of domain 4...

  18. Solar Wind Electron Scattering by Kinetic Instabilities and Whistler Turbulence

    Science.gov (United States)

    Gary, S. P.

    2015-12-01

    The expansion of the solar wind away from the Sun drives electron velocity distributions away from the thermal Maxwellian form, yielding distributions near 1 AU which typically can be characterized as consisting of three anisotropic components: a more dense, relatively cool core, a relatively tenuous , relatively warm halo and a similarly tenuous, warm strahl. Each of these nonthermal components are potential sources of kinetic plasma instabilities; the enhanced waves from each instability can scatter the electrons, acting to reduce the various anisotropies and making their overall velocity distribution more nearly (but not completely) thermal. In contrast, simulations are demonstrating that the forward decay of whistler turbulence can lead to the development of a T||> T_perp electron anisotropy. This presentation will review linear theories of electron-driven kinetic instabilities (following the presentation by Daniel Verscharen at the 2015 SHINE Workshop), and will further consider the modification of electron velocity distributions as obtained from particle-in-cell simulations of such instabilities as well as from the decay of whistler turbulence.

  19. Intensity dependence of electron gas kinetics in a laser corona

    Directory of Open Access Journals (Sweden)

    Mašek Martin

    2013-11-01

    Full Text Available In various experimental situations relevant to the laser fusion, such as plasma near the light entrance holes of hohlraum in the indirect drive experiments or more recently in the shock ignition direct drive a relatively long underdense plasma of corona type is encountered, which is subject to an intense nanosecond laser beam. The plasma is only weakly collisional and thus in the electron phase space a complicated kinetic evolution is going on, which is taking the electron gas fairly far from the thermal equilibrium and contributes to its unstable behaviour. These phenomena impede the absorption and thermalization of the incoming laser energy, create groups of fast electrons and also may lead to a non-linear reflection of the heating laser beam. One of the key processes leading to the electron acceleration is the stimulated Raman scattering (SRS in its non-linear phase. The SRS in the presence of electron-ion collisions requires a certain threshold intensity above which the mentioned non-dissipative phenomena can occur and develop to the stage, where they may become unpleasant for the fusion experiments. To assess this intensity limit a computational model has been developed based on the Vlasov-Maxwell kinetics describing such a plasma in 1D geometry. At a relatively high intensity of 1016 W/cm2 a number of non-linear phenomena are predicted by the code such as a saturation of Landau damping, which is then translated in an unfavourable time dependence of the reflected light intensity and formation of accelerated electron groups due to the electron trapping. The purpose of the present contribution is to map the intensity dependence of this non-linear development with the aim of assessing its weight in fusion relevant situations.

  20. Amorphization kinetics of Zr3Fe under electron irradiation

    International Nuclear Information System (INIS)

    Motta, A.T.; Howe, L.M.; Okamoto, P.R.

    1992-10-01

    0.9 MeV electron irradiations were performed at 28--220 K in a high-voltage electron microscope (HVEM). By measuring onset, spread and final size of the amorphous region, factoring in the Guassian distribution of the beam, a kinetic description of the amorphization in terms of dose, dose rate and temperature was obtained. The critical temperature for amorphization by electron irradiation was found to be ∼220 K, compared to 570--625 K for 40 Ar ion irradiation. Also, the dose-to-amorphization increased exponentially with temperature. Results indicated that the rate of growth of the amorphous region under the electron beam decreased with increasing temperature and the does-to-amorphization decreased with increasing dose rate. The size of the amorphous region saturated after a region dose, the final size decreasing with increasing temperature, and it was argued that this is related to the existence of a critical dose rate, which increased with temperature, below which no amorphization occurred. The above observations can be understood in the framework of the kinetics of damage accumulation under irradiation

  1. A generalized electron energy probability function for inductively coupled plasmas under conditions of nonlocal electron kinetics

    Science.gov (United States)

    Mouchtouris, S.; Kokkoris, G.

    2018-01-01

    A generalized equation for the electron energy probability function (EEPF) of inductively coupled Ar plasmas is proposed under conditions of nonlocal electron kinetics and diffusive cooling. The proposed equation describes the local EEPF in a discharge and the independent variable is the kinetic energy of electrons. The EEPF consists of a bulk and a depleted tail part and incorporates the effect of the plasma potential, Vp, and pressure. Due to diffusive cooling, the break point of the EEPF is eVp. The pressure alters the shape of the bulk and the slope of the tail part. The parameters of the proposed EEPF are extracted by fitting to measure EEPFs (at one point in the reactor) at different pressures. By coupling the proposed EEPF with a hybrid plasma model, measurements in the gaseous electronics conference reference reactor concerning (a) the electron density and temperature and the plasma potential, either spatially resolved or at different pressure (10-50 mTorr) and power, and (b) the ion current density of the electrode, are well reproduced. The effect of the choice of the EEPF on the results is investigated by a comparison to an EEPF coming from the Boltzmann equation (local electron kinetics approach) and to a Maxwellian EEPF. The accuracy of the results and the fact that the proposed EEPF is predefined renders its use a reliable alternative with a low computational cost compared to stochastic electron kinetic models at low pressure conditions, which can be extended to other gases and/or different electron heating mechanisms.

  2. Electron and ion kinetics in a micro hollow cathode discharge

    International Nuclear Information System (INIS)

    Kim, G J; Iza, F; Lee, J K

    2006-01-01

    Electron and ion kinetics in a micro hollow cathode discharge are investigated by means of two-dimensional axisymmetric particle-in-cell Monte Carlo collision simulations. Argon discharges at 10 and 300 Torr are studied for various driving currents. Electron and ion energy probability functions (IEPF) are shown at various times and locations to study the spatio-temporal behaviour of the discharge. The electron energy probability function (EEPF) evolves from the Druyvesteyn type in the early stages of the discharge into a two (or three) temperature distribution when steady state is reached. In steady state, secondary electrons accelerated across the cathode fall populate the high energy tail of the EEPF while the low energy region is populated by trapped electrons. The IEPF evolves from a Maxwellian in the negative glow (bulk) to a two temperature distribution on the cathode surface. The overpopulation of low energy ions near the cathode surface is attributed to a larger collision cross section for low energy ions and ionization within the cathode fall

  3. Electron and ion kinetics in a micro hollow cathode discharge

    Energy Technology Data Exchange (ETDEWEB)

    Kim, G J; Iza, F; Lee, J K [Electronics and Electrical Engineering Department, Pohang University of Science and Technology, Pohang, 790-784 (Korea, Republic of)

    2006-10-21

    Electron and ion kinetics in a micro hollow cathode discharge are investigated by means of two-dimensional axisymmetric particle-in-cell Monte Carlo collision simulations. Argon discharges at 10 and 300 Torr are studied for various driving currents. Electron and ion energy probability functions (IEPF) are shown at various times and locations to study the spatio-temporal behaviour of the discharge. The electron energy probability function (EEPF) evolves from the Druyvesteyn type in the early stages of the discharge into a two (or three) temperature distribution when steady state is reached. In steady state, secondary electrons accelerated across the cathode fall populate the high energy tail of the EEPF while the low energy region is populated by trapped electrons. The IEPF evolves from a Maxwellian in the negative glow (bulk) to a two temperature distribution on the cathode surface. The overpopulation of low energy ions near the cathode surface is attributed to a larger collision cross section for low energy ions and ionization within the cathode fall.

  4. Recommended Auger-electron kinetic energies for 42 elemental solids

    International Nuclear Information System (INIS)

    Powell, C.J.

    2010-01-01

    An analysis is presented of Auger-electron kinetic energies (KEs) from four data sources for 65 Auger transitions in 45 elemental solids. For each data source, a single instrument had been used to measure KEs for many elements. In order to compare KEs from two sources, it was necessary to recalibrate the energy scales of each instrument using recommended reference data. Mean KEs are given for most of the Auger transitions for which there were at least two independent measurements and for which differences from the mean KEs were considered acceptably small. In several cases, comparisons were made to published KE data to resolve discrepancies. We are able to recommend mean KEs for 59 Auger transitions from 42 elemental solids and to provide estimates of the uncertainties of these KEs. This compilation should be useful for the determination of chemical shifts of Auger peaks in Auger electron spectroscopy and X-ray photoelectron spectroscopy.

  5. Kinetics of the reactions of hydrated electrons with metal complexes

    International Nuclear Information System (INIS)

    Korsse, J.

    1983-01-01

    The reactivity of the hydrated electron towards metal complexes is considered. Experiments are described involving metal EDTA and similar complexes. The metal ions studied are mainly Ni 2+ , Co 2+ and Cu 2+ . Rates of the reactions of the complexes with e - (aq) were measured using the pulse radiolysis technique. It is shown that the reactions of e - (aq) with the copper complexes display unusually small kinetic salt effects. The results suggest long-range electron transfer by tunneling. A tunneling model is presented and the experimental results are discussed in terms of this model. Results of approximate molecular orbital calculations of some redox potentials are given, for EDTA chelates as well as for series of hexacyano and hexaquo complexes. Finally, equilibrium constants for the formation of ternary complexes are reported. (Auth./G.J.P.)

  6. Relativistic electron kinetic effects on laser diagnostics in burning plasmas

    Science.gov (United States)

    Mirnov, V. V.; Den Hartog, D. J.

    2018-02-01

    Toroidal interferometry/polarimetry (TIP), poloidal polarimetry (PoPola), and Thomson scattering systems (TS) are major optical diagnostics being designed and developed for ITER. Each of them relies upon a sophisticated quantitative understanding of the electron response to laser light propagating through a burning plasma. Review of the theoretical results for two different applications is presented: interferometry/polarimetry (I/P) and polarization of Thomson scattered light, unified by the importance of relativistic (quadratic in vTe/c) electron kinetic effects. For I/P applications, rigorous analytical results are obtained perturbatively by expansion in powers of the small parameter τ = Te/me c2, where Te is electron temperature and me is electron rest mass. Experimental validation of the analytical models has been made by analyzing data of more than 1200 pulses collected from high-Te JET discharges. Based on this validation the relativistic analytical expressions are included in the error analysis and design projects of the ITER TIP and PoPola systems. The polarization properties of incoherent Thomson scattered light are being examined as a method of Te measurement relevant to ITER operational regimes. The theory is based on Stokes vector transformation and Mueller matrices formalism. The general approach is subdivided into frequency-integrated and frequency-resolved cases. For each of them, the exact analytical relativistic solutions are presented in the form of Mueller matrix elements averaged over the relativistic Maxwellian distribution function. New results related to the detailed verification of the frequency-resolved solutions are reported. The precise analytic expressions provide output much more rapidly than relativistic kinetic numerical codes allowing for direct real-time feedback control of ITER device operation.

  7. Amorphization kinetics of Zr3Fe under electron irradiation

    International Nuclear Information System (INIS)

    Motta, A.T.; Howe, L.M.; Okamoto, P.R.

    1994-11-01

    Previous investigations using 40 Ar ion bombardments have revealed that Zr 3 Fe, which has an orthorhombic crystal structure, undergoes an irradiation-induced transformation from the crystalline to the amorphous state. In the present investigation, 0.9 MeV electron irradiations were performed at 28 - 220 K in a high-voltage electron microscope (HVEM). By measuring the onset, spread and final size of the amorphous region, factoring in the Gaussian distribution of the beam, a kinetic description of the amorphization in terms of dose, dose rate and temperature was obtained. The critical temperature for amorphization by electron irradiation was found to be ∼ 220 K, compared with 570 - 625 K for 40 Ar ion irradiation. Also, the dose-to-amorphization increased exponentially with temperature. Results indicated that the rate of growth of the amorphous region under the electron beam decreased with increasing temperature and the dose-to-amorphization decreased with increasing dose rate. The size of the amorphous region saturated after a given dose, the final size decreasing with increasing temperature, and it is argued that this is related to the existence of a critical dose rate, which increases with temperature, and below which no amorphization occurs. (author). 26 refs., 6 figs

  8. Application of Nonlocal Electron Kinetics to Plasma Technologies

    Science.gov (United States)

    Kaganovich, Igor D.

    2011-10-01

    Partially ionized plasmas are typically in a highly non-equilibrium thermodynamic state: the electrons are not in equilibrium with the neutral particle species or the ions, and the electrons are also not in equilibrium within their own ensemble, which results in a significant departure of the electron velocity distribution function (EVDF) from a Maxwellian. These non-equilibrium conditions provide considerable freedom to choose optimal plasma parameters for applications, which make gas-discharge plasmas remarkable tools for a variety of plasma applications, including plasma processing, discharge lighting, plasma propulsion, particle beam sources, and nanotechnology. Significant progress in understanding the formation of non-Maxwellian EVDF in the self-consistent electric fields has been one of the major achievements in the low-temperature plasmas during the last decade. This progress was made possible by a synergy between full-scale particle-in-cell simulations, analytical models, and experiments. Specific examples include rf discharges, dc discharges with auxiliary electrodes, Hall thruster discharges. In each example, nonlocal kinetic effects are identified as the main mechanisms responsible for the surprising degree of discharge self-organization. These phenomena include: explosive generation of cold electrons with rf power increase in low-pressure rf discharges; abrupt changes in discharge structure with increased bias voltage on a third electrode in a dc discharge with hot cathode; absence of a steady-state regime in Hall thruster discharges with intense secondary electron emission due to coupling of the sheath properties and the EVDF. In collaboration with Y. Raitses, A.V. Khrabrov, M. Campanell, V. I. Demidov, D. Sydorenko, I. Schweigert, and A. S. Mustafaev. Research supported by the U.S. Department of Energy.

  9. Kinetic theory of transport for inhomogeneous electron fluids

    Science.gov (United States)

    Lucas, Andrew; Hartnoll, Sean A.

    2018-01-01

    The interplay between electronic interactions and disorder is neglected in the conventional Boltzmann theory of transport, yet can play an essential role in determining the resistivity of unconventional metals. When quasiparticles are long lived, one can account for these intertwined effects by solving spatially inhomogeneous Boltzmann equations. Assuming smooth disorder and neglecting umklapp scattering, we solve these inhomogeneous kinetic equations and compute the electrical resistivity across the ballistic-to-hydrodynamic transition. An important consequence of electron-electron interactions is the modification of the momentum-relaxation time; this effect is ignored in the homogeneous theory. We characterize precisely when interactions enhance the momentum scattering rate, and when they decrease it. Our approach unifies existing semiclassical theories of transport, and explains how the resistivity can be proportional to the rate of momentum-conserving collisions without Baber scattering. We compare this result with existing transport mysteries, including the disorder-independent T2 resistivity of many Fermi liquids, and the linear-in-T "Planckian-limited" resistivity of many strange metals.

  10. Diameter dependent electron transfer kinetics in semiconductor-enzyme complexes.

    Science.gov (United States)

    Brown, Katherine A; Song, Qing; Mulder, David W; King, Paul W

    2014-10-28

    Excited state electron transfer (ET) is a fundamental step for the catalytic conversion of solar energy into chemical energy. To understand the properties controlling ET between photoexcited nanoparticles and catalysts, the ET kinetics were measured for solution-phase complexes of CdTe quantum dots and Clostridium acetobutylicum [FeFe]-hydrogenase I (CaI) using time-resolved photoluminescence spectroscopy. Over a 2.0-3.5 nm diameter range of CdTe nanoparticles, the observed ET rate (kET) was sensitive to CaI concentration. To account for diameter effects on CaI binding, a Langmuir isotherm and two geometric binding models were created to estimate maximal CaI affinities and coverages at saturating concentrations. Normalizing the ET kinetics to CaI surface coverage for each CdTe diameter led to k(ET) values that were insensitive to diameter, despite a decrease in the free energy for photoexcited ET (ΔGET) with increasing diameter. The turnover frequency (TOF) of CaI in CdTe-CaI complexes was measured at several molar ratios. Normalization for diameter-dependent changes in CaI coverage showed an increase in TOF with diameter. These results suggest that k(ET) and H2 production for CdTe-CaI complexes are not strictly controlled by ΔG(ET) and that other factors must be considered.

  11. Kinetic Theory and Fast Wind Observations of the Electron Strahl

    Science.gov (United States)

    Horaites, Konstantinos; Boldyrev, Stanislav; Wilson, Lynn B., III; Viñas, Adolfo F.; Merka, Jan

    2018-02-01

    We develop a model for the strahl population in the solar wind - a narrow, low-density and high-energy electron beam centred on the magnetic field direction. Our model is based on the solution of the electron drift-kinetic equation at heliospheric distances where the plasma density, temperature and the magnetic field strength decline as power laws of the distance along a magnetic flux tube. Our solution for the strahl depends on a number of parameters that, in the absence of the analytic solution for the full electron velocity distribution function (eVDF), cannot be derived from the theory. We however demonstrate that these parameters can be efficiently found from matching our solution with observations of the eVDF made by the Wind satellite's SWE strahl detector. The model is successful at predicting the angular width (FWHM) of the strahl for the Wind data at 1 au, in particular by predicting how this width scales with particle energy and background density. We find that the strahl distribution is largely determined by the local temperature Knudsen number γ ∼ |T dT/dx|/n, which parametrizes solar wind collisionality. We compute averaged strahl distributions for typical Knudsen numbers observed in the solar wind, and fit our model to these data. The model can be matched quite closely to the eVDFs at 1 au; however, it then overestimates the strahl amplitude at larger heliocentric distances. This indicates that our model may be improved through the inclusion of additional physics, possibly through the introduction of 'anomalous diffusion' of the strahl electrons.

  12. Electron Bifurcation: Thermodynamics and Kinetics of Two-Electron Brokering in Biological Redox Chemistry.

    Science.gov (United States)

    Zhang, Peng; Yuly, Jonathon L; Lubner, Carolyn E; Mulder, David W; King, Paul W; Peters, John W; Beratan, David N

    2017-09-19

    processes of their own. We dissect the thermodynamics and kinetics of electron bifurcation in Nfn and find that the key features of electron bifurcation are (1) spatially separated transfer pathways that diverge from a two-electron donor, (2) one thermodynamically uphill and one downhill redox pathway, with a large negative shift in the donor's reduction potential after departure of the first electron, and (3) electron tunneling and activation factors that enable bifurcation, producing a 1:1 partitioning of electrons onto the two pathways. Electron bifurcation is found in the CO 2 reducing pathways of methanogenic archaea, in the hydrogen pathways of hydrogenases, in the nitrogen fixing pathway of Fix, and in the mitochondrial charge transfer chain of complex III, cytochrome bc 1 . While crossed potentials may offer the biological advantage of producing tightly regulated high energy reactive species, neither kinetic nor thermodynamic considerations mandate crossed potentials to generate successful electron bifurcation. Taken together, the theoretical framework established here, focusing on the underpinning electron tunneling barriers and activation free energies, explains the logic of electron bifurcation that enables energy conversion and conservation in Nfn, points toward bioinspired schemes to execute multielectron redox chemistry, and establishes a roadmap for examining novel electron bifurcation networks in nature.

  13. Photoinduced bimolecular electron transfer kinetics in small unilamellar vesicles

    International Nuclear Information System (INIS)

    Choudhury, Sharmistha Dutta; Kumbhakar, Manoj; Nath, Sukhendu; Pal, Haridas

    2007-01-01

    Photoinduced electron transfer (ET) from N,N-dimethylaniline to some coumarin derivatives has been studied in small unilamellar vesicles (SUVs) of the phospholipid, DL-α-dimyristoyl-phosphatidylcholine, using steady-state and time-resolved fluorescence quenching, both below and above the phase transition temperature of the vesicles. The primary interest was to examine whether Marcus inversion [H. Sumi and R. A. Marcus, J. Chem. Phys. 84, 4894 (1986)] could be observed for the present ET systems in these organized assemblies. The influence of the topology of SUVs on the photophysical properties of the reactants and consequently on their ET kinetics has also been investigated. Absorption and fluorescence spectral data of the coumarins in SUVs and the variation of their fluorescence decays with temperature indicate that the dyes are localized in the bilayer of the SUVs. Time-resolved area normalized emission spectra analysis, however, reveals that the dyes are distributed in two different microenvironments in the SUVs, which we attribute to the two leaflets of the bilayer, one toward bulk water and the other toward the inner water pool. The microenvironments in the two leaflets are, however, not indicated to be that significantly different. Time-resolved anisotropy decays were biexponential for all the dyes in SUVs, and this has been interpreted in terms of the compound motion model according to which the dye molecules can experience a fast wobbling-in-cone type of motion as well as a slow overall rotating motion of the cone containing the molecule. The expected bimolecular diffusion-controlled rates in SUVs, as estimated by comparing the microviscosities in SUVs (determined from rotational correlation times) and that in acetonitrile solution, are much slower than the observed fluorescence quenching rates, suggesting that reactant diffusion (translational) does not play any role in the quenching kinetics in the present systems. Accordingly, clear inversions are

  14. Physical Kinetics of Electrons in a High-Voltage Pulsed High-Pressure Discharge with Cylindrical Geometry

    Science.gov (United States)

    Kozhevnikov, V. Yu.; Kozyrev, A. V.; Semeniuk, N. S.

    2017-12-01

    Results of theoretical modeling of the phenomenon of a high-voltage discharge in nitrogen at atmospheric pressure are presented, based on a consistent kinetic theory of the electrons. A mathematical model of a nonstationary high-pressure discharge has been constructed for the first time, based on a description of the electron component from first principles. The physical kinetics of the electrons are described with the help of the Boltzmann kinematic equation for the electron distribution function over momenta with only ionization and elastic collisions taken into account. A detailed spatiotemporal picture of a nonstationary discharge with runaway electrons under conditions of coaxial geometry of the gas diode is presented. The model describes in a self-consistent way both the process of formation of the runaway electron flux in the discharge and the influence of this flux on the rate of ionization processes in the gas. Total energy spectra of the electron flux incident on the anode are calculated. The obtained parameters of the current pulse of the beam of fast electrons correlate well with the known experimental data.

  15. Python framework for kinetic modeling of electronically excited reaction pathways

    Science.gov (United States)

    Verboncoeur, John; Parsey, Guy; Guclu, Yaman; Christlieb, Andrew

    2012-10-01

    The use of plasma energy to enhance and control the chemical reactions during combustion, a technology referred to as ``plasma assisted combustion'' (PAC), can result in a variety of beneficial effects: e.g. stable lean operation, pollution reduction, and wider range of p-T operating conditions. While experimental evidence abounds, theoretical understanding of PAC is at best incomplete, and numerical tools still lack in reliable predictive capabilities. In the context of a joint experimental-numerical effort at Michigan State University, we present here an open-source modular Python framework dedicated to the dynamic optimization of non-equilibrium PAC systems. Multiple sources of experimental reaction data, e.g. reaction rates, cross-sections and oscillator strengths, are used in order to quantify the effect of data uncertainty and limiting assumptions. A collisional-radiative model (CRM) is implemented to organize reactions by importance and as a potential means of measuring a non-Maxwellian electron energy distribution function (EEDF), when coupled to optical emission spectroscopy data. Finally, we explore scaling laws in PAC parameter space using a kinetic global model (KGM) accelerated with CRM optimized reaction sequences and sparse stiff integrators.

  16. Variation of kinetic energy release with temperature and electron energy for unimolecular ionic transitions

    International Nuclear Information System (INIS)

    Rabia, M.A.; Fahmy, M.A.

    1992-01-01

    The kinetic energy released during seven unimolecular ionic transitions, generated from benzyl alcohol and benzyl amine have been studied as a function of ion source temperature and ionizing electron energy. Only, the kinetic energy released during H CN elimination from fragment [C 7 H 8 N]+ ion of benzyl amine displays a temperature dependence. For only two transitions, generated from benzyl alcohol, the kinetic energy released show a significant ionizing electron energy dependence. These results may reveal the role of the internal energy of reacting ions in producing the kinetic energy released some transitions produced from benzyl alcohol

  17. A conservative scheme of drift kinetic electrons for gyrokinetic simulation of kinetic-MHD processes in toroidal plasmas

    Science.gov (United States)

    Bao, J.; Liu, D.; Lin, Z.

    2017-10-01

    A conservative scheme of drift kinetic electrons for gyrokinetic simulations of kinetic-magnetohydrodynamic processes in toroidal plasmas has been formulated and verified. Both vector potential and electron perturbed distribution function are decomposed into adiabatic part with analytic solution and non-adiabatic part solved numerically. The adiabatic parallel electric field is solved directly from the electron adiabatic response, resulting in a high degree of accuracy. The consistency between electrostatic potential and parallel vector potential is enforced by using the electron continuity equation. Since particles are only used to calculate the non-adiabatic response, which is used to calculate the non-adiabatic vector potential through Ohm's law, the conservative scheme minimizes the electron particle noise and mitigates the cancellation problem. Linear dispersion relations of the kinetic Alfvén wave and the collisionless tearing mode in cylindrical geometry have been verified in gyrokinetic toroidal code simulations, which show that the perpendicular grid size can be larger than the electron collisionless skin depth when the mode wavelength is longer than the electron skin depth.

  18. Incidence and kinetics of distant metastases in patients with operable breast cancer

    International Nuclear Information System (INIS)

    Kryj, M.; Maciejewski, B.; Withers, H.R.; Taylor, J.M.G.

    1997-01-01

    The purpose of this paper is to evaluate the incidence and kinetics of distant metastases in operable breast cancer and to relate these estimates to various tumor and patient characteristics. The records of 309 consecutive patients with operable breast cancer in stage T 1-4 N 0-1 M 0 were reviewed, and the incidence of distant metastases (DM) and death due to DM were evaluated. 195 patients had positive axillary nodes with following distribution of the number of nodes: 45% had 1-2 node, 16% had 3-4 nodes, 14% and 25% had 5-7 and more nodes, respectively. All patients were treated with radical mastectomy with axillary nodes dissection (the only treatment in 39% of cases). In 198 cases radical mastectomy was combined with radiotherapy and/or chemotherapy given pre- or postoperatively. Hormonal treatment was given in 27% of cases. Minimum follow-up was 10 years. Distant metastases were found in 150 cases (49%) and in 78 cases (25%) they develop early, during the first 18 months follow-up. Average rate of DM in N 0 cases was 25%. Number of involved nodes and extra-capsular invasion were found significant and independent prognostic factors. High risk (%)%) of DM and death due to DM correlate with age T 3 , more than 2 axillary nodes and or extra-capsular invasion. The linearity of the curves for freedom from DM and for freedom from death due to the DM suggest uniform distribution of progression rates with a median value for halving time for freedom from early DM of about 8 months, and of about 40 months for freedom from the DM occurring later than 18 months, being for whole group and average of 20 months. High incidence of DM is a significant cause of poor long-term survival. Early appearance (<18 month follow-up) of about half of the DM suggests that they are already present as subclinical micrometastases at the time of initial loco-regional treatment. The time of appearance of distant metastases is consistent with a wide range of metastatic cell burdens among patients

  19. Kinetic electron emission from Cu induced by impact of slow Cs+ ions

    Czech Academy of Sciences Publication Activity Database

    Lorinčík, Jan; Šroubek, Zdeněk; Kormunda, M.; Matoušek, J.

    2013-01-01

    Roč. 315, 15 November (2013), s. 287-290 ISSN 0168-583X R&D Projects: GA MŠk(CZ) ME10086 Institutional support: RVO:67985882 Keywords : Ion induced electron emission * Kinetic electron emission * Sub-threshold Cs+ Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 1.186, year: 2013

  20. Kinetic electron emission from metal surfaces induced by impact of slow ions

    Czech Academy of Sciences Publication Activity Database

    Šroubek, Zdeněk; Lorinčík, Jan

    -, č. 625 (2014), s. 7-9 ISSN 0039-6028 R&D Projects: GA MŠk(CZ) ME10086 Institutional support: RVO:67985882 Keywords : Ion induced kinetic electron emission * Electronic excitation Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 1.925, year: 2014

  1. Electron and proton kinetics and dynamics in flaring atmospheres

    CERN Document Server

    Zharkova, Valentina

    2012-01-01

    This timely book presents new research results on high-energy particle physics related to solar flares, covering the theory and applications of the reconnection process in a clear and comprehensible way. It investigates particle kinetics and dynamics in flaring atmospheres and their diagnostics from spectral observations, while providing an analysis of the observation data and techniques and comparing various models. Written by an internationally acclaimed expert, this is vital reading for all solar, astro-, and plasma physicists working in the field.

  2. Idempotent Dirac density matrix for ten-electron central field inhomogeneous electron liquids in terms of electron- and kinetic energy-densities

    International Nuclear Information System (INIS)

    March, N.H.

    2006-08-01

    A differential equation for the Dirac density matrix γ(r, r'), given ground-state electron- and kinetic energy-densities, has been derived by March and Suhai for one- and two-level occupancy. For ten-electron spin-compensated spherical systems, it is shown here that γ ≡ γ[ρ, t g ] where ρ and t g are electron- and kinetic energy-densities. The philosophy of March and Suhai is confirmed beyond two-level filling. An important byproduct of the present approach is an explicit expression for the one-body potential of DFT in terms of the p-shell electron density. (author)

  3. Particle-in-cell Simulations with Kinetic Electrons

    International Nuclear Information System (INIS)

    Lewandowski, J.L.V.

    2004-01-01

    A new scheme, based on an exact separation between adiabatic and nonadiabatic electron responses, for particle-in-cell (PIC) simulations of drift-type modes is presented. The (linear and nonlinear) elliptic equations for the scalar fields are solved using a multi-grid solver. The new scheme yields linear growth rates in excellent agreement with theory and it is shown to conserve energy well into the nonlinear regime. It is also demonstrated that simulations with few electrons are reliable and accurate, suggesting that large-scale, PIC simulations with electron dynamics in toroidal geometry (e.g., tokamaks and stellarators plasmas) are within reach of present-day massively parallel supercomputers

  4. Kinetic Theory of Electronic Transport in Random Magnetic Fields

    Science.gov (United States)

    Lucas, Andrew

    2018-03-01

    We present the theory of quasiparticle transport in perturbatively small inhomogeneous magnetic fields across the ballistic-to-hydrodynamic crossover. In the hydrodynamic limit, the resistivity ρ generically grows proportionally to the rate of momentum-conserving electron-electron collisions at large enough temperatures T . In particular, the resulting flow of electrons provides a simple scenario where viscous effects suppress conductance below the ballistic value. This new mechanism for ρ ∝T2 resistivity in a Fermi liquid may describe low T transport in single-band SrTiO3 .

  5. Risk factors for radiotherapy incidents and impact of an online electronic reporting system

    International Nuclear Information System (INIS)

    Chang, David W.; Cheetham, Lynn; Marvelde, Luc te; Bressel, Mathias; Kron, Tomas; Gill, Suki; Tai, Keen Hun; Ball, David; Rose, William; Silva, Linas; Foroudi, Farshad

    2014-01-01

    Background and purpose: To ascertain the rate, type, significance, trends and the potential risk factors associated with radiotherapy incidents in a large academic department. Materials and methods: Data for all radiotherapy activities from July 2001 to January 2011 were reviewed from radiotherapy incident reporting forms. Patient and treatment data were obtained from the radiotherapy record and verification database (MOSAIQ) and the patient database (HOSPRO). Logistic regression analyses were performed to determine variables associated with radiotherapy incidents. Results: In that time, 65,376 courses of radiotherapy were delivered with a reported incident rate of 2.64 per 100 courses. The rate of incidents per course increased (1.96 per 100 courses to 3.52 per 100 courses, p < 0.001) whereas the proportion of reported incidents resulting in >5% deviation in dose (10.50 to 2.75%, p < 0.001) had decreased after the introduction of an online electronic reporting system. The following variables were associated with an increased rate of incidents: afternoon treatment time, paediatric patients, males, inpatients, palliative plans, head-and-neck, skin, sarcoma and haematological malignancies. In general, complex plans were associated with higher incidence rates. Conclusion: Radiotherapy incidents were infrequent and most did not result in significant dose deviation. A number of risk factors were identified and these could be used to highlight high-risk cases in the future. Introduction of an online electronic reporting system resulted in a significant increase in the number of incidents being reported

  6. Multi-scale modelling and numerical simulation of electronic kinetic transport

    International Nuclear Information System (INIS)

    Duclous, R.

    2009-11-01

    This research thesis which is at the interface between numerical analysis, plasma physics and applied mathematics, deals with the kinetic modelling and numerical simulations of the electron energy transport and deposition in laser-produced plasmas, having in view the processes of fuel assembly to temperature and density conditions necessary to ignite fusion reactions. After a brief review of the processes at play in the collisional kinetic theory of plasmas, with a focus on basic models and methods to implement, couple and validate them, the author focuses on the collective aspect related to the free-streaming electron transport equation in the non-relativistic limit as well as in the relativistic regime. He discusses the numerical development and analysis of the scheme for the Vlasov-Maxwell system, and the selection of a validation procedure and numerical tests. Then, he investigates more specific aspects of the collective transport: the multi-specie transport, submitted to phase-space discontinuities. Dealing with the multi-scale physics of electron transport with collision source terms, he validates the accuracy of a fast Monte Carlo multi-grid solver for the Fokker-Planck-Landau electron-electron collision operator. He reports realistic simulations for the kinetic electron transport in the frame of the shock ignition scheme, the development and validation of a reduced electron transport angular model. He finally explores the relative importance of the processes involving electron-electron collisions at high energy by means a multi-scale reduced model with relativistic Boltzmann terms

  7. Superconductivity, Antiferromagnetism, and Kinetic Correlation in Strongly Correlated Electron Systems

    Directory of Open Access Journals (Sweden)

    Takashi Yanagisawa

    2015-01-01

    Full Text Available We investigate the ground state of two-dimensional Hubbard model on the basis of the variational Monte Carlo method. We use wave functions that include kinetic correlation and doublon-holon correlation beyond the Gutzwiller ansatz. It is still not clear whether the Hubbard model accounts for high-temperature superconductivity. The antiferromagnetic correlation plays a key role in the study of pairing mechanism because the superconductive phase exists usually close to the antiferromagnetic phase. We investigate the stability of the antiferromagnetic state when holes are doped as a function of the Coulomb repulsion U. We show that the antiferromagnetic correlation is suppressed as U is increased exceeding the bandwidth. High-temperature superconductivity is possible in this region with enhanced antiferromagnetic spin fluctuation and pairing interaction.

  8. Ion and electron beam effects on kinetic Alfven wave with general loss-cone distribution function-kinetic approach

    International Nuclear Information System (INIS)

    Shukla, Nidhi; Mishra, Ruchi; Varma, P; Tiwari, M S

    2008-01-01

    This work studies the effect of ion and electron beam on kinetic Alfven wave (KAW) with general loss-cone distribution function. The kinetic theory has been adopted to evaluate the dispersion relation and damping rate of the wave in the presence of loss-cone distribution indices J. The variations in wave frequency ω and damping rate with perpendicular wave number k perpendicular ρ i (k perpendicular is perpendicular wave number and ρ i is ion gyroradius) and parallel wave number k parallel are studied. It is found that the distribution index J and ion beam velocity enhance the wave frequency at lower k perpendicular ρ i , whereas the electron beam velocity enhances the wave frequency at higher k perpendicular ρ i . The calculated values of frequency correspond to the observed values in the range 0.1-4 Hz. Increase in damping rate due to higher distribution indices J and ion beam velocity is observed. The effect of electron beam is to reduce the damping rate at higher k perpendicular ρ i . The plasma parameters appropriate to plasma sheet boundary layer are used. The results may explain the transfer of Poynting flux from the magnetosphere to the ionosphere. It is also found that in the presence of the loss-cone distribution function the ion beam becomes a sensitive parameter to reduce the Poynting flux of KAW propagating towards the ionosphere

  9. An analysis of electronic health record-related patient safety incidents.

    Science.gov (United States)

    Palojoki, Sari; Mäkelä, Matti; Lehtonen, Lasse; Saranto, Kaija

    2017-06-01

    The aim of this study was to analyse electronic health record-related patient safety incidents in the patient safety incident reporting database in fully digital hospitals in Finland. We compare Finnish data to similar international data and discuss their content with regard to the literature. We analysed the types of electronic health record-related patient safety incidents that occurred at 23 hospitals during a 2-year period. A procedure of taxonomy mapping served to allow comparisons. This study represents a rare examination of patient safety risks in a fully digital environment. The proportion of electronic health record-related incidents was markedly higher in our study than in previous studies with similar data. Human-computer interaction problems were the most frequently reported. The results show the possibility of error arising from the complex interaction between clinicians and computers.

  10. Secondary Electron Emission from Solid Hydrogen and Deuterium Resulting from Incidence of keV Electrons and Hydrogen Ions

    DEFF Research Database (Denmark)

    Sørensen, H.

    1977-01-01

    The secondary electron emission (SEE) coefficient δ was measured for solid hydrogen and deuterium resulting from the normal incidence of 0.5–3‐keV electrons and 4–10‐keV H+, H2+, H3+, and D3+ ions. The SEE coefficients for solid hydrogen are 60–70% of those for solid deuterium, and the coefficients....... The losses to molecular states will be largest for hydrogen, so that the SEE coefficients are smallest for solid hydrogen, as was observed. For the incidence of ions, the values of δ for the different molecular ions agree when the number of secondary electrons per incident atom is plotted versus the velocity...... or the stopping power of the incident particles. Measurements were also made for oblique incidence of H+ ions on solid deuterium for angles of incidence up to 75°. A correction could be made for the emission of secondary ions by also measuring the current calorimetrically. At largest energies, the angular...

  11. Transmission of electrons through insulating PET foils: Dependence on charge deposition, tilt angle and incident energy

    Energy Technology Data Exchange (ETDEWEB)

    Keerthisinghe, D., E-mail: darshika.keerthisinghe@wmich.edu [Department of Physics, Western Michigan University, Kalamazoo, MI 49008 (United States); Dassanayake, B.S. [Department of Physics, University of Peradeniya, Peradeniya (Sri Lanka); Wickramarachchi, S.J. [Department of Physics, Western Michigan University, Kalamazoo, MI 49008 (United States); Stolterfoht, N. [Helmholtz-Zentrum Berlin für Materialien und Energie, D-14109 Berlin (Germany); Tanis, J.A. [Department of Physics, Western Michigan University, Kalamazoo, MI 49008 (United States)

    2016-09-01

    Transmission of electrons through insulating polyethylene terephthalate (PET) nanocapillaries was observed as a function of charge deposition, angular and energy dependence. Two samples with capillary diameters 100 and 200 nm and pore densities 5 × 10{sup 8}/cm{sup 2} and 5 × 10{sup 7}/cm{sup 2}, respectively, were studied for incident electron energies of 300, 500 and 800 eV. Transmission and steady state of the electrons were attained after a time delay during which only a few electron counts were observed. The transmission through the capillaries depended on the tilt angle with both elastic and inelastic electrons going through. The guiding ability of electrons was found to increase with the incident energy in contrast to previous measurements in our laboratory for a similar PET foil.

  12. Kinetic modelling of runaway electron avalanches in tokamak plasmas.

    Czech Academy of Sciences Publication Activity Database

    Nilsson, E.; Decker, J.; Peysson, Y.; Granetz, R.S.; Saint-Laurent, F.; Vlainic, Milos

    2015-01-01

    Roč. 57, č. 9 (2015), č. článku 095006. ISSN 0741-3335 EU Projects: European Commission(XE) 633053 - EUROfusion Institutional support: RVO:61389021 Keywords : plasma physics * runaway electrons * knock-on collisions * tokamak * Fokker-Planck * runaway avalanches Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: Fluids and plasma physics (including surface physics) Impact factor: 2.404, year: 2015

  13. Degradation kinetics of electron beam irradiated poly(propylene-co-ethylene) heterophasic copolymer

    Science.gov (United States)

    Koosha, Mojtaba; Ebrahimi, Nastaran; Jahani, Yousef; Sajjadi, Seyed Abolfazl Seyed

    2011-07-01

    This study considers the effects of electron beam radiation on degradation kinetics of a poly(propylene-co-ethylene) heterophasic copolymer. Polypropylene heterophasic copolymers are composed of ethylene-propylene rubbery phase dispersed in crystalline polypropylene homopolymer matrix. Electron beam radiation can affect both polypropylene homopolymer matrix and ethylene-propylene dispersed phases simultaneously. Both phases undergo degradation and crosslinking reactions, but degradation is more probable in the polypropylene homopolymer matrix. The aim of this work is to study kinetics of degradation in this material. A high power electron accelerator irradiated raw samples under nitrogen atmosphere. The samples are analyzed using TGA in non-isothermal mode, and the degradation kinetic parameters were determined using Kissinger, Flynn-Wall-Ozawa and Coats-Redfern methods. The kinetic parameters resulted from these methods are compared. Results of kinetics studies show that orders of degradation reactions occurring in nitrogen atmosphere are all less than one. It indicates degradation takes place due to thermal dissociation of the chemical bonds.

  14. Chemical kinetics of flue gas cleaning by electron beam

    International Nuclear Information System (INIS)

    Maetzing, H.

    1989-02-01

    By electron beam treatment of flue gases, NO x and SO 2 are converted to nitric and sulfuric acids simultaneously. Upon ammonia addition, the corresponding salts are collected in solid state and can be sold as fertilizer. Both homogeneous gas phase reactions and physico-chemical aerosol dynamics are involved in product formation. These processes have been analyzed by model calculations. In part 1, the present report summarizes the model results and gives an account of the theoretical understanding of the EBDS process and its performance characteristics. Part 2 of this report gives a complete listing of the reactions used in the AGATE code. (orig.) [de

  15. Kinetic electron emission due to perpendicular impact of carbon ions on tungsten surfaces

    Czech Academy of Sciences Publication Activity Database

    Lorinčík, Jan; Šroubek, Zdeněk; Brunmayr, M.; Kowarik, G.; Aumayr, F.

    2009-01-01

    Roč. 255, č. 12 (2009), s. 6303-6307 ISSN 0169-4332 Institutional research plan: CEZ:AV0Z20670512 Keywords : Kinetic electron emission * Carbon Subject RIV: JB - Sensors, Measurment, Regulation Impact factor: 1.616, year: 2009

  16. Production of X-ray transition radiation with relativistic electrons propagating at grazing incidence

    CERN Document Server

    Couillaud, C

    2002-01-01

    This paper is concerned with the production of X-ray transition radiation when a relativistic electron crosses the interface between two media of different permittivities at the grazing incidence. The production yields are derived analytically when a thick interface is considered and are compared with those obtained when the electron crosses the interface at normal incidence. The production of X-ray photons having an energy between two photoabsorption edges or close to a photoabsorption edge is also investigated. The main features of the transition radiation produced are then exhibited and it is shown that the intensity can be increased by many orders of magnitude. We also show that, at grazing incidence, the backward transition radiation has an intensity close to the forward emission one, contrary to the normal incidence case. The production of quasi-monochromatic radiation is also presented. Finally, the production of X-ray transition radiation using a multilayer radiator is considered and compared in both ...

  17. Electron loss from fast partially stripped C and O ions incident on crystal targets

    Energy Technology Data Exchange (ETDEWEB)

    Kudo, Hiroshi E-mail: kudo@bukko.bk.tsukuba.ac.jp; Takeda, Ken-ichi; Suguri, Takuya; Iwazaki, Wataru; Sakurai, Chizuko; Arano, Isamu; Numazawa, Shuhei; Seki, Seiji

    2003-07-01

    We have measured energy spectra of electrons emitted in a backward direction of Si and Ge crystals while bombarded by 2.5 and 3.5 MeV/u C{sup 4+}, C{sup 6+}, O{sup 5+} and O{sup 8+}. Under <1 1 0> channeling incidence conditions, the loss electron yield from the partially stripped ions is appreciably reduced (by a factor of 0.5-0.6 for C{sup 4+}) relative to the non-channeling case. This reduction can be directly related to the reduced charge states of the channeled ions in the crystals. Furthermore, the evolution of the pre-equilibrium charge states of the incident ions has been deduced from a comparison of the effective nuclear charges for the loss electron yield, the low-energy electron yield, and the binary-encounter electron yield reported previously.

  18. A kinetic sensitivity analysis for the SO2 and NOx removal using the electron beam technology

    Science.gov (United States)

    Zwolińska, Ewa; Gogulancea, Valentina; Sun, Yongxia; Lavric, Vasile; Chmielewski, Andrzej

    2017-09-01

    The mathematical modeling of the phenomena taking place during the electron beam flue gas treatment is a complex endeavor due to the different time scales of the processes occurring as accelerated electrons are bombarding the flue gas. The paper presents a complex kinetic model for these gas phase interactions, consisting of 1034 chemical reactions with the participation of 115 reactive species. The mathematical model couples the complex gas phase kinetics with a liquid phase kinetic model, taking into account the nucleation and condensation phenomena occurring due to the presence of sulfuric acid. The modeling results for both coupled and uncoupled gas phase kinetics are validated against a set of literature experimental data with satisfactory outcome. The work aims to identify the most important chemical reactions influencing the pollutants removal, proposing a sensitivity analysis using the concept of generated entropy. To the best of the authors' knowledge a sensitivity analysis of this extent has not been performed for the electron beam flue gas treatment. The results of this analysis emphasize the link between the removal efficiencies of NOx and SO2, the importance of hydroxyl radicals and can aid in future model reduction efforts.

  19. Electronic kinetic energy decrease as two metallic parallel C nanotubes are brought together from infinity

    International Nuclear Information System (INIS)

    March, Norman H.; Rubio, Angel

    2006-01-01

    By utilising the virial theorem, an expression is derived from the recent work of Dobson et al. for the initial decrease of electronic kinetic energy as two metallic parallel C nanotubes of equal diameter are brought together from infinity to a (still large) separation. To yield the dispersion energy proposed by Dobson et al. [J.F. Dobson, A. White, A. Rubio, Phys. Rev. Lett. 96 (2006) 073201], it is shown that it is the initial drop in the kinetic energy that is responsible for the long-range attractive interaction

  20. Radial transport of radiation belt electrons in kinetic field-line resonances

    Science.gov (United States)

    Chaston, C. C.; Bonnell, J. W.; Wygant, J. R.; Reeves, G. D.; Baker, D. N.; Melrose, D. B.; Cairns, Iver H.

    2017-08-01

    A representative case study from the Van Allen Probes during a geomagnetic storm recovery phase reveals enhanced electron fluxes at intermediate pitch angles over energies from 100 keV to 5 MeV coincident with broadband low-frequency electromagnetic waves. The statistical properties of these waves are used to build a model for radial diffusion via drift-bounce resonances in kinetic Alfvén eigenmodes/kinetic field-line resonances. Estimated diffusion coefficients indicate timescales for radial transport on the order of hours in storm time events at energies from belt.

  1. Near-surface electron acceleration during intense laser-solid interaction in the grazing incidence regime

    Science.gov (United States)

    Serebryakov, D. A.; Nerush, E. N.; Kostyukov, I. Yu.

    2017-12-01

    When a relativistically intense p-polarized laser pulse is grazingly incident onto a planar solid-state target, a slightly superluminal field structure is formed near the target surface due to the incident and reflected waves superposition. This field structure can both extract the electrons from the target and accelerate them. It is theoretically shown that the acceleration is possible and stable for a wide range of electron initial conditions. Particle-in-cell simulations confirm that this mechanism can actually take place for realistic parameters. As a result, the electron bunches with a charge of tens of nC and GeV-level energy can be produced using a laser intensity 1021-1022 W/cm2. It is also shown that the presence of a preplasma can improve acceleration, which becomes possible because of more efficient electron injection into the accelerating field structure.

  2. Electron kinetics in weakly ionized helium under DC and HF applied electric fields

    Energy Technology Data Exchange (ETDEWEB)

    Alves, L.L.; Ferreira, C.M. (Instituto Superior Tecnico, Lisbon (Portugal). Centro de Electrodinamica)

    1991-04-14

    The electron kinetics in weakly ionized helium under the action of direct current (DC) and high frequency (HF) fields of angular frequency {omega} is investigated by solving the homogeneous electron Boltzmann equation using the classical two-term expansion approximation. The analysis is based on a consistent set of electron cross sections which is here derived by adjusting experimental cross section data in such a way that calculated and measured electron swarm parameters are in agreement. In the case of HF fields the analysis is based on the DC effective field approximation which is valid for {omega} > tau{sub e}{sup -1}, where tau{sub e} is the characteristic time for electron energy relaxation by collisions with the atoms. The influence of {omega} on the electron energy distribution function, transport parameters, rate coefficients and fractional power transfer is investigated and a detailed comparison of the DC and HF situations is made. It is shown that for reduced effective fields in the range 10{sup -16}-10{sup -15} V cm{sup 2}, as typically found in low-pressure discharges, the mean electron kinetic properties are nearly the same in the whole range of {omega} > tau{sub e}{sup -1} as for the DC case. (author).

  3. Pharmaceutical sales of pseudoephedrine: the impact of electronic tracking systems on methamphetamine crime incidents.

    Science.gov (United States)

    Mazerolle, Lorraine; McGuffog, Ingrid; Ferris, Jason; Chamlin, Mitchell B

    2017-03-01

    Electronic tracking systems (ETS) are used extensively in pharmacies across the United States and Australia to control suspicious sales of pseudoephedrine. This study measures the impact of one ETS-Project STOP-on the capacity of police to reduce production, supply and possession of methamphetamine. Using official police data of incidents of production, supply and possession from January 1996 to December 2011 (n = 192 data points/months over 16 years), we used a quasi-experimental, time-series approach. The State of Queensland, Australia. No individual participants are included in the study. The unit of analysis is reported police incidents. The study examines the impact of the ETS on production (n = 5938 incidents), drug supply and trafficking (n = 20 094 incidents) and drug possession or use (n = 118 926) of methamphetamine. Introduction of the ETS in November 2005 was associated with an insignificant decrease (P = 0.15) in the production of methamphetamine. The intervention was associated with a statistically significant increase in supply incidents (P = 0.0001). There was no statistically significant effect on the incidence of possession (P = 0.59). Electronic tracking systems can reduce the capacity of people to produce methamphetamine domestically, but seem unlikely to affect other aspects of the methamphetamine problem such as possession, distribution and importation. © 2016 Society for the Study of Addiction.

  4. Electron Bifurcation: Thermodynamics and Kinetics of Two-Electron Brokering in Biological Redox Chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Peng; Yuly, Jonathon L.; Lubner, Carolyn E. [National Renewable Energy Laboratory, Golden, Colorado 80401, United States; Mulder, David W. [National Renewable Energy Laboratory, Golden, Colorado 80401, United States; King, Paul W. [National Renewable Energy Laboratory, Golden, Colorado 80401, United States; Peters, John W. [Institute; Beratan, David N. [Department

    2017-08-23

    How can proteins drive two electrons from a redox active donor onto two acceptors at very different potentials and distances? And how can this transaction be conducted without dissipating very much energy or violating the laws of thermodynamics? Nature appears to have addressed these challenges by coupling thermodynamically uphill and downhill electron transfer reactions, using two-electron donor cofactors that have very different potentials for the removal of the first and second electron. Although electron bifurcation is carried out with near perfection from the standpoint of energy conservation and electron delivery yields, it is a biological energy transduction paradigm that has only come into focus recently. This Account provides an exegesis of the biophysical principles that underpin electron bifurcation.

  5. On the ultrafast kinetics of the energy and electron transfer reactions in photosystem I

    Energy Technology Data Exchange (ETDEWEB)

    Slavov, Chavdar Lyubomirov

    2009-07-09

    The subject of the current work is one of the main participants in the light-dependent phase of oxygenic photosynthesis, Photosystem I (PS I). This complex carries an immense number of cofactors: chlorophylls (Chl), carotenoids, quinones, etc, which together with the protein entity exhibit several exceptional properties. First, PS I has an ultrafast light energy trapping kinetics with a nearly 100% quantum efficiency. Secondly, both of the electron transfer branches in the reaction center are suggested to be active. Thirdly, there are some so called 'red' Chls in the antenna system of PS I, absorbing light with longer wavelengths than the reaction center. These 'red' Chls significantly modify the trapping kinetics of PS I. The purpose of this thesis is to obtain better understanding of the above-mentioned, specific features of PS I. This will not merely cast more light on the mechanisms of energy and electron transfer in the complex, but also will contribute to the future developments of optimized artificial light-harvesting systems. In the current work, a number of PS I complexes isolated from different organisms (Thermosynechococcus elongatus, Chlamydomonas reinhardtii, Arabidopsis thaliana) and possessing distinctive features (different macroorganisation, monomers, trimers, monomers with a semibelt of peripheral antenna attached; presence of 'red' Chls) is investigated. The studies are primarily focused on the electron transfer kinetics in each of the cofactor branches in the PS I reaction center, as well as on the effect of the antenna size and the presence of 'red' Chls on the trapping kinetics of PS I. These aspects are explored with the help of several ultrafast optical spectroscopy methods: (i) time-resolved fluorescence ? single photon counting and synchroscan streak camera; and (ii) ultrafast transient absorption. Physically meaningful information about the molecular mechanisms of the energy trapping in PS I is

  6. Influence of suprathermal electrons kinetics on cyclotron radiation transport in hot toroidal plasmas

    International Nuclear Information System (INIS)

    Cherepanov, K.V.; Kukushkin, A.B.

    2005-01-01

    Numerical studies of the contribution of suprathermal electrons to electron cyclotron radiation (ECR) transport in hot (Te > 10 keV) plasmas confined by a strong toroidal magnetic field (B > 5 T) are reported. The respective code (Proc. 14th IAEA Conf. PPCF, Wuerzburg, 1992, v.2, p.35) which, for maxwellian electron velocity distribution (EVD) with inhomogeneous temperature/density, has been tested against well-known numerical and semi-analytical codes by S. Tamor, is now applied to solving the following two problems for ITER-like conditions. (1) Spatial profile of the net radiated power density, P EC (r), is found to be strongly sensitive to the presence of suprathermal electrons. This enables us to evaluate allowable limits for local rise of effective temperature/density of suprathermal electrons (in terms of bi-maxwellian EVD). (2) Self-consistent modeling of the ECR transport and the kinetics of suprathermal electrons gives spatial profile of deviations from maxwellian EVD, caused by the transport of plasma's self EC radiation. These kinetic effects work ultimately for the global flattening of the P EC (r) profile: a lowering, in the core, and a rise, in the periphery. For ITER-like conditions, these effects upon P EC (r) appear to be small. The results of treating the above two tasks suggest the necessity of solving self-consistently the problems of (i) ECRH and ECCD optimization and (ii) ECR transport in the entire range of radiation frequency, when strong enough suprathermals may be produced. (author)

  7. Monte Carlo simulation of kinetic electron emission from metal due to impact of heavy ions

    International Nuclear Information System (INIS)

    Kawata, J.; Ohya, K.

    1999-01-01

    A Monte Carlo simulation is performed for study of the dependence of kinetic electron emission on nuclear charge of projectile Z 1 , using the nonlinear response theory with the density-functional (DF) formalism to calculate electron excitation cross section. The kinetic yield, energy distribution, excitation depth distribution and emission statistics of emitted electrons showed clear Z 1 oscillations, however, the Z 1 oscillations of them are different from that of the inelastic stopping power, in particular for high Z 1 , due to large elastic energy loss of the ions and secondary cascade process of primary excited electrons within the solid. For high Z 1 , the linear relationship does not exist between them and the inelastic stopping power, although they are closely related to it. The emission of high-energy primary electrons excited by the ion within shallow depth without experiencing the secondary cascade process, results in the Z 1 dependence in the energy distribution, excitation depth distribution and emission statistics of emitted electrons

  8. Electron emission induced by resonant coherent ion-surface interaction at grazing incidence

    International Nuclear Information System (INIS)

    Garcia de Abajo, F.J.; Ponce, V.H.; Echenique, P.M.

    1992-01-01

    A new spectroscopy based on the resonant coherently induced electron loss to the continuum in ion-surface scattering under grazing incidence is proposed. A series of peaks, corresponding to the energy differences determined by the resonant interaction with the rows of atoms in the surface, is predicted to appear in the energy distribution of electrons emitted from electronic states bound to the probe. Calculations for MeV He + ions scattered at a W(001) surface along the left-angle 100 right-angle direction with a glancing angle of 0--2 mrad show a total yield close to 1

  9. Correlation of venous thromboembolism prophylaxis and electronic medical record alerts with incidence among surgical patients.

    Science.gov (United States)

    Ramanathan, Rajesh; Lee, Nathaniel; Duane, Therese M; Gu, Zirui; Nguyen, Natalie; Potter, Teresa; Rensing, Edna; Sampson, Renata; Burrows, Mandy; Banas, Colin; Hartigan, Sarah; Grover, Amelia

    2016-11-01

    Venous thromboembolism events are potentially preventable adverse events. We investigated the effect of interruptions and delays in pharmacologic prophylaxis on venous thromboembolism incidence. Additionally, we evaluated the utility of electronic medical record alerts for venous thromboembolism prophylaxis. Venous thromboembolisms were identified in surgical patients retrospectively through Core Measure Venous ThromboEmbolism-6-6 and Patient Safety Indicator 12 between November 2013 and March 2015. Venous thromboembolism pharmacologic prophylaxis and prescriber response to electronic medical record alerts were recorded prospectively. Prophylaxis was categorized as continuous, delayed, interrupted, other, and none. Among 10,318 surgical admissions, there were 131 venous thromboembolisms; 23.7% of the venous thromboembolisms occurred with optimal continuous prophylaxis. Prophylaxis, length of stay, age, and transfer from another hospital were associated with increased venous thromboembolism incidence. Compared with continuous prophylaxis, interruptions were associated with 3 times greater odds of venous thromboembolism. Delays were associated with 2 times greater odds of venous thromboembolism. Electronic medical record alerts occurred in 45.7% of the encounters and were associated with a 2-fold increased venous thromboembolism incidence. Focus groups revealed procedures as the main contributor to interruptions, and workflow disruption as the main limitation of the electronic medical record alerts. Multidisciplinary strategies to decrease delays and interruptions in venous thromboembolism prophylaxis and optimization of electronic medical record tools for prophylaxis may help decrease rates of preventable venous thromboembolism. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Femto-clock for the electron kinetics in swift heavy ion tracks

    Czech Academy of Sciences Publication Activity Database

    Medvedev, Nikita; Volkov, A.E.

    2017-01-01

    Roč. 50, č. 44 (2017), s. 1-11, č. článku 445302. ISSN 0022-3727 R&D Projects: GA MŠk LG15013; GA MŠk(CZ) LM2015083 Institutional support: RVO:68378271 Keywords : swift heavy ions * electron kinetics * femto-clock * femtosecond resolution * spectroscopy * radiative decay Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: Fluids and plasma physics (including surface physics) Impact factor: 2.588, year: 2016

  11. Kinetics of the electronic center annealing in Al2O3 crystals

    Science.gov (United States)

    Kuzovkov, V. N.; Kotomin, E. A.; Popov, A. I.

    2018-04-01

    The experimental annealing kinetics of the primary electronic F, F+ centers and dimer F2 centers observed in Al2O3 produced under neutron irradiation were carefully analyzed. The developed theory takes into account the interstitial ion diffusion and recombination with immobile F-type and F2-centers, as well as mutual sequential transformation with temperature of three types of experimentally observed dimer centers which differ by net charges (0, +1, +2) with respect to the host crystalline sites. The relative initial concentrations of three types of F2 electronic defects before annealing are obtained, along with energy barriers between their ground states as well as the relaxation energies.

  12. Selfconsistent vibrational and free electron kinetics for CO2 dissociation in cold plasmas

    Science.gov (United States)

    Capitelli, Mario

    2016-09-01

    The activation of CO2 by cold plasmas is receiving new theoretical interest thanks to two European groups. The Bogaerts group developed a global model for the activation of CO2 trying to reproduce the experimental values for DBD and microwave discharges. The approach of Pietanza et al was devoted to understand the dependence of electron energy distribution function (eedf) of pure CO2 on the presence of concentrations of electronically and vibrationally excited states taken as parameter. To understand the importance of the vibrational excitation in the dissociation process Pietanza et al compared an upper limit to the dissociation process from a pure vibrational mechanism (PVM) with the corresponding electron impact dissociation rate, the prevalence of the two models depending on the reduced electric field and on the choice of the electron molecule cross section database. Improvement of the Pietanza et al model is being considered by coupling the time dependent Boltzmann solver with the non equilibrium vibrational kinetics of asymmetric mode and with simplified plasma chemistry kinetics describing the ionization/recombination process and the excitation-deexcitation of a metastable level at 10.5eV. A new PVM mechanism is also considered. Preliminary results, for both discharge and post discharge conditions, emphasize the action of superelastic collisions involving both vibrationally and electronically excited states in affecting the eedf. The new results can be used to plan a road map for future developments of numerical codes for rationalizing existing experimental values, as well as, for indicating new experimental situations.

  13. Nonlinear simulation of magnetic reconnection with a drift kinetic electron model

    International Nuclear Information System (INIS)

    Zwingmann, W.; Ottaviani, M.

    2004-01-01

    The process of reconnection allows for a change of magnetic topology inside a plasma. It is an important process for eruptive phenomena in astrophysical plasma, and the sawtooth relaxation in laboratory plasma close to thermonuclear conditions. The sawtooth relaxation is associated with the collisionless electron tearing instability, caused by the electron inertia. A thorough treatment therefore requires a kinetic model for the electron dynamics. In this contribution, we report on the numerical simulation of the electron tearing instability by solving the Vlasov equation directly. The results confirm results of an early paper on the same subject, and extends them to smaller values of the collision skin depth d e = 0.25. Our results suggest a faster than exponential growth in the early nonlinear phase of the instability. We observe as well an asymmetry of the resulting fields. It seems, however, that the field structure becomes closer to the fluid case for small values of d e

  14. Mathematical Modelling of Drying Kinetics of Wheat in Electron Fired Fluidized Bed Drying System

    Science.gov (United States)

    Deomore, Dayanand N.; Yarasu, Ravindra B.

    2018-02-01

    The conventional method of electrical heating is replaced by electron firing system. The drying kinetics of wheat is studied using electron fired fluidized bed dryer. The results are simulated by using ANSYS. It was observed that the graphs are in agreement with each other. Therefore, the new proposed electronic firing system can be employed instead of electrical firing. It was observed that the drop in Relative Humidity in case of Electrical heating is 68.75% for temp reaching up to 70° C in 67 sec for pressure drop of 13 psi while for the electronic Firing system it is 67.6 % temp reaches to 70° C in 70 sec for pressure drop of 12.67 psi. As the results are in agreement with each other it was concluded that for the grains like wheat which has low initial moisture content both systems can be used.

  15. Free-Free Transitions in the Presence of Laser Fields at Very Low Incident Electron Energy

    Science.gov (United States)

    Bhatia, A. K.; Sinha, Chandana

    2010-01-01

    We study the free-free transition in electron-hydrogenic systems in ground state in presence of an external laser field at very loud incident energies. The laser field is treated classically while the collision dynamics is treated quantum mechanically. The laser field is chosen to be monochromatic, linearly polarized and homogeneous. The incident electron is considered to be dressed by the laser in a nonperturbative manner by choosing a Volkov wave function for it. The scattering weave function for the electron is solved numerically by taking into account the effect of the electron exchange, short-range as well as of the long-range interactions to get the S and P wave phase shifts while for the higher angular momentum phase shifts the exchange approximation has only been considered. We calculate the laser assisted differential cross sections (LADCS) for the aforesaid free-free transition process for single photon absorption/emission. The laser intensity is chosen to be much less than the atomic field intensity. A strong suppression is noted in the LADCS as compared to the field free (FF) cross sections. Unlike the FF ones, the LADCS exhibit some oscillations having a distinct maximum at a low value of the scattering angle depending on the laser parameters as well as on the incident energies.

  16. Usefulness of primary care electronic networks to assess the incidence of chlamydia, diagnosed by general practitioners

    Directory of Open Access Journals (Sweden)

    van der Sande Marianne AB

    2011-07-01

    Full Text Available Abstract Background Chlamydia is the most common curable sexually transmitted infection (STI in the Netherlands. The majority of chlamydia diagnoses are made by general practitioners (GPs. Baseline data from primary care will facilitate the future evaluation of the ongoing large population-based screening in the Netherlands. The aim of this study was to assess the usefulness of electronic medical records for monitoring the incidence of chlamydia cases diagnosed in primary care in the Netherlands. Methods In the electronic records of two regional and two national networks, we identified chlamydia diagnoses by means of ICPC codes (International Classification of Primary Care, laboratory results in free text and the prescription of antibiotics. The year of study was 2007 for the two regional networks and one national network, for the other national network the year of study was 2005. We calculated the incidence of diagnosed chlamydia cases per sex, age group and degree of urbanization. Results A large diversity was observed in the way chlamydia episodes were coded in the four different GP networks and how easily information concerning chlamydia diagnoses could be extracted. The overall incidence ranged from 103.2/100,000 to 590.2/100,000. Differences were partly related to differences between patient populations. Nevertheless, we observed similar trends in the incidence of chlamydia diagnoses in all networks and findings were in line with earlier reports. Conclusions Electronic patient records, originally intended for individual patient care in general practice, can be an additional source of data for monitoring chlamydia incidence in primary care and can be of use in assessing the future impact of population-based chlamydia screening programs. To increase the usefulness of data we recommend more efforts to standardize registration by (specific ICPC code and laboratory results across the existing GP networks.

  17. Kinetics of ion and prompt electron emission from laser-produced plasma

    Energy Technology Data Exchange (ETDEWEB)

    Farid, N. [Center for Materials Under Extreme Environment, School of Nuclear Engineering, Purdue University, West Lafayette, Indiana 47907 (United States); Key Laboratory of Materials Modification by Laser, Ion and Electron Beams, School of Physics and Optical Engineering, Dalian University of Technology, Dalian (China); Harilal, S. S.; Hassanein, A. [Center for Materials Under Extreme Environment, School of Nuclear Engineering, Purdue University, West Lafayette, Indiana 47907 (United States); Ding, H. [Key Laboratory of Materials Modification by Laser, Ion and Electron Beams, School of Physics and Optical Engineering, Dalian University of Technology, Dalian (China)

    2013-07-15

    We investigated ion emission dynamics of laser-produced plasma from several elements, comprised of metals and non-metals (C, Al, Si, Cu, Mo, Ta, W), under vacuum conditions using a Faraday cup. The estimated ion flux for various targets studied showed a decreasing tendency with increasing atomic mass. For metals, the ion flux is found to be a function of sublimation energy. A comparison of temporal ion profiles of various materials showed only high-Z elements exhibited multiple structures in the ion time of flight profile indicated by the observation of higher peak kinetic energies, which were absent for low-Z element targets. The slower ions were seen regardless of the atomic number of target material propagated with a kinetic energy of 1–5 keV, while the fast ions observed in high-Z materials possessed significantly higher energies. A systematic study of plasma properties employing fast photography, time, and space resolved optical emission spectroscopy, and electron analysis showed that there existed different mechanisms for generating ions in laser ablation plumes. The origin of high kinetic energy ions is related to prompt electron emission from high-Z targets.

  18. Electron emission induced by resonant coherent interaction in ion-surface scattering at grazing incidence

    International Nuclear Information System (INIS)

    Garcia de Abajo, F.J.; Ponce, V.H.; Echenique, P.M.

    1994-01-01

    The resonant coherent interaction of an ion with an oriented crystal surface, under grazing-incidence conditions with respect to a special direction of the crystal, gives rise to electron loss to the continuum from electronic bound states of the ion. The calculations presented below predict large probabilities for electron emission due to this mechanism. The electrons are emitted with well defined energies, expressed in terms of the condition of resonance. Furthermore, the emission takes place around certain preferential directions, which are determined by both the latter condition and the symmetry of the surface lattice. Our calculations for MeV He + ions scattered at a W(001) surface along the left-angle 100 right-angle direction with glancing angle of 0--2 mrad indicate a yield of emission close to 1. Using heavier projectiles, one obtains smaller yields, but still large enough to be measurable in some cases (e.g., ∼0.9 for 53 MeV B 4+ and an angle of incidence of 1 mrad). Besides, the initial bound state is energy shifted due to the interaction with both the crystal potential and the velocity-dependent image potential. This results in a slight shift of the peaks of emission, which suggests a possible spectroscopy for analyzing the dynamical interaction of electronic bound states with solid surfaces

  19. Self-consistent multidimensional electron kinetic model for inductively coupled plasma sources

    Science.gov (United States)

    Dai, Fa Foster

    Inductively coupled plasma (ICP) sources have received increasing interest in microelectronics fabrication and lighting industry. In 2-D configuration space (r, z) and 2-D velocity domain (νθ,νz), a self- consistent electron kinetic analytic model is developed for various ICP sources. The electromagnetic (EM) model is established based on modal analysis, while the kinetic analysis gives the perturbed Maxwellian distribution of electrons by solving Boltzmann-Vlasov equation. The self- consistent algorithm combines the EM model and the kinetic analysis by updating their results consistently until the solution converges. The closed-form solutions in the analytical model provide rigorous and fast computing for the EM fields and the electron kinetic behavior. The kinetic analysis shows that the RF energy in an ICP source is extracted by a collisionless dissipation mechanism, if the electron thermovelocity is close to the RF phase velocities. A criterion for collisionless damping is thus given based on the analytic solutions. To achieve uniformly distributed plasma for plasma processing, we propose a novel discharge structure with both planar and vertical coil excitations. The theoretical results demonstrate improved uniformity for the excited azimuthal E-field in the chamber. Non-monotonic spatial decay in electric field and space current distributions was recently observed in weakly- collisional plasmas. The anomalous skin effect is found to be responsible for this phenomenon. The proposed model successfully models the non-monotonic spatial decay effect and achieves good agreements with the measurements for different applied RF powers. The proposed analytical model is compared with other theoretical models and different experimental measurements. The developed model is also applied to two kinds of ICP discharges used for electrodeless light sources. One structure uses a vertical internal coil antenna to excite plasmas and another has a metal shield to prevent the

  20. Tests of a grazing-incidence ring resonator free-electron laser

    International Nuclear Information System (INIS)

    Dowell, D.H.; Laucks, M.L.; Lowrey, A.R.; Adamski, J.L.; Pistoresi, D.J.; Shoffstall, D.R.; Bentz, M.P.; Burns, R.H.; Guha, J.; Sun, K.; Tomita, W.

    1991-01-01

    This paper reports on the Boeing free-electron laser (FEL) optical cavity that has been changed from a simple concentric cavity using two spherical mirrors to a larger grazing-incidence ring resonator. The new resonator consists of two mirror telescopes located at each end of the wiggler with a round-trip path length of approximately 133 m. Each telescope is a grazing-incidence hyperboloid followed by a normal-incidence paraboloid. Initial tests showed that poorly positioned ring focus and unreliable pointing alignment resulted in reduced and structured FEL output. (First lasing operation occurred on March 23 and 24, 1990.) Later efforts concentrated on improving the resonator alignment techniques and lowering the single-pass losses. FEL performance and reliability have significantly improved due to better ring alignment. The alignment procedure and recent lasing results are described. The effect the electron beam has on lasing is also discussed. Measurements are presented showing how FEL temporal output and wavelength are sensitive to electron beam energy variations

  1. Kinetics of two-dimensional electron plasma, interacting with fluctuating potential

    International Nuclear Information System (INIS)

    Boiko, I.I.; Sirenko, Y.M.

    1990-01-01

    In this paper, from the first principles, after the fashion of Klimontovich, the authors derive quantum kinetic equation for electron gas, inhomogeneous in z-direction and homogeneous in XY-plane. Special attention is given to the systems with quasi-two-dimensional electron gas (2 DEG), which are widely explored now. Both interaction between the particles of 2 DEG (in general, of several sorts), and interaction with an external system (phonons, impurities, after change carries etc.) are considered. General theory is used to obtain energy and momentum balance equations and relaxation frequencies for 2 DEG in the basis of plane waves. The case of crossed electric and magnetic fields is also treated. As an illustration the problems of 2 DEG scattering on semibounded three-dimensional electron gas and on two-dimensional hole gas are considered; transverse conductivity of nondegenerate 2 DEG, scattered by impurities in ultraquantum magnetic field, is calculated

  2. Adaptive characterization of recrystallization kinetics in IF steel by electron backscatter diffraction.

    Science.gov (United States)

    Kim, Dong-Kyu; Park, Won-Woong; Lee, Ho Won; Kang, Seong-Hoon; Im, Yong-Taek

    2013-12-01

    In this study, a rigorous methodology for quantifying recrystallization kinetics by electron backscatter diffraction is proposed in order to reduce errors associated with the operator's skill. An adaptive criterion to determine adjustable grain orientation spread depending on the recrystallization stage is proposed to better identify the recrystallized grains in the partially recrystallized microstructure. The proposed method was applied in characterizing the microstructure evolution during annealing of interstitial-free steel cold rolled to low and high true strain levels of 0.7 and 1.6, respectively. The recrystallization kinetics determined by the proposed method was found to be consistent with the standard method of Vickers microhardness. The application of the proposed method to the overall recrystallization stages showed that it can be used for the rigorous characterization of progressive microstructure evolution, especially for the severely deformed material. © 2013 The Authors Journal of Microscopy © 2013 Royal Microscopical Society.

  3. What environmental transmission electron microscopy measures and how this links to diffusivity: thermodynamics versus kinetics.

    Science.gov (United States)

    Walther, T

    2015-02-01

    Environmental or in situ electron microscopy means the observation of material in its native environment, which can be gaseous or liquid, as compared to more traditional post-mortem electron microscopy carried out under (ultra) high vacuum conditions. Experiments can be performed on bulk samples in scanning electron microscopes or on thinned samples in transmission (scanning) electron microscopes. In the latter, the movement, in real time and in situ, of nanoparticles, clusters or even single atoms on the surfaces of thinned material or within a liquid can be observed. It is argued here that due to the changes that a specimen typically undergoes during in situ observation, electron irradiation effects are difficult to evaluate and so thermodynamic parameters, such as activation energies for diffusion and segregation, which are governed by movements of only a minority of atoms in the specimen, cannot be reliably determined because of the potentially high energy transfer by the irradiating electron beam to some atoms in the sample. In order to measure diffusivities reliably, radiation effects and surface diffusion need to be excluded or kept minimal so as not to disturb the measurements, which can be checked by repeating experiments and comparing results as function of time and dose for the same position, at different positions or for different specimen thicknesses. Kinetic measurements of nucleation and growth phenomena, such as Ostwald ripening, are possibly influenced to a far lesser degree by irradiation effects, as a majority of atoms actively participate in these processes and if a small fraction of them will get extra energy from the irradiation process then their influence on the overall kinetics may be rather minor. © 2014 The Authors Journal of Microscopy © 2014 Royal Microscopical Society.

  4. Dependence of secondary electron emission on the incident angle and the energy of primary electrons bombarding bowl-structured beryllium surfaces

    International Nuclear Information System (INIS)

    Kawata, Jun; Ohya, Kaoru.

    1994-01-01

    A Monte Carlo simulation of the secondary electron emission from beryllium is combined with a model of bowl structure for surface roughness, for analyzing the difference between the electron emissions for normal and oblique incidences. At normal incidence, with increasing the roughness parameter H/W, the primary energy E pm at which the maximum electron yield occurs becomes higher, and at more than the E pm , the decrease in the yield is slower; where H and W are the depth and width of the bowl structure, respectively. The dispersion of incident angle to the microscopic surface causes a small increase in the yield at oblique incidence, whereas the blocking of primary electrons from bombarding the bottom of the structure causes an opposite trend. The strong anisotropy in the polar angular distribution with respect to the azimuthal angle is calculated at oblique incidence. (author)

  5. Kinetic description of the oblique propagating spin-electron acoustic waves in degenerate plasmas

    Science.gov (United States)

    Andreev, Pavel A.

    2018-03-01

    An oblique propagation of the spin-electron acoustic waves in degenerate magnetized plasmas is considered in terms of quantum kinetics with the separate spin evolution, where the spin-up electrons and the spin-down electrons are considered as two different species with different equilibrium distributions. It is considered in the electrostatic limit. The corresponding dispersion equation is derived. Analysis of the dispersion equation is performed in the long-wavelength limit to find an approximate dispersion equation describing the spin-electron acoustic wave. The approximate dispersion equation is solved numerically. Real and imaginary parts of the spin-electron acoustic wave frequency are calculated for different values of the parameters describing the system. It is found that the increase in the angle between the direction of wave propagation and the external magnetic field reduces the real and imaginary parts of spin-electron acoustic wave frequency. The increase in the spin polarization decreases the real and imaginary parts of frequency either. The imaginary part of frequency has a nonmonotonic dependence on the wave vector which shows a single maximum. The imaginary part of frequency is small in comparison with the real part for all parameters in the area of applicability of the obtained dispersion equation.

  6. Recombination kinetics of photogenerated electrons in InGaAs/InP quantum wells

    Science.gov (United States)

    Tito, M. A.; Pusep, Yu. A.; Gold, A.; Teodoro, M. D.; Marques, G. E.; LaPierre, R. R.

    2016-03-01

    The electron transport and recombination processes of photoexcited electron-hole pairs were studied in InGaAs/InP single quantum wells. Comprehensive transport data analysis reveals a asymmetric shape of the quantum well potential where the electron mobility was found to be dominated by interface-roughness scattering. The low-temperature time-resolved photoluminescence was employed to investigate recombination kinetics of photogenerated electrons. Remarkable modification of Auger recombination was observed with variation of the electron mobility. In high mobility quantum wells, the increasing pump power resulted in a new and unexpected phenomenon: a considerably enhanced Auger non-radiative recombination time. We propose that the distribution of the photoexcited electrons over different conduction band valleys might account for this effect. In low mobility quantum wells, disorder-induced relaxation of the momentum conservation rule causes inter-valley transitions to be insignificant; as a consequence, the non-radiative recombination time is reduced with the increase in pump power. Thus, interface-roughness scattering was found responsible for both transport properties and dynamic optical response in InGaAs/InP quantum wells.

  7. Electron kinetics dependence on gas pressure in laser-induced oxygen plasma experiment: Theoretical analysis

    Science.gov (United States)

    Gamal, Yosr E. E.-D.; Abdellatif, Galila

    2017-08-01

    A study is performed to investigate the dependency of threshold intensity on gas pressure observed in the measurements of the breakdown of molecular oxygen that carried out by Phuoc (2000) [1]. In this experiment, the breakdown was induced by 532 nm laser radiation of pulse width 5.5 ns and spot size of 8.5 μm, in oxygen over a wide pressure range (190-3000 Torr). The analysis aimed to explore the electron kinetic reliance on gas pressure for the separate contribution of each of the gain and loss processes encountered in this study. The investigation is based on an electron cascade model applied previously in Gamal and Omar (2001) [2] and Gaabour et al. (2013) [3]. This model solves numerically a differential equation designates the time evolution of the electron energy distribution, and a set of rate equations that describe the change of excited states population. The numerical examination of the electron energy distribution function and its parameters revealed that photo-ionization of the excited molecules plays a significant role in enhancing the electron density growth rate over the whole tested gas pressure range. This process is off set by diffusion of electrons out of the focal volume in the low-pressure regime. At atmospheric pressure electron, collisional processes dominate and act mainly to populate the excited states. Hence photo-ionization becomes efficient and compete with the encountered loss processes (electron diffusion, vibrational excitation of the ground state molecules as well as two body attachments). At high pressures ( 3000 Torr) three body attachments are found to be the primary cause of losses which deplete the electron density and hence results in the slow decrease of the threshold intensity.

  8. Role of valence electrons in phase transformation kinetics of thallium and its dilute alloys

    Science.gov (United States)

    Ahmed, R.; Ahmed, S.

    1991-01-01

    The kinetics of the phase transformation of thallium and its dilute alloys were investigated using XRD and calorimetry. Pure thallium exhibits a beta(bcc) to alpha(hcp) phase transformation on cooling at 508 K. With alloying additions, the crystal structure for each phase does not change, although the size of the unit cell increases. The enthalpy and the temperature of phase transformation of each alloy have been determined. The chemical free energy change associated with the phase transformation of each alloy was calculated. The valence electrons make an outstanding contribution to the chemical free energy change required for the phase change.

  9. Electronic-excitation decay kinetics in disordered media: Independent-modes approximation

    International Nuclear Information System (INIS)

    Vugmeister, B.E.; Lax, M.

    1992-01-01

    An approach to the theory of electron energy transport between randomly situated donors, based on expanding the kinetic equations valid for fixed donor space positions into a spatial Fourier series and neglecting the interaction betwen different Fourier components, is proposed. The decay of occupancy of donor sites due to excitation migration is obtained for all time scales, for the case of dipole-dipole interaction between donors. The effect of back migration to the initial donor is included and a reasonable value for the stationary diffusion coefficient is obtained. The present approach yields an adequate dependence of diffusion coefficients on the cross-relaxation form factor in inhomogeneously broadened excitation spectra

  10. Kinetic features and non-stationary electron trapping in paraxial magnetic nozzles

    Science.gov (United States)

    Sánchez-Arriaga, G.; Zhou, J.; Ahedo, E.; Martínez-Sánchez, M.; Ramos, J. J.

    2018-03-01

    The paraxial expansion of a collisionless plasma jet into vacuum, guided by a magnetic nozzle, is studied with an Eulerian and non-stationary Vlasov-Poisson solver. Parametric analyzes varying the magnetic field expansion rate, the size of the simulation box, and the electrostatic potential fall are presented. After choosing the potential fall leading to a zero net current beam, the steady states of the simulations exhibit a quasi-neutral region followed by a downstream sheath. The latter, an unavoidable consequence of the finite size of the computational domain, does not affect the quasi-neutral region if the box size is chosen appropriately. The steady state presents a strong decay of the perpendicular temperature of the electrons, whose profile versus the inverse of the magnetic field does not depend on the expansion rate within the quasi-neutral region. As a consequence, the electron distribution function is highly anisotropic downstream. The simulations revealed that the ions reach a higher velocity during the transient than in the steady state and their distribution functions are not far from mono-energetic. The density percentage of the population of electrons trapped during the transient, which is computed self-consistently by the code, is up to 25% of the total electron density in the quasi-neutral region. It is demonstrated that the exact amount depends on the history of the system and the steady state is not unique. Nevertheless, the amount of trapped electrons is smaller than the one assumed heuristically by kinetic stationary theories.

  11. Incident energy and charge deposition dependences of electron transmission through a microsized tapered glass capillary

    Energy Technology Data Exchange (ETDEWEB)

    Wickramarachchi, S.J. [Department of Physics, Western Michigan University, Kalamazoo, MI 49008 (United States); Ikeda, T. [RIKEN Nishina Center for Accelerator Based Science, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Dassanayake, B.S. [Department of Physics, Faculty of Science, University of Peradeniya (Sri Lanka); Keerthisinghe, D.; Tanis, J.A. [Department of Physics, Western Michigan University, Kalamazoo, MI 49008 (United States)

    2016-09-01

    An experimental study of electron transmission and guiding through a tapered glass capillary has been performed. Electrons were transmitted for tilt angles up to ∼6.5° and ∼9.5° (laboratory angles) for incident energies of 500 and 1000 eV, respectively. It is found that elastic and inelastic contributions give rise to distinguishable peaks in the transmitted profile. For 500 eV elastic transmission dominates the profile, while for 1000 eV both elastic and inelastic contributions are present. The transmission for both energies was studied as a function of the charge (time) deposition and found to be strongly dependent. Results suggest fundamental differences between 500 and 1000 eV incident electrons. For 500 eV the transmission slowly increases suggesting charge up of the capillary wall, reaching relative stability with infrequent breakdowns for all angles investigated. For 1000 eV for tilt angles near zero degrees the time dependent profile shows oscillations in the transmission, which never reached a stable condition, while for the larger angle investigated the transmission reached near equilibrium. Inelastic processes dominated the transmission for 1000 eV even at very small tilt angles, but was generally elastic (due to Coulomb deflection) for 500 eV even for the largest tilt angle measured.

  12. Second crossover energy of insulating materials using stationary electron beam under normal incidence

    Energy Technology Data Exchange (ETDEWEB)

    Rau, E.I. [Institute of Microelectronics Technology of Russian Academy of Science, 142432 Chernogolovka, Moscow District (Russian Federation)], E-mail: rau@phys.msu.ru; Fakhfakh, S. [LaMaCop, Faculte des Sciences, Route Soukra km 3, BP 802, CP 3018 Sfax (Tunisia); Andrianov, M.V.; Evstafeva, E.N. [Institute of Microelectronics Technology of Russian Academy of Science, 142432 Chernogolovka, Moscow District (Russian Federation); Jbara, O. [UTAP/LASSI, EA 3802, Faculte des Sciences, BP 1039, 51687 Reims Cedex 2 (France)], E-mail: omar.jbara@univ-reims.fr; Rondot, S.; Mouze, D. [UTAP/LASSI, EA 3802, Faculte des Sciences, BP 1039, 51687 Reims Cedex 2 (France)

    2008-03-15

    The purpose of this paper is to give some aspects of charging effects on dielectric materials submitted to continuous electron beam irradiation in a scanning electron microscope (SEM). When the dielectric is irradiated continuously, the so-called total yield approach (TYA) used to predict the sign of the charge appeared on electron irradiated insulators fails because the charge accumulated in the dielectric interferes with the electrons emission processes. Based on previous experimental and theoretical works found in the literature, an analysis of the evolution of the electron yield curves {sigma} = f(E{sub 0}) of insulators during irradiation is given. The aim of this work is firstly to determine experimentally the second crossover energy E{sub 2C} under continuous electron irradiation (charging conditions) and secondly to demonstrate that the charge balance occurs at this beam energy and not at E{sub 2} the energy deduced from non-charging conditions (pulse primary electron beam experiments) as commonly asserted. It is however possible to apply the TYA by substituting the critical energy E{sub 2} for E{sub 2C}. The experimental procedure is based on simultaneous time dependent measurements of surface potential, leakage current and displacement current. The study underlines the difference between the landing energy of primary electrons E{sub L} at the steady state and the second crossover energy, E{sub 2C}, for charged samples. Some preliminary results are also obtained concerning the influence of the incident beam density on the energy E{sub 2C}. The samples used for this study are PMMA, polycrystalline silicone dioxide (p-SiO{sub 2}), polycrystalline alumina (p-Al{sub 2}O{sub 3}) and soda lime glass (SLG)

  13. Second crossover energy of insulating materials using stationary electron beam under normal incidence

    International Nuclear Information System (INIS)

    Rau, E.I.; Fakhfakh, S.; Andrianov, M.V.; Evstafeva, E.N.; Jbara, O.; Rondot, S.; Mouze, D.

    2008-01-01

    The purpose of this paper is to give some aspects of charging effects on dielectric materials submitted to continuous electron beam irradiation in a scanning electron microscope (SEM). When the dielectric is irradiated continuously, the so-called total yield approach (TYA) used to predict the sign of the charge appeared on electron irradiated insulators fails because the charge accumulated in the dielectric interferes with the electrons emission processes. Based on previous experimental and theoretical works found in the literature, an analysis of the evolution of the electron yield curves σ = f(E 0 ) of insulators during irradiation is given. The aim of this work is firstly to determine experimentally the second crossover energy E 2C under continuous electron irradiation (charging conditions) and secondly to demonstrate that the charge balance occurs at this beam energy and not at E 2 the energy deduced from non-charging conditions (pulse primary electron beam experiments) as commonly asserted. It is however possible to apply the TYA by substituting the critical energy E 2 for E 2C . The experimental procedure is based on simultaneous time dependent measurements of surface potential, leakage current and displacement current. The study underlines the difference between the landing energy of primary electrons E L at the steady state and the second crossover energy, E 2C , for charged samples. Some preliminary results are also obtained concerning the influence of the incident beam density on the energy E 2C . The samples used for this study are PMMA, polycrystalline silicone dioxide (p-SiO 2 ), polycrystalline alumina (p-Al 2 O 3 ) and soda lime glass (SLG)

  14. Protonation reactions of electron adducts of acrylamide derivatives. A pulse radiolytic-kinetic spectrophotometric study

    International Nuclear Information System (INIS)

    Madhavan, V.; Lichtin, N.N.; Hayon, E.

    1974-01-01

    The absorption spectra of electron adducts of a number of α,β-unsaturated carboxamides and of methyl methacrylate, as well as of two isomeric types of protonated electron adducts, have been characterized by means of the technique of pulse radiolysis-kinetic absorption spectrophotometry. Spectra of the electron adducts are characterized by bands in the uv (epsilon/sub max/ approximately 10 4 M -1 cm -1 ) and in the visible (epsilon/sub max/ approximately 10 3 M -1 cm -1 ). The position of the uv band shifts 10--30 nm to shorter wavelength upon reversible protonation. Fast reversible protonation of electron adducts takes place at the carbonyl oxygen. The pK/sub a/ values of the electron adducts vary linearly with the pK/sub a/ values of the corresponding carboxylic acids: for acrylamide, 7.9; methacrylamide, 8.0; trans-crotonamide, 8.5; β,β-dimethylacrylamide, 9.5; N,N-dimethylacrylamide, 8.5; trans-cinnamamide, 7.2; methyl methacrylate, approximately7. Slower irreversible protonation of the electron adducts takes place at the β-carbon atom and is subject to general acid catalysis which obeys the Bronsted catalysis law. Uncatalyzed specific rates of β protonation of anion radicals (in units of 10 5 sec -1 ) are: for acrylamide, 1.4; for methacrylamide, 13; for trans-crotonamide, 0.22; for β,β-dimethylacrylamide, 0.21; for N,N-dimethylacrylamide, 3.7; for trans-cinnamamide, less than or equal to approximately .01; for methyl methacrylate, 4.5. The second-order decay of reversibly protonated electron adducts competes with irreversible β protonation. (U.S.)

  15. Comparison of six electronic healthcare databases in Europe using standardized protocols: a descriptive study on the incidence of cancer.

    NARCIS (Netherlands)

    Afonso, A.S.; Groot, M.C.H. de; Ham, R. van den; Bruin, M.L. de; Huerta Alvarez, C.; Gil, M.; Hesse, U.; Ronn, P.F.; Souverein, P.C.; Alvarez, Y.; Slattery, J.; Rottenkolber, M.; Dijk, L. van; Schlienger, R.; Reynolds, R.; Klungel, O.H.; Grimaldi-Bensouda, L.

    2013-01-01

    Background: There are several national cancer registries available across Europe, but information on cancer incidence from routine electronic healthcare record (EHR) databases (DBs), such as General Practitioners (GPs) and comparisons across different databases are rather scarce. It is important to

  16. Comparison of six electronic healthcare databases in Europe using standardized protocols: A descriptive study on the incidence of cancer

    NARCIS (Netherlands)

    Afonso, Ana S.; De Groot, Mark C.H.; Van Den Ham, Rianne; Bruin, Marie L.; Alvarez, Consuelo Huerta; Gil, Miguel; Hesse, Ulrik; Rønn, Pernille F.; Souverein, Patrick C.; Alvarez, Yolanda; Slattery, Jim; Rottenkolber, Marietta; Van Dijk, Liset; Schlienger, Raymond G.; Reynolds, Robert; Klungel, Olaf H.; Grimaldi-Bensouda, Lamiae

    2013-01-01

    Background: There are several national cancer registries available across Europe, but information on cancer incidence from routine electronic healthcare record (EHR) databases (DBs), such as General Practitioners (GPs) and comparisons across different databases are rather scarce. It is important to

  17. Electron emission in a source-collector sheath system: A kinetic study

    Energy Technology Data Exchange (ETDEWEB)

    Rizopoulou, N., E-mail: nikoleta.rizopoulou06@imperial.ac.uk; Coppins, M.; Bacharis, M. [Blackett Laboratory, Imperial College, Prince Consort Road, London SW7 2BW (United Kingdom); Robinson, A. P. L. [Central Laser Facility, Rutherford-Appleton Laboratory, Chilton, Oxon OX11 0QX (United Kingdom)

    2014-10-15

    The classical source-collector sheath system describes a plasma that forms between a Maxwellian source and an absorbing wall. The plasma is assumed to be collisionless and without ionization. Two distinct areas are being formed: the collector sheath, an ion-rich region in contact with the absorbing boundary, and the source sheath, which is an electron-rich area near the Maxwellian source. In this work, we study a modified version of the classical source-collector sheath system, where the wall is no longer absorbing but emits electrons. As a result, we have two different types of collector sheath, one where a potential well is formed and one without a potential well. We examine the effect of electron emission for a range of conditions for the plasma and the emitted electrons. In the first part of this work, we study the problem analytically, and in the second, using our kinetic Vlasov code, Yggdrasil. The simulation results are in very good agreement with the predictions of our theoretical model.

  18. Temperature dependence of the inverted regime electron transfer kinetics of betaine-30 and the role of molecular modes

    Science.gov (United States)

    Akesson, Eva; Johnson, Alan E.; Walker, Gilbert C.; Levinger, Nancy E.; Dubruil, Thomas P.

    1992-05-01

    The inverted regime photoinduced electron transfer kinetics of betaine-30 have been investigated over a broad temperature range, revealing very little temperature dependence. For example, for betaine-30 in a polystyrene film, the electron transfer rate constant, k(sub ET) changes by less than a factor of 3 from T = 293 K to T = 34 K. The results are in striking contrast to predictions of contemporary electron transfer theories which employ classical nuclear modes to accept some or all of the energy of the electron transfer event. The comparison of theory and experiment for the betaines demonstrates that a full quantum mechanical theory is necessary to accurately describe the electron transfer kinetics of the betaines in environments with slow dielectric relaxation. The conclusions drawn for the betaines may also apply to other molecular examples of inverted regime electron transfer in slowly relaxing environments.

  19. Total kinetic energy release in 239Pu(n ,f ) post-neutron emission from 0.5 to 50 MeV incident neutron energy

    Science.gov (United States)

    Meierbachtol, K.; Tovesson, F.; Duke, D. L.; Geppert-Kleinrath, V.; Manning, B.; Meharchand, R.; Mosby, S.; Shields, D.

    2016-09-01

    The average total kinetic energy (T K E ¯) in 239Pu(n ,f ) has been measured for incident neutron energies between 0.5 and 50 MeV. The experiment was performed at the Los Alamos Neutron Science Center (LANSCE) using the neutron time-of-flight technique, and the kinetic energy of fission fragments post-neutron emission was measured in a double Frisch-gridded ionization chamber. This represents the first experimental study of the energy dependence of T K E ¯ in 239Pu above neutron energies of 6 MeV.

  20. Free-Free Transitions in the Presence of Laser Fields and Debye Potential at Very Low Incident Electron Energies

    Science.gov (United States)

    Bhatia, Anand

    2012-01-01

    We study the free-free transition in electron-helium ion in the ground state and embedded in a Debye potential in the presence of an external laser field at very low incident electron energies. The laser field is treated classically while the collision dynamics is treated quantum mechanically. The laser field is chosen as monochromatic, linearly polarized and homogeneous. The incident electron is considered to be dressed by the laser field in a nonperturbative manner by choosing Volkov wave function for it. The scattering wave function for the incident electron on the target embedded in a Debye potential is solved numerically by taking into account the effect of electron exchange. We calculate the laser-assisted differential and total cross sections for free-free transition for absorption/emission of a single photon or no photon exchange. The results will be presented at the conference.

  1. Study of Electron Acceleration and Multiple Dipolarization Fronts in 3D kinetic models

    Science.gov (United States)

    Lapenta, Giovanni; Ashour-Abdalla, Maha; Walker, Raymond; El-Alaoui, Mostafa

    2014-05-01

    . [1] Ashour-Abdalla, Maha, et al. "Observations and simulations of non-local acceleration of electrons in magnetotail magnetic reconnection events." Nature Physics 7.4 (2011): 360-365. [2] Markidis, Stefano, and Giovanni Lapenta. "Multi-scale simulations of plasma with iPIC3D." Mathematics and Computers in Simulation 80.7 (2010): 1509-1519. [3] Baumann, G., Troels Haugbølle, and Å. Nordlund. "Kinetic Modeling of Particle Acceleration in a Solar Null-point Reconnection Region." The Astrophysical Journal 771.2 (2013): 93. [4] Daldorff, L. K. S., et al. "Coupling the BATS-R-US global MHD code with the implicit particle-in-cell code iPIC3D." Bulletin of the American Physical Society 58 (2013).

  2. Electron transfer in reactions of ketones with organolithium reagents. A carbon-14 kinetic isotope effect probe

    International Nuclear Information System (INIS)

    Yamataka, H.; Fujimura, N.; Kawafuji, Y.; Hanafusa, T.

    1987-01-01

    Kinetic isotope effects have been determined for reactions of ketones labeled with carbon-14 at the carbonyl carbon with MeLi and Me 2 CuLi in diethyl ether at 0 0 C. Observed isotope effects were as follows: (C 6 H 5 ) 2 C double bonds O + MeLi, 12 k/ 14 k = 1.000 +/- 0.002; (C 6 H 5 ) 2 C double bonds O + Me 2 CuLi, 1.029 +/- 0.005; 2,4,6-Me 3 C 6 H 2 COC 6 H 5 + MeLi, 1.023 +/- 0.004. The relative reactivities of ortho-, meta-, and para-substituted benzophenones with these reagents were also determined by the competition experiments. These results are consistent with an electron-transfer step which is followed by a carbon-carbon bond-forming step that is or is not rate determining depending on the structure of ketones and reagents. The reaction of benzophenone with MeLi proceeds via rate-determining electron transfer; the change in nucleophile from MeLi to Me 2 CuLi shifts the rate-determining step from electron transfer to recombination; the change in ketone from benzophenone to 2,4,6-trimethylbenzophenone also shifts the rate-determining step from electron transfer to recombination because the latter step becomes slower for the more hindered ketone. The extent of the geometrical change of the substrate at the electron-transfer transition state of the reaction of benzophenone with MeLi was estimated to be small on the basis of the magnitude of the KIE and the rho value of the Hammett correlation

  3. Kinetic theory of the electron bounce instability in two dimensional current sheets—Full electromagnetic treatment

    Energy Technology Data Exchange (ETDEWEB)

    Tur, A.; Fruit, G.; Louarn, P. [Institut de Recherche en Astrophysique et Planétologie (IRAP), CNRS UMR5277/Université Paul Sabatier, Toulouse (France); Yanovsky, V. [Institute for Single Crystals, National Academy of Sciences of Ukraine, Kharkov 61001 (Ukraine)

    2014-03-15

    In the general context of understanding the possible destabilization of a current sheet with applications to magnetospheric substorms or solar flares, a kinetic model is proposed for studying the resonant interaction between electromagnetic fluctuations and trapped bouncing electrons in a 2D current sheet. Tur et al. [A. Tur et al., Phys. Plasmas 17, 102905 (2010)] and Fruit et al. [G. Fruit et al., Phys. Plasmas 20, 022113 (2013)] already used this model to investigate the possibilities of electrostatic instabilities. Here, the model is completed for full electromagnetic perturbations. Starting with a modified Harris sheet as equilibrium state, the linearized gyrokinetic Vlasov equation is solved for electromagnetic fluctuations with period of the order of the electron bounce period. The particle motion is restricted to its first Fourier component along the magnetic field and this allows the complete time integration of the non local perturbed distribution functions. The dispersion relation for electromagnetic modes is finally obtained through the quasineutrality condition and the Ampere's law for the current density. It is found that for mildly strechted current, undamped modes oscillate at typical electron bounce frequency with wavelength of the order of the plasma sheet half thickness. As the stretching of the plasma sheet becomes more intense, the frequency of these normal modes decreases and beyond a certain threshold in ε = B{sub z}/B{sub lobes}, the mode becomes explosive with typical growth rate of a few tens of seconds. The free energy contained in the bouncing motion of the electrons may trigger an electromagnetic instability able to disrupt the cross-tail current in a few seconds. This new instability–electromagnetic electron-bounce instability–may explain fast and global scale destabilization of current sheets as required to describe substorm phenomena.

  4. Kinetic Monte Carlo simulation of single-electron multiple-trapping transport in disordered media

    Science.gov (United States)

    Javadi, Mohammad; Abdi, Yaser

    2017-12-01

    The conventional single-particle Monte Carlo simulation of charge transport in disordered media is based on the truncated density of localized states (DOLS) which benefits from very short time execution. Although this model successfully clarifies the properties of electron transport in moderately disordered media, it overestimates the electron diffusion coefficient for strongly disordered media. The origin of this deviation is discussed in terms of zero-temperature approximation in the truncated DOLS and the ignorance of spatial occupation of localized states. Here, based on the multiple-trapping regime we introduce a modified single-particle kinetic Monte Carlo model that can be used to investigate the electron transport in any disordered media independent from the value of disorder parameter. In the proposed model, instead of using a truncated DOLS we imply the raw DOLS. In addition, we have introduced an occupation index for localized states to consider the effect of spatial occupation of trap sites. The proposed model is justified in a simple cubic lattice of trap sites for broad interval of disorder parameters, Fermi levels, and temperatures.

  5. A conservative scheme for electromagnetic simulation of magnetized plasmas with kinetic electrons

    Science.gov (United States)

    Bao, J.; Lin, Z.; Lu, Z. X.

    2018-02-01

    A conservative scheme has been formulated and verified for gyrokinetic particle simulations of electromagnetic waves and instabilities in magnetized plasmas. An electron continuity equation derived from the drift kinetic equation is used to time advance the electron density perturbation by using the perturbed mechanical flow calculated from the parallel vector potential, and the parallel vector potential is solved by using the perturbed canonical flow from the perturbed distribution function. In gyrokinetic particle simulations using this new scheme, the shear Alfvén wave dispersion relation in the shearless slab and continuum damping in the sheared cylinder have been recovered. The new scheme overcomes the stringent requirement in the conventional perturbative simulation method that perpendicular grid size needs to be as small as electron collisionless skin depth even for the long wavelength Alfvén waves. The new scheme also avoids the problem in the conventional method that an unphysically large parallel electric field arises due to the inconsistency between electrostatic potential calculated from the perturbed density and vector potential calculated from the perturbed canonical flow. Finally, the gyrokinetic particle simulations of the Alfvén waves in sheared cylinder have superior numerical properties compared with the fluid simulations, which suffer from numerical difficulties associated with singular mode structures.

  6. Study of electron kinetics in nitrogen plasma induced by CO2 laser radiation

    Science.gov (United States)

    Nassef, O. Aied; Gamal, Yosr E. E.-D.

    2017-12-01

    In the present work, a numerical modeling is performed to study the electron kinetics in nitrogen plasma induced by CO2 laser radiation operating at wavelength 9.621 μm, and pulse duration of 60 ns corresponding to the measurements carried out by Camacho et al. (J Phys B At Mol Opt Phys 40:4573, 2007). In this experiment, the breakdown threshold intensity is determined for molecular nitrogen over a pressure range 301-760 torr. A previously developed electron cascade model (Evans and Gamal in J Phys D Appl Phys 13:1447, 1980) is modified and applied. This model is based on numerical solution of a time-dependent energy equation and a set of rate equations that describe the time variation of the formed excited states population. The effect of breakdown mechanism is decided through the calculations of the threshold intensity as a function of gas pressure considering the various physical processes that might take place during the interaction. The individual effect of each loss process on the electron energy distribution function and its parameters is studied. This study is performed at the lowest and highest values of the experimentally tested gas pressure range namely; 301 and 760 torr. The obtained results clarified the exact contribution of each loss process to the breakdown of nitrogen induced by CO2 laser radiation.

  7. Evaluation of kinetic parameters of PAN fibre modified by electron beam radiation

    International Nuclear Information System (INIS)

    Giovedi, Claudia; Arruda, Clarissa P. Zelinschi de; Carolino, Ana Claudia V.

    2009-01-01

    Carbon fibers used for structural application are about 90% based on polyacrylonitrile (PAN) precursors due to their physical and mechanical properties. The thermal process is the conventional way to obtain a carbon fiber from PAN precursors. However, the use of ionizing radiation is given as an alternative technology to improve the physical and mechanical properties of the resulting carbon fiber. The aim of this paper was to obtain kinetic parameters (activation energy, conversion and isoconversion data) from DSC curves of PAN fibers irradiated with electron beam (EB) at different doses using the software Model Free Kinetics. The EB irradiation doses applied were: 0.2; 0.4; 0.6; 0.8; 1.0 and 1.2 MGy. The effect of ionizing radiation was evaluated by the thermal behavior of PAN precursors studied by Differential Scanning Calorimetry (DSC), which presents an exothermic peak in the range of 200 deg C to 400 deg C, depending on the experimental conditions of the DSC measurements. The obtained results showed that non-irradiated PAN fiber needs higher temperatures or longer reaction times to reach the same conversion degrees of the irradiated PAN fibers. Among the irradiated fibers, the reaction times decrease as a function of the radiation dose applied. However, the most important changes were observed for doses up to 0.4 MGy. The experimental results indicate that the EB radiation induces modification in the PAN fibers, which became them more liable in the oxidation process. (author)

  8. Influence of excited molecules on electron swarm transport coefficients and gas discharge kinetics

    International Nuclear Information System (INIS)

    Petrovic, Z.L.; Jovanovic, J.V.; Raspopovic, Z.M.; Bzenic, S.A.; Vrhovac, S.B.

    1997-01-01

    In this paper we study different effects of excited molecules on swarm parameters, electron energy distribution functions and gas discharge modeling. First we discuss a possible experiment in parahydrogen to resolve the discrepancy in hydrogen vibrational excitation cross section data. Negative differential conductivity (NDC) is a kinetic phenomenon which manifests itself in a particular dependence of the drift velocity on E=N and it is affected by superelastic collisions with excited states. A complete kinetic scheme for argon required to model excited state densities in gas discharges is also described. These results are used to explain experiments in capacitively and inductively coupled RF plasmas used for processing. The paper illustrates the application of atomic and molecular collision data, swarm data and the theoretical techniques in modeling of gas discharges with large abundances of excited molecules. It is pointed out that swarm experiments with excited molecules are lacking and that there is a shortage of reliable data, while the numerical procedures are sufficiently developed to include all the important effects. (authors). 59 refs., 12 figs

  9. Resistivity recovery simulations of electron-irradiated iron: Kinetic Monte Carlo versus cluster dynamics

    International Nuclear Information System (INIS)

    Dalla Torre, J.; Fu, C.-C.; Willaime, F.; Barbu, A.; Bocquet, J.-L.

    2006-01-01

    The isochronal resistivity recovery in high purity α-iron irradiated by electrons was successfully reproduced by a multiscale modelling approach. The stability and mobility of small self-defect clusters determined by ab initio methods were used as input data for an event based Kinetic Monte Carlo (KMC) model, used to explore the defect population evolution during the annealing and to extract the resistivity recovery peaks. In this paper, we investigate the possibility of using an efficient mesoscale model, the Cluster Dynamics (CD), instead of KMC in this approach. The comparison between the two methods for various CD initial conditions shows the importance of spatial correlations between defects, which are neglected in the CD model. However, using appropriate initial conditions, e.g. starting from the concentration of Frenkel pairs after the uncorrelated stage I E , the CD model captures the main characteristics of subsequent defect population evolution, and it can therefore be used for fast and semi-quantitative investigations

  10. Real-space grid representation of momentum and kinetic energy operators for electronic structure calculations.

    Science.gov (United States)

    Ninno, Domenico; Cantele, Giovanni; Trani, Fabio

    2018-03-08

    We show that the central finite difference formula for the first and the second derivative of a function can be derived, in the context of quantum mechanics, as matrix elements of the momentum and kinetic energy operators on discrete coordinate eigenkets |xn〉 defined on a uniform grid. Starting from the discretization of integrals involving canonical commutations, simple closed-form expressions of the matrix elements are obtained. A detailed analysis of the convergence toward the continuum limit with respect to both the grid spacing and the derivative approximation order is presented. It is shown that the convergence from below of the eigenvalues in electronic structure calculations is an intrinsic feature of the finite difference method. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.

  11. Kinetic simulations and reduced modeling of longitudinal sideband instabilities in non-linear electron plasma waves

    Energy Technology Data Exchange (ETDEWEB)

    Brunner, S., E-mail: stephan.brunner@epfl.ch; Hausammann, L. [Centre de Recherches en Physique des Plasmas, Association Euratom-Confédération Suisse, Ecole Polytechnique Fédérale de Lausanne, CRPP-PPB, CH-1015 Lausanne (Switzerland); Berger, R. L., E-mail: berger5@llnl.gov; Cohen, B. I. [Lawrence Livermore National Laboratory, University of California, P.O. Box 808, Livermore, California 94551 (United States); Valeo, E. J. [Princeton Plasma Physics Laboratory, P.O. Box 451, Princeton, New Jersey 08543-0451 (United States)

    2014-10-15

    Kinetic Vlasov simulations of one-dimensional finite amplitude Electron Plasma Waves are performed in a multi-wavelength long system. A systematic study of the most unstable linear sideband mode, in particular its growth rate γ and quasi- wavenumber δk, is carried out by scanning the amplitude and wavenumber of the initial wave. Simulation results are successfully compared against numerical and analytical solutions to the reduced model by Kruer et al. [Phys. Rev. Lett. 23, 838 (1969)] for the Trapped Particle Instability (TPI). A model recently suggested by Dodin et al. [Phys. Rev. Lett. 110, 215006 (2013)], which in addition to the TPI accounts for the so-called Negative Mass Instability because of a more detailed representation of the trapped particle dynamics, is also studied and compared with simulations.

  12. Electron kinetic effects on interferometry, polarimetry and Thomson scattering measurements in burning plasmas (invited)a)

    Science.gov (United States)

    Mirnov, V. V.; Brower, D. L.; Hartog, D. J. Den; Ding, W. X.; Duff, J.; Parke, E.

    2014-11-01

    At anticipated high electron temperatures in ITER, the effects of electron thermal motion on Thomson scattering (TS), toroidal interferometer/polarimeter (TIP), and poloidal polarimeter (PoPola) diagnostics will be significant and must be accurately treated. The precision of the previous lowest order linear in τ = Te/mec2 model may be insufficient; we present a more precise model with τ2-order corrections to satisfy the high accuracy required for ITER TIP and PoPola diagnostics. The linear model is extended from Maxwellian to a more general class of anisotropic electron distributions that allows us to take into account distortions caused by equilibrium current, ECRH, and RF current drive effects. The classical problem of the degree of polarization of incoherent Thomson scattered radiation is solved analytically exactly without any approximations for the full range of incident polarizations, scattering angles, and electron thermal motion from non-relativistic to ultra-relativistic. The results are discussed in the context of the possible use of the polarization properties of Thomson scattered light as a method of Te measurement relevant to ITER operational scenarios.

  13. Influence of Proton Acceptors on the Proton-Coupled Electron Transfer Reaction Kinetics of a Ruthenium-Tyrosine Complex.

    Science.gov (United States)

    Lennox, J Christian; Dempsey, Jillian L

    2017-11-22

    A polypyridyl ruthenium complex with fluorinated bipyridine ligands and a covalently bound tyrosine moiety was synthesized, and its photo-induced proton-coupled electron transfer (PCET) reactivity in acetonitrile was investigated with transient absorption spectroscopy. Using flash-quench methodology with methyl viologen as an oxidative quencher, a Ru 3+ species is generated that is capable of initiating the intramolecular PCET oxidation of the tyrosine moiety. Using a series of substituted pyridine bases, the reaction kinetics were found to vary as a function of proton acceptor concentration and identity, with no significant H/D kinetic isotope effect. Through analysis of the kinetics traces and comparison to a control complex without the tyrosine moiety, PCET reactivity was found to proceed through an equilibrium electron transfer followed by proton transfer (ET-PT) pathway in which irreversible deprotonation of the tyrosine radical cation shifts the ET equilibrium, conferring a base dependence on the reaction. Comprehensive kinetics modeling allowed for deconvolution of complex kinetics and determination of rate constants for each elementary step. Across the five pyridine bases explored, spanning a range of 4.2 pK a units, a linear free-energy relationship was found for the proton transfer rate constant with a slope of 0.32. These findings highlight the influence that proton transfer driving force exerts on PCET reaction kinetics.

  14. Kinetic-energy distributions of O- produced by dissociative electron attachment to physisorbed O2

    International Nuclear Information System (INIS)

    Huels, M.A.; Parenteau, L.; Michaud, M.; Sanche, L.

    1995-01-01

    We report measurements of the kinetic energy (E k ) distributions of O - produced by low-energy electron impact (5.5--19.5 eV) on disordered multilayers of O 2 physisorbed on a polycrystalline Pt substrate. The results confirm that dissociative electron attachment (DEA) proceeds via the formation of the 2 Π u , 2 Σ g + (I), and 2 Σ x + (II) (x=g and/or u) states of O 2 -* . We also find evidence for an additional resonance, namely the 2 Σ u + (I), positioned at about 10 eV above the neutral ground state in the Franck-Condon region, and dissociating into O - +O( 3 P). The measurements suggest that the autodetachment lifetimes of the 2 Σ u + (I) and 2 Σ g + (II) states may be longer than previously suggested. It is also observed that the effects of electron energy loss (EEL) in the solid prior to DEA, O - scattering in the solid after dissociation, and the charge-induced polarization energy of the solid, broaden the E k distributions, shift them to lower anion energies, and result in additional structure in them. The effects of EEL on the desorption dynamics of O - are estimated from high-resolution electron-energy-loss spectra and excitation functions for losses in the vicinity of the Schumann-Runge continuum of the physisorbed O 2 molecules. We find indications for an enhancement of the optically forbidden X 3 Σ g - →A 3 Σ u + transition, and observe that the gas-phase Rydberg bands, for energy losses above 7 eV, are not distinguishable in the condensed phase

  15. Single electron detachment of carbon group and oxygen group elements incident on helium

    International Nuclear Information System (INIS)

    Huang Yongyi; Li Guangwu; Gao Yinghui; Yang Enbo; Gao Mei; Lu Fuquan; Zhang Xuemei

    2006-01-01

    The absolute single electron detachment (SED) cross sections of carbon group elements C - , Si - , Ge - in the energy range of 0.05-0.29 a.u. (5 keV-30 keV) and oxygen group elements O - and S - 0.08-0.27 a.u. (5 keV-30 keV), incident on helium are measured with growth rate method. In our energy region, the SED cross sections of C - , Si - , S - and Ge - increase with the projectiles velocity, at the same time, O - cross sections reach a conspicuous maximum at 0.18 a.u. Some abnormal behavior occurs in measurement of SED cross sections for the oxygen group collision with helium. Our results have been compared with a previous work

  16. Effective atomic numbers, electron densities and kinetic energy released in matter of vitamins for photon interaction

    Science.gov (United States)

    Shantappa, A.; Hanagodimath, S. M.

    2014-01-01

    Effective atomic numbers, electron densities of some vitamins (Retinol, Riboflavin, Niacin, Biotin, Folic acid, Cobalamin, Phylloquinone and Flavonoids) composed of C, H, O, N, Co, P and S have been calculated for total and partial photon interactions by the direct method for energy range 1 keV-100 GeV by using WinXCOM and kinetic energy released in matter (Kerma) relative to air is calculated in energy range of 1 keV-20 MeV. Change in effective atomic number and electron density with energy is calculated for all photon interactions. Variation of photon mass attenuation coefficients with energy are shown graphically only for total photon interaction. It is observed that change in mass attenuation coefficient with composition of different chemicals is very large below 100 keV and moderate between 100 keV and 10 MeV and negligible above 10 MeV. Behaviour of vitamins is almost indistinguishable except biotin and cobalamin because of large range of atomic numbers from 1(H) to 16 (S) and 1(H) to 27(Co) respectively. K a value shows a peak due to the photoelectric effect around K-absorption edge of high- Z constituent of compound for biotin and cobalamin.

  17. Is the classical two-term approximation of electron kinetic theory satisfactory for swarms and plasmas?

    International Nuclear Information System (INIS)

    White, R D; Robson, R E; Schmidt, B; Morrison, Michael A

    2003-01-01

    The 'two-term' approximation (representation of the electron distribution by the first two terms of an expansion in spherical harmonics in velocity space) continues to occupy a central role in the low-temperature plasma physics literature, in spite of the mass of evidence illustrating its inadequacy in the swarm (free diffusion) limit for many molecular gases. Part of the problem lies in the failure of many authors to specify quantitatively what they mean when they say that the two-term approximation is 'acceptable'. Thus for example, an error of 10% in transport coefficients may well be acceptable in many plasma applications, but for analysis of highly accurate swarm experiments to compare with ab initio and beam-derived cross-sections, 0.1% or less is required, making 'multi-term' analysis mandatory. While reconciliation of the swarm and plasma literature along the lines of two different accuracy regimes may thus be possible, we dispute claims that the two-term approximation is generally satisfactory for inversion of swarm experiment data to obtain electron impact cross-sections. The unsatisfactory nature of other assumptions implicit in much of the modern plasma kinetic theory literature is also discussed

  18. Synchrotron emission diagnostic of full-orbit kinetic simulations of runaway electrons in tokamaks plasmas

    Science.gov (United States)

    Carbajal Gomez, Leopoldo; Del-Castillo-Negrete, Diego

    2017-10-01

    Developing avoidance or mitigation strategies of runaway electrons (RE) for the safe operation of ITER is imperative. Synchrotron radiation (SR) of RE is routinely used in current tokamak experiments to diagnose RE. We present the results of a newly developed camera diagnostic of SR for full-orbit kinetic simulations of RE in DIII-D-like plasmas that simultaneously includes: full-orbit effects, information of the spectral and angular distribution of SR of each electron, and basic geometric optics of a camera. We observe a strong dependence of the SR measured by the camera on the pitch angle distribution of RE, namely we find that crescent shapes of the SR on the camera pictures relate to RE distributions with small pitch angles, while ellipse shapes relate to distributions of RE with larger pitch angles. A weak dependence of the SR measured by the camera with the RE energy, value of the q-profile at the edge, and the chosen range of wavelengths is found. Furthermore, we observe that oversimplifying the angular distribution of the SR changes the synchrotron spectra and overestimates its amplitude. Research sponsored by the LDRD Program of ORNL, managed by UT-Battelle, LLC, for the U. S. DoE.

  19. Optimization of decay kinetics of YAG:Ce single crystal scintillators for S(T)EM electron detectors

    Czech Academy of Sciences Publication Activity Database

    Schauer, Petr

    2011-01-01

    Roč. 269, č. 21 (2011), s. 2572-2577 ISSN 0168-583X R&D Projects: GA ČR GAP102/10/1410 Institutional research plan: CEZ:AV0Z20650511 Keywords : scintillation detector * electron microscope * cathodoluminescence * YAG:Ce single crystal scintillator * decay time * afterglow * kinetic model * SEM * STEM Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 1.211, year: 2011

  20. Kinetics of cluster-related defects in silicon sensors irradiated with monoenergetic electrons

    Science.gov (United States)

    Radu, R.; Pintilie, I.; Makarenko, L. F.; Fretwurst, E.; Lindstroem, G.

    2018-04-01

    This work focuses on the kinetic mechanisms responsible for the annealing behavior of radiation cluster-related defects with impact on the electrical performance of silicon sensors. Such sensors were manufactured on high resistivity n-type standard float-zone (STFZ) and oxygen enriched float-zone (DOFZ) material and had been irradiated with mono-energetic electrons of 3.5 MeV energy and fluences of 3 × 1014 cm-2 and 6 × 1014 cm-2. After irradiation, the samples were subjected either to isochronal or isothermal heat treatments in the temperature range from 80 °C to 300 °C. The specific investigated defects are a group of three deep acceptors [H(116 K), H(140 K), and H(152 K)] with energy levels in the lower half of the band gap and a shallow donor E(30 K) with a level at 0.1 eV below the conduction band. The stability and kinetics of these defects at high temperatures are discussed on the basis of the extracted activation energies and frequency factors. The annealing of the H defects takes place similarly in both types of materials, suggesting a migration rather than a dissociation mechanism. On the contrary, the E(30 K) defect shows a very different annealing behavior, being stable in STFZ even at 300 °C, but annealing-out quickly in DOFZ material at temperatures higher than 200 °C , with a high frequency factor of the order of 1013 s-1. Such a behavior rules out a dissociation process, and the different annealing behavior is suggested to be related to a bistable behavior of the defect.

  1. An electronic health record driven algorithm to identify incident antidepressant medication users.

    Science.gov (United States)

    Bobo, William V; Pathak, Jyotishman; Kremers, Hilal Maradit; Yawn, Barbara P; Brue, Scott M; Stoppel, Cynthia J; Croarkin, Paul E; St Sauver, Jennifer; Frye, Mark A; Rocca, Walter A

    2014-01-01

    We validated an algorithm designed to identify new or prevalent users of antidepressant medications via population-based drug prescription records. We obtained population-based drug prescription records for the entire Olmsted County, Minnesota, population from 2011 to 2012 (N=149,629) using the existing electronic medical records linkage infrastructure of the Rochester Epidemiology Project (REP). We selected electronically a random sample of 200 new antidepressant users stratified by age and sex. The algorithm required the exclusion of antidepressant use in the 6 months preceding the date of the first qualifying antidepressant prescription (index date). Medical records were manually reviewed and adjudicated to calculate the positive predictive value (PPV). We also manually reviewed the records of a random sample of 200 antihistamine users who did not meet the case definition of new antidepressant user to estimate the negative predictive value (NPV). 161 of the 198 subjects electronically identified as new antidepressant users were confirmed by manual record review (PPV 81.3%). Restricting the definition of new users to subjects who were prescribed typical starting doses of each agent for treating major depression in non-geriatric adults resulted in an increase in the PPV (90.9%). Extending the time windows with no antidepressant use preceding the index date resulted in only modest increases in PPV. The manual abstraction of medical records of 200 antihistamine users yielded an NPV of 98.5%. Our study confirms that REP prescription records can be used to identify prevalent and incident users of antidepressants in the Olmsted County, Minnesota, population. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  2. Contribution to the modelling and multi-scale numerical simulation of kinetic electron transport in hot plasma

    International Nuclear Information System (INIS)

    Mallet, J.

    2012-01-01

    This research thesis stands at the crossroad of plasma physics, numerical analysis and applied mathematics. After an introduction presenting the problematic and previous works, the author recalls some basis of classical kinetic models for plasma physics (collisionless kinetic theory and Vlasov equation, collisional kinetic theory with the non-relativistic Maxwell-Fokker-Plansk system) and describes the fundamental properties of the collision operators such as conservation laws, entropy dissipation, and so on. He reports the improvement of a deterministic numerical method to solve the non-relativistic Vlasov-Maxwell system coupled with Fokker-Planck-Landau type operators. The efficiency of each high order scheme is compared. The evolution of the hot spot is studied in the case of thermonuclear reactions in the centre of the pellet in a weakly collisional regime. The author focuses on the simulation of the kinetic electron collisional transport in inertial confinement fusion (ICF) between the laser absorption zone and the ablation front. A new approach is then introduced to reduce the huge computation time obtained with kinetic models. In a last chapter, the kinetic continuous equation in spherical domain is described and a new model is chosen for collisions in order to preserve collision properties

  3. Simultaneous measurement of static and kinetic friction of ZnO nanowires in situ with a scanning electron microscope.

    Science.gov (United States)

    Polyakov, Boris; Dorogin, Leonid M; Vlassov, Sergei; Kink, Ilmar; Romanov, Alexey E; Lohmus, Rynno

    2012-11-01

    A novel method for in situ measurement of the static and kinetic friction is developed and demonstrated for zinc oxide nanowires (NWs) on oxidised silicon wafers. The experiments are performed inside a scanning electron microscope (SEM) equipped with a nanomanipulator with an atomic force microscope tip as a probe. NWs are pushed by the tip from one end until complete displacement is achieved, while NW bending is monitored by the SEM. The elastic bending profile of a NW during the manipulation process is used to calculate the static and kinetic friction forces. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Kinetic modeling of electron transfer reactions in photosystem I complexes of various structures with substituted quinone acceptors.

    Science.gov (United States)

    Milanovsky, Georgy E; Petrova, Anastasia A; Cherepanov, Dmitry A; Semenov, Alexey Yu

    2017-09-01

    The reduction kinetics of the photo-oxidized primary electron donor P 700 in photosystem I (PS I) complexes from cyanobacteria Synechocystis sp. PCC 6803 were analyzed within the kinetic model, which considers electron transfer (ET) reactions between P 700 , secondary quinone acceptor A 1 , iron-sulfur clusters and external electron donor and acceptors - methylviologen (MV), 2,3-dichloro-naphthoquinone (Cl 2 NQ) and oxygen. PS I complexes containing various quinones in the A 1 -binding site (phylloquinone PhQ, plastoquinone-9 PQ and Cl 2 NQ) as well as F X -core complexes, depleted of terminal iron-sulfur F A /F B clusters, were studied. The acceleration of charge recombination in F X -core complexes by PhQ/PQ substitution indicates that backward ET from the iron-sulfur clusters involves quinone in the A 1 -binding site. The kinetic parameters of ET reactions were obtained by global fitting of the P 700 + reduction with the kinetic model. The free energy gap ΔG 0 between F X and F A /F B clusters was estimated as -130 meV. The driving force of ET from A 1 to F X was determined as -50 and -220 meV for PhQ in the A and B cofactor branches, respectively. For PQ in A 1A -site, this reaction was found to be endergonic (ΔG 0  = +75 meV). The interaction of PS I with external acceptors was quantitatively described in terms of Michaelis-Menten kinetics. The second-order rate constants of ET from F A /F B , F X and Cl 2 NQ in the A 1 -site of PS I to external acceptors were estimated. The side production of superoxide radical in the A 1 -site by oxygen reduction via the Mehler reaction might comprise ≥0.3% of the total electron flow in PS I.

  5. Kinetics of radiation-induced structural alterations in electron-irradiated polymer-based composites

    International Nuclear Information System (INIS)

    Zaikin, Yu.A.; Potanin, A.S.; Koztaeva, U.P.

    2002-01-01

    Complete text of publication follows. In our previous studies measurements of internal friction temperature dependence were used for characterization of thermally activated and radiation-induced structural evolution in different types of polymer-based composites. This paper supplements these measurements with kinetic studies of internal friction (IF) parameters and EPR signals in a glass-cloth epoxy-filled laminate ST-ETF after electron irradiation up to doses of 1-10 MGy. Experiment have shown that the lifetime of free radicals in this composite considerably exceeds the characteristic time of molecular structural rearrangement due to scission and cross-linking after irradiation, as determined from IF measurements. This result is explained by slow proceeding of sterically hindered disproportionation reactions that stabilize the end groups of the macro-chain disrupt during irradiation and finally fix the act of scission. A mathematical model is formulated for description of structural evolution and alterations of IF parameters in polymer-based composites during and after electron irradiation. The description is based on the track model of radiation damage in polymers and phenomenological theory of radiation-induced structural transformations. General description does not give details of radiation-chemical conversion in different structural components of composites but indicates the direction of their structural evolution. In the model considered a composite material was divided into three parts (binder, filler, and a boundary layer). It was supposed that after primary distribution of radiation energy radiation-chemical conversion proceeds independently in each of these regions. It was also suggested that all the radical reactions were of the second order. On the example of glass-cloth laminate ST-ETF it is shown that this model allows to describe alterations in composite structural characteristics during irradiation and in the course of their self-organization after

  6. Kinetics of Si and Ge nanowires growth through electron beam evaporation

    Directory of Open Access Journals (Sweden)

    Artoni Pietro

    2011-01-01

    Full Text Available Abstract Si and Ge have the same crystalline structure, and although Si-Au and Ge-Au binary alloys are thermodynamically similar (same phase diagram, with the eutectic temperature of about 360°C, in this study, it is proved that Si and Ge nanowires (NWs growth by electron beam evaporation occurs in very different temperature ranges and fluence regimes. In particular, it is demonstrated that Ge growth occurs just above the eutectic temperature, while Si NWs growth occurs at temperature higher than the eutectic temperature, at about 450°C. Moreover, Si NWs growth requires a higher evaporated fluence before the NWs become to be visible. These differences arise in the different kinetics behaviors of these systems. The authors investigate the microscopic growth mechanisms elucidating the contribution of the adatoms diffusion as a function of the evaporated atoms direct impingement, demonstrating that adatoms play a key role in physical vapor deposition (PVD NWs growth. The concept of incubation fluence, which is necessary for an interpretation of NWs growth in PVD growth conditions, is highlighted.

  7. SCATPI, a subroutine for calculating πN cross sections and polarizations for incident pion kinetic energies between 90 and 300 MeV

    International Nuclear Information System (INIS)

    Walter, J.B.; Rebka, G.A. Jr.

    1979-03-01

    A subroutine, SCATPI, was written which calculates π + p elastic differential cross sections for incident pion kinetic energies between 90 and 310 MeV for π - p. The calculation is based upon the phase shift analysis of Carter, Bugg, and Carter, and is reliable to about 2% for π + p and 3% for π - p differential cross sections. SCATPI also calculates other scattering parameters for the π+-p systems. The calculations are compared with the measurements used in the phase shift analysis, and with selected recent measurements. The use of SCATPI is described. 14 figures, 4 tables

  8. Covalent bonds are created by the drive of electron waves to lower their kinetic energy through expansion

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, Michael W.; Ruedenberg, Klaus, E-mail: ruedenberg@iastate.edu [Department of Chemistry and Ames Laboratory USDOE, Iowa State University, Ames, Iowa 50011 (United States); Ivanic, Joseph [Advanced Biomedical Computing Center, Information Systems Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702 (United States)

    2014-05-28

    An analysis based on the variation principle shows that in the molecules H{sub 2}{sup +}, H{sub 2}, B{sub 2}, C{sub 2}, N{sub 2}, O{sub 2}, F{sub 2}, covalent bonding is driven by the attenuation of the kinetic energy that results from the delocalization of the electronic wave function. For molecular geometries around the equilibrium distance, two features of the wave function contribute to this delocalization: (i) Superposition of atomic orbitals extends the electronic wave function from one atom to two or more atoms; (ii) intra-atomic contraction of the atomic orbitals further increases the inter-atomic delocalization. The inter-atomic kinetic energy lowering that (perhaps counter-intuitively) is a consequence of the intra-atomic contractions drives these contractions (which per se would increase the energy). Since the contractions necessarily encompass both, the intra-atomic kinetic and potential energy changes (which add to a positive total), the fact that the intra-atomic potential energy change renders the total potential binding energy negative does not alter the fact that it is the kinetic delocalization energy that drives the bond formation.

  9. Covalent bonds are created by the drive of electron waves to lower their kinetic energy through expansion

    Science.gov (United States)

    Schmidt, Michael W.; Ivanic, Joseph; Ruedenberg, Klaus

    2014-05-01

    An analysis based on the variation principle shows that in the molecules H2+, H2, B2, C2, N2, O2, F2, covalent bonding is driven by the attenuation of the kinetic energy that results from the delocalization of the electronic wave function. For molecular geometries around the equilibrium distance, two features of the wave function contribute to this delocalization: (i) Superposition of atomic orbitals extends the electronic wave function from one atom to two or more atoms; (ii) intra-atomic contraction of the atomic orbitals further increases the inter-atomic delocalization. The inter-atomic kinetic energy lowering that (perhaps counter-intuitively) is a consequence of the intra-atomic contractions drives these contractions (which per se would increase the energy). Since the contractions necessarily encompass both, the intra-atomic kinetic and potential energy changes (which add to a positive total), the fact that the intra-atomic potential energy change renders the total potential binding energy negative does not alter the fact that it is the kinetic delocalization energy that drives the bond formation.

  10. Covalent bonds are created by the drive of electron waves to lower their kinetic energy through expansion

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, Michael W; Ivanic, Joseph; Ruedenberg, Klaus

    2014-05-28

    An analysis based on the variation principle shows that in the molecules H2 +, H2, B2, C2, N2, O2, F2, covalent bonding is driven by the attenuation of the kinetic energy that results from the delocalization of the electronic wave function. For molecular geometries around the equilibrium distance, two features of the wave function contribute to this delocalization: (i) Superposition of atomic orbitals extends the electronic wave function from one atom to two or more atoms; (ii) intra-atomic contraction of the atomic orbitals further increases the inter-atomic delocalization. The inter-atomic kinetic energy lowering that (perhaps counter-intuitively) is a consequence of the intra-atomic contractions drives these contractions (which per se would increase the energy). Since the contractions necessarily encompass both, the intra-atomic kinetic and potential energy changes (which add to a positive total), the fact that the intra-atomic potential energy change renders the total potential binding energy negative does not alter the fact that it is the kinetic delocalization energy that drives the bond formation.

  11. Kinetic Temperature and Electron Density Measurement in an Inductively Coupled Plasma Torch using Degenerate Four-Wave Mixing

    Science.gov (United States)

    Schafer, Julia; Lyons, Wendy; Tong, WIlliam G.; Danehy, Paul M.

    2008-01-01

    Laser wave mixing is presented as an effective technique for spatially resolved kinetic temperature measurements in an atmospheric-pressure radio-frequency inductively-coupled plasma. Measurements are performed in a 1 kW, 27 MHz RF plasma using a continuous-wave, tunable 811.5-nm diode laser to excite the 4s(sup 3)P2 approaches 4p(sup 3)D3 argon transition. Kinetic temperature measurements are made at five radial steps from the center of the torch and at four different torch heights. The kinetic temperature is determined by measuring simultaneously the line shape of the sub-Doppler backward phase-conjugate degenerate four-wave mixing and the Doppler-broadened forward-scattering degenerate four-wave mixing. The temperature measurements result in a range of 3,500 to 14,000 K+/-150 K. Electron densities measured range from 6.1 (+/-0.3) x 10(exp 15)/cu cm to 10.1 (+/-0.3) x 10(exp 15)/cu cm. The experimental spectra are analyzed using a perturbative treatment of the backward phase-conjugate and forward-geometry wave-mixing theory. Stark width is determined from the collisional broadening measured in the phase-conjugate geometry. Electron density measurements are made based on the Stark width. The kinetic temperature of the plasma was found to be more than halved by adding deionized water through the nebulizer.

  12. CYANOMETHANIMINE ISOMERS IN COLD INTERSTELLAR CLOUDS: INSIGHTS FROM ELECTRONIC STRUCTURE AND KINETIC CALCULATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Vazart, Fanny; Latouche, Camille; Skouteris, Dimitrios; Barone, Vincenzo [Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56125 Pisa (Italy); Balucani, Nadia [Dipartimento di Chimica, Biologia e Biotecnologie, Universitá degli Studi di Perugia, Via Elce di Sotto 8, I-06123 Perugia (Italy)

    2015-09-10

    New insights into the formation of interstellar cyanomethanimine, a species of great relevance in prebiotic chemistry, are provided by electronic structure and kinetic calculations for the reaction CN + CH{sub 2} = NH. This reaction is a facile formation route of Z,E-C-cyanomethanimine, even under the extreme conditions of density and temperature typical of cold interstellar clouds. E-C-cyanomethanimine has been recently identified in Sgr B2(N) in the Green Bank Telescope (GBT) PRIMOS survey by P. Zaleski et al. and no efficient formation routes have been envisaged so far. The rate coefficient expression for the reaction channel leading to the observed isomer E-C-cyanomethanimine is 3.15 × 10-10 × (T/300){sup 0.152} × e{sup (−0.0948/T)}. According to the present study, the more stable Z-C-cyanomethanimine isomer is formed with a slightly larger yield (4.59 × 10{sup −10} × (T/300){sup 0.153} × e{sup (−0.0871/T)}. As the detection of E-isomer is favored due to its larger dipole moment, the missing detection of the Z-isomer can be due to the sensitivity limit of the GBT PRIMOS survey and the detection of the Z-isomer should be attempted with more sensitive instrumentation. The CN + CH{sub 2} = NH reaction can also play a role in the chemistry of the upper atmosphere of Titan where the cyanomethanimine products can contribute to the buildup of the observed nitrogen-rich organic aerosols that cover the moon.

  13. Molecular projectile effects for kinetic electron emission from carbon- and metal-surfaces bombarded by slow hydrogen ions

    Science.gov (United States)

    Cernusca, S.; Winter, HP.; Aumayr, F.; Díez Muiño, R.; Juaristi, J. I.

    2003-04-01

    Total yields for kinetic electron emission (KE) have been determined for impact of hydrogen monomer-, dimer- and trimer-ions (impact energy armour in magnetic fusion devices. The data are compared with KE yields for impact of same projectile ions on atomically clean highly oriented pyrolytic graphite and polycrystalline gold. We discuss KE yields for the different targets if bombarded by equally fast molecular and atomic ions in view to "projectile molecular effects" (different yields per proton for equally fast atomic and molecular ions), which are expected from calculated electronic projectile energy losses in these target materials.

  14. Analysis of InGaN nanodots grown by droplet heteroepitaxy using grazing incidence small-angle X-ray scattering and electron microscopy

    Science.gov (United States)

    Woodward, J. M.; Nikiforov, A. Yu.; Ludwig, K. F.; Moustakas, T. D.

    2017-08-01

    We present a detailed structural investigation of self-assembled indium gallium nitride nanodots grown on c-plane aluminum nitride templates by the droplet heteroepitaxy technique in a plasma-assisted molecular beam epitaxy reactor. Various growth parameters, including the total coverage of the metal species, relative and total metal effusion fluxes, and nitridation temperature were investigated. Analyses of in situ reflection high-energy electron diffraction patterns and comparison with simulations showed that the resulting crystal structure was a mixture of wurtzite and twinned zinc blende phases, with the zinc blende phase increasingly dominant for lower metal coverages and lower nitridation temperatures, and the wurtzite phase increasingly dominant for higher nitridation temperature. Studies by field emission scanning electron microscopy and atomic force microscopy revealed that the nanodots exhibit trimodal size distributions, with the dot morphologies of the intermediate size mode often resembling aggregations of distinct clusters. Nanodots grown at higher nitridation temperatures had larger inter-dot spacings, with hexagonal in-plane ordering observable at a sufficiently high temperature. Using grazing incidence small angle X-ray scattering, we determined the nanodots to be approximately truncated cone shaped, and extracted the mean radius, height, and inter-dot distance for each distribution. Microstructural investigations of the nanodots by cross-sectional transmission electron microscopy indicated that the majority of the dots were formed in dislocation-free regions, and confirmed that the intermediate size dots were approximately truncated cone shaped and consisted of both zinc blende and wurtzite regions. Mapping of the elemental distributions by energy dispersive X-ray spectroscopy in scanning transmission electron microscopy mode indicated highly nonuniform indium distributions within both small and intermediate size dots which are potentially

  15. Electrochemical evaluation of electron transfer kinetics of high and low redox potential laccases on gold electrode surface

    International Nuclear Information System (INIS)

    Frasconi, Marco; Boer, Harry; Koivula, Anu; Mazzei, Franco

    2010-01-01

    Laccases and other multicopper oxidases are reported to be able to carry out direct electron transfer reactions when immobilized onto electrode surface. This allows detailed research of their electron transfer mechanisms. We have recently characterized the kinetic properties of four laccases in homogenous solution and immobilized onto an electrode surface with respect to a set of different redox mediators. In this paper we report the direct electron transfer of four purified laccases from Trametes hirsuta (ThL), Trametes versicolor (TvL), Melanocarpus albomyces (r-MaL) and Rhus vernicifera (RvL), by trapping the proteins within an electrochemically inert polymer of tributylmethyl phosphonium chloride coating a gold electrode surface. In particular, we have characterized the steps involved in the laccases electron transfer mechanism as well as the factors limiting each step. During the voltammetric experiments, non-turnover Faradic signals with midpoint potential of about 790 and 400 mV were observed for high potential laccases, ThL and TvL, corresponding to redox transformations of the T1 site and the T2/T3 cluster of the enzyme, respectively, whereas low redox potential laccases r-MaL and RvL shown a redox couple with a midpoint potential around 400 mV. The electrocatalytic properties of these laccase modified electrodes for the reduction of oxygen have been evaluated demonstrating significative direct electron transfer kinetics. The biocatalytic activity of laccases was also monitored in the presence of a well known inhibitor, sodium azide. On the basis of the experimental results, a hypothesis about the electronic pathway for intramolecular electron transfer characterizing laccases has been proposed.

  16. Electrochemical evaluation of electron transfer kinetics of high and low redox potential laccases on gold electrode surface

    Energy Technology Data Exchange (ETDEWEB)

    Frasconi, Marco [Department of Chemistry and Drug Technologies, Sapienza University of Rome, P.le Aldo Moro, 5 00185 Rome (Italy); Boer, Harry; Koivula, Anu [VTT Technical Research Centre of Finland, P.O. Box 1000, FI-02044 VTT (Finland); Mazzei, Franco, E-mail: franco.mazzei@uniroma1.i [Department of Chemistry and Drug Technologies, Sapienza University of Rome, P.le Aldo Moro, 5 00185 Rome (Italy)

    2010-12-30

    Laccases and other multicopper oxidases are reported to be able to carry out direct electron transfer reactions when immobilized onto electrode surface. This allows detailed research of their electron transfer mechanisms. We have recently characterized the kinetic properties of four laccases in homogenous solution and immobilized onto an electrode surface with respect to a set of different redox mediators. In this paper we report the direct electron transfer of four purified laccases from Trametes hirsuta (ThL), Trametes versicolor (TvL), Melanocarpus albomyces (r-MaL) and Rhus vernicifera (RvL), by trapping the proteins within an electrochemically inert polymer of tributylmethyl phosphonium chloride coating a gold electrode surface. In particular, we have characterized the steps involved in the laccases electron transfer mechanism as well as the factors limiting each step. During the voltammetric experiments, non-turnover Faradic signals with midpoint potential of about 790 and 400 mV were observed for high potential laccases, ThL and TvL, corresponding to redox transformations of the T1 site and the T2/T3 cluster of the enzyme, respectively, whereas low redox potential laccases r-MaL and RvL shown a redox couple with a midpoint potential around 400 mV. The electrocatalytic properties of these laccase modified electrodes for the reduction of oxygen have been evaluated demonstrating significative direct electron transfer kinetics. The biocatalytic activity of laccases was also monitored in the presence of a well known inhibitor, sodium azide. On the basis of the experimental results, a hypothesis about the electronic pathway for intramolecular electron transfer characterizing laccases has been proposed.

  17. The effect of magnetic fields on the kinetic evolution of nonlinear electron plasma waves and stimulated Raman scattering

    Science.gov (United States)

    Winjum, B. J.; Tableman, A.; Tsung, F. S.; Mori, W. B.

    2017-10-01

    Nonlinear wave-particle interactions can significantly affect the evolution of stimulated Raman scattering (SRS) for ICF-relevant parameters. An imposed magnetic field can alter the dynamics of these interactions and thereby the dynamics of SRS, altering the instability threshold and saturation. Particles resonant with an SRS-generated electron plasma wave can be rotated in velocity space, disrupting the nonlinear damping of electron plasma waves and changing the kinetically inflated SRS threshold. Resonant particles can also be rotated in physical space, changing the transverse kinetic dissipation of electron plasma waves and restricting trapped particle motion both within a single laser speckle as well as between neighboring laser speckles. We show PIC simulations of driven multi-dimensional electron plasma waves in the presence of an external field and illustrate how their nonlinear evolution is altered, particularly with regard to the dynamical behavior that can impact SRS. Work was supported by the DOE under Grant Nos. DE-NA0001833 and DE-FC02-04ER54789.

  18. Calculation of Ground State Rotational Populations for Kinetic Gas Homonuclear Diatomic Molecules including Electron-Impact Excitation and Wall Collisions

    International Nuclear Information System (INIS)

    Farley, David R.

    2010-01-01

    A model has been developed to calculate the ground-state rotational populations of homonuclear diatomic molecules in kinetic gases, including the effects of electron-impact excitation, wall collisions, and gas feed rate. The equations are exact within the accuracy of the cross sections used and of the assumed equilibrating effect of wall collisions. It is found that the inflow of feed gas and equilibrating wall collisions can significantly affect the rotational distribution in competition with non-equilibrating electron-impact effects. The resulting steady-state rotational distributions are generally Boltzmann for N (ge) 3, with a rotational temperature between the wall and feed gas temperatures. The N = 0,1,2 rotational level populations depend sensitively on the relative rates of electron-impact excitation versus wall collision and gas feed rates.

  19. A stochastic study of electron transfer kinetics in nano-particulate photocatalysis: a comparison of the quasi-equilibrium approximation with a random walking model.

    Science.gov (United States)

    Liu, Baoshun; Zhao, Xiujian; Yu, Jiaguo; Fujishima, Akira; Nakata, Kazuya

    2016-11-23

    In the photocatalysis of porous nano-crystalline materials, the transfer of electrons to O 2 plays an important role, which includes the electron transport to photocatalytic active centers and successive interfacial transfer to O 2 . The slowest of them will determine the overall speed of electron transfer in the photocatalysis reaction. Considering the photocatalysis of porous nano-crystalline TiO 2 as an example, although some experimental results have shown that the electron kinetics are limited by the interfacial transfer, we still lack the depth of understanding the microscopic mechanism from a theoretical viewpoint. In the present research, a stochastic quasi-equilibrium (QE) theoretical model and a stochastic random walking (RW) model were established to discuss the electron transport and electron interfacial transfer by taking the electron multi-trapping transport and electron interfacial transfer from the photocatalytic active centers to O 2 into consideration. By carefully investigating the effect of the electron Fermi level (E F ) and the photocatalytic center number on electron transport, we showed that the time taken for an electron to transport to a photocatalytic center predicated by the stochastic RW model was much lower than that predicted by the stochastic QE model, indicating that the electrons cannot reach a QE state during their transport to photocatalytic centers. The stochastic QE model predicted that the electron kinetics of a real photocatalysis for porous nano-crystalline TiO 2 should be limited by electron transport, whereas the stochastic RW model showed that the electron kinetics of a real photocatalysis can be limited by the interfacial transfer. Our simulation results show that the stochastic RW model was more in line with the real electron kinetics that have been observed in experiments, therefore it is concluded that the photoinduced electrons cannot reach a QE state before transferring to O 2 .

  20. Current-voltage and kinetic energy flux relations for relativistic field-aligned acceleration of auroral electrons

    Directory of Open Access Journals (Sweden)

    S. W. H. Cowley

    2006-03-01

    Full Text Available Recent spectroscopic observations of Jupiter's "main oval" auroras indicate that the primary auroral electron beam is routinely accelerated to energies of ~100 keV, and sometimes to several hundred keV, thus approaching the relativistic regime. This suggests the need to re-examine the classic non-relativistic theory of auroral electron acceleration by field-aligned electric fields first derived by Knight (1973, and to extend it to cover relativistic situations. In this paper we examine this problem for the case in which the source population is an isotropic Maxwellian, as also assumed by Knight, and derive exact analytic expressions for the field-aligned current density (number flux and kinetic energy flux of the accelerated population, for arbitrary initial electron temperature, acceleration potential, and field strength beneath the acceleration region. We examine the limiting behaviours of these expressions, their regimes of validity, and their implications for auroral acceleration in planetary magnetospheres (and like astrophysical systems. In particular, we show that for relativistic accelerating potentials, the current density increases as the square of the minimum potential, rather than linearly as in the non-relativistic regime, while the kinetic energy flux then increases as the cube of the potential, rather than as the square.

  1. Plasma heating by kinetic Alfven wave

    International Nuclear Information System (INIS)

    Assis, A.S. de.

    1982-01-01

    The heating of a nonuniform plasma (electron-ion) due to the resonant excitation of the shear Alfven wave in the low β regime is studied using initially the ideal MHD model and posteriorly using the kinetic model. The Vlasov equation for ions and the drift kinetic equation for electrons have been used. Through the ideal MHD model, it is concluded that the energy absorption is due to the continuous spectrum (phase mixing) which the shear Alfven wave has in a nonuniform plasma. An explicit expression for the energy absorption is derived. Through the kinetic model it is concluded that the energy absorption is due to a resonant mode convertion of the incident wave into the kinetic Alfven wave which propagates away from the resonant region. Its electron Landau damping has been observed. There has been a concordance with the MHD calculations. (Author) [pt

  2. Grazing incidence reflectivity and total electron yield effects in soft x-ray absorption spectroscopy

    NARCIS (Netherlands)

    Alders, D; Hibma, T; Sawatzky, G.A; Cheung, K.C.; van Dorssen, G.E.; Roper, M.D.; Padmore, H.A.; van der Laan, G.; Vogel, J; Sacchi, M.

    1997-01-01

    We report on a study of grazing incidence absorption and reflection spectra of NiO in the region of the Ni 2p edge. The aim is to evaluate the distortion of the near edge spectrum by the critical angle behavior of individual components within the spectrum. This can be used to improve the separation

  3. Attenuation of 10 MeV electron beam energy to achieve low doses does not affect Salmonella spp. inactivation kinetics

    International Nuclear Information System (INIS)

    Hieke, Anne-Sophie Charlotte; Pillai, Suresh D.

    2015-01-01

    The effect of attenuating the energy of a 10 MeV electron beam on Salmonella inactivation kinetics was investigated. No statistically significant differences were observed between the D 10 values of either Salmonella 4,[5],12:i:- or a Salmonella cocktail (S. 4,[5],12:i:-, Salmonella Heidelberg, Salmonella Newport, Salmonella Typhimurium, Salmonella) when irradiated with either a non-attenuated 10 MeV eBeam or an attenuated 10 MeV eBeam (~2.9±0.22 MeV). The results show that attenuating the energy of a 10 MeV eBeam to achieve low doses does not affect the inactivation kinetics of Salmonella spp. when compared to direct 10 MeV eBeam irradiation. - Highlights: • 10 MeV eBeam energy was attenuated to 2.9±0.22 MeV using HDPE sheets. • Attenuation of eBeam energy does not affect the inactivation kinetics of Salmonella. • Microbial inactivation is independent of eBeam energy in the range of 3–10 MeV

  4. Field-controlled electron transfer and reaction kinetics of the biological catalytic system of microperoxidase-11 and hydrogen peroxide

    Directory of Open Access Journals (Sweden)

    Yongki Choi

    2011-12-01

    Full Text Available Controlled reaction kinetics of the bio-catalytic system of microperoxidase-11 and hydrogen peroxide has been achieved using an electrostatic technique. The technique allowed independent control of 1 the thermodynamics of the system using electrochemical setup and 2 the quantum mechanical tunneling at the interface between microperoxidase-11 and the working electrode by applying a gating voltage to the electrode. The cathodic currents of electrodes immobilized with microperoxidase-11 showed a dependence on the gating voltage in the presence of hydrogen peroxide, indicating a controllable reduction reaction. The measured kinetic parameters of the bio-catalytic reduction showed nonlinear dependences on the gating voltage as the result of modified interfacial electron tunnel due to the field induced at the microperoxidase-11-electrode interface. Our results indicate that the kinetics of the reduction of hydrogen peroxide can be controlled by a gating voltage and illustrate the operation of a field-effect bio-catalytic transistor, whose current-generating mechanism is the conversion of hydrogen peroxide to water with the current being controlled by the gating voltage.

  5. Improving patient safety and quality: what are the challenges and gaps in introducing an integrated electronic adverse incident and recording system within health care industry?

    Science.gov (United States)

    Walsh, Kerry; Antony, Jiju

    2007-01-01

    The purpose of this paper is to present the challenges and gaps in using an electronic adverse incident recording and reporting system from a commercial supplier to an acute health care setting. The paper used action diary, documentation and triangulation to obtain an understanding of the challenges and gaps. The paper provides health care with further understanding of the complexity, challenges and gaps of using an electronic adverse incident recording system to improve patient safety. This paper explains the important views of clinicians and managers in relation to improving patient safety by using an electronic adverse incident management system.

  6. Characterisation of charging kinetics of dielectrics under continuous electron irradiation through real time electron emission collecting method

    Energy Technology Data Exchange (ETDEWEB)

    Guerch, Kévin, E-mail: kevin.guerch@onera.fr [ONERA, 2 Avenue Edouard Belin, 31055 Toulouse Cedex 4 (France); CIRIMAT – Institut Carnot (CNRS) Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse Cedex 09 (France); Paulmier, Thierry [ONERA, 2 Avenue Edouard Belin, 31055 Toulouse Cedex 4 (France); Guillemet-Fritsch, Sophie; Lenormand, Pascal [CIRIMAT – Institut Carnot (CNRS) Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse Cedex 09 (France)

    2015-04-15

    Dielectric materials used for spacecraft applications are often characterised under electron irradiation in order to study their physical and electrical mechanisms. For surface potential measurement, a small removable flat device based on the secondary electron spectrometer method has been developed and installed in the CEDRE irradiation test facility at ONERA (Toulouse, France). This technique was developed to get rid off specific issues inherent to the Kelvin Probe technique. This experimental device named REPA (Repulsive Electron Potential Analyser) allows in situ and real time assessment of the surface potential built up on dielectric materials under continuous electron irradiation. A calibration has been performed in order to validate this experimental setup. Furthermore, to optimise its efficiency, the physical behaviour of this device has been modelled and numerically simulated using Particle In Cell (PIC) model and a dedicated numerical code called SPIS (Spacecraft Plasma Interactions System). In a final step, electrical characterisations of a charged dielectric have been carried out under continuous electron irradiation with this new method. These results have been compared with measurements performed in same experimental conditions with conventional Kelvin Probe method. The experimental results have been discussed in this paper. To conclude, advantages of this experimental setup in regard of this application will be emphasised.

  7. Molecular projectile effects for kinetic electron emission from carbon- and metal-surfaces bombarded by slow hydrogen ions

    CERN Document Server

    Cernusca, S; Aumayr, F; Diez-Muino, R; Juaristi, J I

    2003-01-01

    Total yields for kinetic electron emission (KE) have been determined for impact of hydrogen monomer-, dimer- and trimer-ions (impact energy <10 keV) on atomically clean surfaces of carbon-fiber inforced graphite used as first-wall armour in magnetic fusion devices. The data are compared with KE yields for impact of same projectile ions on atomically clean highly oriented pyrolytic graphite and polycrystalline gold. We discuss KE yields for the different targets if bombarded by equally fast molecular and atomic ions in view to 'projectile molecular effects' (different yields per proton for equally fast atomic and molecular ions), which are expected from calculated electronic projectile energy losses in these target materials.

  8. Molecular projectile effects for kinetic electron emission from carbon- and metal-surfaces bombarded by slow hydrogen ions

    International Nuclear Information System (INIS)

    Cernusca, S.; Winter, H.P.; Aumayr, F.; Diez Muino, R.; Juaristi, J.I.

    2003-01-01

    Total yields for kinetic electron emission (KE) have been determined for impact of hydrogen monomer-, dimer- and trimer-ions (impact energy <10 keV) on atomically clean surfaces of carbon-fiber inforced graphite used as first-wall armour in magnetic fusion devices. The data are compared with KE yields for impact of same projectile ions on atomically clean highly oriented pyrolytic graphite and polycrystalline gold. We discuss KE yields for the different targets if bombarded by equally fast molecular and atomic ions in view to 'projectile molecular effects' (different yields per proton for equally fast atomic and molecular ions), which are expected from calculated electronic projectile energy losses in these target materials

  9. The relative importance of fluid and kinetic frequency shifts of an electron plasma wave

    International Nuclear Information System (INIS)

    Winjum, B. J.; Fahlen, J.; Mori, W. B.

    2007-01-01

    The total nonlinear frequency shift of a plasma wave including both fluid and kinetic effects is estimated when the phase velocity of the wave is much less than the speed of light. Using a waterbag or fluid model, the nonlinear frequency shift due to harmonic generation is calculated for an arbitrary shift in the wavenumber. In the limit where the wavenumber does not shift, the result is in agreement with previously published work [R. L. Dewar and J. Lindl, Phys. Fluids 15, 820 (1972); T. P. Coffey, ibid. 14, 1402 (1971)]. This shift is compared to the kinetic shift of Morales and O'Neil [G. J. Morales and T. M. O'Neil, Phys. Rev. Lett. 28, 417 (1972)] for wave amplitudes and values of kλ D of interest to Raman backscatter of a laser driver in inertial confinement fusion

  10. Effects of correlated parameters and uncertainty in electronic-structure-based chemical kinetic modelling

    Science.gov (United States)

    Sutton, Jonathan E.; Guo, Wei; Katsoulakis, Markos A.; Vlachos, Dionisios G.

    2016-04-01

    Kinetic models based on first principles are becoming common place in heterogeneous catalysis because of their ability to interpret experimental data, identify the rate-controlling step, guide experiments and predict novel materials. To overcome the tremendous computational cost of estimating parameters of complex networks on metal catalysts, approximate quantum mechanical calculations are employed that render models potentially inaccurate. Here, by introducing correlative global sensitivity analysis and uncertainty quantification, we show that neglecting correlations in the energies of species and reactions can lead to an incorrect identification of influential parameters and key reaction intermediates and reactions. We rationalize why models often underpredict reaction rates and show that, despite the uncertainty being large, the method can, in conjunction with experimental data, identify influential missing reaction pathways and provide insights into the catalyst active site and the kinetic reliability of a model. The method is demonstrated in ethanol steam reforming for hydrogen production for fuel cells.

  11. The kinetic structure of the electron diffusionregion observed by MMS during asymmetricreconnection

    Science.gov (United States)

    Egedal, J.; Le, A.; Daughton, W. S.

    2017-12-01

    During asymmetric magnetic reconnection in the dayside magnetopause insitu spacecraft measurements by NASA's MMS mission provide new detailedinformation on the electron dynamics within the electron diffusion region. Inparticular, we here report on observations by MMS4 which traveled the closeston the topological X-line [1] in the event on October 16, 2015, first reportedby Burch et al., [2]. In addition to the crescent shaped electron distributions[2,3], the measurements include electron beams, flowing in toward the diffusionregion. These beams of incoming electrons are formed by E∥ acceleration alongthe high-density side separators. They penetrate across the electron diffusionregion, where their directions nearly unaffected by the rapid changes in themagnetic field geometry. Matching electron beam features are observed in 2.5Dkinetic simulations, revealing their role in breaking the electron frozen-in-lawthrough their contributions to the off-diagonal stress in the electron pressuretensor. [1] Denton et al., Geophys. Res. Lett., 43, 55895596, (2016).[2] Burch et al., Science 352, 2939, (2016).[3] Egedal et al., PRL 117, 185101 (2016).

  12. Experimental study on the kinetically induced electronic excitation in atomic collisional cascades; Experimentelle Untersuchung zur kinetisch induzierten elektronischen Anregung in atomaren Stosskaskaden

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, S.

    2006-08-15

    the present thesis deals with the ion-collision-induced electronic excitation of metallic solids. For this for the first time metal-insulator-metal layer systems are used for the detection of this electronic excitation. The here applied aluminium/aluminium oxide/silver layer sytems have barrier heights of 2.4 eV on the aluminium respectively 3.3 eV on the silver side. With the results it could uniquely be shown that the electronic excitation is generated by kinetic processes, this excitation dependenc on the kinetic energy of the colliding particles, and the excitation dependes on the charge state of the projectile.

  13. ON THE COMPETITION BETWEEN RADIAL EXPANSION AND COULOMB COLLISIONS IN SHAPING THE ELECTRON VELOCITY DISTRIBUTION FUNCTION: KINETIC SIMULATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Landi, S.; Matteini, L. [Dipartimento di Fisica e Astronomia, Universita degli Studi di Firenze Largo E. Fermi 2, I-50125 Firenze (Italy); Pantellini, F. [LESIA, Observatoire de Paris 5, Place J. Janssen, F-92195 Meudon Cedex (France)

    2012-12-01

    We present numerical simulations of the solar wind using a fully kinetic model which takes into account the effects of particle's binary collisions in a quasi-neutral plasma in spherical expansion. Starting from an isotropic Maxwellian velocity distribution function for the electrons, we show that the combined effect of expansion and Coulomb collisions leads to the formation of two populations: a collision-dominated cold and dense population almost isotropic in velocity space and a weakly collisional, tenuous field-aligned and antisunward drifting population generated by mirror force focusing in the radially decreasing magnetic field. The relative weights and drift velocities for the two populations observed in our simulations are in excellent agreement with the relative weights and drift velocities for both core and strahl populations observed in the real solar wind. The radial evolution of the main moments of the electron velocity distribution function is in the range observed in the solar wind. The electron temperature anisotropy with respect to the magnetic field direction is found to be related to the ratio between the collisional time and the solar wind expansion time. Even though collisions are found to shape the electron velocity distributions and regulate the properties of the strahl, it is found that the heat flux is conveniently described by a collisionless model where a fraction of the electron thermal energy is advected at the solar wind speed. This reinforces the currently largely admitted fact that collisions in the solar wind are clearly insufficient to force the electron heat flux obey the classical Spitzer-Haerm expression where heat flux and temperature gradient are proportional to each other. The presented results show that the electron dynamics in the solar wind cannot be understood without considering the role of collisions.

  14. Intramolecular electron transfer in cytochrome cd(1) nitrite reductase from Pseudomonas stutzeri; kinetics and thermodynamics

    DEFF Research Database (Denmark)

    Farver, Ole; Kroneck, Peter M H; Zumft, Walter G

    2002-01-01

    Cytochrome cd(1) nitrite reductase from Pseudomonas stutzeri catalyzes the one electron reduction of nitrite to nitric oxide. It is a homodimer, each monomer containing one heme-c and one heme-d(1), the former being the electron uptake site while the latter is the nitrite reduction site. Hence, i...

  15. Damage thresholds for blaze diffraction gratings and grazing incidence optics at an X-ray free-electron laser.

    Science.gov (United States)

    Krzywinski, Jacek; Conley, Raymond; Moeller, Stefan; Gwalt, Grzegorz; Siewert, Frank; Waberski, Christoph; Zeschke, Thomas; Cocco, Daniele

    2018-01-01

    The Linac Coherent Light Source is upgrading its machine to high repetition rate and to extended ranges. Novel coatings, with limited surface oxidation, which are able to work at the carbon edge, are required. In addition, high-resolution soft X-ray monochromators become necessary. One of the big challenges is to design the mirror geometry and the grating profile to have high reflectivity (or efficiency) and at the same time survive the high peak energy of the free-electron laser pulses. For these reasons the experimental damage threshold, at 900 eV, of two platinum-coated gratings with different blazed angles has been investigated. The gratings were tested at 1° grazing incidence. To validate a model for which the damage threshold on the blaze grating can be estimated by calculating the damage threshold of a mirror with an angle of incidence identical to the angle of incidence on the grating plus the blaze angle, tests on Pt-coated substrates have also been performed. The results confirmed the prediction. Uncoated silicon, platinum and SiB 3 (both deposited on a silicon substrate) were also investigated. In general, the measured damage threshold at grazing incidence is higher than that calculated under the assumption that there is no energy transport from the volume where the photons are absorbed. However, it was found that, for the case of the SiB 3 coating, the grazing incidence condition did not increase the damage threshold, indicating that the energy transport away from the extinction volume is negligible.

  16. PFI-ZEKE (Pulsed Field Ionization-Zero Electron Kinetic Energy) para el estudio de iones

    Science.gov (United States)

    Castaño, F.; Fernández, J. A.; Basterretxea, A. Longarte. F.; Sánchez Rayo, M. N.; Martínez, R.

    Entre las áreas hacia donde ha evolucionado la Química en los últimos años están los estudios de sistemas con especies reactivas de alta energía y los dominados por fuerzas intermoleculares débiles, con energías de unas pocas kcal/mol. En efecto, el estudio de las propiedades de los iones, comenzando por su relación con la molécula neutra de la que procede, la energía de ionización, los estados vibracionales y rotacionales, energías de enlace de Van der Waals entre el ión y una amplia variedad de otras moléculas, sus confórmeros o isómeros y sus reacciones o semi-reacciones químicas están en la raíz de la necesidad de la espectroscopía conocida como PFI-ZEKE, Pulsed Field Ionization-Zero Electron Kinetic Energy. Entre las aplicaciones que requieren estos conocimientos se encuentran la generación de plasmas para la fabricación de semiconductores, memorias magnéticas, etc, así como los sistemas astrofísicos, la ionosfera terrestre, etc. La espectroscopía ZEKE es una evolución de las de fluorescencia inducida por láser, LIF, ionización multifotónica acrecentada por resonancia, REMPI, con uno y dos colores y acoplada a un sistema de tiempo de vuelo, REMPI-TOF-MS, y las espectroscopías de doble resonancia IR-UV y UV-UV. Sus espectros y la ayuda de cálculos ab inicio permite determinar las energías de enlace de complejos de van der Waals en estados fundamental y excitados, identificar confórmeros e isómeros, obtener energías de ionización experimentales aproximadas (100 cm-1) y otras variables de interés. Al igual que con LIF, REMPI y dobles resonancias, es posible utilizar muestras gaseosas, pero los espectros están muy saturados de bandas y su interpretación es difícil o imposible. Se evitan estas dificultades estudiando las moléculas o complejos en expansiones supersónicas, donde la T de los grados de libertad solo alcanzan unos pocos K. Para realizar experimentos de ZEKE hay que utilizar una propiedad recientemente

  17. Kinetics of metastable atoms and non-Maxwellian electrons in two-temperature plasmas

    Science.gov (United States)

    Kunc, J. A.; Soon, W. H.

    1990-01-01

    Numerical and analytical solutions of the electron Boltzmann equation in two-temperature steady-state helium plasma are studied in a broad range of conditions T(a) = 5,000-20,000 K, T(e) = 10,000-20,000 K; N(a) = 10 to the 10th - 10 to the 18th per cu cm. The WKB analytical solution is found to be satisfactory in most situations. The deviation of the electron distribution from Maxwellian and a possibility of raising of the tail of the distribution in presence of sources of fast electrons is also discussed.

  18. Heterogeneous electron transfer kinetics and electrocatalytic behaviour of mixed self-assembled ferrocenes and SWCNT layers

    CSIR Research Space (South Africa)

    Nkosi, D

    2010-01-01

    Full Text Available The electron transfer dynamics and electrocatalytic behaviour of ferrocene-terminated self-assembled monolayers (SAMs), co-adsorbed with single-walled carbon nanotubes (SWCNTs) on a gold electrode, have been interrogated for the first time...

  19. Polyurethanes irradiation by accelerated electrons: molecular and supramolecular evolution, incidence on the extractable and biomedical implications

    International Nuclear Information System (INIS)

    Guignot, C.

    2002-11-01

    Face to the development of radiosterilization and polymers medical devices it was wished to study the behavior of polyurethanes under accelerated electrons in oxidizing atmosphere. This study has been made to reveal the physico chemical and organisational modifications of polyurethanes for a medical use. (N.C.)

  20. Departures of the electron energy distribution from a Maxwellian in hydrogen. I - Formulation and solution of the electron kinetic equation. II - Consequences

    Science.gov (United States)

    Shoub, E. C.

    1977-01-01

    The problem of calculating the steady-state free-electron energy distribution in a hydrogen gas is considered in order to study departures of that distribution from a Maxwellian at sufficiently low degrees of ionization. A model kinetic equation is formulated and solved analytically for the one-particle electron distribution function in a steady-state partially ionized hydrogen gas, and it is shown that the formal solution can be accurately approximated by using the WKB method. The solutions obtained indicate that the high-energy tail of the distribution is susceptible to distortion by imbalanced inelastic collisions for ionization fractions not exceeding about 0.1 and that such departures from a Maxwellian can lead to significant changes in the collisional excitation and ionization rates of ground-state hydrogen atoms. Expressions for the electron-hydrogen collision rates are derived which explicitly display their dependence on the hydrogen departure coefficients. The results are applied in order to compare self-consistent predictions with those based on the a priori assumption of a Maxwellian distribution for models of the thermal ionization equilibrium of hydrogen in the optically thin limit, spectral-line formation by a gas consisting of two-level atoms, and radiative transfer in finite slabs by a gas of four-level hydrogen atoms.

  1. ASTM E 1559 method for measuring material outgassing/deposition kinetics has applications to aerospace, electronics, and semiconductor industries

    Science.gov (United States)

    Garrett, J. W.; Glassford, A. P. M.; Steakley, J. M.

    1994-01-01

    The American Society for Testing and Materials has published a new standard test method for characterizing time and temperature-dependence of material outgassing kinetics and the deposition kinetics of outgassed species on surfaces at various temperatures. This new ASTM standard, E 1559(1), uses the quartz crystal microbalance (QCM) collection measurement approach. The test method was originally developed under a program sponsored by the United States Air Force Materials Laboratory (AFML) to create a standard test method for obtaining outgassing and deposition kinetics data for spacecraft materials. Standardization by ASTM recognizes that the method has applications beyond aerospace. In particular, the method will provide data of use to the electronics, semiconductor, and high vacuum industries. In ASTM E 1559 the material sample is held in vacuum in a temperature-controlled effusion cell, while its outgassing flux impinges on several QCM's which view the orifice of the effusion cell. Sample isothermal total mass loss (TML) is measured as a function of time from the mass collected on one of the QCM's which is cooled by liquid nitrogen, and the view factor from this QCM to the cell. The amount of outgassed volatile condensable material (VCM) on surfaces at higher temperatures is measured as a function of time during the isothermal outgassing test by controlling the temperatures of the remaining QCM's to selected values. The VCM on surfaces at temperatures in between those of the collector QCM's is determined at the end of the isothermal test by heating the QCM's at a controlled rate and measuring the mass loss from the end of the QCM's as a function of time and temperature. This reevaporation of the deposit collected on the QCM's is referred to as QCM thermogravimetric analysis. Isothermal outgassing and deposition rates can be determined by differentiating the isothermal TML and VCM data, respectively, while the evaporation rates of the species can be obtained as a

  2. Exploring the dynamics of kinetic/multi-ion effects and ion-electron equilibration rates in ICF plasmas at OMEGA

    Science.gov (United States)

    Sio, H.

    2017-10-01

    During the last few years, an increasing number of experiments have shown that kinetic and multi-ion-fluid effects do impact the performance of an ICF implosion. Observations include: increasing yield degradation as the implosion becomes more kinetic; thermal decoupling between ion species; anomalous yield scaling for different fuel mixtures; ion diffusion; and fuel stratification. The common theme in these experiments is that the results are based on time-integrated nuclear observables that are affected by an accumulation of effects throughout the implosion, which complicate interpretation of the data. A natural extension of these studies is therefore to conduct time-resolved measurements of multiple nuclear-burn histories to explore the dynamics of kinetic/multi-ion effects in the fuel and their impact on the implosion performance. This was accomplished through simultaneous, high-precision measurements of the relative timing of the onset, bang time and duration of DD, D3He, DT and T3He burn from T3He (with trace D) or D3He gas-filled implosions using the new Particle X-ray Temporal Diagnostic (PXTD) on OMEGA. As the different reactions have different temperature sensitivities, Ti(t) was determined from the data. Uniquely to the PXTD, several x-ray emission histories (in different energy bands) were also measured, from which a spatially averaged Te(t) was also determined. The inferred Ti(t) and Te(t) data have been used to experimentally explore ion-electron equilibration rates and the Coulomb Logarithm for various plasma conditions. Finally, the implementation and use of PXTD, which represents a significant advance at OMEGA, have laid the foundation for implementing a Te(t) measurement in support of the main cryogenic DT programs at OMEGA and the NIF. This work was supported in part by the US DOE, LLE, LLNL, and DOE NNSA SSGF.

  3. Real-Time Label-Free Direct Electronic Monitoring of Topoisomerase Enzyme Binding Kinetics on Graphene.

    Science.gov (United States)

    Zuccaro, Laura; Tesauro, Cinzia; Kurkina, Tetiana; Fiorani, Paola; Yu, Hak Ki; Knudsen, Birgitta R; Kern, Klaus; Desideri, Alessandro; Balasubramanian, Kannan

    2015-11-24

    Monolayer graphene field-effect sensors operating in liquid have been widely deployed for detecting a range of analyte species often under equilibrium conditions. Here we report on the real-time detection of the binding kinetics of the essential human enzyme, topoisomerase I interacting with substrate molecules (DNA probes) that are immobilized electrochemically on to monolayer graphene strips. By monitoring the field-effect characteristics of the graphene biosensor in real-time during the enzyme-substrate interactions, we are able to decipher the surface binding constant for the cleavage reaction step of topoisomerase I activity in a label-free manner. Moreover, an appropriate design of the capture probes allows us to distinctly follow the cleavage step of topoisomerase I functioning in real-time down to picomolar concentrations. The presented results are promising for future rapid screening of drugs that are being evaluated for regulating enzyme activity.

  4. Degradation kinetics of poly(ether-urethane) Estane[reg] induced by electron irradiation

    International Nuclear Information System (INIS)

    Dannoux, A.; Esnouf, S.; Begue, J.; Amekraz, B.; Moulin, C.

    2005-01-01

    Radiation effects on a segmented aromatic poly(ether-urethane) induced by electron beam irradiation under oxygen atmosphere were investigated using Fourier transform infrared spectroscopy (FTIR) and electron paramagnetic resonance (EPR) in order to determine the degradation mechanisms. Thin films have been irradiated under a dose rate of 1 MGy/h with absorbed doses varying from 25 to 1000 kGy under O 2 . FTIR spectra have shown the formation of hydroperoxides, carboxylic acids, primary amines, alcohols, esters and formates. Moreover, the decrease of urethane and ether absorbances revealed the degradation of both soft and hard segments. Spin-trapping technique was used to monitor the evolution of short-lived peroxy and alkyl radicals at room temperature. Finally, a mechanism of degradation for electron irradiated polyurethane is proposed

  5. DKE: a fast numerical solver for the 3-D relativistic bounce-averaged electron drift kinetic equation

    Energy Technology Data Exchange (ETDEWEB)

    Decker, J.; Peysson, Y

    2004-12-01

    A new original code for solving the 3-D relativistic and bounce-averaged electron drift kinetic equation is presented. It designed for the current drive problem in tokamak with an arbitrary magnetic equilibrium. This tool allows self-consistent calculations of the bootstrap current in presence of other external current sources. RF current drive for arbitrary type of waves may be used. Several moments of the electron distribution function are determined, like the exact and effective fractions of trapped electrons, the plasma current, absorbed RF power, runaway and magnetic ripple loss rates and non-thermal Bremsstrahlung. Advanced numerical techniques have been used to make it the first fully implicit (reverse time) 3-D solver, particularly well designed for implementation in a chain of code for realistic current drive calculations in high {beta}{sub p} plasmas. All the details of the physics background and the numerical scheme are presented, as well a some examples to illustrate main code capabilities. Several important numerical points are addressed concerning code stability and potential numerical and physical limitations. (authors)

  6. On the Emission of Electrons from Solid H_2 and D_2 by Bombardment with 1-3 keV Electrons up to Very Large Angles of Incidence

    DEFF Research Database (Denmark)

    Schou, Jørgen; Sørensen, H.

    1982-01-01

    Electron emission, i.e. electron reflection (ER) and secondary electron emission (SEE), was studied for solid H2 and D2 for oblique incidence of 1-3 keV electrons up to an angle of incidence θ of 83°. The ER coefficient η was small at low angles, and rose rapidly with increasing θ above 60...... at the largest angles. The results agree well with the existing qualitative tendencies described in the literature. The variation with the angle of incidence shows a fair agreement with an estimate based on data for the angular distribution of electrons ejected from ionized hydrogen molecules. In addition......, an ionization cascade treatment leads to an expression for the behavior of the yield of those secondary electrons that are generated directly by the primaries. The agreement with experimental data is good...

  7. Kinetic Simulations of the Self-Focusing and Dissipation of Finite-Width Electron Plasma Waves

    Energy Technology Data Exchange (ETDEWEB)

    Winjum, B. J. [Univ. of California, Los Angeles, CA (United States); Berger, R. L. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Chapman, T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Banks, J. W. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Brunner, S. [Federal Inst. of Technology, Lausanne (Switzerland)

    2013-09-01

    Two-dimensional simulations, both Vlasov and particle-in-cell, are presented that show the evolution of the field and electron distribution of finite-width, nonlinear electron plasma waves. The intrinsically intertwined effects of self-focusing and dissipation of field energy caused by electron trapping are studied in simulated systems that are hundreds of wavelengths long in the transverse direction but only one wavelength long and periodic in the propagation direction. From various initial wave states, both the width at focus Δm relative to the initial width Δ0 and the maximum field amplitude at focus are shown to be a function of the growth rate of the transverse modulational instability γTPMI divided by the loss rate of field energy νE to electrons escaping the trapping region. With dissipation included, an amplitude threshold for self-focusing γTPMIE~1 is found that supports the analysis of Rose [Phys. Plasmas 12, 012318 (2005)].

  8. Kinetics of plasma membrane electron transport in a pulmonary endothelial cell-column.

    Science.gov (United States)

    Olson, L E; Merker, M P; Bongard, R D; Brantmeier, B M; Audi, S H; Linehan, J H; Dawson, C A

    1998-01-01

    Thiazine dyes such as toluidine blue O (TBO) are reduced at the luminal endothelial surface. The purpose of this study was to determine the rate of this reaction in endothelial cells in culture. A multiple indicator dilution method was used to measure the reaction kinetics during transient passage of a TBO-containing bolus through a chromatographic column filled with bovine pulmonary arterial endothelial cells grown on microcarrier beads (cell-column). A bolus containing TBO and an inert extracellular reference indicator (FITC-Dextran) was injected upstream of the cell-column, and the indicator concentrations were measured downstream using on-line photodetection. The effects of column flow rate, PO2, and TBO concentration were studied. The fraction of TBO reduced upon passage through the cell-column decreased with increasing flow indicating that the reaction rate rather than TBO delivery controlled TBO reduction. The fraction of TBO reduced did not change with PO2 or dose in the ranges studied. TBO reduction was about 10 times that for steady state TBO sequestration by these cells which, along with the lack of a PO2 effect indicates that the rapid rate of reduction is not the rate-limiting step in steady state sequestration.

  9. Improved Conservation Properties for Particle-in-cell Simulations with Kinetic Electrons

    International Nuclear Information System (INIS)

    Lewandowski, J.L.V.

    2003-01-01

    It is shown that a simple algorithm which exactly segregates between adiabatic and non-adiabatic electrons in particle-in-cell simulations of drift modes yields excellent conservation properties (e.g. particle number, energy) compared to the conventional df scheme. The removal of the free streaming term in the evolution of the marker weight is shown to be responsible for the improved linear and nonlinear properties of the simulated plasma

  10. Studying the Kinetics of Crystalline Silicon Nanoparticle Lithiation with In Situ Transmission Electron Microscopy

    KAUST Repository

    McDowell, Matthew T.

    2012-09-04

    In situ transmission electron microscopy (TEM) is used to study the electrochemical lithiation of high-capacity crystalline Si nanoparticles for use in Li-ion battery anodes. The lithiation reaction slows down as it progresses into the particle interior, and analysis suggests that this behavior is due not to diffusion limitation but instead to the influence of mechanical stress on the driving force for reaction. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Radioautographic measurement of electron-induced epidermal kinetic effects in different aged rats

    International Nuclear Information System (INIS)

    Sargent, E.V.; Burns, F.J.

    1987-01-01

    We have previously shown that the ability of rat epidermal cells to repair electron-induced DNA damage decreases as a function of age. The present investigation was performed to examine the relationship between this finding and sensitivity of epidermal cells to the cytotoxic effects of the radiation. Male CD rats at ages 2, 28, 100, 200, 420, and 728 days were injected with [ 3 H]-thymidine [( 3 H]Thd) at a dose of 2 mu Ci/g body weight. One hour later, the rats were anesthetized and the dorsal skin irradiated with various doses of 0.8 meV electrons at a dose rate of 660 rads/min. At 24 h after irradiation, radioautographs were made of a sheet of epidermis that was separated by trypsinization from the underlying dermis. Labeled cells were scored either as singlets or doublets (adjacent labeled cells). The percent labeled cells and percent labeled cells as doublets were determined. The estimated labeling index (the proportion of cells labeled by a single exposure to [ 3 H]Thd) of the epidermal basal layer decreased as a function of age. The slope of the semilog plot of the percent labeled cells as doublets as a function of electron dose indicates that the Do value decreases with increasing age. The results show, however, that the greatest difference in sensitivity occurs between 2-day (neonatal) and 28-day (pubescent) animals and again between 420-day (adult) and 728-day (senescent) animals

  12. Kinetics of Evaporation of Alloying Elements under Vacuum: Application to Ti alloys in Electron Beam Melting

    Science.gov (United States)

    Choi, Wonjin; Jourdan, Julien; Matveichev, Alexey; Jardy, Alain; Bellot, Jean-Pierre

    2017-09-01

    Vacuum metallurgical processes such as the electron beam melting are highly conducive to volatilization. In titanium processing, it concerns the alloying elements which show a high vapor pressure with respect to titanium matrix, such as Al. Two different experimental approaches using a laboratory electron beam furnace have been developed for the estimation of volatilization rate and activity coefficient of Al in Ti64. The first innovative method is based on the deposition rate of Al on Si wafers located at different angles θ above the liquid bath. We found that a deposition according to a cos2(π/2-θ) law describes well the experimental distribution of the weight of the deposition layer. The second approach relies on the depletion of aluminum in the liquid pool at two separate times of the volatilization process. Both approaches provide values of the Al activity coefficient at T=1, 860 °C in a fairly narrow range [0.044-0.0495], in good agreement with the range reported in the literature. Furthermore numerical simulation of the Al behavior in the liquid pool reveals (in the specific case of electron beam button melting) a weak transport resistance in the surface boundary layer.

  13. Electronic medical record cancer incidence over six years comparing new users of glargine with new users of NPH insulin.

    Directory of Open Access Journals (Sweden)

    Soo Lim

    Full Text Available Recent studies suggested that insulin glargine use could be associated with increased risk of cancer. We compared the incidence of cancer in new users of glargine versus new users of NPH in a longitudinal clinical cohort with diabetes for up to 6 years.From all patients who had been regularly followed at Massachusetts General Hospital from 1/01/2005 to 12/31/2010, 3,680 patients who had a medication record for glargine or NPH usage were obtained from the electronic medical record (EMR. From those we selected 539 new glargine users (age: 60.1±13.6 years, BMI: 32.7±7.5 kg/m2 and 343 new NPH users (61.5±14.1 years, 32.7±8.3 kg/m2 who had no prevalent cancer during 19 months prior to glargine or NPH initiation. All incident cancer cases were ascertained from the EMR requiring at least 2 ICD-9 codes within a 2 month period. Insulin exposure time and cumulative dose were validated. The statistical analysis compared the rates of cancer in new glargine vs. new NPH users while on treatment, adjusted for the propensity to receive one or the other insulin. There were 26 and 28 new cancer cases in new glargine and new NPH users for 1559 and 1126 person-years follow-up, respectively. There were no differences in the propensity-adjusted clinical characteristics between groups. The adjusted hazard ratio for the cancer incidence comparing glargine vs. NPH use was 0.65 (95% CI: 0.36-1.19.Insulin glargine is not associated with development of cancers when compared with NPH in this longitudinal and carefully retrieved EMR data.

  14. Enzyme kinetics, inhibitors, mutagenesis and electron paramagnetic resonance analysis of dual-affinity nitrate reductase in unicellular N(2)-fixing cyanobacterium Cyanothece sp. PCC 8801.

    Science.gov (United States)

    Wang, Tung-Hei; Chen, Yung-Han; Huang, Jine-Yung; Liu, Kang-Cheng; Ke, Shyue-Chu; Chu, Hsiu-An

    2011-11-01

    The assimilatory nitrate reductase (NarB) of N(2)-fixing cyanobacterium Cyanothece sp. PCC 8801 is a monomeric enzyme with dual affinity for substrate nitrate. We purified the recombinant NarB of Cyanothece sp. PCC 8801 and further investigated it by enzyme kinetics analysis, site-directed mutagenesis, inhibitor kinetics analysis, and electron paramagnetic resonance (EPR) spectroscopy. The NarB showed 2 kinetic regimes at pH 10.5 or 8 and electron-donor conditions methyl viologen or ferredoxin (Fd). Fd-dependent NR assay revealed NarB with very high affinity for nitrate (K(m)1, ∼1μM; K(m)2, ∼270μM). Metal analysis and EPR results showed that NarB contains a Mo cofactor and a [4Fe-4S] cluster. In addition, the R352A mutation on the proposed nitrate-binding site of NarB greatly altered both high- and low-affinity kinetic components. Furthermore, the effect of azide on the NarB of Cyanothece sp. PCC 8801 was more complex than that on the NarB of Synechococcus sp. PCC 7942 with its single kinetic regime. With 1mM azide, the kinetics of the wild-type NarB was transformed from 2 kinetic regimes to hyperbolic kinetics, and its activity was enhanced significantly under medium nitrate concentrations. Moreover, EPR results also suggested a structural difference between the two NarBs. Taken together, our results show that the NarB of Cyanothece sp. PCC 8801 contains only a single Mo-catalytic center, and we rule out that the enzyme has 2 independent, distinct catalytic sites. In addition, the NarB of Cyanothece sp. PCC 8801 may have a regulatory nitrate-binding site. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  15. Experimental Confirmation of the Persistence of Ponderomotively Driven Kinetic Electrostatic Electron Nonlinear (KEEN) Waves in Laser Produced Plasmas

    Science.gov (United States)

    Kline, J.; Afeyan, B.; Bertsche, W.; Kurnit, N.; Montgomery, D.; Savchenko, V.; Won, K.

    2004-11-01

    Vlasov-Poisson simulations using ponderomotively driven excitations have discovered the existence of stable, nonlinear, multimode coherent structures in plasmas named Kinetic Electrostatic Electron Nonlinear (KEEN) waves.^1 For a given wave number drive, they seem to form and persist for any drive frequency in a band around the electron acoustic^2 frequency. An experiment was recently conducted on Trident jointly by Polymath Research Inc. and LANL to verify these findings. The two lasers used had 527 and 600 nm wavelengths which is predicted to drive waves in the proper KEEN wave excitation band.^1 A Raman cell was developed and fielded on the TRIDENT Laser to convert a 527 nm laser beam to 600 or 697 nm as needed via first or second Stokes emission in N2 gas. Using two beams at these wavelengths, KEEN waves were driven and detected with 263 nm Thomson scattering in a Nitrogen plus Hydrogen gas jet plasma. This presentation will cover experimental conditions and diagnostic attributes associated with the detection of KEEN waves. **Supported by DOE Academic Alliance Grant DE-FG03-03NA00059 and LANL ^1Afeyan et al., Optical Mixing Generated KEEN Waves, IFSA Conference Proceedings, 2003; Invited paper at this conference and to be published. ^2Montgomery et al., PRL 87, 155001 (2001)

  16. Nonlinear backward stimulated Raman scattering from electron beam acoustic modes in the kinetic regime

    International Nuclear Information System (INIS)

    Yin, L.; Daughton, W.; Albright, B. J.; Bowers, K. J.; Montgomery, D. S.; Kline, J. L.; Fernandez, J. C.; Roper, Q.

    2006-01-01

    The backward stimulated Raman scattering (BSRS) of a laser from electron beam acoustic modes (BAM) in the presence of self-consistent non-Maxwellian velocity distributions is examined by linear theory and particle-in-cell (PIC) simulations in one and two dimensions (1D and 2D). The BAM evolve from Langmuir waves (LW) as electron trapping modifies the distribution to a non-Maxwellian form that exhibits a beam component. Linear dispersion relations using the nonlinearly modified distribution from simulations are solved for the electrostatic modes involved in the parametric coupling. Results from linear analysis agree well with electrostatic spectra from simulations. It is shown that the intersection of the Stokes root with BAM (instead of LW) determines the matching conditions for BSRS at a nonlinear stage. As the frequency of the unstable Stokes mode decreases with increasing wave number, the damping rate and the phase velocity of BAM decreases with the phase velocity of the Stokes mode, providing a self-consistently evolving plasma linear response that favors continuation of the nonlinear frequency shift. Coincident with the emergence of BAM is a rapid increase in BSRS reflectivity. The details of the wave-particle interaction region in the electron velocity distribution determine the growth/damping rate of these electrostatic modes and the nonlinear frequency shift; in modeling this behavior, the use of sufficiently large numbers of particles in the simulations is crucial. Both the reflectivity scaling with laser intensity and the spectral features from simulations are discussed and are consistent with recent Trident experiments

  17. Kinetic magnetization by fast electrons in laser-produced plasmas at sub-relativistic intensities

    Czech Academy of Sciences Publication Activity Database

    Pisarczyk, T.; Gus'kov, S. Yu.; Chodukowski, T.; Dudžák, Roman; Korneev, Ph.; Demchenko, N. N.; Kalinowska, Z.; Dostál, Jan; Zaras-Szydlowska, A.; Borodziuk, S.; Juha, Libor; Cikhardt, Jakub; Krása, Josef; Klír, Daniel; Cikhardtová, B.; Kubeš, P.; Krouský, Eduard; Krůs, Miroslav; Ullschmied, Jiří; Jungwirth, Karel; Hřebíček, Jan; Medřík, Tomáš; Golasowski, Jiří; Pfeifer, Miroslav; Renner, Oldřich; Singh, Sushil K.; Kar, S.; Ahmed, H.; Skála, Jiří; Pisarczyk, P.

    2017-01-01

    Roč. 24, č. 10 (2017), s. 1-11, č. článku 102711. ISSN 1070-664X R&D Projects: GA MŠk EF15_008/0000162 EU Projects: European Commission(XE) 654148 - LASERLAB-EUROPE Grant - others:ELI Beamlines(XE) CZ.02.1.01/0.0/0.0/15_008/0000162 Institutional support: RVO:68378271 ; RVO:61389021 Keywords : laser-produced plasma * femtosecond polaro-interferometry * spontaneous magnetic fiel * spatial and temporal electron density distribution Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: Fluids and plasma physics (including surface physics) Impact factor: 2.115, year: 2016

  18. Overcoming Challenges in Kinetic Modeling of Magnetized Plasmas and Vacuum Electronic Devices

    Science.gov (United States)

    Omelchenko, Yuri; Na, Dong-Yeop; Teixeira, Fernando

    2017-10-01

    We transform the state-of-the art of plasma modeling by taking advantage of novel computational techniques for fast and robust integration of multiscale hybrid (full particle ions, fluid electrons, no displacement current) and full-PIC models. These models are implemented in 3D HYPERS and axisymmetric full-PIC CONPIC codes. HYPERS is a massively parallel, asynchronous code. The HYPERS solver does not step fields and particles synchronously in time but instead executes local variable updates (events) at their self-adaptive rates while preserving fundamental conservation laws. The charge-conserving CONPIC code has a matrix-free explicit finite-element (FE) solver based on a sparse-approximate inverse (SPAI) algorithm. This explicit solver approximates the inverse FE system matrix (``mass'' matrix) using successive sparsity pattern orders of the original matrix. It does not reduce the set of Maxwell's equations to a vector-wave (curl-curl) equation of second order but instead utilizes the standard coupled first-order Maxwell's system. We discuss the ability of our codes to accurately and efficiently account for multiscale physical phenomena in 3D magnetized space and laboratory plasmas and axisymmetric vacuum electronic devices.

  19. Solvent dynamical effects in electron transfer: Predicted consequences of non-Debye relaxation processes and some comparisons with experimental kinetics

    Science.gov (United States)

    McManis, George E.; Weaver, Michael J.

    1989-01-01

    The consequences of non-Debye solvent relaxation upon the barrier-crossing dynamics of adiabatic electron-transfer processes have been explored numerically using a rate formulation due to Hynes for several common forms of the dielectric response function Ê(s), with the objective of assessing the likely experimental importance of such effects. For the ``multiple Debye'' form of Ê(s), analytic expressions for the required time-correlation function can be obtained, whereas for the Davidson-Cole and Cole-Cole forms numerical solutions to the inverse Laplace transform were required. Illustrative numerical results are presented of the increases in the adiabatic barrier-crossing frequency, νn, predicted to be engendered by the presence of higher-frequency relaxation components for dielectric conditions of likely experimental relevance. Substantial (five- to ten fold) rate enhancements are often obtained, resulting from the disproportionately large influence upon νn predicted to arise from the higher-frequency components of Ê(s). Neither νn, nor the non-Debye influence upon νn, are found to be affected greatly by alterations in the shape of the barrier top caused by variations in the electronic coupling matrix element. Comparisons between these numerical predictions and corresponding experimental solvent-dependent νn values extracted from metallocene self-exchange kinetics indicate that the former can account for a substantial fraction of the νn accelerations observed in alcohols and other non-Debye solvents. Roughly concordant non-Debye effects are also predicted from some other, but not all, recent rate formulations. The desirability of utilizing subpicosecond dynamical solvation information from fluorescence Stokes shifts to predict non-Debye effects upon electron-transfer barrier-crossing frequencies is pointed out.

  20. Cascade and Dissipation of Solar Wind Turbulence at Electron Scales: Whistlers or Kinetic Alfv\\'en Waves?

    Science.gov (United States)

    Sahraoui, Fouad; Goldstein, Melvyn L.

    2010-01-01

    Over the past few decades, large-scales solar wind (SW) turbulence has been studied extensively, both theoretically and observationally. Observed power spectra of the low frequency turbulence, which can be described in the magnetohydrodynamic (MHD) limit, are shown to obey the Kolmogorov scaling, $k"{ -5/3 }$, down the local proton gyrofrequency ($C{ci} \\sim O.l$-Hz). Turbulence at frequencies above $C{ci}$ has not been thoroughly investigated and remains far less well understood. Above $C{ ci}$ the spectrum steepens to $\\sim f"{ -2.5}$ and a debate exists as to whether the turbulence has become dominated by dispersive kinetic Alfven waves (KA W) or by whistler waves, before it is dissipated at small scales, In a case study Sahraoui et al., PRL (2009) have reported the first direct determination of the dissipation range of solar wind turbulence near the electron gyroscale using the high resolution Cluster magnetic and electric field data (up to $10"2$-Hz in the spacecraft reference frame). Above the Doppler-shifted proton scale $C{\\rho i}$ a new inertial range with a scaling $\\sim f"{ -2.3}$ has been evidenced and shown to remarkably agree with theoretical predictions of a quasi-two-dimensional cascade into KA W turbulence. Here, we use a wider sample of data sets of small scale SW turbulence under different plasma conditions, and investigate under which physical criteria the KA W (or the whistler) turbulence may be observed to carry out the cascade at small scales, These new observations/criteria are compared to the predictions on the cascade and the (kinetic) dissipation from the Vlasov theory. Implications of the results on the heating problem of the solar wind will be discussed.

  1. Interaction of electrons with light metal hydrides in the transmission electron microscope.

    Science.gov (United States)

    Wang, Yongming; Wakasugi, Takenobu; Isobe, Shigehito; Hashimoto, Naoyuki; Ohnuki, Somei

    2014-12-01

    Transmission electron microscope (TEM) observation of light metal hydrides is complicated by the instability of these materials under electron irradiation. In this study, the electron kinetic energy dependences of the interactions of incident electrons with lithium, sodium and magnesium hydrides, as well as the constituting element effect on the interactions, were theoretically discussed, and electron irradiation damage to these hydrides was examined using in situ TEM. The results indicate that high incident electron kinetic energy helps alleviate the irradiation damage resulting from inelastic or elastic scattering of the incident electrons in the TEM. Therefore, observations and characterizations of these materials would benefit from increased, instead decreased, TEM operating voltage. © The Author 2014. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  2. Exploring the kinetic and thermodynamic aspects of four-electron electrochemical reactions: electrocatalysis of oxygen evolution by metal oxides and biological systems.

    Science.gov (United States)

    Wang, Vincent C-C

    2016-08-10

    Finding fundamental and general mechanisms for electrochemical reactions, such as the oxygen evolution reaction (OER) from water and reduction of CO2, plays vital roles in developing the desired electrocatalysts for facilitating solar fuel production. Recently, density functional theory (DFT) calculations have shown that there is a universal scaling relation of adsorption energy between key intermediate species, HO(ad) and HOO(ad), on the surface of metal oxides as OER electrocatalysts. In this paper, a kinetic and thermodynamic model for the four-electron electrochemical reaction based on previous OER mechanisms proposed by DFT calculations is developed to further investigate the electrocatalytic properties over a wide range of metal oxides and photosystem II. The OER activity of metal oxides (i.e. electrocatalytic current) calculated from the DFT-calculated equilibrium potentials with kinetic properties, such as the rate constants for interfacial electron transfer and catalytic turnover, can lead to a volcano-shaped trend that agrees with the results observed in experiments. In addition, the kinetic aspects of the impact on the electrocatalysts are evaluated. Finally, comparing the results of metal oxides and photosystem II, and fitting experimental voltammograms give further insights into kinetic and thermodynamic roles. Here, the general guidelines for designing OER electrocatalysts with unified kinetic and thermodynamic properties are presented.

  3. Golden rule kinetics of transfer reactions in condensed phase: The microscopic model of electron transfer reactions in disordered solid matrices

    Science.gov (United States)

    Basilevsky, M. V.; Odinokov, A. V.; Titov, S. V.; Mitina, E. A.

    2013-12-01

    The algorithm for a theoretical calculation of transfer reaction rates for light quantum particles (i.e., the electron and H-atom transfers) in non-polar solid matrices is formulated and justified. The mechanism postulated involves a local mode (an either intra- or inter-molecular one) serving as a mediator which accomplishes the energy exchange between the reacting high-frequency quantum mode and the phonon modes belonging to the environment. This approach uses as a background the Fermi golden rule beyond the usually applied spin-boson approximation. The dynamical treatment rests on the one-dimensional version of the standard quantum relaxation equation for the reduced density matrix, which describes the frequency fluctuation spectrum for the local mode under consideration. The temperature dependence of a reaction rate is controlled by the dimensionless parameter ξ0 = ℏω0/kBT where ω0 is the frequency of the local mode and T is the temperature. The realization of the computational scheme is different for the high/intermediate (ξ0 conduction in photosensitive organic materials is considered, based on the above techniques. The electron transfer (ET) in active centers of such systems proceeds via local intra- and intermolecular modes. The active modes, as a rule, operate beyond the kinetic regimes, which are usually postulated in the existing theories of the ET. Our alternative dynamic ET model for local modes immersed in the continuum harmonic medium is formulated for both classical and quantum regimes, and accounts explicitly for the mode/medium interaction. The kinetics of the energy exchange between the local ET subsystem and the surrounding environment essentially determine the total ET rate. The efficient computer code for rate computations is elaborated on. The computations are available for a wide range of system parameters, such as the temperature, external field, local mode frequency, and characteristics of mode/medium interaction. The relation of the

  4. Kinetic magnetization by fast electrons in laser-produced plasmas at sub-relativistic intensities

    Science.gov (United States)

    Pisarczyk, Tadeusz; Gus'kov, Sergey Yu.; Chodukowski, Tomasz; Dudzak, Roman; Korneev, Philipp; Demchenko, Nicolai N.; Kalinowska, Zofia; Dostal, Jan; Zaras-Szydlowska, Agnieszka; Borodziuk, Stefan; Juha, Libor; Cikhardt, Jakub; Krasa, Josef; Klir, Daniel; Cikhardtova, Balzhima; Kubes, Pavel; Krousky, Eduard; Krus, Miroslav; Ullschmied, Jiri; Jungwirth, Karel; Hrebicek, Jan; Medrik, Tomas; Golasowski, Jiri; Pfeifer, Miroslav; Renner, Oldrich; Singh, Sushil; Kar, Satyabrata; Ahmed, Hamad; Skala, Jiri; Pisarczyk, Pawel

    2017-10-01

    The problem of spontaneous magnetic field generation with nanosecond laser pulses raises a series of fundamental questions, including the intrinsic magnetization mechanisms in laser-driven plasmas and the understanding of charge-discharge processes in the irradiated target. These two issues are tightly bound as the charge-discharge processes are defined by the currents, which have in turn a feedback by magnetic fields in the plasma. Using direct polaro-interferometric measurements and theoretical analysis, we show that at parameters related to the PALS laser system ( 1.315 μ m, 350 ps, and 1016 W/cm2), fast electrons play a decisive role in the generation of magnetic fields in the laser-driven plasma. Spatial distributions of electric currents were calculated from the measured magnetic field and plasma density distributions. The obtained results revealed the characteristics of strong currents observed in capacitor-coil magnetic generation schemes and open a new approach to fundamental studies related to magnetized plasmas.

  5. Intrinsic point defects in zinc oxide. Modeling of structural, electronic, thermodynamic and kinetic properties

    Energy Technology Data Exchange (ETDEWEB)

    Erhart, P.

    2006-07-01

    The present dissertation deals with the modeling of zinc oxide on the atomic scale employing both quantum mechanical as well as atomistic methods. The first part describes quantum mechanical calculations based on density functional theory of intrinsic point defects in ZnO. To begin with, the geometric and electronic structure of vacancies and oxygen interstitials is explored. In equilibrium oxygen interstitials are found to adopt dumbbell and split interstitial configurations in positive and negative charge states, respectively. Semi-empirical self-interaction corrections allow to improve the agreement between the experimental and the calculated band structure significantly; errors due to the limited size of the supercells can be corrected by employing finite-size scaling. The effect of both band structure corrections and finite-size scaling on defect formation enthalpies and transition levels is explored. Finally, transition paths and barriers for the migration of zinc as well as oxygen vacancies and interstitials are determined. The results allow to interpret diffusion experiments and provide a consistent basis for developing models for device simulation. In the second part an interatomic potential for zinc oxide is derived. To this end, the Pontifix computer code is developed which allows to fit analytic bond-order potentials. The code is subsequently employed to obtain interatomic potentials for Zn-O, Zn-Zn, and O-O interactions. To demonstrate the applicability of the potentials, simulations on defect production by ion irradiation are carried out. (orig.)

  6. Kinetics and mechanisms of photoinduced electron-transfer reaction of zinc myoglobin

    International Nuclear Information System (INIS)

    Tsukahara, Keiichi; Asami, Satoko; Okada, Mihoko; Sakurai, Takeshi.

    1994-01-01

    Photoinduced electron transfer (ET) between zinc myoglobin (ZnPPMb) and a variety of quenchers, such as hexacyanoferrate(III)([Fe(CN) 6 ] 3- ) and hexaammineruthenium(III)(Ru(NH 3 ) 6 ] 3+ ions, cationic viologens, copper(II) protein (stellacyanin), and metmyoglobins, has been studied in aqueous degassed solutions. The excited triplet state of ZnPPMb( * ZnPPMb) was quenched by [Fe(CN) 6 ] 3- in a self-associated complex. Both quenching rate constant and formation constant of the self-associated complex decrease with increasing ionic strengths. The thermal backward ET reaction for this system was not observed; it is most likely that the backward ET step is much faster than the quenching reaction. All of the cationic quenchers examined in this work did not form a self-associated complex with * ZnPPMb, and the intermolecular quenching occurred. The thermal backward ET reaction was observed for these cationic quenchers. Not only photoinduced ET but also thermal backward ET reactions were insensitive to the driving force of the reactions, suggesting that the reactions are controlled by conformational changes in ZnPPMb. The quenching rate constants increase with increasing ionic strength for the cationic quenchers. The effects of poly-L-lysine hydrochloride, sodium poly-L-glutamate, and sodium cyclo-hexaphosphate were also examined. The active site of the * ZnPPMb toward both anionic and cationic quenchers is assumed to be the positively charged site near the heme pocket. (author)

  7. Microscopic kinetic analysis of space-charge induced optical microbunching in a relativistic electron beam

    Directory of Open Access Journals (Sweden)

    Agostino Marinelli

    2010-11-01

    Full Text Available Longitudinal space-charge forces from density fluctuations generated by shot noise can be a major source of microbunching instability in relativistic high brightness electron beams. The gain in microbunching due to this effect is broadband, extending at least up to optical frequencies, where the induced structure on the beam distribution gives rise to effects such as coherent optical transition radiation. In the high-frequency regime, theoretical and computational analyses of microbunching formation require a full three-dimensional treatment. In this paper we address the problem of space-charge induced optical microbunching formation in the high-frequency limit when transverse thermal motion due to finite emittance is included for the first time. We derive an analytical description of this process based on the beam’s plasma dielectric function. We discuss the effect of transverse temperature on the angular distribution of microbunching gain and its connection to the physics of Landau damping in longitudinal plasma oscillations. Application of the theory to a relevant experimental scenario is discussed. The analytical results obtained are then compared to the predictions arising from high resolution three-dimensional molecular dynamics simulations.

  8. Kinetics and mechanism of bimolecular electron transfer reaction in quinone-amine systems in micellar solution

    International Nuclear Information System (INIS)

    Kumbhakar, Manoj; Nath, Sukhendu; Mukherjee, Tulsi; Pal, Haridas

    2005-01-01

    Photoinduced electron transfer (ET) reactions between anthraquinone derivatives and aromatic amines have been investigated in sodium dodecyl sulphate (SDS) micellar solutions. Significant static quenching of the quinone fluorescence due to high amine concentration in the micellar phase has been observed in steady-state measurements. The bimolecular rate constants for the dynamic quenching in the present systems k q TR , as estimated from the time-resolved measurements, have been correlated with the free energy changes ΔG 0 for the ET reactions. Interestingly it is seen that the k q TR vs ΔG 0 plot displays an inversion behavior with maximum k q TR at around 0.7 eV, a trend similar to that predicted in Marcus ET theory. Like the present results, Marcus inversion in the k q TR values was also observed earlier in coumarin-amine systems in SDS and TX-100 micellar solutions, with maximum k q TR at around the same exergonicity. These results thus suggest that Marcus inversion in bimolecular ET reaction is a general phenomenon in micellar media. Present observations have been rationalized on the basis of the two-dimensional ET (2DET) theory, which seems to be more suitable for micellar ET reactions than the conventional ET theory. For the quinone-amine systems, it is interestingly seen that k q TR vs ΔG 0 plot is somewhat wider in comparison to that of the coumarin-amine systems, even though the maxima in the k q TR vs ΔG 0 plots appear at almost similar exergonicity for both the acceptor-donor systems. These observations have been rationalized on the basis of the differences in the reaction windows along the solvation axis, as envisaged within the framework of the 2DET theory, and arise due to the differences in the locations of the quinones and coumarin dyes in the micellar phase

  9. Kinetic Monte Carlo Modeling of Charge Carriers in Organic Electronic Devices: Suppression of the Self-Interaction Error

    KAUST Repository

    Li, Haoyuan

    2017-05-18

    Kinetic Monte Carlo (KMC) simulations have emerged as an important tool to help improve the efficiency of organic electronic devices by providing a better understanding of their device physics. In the KMC simulation of an organic device, the reliability of the results depends critically on the accuracy of the chosen charge-transfer rates, which are themselves strongly influenced by the site-energy differences. These site-energy differences include components coming from the electrostatic forces present in the system, which are often evaluated through electric potentials described by the Poisson equation. Here we show that the charge-carrier self-interaction errors that appear when evaluating the site-energy differences can lead to unreliable simulation results. To eliminate these errors, we propose two approaches that are also found to reduce the impact of finite-size effects. As a consequence, reliable results can be obtained at reduced computational costs. The proposed methodologies can be extended to other device simulation techniques as well.

  10. A kinetic study of plutonium dioxide dissolution in hydrochloric acid using iron (II) as an electron transfer catalyst

    International Nuclear Information System (INIS)

    Fife, K.W.

    1996-09-01

    Effective dissolution of plutonium dioxide has traditionally been accomplished by contact with strong nitric acid containing a small amount of fluoride at temperatures of ∼ 100 C. In spite of these aggressive conditions, PuO 2 dissolution is sometimes incomplete requiring additional contact with the solvent. This work focused on an alternative to conventional dissolution in nitric acid where an electron transfer catalyst, Fe(II), was used in hydrochloric acid. Cyclic voltammetry was employed as an in-situ analytical technique for monitoring the dissolution reaction rate. The plutonium oxide selected for this study was decomposed plutonium oxalate with > 95% of the material having a particle diameter (< 70 microm) as determined by a scanning laser microscopy technique. Attempts to dry sieve the oxide into narrow size fractions prior to dissolution in the HCl-Fe(II) solvent system failed, apparently due to significant interparticle attractive forces. Although sieve splits were obtained, subsequent scanning laser microscopy analysis of the sieve fractions indicated that particle segregation was not accomplished and the individual sieve fractions retained a particle size distribution very similar to the original powder assemblage. This phenomena was confirmed through subsequent dissolution experiments on the various screen fractions which illustrated no difference in kinetic behavior between the original oxide assemblage and the sieve fractions

  11. Kinetics and mechanisms of the electron-transfer reactions between uranium(III) and some ruthenium(III) ammine complexes

    International Nuclear Information System (INIS)

    Adegite, A.; Lyun, J.F.; Ojo, J.F.

    1977-01-01

    The rates of reduction of ) 7Ru(NH 3 ) 6 { 3+ and 7RuX(NH 3 ) 5 { 3+ (n = 2 or 3: X = H 2 O,OH - , Cl - ,Br - , and 1 - ) by U 3+ have been measured with a stopped-flow spectrophotometer. The reductions of 7Ru(NH 3 ) 6 { 3+ and 7Ru(NH 3 )(OH 2 ){ 3+ proceed by an outer-sphere mechanism. The mechanism for 7Ru(NH 3 ) 5 (OH){ 2+ is less certain, but is probably also outer sphere. The penta-amminehalogeno-complexes have a reactivity order I > Br> Cl, probably by an inner-sphere mechanism. The rates of reduction and reactivity patterns of equivalent cobalt(III) and ruthenium(III) complexes with a common reducing ion are compared. From the results, it is concluded that differences in the kinetic reactivity of the two metal complexes are due to the basic difference in the electronic structure of Cosup(III) and Rusup(III). These differences are manifested as influences of intrinsic factors on the rates and reactivity, and affect not only the rates of the reactions but also the type of mechanism often preferred. On the other hand, a comparison of rates of oxidation of U 3+ with those of other aqua-ions employing Marcus theory leads to the conclusion that the very low reduction potential of U 3+ is responsible for its very high redox reactivity. (author). )

  12. Synthesis and electronic properties of Ruddlesden-Popper strontium iridate epitaxial thin films stabilized by control of growth kinetics

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xiaoran; Cao, Yanwei; Pal, B.; Middey, S.; Kareev, M.; Choi, Y.; Shafer, P.; Haskel, D.; Arenholz, E.; Chakhalian, J.

    2017-12-01

    We report on the selective fabrication of high-quality Sr2IrO4 and SrIrO3 epitaxial thin films from a single polycrystalline Sr2IrO4 target by pulsed laser deposition. Using a combination of x-ray diffraction and photoemission spectroscopy characterizations, we discover that within a relatively narrow range of substrate temperature, the oxygen partial pressure plays a critical role in the cation stoichiometric ratio of the films, and triggers the stabilization of different Ruddlesden-Popper (RP) phases. Resonant x-ray absorption spectroscopy measurements taken at the Ir L edge and the O K edge demonstrate the presence of strong spin-orbit coupling, and reveal the electronic and orbital structures of both compounds. These results suggest that in addition to the conventional thermodynamics consideration, higher members of the Srn+1IrnO3n+1 series can possibly be achieved by kinetic control away from the thermodynamic limit. These findings offer an approach to the synthesis of ultrathin films of the RP series of iridates and can be extended to other complex oxides with layered structure.

  13. Kinetic transverse dispersion relation for relativistic magnetized electron-positron plasmas with Maxwell-Jüttner velocity distribution functions

    International Nuclear Information System (INIS)

    López, Rodrigo A.; Moya, Pablo S.; Muñoz, Víctor; Viñas, Adolfo F.; Valdivia, J. Alejandro

    2014-01-01

    We use a kinetic treatment to study the linear transverse dispersion relation for a magnetized isotropic relativistic electron-positron plasma with finite relativistic temperature. The explicit linear dispersion relation for electromagnetic waves propagating along a constant background magnetic field is presented, including an analytical continuation to the whole complex frequency plane for the case of Maxwell-Jüttner velocity distribution functions. This dispersion relation is studied numerically for various temperatures. For left-handed solutions, the system presents two branches, the electromagnetic ordinary mode and the Alfvén mode. In the low frequency regime, the Alfvén branch has two dispersive zones, the normal zone (where ∂ω/∂k > 0) and an anomalous zone (where ∂ω/∂k < 0). We find that in the anomalous zone of the Alfvén branch, the electromagnetic waves are damped, and there is a maximum wave number for which the Alfvén branch is suppressed. We also study the dependence of the Alfvén velocity and effective plasma frequency with the temperature. We complemented the analytical and numerical approaches with relativistic full particle simulations, which consistently agree with the analytical results

  14. Structure and Dissipation Characteristics of an Electron Diffusion Region Observed by MMS During a Rapid, Normal-Incidence Magnetopause Crossing

    Science.gov (United States)

    Torbert, R. B.; Burch, J. L.; Argall, M. R.; Alm, L.; Farrugia, C. J.; Forbes, T. G.; Giles, B. L.; Rager, A.; Dorelli, J.; Strangeway, R. J.; Ergun, R. E.; Wilder, F. D.; Ahmadi, N.; Lindqvist, P.-A.; Khotyaintsev, Y.

    2017-12-01

    On 22 October 2016, the Magnetospheric Multiscale (MMS) spacecraft encountered the electron diffusion region (EDR) when the magnetosheath field was southward, and there were signatures of fast reconnection, including flow jets, Hall fields, and large power dissipation. One rapid, normal-incidence crossing, during which the EDR structure was almost stationary in the boundary frame, provided an opportunity to observe the spatial structure for the zero guide field case of magnetic reconnection. The reconnection electric field was determined unambiguously to be 2-3 mV/m. There were clear signals of fluctuating parallel electric fields, up to 6 mV/m on the magnetosphere side of the diffusion region, associated with a Hall-like parallel current feature on the electron scale. The width of the main EDR structure was determined to be 2 km (1.8 de). Although the MMS spacecraft were in their closest tetrahedral separation of 8 km, the divergences and curls for these thin current structures could therefore not be computed in the usual manner. A method is developed to determine these quantities on a much smaller scale and applied to compute the normal component of terms in the generalized Ohm's law for the positions of each individual spacecraft (not a barocentric average). Although the gradient pressure term has a qualitative dependence that follows the observed variation of E + Ve × B, the quantitative magnitude of these terms differs by more than a factor of 2, which is shown to be greater than the respective errors. Thus, future research is required to find the manner in which Ohm's law is balanced.

  15. Study of the charge kinetics of MgO (1 1 0) subjected to high energy electron irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Boughariou, A., E-mail: aicha_boughariou@yahoo.fr [LaMaCoP, Université de Sfax pour le sud, Faculté des Sciences, 3038 Sfax Tunisie (Tunisia); Kallel, A. [LaMaCoP, Université de Sfax pour le sud, Faculté des Sciences, 3038 Sfax Tunisie (Tunisia); Blaise, G. [LPS, Université Paris-Sud XI, Batiment 510, Orsay 91405 (France)

    2014-09-15

    Highlights: • Variation of the logarithm of SEE yield with the injected dose in MgO (1 1 0) at high energy. • Critical energy E{sub C} of MgO (1 1 0). • Formation of an electrostatic mirror. • Breakdown phenomenon (current density effect). - Abstract: This article presents a study performed with a dedicated scanning electron microscope (SEM) on the electrical property evolution of magnesium oxide (1 1 0) single crystal during 15 and 30 keV irradiation. First, the charging behavior is studied during the charge injection process at low current density J{sub 0}, by measuring the logarithm of the secondary electron emission yield (lnσ). Next, we have investigated the dependence on the current density of the charge-trapping phenomena in MgO (1 1 0). The results shown that beyond the crossover energy E{sub 2}, the observed effects varies depending on whether the energy of the primary electrons is lower or higher than an energy called critical energy E{sub c} = 20 keV (in the case of MgO (1 1 0)). When irradiating the material at E{sub 0} < E{sub c} and at low J{sub 0}, self regulated regime is obtained, if J{sub 0} is sufficiently intense an aging regime is reached. This latter regime is characterized by a positive surface charge, when a negative charge was expected. At E{sub 0} > E{sub c}, and for low J{sub 0}, the detailed monitoring of the charge kinetic of MgO (1 1 0) at high primary energy E{sub 0} = 30 keV, permit to show that the combined effect of the increased negative surface potential during irradiation and extractor field below the surface of MgO fact that lnσ undergoes a strong slope failure at the beginning of the injection and stabilizes at a value much less than zero leading to the formation of an electrostatic mirror. At high J{sub 0}, the consequences of the charge accumulation are violent and a breakdown phenomenon is observed.

  16. The role of electron interfacial transfer in mesoporous nano-TiO2photocatalysis: a combined study of in situ photoconductivity and numerical kinetic simulation.

    Science.gov (United States)

    Liu, Baoshun; Yang, Jingjing; Zhao, Xiujian; Yu, Jiaguo

    2017-03-29

    In this research, a combination of in situ photoconductivity (σ) and kinetic simulations was used to study the role of electron interfacial transfer (IT) in the gaseous photocatalysis of formic acid by mesoporous nanocrystalline TiO 2 . The effects of light intensity, initial formic acid concentrations, oxygen amounts, and temperature on the in situ σ and the photocatalytic courses were studied in detail. The temperature dependence of in situ σ clearly shows that the electron transfer is determined by the IT of electrons to O 2 rather than by the transport. It was seen that the electron IT limits the photocatalysis by correlating with the recombination and the hole IT via the dynamic change in electron densities. The numerical simulation of in situ σ shows that the IT of electrons belongs to a thermally activated process that presents a thermal barrier of 0.5 eV. It is considered that this high thermal barrier limits the IT of electrons. It was also seen that the thermal activation of photocatalysis does not relate to that of the electron IT, although the overall photocatalysis is limited by the IT of electrons. Our finding shows that it is an effective way to increase the photocatalytic activity by reducing the thermal barrier of electron IT.

  17. Frequency domain kinetic of positron-electron annihilation in the MgO-Al2O3 spinel-type ceramics

    Science.gov (United States)

    Fl'unt, Orest; Klym, Halyna; Ingram, Adam

    2018-03-01

    In this work, the kinetic of positron-electron annihilation in the MgO-Al2O3 spinel-type ceramics sintered at different temperatures (1100, 1200 and 1400 °C) has been calculated and analyzed in a frequency domain. The spectra of real (in-phase) and imaginary (quadrature) components of positron-electron annihilation kinetic have been obtained numerically from usual temporal characteristics using integral Fourier transform. The numerical calculations were carried out using cubic spline interpolation of the pulse characteristics of MgO-Al2O3 ceramics in time domain with following analytical calculations of integrals. The obtained spectra as real so imaginary part of MgO-Al2O3 ceramics in frequency domain almost good obey a Debye law denying correlation between elementary positron annihilation processes. Complex diagrams of frequency domain responses of as-prepared samples have a shape of semicircles with close characteristic frequencies. Some deviation on low-frequency side of the semicircles is observed confirming an availability of longer time kinetic processes. Sintering temperature dependencies of the relaxation times and characteristic frequencies of positron-electron annihilation processes have been obtained. It is shown that position of large maxima on the frequency dependencies of imaginary part corresponds to fast average relaxation lifetime representing the most intensive interaction process of positrons with small cavity traps in solids.

  18. Does the implementation of an electronic prescribing system create unintended medication errors? A study of the sociotechnical context through the analysis of reported medication incidents

    Directory of Open Access Journals (Sweden)

    Hodson James

    2011-05-01

    Full Text Available Abstract Background Even though electronic prescribing systems are widely advocated as one of the most effective means of improving patient safety, they may also introduce new risks that are not immediately obvious. Through the study of specific incidents related to the processes involved in the administration of medication, we sought to find out if the prescribing system had unintended consequences in creating new errors. The focus of this study was a large acute hospital in the Midlands in the United Kingdom, which implemented a Prescribing, Information and Communication System (PICS. Methods This exploratory study was based on a survey of routinely collected medication incidents over five months. Data were independently reviewed by two of the investigators with a clinical pharmacology and nursing background respectively, and grouped into broad types: sociotechnical incidents (related to human interactions with the system and non-sociotechnical incidents. Sociotechnical incidents were distinguished from the others because they occurred at the point where the system and the professional intersected and would not have occurred in the absence of the system. The day of the week and time of day that an incident occurred were tested using univariable and multivariable analyses. We acknowledge the limitations of conducting analyses of data extracted from incident reports as it is widely recognised that most medication errors are not reported and may contain inaccurate data. Interpretation of results must therefore be tentative. Results Out of a total of 485 incidents, a modest 15% (n = 73 were distinguished as sociotechnical issues and thus may be unique to hospitals that have such systems in place. These incidents were further analysed and subdivided into categories in order to identify aspects of the context which gave rise to adverse situations and possible risks to patient safety. The analysis of sociotechnical incidents by time of day and day of

  19. Monte Carlo simulation of electron depth distribution and backscattering for carbon films deposited on aluminium as a function of incidence angle and primary energy

    International Nuclear Information System (INIS)

    Dapor, Maurizio

    2005-01-01

    Carbon films are deposited on various substrates (polymers, polyester fabrics, polyester yarns, metal alloys) both for experimental and technological motivations (medical devices, biocompatible coatings, food package and so on). Computational studies of the penetration of electron beams in supported thin film of carbon are very useful in order to compare the simulated results with analytical techniques data (obtained by scanning electron microscopy and/or Auger electron spectroscopy) and investigate the film characteristics. In the present paper, the few keV electron depth distribution and backscattering coefficient for the special case of film of carbon deposited on aluminium are investigated, by a Monte Carlo simulation, as a function of the incidence angle and primary electron energy. The simulated results can be used as a way to evaluate the carbon film thickness by a set of measurements of the backscattering coefficient

  20. Incidence and Determinants of Dental Implant Failure: A Review of Electronic Health Records in a U.S. Dental School.

    Science.gov (United States)

    Hickin, Matthew Parker; Shariff, Jaffer A; Jennette, Philip J; Finkelstein, Joseph; Papapanou, Panos N

    2017-10-01

    The aim of this study was to use electronic health care records (EHRs) to examine retrospectively the incidence of and attributes associated with dental implant failures necessitating implant removal in a large cohort of patients treated in the student clinics of a U.S. dental school over three and a half years. EHRs were searched for all patients who received dental implants between July 1, 2011, and December 31, 2014. Characteristics of patients and implants that were actively removed due to irrevocable failure of any etiology ("failure cohort") during this period were compared to those of all other patients who received dental implants during the same time frame ("reference cohort"). Differences in the frequency distribution of various characteristics between the failure and reference cohorts were compared. Of a total 6,129 implants placed in 2,127 patients during the study period, 179 implants (2.9%) in 120 patients (5.6%) were removed. In the multivariate analysis, presence of a removable (OR=2.86) or fixed temporary prosthesis (OR=3.71) was statistically significantly associated with increased risk for implant failure. In contrast, antibiotic coverage (pre- and post-surgery OR=0.16; post-surgery only OR=0.38) and implants of certain manufacturers were associated with lower risk of implant failure. In this sizeable cohort of patients receiving care in dental student clinics, the review of EHRs facilitated identification of multiple variables associated with implant failure resulting in removal; however, these findings do not suggest causative relationships. The adopted analytical approach can enhance quality assurance measures and may contribute to the identification of true risk factors for dental implant failure.

  1. On the study of the electron kinetic processes in the breakdown of argon by 0.53 µm and 0.248 µm laser radiation

    Science.gov (United States)

    Gamal, Yosr E.; El-Nadi, L.; Omara, Magdi O.; Ghazoulin, B.; Sabour, Khaled A.

    1999-07-01

    Based on a previously developed electron cascade model, a study is performed to investigate the electron kinetics in the breakdown of argon under two sets of experimental conditions in which argon over a pressure range 10-3 × 103 Torr is irradiated with focused beams of laser radiation of wavelengths 0.53 µm and 0.248 µm and pulse duration 15 ns and 18 ns, respectively. The model takes into account all the possible electron, atom and photon interactions. The calculated breakdown threshold intensities are found to be in accordance with the measured ones over the whole pressure range for lambda = 0.248 µm. However, the agreement for lambda = 0.53 µm was poor below 200 Torr. Moreover, the study of the electron energy distribution function and its parameters revealed the competing role of multiphoton and cascade collisional ionization mechanisms against loss processes over the pressure range examined in this analysis.

  2. Hydrodynamic and kinetic models for spin-1/2 electron-positron quantum plasmas: Annihilation interaction, helicity conservation, and wave dispersion in magnetized plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Andreev, Pavel A., E-mail: andreevpa@physics.msu.ru [Faculty of Physics, Lomonosov Moscow State University, Moscow (Russian Federation)

    2015-06-15

    We discuss the complete theory of spin-1/2 electron-positron quantum plasmas, when electrons and positrons move with velocities mach smaller than the speed of light. We derive a set of two fluid quantum hydrodynamic equations consisting of the continuity, Euler, spin (magnetic moment) evolution equations for each species. We explicitly include the Coulomb, spin-spin, Darwin and annihilation interactions. The annihilation interaction is the main topic of the paper. We consider the contribution of the annihilation interaction in the quantum hydrodynamic equations and in the spectrum of waves in magnetized electron-positron plasmas. We consider the propagation of waves parallel and perpendicular to an external magnetic field. We also consider the oblique propagation of longitudinal waves. We derive the set of quantum kinetic equations for electron-positron plasmas with the Darwin and annihilation interactions. We apply the kinetic theory to the linear wave behavior in absence of external fields. We calculate the contribution of the Darwin and annihilation interactions in the Landau damping of the Langmuir waves. We should mention that the annihilation interaction does not change number of particles in the system. It does not related to annihilation itself, but it exists as a result of interaction of an electron-positron pair via conversion of the pair into virtual photon. A pair of the non-linear Schrodinger equations for the electron-positron plasmas including the Darwin and annihilation interactions is derived. Existence of the conserving helicity in electron-positron quantum plasmas of spinning particles with the Darwin and annihilation interactions is demonstrated. We show that the annihilation interaction plays an important role in the quantum electron-positron plasmas giving the contribution of the same magnitude as the spin-spin interaction.

  3. Effects of Incident Electron Fluence and Energy on the Election Yield Curves and Emission Spectra of Dielectrics

    Science.gov (United States)

    Sim, Alec; Dennison, J. R.; Thomson, Clint

    2005-01-01

    We present an experimental study of evolution of electron emission yields and spectra as a result of internal charge build up due to electron dose. Reliable total, backscattered and secondary yield curves and electron emission spectra for un-charged insulators using a low fluence, pulsed electron beam (= or emission of charges from insulators.

  4. SCATPI, a subroutine for calculating. pi. N cross sections and polarizations for incident pion kinetic energies between 90 and 300 MeV. [In FORTRAN for CDC 6600 and 7600 and Xerox Sigma 7

    Energy Technology Data Exchange (ETDEWEB)

    Walter, J.B.; Rebka, G.A. Jr.

    1979-03-01

    A subroutine, SCATPI, was written which calculates ..pi../sup +/p elastic differential cross sections for incident pion kinetic energies between 90 and 310 MeV for ..pi../sup -/p. The calculation is based upon the phase shift analysis of Carter, Bugg, and Carter, and is reliable to about 2% for ..pi../sup +/p and 3% for ..pi../sup -/p differential cross sections. SCATPI also calculates other scattering parameters for the ..pi..+-p systems. The calculations are compared with the measurements used in the phase shift analysis, and with selected recent measurements. The use of SCATPI is described. 14 figures, 4 tables.

  5. Kinetic parameters, collision rates, energy exchanges and transport coefficients of non-thermal electrons in premixed flames at sub-breakdown electric field strengths

    KAUST Repository

    Bisetti, Fabrizio

    2014-01-02

    The effects of an electric field on the collision rates, energy exchanges and transport properties of electrons in premixed flames are investigated via solutions to the Boltzmann kinetic equation. The case of high electric field strength, which results in high-energy, non-thermal electrons, is analysed in detail at sub-breakdown conditions. The rates of inelastic collisions and the energy exchange between electrons and neutrals in the reaction zone of the flame are characterised quantitatively. The analysis includes attachment, ionisation, impact dissociation, and vibrational and electronic excitation processes. Our results suggest that Townsend breakdown occurs for E/N = 140 Td. Vibrational excitation is the dominant process up to breakdown, despite important rates of electronic excitation of CO, CO2 and N2 as well as impact dissociation of O2 being apparent from 50 Td onwards. Ohmic heating in the reaction zone is found to be negligible (less than 2% of peak heat release rate) up to breakdown field strengths for realistic electron densities equal to 1010 cm-3. The observed trends are largely independent of equivalence ratio. In the non-thermal regime, electron transport coefficients are insensitive to mixture composition and approximately constant across the flame, but are highly dependent on the electric field strength. In the thermal limit, kinetic parameters and transport coefficients vary substantially across the flame due to the spatially inhomogeneous concentration of water vapour. A practical approach for identifying the plasma regime (thermal versus non-thermal) in studies of electric field effects on flames is proposed. © 2014 Taylor & Francis.

  6. On the Emission of Electrons from Solid H_2 and D_2 by Bombardment with 1-3 keV Electrons up to Very Large Angles of Incidence

    DEFF Research Database (Denmark)

    Schou, Jørgen; Sørensen, H.

    1982-01-01

    -65°. Only at large angles and low energies were the results different for H2 and D2, those for H2 being the lower ones. The angular variation of the SEE coefficient δ may be written as δ(θ)=δ(0)(cos θ)3/2 up to an angle of 65-75°. For H2 the SEE coefficient is around 0.65 times that the D2 except......Electron emission, i.e. electron reflection (ER) and secondary electron emission (SEE), was studied for solid H2 and D2 for oblique incidence of 1-3 keV electrons up to an angle of incidence θ of 83°. The ER coefficient η was small at low angles, and rose rapidly with increasing θ above 60...... at the largest angles. The results agree well with the existing qualitative tendencies described in the literature. The variation with the angle of incidence shows a fair agreement with an estimate based on data for the angular distribution of electrons ejected from ionized hydrogen molecules. In addition...

  7. Free-Free Transitions of e-H System Inside a Dense Plasma Irradiated by a Laser Field at Very Low Incident Electron Energies

    Science.gov (United States)

    Bhatia, A. K.; Sinha, C.

    2012-01-01

    The free-free transition is studied for an electron-hydrogen in the ground state at low incident energies in the presence of an external homogenous, monochromatic, and linearly polarized laser-field inside a hot dense plasma.The effect of plasma screening is considered in the Debye-Huckel approximation. The calculations are performed in the soft photon limit, assuming that the plasma frequency is much higher than the laser frequency. The incident electron is considered to be dressed by the laser field in a nonperturbative manner by choosing the Volkov solutions in both the initial and final channels. The space part of the scattering wave function for the electron is solved numerically by taking into account the electron exchange. The laser-assisted differential and total cross sections are calculated for single-photon absorption /emission and no photon exchange in the soft photon limit, the laser intensity being much less than the atomic field intensity. The calculations have been carried out for various values of Debye parameter, ranging from 0.005 to 0.12. A strong suppression is noted in the laser-assisted cross sections as compared to the field-free situation. A significant difference is noted for the singlet and triplet cross sections. The suppression is much more in the triplet states.

  8. An improved experimental scheme for simultaneous measurement of high-resolution zero electron kinetic energy (ZEKE) photoelectron and threshold photoion (MATI) spectra

    Science.gov (United States)

    Michels, François; Mazzoni, Federico; Becucci, Maurizio; Müller-Dethlefs, Klaus

    2017-10-01

    An improved detection scheme is presented for threshold ionization spectroscopy with simultaneous recording of the Zero Electron Kinetic Energy (ZEKE) and Mass Analysed Threshold Ionisation (MATI) signals. The objective is to obtain accurate dissociation energies for larger molecular clusters by simultaneously detecting the fragment and parent ion MATI signals with identical transmission. The scheme preserves an optimal ZEKE spectral resolution together with excellent separation of the spontaneous ion and MATI signals in the time-of-flight mass spectrum. The resulting improvement in sensitivity will allow for the determination of dissociation energies in clusters with substantial mass difference between parent and daughter ions.

  9. Kinetics of the Reactions Involving CF2 and CF in a Pure Tetrafluoromethane Plasma: I. Production of CF2 and CF via Electron-Impact Dissociation

    Science.gov (United States)

    Ivanov, V. V.; Klopovskii, K. S.; Lopaev, D. V.; Proshina, O. V.; Rakhimov, A. T.; Rakhimova, T. V.; Rulev, G. B.

    2002-03-01

    The kinetics of the production and loss of CF2 and CF radicals in a glow discharge in pure CF4 is investigated by the laser-induced fluorescence method. The effective rate constants for electron-impact dissociation of CF4 molecules along the pathways toward CF2 and CF radicals are determined within a wide range of the reduced electric field (80-250 Td). It is shown that, along with the direct electron-impact dissociation of CF4, the radicals are also produced via the dissociation of the CxFy polymer fluorocarbon particles that form in the plasma. A detailed analysis of the kinetics of the radical production and loss in a modulated discharge made it possible to evaluate the contribution of the electron-impact dissociation of CF4 to the production of radicals and, consequently, to determine the dissociation rate constants k_{CF_2 } and k CF. A comparison of the obtained k_{CF_2 } and k CF values with the results of calculations by the Monte Carlo method and the literature data on the cross sections for electron-impact dissociation of CF4 molecules enabled the normalization of these cross sections in the threshold region and the construction of the model cross sections for the electron-impact dissociation of CF4 into neutral products. The calculated cross sections allow a satisfactory description of the experimental results throughout the entire range of E/N under study. A significant scatter (up to 100%) in the experimental data on k_{CF_2 } and k CF at low values of E/N is related to the considerable contribution of the CxFy polymer molecules (and, probably, CxF{y/+} ions and fluorocarbon grains) to the production of CF2 and CF radicals both in the plasma volume and on the surface of a fluorocarbon film covering the discharge tube wall.

  10. Kinetics of Electrons from Plasma Discharge in a Latent Track Region Induced by Swift Heavy ION Irradiation

    Directory of Open Access Journals (Sweden)

    Minárik Stanislav

    2015-08-01

    Full Text Available While passing swift heavy ion through a material structure, it produces a region of radiation affected material which is known as a "latent track". Scattering motions of electrons interacting with a swift heavy ion are dominant in the latent track region. These phenomena include the electron impurity and phonon scattering processes modified by the interaction with the ion projectile as well as the Coulomb scattering between two electrons.

  11. Pulse radiolysis study of reaction of bull serum albumin electron adduct with oxygen. Polychromatic kinetics of reaction with adsorbed oxygen

    International Nuclear Information System (INIS)

    Pribush, A.G.

    1986-01-01

    By the method of pulse radiolysis the reaction of bull serum albumin electron adduct with oxygen is investigated. As pulsed radiation source electron linear accelerators with particle energy of 8.0 and 4.5 MeV and pulse time of 40 ns and 2.2 μs, respectively have been used. It is assumed that the disappearance of protein electron adduct occurs in the course of its interaction with oxygen adsorbed on protein globular molecule

  12. Free-Free Transitions of the e-H System Inside a Dense Plasma Irradiated by a Laser Field at Very Low Incident-Electron Energies

    Science.gov (United States)

    Bhatia, A. K.; Sinha, C.

    2012-01-01

    The free-free transition is studied for an electron-hydrogen atom in ground state when a low-energy electron (external) is injected into hydrogenic plasma in the presence of an external homogenous, monochromatic, and linearly polarized laser field. The effect of plasma screening is considered in the Debye-Huckel approximation. The calculations are performed in the soft photon limit. The incident electron is considered to be dressed by the laser field in a nonperturbative manner by choosing the Volkov solutions in both the initial and final channels. The space part of the scattering wave function for the electron is solved numerically by taking into account the electron exchange. The laser-assisted differential and total cross sections are calculated for single-photon absorption or emission and no-photon exchange in the soft photon limit, the laser intensity being much less than the atomic field intensity. The calculations have been carried out for various values of Debye parameter, ranging from 0.005 to 0.12. A strong suppression is noted in the laser-assisted cross sections as compared to the field-free situation. A significant difference is noted for the singlet and triplet cross sections. The suppression is much more in the triplet states.

  13. Incidence and mortality of fractures by frailty level over 80 years of age: cohort study using UK electronic health records.

    Science.gov (United States)

    Ravindrarajah, Rathi; Hazra, Nisha C; Charlton, Judith; Jackson, Stephen H D; Dregan, Alex; Gulliford, Martin C

    2018-01-21

    This study aimed to estimate the association of frailty with incidence and mortality of fractures at different sites in people aged over 80 years. Cohort study. UK family practices from 2001 to 2014. 265 195 registered participants aged 80 years and older. Frailty status classified into 'fit', 'mild', 'moderate' and 'severe' frailty. Fractures, classified into non-fragility and fragility, including fractures of femur, pelvis, shoulder and upper arm, and forearm/wrist. Incidence of fracture, and mortality within 90 days and 1 year, were estimated. There were 28 643 fractures including: non-fragility fractures, 9101; femur, 12 501; pelvis, 2172; shoulder and upper arm, 4965; and forearm/wrist, 6315. The incidence of each fracture type was higher in women and increased with frailty category (femur, severe frailty compared with 'fit', incidence rate ratio (IRR) 2.4, 95% CI 2.3 to 2.6). Fractures of the femur (95-99 years compared with 80-84 years, IRR 2.7, 95% CI 2.6 to 2.9) and pelvis (IRR 2.9, 95% CI 2.5 to 3.3) were strongly associated with age but non-fragility and forearm fractures were not. Mortality within 90 days was greatest for femur fracture (adjusted HR, compared with forearm fracture 4.3, 95% CI 3.7 to 5.1). Mortality was higher in men and increased with age (HR 5.3, 95% CI 4.3 to 6.5 in those over 100 years compared with 80-84 years) but was less strongly associated with frailty category. Similar associations with fractures were seen at 1-year mortality. The incidence of fractures at all sites was higher in women and strongly associated with advancing frailty status, while the risk of mortality after a fracture was greater in men and was associated with age rather than frailty category. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  14. Polyurethanes irradiation by accelerated electrons: molecular and supramolecular evolution, incidence on the extractable and biomedical implications; Irradiation de polyurethannes par electrons acceleres: evolution moleculaire et supramoleculaire, incidence sur les extractibles et implications biomedicales

    Energy Technology Data Exchange (ETDEWEB)

    Guignot, C

    2002-11-15

    Face to the development of radiosterilization and polymers medical devices it was wished to study the behavior of polyurethanes under accelerated electrons in oxidizing atmosphere. This study has been made to reveal the physico chemical and organisational modifications of polyurethanes for a medical use. (N.C.)

  15. Kinetics of NH3-oxidation, NO-turnover, N2O-production and electron flow during oxygen depletion in model bacterial and archaeal ammonia oxidisers.

    Science.gov (United States)

    Hink, Linda; Lycus, Pawel; Gubry-Rangin, Cécile; Frostegård, Åsa; Nicol, Graeme W; Prosser, James I; Bakken, Lars R

    2017-12-01

    Ammonia oxidising bacteria (AOB) are thought to emit more nitrous oxide (N 2 O) than ammonia oxidising archaea (AOA), due to their higher N 2 O yield under oxic conditions and denitrification in response to oxygen (O 2 ) limitation. We determined the kinetics of growth and turnover of nitric oxide (NO) and N 2 O at low cell densities of Nitrosomonas europaea (AOB) and Nitrosopumilus maritimus (AOA) during gradual depletion of TAN (NH 3  + NH4+) and O 2 . Half-saturation constants for O 2 and TAN were similar to those determined by others, except for the half-saturation constant for ammonium in N. maritimus (0.2 mM), which is orders of magnitudes higher than previously reported. For both strains, cell-specific rates of NO turnover and N 2 O production reached maxima near O 2 half-saturation constant concentration (2-10 μM O 2 ) and decreased to zero in response to complete O 2 -depletion. Modelling of the electron flow in N. europaea demonstrated low electron flow to denitrification (≤1.2% of the total electron flow), even at sub-micromolar O 2 concentrations. The results corroborate current understanding of the role of NO in the metabolism of AOA and suggest that denitrification is inconsequential for the energy metabolism of AOB, but possibly important as a route for dissipation of electrons at high ammonium concentration. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  16. Effects of Bonding Wires and Epoxy Molding Compound on Gold and Copper Ball Bonds Intermetallic Growth Kinetics in Electronic Packaging

    Science.gov (United States)

    Gan, C. L.; Classe, F. C.; Chan, B. L.; Hashim, U.

    2014-04-01

    This paper discusses the influence of bonding wires and epoxy mold compounds (EMC) on intermetallic compound (IMC) diffusion kinetics and apparent activation energies ( E aa) of CuAl and AuAl IMCs in a fineline ball grid array package. The objective of this study is to study the CuAl and AuAl IMC growth rates with different epoxy mold compounds and to determine the apparent activation energies of different combination of package bills of materials. IMC thickness measurement has been carried out to estimate the coefficient of diffusion ( D o) and E aa various aging conditions of different EMCs and bonding wires. Apparent activation energies ( E aa) of both wire types were investigated after high temperature storage life tests (HTSL) for both molding compounds. Au bonds were identified to have faster IMC formation, compared to slower IMC growth of Cu. The E aa obtained for CuAl IMC diffusion kinetics are 1.08 and 1.04 eV with EMC A and EMC B, respectively. For AuAl IMC diffusion kinetics, the E aa obtained are 1.04 and 0.98 eV, respectively, on EMC A and EMC B. These values are close to previous HTSL studies conducted on Au and Cu ball bonds and are in agreement to the theory of HTSL performance of Au and Cu bonding wires.Overall, EMC B shows slightly lower apparent activation energy ( E aa) valueas in CuAl and AuAl IMCs. This proves that the different types of epoxy mold compounds have some influence on IMC growth rates.

  17. Ranges, Reflection and Secondary Electron Emission for keV Hydrogen Ions Incident on Solid N2

    DEFF Research Database (Denmark)

    Børgesen, P.; Sørensen, H.; Hao-Ming, Chen

    1983-01-01

    Ranges were measured for 0.67–3.3 keV/amu hydrogen and deuterium ions in solid N2. Comparisons with similar results for N2-gas confirm the previously observed large phase effect in the stopping cross section. Measurements of the secondary electron emission coefficient for bulk solid N2 bombarded...

  18. Dose conversion coefficients for monoenergetic electrons incident on a realistic human eye model with different lens cell populations

    International Nuclear Information System (INIS)

    Nogueira, P; Vaz, P; Zankl, M; Schlattl, H

    2011-01-01

    The radiation-induced posterior subcapsular cataract has long been generally accepted to be a deterministic effect that does not occur at doses below a threshold of at least 2 Gy. Recent epidemiological studies indicate that the threshold for cataract induction may be much lower or that there may be no threshold at all. A thorough study of this subject requires more accurate dose estimates for the eye lens than those available in ICRP Publication 74. Eye lens absorbed dose per unit fluence conversion coefficients for electron irradiation were calculated using a geometrical model of the eye that takes into account different cell populations of the lens epithelium, together with the MCNPX Monte Carlo radiation transport code package. For the cell population most sensitive to ionizing radiation-the germinative cells-absorbed dose per unit fluence conversion coefficients were determined that are up to a factor of 4.8 higher than the mean eye lens absorbed dose conversion coefficients for electron energies below 2 MeV. Comparison of the results with previously published values for a slightly different eye model showed generally good agreement for all electron energies. Finally, the influence of individual anatomical variability was quantified by positioning the lens at various depths below the cornea. A depth difference of 2 mm between the shallowest and the deepest location of the germinative zone can lead to a difference between the resulting absorbed doses of up to nearly a factor of 5000 for electron energy of 0.7 MeV.

  19. Dose conversion coefficients for monoenergetic electrons incident on a realistic human eye model with different lens cell populations

    Energy Technology Data Exchange (ETDEWEB)

    Nogueira, P; Vaz, P [Technological and Nuclear Institute, Estrada Nacional No 10, 2686-953 Sacavem (Portugal); Zankl, M; Schlattl, H, E-mail: pedro.nogueira@helmholtz-muenchen.de [Helmholtz Zentrum Muenchen-German Research Center for Environmental Health, Research Unit Medical Radiation Physics and Diagnostics, Ingolstaedter Landstrasse 1, D-85764 Neuherberg (Germany)

    2011-11-07

    The radiation-induced posterior subcapsular cataract has long been generally accepted to be a deterministic effect that does not occur at doses below a threshold of at least 2 Gy. Recent epidemiological studies indicate that the threshold for cataract induction may be much lower or that there may be no threshold at all. A thorough study of this subject requires more accurate dose estimates for the eye lens than those available in ICRP Publication 74. Eye lens absorbed dose per unit fluence conversion coefficients for electron irradiation were calculated using a geometrical model of the eye that takes into account different cell populations of the lens epithelium, together with the MCNPX Monte Carlo radiation transport code package. For the cell population most sensitive to ionizing radiation-the germinative cells-absorbed dose per unit fluence conversion coefficients were determined that are up to a factor of 4.8 higher than the mean eye lens absorbed dose conversion coefficients for electron energies below 2 MeV. Comparison of the results with previously published values for a slightly different eye model showed generally good agreement for all electron energies. Finally, the influence of individual anatomical variability was quantified by positioning the lens at various depths below the cornea. A depth difference of 2 mm between the shallowest and the deepest location of the germinative zone can lead to a difference between the resulting absorbed doses of up to nearly a factor of 5000 for electron energy of 0.7 MeV.

  20. Dose conversion coefficients for monoenergetic electrons incident on a realistic human eye model with different lens cell populations.

    Science.gov (United States)

    Nogueira, P; Zankl, M; Schlattl, H; Vaz, P

    2011-11-07

    The radiation-induced posterior subcapsular cataract has long been generally accepted to be a deterministic effect that does not occur at doses below a threshold of at least 2 Gy. Recent epidemiological studies indicate that the threshold for cataract induction may be much lower or that there may be no threshold at all. A thorough study of this subject requires more accurate dose estimates for the eye lens than those available in ICRP Publication 74. Eye lens absorbed dose per unit fluence conversion coefficients for electron irradiation were calculated using a geometrical model of the eye that takes into account different cell populations of the lens epithelium, together with the MCNPX Monte Carlo radiation transport code package. For the cell population most sensitive to ionizing radiation-the germinative cells-absorbed dose per unit fluence conversion coefficients were determined that are up to a factor of 4.8 higher than the mean eye lens absorbed dose conversion coefficients for electron energies below 2 MeV. Comparison of the results with previously published values for a slightly different eye model showed generally good agreement for all electron energies. Finally, the influence of individual anatomical variability was quantified by positioning the lens at various depths below the cornea. A depth difference of 2 mm between the shallowest and the deepest location of the germinative zone can lead to a difference between the resulting absorbed doses of up to nearly a factor of 5000 for electron energy of 0.7 MeV.

  1. Depth Resolution Dependence on Sample Thickness and Incident Energy in On-Axis Transmission Kikuchi Diffraction in Scanning Electron Microscope (SEM).

    Science.gov (United States)

    Brodu, Etienne; Bouzy, Emmanuel

    2017-12-01

    Transmission Kikuchi diffraction is an emerging technique aimed at producing orientation maps of the structure of materials with a nanometric lateral resolution. This study investigates experimentally the depth resolution of the on-axis configuration, via a twinned silicon bi-crystal sample specifically designed and fabricated. The measured depth resolution varies from 30 to 65 nm in the range 10-30 keV, with a close to linear dependence with incident energy and no dependence with the total sample thickness. The depth resolution is explained in terms of two mechanisms acting concomitantly: generation of Kikuchi diffraction all along the thickness of the sample, associated with continuous absorption on the way out. A model based on the electron mean free path is used to account for the dependence with incident energy of the depth resolution. In addition, based on the results in silicon, the use of the mean absorption coefficient is proposed to predict the depth resolution for any atomic number and incident energy.

  2. Kinetics and mechanism of electron transfer between purines and pyrimidines, their dinucleotides and polynucleotides after reaction with hydrated electrons; a pulse radiolysis study

    International Nuclear Information System (INIS)

    Visscher, K.J.; Spoelder, H.H.W.; Loman, H.

    1988-01-01

    The radical spectra of mixtures of thymidine 5'-monophosphate (TMP) or uridine 5'-monophosphate (UMP) with adenine 5'-monophosphate (AMP) after hydrated electron attack, measured from 5 to 3000 μs after pulse radiolysis, can only be described in terms of the radical spectra of the nucleotides if an electron transfer is taken into account from the purine radical anion to the pyrimidine, resulting in the formation of a pyrimidine radical anion. From analysis of the spectra of the dinucleoside phosphates ApU, dApT and dCpdA after e aq - attack it follows that the electron-donating species is the purine radical anion (A - radical) rather than the protonated purine radical. The electron transfer competes with the fast protonation of the purine radical anion: A - radical+py→A+py radical - and A - radical + H 2 O↔AH radical respectively. The electron transfer is found to have a diffusion-controlled reaction rate constant of approximately 1.2 x 10 10 for TMP and 3.5 x 10 9 dm 3 mol -1 s -1 for UMP. (author)

  3. Radiation emission and its influence on the motion of multi-GeV electrons and positrons incident on a single diamond crystal

    CERN Document Server

    Kirsebom, K; Uggerhøj, Erik; Elsener, K; Ballestrero, S; Sona, P; Connell, S H; Sellschop, J P Friedel; Vilakazi, Z Z

    2001-01-01

    A few years ago the CERN NA-43 collaboration installed an upgraded detector system which allows a detailed analysis of the particle motion before, during and after penetration of a crystal. Also, essentially perfect diamond crystals were produced by the collaborators from Schonland Research Centre. These facts have led to new and very detailed investigations of QED-processes in strong crystalline fields. Along axial directions the radiation emission is enhanced by more than two orders of magnitude. For incidence on a 0.7 mm thick diamond crystal of well-aligned 149 GeV electrons, 35% give rise to a high energy photon peak at approximately=120 GeV. For 243 GeV electrons and approximately=200 GeV photons, this number decreases to 25%-which may be an indication of quantum suppression. Different measurements of the photon multiplicities show that in most cases positrons and electrons emit equal number of photons. The dramatic radiation emission leads to a strong reduction in transverse energy and all electrons in...

  4. Interfacial reaction pathways and kinetics during annealing of 111-textured Al/TiN bilayers: A synchrotron x-ray diffraction and transmission electron microscopy study

    International Nuclear Information System (INIS)

    Chun, J.-S.; Desjardins, P.; Lavoie, C.; Petrov, I.; Cabral, C. Jr.; Greene, J. E.

    2001-01-01

    Growth of TiN layers in most diffusion-barrier applications is limited to deposition temperatures T s s =450 deg. C on SiO 2 by ultrahigh vacuum reactive magnetron sputter deposition in pure N 2 . Al overlayers, 160 nm thick with inherited 111 preferred orientation, were then deposited at T s =100 deg. C without breaking vacuum. The as-deposited TiN layer is underdense due to the low deposition temperature (T s /T m ≅0.23 in which T m is the melting point) resulting in kinetically limited adatom mobilities leading to atomic shadowing which, in turn, results in a columnar microstructure with both inter- and intracolumnar voids. The Al overlayer is fully dense. Synchrotron x-ray diffraction was used to follow interfacial reaction kinetics during postdeposition annealing of the 111-textured Al/TiN bilayers as a function of time (t a =12-1200 s) and temperature (T a =440-550 deg. C). Changes in bilayer microstructure and microchemistry were investigated using transmission electron microscopy (TEM) and scanning TEM to obtain compositional maps of plan-view and cross-sectional specimens. Interfacial reaction during annealing is initiated at the Al/TiN interface. Al diffuses rapidly into TiN voids during anneals at temperatures ∼ 3 Ti at the interface. Al 3 Ti exhibits a relatively planar growth front extending toward the Al free surface. Analyses of time-dependent x-ray diffraction peak intensities during isothermal annealing as a function of temperature show that Al 3 Ti growth kinetics are, for the entire temperature range investigated, diffusion limited with an activation energy of 1.5±0.2 eV

  5. Kinetic Description of Ionospheric Outflows Based on the Exact Form of Fokker-Planck Collision Operator: Electrons

    Science.gov (United States)

    Khazanov, George V.; Khabibrakhmanov, Ildar K.; Glocer, Alex

    2012-01-01

    We present the results of a finite difference implementation of the kinetic Fokker-Planck model with an exact form of the nonlinear collisional operator, The model is time dependent and three-dimensional; one spatial dimension and two in velocity space. The spatial dimension is aligned with the local magnetic field, and the velocity space is defined by the magnitude of the velocity and the cosine of pitch angle. An important new feature of model, the concept of integration along the particle trajectories, is discussed in detail. Integration along the trajectories combined with the operator time splitting technique results in a solution scheme which accurately accounts for both the fast convection of the particles along the magnetic field lines and relatively slow collisional process. We present several tests of the model's performance and also discuss simulation results of the evolution of the plasma distribution for realistic conditions in Earth's plasmasphere under different scenarios.

  6. Quantum-kinetic modeling of electron release in low-energy surface collisions of atoms and molecules

    Energy Technology Data Exchange (ETDEWEB)

    Marbach, Johannes

    2012-09-20

    In this work we present a theoretical description of electron release in the collision of atomic and molecular projectiles with metallic and especially dielectric surfaces. The associated electron yield, the secondary electron emission coefficient, is an important input parameter for numerical simulations of dielectric barrier discharges and other bounded low-temperature gas discharges. The available reference data for emission coefficients is, however, very sparse and often uncertain, especially for molecular projectiles. With the present work we aim to contribute to the filling of these gaps by providing a flexible and easy-to-use model that allows for a convenient calculation of the emission coefficient and related quantities for a wide range of projectile-surface systems and the most dominant reaction channels.

  7. Fluorescence kinetic parameters and cyclic electron transport in guard cell chloroplasts of chlorophyll-deficient leaf tissues from variegated weeping fig (Ficus benjamina L.).

    Science.gov (United States)

    Lysenko, Vladimir

    2012-05-01

    Residual chlorophyll in chlorophyll-deficient (albino) areas of variegated leaves of Ficus benjamina originates from guard cell chloroplasts. Photosynthetic features of green and albino sectors of F. benjamina were studied by imaging the distribution of the fluorescence decrease ratio Rfd within a leaf calculated from maximum (Fm) and steady-state leaf chlorophyll fluorescence (Fs) at 690 and 740 nm. Local areas of albino sectors demonstrated an abnormally high Rfd(740)/Rfd(690) ratio. Fluorescence transients excited in albino sectors at red (640 and 690 nm) wavelengths showed an abrupt decrease of the Rfd values (0.4 and 0.1, correspondingly) as compared with those excited at blue wavelengths (1.7-2.4). This "Red Drop" was not observed for green sectors. Normal and chlorophyll-deficient leaf sectors of F. benjamina were also tested for linear and cyclic electron transport in thylakoids. The tests have been performed studying fluorescence at a steady-state phase with CO(2)-excess impulse feeding, photoacoustic signal generated by pulse light source at wavelengths selectively exciting PSI, fluorescence kinetics under anaerobiosis and fluorescence changes observed by dual-wavelength excitation method. The data obtained for albino sectors strongly suggest the possibility of a cyclic electron transport simultaneously occurring in guard cell thylakoids around photosystems I and II under blue light, whereas linear electron transport is absent or insufficient.

  8. Study of the electron kinetic processes in laser-induced breakdown of electronegative gases over an extended wavelength range

    Science.gov (United States)

    Gamal, Yosr E. E.-D.; Omar, M. M.

    2001-12-01

    A theoretical investigation of laser-induced breakdown of electronegative gases is presented. The formulations are based on an electron cascade model previously developed by Evans and Gamal (J. Phys. D: Appl. Phys. 13 (1980) 1447-1458). This model solves numerically the time-dependent Boltzmann equation simultaneously with a set of rate equations describing the population density of the formed excited states. It includes the possible kinds of interactions between electrons, molecules and photons. Calculations are carried out under the experimental conditions of Davis et al. (Appl. Optics 30 (1991) 4358-4364) where molecular oxygen over a pressure range of 20-760 Torr is irradiated with the first four harmonics of a Nd : YAG laser source at wavelengths 1064, 532, 355 and 266 nm of pulse duration 8.5, 7.5, 6.5 and 5.5 ns, respectively, and peak irradiance varies between 3.6×10 10 and 3.7×10 11 W/cm 2. Computations revealed that the dependence of threshold irradiance on gas pressure is in quite close agreement with those measured by Davis et al. (1991) for the four laser wavelengths considered in this analysis. It is also shown that at laser wavelengths 532 and 266 nm oxygen breakdown is mainly governed by the combined effect of two and three-body attachment loss processes, while for the wavelengths 335and 1064 nm, the three-body attachment process dominates. In addition, calculation of the electron energy distribution function and its parameters, viz, electron density, ionization rate and electron mean energy predicted the importance of the photoionization of excited states as the main electron generation process over the short wavelength range.

  9. Study of Pair and many-body interactions in rare-gas halide atom clusters using negative ion zero electron kinetic energy (ZEKE) and threshold photodetachment spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Yourshaw, Ivan [Univ. of California, Berkeley, CA (United States)

    1998-07-09

    The diatomic halogen atom-rare gas diatomic complexes KrBr-, XeBr-, and KrCl- are studied in this work by zero electron kinetic energy (ZEKE) spectroscopy in order to characterize the weak intermolecular diatomic potentials of these species. Also, the ZEKE and threshold photodetachment spectra of the polyatomic clusters ArnBr- (n = 2-9) and ArnI- (n = 2-19) are studied to obtain information about the non-additive effects on the interactions among the atoms. This work is part of an ongoing effort to characterize the pair and many-body potentials of the complete series of rare gas halide clusters. In these studies we obtain information about both the anionic and neutral clusters.

  10. Non-equilibrium kinetics of plasma-assisted combustion: the role of electronically excited atoms and molecules

    Science.gov (United States)

    Popov, Nikolay

    2016-09-01

    A review of experimental and theoretical investigations of the effect of electronically excited atoms and molecules on the induction delay time and on the shift of the ignition temperature threshold of combustible mixtures is presented. At relatively low initial gas temperature, the effect of excited O(1D) atoms on the oxidation and reforming of combustible mixtures is quite significant due to the high rates of reactions of O(1D) atoms with hydrogen and hydrocarbon molecules. The singlet oxygen molecules, O2(a1Δg) , participate both in chain initiation and chain branching reactions, but the effect of O2(a1Δg) in the ignition processes is generally less important compared to the oxygen atoms. To reduce the ignition delay time and decrease the temperature threshold of fuel-air mixtures, the use of gas discharges with relatively high E/N values is recommended. In this case the reactions of electronically excited N2(A3Σu+ , B3πg , C3πu , a'1Σu-) molecules, and atomic particles in ground and electronically excited states are extremely important. The energy stored in electronic excitation of atoms and molecules is spent on the additional dissociation of oxygen and fuel molecules, on the fast gas heating, and finally to the triggering of chain branching reactions. This work was partially supported by AOARD AFOSR, FA2386-13-1-4064 grant and Linked International Laboratory LIA KaPPA (France-Russia).

  11. New insights into the mechanism of electron transfer within flavohemoglobins: tunnelling pathways, packing density, thermodynamic and kinetic analyses

    Czech Academy of Sciences Publication Activity Database

    El Hammi, E.; Houée-Lévin, Ch.; Řezáč, Jan; Lévy, B.; Demachy, I.; Baciou, L.; de la Lande, A.

    2012-01-01

    Roč. 14, č. 40 (2012), s. 13872-13880 ISSN 1463-9076 Institutional research plan: CEZ:AV0Z40550506 Keywords : metalloenzymes * flavohemoglobin * electron transfer * monooxygenase Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.829, year: 2012

  12. Electron bremsstrahlung spectrum, 1--500 keV

    International Nuclear Information System (INIS)

    Lee, C.M.; Kissel, L.; Pratt, R.H.; Tseng, H.K.

    1976-01-01

    Numerical data are obtained for the electron bremsstrahlung energy spectrum resulting from incident electrons of kinetic energy 1--500 keV, under the assumption that the process is described as a single-electron transition in a relativistic self-consistent screened potential, using partial-wave expansions. Comparisons with simpler analytical approximations show that these are at best of qualitative validity in this energy range. Our data are used to construct more complete tables of the spectrum by interpolation

  13. Measurement of Local Si-Nanowire Growth Kinetics Using In situ Transmission Electron Microscopy of Heated Cantilevers

    DEFF Research Database (Denmark)

    Kallesøe, Christian; Wen, Cheng-Yen; Mølhave, Kristian

    2010-01-01

    A technique to study nanowire growth processes on locally heated microcantilevers in situ in a transmission electron microscope has been developed. The in situ observations allow the characterization of the nucleation process of silicon wires, as well as the measurement of growth rates of individ...... to calibrate the cantilever-heater parameters used in finite-element models of cantilever heating profiles, useful for optimization of the design of devices requiring local growth....

  14. Using a one-electron shuttle for the multielectron reduction of CO2 to methanol: kinetic, mechanistic, and structural insights.

    Science.gov (United States)

    Cole, Emily Barton; Lakkaraju, Prasad S; Rampulla, David M; Morris, Amanda J; Abelev, Esta; Bocarsly, Andrew B

    2010-08-25

    Pyridinium and its substituted derivatives are effective and stable homogeneous electrocatalysts for the aqueous multiple-electron, multiple-proton reduction of carbon dioxide to products such as formic acid, formaldehyde, and methanol. Importantly, high faradaic yields for methanol have been observed in both electrochemical and photoelectrochemical systems at low reaction overpotentials. Herein, we report the detailed mechanism of pyridinium-catalyzed CO(2) reduction to methanol. At metal electrodes, formic acid and formaldehyde were observed to be intermediate products along the pathway to the 6e(-)-reduced product of methanol, with the pyridinium radical playing a role in the reduction of both intermediate products. It has previously been thought that metal-derived multielectron transfer was necessary to achieve highly reduced products such as methanol. Surprisingly, this simple organic molecule is found to be capable of reducing many different chemical species en route to methanol through six sequential electron transfers instead of metal-based multielectron transfer. We show evidence for the mechanism of the reduction proceeding through various coordinative interactions between the pyridinium radical and carbon dioxide, formaldehyde, and related species. This suggests an inner-sphere-type electron transfer from the pyridinium radical to the substrate for various mechanistic steps where the pyridinium radical covalently binds to intermediates and radical species. These mechanistic insights should aid the development of more efficient and selective catalysts for the reduction of carbon dioxide to the desired products.

  15. Developments in the kinetic theories of ion and electron swarms in the 1960s and 70s

    Science.gov (United States)

    Skullerud, H. R.

    2017-04-01

    The two decades between 1960 to 1980 saw quite a fantastic development in diverse areas in physics, and so also in the quantitative theoretical treatment and deeper understanding of the behaviour of isolated electrons and ions in gases—that is ‘charged particle swarm physics’. The evolution in swarm theory was strongly correlated with the contemporary advances in computer technology and the emergence of new and accurate experimental methods for finding charged particle transport parameters, as drift velocities, diffusion coefficients and reaction rates, and also with developments in neighbouring fields as plasma physics and the physics of electronic and molecular collisions. In 1960, low energy electron behaviour could already be calculated with reasonable accuracy in the so-called two-term approximation, while ion behaviour could only be treated at weak electric fields. By 1980, reasonably complete theories had been developed for perhaps most cases in interest—which is reflected in a number of reviews, books and journal articles published in the early 1980s. We will present a journey through the developments in this period and the basic theories behind the Boltzmann equation and Maxwell’s transfer equations. We will also indicate how the interaction between different studies of the same basic processes have led to the elimination of shortcomings and a better understanding.

  16. Kinetic analysis of thymocyte attachment to thymus stromal cells in culture by using phase-contrast and scanning electron microscopy

    International Nuclear Information System (INIS)

    LaRochelle, G.G.; Jones, K.H.

    1989-01-01

    Direct cellular contact between thymocytes and thymus stromal cells within the thymus appears to contribute to the maturation of thymocytes. Thymocyte-stromal cell complexes, formed in vivo, have been isolated by others and postulated to play a role in T-cell differentiation. These previous studies have been hampered, however, by a time-consuming isolation procedure from which only small numbers of these complexes are recovered. We have examined a model to study thymocyte-stromal cell complexes in vitro in which thymocytes are added to primary cultures of thymus stromal cells. In the present study, we found that thymocytes were histotypically selective in their attachment to thymus stromal cells. We also investigated the kinetics of thymocyte attachment to these thymus stromal cells. Cultures were examined at selected time intervals from 5 min through 3 days of incubation. Thymocyte attachment to stromal cells was a biphasic interaction, with maximum surface attachment at 15 min of cocultivation, followed by migration of thymocytes into the cultures. Morphological studies were confirmed by using 3 H-leucine-labeled thymocytes and liquid scintigraphy. With increased time in culture, thymocytes became amoeboid and migrated between the layers of stromal cells where thymocyte mitotic figures were seen at 4 and 8 hr. In some cases it appeared that stromal cells, which often grew two to three cell layers deep, played an active role in enclosing thymocytes within the cultures. Large numbers of viable thymocytes were observed in the cultures at 24 hr. The number of thymocytes then decreased progressively on days 2 and 3, when relatively few were found within the layers of the culture

  17. Calculated fraction of an incident current pulse that will be accelerated by an electron linear accelerator and comparisons with experimental data

    International Nuclear Information System (INIS)

    Alsmiller, R.G. Jr.; Alsmiller, F.S.; Lewis, T.A.

    1986-05-01

    In a series of previous papers, calculated results obtained using a one-dimensional ballistic model were presented to aid in the design of a prebuncher for the Oak Ridge Electron Linear Accelerator. As part of this work, a model was developed to provide limits on the fraction of an incident current pulse that would be accelerated by the existing accelerator. In this paper experimental data on this fraction are presented and the validity of the model developed previously is tested by comparing calculated and experimental data. Part of the experimental data is used to fix the physical parameters in the model and then good agreement between the calculated results and the rest of the experimental data is obtained

  18. Comparison of electron beam and gamma ray irradiations effects on ruminal crude protein and amino acid degradation kinetics, and in vitro digestibility of cottonseed meal

    International Nuclear Information System (INIS)

    Ghanbari, F.; Ghoorchi, T.; Shawrang, P.; Mansouri, H.; Torbati-Nejad, N.M.

    2012-01-01

    This study was conducted to compare effects of electron beam (EB) and gamma ray (GR) treatments at doses of 25, 50 and 75 kGy on ruminal degradation kinetics of crude protein (CP), amino acid (AA), and in vitro digestibility of cottonseed meal (CSM). Ionizing radiations of EB and GR had significant effects (P 0.05). Irradiation processing caused decrement in AA degradation after 16 h of ruminal incubation (P<0.05). EB irradiation was more effective than GR irradiation in lessening the ruminal degradability of AA (P<0.05). EB and GR treatments at a dose of 75 kGy increased in vitro digestibility of CSM numerically. This study showed that EB could cause CP and AA bypass rumen as well as GR. Therefore, ionizing irradiation processing can be used as an efficient method in improving nutritional value of CSM. - Highlights: ► Irradiation was effective on reducing ruminal degradability of cottonseed meal. ► Ionizing radiations, especially electron beam, lessened ruminal degradability of amino acid substantially. ► Irradiation processing could be used as a safe and efficient method in improving nutritional value of cottonseed meal.

  19. Oxygen diffusion kinetics and reactive lifetimes in bacterial and mammalian cells irradiated with nanosecond pulses of high intensity electrons

    International Nuclear Information System (INIS)

    Epp, E.R.; Weiss, H.; Ling, C.C.; Djordjevic, B.; Kessaris, N.D.

    1975-01-01

    Experiaments have been designed to gain information on the lifetime of oxygen-sensitive species suspected to be produced in critical molecules in irradiated cells and on the time-diffusion of oxygen in cells. An approach developed in this laboratory involves the delivery of two high intensity electron pulses each of 3 ns duration to a thin layer of cells equilibrated with a known concentration of oxygen. The first pulse serves to render the cells totally anoxic by the radiochemical depletion of oxygen; the second is delivered at a time electronically delayed after the first allowing for diffusion of oxygen during this time. Under these conditions the radiosensitivity of E coli B/r has been measured over six decades of interpulse time. Cellular time-diffusion curves constructed from the measurements show that oxygen establishes its sensitizing effect within 10 -4 s after the creation of intracellular anoxia establishing this time as an upper limit to the lifetime of the species. Unusual behaviour of the diffusion curve observed for longer delay times can be explained by a model wherein it is postulated that a radiation-induced inhibiting agent slows down diffusion. Application of this model to the experimental data yields a value of 0.4x10 -5 cm 2 s -1 for the cellular oxygen diffusion coefficient. Similar experiments recently carried out for Serratia marcescens will also be described. The oxygen effect in cultured HeLa cells exposed to single short electron pulses has been examined over a range of oxygen concentrations. A family of breaking survival curves was obtained similar to those previously measured for E coli B/r by this laboratory. The data appear to be reasonably consistent with a physicochemical mechanism involving the radiochemical depletion of oxygen previously invoked for bacteria. (author)

  20. Kinetic investigations of graft copolymerization of sodium styrene sulfonate onto electron beam irradiated poly(vinylidene fluoride) films

    Science.gov (United States)

    Mahmoud Nasef, Mohamed; Saidi, Hamdani; Mohd Dahlan, Khairul Zaman

    2011-01-01

    Graft copolymerization of sodium styrene sulfonate (SSS) onto electron beam (EB) irradiated poly(vinylidene fluoride) (PVDF) films was investigated to find out a simple preparation process for sulfonic acid proton exchange membranes with respect to monomer concentration, absorbed dose, temperature, film thickness and storage time. The reaction order of the monomer concentration and absorbed dose of grafting was found to be 2.84 and 1.20, respectively. The overall activation energy for graft copolymerization reaction was calculated to be 11.36 kJ/mol. The initial rate of grafting was found to decrease with an increase in the film thickness. The trapped radicals in the irradiated PVDF films remained effective in initiating the reaction without considerable loss in grafting level up to 180 days, when stored under -60 °C. The presence and distribution of polystyrene sulfonate grafts in the obtained membranes were observed by Fourier transform infrared (FTIR) spectroscopic analysis, scanning optical microscope and scanning transmission electron microscopy (STEM) coupled with X-ray energy dispersive (EDX), respectively.

  1. Comparison of electron-ion energy transfer in dense plasmas obtained from numerical simulations and quantum kinetic theory

    Science.gov (United States)

    Vorberger, J.; Gericke, D. O.

    2014-03-01

    We evaluate various analytical models for the electron-ion energy transfer and compare the results to data from molecular dynamics (MD) simulations. The models tested include energy transfer via strong binary collisions, Landau-Spitzer rates with different choices for the cut-off parameters in the Coulomb logarithm, rates based on Fermi's golden rule (FGR) and theories taking coupled collective modes (CM) into account. In search of a model easy to apply, we first analyze different approximations of the FGR energy transfer rate. Then, we investigate several numerical studies using MD simulations and try to uncover CM effects in the data obtained. Most MD data published so far, except one study by Murillo et al. [23], show no distinct CM effects and, thus, can be interpreted within a FGR or binary collision approach. We show that this finding is related to the parameter regime, in particular the initial temperature difference, considered in these investigations.

  2. A fast-freezing device with a retractable environmental chamber, suitable for kinetic cryo-electron microscopy studies.

    Science.gov (United States)

    Trachtenberg, S

    1998-09-01

    The design and construction of a fast-freezing device are described. A polycarbonate chamber, in which the humidity and temperature are controlled by microprocessors, slides on a robust chassis guided by ball or Teflon bushings. In its freezing position, the chamber rests on top of the cryogen vessel. The specimen is therefore frozen directly from the experimental conditions within the chamber without exposure to the external environment. After freezing, the chamber, but not the specimen, rises automatically, vacating space for handling the specimen. The chamber, the shutter, and the specimen are all driven pneumatically at an adjustable speed of up to approximately 10 m s-1 and coordinated by either pneumatic or electronic logical gates. Provisions are made for automatic blotting, spraying, and flashing. The chamber is compatible with a liquid nitrogen-cooled copper block assembly for impact (slam) freezing for freeze-substitution and freeze-fracture. Copyright 1998 Academic Press.

  3. Electronic Origin and Kinetic Feasibility of the Lattice Oxygen Participation During the Oxygen Evolution Reaction on Perovskites.

    Science.gov (United States)

    Yoo, Jong Suk; Liu, Yusu; Rong, Xi; Kolpak, Alexie M

    2018-04-05

    Density functional theory is employed to investigate the electronic origin and feasibility of surface lattice oxygen (O surf ) participation during the oxygen evolution reaction (OER) on perovskites. O surf participation occurs via the nonelectrochemical pathway in which adsorbed atomic oxygen (O*) diffuses from the transition-metal site to the oxygen site, and then O surf shifts out of the surface plane to react with O* to form O surf -O* and a surface oxygen vacancy. The different thermodynamic driving forces of O surf participation on LaMO 3-δ (M = Ni, Co, and Cu) are explained by the changes in the oxidation state of the transition-metal site throughout the reaction. We show that O surf participation on LaNiO 3 cannot be hindered by O surf protonation in the OER potential range. By including the coverage effect and utilizing the implicit solvent model, we finally show that lattice oxygen mechanism is more feasible than the conventional mechanism for OER on LaNiO 3 .

  4. Kinetic description of electron-proton instability in high-intensity proton linacs and storage rings based on the Vlasov-Maxwell equations

    Directory of Open Access Journals (Sweden)

    Ronald C. Davidson

    1999-05-01

    Full Text Available The present analysis makes use of the Vlasov-Maxwell equations to develop a fully kinetic description of the electrostatic, electron-ion two-stream instability driven by the directed axial motion of a high-intensity ion beam propagating in the z direction with average axial momentum γ_{b}m_{b}β_{b}c through a stationary population of background electrons. The ion beam has characteristic radius r_{b} and is treated as continuous in the z direction, and the applied transverse focusing force on the beam ions is modeled by F_{foc}^{b}=-γ_{b}m_{b}ω_{βb}^{0^{2}}x_{⊥} in the smooth-focusing approximation. Here, ω_{βb}^{0}=const is the effective betatron frequency associated with the applied focusing field, x_{⊥} is the transverse displacement from the beam axis, (γ_{b}-1m_{b}c^{2} is the ion kinetic energy, and V_{b}=β_{b}c is the average axial velocity, where γ_{b}=(1-β_{b}^{2}^{-1/2}. Furthermore, the ion motion in the beam frame is assumed to be nonrelativistic, and the electron motion in the laboratory frame is assumed to be nonrelativistic. The ion charge and number density are denoted by +Z_{b}e and n_{b}, and the electron charge and number density by -e and n_{e}. For Z_{b}n_{b}>n_{e}, the electrons are electrostatically confined in the transverse direction by the space-charge potential φ produced by the excess ion charge. The equilibrium and stability analysis retains the effects of finite radial geometry transverse to the beam propagation direction, including the presence of a perfectly conducting cylindrical wall located at radius r=r_{w}. In addition, the analysis assumes perturbations with long axial wavelength, k_{z}^{2}r_{b}^{2}≪1, and sufficiently high frequency that |ω/k_{z}|≫v_{Tez} and |ω/k_{z}-V_{b}|≫v_{Tbz}, where v_{Tez} and v_{Tbz} are the characteristic axial thermal speeds of the background electrons and beam ions. In this regime, Landau damping (in axial velocity space v_{z} by resonant ions and

  5. Kinetic Typography

    DEFF Research Database (Denmark)

    van Leeuwen, Theo; Djonov, Emilia

    2014-01-01

    After discussing broad cultural drivers behind the development of kinetic typography, the chapter outlines an approach to analysing kinetic typography which is based on Halliday's theory of transitivity, as applied by Kress and Van Leeuwen to visual images....

  6. Impact of an electronic medical record on the incidence of antiretroviral prescription errors and HIV pharmacist reconciliation on error correction among hospitalized HIV-infected patients.

    Science.gov (United States)

    Batra, Rishi; Wolbach-Lowes, Jane; Swindells, Susan; Scarsi, Kimberly K; Podany, Anthony T; Sayles, Harlan; Sandkovsky, Uriel

    2015-01-01

    Previous review of admissions from 2009-2011 in our institution found a 35.1% error rate in antiretroviral (ART) prescribing, with 55% of errors never corrected. Subsequently, our institution implemented a unified electronic medical record (EMR) and we developed a medication reconciliation process with an HIV pharmacist. We report the impact of the EMR on incidence of errors and of the pharmacist intervention on time to error correction. Prospective medical record review of HIV-infected patients hospitalized for >24 h between 9 March 2013 and 10 March 2014. An HIV pharmacist reconciled outpatient ART prescriptions with inpatient orders within 24 h of admission. Prescribing errors were classified and time to error correction recorded. Error rates and time to correction were compared to historical data using relative risks (RR) and logistic regression models. 43 medication errors were identified in 31/186 admissions (16.7%). The incidence of errors decreased significantly after EMR (RR 0.47, 95% CI 0.34, 0.67). Logistic regression adjusting for gender and race/ethnicity found that errors were 61% less likely to occur using the EMR (95% CI 40%, 75%; Perrors were corrected, 65% within 24 h and 81.4% within 48 h. Compared to historical data where only 31% of errors were corrected in errors were 9.4× more likely to be corrected within 24 h with HIV pharmacist intervention (Perror rate by more than 50% but despite this, ART errors remained common. HIV pharmacist intervention was key to timely error correction.

  7. Extension of a Kinetic Approach to Chemical Reactions to Electronic Energy Levels and Reactions Involving Charged Species with Application to DSMC Simulations

    Science.gov (United States)

    Liechty, Derek S.

    2014-01-01

    The ability to compute rarefied, ionized hypersonic flows is becoming more important as missions such as Earth reentry, landing high mass payloads on Mars, and the exploration of the outer planets and their satellites are being considered. Recently introduced molecular-level chemistry models that predict equilibrium and nonequilibrium reaction rates using only kinetic theory and fundamental molecular properties are extended in the current work to include electronic energy level transitions and reactions involving charged particles. These extensions are shown to agree favorably with reported transition and reaction rates from the literature for near-equilibrium conditions. Also, the extensions are applied to the second flight of the Project FIRE flight experiment at 1634 seconds with a Knudsen number of 0.001 at an altitude of 76.4 km. In order to accomplish this, NASA's direct simulation Monte Carlo code DAC was rewritten to include the ability to simulate charge-neutral ionized flows, take advantage of the recently introduced chemistry model, and to include the extensions presented in this work. The 1634 second data point was chosen for comparisons to be made in order to include a CFD solution. The Knudsen number at this point in time is such that the DSMC simulations are still tractable and the CFD computations are at the edge of what is considered valid because, although near-transitional, the flow is still considered to be continuum. It is shown that the inclusion of electronic energy levels in the DSMC simulation is necessary for flows of this nature and is required for comparison to the CFD solution. The flow field solutions are also post-processed by the nonequilibrium radiation code HARA to compute the radiative portion.

  8. Kinetic Typography

    DEFF Research Database (Denmark)

    van Leeuwen, Theo; Djonov, Emilia

    2014-01-01

    After discussing broad cultural drivers behind the development of kinetic typography, the chapter outlines an approach to analysing kinetic typography which is based on Halliday's theory of transitivity, as applied by Kress and Van Leeuwen to visual images.......After discussing broad cultural drivers behind the development of kinetic typography, the chapter outlines an approach to analysing kinetic typography which is based on Halliday's theory of transitivity, as applied by Kress and Van Leeuwen to visual images....

  9. Spectroscopic investigation on kinetics, thermodynamics and mechanism for electron transfer reaction of iron(III) complex with sulphur centered radical in stimulated biological system.

    Science.gov (United States)

    Deepalakshmi, S; Sivalingam, A; Kannadasan, T; Subramaniam, P; Sivakumar, P; Brahadeesh, S T

    2014-04-24

    Electron transfer reactions of biological organic sulphides with several metal ions to generate sulphide radical cations are a great concern in biochemical process. To understand the mechanism, a stimulated biological system having model compounds, iron(III)-bipyridyl complex with thio-diglycolic acid (TDGA) was investigated. Spectroscopic study reveals the kinetics and thermodynamics of the reaction in aqueous perchloric acid medium. The reaction follows first and fractional order of 0.412 with respect to [Fe(bpy)3](3+) and TDGA, respectively. The oxidation is insensitive to variation in [H(+)] but slightly decreases with increase in ionic strength ([I]). Addition of acrylamide, a radical scavenger has no effect on the rate of the reaction. The high negative value of ΔS(#) (-74.3±1.09 J K(-1) mol(-1)) indicates the complex formed has a definite orientation higher than the reactants. Based on the above results, a suitable reaction mechanism for this reaction is proposed. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Change in electrogenic activity of the microbial fuel cell (MFC) with the function of biocathode microenvironment as terminal electron accepting condition: influence on overpotentials and bio-electro kinetics.

    Science.gov (United States)

    Srikanth, S; Venkata Mohan, S

    2012-09-01

    Influence of biocathode microenvironment as terminal electron accepting process (TEAP) on the electrogenic activity of the microbial fuel cell (MFC)/bio-electrochemical system (BES) was evaluated in concurrence with the internal losses and bio-electro kinetics. Aerobic metabolism as TEAP showed power output (37.5 ± 2.7 mW/m(2)) for extended time (240 h) over abiotic (42.5 ± 1.5 mW/m(2)) electron accepting process. On the contrary, anaerobic metabolism as TEAP showed negligible power output in spite of increased retention time due to the absence of electron acceptor. Presence of strong electron acceptor conditions in aerobic metabolism facilitated gradual and stable reduction of electrons which helped to overcome the activation over potential and other potential losses. Voltammetric and amperometric analysis witnessed higher and sustainable electron discharge against the aerobic metabolism at cathode. Bio-electro kinetic analysis also showed lower Tafel slope and electron transfer co-efficient indicating the positive impact of aerobic metabolism at cathode in decreasing the internal losses. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Technical Note: On the impact of the incident electron beam energy on the primary dose component of flattening filter free photon beams.

    Science.gov (United States)

    Kuess, Peter; Georg, Dietmar; Palmans, Hugo; Lechner, Wolfgang

    2016-08-01

    For commercially available linear accelerators (Linacs), the electron energies of flattening filter free (FFF) and flattened (FF) beams are either identical or the electron energy of the FFF beam is increased to match the percentage depth dose curve (PDD) of the FF beam (in reference geometry). This study focuses on the primary dose components of FFF beams for both kinds of settings, studied on the same Linac. The measurements were conducted on a VersaHD Linac (Elekta, Crawley, UK) for both FF and FFF beams with nominal energies of 6 and 10 MV. In the clinical setting of the VersaHD, the energy of FFFM (Matched) beams is set to match the PDDs of the FF beams. In contrast the incident electron beam of the FFFU beam was set to the same energy as for the FF beam. Half value layers (HVLs) and a dual parameter beam quality specifier (DPBQS) were determined. For the 6 MV FFFM beam, HVL and DPBQS values were very similar compared to those of the 6 MV FF beam, while for the 10 MV FFFM and FF beams, only %dd(10)x and HVL values were comparable (differences below 1.5%). This shows that matching the PDD at one depth does not guarantee other beam quality dependent parameters to be matched. For FFFU beams, all investigated beam quality specifiers were significantly different compared to those for FF beams of the same nominal accelerator potential. The DPBQS of the 6 MV FF and FFFM beams was equal within the measurement uncertainty and was comparable to published data of a machine with similar TPR20,10 and %dd(10)x. In contrast to that, the DPBQS's two parameters of the 10 MV FFFM beam were substantially higher compared to those for the 10 MV FF beam. PDD-matched FF and FFF beams of both nominal accelerator potentials were observed to have similar HVL values, indicating similarity of their primary dose components. Using the DPBQS revealed that the mean attenuation coefficient was found to be the same within the uncertainty of 0.8% for 6 MV FF and 6 MV FFFM beams, while for 10 MV

  12. Technical Note: On the impact of the incident electron beam energy on the primary dose component of flattening filter free photon beams

    International Nuclear Information System (INIS)

    Kuess, Peter; Georg, Dietmar; Lechner, Wolfgang; Palmans, Hugo

    2016-01-01

    Purpose: For commercially available linear accelerators (Linacs), the electron energies of flattening filter free (FFF) and flattened (FF) beams are either identical or the electron energy of the FFF beam is increased to match the percentage depth dose curve (PDD) of the FF beam (in reference geometry). This study focuses on the primary dose components of FFF beams for both kinds of settings, studied on the same Linac. Methods: The measurements were conducted on a VersaHD Linac (Elekta, Crawley, UK) for both FF and FFF beams with nominal energies of 6 and 10 MV. In the clinical setting of the VersaHD, the energy of FFF M (Matched) beams is set to match the PDDs of the FF beams. In contrast the incident electron beam of the FFF U beam was set to the same energy as for the FF beam. Half value layers (HVLs) and a dual parameter beam quality specifier (DPBQS) were determined. Results: For the 6 MV FFF M beam, HVL and DPBQS values were very similar compared to those of the 6 MV FF beam, while for the 10 MV FFF M and FF beams, only %dd(10) x and HVL values were comparable (differences below 1.5%). This shows that matching the PDD at one depth does not guarantee other beam quality dependent parameters to be matched. For FFF U beams, all investigated beam quality specifiers were significantly different compared to those for FF beams of the same nominal accelerator potential. The DPBQS of the 6 MV FF and FFF M beams was equal within the measurement uncertainty and was comparable to published data of a machine with similar TPR 20,10 and %dd(10) x . In contrast to that, the DPBQS’s two parameters of the 10 MV FFF M beam were substantially higher compared to those for the 10 MV FF beam. Conclusions: PDD-matched FF and FFF beams of both nominal accelerator potentials were observed to have similar HVL values, indicating similarity of their primary dose components. Using the DPBQS revealed that the mean attenuation coefficient was found to be the same within the uncertainty of

  13. A supramolecular gel electrolyte formed from amide based co-gelator for quasi-solid-state dye-sensitized solar cell with boosted electron kinetic processes

    Science.gov (United States)

    Huo, Zhipeng; Wang, Lu; Tao, Li; Ding, Yong; Yi, Jinxin; Alsaedi, Ahmed; Hayat, Tasawar; Dai, Songyuan

    2017-08-01

    A supramolecular gel electrolyte (Tgel > 100 °C) is formed from N,N‧-1,8-octanediylbis-dodecanamide and iodoacetamide as two-component co-gelator, and introduced into the quasi-solid-state dye-sensitized solar cells (QS-DSSCs). The different morphologies of microscopic network between two-component and single-component gel electrolytes have influence on the diffusion of redox couple in gel electrolytes and further affect the electron kinetic processes in QS-DSSCs. Compared with the single-component gel electrolyte, the two-component gel electrolyte has less compact gel network and weaker steric hindrance effect, which provides more effective charge transport channel for the diffusion of I3/I- redox couple. Meanwhile, the sbnd NH2 groups of iodoacetamide molecules interact with Li+ and I3-, which also accelerate the transport of I3-/I- and decrease in the I3- concentration in the TiO2/electrolyte interface. As a result, nearly a 12% improvement in short-circuit photocurrent density (Jsc) and much higher open circuit potential (Voc) are found in the two-component gel electrolyte based QS-DSSC. Consequently, the QS-DSSC based on the supramolecular gel electrolyte obtains a 17% enhancement in the photoelectric conversion efficiency (7.32%) in comparison with the QS-DSSC based on the single-component gel electrolyte (6.24%). Furthermore, the degradations of these QS-DSSCs are negligible after one sun light soaking with UV cutoff filter at 50 °C for 1000 h.

  14. Kinetic sculpture

    OpenAIRE

    Joneta Witabora; Jonata Witabora

    2014-01-01

    Kinetic Sculpture was born from a long process of searching new approach in sculpture. The artists tried to escape from 'static' paradigm and tried to implement movement into their works: a sculpture that is mobile. Movement is always a fascinating phenomenon to eyes. Kinetic sculpture strength lies in its unique character in combining science and art. Kinetic Sculptures are really interesting pieces of art. It succeeds to fascinate human everytime. 

  15. Friction behaviour of TiAlN films around cubic/hexagonal transition: A 2D grazing incidence X-ray diffraction and electron energy loss spectroscopy study

    Energy Technology Data Exchange (ETDEWEB)

    Pinot, Y. [Université de Haute Alsace, Laboratoire Physique et Mécanique Textiles (EA 4365), F-68093 Mulhouse (France); Pac, M.-J., E-mail: marie-jose.pac@uha.fr [Université de Haute Alsace, Laboratoire Physique et Mécanique Textiles (EA 4365), F-68093 Mulhouse (France); Henry, P. [Université de Haute Alsace, Laboratoire Physique et Mécanique Textiles (EA 4365), F-68093 Mulhouse (France); Rousselot, C. [Université de Franche-Comté, FEMTO-ST (UMR CNRS 6174), F-25211 Montbéliard (France); Odarchenko, Ya.I.; Ivanov, D.A. [Université de Haute Alsace, Institut de Science des Matériaux de Mulhouse (UMR 7361 CNRS), F-68093 Mulhouse (France); Ulhaq-Bouillet, C.; Ersen, O. [Université de Strasbourg, Institut de Physique et Chimie des Matériaux de Strasbourg (UMR CNRS 7504), F-67087 Strasbourg (France); Tuilier, M.-H. [Université de Haute Alsace, Laboratoire Physique et Mécanique Textiles (EA 4365), F-68093 Mulhouse (France)

    2015-02-27

    The properties at different scales of Ti{sub 1−x}Al{sub x}N films deposited by reactive magnetron sputtering from TiAl sintered (S) targets produced by powder metallurgy are compared with those of a set of films previously deposited in the same conditions from mosaic targets (M) made of pure Ti and Al metals. For compositions close to the hcp/fcc transition (around x = 0.6), the friction behaviour, growth directions and organization of crystallized domains are found to be sensitive to the type of target used. The resistance to crack creation is higher for Ti{sub 0.54}Al{sub 0.46}N (S) and Ti{sub 0.38}Al{sub 0.62}N (S) than for Ti{sub 0.50}Al{sub 0.50}N (M) and Ti{sub 0.32}Al{sub 0.68}N (M). From the measurement of mechanical properties, toughness, and wear volumes and from the observation of wear tracks, it is found that films prepared from sintered targets exhibit a better wear resistance. Grazing incidence X-ray diffraction and electron energy loss spectroscopy in Transmission Electronic Microscopy are used to investigate the long- and short-range orders within the films. The morphology of Ti{sub 0.54}Al{sub 0.46}N (S) film can be considered as an array of crystalline domains having reciprocal-space vectors 111 and 200 directed along the meridian but with random in-plane orientation. Ti{sub 0.38}Al{sub 0.62}N (S) Al-rich film presents a random orientation of the crystalline domains whereas Ti{sub 0.32}Al{sub 0.68}N (M) deposited from composite targets exhibits a well-oriented fibrillar structure. The N K-edge Electron Energy Loss Near Edge Spectra are discussed with previous results of Extended X-ray Absorption Fine Structure Spectroscopy, which has evidenced different values of Al–N and Ti–N bond lengths, either octahedral (cubic-like) or tetrahedral (hexagonal-like) within Ti{sub 0.50}Al{sub 0.50}N (M) and Ti{sub 0.32}Al{sub 0.68}N (M) films. For similar compositions, films deposited from sintered alloys contain more nitrogen atoms in octahedral cubic

  16. Kinetic approach

    Indian Academy of Sciences (India)

    Collapse of a Bose gas: Kinetic approach ... Thermodynamical, statistical and static properties of condensates; Ultracold and trapped gases; matter waves. ... of a harmonically trapped attractively interacting Bose gas below the condensation point by introducing a kinetic approach within the Hartee-Fock approximation.

  17. Heparin kinetics

    International Nuclear Information System (INIS)

    Swart, C.A.M. de.

    1983-01-01

    The author has studied the kinetics of heparin and heparin fractions after intravenous administration in humans and in this thesis the results of this study are reported. Basic knowledge about the physico-chemical properties of heparin and its interactions with proteins resulting in anticoagulant and lipolytic effects are discussed in a review (chapter II), which also comprises some clinical aspects of heparin therapy. In chapter III the kinetics of the anticoagulant effect are described after intravenous administration of five commercial heparin preparations. A mathematical model is presented that fits best to these kinetics. The kinetics of the anticoagulant and lipolytic effects after intravenous injection of various 35 S-radiolabelled heparin fractions and their relationship with the disappearance of the radiolabel are described in chapter IV. Chapter V gives a description of the kinetics of two radiolabels after injection of in vitro formed complexes consisting of purified, 125 I-radiolabelled antithrombin III and various 35 S-radiolabelled heparin fractions. (Auth.)

  18. Quantum kinetic theory

    CERN Document Server

    Bonitz, Michael

    2016-01-01

    This book presents quantum kinetic theory in a comprehensive way. The focus is on density operator methods and on non-equilibrium Green functions. The theory allows to rigorously treat nonequilibrium dynamics in quantum many-body systems. Of particular interest are ultrafast processes in plasmas, condensed matter and trapped atoms that are stimulated by rapidly developing experiments with short pulse lasers and free electron lasers. To describe these experiments theoretically, the most powerful approach is given by non-Markovian quantum kinetic equations that are discussed in detail, including computational aspects.

  19. Wheelchair incidents

    NARCIS (Netherlands)

    Drongelen AW van; Roszek B; Hilbers-Modderman ESM; Kallewaard M; Wassenaar C; LGM

    2002-01-01

    This RIVM study was performed to gain insight into wheelchair-related incidents with powered and manual wheelchairs reported to the USA FDA, the British MDA and the Dutch Center for Quality and Usability Research of Technical Aids (KBOH). The data in the databases do not indicate that incidents with

  20. Kinetic Interface

    DEFF Research Database (Denmark)

    2009-01-01

    A kinetic interface for orientation detection in a video training system is disclosed. The interface includes a balance platform instrumented with inertial motion sensors. The interface engages a participant's sense of balance in training exercises.......A kinetic interface for orientation detection in a video training system is disclosed. The interface includes a balance platform instrumented with inertial motion sensors. The interface engages a participant's sense of balance in training exercises....

  1. Kinetics and Mechanism of Electron Transfer Reaction: Oxidation of Sulfanilic Acid by N-Chloro-p-Toluene Sulfonamide in Acid Perchlorate Medium

    International Nuclear Information System (INIS)

    Sailani, Riya; Bhasin, Meneka; Khandelwal, C. L.; Sharma, P. D.

    2014-01-01

    The kinetics and mechanism of oxidation of sulfanilic acid by N-chloro-p-toluene sulfonamide (chloramine-T) have been studied in acid medium. The species of chloramine-T were analysed on the basis of experimental observations and predominantly reactive species was taken into account for proposition of most plausible reaction mechanism. The derived rate law (1) conforms to such a mechanism. All kinetic parameters were evaluated. Activation parameters such as energy and entropy of activation were calculated to be (61.67 ± 0.47) kJ mol -1 and (-62.71 ± 2.48) JK -1 mol -1 respectively employing Eyring equation

  2. Kinetic energy driven pairing in cuprate superconductors

    NARCIS (Netherlands)

    Maier, TA; Jarrell, M; Macridin, A; Slezak, C

    2004-01-01

    Pairing occurs in conventional superconductors through a reduction of the electronic potential energy accompanied by an increase in kinetic energy. In the underdoped cuprates, optical experiments show that pairing is driven by a reduction of the electronic kinetic energy. Using the dynamical cluster

  3. Hydroxide ion versus chloride and methoxide as an exogenous ligand reveals the influence of hydrogen bonding with second-sphere coordination water molecules in the electron transfer kinetics of Mn complexes.

    Science.gov (United States)

    El Ghachtouli, Sanae; Guillot, Régis; Aukauloo, Ally; Dorlet, Pierre; Anxolabéhère-Mallart, Elodie; Costentin, Cyrille

    2012-03-19

    We recently reported on the synthesis of a new pentadentate N(4)O ligand, tBuL(-), together with the X-ray diffraction structure of the corresponding mononuclear manganese(III)-hydroxo complex namely [(tBuL)Mn(III)OH](ClO(4)), (1 (ClO(4))). [El Ghachtouli et al. Energy Environ. Sci. 2011, 4, 2041.] In the present work, we evidence through electrochemical analysis that complex 1(+), in the presence of water, shows a peculiar behavior toward electron-transfer kinetics. The synthesis, single-crystal X-ray diffraction, and EPR spectroscopic characterization of two other mononuclear manganese(III)-chlorido and methoxo complexes-namely, [(tBuL)Mn(III)Cl](PF(6)), (2(PF(6))) and [(tBuL)Mn(III)OMe](ClO(4)), (3(ClO(4)))-are also reported. 2(PF(6)) and 3(ClO(4)) compounds will serve as reference complexes for the electron-transfer kinetics investigation. The peculiar behavior of 1(ClO(4)) is attributed to the specificity of hydroxide anion as ligand presumably allowing intermolecular hydrogen-bonding interactions and thus affecting electron-transfer properties. © 2012 American Chemical Society

  4. Electron-emission processes in highly charged Ar and Xe ions impinging on highly ordered pyrolytic graphite at energies just above the kinetic threshold

    NARCIS (Netherlands)

    Bodewits, E.; Hoekstra, R.; Dobes, K.; Aumayr, F.

    2014-01-01

    At keV energies, many electronic processes contribute to the emission of secondary electrons in the interaction of highly charged ions on surfaces. To unravel contributions resulting from isolated hollow atoms in front of the surface or embedded in the electron gas of the target, heavy highly

  5. Kinetic transport in crystals

    OpenAIRE

    Marklof, Jens

    2009-01-01

    One of the central challenges in kinetic theory is the derivation of macroscopic evolution equations--describing, for example, the dynamics of an electron gas--from the underlying fundamental microscopic laws of classical or quantum mechanics. An iconic mathematical model in this research area is the Lorentz gas, which describes an ensemble of non-interacting point particles in an infinite array of spherical scatterers. In the case of a disordered scatterer configuration, the classical result...

  6. Kinetics and

    Directory of Open Access Journals (Sweden)

    Mojtaba Ahmadi

    2016-11-01

    Full Text Available The aqueous degradation of Reactive Yellow 84 (RY84 by potassium peroxydisulfate (K2S2O8 has been studied in laboratory scale experiments. The effect of the initial concentrations of potassium peroxydisulfate and RY84, pH and temperature on RY84 degradation were also examined. Experimental data were analyzed using first and second-order kinetics. The degradation kinetics of RY84 of the potassium peroxydisulfate process followed the second-order reaction kinetics. These rate constants have an extreme values similar to of 9.493 mM−1min−1 at a peroxydisulfate dose of 4 mmol/L. Thermodynamic parameters such as activation (Ea and Gibbs free energy (ΔG° were also evaluated. The negative value of ΔGo and Ea shows the spontaneous reaction natural conditions and exothermic nature.

  7. Incidents analysis

    International Nuclear Information System (INIS)

    Francois, P.

    1996-01-01

    We undertook a study programme at the end of 1991. To start with, we performed some exploratory studies aimed at learning some preliminary lessons on this type of analysis: Assessment of the interest of probabilistic incident analysis; possibility of using PSA scenarios; skills and resources required. At the same time, EPN created a working group whose assignment was to define a new approach for analysis of incidents on NPPs. This working group gave thought to both aspects of Operating Feedback that EPN wished to improve: Analysis of significant incidents; analysis of potential consequences. We took part in the work of this group, and for the second aspects, we proposed a method based on an adaptation of the event-tree method in order to establish a link between existing PSA models and actual incidents. Since PSA provides an exhaustive database of accident scenarios applicable to the two most common types of units in France, they are obviously of interest for this sort of analysis. With this method we performed some incident analyses, and at the same time explores some methods employed abroad, particularly ASP (Accident Sequence Precursor, a method used by the NRC). Early in 1994 EDF began a systematic analysis programme. The first, transient phase will set up methods and an organizational structure. 7 figs

  8. Projection of excited orbitals into kinetic energies of emitted electrons in resonant Si KLL Auger decays of SiF4

    International Nuclear Information System (INIS)

    Suzuki, I. H.; Kono, Y.; Ikeda, A.; Nagaoka, S.; Ouchi, T.; Ueda, K.; Takahashi, O.; Higuchi, I.; Tamenori, Y.

    2010-01-01

    Spectator resonant Auger-electron spectra have been measured in the Si 1s photoexcitation region of SiF 4 using an electron spectroscopic technique combined with undulator radiation. A transition with the highest intensity in the total ion yield spectrum, which comes from excitation of a 1s electron into the 6t 2 valence orbital, generates resonant Auger decays in which the excited electron remains predominantly in the valence orbital or is partly shaken up into a high-lying Rydberg orbital. The higher-lying peak generated through excitation into Rydberg orbitals induces resonant Auger decays in which the excited Rydberg electron is partly shaken up to a higher-lying Rydberg orbital or shaken down to a lower-lying valence molecular orbital. These findings exhibit a clear disentanglement effect among excited orbitals which are smeared out in the 1s electron excitation spectrum.

  9. Electron-irradiation of oxide single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Caulfield, K.J.; Cooper, R.; Guy, L. [Melbourne Univ., Parkville, VIC (Australia). School of Physics

    1996-12-31

    Full text: Point defects created in single crystals of CaO, MgO and {alpha}-Al{sub 2}O{sub 3} (sapphire) by electron-irradiation give rise to luminescence from colour centres. The luminescence may be used to monitor the formation of point defects by elastic collision processes. Such processes have great technological importance, in thermoluminescent dosimetry, the development of colour centre lasers, and particularly with the use of sapphire as a first-wall insulator in nuclear fusion reactors. Point defect formation is the initial process which can ultimately lead to dielectric breakdown. By controlling the energy of incident electrons irradiating single crystals, thresholds may be determined for atomic displacement. The time-dependent spectroscopy and decay kinetics of luminescence may also be studied. Displacement thresholds, luminescence spectroscopy and decay kinetics have been studied for CaO, MgO and {alpha}-Al{sub 2}O{sub 3}. Sapphire irradiated with 0.50 MeV electrons, exhibits a broad luminescence emission band around 300 nm at room temperature, which at temperatures below 60 K broadens into two distinct bands around 300 nm and 400 nm. Analysis of the logarithmic decay kinetics of the 300 nm band reveals distinctive features observed in similar oxides by other workers, namely a rapid decrease in intensity punctuated by discrete plateau regions. A model comprising bimolecular electron-hole recombination, in conjunction with unimolecular electron-detrapping, is able to account for these features. 4 refs.

  10. Single-electron capture for 2-8 keV incident energy and direct scattering at 6 keV in He[sup 2+]-He collisions

    Energy Technology Data Exchange (ETDEWEB)

    Bordenave-Montesquieu, D.; Dagnac, R. (Toulouse-3 Univ., 31 (France). Centre de Physique Atomique)

    1992-06-14

    We studied the single-electron capture as well as the direct processes occurring when a He[sup 2+] ion is scattered by a He target. Doubly differential cross sections were measured for single-electron capture with a collision energy ranging from 2 to 8 keV and a scattering angle varying from 10' to 3[sup o]30' (laboratory frame). Single-electron capture into excited states of He[sup +] was found to be the dominant process, confirming a previous experimental study. Elastic scattering and ionization differential cross sections were measured for E = 6 keV. (Author).

  11. Kinetic bridges.

    Science.gov (United States)

    1980-01-01

    This report on kinetic bridges is essentially a state-of-the-art study on two types of bridges whose location or physical characteristics are designed to be time dependent. The first type, called a "relocatable bridge", is essentially for use as a te...

  12. Pulse radiolysis investigation of the reaction of the electronic adduct of bovine serum albumin with oxygen. Polychromatic kinetics of the reaction with adsorbed oxygen

    International Nuclear Information System (INIS)

    Pribush, A.G.

    1986-01-01

    The method of pulse radiolysis was used to investigate the reaction of the electronic adduct of bovine serum albumin with oxygen. It was suggested that the disappearance of the electronic adduct of the protein occurs in the course of its interaction with oxygen adsorbed on the globular protein molecule

  13. Vavilov-Cherenkov radiation as a cause of transition radiation anomalous intensity in case of electron grazing incidence on the silver surface

    International Nuclear Information System (INIS)

    Zrelov, V.P.; Ruzicka, J.

    1979-01-01

    On the basis of the Vavilov-Cherenkov effect the anomaly in the transition radiation (TR) spectrum is explained which has been first observed by Boersch for grazing particle incidence on the silver surface. The contribution of the Vavilov-Cherenkov radiation to the angle distribution of photons of the TR is estimated. Special attention is drawn to a possibility of the nonthreshold character of Vavilov-Cherenkov radiation in such a medium as silver, and to a necessity of creating a complete theory of Vavilov-Cherenkov radiation for absorbing media

  14. Physisorption kinetics

    CERN Document Server

    Kreuzer, Hans Jürgen

    1986-01-01

    This monograph deals with the kinetics of adsorption and desorption of molecules physisorbed on solid surfaces. Although frequent and detailed reference is made to experiment, it is mainly concerned with the theory of the subject. In this, we have attempted to present a unified picture based on the master equation approach. Physisorption kinetics is by no means a closed and mature subject; rather, in writing this monograph we intended to survey a field very much in flux, to assess its achievements so far, and to give a reasonable basis from which further developments can take off. For this reason we have included many papers in the bibliography that are not referred to in the text but are of relevance to physisorption. To keep this monograph to a reasonable size, and also to allow for some unity in the presentation of the material, we had to omit a number of topics related to physisorption kinetics. We have not covered to any extent the equilibrium properties of physisorbed layers such as structures, phase tr...

  15. Pourbaix Diagram, Proton-Coupled Electron Transfer, and Decay Kinetics of a Protein Tryptophan Radical: Comparing the Redox Properties of W32• and Y32• Generated Inside the Structurally Characterized α3W and α3Y Proteins.

    Science.gov (United States)

    Glover, Starla D; Tyburski, Robin; Liang, Li; Tommos, Cecilia; Hammarström, Leif

    2018-01-10

    Protein-based "hole" hopping typically involves spatially arranged redox-active tryptophan or tyrosine residues. Thermodynamic information is scarce for this type of process. The well-structured α 3 W model protein was studied by protein film square wave voltammetry and transient absorption spectroscopy to obtain a comprehensive thermodynamic and kinetic description of a buried tryptophan residue. A Pourbaix diagram, correlating thermodynamic potentials (E°') with pH, is reported for W 32 in α 3 W and compared to equivalent data recently presented for Y 32 in α 3 Y ( Ravichandran , K. R. ; Zong , A. B. ; Taguchi , A. T. ; Nocera , D. G. ; Stubbe , J. ; Tommos , C. J. Am. Chem. Soc. 2017 , 139 , 2994 - 3004 ). The α 3 W Pourbaix diagram displays a pK OX of 3.4, a E°'(W 32 (N •+ /NH)) of 1293 mV, and a E°'(W 32 (N • /NH); pH 7.0) of 1095 ± 4 mV versus the normal hydrogen electrode. W 32 (N • /NH) is 109 ± 4 mV more oxidizing than Y 32 (O • /OH) at pH 5.4-10. In the voltammetry measurements, W 32 oxidation-reduction occurs on a time scale of about 4 ms and is coupled to the release and subsequent uptake of one full proton to and from bulk. Kinetic analysis further shows that W 32 oxidation likely involves pre-equilibrium electron transfer followed by proton transfer to a water or small water cluster as the primary acceptor. A well-resolved absorption spectrum of W 32 • is presented, and analysis of decay kinetics show that W 32 • persists ∼10 4 times longer than aqueous W • due to significant stabilization by the protein. The redox characteristics of W 32 and Y 32 are discussed relative to global and local protein properties.

  16. Distance-Independent Charge Recombination Kinetics in Cytochrome c - Cytochrome c Peroxidase Complexes: Compensating Changes in the Electronic Coupling and Reorganization Energies

    Science.gov (United States)

    Jiang, Nan; Kuznetsov, Aleksey; Nocek, Judith M.; Hoffman, Brian M.; Crane, Brian R.; Hu, Xiangqian; Beratan, David N.

    2013-01-01

    Charge recombination rate constants vary no more than three-fold for inter-protein ET in the Zn-substituted wild type (WT) cytochrome c peroxidase (CcP):cytochrome c (Cc) complex and in complexes with four mutants of the Cc protein (i.e., F82S, F82W, F82Y and F82I), despite large differences in the ET distance. Theoretical analysis indicates that charge recombination for all complexes involves a combination of tunneling and hopping via Trp191. For three of the five structures (WT and F82S(W)), the protein favors hopping more than that in the other two structures that have longer heme→ZnP distances (F82Y(I)). Experimentally observed biexponential ET kinetics is explained by the complex locking in alternative coupling pathways, where the acceptor hole state is either primarily localized on ZnP (slow phase) or on Trp191 (fast phase). The large conformational differences between the CcP:Cc interface for the F82Y(I) mutants compared to the WT and F82S(W) complexes are predicted to change the reorganization energies for the CcP:Cc ET reactions because of changes in solvent exposure and inter-protein ET distances. Since the recombination reaction is likely to occur in the inverted Marcus regime, an increased reorganization energy compensates the decreased role for hopping recombination (and the longer transfer distance) in the F82Y(I) mutants. Taken together, coupling pathway and reorganization energy effects for the five protein complexes explains the observed insensitivity of recombination kinetics to donor-acceptor distance and docking pose and also reveals how hopping through aromatic residues can accelerate long-range ET. PMID:23895339

  17. Time-dependent electron kinetics in N[sub 2] and H[sub 2] for a wide range of the field frequency including electron-vibration superelastic collisions

    Energy Technology Data Exchange (ETDEWEB)

    Loureiro, J. (Centro de Electrodinamica da Universidade Tecnica de Lisboa, Instituto Superior Tecnico, 1096 Lisboa Codex (Portugal))

    1993-02-01

    Electron-energy distribution functions (EEDF), electron-transport parameters, and rate coefficients have been calculated by solving the time-dependent Boltzmann equation in weakly ionized plasmas in N[sub 2] and H[sub 2], for a wide range of the field frequency going from [omega][much lt][nu][sub [ital e

  18. Theory of the ionization yield in gases under electron irradiation

    International Nuclear Information System (INIS)

    Inokuti, M.

    1974-01-01

    The total number N/sub i/(T) of ionizations that an incident electron of kinetic energy T causes in a pure gas obeys an integral equation known as the Fowler equation. Its solution is shown to closely approximate N/sub i/(T) = (T -- U)/W/sub a/ for T exceeding several multiples of the first ionization energy I, where U and W/sub a/ are constants having the energy dimension. Simple formulas express U and W/sub a/ in terms of various cross sections for electron inelastic collisions with a gas molecule. In particular, U - I represents the average kinetic energy of a subionization electron. (35 refs) (U.S.)

  19. Stochastic kinetics

    International Nuclear Information System (INIS)

    Colombino, A.; Mosiello, R.; Norelli, F.; Jorio, V.M.; Pacilio, N.

    1975-01-01

    A nuclear system kinetics is formulated according to a stochastic approach. The detailed probability balance equations are written for the probability of finding the mixed population of neutrons and detected neutrons, i.e. detectrons, at a given level for a given instant of time. Equations are integrated in search of a probability profile: a series of cases is analyzed through a progressive criterium. It tends to take into account an increasing number of physical processes within the chosen model. The most important contribution is that solutions interpret analytically experimental conditions of equilibrium (moise analysis) and non equilibrium (pulsed neutron measurements, source drop technique, start up procedures)

  20. Activation-energy for the reaction h+oh--]eaq- - kinetic determination of the enthalpy and entropy of solvation of the hydrated electron

    DEFF Research Database (Denmark)

    Hickle, B.; Sehested, Knud

    1985-01-01

    The reaction between atomic hydrogen and hydroxide ion in aqueous solutions H + OH- - eaq- + H20 has been studied by pulse radiolysis. The rate constant was measured at pH 11.7 and 12 by following the growth of the hydrated electron absorption at 600 nm. The activation energy of the reaction has ...

  1. A Comprehensive Enzyme Kinetic Exercise for Biochemistry

    Science.gov (United States)

    Barton, Janice S.

    2011-01-01

    This article describes a comprehensive treatment of experimental enzyme kinetics strongly coupled to electronic data acquisition and use of spreadsheets to organize data and perform linear and nonlinear least-squares analyses, all in a manner that promotes development of important reasoning skills. Kinetic parameters are obtained for the stable…

  2. Activation-energy for the reaction h+oh--]eaq- - kinetic determination of the enthalpy and entropy of solvation of the hydrated electron

    DEFF Research Database (Denmark)

    Hickle, B.; Sehested, Knud

    1985-01-01

    been determined over the temperature range 15-60 "C as 6.3 f 0.6 kcal/mol(26.4 f 2.5 kJ/mol). From this value and the activation energy of the reverse reaction, the ea; enthalpy of formation AHf = -32.6 f 1.6 kcal/mol (-136.4 f 6.7 kJ/mol) and its standard entropy So = 16.7 f 5.4 cal/(mol deg) (69.8 f...... 22.5 J/(mol deg)) were calculated. The high entropy of solvation A& = 11.7 f 5.4 cal/(mol deg) (49 22.6 J/(mol deg)) when electrons are transferred from gas phase into aqueous solution indicates that the hydrated electron is a structure breaker....

  3. UV Filtering of Dye-Sensitized Solar Cells: The Effects of Varying the UV Cut-Off upon Cell Performance and Incident Photon-to-Electron Conversion Efficiency

    Directory of Open Access Journals (Sweden)

    Matthew Carnie

    2012-01-01

    Full Text Available With current technology, UV filters are essential to ensure long-term dye-sensitized solar cell (DSC stability. Blocking photons, however, will have an obvious effect on device performance and upon its incident photon-to-current conversion efficiency (IPCE. Filters have been applied to DSC devices with a range of cut-off wavelengths in order to assess how different levels of filtering affect the performance and IPCE of devices made with three different dyes, namely N719, Z907, and N749. It is shown that dyes that extend their IPCE further into the NIR region suffer lesser relative efficiency losses due to UV filtering than dyes with narrower action spectra. Furthermore, the results are encouraging to those working towards the industrialisation of DSC technology. From the results presented it can be estimated that filtering at a level intended to prevent direct band gap excitation of the TiO2 semiconductor should cause a relative drop in cell efficiency of no more than 10% in forward illuminated devices and no more than 2% in reverse illuminated devices.

  4. Electron scattering resonances and dissociative attachment in polyatomic molecules

    International Nuclear Information System (INIS)

    Olthoff, J.K.

    1985-01-01

    A relatively new technique, electron transmission spectroscopic, is now being used to investigate the unoccupied valence molecular orbitals of many chemical compounds. Electron-transmission spectroscopy measures the energy of negative ion states that arise from electron capture into unoccupied molecular orbitals. Additional information about the unoccupied orbitals may be obtained if the negative ion decays by way of dissociation. Determination of the identity, kinetic energy, and production rates of stable ion fragments supplies information about the shape and position of the potential energy curves which describe the electronic states of the molecule and the anion. Used together, photoelectron, electron transmission, and dissociation data can produce a complete picture of a molecule's valence electronic structure. For this work, a time-of-flight mass spectrometer was attached to an electron transmission spectrometer to observe negative ion fragments due to dissociative attachment. The mass spectrometer measures the identify and kinetic energy of stable negative ions as a function of incident electron energy. Electron transmission spectra and ion production data were acquired for many compounds in four chemical categories

  5. Kinetic buffers.

    Science.gov (United States)

    Alibrandi, Giuseppe; Fabbrizzi, Luigi; Licchelli, Maurizio; Puglisi, Antonio

    2015-01-12

    This paper proposes a new type of molecular device that is able to act as an inverse proton sponge to slowly decrease the pH inside a reaction vessel. This makes the automatic monitoring of the concentration of pH-sensitive systems possible. The device is a composite formed of an alkyl chloride, which kinetically produces acidity, and a buffer that thermodynamically modulates the variation in pH value. Profiles of pH versus time (pH-t plots) have been generated under various experimental conditions by computer simulation, and the device has been tested by carrying out automatic spectrophotometric titrations, without using an autoburette. To underline the wide variety of possible applications, this new system has been used to realize and monitor HCl uptake by a di-copper(II) bistren complex in a single run, in a completely automatic experiment. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Kinetics of photoinduced electron transfer reactions of ruthenium(II) complexes and phenols, tyrosine, N-acetyl-tyrosine and tryptophan in aqueous solutions measured with modulated fluorescence spectroscopy.

    Science.gov (United States)

    Nguyen, Truong X; Landgraf, Stephan; Grampp, Günter

    2017-01-01

    Photooxidation kinetics of phenol, 1-naphthol, 2-naphthol, tyrosine (TyrOH) and N-acetyl-tyrosine (AcTyrOH), tryptophan (TrpH) by ruthenium(II) polypyridyl complexes: [Ru(bpy) 3 ]Cl 2 (1), [Ru(phen) 3 ]Cl 2 (2), [Ru(bpy)(phen)(bpg)]Cl 2 (3), and [Ru(dpq) 2 (bxbg)]Cl 2 (4) where bpy is 2,2'-bipyridine, phen - 1,10-phenanthroline, bpg - bipyridine-glycoluril, dpq - dipyrido[3,2-d:2',3'-f]quinoxaline, and bxbg - bis(o-xylene)bipyridine-glycoluril are investigated. Rate constants have been measured by steady-state luminescence and phase-modulation fluorometry in aqueous solutions at different pH's. The rates for the oxidation of the phenols and phenolic aromatic amino acids spreads over a wide range from 4.2×10 6 to 6.8×10 9 M -1 s -1 , depending on pH and the nature of solutes. At pH>pK a of the quenchers, the presence of reactive species (PhO - ) in the alkaline solutions is accounted for the rapid ET rates. In the pH range between 4 and 10 (pHreaction rates, others than the driving forces ∆G 0 are the steric and hydrophobic interactions arising from the structure of the compounds. This is clearly seen in the case of photoreaction between the Ru(phen) 3 2+ complex and AcTyrOH. Phen ligands and acetyl group cause a steric effect, but strengthen the hydrophobic interactions and thus promote the quenching process. The pH-dependent equation of the observed rate constant for PhOH/AcTyrOH oxidation is expressed as a sum of rates for its protonated, neutral and deprotonated forms. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Effect of ultraviolet irradiation on free radical scavenging activity of immunosuppressants used in lung transplantation and comparative electron paramagnetic resonance study of kinetics of their interactions with model free radicals.

    Science.gov (United States)

    Stanjek-Cichoracka, A; Żegleń, S; Ramos, P; Pilawa, B; Wojarski, J

    2018-01-27

    The immunosuppressive drugs used in solid organ transplantation or autoimmunological processes were studied by electron paramagnetic resonance (EPR) spectroscopy to estimate their free radical scavenging activity. The interactions of immunosuppressants with free radicals were examined by an X-band (9.3 GHz) EPR spectroscopy and a model of DPPH free radicals. The EPR spectra of DPPH and DPPH interacting with individual drugs were compared. Kinetic studies were performed, and the effect of ultraviolet (UV) irradiation on the free radical scavenging activity of the tested drugs was determined. The free radical scavenging activity of non-irradiated drugs decreased in the order: rapamycin > mycophenolate mofetil > ciclosporin > tacrolimus. UV irradiation increased the free radical scavenging activity of all the tested immunosuppressive drugs, and the effect was highest for tacrolimus. For the non-irradiated samples, the speed of free radical interactions decreased in the order: ciclosporin > tacrolimus > mycophenolate mofetil > rapamycin. UV irradiation only slightly affected the speed of interactions of the immunosuppressive drugs with the model DPPH free radicals. Electron paramagnetic resonance spectroscopy is useful for obtaining information on interactions of immunosuppressive drugs with free radicals. We hypothesized that the long-term immunosuppressive effects of these drugs after transplantation or during autoimmune disorders may be mediated by anti-inflammatory action in addition to the known receptor/cell cycle inhibition. © 2018 John Wiley & Sons Ltd.

  8. Comparison between electron and neutron Compton scattering studies

    Directory of Open Access Journals (Sweden)

    Moreh Raymond

    2015-01-01

    Full Text Available We compare two techniques: Electron Compton Scattering (ECS and neutron Compton scattering (NCS and show that using certain incident energies, both can measure the atomic kinetic energy of atoms in molecules and solids. The information obtained is related to the Doppler broadening of nuclear levels and is very useful for deducing the widths of excited levels in many nuclei in self absorption measurements. A comparison between the atomic kinetic energies measured by the two methods on the same samples is made. Some results are also compared with calculated atomic kinetic energies obtained using the harmonic approximation where the vibrational frequencies were taken from IR/Raman optical measurements. The advantages of the ECS method are emphasized.

  9. Fragment-mass, kinetic energy, and angular distributions for 234U(n ,f ) at incident neutron energies from En=0.2 MeV to 5.0 MeV

    Science.gov (United States)

    Al-Adili, A.; Hambsch, F.-J.; Pomp, S.; Oberstedt, S.; Vidali, M.

    2016-03-01

    This work investigates the neutron-induced fission of 234U and the fission-fragment properties for neutron energies between En=0.2 and 5.0 MeV with a special highlight on the prominent vibrational resonance at En=0.77 MeV. Angular, energy, and mass distributions were determined based on the double-energy technique by means of a twin Frisch-grid ionization chamber. The experimental data are parametrized in terms of fission modes based on the multimodal random neck-rupture model. The main results are a verified strong angular anisotropy and fluctuations in the energy release as a function of incident-neutron energy.

  10. Investigation of electron beam irradiation effects on anti-nutritional factors, chemical composition and digestion kinetics of whole cottonseed, soybean and canola seeds

    Energy Technology Data Exchange (ETDEWEB)

    Ebrahimi-Mahmoudabad, S.R., E-mail: ebrahimiyazd@yahoo.com [Department of Animal Science, Faculty of Agriculture, Shahr-e-Qods Branch, Islamic Azad University, P.O. Box 37515-374, Shahr-e-Qods (Iran, Islamic Republic of); Taghinejad-Roudbaneh, M. [Department of Animal Science, Faculty of Agriculture, Tabriz Branch, Islamic Azad University, P.O. Box 51589, Tabriz (Iran, Islamic Republic of)

    2011-12-15

    This study was completed to determine effects of electron beam (EB) irradiation at doses of 15, 30 and 45 kGy on anti-nutritional factors, ruminal degradation and in vitro crude protein (CP) digestibility of whole cottonseed (WCS), soybean (SB) and canola seeds (CS). EB-irradiation eliminated completely (P<0.001) phytic acid of WCS, SB and CS at a dose of 30 kGy. EB-irradiation decreased linearly (P<0.001) the total glucosinolate content of CS. Trypsin inhibitor activity of 15, 30 and 45 kGy EB-irradiated SB was decreased by 19, 73 and 88%, respectively. Free gossypol content of WCS was reduced linearly (P<0.001) by irradiation. EB-irradiation increased linearly (P<0.001) CP digestibility of feeds. In conclusion, EB-irradiation was an effective processing method for improving the nutritive value of WCS, SB and CS. - Highlights: > Effects of electron beam (EB) irradiation on nutritive value of some oilseeds were evaluated. > EB-irradiation eliminated completely phytic acid of seeds at a dose of 30 kGy. > EB-irradiation decreased trypsin inhibitor activity of soybean. > Free gossypol content of whole cottonseed was reduced linearly by EB-irradiation. > EB-irradiation increased escape protein and crude protein digestibility of seeds.

  11. Self-consistent kinetic simulations of lower hybrid drift instability resulting in electron current driven by fusion products in tokamak plasmas

    International Nuclear Information System (INIS)

    Cook, J W S; Chapman, S C; Dendy, R O; Brady, C S

    2011-01-01

    We present particle-in-cell (PIC) simulations of minority energetic protons in deuterium plasmas, which demonstrate a collective instability responsible for emission near the lower hybrid frequency and its harmonics. The simulations capture the lower hybrid drift instability in a parameter regime motivated by tokamak fusion plasma conditions, and show further that the excited electromagnetic fields collectively and collisionlessly couple free energy from the protons to directed electron motion. This results in an asymmetric tail antiparallel to the magnetic field. We focus on obliquely propagating modes excited by energetic ions, whose ring-beam distribution is motivated by population inversions related to ion cyclotron emission, in a background plasma with a temperature similar to that of the core of a large tokamak plasma. A fully self-consistent electromagnetic relativistic PIC code representing all vector field quantities and particle velocities in three dimensions as functions of a single spatial dimension is used to model this situation, by evolving the initial antiparallel travelling ring-beam distribution of 3 MeV protons in a background 10 keV Maxwellian deuterium plasma with realistic ion-electron mass ratio. These simulations provide a proof-of-principle for a key plasma physics process that may be exploited in future alpha channelling scenarios for magnetically confined burning plasmas.

  12. Ground-state phase diagram, fermionic entanglement and kinetically-induced frustration in a hybrid ladder with localized spins and mobile electrons

    Science.gov (United States)

    Carvalho, R. C. P.; Pereira, M. S. S.; de Oliveira, I. N.; Strečka, J.; Lyra, M. L.

    2017-09-01

    We introduce an exactly solvable hybrid spin-ladder model containing localized nodal Ising spins and interstitial mobile electrons, which are allowed to perform a quantum-mechanical hopping between the ladder’s legs. The quantum-mechanical hopping process induces an antiferromagnetic coupling between the ladder’s legs that competes with a direct exchange coupling of the nodal spins. The model is exactly mapped onto the Ising spin ladder with temperature-dependent two- and four-spin interactions, which is subsequently solved using the transfer-matrix technique. We report the ground-state phase diagram and compute the fermionic concurrence to characterize the quantum entanglement between the pair of interstitial mobile electrons. We further provide a detailed analysis of the local spin ordering including the pair and four-spin correlation functions around an elementary plaquette, as well as, the local ordering diagrams. It is shown that a complex sequence of distinct local orderings and frustrated correlations takes place when the model parameters drive the investigated system close to a zero-temperature triple coexistence point.

  13. Effect of applied hydrostatic pressure on the quenching kinetics, and electronic and molecular structure of eight and nine-coordinate lanthanide complexes in solution

    International Nuclear Information System (INIS)

    Maupin, C.L.; Riehl, J.P.

    1998-01-01

    Full text: Applied hydrostatic pressure may be used as a probe of the reaction mechanism for various solution reactions involving lanthanide ions. In this work we report on the use of high pressure to probe the mechanism of enantioselective quenching between racemic luminescent lanthanide complexes containing Dy(III) Tb(III) and Eu(III), and optically active transition metal complexes as quenchers. Diastereomeric rate constants are obtained from a biexponential fit of the luminescence decay. Particular attention will be given to solvation effects on the measured diastereomeric rate constants. The source of chirality is ascribed to a enantioselective rearrangement step within a bimolecular 'encounter' complex yielding a intermolecular geometry in which the energy transfer is efficient. The effect of high pressure on the molecular and electronic structure of these complexes will also be discussed

  14. Investigation of electron beam irradiation effects on anti-nutritional factors, chemical composition and digestion kinetics of whole cottonseed, soybean and canola seeds

    Science.gov (United States)

    Ebrahimi-Mahmoudabad, S. R.; Taghinejad-Roudbaneh, M.

    2011-12-01

    This study was completed to determine effects of electron beam (EB) irradiation at doses of 15, 30 and 45 kGy on anti-nutritional factors, ruminal degradation and in vitro crude protein (CP) digestibility of whole cottonseed (WCS), soybean (SB) and canola seeds (CS). EB-irradiation eliminated completely ( P<0.001) phytic acid of WCS, SB and CS at a dose of 30 kGy. EB-irradiation decreased linearly ( P<0.001) the total glucosinolate content of CS. Trypsin inhibitor activity of 15, 30 and 45 kGy EB-irradiated SB was decreased by 19, 73 and 88%, respectively. Free gossypol content of WCS was reduced linearly ( P<0.001) by irradiation. EB-irradiation increased linearly ( P<0.001) CP digestibility of feeds. In conclusion, EB-irradiation was an effective processing method for improving the nutritive value of WCS, SB and CS.

  15. Final Scientific/Technical Report for "Role of Electron Kinetic Effects on the Macroscopic Structure and Evolution of Collisionless Reconnection in Simulations with Open Boundary Conditions"

    Energy Technology Data Exchange (ETDEWEB)

    Scudder, Jack

    2011-02-04

    The final years of this grant have been dedicated to diagnosing the observable properties of Collisionless Magnetic Reconnection (CMR) as disclosed by the open boundary condition PIC simulations developed under this grant. Particular attention has focussed on identifying the Electron Diffusion Region (EDR), the short scale domain where the process is thought to be enabled. The critical issue has been the need for experimental closure for CMR that is widely invoked in astrophysics, but has actually rather little direct, incontrovertible evidence for its involvement. This difficulty arises because CMR is about topology change of the magnetic field - a concept that is not conducive to single, or even few point correlations as are beginning to be possible with spacecraft armada, like Cluster or the planned Magnetospheric Multi-Scale (MMS) mission to be launched in 2014. Alternate formulations about the time rate of magnetic flux inventoried by a moving observer, reformulate the needed evidence in terms of the curl of various weak vector fields, such as E+UexB, that is zero in ideal MHD. To sense E+UexB from space measurements is already a heroic task. The curl of such a small vector field is outside the domain of the possible.

  16. Contribution of Electrostatics to the Kinetics of Electron Transfer from NADH-Cytochrome b5 Reductase to Fe(III)-Cytochrome b5.

    Science.gov (United States)

    Kollipara, Sireesha; Tatireddy, Shivakishore; Pathirathne, Thusitha; Rathnayake, Lasantha K; Northrup, Scott H

    2016-08-25

    Brownian dynamics (BD) simulations provide here a theoretical atomic-level treatment of the reduction of human ferric cytochrome b5 (cyt b5) by NADH-cytochrome b5 reductaste (cyt b5r) and several of its mutants. BD is used to calculate the second-order rate constant of electron transfer (ET) between the proteins for direct correlation with experiments. Interestingly, the inclusion of electrostatic forces dramatically increases the reaction rate of the native proteins despite the overall negative charge of both proteins. The role played by electrostatic charge distribution in stabilizing the ET complexes and the role of mutations of several amino acid residues in stabilizing or destabilizing the complexes are analyzed. The complex with the shortest ET reaction distance (d = 6.58 Å) from rigid body BD is further subjected to 1 ns of molecular dynamics (MD) in a periodic box of TIP3P water to produce a more stable complex allowed by flexibility and with a shorter average reaction distance d = 6.02 Å. We predict a docking model in which the following ion-ion interactions are dominant (cyt b5r/cyt b5): Lys162-Heme O1D/Lys163-Asp64/Arg91-Heme O1A/Lys125-Asp70.

  17. Assessment in the competition between steric and electronic effects in the elimination kinetic of hydrogen in 1,4-cyclohexadienes in the gas phase. Quantum chemical theory calculations

    Science.gov (United States)

    Ramírez, Beatriz; Córdova-Sintjago, Tania C.; Ruette, Fernando; Chuchani, Gabriel

    2015-02-01

    The mechanisms of gas-phase thermal decomposition of alkyl-substituted cyclohexadienes were studied by the means of quantum chemical calculations with theory levels Møller-Plesset pertubation theory (MP2) and density functional theory (DFT) (B3LYP, MPW1PW91, PBEPBE, ωB97XD, CAM-B3LYP, M06, and M062X) with 6-31G(d,p), 6-31++G(d,p) basis sets. The examination of the reaction pathways of each substrate demonstrated a molecular mechanism through six-membered cyclic boat-like transition state (TS) structure. An alkyl group substituent causes a detrimental effect on the reaction rate, compared to the parent compound 1,4-cyclohexadiene; however, the reaction was favoured in the case of 3,6-dimethyl substitution. The 3,6-dimethyl-1,4-cyclohexadiene compound has activation energy 11.2 kJ/mol lower than the reference compound, which overcomes the effect of the most negative entropy of activation in the series. The effects of alkyl substituents in these reactions suggest a complex combination of electronic and steric influence. These reactions are characterised as highly synchronous concerted, with small predominance of C-H bond breaking in the TS.

  18. Kinetic theory and transport phenomena

    CERN Document Server

    Soto, Rodrigo

    2016-01-01

    This textbook presents kinetic theory, which is a systematic approach to describing nonequilibrium systems. The text is balanced between the fundamental concepts of kinetic theory (irreversibility, transport processes, separation of time scales, conservations, coarse graining, distribution functions, etc.) and the results and predictions of the theory, where the relevant properties of different systems are computed. The book is organised in thematic chapters where different paradigmatic systems are studied. The specific features of these systems are described, building and analysing the appropriate kinetic equations. Specifically, the book considers the classical transport of charges, the dynamics of classical gases, Brownian motion, plasmas, and self-gravitating systems, quantum gases, the electronic transport in solids and, finally, semiconductors. Besides these systems that are studied in detail, concepts are applied to some modern examples including the quark–gluon plasma, the motion of bacterial suspen...

  19. The effect of electrons surface scattering on fine metal particle electromagnetic radiation absorption

    Directory of Open Access Journals (Sweden)

    I.A. Kuznetsova

    2014-03-01

    Full Text Available The magnetic dipole absorption cross section of spherical shaped metal particle was calculated in terms of kinetic approach. The particle considered was placed in the field of plane electromagnetic wave. The model of boundary conditions taking into account the dependence of the reflectivity coefficient both on the surface roughness parameter and on the electrons incidence angle was investigated. The results obtained were compared with theoretical computation results for model of combined diffusion-specular boundary conditions of Fuchs.

  20. Grazing incidence diffraction : A review

    Energy Technology Data Exchange (ETDEWEB)

    Gilles, B. [LTPCM, ENSEEG. St. Martin d`Heres. (France)

    1996-09-01

    Different Grazing Incidence Diffraction (GID) methods for the analysis of thin films and multilayer structures are reviewed in three sections: the reflectivity is developed in the first one, which includes the non-specular diffuse scattering. The second one is devoted to the extremely asymmetric Bragg diffraction and the third one to the in-plane Bragg diffraction. Analytical formulations of the scattered intensities are developed for each geometry, in the framework of the kinetical analysis as well as the dynamical theory. Experimental examples are given to illustrate the quantitative possibility of the GID techniques.

  1. Theoretical studies of the free energies of electron transfer and electron transfer kinetics in nanostructure supramolecular complexes of cis-unsaturated thiocrown ethers and Ce and Gd endohedral metallofullerenes [X–UT–Y][M@C82] (M = Ce, Gd

    Directory of Open Access Journals (Sweden)

    Avat (Arman Taherpour

    2017-02-01

    Full Text Available Unsaturated thiocrown ethers (described as [X–UT–Y], where X and Y indicate the numbers of carbon and sulfur atoms, respectively with cis-geometry are a group of crown ethers that, in light of the size of their cavities and their conformational restriction compared to a corresponding saturated system (1–9, demonstrate interesting properties for physicochemical studies. Formation of endohedral metallofullerenes is thought to involve the transfer of electrons from the encapsulated metal atom(s to the surrounding fullerene cage. Two of these molecules are the Ce@C82 (10 and Gd@C82 (11. The supramolecular complexes of 1–9 with Ce@C82 (10 and Gd@C82 (11 have been shown to possess a host–guest interaction for electron transfer processes, and these behaviors have previously been reported. The relationship between an index (which was introduced as the ratio of summation of the number of carbon atoms (nc and the number of sulfur atoms (ns and oxidation potential (oxE1 of 1–9, as well as the free energies of electron transfer (ΔGet, by the Rehm–Weller equation between 1–9 and 10 and 11 as [X–UT–Y][Ce@C82] (12 and [X–UT–Y][Gd@C82] (13 complexes, were investigated before. In this study, the first and second activation free energies of electron transfer and kinetic rate constants of the electron transfers, ΔGet(n# and ket (n = 1,2, respectively, which are given by the previous studies for [X–UT–Y][Ce@C82] (12 and [X–UT–Y][Gd@C82] (13 complexes, were calculated in accordance with the Marcus theory.

  2. Fundamental aspects of plasma chemical physics kinetics

    CERN Document Server

    Capitelli, Mario; Colonna, Gianpiero; Esposito, Fabrizio; Gorse, Claudine; Hassouni, Khaled; Laricchiuta, Annarita; Longo, Savino

    2016-01-01

    Describing non-equilibrium "cold" plasmas through a chemical physics approach, this book uses the state-to-state plasma kinetics, which considers each internal state as a new species with its own cross sections. Extended atomic and molecular master equations are coupled with Boltzmann and Monte Carlo methods to solve the electron energy distribution function. Selected examples in different applied fields, such as microelectronics, fusion, and aerospace, are presented and discussed including the self-consistent kinetics in RF parallel plate reactors, the optimization of negative ion sources and the expansion of high enthalpy flows through nozzles of different geometries. The book will cover the main aspects of the state-to-state kinetic approach for the description of nonequilibrium cold plasmas, illustrating the more recent achievements in the development of kinetic models including the self-consistent coupling of master equations and Boltzmann equation for electron dynamics. To give a complete portrayal, the...

  3. Grazing incidence beam expander

    Energy Technology Data Exchange (ETDEWEB)

    Akkapeddi, P.R.; Glenn, P.; Fuschetto, A.; Appert, Q.; Viswanathan, V.K.

    1985-01-01

    A Grazing Incidence Beam Expander (GIBE) telescope is being designed and fabricated to be used as an equivalent end mirror in a long laser resonator cavity. The design requirements for this GIBE flow down from a generic Free Electron Laser (FEL) resonator. The nature of the FEL gain volume (a thin, pencil-like, on-axis region) dictates that the output beam be very small. Such a thin beam with the high power levels characteristic of FELs would have to travel perhaps hundreds of meters or more before expanding enough to allow reflection from cooled mirrors. A GIBE, on the other hand, would allow placing these optics closer to the gain region and thus reduces the cavity lengths substantially. Results are presented relating to optical and mechanical design, alignment sensitivity analysis, radius of curvature analysis, laser cavity stability analysis of a linear stable concentric laser cavity with a GIBE. Fabrication details of the GIBE are also given.

  4. Anomaly in the Kumakhov radiation temperature dependence at axial channeling of electrons

    Energy Technology Data Exchange (ETDEWEB)

    Komarov, F.F.; Telegin, V.I.; Khokonov, M.Kh.

    1983-01-01

    The results of numerical solution of a kinetic equation for distribution function of axially channelled electrons obtained by Belostritsky and Kumakhov at different temperatures of crystals and calculated for the determined electron distributions spectral density of radiation are given. Analysis of the obtained dependence of the number of channelled 5 GeV electrons in tungsten along the <111> axis on depth Z has revealed that 2% of incidence beam electrons have anomalously large depths of dechannelling. Ratio of electrons with large by modulus cross section energies grows at decreasing crystal temperature from 293 to 40 K and, therefore, radiation intensity increases. Two-fold increase of radiation intensity can be attained at axial channelling of 1 GeV electrons in tungsten <111> at the temperatures of the crystal equal to 40 and 293 K and its thickness equal to 220 ..mu..m.

  5. Electron Stimulated Molecular Desorption of a NEG St 707 at Room Temperature

    CERN Document Server

    Le Pimpec, F; Laurent, Jean Michel

    2001-01-01

    Electron stimulated molecular desorption (ESD) from a NEG St 707 (SAES GettersTM) sample after conditioning and after saturation with isotopic carbon monoxide2,13C18O, has been studied on a laboratory setup. Measurements were performed using an electron beam of 300 eV kinetic energy, with an average electron intensity of 1.6 1015 electrons s-1. The electrons were impinging on the 15 cm2 target surface at perpendicular incidence. It is found that the desorption yields h (molecules/electron) of the characteristic gases in an UHV system (hydrogen, methane, water, carbon monoxide, carbon dioxide) for a fully activated NEG as well as for a NEG fully saturated with 13C18O are lower than for OFHC copper baked at 120oC. A small fraction only of the gas which is required to saturate the getter surface can be re-desorbed and thus appears to be accessible to ESD.

  6. Nonlocal kinetic-energy-density functionals

    International Nuclear Information System (INIS)

    Garcia-Gonzalez, P.; Alvarellos, J.E.; Chacon, E.

    1996-01-01

    In this paper we present nonlocal kinetic-energy functionals T[n] within the average density approximation (ADA) framework, which do not require any extra input when applied to any electron system and recover the exact kinetic energy and the linear response function of a homogeneous system. In contrast with previous ADA functionals, these present good behavior of the long-range tail of the exact weight function. The averaging procedure for the kinetic functional (averaging the Fermi momentum of the electron gas, instead of averaging the electron density) leads to a functional without numerical difficulties in the calculation of extended systems, and it gives excellent results when applied to atoms and jellium surfaces. copyright 1996 The American Physical Society

  7. Kinetics and spectroscopy of low temperature plasmas

    CERN Document Server

    Loureiro, Jorge

    2016-01-01

    This is a comprehensive textbook designed for graduate and advanced undergraduate students. Both authors rely on more than 20 years of teaching experience in renowned Physics Engineering courses to write this book addressing the students’ needs. Kinetics and Spectroscopy of Low Temperature Plasmas derives in a full self-consistent way the electron kinetic theory used to describe low temperature plasmas created in the laboratory with an electrical discharge, and presents the main optical spectroscopic diagnostics used to characterize such plasmas. The chapters with the theoretical contents make use of a deductive approach in which the electron kinetic theory applied to plasmas with basis on the electron Boltzmann equation is derived from the basic concepts of Statistical and Plasma Physics. On the other hand, the main optical spectroscopy diagnostics used to characterize experimentally such plasmas are presented and justified from the point of view of the Atomic and Molecular Physics. Low temperature plasmas...

  8. Methods of nonlinear kinetics

    OpenAIRE

    Gorban, A. N.; Karlin, I. V.

    2003-01-01

    Nonlinear kinetic equations are reviewed for a wide audience of specialists and postgraduate students in physics, mathematical physics, material science, chemical engineering and interdisciplinary research. Contents: The Boltzmann equation, Phenomenology and Quasi-chemical representation of the Boltzmann equation, Kinetic models, Discrete velocity models, Direct simulation, Lattice Gas and Lattice Boltzmann models, Minimal Boltzmann models for flows at low Knudsen number, Other kinetic equati...

  9. Kinetics and Mechanisms of Calcite Reactions with Saline Waters

    Energy Technology Data Exchange (ETDEWEB)

    Gorman, Brian P [Colorado School of Mines, Golden, CO (United States)

    2015-09-02

    Project Description: The general objective of the proposed research is to determine the kinetics and mechanisms of calcite reactions with saline waters over a wide range of saline water composition, pCO2, and modest ranges in T and P. This will be accomplished by studying both reaction rates and solubility from changes in solution chemistry, and making nanoscale observations of calcite precipitate surface morphology and composition at the micro-to-nano-scale to provide an understanding of controlling reaction mechanisms and pathways. The specific objectives necessary to reach the general objective are: a) determination of how pCO2, Ca2+, ionic strength and “foreign” ions influence reaction rates; and b) investigate the influence of these parameters on apparent kinetic solubility from dissolution and precipitation reactions. This information will clearly be central to the construction of reliable reaction-transport models to predict reservoir and formation response to increased CO2 in saline waters. This program was initially collaborative with John Morse at Texas A&M, however his passing shortly after the beginning of this program resulted in abbreviated research time and effort. Summary of Results: Early studies using electron microscopy and spectroscopy indicated that carbonate precipitation from natural seawater (NSW) conditions onto aragonite substrates was mediated by a surface amorphous calcium carbonate layer. It was hypothesized that this ACC layer (observed after < 5days reaction time) was responsible for the abnormal reaction kinetics and also served as a metastable seed layer for growth of epitaxial aragonite. Further studies of the ACC formation mechanism indicated a strong dependence on the Mg concentration in solution. Subsequent studies at shorter times (10 hrs) on calcite substrates and in a wide range of supersaturation conditions did not indicate any ACC layer. Instead, an epitaxial layer by layer

  10. Kinetic theory of tearing instability

    International Nuclear Information System (INIS)

    Hazeltine, R.D.; Dobrott, D.; Wang, T.S.

    1975-01-01

    The guiding-center kinetic equation with Fokker-Planck collision term is used to study, in cylindrical geometry, a class of dissipative instabilities of which the classical tearing mode is an archetype. Variational solution of the kinetic equation obviates the use of an approximate Ohm's law or adiabatic assumption, as used in previous studies, and it provides a dispersive relation which is uniformly valid for any ratio of wave frequency to collision frequency. One result of using the rigorous collision operator is the prediction of a new instability. This instability, driven by the electron temperature gradient, is predicted to occur under the long mean-free path conditions of present tokamak experiments, and has significant features in common with the kink-like oscillations observed in such experiments

  11. Electron stimulated desorption study of oxygen adsorption on tungsten

    International Nuclear Information System (INIS)

    Prince, R.H.; Floyd, G.R.

    1978-01-01

    The adsorption of oxygen on a polycrystalline tungsten surface at approximately 800 K has been studied by means of electron stimulated desorption (ESD). Although precision gas dosing was not employed, the initial sticking probability for dissociative adsorption appears to be essentially unity, while the variation with coverage suggests that a high degree of order exists and that precursor state kinetics are significant. A most noticeable and reproducible discontinuity in ESD parameters occurs at a fractional coverage theta approximately 0.8 (exposure approximately 1.4 X 10 15 molecules/cm 2 incident) which is interpreted as an order-disorder transition within a single (β 1 ) chemisorption state, and results in an increase in the ionic desorption cross-section by a factor of approximately 1.26. A discussion of the adsorption kinetics and the disorder transition is given in terms of current models of dissociative adsoption which include the effects of nearest neighbour lateral interactions. (Auth.)

  12. Kinetics of oxidic phase dissolution in acids

    International Nuclear Information System (INIS)

    Gorichev, I.G.; Kipriyanov, N.A.

    1981-01-01

    The critical analysis of the experimental data on dissolution kinetics of metal oxides (BeO, V 2 O 5 , UO 2 , Nb 2 O 5 , Ta 2 O 5 etc.) in acid media is carried out. Kinetic peculiarities of oxide dissolution are explained on the basis of the notions of electron- proton theory. It is established that the surface nonstoichiometric ccomposition of oxide phase and potential jump, appearing on the interface of the oxide-electrolyte phase are the important factors, determining the dissolution rate of a solid phase. The dissolution rate of metal oxides is limited by the transition of protons into the solid oxide phase. Morphological models of heterogeneous kinetics are used when explaining kinetic regularities of oxide dissolution process [ru

  13. Kinetic Theory of the Inner Magnetospheric Plasma

    CERN Document Server

    Khazanov, George V

    2011-01-01

    This book provides a broad introduction to the kinetic theory of space plasma physics with the major focus on the inner magnetospheric plasma. It is designed to provide a comprehensive description of the different kinds of transport equations for both plasma particles and waves with an emphasis on the applicability and limitations of each set of equations. The major topics are: Kinetic Theory of Superthermal Electrons, Kinetic Foundation of the Hydrodynamic Description of Space Plasmas (including wave-particle interaction processes), and Kinetic Theory of the Terrestrial Ring Current. Distinguishable features of this book are the analytical solutions of simplified transport equations. Approximate analytic solutions of transport phenomena are very useful because they help us gain physical insight into how the system responds to varying sources of mass, momentum and energy and also to various external boundary conditions. They also provide us a convenient method to test the validity of complicated numerical mod...

  14. New electronics stuff chemistry

    International Nuclear Information System (INIS)

    Byeon, Su Il

    2003-04-01

    The first part of this book is about equilibrium electrochemistry on electric thermo dynamic equilibrium state of electrochemistry, crystal defect of solid, thermodynamics on defect electron and election in semiconductor, Gawani potential, volta potential and equilibrium potential and thermodynamics application in Gawani battery. The second part deals with dynamic electrochemistry electrode reaction kinetics and corrosion potential in normal state, diffusion and transport of ion and electron and current impedance spectroscopy. It also mentions industrial electrochemistry and laboratory works in electronics chemistry course.

  15. MCFRS Incidents by Station

    Data.gov (United States)

    Montgomery County of Maryland — This dataset contains the monthly summary data indicating incident occurred in each fire station response area. The summary data is the incident count broken down by...

  16. Police Incident Reports Written

    Data.gov (United States)

    Town of Chapel Hill, North Carolina — This table contains incident reports filed with the Chapel Hill Police Department. Multiple incidents may have been reported at the same time. The most serious...

  17. A kinetic model of zircon thermoluminescence

    NARCIS (Netherlands)

    Turkin, A.A.; Es, H.J. van; Vainshtein, D.I.; Hartog, H.W. den

    A kinetic model of zircon thermoluminescence (TL) has been constructed to simulate the processes and stages relevant to thermoluminescent dating such as: filling of electron and hole traps during the excitation stage both for natural and laboratory irradiation; the time dependence of fading after

  18. Calculation of the total electron excitation cross section in the Born approximation using Slater wave functions for the Li (2s yields 2p), Li (2s yields 3p), Na (3s yields 4p), Mg (3p yields 4s), Ca (4s yields 4p) and K (4s yields 4p) excitations. M.S. Thesis

    Science.gov (United States)

    Simsic, P. L.

    1974-01-01

    Excitation of neutral atoms by inelastic scattering of incident electrons in gaseous nebulae were investigated using Slater Wave functions to describe the initial and final states of the atom. Total cross sections using the Born Approximation are calculated for: Li(2s yields 2p), Na(3s yields 4p), k(4s yields 4p). The intensity of emitted radiation from gaseous nebulae is also calculated, and Maxwell distribution is employed to average the kinetic energy of electrons.

  19. Incident Information Management Tool

    CERN Document Server

    Pejovic, Vladimir

    2015-01-01

    Flaws of\tcurrent incident information management at CMS and CERN\tare discussed. A new data\tmodel for future incident database is\tproposed and briefly described. Recently developed draft version of GIS-­‐based tool for incident tracking is presented.

  20. Principles of chemical kinetics

    CERN Document Server

    House, James E

    2007-01-01

    James House's revised Principles of Chemical Kinetics provides a clear and logical description of chemical kinetics in a manner unlike any other book of its kind. Clearly written with detailed derivations, the text allows students to move rapidly from theoretical concepts of rates of reaction to concrete applications. Unlike other texts, House presents a balanced treatment of kinetic reactions in gas, solution, and solid states. The entire text has been revised and includes many new sections and an additional chapter on applications of kinetics. The topics covered include quantitative rela

  1. Introduction to chemical kinetics

    CERN Document Server

    Soustelle, Michel

    2013-01-01

    This book is a progressive presentation of kinetics of the chemical reactions. It provides complete coverage of the domain of chemical kinetics, which is necessary for the various future users in the fields of Chemistry, Physical Chemistry, Materials Science, Chemical Engineering, Macromolecular Chemistry and Combustion. It will help them to understand the most sophisticated knowledge of their future job area. Over 15 chapters, this book present the fundamentals of chemical kinetics, its relations with reaction mechanisms and kinetic properties. Two chapters are then devoted to experimental re

  2. Kinetic equation solution by inverse kinetic method

    International Nuclear Information System (INIS)

    Salas, G.

    1983-01-01

    We propose a computer program (CAMU) which permits to solve the inverse kinetic equation. The CAMU code is written in HPL language for a HP 982 A microcomputer with a peripheral interface HP 9876 A ''thermal graphic printer''. The CAMU code solves the inverse kinetic equation by taking as data entry the output of the ionization chambers and integrating the equation with the help of the Simpson method. With this program we calculate the evolution of the reactivity in time for a given disturbance

  3. Kinetic theory for strongly coupled Coulomb systems

    Science.gov (United States)

    Dufty, James; Wrighton, Jeffrey

    2018-01-01

    The calculation of dynamical properties for matter under extreme conditions is a challenging task. The popular Kubo-Greenwood model exploits elements from equilibrium density-functional theory (DFT) that allow a detailed treatment of electron correlations, but its origin is largely phenomenological; traditional kinetic theories have a more secure foundation but are limited to weak ion-electron interactions. The objective here is to show how a combination of the two evolves naturally from the short-time limit for the generator of the effective single-electron dynamics governing time correlation functions without such limitations. This provides a theoretical context for the current DFT-related approach, the Kubo-Greenwood model, while showing the nature of its corrections. The method is to calculate the short-time dynamics in the single-electron subspace for a given configuration of the ions. This differs from the usual kinetic theory approach in which an average over the ions is performed as well. In this way the effective ion-electron interaction includes strong Coulomb coupling and is shown to be determined from DFT. The correlation functions have the form of the random-phase approximation for an inhomogeneous system but with renormalized ion-electron and electron-electron potentials. The dynamic structure function, density response function, and electrical conductivity are calculated as examples. The static local field corrections in the dielectric function are identified in this way. The current analysis is limited to semiclassical electrons (quantum statistical potentials), so important quantum conditions are excluded. However, a quantization of the kinetic theory is identified for broader application while awaiting its detailed derivation.

  4. Non-kinetic capabilities: complementing the kinetic prevalence to targeting

    OpenAIRE

    Ducheine, P.

    2014-01-01

    Targeting is used in military doctrine to describe a military operational way, using (military) means to influence a target (or addressee) in order to achieve designated political and/or military goals. The four factors italicized are used to analyse non-kinetic targeting, complementing our knowledge and understanding of the kinetic prevalence. Paradoxically, non-kinetic targeting is not recognized as a separate concept: kinetic and non-kinetic are intertwined facets of targeting. Kinetic tar...

  5. Current generation by the Kinetic Alfven wave

    International Nuclear Information System (INIS)

    Assis, A.S.

    1987-01-01

    The current generated and the efficiency of the shear Kinetic Alfven wave are obtained using a self-consistent quasilinear formulation. Also, the current generation by the monochromatic shear Kinetic Alfven wave introduced by Hasegawa is re-examined taking into account the nonresonant electrons. To obtain the RF current density at the level of the ohmic heating current density in a tokamak, the required external magnetic field is smaller than 0.1% of the DC magnetic field, and the parallel electric field (E 2 ), using the Lausanne-TCA-Tokamak parameters is of the order of 0.01 V cm -1 . (author) [pt

  6. Kinetic studies of elementary chemical reactions

    Energy Technology Data Exchange (ETDEWEB)

    Durant, J.L. Jr. [Sandia National Laboratories, Livermore, CA (United States)

    1993-12-01

    This program concerning kinetic studies of elementary chemical reactions is presently focussed on understanding reactions of NH{sub x} species. To reach this goal, the author is pursuing experimental studies of reaction rate coefficients and product branching fractions as well as using electronic structure calculations to calculate transition state properties and reaction rate calculations to relate these properties to predicted kinetic behavior. The synergy existing between the experimental and theoretical studies allow one to gain a deeper insight into more complex elementary reactions.

  7. Foil Electron Multiplier

    Science.gov (United States)

    Funsten, Herbert O.; Baldonado, Juan R.; Dors, Eric E.; Harper, Ronnie W.; Skoug, Ruth M.

    2006-03-28

    An apparatus for electron multiplication by transmission that is designed with at least one foil having a front side for receiving incident particles and a back side for transmitting secondary electrons that are produced from the incident particles transiting through the foil. The foil thickness enables the incident particles to travel through the foil and continue on to an anode or to a next foil in series with the first foil. The foil, or foils, and anode are contained within a supporting structure that is attached within an evacuated enclosure. An electrical power supply is connected to the foil, or foils, and the anode to provide an electrical field gradient effective to accelerate negatively charged incident particles and the generated secondary electrons through the foil, or foils, to the anode for collection.

  8. Irreversible processes kinetic theory

    CERN Document Server

    Brush, Stephen G

    2013-01-01

    Kinetic Theory, Volume 2: Irreversible Processes deals with the kinetic theory of gases and the irreversible processes they undergo. It includes the two papers by James Clerk Maxwell and Ludwig Boltzmann in which the basic equations for transport processes in gases are formulated, together with the first derivation of Boltzmann's ""H-theorem"" and a discussion of this theorem, along with the problem of irreversibility.Comprised of 10 chapters, this volume begins with an introduction to the fundamental nature of heat and of gases, along with Boltzmann's work on the kinetic theory of gases and s

  9. Acute incidents during anaesthesia

    African Journals Online (AJOL)

    Incidents can occur during induction, maintenance and emergence from anaesthesia. The following acute critical incidents are discussed in this article: • Anaphylaxis. • Aspiration ..... Already used in South Africa and Malawi, a scale-up of the technique is under way in Tanzania, Rwanda and Ghana. The report found that.

  10. Thermal kinetic inductance detector

    Science.gov (United States)

    Cecil, Thomas; Gades, Lisa; Miceli, Antonio; Quaranta, Orlando

    2016-12-20

    A microcalorimeter for radiation detection that uses superconducting kinetic inductance resonators as the thermometers. The detector is frequency-multiplexed which enables detector systems with a large number of pixels.

  11. Radiological incidents in radiotherapy

    International Nuclear Information System (INIS)

    Hobzova, L.; Novotny, J.

    2008-01-01

    In many countries a reporting system of radiological incidents to national regulatory body exists and providers of radiotherapy treatment are obliged to report all major and/or in some countries all incidents occurring in institution. State Office for Nuclear Safety (SONS) is providing a systematic guidance for radiotherapy departments from 1997 by requiring inclusion of radiation safety problems into Quality assurance manual, which is the basic document for obtaining a license of SONS for handling with sources of ionizing radiation. For that purpose SONS also issued the recommendation 'Introduction of QA system for important sources in radiotherapy-radiological incidents' in which the radiological incidents are defined and the basic guidance for their classification (category A, B, C, D), investigation and reporting are given. At regular periods the SONS in co-operation with radiotherapy centers is making a survey of all radiological incidents occurring in institutions and it is presenting obtained information in synoptic communication (2003 Motolske dny, 2005 Novy Jicin). This presentation is another summary report of radiological incidents that occurred in our radiotherapy institutions during last 3 years. Emphasis is given not only to survey and statistics, but also to analysis of reasons of the radiological incidents and to their detection and prevention. Analyses of incidents in radiotherapy have led to a much broader understanding of incident causation. Information about the error should be shared as early as possible during or after investigation by all radiotherapy centers. Learning from incidents, errors and near misses should be a part of improvement of the QA system in institutions. Generally, it is recommended that all radiotherapy facilities should participate in the reporting, analyzing and learning system to facilitate the dissemination of knowledge throughout the whole country to prevent errors in radiotherapy.(authors)

  12. Adsorption isotherms and kinetics for dibenzothiophene on activated ...

    Indian Academy of Sciences (India)

    Adsorption isotherms and kinetics for dibenzothiophene on activated carbon and carbon nanotube doped with nickel oxide nanoparticles ... thermal gravimetric analysis (TGA), scanning electron microscopy, energy-dispersive X-ray spectroscopy, field-emission transmission electron microscopy, X-ray diffraction and X-ray ...

  13. Electron beam irradiation of dimethyl-(acetylacetonate) gold(III) adsorbed onto solid substrates

    International Nuclear Information System (INIS)

    Wnuk, Joshua D.; Gorham, Justin M.; Rosenberg, Samantha G.; Fairbrother, D. Howard; Dorp, Willem F. van; Madey, Theodore E.; Hagen, Cornelis W.

    2010-01-01

    Electron beam induced deposition of organometallic precursors has emerged as an effective and versatile method for creating two-dimensional and three-dimensional metal-containing nanostructures. However, to improve the properties and optimize the chemical composition of nanostructures deposited in this way, the electron stimulated decomposition of the organometallic precursors must be better understood. To address this issue, we have employed an ultrahigh vacuum-surface science approach to study the electron induced reactions of dimethyl-(acetylacetonate) gold(III) [Au III (acac)Me 2 ] adsorbed onto solid substrates. Using thin molecular films adsorbed onto cooled substrates, surface reactions, reaction kinetics, and gas phase products were studied in the incident energy regime between 40 and 1500 eV using a combination of x-ray photoelectron spectroscopy (XPS), reflection absorption infrared spectroscopy (RAIRS), and mass spectrometry (MS). XPS and RAIRS data indicate that electron irradiation of Au III (acac)Me 2 is accompanied by the reduction in Au III to a metallic Au 0 species embedded in a dehydrogenated carbon matrix, while MS reveals the concomitant evolution of methane, ethane, carbon monoxide, and hydrogen. The electron stimulated decomposition of Au III (acac)Me 2 is first-order with respect to the surface coverage of the organometallic precursor, and exhibits a rate constant that is proportional to the electron flux. At an incident electron energy of 520 eV, the total reaction cross section was ≅3.6x10 -16 cm 2 . As a function of the incident electron energy, the maximum deposition yield was observed at ≅175 eV. The structure of discrete Au-containing deposits formed at room temperature by rastering an electron beam across a highly ordered pyrolytic graphite substrate in the presence of a constant partial pressure of Au III (acac)Me 2 was also investigated by atomic force microscopy.

  14. Plasmas produced by incident laser in solids

    International Nuclear Information System (INIS)

    Oliveira Campos, D. de; Boeckelmann, H.K.

    1984-01-01

    The experimental arrangement for plasma production by incident laser in solids and a system of diagnostics are presented. The system of diagnostics allows: verify the plasma generation and expansion through the ultrahigh-speed photography; obtain measurements of temperature and density by spectroscopy (using an optical analyser of multichannels) and obtain measurements of kinetic energy of ions through his fly time, using a 'Faraday cup'. A vacuum system with an adsorption pump for pre-vacuum and ionic pump was used to reduce pressure and avoid mechanical vibrations and system contaminations. (M.C.K.) [pt

  15. Kinetic Profiles in NSTX Plasmas

    Energy Technology Data Exchange (ETDEWEB)

    R.E. Bell; B.P. LeBlanc; C. Bourdelle; D.R. Ernst; E.D. Fredrickson; D.A. Gates; J.C. Hosea; D.W. Johnson; S.M. Kaye; R. Maingi; S. Medley; J.E. Menard; D. Mueller; M. Ono; F. Paoletti; M. Peng; S.A. Sabbagh; D. Stutman; D.W. Swain; E.J. Synakowski; and J.R. Wilson

    2001-07-10

    The National Spherical Torus Experiment (NSTX) is a low aspect ratio (R/a approximately 1.3) device with auxiliary heating from neutral-beam injection (NBI) and high-harmonic fast-wave heating (HHFW). Typical NSTX parameters are R(subscript ''0'') = 85 cm, a = 67 cm, I(subscript ''p'') = 0.7-1.4 MA, B(subscript ''phi'') = 0.25-0.45 T. Three co-directed deuterium neutral-beam sources have injected P(subscript ''NB'') less than or equal to 4.7 MW. HHFW plasmas typically have delivered P(subscript ''RF'') less than or equal to 3 MW. Important to the understanding of NSTX confinement are the new kinetic profile diagnostics: a multi-pulse Thomson scattering system (MPTS) and a charge-exchange recombination spectroscopy (CHERS) system. The MPTS diagnostic currently measures electron density and temperature profiles at 30 Hz at ten spatial locations. The CHERS system has recently become available to measure carbon ion temperature and toroidal flow at 17 radial positions spanning the outer half of the minor radius with 20 msec time resolution during NBI. Experiments conducted during the last year have produced a wide range of kinetic profiles in NSTX. Some interesting examples are presented below.

  16. Study of electronic excitation and diffraction effects as well as growth, structure, and magnetic properties of ultrathin 3d metal films on Cu(001) by means of grazing-incidence ion scattering; Untersuchung elektronischer Anregungs- und Beugungseffekte sowie Wachstum, Struktur und magnetischer Eigenschaften ultraduenner 3d-Metallfilme auf Cu(001) mittels streifender Ionenstreuung

    Energy Technology Data Exchange (ETDEWEB)

    Bernhard, T.

    2006-11-23

    H{sup +} and He{sup +} ions with an energy of 25 keV are scattered under a grazing angle of incidence from a clean and flat Cu(001) surface. For specific azimuthal orientations of the crystal surface with respect to low index directions in the surface plane we observe the ion induced emission of electrons with a conventional LEED (low energy electron diffraction) setup. By operating the instrument in an energy dispersive mode we find intensity distributions of emitted electrons which can unequivocally be ascribed to diffraction effects at the target surface. From this ion induced LEED-reflexes (IILEED) we get important information about the electron excitation- and emission effects during the scattering process. In the second part of this work we investigate the correlation between thin-film growth (Co,Fe,Mn on Cu(001)) and electron emission in the regime of grazing ion scattering. The ''rough'' surface of uncompleted layers increase the probability of binary collisions of incident ions with individual atoms at the surface. The energy spectras and the number distribution of emitted electrons are substantially influenced by these ''violent'' collisions and allow us to monitor growth of thin films via simple measurements of target current or from energy spectra of emitted electrons. The method provides excellent signals and is also applicable in the regime of poor layer growth. By making use of ion beam triangulation (IBT), direct information on the atomic structure of thin films and substrate surfaces is obtained. We discuss in the third part of this work a new variant of this method based on the detection of the number of emitted electrons. The data are analyzed via computer simulations using classical mechanics which provides a quantitative analysis with respect to projectile trajectories. This new detection scheme allows the determination of the in-plane structure of reconstructed thin films and surfaces with high precision

  17. Luminescence kinetics of porous silicon: fluctuation approach

    CERN Document Server

    Bondarev, V N

    2001-01-01

    Theoretical interpretation of the kinetics of the photoluminescence (PL), caused by the tunnel radiative recombination of the photoexcited electron and hole, localized on the crystallite/matrix interface, is given on the basis of the notions on the porous silicon structure as an incidental totality of the Si nanodimensional crystallites, submerged into the SiO sub 2 matrix. The relatively slow (by the stretched exponential type) time drop in the PL intensity is the results of averaging the intensity in each PL elementary act by the electron and hole mutual disposition and by the crystallite dimensions. The good quantitative description of the low-temperature experiments may be obtained through the proposed approach both by the PL kinetics and time evolution of the porous silicon PL spectrum

  18. Reaction kinetics of bond rotations in graphene

    KAUST Repository

    Skowron, Stephen T.

    2016-04-12

    The formation and healing processes of the fundamental topological defect in graphitic materials, the Stone-Wales (SW) defect, are brought into a chemical context by considering the rotation of a carbon-carbon bond as chemical reaction. We investigate the rates and mechanisms of these SW transformations in graphene at the atomic scale using transmission electron microscopy. We develop a statistical atomic kinetics formalism, using direct observations obtained under different conditions to determine key kinetic parameters of the reactions. Based on the obtained statistics we quantify thermally and irradiation induced routes, identifying a thermal process of healing with an activation energy consistent with predicted adatom catalysed mechanisms. We discover exceptionally high rates for irradiation induced SW healing, incompatible with the previously assumed mechanism of direct knock-on damage and indicating the presence of an efficient nonadiabatic coupling healing mechanism involving beam induced electronic excitations of the SW defect.

  19. Femtosecond pulse radiolysis based on photocathode electron accelerator

    International Nuclear Information System (INIS)

    Yoshida, Y.; Yang, Jinfeng; Kondoh, T.; Kozawa, T.; Tagawa, S.

    2006-01-01

    Pulse radiolysis is a powerful tool for studying chemical kinetics and primary processes or reactions of radiation chemistry. In the pulse radiolysis, a short electron beam, which is almost produced by radio-frequency (RF) electron linear accelerator with energy from a few MeV to a few tens MeV, is used as an irradiative source. The electron-induced reactions or phenomena in matter are analyzed by a short-pulse analyzing light (e.g. synchronized lasers) with the time-resolved stroboscopic technique. The time resolution of pulse radiolysis is not only dependent on the electron bunch length, the analyzing light pulse width, the time jitter between the electron bunch and the analyzing light, but also determined by degradation due to the velocity difference between light and the electron in the sample because of the refractive index. In order to improve the time resolution into femtosecond time region, we have develop a new pulse radiolysis based on a concept of 'Equivalent Velocity Spectroscopy (EVS)' to avoid the degradation of the time resolution caused by the velocity difference between the light and the electron beam in sample. In EVS as shown in Fig.1, a femtosecond electron beam produced by a photocathode electron linear accelerator was used, and a synchronized femtosecond laser was used as the analyzing light source. The electron beam and the laser light were injected into sample with an angle (θ), which is determined by the refractive index (n) of the sample. The electron bunch was also rotated with a same angle to make an overlap of the electron bunch with the laser pulse. The degradation of the time resolution caused by the velocity difference between the light and the electron beam can be calculated as g(L)=L[n/c-1/(vcos θ)], where L is the optical path length and v is the velocity of the electron in sample (we can assume v=c for a few tens MeV electron beam).We can thus obtained g(L)=0 by adjusting the incident angle to cos θ=1/n. However, the rotation

  20. Iron(II) tetrakis(diaquaplatinum)octacarboxyphthalocyanine supported on multi-walled carbon nanotube platform: an efficient functional material for enhancing electron transfer kinetics and electrocatalytic oxidation of formic acid

    CSIR Research Space (South Africa)

    Mamuru, SA

    2010-10-01

    Full Text Available A novel platinum-based macrocycle, iron(II) tetrakis(diaquaplatinum)octacarboxyphthalocyanine (PtFeOCPc), was synthesised and characterised. The heterogeneous electron transfer and electrocatalytic properties of this functional material towards...

  1. Critical incident stress management.

    Science.gov (United States)

    Lim, J J; Childs, J; Gonsalves, K

    2000-10-01

    Recent studies have indicated implementation of the CISM Program has impacted and reduced the cost of workers' compensation claims for stress related conditions and the number of lost work days (Ott, 1997; Western Management Consultants, 1996). Occupational health professionals need to be ready to develop and implement a comprehensive critical incident stress management process in anticipation of a major event. The ability to organize, lead, or administer critical incident stress debriefings for affected employees is a key role for the occupational health professional. Familiarity with these concepts and the ability to identify a critical incident enhances value to the business by mitigating the stress and impact to the workplace. Critical Incident Stress Management Systems have the potential for decreasing stress and restoring employees to normal life function--a win/win situation for both the employees and the organization.

  2. Marine Animal Incident Database

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Large whale stranding, death, ship strike and entanglement incidents are all recorded to monitor the health of each population and track anthropogenic factors that...

  3. Police Incident Blotter (Archive)

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — The Police Blotter Archive contains crime incident data after it has been validated and processed to meet Uniform Crime Reporting (UCR) standards, published on a...

  4. Prediction of Safety Incidents

    Data.gov (United States)

    National Aeronautics and Space Administration — Safety incidents, including injuries, property damage and mission failures, cost NASA and contractors thousands of dollars in direct and indirect costs. This project...

  5. 2011 Japanese Nuclear Incident

    Science.gov (United States)

    EPA’s RadNet system monitored the environmental radiation levels in the United States and parts of the Pacific following the Japanese Nuclear Incident. Learn about EPA’s response and view historical laboratory data and news releases.

  6. Information Security Incident Management

    Directory of Open Access Journals (Sweden)

    D. I. Persanov

    2010-03-01

    Full Text Available The present report highlights the points of information security incident management in an enterprise. Some aspects of the incident and event classification are given. The author presents his view of the process scheme over the monitoring and processing information security events. Also, the report determines a few critical points of the listed process and gives the practical recommendations over its development and optimization.

  7. Multiple alternative substrate kinetics.

    Science.gov (United States)

    Anderson, Vernon E

    2015-11-01

    The specificity of enzymes for their respective substrates has been a focal point of enzyme kinetics since the initial characterization of metabolic chemistry. Various processes to quantify an enzyme's specificity using kinetics have been utilized over the decades. Fersht's definition of the ratio kcat/Km for two different substrates as the "specificity constant" (ref [7]), based on the premise that the important specificity existed when the substrates were competing in the same reaction, has become a consensus standard for enzymes obeying Michaelis-Menten kinetics. The expansion of the theory for the determination of the relative specificity constants for a very large number of competing substrates, e.g. those present in a combinatorial library, in a single reaction mixture has been developed in this contribution. The ratio of kcat/Km for isotopologs has also become a standard in mechanistic enzymology where kinetic isotope effects have been measured by the development of internal competition experiments with extreme precision. This contribution extends the theory of kinetic isotope effects to internal competition between three isotopologs present at non-tracer concentrations in the same reaction mix. This article is part of a special issue titled: Enzyme Transition States from Theory and Experiment. Published by Elsevier B.V.

  8. Electronics and electronic systems

    CERN Document Server

    Olsen, George H

    1987-01-01

    Electronics and Electronic Systems explores the significant developments in the field of electronics and electronic devices. This book is organized into three parts encompassing 11 chapters that discuss the fundamental circuit theory and the principles of analog and digital electronics. This book deals first with the passive components of electronic systems, such as resistors, capacitors, and inductors. These topics are followed by a discussion on the analysis of electronic circuits, which involves three ways, namely, the actual circuit, graphical techniques, and rule of thumb. The remaining p

  9. Energy Conservation Tests of a Coupled Kinetic-kinetic Plasma-neutral Transport Code

    Energy Technology Data Exchange (ETDEWEB)

    Stotler, D. P.; Chang, C. S.; Ku, S. H.; Lang, J.; Park, G.

    2012-08-29

    A Monte Carlo neutral transport routine, based on DEGAS2, has been coupled to the guiding center ion-electron-neutral neoclassical PIC code XGC0 to provide a realistic treatment of neutral atoms and molecules in the tokamak edge plasma. The DEGAS2 routine allows detailed atomic physics and plasma-material interaction processes to be incorporated into these simulations. The spatial pro le of the neutral particle source used in the DEGAS2 routine is determined from the uxes of XGC0 ions to the material surfaces. The kinetic-kinetic plasma-neutral transport capability is demonstrated with example pedestal fueling simulations.

  10. Erbium hydride decomposition kinetics.

    Energy Technology Data Exchange (ETDEWEB)

    Ferrizz, Robert Matthew

    2006-11-01

    Thermal desorption spectroscopy (TDS) is used to study the decomposition kinetics of erbium hydride thin films. The TDS results presented in this report are analyzed quantitatively using Redhead's method to yield kinetic parameters (E{sub A} {approx} 54.2 kcal/mol), which are then utilized to predict hydrogen outgassing in vacuum for a variety of thermal treatments. Interestingly, it was found that the activation energy for desorption can vary by more than 7 kcal/mol (0.30 eV) for seemingly similar samples. In addition, small amounts of less-stable hydrogen were observed for all erbium dihydride films. A detailed explanation of several approaches for analyzing thermal desorption spectra to obtain kinetic information is included as an appendix.

  11. Relativistic Kinetic Theory

    Science.gov (United States)

    Vereshchagin, Gregory V.; Aksenov, Alexey G.

    2017-02-01

    Preface; Acknowledgements; Acronyms and definitions; Introduction; Part I. Theoretical Foundations: 1. Basic concepts; 2. Kinetic equation; 3. Averaging; 4. Conservation laws and equilibrium; 5. Relativistic BBGKY hierarchy; 6. Basic parameters in gases and plasmas; Part II. Numerical Methods: 7. The basics of computational physics; 8. Direct integration of Boltzmann equations; 9. Multidimensional hydrodynamics; Part III. Applications: 10. Wave dispersion in relativistic plasma; 11. Thermalization in relativistic plasma; 12. Kinetics of particles in strong fields; 13. Compton scattering in astrophysics and cosmology; 14. Self-gravitating systems; 15. Neutrinos, gravitational collapse and supernovae; Appendices; Bibliography; Index.

  12. Posture and theophylline kinetics.

    OpenAIRE

    Warren, J B; Cuss, F; Barnes, P J

    1985-01-01

    The effect of posture on theophylline kinetics was examined in six healthy men who took 450 mg slow-release aminophylline orally at the same time of day on two separate occasions. On one day they remained standing and on the other supine throughout. Plasma theophylline was measured hourly for 6 h from ingestion. Mean theophylline levels were significantly higher in the standing position at all times (P less than 0.01). We conclude that diurnal variation in theophylline kinetics can be explain...

  13. Tebuconazole photocatalytic degradation kinetics

    OpenAIRE

    Prestes, Thiago de Hermann; Gibbon, Danielle de Oliveira; Lansarin, Marla Azário; Moro, Celso Camilo

    2010-01-01

    The tebuconazole photocatalytic degradation kinetics was studied in a batch reactor using TiO2 (P25-Degussa) as catalyst and a high pressure mercury lamp. The photolysis, adsorption and irradiation effects in the reaction rate were evaluated. Afterward, the suspension catalyst concentration and initial pH to the maximum reaction rate was determined. It was observed that the reaction rate can be approached by a pseudo-first order, with a maximum kinetics constant at 260 mg L-1catalyst concentr...

  14. ELECTRONS IN NONPOLAR LIQUIDS.

    Energy Technology Data Exchange (ETDEWEB)

    HOLROYD,R.A.

    2002-10-22

    Excess electrons can be introduced into liquids by absorption of high energy radiation, by photoionization, or by photoinjection from metal surfaces. The electron's chemical and physical properties can then be measured, but this requires that the electrons remain free. That is, the liquid must be sufficiently free of electron attaching impurities for these studies. The drift mobility as well as other transport properties of the electron are discussed here as well as electron reactions, free-ion yields and energy levels, Ionization processes typically produce electrons with excess kinetic energy. In liquids during thermalization, where this excess energy is lost to bath molecules, the electrons travel some distance from their geminate positive ions. In general the electrons at this point are still within the coulombic field of their geminate ions and a large fraction of the electrons recombine. However, some electrons escape recombination and the yield that escapes to become free electrons and ions is termed G{sub fi}. Reported values of G{sub fi} for molecular liquids range from 0.05 to 1.1 per 100 eV of energy absorbed. The reasons for this 20-fold range of yields are discussed here.

  15. Solvent and electronic effects on kinetics of cyclization of thermolabile aryllithium reagents. A comparison between 1-bromo-2-(2-bromoethylbenzene and 4,5-dimethoxy-1-bromo-2-(2-bromoethylbenzene

    Directory of Open Access Journals (Sweden)

    David A. Hunt

    2009-05-01

    Full Text Available A dramatic solvent effect on the stability and kinetics of intramolecular cyclization is described for the aryllithium species generated from 2-bromo-4,5-dimethoxy-(2-bromoethylbenzene. The aryllithium generated by the halogen-metal exchange reaction with n-butyllithium, is stable for > 1h when generated at -95 to -100 oC in diethyl ether/hexane and can be trapped with electrophiles. However, when the reaction is conducted in a THF/hexane mixture, the intermediate undergoes instantaneous intramolecular cyclization to afford 4,5-dimethoxybenzocyclobutene. By comparison, the corresponding 1-lithio-2-(2-bromoethyl-benzene intermediate is stable for >1h in either THF/hexane or diethyl ether/hexane at -95 to -100 oC. These results indicate that substituent effects as well as the nature of aggregation of these intermediates play key roles in determining the reaction pathway of functionalized aryllithium intermediates when quenched with electrophiles.

  16. Ro-vibronic transition intensities for triatomic molecules from the exact kinetic energy operator; electronic spectrum for the C ˜ 1B2 ← X ˜ 1A1 transition in SO2

    Science.gov (United States)

    Zak, Emil J.; Tennyson, Jonathan

    2017-09-01

    A procedure for calculating ro-vibronic transition intensities for triatomic molecules within the Born-Oppenheimer approximation is reported. Ro-vibrational energy levels and wavefunctions are obtained with the DVR3D suite, which solves the nuclear motion problem with an exact kinetic energy operator. Absolute transition intensities are calculated both with the Franck-Condon approximation and with a full transition dipole moment surface. The theoretical scheme is tested on C ˜ 1B2 ← X ˜ 1A1 ro-vibronic transitions of SO2. Ab initio potential energy and dipole moment surfaces are generated for this purpose. The calculated ro-vibronic transition intensities and cross sections are compared with the available experimental and theoretical data.

  17. Ro-vibronic transition intensities for triatomic molecules from the exact kinetic energy operator; electronic spectrum for the C̃ 1B2 ← X̃ 1A1transition in SO2.

    Science.gov (United States)

    Zak, Emil J; Tennyson, Jonathan

    2017-09-07

    A procedure for calculating ro-vibronic transition intensities for triatomic molecules within the Born-Oppenheimer approximation is reported. Ro-vibrational energy levels and wavefunctions are obtained with the DVR3D suite, which solves the nuclear motion problem with an exact kinetic energy operator. Absolute transition intensities are calculated both with the Franck-Condon approximation and with a full transition dipole moment surface. The theoretical scheme is tested on C̃  1 B 2  ← X̃  1 A 1 ro-vibronic transitions of SO 2 . Ab initio potential energy and dipole moment surfaces are generated for this purpose. The calculated ro-vibronic transition intensities and cross sections are compared with the available experimental and theoretical data.

  18. Aromatic sulfonation with sulfur trioxide: mechanism and kinetic model† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c6sc03500k Click here for additional data file.

    Science.gov (United States)

    Deraet, Xavier; Van Assche, Guy; Geerlings, Paul; De Proft, Frank

    2017-01-01

    Electrophilic aromatic sulfonation of benzene with sulfur trioxide is studied with ab initio molecular dynamics simulations in gas phase, and in explicit noncomplexing (CCl3F) and complexing (CH3NO2) solvent models. We investigate different possible reaction pathways, the number of SO3 molecules participating in the reaction, and the influence of the solvent. Our simulations confirm the existence of a low-energy concerted pathway with formation of a cyclic transition state with two SO3 molecules. Based on the simulation results, we propose a sequence of elementary reaction steps and a kinetic model compatible with experimental data. Furthermore, a new alternative reaction pathway is proposed in complexing solvent, involving two SO3 and one CH3NO2. PMID:28451217

  19. On the Computation of Secondary Electron Emission Models

    OpenAIRE

    Clerc, Sebastien; Dennison, JR; Hoffmann, Ryan; Abbott, Jonathon

    2006-01-01

    Secondary electron emission is a critical contributor to the charge particle current balance in spacecraft charging. Spacecraft charging simulation codes use a parameterized expression for the secondary electron (SE) yield delta(Eo) as a function of the incident electron energy Eo. Simple three-step physics models of the electron penetration, transport, and emission from a solid are typically expressed in terms of the incident electron penetration depth at normal incidence R(Eo) and the mean ...

  20. Recrystallization kinetics of nanostructured copper processed by dynamic plastic deformation

    DEFF Research Database (Denmark)

    Lin, Fengxiang; Zhang, Yubin; Pantleon, Wolfgang

    2012-01-01

    The recrystallization kinetics of nanostructured copper samples processed by dynamic plastic deformation was investigated by electron backscatter diffraction. It was found that the evolution of the recrystallized volume fraction as a function of annealing time has a very low slope (n=0.37) when...... plotted as an Avrami plot. Various reasons for such a low slope are discussed, including possible recrystallization during storage of samples, and the heterogeneous recrystallization kinetics. The effects of heterogeneous recrystallization kinetics are illustrated by a simplified model with a fast...... and a slowly recrystallizing region....

  1. Modeling chemical kinetics graphically

    NARCIS (Netherlands)

    Heck, A.

    2012-01-01

    In literature on chemistry education it has often been suggested that students, at high school level and beyond, can benefit in their studies of chemical kinetics from computer supported activities. Use of system dynamics modeling software is one of the suggested quantitative approaches that could

  2. CATALYTIC KINETIC SPECTROPHOTOMETRIC DETERMINATION ...

    African Journals Online (AJOL)

    Preferred Customer

    acetylchlorophosphonazo(CPApA) by hydrogen peroxide in 0.10 M phosphoric acid. A novel catalytic kinetic-spectrophotometric method is proposed for the determination of copper based on this principle. Copper(II) can be determined spectrophotometrically ...

  3. Kinetic energy budget details

    Indian Academy of Sciences (India)

    Abstract. This paper presents the detailed turbulent kinetic energy budget and higher order statistics of flow behind a surface-mounted rib with and without superimposed acoustic excitation. Pattern recognition technique is used to determine the large-scale structure magnitude. It is observed that most of the turbulence ...

  4. Kinetics and Catalysis Demonstrations.

    Science.gov (United States)

    Falconer, John L.; Britten, Jerald A.

    1984-01-01

    Eleven videotaped kinetics and catalysis demonstrations are described. Demonstrations include the clock reaction, oscillating reaction, hydrogen oxidation in air, hydrogen-oxygen explosion, acid-base properties of solids, high- and low-temperature zeolite reactivity, copper catalysis of ammonia oxidation and sodium peroxide decomposition, ammonia…

  5. SHORT COMMUNICATION KINETIC SPECTROPHOTOMETRIC ...

    African Journals Online (AJOL)

    Preferred Customer

    gingili paste, oat slice, sleeve-fish silk food samples. The determined results were in agreement with those by atomic absorption spectrometry. KEY WORDS: KEY WORDS: Iron, Catalytic kinetic spectrophotometry, p–Acetylarsenazo, Potassium periodate. INTRODUCTION. Iron is an important component for the human body.

  6. Point kinetics modeling

    International Nuclear Information System (INIS)

    Kimpland, R.H.

    1996-01-01

    A normalized form of the point kinetics equations, a prompt jump approximation, and the Nordheim-Fuchs model are used to model nuclear systems. Reactivity feedback mechanisms considered include volumetric expansion, thermal neutron temperature effect, Doppler effect and void formation. A sample problem of an excursion occurring in a plutonium solution accidentally formed in a glovebox is presented

  7. CATALYTIC KINETIC SPECTROPHOTOMETRIC DETERMINATION ...

    African Journals Online (AJOL)

    Based on the property that in 0.12 M sulfuric acid medium titanium(IV) catalyzes the discoloring reaction of DBS-arsenazo oxidized by potassium bromate, a new catalytic kinetic spectrophotometric method for the determination of trace titanium (IV) was developed. The linear range of the determination of titanium is

  8. Radiation incidents in dentistry

    International Nuclear Information System (INIS)

    Lovelock, D.J.

    1996-01-01

    Most dental practitioners act as their own radiographer and radiologist, unlike their medical colleagues. Virtually all dental surgeons have a dental X-ray machine for intraoral radiography available to them and 40% of dental practices have equipment for dental panoramic tomography. Because of the low energy of X-ray equipment used in dentistry, radiation incidents tend to be less serious than those associated with other aspects of patient care. Details of 47 known incidents are given. The advent of the 1985 and 1988 Ionising Radiation Regulations has made dental surgeons more aware of the hazards of radiation. These regulations, and general health and safety legislation, have led to a few dental surgeons facing legal action. Because of the publicity associated with these court cases, it is expected that there will be a decrease in radiation incidents arising from the practice of dentistry. (author)

  9. Ion induced kinetic electron emission from highly oriented pyrolytic graphite by impact of H.sup.+./sup., C.sup.+./sup., N.sup.+./sup., and O.sup.+./sup.

    Czech Academy of Sciences Publication Activity Database

    Lörinčík, Jan; Šroubek, Zdeněk; Cernusca, S.; Diem, A.; Winter, H. P.; Aumayr, F.

    2002-01-01

    Roč. 504, č. 1 (2002), s. 59-65 ISSN 0039-6028 R&D Projects: GA AV ČR IAA1067801 Institutional research plan: CEZ:AV0Z2067918 Keywords : electron emission * graphite * ionisation Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.140, year: 2002

  10. Part I. Evaluation of thermodynamic and kinetic parameters for electron transfer and following chemical reaction from a global analysis of current-potential-time data. Part II. Electro-catalytic detection in high-performance liquid chromatography of vitamin B[sub 12] and other molecules of biological and environmental interest

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, V.T.

    1992-01-01

    Simultaneous evaluation of electron transfer rate constant, k[sup 0], following chemical reaction rate constant, k[sub f], electron transfer coefficient, [alpha] and standard potential, E[sup 0][prime] for an electrochemical reaction following the EC mechanism is described. A mathematical model for the current response to a potential step is developed, starting with the Butler-Volmer equation for electrode kinetics and concentration expressions for the redox couple. The resulting integral equations are solved numerically via the Step Function method. Current-potential and current-time curves are simulated and tested under limiting conditions. The four parameters of the system are evaluated by fitting simulated current-voltage-time (i-E-t) surface to the theoretical equation. The method is applied to study an important biological molecule, viz., methyl cobalamin, in DMSO. Included in the discussion part is the use of kinetic zone diagrams to depict chronoamperometric current response as a function of dimensionless rate constants for the EC reaction scheme. This compact display of the influence of the two rate constants on current in all time windows can be used to select the best data for analysis. Theoretical limits of measurable rate constants can be estimated from the zone diagram. The development of a dropping mercury electrode detector for High Performance Liquid Chromatography (HPLC) and its application to analysis of B[sub 12] and other vitamins is described. This EC detector is able to achieve high levels of sensitivity by exploiting the catalytic hydrogen evolution undergone by many nitrogenous organic molecules. Vitamin B[sub 12], thiamine, riboflavin and niacinamide were analyzed individually and in mixtures on reverse phase C18 column. Preliminary results from the analysis of commercial multivitamin preparations are also discussed.

  11. Incidents in nuclear installations

    International Nuclear Information System (INIS)

    Franzen, L.F.; Wienhold, W.

    1976-09-01

    With reference to the incident list of the Ministry for the period 1971-74, Prof. Bechert has expressed a lot of questions and statements in a letter to the Government. The letter is quoted in full. Inadequate conclusions drawn by Prof. Bechert in connection with quotations from daily newspapers and other documents are put right. (HP) [de

  12. Lightning incidents in Mongolia

    Directory of Open Access Journals (Sweden)

    Myagmar Doljinsuren

    2015-11-01

    Full Text Available This is one of the first studies that has been conducted in Mongolia on the distribution of lightning incidents. The study covers a 10-year period from 2004 to 2013. The country records a human death rate of 15.4 deaths per 10 million people per year, which is much higher than that of many countries with similar isokeraunic level. The reason may be the low-grown vegetation observed in most rural areas of Mongolia, a surface topography, typical to steppe climate. We suggest modifications to Gomes–Kadir equation for such countries, as it predicts a much lower annual death rate for Mongolia. The lightning incidents spread over the period from May to August with the peak of the number of incidents occurring in July. The worst lightning affected region in the country is the central part. Compared with impacts of other convective disasters such as squalls, thunderstorms and hail, lightning stands as the second highest in the number of incidents, human deaths and animal deaths. Economic losses due to lightning is only about 1% of the total losses due to the four extreme weather phenomena. However, unless precautionary measures are not promoted among the public, this figure of losses may significantly increase with time as the country is undergoing rapid industrialization at present.

  13. Fire Incident Reporting Manual

    Science.gov (United States)

    1984-02-01

    the result of an incident that requires (or should require) treatment by a practitioner of medicine , a registered emergency medical technician, or a...UNANNOUNCED AIRCRAFT EMERGENCYS ~~PRIOR TO TAKE OFF OR AFTERLADN 5 FUEL OPERATIONS REQUIRING 1AREING G A FIRE10 ARRESTING GEAR’BARRIER FR . ENGAGEMENTS AND

  14. Formation and Coalescence of Electron Solitary Holes

    DEFF Research Database (Denmark)

    Saeki, K.; Michelsen, Poul; Pécseli, H. L.

    1979-01-01

    Electron solitary holes were observed in a magnetized collisionless plasma. These holes were identified as Bernstein-Green-Kruskal equilibria, thus being purely kinetic phenomena. The electron hole does not damp even though its velocity is close to the electron thermal velocity. Two holes attract...

  15. Kinetics and hybrid kinetic-fluid models for nonequilibrium gas and plasmas

    International Nuclear Information System (INIS)

    Crouseilles, N.

    2004-12-01

    For a few decades, the application of the physics of plasmas has appeared in different fields like laser-matter interaction, astrophysics or thermonuclear fusion. In this thesis, we are interested in the modeling and the numerical study of nonequilibrium gas and plasmas. To describe such systems, two ways are usually used: the fluid description and the kinetic description. When we study a nonequilibrium system, fluid models are not sufficient and a kinetic description have to be used. However, solving a kinetic model requires the discretization of a large number of variables, which is quite expensive from a numerical point of view. The aim of this work is to propose a hybrid kinetic-fluid model thanks to a domain decomposition method in the velocity space. The derivation of the hybrid model is done in two different contexts: the rarefied gas context and the more complicated plasmas context. The derivation partly relies on Levermore's entropy minimization approach. The so-obtained model is then discretized and validated on various numerical test cases. In a second stage, a numerical study of a fully kinetic model is presented. A collisional plasma constituted of electrons and ions is considered through the Vlasov-Poisson-Fokker-Planck-Landau equation. Then, a numerical scheme which preserves total mass and total energy is presented. This discretization permits in particular a numerical study of the Landau damping. (author)

  16. System Issues Leading to "Found-on-Floor" Incidents: A Multi-Incident Analysis.

    Science.gov (United States)

    Shaw, James; Bastawrous, Marina; Burns, Susan; McKay, Sandra

    2016-11-02

    Although attention to patient safety issues in the home care setting is growing, few studies have highlighted health system-level concerns that contribute to patient safety incidents in the home. Found-on-floor (FOF) incidents are a key patient safety issue that is unique to the home care setting and highlights a number of opportunities for system-level improvements to drive enhanced patient safety. We completed a multi-incident analysis of FOF incidents documented in the electronic record system of a home health care agency in Toronto, Canada, for the course of 1 year between January 2012 and February 2013. Length of stay (LOS) was identified as the cross-cutting theme, illustrating the following 3 key issues: (1) in the short LOS group, a lack of information continuity led to missed fall risk information by home care professionals; (2) in the medium LOS group, a lack of personal support worker/carer training in fall prevention led to inadequate fall prevention activity; and (3) in the long LOS group, a lack of accountability policy at a system level led to a lack of fall risk assessment follow-up. Our study suggests that considering LOS in the home care sector helps expose key system-level issues enabling safety incidents such as FOF to occur. Our multi-incident analysis identified a number of opportunities for system-level changes that might improve fall prevention practice and reduce the likelihood of FOF incidents in the home. Specifically, investment in electronic health records that are functional across the continuum of care, further research and understanding of the training and skills of personal support workers, and enhanced incentives or more punitive approaches (depending on the circumstances) to ensure accountability in home safety will strengthen the home care sector and help prevent FOF incidents among older people.

  17. Kinetic Damage from Meteorites

    Science.gov (United States)

    Cooke, W.; Brown, P.; Matney, M.

    2017-01-01

    Comparing the natural meteorite flux at the Earth's surface to that of space debris, re-entering debris is 2 orders of magnitude less of a kinetic hazard at all but the very largest (and therefore rarest) sizes compared to natural impactors. Debris re-entries over several metric tonnes are roughly as frequent as natural impactors, but the survival fraction is expected to be much higher. Kinetic hazards from meteorites are very small, with only one recorded (indirect) injury reported. We expect fatalities to be even more rare, on the order of one person killed per several millennia. That several reports exist of small fragments/sand hitting people during meteorite falls is consistent with our prediction that this should occur every decade or so.

  18. Kinetic energy absorbing pad

    International Nuclear Information System (INIS)

    Bricmont, R.J.; Hamilton, P.A.; Ming Long Ting, R.

    1981-01-01

    Reactors, fuel processing plants etc incorporate pipes and conduits for fluids under high pressure. Fractures, particularly adjacent to conduit elbows, produce a jet of liquid which whips the broken conduit at an extremely high velocity. An enormous impact load would be applied to any stationary object in the conduit's path. The design of cellular, corrugated metal impact pads to absorb the kinetic energy of the high velocity conduits is given. (U.K.)

  19. Kinetics of current formation in molecular diode

    International Nuclear Information System (INIS)

    Petrov, Eh.G.; Leonov, V.A.; Shevchenko, E.V.

    2012-01-01

    Based on the kinetic theory of election transfer in low-dimensional molecular systems, the formation of transient and stationary currents in a system 'electrode l-molecule-electrode 2' (molecular diode) is studied for different regimes of charge transmission. In the framework of the HOMO-LUMO molecular model, a situation is considered where the current formation is initiated either by molecule photoexcitation or by change of interelectrode voltage bias. It is found that the distant (tunnel) inelastic electron transfer plays a crucial role in changing molecular electronic states and, as a result, in generating transmission channels for hopping (sequential) and distant (direct) current components. The effect of inelastic tunneling is especially pronounced in the condition of resonant electron transmission.

  20. Calculation of absorbed dose at 0.07, 3.0 and 10.0 mm depths in a slab phantom for monoenergetic electrons

    International Nuclear Information System (INIS)

    Hirayama, H.

    1994-01-01

    The general-purpose electron gamma shower Monte Carlo code EGS4 has been used to calculate absorbed doses at 0.07, 3.0 and 10.0 mm depths per unit fluence for broad parallel beams of monoenergetic electrons impinging at an incident angle α on a slab phantom (30 cm x 30 cm x 15 cm) of polymethyl methacrylate (PMMA), water and ICRU 4-element tissue required by EURADOS WG4 for a revision of ICRP Publication 51. Absorbed doses at 7, 300 and 1000 mg.cm -2 were also calculated for PMMA. The electron kinetic energy range covered is 50 keV to 10 MeV. The incident angle (α) varies from 0 o to 75 o with an increment of 15 o . The calculated results are presented as tables. The depth against absorbed dose curves and dependence of the absorbed dose at each depth on the incident electron energy, incident angle and phantom material are also presented and discussed. (author)

  1. Effect of impurities on the growth of {113} interstitial clusters in silicon under electron irradiation

    Science.gov (United States)

    Nakai, K.; Hamada, K.; Satoh, Y.; Yoshiie, T.

    2011-01-01

    The growth and shrinkage of interstitial clusters on {113} planes were investigated in electron irradiated Czochralski grown silicon (Cz-Si), floating-zone silicon (Fz-Si), and impurity-doped Fz-Si (HT-Fz-Si) using a high voltage electron microscope. In Fz-Si, {113} interstitial clusters were formed only near the beam incident surface after a long incubation period, and shrank on subsequent irradiation from the backside of the specimen. In Cz-Si and HT-Fz-Si, {113} interstitial clusters nucleated uniformly throughout the specimen without incubation, and began to shrink under prolonged irradiation at higher electron beam intensity. At lower beam intensity, however, the {113} interstitial cluster grew stably. These results demonstrate that the {113} interstitial cluster cannot grow without a continuous supply of impurities during electron irradiation. Detailed kinetics of {113} interstitial cluster growth and shrinkage in silicon, including the effects of impurities, are proposed. Then, experimental results are analyzed using rate equations based on these kinetics.

  2. Carbon sputtering yield measurements at grazing incidence

    International Nuclear Information System (INIS)

    Kolasinski, Robert D.; Polk, James E.; Goebel, Dan; Johnson, Lee K.

    2008-01-01

    In this investigation, carbon sputtering yields were measured experimentally at varying angles of incidence under Xe + bombardment. The measurements were obtained by etching a coated quartz crystal microbalance (QCM) with a low energy ion beam. The material properties of the carbon targets were characterized with a scanning electron microscope (SEM) and Raman spectroscopy. C sputtering yields measured under Ar + and Xe + bombardment at normal incidence displayed satisfactory agreement with previously published data over an energy range of 200 eV-1 keV. For Xe + ions, the dependence of the yields on angle of incidence θ was determined for 0 o ≤ θ ≤ 80 deg. Over this range, an increase in C sputtering yield by a factor of 4.8 was observed, with the peak in yield occurring at 70 o . This is a much higher variation compared to Xe + → Mo yields under similar conditions, a difference that may be attributed to higher scattering of the incident particles transverse to the beam direction than in the case of Xe + → C. In addition, the variation of the yields with θ was not strongly energy dependent. Trapping of Xe in the surface was observed, in contrast to observations using the QCM technique with metallic target materials. Finally, target surface roughness was characterized using atomic force microscope measurements to distinguish between the effects of local and overall angle of incidence of the target

  3. Calcite Dissolution Kinetics

    Science.gov (United States)

    Berelson, W.; Subhas, A.; Dong, S.; Naviaux, J.; Adkins, J. F.

    2016-12-01

    A geological buffer for high atmospheric CO2 concentrations is neutralization via reaction with CaCO3. We have been studying the dissolution kinetics of carbonate minerals using labeled 13C calcite and Picarro-based measurements of 13C enrichments in solution DIC. This methodology has greatly facilitated our investigation of dissolution kinetics as a function of water carbonate chemistry, temperature and pressure. One can adjust the saturation state Omega by changing the ion activity product (e.g. adjusting carbonate ion concentration), or by changing the solubility product (e.g. adjusting temperature or pressure). The canonical formulation of dissolution rate vs. omega has been refined (Subhas et al. 2015) and shows distinct non-linear behavior near equilibrium and rates in sea water of 1-3 e-6 g/cm2day at omega = 0.8. Carbonic anhydrase (CA), an enzyme that catalyzes the hydration of dissolved CO2 to carbonic acid, was shown (in concentrations 500x. This result points to the importance of carbonic acid in enhancing dissolution at low degrees of undersaturation. CA activity and abundance in nature must be considered regarding the role it plays in catalyzing dissolution. We also have been investigating the role of temperature on dissolution kinetics. An increase of 16C yields an order of magnitude increase in dissolution rate. Temperature (and P) also change Omega critical, the saturation state where dissolution rates change substantially. Increasing pressure (achieved in a pressure reaction chamber we built) also shifts Omega critical closer to equilibrium and small pressure increases have large impact on dissolution kinetics. Dissolution rates are enhanced by an order of magnitude for a change in pressure of 1500 psi relative to the dissolution rate achieved by water chemistry effects alone for an omega of 0.8. We've shown that the thermodynamic determination of saturation state does not adequately describe the kinetics of dissolution. The interplay of mineral

  4. Dechanneling function for relativistic axially channeled electrons

    International Nuclear Information System (INIS)

    Muralev, V.A.; Telegin, V.I.

    1981-01-01

    Behaviour of the x(t) dechanneling function depending on the depth is theoretically studied. Theoretical consideration of x(t) for axial channeled relativistic electrons in anisotropic medium results in two-dimensional kinetic equation with mixed derivatives of the parabolic type. The kinetic equation in the approximation of the continuous Lindchard model for relativistic axial channeled electrons is numerically solved. The depth dependence of the x(t) dechanneling function is obtained [ru

  5. Constipation and Incident CKD.

    Science.gov (United States)

    Sumida, Keiichi; Molnar, Miklos Z; Potukuchi, Praveen K; Thomas, Fridtjof; Lu, Jun Ling; Matsushita, Kunihiro; Yamagata, Kunihiro; Kalantar-Zadeh, Kamyar; Kovesdy, Csaba P

    2017-04-01

    Constipation is one of the most prevalent conditions in primary care settings and increases the risk of cardiovascular disease, potentially through processes mediated by altered gut microbiota. However, little is known about the association of constipation with CKD. In a nationwide cohort of 3,504,732 United States veterans with an eGFR ≥60 ml/min per 1.73 m 2 , we examined the association of constipation status and severity (absent, mild, or moderate/severe), defined using diagnostic codes and laxative use, with incident CKD, incident ESRD, and change in eGFR in Cox models (for time-to-event analyses) and multinomial logistic regression models (for change in eGFR). Among patients, the mean (SD) age was 60.0 (14.1) years old; 93.2% of patients were men, and 24.7% were diabetic. After multivariable adjustments, compared with patients without constipation, patients with constipation had higher incidence rates of CKD (hazard ratio, 1.13; 95% confidence interval [95% CI], 1.11 to 1.14) and ESRD (hazard ratio, 1.09; 95% CI, 1.01 to 1.18) and faster eGFR decline (multinomial odds ratios for eGFR slope constipation associated with an incrementally higher risk for each renal outcome. In conclusion, constipation status and severity associate with higher risk of incident CKD and ESRD and with progressive eGFR decline, independent of known risk factors. Further studies should elucidate the underlying mechanisms. Copyright © 2017 by the American Society of Nephrology.

  6. Cancer incidence among firefighters

    DEFF Research Database (Denmark)

    Pukkala, Eero; Martinsen, Jan Ivar; Weiderpass, Elisabete

    2014-01-01

    .51), adenocarcinoma of the lung (SIR=1.90, 95% CI 1.34 to 2.62), and mesothelioma (SIR=2.59, 95% CI 1.24 to 4.77). By contrast with earlier studies, the incidence of testicular cancer was decreased (SIR=0.51, 95% CI 0.23 to 0.98). CONCLUSIONS: Some of these associations have been observed previously, and potential...

  7. Cancer incidence among waiters

    DEFF Research Database (Denmark)

    Reijula, Jere; Kjaerheim, Kristina; Lynge, Elsebeth

    2015-01-01

    AIMS: To study cancer risk patterns among waiters in the Nordic countries. METHODS: We identified a cohort of 16,134 male and 81,838 female waiters from Denmark, Finland, Iceland, Norway and Sweden. During the follow-up period from 1961 to 2005, we found that 19,388 incident cancer cases were...... diagnosed. Standardised incidence ratio (SIR) was defined as the observed number of cancer cases divided by the expected number, based on national age, time period and gender-specific cancer incidence rates in the general population. RESULTS: The SIR of all cancers in waiters, in the five countries combined......, was 1.46 (95% CI 1.41-1.51) in men and 1.09 (1.07-1.11) in women. In male waiters, the SIR decreased from 1.79 (1.63-1.96) in 1961-1975, to 1.33 (1.26-1.40) in 1991-2005, but remained stable among women. The SIR among male waiters was highest for cancers in the pharynx (6.11; 95% CI 5.02-7.37), oral...

  8. Contaminated Mexican steel incident

    International Nuclear Information System (INIS)

    1985-01-01

    This report documents the circumstances contributing to the inadvertent melting of cobalt 60 (Co-60) contaminated scrap metal in two Mexican steel foundries and the subsequent distribution of contaminated steel products into the United States. The report addresses mainly those actions taken by US Federal and state agencies to protect the US population from radiation risks associated with the incident. Mexico had much more serious radiation exposure and contamination problems to manage. The United States Government maintained a standing offer to provide technical and medical assistance to the Mexican Government. The report covers the tracing of the source to its origin, response actions to recover radioactive steel in the United States, and return of the contaminated materials to Mexico. The incident resulted in significant radiation exposures within Mexico, but no known significant exposure within the United States. Response to the incident required the combined efforts of the Nuclear Regulatory Commission (NRC), Department of Energy, Department of Transportation, Department of State, and US Customs Service (Department of Treasury) personnel at the Federal level and representatives of all 50 State Radiation Control Programs and, in some instances, local and county government personnel. The response also required a diplomatic interface with the Mexican Government and cooperation of numerous commercial establishments and members of the general public. The report describes the factual information associated with the event and may serve as information for subsequent recommendations and actions by the NRC. 8 figures

  9. Thermodynamic and kinetic analysis of heterogeneous photocatalysis for semiconductor systems.

    Science.gov (United States)

    Liu, Baoshun; Zhao, Xiujian; Terashima, Chiaki; Fujishima, Akira; Nakata, Kazuya

    2014-05-21

    Since the report of the Honda-Fujishima effect, heterogeneous photocatalysis has attracted much attention around the world because of its potential energy and environmental applications. Although great progresses have been made in recent years, most were focused on preparing highly-active photocatalysts and investigating visible light utilization. In fact, we are still unclear on the thermodynamic and kinetic nature of photocatalysis to date, which sometimes leads to misunderstandings for experimental results. It is timely to give a review and discussion on the thermodynamics and kinetics of photocatalysis, so as to direct future researches. However, there is an absence of a detailed review on this topic until now. In this article, we tried to review and discuss the thermodynamics and kinetics of photocatalysis. We explained the thermodynamic driving force of photocatalysis, and distinguished the functions of light and heat in photocatalysis. The Langmuir-Hinshelwood kinetic model, the ˙OH oxidation mechanism, and the direct-indirect (D-I) kinetic model were reviewed and compared. Some applications of the D-I model to study photocatalytic kinetics were also discussed. The electron transport mode and its importance in photocatalysis were investigated. Finally, the intrinsic relation between the kinetics and the thermodynamics of photocatalytic reactions was discussed.

  10. Fisher information, kinetic energy and uncertainty relation inequalities

    International Nuclear Information System (INIS)

    Luo Shunlong

    2002-01-01

    By interpolating between Fisher information and mechanical kinetic energy, we introduce a general notion of kinetic energy with respect to a parameter of Schroedinger wavefunctions from a statistical inference perspective. Kinetic energy is the sum of Fisher information and an integral of a parametrized analogue of quantum mechanical current density related to phase. A family of integral inequalities concerning kinetic energy and moments are established, among which the Cramer-Rao inequality and the Weyl-Heisenberg inequality, are special cases. In particular, the integral inequalities involving the negative order moments are relevant to the study of electron systems. Moreover, by specifying the parameter to a scale, we obtain a family of inequalities of uncertainty relation type which incorporate the position and momentum observables symmetrically in a single quantity. (author)

  11. Proximity effect of electron beam lithography on single-electron ...

    Indian Academy of Sciences (India)

    were incident on a resist-coated photomask substrate (chrome on quartz plate). The scattering of these electrons causes undesirable resist development energy to accumulate around the patterned areas. This accumulated energy from the scat- tered electron only slightly affects isolated patterns, but significantly more ...

  12. Medication incidents reported to an online incident reporting system.

    LENUS (Irish Health Repository)

    Alrwisan, Adel

    2011-01-15

    AIMS: Approximately 20% of deaths from adverse events are related to medication incidents, costing the NHS an additional £500 million annually. Less than 5% of adverse events are reported. This study aims to assess the reporting rate of medication incidents in NHS facilities in the north east of Scotland, and to describe the types and outcomes of reported incidents among different services. Furthermore, we wished to quantify the proportion of reported incidents according to the reporters\\' profession. METHODS: A retrospective description was made of medication incidents reported to an online reporting system (DATIX) over a 46-month-period (July 2005 to April 2009). Reports originated from acute and community hospitals, mental health, and primary care facilities. RESULTS: Over the study period there were 2,666 incidents reported with a mean monthly reporting rate of 78.2\\/month (SD±16.9). 6.1% of all incidents resulted in harm, with insulin being the most commonly implicated medication. Nearly three-quarters (74.2%, n=1,978) of total incidents originated from acute hospitals. Administration incidents were implicated in the majority of the reported medication incidents (59%), followed by prescribing (10.8%) and dispensing (9.9%), while the nondescript "other medication incidents" accounted for 20.3% of total incidents. The majority of reports were made by nursing and midwifery staff (80%), with medical and dental professionals reporting the lowest number of incidents (n=56, 2%). CONCLUSIONS: The majority of medication incidents in this study were reported by nursing and midwifery staff, and were due to administration incidents. There is a clear need to elucidate the reasons for the limited contribution of the medical and dental professionals to reporting medication incidents.

  13. Kinetics of tetrataenite disordering

    International Nuclear Information System (INIS)

    Dos Santos, E.; Gattacceca, J.; Rochette, P.; Fillion, G.; Scorzelli, R.B.

    2015-01-01

    Tetrataenite is a chemically ordered L1 0 -type Fe 50 Ni 50 alloy detected for the first time in 1977 by 57 Fe Mössbauer spectroscopy studies in iron meteorites. The thermal history of meteorites, in particular short thermal events like those associated to hypervelocity impacts, can be constrained by tracing the presence of tetrataenite or its disordering into taenite. The knowledge of the disordering kinetics of tetrataenite, that is associated with changes in its magnetic properties, is still very fragmentary so that the time–temperature history of these meteorites cannot be constrained in details. Furthermore, knowledge of disordering kinetics is important due to potential technological application of tetrataenite as a rare-earth free strong magnet. Thus, this work provides the first time–temperature data for disordering reaction of tetrataenite. We have shown that disordering is not an instantaneous process but is a kinetic limited reaction. It was shown that disordering may take place at any temperature above the order–disorder transition for L 10 superstructure phase (∼320 °C) when the appropriate time-scale is considered. This result means that the apparent Curie point for tetrataenite is not an absolute property in the sense that any estimate of this parameter should be referred to a given time-scale. - Highlights: • The first time–temperature data for tetrataenite disordering reaction is provided. • Previous works does not give a complete picture of tetrataenite disordering. • Apparent Curie temperature of tetrataenite should be referred to a time-scale. • Tetrataenite can be used as a probe to detect thermal/shock events recorded in meteorites

  14. Kinetics of tetrataenite disordering

    Energy Technology Data Exchange (ETDEWEB)

    Dos Santos, E., E-mail: edisanfi@cbpf.br [Centro Brasileiro de Pesquisas Físicas, Rio de Janeiro (Brazil); Gattacceca, J.; Rochette, P. [Centre Européen de Recherche et d’Enseignement des Géosciences de l’Environnement, UM34, CNRS/Aix-Marseille University, Aix-en-Provence (France); Fillion, G. [Laboratoire National des Champs Magnétiques Intenses (LNCMI), CNRS, UJF, 38042 Grenoble (France); Scorzelli, R.B. [Centro Brasileiro de Pesquisas Físicas, Rio de Janeiro (Brazil)

    2015-02-01

    Tetrataenite is a chemically ordered L1{sub 0}-type Fe{sub 50}Ni{sub 50} alloy detected for the first time in 1977 by {sup 57}Fe Mössbauer spectroscopy studies in iron meteorites. The thermal history of meteorites, in particular short thermal events like those associated to hypervelocity impacts, can be constrained by tracing the presence of tetrataenite or its disordering into taenite. The knowledge of the disordering kinetics of tetrataenite, that is associated with changes in its magnetic properties, is still very fragmentary so that the time–temperature history of these meteorites cannot be constrained in details. Furthermore, knowledge of disordering kinetics is important due to potential technological application of tetrataenite as a rare-earth free strong magnet. Thus, this work provides the first time–temperature data for disordering reaction of tetrataenite. We have shown that disordering is not an instantaneous process but is a kinetic limited reaction. It was shown that disordering may take place at any temperature above the order–disorder transition for L{sub 10} superstructure phase (∼320 °C) when the appropriate time-scale is considered. This result means that the apparent Curie point for tetrataenite is not an absolute property in the sense that any estimate of this parameter should be referred to a given time-scale. - Highlights: • The first time–temperature data for tetrataenite disordering reaction is provided. • Previous works does not give a complete picture of tetrataenite disordering. • Apparent Curie temperature of tetrataenite should be referred to a time-scale. • Tetrataenite can be used as a probe to detect thermal/shock events recorded in meteorites.

  15. Kinetics of stress fibers

    International Nuclear Information System (INIS)

    Stachowiak, Matthew R; O'Shaughnessy, Ben

    2008-01-01

    Stress fibers are contractile cytoskeletal structures, tensile actomyosin bundles which allow sensing and production of force, provide cells with adjustable rigidity and participate in various processes such as wound healing. The stress fiber is possibly the best characterized and most accessible multiprotein cellular contractile machine. Here we develop a quantitative model of the structure and relaxation kinetics of stress fibers. The principal experimentally known features are incorporated. The fiber has a periodic sarcomeric structure similar to muscle fibers with myosin motor proteins exerting contractile force by pulling on actin filaments. In addition the fiber contains the giant spring-like protein titin. Actin is continuously renewed by exchange with the cytosol leading to a turnover time of several minutes. In order that steady state be possible, turnover must be regulated. Our model invokes simple turnover and regulation mechanisms: actin association and dissociation occur at filament ends, while actin filament overlap above a certain threshold in the myosin-containing regions augments depolymerization rates. We use the model to study stress fiber relaxation kinetics after stimulation, as observed in a recent experimental study where some fiber regions were contractile and others expansive. We find that two distinct episodes ensue after stimulation: the turnover-overlap system relaxes rapidly in seconds, followed by the slow relaxation of sarcomere lengths in minutes. For parameter values as they have been characterized experimentally, we find the long time relaxation of sarcomere length is set by the rate at which actin filaments can grow or shrink in response to the forces exerted by the elastic and contractile elements. Consequently, the stress fiber relaxation time scales inversely with both titin spring constant and the intrinsic actin turnover rate. The model's predicted sarcomere velocities and contraction-expansion kinetics are in good

  16. Kinetics of stress fibers

    Energy Technology Data Exchange (ETDEWEB)

    Stachowiak, Matthew R; O' Shaughnessy, Ben [Department of Chemical Engineering, Columbia University, New York, NY 10027 (United States)], E-mail: bo8@columbia.edu

    2008-02-15

    Stress fibers are contractile cytoskeletal structures, tensile actomyosin bundles which allow sensing and production of force, provide cells with adjustable rigidity and participate in various processes such as wound healing. The stress fiber is possibly the best characterized and most accessible multiprotein cellular contractile machine. Here we develop a quantitative model of the structure and relaxation kinetics of stress fibers. The principal experimentally known features are incorporated. The fiber has a periodic sarcomeric structure similar to muscle fibers with myosin motor proteins exerting contractile force by pulling on actin filaments. In addition the fiber contains the giant spring-like protein titin. Actin is continuously renewed by exchange with the cytosol leading to a turnover time of several minutes. In order that steady state be possible, turnover must be regulated. Our model invokes simple turnover and regulation mechanisms: actin association and dissociation occur at filament ends, while actin filament overlap above a certain threshold in the myosin-containing regions augments depolymerization rates. We use the model to study stress fiber relaxation kinetics after stimulation, as observed in a recent experimental study where some fiber regions were contractile and others expansive. We find that two distinct episodes ensue after stimulation: the turnover-overlap system relaxes rapidly in seconds, followed by the slow relaxation of sarcomere lengths in minutes. For parameter values as they have been characterized experimentally, we find the long time relaxation of sarcomere length is set by the rate at which actin filaments can grow or shrink in response to the forces exerted by the elastic and contractile elements. Consequently, the stress fiber relaxation time scales inversely with both titin spring constant and the intrinsic actin turnover rate. The model's predicted sarcomere velocities and contraction-expansion kinetics are in good

  17. Kinetic computer modeling of microwave surface-wave plasma production

    International Nuclear Information System (INIS)

    Ganachev, Ivan P.

    2004-01-01

    Kinetic computer plasma modeling occupies an intermediate position between the time consuming rigorous particle dynamic simulation and the fast but rather rough cold- or warm-plasma fluid models. The present paper reviews the kinetic modeling of microwave surface-wave discharges with accent on recent kinetic self-consistent models, where the external input parameters are reduced to the necessary minimum (frequency and intensity of the applied microwave field and pressure and geometry of the discharge vessel). The presentation is limited to low pressures, so that Boltzmann equation is solved in non-local approximation and collisional electron heating is neglected. The numerical results reproduce correctly the bi-Maxwellian electron energy distribution functions observed experimentally. (author)

  18. Kinetic theory of photophoresis

    International Nuclear Information System (INIS)

    Beresnev, S.A.; Chernyak, V.G.; Fomyagin, G.A.

    1988-01-01

    The force acting on an aerosol particle in one-sided illumination is calculated on the basis of solving a linearized gas-kinetic equation. A closed system of integral-moment equations describing photophoresis with arbitrary values of the Knudsen number and an arbitrary ratio of the particle and gas thermal conductivities is constructed. The possibility of arbitrary accommodation of the momentum and energy with interaction between the gas molecules and the particle surface is taken into account. The distribution of heat sources inside the radiation-absorbing particle is described by Mie theory. The results obtained are compared with the known theoretical and experimental data

  19. Chemical kinetics modeling

    Energy Technology Data Exchange (ETDEWEB)

    Westbrook, C.K.; Pitz, W.J. [Lawrence Livermore National Laboratory, CA (United States)

    1993-12-01

    This project emphasizes numerical modeling of chemical kinetics of combustion, including applications in both practical combustion systems and in controlled laboratory experiments. Elementary reaction rate parameters are combined into mechanisms which then describe the overall reaction of the fuels being studied. Detailed sensitivity analyses are used to identify those reaction rates and product species distributions to which the results are most sensitive and therefore warrant the greatest attention from other experimental and theoretical research programs. Experimental data from a variety of environments are combined together to validate the reaction mechanisms, including results from laminar flames, shock tubes, flow systems, detonations, and even internal combustion engines.

  20. Incident users of antipsychotics

    DEFF Research Database (Denmark)

    Baandrup, Lone; Kruse, Marie

    2016-01-01

    PURPOSE: In Denmark, as well as in many other countries, consumption of antipsychotics is on the rise, partly due to increasing off-label use. The aim of this study was to analyze and quantify the extent of off-label use and polypharmacy in incident users of antipsychotic medication, and to examine...... initial antipsychotic prescribing patterns and associated use of mental health care services. METHOD: Population-based cohort study linking the following Danish national registers: the Central Psychiatric Research Register, the Register of Medicinal Product Statistics, and Statistics Denmark. RESULTS...

  1. Kinetic Isotope Effects in the Reduction of Methyl Iodide

    DEFF Research Database (Denmark)

    Holm, Torkil

    1999-01-01

    a-Deuterium kinetic isotope effects (KIE's) have been determined for the reaction of methyl iodide with a series of reducing agents. Reagents which transfer hydride ion in an SN2 reaction show small inverse or small normal KIE's. Reagents which transfer an electron to methyl iodide to produce...

  2. Improving freight crash incident management.

    Science.gov (United States)

    2015-06-01

    The objective of this study was to determine the most effective way to mitigate the effect of freight : crash incidents on Louisiana freeways. Candidate incident management strategies were reviewed from : practice in other states and from those publi...

  3. Common Causes of Pesticide Incidents

    Science.gov (United States)

    There are many types of pesticide incidents. EPA staff analyze pesticide incident reports involving people (including children and farm workers), pets, domestic animals, wildlife including bees and other pollinators, and the environment.

  4. Chemical kinetics of gas reactions

    CERN Document Server

    Kondrat'Ev, V N

    2013-01-01

    Chemical Kinetics of Gas Reactions explores the advances in gas kinetics and thermal, photochemical, electrical discharge, and radiation chemical reactions. This book is composed of 10 chapters, and begins with the presentation of general kinetic rules for simple and complex chemical reactions. The next chapters deal with the experimental methods for evaluating chemical reaction mechanisms and some theories of elementary chemical processes. These topics are followed by discussions on certain class of chemical reactions, including unimolecular, bimolecular, and termolecular reactions. The rema

  5. Kinetics of coal pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Seery, D.J.; Freihaut, J.D.; Proscia, W.M. (United Technologies Research Center, East Hartford, CT (USA)); Howard, J.B.; Peters, W.; Hsu, J.; Hajaligol, M.; Sarofim, A. (Massachusetts Inst. of Tech., Cambridge, MA (USA)); Jenkins, R.; Mallin, J.; Espindola-Merin, B. (Pennsylvania State Univ., University Park, PA (USA)); Essenhigh, R.; Misra, M.K. (Ohio State Univ., Columbus, OH (USA))

    1989-07-01

    This report contains results of a coordinated, multi-laboratory investigation of coal devolatilization. Data is reported pertaining to the devolatilization for bituminous coals over three orders of magnitude in apparent heating rate (100 to 100,000 + {degree}C/sec), over two orders of magnitude in particle size (20 to 700 microns), final particle temperatures from 400 to 1600{degree}C, heat transfer modes ranging from convection to radiative, ambient pressure ranging from near vacuum to one atmosphere pressure. The heat transfer characteristics of the reactors are reported in detail. It is assumed the experimental results are to form the basis of a devolatilization data base. Empirical rate expressions are developed for each phase of devolatilization which, when coupled to an awareness of the heat transfer rate potential of a particular devolatilization reactor, indicate the kinetics emphasized by a particular system reactor plus coal sample. The analysis indicates the particular phase of devolatilization that will be emphasized by a particular reactor type and, thereby, the kinetic expressions appropriate to that devolatilization system. Engineering rate expressions are developed from the empirical rate expressions in the context of a fundamental understanding of coal devolatilization developed in the course of the investigation. 164 refs., 223 figs., 44 tabs.

  6. Increasing incidence of pyogenic spondylodiscitis

    DEFF Research Database (Denmark)

    Kehrer, Michala; Pedersen, Court; Jensen, Thøger G

    2014-01-01

    Smaller studies indicate that the incidence of pyogenic spondylodiscitis is increasing, possible related to a growing elderly population. Data supporting this is sparse, and we therefore studied patient characteristics and changes in spondylodiscitis incidence 1995-2008.......Smaller studies indicate that the incidence of pyogenic spondylodiscitis is increasing, possible related to a growing elderly population. Data supporting this is sparse, and we therefore studied patient characteristics and changes in spondylodiscitis incidence 1995-2008....

  7. Effects of pH on kinetics of the structural rearrangement that gates the electron-transfer reaction between zinc cytochrome c and plastocyanin. Analysis of protonation states in a diprotein complex

    Directory of Open Access Journals (Sweden)

    NENAD M. KOSTIC

    2003-05-01

    Full Text Available Electron transfer from zinc cytochrome c to copper(IIplastocyanin in the electrostatically-stabilized complex [Crnogorac MM, Shen C, Young S, Hansson O, Kosti} NM (1996 Biochemistry 35, 16465–74]. We study this rearrangement in four complexes Zncyt/pc(II, which zinc cytochrome c makes with the wild-type form and the single mutants Asp42Asn, Glu59Gln, and Glu60Gln of plastocyanin. The rate constant for the rearrangement, kF, differs for the four forms of plastocyanin but is independent of pH from 5.4 to 9.0 in all four cases. That kF is affected by the single mutations but not by pH changes suggests that the residues Asp 42, Glu59, and Glu60 in the wild-type plastocyanin remain deprotonated (i.e., as anions within the Zncyt/pc(II complex throughout the pH range examined. This fact agrees with the notion that loss of salt bridges in the initial (redox-inactive configuration of the complex is compensated by formation of new salt bridges in the rearranged (redox-active configuration.

  8. Energy partitioning constraints at kinetic scales in low-β turbulence

    Science.gov (United States)

    Gershman, Daniel J.; F.-Viñas, Adolfo; Dorelli, John C.; Goldstein, Melvyn L.; Shuster, Jason; Avanov, Levon A.; Boardsen, Scott A.; Stawarz, Julia E.; Schwartz, Steven J.; Schiff, Conrad; Lavraud, Benoit; Saito, Yoshifumi; Paterson, William R.; Giles, Barbara L.; Pollock, Craig J.; Strangeway, Robert J.; Russell, Christopher T.; Torbert, Roy B.; Moore, Thomas E.; Burch, James L.

    2018-02-01

    Turbulence is a fundamental physical process through which energy injected into a system at large scales cascades to smaller scales. In collisionless plasmas, turbulence provides a critical mechanism for dissipating electromagnetic energy. Here, we present observations of plasma fluctuations in low-β turbulence using data from NASA's Magnetospheric Multiscale mission in Earth's magnetosheath. We provide constraints on the partitioning of turbulent energy density in the fluid, ion-kinetic, and electron-kinetic ranges. Magnetic field fluctuations dominated the energy density spectrum throughout the fluid and ion-kinetic ranges, consistent with previous observations of turbulence in similar plasma regimes. However, at scales shorter than the electron inertial length, fluctuation power in electron kinetic energy significantly exceeded that of the magnetic field, resulting in an electron-motion-regulated cascade at small scales. This dominance is highly relevant for the study of turbulence in highly magnetized laboratory and astrophysical plasmas.

  9. Adsorption analysis equilibria and kinetics

    CERN Document Server

    Do, Duong D

    1998-01-01

    This book covers topics of equilibria and kinetics of adsorption in porous media. Fundamental equilibria and kinetics are dealt with for homogeneous as well as heterogeneous particles. Five chapters of the book deal with equilibria and eight chapters deal with kinetics. Single component as well as multicomponent systems are discussed. In kinetics analysis, we deal with the various mass transport processes and their interactions inside a porous particle. Conventional approaches as well as the new approach using Maxwell-Stefan equations are presented. Various methods to measure diffusivity, such

  10. Incident Management: Process into Practice

    Science.gov (United States)

    Isaac, Gayle; Moore, Brian

    2011-01-01

    Tornados, shootings, fires--these are emergencies that require fast action by school district personnel, but they are not the only incidents that require risk management. The authors have introduced the National Incident Management System (NIMS) and the Incident Command System (ICS) and assured that these systems can help educators plan for and…

  11. Kinetics of infrared stimulated luminescence from feldspars

    International Nuclear Information System (INIS)

    Jain, M.; Sohbati, R.; Guralnik, B.; Murray, A.S.; Kook, M.; Lapp, T.; Prasad, A.K.; Thomsen, K.J.; Buylaert, J.P.

    2015-01-01

    We extend the localised transition model based on randomly varying recombination distances (Jain et al., 2012) to include Arrhenius analysis and truncated nearest neighbour distributions. The model makes important predictions regarding a) the physical understanding of the linear intercepts in the Arrhenius analysis for localised recombination systems and b) the relationship between charge depletion and shape of the luminescence decay curves; these predictions are successfully tested by experimental investigations. We demonstrate that this model successfully describes the kinetic behaviour, both thermal and optical, of the infrared stimulated luminescence signal from feldspar. Based on the application of this model, it is concluded that different infra-red stimulated luminescence emissions (UV, blue, yellow and far-red) follow the same kinetics, and, therefore, involve participation of the same electron (dosimetric) trap. The differences in thermal stabilities of the different emissions results from differences in number densities of the recombination sites. The results have implications for understanding the mechanism of the far-red emission, and the spatial distributions of recombination sites in feldspar. - Highlights: • Arrhenius analysis of IRSL based on localized transition model (Jain et al., 2012). • Kinetics of IRSL for the different emission bands. • A new analytical description for IRSL. • Demonstrating that feldspar IRSL is consistent with the predictions of the LTM.

  12. Hip fracture incidence is decreasing in the high incidence area of Oslo, Norway.

    Science.gov (United States)

    Støen, R O; Nordsletten, L; Meyer, H E; Frihagen, J F; Falch, J A; Lofthus, C M

    2012-10-01

    This study reports a significant decrease in age-adjusted incidence rates of hip fracture for women in Oslo, Norway, even compared with data from 1978/1979. Use of bisphosphonate may explain up to one third of the decline in the incidence. The aims of the present study were to report the current incidence of hip fractures in Oslo and to estimate the influence of bisphosphonates on the current incidence. Using the electronic diagnosis registers and lists from the operating theaters of the hospitals of Oslo, all patients with ICD-10 codes S72.0 and S72.1 (hip fracture) in 2007 were identified. Medical records of all identified patients were reviewed to verify the diagnosis. Age- and gender-specific annual incidence rates were calculated using the population of Oslo on January 1, 2007 as the population at risk. Data on the use of bisphosphonates were obtained from official registers. A total number of 1,005 hip fractures, 712 (71%) in women, were included. The age-adjusted fracture rates per 10,000 for the age group >50 years were 82.0 for women and 39.1 for men in 2007, compared with 110.8 and 41.4 in 1996/1997, 116.5 and 42.9 in 1988/1989, and 97.5 and 34.5 in 1978/1979, respectively. It was estimated that the use of bisphosphonates may explain up to 13% of the decline in incidence in women aged 60-69 years and up to 34% in women aged 70-79 years. The incidence of hip fractures in women in Oslo has decreased significantly during the last decade and is now at a lower level than in 1978/1979. This reduction was not evident in men. The incidence of hip fractures in Oslo is, however, still the highest in the world.

  13. Electronic Cigarettes

    Science.gov (United States)

    ... New FDA Regulations Text Size: A A A Electronic Cigarettes Electronic cigarettes (e-cigarettes) are battery operated products designed to ... more about: The latest news and events about electronic cigarettes on this FDA page Electronic cigarette basics on ...

  14. Electronic technology

    International Nuclear Information System (INIS)

    Kim, Jin Su

    2010-07-01

    This book is composed of five chapters, which introduces electronic technology about understanding of electronic, electronic component, radio, electronic application, communication technology, semiconductor on its basic, free electron and hole, intrinsic semiconductor and semiconductor element, Diode such as PN junction diode, characteristic of junction diode, rectifier circuit and smoothing circuit, transistor on structure of transistor, characteristic of transistor and common emitter circuit, electronic application about electronic equipment, communication technology and education, robot technology and high electronic technology.

  15. Kinetics of Social Contagion

    Science.gov (United States)

    Ruan, Zhongyuan; Iñiguez, Gerardo; Karsai, Márton; Kertész, János

    2015-11-01

    Diffusion of information, behavioral patterns or innovations follows diverse pathways depending on a number of conditions, including the structure of the underlying social network, the sensitivity to peer pressure and the influence of media. Here we study analytically and by simulations a general model that incorporates threshold mechanism capturing sensitivity to peer pressure, the effect of "immune" nodes who never adopt, and a perpetual flow of external information. While any constant, nonzero rate of dynamically introduced spontaneous adopters leads to global spreading, the kinetics by which the asymptotic state is approached shows rich behavior. In particular, we find that, as a function of the immune node density, there is a transition from fast to slow spreading governed by entirely different mechanisms. This transition happens below the percolation threshold of network fragmentation, and has its origin in the competition between cascading behavior induced by adopters and blocking due to immune nodes. This change is accompanied by a percolation transition of the induced clusters.

  16. The Electron

    Energy Technology Data Exchange (ETDEWEB)

    Thomson, George

    1972-01-01

    Electrons are elementary particles of atoms that revolve around and outside the nucleus and have a negative charge. This booklet discusses how electrons relate to electricity, some applications of electrons, electrons as waves, electrons in atoms and solids, the electron microscope, among other things.

  17. Dimensional enhancement of kinetic energies

    DEFF Research Database (Denmark)

    Schleich, W.P.; Dahl, Jens Peder

    2002-01-01

    Simple thermodynamics considers kinetic energy to be an extensive variable which is proportional to the number N of particles. We present a quantum state of N noninteracting particles for which the kinetic energy increases quadratically with N. This enhancement effect is tied to the quantum...

  18. Evolution of Enzyme Kinetic Mechanisms.

    Science.gov (United States)

    Ulusu, Nuriye Nuray

    2015-06-01

    This review paper discusses the reciprocal kinetic behaviours of enzymes and the evolution of structure-function dichotomy. Kinetic mechanisms have evolved in response to alterations in ecological and metabolic conditions. The kinetic mechanisms of single-substrate mono-substrate enzyme reactions are easier to understand and much simpler than those of bi-bi substrate enzyme reactions. The increasing complexities of kinetic mechanisms, as well as the increasing number of enzyme subunits, can be used to shed light on the evolution of kinetic mechanisms. Enzymes with heterogeneous kinetic mechanisms attempt to achieve specific products to subsist. In many organisms, kinetic mechanisms have evolved to aid survival in response to changing environmental factors. Enzyme promiscuity is defined as adaptation to changing environmental conditions, such as the introduction of a toxin or a new carbon source. Enzyme promiscuity is defined as adaptation to changing environmental conditions, such as the introduction of a toxin or a new carbon source. Enzymes with broad substrate specificity and promiscuous properties are believed to be more evolved than single-substrate enzymes. This group of enzymes can adapt to changing environmental substrate conditions and adjust catalysing mechanisms according to the substrate's properties, and their kinetic mechanisms have evolved in response to substrate variability.

  19. Calcium kinetics in parathyroid disease

    International Nuclear Information System (INIS)

    Dymling, J.F.

    1964-01-01

    This paper reports a study of calcium kinetics in twelve cases of parathyroid disease. The data suggest that hyperparathyroidism usually causes increased bone turnover. The study of calcium kinetics may be a valuable tool in the differential diagnosis of primary hyperparathyroidism and in evaluating treatment of secondary hyperparathyroidism. The bone turnover in one case of hypoparathyroidism was extremely low. 1 fig., 1 tab

  20. Kinetics of laser irradiated nanoparticles cloud

    Science.gov (United States)

    Mishra, S. K.; Upadhyay Kahaly, M.; Misra, Shikha

    2018-02-01

    A comprehensive kinetic model describing the complex kinetics of a laser irradiated nanoparticle ensemble has been developed. The absorbed laser radiation here serves dual purpose, viz., photoenhanced thermionic emission via rise in its temperature and direct photoemission of electrons. On the basis of mean charge theory along with the equations for particle (electron) and energy flux balance over the nanoparticles, the transient processes of charge/temperature evolution over its surface and mass diminution on account of the sublimation (phase change) process have been elucidated. Using this formulation phenomenon of nanoparticle charging, its temperature rise to the sublimation point, mass ablation, and cloud disintegration have been investigated; afterwards, typical timescales of disintegration, sublimation and complete evaporation in reference to a graphite nanoparticle cloud (as an illustrative case) have been parametrically investigated. Based on a numerical analysis, an adequate parameter space describing the nanoparticle operation below the sublimation temperature, in terms of laser intensity, wavelength and nanoparticle material work function, has been identified. The cloud disintegration is found to be sensitive to the nanoparticle charging through photoemission; as a consequence, it illustrates that radiation operating below the photoemission threshold causes disintegration in the phase change state, while above the threshold, it occurs with the onset of surface heating.

  1. Microwave gallium-68 radiochemistry for kinetically stable bis(thiosemicarbazone) complexes: structural investigations and cellular uptake under hypoxia† †Electronic supplementary information (ESI) available. CCDC 1001632–1001634. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c5dt02537k Click here for additional data file. Click here for additional data file.

    Science.gov (United States)

    Alam, Israt S.; Arrowsmith, Rory L.; Cortezon-Tamarit, Fernando; Twyman, Frazer; Kociok-Köhn, Gabriele; Botchway, Stanley W.; Dilworth, Jonathan R.

    2016-01-01

    We report the microwave synthesis of several bis(thiosemicarbazones) and the rapid gallium-68 incorporation to give the corresponding metal complexes. These proved kinetically stable under ‘cold’ and ‘hot’ biological assays and were investigated using laser scanning confocal microscopy, flow cytometry and radioactive cell retention studies under normoxia and hypoxia. 68Ga complex retention was found to be 34% higher in hypoxic cells than in normoxic cells over 30 min, further increasing to 53% at 120 min. Our data suggests that this class of gallium complexes show hypoxia selectivity suitable for imaging in living cells and in vivo tests by microPET in nude athymic mice showed that they are excreted within 1 h of their administration. PMID:26583314

  2. Kinetic modelling of plasma near the neutralizer plate in a tokamak divertor

    International Nuclear Information System (INIS)

    Abou-Assaleh, Z.; Marchand, R.; Matte, J.P.; Johnston, T.W.; Parbhakar, K.J.

    1990-01-01

    An electron kinetic code is used to simulate longitudinal transport and recycling near the neutralizer plate in a divertor plasma. In addition to the standard features, such as electron-electron and electron-ion Coulomb collisions, transport, ion motion, and a self-consistent electric field, the code now accounts for ionization, excitation, and recycling of hydrogen near the plate. Ions and neutrals are treated as fluids. The kinetic results are compared with those of a one-dimensional, two-temperature fluid code. Some implications of these results for recycling and impurity control in tokamaks are also discussed

  3. Kinetics of complex plasmas

    CERN Document Server

    Sodha, Mahendra Singh

    2014-01-01

    The presentation in the book is based on charge balance on the dust particles, number and energy balance of the constituents and atom-ion-electron interaction in the gaseous plasma. Size distribution of dust particles, statistical mechanics, Quantum effects in electron emission from and accretion on dust particles and nonlinear interaction of complex plasmas with electric and electromagnetic fields have been discussed in the book. The book introduces the reader to basic concepts and typical applications. The book should be of use to researchers, engineers and graduate students.

  4. Hard electronics; Hard electronics

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    Hard material technologies were surveyed to establish the hard electronic technology which offers superior characteristics under hard operational or environmental conditions as compared with conventional Si devices. The following technologies were separately surveyed: (1) The device and integration technologies of wide gap hard semiconductors such as SiC, diamond and nitride, (2) The technology of hard semiconductor devices for vacuum micro- electronics technology, and (3) The technology of hard new material devices for oxides. The formation technology of oxide thin films made remarkable progress after discovery of oxide superconductor materials, resulting in development of an atomic layer growth method and mist deposition method. This leading research is expected to solve such issues difficult to be easily realized by current Si technology as high-power, high-frequency and low-loss devices in power electronics, high temperature-proof and radiation-proof devices in ultimate electronics, and high-speed and dense- integrated devices in information electronics. 432 refs., 136 figs., 15 tabs.

  5. Kinetics of Bio-Reactions

    DEFF Research Database (Denmark)

    Villadsen, John

    2015-01-01

    . The models can be used in mass balances for design of processes under process conditions not yet studied experimentally. The value of the predictive kinetic model depends on the quality of the experimental data on which the model is based, and well-founded kinetic models for enzyme reactions have...... a considerable predictive power. This is also true for cell reaction models, when the model is used in its proper context. The chapter first discusses the kinetics for enzymatically catalyzed reactions (“enzyme reactions”). The kinetics can be derived from a mechanistic model. Then, the chapter derives empirical......his chapter predicts the specific rates of reaction by means of a mathematical expression, the kinetics of the reaction. This expression can be derived through a mechanistic interpretation of an enzymatically catalyzed reaction, but it is essentially of empirical nature for cell reactions...

  6. Kinetic theory of two-temperature polyatomic plasmas

    Science.gov (United States)

    Orlac'h, Jean-Maxime; Giovangigli, Vincent; Novikova, Tatiana; Roca i Cabarrocas, Pere

    2018-03-01

    We investigate the kinetic theory of two-temperature plasmas for reactive polyatomic gas mixtures. The Knudsen number is taken proportional to the square root of the mass ratio between electrons and heavy-species, and thermal non-equilibrium between electrons and heavy species is allowed. The kinetic non-equilibrium framework also requires a weak coupling between electrons and internal energy modes of heavy species. The zeroth-order and first-order fluid equations are derived by using a generalized Chapman-Enskog method. Expressions for transport fluxes are obtained in terms of macroscopic variable gradients and the corresponding transport coefficients are expressed as bracket products of species perturbed distribution functions. The theory derived in this paper provides a consistent fluid model for non-thermal multicomponent plasmas.

  7. Kinetic distance and kinetic maps from molecular dynamics simulation.

    Science.gov (United States)

    Noé, Frank; Clementi, Cecilia

    2015-10-13

    Characterizing macromolecular kinetics from molecular dynamics (MD) simulations requires a distance metric that can distinguish slowly interconverting states. Here, we build upon diffusion map theory and define a kinetic distance metric for irreducible Markov processes that quantifies how slowly molecular conformations interconvert. The kinetic distance can be computed given a model that approximates the eigenvalues and eigenvectors (reaction coordinates) of the MD Markov operator. Here, we employ the time-lagged independent component analysis (TICA). The TICA components can be scaled to provide a kinetic map in which the Euclidean distance corresponds to the kinetic distance. As a result, the question of how many TICA dimensions should be kept in a dimensionality reduction approach becomes obsolete, and one parameter less needs to be specified in the kinetic model construction. We demonstrate the approach using TICA and Markov state model (MSM) analyses for illustrative models, protein conformation dynamics in bovine pancreatic trypsin inhibitor and protein-inhibitor association in trypsin and benzamidine. We find that the total kinetic variance (TKV) is an excellent indicator of model quality and can be used to rank different input feature sets.

  8. Electronic stopping in ion-fullerene collisions

    NARCIS (Netherlands)

    Schlathölter, T.A.; Hadjar, O.; Hoekstra, R.A.; Morgenstern, R.W.H.

    The electronic friction experienced by a multiply charged ion interacting with the valence electrons of a single fullerene is an important aspect of the collision dynamics. It manifests itself in a considerable loss of projectile kinetic energy transferred to the target, resulting in excitation. The

  9. Recrystallization of deformed copper - kinetics and microstructural evolution

    DEFF Research Database (Denmark)

    Lin, Fengxiang

    The objective of this study is to investigate the recrystallization kinetics and microstructural evolution in copper deformed to high strains, including copper deformed by cold-rolling and copper deformed by dynamic plastic deformation (DPD). Various characterization techniques were used, including...... electron backscatter diffraction (EBSD), Vickers hardness test, 3D X-ray diffraction (3DXRD) and differential scanning calorimetry (DSC). For the cold-rolled samples, a series of initial parameters was investigated for their effects on the recrystallization kinetics and textures, including initial grain...

  10. Electron and ion induced electron emission from metals and insulators

    CERN Document Server

    Steinbatz, M

    2001-01-01

    gradually exposed to oxygen as an experimental probe. The experimental data are fitted with an analytical model, that is able to describe the observed kinetics. The fit parameters give absolute values of sticking probabilities and of surface reaction rates. During oxidation of aluminum and magnesium also spontaneous emission of electrons (exoelectrons) is observed. This effect is quantitatively studied for different oxygen partial pressures. The experimental data also indicate a significant influence of the surface morphology on the exoemission process. An important consequence of atomic collisions in solids is ionization leading to electron ejection from the target atoms with subsequent migration through the solid. A certain fraction of these electrons finally reaches the surface and is ejected into vacuum. A standard measurement of this phenomenon is the observation of the particle (electron, ion) induced electron emission yield g, defined as the average number of ejected electrons per incoming projectile. ...

  11. Electron radiography

    Science.gov (United States)

    Merrill, Frank E.; Morris, Christopher

    2005-05-17

    A system capable of performing radiography using a beam of electrons. Diffuser means receive a beam of electrons and diffuse the electrons before they enter first matching quadrupoles where the diffused electrons are focused prior to the diffused electrons entering an object. First imaging quadrupoles receive the focused diffused electrons after the focused diffused electrons have been scattered by the object for focusing the scattered electrons. Collimator means receive the scattered electrons and remove scattered electrons that have scattered to large angles. Second imaging quadrupoles receive the collimated scattered electrons and refocus the collimated scattered electrons and map the focused collimated scattered electrons to transverse locations on an image plane representative of the electrons' positions in the object.

  12. Spin sensitivity of a channel electron multiplier

    International Nuclear Information System (INIS)

    Scholten, R.E.; McClelland, J.J.; Kelley, M.H.; Celotta, R.J.

    1988-01-01

    We report direct measurements of the sensitivity of a channel electron multiplier to electrons with different spin orientations. Four regions of the multiplier cone were examined using polarized electrons at 100-eV incident energy. Pulse counting and analog modes of operation were both investigated and in each case the observed spin effects were less than 0.5%

  13. Hydrogen collisions with transition metal surfaces: Universal electronically nonadiabatic adsorption

    Science.gov (United States)

    Dorenkamp, Yvonne; Jiang, Hongyan; Köckert, Hansjochen; Hertl, Nils; Kammler, Marvin; Janke, Svenja M.; Kandratsenka, Alexander; Wodtke, Alec M.; Bünermann, Oliver

    2018-01-01

    Inelastic scattering of H and D atoms from the (111) surfaces of six fcc transition metals (Au, Pt, Ag, Pd, Cu, and Ni) was investigated, and in each case, excitation of electron-hole pairs dominates the inelasticity. The results are very similar for all six metals. Differences in the average kinetic energy losses between metals can mainly be attributed to different efficiencies in the coupling to phonons due to the different masses of the metal atoms. The experimental observations can be reproduced by molecular dynamics simulations based on full-dimensional potential energy surfaces and including electronic excitations by using electronic friction in the local density friction approximation. The determining factors for the energy loss are the electron density at the surface, which is similar for all six metals, and the mass ratio between the impinging atoms and the surface atoms. Details of the electronic structure of the metal do not play a significant role. The experimentally validated simulations are used to explore sticking over a wide range of incidence conditions. We find that the sticking probability increases for H and D collisions near normal incidence—consistent with a previously reported penetration-resurfacing mechanism. The sticking probability for H or D on any of these metals may be represented as a simple function of the incidence energy, Ein, metal atom mass, M, and incidence angle, 𝜗i n. S =(S0+a ṡEi n+b ṡM ) *(1 -h (𝜗i n-c ) (1 -cos(𝜗 i n-c ) d ṡh (Ei n-e ) (Ei n-e ) ) ) , where h is the Heaviside step function and for H, S0 = 1.081, a = -0.125 eV-1, b =-8.40 ṡ1 0-4 u-1, c = 28.88°, d = 1.166 eV-1, and e = 0.442 eV; whereas for D, S0 = 1.120, a = -0.124 eV-1, b =-1.20 ṡ1 0-3 u-1, c = 28.62°, d = 1.196 eV-1, and e = 0.474 eV.

  14. Kinetics of Levoglucosenone Isomerization.

    Science.gov (United States)

    Krishna, Siddarth H; Walker, Theodore W; Dumesic, James A; Huber, George W

    2017-01-10

    We studied the acid-catalyzed isomerization of levoglucosenone (LGO) to 5-hydroxymethylfurfural (HMF) and developed a reaction kinetics model that describes the experimental data across a range of conditions (100-150 °C, 50-100 mm H 2 SO 4 , 50-150 mm LGO). LGO and its hydrated derivative exist in equilibrium under these reaction conditions. Thermal and catalytic degradation of HMF are the major sources of carbon loss. Within the range of conditions studied, higher temperatures and shorter reaction times favor the production of HMF. The yields of HMF and levulinic acid decrease monotonically as tetrahydrofuran is added to the aqueous solvent system, indicating that water plays a role in the LGO isomerization reaction. Initial-rate analyses show that HMF is produced solely from LGO rather than from the hydrated derivative of LGO. The results of this study are consistent with a mechanism for LGO isomerization that proceeds through hydration of the anhydro bridge, followed by ring rearrangement analogous to the isomerization of glucose to fructose. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Kinetics of thyroid hormones

    International Nuclear Information System (INIS)

    Inada, Mitsuo; Nishikawa, Mitsushige; Naito, Kimikazu; Ishii, Hitoshi; Tanaka, Kiyoshi

    1980-01-01

    Kinetics of thyroid hormones were outlined, and recent progress in metabolism of these hormones was also described. Recently, not only T 4 and T 3 but also rT 3 , 3,3'-T 2 , 3',5'-T 2 , and 3,5-T 2 can be measured by RIA. To clarify metabolic pathways of these hormones, metabolic clearance rate and production rate of these hormones were calculated. As single-compartment analysis was insufficient to clarify disappearance curves of thyroid hormones in blood such as T 3 and T 2 of which metabolic speed was so fast, multi-compartment analysis or non-compartment analysis were also performed. Thyroid hormones seemed to be measured more precisely by constant infusion method. At the first step of T 4 metabolism, T 3 was formed by 5'-monodeiodination of T 4 , and rT 3 was formed by 5-monodeiodination of T 4 . As metabolic pathways of T 3 and rT 3 , conversion of them to 3,3'-T 2 or to 3',5'-T 2 and 3,5-T 2 was supposed. This subject will be an interesting research theme in future. (Tsunoda, M.)

  16. Statistics of electron multiplication in multiplier phototube: iterative method

    International Nuclear Information System (INIS)

    Grau Malonda, A.; Ortiz Sanchez, J.F.

    1985-01-01

    An iterative method is applied to study the variation of dynode response in the multiplier phototube. Three different situations are considered that correspond to the following ways of electronic incidence on the first dynode: incidence of exactly one electron, incidence of exactly r electrons and incidence of an average anti-r electrons. The responses are given for a number of steps between 1 and 5, and for values of the multiplication factor of 2.1, 2.5, 3 and 5. We study also the variance, the skewness and the excess of jurtosis for different multiplication factors. (author)

  17. Statistics of electron multiplication in a multiplier phototube; Iterative method

    International Nuclear Information System (INIS)

    Ortiz, J. F.; Grau, A.

    1985-01-01

    In the present paper an iterative method is applied to study the variation of dynode response in the multiplier phototube. Three different situation are considered that correspond to the following ways of electronic incidence on the first dynode: incidence of exactly one electron, incidence of exactly r electrons and incidence of an average r electrons. The responses are given for a number of steps between 1 and 5, and for values of the multiplication factor of 2.1, 2.5, 3 and 5. We study also the variance, the skewness and the excess of jurtosis for different multiplication factors. (Author) 11 refs

  18. On the relationships between Michaelis-Menten kinetics, reverse Michaelis-Menten kinetics, Equilibrium Chemistry Approximation kinetics and quadratic kinetics

    Science.gov (United States)

    Tang, J. Y.

    2015-09-01

    The Michaelis-Menten kinetics and the reverse Michaelis-Menten kinetics are two popular mathematical formulations used in many land biogeochemical models to describe how microbes and plants would respond to changes in substrate abundance. However, the criteria of when to use which of the two are often ambiguous. Here I show that these two kinetics are special approximations to the Equilibrium Chemistry Approximation kinetics, which is the first order approximation to the quadratic kinetics that solves the equation of enzyme-substrate complex exactly for a single enzyme single substrate biogeochemical reaction with the law of mass action and the assumption of quasi-steady-state for the enzyme-substrate complex and that the product genesis from enzyme-substrate complex is much slower than the equilibration between enzyme-substrate complexes, substrates and enzymes. In particular, I showed that the derivation of the Michaelis-Menten kinetics does not consider the mass balance constraint of the substrate, and the reverse Michaelis-Menten kinetics does not consider the mass balance constraint of the enzyme, whereas both of these constraints are taken into account in the Equilibrium Chemistry Approximation kinetics. By benchmarking against predictions from the quadratic kinetics for a wide range of substrate and enzyme concentrations, the Michaelis-Menten kinetics was found to persistently under-predict the normalized sensitivity ∂ ln v / ∂ ln k2+ of the reaction velocity v with respect to the maximum product genesis rate k2+, persistently over-predict the normalized sensitivity ∂ ln v / ∂ ln k1+ of v with respect to the intrinsic substrate affinity k1+, persistently over-predict the normalized sensitivity ∂ ln v / ∂ ln [ E ]T of v with respect the total enzyme concentration [ E ]T and persistently under-predict the normalized sensitivity ∂ ln v / ∂ ln [ S ]T of v with respect to the total substrate concentration [ S ]T. Meanwhile, the reverse Michaelis

  19. Grazing Incidence Optics Technology

    Science.gov (United States)

    Ramsey, Brian; Smith, W. Scott; Gubarev, Mikhail; McCracken, Jeff

    2015-01-01

    This project is to demonstrate the capability to directly fabricate lightweight, high-resolution, grazing-incidence x-ray optics using a commercially available robotic polishing machine. Typical x-ray optics production at NASA Marshall Space Flight Center (MSFC) uses a replication process in which metal mirrors are electroformed on to figured and polished mandrels from which they are later removed. The attraction of this process is that multiple copies can be made from a single master. The drawback is that the replication process limits the angular resolution that can be attained. By directly fabricating each shell, errors inherent in the replication process are removed. The principal challenge now becomes how to support the mirror shell during all aspects of fabrication, including the necessary metrology to converge on the required mirror performance specifications. This program makes use of a Zeeko seven-axis computer-controlled polishing machine (see fig. 1) and supporting fabrication, metrology, and test equipment at MSFC. The overall development plan calls for proof-of-concept demonstration with relatively thick mirror shells (5-6 mm, fig. 2) which are straightforward to support and then a transition to much thinner shells (2-3 mm), which are an order of magnitude thinner than those used for Chandra. Both glass and metal substrates are being investigated. Currently, a thick glass shell is being figured. This has enabled experience to be gained with programming and operating the polishing machine without worrying about shell distortions or breakage. It has also allowed time for more complex support mechanisms for figuring/ polishing and metrology to be designed for the more challenging thinner shells. These are now in fabrication. Figure 1: Zeeko polishing machine.

  20. Goiania incident case study

    International Nuclear Information System (INIS)

    Petterson, J.S.

    1988-06-01

    The reasons for wanting to document this case study and present the findings are simple. According to USDOE technical risk assessments (and our own initial work on the Hanford socioeconomic study), the likelihood of a major accident involving exposure to radioactive materials in the process of site characterization, construction, operation, and closure of a high-level waste repository is extremely remote. Most would agree, however, that there is a relatively high probability that a minor accident involving radiological contamination will occur sometime during the lifetime of the repository -- for example, during transport, at an MRS site or at the permanent site itself during repacking and deposition. Thus, one of the major concerns of the Yucca Mountain Socioeconomic Study is the potential impact of a relatively minor radiation-related accident. A large number of potential impact of a relatively minor radiation-related accident. A large number of potential accident scenarios have been under consideration (such as a transportation or other surface accident which results in a significant decline in tourism, the number of conventions, or the selection of Nevada as a retirement residence). The results of the work in Goiania make it clear, however, that such a significant shift in established social patterns and trends is not likely to occur as a direct outcome of a single nuclear-related accident (even, perhaps, a relatively major one), but rather, are likely to occur as a result of the enduring social interpretations of such an accident -- that is, as a result of the process of understanding, communicating, and socially sustaining a particular set of associations with respect to the initial incident

  1. Quantum electronics research

    International Nuclear Information System (INIS)

    Anon.

    1976-01-01

    Efficiency measurements in the rare gas excimers show that up to 50 percent of the energy deposited in a high-pressure rare gas by an electron beam can be converted to excimer fluorescence. The production kinetics and radiative properties of rare gas oxide excimers have been explored and show that short pulse lasers near 1 percent efficiency with energy storage of 10 J/liter can be constructed. The rare gas-halogen and dihalogen systems have been explored as a class of efficient radiators to complement the rare gas excimers. A Br 2 laser at 292 nm has been demonstrated, and XeBr fluorescence efficiency of 11 percent has been measured. An XeBr excimer-pumped atomic iodine laser has been demonstrated, and the systems considerations involved in scaling atomic iodine lasers to large sizes have been identified and are discussed. Oxygen, sulfur, and selenium have been analyzed as candidates for an optically pumped, visible energy storage laser. The physical and radiative properties of gaseous rare earth compounds, which may be suitable for energy storage lasers, have been measured and are discussed. Scaling considerations have been identified for drivers for large, electron-beam-pumped lasers. Theoretical studies bearing on an understanding of the basic atomic and molecular physics which must be understood for laser development and isotope separation projects have been carried out. These include efforts to develop a theoretical understanding rare-gas halogen structure and kinetics, copper vapor laser kinetics, electron interactions such as dissociative attachment, and other areas

  2. Evolution of Nagaoka phase with kinetic energy frustrating hopping

    Science.gov (United States)

    Lisandrini, F. T.; Bravo, B.; Trumper, A. E.; Manuel, L. O.; Gazza, C. J.

    2017-05-01

    We investigate, using the density-matrix renormalization group, the evolution of the Nagaoka state with t' hopping that frustrates the hole kinetic energy in the U =∞ Hubbard model on the square and anisotropic triangular lattices. We find that the Nagaoka ferromagnet survives up to a rather small tc'/t ˜0.2 . At this critical value, there is a transition to an antiferromagnetic phase that depends on the lattice: a Q =(Q ,0 ) spiral order, which continuously evolves with t', for the triangular lattice and the usual Q =(π ,π ) Néel order for the square lattice. Remarkably, the local magnetization takes its classical value for all considered t' (t'/t ≤1 ). Our results show that the recently found classical kinetic antiferromagnetism, a perfect counterpart of Nagaoka ferromagnetism, is a generic phenomenon in these kinetically frustrated electronic systems.

  3. Gas Kinetics of Traffic Jam

    Science.gov (United States)

    Nagatani, Takashi

    1997-04-01

    The kinetics of one-dimensional traffic flow is descibed in terms of Boltzmann-like gas kinetic equation. Paveri-Fontana's gas kinetic equation is modified to take into account the desired velocity depending on the car density. A discrete version of the gas kinetic equation is derived to numerically solve the equation. The velocity distributions are calculated by a numerical method. It is found that the traffic jam is formed in the congested traffic flow when the car density is higher than the critical value. The traffic jam propagates backward, its propagation velocity increases with the accerelation and the density within the jam decreases with increasing accerelation. It is shown that the velocity distributions change significantly before and after the traffic jam.

  4. Radiation incident in oil well logging

    International Nuclear Information System (INIS)

    Lozada, J.A.

    1998-01-01

    On June 4th 1997 equipment failure and violation of approved procedures by a crew of workers initiated a series of events that resulted in the unnecessary exposure to neutron and gamma radiation, from a 666 GBq Am 241 Be source, of forty two workers from a well logging company in Venezuela. Due to the presence of dry mud or drilling fluids inside the logging tool, the nosepiece was screwed off the rest of the source holder; this piece was mistaken for the entire source holder thus leaving the source inside the tool. The tool was labelled for maintenance and electronic laboratory personal worked near the source for seven hours before they identify its presence. As soon as the incident was detected a contingency plan was implemented and the source could be retrieved from the tool and placed in its shipping container. The TLD badges indicate doses well below the annual limit of 20 mSv, and none of the workers involved in the incident seem to show serious health consequences from it. After the incident, in order to avoid the occurrence of similar situations, a better source and tool maintenance program was implemented, all the workers were re-trained, and area monitors were installed in all operations bases. (author)

  5. Real time freeway incident detection.

    Science.gov (United States)

    2014-04-01

    The US Department of Transportation (US-DOT) estimates that over half of all congestion : events are caused by highway incidents rather than by rush-hour traffic in big cities. Real-time : incident detection on freeways is an important part of any mo...

  6. Cell kinetics and therapeutic efficiency

    International Nuclear Information System (INIS)

    Andreeff, M.; Abenhardt, W.; Gruner, B.; Stoffner, D.; Mainz Univ.

    1976-01-01

    The study shows that cell kinetics effects correlate with the effects of cytostatic drugs in the tumour model investigated here. It should, however, be noted that even genetically related tumour cell types may react differently to the same cytostatic drug, and that the cell kinetics effects, due to the changes in the cell cycle, cannot be predicted but should be followed with a very fast method, e.g. sequential flan fluorescence cytophotometry, for optimal therapeutic results. (orig./GSE) [de

  7. Evolution of kinetically controlled In-induced surface structure on Si(5 5 7) surface

    Energy Technology Data Exchange (ETDEWEB)

    Chauhan, Amit Kumar Singh [Physics of Energy Harvesting, (CSIR-NPL), Dr. K.S. Krishnan Road, New Delhi 110012 (India); Department of Physics, JMI, New Delhi 110025 (India); Eldose, Nirosh M.; Mishra, Monu [Physics of Energy Harvesting, (CSIR-NPL), Dr. K.S. Krishnan Road, New Delhi 110012 (India); Niazi, Asad; Nair, Lekha [Department of Physics, JMI, New Delhi 110025 (India); Gupta, Govind, E-mail: govind@nplindia.org [Physics of Energy Harvesting, (CSIR-NPL), Dr. K.S. Krishnan Road, New Delhi 110012 (India)

    2014-09-30

    Highlights: • Evolution of In induced superstructures on Si(5 5 7) surface during RT and HT adsorption/desorption process. • Kinetics is governed by substrate temperature which exhibits various growth modes (FM, SK, VB) under different conditions. • Strain relaxation play significant role in the commencement of desorption/rearrangement of atoms. • A consolidated phase diagram of In/Si(5 5 7) interface has been reported with new √3 × √3-R30° and 4 × 1 phases. - Abstract: This paper introduces issue of kinetically controlled and temperature driven superstructural phase transition of Indium (In) on atomically clean high index Si(5 5 7)-7 × 1 surface. Auger electron spectroscopy analysis reveals that at room-temperature (RT) with a controlled incident flux of 0.002 ML/s; In overlayers evolve through the Frank-van der Merwe growth mode and yield a (1 × 1) diffraction pattern for coverage ≥1 ML. For substrate temperature <500°C, growth of In follows Stranski–Krastanov growth mode while for temperature >500°C island growth is observed. On annealing the In/Si(5 5 7) interface in the temperature range 250–340°C, clusters to two dimensional (2D) layer transformation on top of a stable monolayer is predominated. In-situ RT and HT adsorption and thermal desorption phenomena revealed the formation of coverage and temperature dependent thermally stable In induced superstructural phases such as (4 × 1) at 0.5 ML (520°C), (√3 × √3-R30°) at 0.3 ML (560°C) and (7 × 7) at 0.1 ML (580°C). These indium induced superstructures could be utilized as potential substrate for the growth of various exotic 1D/2D structures.

  8. Secondary electron emission from textured surfaces

    Science.gov (United States)

    Huerta, C. E.; Patino, M. I.; Wirz, R. E.

    2018-04-01

    In this work, a Monte Carlo model is used to investigate electron induced secondary electron emission for varying effects of complex surfaces by using simple geometric constructs. Geometries used in the model include: vertical fibers for velvet-like surfaces, tapered pillars for carpet-like surfaces, and a cage-like configuration of interlaced horizontal and vertical fibers for nano-structured fuzz. The model accurately captures the secondary electron emission yield dependence on incidence angle. The model shows that unlike other structured surfaces previously studied, tungsten fuzz exhibits secondary electron emission yield that is independent of primary electron incidence angle, due to the prevalence of horizontally-oriented fibers in the fuzz geometry. This is confirmed with new data presented herein of the secondary electron emission yield of tungsten fuzz at incidence angles from 0-60°.

  9. Electron kinetics in a laser plasma with increased collisionality

    Czech Academy of Sciences Publication Activity Database

    Mašek, Jan; Rohlena, Karel

    2010-01-01

    Roč. 165, 6-10 (2010), s. 405-411 ISSN 1042-0150 Institutional research plan: CEZ:AV0Z10100523 Keywords : ion sources * stimulated Raman scattering * Vlasov-Maxwell model * Raman cascading Subject RIV: BH - Optics, Masers, Lasers Impact factor: 0.660, year: 2010

  10. Kinetic theory analysis of electron attachment cooling in oxygen

    International Nuclear Information System (INIS)

    Skullerud, H.R.

    1983-01-01

    The attachment cooling effect observed by Hegerberg and Crompton (1983) has been analysed theoretically and numerically in a Boltzmann equation eigenvalue approach. The effect is highly sensitive to the shape and magnitude of the rotational excitation cross sections. When due account is taken of the rotational excitations associated with the (O 2 - ) negative ion resonances, good agreement between theory and experiment can be obtained with reasonable input cross-section data

  11. Dose calculation for electrons

    International Nuclear Information System (INIS)

    Hirayama, Hideo

    1995-01-01

    The joint working group of ICRP/ICRU is advancing the works of reviewing the ICRP publication 51 by investigating the data related to radiation protection. In order to introduce the 1990 recommendation, it has been demanded to carry out calculation for neutrons, photons and electrons. As for electrons, EURADOS WG4 (Numerical Dosimetry) rearranged the data to be calculated at the meeting held in PTB Braunschweig in June, 1992, and the question and request were presented by Dr. J.L. Chartier, the responsible person, to the researchers who are likely to undertake electron transport Monte Carlo calculation. The author also has carried out the requested calculation as it was the good chance to do the mutual comparison among various computation codes regarding electron transport calculation. The content that the WG requested to calculate was the absorbed dose at depth d mm when parallel electron beam enters at angle α into flat plate phantoms of PMMA, water and ICRU4-element tissue, which were placed in vacuum. The calculation was carried out by the versatile electron-photon shower computation Monte Carlo code, EGS4. As the results, depth dose curves and the dependence of absorbed dose on electron energy, incident angle and material are reported. The subjects to be investigated are pointed out. (K.I.)

  12. Kinetic mechanism and nucleotide specificity of NADH peroxidase

    Energy Technology Data Exchange (ETDEWEB)

    Stoll, V.S.; Blanchard, J.S.

    1988-02-01

    NADH peroxidase is a flavoprotein isolated from Streptococcus faecalis which catalyzes the pyridine nucleotide-dependent reduction of hydrogen peroxide to water. Initial velocity, product, and dead-end inhibition studies have been performed at pH 7.5 and support a ping-pong kinetic mechanism. In the absence of hydrogen peroxide, both transhydrogenation between NADH and thioNAD, and isotope exchange between (/sup 14/C)NADH and NAD, have been demonstrated, although in both these experiments, the maximal velocity of nucleotide exchange was less than 1.5% the maximal velocity of the peroxidatic reaction. We propose that NADH binds tightly to both oxidized and two-electron reduced enzyme. NADH oxidation proceeds stereospecifically with the transfer of the 4S hydrogen to enzyme, and then, via exchange, to water. No primary tritium kinetic isotope effect was observed, and no statistically significant primary deuterium kinetic isotope effects on V/K were determined, although primary deuterium kinetic isotope effects on V were observed in the presence and absence of sodium acetate. NADH peroxidase thus shares with other flavoprotein reductases striking kinetic, spectroscopic, and stereochemical similarities. On this basis, we propose a chemical mechanism for the peroxide cleaving reaction catalyzed by NADH peroxidase which involves the obligate formation of a flavinperoxide, and peroxo bond cleavage by nucleophilic attack by enzymatic dithiols.

  13. Kinetic mechanism and nucleotide specificity of NADH peroxidase

    International Nuclear Information System (INIS)

    Stoll, V.S.; Blanchard, J.S.

    1988-01-01

    NADH peroxidase is a flavoprotein isolated from Streptococcus faecalis which catalyzes the pyridine nucleotide-dependent reduction of hydrogen peroxide to water. Initial velocity, product, and dead-end inhibition studies have been performed at pH 7.5 and support a ping-pong kinetic mechanism. In the absence of hydrogen peroxide, both transhydrogenation between NADH and thioNAD, and isotope exchange between [ 14 C]NADH and NAD, have been demonstrated, although in both these experiments, the maximal velocity of nucleotide exchange was less than 1.5% the maximal velocity of the peroxidatic reaction. We propose that NADH binds tightly to both oxidized and two-electron reduced enzyme. NADH oxidation proceeds stereospecifically with the transfer of the 4S hydrogen to enzyme, and then, via exchange, to water. No primary tritium kinetic isotope effect was observed, and no statistically significant primary deuterium kinetic isotope effects on V/K were determined, although primary deuterium kinetic isotope effects on V were observed in the presence and absence of sodium acetate. NADH peroxidase thus shares with other flavoprotein reductases striking kinetic, spectroscopic, and stereochemical similarities. On this basis, we propose a chemical mechanism for the peroxide cleaving reaction catalyzed by NADH peroxidase which involves the obligate formation of a flavinperoxide, and peroxo bond cleavage by nucleophilic attack by enzymatic dithiols

  14. Gyrocenter-gauge kinetic theory

    International Nuclear Information System (INIS)

    Qin, H.; Tang, W.M.; Lee, W.W.

    2000-01-01

    Gyrocenter-gauge kinetic theory is developed as an extension of the existing gyrokinetic theories. In essence, the formalism introduced here is a kinetic description of magnetized plasmas in the gyrocenter coordinates which is fully equivalent to the Vlasov-Maxwell system in the particle coordinates. In particular, provided the gyroradius is smaller than the scale-length of the magnetic field, it can treat high frequency range as well as the usual low frequency range normally associated with gyrokinetic approaches. A significant advantage of this formalism is that it enables the direct particle-in-cell simulations of compressional Alfven waves for MHD applications and of RF waves relevant to plasma heating in space and laboratory plasmas. The gyrocenter-gauge kinetic susceptibility for arbitrary wavelength and arbitrary frequency electromagnetic perturbations in a homogeneous magnetized plasma is shown to recover exactly the classical result obtained by integrating the Vlasov-Maxwell system in the particle coordinates. This demonstrates that all the waves supported by the Vlasov-Maxwell system can be studied using the gyrocenter-gauge kinetic model in the gyrocenter coordinates. This theoretical approach is so named to distinguish it from the existing gyrokinetic theory, which has been successfully developed and applied to many important low-frequency and long parallel wavelength problems, where the conventional meaning of gyrokinetic has been standardized. Besides the usual gyrokinetic distribution function, the gyrocenter-gauge kinetic theory emphasizes as well the gyrocenter-gauge distribution function, which sometimes contains all the physics of the problems being studied, and whose importance has not been realized previously. The gyrocenter-gauge distribution function enters Maxwell's equations through the pull-back transformation of the gyrocenter transformation, which depends on the perturbed fields. The efficacy of the gyrocenter-gauge kinetic approach is

  15. Kinetics of primary bile acids in patients after proctocolectomy and ileal pouch-anal anastomosis

    NARCIS (Netherlands)

    Gotthardt, Daniel Nils; Sauer, Peter; Schaible, Anja; Stern, Josef; Stiehl, Adolf; Beuers, Ulrich

    2014-01-01

    The high incidence of cholesterol gallstones in patients after proctocolectomy with ileal pouch-anal anastomosis (IPAA) may be due to an increased loss of bile acids. We aimed to evaluate the kinetics of the primary bile acids cholic acid (CA) and chenodeoxycholic acid (CDCA) in these patients. Pool

  16. Hydrogen atom kinetics in capacitively coupled plasmas

    Science.gov (United States)

    Nunomura, Shota; Katayama, Hirotaka; Yoshida, Isao

    2017-05-01

    Hydrogen (H) atom kinetics has been investigated in capacitively coupled very high frequency (VHF) discharges at powers of 16-780 mW cm-2 and H2 gas pressures of 0.1-2 Torr. The H atom density has been measured using vacuum ultra violet absorption spectroscopy (VUVAS) with a micro-discharge hollow cathode lamp as a VUV light source. The measurements have been performed in two different electrode configurations of discharges: conventional parallel-plate diode and triode with an intermediate mesh electrode. We find that in the triode configuration, the H atom density is strongly reduced across the mesh electrode. The H atom density varies from ˜1012 cm-3 to ˜1010 cm-3 by crossing the mesh with 0.2 mm in thickness and 36% in aperture ratio. The fluid model simulations for VHF discharge plasmas have been performed to study the H atom generation, diffusion and recombination kinetics. The simulations suggest that H atoms are generated in the bulk plasma, by the electron impact dissociation (e + H2 \\to e + 2H) and the ion-molecule reaction (H2 + + H2 \\to {{{H}}}3+ + H). The diffusion of H atoms is strongly limited by a mesh electrode, and thus the mesh geometry influences the spatial distribution of the H atoms. The loss of H atoms is dominated by the surface recombination.

  17. Ozone kinetics in low-pressure discharges

    Science.gov (United States)

    Guerra, Vasco; Marinov, Daniil; Guaitella, Olivier; Rousseau, Antoine

    2012-10-01

    Ozone kinetics is quite well established at atmospheric pressure, due to the importance of ozone in atmospheric chemistry and to the development of industrial ozone reactors. However, as the pressure is decreased and the dominant three-body reactions lose importance, the main mechanisms involved in the creation and destruction of ozone are still surrounded by important uncertainties. In this work we develop a self-consistent model for a pulsed discharge and its afterglow operating in a Pyrex reactor with inner radius 1 cm, at pressures in the range 1-5 Torr and discharge currents of 40-120 mA. The model couples the electron Boltzmann equation with a system of equations for the time evolution of the heavy particles. The calculations are compared with time-dependent measurements of ozone and atomic oxygen. Parametric studies are performed in order to clarify the role of vibrationally excited ozone in the overall kinetics and to establish the conditions where ozone production on the surface may become important. It is shown that vibrationally excited ozone does play a significant role, by increasing the time constants of ozone formation. Moreover, an upper limit for the ozone formation at the wall in these conditions is set at 10(-4).

  18. Kinetics of elementary atom and radical reactions

    International Nuclear Information System (INIS)

    Gordon, R.J.

    1990-06-01

    During the past three years we have been working on four problems in the general area of gas phase kinetics and energy transfer of small molecules. These are: (1) measurements of the fine structure populations of ground state oxygen atoms produced in photodissociation reactions; (2) quenching of the Rydberg B ( 1 Σ + ) state of CO; (3) vibrational relaxation of highly excited molecules; and (4) kinetics of hydrogen molecules. The first two topics, which involve transitions between different electronic states of the parent molecule, are a departure from our previous research interests. In the accompanying renewal proposal we discuss plans to pursue these new topics vigorously during the coming year. The third topic is a continuation of our long interest in the energy dependence of the rates laws governing vibrational-to-translational energy transfer of molecules having large initial amounts of vibrational excitation. The final topic is a continuation of our studies of the reaction of O( 3 P) + H 2 . In this work we measured the rate constant for the reaction O( 3 P) with deuterium and also analyzed spectroscopically different sources of vibrationally excited hydrogen for possible future work. We discuss each of these four studies in the following sections

  19. Kinetic Simulations of Dense Plasma Focus Breakdown

    Science.gov (United States)

    Schmidt, A.; Higginson, D. P.; Jiang, S.; Link, A.; Povilus, A.; Sears, J.; Bennett, N.; Rose, D. V.; Welch, D. R.

    2015-11-01

    A dense plasma focus (DPF) device is a type of plasma gun that drives current through a set of coaxial electrodes to assemble gas inside the device and then implode that gas on axis to form a Z-pinch. This implosion drives hydrodynamic and kinetic instabilities that generate strong electric fields, which produces a short intense pulse of x-rays, high-energy (>100 keV) electrons and ions, and (in deuterium gas) neutrons. A strong factor in pinch performance is the initial breakdown and ionization of the gas along the insulator surface separating the two electrodes. The smoothness and isotropy of this ionized sheath are imprinted on the current sheath that travels along the electrodes, thus making it an important portion of the DPF to both understand and optimize. Here we use kinetic simulations in the Particle-in-cell code LSP to model the breakdown. Simulations are initiated with neutral gas and the breakdown modeled self-consistently as driven by a charged capacitor system. We also investigate novel geometries for the insulator and electrodes to attempt to control the electric field profile. The initial ionization fraction of gas is explored computationally to gauge possible advantages of pre-ionization which could be created experimentally via lasers or a glow-discharge. Prepared by LLNL under Contract DE-AC52-07NA27344.

  20. Theoretical and experimental study of the double ionization by electron impact involving the Auger effect: processes and exchanges interferences; Etude theorique et experimentale de la double ionisation par impact electronique incluant l'effet auger: interferences d'echanges et de processus

    Energy Technology Data Exchange (ETDEWEB)

    Catoire, F

    2006-09-15

    In this work, double ionisation mechanisms of argon by electron impact in which the Auger effect is included have been studied as a function of the incident electron energy. Five and six fold differential cross sections in angle and in energy have been measured and analysed in a coplanar geometry. The efficiency of the apparatus has been improved by the use of a new toroidal analyser. For the first time, the six fold differential cross section in which the Auger electron and the ejected electron with identical kinetic energies (205 eV) are involved, was measured at an incident energy of 956 eV in the case of argon. In the theoretical models developed during this work, the triple continuum is represented by a manifold of coulomb waves describing the interaction of all electrons with the residual ion. Exchange effects between electrons were also included in the models. Comparison between experimental and theoretical results allows to study the relative contribution of the Auger process and the direct double ionisation on the angular dependence five fold differential cross section. In particular, the Auger process contribution seems to become increasingly important as the incident energy is increased.

  1. Electron detector

    International Nuclear Information System (INIS)

    Hashimoto, H.; Mogami, A.

    1975-01-01

    A device for measuring electron densities at a given energy level in an electron beam or the like having strong background noise, for example, in the detection of Auger electric energy spectrums is described. An electron analyzer passes electrons at the given energy level and at the same time electrons of at least one adjacent energy level. Detecting means associated therewith produce signals indicative of the densities of the electrons at each energy level and combine these signals to produce a signal indicative of the density of the electrons of the given energy level absent background noise

  2. Kinetic neoclassical calculations of impurity radiation profiles

    Directory of Open Access Journals (Sweden)

    D.P. Stotler

    2017-08-01

    Full Text Available Modifications of the drift-kinetic transport code XGC0 to include the transport, ionization, and recombination of individual charge states, as well as the associated radiation, are described. The code is first applied to a simulation of an NSTX H-mode discharge with carbon impurity to demonstrate the approach to coronal equilibrium. The effects of neoclassical phenomena on the radiated power profile are examined sequentially through the activation of individual physics modules in the code. Orbit squeezing and the neoclassical inward pinch result in increased radiation for temperatures above a few hundred eV and changes to the ratios of charge state emissions at a given electron temperature. Analogous simulations with a neon impurity yield qualitatively similar results.

  3. U3O8 microspheres sintering kinetics

    International Nuclear Information System (INIS)

    Godoy, A.L.E.

    1986-01-01

    U 3 O 8 microspheres sintering kinetics was determined using a hot-stage optical microscopy apparatus, able to reach temperature up to 1350 0 C in controlled atmospheres. The sintered material had its microstructure analysed by optical and electron microscopy. The microspheres were characterized initialy utilizing X-ray diffractometry and thermogravimetry. The equation which describes the microspheres shrinkage in function of the time was obtained using finite difference analysis X-ray diffractometry indicated hexagonal structure for the microspheres main starting material, ammonium diuranate thermogravimetric analysis showed reduction of this material to U 3 O 8 at 600 0 C. Ceramography results showed 5 hours sintered microspheres grain sizes G vary with the temperature. Sintered U 3 O 8 micrographs compared with published results for UO 2 , indicate similar homogeneity microstructural characteristics and suggest the processed micorspheres to be potentially useful as nuclear fuels. (Author) [pt

  4. Kinetic depletion model for pellet ablation

    Energy Technology Data Exchange (ETDEWEB)

    Kuteev, Boris V. [State Technical Univ., St. Petersburg (Russian Federation)

    2001-11-01

    A kinetic model for depletion effect, which determines pellet ablation when the pellet passes a rational magnetic surface, is formulated. The model predicts a moderate decrease of the ablation rate compared with the earlier considered monoenergy versions [1, 2]. For typical T-10 conditions the ablation rate reduces by a reactor of 2.5 when the 1-mm pellet penetrates through the plasma center. A substantial deceleration of pellets -about 15% per centimeter of low shire rational q region; is predicted. Penetration for Low Field Side and High Field Side injections is considered taking into account modification of the electron distribution function by toroidal magnetic field. It is shown that Shafranov shift and toroidal effects yield the penetration length for HFS injection higher by a factor of 1.5. This fact should be taken into account when plasma-shielding effects on penetration are considered. (author)

  5. Application of electron closures in extended MHD

    Science.gov (United States)

    Held, Eric; Adair, Brett; Taylor, Trevor

    2017-10-01

    Rigorous closure of the extended MHD equations in plasma fluid codes includes the effects of electron heat conduction along perturbed magnetic fields and contributions of the electron collisional friction and stress to the extended Ohms law. In this work we discuss application of a continuum numerical solution to the Chapman-Enskog-like electron drift kinetic equation using the NIMROD code. The implementation is a tightly-coupled fluid/kinetic system that carefully addresses time-centering in the advance of the fluid variables with their kinetically-computed closures. Comparisons of spatial accuracy, computational efficiency and required velocity space resolution are presented for applications involving growing magnetic islands in cylindrical and toroidal geometry. The reduction in parallel heat conduction due to particle trapping in toroidal geometry is emphasized. Work supported by DOE under Grant Nos. DE-FC02-08ER54973 and DE-FG02-04ER54746.

  6. Hydroxylamine nitrate self-catalytic kinetics study with adiabatic calorimetry

    International Nuclear Information System (INIS)

    Liu Lijun; Wei Chunyang; Guo Yuyan; Rogers, William J.; Sam Mannan, M.

    2009-01-01

    Hydroxylamine nitrate (HAN) is an important member of the hydroxylamine compound family with applications that include equipment decontamination in the nuclear industry and aqueous or solid propellants. Due to its instability and autocatalytic behavior, HAN has been involved in several incidents at the Hanford and Savannah River Site (SRS) [Technical Report on Hydroxylamine Nitrate, US Department of Energy, 1998]. Much research has been conducted on HAN in different areas, such as combustion mechanism, decomposition mechanism, and runaway behavior. However, the autocatalytic decomposition behavior of HAN at runaway stage has not been fully addressed due to its highly exothermic and rapid decomposition behavior. This work is focused on extracting HAN autocatalytic kinetics and analyzing HAN critical behavior from adiabatic calorimetry measurements. A lumped autocatalytic kinetic model for HAN and associated model parameters are determined. Also the storage and handling critical conditions of diluted HAN solution without metal presence are quantified

  7. Decreasing incidence rates of bacteremia

    DEFF Research Database (Denmark)

    Nielsen, Stig Lønberg; Pedersen, C; Jensen, T G

    2014-01-01

    BACKGROUND: Numerous studies have shown that the incidence rate of bacteremia has been increasing over time. However, few studies have distinguished between community-acquired, healthcare-associated and nosocomial bacteremia. METHODS: We conducted a population-based study among adults with first......-acquired, 50.0 for healthcare-associated and 66.7 for nosocomial bacteremia. During 2000-2008, the overall incidence rate decreased by 23.3% from 254.1 to 198.8 (3.3% annually, p ...) and the incidence rate of nosocomial bacteremia decreased by 28.9% from 82.2 to 56.0 (4.2% annually, p

  8. Energetic protons at Mars: interpretation of SLED/Phobos-2 observations by a kinetic model

    Directory of Open Access Journals (Sweden)

    E. Kallio

    2012-11-01

    Full Text Available Mars has neither a significant global intrinsic magnetic field nor a dense atmosphere. Therefore, solar energetic particles (SEPs from the Sun can penetrate close to the planet (under some circumstances reaching the surface. On 13 March 1989 the SLED instrument aboard the Phobos-2 spacecraft recorded the presence of SEPs near Mars while traversing a circular orbit (at 2.8 RM. In the present study the response of the Martian plasma environment to SEP impingement on 13 March was simulated using a kinetic model. The electric and magnetic fields were derived using a 3-D self-consistent hybrid model (HYB-Mars where ions are modelled as particles while electrons form a massless charge neutralizing fluid. The case study shows that the model successfully reproduced several of the observed features of the in situ observations: (1 a flux enhancement near the inbound bow shock, (2 the formation of a magnetic shadow where the energetic particle flux was decreased relative to its solar wind values, (3 the energy dependency of the flux enhancement near the bow shock and (4 how the size of the magnetic shadow depends on the incident particle energy. Overall, it is demonstrated that the Martian magnetic field environment resulting from the Mars–solar wind interaction significantly modulated the Martian energetic particle environment.

  9. Evolution of kinetically controlled In-induced surface structure on Si(5 5 7) surface

    Science.gov (United States)

    Chauhan, Amit Kumar Singh; Eldose, Nirosh M.; Mishra, Monu; Niazi, Asad; Nair, Lekha; Gupta, Govind

    2014-09-01

    This paper introduces issue of kinetically controlled and temperature driven superstructural phase transition of Indium (In) on atomically clean high index Si(5 5 7)-7 × 1 surface. Auger electron spectroscopy analysis reveals that at room-temperature (RT) with a controlled incident flux of 0.002 ML/s; In overlayers evolve through the Frank-van der Merwe growth mode and yield a (1 × 1) diffraction pattern for coverage ≥1 ML. For substrate temperature 500 °C island growth is observed. On annealing the In/Si(5 5 7) interface in the temperature range 250-340 °C, clusters to two dimensional (2D) layer transformation on top of a stable monolayer is predominated. In-situ RT and HT adsorption and thermal desorption phenomena revealed the formation of coverage and temperature dependent thermally stable In induced superstructural phases such as (4 × 1) at 0.5 ML (520 °C), (√3 × √3-R30°) at 0.3 ML (560 °C) and (7 × 7) at 0.1 ML (580 °C). These indium induced superstructures could be utilized as potential substrate for the growth of various exotic 1D/2D structures.

  10. Energetic protons at Mars. Interpretation of SLED/Phobos-2 observations by a kinetic model

    Energy Technology Data Exchange (ETDEWEB)

    Kallio, E.; Alho, M.; Jarvinen, R.; Dyadechkin, S. [Finnish Meteorological Institute, Helsinki (Finland); McKenna-Lawlor, S. [Space Technology Ireland, Maynooth, Co. Kildare (Ireland); Afonin, V.V. [Space Research Institute, Moscow (Russian Federation)

    2012-07-01

    Mars has neither a significant global intrinsic magnetic field nor a dense atmosphere. Therefore, solar energetic particles (SEPs) from the Sun can penetrate close to the planet (under some circumstances reaching the surface). On 13 March 1989 the SLED instrument aboard the Phobos- 2 spacecraft recorded the presence of SEPs near Mars while traversing a circular orbit (at 2.8RM). In the present study the response of the Martian plasma environment to SEP impingement on 13 March was simulated using a kinetic model. The electric and magnetic fields were derived using a 3- D self-consistent hybrid model (HYB-Mars) where ions are modelled as particles while electrons form a massless charge neutralizing fluid. The case study shows that the model successfully reproduced several of the observed features of the in situ observations: (1) a flux enhancement near the inbound bow shock, (2) the formation of a magnetic shadow where the energetic particle flux was decreased relative to its solar wind values, (3) the energy dependency of the flux enhancement near the bow shock and (4) how the size of the magnetic shadow depends on the incident particle energy. Overall, it is demonstrated that the Martian magnetic field environment resulting from the Mars-solar wind interaction significantly modulated the Martian energetic particle environment. (orig.)

  11. Electron stimulated molecular desorption of a non-evaporable Zr-V-Fe alloy getter at room temperature

    CERN Document Server

    Le Pimpec, Frederic; Laurent, Jean Michel

    2002-01-01

    Electron stimulated molecular desorption (ESD) from a non-evaporable getters (NEG) St 707 registered trademark (SAES Getters trademark ) sample after conditioning and after saturation with isotopic carbon monoxide (cf. nomenclature in Handbook of Chemistry and Physics, CRC Press, 1994), **1**3C**1**8O, has been studied on a laboratory setup. Measurements were performed using an electron beam of 300 eV kinetic energy, with an average electron intensity of 1.6 multiplied by 10**1**5 electrons s**-**1. The electrons were impinging on the 15 cm **2 target surface at perpendicular incidence. It is found that the desorption yields eta (molecules/electron) of the characteristic gases in an UHV system (hydrogen, methane, water, carbon monoxide, carbon dioxide) for a fully activated NEG as well as for a NEG fully saturated with **1**3C**1**8O are lower than for OFHC copper baked at 120 degree C. A small fraction only of the gas which is required to saturate the getter surface can be re-desorbed and thus appears to be ...

  12. Polarized electron beams elastically scattered by atoms as a tool for testing fundamental predictions of quantum mechanics.

    Science.gov (United States)

    Dapor, Maurizio

    2018-03-29

    Quantum information theory deals with quantum noise in order to protect physical quantum bits (qubits) from its effects. A single electron is an emblematic example of a qubit, and today it is possible to experimentally produce polarized ensembles of electrons. In this paper, the theory of the polarization of electron beams elastically scattered by atoms is briefly summarized. Then the POLARe program suite, a set of computer programs aimed at the calculation of the spin-polarization parameters of electron beams elastically interacting with atomic targets, is described. Selected results of the program concerning Ar, Kr, and Xe atoms are presented together with the comparison with experimental data about the Sherman function for low kinetic energy of the incident electrons (1.5eV-350eV). It is demonstrated that the quantum-relativistic theory of the polarization of electron beams elastically scattered by atoms is in good agreement with experimental data down to energies smaller than a few eV.

  13. Traffic incident management resource management.

    Science.gov (United States)

    2009-01-01

    The necessity of a multi-disciplinary approach involving law enforcement, fire and rescue, transportation, towing and recovery, and others has been well-recognized and integrated into incident management operations. This same multidisciplinar...

  14. Police Incident Blotter (30 Day)

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — The 30 Day Police Blotter contains the most recent initial crime incident data, updated on a nightly basis. All data is reported at the block/intersection level,...

  15. Regional comparison of cancer incidence

    International Nuclear Information System (INIS)

    Obralic, N.; Gavrankapetanovic, F.; Dizdarevic, Z.; Duric, O.; Sisic, F.; Selak, I.; Balta, S.; Nakas, B.

    2004-01-01

    Background. Due to specific war and post-war situation in Balkan region, differences in the number, type, development, biological course, treatment of malignant tumours and its outcome are possible. In order to perceive the situation realistically, it is necessary to gather continuously exact data about malignant tumours and compare them with the data from other European and world countries.The aim of the study was to collect and analyse the data on cancer incidence in the region of Sarajevo city, which represents a symbol of difficult times in the recent past, and to compare it to the incidence in the neighbouring countries. Patients and methods. Data on all newly diagnosed cancer cases, permanent residents of Sarajevo Canton, in the years 1999 and 2000 were collected. Crude incidence rate has been calculated according to the years observed, gender and localizations of the disease The data were compared to the cancer registries of Slovenia and Croatia and were observed in the light of specific local situation. Results. The crude cancer incidence of all sites but skin was the highest in both years and by both genders in Croatia. The incidence of the most common tumours (lung and breast cancer) was similar in all three countries. The differences in the incidence between both genders in the Sarajevo canton were registered in laryngeal and urinary bladder cancer, as well as in bone and cartilage sarcoma. Cervical cancer had extremely high incidence and was high up on the incidence list in the Sarajevo canton, which correlates with the data in developing countries. The incidence of other tumours in the post-war period is reaching expected numbers. Conclusions. It is difficult to identify whether the war and post-war stress, irregular and insufficient nutrition during and after the siege of the city of Sarajevo or some other factor influenced the cancer incidence among exposed population. The prevalence of smoking in the whole region is extremely high, in Bosnia and

  16. Asymptotics for incidence matrix classes

    OpenAIRE

    Cameron, Peter; Prellberg, Thomas; Stark, Dudley

    2005-01-01

    We define {\\em incidence matrices} to be zero-one matrices with no zero rows or columns. A classification of incidence matrices is considered for which conditions of symmetry by transposition, having no repeated rows/columns, or identification by permutation of rows/columns are imposed. We find asymptotics and relationships for the number of matrices with $n$ ones in these classes as $n\\to\\infty$.

  17. Incidence Handling and Response System

    OpenAIRE

    Kalbande, Prof. Dhananjay R.; Thampi, Dr. G. T.; Singh, Mr. Manish

    2009-01-01

    A computer network can be attacked in a number of ways. The security-related threats have become not only numerous but also diverse and they may also come in the form of blended attacks. It becomes difficult for any security system to block all types of attacks. This gives rise to the need of an incidence handling capability which is necessary for rapidly detecting incidents, minimizing loss and destruction, mitigating the weaknesses that were exploited and restoring the computing services. I...

  18. Cancer incidence in Spain, 2015.

    Science.gov (United States)

    Galceran, J; Ameijide, A; Carulla, M; Mateos, A; Quirós, J R; Rojas, D; Alemán, A; Torrella, A; Chico, M; Vicente, M; Díaz, J M; Larrañaga, N; Marcos-Gragera, R; Sánchez, M J; Perucha, J; Franch, P; Navarro, C; Ardanaz, E; Bigorra, J; Rodrigo, P; Bonet, R Peris

    2017-07-01

    Periodic cancer incidence estimates of Spain from all existing population-based cancer registries at any given time are required. The objective of this study was to present the current situation of cancer incidence in Spain. The Spanish Network of Cancer Registries (REDECAN) estimated the numbers of new cancer cases occurred in Spain in 2015 by applying the incidence-mortality ratios method. In the calculus, incidence data from population-based cancer registries and mortality data of all Spain were used. In 2015, nearly a quarter of a million new invasive cancer cases were diagnosed in Spain, almost 149,000 in men (60.0%) and 99,000 in women. Globally, the five most common cancers were those of colon-rectum, prostate, lung, breast and urinary bladder. By gender, the four most common cancers in men were those of prostate (22.4%), colon-rectum (16.6%), lung (15.1%) and urinary bladder (11.7%). In women, the most common ones were those of breast (28.0%), colon-rectum (16.9%), corpus uteri (6.2%) and lung (6.0%). In recent years, cancer incidence in men seems to have stabilized due to the fact that the decrease in tobacco-related cancers compensates for the increase in other types of cancer like those of colon and prostate. In women, despite the stabilization of breast cancer incidence, increased incidence is due, above all, to the rise of colorectal and tobacco-related cancers. To reduce these incident cancer cases, improvement of smoking control policies and extension of colorectal cancer screening should be the two priorities in cancer prevention for the next years.

  19. Adapting Cognitive Task Analysis to Investigate Clinical Decision Making and Medication Safety Incidents.

    Science.gov (United States)

    Russ, Alissa L; Militello, Laura G; Glassman, Peter A; Arthur, Karen J; Zillich, Alan J; Weiner, Michael

    2017-05-03

    Cognitive task analysis (CTA) can yield valuable insights into healthcare professionals' cognition and inform system design to promote safe, quality care. Our objective was to adapt CTA-the critical decision method, specifically-to investigate patient safety incidents, overcome barriers to implementing this method, and facilitate more widespread use of cognitive task analysis in healthcare. We adapted CTA to facilitate recruitment of healthcare professionals and developed a data collection tool to capture incidents as they occurred. We also leveraged the electronic health record (EHR) to expand data capture and used EHR-stimulated recall to aid reconstruction of safety incidents. We investigated 3 categories of medication-related incidents: adverse drug reactions, drug-drug interactions, and drug-disease interactions. Healthcare professionals submitted incidents, and a subset of incidents was selected for CTA. We analyzed several outcomes to characterize incident capture and completed CTA interviews. We captured 101 incidents. Eighty incidents (79%) met eligibility criteria. We completed 60 CTA interviews, 20 for each incident category. Capturing incidents before interviews allowed us to shorten the interview duration and reduced reliance on healthcare professionals' recall. Incorporating the EHR into CTA enriched data collection. The adapted CTA technique was successful in capturing specific categories of safety incidents. Our approach may be especially useful for investigating safety incidents that healthcare professionals "fix and forget." Our innovations to CTA are expected to expand the application of this method in healthcare and inform a wide range of studies on clinical decision making and patient safety.

  20. Secondary electron emission from insulators

    International Nuclear Information System (INIS)

    Kanaya, K.; Ono, S.; Ishigaki, F.

    1978-01-01

    The high yield of secondary electron emission from insulators due to electron bombardment may be the result of an increase of the depth of escape. The free-electron scattering theory is applied to the high energy of primary beams, but cannot be applied to the low energy of secondary escaping beams because of the large energy gap of the insulators. The plasmon loss with the valence electron is considered when the secondary electrons escape. Based on the energy retardation power formula of the penetration and energy loss of an electron probe into solid targets, secondary electron emissions from insulators are calculated from the assumptions that the distribution of the secondary electrons due to both incident and back-scattered electrons within the target is isotropic and that it follows the absorption law of the Lenard type. The universal yield-energy curve of the secondary electron emission, which is deduced as a function of three parameters such as ionisation potential, valence electron and the back-scattered coefficient in addition to the free-electron density effect, is found to be in good agreement with the experimental results. (author)

  1. Electron/electron acoustic instability

    International Nuclear Information System (INIS)

    Gary, S.P.

    1987-01-01

    The electron acoustic wave becomes a normal mode of an unmagnetized collisionless plasma in the presence of two electron components with similar densities, but strongly disparate temperatures. The characteristic frequency of this mode is the plasma frequency of the cooler electron component. If these two electron components have a relative drift speed several times the thermal speed of the cooler component, the electron/electron acoustic instability may arise. This paper describes the parametric dependences of the threshold drift speed and maximum growth rate of this instability, and compares these with the same properties of the electron/ion acoustic instability. Under the condition of zero current, the electron/ion acoustic instability typically has the lower threshold drift speed, so that observation of the electron/electron acoustic instability is a strong indication of the presence of an electrical current in the plasma

  2. Molecular beam kinetics

    International Nuclear Information System (INIS)

    Behrens, R. Jr.

    1975-11-01

    The design of a crossed molecular beam ''supermachine'' for neutral--neutral collisions is discussed. The universal electron bombardment ionizer, mass filter, and ion detection system of the detector, the supersonic nozzle sources, the differential pumping arrangement for the sources and detector, the time-of-flight detection of scattered products, and the overall configuration of the apparatus are described. The elastic scattering of two systems, CH 4 + Ar and NH 3 + Ar, has been measured using the supermachine with two supersonic nozzle sources. The rainbow structure and the interference oscillations are seen in each system. The best fit to the data was found using a Morse--Spline--Van der Waals (MSV) potential. The three potential parameters epsilon, r/sub m/, and β were found to be 2.20(+-0.04) x 10 -14 ergs, 3.82(+-0.04)A, and 7.05 +- 0.20 for CH 4 + Ar, and 2.21(+-0.04) x 10 -14 ergs 3.93 (+-0.05)A, and 8.45 +- 0.30 for NH 3 + Ar. A new phenomenon in crossed molecular beams of condensation of a molecule on a cluster to form a complex was observed. A bromine molecule condensed on clusters of chlorine (Cl 2 )/sub chi/ and ammonia (NH 3 )/sub chi/. The value of chi for measurements in these experiments ranges from 7 to 40 for chlorine clusters and from 10 to 70 ammonia clusters

  3. Transformation kinetics for nucleus clusters

    International Nuclear Information System (INIS)

    Villa, Elena; Rios, Paulo R.

    2009-01-01

    A rigorous mathematical approach based on stochastic geometry concepts is presented to extend previous Johnson-Mehl, Avrami, Kolmogorov treatment of transformation kinetics to situations in which nuclei are not homogeneously located in space but are located in clusters. An exact analytical solution is presented here for the first time assuming that nucleation sites follow a Matern cluster process. The influence of Matern cluster process parameters on subsequent growth kinetics and the microstructural path are illustrated by means of numerical examples. Moreover, using the superposition principle, exact analytical solutions are also obtained when nucleation takes place by a combination of a Matern cluster process and an inhomogeneous Poisson point process. The new solutions presented here significantly increase the number of exactly solvable cases available to formal kinetics.

  4. Robustness Analysis of Kinetic Structures

    DEFF Research Database (Denmark)

    Kirkegaard, Poul Henning; Sørensen, John Dalsgaard

    2009-01-01

    The present paper considers robustness of kinetic structures. Robustness of structures has obtained a renewed interest due to a much more frequent use of advanced types of structures with limited redundancy and serious consequences in case of failure. Especially for these types of structural syst...... systems, it is of interest to investigate how robust the structures are, or what happens if a structural element is added to or removed from the original structure. The present paper discusses this issue for kinetic structures in architecture.......The present paper considers robustness of kinetic structures. Robustness of structures has obtained a renewed interest due to a much more frequent use of advanced types of structures with limited redundancy and serious consequences in case of failure. Especially for these types of structural...

  5. Cyber Incidents Involving Control Systems

    Energy Technology Data Exchange (ETDEWEB)

    Robert J. Turk

    2005-10-01

    The Analysis Function of the US-CERT Control Systems Security Center (CSSC) at the Idaho National Laboratory (INL) has prepared this report to document cyber security incidents for use by the CSSC. The description and analysis of incidents reported herein support three CSSC tasks: establishing a business case; increasing security awareness and private and corporate participation related to enhanced cyber security of control systems; and providing informational material to support model development and prioritize activities for CSSC. The stated mission of CSSC is to reduce vulnerability of critical infrastructure to cyber attack on control systems. As stated in the Incident Management Tool Requirements (August 2005) ''Vulnerability reduction is promoted by risk analysis that tracks actual risk, emphasizes high risk, determines risk reduction as a function of countermeasures, tracks increase of risk due to external influence, and measures success of the vulnerability reduction program''. Process control and Supervisory Control and Data Acquisition (SCADA) systems, with their reliance on proprietary networks and hardware, have long been considered immune to the network attacks that have wreaked so much havoc on corporate information systems. New research indicates this confidence is misplaced--the move to open standards such as Ethernet, Transmission Control Protocol/Internet Protocol, and Web technologies is allowing hackers to take advantage of the control industry's unawareness. Much of the available information about cyber incidents represents a characterization as opposed to an analysis of events. The lack of good analyses reflects an overall weakness in reporting requirements as well as the fact that to date there have been very few serious cyber attacks on control systems. Most companies prefer not to share cyber attack incident data because of potential financial repercussions. Uniform reporting requirements will do much to make this

  6. Study of the phase transition of zirconia submitted to low kinetic energy ionic irradiations

    International Nuclear Information System (INIS)

    Simeone, D.; Gosset, D.; Chevarier, A.; Baldinozzi, G.G.

    2002-01-01

    This study analyzes in detail the monoclinic → quadratic phase transition of zirconia under neutronic irradiation simulated with low kinetic energy ion implantations. Very pure monoclinic pellets of zirconia were irradiated with low kinetic energy ions for the generation of accumulations of defects. In order to take into account the low implantation depth of the incident ions, glazing incidence X-ray diffraction analysis was used and permitted to separate the effects produced by the ballistic collisions and the implantation peak of the incident ions on the irradiated material. The analysis of X-ray diffraction and Raman spectroscopy spectra allows to characterize the phase built under irradiation. It is shown that the quadratic phase produced under implantation is clearly linked with the damage profile. The neutron diffraction study of the monoclinic - quadratic transition of zirconia with respect to temperature has permitted to outline a model describing the behaviour of non-doped zirconia under irradiation. (J.S.)

  7. Elementary Processes and Kinetic Modeling for Hydrogen and Helium Plasmas

    Directory of Open Access Journals (Sweden)

    Roberto Celiberto

    2017-05-01

    Full Text Available We report cross-sections and rate coefficients for excited states colliding with electrons, heavy particles and walls useful for the description of H 2 /He plasma kinetics under different conditions. In particular, the role of the rotational states in resonant vibrational excitations of the H 2 molecule by electron impact and the calculation of the related cross-sections are illustrated. The theoretical determination of the cross-section for the rovibrational energy exchange and dissociation of H 2 molecule, induced by He atom impact, by using the quasi-classical trajectory method is discussed. Recombination probabilities of H atoms on tungsten and graphite, relevant for the determination of the nascent vibrational distribution, are also presented. An example of a state-to-state plasma kinetic model for the description of shock waves operating in H 2 and He-H 2 mixtures is presented, emphasizing also the role of electronically-excited states in affecting the electron energy distribution function of free electrons. Finally, the thermodynamic properties and the electrical conductivity of non-ideal, high-density hydrogen plasma are finally discussed, in particular focusing on the pressure ionization phenomenon in high-pressure high-temperature plasmas.

  8. 78 FR 13366 - Information Collection Request: Technical Resource for Incident Prevention (TRIPwire) User...

    Science.gov (United States)

    2013-02-27

    ...: Technical Resource for Incident Prevention (TRIPwire) User Registration AGENCY: National Protection and..., e.g., permitting electronic submissions of responses. SUPPLEMENTARY INFORMATION: The Technical..., citizenship, job title, employer name, professional address and contact information, as well as an Employment...

  9. Serious infections in children: an incidence study in family practice

    Directory of Open Access Journals (Sweden)

    Truyers Carla

    2006-03-01

    Full Text Available Abstract Background Information on the incidence of serious infections in children in general practice is scarce. However, estimates on the incidence of disease are important for several reasons, for example to assess the burden of disease or as a basis of diagnostic research. We therefore estimated the incidence of serious infections in general practice in Belgium. Methods Intego is a morbidity registration network, in which 51 general practitioners continuously register all diagnoses and additional data in their electronic medical records. Serious infections were defined as pneumonia, sepsis, meningitis, pyelonephritis and osteomyelitis. Incidences are calculated for the period of 1998 to 2002, per 1000 patients in the yearly contact group, which is the group of patients that consulted their GP at least once that year, and in the practice population, which is the estimated true population of that practice. Results The incidence of all infectious diseases peaks in children between 0 and 4 years, with 1731 infections per 1000 children per year in the yearly contact group. Incidence drops with increasing age: 972 infections per 1000 children per year in children between 5 and 9 years old, and 732 in children between 10 and 14 years old. The same decline in incidence is observed in the subgroup of serious infections: 21 infections per 1000 children per year in children between 0 and 4 years, 12 in children between 5 and 9 years and 5 in children between 10 and 14 years. The results for the estimated practice population are respectively 17, 9 and 4 serious infections per 1000 children per year. Conclusion In contrast to the total incidence of acute infections, serious infections are rare, around 1% per year. Children younger than 4 years old have the highest risk for serious infections, and incidences of some infections are different for boys and girls.

  10. Chemical kinetics and reaction dynamics

    CERN Document Server

    Houston, Paul L

    2006-01-01

    This text teaches the principles underlying modern chemical kinetics in a clear, direct fashion, using several examples to enhance basic understanding. It features solutions to selected problems, with separate sections and appendices that cover more technical applications.Each chapter is self-contained and features an introduction that identifies its basic goals, their significance, and a general plan for their achievement. This text's important aims are to demonstrate that the basic kinetic principles are essential to the solution of modern chemical problems, and to show how the underlying qu

  11. Selected readings in chemical kinetics

    CERN Document Server

    Back, Margaret H

    2013-01-01

    Selected Readings in Chemical Kinetics covers excerpts from 12 papers in the field of general and gas-phase kinetics. The book discusses papers on the laws of connexion between the conditions of a chemical change and its amount; on the reaction velocity of the inversion of the cane sugar by acids; and the calculation in absolute measure of velocity constants and equilibrium constants in gaseous systems. The text then tackles papers on simple gas reactions; on the absolute rate of reactions in condensed phases; on the radiation theory of chemical action; and on the theory of unimolecular reacti

  12. Chemical kinetics and combustion modeling

    Energy Technology Data Exchange (ETDEWEB)

    Miller, J.A. [Sandia National Laboratories, Livermore, CA (United States)

    1993-12-01

    The goal of this program is to gain qualitative insight into how pollutants are formed in combustion systems and to develop quantitative mathematical models to predict their formation rates. The approach is an integrated one, combining low-pressure flame experiments, chemical kinetics modeling, theory, and kinetics experiments to gain as clear a picture as possible of the process in question. These efforts are focused on problems involved with the nitrogen chemistry of combustion systems and on the formation of soot and PAH in flames.

  13. Non-kinetic capabilities: complementing the kinetic prevalence to targeting

    NARCIS (Netherlands)

    Ducheine, P.

    2014-01-01

    Targeting is used in military doctrine to describe a military operational way, using (military) means to influence a target (or addressee) in order to achieve designated political and/or military goals. The four factors italicized are used to analyse non-kinetic targeting, complementing our

  14. Non-kinetic capabilities: complementing the kinetic prevalence to targeting

    NARCIS (Netherlands)

    Ducheine, P.A.L.; Ducheine, P.A.L.; Schmitt, M.N.; Osinga, F.P.B.

    2016-01-01

    Targeting is used in military doctrine to describe a military operational way, using (military) means to influence a target (or addressee) in order to achieve designated political and/or military goals. The four factors italicized are used to analyse non-kinetic targeting, thereby complementing our

  15. Counting graphene layers with very slow electrons

    Energy Technology Data Exchange (ETDEWEB)

    Frank, Ludĕk; Mikmeková, Eliška; Müllerová, Ilona [Institute of Scientific Instruments AS CR, v.v.i., Královopolská 147, 61264 Brno (Czech Republic); Lejeune, Michaël [Laboratoire de Physique de la Matière Condensée, Faculté des Sciences d' Amiens, Universite de Picardie Jules Verne, 33 rue Saint Leu, 80039 Amiens Cedex 2 (France)

    2015-01-05

    The study aimed at collection of data regarding the transmissivity of freestanding graphene for electrons across their full energy scale down to the lowest energies. Here, we show that the electron transmissivity of graphene drops with the decreasing energy of the electrons and remains below 10% for energies below 30 eV, and that the slow electron transmissivity value is suitable for reliable determination of the number of graphene layers. Moreover, electrons incident below 50 eV release adsorbed hydrocarbon molecules and effectively clean graphene in contrast to faster electrons that decompose these molecules and create carbonaceous contamination.

  16. Breast cancer incidence in Mongolia

    Science.gov (United States)

    Altantsetseg, Dalkhjav; Davaasambuu, Ganmaa; Rich-Edwards, Janet; Davaalkham, Dambadarjaa; Tretli, Steinar; Hoover, Robert N.; Frazier, A. Lindsay

    2013-01-01

    Purpose Data on international variation in breast cancer incidence may help to identify additional risk factors. Substantially lower breast cancer rates in Asia than in North America and Western Europe are established, but differences within Asia have been largely ignored despite heterogeneity in lifestyles and environments. Mongolia’s breast cancer experience is of interest because of its shared genetics but vastly different diet compared with other parts of Asia. Methods Age-standardized breast cancer incidence and mortality rates obtained from the International Association of Cancer Registries are presented for several Asian countries. Mongolian incidence rates obtained from its cancer registry describe incidence within the country. Results Breast cancer incidence in Mongolia (age standardized 8.0/100,000) is almost a third of rates in China (21.6/100,000), and over five times that of Japan (42.7/100,000) and Russia (43.2/100,000). Rates within Mongolia appear to have increased slightly over the last decade and are higher in urban than rural areas (annual percentage increase of age-standardized rates from 1998 to 2005 was 3.60 and 2.57%, respectively). The increase in breast cancer incidence with age plateaus at menopause, as in other Asian populations. Conclusions Mongolia’s low breast cancer incidence is of particular interest because of their unusual diet (primarily red meat and dairy) compared with other Asian countries. More intensive study of potential dietary, reproductive and lifestyle factors in Mongolia with comparison to other Asian populations may provide more clarity in what drives the international breast cancer rate differences. PMID:22543542

  17. Electron Microscopy.

    Science.gov (United States)

    Beer, Michael

    1980-01-01

    Reviews technical aspects of structure determination in biological electron microscopy (EM). Discusses low dose EM, low temperature microscopy, electron energy loss spectra, determination of mass or molecular weight, and EM of labeled systems. Cites 34 references. (CS)

  18. Chemistry of fast electrons.

    Science.gov (United States)

    Maximoff, Sergey N; Head-Gordon, Martin P

    2009-07-14

    A chemicurrent is a flux of fast (kinetic energy approximately > 0.5-1.3 eV) metal electrons caused by moderately exothermic (1-3 eV) chemical reactions over high work function (4-6 eV) metal surfaces. In this report, the relation between chemicurrent and surface chemistry is elucidated with a combination of top-down phenomenology and bottom-up atomic-scale modeling. Examination of catalytic CO oxidation, an example which exhibits a chemicurrent, reveals 3 constituents of this relation: The localization of some conduction electrons to the surface via a reduction reaction, 0.5 O(2) + deltae(-) --> O(delta(-)) (Red); the delocalization of some surface electrons into a conduction band in an oxidation reaction, O(delta(-)) + CO --> CO(2)(delta-) --> CO(2) + deltae(-) (Ox); and relaxation without charge transfer (Rel). Juxtaposition of Red, Ox, and Rel produces a daunting variety of metal electronic excitations, but only those that originate from CO(2) reactive desorption are long-range and fast enough to dominate the chemicurrent. The chemicurrent yield depends on the universality class of the desorption process and the distribution of the desorption thresholds. This analysis implies a power-law relation with exponent 2.66 between the chemicurrent and the heat of adsorption, which is consistent with experimental findings for a range of systems. This picture also applies to other oxidation-reduction reactions over high work function metal surfaces.

  19. Electronic components

    CERN Document Server

    Colwell, Morris A

    1976-01-01

    Electronic Components provides a basic grounding in the practical aspects of using and selecting electronics components. The book describes the basic requirements needed to start practical work on electronic equipment, resistors and potentiometers, capacitance, and inductors and transformers. The text discusses semiconductor devices such as diodes, thyristors and triacs, transistors and heat sinks, logic and linear integrated circuits (I.C.s) and electromechanical devices. Common abbreviations applied to components are provided. Constructors and electronics engineers will find the book useful

  20. Understand electronics

    CERN Document Server

    Bishop, Owen

    2013-01-01

    Understand Electronics provides a readable introduction to the exciting world of electronics for the student or enthusiast with little previous knowledge. The subject is treated with the minimum of mathematics and the book is extensively illustrated.This is an essential guide for the newcomer to electronics, and replaces the author's best-selling Beginner's Guide to Electronics.The step-by-step approach makes this book ideal for introductory courses such as the Intermediate GNVQ.