WorldWideScience

Sample records for incident beam momentum

  1. Grazing incidence beam expander

    Energy Technology Data Exchange (ETDEWEB)

    Akkapeddi, P.R.; Glenn, P.; Fuschetto, A.; Appert, Q.; Viswanathan, V.K.

    1985-01-01

    A Grazing Incidence Beam Expander (GIBE) telescope is being designed and fabricated to be used as an equivalent end mirror in a long laser resonator cavity. The design requirements for this GIBE flow down from a generic Free Electron Laser (FEL) resonator. The nature of the FEL gain volume (a thin, pencil-like, on-axis region) dictates that the output beam be very small. Such a thin beam with the high power levels characteristic of FELs would have to travel perhaps hundreds of meters or more before expanding enough to allow reflection from cooled mirrors. A GIBE, on the other hand, would allow placing these optics closer to the gain region and thus reduces the cavity lengths substantially. Results are presented relating to optical and mechanical design, alignment sensitivity analysis, radius of curvature analysis, laser cavity stability analysis of a linear stable concentric laser cavity with a GIBE. Fabrication details of the GIBE are also given.

  2. The LANSCE Low Momentum Beam Monitor

    CERN Document Server

    Merl, R

    2004-01-01

    A diagnostic has been developed at the Los Alamos Neutron Science Center (LANSCE) for the purpose of identifying low momentum beam tails in the linear accelerator. These tails must be eliminated in order to maintain the transverse and longitudinal beam size. Instead of the currently used phosphor camera system, this instrument consists of a Multi Wire Proportional Chamber (MWPC) front end coupled to an EPICS compliant VME-based electronics package. Low momentum tails are detected with a resolution of 5 mm in the MWPC at a high dispersion point near a bending magnet. While phosphor is typically not sensitive in the nano amp range, the MWPC is sensitive down to about a pico amp. The electronics package processes the signals from each of the MWPC wires to generate an array of beam currents at each of the lower energies. The electronics has an analog front end with a high-speed analog to digital converter for each wire. Data from multiple wires are processed with an embedded digital signal processor and results p...

  3. Unveiling the orbital angular momentum and acceleration of electron beams.

    Science.gov (United States)

    Shiloh, Roy; Tsur, Yuval; Remez, Roei; Lereah, Yossi; Malomed, Boris A; Shvedov, Vladlen; Hnatovsky, Cyril; Krolikowski, Wieslaw; Arie, Ady

    2015-03-06

    New forms of electron beams have been intensively investigated recently, including vortex beams carrying orbital angular momentum, as well as Airy beams propagating along a parabolic trajectory. Their traits may be harnessed for applications in materials science, electron microscopy, and interferometry, and so it is important to measure their properties with ease. Here, we show how one may immediately quantify these beams' parameters without need for additional fabrication or nonstandard microscopic tools. Our experimental results are backed by numerical simulations and analytic derivation.

  4. ICF with momentum-rich beams

    Energy Technology Data Exchange (ETDEWEB)

    Maschke, A.W.

    1982-10-01

    A novel approach to obtain thermonuclear ignitions condition is suggested. Utilizing state-of-the-art ion source brightness parameters, and high gradient acceleration columns, it is possible to focus 10 kJ of heavy ions to a few mm spot, using a 1-meter radius spherical ion source. Heavy ion energies of 500 to 1000 keV have the velocity required for volume ignition of DT. The beam mass is typically 10 times greater than that of the DT which is to be burned. A spherical array of ion sources is envisioned, using time-of-flight bunching to achieve the required power density at the central focus. Beam space charge neutralization is assumed to take place in a background plasma. The DT, originally a few mm gas ball, is compressed and heated by the direct transfer of the beam energy to the fuel. The necessary inward mementum is produced directly by the accelerator, not by ablation.

  5. ICF with momentum-rich beams

    International Nuclear Information System (INIS)

    Maschke, A.W.

    1982-01-01

    A novel approach to obtain thermonuclear ignitions condition is suggested. Utilizing state-of-the-art ion source brightness parameters, and high gradient acceleration columns, it is possible to focus 10 kJ of heavy ions to a few mm spot, using a 1-meter radius spherical ion source. Heavy ion energies of 500 to 1000 keV have the velocity required for volume ignition of DT. The beam mass is typically 10 times greater than that of the DT which is to be burned. A spherical array of ion sources is envisioned, using time-of-flight bunching to achieve the required power density at the central focus. Beam space charge neutralization is assumed to take place in a background plasma. The DT, originally a few mm gas ball, is compressed and heated by the direct transfer of the beam energy to the fuel. The necessary inward mementum is produced directly by the accelerator, not by ablation

  6. Angular-momentum-dominated electron beams and flat-beam generation

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Yin-e [Univ. of Chicago, IL (United States)

    2005-06-01

    In the absence of external forces, if the dynamics within an electron beam is dominated by its angular momentum rather than other effects such as random thermal motion or self Coulomb-repulsive force (i.e., space-charge force), the beam is said to be angular-momentum-dominated. Such a beam can be directly applied to the field of electron-cooling of heavy ions; or it can be manipulated into an electron beam with large transverse emittance ratio, i.e., a flat beam. A flat beam is of interest for high-energy electron-positron colliders or accelerator-based light sources. An angular-momentum-dominated beam is generated at the Fermilab/NICADD photoinjector Laboratory (FNPL) and is accelerated to an energy of 16 MeV. The properties of such a beam is investigated systematically in experiment. The experimental results are in very good agreement with analytical expectations and simulation results. This lays a good foundation for the transformation of an angular-momentum-dominated beam into a flat beam. The round-to-flat beam transformer is composed of three skew quadrupoles. Based on a good knowledge of the angular-momentum-dominated beam, the quadrupoles are set to the proper strengths in order to apply a total torque which removes the angular momentum, resulting in a flat beam. For bunch charge around 0.5 nC, an emittance ratio of 100 ± 5 was measured, with the smaller normalized root-mean-square emittance around 0.4 mm-mrad. Effects limiting the flat-beam emittance ratio are investigated, such as the chromatic effects in the round-to-flat beam transformer, asymmetry in the initial angular-momentum-dominated beam, and space-charge effects. The most important limiting factor turns out to be the uncorrelated emittance growth caused by space charge when the beam energy is low, for example, in the rf gun area. As a result of such emittance growth prior to the round-to-flat beam transformer, the emittance ratio achievable in simulation decreases from orders of thousands to

  7. Beam wander relieved orbital angular momentum communication in turbulent atmosphere using Bessel beams.

    Science.gov (United States)

    Yuan, Yangsheng; Lei, Ting; Li, Zhaohui; Li, Yangjin; Gao, Shecheng; Xie, Zhenwei; Yuan, Xiaocong

    2017-02-10

    Optical beam wander is one of the most important issues for free-space optical (FSO) communication. We theoretically derive a beam wander model for Bessel beams propagating in turbulent atmosphere. The calculated beam wander of high order Bessel beams with different turbulence strengths are consistent with experimental measurements. Both theoretical and experimental results reveal that high order Bessel beams are less influenced by the turbulent atmosphere. We also demonstrate the Bessel beams based orbital angular momentum (OAM) multiplexing/demultiplexing in FSO communication with atmospheric turbulence. Under the same atmospheric turbulence condition, the bit error rates of transmitted signals carried by high order Bessel beams show smaller values and fluctuations, which indicates that the high order Bessel beams have an advantage of mitigating the beam wander in OAM multiplexing FSO communication.

  8. Description of a π-p bubble chamber experiment at 4 GeV/c incident momentum

    International Nuclear Information System (INIS)

    Rodebaeck, S.; Sjoegren, I.; Holmgren, S.O.; Walck, Ch.

    1981-03-01

    This report is a description of a bubble chamber experiment performed at the CERN proton synchrotron (PS). The CERN 2m hydrogen bubble chamber was exposed to a beam of negative pions at an average incident momentum of 3.95 GeV/c. The primary purposes of the experiment are to perform amplitude analyses of quasi two-body reactions with hypercharge exchange and to study properties of meson resonances. (Auth.)

  9. anti pp elastic scattering at 30 GeV/c incident momentum in the momentum transfer range 0.52

    International Nuclear Information System (INIS)

    Asa'd, Z.; Coupland, M.; Davis, D.G.; Duff, B.G.; Fearnley, T.; Heymann, F.F.; Imrie, D.C.; Lush, G.J.; Phillips, M.; Baglin, A.; Guillard, J.P.; Poulet, M.; Brom, J.M.; Myrheim, J.; Kenyon Gjerpe, I.; Buran, T.; Buzzo, A.; Ferroni, S.; Gracco, V.; Khan, E.; Kirsebom, K.; Macri, M.; Rossi, L.; Santroni, A.; Skjevling, G.; Sorensen, S.O.

    1983-01-01

    The anti pp elastic differential cross section at 30 GeV/c incident momentum has been measured in a two-arm spectrometer experiment (WA7) at the CERN SPS. The vertical stroketvertical stroke-range covered extends from 0.5 to 5.8 (GeV/c) 2 . A pronounced dip-bump structure is observed, with a sharp minimum around vertical stroketvertical strokeapprox.=1.7 (GeV/c) 2 . The results are compared with existing anti pp data at lower energies and with our earlier anti pp data at 50 GeV/c. A number of model predictions are discussed. We also compare the anti pp 30 GeV/c differential cross section with that of pp at the same momentum. Finally, the energy dependence of the anti pp fixed-vertical stroketvertical stroke differential cross section in the incident momentum range 3.6 to 50 GeV/c is presented. (orig.)

  10. Generation of angular-momentum-dominated electron beams from a photoinjector

    Directory of Open Access Journals (Sweden)

    Y.-E Sun

    2004-12-01

    Full Text Available Various projects under study require an angular-momentum-dominated electron beam generated by a photoinjector. Some of the proposals directly use the angular-momentum-dominated beams (e.g., electron cooling of heavy ions, while others require the beam to be transformed into a flat beam (e.g., possible electron injectors for light sources and linear colliders. In this paper we report our experimental study of an angular-momentum-dominated beam produced in a photoinjector, addressing the dependencies of angular momentum on initial conditions. We also briefly discuss the removal of angular momentum. The results of the experiment, carried out at the Fermilab/NICADD Photoinjector Laboratory, are found to be in good agreement with theoretical and numerical models.

  11. Generation of angular-momentum-dominated electron beams from a photoinjector

    International Nuclear Information System (INIS)

    Sun, Yin-E.; Piot, Philippe; Kim, Kwang-Je; Barov, Nikolas; Lidia, Steven; Santucci, James; Tikhoplav, Rodion; Wennerberg, Jason

    2004-01-01

    Various projects under study require an angular-momentum-dominated electron beam generated by a photoinjector. Some of the proposals directly use the angular-momentum-dominated beams (e.g. electron cooling of heavy ions), while others require the beam to be transformed into a flat beam (e.g. possible electron injectors for light sources and linear colliders). In this paper, we report our experimental study of an angular-momentum-dominated beam produced in a photoinjector, addressing the dependencies of angular momentum on initial conditions. We also briefly discuss the removal of angular momentum. The results of the experiment, carried out at the Fermilab/NICADD Photoinjector Laboratory, are found to be in good agreement with theoretical and numerical models

  12. Off-momentum loss maps with one beam

    CERN Document Server

    Garcia Morales, Hector; Salvachua Ferrando, Belen Maria; CERN. Geneva. ATS Department

    2016-01-01

    The aim of this MD is the benchmarking of simulation of off-momentum loss maps. This will help us to further understand the dynamics of the off-momentum collimation cleaning and give input to the determination of the operational settings of the off-momentum cleaning insertion. The MD was carried out during different end-of-fills of other MDs. In this note we summarize the procedures and the measurements taken during the MD week.

  13. Test beam demonstration of silicon microstrip modules with transverse momentum discrimination for the future CMS tracking detector

    Science.gov (United States)

    Adam, W.; Bergauer, T.; Brondolin, E.; Dragicevic, M.; Friedl, M.; Frühwirth, R.; Hoch, M.; Hrubec, J.; König, A.; Steininger, H.; Treberspurg, W.; Waltenberger, W.; Alderweireldt, S.; Beaumont, W.; Janssen, X.; Lauwers, J.; Van Mechelen, P.; Van Remortel, N.; Van Spilbeeck, A.; Beghin, D.; Brun, H.; Clerbaux, B.; De Lentdecker, G.; Delannoy, H.; Fasanella, G.; Favart, L.; Goldouzian, R.; Grebenyuk, A.; Karapostoli, G.; Lenzi, T.; Léonard, A.; Luetic, J.; Maerschalk, T.; Marinov, A.; Postiau, N.; Randle-Conde, A.; Seva, T.; Vanlaer, P.; Vannerom, D.; Yonamine, R.; Wang, Q.; Yang, Y.; Zenoni, F.; Zhang, F.; Abu Zeid, S.; Blekman, F.; De Bruyn, I.; De Clercq, J.; D'Hondt, J.; Deroover, K.; Lowette, S.; Moortgat, S.; Moreels, L.; Python, Q.; Skovpen, K.; Van Mulders, P.; Van Parijs, I.; Bakhshiansohi, H.; Bondu, O.; Brochet, S.; Bruno, G.; Caudron, A.; Delaere, C.; Delcourt, M.; De Visscher, S.; Francois, B.; Giammanco, A.; Jafari, A.; Cabrera Jamoulle, J.; De Favereau De Jeneret, J.; Komm, M.; Krintiras, G.; Lemaitre, V.; Magitteri, A.; Mertens, A.; Michotte, D.; Musich, M.; Piotrzkowski, K.; Quertenmont, L.; Szilasi, N.; Vidal Marono, M.; Wertz, S.; Beliy, N.; Caebergs, T.; Daubie, E.; Hammad, G. H.; Härkönen, J.; Lampén, T.; Luukka, P.; Peltola, T.; Tuominen, E.; Tuovinen, E.; Eerola, P.; Baulieu, G.; Boudoul, G.; Caponetto, L.; Combaret, C.; Contardo, D.; Dupasquier, T.; Gallbit, G.; Lumb, N.; Mirabito, L.; Perries, S.; Vander Donckt, M.; Viret, S.; Agram, J.-L.; Andrea, J.; Bloch, D.; Bonnin, C.; Brom, J.-M.; Chabert, E.; Chanon, N.; Charles, L.; Conte, E.; Fontaine, J.-Ch.; Gross, L.; Hosselet, J.; Jansova, M.; Tromson, D.; Autermann, C.; Feld, L.; Karpinski, W.; Kiesel, K. M.; Klein, K.; Lipinski, M.; Ostapchuk, A.; Pierschel, G.; Preuten, M.; Rauch, M.; Schael, S.; Schomakers, C.; Schulz, J.; Schwering, G.; Wlochal, M.; Zhukov, V.; Pistone, C.; Fluegge, G.; Kuensken, A.; Pooth, O.; Stahl, A.; Aldaya, M.; Asawatangtrakuldee, C.; Beernaert, K.; Bertsche, D.; Contreras-Campana, C.; Eckerlin, G.; Eckstein, D.; Eichhorn, T.; Gallo, E.; Garay Garcia, J.; Hansen, K.; Haranko, M.; Harb, A.; Hauk, J.; Keaveney, J.; Kalogeropoulos, A.; Kleinwort, C.; Lohmann, W.; Mankel, R.; Maser, H.; Mittag, G.; Muhl, C.; Mussgiller, A.; Pitzl, D.; Reichelt, O.; Savitskyi, M.; Schuetze, P.; Walsh, R.; Zuber, A.; Biskop, H.; Buhmann, P.; Centis-Vignali, M.; Garutti, E.; Haller, J.; Hoffmann, M.; Klanner, R.; Matysek, M.; Perieanu, A.; Scharf, Ch.; Schleper, P.; Schmidt, A.; Schwandt, J.; Sonneveld, J.; Steinbrück, G.; Vormwald, B.; Wellhausen, J.; Abbas, M.; Amstutz, C.; Barvich, T.; Barth, Ch.; Boegelspacher, F.; De Boer, W.; Butz, E.; Casele, M.; Colombo, F.; Dierlamm, A.; Freund, B.; Hartmann, F.; Heindl, S.; Husemann, U.; Kornmeyer, A.; Kudella, S.; Muller, Th.; Printz, M.; Simonis, H. J.; Steck, P.; Weber, M.; Weiler, Th.; Anagnostou, G.; Asenov, P.; Assiouras, P.; Daskalakis, G.; Kyriakis, A.; Loukas, D.; Paspalaki, L.; Siklér, F.; Veszprémi, V.; Bhardwaj, A.; Dalal, R.; Jain, G.; Ranjan, K.; Dutta, S.; Chowdhury, S. Roy; Bakhshiansohl, H.; Behnamian, H.; Khakzad, M.; Naseri, M.; Cariola, P.; Creanza, D.; De Palma, M.; De Robertis, G.; Fiore, L.; Franco, M.; Loddo, F.; Sala, G.; Silvestris, L.; Maggi, G.; My, S.; Selvaggi, G.; Albergo, S.; Costa, S.; Di Mattia, A.; Giordano, F.; Potenza, R.; Saizu, M. A.; Tricomi, A.; Tuve, C.; Barbagli, G.; Brianzi, M.; Ciaranfi, R.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Latino, G.; Lenzi, P.; Meschini, M.; Paoletti, S.; Russo, L.; Scarlini, E.; Sguazzoni, G.; Strom, D.; Viliani, L.; Ferro, F.; Lo Vetere, M.; Robutti, E.; Dinardo, M. E.; Fiorendi, S.; Gennai, S.; Malvezzi, S.; Manzoni, R. A.; Menasce, D.; Moroni, L.; Pedrini, D.; Azzi, P.; Bacchetta, N.; Bisello, D.; Dall'Osso, M.; Pozzobon, N.; Tosi, M.; De Canio, F.; Gaioni, L.; Manghisoni, M.; Nodari, B.; Riceputi, E.; Re, V.; Traversi, G.; Comotti, D.; Ratti, L.; Alunni Solestizi, L.; Biasini, M.; Bilei, G. M.; Cecchi, C.; Checcucci, B.; Ciangottini, D.; Fanò, L.; Gentsos, C.; Ionica, M.; Leonardi, R.; Manoni, E.; Mantovani, G.; Marconi, S.; Mariani, V.; Menichelli, M.; Modak, A.; Morozzi, A.; Moscatelli, F.; Passeri, D.; Placidi, P.; Postolache, V.; Rossi, A.; Saha, A.; Santocchia, A.; Storchi, L.; Spiga, D.; Androsov, K.; Azzurri, P.; Arezzini, S.; Bagliesi, G.; Basti, A.; Boccali, T.; Borrello, L.; Bosi, F.; Castaldi, R.; Ciampa, A.; Ciocci, M. A.; Dell'Orso, R.; Donato, S.; Fedi, G.; Giassi, A.; Grippo, M. T.; Ligabue, F.; Lomtadze, T.; Magazzu, G.; Martini, L.; Mazzoni, E.; Messineo, A.; Moggi, A.; Morsani, F.; Palla, F.; Palmonari, F.; Raffaelli, F.; Rizzi, A.; Savoy-Navarro, A.; Spagnolo, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.; Bellan, R.; Costa, M.; Covarelli, R.; Da Rocha Rolo, M.; Demaria, N.; Rivetti, A.; Dellacasa, G.; Mazza, G.; Migliore, E.; Monteil, E.; Pacher, L.; Ravera, F.; Solano, A.; Fernandez, M.; Gomez, G.; Jaramillo Echeverria, R.; Moya, D.; Gonzalez Sanchez, F. J.; Vila, I.; Virto, A. L.; Abbaneo, D.; Ahmed, I.; Albert, E.; Auzinger, G.; Berruti, G.; Bianchi, G.; Blanchot, G.; Bonnaud, J.; Caratelli, A.; Ceresa, D.; Christiansen, J.; Cichy, K.; Daguin, J.; D'Auria, A.; Detraz, S.; Deyrail, D.; Dondelewski, O.; Faccio, F.; Frank, N.; Gadek, T.; Gill, K.; Honma, A.; Hugo, G.; Jara Casas, L. M.; Kaplon, J.; Kornmayer, A.; Kottelat, L.; Kovacs, M.; Krammer, M.; Lenoir, P.; Mannelli, M.; Marchioro, A.; Marconi, S.; Mersi, S.; Martina, S.; Michelis, S.; Moll, M.; Onnela, A.; Orfanelli, S.; Pavis, S.; Peisert, A.; Pernot, J.-F.; Petagna, P.; Petrucciani, G.; Postema, H.; Rose, P.; Tropea, P.; Troska, J.; Tsirou, A.; Vasey, F.; Vichoudis, P.; Verlaat, B.; Zwalinski, L.; Bachmair, F.; Becker, R.; di Calafiori, D.; Casal, B.; Berger, P.; Djambazov, L.; Donega, M.; Grab, C.; Hits, D.; Hoss, J.; Kasieczka, G.; Lustermann, W.; Mangano, B.; Marionneau, M.; Martinez Ruiz del Arbol, P.; Masciovecchio, M.; Meinhard, M.; Perozzi, L.; Roeser, U.; Starodumov, A.; Tavolaro, V.; Wallny, R.; Zhu, D.; Amsler, C.; Bösiger, K.; Caminada, L.; Canelli, F.; Chiochia, V.; de Cosa, A.; Galloni, C.; Hreus, T.; Kilminster, B.; Lange, C.; Maier, R.; Ngadiuba, J.; Pinna, D.; Robmann, P.; Taroni, S.; Yang, Y.; Bertl, W.; Deiters, K.; Erdmann, W.; Horisberger, R.; Kaestli, H.-C.; Kotlinski, D.; Langenegger, U.; Meier, B.; Rohe, T.; Streuli, S.; Chen, P.-H.; Dietz, C.; Grundler, U.; Hou, W.-S.; Lu, R.-S.; Moya, M.; Cussans, D.; Flacher, H.; Goldstein, J.; Grimes, M.; Jacob, J.; Seif El Nasr-Storey, S.; Cole, J.; Hoad, C.; Hobson, P.; Morton, A.; Reid, I. D.; Auzinger, G.; Bainbridge, R.; Dauncey, P.; Fulcher, J.; Hall, G.; James, T.; Magnan, A.-M.; Pesaresi, M.; Raymond, D. M.; Uchida, K.; Braga, D.; Coughlan, J. A.; Harder, K.; Jones, L.; Ilic, J.; Murray, P.; Prydderch, M.; Tomalin, I. R.; Garabedian, A.; Heintz, U.; Narain, M.; Nelson, J.; Sagir, S.; Speer, T.; Swanson, J.; Tersegno, D.; Watson-Daniels, J.; Chertok, M.; Conway, J.; Conway, R.; Flores, C.; Lander, R.; Pellett, D.; Ricci-Tam, F.; Squires, M.; Thomson, J.; Yohay, R.; Burt, K.; Ellison, J.; Hanson, G.; Olmedo, M.; Si, W.; Yates, B. R.; Gerosa, R.; Sharma, V.; Vartak, A.; Yagil, A.; Zevi Della Porta, G.; Dutta, V.; Gouskos, L.; Incandela, J.; Kyre, S.; Mullin, S.; Qu, H.; White, D.; Dominguez, A.; Bartek, R.; Cumalat, J. P.; Ford, W. T.; Jensen, F.; Johnson, A.; Krohn, M.; Leontsinis, S.; Mulholland, T.; Stenson, K.; Wagner, S. R.; Apresyan, A.; Bolla, G.; Burkett, K.; Butler, J. N.; Cheung, H. W. K.; Chramowicz, J.; Christian, D.; Cooper, W. E.; Deptuch, G.; Derylo, G.; Gingu, C.; Grünendahl, S.; Hasegawa, S.; Hoff, J.; Howell, J.; Hrycyk, M.; Jindariani, S.; Johnson, M.; Kahlid, F.; Lei, C. M.; Lipton, R.; Lopes De Sá, R.; Liu, T.; Los, S.; Matulik, M.; Merkel, P.; Nahn, S.; Prosser, A.; Rivera, R.; Schneider, B.; Sellberg, G.; Shenai, A.; Spiegel, L.; Tran, N.; Uplegger, L.; Voirin, E.; Berry, D. R.; Chen, X.; Ennesser, L.; Evdokimov, A.; Evdokimov, O.; Gerber, C. E.; Hofman, D. J.; Makauda, S.; Mills, C.; Sandoval Gonzalez, I. D.; Alimena, J.; Antonelli, L. J.; Francis, B.; Hart, A.; Hill, C. S.; Parashar, N.; Stupak, J.; Bortoletto, D.; Bubna, M.; Hinton, N.; Jones, M.; Miller, D. H.; Shi, X.; Tan, P.; Baringer, P.; Bean, A.; Khalil, S.; Kropivnitskaya, A.; Majumder, D.; Wilson, G.; Ivanov, A.; Mendis, R.; Mitchell, T.; Skhirtladze, N.; Taylor, R.; Anderson, I.; Fehling, D.; Gritsan, A.; Maksimovic, P.; Martin, C.; Nash, K.; Osherson, M.; Swartz, M.; Xiao, M.; Acosta, J. G.; Cremaldi, L. M.; Oliveros, S.; Perera, L.; Summers, D.; Bloom, K.; Claes, D. R.; Fangmeier, C.; Gonzalez Suarez, R.; Monroy, J.; Siado, J.; Hahn, K.; Sevova, S.; Sung, K.; Trovato, M.; Bartz, E.; Gershtein, Y.; Halkiadakis, E.; Kyriacou, S.; Lath, A.; Nash, K.; Osherson, M.; Schnetzer, S.; Stone, R.; Walker, M.; Malik, S.; Norberg, S.; Ramirez Vargas, J. E.; Alyari, M.; Dolen, J.; Godshalk, A.; Harrington, C.; Iashvili, I.; Kharchilava, A.; Nguyen, D.; Parker, A.; Rappoccio, S.; Roozbahani, B.; Alexander, J.; Chaves, J.; Chu, J.; Dittmer, S.; McDermott, K.; Mirman, N.; Rinkevicius, A.; Ryd, A.; Salvati, E.; Skinnari, L.; Soffi, L.; Tao, Z.; Thom, J.; Tucker, J.; Zientek, M.; Akgün, B.; Ecklund, K. M.; Kilpatrick, M.; Nussbaum, T.; Zabel, J.; Betchart, B.; Covarelli, R.; Demina, R.; Hindrichs, O.; Petrillo, G.; Eusebi, R.; Patel, R.; Perloff, A.; Ulmer, K. A.; Delannoy, A. G.; D'Angelo, P.; Johns, W.

    2018-03-01

    A new CMS Tracker is under development for operation at the High Luminosity LHC from 2026 onwards. It includes an outer tracker based on dedicated modules that will reconstruct short track segments, called stubs, using spatially coincident clusters in two closely spaced silicon sensor layers. These modules allow the rejection of low transverse momentum track hits and reduce the data volume before transmission to the first level trigger. The inclusion of tracking information in the trigger decision is essential to limit the first level trigger accept rate. A customized front-end readout chip, the CMS Binary Chip (CBC), containing stub finding logic has been designed for this purpose. A prototype module, equipped with the CBC chip, has been constructed and operated for the first time in a 4 GeemVem/emc positron beam at DESY. The behaviour of the stub finding was studied for different angles of beam incidence on a module, which allows an estimate of the sensitivity to transverse momentum within the future CMS detector. A sharp transverse momentum threshold around 2 emVem/emc was demonstrated, which meets the requirement to reject a large fraction of low momentum tracks present in the LHC environment on-detector. This is the first realistic demonstration of a silicon tracking module that is able to select data, based on the particle's transverse momentum, for use in a first level trigger at the LHC . The results from this test are described here.

  14. Beam-beam interaction and pacman effects in the SSC with momentum oscillation

    International Nuclear Information System (INIS)

    Mahale, N.K.; Ohnuma, S.

    1989-01-01

    In order to find the combined effects of beam-beam interaction (head-on and long-range) and random nonlinear multipoles in dipole magnets, the transverse oscillations of ''regular'' as well as ''pacman'' particles are traced for 256 synchrotron oscillation periods (corresponding to 135K revolutions) in the proposed SSC. Results obtained in this study do not show any obvious reduction of dynamic or linear apertures for pacman particles when compared with regular particles for (Δp/p) = 0. There are some indications of possible sudden or gradual increases in the oscillation amplitude, for pacman as well as regular particles, when the amplitude of momentum oscillation is as large as 3σ. 4 refs., 7 figs

  15. Reconstruction of lattice parameters and beam momentum distribution from turn-by-turn beam position monitor readings in circular accelerators

    Directory of Open Access Journals (Sweden)

    C. S. Edmonds

    2014-05-01

    Full Text Available In high chromaticity circular accelerators, rapid decoherence of the betatron motion of a particle beam can make the measurement of lattice and bunch values, such as Courant-Snyder parameters and betatron amplitude, difficult. A method for reconstructing the momentum distribution of a beam from beam position measurements is presented. Further analysis of the same beam position monitor data allows estimates to be made of the Courant-Snyder parameters and the amplitude of coherent betatron oscillation of the beam. The methods are tested through application to data taken on the linear nonscaling fixed field alternating gradient accelerator, EMMA.

  16. Transverse characterization of focused Bessel beams with angular momentum applied to study degree of coherence

    International Nuclear Information System (INIS)

    He, Xi; Wu, Fengtie; Chen, Ziyang; Pu, Jixiong; Chavez-Cerda, Sabino

    2016-01-01

    The transverse focusing properties at the ‘pseudo-focal’ plane of coherent Bessel beams with angular momentum are analyzed in detail. The transverse magnification of the central dark region of Bessel beams at this pseudo-focal plane is derived for the first time by calculating the ratio of the magnitude of the transverse components of the corresponding wave vectors before and after the focusing lens. We test our results experimentally with coherent laser Bessel beams and excellent agreement is observed. Then, an LED light source is used to generate Bessel beams. By modifying the coherence of the LED light source, we observe that by reducing coherence a smaller and shallower central dark region of Bessel beams with angular momentum is produced at the pseudo-focal plane. This technique can be used as a method to characterize the degree of coherence of vortex beams. (paper)

  17. Proton-proton elastic scattering at 50 GeV/c incident momentum in the momentum transfer range 0.82

    International Nuclear Information System (INIS)

    Baglin, C.; Guillaud, J.P.; Poulet, M.; Myrheim, J.; Asa'd, Z.; Coupland, M.; Davis, D.G.; Duff, B.G.; Fearnley, T.; Heymann, F.F.; Imrie, D.C.; Lush, G.J.; Phillips, M.; Brom, J.M.; Kenyon Gjerpe, I.; Buran, T.; Buzzo, A.; Ferroni, S.; Gracco, V.; Kirsebom, K.; Macri, M.; Santroni, A.; Skjevling, G.; Soerensen, S.O.

    1983-01-01

    A measurement of the proton-proton elastic differential cross section at 50 GeV/c incident momentum in the momentum transfer range 0.8 2 is presented. The data are compared to pp data at lower and higher energies, and to some model predictions. (orig.)

  18. Effect of electron-beam momentum spread on cyclotron resonance maser operation at two resonant frequencies

    Science.gov (United States)

    Hunter, G. J.; McNeil, B. W. J.; Robb, G. R. M.

    2001-09-01

    We present a theoretical analysis of cyclotron resonance maser (CRM) operation at two resonant frequencies including the effects of momentum spread in the electron beam. A linear analysis of the system equations is presented in the limit of small momentum spreads. Numerical solutions to the system equations are also given and are in agreement with the linear theory. The results predict that for realistic momentum spreads, operation of the CRM at the higher of the two resonant frequencies should be possible, extending its operating frequency range. An experiment currently under development at Strathclyde University is described and modeled numerically.

  19. Long range quasi-nondiffracting beams carrying orbital angular momentum

    CSIR Research Space (South Africa)

    Ismail, Y

    2010-03-01

    Full Text Available In this paper the authors outline an optical design for producing high-order Bessel-like beams with a z-dependent cone angle through the use of conventional optical elements, without the need for deliberate aberrations to be included....

  20. Optical vortex symmetry breakdown and decomposition of the orbital angular momentum of light beams.

    Science.gov (United States)

    Bekshaev, A Ya; Soskin, M S; Vasnetsov, M V

    2003-08-01

    Two forms of the transverse energy circulation within plane-polarized paraxial light beams are specified: one inherent in wave-front singularities (optical vortices) and the other peculiar to astigmatism and asymmetry of beams with a smooth wave front. As quantitative measures of these energy flow components, the concepts of vortex and asymmetry parts of a beam's orbital angular momentum are introduced and their definitions are proposed on the basis of beam intensity moments. The properties and physical meaning of these concepts are analyzed, and their use for the study of transformations of optical vortices is demonstrated.

  1. The fitted channels π-p→π-pπ+π- and π-p→π-p2π+2π- at 147 GeV/c incident momentum

    International Nuclear Information System (INIS)

    Brick, D.; Fong, D.; Heller, M.; Shapiro, A.M.; Widgoff, M.; Bruyant, F.; Bogert, D.; Johnson, M.; Burnstein, R.; Fu, C.; Petersen, D.; Robertson, M.; Rubin, H.; Sard, R.; Snyder, A.; Tortora, J.; Chien, C.Y.; Lucas, P.; Pevsner, A.; Zdanis, R.; Barreiro, F.; Benary, O.; Brau, J.E.; Grunhaus, J.; Hafen, E.S.; Hulsizer, R.I.; Karshon, U.; Kistiakowsky, V.; Levy, A.; Napier, A.; Pless, I.A.; Silverman, J.P.; Trepagnier, P.C.; Wolfson, J.; Yamamoto, R.K.; Cohn, H.; Jacques, P.F.; Ou, T.C.; Plano, R.J.; Watts, T.L.; Brucker, E.; Koller, E.; Stamer, P.; Taylor, S.; Bugg, W.; Condo, G.; Handler, T.; Hart, E.; Kraybill, H.; Ljung, D.; Ludlam, T.; Taft, H.D.; Alyea, E.D. Jr.

    The results are reported on the 4- and 6-prong final states in π - p interactions at 147 GeV/c incident momentum obtained from a 105 000 picture exposure of the 30 in. bubble chamber Fermilab Hybrid Proportional Wire System to a tagged negative beam of 147 GeV/c momentum. The final states of the π - p→π - pπ + π - and π - p→π - p2π + 2π - processes are analyzed and the values of cross sections and of invariant mass distributions are presented. (Z.J.)

  2. Large-angle production of charged pions with incident pion beams on nuclear targets

    CERN Document Server

    Apollonio, M.; Bagulya, A.; Barr, G.; Blondel, A.; Bobisut, F.; Bogomilov, M.; Bonesini, M.; Booth, C.; Borghi, S.; Bunyatov, S.; Burguet-Castell, J.; Catanesi, M.G.; Cervera-Villanueva, A.; Chimenti, P.; Coney, L.; Di Capua, E.; Dore, U.; Dumarchez, J.; Edgecock, R.; Ellis, M.; Ferri, F.; Gastaldi, U.; Giani, S.; Giannini, G.; Gibin, D.; Gilardoni, S.; Gorbunov, P.; Gossling, C.; Gomez-Cadenas, J.J.; Grant, A.; Graulich, J.S.; Gregoire, G.; Grichine, V.; Grossheim, A.; Guglielmi, A.; Howlett, L.; Ivanchenko, A.; Ivanchenko, V.; Kayis-Topaksu, A.; Kirsanov, M.; Kolev, D.; Krasnoperov, A.; Martin-Albo, J.; Meurer, C.; Mezzetto, M.; Mills, G.B.; Morone, M.C.; Novella, P.; Orestano, D.; Palladino, V.; Panman, J.; Papadopoulos, I.; Pastore, F.; Piperov, S.; Polukhina, N.; Popov, B.; Prior, G.; Radicioni, E.; Schmitz, D.; Schroeter, R.; Skoro, G.; Sorel, M.; Tcherniaev, E.; Temnikov, P.; Tereschenko, V.; Tonazzo, A.; Tortora, L.; Tsenov, R.; Tsukerman, I.; Vidal-Sitjes, G.; Wiebusch, C.; Zucchelli, P.

    2009-01-01

    Measurements of the double-differential pi+/- production cross-section in the range of momentum 100 MeV/c <= p <= 800 MeV/c and angle 0.35 rad <= theta <= 2.15 rad using pi+/- beams incident on beryllium, aluminium, carbon, copper, tin, tantalum and lead targets are presented. The data were taken with the large acceptance HARP detector in the T9 beam line of the CERN PS. The secondary pions were produced by beams in a momentum range from 3 GeV/c to 12.9 GeV/c hitting a solid target with a thickness of 5% of a nuclear interaction length. The tracking and identification of the produced particles was performed using a small-radius cylindrical time projection chamber (TPC) placed inside a solenoidal magnet. Incident particles were identified by an elaborate system of beam detectors. Results are obtained for the double-differential cross-sections d2sigma/dpdtheta at six incident beam momenta. Data at 3 GeV/c, 5 GeV/c, 8 GeV/c, and 12 GeV/c are available for all targets while additional data at 8.9 GeV/...

  3. Orbital angular momentum correlations with a phase-flipped Gaussian mode pump beam

    CSIR Research Space (South Africa)

    Romero, J

    2012-08-01

    Full Text Available We report orbital angular momentum (OAM) and angle correlations between signal and idler photons observed when the nonlinear crystal used in spontaneous parametric down-conversion is illuminated by a non-fundamental Gaussian pump beam. We introduce...

  4. Robust interferometer for the routing of light beams carrying orbital angular momentum

    CSIR Research Space (South Africa)

    Lavery, MPJ

    2011-09-01

    Full Text Available The authors have developed an interferometer requiring only minimal angular alignment for the routing of beams carrying orbital angular momentum. The Mach–Zehnder interferometer contains a Dove prism in each arm where each has a mirror plane around...

  5. Compensation for the orbital angular momentum of a vortex beam in turbulent atmosphere by adaptive optics

    Science.gov (United States)

    Li, Nan; Chu, Xiuxiang; Zhang, Pengfei; Feng, Xiaoxing; Fan, ChengYu; Qiao, Chunhong

    2018-01-01

    A method which can be used to compensate for a distorted orbital angular momentum and wavefront of a beam in atmospheric turbulence, simultaneously, has been proposed. To confirm the validity of the method, an experimental setup for up-link propagation of a vortex beam in a turbulent atmosphere has been simulated. Simulation results show that both of the distorted orbital angular momentum and the distorted wavefront of a beam due to turbulence can be compensated by an adaptive optics system with the help of a cooperative beacon at satellite. However, when the number of the lenslet of wavefront sensor (WFS) and the actuators of the deform mirror (DM) is small, satisfactory results cannot be obtained.

  6. Particle and momentum confinement in tokamak plasmas with unbalanced neutral beam injection and strong rotation

    International Nuclear Information System (INIS)

    Malik, M.A.

    1988-01-01

    There is a self-consistent theory of the effects of neutral beam injection on impurity transport in tokamak plasmas. The theory predicts that co-injection drives impurities outward and that counter-injection enhances the normally inward flow of impurities. The theory was applied to carry out a detailed analysis of the large experimental database from the PLT and the ISX-B tokamaks. The theory was found to generally model the experimental data quite well. It is, therefore, concluded that neutral beam co-injection can drive impurities outward to achieve clean central plasmas and a cool radiating edge. Theoretical predictions for future thermonuclear reactors such as INTOR, TIBER II, and ITER indicated that neutral beam driven flow reversal might be an effective impurity control method if the rate of beam momentum deposited per plasma ion is adequate. The external momentum drag, which is a pivotal concept in impurity flow reversal theory, is correctly predicted by the gyroviscous theory of momentum confinement. The theory was applied to analyze experimental data from the PLT and the PDX tokamaks with exact experimental conditions. The theory was found to be in excellent agreement with experiment over a wide range of parameters. It is, therefore, possible to formulate the impurity transport theory from first principles, without resort to empiricism

  7. Nanoscale orbital angular momentum beam instabilities in engineered nonlinear colloidal media

    Science.gov (United States)

    Sun, Jingbo; Silahli, Salih Z.; Walasik, Wiktor; Li, Qi; Johnson, Eric; Litchinitser, Natalia M.

    2018-03-01

    In this letter, we experimentally demonstrate the evolution of the optical vortex beams of different topological charges propagating in engineered nano-colloidal suspension of negative polarizability with saturable nonlinearities. Due to the high power of the incident beam, the modulation instability leads to an exponential growth of weak perturbations and thus splits the original vortex beam into a necklace beam consisting of several bright spots. The number of observed bright spots is intrinsically determined by the topological charge of the incident beam and agrees well with the predictions of our linear stability analysis and numerical simulations. Besides contributing to the fundamental science of light-matter interactions in engineered soft-matter media, this work opens new opportunities for dynamic optical manipulation and transmission of light through scattering media as well as formation of complex optical patterns and light filamentation in naturally existing colloids such as fog and clouds.

  8. Antipp elastic scattering at 30 GeV/c incident momentum

    International Nuclear Information System (INIS)

    Fearnley, T.

    1983-01-01

    The antipp elastic differential cross-section at 30 GeV/c incident momentum has been measured in a two-arm spectrometer experiment (WA7) at the CERN SPS. The /t/-range covered extends from 0.5 to 5.0 (GeV/c) 2 . A pronounced dip-bump structure is observed, with a sharp minimum around /t/=1.7 (GeV/c) 2 . The results are compared to existing antipp data and to some model predictions

  9. First test experiment to produce the slowed-down RI beam with the momentum-compression mode at RIBF

    Energy Technology Data Exchange (ETDEWEB)

    Sumikama, T., E-mail: sumikama@ribf.riken.jp [RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Department of Physics, Tohoku University, Aoba, Sendai 980-8578 (Japan); Ahn, D.S.; Fukuda, N.; Inabe, N.; Kubo, T.; Shimizu, Y.; Suzuki, H.; Takeda, H. [RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Aoi, N. [Research Center for Nuclear Physics, Osaka University, Ibaraki, Osaka 567-0047 (Japan); Beaumel, D. [Institut de Physique Nucléaire d’Orsay (IPNO), CNRS/IN2P3, 91405 Orsay (France); Hasegawa, K. [Department of Physics, Tohoku University, Aoba, Sendai 980-8578 (Japan); Ideguchi, E. [Research Center for Nuclear Physics, Osaka University, Ibaraki, Osaka 567-0047 (Japan); Imai, N. [Center for Nuclear Study, University of Tokyo, RIKEN Campus, 2-1 Hirosawa, Wako, Saitama 351-0298 (Japan); Kobayashi, T. [Department of Physics, Tohoku University, Aoba, Sendai 980-8578 (Japan); Matsushita, M.; Michimasa, S. [Center for Nuclear Study, University of Tokyo, RIKEN Campus, 2-1 Hirosawa, Wako, Saitama 351-0298 (Japan); Otsu, H. [RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Shimoura, S. [Center for Nuclear Study, University of Tokyo, RIKEN Campus, 2-1 Hirosawa, Wako, Saitama 351-0298 (Japan); Teranishi, T. [Department of Physics, Kyushu University, 6-10-1 Hakozaki, Fukuoka 812-8581 (Japan)

    2016-06-01

    The {sup 82}Ge beam has been produced by the in-flight fission reaction of the {sup 238}U primary beam with 345 MeV/u at the RIKEN RI beam factory, and slowed down to about 15 MeV/u using the energy degraders. The momentum-compression mode was applied to the second stage of the BigRIPS separator to reduce the momentum spread. The energy was successfully reduced down to 13 ± 2.5 MeV/u as expected. The focus was not optimized at the end of the second stage, therefore the beam size was larger than the expectation. The transmission of the second stage was half of the simulated value mainly due to out of focus. The two-stage separation worked very well for the slowed-down beam with the momentum-compression mode.

  10. Observation of φφ production in the reaction overlinepp → 4K ± at 1.4 GeV / c incident overlinep momentum

    Science.gov (United States)

    Bertolotto, L.; Buzzo, A.; Debevec, P. T.; Drijard, D.; Easo, S.; Eisenstein, R. A.; Eyrich, W.; Fearnley, T.; Fischer, H.; Franz, J.; Geyer, R.; Hamann, N. H.; Harris, P. G.; Hertzog, D. W.; Gughes, S. A.; Johansson, A.; Johansson, T.; Jones, R. T.; Kilian, K.; Kirsebom, K.; Klett, A.; Korsmo, H.; Lo Vetere, M.; Macri, M.; Marinelli, M.; Moosburger, M.; Mouëllic, B.; Oelert, W.; Ohlsson, S.; Palano, A.; Passaggio, S.; Perreau, J.-M.; Pia, M. G.; Pomp, S.; Price, M.; Reimer, P. E.; Ritter, J.; Robutti, E.; Röhrich, K.; Rook, M.; Rössle, E.; Santroni, A.; Schmitt, H.; Sefzick, T.; Steinkamp, O.; Stinzing, F.; Stugu, B.; Tayloe, R.; Tscheulin, M.; Urban, H. J.; Wirth, H.; Zipse, H.; Jetset Collaboration

    1995-02-01

    The JETSET (PS202) experiment at CERN-LEAR searches for hadronic resonances by means of in-flight antiproton-proton annihilations in the reaction overlinepp → φφ . In order to obtain sufficient luminosity and good final-state mass resolution, this experiment uses an internal hydrogen-cluster jet target intersecting the LEAR antiproton beam. We report on the study of the reaction overlinepp → 4K ± at 1.4 GeV / c incidentmomentum, and we present the first experimental observation of a stro φφ signal in this reaction.

  11. Design of a new low momentum kaon beam for the AGS

    International Nuclear Information System (INIS)

    Lazarus, D.N.

    1976-01-01

    It should be emphasized that the newly designed low momentum beam will be a unique source of antiprotons as well as kaons. The LESB II was designed with both species of particles in mind and neither category of potential users should feel their interests have been compromised. The goals for the new design were an order of magnitude increase in intensity over the present beam, LESB I (or C2, C4) with an improvement in purity that would not significantly increase the pion flux over what it is in the present beam which has a π - /k - ratio of ten to one. In designing a beam of this type for the AGS, one starts with several advantages in that kaon and, in particular, antiproton production by 28.5 GeV/c protons is significantly larger than at lower energy machines; the high intensity operation of the AGS with approximately 10 13 protons every 2.4 seconds should make 2 x 10 12 protons available in a one-second spill with little structure, and the small emittance of the extracted beam makes the use of small targets and hence small images possible

  12. FESA class for off-momentum lossmaps and decomposition of beam losses at LHC

    CERN Document Server

    Wyszynski, Michal Jakub; Pojer, Mirko; Salvachua Ferrando, Belen Maria; Valentino, Gianluca; CERN. Geneva. ATS Department

    2016-01-01

    The project consisted of two main parts. The first part was to build a FESA class which would serve as lossmap feedback controller for off-momentum lossmaps, capable of handling 100 Hz BLM data, contrary to existing controller. Thanks to the efficient management RF frequency, beam dumps during this procedure would be avoided and machine availability would improve by shortening the duration of machine validation after technical stops. The second part concerned identification of beam losses at the LHC. It was a continuation of author’s work done as Summer Student project. The aim was to identify issues with the existing losses decomposition matrix for flat top, apply necessary corrections and construct analogous matrix for injection.

  13. Anti pp elastic scattering at 30 GeV/c incident momentum in the momentum transfer range 0. 5<-t<5. 8(GeV/c)/sup 2/

    Energy Technology Data Exchange (ETDEWEB)

    Asa' d, Z.; Coupland, M.; Davis, D.G.; Duff, B.G.; Fearnley, T.; Heymann, F.F.; Imrie, D.C.; Lush, G.J.; Phillips, M. (University Coll., London (UK)); Baglin, A.

    1983-10-27

    The anti pp elastic differential cross section at 30 GeV/c incident momentum has been measured in a two-arm spectrometer experiment (WA7) at the CERN SPS. The vertical stroketvertical stroke-range covered extends from 0.5 to 5.8 (GeV/c)/sup 2/. A pronounced dip-bump structure is observed, with a sharp minimum around vertical stroketvertical strokeapprox.=1.7 (GeV/c)/sup 2/. The results are compared with existing anti pp data at lower energies and with our earlier anti pp data at 50 GeV/c. A number of model predictions are discussed. We also compare the anti pp 30 GeV/c differential cross section with that of pp at the same momentum. Finally, the energy dependence of the anti pp fixed-vertical stroketvertical stroke differential cross section in the incident momentum range 3.6 to 50 GeV/c is presented.

  14. Behavior of obliquely incident vector Bessel beams at planar interfaces

    KAUST Repository

    Salem, Mohamed

    2013-01-01

    We investigate the behavior of full-vector electromagnetic Bessel beams obliquely incident at an interface between two electrically different media. We employ a Fourier transform domain representation of Bessel beams to determine their behavior upon reflection and transmission. This transform, which is geometric in nature, consists of elliptical support curves with complex weighting associated with them. The behavior of the scattered field at an interface is highly complex, owing to its full-vector nature; nevertheless, this behavior has a straightforward representation in the transform domain geometry. The analysis shows that the reflected field forms a different vector Bessel beam, but in general, the transmitted field cannot be represented as a Bessel beam. Nevertheless, using this approach, we demonstrate a method to propagate a Bessel beam in the refractive medium by launching a non- Bessel beam at the interface. Several interesting phenomena related to the behavior of Bessel beams are illustrated, such as polarized reflection at Brewster\\'s angle incidence, and the Goos-Hänchen and Imbert-Federov shifts in the case of total reflection. © 2013 Optical Society of America.

  15. High-power Bessel beams with orbital angular momentum in the terahertz range

    Science.gov (United States)

    Choporova, Yu. Yu.; Knyazev, B. A.; Kulipanov, G. N.; Pavelyev, V. S.; Scheglov, M. A.; Vinokurov, N. A.; Volodkin, B. O.; Zhabin, V. N.

    2017-08-01

    ), the BPAs can form the beams at incident radiation with any wavelength, albeit with a reduced diffraction efficiency, and their cross section is the same for any wavelength.

  16. Nuclotron Beam Momentum Estimation Using Multiwire Proportional Chambers and Drift Chambers in the BM@N Experiment

    Science.gov (United States)

    Kapishin, Mikhail; Lenivenko, Vasilisa; Palichik, Vladimir; Voytishin, Nikolay

    2018-02-01

    The BM@N experiment is considered as the first phase of NICA Mega science project. The energy of the beam will vary from 1 to 6 GeV/u. The beams delivered by Nuclotron will be of different types from protons to Au. The ability to reconstruct the beam momentum with high precision is one way for showing that the tracking detectors are tuned in the right way and the reconstruction procedure performs well. A quick overview of the experimental setup is given in the work along with the description of some of the main tracking detectors. The beam momentum reconstruction procedure is described and results are presented for different values of the beam energy.

  17. Development of an electron momentum spectrometer for time-resolved experiments employing nanosecond pulsed electron beam

    Science.gov (United States)

    Tang, Yaguo; Shan, Xu; Liu, Zhaohui; Niu, Shanshan; Wang, Enliang; Chen, Xiangjun

    2018-03-01

    The low count rate of (e, 2e) electron momentum spectroscopy (EMS) has long been a major limitation of its application to the investigation of molecular dynamics. Here we report a new EMS apparatus developed for time-resolved experiments in the nanosecond time scale, in which a double toroidal energy analyzer is utilized to improve the sensitivity of the spectrometer and a nanosecond pulsed electron gun with a repetition rate of 10 kHz is used to obtain an average beam current up to nA. Meanwhile, a picosecond ultraviolet laser with a repetition rate of 5 kHz is introduced to pump the sample target. The time zero is determined by photoionizing the target using a pump laser and monitoring the change of the electron beam current with time delay between the laser pulse and electron pulse, which is influenced by the plasma induced by the photoionization. The performance of the spectrometer is demonstrated by the EMS measurement on argon using a pulsed electron beam, illustrating the potential abilities of the apparatus for investigating the molecular dynamics in excited states when employing the pump-probe scheme.

  18. Energy and momentum transfer to 3He, 4He and nitrogen clusters subject to transverse molecular beams

    International Nuclear Information System (INIS)

    Vollmar, H.

    1977-01-01

    Detailed account of a method to determine the linear momentum and energy transfer to He clusters subject to transverse molecular Te or CO 2 beams using deflection and mass loss values and comparing the results with those obtained for N 2 clusters. For this purpose, 3 He cluster beams have been generated for the first time and have been taken into account in the investigation. (orig.) [de

  19. Proton-proton elastic scattering at 50 GeV/c incident momentum in the momentum transfer range 0. 8<-t<4. 0 (GeV/c)/sup 2/

    Energy Technology Data Exchange (ETDEWEB)

    Baglin, C.; Guillaud, J.P.; Poulet, M. (Grenoble-1 Univ., 74 - Annecy (France). Lab. de Physique des Particules); Bock, R.; Bugge, L.; Lundby, A. (European Organization for Nuclear Research, Geneva (Switzerland)); Myrheim, J. (Niels Bohr Inst., Copenhagen (Denmark)); Asa' d, Z.; Coupland, M.; Davis, D.G.

    1983-08-18

    A measurement of the proton-proton elastic differential cross section at 50 GeV/c incident momentum in the momentum transfer range 0.8 < vertical stroketvertical stroke < 4.0 (GeV/c)/sup 2/ is presented. The data are compared to pp data at lower and higher energies, and to some model predictions.

  20. Intensity and average orbital angular momentum of partially coherent flat-topped vortex beam in slant atmospheric turbulence

    Science.gov (United States)

    Li, Ya-qing; Wang, Li-guo

    2017-11-01

    On the basis of the extended Huygens-Fresnel principle and the cross-spectral density function (CSDF), the intensity and average orbital angular momentum (OAM) of the partially coherent flat-topped vortex beams in the slant atmospheric turbulence are presented. The effects of the order, topological charge, waist radius, and propagation distance of the beam on the intensity and average OAM are discussed. Results obtained show that the intensity of the partially coherent flat-topped vortex beam is changed due to the variations of the propagation distance, waist radius, topological charge and beam order, the average OAM is constant during the beam propagation in the atmospheric turbulence and related only to the waist radius and beam order. Results obtained by this paper may serve as theory bases for future applications in the atmospheric optical communication.

  1. Comparison of the reactions $K^{\\pm} p \\rightarrow Q^{\\pm} p$ at incident momentum 8.25 GeV/c

    CERN Document Server

    Stergiou, Athanase; Dallman, David Peter; Drijard, Daniel; Dunwoodie, W M; Fry, John R; Goldschmidt-Clermont, Yves; Grard, F; Henri, Victor P; Heughebaert, J; Markytan, Manfred; Matthews, Robert; Michaelidis, P; Muirhead, William Hugh; Peeters, P; Quinquard, J; Simopoulou, Errietta; Sotiriou, D; Strauss, Josef; Tsilimigras, Panayiotis; Vayaki, Anna; Verbeure, Frans; Windmolders, R

    1976-01-01

    A comparison of the general features of the reactions K/sup +or-/P to Q/sup +or-/p at incident momentum 8.25 GeV/c is presented. The relevant data derive from events yielding four-constraint fits to the reactions K/sup +or-/p to K/sup +or-/ pi /sup +/ pi /sup -/p in exposures of the CERN 2 m HBC to RF-separated K/sup +/ and K/sup -/ beams. The (K pi pi ) effective mass distributions, producing angular distributions in the Q region (1.2

  2. Dependance of sputtering yield on incident angle for ion beam

    Energy Technology Data Exchange (ETDEWEB)

    Tanizaki, Hironori; Ooba, Hikaru; Masuhara, Kenichi

    1987-07-01

    The relationship between sputtering yeild (S/sub theta/) and the incident angle (theta) of an ion beam to some metals such as Fe, Ni, Zn and SUS304, was studied by Ion Micro Analyzer (IMA). It was confirmed that S/sub theta/ varied as a function of (costheta)/sup -f/. The value of f was differed with each sample, and ranged from 1.0 to 1.5 in this study. As theta increased, the surface roughness of the sputtered samples became greater, and the depth resolution of the depth profile became worse. It is necessary to pay attention to depth resolution, when various data concerning different incident angles are compared.

  3. Eta Production at High Transverse Momentum by Negative 520 GeV/c Pions Incident on Beryllium and Copper Targets

    Energy Technology Data Exchange (ETDEWEB)

    Roser, Robert Martin [Univ. of Rochester, NY (United States)

    1994-01-01

    This thesis presents a measurement of the production of high transverse momentum 17 mesons by a 520 GeV /c $\\sqrt{s}$ = 31.2) $\\pi^-$ beam using data collected during the 1990 fixed target run of Fermilab experiment E706. E706 is a second generation fixed target experiment designed to measure direct-photon production in hadron-nucleus collisions. These data provide a clean test of perturbative QCD and serve as a valuable tool for probing hadronic structure. The $\\gamma\\gamma$ decay mode of the $\\eta$ meson was studied using data from a highly segmented electromagnetic lead liquid argon sampling calorimeter. Results are presented for inclusive $\\eta$ production by $\\pi^-$ beams on both beryllium and copper targets. The $\\eta$ to $\\pi^0$ production ratio and the nuclear dependence of the $\\eta$ production cross section are also reported. These results are for $\\eta$'s in the transverse momentum range 3.5 to 9 Ge V / c and the center of mass rapidity range -0.75 to 0.75, and are the highest energy results ever obtained for inclusive $\\eta$ production using a $\\pi^-$ beam.

  4. Adaptive optics compensation of orbital angular momentum beams with a modified Gerchberg-Saxton-based phase retrieval algorithm

    Science.gov (United States)

    Chang, Huan; Yin, Xiao-li; Cui, Xiao-zhou; Zhang, Zhi-chao; Ma, Jian-xin; Wu, Guo-hua; Zhang, Li-jia; Xin, Xiang-jun

    2017-12-01

    Practical orbital angular momentum (OAM)-based free-space optical (FSO) communications commonly experience serious performance degradation and crosstalk due to atmospheric turbulence. In this paper, we propose a wave-front sensorless adaptive optics (WSAO) system with a modified Gerchberg-Saxton (GS)-based phase retrieval algorithm to correct distorted OAM beams. We use the spatial phase perturbation (SPP) GS algorithm with a distorted probe Gaussian beam as the only input. The principle and parameter selections of the algorithm are analyzed, and the performance of the algorithm is discussed. The simulation results show that the proposed adaptive optics (AO) system can significantly compensate for distorted OAM beams in single-channel or multiplexed OAM systems, which provides new insights into adaptive correction systems using OAM beams.

  5. Influence of anisotropic turbulence on the orbital angular momentum modes of Hermite-Gaussian vortex beam in the ocean.

    Science.gov (United States)

    Li, Ye; Yu, Lin; Zhang, Yixin

    2017-05-29

    Applying the angular spectrum theory, we derive the expression of a new Hermite-Gaussian (HG) vortex beam. Based on the new Hermite-Gaussian (HG) vortex beam, we establish the model of the received probability density of orbital angular momentum (OAM) modes of this beam propagating through a turbulent ocean of anisotropy. By numerical simulation, we investigate the influence of oceanic turbulence and beam parameters on the received probability density of signal OAM modes and crosstalk OAM modes of the HG vortex beam. The results show that the influence of oceanic turbulence of anisotropy on the received probability of signal OAM modes is smaller than isotropic oceanic turbulence under the same condition, and the effect of salinity fluctuation on the received probability of the signal OAM modes is larger than the effect of temperature fluctuation. In the strong dissipation of kinetic energy per unit mass of fluid and the weak dissipation rate of temperature variance, we can decrease the effects of turbulence on the received probability of signal OAM modes by selecting a long wavelength and a larger transverse size of the HG vortex beam in the source's plane. In long distance propagation, the HG vortex beam is superior to the Laguerre-Gaussian beam for resisting the destruction of oceanic turbulence.

  6. Spiral phase plates with radial discontinuities for the generation of multiring orbital angular momentum beams: fabrication, characterization, and application

    Science.gov (United States)

    Ruffato, Gianluca; Massari, Michele; Carli, Marta; Romanato, Filippo

    2015-11-01

    A design of spiral phase plates for the generation of multiring beams carrying orbital angular momentum (OAM) is presented. Besides the usual helical profile, these phase plates present radial π-discontinuities in correspondence of the zeros of the associated Laguerre polynomials. Samples were fabricated by electron beam lithography over glass substrates coated with a polymethylmethacrylate resist layer. The optical response was analyzed and the purity of the generated beams was investigated in terms of Laguerre-Gaussian modes contributions. The far-field intensity pattern was compared with theoretical models and numerical simulations, while the expected phase features were confirmed by interferometric analysis with a Mach-Zehnder setup. The high quality of the output beams confirms the applicability of these phase plates for the generation of high-order OAM beams with nonzero radial index. An application consisting of the design of computer-generated holograms encoding information for light beams carrying phase singularities is presented and described. A numerical code based on an iterative Fourier transform algorithm has been developed for the computation of phase-only diffractive optical element for illumination under OAM beams. Numerical analysis and preliminary experimental results confirm the applicability of these devices as high-security optical elements for anticounterfeiting applications.

  7. Random wandering of laser beams with orbital angular momentum during propagation through atmospheric turbulence.

    Science.gov (United States)

    Aksenov, Valerii P; Kolosov, Valeriy V; Pogutsa, Cheslav E

    2014-06-10

    The propagation of laser beams having orbital angular momenta (OAM) in the turbulent atmosphere is studied numerically. The variance of random wandering of these beams is investigated with the use of the Monte Carlo technique. It is found that, among various types of vortex laser beams, such as the Laguerre-Gaussian (LG) beam, modified Bessel-Gaussian beam, and hypergeometric Gaussian beam, having identical initial effective radii and OAM, the LG beam occupying the largest effective volume in space is the most stable one.

  8. Longitudinal beam dynamics and FEL interaction on a negative momentum compaction storage ring

    CERN Document Server

    Hama, H

    1999-01-01

    A simulation study for longitudinal phase space of the electron bunch including effects of potential-well distortion and FEL interaction has been performed for both positive and negative momentum compaction factors on a storage ring. The trend of the bunch lengthening is well interpreted by the wake field due to inductive impedance. In spite of large energy spread in the case of the negative momentum compaction, FEL oscillation may be possible. The peak power of Q-switched lasing is higher than that in positive momentum compaction. There was, however, no significant difference in FEL power and particle distribution in the longitudinal phase space at the equilibrated state.

  9. Poynting vector and orbital angular momentum density of superpositions of Bessel beams

    CSIR Research Space (South Africa)

    Litvin, IA

    2011-08-01

    Full Text Available . Courtial, ?Measuring the orbital angular momentum of a single photon,? Phys. Rev. Lett. 88(25), 257901 (2002). 15. C. Gao, X. Qi, Y. Liu, J. Xin, and L. Wang, ?Sorting and detecting orbital angular momentum states by using a Dove prism embedded Mach.... Rev. Lett. 75(5), 826?829 (1995). 7. A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, ?Entanglement of the orbital angular momentum states of photons,? Nature 412(6844), 313?316 (2001). 8. A. Vaziri, G. Weihs, and A. Zeilinger, ?Experimental two-photon...

  10. Inclusive production of charged pions in p+p collisions at 158 GeV/c beam momentum

    CERN Document Server

    Alt, C.; Baatar, B.; Barna, D.; Bartke, J.; Betev, L.; Biakowska, H.; Blume, C.; Boimska, B.; Botje, M.; Bracinik, J.; Buncic, P.; Cerny, V.; Christakoglou, P.; Chvala, O.; Dinkelaker, P.; Dolejsi, J.; Eckardt, V.; Fischer, H.G.; Flierl, D.; Fodor, Z.; Foka, P.; Friese, V.; Gazdzicki, M.; Grebieszkow, K.; Hohne, C.; Kadija, K.; Karev, A.; Kliemant, M.; Kniege, S.; Kolesnikov, V.I.; Kornas, E.; Korus, R.; Kowalski, M.; Kraus, I.; Kreps, M.; van Leeuwen, M.; Lungwitz, B.; Makariev, M.; Malakhov, A.I.; Mateev, M.; Melkumov, G.L.; Mitrovski, M.; Mrowczynski, S.; Palla, G.; Panayotov, D.; Petridis, A.; Renfordt, R.; Rybczynski, M.; Rybicki, A.; Sandoval, A.; Schmitz, N.; Schuster, T.; Seyboth, P.; Sikler, F.; Skrzypczak, E.; Stefanek, G.; Stock, R.; Strobele, H.; Susa, T.; Sziklai, J.; Szymanski, P.; Trubnikov, V.; Varga, D.; Vassiliou, M.; Veres, G.I.; Vesztergombi, G.; Vranic, D.; Wenig, S.; Wetzler, A.; Wlodarczyk, Z.; Yoo, I.K.

    2006-01-01

    New results on the production of charged pions in p+p interactions are presented. The data come from a sample of 4.8 million inelastic events obtained with the NA49 detector at the CERN SPS at 158 GeV/c beam momentum. Pions are identified by energy loss measurement in a large TPC tracking system which covers a major fraction of the production phase space. Inclusive invariant cross sections are given on a grid of nearly 300 bins per charge over intervals from 0 to 2 GeV/c in transverse momentum and from 0 to 0.85 in Feynman x. The results are compared to existing data in overlapping energy ranges.

  11. Inclusive Production of Charged Pions in $p^+ p$ Collisions at 158 GeV/c Beam Momentum

    CERN Document Server

    Alt, C; Baatar, B; Barna, D; Bartke, Jerzy; Betev, L; Bialkowska, H; Blume, C; Boimska, B; Botje, M; Bracinik, J; Buncic, P; Cerny, V; Christakoglou, P; Chvala, O; Dinkelaker, P; Dolejsi, J; Eckardt, V; Fischer, H G; Flierl, D; Fodor, Z; Foka, P; Friese, V; Gazdzicki, M; Grebieszkow, K; Höhne, C; Kadija, K; Karev, A; Kliemant, M; Kniege, S; Kolesnikov, V I; Kornas, E; Korus, R; Kowalski, M; Kraus, I; Kreps, M; Van Leeuwen, M; Lungwitz, B; Makariev, M; Malakhov, A I; Mateev, M; Melkumov, G L; Mitrovski, M; Mrówczynski, S; Pálla, G; Panayotov, D; Petridis, A; Renfordt, R; Rybczynski, M; Rybicki, A; Sandoval, A; Schmitz, N; Schuster, T; Seyboth, P; Siklér, F; Skrzypczak, E; Stefanek, G; Stock, R; Ströbele, H; Susa, T; Sziklai, J; Szymanski, P; Trubnikov, V; Varga, D; Vassiliou, Maria; Veres, G I; Vesztergombi, G; Vranic, D; Wenig, S; Wetzler, A; Wodarczyk, Z; Yoo, I K

    2006-01-01

    New results on the production of charged pions in p+p interactions are presented. The data come from a sample of 4.8 million inelastic events obtained with the NA49 detector at the CERN SPS at 158 GeV/c beam momentum. Pions are identified by energy loss measurement in a large TPC tracking system which covers a major fraction of the production phase space. Inclusive invariant cross sections are given on a grid of nearly 300 bins per charge over intervals from 0 to 2 GeV/c in transverse momentum and from 0 to 0.85 in Feynman x. The results are compared to existing data in overlapping energy ranges

  12. Gaussian-beam-propagation theory for nonlinear optics involving an analytical treatment of orbital-angular-momentum transfer

    Science.gov (United States)

    Lanning, R. Nicholas; Xiao, Zhihao; Zhang, Mi; Novikova, Irina; Mikhailov, Eugeniy E.; Dowling, Jonathan P.

    2017-07-01

    We present a general, Gaussian spatial-mode propagation formalism for describing the generation of higher-order multi-spatial-mode beams generated during nonlinear interactions. Furthermore, to implement the theory, we simulate optical angular momentum transfer interactions and show how one can optimize the interaction to reduce the undesired modes. Past theoretical treatments of this problem have often been phenomenological, at best. Here we present an exact solution for the single-pass no-cavity regime, in which the nonlinear interaction is not overly strong. We apply our theory to two experiments, with very good agreement, and give examples of several more configurations, easily tested in the laboratory.

  13. Propagation of orbital angular momentum carrying beams through a perturbing medium

    CSIR Research Space (South Africa)

    Chaibi, A

    2013-09-01

    Full Text Available The orbital angular momentum of light has been suggested as a means of information transfer over free-space, yet the detected optical vortex is known to be sensitive to perturbation. Such effects have been studied theoretically, in particular...

  14. Vortex-MEMS filters for wavelength-selective orbital-angular-momentum beam generation

    DEFF Research Database (Denmark)

    Paul, Sujoy; Lyubopytov, Vladimir; Schumann, Martin F.

    2017-01-01

    and orbital angular momentum (OAM) domains at around 1550 nm, is considered as a compact, robust and cost-effective solution for simultaneous OAM- and WDM optical communications. Experimental spectra for azimuthal orders 1, 2 and 3 show OAM state purity >92% across 30 nm wavelength range. A demonstration...

  15. Measuring the orbital angular momentum density for a superposition of Bessel beams

    CSIR Research Space (South Africa)

    Dudley, Angela L

    2012-01-01

    Full Text Available To measure the Orbital Angular Momentum (OAM) density of superposition fields two steps are needed: generation and measurement. An azimuthally-varying phase (bounded by a ring-slit) placed in the spatial frequency domain produces a higher...

  16. Characteristics of off-waist incident anomalous vortex beams in highly nonlocal media

    Directory of Open Access Journals (Sweden)

    Zhen-Feng Yang

    Full Text Available In this paper, we focus on the effect of the off-waist incident condition on the propagation characteristics of anomalous vortex beams (AVBs in nonlocal media. An expression is derived mathematically in order to describe the propagation dynamics of AVBs in nonlocal media under the off-waist incident condition. Typical propagation characteristics induced by the off-waist incident condition are illustrated numerically. It is found that the propagation characteristics under the off-waist incident condition are much different from those under the on-waist incident condition. Keywords: Off-waist incidence, Anomalous vortex beam, Nonlocal media

  17. Neutron–proton bremsstrahlung as a possible probe of high-momentum component in nucleon momentum distribution

    Directory of Open Access Journals (Sweden)

    Hui Xue

    2016-04-01

    Full Text Available Neutron-proton bremsstrahlung in intermediate energy nucleus–nucleus collisions is proposed as a possible probe to study the high-momentum component in nucleon momentum distribution of finite nucleus. Based on the Boltzmann–Uehling–Uhlenbeck (BUU transport model, the effects of high-momentum component on the production of bremsstrahlung photons in the reaction of C12+12C collisions at different incident beam energies are studied. It is found that the high-momentum component increases the high-energy bremsstrahlung photon production remarkably. Furthermore, the ratio of photon production at different incident beam energies is suggested as a potential observable to probe the high-momentum component in nucleon momentum distribution of finite nucleus.

  18. Influence of laser beam incidence angle on laser lap welding quality of galvanized steels

    Science.gov (United States)

    Mei, Lifang; Yan, Dongbing; Chen, Genyu; Wang, Zhenhui; Chen, Shuixuan

    2017-11-01

    Based on the characteristics of laser welded structural parts of auto bodies, the influence of variation in laser beam incidence angle on the lap welding performance of galvanized auto-body sheets was studied. Lap welding tests were carried out on the galvanized sheets for auto-body application at different laser beam incidence angles by using the optimal welding parameters obtained through orthogonal experiment. The effects of incidence angle variation on seam appearance, cross-sectional shape, joint mechanical properties and microstructure of weldments were analyzed. In addition, the main factors influencing the value of incidence angle were investigated. According to the results, the weld seams had a good appearance as well as a fine, and uniform microstructure when the laser beam incidence angle was smaller than the critical incidence angle, and thus they could withstand great tensile and shear loads. Moreover, all tensile-shear specimens were fractured in the base material zone. When the laser beam incidence angle was larger than the critical incidence angle, defects like shrinkage and collapse tended to emerge, thereby resulting in the deteriorated weldability of specimens. Meanwhile, factors like the type and thickness of sheet, weld width as well as inter-sheet gap all had a certain effect on the value of laser beam incidence angle. When the sheet thickness was small and the weld width was narrow, the laser beam incidence angle could be increased appropriately. At the same time, small changes in the inter-sheet gap could greatly impact the value of incidence angle. When the inter-sheet gap was small, the laser beam incidence angle should not be too large.

  19. Perturbative studies of toroidal momentum transport using neutral beam injection modulation in the Joint European Torus: Experimental results, analysis methodology, and first principles modeling

    DEFF Research Database (Denmark)

    Mantica, P.; Tala, T.; Ferreira, J.S.

    2010-01-01

    Perturbative experiments have been carried out in the Joint European Torus [Fusion Sci. Technol. 53(4) (2008)] in order to identify the diffusive and convective components of toroidal momentum transport. The torque source was modulated either by modulating tangential neutral beam power...... or by modulating in antiphase tangential and normal beams to produce a torque perturbation in the absence of a power perturbation. The resulting periodic perturbation in the toroidal rotation velocity was modeled using time-dependent transport simulations in order to extract empirical profiles of momentum...

  20. Vector Laguerre-Gauss beams with polarization-orbital angular momentum entanglement in a graded-index medium.

    Science.gov (United States)

    Petrov, Nikolai I

    2016-07-01

    It is shown that the vector-vortex Laguerre-Gauss modes with polarization-orbital angular momentum (OAM) entanglement are the vector solutions of the Maxwell equations in a graded-index medium. Focusing of linearly and circularly polarized vortex light beams with nonzero azimuthal and radial indices in a cylindrical graded-index waveguide is investigated. The wave shape variation with distance taking into account the spin-orbit and nonparaxial effects is analyzed. The effect of long-term periodic revival of wave packets due to mode interference in a graded-index cylindrical optical waveguide is demonstrated. High efficiency transfer of a strongly focused spot through an optical waveguide over large distances takes place with a period of revival.

  1. Shape invariant higher-order Bessel-like beams carrying orbital angular momentum

    CSIR Research Space (South Africa)

    Ismail, Y

    2012-09-01

    Full Text Available We present a method for generating higher-order Bessel beams with z-dependent cone angles. Such fields, if engineered correctly, are shape invariant during propagation and thus do not suffer from a transition from a Bessel-shaped intensity profile...

  2. Pion-proton elastic scattering at 20 and 50 GeV/c incident momenta in the momentum transfer range 0.7 2

    International Nuclear Information System (INIS)

    Asa'd, Z.; Coupland, M.; Davis, D.G.; Duff, B.G.; Gjerpe, I.; Heymann, F.F.; Imrie, D.C.; Lowndes, R.; Lush, G.J.; Phillips, M.; Baglin, C.; Poulet, M.; Yvert, M.; Benso, S.; Buzzo, A.; Ferroni, S.; Gracco, V.; Macri, M.; Santroni, A.; Brobakken, K.; Bugge, L.; Buran, T.; Fearnley, T.; Helgaker, P.; Kirsebom, K.; Moe, A.; Soerensen, S.O.; Hansen, J.D.; Myrheim, J.; Skjevling, G.

    1982-01-01

    Measurements of the differential elastic cross sections for π - p scattering at incident momenta of 20 and 50 GeV/c and π + p at 50 GeV/c in the momentum transfer range 0.7 2 are presented. The data are compared with various models of elastic scattering. (orig.)

  3. The effects of laser beam incident angle and intensity distribution on Fabry-Perot etalon spectrum

    Science.gov (United States)

    Shen, Fahua; Wang, Yingying; Shi, Wenjuan; Chen, Ying; Liu, Mengling; Guo, Wenxin

    2017-11-01

    Fabry-Perot(F-P) etalon has important applications in laser detection, lidar and laser communication systems. In practical applications, the spectrum of the F-P etalon is affected by various factors, such as incident angle, divergence angle, spectral width, intensity distribution of the incident beam, absorption loss, surface defects of the plate and so on. The effects of the incident angle and the beam intensity distribution on F-P etalon spectrum are mainly analyzed. For the first time, taking into account both the beam incident angle and divergence angle, the precise analytical expression of the F-P etalon transmission spectrum is derived. For the Gaussian light intensity distribution, the precise analytical expression of the F-P etalon transmission spectrum is derived. The simulation analysis is carried out and the results are as follows. When the beam divergence angle is not zero, the incident angle increases, on the one hand, the center of the etalon spectrum is moved to the high frequency, and the frequency shift is linear with the square of the incident angle. The slope decreases with the increase of the divergence angle. On the other hand, resulting in peak reduction, spectral line broadening, and with the divergence angle increases, the more obvious the phenomenon. Considering the distribution of Gaussian light intensity, the spectrum of the etalon will be improved with the increase concentration of beam energy. On the one hand, the peak value is increased, the spectral line is narrowed and with the incidence angle increases, the degree of improvement is more obvious. On the one hand, the center of the spectrum moves toward the low frequency, but the larger the incident angle, the smaller the movement amount. The error of frequency discrimination or frequency locking by using the F-P etalon spectrum increases rapidly with the increase of the beam incident angle and beam divergence angle, and the Gaussian light intensity distribution beam can effectively

  4. $\\phi$ production in Pb-Pb collisions at 158 GeV/c per nucleon incident momentum

    CERN Document Server

    Alessandro, B; Arnaldi, R; Astruc, J; Atayan, M; Baglin, C; Baldit, A; Beolè, S; Boldea, V; Bordalo, P; Borges, G; Bussière, A; Capelli, L; Caponi, V; Castanier, C; Castor, J I; Chaurand, B; Chevrot, I; Cheynis, B; Chiavassa, E; Cicalò, C; Claudino, T; Comets, M P; Constans, N; Constantinescu, S; Cortese, P; Cruz, J; De Falco, A; De Marco, N; Dellacasa, G; Devaux, A; Dita, S; Drapier, O; Ducroux, L; Espagnon, B; Fargeix, J; Force, P; Gallio, M; Gavrilov, Yu K; Gerschel, C; Giubellino, P; Golubeva, M B; Gonin, M; Grigorian, A A; Grigoryanm, S; Grossiord, J Y; Guber, F F; Guichard, A; Gulkanian, H R; Hakobyan, R S; Idzik, M; Jouan, D; Karavitcheva, T L; Kluberg, L; Kurepin, A B; Le Bornec, Y; Lourenço, C; Macciotta, P; MacCormick, M; Marzari-Chiesa, A; Masera, M; Masoni, A; Monteno, M; Musso, A; Petiau, P; Piccotti, A; Pizzi, J R; Da Silva, W; Prino, F; Puddu, G; Quintans, C; Ramello, L; Ramos, S; Rato-Mendes, P; Riccati, L; Romana, A; Santos, H; Saturnini, P; Scalas, E; Scomparin, E; Serci, S; Shahoyan, R; Sigaudo, F; Silva, S; Sitta, M; Sonderegger, P; Tarrago, X; Topilskaya, N S; Usai, G L; Vercellin, Ermanno; Villatte, L; Willis, N

    2003-01-01

    The production of vector mesons phi , rho and omega has been measured in Pb-Pb collisions at 158 GeV/c per nucleon incident momentum at the CERN/SPS. The muon spectrometer of experiment NA50 detects phi , rho and omega mesons via their mu /sup +/ mu /sup -/ decay channel in the collision center of mass rapidity range 0

  5. Study of charged multiplicities and double scattering in anti pd interactions between 3 and 15 GeV/c incident momentum. General aspects of annihilation reactions

    International Nuclear Information System (INIS)

    Michalon-Mentzer, Marie-Eve.

    1979-01-01

    From a study of the charged multiplicity distributions, antipd and antipn interactions in the range of incident momentum going from 3 to 15 GeV/c have been analysed. The antipd and antipn topological cross sections have been calculated. The behavior of the different statistical moments obtained from the charged multiplicities as function of the incident momentum have been studied. We have analysed rescattering phenomena inside the deuteron and the rescattering fraction per antipd collisions was found to be of the order of 20%. Data are in good agreement with the predictions of the energy flux cascade model and the coherent tube model. General features of the antipn annihilation processes have been also studied in particular by means of collective variables like sphericity and thrust which describe jets properties or alignment effects of interactions [fr

  6. Production cross sections and momentum distributions of the projectile fragments of a 500 MeV/u 86Kr beam

    International Nuclear Information System (INIS)

    Weber, M.

    1993-07-01

    The projectile fragmentation of a 500 MeV/u 86 Kr beam in a beryllium, copper, respectively tantalum target was studied at the projectile-fragment separator of the GSI. The new neutron-rich isotopes 58 Ti, 61 V, 63 Cr, 66 Mn, 69 Fe, and 71 Co could be uniquely identified, furthermore a hint on the existence of 64 Cr, 72 Co, and 75 Ni resulted. The experimental production cross sections, which were determined for a large A and Z range, were compared with the predictions of three different models. The studies presented in the present thesis allow an extrapolation of the production cross section for the double-magic nucleus 78 Ni of only 0.6 pb. With increasing nuclear-charge number of the target material a larger production cross section for light fragments was observed. From these data it can be concluded that projectile-like fragments arise in peripheral and light fragments in central reactions. Furthermore production cross sections and parallel momentum distributions of the rubidium isotopes and the 86 Br were measured. To the experimentally observed charge-exchange products two possible processes can be assigned, namely the quasi-free nucleon-nucleon collision respectively the excitation of a Δresonance. (HSI)

  7. Recovering about 5 km of LHC Beam Vacuum System after Sector 3-4 Incident

    CERN Document Server

    Baglin, Vincent; Jenninger, Berthold; Jimenez, Jose; Mahner, Edgar; Schneider, Gerhard; Sinturel, Alexandre; Vidal, Alexis

    2010-01-01

    During the sec­tor 3-4 incident, the two apertures of the 3 km long cryogenic vacuum sectors of the CERN Large Hadron Collider (LHC) were brutally vented to helium. A systematic visual inspection of the beam pipe revealed the presence of soot, metallic debris and super insulation debris. After four month of cleaning, the beam vacuum system was recovered. This paper describes the tools and methodologies developed during this period, the achieved performances and discusses possible upgrades

  8. Study on laser welding of austenitic stainless steel by varying incident angle of pulsed laser beam

    Science.gov (United States)

    Kumar, Nikhil; Mukherjee, Manidipto; Bandyopadhyay, Asish

    2017-09-01

    In the present work, AISI 304 stainless steel sheets are laser welded in butt joint configuration using a robotic control 600 W pulsed Nd:YAG laser system. The objective of the work is of twofold. Firstly, the study aims to find out the effect of incident angle on the weld pool geometry, microstructure and tensile property of the welded joints. Secondly, a set of experiments are conducted, according to response surface design, to investigate the effects of process parameters, namely, incident angle of laser beam, laser power and welding speed, on ultimate tensile strength by developing a second order polynomial equation. Study with three different incident angle of laser beam 89.7 deg, 85.5 deg and 83 deg has been presented in this work. It is observed that the weld pool geometry has been significantly altered with the deviation in incident angle. The weld pool shape at the top surface has been altered from semispherical or nearly spherical shape to tear drop shape with decrease in incident angle. Simultaneously, planer, fine columnar dendritic and coarse columnar dendritic structures have been observed at 89.7 deg, 85.5 deg and 83 deg incident angle respectively. Weld metals with 85.5 deg incident angle has higher fraction of carbide and δ-ferrite precipitation in the austenitic matrix compared to other weld conditions. Hence, weld metal of 85.5 deg incident angle achieved higher micro-hardness of ∼280 HV and tensile strength of 579.26 MPa followed by 89.7 deg and 83 deg incident angle welds. Furthermore, the predicted maximum value of ultimate tensile strength of 580.50 MPa has been achieved for 85.95 deg incident angle using the developed equation where other two optimum parameter settings have been obtained as laser power of 455.52 W and welding speed of 4.95 mm/s. This observation has been satisfactorily validated by three confirmatory tests.

  9. The production of $\\rho$, $\\omega$ and $\\phi$ vector-mesons by protons and sulphur ions with incident momentum of 200 GeV/c per nucleon

    CERN Document Server

    Abreu, M C; Baglin, C; Baldit, C; Bedjidian, M; Bordalo, P; Borges, G; Bussière, A; Castor, J; Chaurand, B; Chevrot, I; Cheynis, B; Devaux, A; Drapier, O; Espagnon, B; Fargeix, J; Ferreira, R; Force, P; Gerschel, C; Grossiord, J Y; Guichard, A; Guimarães, J; Haroutunian, R; Jouan, D; Kluberg, L; Lourenço, C; Mourgues, S; Petiau, P; Pizzi, J R; Quintans, C; Ramos, S; Romana, A; Santos, H; Saturnini, P; Shahoyan, R; Sonderegger, P; Tarrago, X

    2005-01-01

    The production of rho omega and phi vector-mesons, detected through their mumu decay channel, is studied in p-W, S-S, S-Cu and S-U reactions at 200 GeV/c per nucleon incident momentum. Their inclusive cross-sections are determined in various transverse momentum intervals and their dependence on the projectile and target mass numbers is investigated. The relative yield B/sub mumu/sigma/sub phi //(B/sub mumu/sigmaas a function of the transverse momentum, p/sub T /, and of the collision centrality. While this ratio exhibits no significant dependence with p/sub T/, it clearly increases with the centrality of the collision. Effective temperatures deduced from the transverse mass spectra, dsigma/dM/sub T/, lead to values of Trho +omega equal or slightly higher than T/sub phi/. Both these effective temperatures smoothly increase from p-W to S-U reactions.

  10. Upper limit of the muon-neutrino mass and charged-pion mass from the momentum analysis of a surface muon beam

    International Nuclear Information System (INIS)

    Kettle, P.R.

    1996-01-01

    Using a surface muon beam and a magnetic spectrometer equipped with a position-sensitive detector, we have measured the muon momentum from pion decay at rest π + →μ + ν μ , to be p μ + =(29.79200±0.00011)MeV/c. This value together with the muon mass and the favoured pion mass leads to an upper limit of 0.17 MeV (90%CL) for the muon-neutrino mass. (author) 4 figs., 5 refs

  11. Upper limit of the muon-neutrino mass and charged-pion mass from the momentum analysis of a surface muon beam

    Energy Technology Data Exchange (ETDEWEB)

    Kettle, P.R. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1996-11-01

    Using a surface muon beam and a magnetic spectrometer equipped with a position-sensitive detector, we have measured the muon momentum from pion decay at rest {pi}{sup +}{yields}{mu}{sup +}{nu}{sub {mu}}, to be p{sub {mu}{sup +}}=(29.79200{+-}0.00011)MeV/c. This value together with the muon mass and the favoured pion mass leads to an upper limit of 0.17 MeV (90%CL) for the muon-neutrino mass. (author) 4 figs., 5 refs.

  12. Beam test measurements on GaAs pixel detectors at various angles of incidence

    Energy Technology Data Exchange (ETDEWEB)

    Braunschweig, W.; Breibach, J.; Graessel, D.; Koenig, St.; Kubicki, Th.; Luebelsmeyer, K.; Rente, C.; Roeper, Ch.; Siedling, R.; Syben, O.; Tenbusch, F.; Toporowski, M.; Xiao, W.J

    1999-08-01

    A GaAs pixel detector constructed in Aachen has been tested in a 4 GeV electron beam at DESY. The experimental setup allowed tilting the detector with respect to the beam line with angles of incidence from 0 deg. to 45 deg. . The sensor-array consisted of 8 x 16 pixels with a size of 125 x 125{mu}m{sup 2} each. The detector was made of a 250{mu}m thick Freiberger SI-GaAs wafer. An improved contact was formed on the backside, allowing safe operation of the detector in the soft breakdown regime. A double metal technique allowed bonding the single pixels linearly to the readout-chip. Using the the fast PreMux128 preamplifier multiplexer chip ({tau}{sub p} = 40ns) a signal to noise ratio of 29 was obtained for a beam angle of incidence of 0 deg. increasing up to 38 for 45 deg. The spatial resolution obtained with an angle of incidence of 45 deg. was (9.0 {+-} 6.0){mu}m while the resolution of the untilted detector is equal to the digital one (36.1{mu}m). For these testbeam-measurements the detector was connected to the electronics via wire-bonds. For future experiments bump-bonding connections are required. The results of a process for the formation of bump-bond connections on GaAs pixeldetectors are shown.

  13. Technical Note: On the impact of the incident electron beam energy on the primary dose component of flattening filter free photon beams.

    Science.gov (United States)

    Kuess, Peter; Georg, Dietmar; Palmans, Hugo; Lechner, Wolfgang

    2016-08-01

    For commercially available linear accelerators (Linacs), the electron energies of flattening filter free (FFF) and flattened (FF) beams are either identical or the electron energy of the FFF beam is increased to match the percentage depth dose curve (PDD) of the FF beam (in reference geometry). This study focuses on the primary dose components of FFF beams for both kinds of settings, studied on the same Linac. The measurements were conducted on a VersaHD Linac (Elekta, Crawley, UK) for both FF and FFF beams with nominal energies of 6 and 10 MV. In the clinical setting of the VersaHD, the energy of FFFM (Matched) beams is set to match the PDDs of the FF beams. In contrast the incident electron beam of the FFFU beam was set to the same energy as for the FF beam. Half value layers (HVLs) and a dual parameter beam quality specifier (DPBQS) were determined. For the 6 MV FFFM beam, HVL and DPBQS values were very similar compared to those of the 6 MV FF beam, while for the 10 MV FFFM and FF beams, only %dd(10)x and HVL values were comparable (differences below 1.5%). This shows that matching the PDD at one depth does not guarantee other beam quality dependent parameters to be matched. For FFFU beams, all investigated beam quality specifiers were significantly different compared to those for FF beams of the same nominal accelerator potential. The DPBQS of the 6 MV FF and FFFM beams was equal within the measurement uncertainty and was comparable to published data of a machine with similar TPR20,10 and %dd(10)x. In contrast to that, the DPBQS's two parameters of the 10 MV FFFM beam were substantially higher compared to those for the 10 MV FF beam. PDD-matched FF and FFF beams of both nominal accelerator potentials were observed to have similar HVL values, indicating similarity of their primary dose components. Using the DPBQS revealed that the mean attenuation coefficient was found to be the same within the uncertainty of 0.8% for 6 MV FF and 6 MV FFFM beams, while for 10 MV

  14. Technical Note: On the impact of the incident electron beam energy on the primary dose component of flattening filter free photon beams

    International Nuclear Information System (INIS)

    Kuess, Peter; Georg, Dietmar; Lechner, Wolfgang; Palmans, Hugo

    2016-01-01

    Purpose: For commercially available linear accelerators (Linacs), the electron energies of flattening filter free (FFF) and flattened (FF) beams are either identical or the electron energy of the FFF beam is increased to match the percentage depth dose curve (PDD) of the FF beam (in reference geometry). This study focuses on the primary dose components of FFF beams for both kinds of settings, studied on the same Linac. Methods: The measurements were conducted on a VersaHD Linac (Elekta, Crawley, UK) for both FF and FFF beams with nominal energies of 6 and 10 MV. In the clinical setting of the VersaHD, the energy of FFF M (Matched) beams is set to match the PDDs of the FF beams. In contrast the incident electron beam of the FFF U beam was set to the same energy as for the FF beam. Half value layers (HVLs) and a dual parameter beam quality specifier (DPBQS) were determined. Results: For the 6 MV FFF M beam, HVL and DPBQS values were very similar compared to those of the 6 MV FF beam, while for the 10 MV FFF M and FF beams, only %dd(10) x and HVL values were comparable (differences below 1.5%). This shows that matching the PDD at one depth does not guarantee other beam quality dependent parameters to be matched. For FFF U beams, all investigated beam quality specifiers were significantly different compared to those for FF beams of the same nominal accelerator potential. The DPBQS of the 6 MV FF and FFF M beams was equal within the measurement uncertainty and was comparable to published data of a machine with similar TPR 20,10 and %dd(10) x . In contrast to that, the DPBQS’s two parameters of the 10 MV FFF M beam were substantially higher compared to those for the 10 MV FF beam. Conclusions: PDD-matched FF and FFF beams of both nominal accelerator potentials were observed to have similar HVL values, indicating similarity of their primary dose components. Using the DPBQS revealed that the mean attenuation coefficient was found to be the same within the uncertainty of

  15. Peripheral pn production and decay angular distributions in the reaction pi /sup -/p to (pn)p at 12 GeV/c incident momentum

    CERN Document Server

    Ghidini, B; Cantore, A; Di Corato, M; Donald, R A; Eades, John; Edwards, D N; Edwards, M E; French, Bernard R; Fry, J R; Houlden, M A; Mandelli, L; Moebes, J P; Müller, K; Navach, F; Palano, A; Palazzi-Cerrina, C; Paul, E; Picciarelli, V; Renneberg, W; Rühmer, W; Smith, I; Zito, G

    1978-01-01

    The reaction pi /sup -/p to (pn)p/sub s/, where p/sub s/ is a slow proton, was measured at 12 GeV/c incident momentum with the CERN-OMEGA spectrometer. Both antiproton and proton were identified uniquely by electronics information. 1844 events with four-momentum transfer squared in the range 0.13

  16. Optimum solution of dual-ring double-scattering system for an incident beam with given phase space for proton beam spreading

    CERN Document Server

    Takada, Y

    2002-01-01

    A systematic method is given for deriving optimum scatterer parameters for the dual-ring double-scattering system for the incident proton beam with the given phase space parameters. This is accomplished by relating it to the known optimum solution for zero-emittance beam. Limitations on the phase space parameters of the beam incident on the first scatterer have been clarified to obtain such valid solutions. It is shown that the dual-ring double-scattering method can be applied to an incident beam with emittance as large as 100-200 pi mm mrad. The effect of the change of phase space parameters on the lateral distribution has been investigated. It was found that the larger the emittance of the beam, the more sensitive the fluence distribution is to the change of phase space parameters. The effect of the different emittances of the incident beam in x-theta, y-phi spaces is discussed. It is shown that lateral distribution is sensitive to the misalignment of the beam.

  17. Argon Beam Coagulator in Breast Surgery: Effect on the Incidence of Breast Seroma.

    Science.gov (United States)

    Lefemine, Valentina; Cornish, Julie A; Abou-Samra, Walid

    2011-12-01

    Although Argon Beam Coagulators (ABCs) are widely used in urological and gynecological procedures, there have been only two studies published so far on their use and benefits in breast surgery. This study compares the incidence of breast seroma following mastectomy upon the use of ABC versus standard monopolar diathermy. This is a retrospective cohort study, with data collected from January 2006 to August 2008 for all patients who underwent a simple mastectomy and axillary surgery. Outcomes included incidence of seroma, amount of drainage on day of discharge, and timing of seroma formation. Fifty-six patients were studied, with 30 undergoing simple mastectomy using ABC diathermy and 25 using simple diathermy. The incidence of postoperative breast seroma development was 30% (n = 9) in the former group and 36% (n = 9) in the latter. In the ABC group, a high postoperative drainage at discharge was predictive of developing a seroma; this was not observed in the monopolar group. The search for methods to reduce the incidence of seroma in breast surgery is ongoing worldwide. Despite a previous report, this study failed to show any significant difference between ABC and monopolar diathermy in the incidence of breast seroma formation following simple mastectomy and axillary surgery. ABC diathermy is more costly, and its use needs to be carefully considered in an era of a stretched National Health Service financial budget.

  18. Large momentum transfer phenomena

    International Nuclear Information System (INIS)

    Imachi, Masahiro; Otsuki, Shoichiro; Matsuoka, Takeo; Sawada, Shoji.

    1978-01-01

    The large momentum transfer phenomena in hadron reaction drastically differ from small momentum transfer phenomena, and are described in this paper. Brief review on the features of the large transverse momentum transfer reactions is described in relation with two-body reactions, single particle productions, particle ratios, two jet structure, two particle correlations, jet production cross section, and the component of momentum perpendicular to the plane defined by the incident protons and the triggered pions and transverse momentum relative to jet axis. In case of two-body process, the exponent N of the power law of the differential cross section is a value between 10 to 11.5 in the large momentum transfer region. The breaks of the exponential behaviors into the power ones are observed at the large momentum transfer region. The break would enable to estimate the order of a critical length. The large momentum transfer phenomena strongly suggest an important role of constituents of hadrons in the hard region. Hard rearrangement of constituents from different initial hadrons induces large momentum transfer reactions. Several rules to count constituents in the hard region have been proposed so far to explain the power behavior. Scale invariant quark interaction and hard reactions are explained, and a summary of the possible types of hard subprocess is presented. (Kato, T.)

  19. Probability density of orbital angular momentum mode of autofocusing Airy beam carrying power-exponent-phase vortex through weak anisotropic atmosphere turbulence.

    Science.gov (United States)

    Yan, Xu; Guo, Lixin; Cheng, Mingjian; Li, Jiangting; Huang, Qingqing; Sun, Ridong

    2017-06-26

    The probability densities of orbital angular momentum (OAM) modes of the autofocusing Airy beam (AAB) carrying power-exponent-phase vortex (PEPV) after passing through the weak anisotropic non-Kolmogorov turbulent atmosphere are theoretically formulated. It is found that the AAB carrying PEPV is the result of the weighted superposition of multiple OAM modes at differing positions within the beam cross-section, and the mutual crosstalk among different OAM modes will compensate the distortion of each OAM mode and be helpful for boosting the anti-jamming performance of the communication link. Based on numerical calculations, the role of the wavelength, waist width, topological charge and power order of PEPV in the probability density distribution variations of OAM modes of the AAB carrying PEPV is explored. Analysis shows that a relatively small beam waist and longer wavelength are good for separating the detection regions between signal OAM mode and crosstalk OAM modes. The probability density distribution of the signal OAM mode does not change obviously with the topological charge variation; but it will be greatly enhanced with the increase of power order. Furthermore, it is found that the detection region center position of crosstalk OAM mode is an emergent property resulting from power order and topological charge. Therefore, the power order can be introduced as an extra steering parameter to modulate the probability density distributions of OAM modes. These results provide guidelines for the design of an optimal detector, which has potential application in optical vortex communication systems.

  20. Generating millimeter-wave Bessel beam with orbital angular momentum using reflective-type metasurface inherently integrated with source

    Science.gov (United States)

    Shen, Yizhu; Yang, Jiawei; Meng, Hongfu; Dou, Wenbin; Hu, Sanming

    2018-04-01

    Metasurfaces, orbital angular momenta (OAM), and non-diffractive Bessel beams have been attracting worldwide research. Combining the benefits of these three promising techniques, this paper proposes a metasurface-based reflective-type approach to generate a first-order Bessel beam carrying OAM. To validate this approach, a millimeter-wave metasurface is analyzed, designed, fabricated, and measured. Experimental results agree well with simulation. Moreover, this reflective-type metasurface, generating a Bessel beam with OAM, is inherently integrated with a planar feeding source in the same single-layer printed circuit board. Therefore, the proposed design features low profile, low cost, easy integration with front-end active circuits, and no alignment error between the feeding source and the metasurface.

  1. A condensed matter electron momentum spectrometer with parallel detection in energy and momentum

    International Nuclear Information System (INIS)

    Storer, P.; Caprari, R.S.; Clark, S.A.C.; Vos, M.; Weigold, E.

    1994-03-01

    An electron momentum spectrometer has been constructed which measures electron binding energies and momenta by fully determining the kinematics of the incident, scattered and ejected electrons resulting from (e,2e) ionizing collisions in a thin solid foil. The spectrometer operates with incident beam energies of 20-30 keV in an asymmetric, non-coplanar scattering geometry. Bethe ridge kinematics are used. The technique uses transmission through the target foil, but it is most sensitive to the surface from which the 1.2 keV electrons emerge, to a depth of about 5 nm. Scattered and ejected electron energies and azimuthal angles are detected in parallel using position sensitive detection, yielding true coincidence count rates of 6 Hz from a 5.5 nm thick evaporated carbon target and an incident beam current of around 100 nA. The energy resolution is approximately 1.3 eV and momentum resolution approximately 0.15 a 0 -1 . The energy resolution could readily be improved by monochromating the incident electron beam. 28 refs., 15 figs

  2. Inclusive production of protons, anti-protons and neutrons in p+p collisions at 158 GeV/c beam momentum

    CERN Document Server

    Anticic, T.; Bartke, J.; Betev, L.; Bialkowska, H.; Blume, C.; Boimska, B.; Bracinik, J.; Cerny, V.; Chvala, O.; Dolejsi, J.; Eckardt, V.; Fischer, H.G.; Fodor, Z.; Foka, P.; Friese, V.; Gazdzicki, M.; Hohne, C.; Kadija, K.; Karev, A.; Kolesnikov, V.; Kowalski, M.; Kreps, M.; Makariev, M.; Malakhov, A.; Mateev, M.; Melkumov, G.; Mitrovski, M.; Mrowczynski, S.; Renfordt, R.; Rybczynski, M.; Rybicki, A.; Sandoval, A.; Schmitz, N.; Seyboth, P.; Stefanek, G.; Stock, R.; Strobele, H.; Susa, T.; Szymanski, P.; Trubnikov, V.; Varga, D.; Vesztergombi, G.; Vranic, D.; Wenig, S.; Wlodarczyk, Z.; Wojtaszek, A.

    2010-01-01

    New data on the production of protons, anti-protons and neutrons in p+p interactions are presented. The data come from a sample of 4.8 million inelastic events obtained with the NA49 detector at the CERN SPS at 158 GeV/c beam momentum. The charged baryons are identified by energy loss measurement in a large TPC tracking system. Neutrons are detected in a forward hadronic calorimeter. Inclusive invariant cross sections are obtained in intervals from 0 to 1.9 GeV/c (0 to 1.5 GeV/c) in transverse momentum and from -0.05 to 0.95 (-0.05 to 0.4) in Feynman x for protons (anti-protons), respectively. pT integrated neutron cross sections are given in the interval from 0.1 to 0.9 in Feynman x. The data are compared to a wide sample of existing results in the SPS and ISR energy ranges as well as to proton and neutron measurements from HERA and RHIC.

  3. RETRACTED — Orbital angular momentum entanglement states of Gaussian-Schell beam pumping in low-order non-Kolmogorov turbulent aberration channels

    Science.gov (United States)

    Chen, Hongmei; Sheng, Xueli; Zhao, Fengsheng; Zhang, Yixin

    2013-04-01

    Based on the Rytov approximation, we analyze the effect of the pump beam's space-coherence of parametric down-conversion on entangled orbital angular momentum (OAM) states propagation in slant low-order turbulence aberration channels. The detection probability of signal photon of entangled OAM states is modeled. Our numerical evaluation shows that the signal photon detection probability and the crosstalk probability decay nonlinearly with the increasing of the number of space coherent speckle and the OAM quantum number of signal photon in the channels of Z-tilt aberration, astigmatism aberration, defocus aberration and coma aberration declines. The OAM entanglement states of low spatial coherence are improper to be used for the carrier wave of the encoding of OAM. The signal photon detection probability decreases as the power-law exponent of non-Kolmogorov spectrum increases from 3 to 4, in the turbulence Z-tilt, astigmatism and coma aberrations channels.

  4. Orbital rotation without orbital angular momentum: mechanical action of the spin part of the internal energy flow in light beams

    DEFF Research Database (Denmark)

    Angelsky, O. V.; Bekshaev, A. Ya; Maksimyak, P. P.

    2012-01-01

    The internal energy flow in a light beam can be divided into the "orbital" and "spin" parts, associated with the spatial and polarization degrees of freedom of light. In contrast to the orbital one, experimental observation of the spin flow seems problematic because it is converted into an orbital...

  5. A study of the angular distribution of the secondary particles of anti pAg/Br reactions at 1.4 GeV/c incident momentum observed in photographic emulsion

    International Nuclear Information System (INIS)

    Breivik, F.O.; Jacobsen, T.; Soerensen, S.O.

    1983-04-01

    Some features of anti pAg/Br reactions at 1.4 GeV/c incident momentum are studied by means of the emulsion technique. The distributions of the number of charged particles/event are presented. The angular distributions indicate som anisotropic process in the nuclear matter, possibly shock waves, and some back-to-back emission

  6. Development of highly polished, grazing incidence mirrors for synchrotron radiation beam lines at SSRL

    International Nuclear Information System (INIS)

    Tirsell, K.G.; Berglin, E.J.; Fuchs, B.A.; Holdener, F.R.; Humpal, H.H.; Karpenko, V.P.; Kulkarni, S.; Fantone, S.D.

    1987-08-01

    New platinum-coated grazing incidence mirrors with low surface roughnesses have been developed to focus bending magnet radiation from the SSRL/SLAC SPEAR storage ring on the entrance slits of two Beam Line VIII grating monochromators. The first mirror in the toroidal grating monochromator (TGM) branch is a cooled SiC cylinder capable of absorbing synchrotron radiation power levels of up to 260 watts without excessive distortion. This mirror deflects the beam vertically through a 12/degree/ angle and focuses it sagitally on the TGM entrance slit plane. The second TGM optical element is a fused-silica spherical mirror with a large radius of curvature that deflects the beam vertically through an additional 12/degree/ and focuses it tangentially with 3/1 demagnification. The first mirror in our spherical grating branch is a 5/degree/-vertically deflecting, cooled SiC toroid designed to focus tangentially on the monochromator entrance slits and sagitally in the exit slits. A 4/degree/-deflecting fused silica mirror is used after the exit sites in each beam line to refocus on to the sample. For this application a thin cylinder is bent to approximate an ellipsoid. The mirrors are now installed at SSRL and performance measurements are planned. Qualitatively the focus of the TGM optics at the entrance slit plane appears very good. In this paper we discuss considerations leading to the choice of SiC for each of the two first mirrors. We present highlights of the development of these mirrors with some emphasis on SiC polishing techniques. In addition, the specialized metrology developed to produce the more difficult figure of the toroid will be described. Measured surface roughness and figure results will be presented. 19 refs., 11 figs

  7. Development of highly polished, grazing incidence mirrors for synchrotron radiation beam lines at SSRL

    Energy Technology Data Exchange (ETDEWEB)

    Tirsell, K.G.; Berglin, E.J.; Fuchs, B.A.; Holdener, F.R.; Humpal, H.H.; Karpenko, V.P.; Kulkarni, S.; Fantone, S.D.

    1987-08-01

    New platinum-coated grazing incidence mirrors with low surface roughnesses have been developed to focus bending magnet radiation from the SSRL/SLAC SPEAR storage ring on the entrance slits of two Beam Line VIII grating monochromators. The first mirror in the toroidal grating monochromator (TGM) branch is a cooled SiC cylinder capable of absorbing synchrotron radiation power levels of up to 260 watts without excessive distortion. This mirror deflects the beam vertically through a 12/degree/ angle and focuses it sagitally on the TGM entrance slit plane. The second TGM optical element is a fused-silica spherical mirror with a large radius of curvature that deflects the beam vertically through an additional 12/degree/ and focuses it tangentially with 3/1 demagnification. The first mirror in our spherical grating branch is a 5/degree/-vertically deflecting, cooled SiC toroid designed to focus tangentially on the monochromator entrance slits and sagitally in the exit slits. A 4/degree/-deflecting fused silica mirror is used after the exit sites in each beam line to refocus on to the sample. For this application a thin cylinder is bent to approximate an ellipsoid. The mirrors are now installed at SSRL and performance measurements are planned. Qualitatively the focus of the TGM optics at the entrance slit plane appears very good. In this paper we discuss considerations leading to the choice of SiC for each of the two first mirrors. We present highlights of the development of these mirrors with some emphasis on SiC polishing techniques. In addition, the specialized metrology developed to produce the more difficult figure of the toroid will be described. Measured surface roughness and figure results will be presented. 19 refs., 11 figs.

  8. Second crossover energy of insulating materials using stationary electron beam under normal incidence

    Energy Technology Data Exchange (ETDEWEB)

    Rau, E.I. [Institute of Microelectronics Technology of Russian Academy of Science, 142432 Chernogolovka, Moscow District (Russian Federation)], E-mail: rau@phys.msu.ru; Fakhfakh, S. [LaMaCop, Faculte des Sciences, Route Soukra km 3, BP 802, CP 3018 Sfax (Tunisia); Andrianov, M.V.; Evstafeva, E.N. [Institute of Microelectronics Technology of Russian Academy of Science, 142432 Chernogolovka, Moscow District (Russian Federation); Jbara, O. [UTAP/LASSI, EA 3802, Faculte des Sciences, BP 1039, 51687 Reims Cedex 2 (France)], E-mail: omar.jbara@univ-reims.fr; Rondot, S.; Mouze, D. [UTAP/LASSI, EA 3802, Faculte des Sciences, BP 1039, 51687 Reims Cedex 2 (France)

    2008-03-15

    The purpose of this paper is to give some aspects of charging effects on dielectric materials submitted to continuous electron beam irradiation in a scanning electron microscope (SEM). When the dielectric is irradiated continuously, the so-called total yield approach (TYA) used to predict the sign of the charge appeared on electron irradiated insulators fails because the charge accumulated in the dielectric interferes with the electrons emission processes. Based on previous experimental and theoretical works found in the literature, an analysis of the evolution of the electron yield curves {sigma} = f(E{sub 0}) of insulators during irradiation is given. The aim of this work is firstly to determine experimentally the second crossover energy E{sub 2C} under continuous electron irradiation (charging conditions) and secondly to demonstrate that the charge balance occurs at this beam energy and not at E{sub 2} the energy deduced from non-charging conditions (pulse primary electron beam experiments) as commonly asserted. It is however possible to apply the TYA by substituting the critical energy E{sub 2} for E{sub 2C}. The experimental procedure is based on simultaneous time dependent measurements of surface potential, leakage current and displacement current. The study underlines the difference between the landing energy of primary electrons E{sub L} at the steady state and the second crossover energy, E{sub 2C}, for charged samples. Some preliminary results are also obtained concerning the influence of the incident beam density on the energy E{sub 2C}. The samples used for this study are PMMA, polycrystalline silicone dioxide (p-SiO{sub 2}), polycrystalline alumina (p-Al{sub 2}O{sub 3}) and soda lime glass (SLG)

  9. Second crossover energy of insulating materials using stationary electron beam under normal incidence

    International Nuclear Information System (INIS)

    Rau, E.I.; Fakhfakh, S.; Andrianov, M.V.; Evstafeva, E.N.; Jbara, O.; Rondot, S.; Mouze, D.

    2008-01-01

    The purpose of this paper is to give some aspects of charging effects on dielectric materials submitted to continuous electron beam irradiation in a scanning electron microscope (SEM). When the dielectric is irradiated continuously, the so-called total yield approach (TYA) used to predict the sign of the charge appeared on electron irradiated insulators fails because the charge accumulated in the dielectric interferes with the electrons emission processes. Based on previous experimental and theoretical works found in the literature, an analysis of the evolution of the electron yield curves σ = f(E 0 ) of insulators during irradiation is given. The aim of this work is firstly to determine experimentally the second crossover energy E 2C under continuous electron irradiation (charging conditions) and secondly to demonstrate that the charge balance occurs at this beam energy and not at E 2 the energy deduced from non-charging conditions (pulse primary electron beam experiments) as commonly asserted. It is however possible to apply the TYA by substituting the critical energy E 2 for E 2C . The experimental procedure is based on simultaneous time dependent measurements of surface potential, leakage current and displacement current. The study underlines the difference between the landing energy of primary electrons E L at the steady state and the second crossover energy, E 2C , for charged samples. Some preliminary results are also obtained concerning the influence of the incident beam density on the energy E 2C . The samples used for this study are PMMA, polycrystalline silicone dioxide (p-SiO 2 ), polycrystalline alumina (p-Al 2 O 3 ) and soda lime glass (SLG)

  10. Optical Angular Momentum

    International Nuclear Information System (INIS)

    Arimondo, Ennio

    2004-01-01

    For many years the Institute of Physics has published books on hot topics based on a collection of reprints from different journals, including some remarks by the editors of each volume. The book on Optical Angular Momentum, edited by L Allen, S M Barnett and M J Padgett, is a recent addition to the series. It reproduces forty four papers originally published in different journals and in a few cases it provides direct access to works not easily accessible to a web navigator. The collection covers nearly a hundred years of progress in physics, starting from an historic 1909 paper by Poynting, and ending with a 2002 paper by Padgett, Barnett and coworkers on the measurement of the orbital angular momentum of a single photon. The field of optical angular momentum has expanded greatly, creating an interdisciplinary attraction for researchers operating in quantum optics, atomic physics, solid state physics, biophysics and quantum information theory. The development of laser optics, especially the control of single mode sources, has made possible the specific design of optical radiation modes with a high degree of control on the light angular momentum. The editors of this book are important figures in the field of angular momentum, having contributed to key progress in the area. L Allen published an historical paper in 1999, he and M J Padgett (together with M Babiker) produced few years ago a long review article which is today still the most complete basic introduction to the angular momentum of light, while S M Barnett has contributed several high quality papers to the progress of this area of physics. The editors' choice provides an excellent overview to all readers, with papers classified into eight different topics, covering the basic principles of the light and spin and orbital angular momentum, the laboratory tools for creating laser beams carrying orbital angular momentum, the optical forces and torques created by laser beams carrying angular momentum on

  11. Compensation of errors due to incident beam drift in a 3 DOF measurement system for linear guide motion.

    Science.gov (United States)

    Hu, Pengcheng; Mao, Shuai; Tan, Jiu-Bin

    2015-11-02

    A measurement system with three degrees of freedom (3 DOF) that compensates for errors caused by incident beam drift is proposed. The system's measurement model (i.e. its mathematical foundation) is analyzed, and a measurement module (i.e. the designed orientation measurement unit) is developed and adopted to measure simultaneously straightness errors and the incident beam direction; thus, the errors due to incident beam drift can be compensated. The experimental results show that the proposed system has a deviation of 1 μm in the range of 200 mm for distance measurements, and a deviation of 1.3 μm in the range of 2 mm for straightness error measurements.

  12. Dynamic grazing incidence fast atom diffraction during molecular beam epitaxial growth of GaAs

    International Nuclear Information System (INIS)

    Atkinson, P.; Eddrief, M.; Etgens, V. H.; Khemliche, H.; Debiossac, M.; Mulier, M.; Lalmi, B.; Roncin, P.; Momeni, A.

    2014-01-01

    A Grazing Incidence Fast Atom Diffraction (GIFAD) system has been mounted on a commercial molecular beam epitaxy chamber and used to monitor GaAs growth in real-time. In contrast to the conventionally used Reflection High Energy Electron Diffraction, all the GIFAD diffraction orders oscillate in phase, with the change in intensity related to diffuse scattering at step edges. We show that the scattered intensity integrated over the Laue circle is a robust method to monitor the periodic change in surface roughness during layer-by-layer growth, with oscillation phase and amplitude independent of incidence angle and crystal orientation. When there is a change in surface reconstruction at the start of growth, GIFAD intensity oscillations show that there is a corresponding delay in the onset of layer-by-layer growth. In addition, changes in the relative intensity of different diffraction orders have been observed during growth showing that GIFAD has the potential to provide insight into the preferential adatom attachment sites on the surface reconstruction during growth.

  13. Malfunctions of Implantable Cardiac Devices in Patients Receiving Proton Beam Therapy: Incidence and Predictors

    Energy Technology Data Exchange (ETDEWEB)

    Gomez, Daniel R., E-mail: dgomez@mdanderson.org [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Poenisch, Falk [Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Pinnix, Chelsea C. [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Sheu, Tommy [Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Chang, Joe Y. [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Memon, Nada [Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Mohan, Radhe [Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Rozner, Marc A. [Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Dougherty, Anne H. [Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States)

    2013-11-01

    Purpose: Photon therapy has been reported to induce resets of implanted cardiac devices, but the clinical sequelae of treating patients with such devices with proton beam therapy (PBT) are not well known. We reviewed the incidence of device malfunctions among patients undergoing PBT. Methods and Materials: From March 2009 through July 2012, 42 patients with implanted cardiac implantable electronic devices (CIED; 28 pacemakers and 14 cardioverter-defibrillators) underwent 42 courses of PBT for thoracic (23, 55%), prostate (15, 36%), liver (3, 7%), or base of skull (1, 2%) tumors at a single institution. The median prescribed dose was 74 Gy (relative biological effectiveness; range 46.8-87.5 Gy), and the median distance from the treatment field to the CIED was 10 cm (range 0.8-40 cm). Maximum proton and neutron doses were estimated for each treatment course. All CIEDs were checked before radiation delivery and monitored throughout treatment. Results: Median estimated peak proton and neutron doses to the CIED in all patients were 0.8 Gy (range 0.13-21 Gy) and 346 Sv (range 11-1100 mSv). Six CIED malfunctions occurred in 5 patients (2 pacemakers and 3 defibrillators). Five of these malfunctions were CIED resets, and 1 patient with a defibrillator (in a patient with a liver tumor) had an elective replacement indicator after therapy that was not influenced by radiation. The mean distance from the proton beam to the CIED among devices that reset was 7.0 cm (range 0.9-8 cm), and the mean maximum neutron dose was 655 mSv (range 330-1100 mSv). All resets occurred in patients receiving thoracic PBT and were corrected without clinical incident. The generator for the defibrillator with the elective replacement indicator message was replaced uneventfully after treatment. Conclusions: The incidence of CIED resets was about 20% among patients receiving PBT to the thorax. We recommend that PBT be avoided in pacing-dependent patients and that patients with any type of CIED receiving

  14. Malfunctions of Implantable Cardiac Devices in Patients Receiving Proton Beam Therapy: Incidence and Predictors

    International Nuclear Information System (INIS)

    Gomez, Daniel R.; Poenisch, Falk; Pinnix, Chelsea C.; Sheu, Tommy; Chang, Joe Y.; Memon, Nada; Mohan, Radhe; Rozner, Marc A.; Dougherty, Anne H.

    2013-01-01

    Purpose: Photon therapy has been reported to induce resets of implanted cardiac devices, but the clinical sequelae of treating patients with such devices with proton beam therapy (PBT) are not well known. We reviewed the incidence of device malfunctions among patients undergoing PBT. Methods and Materials: From March 2009 through July 2012, 42 patients with implanted cardiac implantable electronic devices (CIED; 28 pacemakers and 14 cardioverter-defibrillators) underwent 42 courses of PBT for thoracic (23, 55%), prostate (15, 36%), liver (3, 7%), or base of skull (1, 2%) tumors at a single institution. The median prescribed dose was 74 Gy (relative biological effectiveness; range 46.8-87.5 Gy), and the median distance from the treatment field to the CIED was 10 cm (range 0.8-40 cm). Maximum proton and neutron doses were estimated for each treatment course. All CIEDs were checked before radiation delivery and monitored throughout treatment. Results: Median estimated peak proton and neutron doses to the CIED in all patients were 0.8 Gy (range 0.13-21 Gy) and 346 Sv (range 11-1100 mSv). Six CIED malfunctions occurred in 5 patients (2 pacemakers and 3 defibrillators). Five of these malfunctions were CIED resets, and 1 patient with a defibrillator (in a patient with a liver tumor) had an elective replacement indicator after therapy that was not influenced by radiation. The mean distance from the proton beam to the CIED among devices that reset was 7.0 cm (range 0.9-8 cm), and the mean maximum neutron dose was 655 mSv (range 330-1100 mSv). All resets occurred in patients receiving thoracic PBT and were corrected without clinical incident. The generator for the defibrillator with the elective replacement indicator message was replaced uneventfully after treatment. Conclusions: The incidence of CIED resets was about 20% among patients receiving PBT to the thorax. We recommend that PBT be avoided in pacing-dependent patients and that patients with any type of CIED receiving

  15. Momentum distributions

    International Nuclear Information System (INIS)

    Simmons, R.O.

    1984-01-01

    The content of the portion of the workshop concerned with momentum distributions in condensed matter is outlined and the neutron scattering approach to their measurement is briefly described. Results concerning helium systems are reviewed. Some theoretical aspects are briefly mentioned

  16. Velocity-tunable slow beams of cold O2 in a single spin-rovibronic state with full angular-momentum orientation by multistage Zeeman deceleration

    Science.gov (United States)

    Wiederkehr, A. W.; Schmutz, H.; Motsch, M.; Merkt, F.

    2012-08-01

    Cold samples of oxygen molecules in supersonic beams have been decelerated from initial velocities of 390 and 450 m s-1 to final velocities in the range between 150 and 280 m s-1 using a 90-stage Zeeman decelerator. (2 + 1) resonance-enhanced-multiphoton-ionization (REMPI) spectra of the 3sσ g 3Π g (C) ? two-photon transition of O2 have been recorded to characterize the state selectivity of the deceleration process. The decelerated molecular sample was found to consist exclusively of molecules in the J ‧‧ = 2 spin-rotational component of the X ? ground state of O2. Measurements of the REMPI spectra using linearly polarized laser radiation with polarization vector parallel to the decelerator axis, and thus to the magnetic-field vector of the deceleration solenoids, further showed that only the ? magnetic sublevel of the N‧‧ = 1, J ‧‧ = 2 spin-rotational level is populated in the decelerated sample, which therefore is characterized by a fully oriented total-angular-momentum vector. By maintaining a weak quantization magnetic field beyond the decelerator, the polarization of the sample could be maintained over the 5 cm distance separating the last deceleration solenoid and the detection region.

  17. High-Capacity Free-Space Optical Communications Between a Ground Transmitter and a Ground Receiver via a UAV Using Multiplexing of Multiple Orbital-Angular-Momentum Beams.

    Science.gov (United States)

    Li, Long; Zhang, Runzhou; Zhao, Zhe; Xie, Guodong; Liao, Peicheng; Pang, Kai; Song, Haoqian; Liu, Cong; Ren, Yongxiong; Labroille, Guillaume; Jian, Pu; Starodubov, Dmitry; Lynn, Brittany; Bock, Robert; Tur, Moshe; Willner, Alan E

    2017-12-12

    We explore the use of orbital-angular-momentum (OAM)-multiplexing to increase the capacity of free-space data transmission to moving platforms, with an added potential benefit of decreasing the probability of data intercept. Specifically, we experimentally demonstrate and characterize the performance of an OAM-multiplexed, free-space optical (FSO) communications link between a ground transmitter and a ground receiver via a moving unmanned-aerial-vehicle (UAV). We achieve a total capacity of 80 Gbit/s up to 100-m-roundtrip link by multiplexing 2 OAM beams, each carrying a 40-Gbit/s quadrature-phase-shift-keying (QPSK) signal. Moreover, we investigate for static, hovering, and moving conditions the effects of channel impairments, including: misalignments, propeller-induced airflows, power loss, intermodal crosstalk, and system bit error rate (BER). We find the following: (a) when the UAV hovers in the air, the power on the desired mode fluctuates by 2.1 dB, while the crosstalk to the other mode is -19 dB below the power on the desired mode; and (b) when the UAV moves in the air, the power fluctuation on the desired mode increases to 4.3 dB and the crosstalk to the other mode increases to -10 dB. Furthermore, the channel crosstalk decreases with an increase in OAM mode spacing.

  18. Multiple scattering of a zero-order Bessel beam with arbitrary incidence by an aggregate of uniaxial anisotropic spheres

    International Nuclear Information System (INIS)

    Li, Z.J.; Wu, Z.S.; Qu, T.; Shang, Q.C.; Bai, L.

    2016-01-01

    Based on the generalized multiparticle Mie theory, multiple scattering of an aggregate of uniaxial anisotropic spheres illuminated by a zero-order Bessel beam (ZOBB) with arbitrary propagation direction is investigated. The particle size and configuration are arbitrary. The arbitrary incident Bessel beam is expanded in terms of spherical vector wave functions (SVWFs). Utilizing the vector addition theorem of SVWFs, interactive and total scattering coefficients are derived through the continuous boundary conditions on which the interaction of the particles is considered. The accuracy of the theory and codes are verified by comparing results with those obtained for arbitrary plane wave incidence by CST simulation, and for ZOBB incidence by a numerical method. The effects of angle of incidence, pseudo-polarization angle, half-conical angle, beam center position, and permittivity tensor elements on the radar cross sections (RCSs) of several types of collective uniaxial anisotropic spheres, such as a linear chain, a 4×4×4 cube-shaped array, and other periodical structures consisting of massive spheres, are numerically analyzed. Selected results on the properties of typical particles such as TiO 2 , SiO 2 , or other particle lattices are calculated. This investigation could provide an effective test for further research on the scattering characteristics of an aggregate of anisotropic spheres by a high-order Bessel vortex beam. The results have important application in optical tweezers and particle manipulation. - Highlights: • Scattering of Bessel beam by an aggregate of uniaxial anisotropic spheres is studied. • The zero-order Bessel beam propagates and polarizes along arbitrary direction. • The accuracy of expansion coefficients, the scattering theory and codes is verified. • Effects of various parameters on scattering properties are numerically discussed. • Scattering properties of several type of periodical array are numerically analyzed.

  19. Pion-proton elastic scattering at 20 and 50 GeV/c incident momenta in the momentum transfer range 0. 7 < vertical stroketvertical stroke < 8. 0 (GeV/c)/sup 2/

    Energy Technology Data Exchange (ETDEWEB)

    Asa' d, Z.; Coupland, M.; Davis, D.G.; Duff, B.G.; Gjerpe, I.; Heymann, F.F.; Imrie, D.C.; Lowndes, R.; Lush, G.J.; Phillips, M. (University Coll., London (UK))

    1982-12-09

    Measurements of the differential elastic cross sections for ..pi../sup -/p scattering at incident momenta of 20 and 50 GeV/c and ..pi../sup +/p at 50 GeV/c in the momentum transfer range 0.7 < vertical stroketvertical stroke < 8.0 (GeV/c)/sup 2/ are presented. The data are compared with various models of elastic scattering.

  20. Wideband converter of a charge of particle beam incident on a Faraday cylinder into a number of pulses

    International Nuclear Information System (INIS)

    Shchagin, A.V.; Lysenko, V.F.

    1985-01-01

    An electric circuit of a beam positive charge-pulse converter during beam incidence on a Faraday cylinder (conversion of Faraday cylinder current into F frequency, where F=10 10 J, where J - is the Faraday cylinder current) is described. Conversion ratio is 10 10 pulses/KP (10 10 Hz/A). Input current change limits are 10 -10 -10 -4 A. Conversion error is |ΔF| -3 F +0.1 Hz). ''Dead'' time is absent. Input resistance of the converter is close to zero

  1. Angular Momentum

    Science.gov (United States)

    Shakur, Asif; Sinatra, Taylor

    2013-01-01

    The gyroscope in a smartphone was employed in a physics laboratory setting to verify the conservation of angular momentum and the nonconservation of rotational kinetic energy. As is well-known, smartphones are ubiquitous on college campuses. These devices have a panoply of built-in sensors. This creates a unique opportunity for a new paradigm in…

  2. Large transverse momentum phenomena

    International Nuclear Information System (INIS)

    Brodsky, S.J.

    1977-09-01

    It is pointed out that it is particularly significant that the quantum numbers of the leading particles are strongly correlated with the quantum numbers of the incident hadrons indicating that the valence quarks themselves are transferred to large p/sub t/. The crucial question is how they get there. Various hadron reactions are discussed covering the structure of exclusive reactions, inclusive reactions, normalization of inclusive cross sections, charge correlations, and jet production at large transverse momentum. 46 references

  3. Study of Hadronic Jets Produced by Charged Pion and Proton Beams Incident on Hydrogen and Aluminum Targets

    Energy Technology Data Exchange (ETDEWEB)

    Yung, Kar Woo [California Inst. of Technology (CalTech), Pasadena, CA (United States)

    1979-09-19

    High transverse momentum ($P_T$) particles are thought to reflect the underlying parton (quark or gluon) mechanisms of hadron interactions. A particularly simple model by Feynman, Field and Fox (or FFF>, involves hard scattering of a pair of partons via gluon exchange (Quantum Chromodynamics or GCD) with subsequent fragmentation or the partons into hadrons. We present results from an experiment (E260 at Fermilab) on the production of Jets (groups of particles) and single charged particles, at both low and high $P_T$, in 200 Gev interactions. The experiment used a calorimeter triggered multiparticle spectrometer. Results are presented on the comparisons of cross sections and associated charged particle distributions for pion and proton beams and aluminium and hydrogen targets.

  4. A code to determine the energy distribution, the incident energy and the flux of a beam of light ions into a stack of foils

    International Nuclear Information System (INIS)

    Sonzogni, A.A.; Romo, A.S.M.A.; Frosch, W.R.; Nassiff, S.J.

    1992-01-01

    The stacked-foil technique is one of the most used methods to obtain excitation functions of nuclear reactions using light ions as projectiles. The purpose of this program is the calculation of the energy of the beam in the stack, as well as to obtain the incident energy and the flux of the beam by using monitor excitation functions. (orig.)

  5. Plasmons with orbital angular momentum

    International Nuclear Information System (INIS)

    Mendonca, J. T.; Ali, S.; Thide, B.

    2009-01-01

    Electron plasma waves carrying orbital angular momentum are investigated in an unmagnetized collisionless plasma composed of inertial electrons and static ions. For this purpose, the usual plasmon dispersion relation is employed to derive an approximate paraxial equation. The latter is analyzed with a Gaussian beam solution. For a finite angular momentum associated with the plasmon, Laguerre-Gaussian (LG) solutions are employed for solving the electrostatic potential problem which gives approximate solution and is valid for plasmon beams in the paraxial approximation. The LG potential determines the electric field components and energy flux of plasmons with finite angular momentum. Numerical illustrations show that the radial and angular mode numbers strongly modify the profiles of the LG potential.

  6. Plane waves as tractor beams

    Science.gov (United States)

    Forgács, Péter; Lukács, Árpád; Romańczukiewicz, Tomasz

    2013-12-01

    It is shown that in a large class of systems, plane waves act as tractor beams: i.e., an incident plane wave can exert a pulling force on the scatterer. The underlying physical mechanism for the pulling force is due to the sufficiently strong scattering of the incoming wave into another mode carrying more momentum, in which case excess momentum is created behind the scatterer. This tractor beam or negative radiation pressure (NRP) effect, is found to be generic in systems with multiple scattering channels. In a birefringent medium, electromagnetic plane waves incident on a thin plate exert NRP of the same order of magnitude as optical radiation pressure, while in artificial dielectrics (metamaterials), the magnitude of NRP can even be macroscopic. In two dimensions, we study various scattering situations on vortices, and NRP is shown to occur by the scattering of heavy baryons into light leptons off cosmic strings, and by neutron scattering off vortices in the XY model.

  7. Angular Momentum of Topologically Structured Darkness.

    Science.gov (United States)

    Alperin, Samuel N; Siemens, Mark E

    2017-11-17

    We theoretically analyze and experimentally measure the extrinsic angular momentum contribution of topologically structured darkness found within fractional vortex beams, and show that this structured darkness can be explained by evanescent waves at phase discontinuities in the generating optic. We also demonstrate the first direct measurement of the intrinsic orbital angular momentum of light with both intrinsic and extrinsic angular momentum, and explain why the total orbital angular momenta of fractional vortices do not match the winding number of their generating phases.

  8. Angular-Momentum Evolution in Laser-Plasma Accelerators

    CERN Document Server

    Thaury, Cédric; Corde, Sébastien; Lehe, Rémi; Le Bouteiller, Madeleine; Ta Phuoc, Kim; Davoine, Xavier; Rax, J. M.; Rousse, Antoine; Malka, Victor

    2013-01-01

    The transverse properties of an electron beam are characterized by two quantities, the emittance which indicates the electron beam extent in the phase space and the angular momentum which allows for non-planar electron trajectories. Whereas the emittance of electron beams produced in laserplasma accelerator has been measured in several experiments, their angular momentum has been scarcely studied. It was demonstrated that electrons in laser-plasma accelerator carry some angular momentum, but its origin was not established. Here we identify one source of angular momentum growth and we present experimental results showing that the angular momentum content evolves during the acceleration.

  9. Maximum dose angle for oblique incidence on primary beam protective barriers in the design of medical radiation therapy facilities

    International Nuclear Information System (INIS)

    Fondevila, Damian; Arbiser, Silvio; Sansogne, Rosana; Brunetto, Monica; Dosoretz, Bernardo

    2008-01-01

    Primary barrier determinations for the shielding of medical radiation therapy facilities are generally made assuming normal beam incidence on the barrier, since this is geometrically the most unfavorable condition for that shielding barrier whenever the occupation line is allowed to run along the barrier. However, when the occupation line (for example, the wall of an adjacent building) runs perpendicular to the barrier (especially roof barrier), then two opposing factors come in to play: increasing obliquity angle with respect to the barrier increases the attenuation, while the distance to the calculation point decreases, hence, increasing the dose. As a result, there exists an angle (α max ) for which the equivalent dose results in a maximum, constituting the most unfavorable geometric condition for that shielding barrier. Based on the usual NCRP Report No. 151 model, this article presents a simple formula for obtaining α max , which is a function of the thickness of the barrier (t E ) and the equilibrium tenth-value layer (TVL e ) of the shielding material for the nominal energy of the beam. It can be seen that α max increases for increasing TVL e (hence, beam energy) and decreases for increasing t E , with a range of variation that goes from 13 to 40 deg for concrete barriers thicknesses in the range of 50-300 cm and most commercially available teletherapy machines. This parameter has not been calculated in the existing literature for radiotherapy facilities design and has practical applications, as in calculating the required unoccupied roof shielding for the protection of a nearby building located in the plane of the primary beam rotation

  10. Peculiarities of the Self-Action of Inclined Wave Beams Incident on a Discrete System of Optical Fibers

    Science.gov (United States)

    Litvak, A. G.; Mironov, V. A.; Skobelev, S. A.; Smirnov, L. A.

    2018-01-01

    Based on a discrete nonlinear Schrödinger equation (DNSE), we studied analytically and numerically the peculiarities of the self-action of one-dimensional quasi-optic wave beams injected into a spatially inhomogeneous medium consisting of a set of equidistant mutually coupled optical fibers. A variational approach allowing the prediction of the global evolution of localized fields with the initially plane phase front was developed. The self-consistent equations are obtained for the main parameters of such beams (the position of the center of mass, the effective width, and linear and quadratic phase-front corrections) in the aberrationless approximation. The case of radiation incident on a periodic system of nonlinear optical fibers at an angle to the axis oriented along them is analyzed in detail. It is shown that for the radiation power exceeding a critical value, the self-focusing of the wave field is observed, which is accompanied by the shift of the intensity maximum followed by the concentration of the main part of radiation only in one of the structural elements of the array under study. In this case, the beams propagate along paths considerably different from linear and the direction of their propagation changes compared to the initial direction. Asymptotic expressions are found that allow us to estimate the self-focusing length and to determine quite accurately the final position of a point with the maximum field amplitude after radiation trapping a channel. The results of the qualitative study of the possible self-channeling regimes for wave beams in a system of weakly coupled optical fibers in the aberrationless approximation are compared with the results of direct numerical simulations within the DNSE framework.

  11. Beam cooling

    OpenAIRE

    Danared, H

    2006-01-01

    Beam cooling is the technique of reducing the momentum spread and increasing the phase-space density of stored particle beams. This paper gives an introduction to beam cooling and Liouville’s theorem, and then it describes the three methods of active beam cooling that have been proven to work so far, namely electron cooling, stochastic cooling, and laser cooling. Ionization cooling is also mentioned briefly.

  12. Low-mass π+π-p systems produced in K-p interactions at 4.2 GeV/c incident momentum

    International Nuclear Information System (INIS)

    Heinen, P.M.

    1976-01-01

    The subject proper of this thesis consists of a study of processes with four charged outgoing particles produced according to the reaction K - p→K - π + π - p, with special emphasis on low-mass dipion-proton systems. The separation from other final states is checked by means of the so-called 'missing mass' criterium; the percentage of events that did not receive correct kinematical interpretations, is maximally 2.5%. The cross-section of the complete final state is determined using a calibration based on the tau decay mode of the beam particle; the result is sigma = 1.22 +- 0.02 mb. The low-mass dipion-proton system is investigated with respect to production characteristics, decay modes and angular distributions. The spin-parity structure of the dipion-proton system is further investigated using a so-called 'partial wave analysis'

  13. Parametric dependences of momentum pinch and Prandtl number in JET

    NARCIS (Netherlands)

    Tala, T.; Salmi, A.; Angioni, C.; Casson, F. J.; Corrigan, G.; Ferreira, J.; Giroud, C.; Mantica, P.; Naulin, V.; Peeters, A.G.; Solomon, W. M.; Strintzi, D.; Tsalas, M.; Versloot, T. W.; de Vries, P. C.; Zastrow, K. D.

    2011-01-01

    Several parametric scans have been performed to study momentum transport on JET. A neutral beam injection modulation technique has been applied to separate the diffusive and convective momentum transport terms. The magnitude of the inward momentum pinch depends strongly on the inverse density

  14. Diagnosis of secondary caries in esthetic restorations: influence of the incidence vertical angle of the X-ray beam.

    Science.gov (United States)

    Moreira, Patrícia Lima; Messora, Michel Reis; Pereira, Stela Márcia; Almeida, Solange Maria de; Cruz, Adriana Dibo da

    2011-01-01

    The aim of this study was to evaluate the accuracy on the diagnosis of secondary caries-like lesions simulated on esthetic restorations of different materials, changing the incidence vertical angle (IVA) of the x-ray beam. Twenty human teeth received MOD inlay preparations. In the experimental group (n=10), a round cavity was made in the floor of the proximal box to simulate the caries-like lesion. All teeth were restored with 3 composite resins (Charisma, Filtek-Z250 and TPH-Spectrum) at 3 moments. Two radiographic images were acquired with 0º and 10º IVA. Ten observers evaluated the images using a 5-point confidence scale. Intra- and interobserver reliability was analyzed with the Interclass Correlation Coefficient and the diagnostic accuracy was evaluated using the area under the ROC curve (A(z)), Friedman test and Wilcoxon test (α=0.05). Higher accuracy values were obtained with 10º IVA (A(z)=0.66, Filtek-Z250>A(z)=0.56, TPH-Spectrum) compared to 0º (A(z)=0.55, Charisma>A(z)=0.37, TPH-Spectrum), though without statistically significant difference (p>0.05). The detection of secondary caries-like lesions simulated on esthetic restorations of different materials suffered no negative influence by changing the IVA of the x-ray beam.

  15. Optimal design and fabrication method for antireflection coatings for P-polarized 193 nm laser beam at large angles of incidence (68°-74°).

    Science.gov (United States)

    Jin, Jingcheng; Jin, Chunshui; Li, Chun; Deng, Wenyuan; Chang, Yanhe

    2013-09-01

    Most of the optical axes in modern systems are bent for optomechanical considerations. Antireflection (AR) coatings for polarized light at oblique incidence are widely used in optical surfaces like prisms or multiform lenses to suppress undesirable reflections. The optimal design and fabrication method for AR coatings with large-angle range (68°-74°) for a P-polarized 193 nm laser beam is discussed in detail. Experimental results showed that after coating, the reflection loss of a P-polarized laser beam at large angles of incidence on the optical surfaces is reduced dramatically, which could greatly improve the output efficiency of the optical components in the deep ultraviolet vacuum range.

  16. A proposed measurement of optical orbital and spin angular momentum and its implications for photon angular momentum

    Science.gov (United States)

    Leader, Elliot

    2018-04-01

    The expression for the total angular momentum carried by a laser optical vortex beam, splits, in the paraxial approximation, into two terms which seem to represent orbital and spin angular momentum respectively. There are, however, two very different competing versions of the formula for the spin angular momentum, one based on the use of the Poynting vector, as in classical electrodynamics, the other related to the canonical expression for the angular momentum which occurs in Quantum Electrodynamics. I analyze the possibility that a sufficiently sensitive optical measurement could decide which of these corresponds to the actual physical angular momentum carried by the beam.

  17. Second cancer incidence risk estimates using BEIR VII models for standard and complex external beam radiotherapy for early breast cancer

    International Nuclear Information System (INIS)

    Donovan, E. M.; James, H.; Bonora, M.; Yarnold, J. R.; Evans, P. M.

    2012-01-01

    Purpose: To compare organ specific cancer incidence risks for standard and complex external beam radiotherapy (including cone beam CT verification) following breast conservation surgery for early breast cancer.Method: Doses from breast radiotherapy and kilovoltage cone beam CT (CBCT) exposures were obtained from thermoluminescent dosimeter measurements in an anthropomorphic phantom in which the positions of radiosensitive organs were delineated. Five treatment deliveries were investigated: (i) conventional tangential field whole breast radiotherapy (WBRT), (ii) noncoplanar conformal delivery applicable to accelerated partial beast irradiation (APBI), (iii) two-volume simultaneous integrated boost (SIB) treatment, (iv) forward planned three-volume SIB, and (v) inverse-planned three volume SIB. Conformal and intensity modulated radiotherapy methods were used to plan the complex treatments. Techniques spanned the range from simple methods appropriate for patient cohorts with a low cancer recurrence risk to complex plans relevant to cohorts with high recurrence risk. Delineated organs at risk included brain, salivary glands, thyroid, contralateral breast, left and right lung, esophagus, stomach, liver, colon, and bladder. Biological Effects of Ionizing Radiation (BEIR) VII cancer incidence models were applied to the measured mean organ doses to determine lifetime attributable risk (LAR) for ages at exposure from 35 to 80 yr according to radiotherapy techniques, and included dose from the CBCT imaging. Results: All LAR decreased with age at exposure and were lowest for brain, thyroid, liver, and bladder (<0.1%). There was little dependence of LAR on radiotherapy technique for these organs and for colon and stomach. LAR values for the lungs for the three SIB techniques were two to three times those from WBRT and APBI. Uncertainties in the LAR models outweigh any differences in lung LAR between the SIB methods. Constraints in the planning of the SIB methods ensured that

  18. Second cancer incidence risk estimates using BEIR VII models for standard and complex external beam radiotherapy for early breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Donovan, E. M.; James, H.; Bonora, M.; Yarnold, J. R.; Evans, P. M. [Joint Department of Physics, Royal Marsden NHS Foundation Trust and Institute of Cancer Research, Sutton SM2 5PT (United Kingdom); Physics Department, Ipswich Hospital NHS Foundation Trust, Ipswich IP4 5PD (United Kingdom); Department of Academic Radiotherapy, Institute of Cancer Research and Royal Marsden NHS Foundation Trust, Sutton SM2 5PT, United Kingdom and School of Radiotherapy, University of Milan, Milan 20122 (Italy); Department of Academic Radiotherapy, Institute of Cancer Research and Royal Marsden NHS Foundation Trust, Sutton SM2 5PT (United Kingdom); Centre for Vision Speech and Signal Processing, University of Surrey, Guildford GU2 7XH (United Kingdom)

    2012-10-15

    Purpose: To compare organ specific cancer incidence risks for standard and complex external beam radiotherapy (including cone beam CT verification) following breast conservation surgery for early breast cancer.Method: Doses from breast radiotherapy and kilovoltage cone beam CT (CBCT) exposures were obtained from thermoluminescent dosimeter measurements in an anthropomorphic phantom in which the positions of radiosensitive organs were delineated. Five treatment deliveries were investigated: (i) conventional tangential field whole breast radiotherapy (WBRT), (ii) noncoplanar conformal delivery applicable to accelerated partial beast irradiation (APBI), (iii) two-volume simultaneous integrated boost (SIB) treatment, (iv) forward planned three-volume SIB, and (v) inverse-planned three volume SIB. Conformal and intensity modulated radiotherapy methods were used to plan the complex treatments. Techniques spanned the range from simple methods appropriate for patient cohorts with a low cancer recurrence risk to complex plans relevant to cohorts with high recurrence risk. Delineated organs at risk included brain, salivary glands, thyroid, contralateral breast, left and right lung, esophagus, stomach, liver, colon, and bladder. Biological Effects of Ionizing Radiation (BEIR) VII cancer incidence models were applied to the measured mean organ doses to determine lifetime attributable risk (LAR) for ages at exposure from 35 to 80 yr according to radiotherapy techniques, and included dose from the CBCT imaging. Results: All LAR decreased with age at exposure and were lowest for brain, thyroid, liver, and bladder (<0.1%). There was little dependence of LAR on radiotherapy technique for these organs and for colon and stomach. LAR values for the lungs for the three SIB techniques were two to three times those from WBRT and APBI. Uncertainties in the LAR models outweigh any differences in lung LAR between the SIB methods. Constraints in the planning of the SIB methods ensured that

  19. Inclusive production of hyperons, as well as of pions, charged kaons, protons, anti-protons and neutrons in p+p collisions at 158 GeV/c beam momentum

    International Nuclear Information System (INIS)

    Anticic, Tome

    2010-01-01

    New data on the production of hyperons, as well as of pions, charged kaons, protons, anti-protons, neutrons in p+p interactions are presented. The data come from a sample of 8.2 million inelastic events obtained with the NA49 detector at the CERN SPS at 158 GeV/c beam momentum. The high statistics data sample allows the extraction of detailed differential distributions as a function of x f , y and p T . The results are compared with published data and models. Moreover, the measurements provide an important reference for studying effects of cold nuclear matter in proton-nucleus and hot dense matter in nucleus-nucleus collisions. (author)

  20. Search for and study of low-mass scalar mesons in reactions np → npπ+π- at neutron beam momentum P n = (3.83 ± 0.12) GeV/ c

    Science.gov (United States)

    Troyan, Yu. A.; Arakelyan, S. G.; Belyaev, A. V.; Ierusalimov, A. P.; Plekhanov, E. B.; Troyan, A. Yu.

    2011-11-01

    The results of a search for and study of the scalar 0+ [0++] σ0 mesons in a π+π- system produced in the reaction np → npπ+π- at the quasi-monochromatic neutron beam momentum P n = (3.83 ± 0.12) GeV/ c are presented as derived from analyzing the data obtained during the exposure of a 1-meter hydrogen bubble chamber at the Laboratory of High Energy, Joint Institute for Nuclear Research (LHE JINR). It is found that there is a significant bump in the effective mass distribution at M_{π ^ + π ^ - } = (404 ± 5)MeV/c^2 and Γ{res/exp} = (14±5.4) MeV/ c 2, which is observed with more than four standard deviations from the background. The spin of this resonance is estimated to be most likely equal to zero. Its quantum numbers are found to be 0+ [0++].

  1. Phonons with orbital angular momentum

    International Nuclear Information System (INIS)

    Ayub, M. K.; Ali, S.; Mendonca, J. T.

    2011-01-01

    Ion accoustic waves or phonon modes are studied with orbital angular momentum (OAM) in an unmagnetized collissionless uniform plasma, whose constituents are the Boltzmann electrons and inertial ions. For this purpose, we have employed the fluid equations to obtain a paraxial equation in terms of ion density perturbations and discussed its Gaussian beam and Laguerre-Gauss (LG) beam solutions. Furthermore, an approximate solution for the electrostatic potential problem is presented, allowing to express the components of the electric field in terms of LG potential perturbations. The energy flux due to phonons is also calculated and the corresponding OAM is derived. Numerically, it is shown that the parameters such as azimuthal angle, radial and angular mode numbers, and beam waist, strongly modify the profiles of the phonon LG potential. The present results should be helpful in understanding the phonon mode excitations produced by Brillouin backscattering of laser beams in a uniform plasma.

  2. Angular Momentum in Fission

    Science.gov (United States)

    Gönnenwein, F.; Bunakov, V.; Dorvaux, O.; Gagarski, A.; Guseva, I.; Hanappe, F.; Kadmensky, S.; von Kalben, J.; Khlebnikov, S.; Kinnard, V.; Kopatch, Yu.; Mutterer, M.; Nesvizhevsky, V.; Petrov, G.; Prokhorova, E.; Rubchenya, V.; Sillanpää, M.; Simpson, G.; Sokolov, V.; Soldner, T.; Stuttgé, L.; Tiourine, G.; Trzaska, W.; Tsekhanovich, I.; Wagemans, C.; Wollersheim, H.-J.; Zavarukhina, T.; Zimmer, O.

    2008-04-01

    Three novel experiments in spontaneous and thermal neutron induced fission all with a bearing on angular momentum in fission are reviewed. In the first experiment it was observed that, in the reaction 235U(n, f) with incident polarized cold neutrons, the nucleus undergoing scission is rotating. This was inferred from the shift in angular distributions of ternary particles being dependent on the orientation of neutron spin. In the second study the properties of the angular momentum of spherical fission fragments was investigated. Current theories trace the spin of fragments to their deformations allowing for collective rotational vibrations at scission. However, in particular the spherical 132Te isotope exhibits a large spin at variance with theory. Exploiting the specific properties of cold deformed fission it could be proven that, for 132Te, single particle excitations instead of collective modes are responsible for the large spin observed. In a third project a pilot study was exploring the possibility to search for an evaporation of neutrons from fragments being anisotropic in their own cm-system. Due to fragment spin this anisotropy is claimed since decades to exist. It was so far never observed. A scheme has been devised and tested were triple coincidences between a fragment and two neutrons are evaluated in a way to bring the cm-anisotropy into the foreground while getting rid of the kinematical anisotropy in the lab-system due to evaporation from moving fragments. The test was run for spontaneous fission of 252Cf.

  3. Final design of kaon beam K2 at KEK

    International Nuclear Information System (INIS)

    Kurokawa, Shin-ichi; Yamamoto, Akira.

    1977-09-01

    Final design of the 2.3 GeV/c kaon beam K2 is given. The K2 beam starts from the production target in slow extracted beam. Momentum range is 1 GeV/c through 2.3 GeV/c. Nominal total beam length is 27.9 m and solid-angle momentum acceptance is 6.25 msr%ΔP/P. Using a platinum target of diameter 3 mm and length 6 cm, 2.0 GeV/c beam fluxes of 1.0 x 10 6 K + and 5.2 x 10 5 K - per 10 12 13 GeV/c incident protons are expected at the final focus. (auth.)

  4. Molecular-beam epitaxy growth and structural characterization of semiconductor-ferromagnet heterostructures by grazing incidence X-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Satapathy, D.K.

    2005-12-19

    The present work is devoted to the growth of the ferromagnetic metal MnAs on the semiconductor GaAs by molecular-beam epitaxy (MBE). The MnAs thin films are deposited on GaAs by molecular-beam epitaxy (MBE). Grazing incidence diffraction (GID) and reflection high-energy electron diffraction (RHEED) are used in situ to investigate the nucleation, evolution of strain, morphology and interfacial structure during the MBE growth. Four stages of the nucleation process during growth of MnAs on GaAs(001) are revealed by RHEED azimuthal scans. GID shows that further growth of MnAs films proceed via the formation of relaxed islands at a nominal thickness of 2.5 ML which increase in size and finally coalesce to form a continuous film. Early on, an ordered array of misfit dislocations forms at the interface releasing the misfit strain even before complete coalescence occurs. The fascinating complex nucleation process of MnAs on GaAs(0 0 1) contains elements of both Volmer-Weber and Stranski-Krastanov growth. A nonuniform strain amounting to 0.66%, along the [1 -1 0] direction and 0.54%, along the [1 1 0] direction is demonstrated from x-ray line profile analysis. A high correlation between the defects is found along the GaAs[1 1 0] direction. An extremely periodic array of misfit dislocations with a period of 4.95{+-}0.05 nm is formed at the interface along the [1 1 0] direction which releases the 7.5% of misfit. The inhomogeneous strain due to the periodic dislocations is confined at the interface within a layer of 1.6 nm thickness. The misfit along the [1 -1 0] direction is released by the formation of a coincidence site lattice. (orig.)

  5. High Transverse Momentum Direct Photon Production at Fermilab Fixed-Target Energies

    Energy Technology Data Exchange (ETDEWEB)

    Apanasevich, Leonard [Michigan State Univ., East Lansing, MI (United States)

    2005-01-01

    This thesis describes a study of the production of high transverse momentum direct photons and π0 mesons by proton beams at 530 and 800 GeV/c and π- beams at 515 GeV/c incident on beryllium, copper, and liquid hydrogen targets. The data were collected by Fermilab experiment E706 during the 1990 and 1991-92 fixed target runs. The apparatus included a large, finely segmented lead and liquid argon electromagnetic calorimeter and a charged particle spectrometer featuring silicon strip detectors in the target region and proportional wire chambers and drift tubes downstream of a large aperture analysis magnet. The inclusive cross sections are presented as functions of transverse momentum and rapidity. The measurements are compared with next-to-leading order perturbative QCD calculations and to results from previous experiments.

  6. A Study of Large Transverse Momentum Phenomena

    CERN Multimedia

    2002-01-01

    This experiment studies the structure of those p-p and @*-p collisions which are characterized by a very high transverse momentum flow in the central region. Some specific items studied are:\\\\ \\\\ \\item -~~Structure of events, where the high transverse momentum is shared by charged and neutral hadron (``jets''). Transverse momentum distribution, correlations and momentum balance for such events. \\item -~~Structure of events, where the high transverse momentum is mostly carried by one identified particle. Quantum number dependence and quantum number correlations of the high transverse momentum events. \\item -~~Structure of events containing large transverse momentum leptons or lepton pairs or direct photons. \\end{enumerate}.sk -~~Study of low momentum electrons and photons. -~~Search for gluonium states. -~~Search for new and rare particles. \\\\ \\\\ A conventional C-type magnet with a 0.5 T field in the direction of the beams together with a 42-layer cylindrical drift chamber detector is used for momentum analysi...

  7. Fragmentation and direct transfer reactions for 40Ar incident beam on 27Al target at 1760 MeV

    International Nuclear Information System (INIS)

    Cisse, Ousmane

    1985-01-01

    Peripheral collision studies performed with 40 Ar projectiles at 44 MeV/A and 27 Al target show that both fragmentation and transfer reactions can be discerned in this type of interaction. The experimental observation of fragments with masses charges and velocities close to those of the incident beam are the signature of transfer reactions and a detailed analysis of the energy spectra of such fragments has been carried out and interpreted in terms of a direct diffraction transfer model. On the other hand, for large mass transfer reactions, abrasion is the suitable mechanism. Inclusive fragment measurement together with the appropriate residual nuclei-fragment coincidence results then provides experimental data in good agreement with the theoretical predictions obtained from a participant spectator model. These investigations also indicate that the separation energies of the participant from the spectator nucleus, at least within the framework of the above model, can be interpreted in terms of a friction force which becomes more efficient as the projectile energy decreases. (author) [fr

  8. Deuterium electrodisintegration at high recoil momentum

    International Nuclear Information System (INIS)

    Steenholen, G.

    1996-01-01

    The availability of continuous electron beams made it possible to carry out various deuterium electro-disintegration experiments in kinematical domains corresponding to a high recoil momentum. Three such experiments are discussed: 1) the left-right asymmetry with respect to the direction of the momentum transfer has been measured with good precision; 2) cross sections have been obtained in a kinematical region well above the quasi-elastic peak; 3) data have been taken in quasi-elastic kinematics that can be used to study high-momentum components in the deuterium wave function [ru

  9. Elastic scattering of charged mesons, antiprotons and protons on protons at incident momenta of 20, 30 and 50 GeV/c in the momentum tranfer range 0. 5 <= -t < 8 (GeV/c)/sup 2/

    Energy Technology Data Exchange (ETDEWEB)

    Asa' d, Z.; Coupland, M.; Davis, D.G.; Duff, B.G.; Fearnley, T.; Heymann, F.F.; Imrie, D.C.; Lush, G.J.; Phillips, M. (University Coll., London (UK)); Baglin, C.

    1985-06-24

    Results are presented from experiment WA7 at the CERN SPS, which has measured the elastic differential cross sections of ..pi..sup(+-)p, Ksup(+-)p, anti pp and pp at incident momenta of 20, 30 and 50 GeV/c. The measurements cover the momentum transfer range 0.5 < vertical stroketvertical stroke < 8 (GeV/c)/sup 2/, corresponding to c.m. scattering angles between 10/sup 0/ and 50/sup 0/. The experimental set-up, trigger logic and data analysis are described. The experimental results are compared with existing meson-proton and nucleon-proton data at lower and higher energies covering the medium- and large-vertical stroketvertical stroke region. Some prominent models and their predictions for elastic scattering at WA7 energies and beyond are reviewed, with emphasis on geometrical scaling, factorizing eikonal models, lowest-order QCD and other dynamical exchange-type models. Results for anti pp two-body annihilation into ..pi../sup -/..pi../sup +/ and K/sup -/K/sup +/ at 30 and 50 GeV/c, obtained in parallel with the elastic anti pp data, are also presented.

  10. Elastic scattering of charged mesons, antiprotons and protons on protons at incident momenta of 20, 30 and 50 GeV/c in the momentum tranfer range 0.52

    International Nuclear Information System (INIS)

    Asa'd, Z.; Coupland, M.; Davis, D.G.; Duff, B.G.; Fearnley, T.; Heymann, F.F.; Imrie, D.C.; Lush, G.J.; Phillips, M.; Baglin, C.; Guillaud, J.P.; Poulet, M.; Myrheim, J.; Gjerpe, I.K.; Buran, T.; Buzzo, A.; Ferroni, S.; Gracco, V.; Kirsebom, K.; Macri, M.; Santroni, A.; Soersdal, T.

    1985-01-01

    Results are presented from experiment WA7 at the CERN SPS, which has measured the elastic differential cross sections of πsup(+-)p, Ksup(+-)p, anti pp and pp at incident momenta of 20, 30 and 50 GeV/c. The measurements cover the momentum transfer range 0.5 2 , corresponding to c.m. scattering angles between 10 0 and 50 0 . The experimental set-up, trigger logic and data analysis are described. The experimental results are compared with existing meson-proton and nucleon-proton data at lower and higher energies covering the medium- and large-vertical stroketvertical stroke region. Some prominent models and their predictions for elastic scattering at WA7 energies and beyond are reviewed, with emphasis on geometrical scaling, factorizing eikonal models, lowest-order QCD and other dynamical exchange-type models. Results for anti pp two-body annihilation into π - π + and K - K + at 30 and 50 GeV/c, obtained in parallel with the elastic anti pp data, are also presented. (orig.)

  11. Introducing Electromagnetic Field Momentum

    Science.gov (United States)

    Hu, Ben Yu-Kuang

    2012-01-01

    I describe an elementary way of introducing electromagnetic field momentum. By considering a system of a long solenoid and line charge, the dependence of the field momentum on the electric and magnetic fields can be deduced. I obtain the electromagnetic angular momentum for a point charge and magnetic monopole pair partially through dimensional…

  12. MD 2179: Scraping of off-momentum halo after injection

    CERN Document Server

    Garcia Morales, Hector; Patecki, Marcin; Wretborn, Sven Joel; CERN. Geneva. ATS Department

    2018-01-01

    In this MD, a beam scraping was performed using the momentum primary collimator in IR3 where dispersion is high. A second scraping was performed using a TCSG in IR7 where dispersion is almost negligible. In such a way, we aim to disentangle the contribution of off-momentum particles to halo population. These scrapings will provide useful information to better understand the usual off-momentum losses we see at the start of the ramp. The MD results would also be used to benchmark simulations of off-momentum beam losses in order to gain confidence in simulation models.

  13. Long range heliostat target using array of normal incidence pyranometers to evaluate a beam of solar radiation

    Science.gov (United States)

    Ghanbari, Cheryl M; Ho, Clifford K; Kolb, Gregory J

    2014-03-04

    Various technologies described herein pertain to evaluating a beam reflected by a heliostat. A portable target that has an array of sensors mounted thereupon is configured to capture the beam reflected by the heliostat. The sensors in the array output measured values indicative of a characteristic of the beam reflected by the heliostat. Moreover, a computing device can generate and output data corresponding to the beam reflected by the heliostat based on the measured values indicative of the characteristic of the beam received from the sensors in the array.

  14. Angular momentum in QGP holography

    Directory of Open Access Journals (Sweden)

    Brett McInnes

    2014-10-01

    Full Text Available The quark chemical potential is one of the fundamental parameters describing the quark–gluon plasma produced by sufficiently energetic heavy-ion collisions. It is not large at the extremely high temperatures probed by the LHC, but it plays a key role in discussions of the beam energy scan programmes at the RHIC and other facilities. On the other hand, collisions at such energies typically (that is, in peripheral collisions give rise to very high values of the angular momentum density. Here we explain that holographic estimates of the quark chemical potential of a rotating sample of plasma can be very considerably improved by taking the angular momentum into account.

  15. A SIMPLE METHOD FOR MEASURING THE ELECTRON-BEAM MAGNETIZATION

    Energy Technology Data Exchange (ETDEWEB)

    Halavanau, A. [Fermilab; Qiang, G. [Tsinghua U., Beijing, Dept. Eng. Phys.; Wisniewski, E. [Argonne; Ha, G. [POSTECH, Pohang; Power, J. [Argonne; Piot, P. [Fermilab

    2016-10-18

    There are a number of projects that require magnetized beams, such as electron cooling or aiding in “flat” beam transforms. Here we explore a simple technique to characterize the magnetization, observed through the angular momentum of magnetized beams. These beams are produced through photoemission. The generating drive laser first passes through microlens arrays (fly-eye light condensers) to form a transversely modulated pulse incident on the photocathode surface [1]. The resulting charge distribution is then accelerated from the photocathode. We explore the evolution of the pattern via the relative shearing of the beamlets, providing information about the angular momentum. This method is illustrated through numerical simulations and preliminary measurements carried out at the Argonne Wakefield Accelerator (AWA) facility are presented.

  16. Constituent models and large transverse momentum reactions

    International Nuclear Information System (INIS)

    Brodsky, S.J.

    1975-01-01

    The discussion of constituent models and large transverse momentum reactions includes the structure of hard scattering models, dimensional counting rules for large transverse momentum reactions, dimensional counting and exclusive processes, the deuteron form factor, applications to inclusive reactions, predictions for meson and photon beams, the charge-cubed test for the e/sup +-/p → e/sup +-/γX asymmetry, the quasi-elastic peak in inclusive hadronic reactions, correlations, and the multiplicity bump at large transverse momentum. Also covered are the partition method for bound state calculations, proofs of dimensional counting, minimal neutralization and quark--quark scattering, the development of the constituent interchange model, and the A dependence of high transverse momentum reactions

  17. Angular momentum gated neutron evaporation studies

    International Nuclear Information System (INIS)

    Banerjee, K.; Kundu, S.; Rana, T.K.; Bhattacharya, C.; Mukherjee, G.; Gohil, M.; Meena, J.K.; Pandey, R.; Pai, H.; Dey, A.; Biswas, M.; Mukhopadhyay, S.; Pandit, D.; Pal, S.; Banerjee, S.R.; Bhattacharya, S.; Bandhopadhyay, T.

    2010-01-01

    The inverse level density parameter k (k = A/a, where A is the mass number of the compound nucleus)is investigated as a function of angular momentum by measuring γ-ray fold gated neutron evaporation spectrum in 4 He + 115 In fusion reaction using 35 MeV 4 He ion beam from VECC K130 cyclotron

  18. Angular momentum transfer in incomplete fusion

    Indian Academy of Sciences (India)

    Keywords. Heavy-ion reactions; incomplete fusion; isomeric cross-section ratio; 12C, 16O beams; 93Nb; 89Y targets; angular momentum. ... R Tripathi1 A Goswami1. Radiochemistry Division, Bhabha Atomic Research Centre, Mumbai 400 085, India; School of Studies in Physics, Vikram University, Ujjain 456 010, India ...

  19. Influence of Polarization of the Incident Beam on Integrated Intensities in X-Ray Energy-Dispersive Diffractometry

    DEFF Research Database (Denmark)

    Olsen, J. Staun; Buras, B.; Jensen, T.

    1978-01-01

    Polarization measurements of the primary X-ray beam produced by thick copper and tungsten anodes are reported and formulas derived for integrated intensities of Bragg reflections in energy-dispersive diffractometry with the polarization of the primary beam taken into account. It was found...

  20. Evaluation by dental cone-beam computed tomography of the incidence and sites of branches of the inferior dental canal that supply mandibular third molars.

    Science.gov (United States)

    Ogawa, A; Fukuta, Y; Nakasato, H; Nakasato, S

    2016-12-01

    Our aim was to assess the incidence and anatomical site of branches of the inferior dental canal that supply mandibular third molars using dental cone-beam computed tomography (CT). We evaluated the incidence and diameter of branches of the inferior dental canal using 272 cone-beam CT mandibular scans from 172 patients referred for imaging before the extraction of impacted mandibular third molars. We found three typical branching patterns from the inferior dental canal in the third molar region: the retromolar canal (in the retromolar triangle), the dental canal (that courses directly beneath the socket of the third molar), and the accessory canal (that courses through the socket and leads from the inferior dental canal to a bony ridge). The incidences of retromolar, dental, and accessory canals were 75 (28%), 223 (82%), and 21 (8%), respectively, with mean diameters of 0.9 (0.4), 0.7 (0.5), and 1.1 (0.4) mm, respectively. Operative injury to the neurovascular contents within the branches of the inferior dental canal can lead to excessive bleeding and postoperative paraesthesia, so identification of its branches on preoperative cone-beam CT images may prove useful during extraction of impacted mandibular third molars or when harvesting bone blocks from the region of mandibular third molars. We also describe two cases of branches detected on panoramic and cone-beam CT images that prompted this research. Copyright © 2016 The British Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  1. Fundamental methods to measure the orbital angular momentum of light

    NARCIS (Netherlands)

    Berkhout, Gregorius Cornelis Gerardus (Joris)

    2011-01-01

    Light is a ubiquitous carrier of information. This information can be encoded in the intensity, direction, frequency and polarisation of the light and, which was described more recently, in its orbital angular momentum. Although creating light beams with orbital angular momentum is relatively easy,

  2. Incident neutron spectra on the first wall and their application to energetic ion diagnostics in beam-injected deuterium-tritium tokamak plasmas

    Science.gov (United States)

    Sugiyama, S.; Matsuura, H.; Uchiyama, D.

    2017-09-01

    A diagnostic method for small non-Maxwellian tails in fuel-ion velocity distribution functions is proposed; this method uses the anisotropy of neutron emissions, and it is based on the numerical analysis of the incident fast neutron spectrum on the first wall of a fusion device. Neutron energy spectra are investigated for each incident position along the first wall and each angle of incidence assuming an ITER-like deuterium-tritium plasma; it is heated by tangential-neutral-beam injection. Evaluating the incident neutron spectra at all wall positions and angles of incidence enables the selective measurement of non-Gaussian components in the neutron emission spectrum for energetic ion diagnostics; in addition, the optimal detector position and orientation can be determined. At the optimal detector position and orientation, the ratio of non-Gaussian components to the Gaussian peak can be two orders of magnitude greater than the ratio in the neutron emission spectrum. This result can improve the accuracy of energetic ion diagnostics in plasmas when small, anisotropic non-Maxwellian tails are formed in fuel ion velocity distribution functions. We focus on the non-Gaussian components greater than 14 MeV, where the effect of the background noise (i.e., slowing-down neutrons by scattering throughout the machine structure) can be ignored.

  3. Introducing Conservation of Momentum

    Science.gov (United States)

    Brunt, Marjorie; Brunt, Geoff

    2013-01-01

    The teaching of the principle of conservation of linear momentum is considered (ages 15 + ). From the principle, the momenta of two masses in an isolated system are considered. Sketch graphs of the momenta make Newton's laws appear obvious. Examples using different collision conditions are considered. Conservation of momentum is considered…

  4. Value and Momentum Everywhere

    DEFF Research Database (Denmark)

    Asness, Clifford S.; Moskowitz, Tobias J.; Heje Pedersen, Lasse

    across asset classes than passive exposures to the asset classes themselves. However, value and momentum are negatively correlated both within and across asset classes. Our results indicate the presence of common global risks that we characterize with a three factor model. Global funding liquidity risk......We study the returns to value and momentum strategies jointly across eight diverse markets and asset classes. Finding consistent value and momentum premia in every asset class, we further find strong common factor structure among their returns. Value and momentum are more positively correlated...... is a partial source of these patterns, which are identifiable only when examining value and momentum simultaneously across markets. Our findings present a challenge to existing behavioral, institutional, and rational asset pricing theories that largely focus on U.S. equities....

  5. Generation of a sub-half-wavelength focal spot with purely transverse spin angular momentum

    Science.gov (United States)

    Hang, Li; Fu, Jian; Yu, Xiaochang; Wang, Ying; Chen, Peifeng

    2017-11-01

    We theoretically demonstrate that optical focus fields with purely transverse spin angular momentum (SAM) can be obtained when a kind of special incident fields is focused by a high numerical aperture (NA) aplanatic lens (AL). When the incident pupil fields are refracted by an AL, two transverse Cartesian components of the electric fields at the exit pupil plane do not have the same order of sinusoidal or cosinoidal components, resulting in zero longitudinal SAMs of the focal fields. An incident field satisfying above conditions is then proposed. Using the Richard-Wolf vectorial diffraction theory, the energy density and SAM density distributions of the tightly focused beam are calculated and the results clearly validate the proposed theory. In addition, a sub-half-wavelength focal spot with purely transverse SAM can be achieved and a flattop energy density distribution parallel to z-axis can be observed around the maximum energy density point.

  6. Momentum transfer in a Brillouin surface scattering

    International Nuclear Information System (INIS)

    Khater, A.F.

    1980-01-01

    The theory of acoustic excitation scattering in the surface of Brilloiun of opaque materials, is related to the question of momentum transfexed from radiation fields to the material when the incident eight is scattered in a measurable spectrum. (A.C.A.S.) [pt

  7. Quark Orbital Angular Momentum

    Directory of Open Access Journals (Sweden)

    Burkardt Matthias

    2015-01-01

    Full Text Available Definitions of orbital angular momentum based on Wigner distributions are used as a framework to discuss the connection between the Ji definition of the quark orbital angular momentum and that of Jaffe and Manohar. We find that the difference between these two definitions can be interpreted as the change in the quark orbital angular momentum as it leaves the target in a DIS experiment. The mechanism responsible for that change is similar to the mechanism that causes transverse single-spin asymmetries in semi-inclusive deep-inelastic scattering.

  8. Value and Momentum Everywhere

    DEFF Research Database (Denmark)

    Asness, Clifford S.; Moskowitz, Tobias; Heje Pedersen, Lasse

    2013-01-01

    are negatively correlated with each other, both within and across asset classes. Our results indicate the presence of common global risks that we characterize with a three-factor model. Global funding liquidity risk is a partial source of these patterns, which are identifiable only when examining value......We find consistent value and momentum return premia across eight diverse markets and asset classes, and a strong common factor structure among their returns. Value and momentum returns correlate more strongly across asset classes than passive exposures to the asset classes, but value and momentum...

  9. On the momentum distribution of particles participating in nuclear

    Indian Academy of Sciences (India)

    Various momentum constraints were imposed to get better insight into the stopping. The comparison of measured and calculated values of stopping for protons reveals the significance of these constraints. Maximum stopping is obtained for the particles lying in the lowest range of the momentum distribution at all incident ...

  10. Momentum, March 2016

    OpenAIRE

    2016-01-01

    Momentum is the quarterly magazine of the Department of Mechanical Engineering at Virginia Tech. In this issue: Lead-free piezoelectric material in development; Harnessing the energy of ocean waves; Meet the Hyperloop team; Maleshia Jones - Graduate student with focus.

  11. Investigation of incomplete linear momentum transfer in heavy ion reactions at intermediate energies

    International Nuclear Information System (INIS)

    Leray, S.

    1986-07-01

    At intermediate energies, heavy ion central collisions lead to the incomplete fusion of the incident nuclei while part of the initial linear momentum is carried away by fast light particles. Experiments were performed with 30 MeV per nucleon neon and 20, 35 and 44 MeV per nucleon argon projectiles bombarding heavy targets. Results obtained with 30 MeV per nucleon neon and 20 MeV per nucleon argon beams are in good agreement with an empirical law established with lighter projectiles. On the contrary, 35 and 44 MeV per nucleon argon projectiles do not follow the same law and fission fragments progressively disappear. A simple model explains the evolution of the amount of transferred linear momentum versus incident energy. The disappearance of the fusion products of the composite system observed with argon projectiles beyond 35 MeV per nucleon is explained by a limitation of the excitation energy per nucleon which can be deposited in a nucleus. The limit is evaluated from nucleon binding energy in nuclei and probability to emit clusters and is in good agreement with experimental data. Because of the coupling between intrinsic motion of nucleons and relative motion of nuclei, some nucleons have a kinetic energy high enough to be emitted: a theoretical model is proposed which rather well fits the data concerning fast nucleons but cannot explain the measured amounts of transferred linear momentum. This is attributed to the existence of other mechanisms [fr

  12. Single-beam integrating sphere spectrophotometer for reflectance and transmittance measurements versus angle of incidence in the solar wavelength range on diffuse and specular samples

    Science.gov (United States)

    Nostell, Per; Roos, Arne; Rönnow, Daniel

    1999-05-01

    A multipurpose instrument for the measurement of reflectance and transmittance versus angle of incidence for both specular and diffuse samples in the solar wavelength range has been constructed and evaluated. The instrument operates in the single-beam mode and uses a common light source for three experimental setups. Two integrating spheres, 20 cm in diameter, are used for diffuse transmittance and reflectance measurements. The transmittance sphere can be turned around an axis through the sample to vary the angle of incidence. The reflectance sphere uses a center mounted sample and a special feature is the position of the detector, which is mounted on the sample holder at the center of the sphere. This way the detector always sees the same part of the sphere wall and no light can reach the detector directly from the sample. The third setup is an absolute instrument for specular samples. It uses a small averaging sphere as a detector. The detector is mounted on an arm which rotates around the center of the sample, and it can thus pick up both the reflected and transmitted beams including all multiply reflected components. The averaging sphere detector is insensitive to small side shifts of the detected beams and no multiple reflections between detector and optical system occur. In this report a number of calibration procedures are presented for the three experimental setups and models for the calculation of correct transmittance and reflectance values from measured data are presented. It is shown that for integrating sphere measurements, the geometry of the sphere and the diffusivity of the sample as well as the sphere wall reflectance and port losses are important factors that influence the result. For the center mounted configuration these factors are particularly important and special emphasis is given to the evaluation of the reflectance sphere model. All three instrument setups are calibrated using certified reference materials and nonscattering mirrors and

  13. Incidence of primary hypothyroidism in patients exposed to therapeutic external beam radiation, where radiation portals include a part or whole of the thyroid gland

    Directory of Open Access Journals (Sweden)

    B A Laway

    2012-01-01

    Full Text Available Introduction: Hypothyroidism is a known consequence of external-beam radiotherapy to the neck encompassing a part or whole of the thyroid gland. In this non-randomized prospective study, we have tried to evaluate the response of the thyroid gland to radiation by assessing thyroid function before irradiation and at regular intervals after irradiation. Aims and Objectives: The aim of this study were to assess in the cancer patients, who were exposed to the therapeutic external beam radiation, where radiation portals include a part or whole of the thyroid gland: the incidence of primary hypothyroidism, the time required to become hypothyroid, any relation between the total dose for the development of hypothyroidism, and whether there are any patient or treatment-related factors that are predictive for the development of hypothyroidism, including the use of concurrent chemotherapy. Materials and Methods: This non-randomized, prospective study was conducted for a period of 2 years in which thyroid function was assessed in 59 patients (cases of head and neck cancer, breast cancer, lymphoma patients and other malignancies, who had received radiotherapy to the neck region. 59 euthyroid healthy patients (controls were also taken, who had not received the neck irradiation. These patients/controls were assessed periodically for 2 years. Results: The incidence of hypothyroidism after external beam radiation therapy (EBRT to neck where radiation portals include part or whole of the thyroid gland was 16.94%, seven cases had subclinical hypothyroidism (11.86% and three cases had clinical hypothyroidism (5.08%. Mean time for development of hypothyroidism was 4.5 months. There was no effect of age, gender, primary tumor site, radiation dose and chemotherapy, whether neoadjuvant or concurrent with the development of hypothyroidism. Conclusion: In summary, we found that thyroid dysfunction is a prevalent, yet easily treatable source of morbidity in patients

  14. T10 Beam Studies & Beam Simulation

    CERN Document Server

    Bergmann, Michael Georges; Van Dijk, Maarten; CERN. Geneva. EN Department

    2017-01-01

    In order to test detector components before their installation in actual experiments, one uses test beams in which one can control particle typ, momentum and size to high degree. For this project the focus of a secondary beam at T10 in the East Area at CERN was analysed using an AZALEA telescope from DESY.

  15. Use of External Beam Radiotherapy Is Associated With Reduced Incidence of Second Primary Head and Neck Cancer: A SEER Database Analysis

    International Nuclear Information System (INIS)

    Rusthoven, Kyle; Chen Changhu; Raben, David; Kavanagh, Brian

    2008-01-01

    Purpose: Patients with head and neck cancer have a significant risk of developing a second primary cancer of the head and neck. We hypothesized that treatment with external beam radiotherapy (RT) might reduce this risk, because RT can eradicate occult foci of second head and neck cancer (HNCA). Methods and Materials: The data of patients with Surveillance, Epidemiology, and End Results Historic Stage A localized squamous cell carcinoma of the oral cavity, larynx, and pharynx were queried using the Surveillance, Epidemiology, and End Results database. For patients treated with or without RT, the incidence of second HNCA was determined and compared using the log-rank method. Cox proportional hazards analysis was performed for each site, evaluating the influence of covariates on the risk of second HNCA. Results: Between 1973 and 1997, 27,985 patients were entered with localized HNCA. Of these patients, 44% had received RT and 56% had not. The 15-year incidence of second HNCA was 7.7% with RT vs. 10.5% without RT (hazard ratio 0.71, p <0.0001). The effect of RT was more profound in patients diagnosed between 1988 and 1997 (hazard ratio 0.53, p <0.0001) and those with pharynx primaries (hazard ratio 0.47, p <0.0001). On multivariate analysis, RT was associated with a reduced risk of second HNCA for pharynx (p <0.0001) and larynx (p = 0.04) tumors. For oral cavity primaries, RT was associated with an increased risk of second HNCA in patients treated before 1988 (p <0.001), but had no influence on patients treated between 1988 and 1997 (p = 0.91). Conclusion: For localized HNCA, RT is associated with a reduced incidence of second HNCA. These observations are consistent with the eradication of microscopic foci of second HNCA with external beam RT

  16. Incident energy dependence of pt correlations at relativistic energies

    CERN Document Server

    Adams, J; Ahammed, Z; Amonett, J; Anderson, B D; Arkhipkin, D; Averichev, G S; Badyal, S K; Bai, Y; Balewski, J; Barannikova, O; Barnby, L S; Baudot, J; Bekele, S; Belaga, V V; Bellingeri-Laurikainen, A; Bellwied, R; Berger, J; Bezverkhny, B I; Bharadwaj, S; Bhasin, A; Bhati, A K; Bhatia, V S; Bichsel, H; Bielcik, J; Bielcikova, J; Billmeier, A; Bland, L C; Blyth, C O; Bonner, B E; Botje, M; Boucham, A; Bouchet, J; Brandin, A V; Bravar, A; Bystersky, M; Cadman, R V; Cai, X Z; Caines, H; Calderón de la Barca-Sanchez, M; Castillo, J; Catu, O; Cebra, D; Chajecki, Z; Chaloupka, P; Chattopadhyay, S; Chen, H F; Chen, Y; Cheng, J; Cherney, M; Chikanian, A; Christie, W; Coffin, J P; Cormier, T M; Cramer, J G; Crawford, H J; Das, D; Das, S; Daugherity, M; De Moura, M M; Dedovich, T G; Derevshchikov, A A; Didenko, L; Dietel, T; Dogra, S M; Dong, W J; Dong, X; Draper, J E; Du, F; Dubey, A K; Dunin, V B; Dunlop, J C; Dutta, M R; Mazumdar; Eckardt, V; Edwards, W R; Efimov, L G; Emelianov, V; Engelage, J; Eppley, G; Erazmus, B; Estienne, M; Fachini, P; Faivre, J; Fatemi, R; Fedorisin, J; Filimonov, K; Filip, P; Finch, E; Fine, V; Fisyak, Yu; Fu, J; Gagliardi, C A; Gaillard, L; Gans, J; Ganti, M S; Geurts, F; Ghazikhanian, V; Ghosh, P; González, J E; Gos, H; Grachov, O; Grebenyuk, O; Grosnick, D P; Guertin, S M; Guo, Y; Sen-Gupta, A; Gutíerrez, T D; Hallman, T J; Hamed, A; Hardtke, D; Harris, J W; Heinz, M; Henry, T W; Hepplemann, S; Hippolyte, B; Hirsch, A; Hjort, E; Hoffmann, G W; Huang, H Z; Huang, S L; Hughes, E W; Humanic, T J; Igo, G; Ishihara, A; Jacobs, P; Jacobs, W W; Jedynak, M; Jiang, H; Jones, P G; Judd, E G; Kabana, S; Kang, K; Kaplan, M; Keane, D; Kechechyan, A; Khodyrev, V Yu; Kiryluk, J; Kisiel, A; Kislov, E M; Klay, J; Klein, S R; Koetke, D D; Kollegger, T; Kopytine, M; Kotchenda, L; Kowalik, K L; Krämer, M; Kravtsov, P; Kravtsov, V I; Krüger, K; Kuhn, C; Kulikov, A I; Kumar, A; Kutuev, R K; Kuznetsov, A A; Lamont, M A C; Landgraf, J M; Lange, S; Laue, F; Lauret, J; Lebedev, A; Lednicky, R; Lehocka, S; Le Vine, M J; Li, C; Li, Q; Li, Y; Lin, G; Lindenbaum, S J; Lisa, M A; Liu, F; Liu, H; Liu, L; Liu, Q J; Liu, Z; Ljubicic, T; Llope, W J; Long, H; Longacre, R S; López-Noriega, M; Love, W A; Lu, Y; Ludlam, T; Lynn, D; Ma, G L; Ma, J G; Ma, Y G; Magestro, D; Mahajan, S; Mahapatra, D P; Majka, R; Mangotra, L K; Manweiler, R; Margetis, S; Markert, C; Martin, L; Marx, J N; Matis, H S; Matulenko, Yu A; McClain, C J; McShane, T S; Meissner, F; Melnik, Yu M; Meschanin, A; Miller, M L; Minaev, N G; Mironov, C; Mischke, A; Mishra, D K; Mitchell, J; Mohanty, B; Molnár, L; Moore, C F; Morozov, D A; Munhoz, M G; Nandi, B K; Nayak, S K; Nayak, T K; Nelson, J M; Netrakanti, P K; Nikitin, V A; Nogach, L V; Nurushev, S B; Odyniec, Grazyna Janina; Ogawa, A; Okorokov, V; Oldenburg, M; Olson, D; Pal, S K; Panebratsev, Yu A; Panitkin, S Y; Pavlinov, A I; Pawlak, T; Peitzmann, T; Perevozchikov, V; Perkins, C; Peryt, W; Petrov, V A; Phatak, S C; Picha, R; Planinic, M; Pluta, J; Porile, N; Porter, J; Poskanzer, A M; Potekhin, M V; Potrebenikova, E V; Potukuchi, B V K S; Prindle, D; Pruneau, C A; Putschke, J; Rakness, G; Raniwala, R; Raniwala, S; Ravel, O; Ray, R L; Razin, S V; Reichhold, D M; Reid, J G; Reinnarth, J; Renault, G; Retière, F; Ridiger, A; Ritter, H G; Roberts, J B; Rogachevski, O V; Romero, J L; Rose, A; Roy, C; Ruan, L; Russcher, M; Sahoo, R; Sakrejda, I; Salur, S; Sandweiss, J; Sarsour, M; Savin, I; Sazhin, P S; Schambach, J; Scharenberg, R P; Schmitz, N; Schweda, K; Seger, J; Seyboth, P; Shahaliev, E; Shao, M; Shao, W; Sharma, M; Shen, W Q; Shestermanov, K E; Shimansky, S S; Sichtermann, E P; Simon, F; Singaraju, R N; Smirnov, N; Snellings, R; Sood, G; Sørensen, P; Sowinski, J; Speltz, J; Spinka, H M; Srivastava, B; Stadnik, A; Stanislaus, T D S; Stock, R; Stolpovsky, A; Strikhanov, M N; Stringfellow, B C; Suaide, A A P; Sugarbaker, E R; Suire, C; Sumbera, M; Surrow, B; Swanger, M; Symons, T J M; Szanto de Toledo, A; Tai, A; Takahashi, J; Tang, A H; Tarnowsky, T J; Thein, D; Thomas, J H; Timoshenko, S; Tokarev, M; Trentalange, S; Tribble, R E; Tsai, O D; Ulery, J; Ullrich, T; Underwood, D G; Van Buren, G; Van Leeuwen, M; Van der Molen, A M; Varma, R; Vasilevski, I M; Vasilev, A N; Vernet, R; Vigdor, S E; Viyogi, Y P; Vokal, S; Voloshin, S A; Waggoner, W T; Wang, F; Wang, G; Wang, X L; Wang, Y; Wang, Z M; Ward, H; Watson, J W; Webb, J C; Westfall, G D; Wetzler, A; Whitten, C; Wieman, H; Wissink, S W; Witt, R; Wood, J; Wu, J; Xu, N; Xu, Z; Xu, Z Z; Yamamoto, E; Yepes, P; Yurevich, V I; Zborovský, I; Zhang, H; Zhang, W M; Zhang, Y; Zhang, Z P; Zoulkarneev, R; Zoulkarneeva, Y; Zubarev, A N

    2005-01-01

    We present results for two-particle transverse momentum correlations, , as a function of event centrality for Au+Au collisions at sqrt(sNN) = 20, 62, 130, and 200 GeV at the Relativistic Heavy Ion Collider. We observe correlations decreasing with centrality that are similar at all four incident energies. The correlations multiplied by the multiplicity density increase with incident energy and the centrality dependence may show evidence of processes such as thermalization, minijet production, or the saturation of transverse flow. The square root of the correlations divided by the event-wise average transverse momentum per event shows little or no beam energy dependence and generally agrees with previous measurements at the Super Proton Synchrotron.

  17. Broadband and high-efficiency vortex beam generator based on a hybrid helix array.

    Science.gov (United States)

    Fang, Chaoqun; Wu, Chao; Gong, Zhijie; Zhao, Song; Sun, Anqi; Wei, Zeyong; Li, Hongqiang

    2018-04-01

    The vortex beam which carries the orbital angular momentum has versatile applications, such as high-resolution imaging, optical communications, and particle manipulation. Generating vortex beams with the Pancharatnam-Berry (PB) phase has drawn considerable attention for its unique spin-to-orbital conversion features. Despite the PB phase being frequency independent, an optical element with broadband high-efficiency circular polarization conversion feature is still needed for the broadband high-efficiency vortex beam generation. In this work, a broadband and high-efficiency vortex beam generator based on the PB phase is built with a hybrid helix array. Such devices can generate vortex beams with arbitrary topological charge. Moreover, vortex beams with opposite topological charge can be generated with an opposite handedness incident beam that propagates backward. The measured efficiency of our device is above 65% for a wide frequency range, with the relative bandwidth of 46.5%.

  18. On-chip spin-controlled orbital angular momentum directional coupling

    Science.gov (United States)

    Xie, Zhenwei; Lei, Ting; Si, Guangyuan; Du, Luping; Lin, Jiao; Min, Changjun; Yuan, Xiaocong

    2018-01-01

    Optical vortex beams have many potential applications in the particle trapping, quantum encoding, optical orbital angular momentum (OAM) communications and interconnects. However, the on-chip compact OAM detection is still a big challenge. Based on a holographic configuration and a spin-dependent structure design, we propose and demonstrate an on-chip spin-controlled OAM-mode directional coupler, which can couple the OAM signal to different directions due to its topological charge. While the directional coupling function can be switched on/off by altering the spin of incident beam. Both simulation and experimental measurements verify the validity of the proposed approach. This work would benefit the on-chip OAM devices for optical communications and high dimensional quantum coding/decoding in the future.

  19. Spacecraft momentum control systems

    CERN Document Server

    Leve, Frederick A; Peck, Mason A

    2015-01-01

    The goal of this book is to serve both as a practical technical reference and a resource for gaining a fuller understanding of the state of the art of spacecraft momentum control systems, specifically looking at control moment gyroscopes (CMGs). As a result, the subject matter includes theory, technology, and systems engineering. The authors combine material on system-level architecture of spacecraft that feature momentum-control systems with material about the momentum-control hardware and software. This also encompasses material on the theoretical and algorithmic approaches to the control of space vehicles with CMGs. In essence, CMGs are the attitude-control actuators that make contemporary highly agile spacecraft possible. The rise of commercial Earth imaging, the advances in privately built spacecraft (including small satellites), and the growing popularity of the subject matter in academic circles over the past decade argues that now is the time for an in-depth treatment of the topic. CMGs are augmented ...

  20. Time Series Momentum

    DEFF Research Database (Denmark)

    Moskowitz, Tobias J.; Ooi, Yao Hua; Heje Pedersen, Lasse

    2012-01-01

    We document significant “time series momentum” in equity index, currency, commodity, and bond futures for each of the 58 liquid instruments we consider. We find persistence in returns for one to 12 months that partially reverses over longer horizons, consistent with sentiment theories of initial...... under-reaction and delayed over-reaction. A diversified portfolio of time series momentum strategies across all asset classes delivers substantial abnormal returns with little exposure to standard asset pricing factors and performs best during extreme markets. Examining the trading activities...... of speculators and hedgers, we find that speculators profit from time series momentum at the expense of hedgers....

  1. Characterization of ion beam sputtered deposited W/Si multilayers by grazing incidence x-ray diffraction and x-ray reflectivity technique

    Science.gov (United States)

    Dhawan, Rajnish; Rai, Sanjay

    2016-05-01

    W/Si multilayers four samples have been deposited on silicon substrate using ion beam sputtering system. Thickness of tungsten (W) varies from around 10 Å to 40 Å while the silicon (Si) thickness remains constant at around 30 Å in multilayers [W-Si]x4. The samples have been characterized by grazing incidence X-ray diffraction (GIXRD) and X-ray reflectivity technique (XRR). GIXRD study shows the crystalline behaviour of W/Si multilayer by varying W thickness and it is found that above 20 Å the W film transform from amorphous to crystalline phase and X-ray reflectivity data shows that the roughnesses of W increases on increasing the W thicknesses in W/Si multilayers.

  2. Effective energies and exposure determinations of two different energy X-ray beams incident on a personnel monitor

    International Nuclear Information System (INIS)

    Okuno, E.; Cruz, M.T. da

    1984-01-01

    The effective energy of one X or gamma ray beam can be determined by means of two thermoluminescent (TL) dosemeters mounted between suitable filters. However, it has been observed that personnel monitors exposed to two different energy ionizing radiations provide different effective energies depeding on the type of TL phosphor used. This fact could be a powerful tool for identifying exposures to radiation with quite different effective energies which are very common in practice. Two types of TL dosemeters were used : pellets of cold pressed natural fluoride and NaCl developed in our own laboratory, and LiF, TLD-100 from Harshaw Chemical Co.. Experimental results obtained with these combined dosemeters after irradiation with different sets of exposures and energy values of ionizing radiations are also presented. (Author) [pt

  3. NCenter wide band neutrino beam

    International Nuclear Information System (INIS)

    Stutte, L.G.

    1985-01-01

    This memo describes the physical properties of the currently operating N-Center wide band neutrino beam---commonly called the triplet train, following a past tradition of a triplet lens configuration. In reality, in order to gain a larger momentum acceptance and to minimize the angular divergence of the beam, a quadruplet beam (4 lenses) employing point-to-parallel optics at a central momentum of 300 GeV was built. 6 refs., 13 figs., 1 tab

  4. Rotations and angular momentum

    International Nuclear Information System (INIS)

    Nyborg, P.; Froyland, J.

    1979-01-01

    This paper is devoted to the analysis of rotational invariance and the properties of angular momentum in quantum mechanics. In particular, the problem of addition of angular momenta is treated in detail, and tables of Clebsch-Gordan coefficients are included

  5. Energy momentum complex

    Energy Technology Data Exchange (ETDEWEB)

    Nashed, Gamal G.L. [Ain Shams University, Cairo (Egypt). Faculty of Science. Mathematics Dept.

    2010-09-15

    We show that the definition of the energy-momentum complex given by Moeller using Weitzenboeck spacetime in the calculations of gravitational energy gives results which are different from those obtained from other definitions given in the framework of general relativity. (author)

  6. Momentum, Fall 2016

    OpenAIRE

    2016-01-01

    Momentum is the quarterly magazine of the Department of Mechanical Engineering at Virginia Tech. In this issue: Nano engineering - Scaling up; Coating 3D objects quickly Energy Harvesting - from soldier's backpacks to nuclear monitoring Hyperloop - team readies pod, university to build test track.

  7. Momentum constraint relaxation

    International Nuclear Information System (INIS)

    Marronetti, Pedro

    2006-01-01

    Full relativistic simulations in three dimensions invariably develop runaway modes that grow exponentially and are accompanied by violations of the Hamiltonian and momentum constraints. Recently, we introduced a numerical method (Hamiltonian relaxation) that greatly reduces the Hamiltonian constraint violation and helps improve the quality of the numerical model. We present here a method that controls the violation of the momentum constraint. The method is based on the addition of a longitudinal component to the traceless extrinsic curvature A ij -tilde, generated by a vector potential w i , as outlined by York. The components of w i are relaxed to solve approximately the momentum constraint equations, slowly pushing the evolution towards the space of solutions of the constraint equations. We test this method with simulations of binary neutron stars in circular orbits and show that it effectively controls the growth of the aforementioned violations. We also show that a full numerical enforcement of the constraints, as opposed to the gentle correction of the momentum relaxation scheme, results in the development of instabilities that stop the runs shortly

  8. Importance of high order momentum terms in SLC optics

    International Nuclear Information System (INIS)

    Kozanecki, W.

    1985-01-01

    The evaluation of background levels at the SLC relies, in several cases, on the proper representation of how low momentum electrons propagate through the Arcs and the Final Focus System (FFS). For example, beam - gas bremsstrahlung in the arcs causes electrons of up to 6% energy loss to be transported through to the IP; secondary showers on edges of masks and collimators yield debris with a very wide momentum spectrum. This note is a naive attempt at checking the validity of TRANSPORT and TURTLE calculations, by evaluating the contributions of the momentum terms to increasingly higher order, and checking the mutual consistency of the results produced by the two methods on a beam of wide momentum spread. 8 refs., 4 figs., 1 tab

  9. Fission fragment angular momentum

    International Nuclear Information System (INIS)

    Frenne, D. De

    1991-01-01

    Most of the energy released in fission is converted into translational kinetic energy of the fragments. The remaining excitation energy will be distributed among neutrons and gammas. An important parameter characterizing the scission configuration is the primary angular momentum of the nascent fragments. Neutron emission is not expected to decrease the spin of the fragments by more than one unit of angular momentum and is as such of less importance in the determination of the initial fragment spins. Gamma emission is a suitable tool in studying initial fragment spins because the emission time, number, energy, and multipolarity of the gammas strongly depend on the value of the primary angular momentum. The main conclusions of experiments on gamma emission were that the initial angular momentum of the fragments is large compared to the ground state spin and oriented perpendicular to the fission axis. Most of the recent information concerning initial fragment spin distributions comes from the measurement of isomeric ratios for isomeric pairs produced in fission. Although in nearly every mass chain isomers are known, only a small number are suitable for initial fission fragment spin studies. Yield and half-life considerations strongly limit the number of candidates. This has the advantage that the behavior of a specific isomeric pair can be investigated for a number of fissioning systems at different excitation energies of the fragments and fissioning nuclei. Because most of the recent information on primary angular momenta comes from measurements of isomeric ratios, the global deexcitation process of the fragments and the calculation of the initial fragment spin distribution from measured isomeric ratios are discussed here. The most important results on primary angular momentum determinations are reviewed and some theoretical approaches are given. 45 refs., 7 figs., 2 tabs

  10. Optical angular momentum and atoms.

    Science.gov (United States)

    Franke-Arnold, Sonja

    2017-02-28

    Any coherent interaction of light and atoms needs to conserve energy, linear momentum and angular momentum. What happens to an atom's angular momentum if it encounters light that carries orbital angular momentum (OAM)? This is a particularly intriguing question as the angular momentum of atoms is quantized, incorporating the intrinsic spin angular momentum of the individual electrons as well as the OAM associated with their spatial distribution. In addition, a mechanical angular momentum can arise from the rotation of the entire atom, which for very cold atoms is also quantized. Atoms therefore allow us to probe and access the quantum properties of light's OAM, aiding our fundamental understanding of light-matter interactions, and moreover, allowing us to construct OAM-based applications, including quantum memories, frequency converters for shaped light and OAM-based sensors.This article is part of the themed issue 'Optical orbital angular momentum'. © 2017 The Author(s).

  11. R×B drift momentum spectrometer with high resolution and large phase space acceptance.

    Science.gov (United States)

    Wang, X; Konrad, G; Abele, H

    2013-02-11

    We propose a new type of momentum spectrometer, which uses the R × B drift effect to disperse the charged particles in a uniformly curved magnetic field, and measures the particles with large phase space acceptance and high resolution. This kind of R × B spectrometer is designed for the momentum analyses of the decay electrons and protons in the PERC (Proton and Electron Radiation Channel) beam station, which provides a strong magnetic field to guide the charged particles in the instrument. Instead of eliminating the guiding field, the R × B spectrometer evolves the field gradually to the analysing field, and the charged particles can be adiabatically transported during the dispersion and detection. The drifts of the particles have similar properties as their dispersion in the normal magnetic spectrometer. Besides, the R × B spectrometer is especially ideal for the measurements of particles with low momenta and large incident angles. We present a design of the R × B spectrometer, which can be used in PERC. For the particles with solid angle smaller than 88 msr, the maximum aberration is below 10 -4 . The resolution of the momentum spectra can reach 14.4 keV/ c , if the particle position measurements have a resolution of 1 mm.

  12. Angular momentum projected semiclassics

    International Nuclear Information System (INIS)

    Hasse, R.W.

    1986-10-01

    By using angular momentum projected plane waves as wave functions, we derive semiclassical expressions for the single-particle propagator, the partition function, the nonlocal density matrix, the single-particle density and the one particle- one hole level density for fixed angular momentum and fixed z-component or summed over the z-components. Other quantities can be deduced from the propagator. In coordinate space (r, r') the relevant quantities depend on vertical stroker - r 3 vertical stroke instead of vertical stroker - r'vertical stroke and in Wigner space (R, P) they become proportional to the angular momentum constraints δ(vertical strokeRxPvertical stroke/ℎ - l) and δ((RxP) z /ℎ - m). As applications we calculate the single-particle and one particle- one hole level densities for harmonic oscillator and Hill-Wheeler box potentials and the imaginary part of the optical potential and its volume integral with an underlying harmonic oscillator potential and a zero range two-body interaction. (orig.)

  13. Large acceptance magnetic focussing horns for production of a high intensity narrow band neutrino beam at the AGS

    International Nuclear Information System (INIS)

    Carroll, A.; Chimienti, L.; Leonhardt, W.

    1985-01-01

    A set of two large acceptance (20 to 140 mrad) horns have been designed and built to form a parallel beam of 3 GeV/c pions and kaons for the production of an intense, dichromatic neutrino beam. A set of beam plugs and collimators determined the momentum of the particles which pass through the horns. The cooling and maintenance of the horns and target was a particular concern since they were operated with an incident intensity of over 10 13 proton/sec. These systems were designed for simplicity, reliability, and easy replacement

  14. Incidence of Maxillary Sinus Disease Before Sinus Floor Elevation Surgery as Identified by Cone-Beam Computed Tomography: A Literature Review.

    Science.gov (United States)

    Costa, Fabio; Emanuelli, Enzo; Robiony, Massimo

    2018-04-01

    The purpose of this study is to review the literature to assess the incidence of maxillary sinus disease before sinus floor elevation surgery (SFE) as identified by cone-beam computerized tomography (CBCT). Only studies in which CBCT was performed in patients for dental implant placement in the past 10 years were considered. Eleven studies were identified. A total of 1792 patients were collected. All the studies reviewed reported on thickening of the sinus mucosa as a criterion for sinus disease with different threshold values. All studies reported mucosal thickening (MT) ranging between 25.5% and 93.1%. The mean incidence of MT was 54.99%. Two studies examined the correlation of MT with clinical symptoms. Three studies reported evaluation of the ostiomeatal complex (OMC). There is a high probability of detecting a certain degree of MT in patients referred for SFE. There is no consensus regarding the threshold values beyond which MT is considered pathological. Independently from the threshold values or the type of MT, the studies lack correlation with clinical data regarding patients' sinusitis-related history or symptoms. CBCT with a large field of view to evaluate the OMC is appropriate in patients scheduled for SFE. Future studies should include a systematic correlation with clinical symptoms and the possible presence of OMC obstruction. A clinical assessment that includes nasal endoscopy is indicated when MT and obstruction of the OMC are identified. Surgical correction of OMC obstruction seems to be appropriate to increase the success rate and to avoid possible complication after SFE.

  15. Reduction of the divergence angle of an incident beam to enhance the demagnification factor of a two-stage acceleration lens in a gas ion nanobeam system of several tens of keV

    Science.gov (United States)

    Ishii, Yasuyuki; Kojima, Takuji

    2018-04-01

    The demagnification factor of a two-stage acceleration lens in a gas ion nanobeam system that produces ion beams with energies in the order of 10 keV was enhanced in this study so that a hydrogen ion beam with a diameter of 115 nm could be produced. The reduction of the divergence angle of the incident beam into the two-stage acceleration lens is the effective method for enhancing the demagnification factor. The divergence angle has been gradually reduced by firstly introducing the preacceleration electrodes to control the divergence angle, namely divergence-angle-control electrodes, and secondly replacing an anode with a modified anode that possesses a Pierce electrode, both of which were in an ion source directly connected to the lens. In this study, the divergence angle of less than 3.6 × 10-4 rad that was previously used to produce a 160-nm hydrogen ion beam with the energy of 46 keV by the above procedure was numerically determined using an ion beam extraction simulation code. The determined minimum divergence angle of the incident ion beam was calculated to be 2.0 × 10-4 rad, which was about half of the previously obtained divergence angle; this was used to experimentally form a hydrogen beam with a diameter of 115 ± 10 nm and the energy of 47 keV. The demagnification factor was estimated to be 1,739 using the newly formed hydrogen beam, which was similar to the simulation result.

  16. Longitudinal polarization of direct muons with 1.9 GeV/c transverse momentum produced in NN-collisions

    International Nuclear Information System (INIS)

    Abramov, V.V.; Alekseev, A.V.; Bityukov, S.I.

    1978-01-01

    The results of new measurements of direct-muon longitudinal polarization are presented. The experiment has been carried out at the Serpukhov accelerator with 70 GeV protons on a copper target. Muons produced from the internal copper target at 9 deg to the incident beam have been slowed down and focused by a muonguide from magnetized iron which has also selected muon with an identical charge. The coefficient of direct muon polarization etasub(x) is calculated through the polarization of muons from π and K decays and through the number of direct muon fraction in the beam. etasub(x) is found to be -0.41+-0.17. In other words the evidence is found that among direct muons produced with 1.9 GeV/c transverse momentum there is a component with negative polarization. The result agrees poorely with a hypothesis that all direct muons are originated in electromagnetic interactions (eta=0)

  17. HEBT MOMENTUM SCRAPER, H+ RAY TRACE SIMULATION AND VACUUM CHAMBER DESIGN

    International Nuclear Information System (INIS)

    HE, P.; HSEUH, H.C.; RAPARIA, D.; TSOUPAS, N.; WEISS, D.

    2001-01-01

    In the 1MW Spallation Neutron Source (SNS), the High-Energy Beam Transfer line (HEBT) connects the LINAC to the accumulator ring. A major requirement of the SNS complex is to have low uncontrolled beam loss (lnA/m), to allow hands on maintenance. The vacuum requirement for the HEBT is 5x10 -8 Torr. Excessive H - stripping will occur above this pressure and increase losses in the machine. The HEBT is also equipped with three sets of beam halo scrapers, one for momentum and two for transverse collimation. The momentum scraper is located at a maximum dispersion point, between the 3rd dipole magnet (DD3) of HEBT and the 14th quadrupole (Q14) of the HEBT line. The momentum scraper uses movable foils that strip the H - beam that has momentum spread (0.2% + , and the H + ions are then directed out of the HEBT beam line to a beam dump by the next bending magnet DD4 (4th dipole of HEBT). In order to ensure that the extracted H + beam travels inside the extraction chamber to minimize the radiation in the beam dump station region, we performed H + particle tracking to determine the outer boundaries and the angle of the Y-type vacuum chamber that will contain the H + beam. The development and design of the special HEBT momentum scraper extraction and exit chamber, and the relevant H + trajectories are presented in this paper

  18. Holographic toolkit for optical communication beyond orbital angular momentum

    CSIR Research Space (South Africa)

    Rosales-Guzman, C

    2016-09-01

    Full Text Available , suggested over 30 years ago, comprises the use of spatial modes of light as information carriers. Along this direction, light beams endowed with orbital angular momentum (OAM) have been demonstrated as potential information carriers in both, free space...

  19. Evidence of Inward Toroidal Momentum Convection in the JET Tokamak

    DEFF Research Database (Denmark)

    Tala, T.; Zastrow, K.-D.; Ferreira, J.

    2009-01-01

    Experiments have been carried out on the Joint European Torus tokamak to determine the diffusive and convective momentum transport. Torque, injected by neutral beams, was modulated to create a periodic perturbation in the toroidal rotation velocity. Novel transport analysis shows the magnitude an...

  20. Implementing quantum walks using orbital angular momentum of classical light

    CSIR Research Space (South Africa)

    Goyal, SK

    2013-06-01

    Full Text Available We present an implementation scheme for a quantum walk in the orbital angular momentum space of a laser beam. The scheme makes use of a ring interferometer, containing a quarter-wave plate and a q plate. This setup enables one to perform...

  1. Beam scanning system

    International Nuclear Information System (INIS)

    Enge, H.A.

    1977-01-01

    A system for deflecting a beam of particles having different momenta, preferably through a 90 0 angle, so as to cause the beam to impinge upon a moving target and to scan across the target is described. The system includes a means responsive to a beam from a suitable source for causing the beam to periodically scan in a scanning plane and further means for deflecting the periodically scanned beam through the desired angle in a deflection plane so that the deflected beam impinges on the target. Means are included in the system for reducing the momentum dispersion at the target in both the deflection and the scanning planes and for spatially focussing the beam so as to produce a desired beam diameter at the target

  2. Force As A Momentum Current

    International Nuclear Information System (INIS)

    Munera, Hector A.

    2010-01-01

    Advantages of a neo-Cartesian approach to classical mechanics are noted. If conservation of linear momentum is the fundamental principle, Newton's three laws become theorems. A minor paradox in static Newtonian mechanics is identified, and solved by reinterpreting force as a current of momentum. Contact force plays the role of a mere midwife in the exchange of momentum; however, force cannot be eliminated from physics because it provides the numerical value for momentum current. In this sense, in a neo-Cartesian formulation of mechanics the concept of force becomes strengthened rather than weakened.

  3. Influence of N{sup *}-resonances on hyperon production in the channel pp->K{sup +}LAMBDAp at 2.95, 3.20 and 3.30 GeV/c beam momentum

    Energy Technology Data Exchange (ETDEWEB)

    Abd El-Samad, S.; Abdel-Bary, M. [Atomic Energy Authority NRC Cairo (Egypt); Brinkmann, K. [Technische Universitaet Dresden (Germany); Clement, H. [Universitaet Tuebingen (Germany); Dietrich, J. [Technische Universitaet Dresden (Germany); Dorochkevitch, E. [Universitaet Tuebingen (Germany); Dshemuchadse, S. [Forschungszentrum Dresden-Rossendorf (Germany); Ehrhardt, K.; Erhardt, A. [Universitaet Tuebingen (Germany); Eyrich, W., E-mail: wolfgang.eyrich@physik.uni-erlangen.d [Universitaet Erlangen-Nuernberg (Germany); Fanara, C. [INFN Torino (Italy); Filges, D. [Forschungszentrum Juelich (Germany); Filippi, A. [INFN Torino (Italy); Freiesleben, H. [Technische Universitaet Dresden (Germany); Fritsch, M. [Universitaet Erlangen-Nuernberg (Germany); Gast, W. [Forschungszentrum Juelich (Germany); Georgi, J. [Universitaet Erlangen-Nuernberg (Germany); Gillitzer, A. [Forschungszentrum Juelich (Germany); Gottwald, J. [Technische Universitaet Dresden (Germany); Hauffe, J. [Universitaet Erlangen-Nuernberg (Germany)

    2010-05-03

    Hyperon production in the threshold region was studied in the reaction pp->K{sup +}LAMBDAp using the time-of-flight spectrometer COSY-TOF. Exclusive data, covering the full phase-space, were taken at the three different beam momenta of p{sub beam}=2.95, 3.20 and 3.30 GeV/c, corresponding to excess energies of epsilon=204, 285 and 316 MeV, respectively. Total cross-sections were deduced for the three beam momenta to be 23.9+-0.8+-2.0 mub, 28.4+-1.3+-2.2 mub and 35.0+-1.3+-3.0 mub. Differential observables including Dalitz plots were obtained. The analysis of the Dalitz plots reveals a strong influence of the N(1650)-resonance at p{sub beam}=2.95 GeV/c, whereas for the higher momenta an increasing relative contribution of the N(1710)- and/or of the N(1720)-resonance was observed. In addition, the pLAMBDA-final-state interaction turned out to have a significant influence on the Dalitz plot distribution.

  4. Incident Energy Dependence of pt Correlations at RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Adams, J.; Aggarwal, M. M.; Ahammed, Z.; Amonett, J.; Anderson, B. D.; Arkhipkin, D.; Averichev, G. S.; Badyal, S. K.; Bai, Y.; Balewski, J.; Barannikova, O.; Barnby, L. S.; Baudot, J.; Bekele, S.; Belaga, V. V.; Bellwied, R.; Berger, J.; Bezverkhny, B. I; Bharadwaj, S.; Bhasin, A.; Bhati, A. K.; Bhatia, V. S.; Bichsel, H.; Billmeier, A.; Bland, L. C.; Blyth, C. O.; Bonner, B. E.; Botje, M.; Boucham, A.; Brandin, A. V.; Bravar, A.; Bystersky, M.; Cadman, R. V.; Cai, X. Z.; Caines, H.; Castillo, J.; Cebra, D.; Chajecki, Z.; Chaloupka, P.; Chattopadhyay, S.; Chen, H. F.; Chen, Y.; Cheng, J.; Cherney, M.; Chikanian, A.; Christie, W.; Coffin, J. P.; Cormier, T. M.; Cramer, J. G.; Crawford, H. J.; Das, D.; Das, S.; de Moura, M. M.; Derevschikov, A. A.; Didenko, L.; Dietel, T.; Dogra, S. M.; Dong, W. J.; Dong, X.; Draper, J. E.; Du, F.; Dubey, A. K.; Dunin, V. B.; Dunlop, J. C.; Dutta Mazumdar, M. R.; Eckardt, V.; Edwards, W. R.; Efimov, L. G.; Emelianov, V.; Engelage, J.; Eppley, G.; Erazmus, B.; Estienne, M.; Fachini, P.; Faivre, J.; Fatemi, R.; Fedorisin, J.; Filimonov, K.; Filip, P.; Finch, E.; Fine, V.; Fisyak, Y.; Fomenko, K.; Fu, J.; Gagliardi, C. A.; Gaillard, L.; Gans, J.; Ganti, M. S.; Gaudichet, L.; Geurts, F.; Ghazikhanian, V.; Ghosh, P.; Gonzalez, J. E.; Grachov, O.; Grebenyuk, O.; Grosnick, D.; Guertin, S. M.; Guo, Y.; Gupta, A.; Gutierrez, T. D.; Hallman, T. J.; Hamed, A.; Hardtke, D.; Harris, J. W.; Heinz, M.; Henry, T. W.; Hepplemann, S.; Hippolyte, B.; Hirsch, A.; Hjort, E.; Hoffmann, G. W.; Huang, H. Z.; Huang, S. L.; Hughes, E. W.; Humanic, T. J.; Igo, G.; Ishihara, A.; Jacobs, P.; Jacobs, W. W.; Janik, M.; Jiang, H.; Jones, P. G.; Judd, E. G.; Kabana, S.; Kang, K.; Kaplan, M.; Keane, D.; Khodyrev, V. Yu; Kiryluk, J.; Kisiel, A.; Kislov, E. M.; Klay, J.; Klein, S. R.; Koetke, D. D.; Kollegger, T.; Kopytine, M.; Kotchenda, L.; Kramer, M.; Kravtsov, P.; Kravtsov, V. I.; Krueger, K.; Kuhn, C.; Kulikov, A. I.; Kumar, A.; Kutuev, R. Kh

    2005-10-01

    We present results for two-particle transverse momentum correlations, Δpt,iΔt,j, as a function of event centrality for Au+Au collisions at √(sNN) = 20, 62, 130, and 200 GeV at the Relativistic Heavy Ion Collider. We observe correlations decreasing with centrality that are similar at all four incident energies. The correlations multiplied by the multiplicity density increase with incident energy and the centrality dependence may show evidence of processes such as thermalization, jet production, or the saturation of transverse flow. The square root of the correlations divided by the event-wise average transverse momentum per event shows little or no beam energy dependence and generally agrees with previous measurements at the Super Proton Synchrotron.

  5. Orbit, optics and chromaticity correction for PS2 negative momentum compaction lattices

    Energy Technology Data Exchange (ETDEWEB)

    Papaphilippou,Y.; Barranco, J.; Bartmann, W.; Benedikt, M.; Carli, C.; de Maria, R.; Peggs, S.; Trbojevic, D.

    2009-05-04

    The effect of magnet misalignments in the beam orbit and linear optics functions are reviewed and correction schemes are applied to the negative momentum compaction lattice of PS2. Chromaticity correction schemes are also proposed and tested with respect to off-momentum optics properties. The impact of the correction schemes in the dynamic aperture of the lattice is finally evaluated.

  6. A comparison of simple and realistic eye models for calculation of fluence to dose conversion coefficients in a broad parallel beam incident of protons

    International Nuclear Information System (INIS)

    Sakhaee, Mahmoud; Vejdani-Noghreiyan, Alireza; Ebrahimi-Khankook, Atiyeh

    2015-01-01

    Radiation induced cataract has been demonstrated among people who are exposed to ionizing radiation. To evaluate the deterministic effects of ionizing radiation on the eye lens, several papers dealing with the eye lens dose have been published. ICRP Publication 103 states that the lens of the eye may be more radiosensitive than previously considered. Detailed investigation of the response of the lens showed that there are strong differences in sensitivity to ionizing radiation exposure with respect to cataract induction among the tissues of the lens of the eye. This motivated several groups to look deeper into issue of the dose to a sensitive cell population within the lens, especially for radiations with low energy penetrability that have steep dose gradients inside the lens. Two sophisticated mathematical models of the eye including the inner structure have been designed for the accurate dose estimation in recent years. This study focuses on the calculations of the absorbed doses of different parts of the eye using the stylized models located in UF-ORNL phantom and comparison with the data calculated with the reference computational phantom in a broad parallel beam incident of protons with energies between 20 MeV and 10 GeV. The obtained results indicate that the total lens absorbed doses of reference phantom has good compliance with those of the more sensitive regions of stylized models. However, total eye absorbed dose of these models greatly differ with each other for lower energies. - Highlights: • The validation of reference data for the eye was studied for proton exposures. • Two real mathematical models of the eye were imported into the UF-ORNL phantom. • Fluence to dose conversion coefficients were calculated for different eye sections. • Obtained Results were compared with that of assessed by ICRP adult male phantom

  7. Measurement of the Nuclear Dependence of Direct Photon and Neutral Meson Production at High Transverse Momentum by Negative 515-GeV/c Pions Incident on Beryllium and Copper Targets

    Energy Technology Data Exchange (ETDEWEB)

    Sorrell, Lee Ronald [Michigan State Univ., East Lansing, MI (United States)

    1995-01-01

    The nuclear dependence of inclusive direct photon production and inclusive neutral meson production by a 515 GeV/c $\\pi^-$ beam has been measured using data collected by the E706 experiment during the 19.90 fixed, target run at the Fermi National Accelerator Laboratory. The experiment utilized a finely segmented liquid argon calorimeter and a high precision charged particle spectrometer to make precision measurements of inclusive direct photon, neutral pion, and $\\eta$ production in the rapidity interval from -0.75 < $y$ < 0.75. The $\\pi^0$ data is reported for the $P_T$ range from 0.6 GeV /c to 12 GeV /c, while the $\\eta$ data is reported for the range from 3.5 GeV /c to 7.0 GeV /c. The direct photon nuclear dependence results are reported for the range from approxlmately 4.0 GeV/c to 8.5 GeV/c. The data from the beryllium and copper targets have been fit using the parameterization $\\sigma_A$ = $\\sigma_0$ x $A^{\\alpha}$. The neutral meson results are in good agreement with previous charged meson results. The direct photon results are consistent with no anomalous enhancement.

  8. The COMPASS Setup for Physics with Hadron Beams

    CERN Document Server

    Abbon, Ph.; Akhunzyanov, R.; Alexandrov, Yu.; Alexeev, M.G.; Alexeev, G.D.; Amoroso, A.; Andrieux, V.; Anosov, V.; Austregesilo, A.; Badelek, B.; Balestra, F.; Barth, J.; Baum, G.; Beck, R.; Bedfer, Y.; Berlin, A.; Bernhard, J.; Bicker, K.; Bielert, E.R.; Bieling, J.; Birsa, R.; Bisplinghoff, J.; Bodlak, M.; Boer, M.; Bordalo, P.; Bradamante, F.; Braun, C.; Bressan, A.; Buchele, M.; Burtin, E.; Capozza, L.; Ciliberti, P.; Chiosso, M.; Chung, S.U.; Cicuttin, A.; Colantoni, M.; Cotte, D.; Crespo, M.L.; Curiel, Q.; Dafni, T.; Dalla Torre, S.; Dasgupta, S.S.; Dasgupta, S.; Denisov, O.Yu.; Desforge, D.; Dinkelbach, A.M.; Donskov, S.V.; Doshita, N.; Duic, V.; Dunnweber, W.; Durand, D.; Dziewiecki, M.; Efremov, A.; Elia, C.; Eversheim, P.D.; Eyrich, W.; Faessler, M.; Ferrero, A.; Finger, M.; M. Finger jr; Fischer, H.; Franco, C.; von Hohenesche, N. du Fresne; Friedrich, J.M.; Frolov, V.; Gatignon, L.; Gautheron, F.; Gavrichtchouk, O.P.; Gerassimov, S.; Geyer, R.; Giganon, A.; Gnesi, I.; Gobbo, B.; Goertz, S.; Gorzellik, M.; Grabmuller, S.; Grasso, A.; Gregori, M.; Grube, B.; Grussenmeyer, T.; Guskov, A.; Haas, F.; von Harrach, D.; Hahne, D.; Hashimoto, R.; Heinsius, F.H.; Herrmann, F.; Hinterberger, F.; Hoppner, Ch.; Horikawa, N.; d'Hose, N.; Huber, S.; Ishimoto, S.; Ivanov, A.; Ivanshin, Yu.; Iwata, T.; Jahn, R.; Jary, V.; Jasinski, P.; Jorg, P.; Joosten, R.; Kabuss, E.; Ketzer, B.; Khaustov, G.V.; Khokhlov, Yu. A.; Kisselev, Yu.; Klein, F.; Klimaszewski, K.; Koivuniemi, J.H.; Kolosov, V.N.; Kondo, K.; Konigsmann, K.; Konorov, I.; Konstantinov, V.F.; Kotzinian, A.M.; Kouznetsov, O.; Kramer, M.; Kroumchtein, Z.V.; Kuchinski, N.; Kuhn, R.; Kunne, F.; Kurek, K.; Kurjata, R.P.; Lednev, A.A.; Lehmann, A.; Levillain, M.; Levorato, S.; Lichtenstadt, J.; Maggiora, A.; Magnon, A.; Makke, N.; Mallot, G.K.; Marchand, C.; Marroncle, J.; Martin, A.; Marzec, J.; Matousek, J.; Matsuda, H.; Matsuda, T.; Menon, G.; Meshcheryakov, G.; Meyer, W.; Michigami, T.; Mikhailov, Yu. V.; Miyachi, Y.; Moinester, M.A.; Nagaytsev, A.; Nagel, T.; Nerling, F.; Neubert, S.; Neyret, D.; Nikolaenko, V.I.; Novy, J.; Nowak, W.D.; Nunes, Ana Sofia; Olshevsky, A.G.; Orlov, I.; Ostrick, M.; Panknin, R.; Panzieri, D.; Parsamyan, B.; Paul, S.; Pesaro, G.; Pesaro, V.; Peshekhonov, D.V.; Pires, C.; Platchkov, S.; Pochodzalla, J.; Polyakov, V.A.; Pretz, J.; Quaresma, M.; Quintans, C.; Ramos, S.; Regali, C.; Reicherz, G.; Reymond, J-M.; Rocco, E.; Rossiyskaya, N.S.; Rousse, J.Y.; Ryabchikov, D.I.; Rychter, A.; Samartsev, A.; Samoylenko, V.D.; Sandacz, A.; Sarkar, S.; Savin, I.A.; Sbrizzai, G.; Schiavon, P.; Schill, C.; Schluter, T.; Schmidt, K.; Schmieden, H.; Schonning, K.; Schopferer, S.; Schott, M.; Shevchenko, O.Yu.; Silva, L.; Sinha, L.; Sirtl, S.; Slunecka, M.; Sosio, S.; Sozzi, F.; Srnka, A.; Steiger, L.; Stolarski, M.; Sulc, M.; Sulej, R.; Suzuki, H.; Szabelski, A.; Szameitat, T.; Sznajder, P.; Takekawa, S.; Wolbeek, J. ter; Tessaro, S.; Tessarotto, F.; Thibaud, F.; Tskhay, V.; Uhl, S.; Uman, I.; Virius, M.; Wang, L.; Weisrock, T.; Weitzel, Q.; Wilfert, M.; Windmolders, R.; Wollny, H.; Zaremba, K.; Zavertyaev, M.; Zemlyanichkina, E.; Ziembicki, M.; Zink, A.

    2015-01-01

    The main characteristics of the COMPASS experimental setup for physics with hadron beams are described. This setup was designed to perform exclusive measurements of processes with several charged and/or neutral particles in the final state. Making use of a large part of the apparatus that was previously built for spin structure studies with a muon beam, it also features a new target system as well as new or upgraded detectors. The hadron setup is able to operate at the high incident hadron flux available at CERN. It is characterised by large angular and momentum coverages, large and nearly flat acceptances, and good two and three-particle mass resolutions. In 2008 and 2009 it was successfully used with positive and negative hadron beams and with liquid hydrogen and solid nuclear targets. This article describes the new and upgraded detectors and auxiliary equipment, outlines the reconstruction procedures used, and summarises the general performance of the setup.

  9. Bell’s measure and implementing quantum Fourier transform with orbital angular momentum of classical light

    Science.gov (United States)

    Song, Xinbing; Sun, Yifan; Li, Pengyun; Qin, Hongwei; Zhang, Xiangdong

    2015-01-01

    We perform Bell’s measurement for the non-separable correlation between polarization and orbital angular momentum from the same classical vortex beam. The violation of Bell’s inequality for such a non-separable classical correlation has been demonstrated experimentally. Based on the classical vortex beam and non-quantum entanglement between the polarization and the orbital angular momentum, the Hadamard gates and conditional phase gates have been designed. Furthermore, a quantum Fourier transform has been implemented experimentally. PMID:26369424

  10. Mesospheric gravity wave momentum flux estimation using hybrid Doppler interferometry

    Directory of Open Access Journals (Sweden)

    A. J. Spargo

    2017-06-01

    Full Text Available Mesospheric gravity wave (GW momentum flux estimates using data from multibeam Buckland Park MF radar (34.6° S, 138.5° E experiments (conducted from July 1997 to June 1998 are presented. On transmission, five Doppler beams were symmetrically steered about the zenith (one zenith beam and four off-zenith beams in the cardinal directions. The received beams were analysed with hybrid Doppler interferometry (HDI (Holdsworth and Reid, 1998, principally to determine the radial velocities of the effective scattering centres illuminated by the radar. The methodology of Thorsen et al. (1997, later re-introduced by Hocking (2005 and since extensively applied to meteor radar returns, was used to estimate components of Reynolds stress due to propagating GWs and/or turbulence in the radar resolution volume. Physically reasonable momentum flux estimates are derived from the Reynolds stress components, which are also verified using a simple radar model incorporating GW-induced wind perturbations. On the basis of these results, we recommend the intercomparison of momentum flux estimates between co-located meteor radars and vertical-beam interferometric MF radars. It is envisaged that such intercomparisons will assist with the clarification of recent concerns (e.g. Vincent et al., 2010 of the accuracy of the meteor radar technique.

  11. Accelerating momentum for change!

    Science.gov (United States)

    Wenzel, S; Panetta, J

    1995-05-01

    As we develop strategies to compete globally, we are challenged with integrating our resources to execute these strategies effectively. Many companies are in the midst of dramatic shifts in corporate cultures, giving more responsibility to employees while raising expectations for their performance. The extent of these changes is far reaching and brings significant challenges to both employees and corporations. This article is a continuation of the evolution (over five years) of a corrective action/continuous improvement process implemented at Exide Electronics. It discusses organizational structures, including steering committees, corrective action teams, task teams, and work cells. Specific expectations, goals, and results of the teams are presented, along with ground rules for functioning within the organization. After structuring the organization and coordinating the resources effectively, the next challenge is accelerating momentum for change. The presentation also discusses the evolutionary process required to make a culture focused on change, including ongoing communication and feedback, constant evaluation and direction of the process, and measuring and paying for performance.

  12. Search for and study of low-mass scalar mesons in reaction np → npπ+π- at neutron beam momentum P n = (5.20 ± 0.12) GeV/ c

    Science.gov (United States)

    Troyan, Yu. A.; Arakelyan, S. G.; Belyaev, A. V.; Ierusalimov, A. P.; Plekhanov, E. B.; Troyan, A. Yu.

    2012-01-01

    We present the results of a search for and study of the resonance effects in the system of π+π- from the reaction np → npπ+π- at the momentum of quasi-monochromatic neutrons P n = (5.20 ± 0.12) GeV/ c from the data obtained in an exposure of the 1-m hydrogen bubble chamber of Veksler and Baldin Laboratory of High Energies, Joint Institute for Nuclear Research (VBLHE JINR). After the supplementary selection of the events where a secondary proton was emitted in the forward hemisphere in the general c.m.s. of the reaction (cosθ* p > 0) in the effective mass spectrum of π+π- combinations, we found nine peculiarities at the masses (350 ± 3), (408 ± 3), (489 ± 3), (579 ± 5), (676 ± 7), (762 ± 11), (878 ± 7), (1036 ±13), and (1170 ± 11) MeV/ c 2 with experimental widths of no more than several tens of MeV/ c 2. We carried out a direct measurement of the spins of resonances and also obtained other quantum numbers. All of these peculiarities have a similar set of quantum numbers I G ( J PC ) = 0+ (0++). We investigated a sequence of scalar-isoscalar resonances f 0(σ0) with masses in the range M ≤ 1200 MeV/ c 2. We found a phenomenological dependence of the resonance mass on its number. This dependence covered not only the resonances shown in this paper, but also those present in PDG tables with quantum numbers of f 0(σ0) mesons.

  13. Lidar Orbital Angular Momentum Sensor

    Data.gov (United States)

    National Aeronautics and Space Administration — The recognition in recent decades that electromagnetic fields have angular momentum (AM) in the form of not only polarization (or spin AM) but also orbital (OAM) has...

  14. Angular momentum from tidal torques

    International Nuclear Information System (INIS)

    Barnes, J.; Efstathiou, G.; Cambridge Univ., England)

    1987-01-01

    The origin of the angular momentum of bound objects in large N-body simulations is studied using three sets of models. One model with white-noise initial conditions is analyzed as well as two in which the initial conditions have more power on large scales, as predicted in models with cold dark matter. The growth and distribution of angular momentum in individual objects is studied and it is found that the specific angular momentum distribution of bound clumps increases in a near linear fashion with radius while the orientation of the angular momentum in the inner high-density regions is often poorly correlated with that of the outer parts. It is also found that the dimensionless spin parameter is insensitive to the initial perturbation spectrum and has a median value of about 0.05. 61 references

  15. The laser elevator - Momentum transfer using an optical resonator

    Science.gov (United States)

    Meyer, Thomas R.; Mckay, Christopher P.; Mckenna, Paul M.

    1987-01-01

    In a conventional laser lightsail system the payload is propelled by the momentum imparted to it by the reflection of a laser beam without the use of any propellant. Because of the unfavorable relationship between energy and momentum in a light beam, these systems are very inefficient. The efficiency can be greatly improved, in principle, if the photons that impact the payload mirror are returned to the source and then redirected back toward the payload again. This system, which recirculates the laser beam, is defined as the 'laser elevator'. The gain of the laser elevator over conventional lightsails depends on the number of times the beam is recycled which is limited by the reflectance of the mirrors used, any losses in the transmission of the beam, and diffraction. Due to the increase pathlength of the folded beam, diffraction losses occur at smaller separations of the payload and the source mirror than for conventional lightsail system. The laser elevator has potential applications in launching to low earth orbit, orbital transfer, and rapid interplanetary delivery of small payloads.

  16. Uniformity of the soft-x-ray emissions from gold foils irradiated by OMEGA laser beams determined by a two-mirror normal-incidence microscope with multilayer coatings

    International Nuclear Information System (INIS)

    Seely, John F.; Boehly, Thomas; Pien, Gregory; Bradley, David

    1998-01-01

    A two-mirror normal-incidence microscope with multilayer coatings was used to image the soft-x-ray emissions from planar foils irradiated by OMEGA laser beams. The bandpass of the multilayer coatings was centered at a wavelength of 48.3 Angstrom (257-eV energy) and was 0.5 Angstrom wide. Five overlapping OMEGA beams, without beam smoothing, were typically incident on the gold foils. The total energy was 1500 J, and the focused intensity was 6x10 13 Wcm -2 . The 5.8x magnified images were recorded by a gated framing camera at various times during the 3-ns laser pulse. A pinhole camera imaged the x-ray emission in the energy range of >2 keV. On a spatial scale of 10 μm, it was found that the soft-x-ray images at 257 eV were quite uniform and featureless. In contrast, the hard-x-ray images in the energy range of >2 kev were highly nonuniform with numerous features of size 150 μm. copyright 1998 Optical Society of America

  17. Parametric dependences of momentum pinch and Prandtl number in JET

    DEFF Research Database (Denmark)

    Tala, T.; Salmi, A.; Angioni, C.

    2011-01-01

    Several parametric scans have been performed to study momentum transport on JET. A neutral beam injection modulation technique has been applied to separate the diffusive and convective momentum transport terms. The magnitude of the inward momentum pinch depends strongly on the inverse density...... gradient length, with an experimental scaling for the pinch number being -Rvpinch/χφ = 1.2R/Ln +1.4. There is no dependence of the pinch number on collisionality, whereas the pinch seems to depend weakly on q-profile, the pinch number decreasing with increasing q. The Prandtl number was not found to depend...... either on R/Ln, collisionality or on q. The gyro-kinetic simulations show qualitatively similar dependence of the pinch number on R/Ln, but the dependence is weaker in the simulations. Gyro-kinetic simulations do not find any clear parametric dependence in the Prandtl number, in agreement...

  18. Resonance scattering of a dielectric sphere illuminated by electromagnetic Bessel non-diffracting (vortex) beams with arbitrary incidence and selective polarizations

    Energy Technology Data Exchange (ETDEWEB)

    Mitri, F.G., E-mail: F.G.Mitri@ieee.org [Chevron, Area 52 Technology–ETC, 5 Bisbee Ct., Santa Fe, NM 87508 (United States); Li, R.X., E-mail: rxli@mail.xidian.edu.cn [School of Physics and Optoelectronic Engineering, Xidian University, Xi’an 710071 (China); Collaborative Innovation Center of Information Sensing and Understanding, Xidian University, Xi’an 710071 (China); Guo, L.X. [School of Physics and Optoelectronic Engineering, Xidian University, Xi’an 710071 (China); Collaborative Innovation Center of Information Sensing and Understanding, Xidian University, Xi’an 710071 (China); Ding, C.Y. [School of Physics and Optoelectronic Engineering, Xidian University, Xi’an 710071 (China)

    2015-10-15

    A complete description of vector Bessel (vortex) beams in the context of the generalized Lorenz–Mie theory (GLMT) for the electromagnetic (EM) resonance scattering by a dielectric sphere is presented, using the method of separation of variables and the subtraction of a non-resonant background (corresponding to a perfectly conducting sphere of the same size) from the standard Mie scattering coefficients. Unlike the conventional results of standard optical radiation, the resonance scattering of a dielectric sphere in air in the field of EM Bessel beams is examined and demonstrated with particular emphasis on the EM field’s polarization and beam order (or topological charge). Linear, circular, radial, azimuthal polarizations as well as unpolarized Bessel vortex beams are considered. The conditions required for the resonance scattering are analyzed, stemming from the vectorial description of the EM field using the angular spectrum decomposition, the derivation of the beam-shape coefficients (BSCs) using the integral localized approximation (ILA) and Neumann–Graf’s addition theorem, and the determination of the scattering coefficients of the sphere using Debye series. In contrast with the standard scattering theory, the resonance method presented here allows the quantitative description of the scattering using Debye series by separating diffraction effects from the external and internal reflections from the sphere. Furthermore, the analysis is extended to include rainbow formation in Bessel beams and the derivation of a generalized formula for the deviation angle of high-order rainbows. Potential applications for this analysis include Bessel beam-based laser imaging spectroscopy, atom cooling and quantum optics, electromagnetic instrumentation and profilometry, optical tweezers and tractor beams, to name a few emerging areas of research.

  19. 850-nm hybrid fiber/free-space optical communications using orbital angular momentum modes

    DEFF Research Database (Denmark)

    Jurado-Navas, Antonio; Tatarczak, Anna; Lu, Xiaofeng

    2015-01-01

    Light beams can carry orbital angular momentum (OAM) associated to the helicity of their phasefronts. These OAM modes can be employed to encode information onto a laser beam for transmitting not only in a fiber link but also in a free-space optical (FSO) one. Regarding this latter scenario, FSO c...

  20. Dual electromagnetism: helicity, spin, momentum and angular momentum

    International Nuclear Information System (INIS)

    Bliokh, Konstantin Y; Nori, Franco; Bekshaev, Aleksandr Y

    2013-01-01

    The dual symmetry between electric and magnetic fields is an important intrinsic property of Maxwell equations in free space. This symmetry underlies the conservation of optical helicity and, as we show here, is closely related to the separation of spin and orbital degrees of freedom of light (the helicity flux coincides with the spin angular momentum). However, in the standard field-theory formulation of electromagnetism, the field Lagrangian is not dual symmetric. This leads to problematic dual-asymmetric forms of the canonical energy–momentum, spin and orbital angular-momentum tensors. Moreover, we show that the components of these tensors conflict with the helicity and energy conservation laws. To resolve this discrepancy between the symmetries of the Lagrangian and Maxwell equations, we put forward a dual-symmetric Lagrangian formulation of classical electromagnetism. This dual electromagnetism preserves the form of Maxwell equations, yields meaningful canonical energy–momentum and angular-momentum tensors, and ensures a self-consistent separation of the spin and orbital degrees of freedom. This provides a rigorous derivation of the results suggested in other recent approaches. We make the Noether analysis of the dual symmetry and all the Poincaré symmetries, examine both local and integral conserved quantities and show that only the dual electromagnetism naturally produces a complete self-consistent set of conservation laws. We also discuss the observability of physical quantities distinguishing the standard and dual theories, as well as relations to quantum weak measurements and various optical experiments. (paper)

  1. Study of the electromagnetic response functions and momentum distributions of large linear momentum protons in the helium-3 nucleus using inelastic electron scattering

    International Nuclear Information System (INIS)

    Marchand, C.

    1987-09-01

    The He3 nuclear structure was studied, particularly the longitudinal and transverse response functions and the momentum distribution of high linear momentum protons. Measurements of the inclusive cross sections for incident energies between 120 and 667 MeV were used to derive the electromagnetic response functions for momentum and energy transfers covering the quasi-elastic region and a part of the delta resonance (1232). The Coulomb sum rule is saturated for momentum transfers ≥ 500 MeV/sec. The drop to zero of the longitudinal response after the quasi-elastic peak confirms the transverse nature of the mesic exchange currents and of the excitation of the delta resonance in the nucleus. Measurement of the (e, e'p) exclusive cross sections at 560 MeV incident energy allowed a direct determination of proton linear momentum distributions at 300 to 600 MeV/c for the pd and ppn decay channels. The data agree with wave function calculations and do not indicate an excess of high momentum components. Analysis of the ppn decay channel indicates that high linear momentum components in He3 are dominated by two-nucleon processes, i.e., nucleon-nucleon correlations at medium and short range. Kinematic evidence supports this picture: displacement of the missing energy and dynamic spectra, and comparison of the linear momentum distribution for protons in He3 and deuterium [fr

  2. Single Gradientless Light Beam Drags Particles as Tractor Beams

    DEFF Research Database (Denmark)

    Novitsky, Andrey; Qiu, Cheng-Wei; Wang, Haifeng

    2011-01-01

    is the strong nonparaxiality of the light beam, which contributes to the pulling force owing to momentum conservation. The nonparaxiality of the Bessel beam can be manipulated to possess a dragging force along both the radial longitudinal directions, i.e., a "tractor beam" with stable trajectories is achieved......Usually a light beam pushes a particle when the photons act upon it. We investigate the optical forces by nonparaxial gradientless beams and find that the forces can drag suitable particles all the way towards the light source. The major criterion of realizing the backward dragging force...

  3. Spin and orbital angular momentum propagation in anisotropic media: theory

    International Nuclear Information System (INIS)

    Picón, Antonio; Benseny, Albert; Mompart, Jordi; Calvo, Gabriel F

    2011-01-01

    This paper is devoted to a study of the propagation of light beams carrying orbital angular momentum in optically anisotropic media. We first review some properties of homogeneous anisotropic media, and describe how the paraxial formalism is modified in order to proceed with a new approach dealing with the general setting of paraxial propagation along uniaxial inhomogeneous media. This approach is suitable for describing space-variant optical-axis phase plates

  4. Four-dimensional positron age-momentum correlation

    Science.gov (United States)

    Ackermann, Ulrich; Löwe, Benjamin; Dickmann, Marcel; Mitteneder, Johannes; Sperr, Peter; Egger, Werner; Reiner, Markus; Dollinger, Günther

    2016-11-01

    We have performed first four-dimensional age-momentum correlation (4D-AMOC) measurements at a pulsed high intensity positron micro beam and determined the absolute value of the three-dimensional momentum of the electrons annihilating with the positrons in coincidence with the positron age in the sample material. We operated two position sensitive detectors in coincidence to measure the annihilation radiation: a pixelated HPGe-detector and a microchannel plate image intensifier with a CeBr3 scintillator pixel array. The transversal momentum resolution of the 4D-AMOC setup was measured to be about 17 × 10-3 {m}0c (FWHM) and was circa 3.5 times larger than the longitudinal momentum resolution. The total time resolution was 540 ps (FWHM). We measured two samples: a gold foil and a carbon tape at a positron implantation energy of 2 keV. For each sample discrete electron momentum states and their respective positron lifetimes were extracted.

  5. Momentum-Space Josephson Effects

    Science.gov (United States)

    Hou, Junpeng; Luo, Xi-Wang; Sun, Kuei; Bersano, Thomas; Gokhroo, Vandna; Mossman, Sean; Engels, Peter; Zhang, Chuanwei

    2018-03-01

    The Josephson effect is a prominent phenomenon of quantum supercurrents that has been widely studied in superconductors and superfluids. Typical Josephson junctions consist of two real-space superconductors (superfluids) coupled through a weak tunneling barrier. Here we propose a momentum-space Josephson junction in a spin-orbit coupled Bose-Einstein condensate, where states with two different momenta are coupled through Raman-assisted tunneling. We show that Josephson currents can be induced not only by applying the equivalent of "voltages," but also by tuning tunneling phases. Such tunneling-phase-driven Josephson junctions in momentum space are characterized through both full mean field analysis and a concise two-level model, demonstrating the important role of interactions between atoms. Our scheme provides a platform for experimentally realizing momentum-space Josephson junctions and exploring their applications in quantum-mechanical circuits.

  6. Momentum transport in gyrokinetic turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Buchholz, Rico

    2016-07-01

    In this thesis, the gyrokinetic-Vlasov code GKW is used to study turbulent transport, with a focus on radial transport of toroidal momentum. To support the studies on turbulent transport an eigenvalue solver has been implemented into GKW. This allows to find, not only the most unstable mode, but also subdominant modes. Furthermore it is possible to follow the modes in parameter scans. Furthermore, two fundamental mechanisms that can generate an intrinsic rotation have been investigated: profile shearing and the velocity nonlinearity. The study of toroidal momentum transport in a tokamak due to profile shearing reveals that the momentum flux can not be accurately described by the gradient in the turbulent intensity. Consequently, a description using the profile variation is used. A linear model has been developed that is able to reproduce the variations in the momentum flux as the profiles of density and temperature vary, reasonably well. It uses, not only the gradient length of density and temperature profile, but also their derivative, i.e. the second derivative of the logarithm of the temperature and the density profile. It is shown that both first as well as second derivatives contribute to the generation of a momentum flux. A difference between the linear and nonlinear simulations has been found with respect to the behaviour of the momentum flux. In linear simulations the momentum flux is independent of the normalized Larmor radius ρ{sub *}, whereas it is linear in ρ{sub *} for nonlinear simulations, provided ρ{sub *} is small enough (≤4.10{sup -3}). Nonlinear simulations reveal that the profile shearing can generate an intrinsic rotation comparable to that of current experiments. Under reactor conditions, however, the intrinsic rotation from the profile shearing is expected to be small due to the small normalized Larmor radius ρ{sub *}

  7. MuSR Beam Line Design Studies

    Energy Technology Data Exchange (ETDEWEB)

    MacKay, W. W. [Weirich Consulting Services, Inc. Hunterville, NC (United States); Fischer, W. [Brookhaven National Lab. (BNL), Upton, NY (United States); Pile, P. [Brookhaven National Lab. (BNL), Upton, NY (United States); Blaskiewicz, M. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2013-12-13

    When a substance is implanted with positive muons the precession of their magnetic moments can be used to sample the magnetic properties of the material. The information obtained is complementary to that from NMR, ESR, and neutron scattering. To date, only four user facilities exist in the world but none in the US. We explore the possibility of using the AGS complex at BNL for a μSR facility for the production of positive surface muons. With an incident proton intensity of 1014 protons per second hitting a 200 mm long 0.5 mm thick graphite target, our preliminary design of the beam line could produce low momentum surface muons (24–30 MeV/c) with a flux of 0.9 MHz/cm2 for experiments.

  8. Automated Angular Momentum Recoupling Algebra

    Science.gov (United States)

    Williams, H. T.; Silbar, Richard R.

    1992-04-01

    We present a set of heuristic rules for algebraic solution of angular momentum recoupling problems. The general problem reduces to that of finding an optimal path from one binary tree (representing the angular momentum coupling scheme for the reduced matrix element) to another (representing the sub-integrals and spin sums to be done). The method lends itself to implementation on a microcomputer, and we have developed such an implementation using a dialect of LISP. We describe both how our code, called RACAH, works and how it appears to the user. We illustrate the use of RACAH for several transition and scattering amplitude matrix elements occurring in atomic, nuclear, and particle physics.

  9. Optical communications beyond orbital angular momentum

    Science.gov (United States)

    Rosales-Guzmán, Carmelo; Trichili, Abderrahmen; Dudley, Angela; Ndagano, Bienvenu; Ben Salem, Amine; Zghal, Mourad; Forbes, Andrew

    2016-09-01

    Current optical communication technologies are predicted to face a bandwidth capacity limit in the near future. The nature of the limitation is fundamental rather than technological and is set by nonlinearities in optical fibers. One solution, suggested over 30 years ago, comprises the use of spatial modes of light as information carriers. Along this direction, light beams endowed with orbital angular momentum (OAM) have been demonstrated as potential information carriers in both, free space and fibres. However, recent studies suggest that purely OAM modes does not increase the bandwidth of optical communication systems. In fact, in all work to date, only the azimuthal component of transverse spatial modes has been used. Crucially, all transverse spatial modes require two degrees of freedom to be described; in the context of Laguerre-Gaussian (LGp`) beams these are azimuthal (l) and radial (p), the former responsible for OAM. Here, we demonstrate a technique where both degrees of freedom of LG modes are used as information carrier over free space. We transfer images encoded using 100 spatial modes in three wavelengths as our basis, and employ a spatial demultiplexing scheme that detects all 100 modes simultaneously. Our scheme is a hybrid of MIMO and SMM, and serves as a proof-of-principle demonstration. The cross-talk between the modes is small and independent of whether OAM modes are used or not.

  10. Optical spin-to-orbital angular momentum conversion in ultra-thin metasurfaces with arbitrary topological charges

    International Nuclear Information System (INIS)

    Bouchard, Frédéric; De Leon, Israel; Schulz, Sebastian A.; Upham, Jeremy; Karimi, Ebrahim; Boyd, Robert W.

    2014-01-01

    Orbital angular momentum associated with the helical phase-front of optical beams provides an unbounded “space” for both classical and quantum communications. Among the different approaches to generate and manipulate orbital angular momentum states of light, coupling between spin and orbital angular momentum allows a faster manipulation of orbital angular momentum states because it depends on manipulating the polarisation state of light, which is simpler and generally faster than manipulating conventional orbital angular momentum generators. In this work, we design and fabricate an ultra-thin spin-to-orbital angular momentum converter, based on plasmonic nano-antennas and operating in the visible wavelength range that is capable of converting spin to an arbitrary value of orbital angular momentum ℓ. The nano-antennas are arranged in an array with a well-defined geometry in the transverse plane of the beam, possessing a specific integer or half-integer topological charge q. When a circularly polarised light beam traverses this metasurface, the output beam polarisation switches handedness and the orbital angular momentum changes in value by ℓ=±2qℏ per photon. We experimentally demonstrate ℓ values ranging from ±1 to ±25 with conversion efficiencies of 8.6% ± 0.4%. Our ultra-thin devices are integratable and thus suitable for applications in quantum communications, quantum computations, and nano-scale sensing.

  11. Dividing Attention Increases Operational Momentum

    Directory of Open Access Journals (Sweden)

    Koleen McCrink

    2017-12-01

    Full Text Available When adding or subtracting two quantities, adults often compute an estimated outcome that is larger or smaller, respectively, than the actual outcome, a bias referred to as “operational momentum”. The effects of attention on operational momentum were investigated. Participants viewed a display in which two arrays of objects were added, or one array was subtracted from another array, and judged whether a subsequent outcome (probe array contained the correct or incorrect number of objects. In a baseline condition, only the arrays to be added or subtracted were viewed. In divided attention conditions, participants simultaneously viewed a sequence of colors or shapes, and judged which color (a non-spatial judgment or shape (a spatial judgment was repeated. Operational momentum occurred in all conditions, but was higher in divided attention conditions than in the baseline condition, primarily for addition problems. This pattern suggests that dividing attention, rather than decreasing operational momentum by decreasing attentional shifts, actually increased operational momentum. These results are consistent with a heightened use of arithmetic heuristics under conditions of divided attention.

  12. Energy, momentum and angular momentum conservations in de Sitter gravity

    International Nuclear Information System (INIS)

    Lu, Jia-An

    2016-01-01

    In de Sitter (dS) gravity, where gravity is a gauge field introduced to realize the local dS invariance of the matter field, two kinds of conservation laws are derived. The first kind is a differential equation for a dS-covariant current, which unites the canonical energy-momentum (EM) and angular momentum (AM) tensors. The second kind presents a dS-invariant current which is conserved in the sense that its torsion-free divergence vanishes. The dS-invariant current unites the total (matter plus gravity) EM and AM currents. It is well known that the AM current contains an inherent part, called the spin current. Here it is shown that the EM tensor also contains an inherent part, which might be observed by its contribution to the deviation of the dust particle’s world line from a geodesic. All the results are compared to the ordinary Lorentz gravity. (paper)

  13. Experimental study of acoustic radiation force of an ultrasound beam on absorbing and scattering objects

    Energy Technology Data Exchange (ETDEWEB)

    Nikolaeva, Anastasiia V., E-mail: niko200707@mail.ru; Kryzhanovsky, Maxim A.; Tsysar, Sergey A. [Department of Acoustics, Physics Faculty, Moscow State University, Leninskie Gory, Moscow 119991 (Russian Federation); Kreider, Wayne [Center for Industrial and Medical Ultrasound, Applied Physics Laboratory, University of Washington, 1013 NE 40th St. Seattle WA 98105 (United States); Sapozhnikov, Oleg A. [Department of Acoustics, Physics Faculty, Moscow State University, Leninskie Gory, Moscow 119991 (Russian Federation); Center for Industrial and Medical Ultrasound, Applied Physics Laboratory, University of Washington, 1013 NE 40th St. Seattle WA 98105 (United States)

    2015-10-28

    Acoustic radiation force is a nonlinear acoustic effect caused by the transfer of wave momentum to absorbing or scattering objects. This phenomenon is exploited in modern ultrasound metrology for measurement of the acoustic power radiated by a source and is used for both therapeutic and diagnostic sources in medical applications. To calculate radiation force an acoustic hologram can be used in conjunction with analytical expressions based on the angular spectrum of the measured field. The results of an experimental investigation of radiation forces in two different cases are presented in this paper. In one case, the radiation force of an obliquely incident ultrasound beam on a large absorber (which completely absorbs the beam) is considered. The second case concerns measurement of the radiation force on a spherical target that is small compared to the beam diameter.

  14. Multiple orbital angular momentum generated by dielectric hybrid phase element

    Science.gov (United States)

    Wang, Xuewen; Kuchmizhak, Aleksandr; Hu, Dejiao; Li, Xiangping

    2017-09-01

    Vortex beam carrying multiple orbital angular momentum provides a new degree of freedom to manipulate light leading to the various exciting applications as trapping, quantum optics, information multiplexing, etc. Helical wavefront can be generated either via the geometric or the dynamic phase arising from a space-variant birefringence (q-plate) or from phase accumulation through propagation (spiral-phase-plate), respectively. Using fast direct laser writing technique we fabricate and characterize novel hybrid q-plate generating vortex beam simultaneously carrying two different high-order topological charges, which arise from the spin-orbital conversion and the azimuthal height variation of the recorded structures. We approve the versatile concept to generate multiple-OAM vortex beams combining the spin-orbital interaction and the phase accumulation in a single micro-scale device, a hybrid dielectric phase plate.

  15. Momentum

    DEFF Research Database (Denmark)

    Korsbek, Lisa; Tønder, Esben Sandvik

    2016-01-01

    OBJECTIVE: The aim of the pilot study was to examine the use of a smartphone application as a modern decision aid to support shared decision making in mental health. METHOD: 78 people using mental health services and 116 of their providers participated in a 4-month pilot study. At the end of the ...

  16. Blade-element/momentum theory

    DEFF Research Database (Denmark)

    Sørensen, Jens Nørkær

    2016-01-01

    Although there exists a large variety of methods for predicting performance and loadings of wind turbines, the only approach used today by wind turbine manufacturers is based on the blade-element/momentum (BEM) theory by Glauert (Aerodynamic theory. Springer, Berlin, pp. 169-360, 1935). A basic...... assumption in the BEM theory is that the flow takes place in independent stream tubes and that the loading is determined from two-dimensional sectional airfoil characteristics....

  17. Large transverse momentum behavior of gauge theories

    International Nuclear Information System (INIS)

    Coquereaux, Robert; De Rafael, Eduardo.

    1977-05-01

    The large transverse momentum behavior of Compton scattering and Moeller scattering in Quantum Electrodynamics; and of elastic quark-quark scattering in Quantum Chromodynamics are examined in perturbation theory. The results strongly suggest that the large transverse momentum regime in gauge theories is governed by a differential equation of the Callan-Symanzik type with a suitable momentum dependent anomalous dimension term. An explicit solution for the quark-quark elastic scattering amplitude at large transverse momentum is given

  18. Momentum in Transformation of Technical Infrastructure

    DEFF Research Database (Denmark)

    Nielsen, Susanne Balslev; Elle, Morten

    1999-01-01

    Current infrastructure holds a considerable momentum and this momentum is a barrier of transformation towards more sustainable technologies and more sustainable styles of network management. Using the sewage sector in Denmark as an example of a technical infrastructure system this paper argues...... that there are technical, economical and social aspects of the current infrastructures momentum....

  19. Optical pulling force on a magneto-dielectric Rayleigh sphere in Bessel tractor polarized beams

    International Nuclear Information System (INIS)

    Mitri, F.G.; Li, R.X.; Yang, R.P.; Guo, L.X.; Ding, C.Y.

    2016-01-01

    The optical radiation force induced by Bessel (vortex) beams on a magneto-dielectric subwavelength sphere is investigated with particular emphasis on the beam polarization and order l (or topological charge). The analysis is focused on identifying the regions and some of the conditions to achieve retrograde motion of the sphere centered on the axis of wave propagation of the incident beam, or shifted off-axially. Exact non-paraxial analytical solutions are established, and computations for linear, circular, radial, azimuthal and mixed polarizations of the individual plane wave components forming the Bessel (vortex) beams by means of the angular spectrum decomposition method (ASDM) illustrate the theory with particular emphasis on the tractor (i.e. reversal) behavior of the force. This effect results in the pulling of the magneto-dielectric sphere against the forward linear momentum density flux associated with the incoming waves. Should some conditions related to the choice of the beam parameters as well as the permittivity and permeability of the sphere be met, the optical force vanishes and reverses sign. Moreover, the beam polarization is shown to affect differently the axial negative pulling force for either the zeroth- or the first-order Bessel beam. When the sphere is centered on the beam′s axis, the axial force component is always negative for the zeroth-order Bessel beam except for the radial and azimuthal polarization configurations. Nonetheless, for the first-order Bessel beam, the axial force is negative for the radial polarization case only. Additional tractor beam effects arise when the sphere departs from the center of the beam. It is also demonstrated that the tractor beam effect arises from the force component originating from the cross-interaction between the electric and magnetic dipoles. Potential applications are in particle manipulation, optical levitation, tractor beam tweezers, and other emergent technologies using polarized Bessel beams on

  20. Sorting and quantifying orbital angular momentum of laser beams

    CSIR Research Space (South Africa)

    Schulze, C

    2013-10-01

    Full Text Available , Friedrich Schiller University, Fr¨obelstieg 1, Jena 07743, Germany 2 Council for Scientific and Industrial Research, National Laser Centre, P.O. Box 395, Pretoria 0001, South Africa christian.schulze@uni-jena.de Abstract We present a novel tool...

  1. Production of muon pairs in the continuum region by 39.5 GeV/c π+-, K+-, p and anti p beams incident on a copper target

    International Nuclear Information System (INIS)

    Corden, M.J.; Dowell, J.D.; Eastwood, D.; Garvey, J.; Homer, R.J.; Jobes, M.; Kenyon, I.R.; McMahon, T.J.; Vallance, R.J.; Watkins, P.M.; Wilson, J.A.; Gago, J.; Jung, M.; Sonderegger, P.; Treille, D.; Woodworth, P.L.; Eckardt, V.; Fent, J.; Pretzl, K.; Seyboth, P.; Seyerlein, J.; Perrin, D.; Sumorok, K.C.T.O.

    1978-01-01

    General features of the inclusive hadroproduction of muon pairs of mass greater than 1.5 GeV/c 2 are shown. For incident π - , the data extend up to M = 5.7 GeV/c 2 (i.e. M 2 /s approximately 0.4). The scaling cross section M 3 dsigma/dM for π - N reaction is much flatter than that for pN reactions and exceeds the latter by two to three orders of magnitude at large M 2 /s. (Auth.)

  2. Evidence for evanescent waves at interfaces in a high-index prism/liquid-crystal-Au-NPs/glass/air structure and effects of relative concentration of gold nanoparticles, wavelength, polarization, and incident angle of the laser beam

    Science.gov (United States)

    Tiwari, Kunal; Singh, Ankit; Sharma, Suresh

    2011-10-01

    Incorporation of relatively small concentrations of gold nanoparticles (Au NPs) in a polymer-dispersed liquid crystal (PDLC) is known to lower the operating threshold voltage and increase optical transmission through the device.ootnotetextA. Hinojosa and S. C. Sharma, Applied Physics Letters, 97, 081114 (2010) In order to understand whether there is an interplay between the localized surface plasmon resonance at Au-NPs-dielectric interfaces and the electro-optical properties of PDLC devices, we have investigated propagation of light through a high-index prism/liquid-crystal-Au-NPs/glass/air structure by using Kretschmann geometry as functions of concentration of Au NPs in the liquid crystal, and the wavelength, polarization, and angle of incidence of the laser beam. We will discuss to what extent the results of these experiments support an interplay between the localized surface plasmon resonance at NPs/dielectric interfaces and optical propagation through the above-described structure.

  3. Noncoaxial Bessel-Gauss beams.

    Science.gov (United States)

    Huang, Chaohong; Zheng, Yishu; Li, Hanqing

    2016-04-01

    We proposed a new family of noncoaxial Gauss-truncated Bessel beams through multiplying conventional symmetrical Bessel beams by a noncoaxial Gauss function. These beams can also be regarded as the exponential-truncated version of Bessel-Gauss beams since they can be transformed into the product of Bessel-Gauss beams and an exponential window function along a certain Cartesian axis. The closed-form solutions of the angular spectra and paraxial propagation of these beams were derived. These beams have asymmetrical intensity distributions and carry the same orbit angular momentum per photon as the corresponding Bessel-Gauss beams. While propagating along the z axis, the mth (m≠0) noncoaxial Bessel-Gauss beams rotate their intensity distributions and the mth-order vortex at the beam center has a transverse shift along the direction perpendicular to the offset axis. Depending on the product of the transverse scalar factor of the Bessel beams and the offset between the Gaussian window function and the center of the Bessel beams, the noncoaxial Bessel-Gauss beams can produce unit vortices with opposite signs in pairs during propagation.

  4. Optical angular momentum in classical electrodynamics

    Science.gov (United States)

    Mansuripur, Masud

    2017-06-01

    Invoking Maxwell’s classical equations in conjunction with expressions for the electromagnetic (EM) energy, momentum, force, and torque, we use a few simple examples to demonstrate the nature of the EM angular momentum. The energy and the angular momentum of an EM field will be shown to have an intimate relationship; a source radiating EM angular momentum will, of necessity, pick up an equal but opposite amount of mechanical angular momentum; and the spin and orbital angular momenta of the EM field, when absorbed by a small particle, will be seen to elicit different responses from the particle.

  5. On the Classical and Quantum Momentum Map

    DEFF Research Database (Denmark)

    Esposito, Chiara

    In this thesis we study the classical and quantum momentum maps and the theory of reduction. We focus on the notion of momentum map in Poisson geometry and we discuss the classification of the momentum map in this framework. Furthermore, we describe the so-called Poisson Reduction, a technique...... that allows us to reduce the dimension of a manifold in presence of symmetries implemented by Poisson actions. Using techniques of deformation quantization and quantum groups, we introduce the quantum momentum map as a deformation of the classical momentum map, constructed in such a way that it factorizes...

  6. Photon momentum and optical forces in cavities

    DEFF Research Database (Denmark)

    Partanen, Mikko; Häyrynen, Teppo; Oksanen, Jani

    2016-01-01

    During the past century, the electromagnetic field momentum in material media has been under debate in the Abraham-Minkowski controversy as convincing arguments have been advanced in favor of both the Abraham and Minkowski forms of photon momentum. Here we study the photon momentum and optical...... forces in cavity structures in the cases of dynamical and steady-state fields. In the description of the single-photon transmission process, we use a field-kinetic one-photon theory. Our model suggests that in the medium photons couple with the induced atomic dipoles forming polariton quasiparticles...... with the Minkowski form momentum. The Abraham momentum can be associated to the electromagnetic field part of the coupled polariton state. The polariton with the Minkowski momentum is shown to obey the uniform center of mass of energy motion that has previously been interpreted to support only the Abraham momentum...

  7. Improving x-ray fluorescence signal for benchtop polychromatic cone-beam x-ray fluorescence computed tomography by incident x-ray spectrum optimization: a Monte Carlo study.

    Science.gov (United States)

    Manohar, Nivedh; Jones, Bernard L; Cho, Sang Hyun

    2014-10-01

    To develop an accurate and comprehensive Monte Carlo (MC) model of an experimental benchtop polychromatic cone-beam x-ray fluorescence computed tomography (XFCT) setup and apply this MC model to optimize incident x-ray spectrum for improving production/detection of x-ray fluorescence photons from gold nanoparticles (GNPs). A detailed MC model, based on an experimental XFCT system, was created using the Monte Carlo N-Particle (MCNP) transport code. The model was validated by comparing MC results including x-ray fluorescence (XRF) and scatter photon spectra with measured data obtained under identical conditions using 105 kVp cone-beam x-rays filtered by either 1 mm of lead (Pb) or 0.9 mm of tin (Sn). After validation, the model was used to investigate the effects of additional filtration of the incident beam with Pb and Sn. Supplementary incident x-ray spectra, representing heavier filtration (Pb: 2 and 3 mm; Sn: 1, 2, and 3 mm) were computationally generated and used with the model to obtain XRF/scatter spectra. Quasimonochromatic incident x-ray spectra (81, 85, 90, 95, and 100 keV with 10 keV full width at half maximum) were also investigated to determine the ideal energy for distinguishing gold XRF signal from the scatter background. Fluorescence signal-to-dose ratio (FSDR) and fluorescence-normalized scan time (FNST) were used as metrics to assess results. Calculated XRF/scatter spectra for 1-mm Pb and 0.9-mm Sn filters matched (r ≥ 0.996) experimental measurements. Calculated spectra representing additional filtration for both filter materials showed that the spectral hardening improved the FSDR at the expense of requiring a much longer FNST. In general, using Sn instead of Pb, at a given filter thickness, allowed an increase of up to 20% in FSDR, more prominent gold XRF peaks, and up to an order of magnitude decrease in FNST. Simulations using quasimonochromatic spectra suggested that increasing source x-ray energy, in the investigated range of 81-100 ke

  8. Improving x-ray fluorescence signal for benchtop polychromatic cone-beam x-ray fluorescence computed tomography by incident x-ray spectrum optimization: A Monte Carlo study

    Science.gov (United States)

    Manohar, Nivedh; Jones, Bernard L.; Cho, Sang Hyun

    2014-01-01

    Purpose: To develop an accurate and comprehensive Monte Carlo (MC) model of an experimental benchtop polychromatic cone-beam x-ray fluorescence computed tomography (XFCT) setup and apply this MC model to optimize incident x-ray spectrum for improving production/detection of x-ray fluorescence photons from gold nanoparticles (GNPs). Methods: A detailed MC model, based on an experimental XFCT system, was created using the Monte Carlo N-Particle (MCNP) transport code. The model was validated by comparing MC results including x-ray fluorescence (XRF) and scatter photon spectra with measured data obtained under identical conditions using 105 kVp cone-beam x-rays filtered by either 1 mm of lead (Pb) or 0.9 mm of tin (Sn). After validation, the model was used to investigate the effects of additional filtration of the incident beam with Pb and Sn. Supplementary incident x-ray spectra, representing heavier filtration (Pb: 2 and 3 mm; Sn: 1, 2, and 3 mm) were computationally generated and used with the model to obtain XRF/scatter spectra. Quasimonochromatic incident x-ray spectra (81, 85, 90, 95, and 100 keV with 10 keV full width at half maximum) were also investigated to determine the ideal energy for distinguishing gold XRF signal from the scatter background. Fluorescence signal-to-dose ratio (FSDR) and fluorescence-normalized scan time (FNST) were used as metrics to assess results. Results: Calculated XRF/scatter spectra for 1-mm Pb and 0.9-mm Sn filters matched (r ≥ 0.996) experimental measurements. Calculated spectra representing additional filtration for both filter materials showed that the spectral hardening improved the FSDR at the expense of requiring a much longer FNST. In general, using Sn instead of Pb, at a given filter thickness, allowed an increase of up to 20% in FSDR, more prominent gold XRF peaks, and up to an order of magnitude decrease in FNST. Simulations using quasimonochromatic spectra suggested that increasing source x-ray energy, in the

  9. Beam Profile Measurement in MTA Beam Line for High Pressure RF Cavity Beam Test

    International Nuclear Information System (INIS)

    Jana, M.R.; Bross, A.; Chung, M.; Greer, S.; Johnstone, C.; Kobilarcik, T.; Koizumi, G.; Leonova, M.; Moretti, A.; Popovic, M.; Schwartz, T.

    2012-01-01

    Recent High Pressure RF (HPRF) cavity experiment at MuCool Test Area (MTA) has used 400 MeV Linac proton beam to study the beam loading effect. When the energetic proton beam passes through the cavity, it ionizes the inside gas and produces the electrons. These electrons consume RF power inside the cavity. Number of electrons produced per cm inside the cavity (at 950 psi Hydrogen gas) per incident proton is ∼ 1200. The measurement of beam position and profile are necessary. MTA is flammable gas (Hydrogen) hazard zone so we have developed a passive beam diagnostic instrument using Chromox-6 scintillation screen and CCD camera. This paper presents quantitative information about beam position and beam profile. Neutral density filter was used to avoid saturation of CCD camera. Image data is filtered and fitted with Gaussian function to compute the beam size. The beam profile obtained from scintillation screen shall be compared with multi-wire beam profile.

  10. Measurement of the Electric and Magnetic Elastic Structure Functions of the Deuteron at Large Momentum Transfers

    Energy Technology Data Exchange (ETDEWEB)

    Suleiman, Riad S. [Kent State Univ., Kent, OH (United States)

    1999-12-01

    The deuteron elastic structure functions, A(Q2) and B(Q2), have been extracted from cross section measurements of elastic electron-deuteron scattering in coincidence using the Continuous Electron Beam Accelerator and Hall A Facilities of Jefferson Laboratory. Incident electrons were scattered off a high-power cryogenic deuterium target. Scattered electrons and recoil deuterons were detected in the two High Resolution Spectrometers of Hall A. A(Q2) was extracted from forward angle cross section measurements in the squared four-momentum transfer range 0.684 ≤ Q2 ≤ 5.90 (GeV/c)2. B(Q2) was determined by means of a Rosenbluth separation in the range 0.684 ≤ Q2 ≤ 1.325 (GeV/c)2. The data are compared to theoretical models based on the impulse approximation with the inclusion of meson-exchange currents and to predictions of quark dimensional scaling and perturbative quantum chromodynamics. The results are expected to provide insights into the transition from meson-nucleon to quark-gluon descriptions of the nuclear two-body system.

  11. Photon collider beam simulation with CAIN

    Indian Academy of Sciences (India)

    the laser pulse and the beam–beam interaction, is presented in figure 1. Energy flow obtained from the simulation was scaled to the average beam power. After the. Compton scattering, most of the incident electron beam power is transfered to the photon beam. However, the high-energy photons are very well-collimated ...

  12. ON-LINE NONLINEAR CHROMATICITY CORRECTION USING OFF-MOMENTUM TUNE RESPONSE MATRIX

    International Nuclear Information System (INIS)

    LUO, Y.; FISCHER, W.; MALISKY, N.; TEPIKIAN, S.; TROBJEVIC, D.

    2007-01-01

    In this article, we propose a method for the online nonlinear chromaticity correction at store in the Relativistic Heavy Ion Collider (RHIC). With 8 arc sextupole families in each RHIC ring, the nonlinear chromaticities can be minimized online by matching the off-momentum tunes onto the wanted tunes given by the linear chromaticities. The Newton method is used for this multi-dimensional nonlinear optimization, where the off-momentum tune response matrix with respect to sextupole strength changes is adopted. The off-momentum tune response matrix can be calculated with the online accelerator optics model or directly measured with the real beam. In this article, the correction algorithm for the RHIC is presented. Simulations are also carried out to verify the method. The preliminary results from the beam experiments taken place in the RHIC 2007 Au run are reviewed

  13. ON-LINE NONLINEAR CHROMATICITY CORRECTION USING OFF-MOMENTUM TUNE RESPONSE MATRIX

    Energy Technology Data Exchange (ETDEWEB)

    LUO,Y.; FISCHER, W.; MALISKY, N.; TEPIKIAN, S.; TROBJEVIC, D.

    2007-06-25

    In this article, we propose a method for the online nonlinear chromaticity correction at store in the Relativistic Heavy Ion Collider (RHIC). With 8 arc sextupole families in each RHIC ring, the nonlinear chromaticities can be minimized online by matching the off-momentum tunes onto the wanted tunes given by the linear chromaticities. The Newton method is used for this multi-dimensional nonlinear optimization, where the off-momentum tune response matrix with respect to sextupole strength changes is adopted. The off-momentum tune response matrix can be calculated with the online accelerator optics model or directly measured with the real beam. In this article, the correction algorithm for the RHIC is presented. Simulations are also carried out to verify the method. The preliminary results from the beam experiments taken place in the RHIC 2007 Au run are reviewed.

  14. Ubiquity of non-diffusive momentum transport in JET H-modes

    NARCIS (Netherlands)

    Weisen, H.; Camenen, Y.; Salmi, A.; Versloot, T. W.; de Vries, P. C.; Maslov, M.; Tala, T.; Beurskens, M.; Giroud, C.; JET-EFDA Contributors,

    2012-01-01

    A broad survey of the experimental database of neutral beam heated baseline H-modes and hybrid scenarios in the JET tokamak has established the ubiquity of non-diffusive momentum transport mechanisms in rotating plasmas. As a result of their presence, the normalized angular frequency gradient R

  15. Longitudinal dispersion of orbital angular momentum modes in high-gain free-electron lasers

    Directory of Open Access Journals (Sweden)

    Erik Hemsing

    2008-07-01

    Full Text Available The physical effects of optical mode dispersion in the electron beam of a free-electron laser are investigated for modes that carry orbital angular momentum. The analysis is performed using a derived equivalence between two different formulations that describe the radiation fields in the linear regime.

  16. Electromagnetic energy momentum in dispersive media

    International Nuclear Information System (INIS)

    Philbin, T. G.

    2011-01-01

    The standard derivations of electromagnetic energy and momentum in media take Maxwell's equations as the starting point. It is well known that for dispersive media this approach does not directly yield exact expressions for the energy and momentum densities. Although Maxwell's equations fully describe electromagnetic fields, the general approach to conserved quantities in field theory is not based on the field equations, but rather on the action. Here an action principle for macroscopic electromagnetism in dispersive, lossless media is used to derive the exact conserved energy-momentum tensor. The time-averaged energy density reduces to Brillouin's simple formula when the fields are monochromatic. The time-averaged momentum density for monochromatic fields corresponds to the familiar Minkowski expression DxB, but for general fields in dispersive media the momentum density does not have the Minkowski value. The results are unaffected by the debate over momentum balance in light-matter interactions.

  17. How well do we need to know the beam properties at a neutrino factory?

    International Nuclear Information System (INIS)

    Geer, S.; Crisan, C.

    2000-01-01

    In principle, a neutrino factory can produce a beam with a well known ν e and ν μ flux. In practice, the uncertainties on the muon beam properties will introduce uncertainties into the calculated neutrino fluxes. The authors explore the relationship between the beam systematics and the systematic uncertainties on predicted event rates at a far site. The desired precision with which they must know the beam momentum, direction, divergence, momentum spread, and polarization are discussed

  18. Momentum management strategy during Space Station buildup

    Science.gov (United States)

    Bishop, Lynda; Malchow, Harvey; Hattis, Philip

    1988-01-01

    The use of momentum storage devices to control effectors for Space Station attitude control throughout the buildup sequence is discussed. Particular attention is given to the problem of providing satisfactory management of momentum storage effectors throughout buildup while experiencing variable torque loading. Continuous and discrete control strategies are compared and the effects of alternative control moment gyro strategies on peak momentum storage requirements and on commanded maneuver characteristics are described.

  19. Uncertainty principle for angular position and angular momentum

    International Nuclear Information System (INIS)

    Franke-Arnold, Sonja; Barnett, Stephen M; Yao, Eric; Leach, Jonathan; Courtial, Johannes; Padgett, Miles

    2004-01-01

    The uncertainty principle places fundamental limits on the accuracy with which we are able to measure the values of different physical quantities (Heisenberg 1949 The Physical Principles of the Quantum Theory (New York: Dover); Robertson 1929 Phys. Rev. 34 127). This has profound effects not only on the microscopic but also on the macroscopic level of physical systems. The most familiar form of the uncertainty principle relates the uncertainties in position and linear momentum. Other manifestations include those relating uncertainty in energy to uncertainty in time duration, phase of an electromagnetic field to photon number and angular position to angular momentum (Vaccaro and Pegg 1990 J. Mod. Opt. 37 17; Barnett and Pegg 1990 Phys. Rev. A 41 3427). In this paper, we report the first observation of the last of these uncertainty relations and derive the associated states that satisfy the equality in the uncertainty relation. We confirm the form of these states by detailed measurement of the angular momentum of a light beam after passage through an appropriate angular aperture. The angular uncertainty principle applies to all physical systems and is particularly important for systems with cylindrical symmetry

  20. Komar fluxes of circularly polarized light beams and cylindrical metrics

    Science.gov (United States)

    Lynden-Bell, D.; Bičák, J.

    2017-11-01

    The mass per unit length of a cylindrical system can be found from its external metric as can its angular momentum. Can the fluxes of energy, momentum, and angular momentum along the cylinder also be so found? We derive the metric of a beam of circularly polarized electromagnetic radiation from the Einstein-Maxwell equations. We show how the uniform plane wave solutions miss the angular momentum carried by the wave. We study the energy, momentum, angular momentum, and their fluxes along the cylinder both for this beam and in general. The three Killing vectors of any stationary cylindrical system give three Komar flux vectors which in turn give six conserved fluxes. We elucidate Komar's mysterious factor 2 by evaluating Komar integrals for systems that have no trace to their stress tensors. The Tolman-Komar formula gives twice the energy for such systems which also have twice the gravity. For other cylindrical systems their formula gives correct results.

  1. Controlling Second Harmonic Efficiency of Laser Beam Interactions

    Science.gov (United States)

    Barnes, Norman P. (Inventor); Walsh, Brian M. (Inventor); Reichle, Donald J. (Inventor)

    2011-01-01

    A method is provided for controlling second harmonic efficiency of laser beam interactions. A laser system generates two laser beams (e.g., a laser beam with two polarizations) for incidence on a nonlinear crystal having a preferred direction of propagation. Prior to incidence on the crystal, the beams are optically processed based on the crystal's beam separation characteristics to thereby control a position in the crystal along the preferred direction of propagation at which the beams interact.

  2. Doughnut laser beam as an incoherent superposition of two petal beams

    CSIR Research Space (South Africa)

    Litvin, IA

    2014-02-01

    Full Text Available Laguerre–Gaussian beams with a nonzero azimuthal index are known to carry orbital angular momentum (OAM), and are routinely created external to laser cavities. The few reports of obtaining such beams from laser cavities suffer from inconclusive...

  3. Direct laser printing of chiral plasmonic nanojets by vortex beams

    Science.gov (United States)

    Syubaev, S. A.

    2018-01-01

    Donut-shaped laser radiation, carrying orbital angular momentum, namely optical vortex, was recently shown to provide vectorial mass transfer, twisting transiently molten material and producing chiral micro-scale structures on surfaces of different bulk materials upon their resolidification. In this paper, we show that nanosecond laser vortices can produce chiral nanoneedles (nanojets) of variable size on thin films of such plasmonic materials, as silver and gold films, covering thermally insulating substrates. These results suggest optical interference of the incident and reflected laser beams as a source of complex surface intensity distributions in metal films, possessing spiral components and driving both center-symmetric and spiral thermocapillary melt flows to yield in frozen nanoneedles with their pre-determined spiral nanocarving.

  4. No generalized transverse momentum dependent factorization in the hadroproduction of high transverse momentum hadrons

    NARCIS (Netherlands)

    Rogers, T.C.; Mulders, P.J.G.

    2010-01-01

    It has by now been established that standard QCD factorization using transverse momentum dependent parton distribution functions fails in hadroproduction of nearly back-to-back hadrons with high transverse momentum. The essential problem is that gauge-invariant transverse momentum dependent parton

  5. Atom beams split by gentle persuasion

    International Nuclear Information System (INIS)

    Pool, R.

    1994-01-01

    Two different research teams have taken a big step toward atom interferometry. They have succeeded in splitting atomic beams by using atoms in spin states that neither absorb nor reemit laser light. By proper adjustment of experimental conditions, atoms are changed from one spin state to another, without passing through the intermediary excited state. The atoms in essence absorb momentum from the laser photons, without absorption or emission of photons. The change in momentum deflects atoms in the proper spin state

  6. Transverse momentum distributions of identified particles produced ...

    Indian Academy of Sciences (India)

    We assume that the transverse momentum distributions of identified particles measured in final state are contributed by a few energy sources which can be regarded as partons or quarks in the interacting system. The particle is contributed by each source with gluons which have transverse momentum distributions in an ...

  7. Transport processes: Momentum, heat and mass

    International Nuclear Information System (INIS)

    Geankoplis, C.J.

    1983-01-01

    This book discusses basic transport processes including mass transport. Topics covered are as follows: an introduction to engineering principles and units; principles of momentum transfer and overall balances; principles of momentum transfer and applications; principles of steady-state heat transfer; principles of unsteady-state heat transfer; principles of mass transfer; principles of unsteady-state and convective mass transfer

  8. Essays on Momentum Strategies in Finance

    NARCIS (Netherlands)

    J.A. van Oord (Arco)

    2016-01-01

    textabstractThis section briefly summarizes in which way we have investigated momentum in this thesis. In Chapter 2 we alter the momentum strategy to improve its performance, while in Chapter 3 we leave the strategy as is, but aim at improving its performance by hedging. In Chapter 4 we develop a

  9. Representational momentum in memory for pitch.

    Science.gov (United States)

    Freyd, J J; Kelly, M H; DeKay, M L

    1990-11-01

    When a visual pattern is displayed at successively different orientations such that a rotation or translation is implied, an observer's memory for the final position is displaced forward. This phenomenon of representational momentum shares some similarities with physical momentum. For instance, the amount of memory shift is proportional to the implied velocity of the inducing display; representational momentum is specifically proportional to the final, not the average, velocity; representational momentum follows a continuous stopping function for the first 250 ms or so of the retention interval. In a previous paper (Kelly & Freyd, 1987) we demonstrated a forward memory asymmetry using implied changes in pitch, for subjects without formal musical training. In the current paper we replicate our earlier finding and show that the forward memory asymmetry occurs for subjects with formal musical training as well (Experiment 1). We then show the structural similarity between representational momentum in memory for pitch with previous reports of parametric effects using visual stimuli. We report a velocity effect for auditory momentum (Experiment 2), we demonstrate specifically that the velocity effect depends on the implied acceleration (Experiment 3), and we show that the stopping function for auditory momentum is qualitatively the same as that for visual momentum (Experiment 4). We consider the implications of these results for theories of mental representation.

  10. The small momentum transfer Ksub(L)sup(0)C→Ksub(S)sup(0)C regeneration at high energies

    International Nuclear Information System (INIS)

    Hladky, J.; Nemecek, S.; Novak, M.

    1977-01-01

    Results of the first elastic Ksub(S)sup(0) regeneration experiment on carbon, using the magnetic spark chamber spectrometer, are presented in the beam momentum interval 10 2 and its slope B is found to be momentum independent with an average value B=(65+-11)(GeV/c) -2 . The results are in agreement with calculations using the coherent production model. (author)

  11. Momentum Maps and Stochastic Clebsch Action Principles

    Science.gov (United States)

    Cruzeiro, Ana Bela; Holm, Darryl D.; Ratiu, Tudor S.

    2018-01-01

    We derive stochastic differential equations whose solutions follow the flow of a stochastic nonlinear Lie algebra operation on a configuration manifold. For this purpose, we develop a stochastic Clebsch action principle, in which the noise couples to the phase space variables through a momentum map. This special coupling simplifies the structure of the resulting stochastic Hamilton equations for the momentum map. In particular, these stochastic Hamilton equations collectivize for Hamiltonians that depend only on the momentum map variable. The Stratonovich equations are derived from the Clebsch variational principle and then converted into Itô form. In comparing the Stratonovich and Itô forms of the stochastic dynamical equations governing the components of the momentum map, we find that the Itô contraction term turns out to be a double Poisson bracket. Finally, we present the stochastic Hamiltonian formulation of the collectivized momentum map dynamics and derive the corresponding Kolmogorov forward and backward equations.

  12. Population momentum across vertebrate life histories

    Science.gov (United States)

    Koons, D.N.; Grand, J.B.; Arnold, J.M.

    2006-01-01

    Population abundance is critically important in conservation, management, and demographic theory. Thus, to better understand how perturbations to the life history affect long-term population size, we examined population momentum for four vertebrate classes with different life history strategies. In a series of demographic experiments we show that population momentum generally has a larger effect on long-term population size for organisms with long generation times than for organisms with short generation times. However, patterns between population momentum and generation time varied across taxonomic groups and according to the life history parameter that was changed. Our findings indicate that momentum may be an especially important aspect of population dynamics for long-lived vertebrates, and deserves greater attention in life history studies. Further, we discuss the importance of population momentum in natural resource management, pest control, and conservation arenas. ?? 2006 Elsevier B.V. All rights reserved.

  13. Momentum of the Pure Radiation Field

    Directory of Open Access Journals (Sweden)

    Lehnert B.

    2007-01-01

    Full Text Available The local momentum equation of the pure radiation field is considered in terms of an earlier elaborated and revised electromagnetic theory. In this equation the contribution from the volume force is found to vanish in rectangular geometry, and to become nonzero but negligible in cylindrical geometry. Consequently the radiated momentum is due to the Poynting vector only, as in conventional electrodynamics. It results in physically relevant properties of a photon model having an angular momentum (spin. The Poynting vector concept is further compared to the quantized momentum concept for a free particle, as represented by a spatial gradient operator acting on the wave function. However, this latter otherwise successful concept leads to difficulties in the physical interpretation of known and expected photon properties such as the spin, the negligible loss of transverse momentum across a bounding surface, and the Lorentz invariance.

  14. Momentum Maps and Stochastic Clebsch Action Principles

    Science.gov (United States)

    Cruzeiro, Ana Bela; Holm, Darryl D.; Ratiu, Tudor S.

    2017-11-01

    We derive stochastic differential equations whose solutions follow the flow of a stochastic nonlinear Lie algebra operation on a configuration manifold. For this purpose, we develop a stochastic Clebsch action principle, in which the noise couples to the phase space variables through a momentum map. This special coupling simplifies the structure of the resulting stochastic Hamilton equations for the momentum map. In particular, these stochastic Hamilton equations collectivize for Hamiltonians that depend only on the momentum map variable. The Stratonovich equations are derived from the Clebsch variational principle and then converted into Itô form. In comparing the Stratonovich and Itô forms of the stochastic dynamical equations governing the components of the momentum map, we find that the Itô contraction term turns out to be a double Poisson bracket. Finally, we present the stochastic Hamiltonian formulation of the collectivized momentum map dynamics and derive the corresponding Kolmogorov forward and backward equations.

  15. Forward production of charged pions with incident protons on nuclear targets at the CERN Proton Synchrotron

    CERN Document Server

    Apollonio, M.; Bagulya, A.; Barr, G.; Blondel, A.; Bobisut, F.; Bogomilov, M.; Bonesini, M.; Booth, C.; Borghi, S.; Bunyatov, S.; Burguet-Castell, J.; Catanesi, M.G.; Cervera-Villanueva, A.; Chimenti, P.; Coney, L.; Di Capua, E.; Dore, U.; Dumarchez, J.; Edgecock, R.; Ellis, M.; Ferri, F.; Gastaldi, U.; Giani, S.; Giannini, G.; Gibin, D.; Gilardoni, S.; Gorbunov, P.; Gossling, C.; Gomez-Cadenas, J.J.; Grant, A.; Graulich, J.S.; Gregoire, G.; Grichine, V.; Grossheim, A.; Guglielmi, A.; Howlett, L.; Ivanchenko, A.; Ivanchenko, V.; Kayis-Topaksu, A.; Kirsanov, M.; Kolev, D.; Krasnoperov, A.; Martin-Albo, J.; Meurer, C.; Mezzetto, M.; Mills, G.B.; Morone, M.C.; Novella, P.; Orestano, D.; Palladino, V.; Panman, J.; Papadopoulos, I.; Pastore, F.; Piperov, Stefan; Polukhina, N.; Popov, B.; Prior, G.; Radicioni, E.; Schmitz, D.; Schroeter, R.; Serdiouk, V.; Skoro, G; Sorel, M.; Tcherniaev, E.; Temnikov, P.; Tereschenko, V.; Tonazzo, A.; Tortora, L.; Tsenov, R.; Tsukerman, I.; Vidal-Sitjes, G.; Wiebusch, C.; Zucchelli, P.

    2009-01-01

    Measurements of the double-differential charged pion production cross-section in the range of momentum 0.5 GeV/c < p < 8.0 GeV/c and angle 0.025 rad < theta <0.25 rad in collisions of protons on beryllium, carbon, nitrogen, oxygen, aluminium, copper, tin, tantalum and lead are presented. The data were taken with the large acceptance HARP detector in the T9 beam line of the CERN PS. Incident particles were identified by an elaborate system of beam detectors. The data were taken with thin targets of 5% of a nuclear interaction length. The tracking and identification of the produced particles was performed using the forward system of the HARP experiment. Results are obtained for the double-differential cross section mainly at four incident proton beam momenta (3 GeV/c, 5 GeV/c, 8 GeV/c and 12 GeV/c). Measurements are compared with the GEANT4 and MARS Monte Carlo generators. A global parametrization is provided as an approximation of all the collected datasets which can serve as a tool for quick yield...

  16. Laguerre-Gauss and Bessel-Gauss beams propagation through turbulence: analysis of channel efficiency.

    Science.gov (United States)

    Doster, Timothy; Watnik, Abbie T

    2016-12-20

    As a means of increasing the channel capacity in free-space optical communication systems, two types of orbital angular momentum carrying beams, Bessel-Gauss and Laguerre-Gauss, are studied. In a series of numerical simulations, we show that Bessel-Gauss beams, pseudo-nondiffracting beams, outperform Laguerre-Gauss beams of various orders in channel efficiency and bit error rates.

  17. Bends and momentum dispersion during final compression in heavy ion fusion drivers

    International Nuclear Information System (INIS)

    Lee, Edward P.; Barnard, John J.

    2002-01-01

    Between the accelerator and fusion chamber the heavy ion beams are subject to a dramatic but vital series of manipulations, some of which are carried out simultaneously and involve large space charge forces. The beams' quality must be maintained at a level sufficient for the fusion application; this general requirement significantly impacts beam line design, especially in the considerations of momentum dispersion. Immediately prior to final focus onto a fusion target, heavy ion driver beams are compressed in length by typically an order of magnitude. This process is simultaneous with bending through large angles to achieve the required target illumination configuration. The large increase in beam current is accommodated by a combination of decreased lattice period, increased beam radius, and increased strength of the beamline quadrupoles. However, the large head-to-tail momentum tilt (up to 5%) needed to compress the pulse results in a very significant dispersion of the pulse centroid from the design axis. General design features are discussed. A principal design goal is to minimize the magnitude of the dispersion while maintaining approximate first order achromaticity through the complete compression/bend system. Configurations of bends and quadrupoles, which achieve this goal while simultaneously maintaining a locally matched beam-envelope, are analyzed

  18. Acoustic Virtual Vortices with Tunable Orbital Angular Momentum for Trapping of Mie Particles

    Science.gov (United States)

    Marzo, Asier; Caleap, Mihai; Drinkwater, Bruce W.

    2018-01-01

    Acoustic vortices can transfer angular momentum and trap particles. Here, we show that particles trapped in airborne acoustic vortices orbit at high speeds, leading to dynamic instability and ejection. We demonstrate stable trapping inside acoustic vortices by generating sequences of short-pulsed vortices of equal helicity but opposite chirality. This produces a "virtual vortex" with an orbital angular momentum that can be tuned independently of the trapping force. We use this method to adjust the rotational speed of particles inside a vortex beam and, for the first time, create three-dimensional acoustics traps for particles of wavelength order (i.e., Mie particles).

  19. Momentum scale in the HARP TPC

    CERN Document Server

    Catanesi, M G; Edgecock, R; Ellis, M; Soler, F J P; Gössling, C; Bunyatov, S; Krasnoperov, A; Popov, B; Serdiouk, V; Tereschenko, V; Di Capua, E; Vidal-Sitjes, G; Artamonov, A; Giani, S; Gilardoni, S; Gorbunov, P; Grant, A; Grossheim, A; Ivanchenko, V; Kayis-Topaksu, A; Panman, J; Papadopoulos, I; Chernyaev, E; Tsukerman, I; Veenhof, R; Wiebusch, C; Zucchelli, P; Blondel, A; Borghi, S; Morone, M C; Prior, G; Schroeter, R; Meurer, C; Gastaldi, Ugo; Mills, G B; Graulich, J S; Grégoire, G; Bonesini, M; Ferri, F; Kirsanov, M; Bagulya, A; Grichine, V; Polukhina, N; Palladino, V; Coney, L; Schmitz, D; Barr, G; De Santo, A; Bobisut, F; Gibin, D; Guglielmi, A; Mezzetto, M; Dumarchez, J; Dore, U; Orestano, D; Pastore, F; Tonazzo, A; Tortora, L; Booth, C; Howlett, L; Bogomilov, M; Chizhov, M; Kolev, D; Tsenov, R; Piperov, S; Temnikov, P; Apollonio, M; Chimenti, P; Giannini, G; Burguet-Castell, J; Cervera-Villanueva, A; Gómez-Cadenas, J J; Martín-Albo, J; Novella, P; Sorel, M

    2007-01-01

    Recently a claim was made that the reconstruction of the large angle tracks in the HARP TPC was affected by a momentum bias as large as 15% at 500 MeV/c transverse momentum. In the following we recall the main issues with the momentum measurement in the HARP TPC, and describe the cross-checks made to validate the momentum scale. Proton-proton elastic scattering data off the hydrogen target are used to alibrate the momentum of charged particles with a precision evaluated to be 3.5%. A full description of the time development of the dynamic distortions in the TPC during physics spills is now available together with a correction algorithm. This allows a new cross-check using an enlarged data set made by comparing positive and negative pion elasticscattering data collected with negative polarity of the solenoid magnet. These data confirm the absence of a bias in the sagitta measurement. The dE/dx versus momentum curves are revisited, and shown to provide a confirmation that the HARP momentum calibration is correc...

  20. Radioactive ion beams at the Bevalac: Greatly enhanced fragment separation for high energy beams

    International Nuclear Information System (INIS)

    Feinberg, B.; Kalnins, J.G.; Krebs, G.F.

    1990-09-01

    Radioactive beams are routinely produced at the Bevalac by the fragmentation process. High energy beams (energies ∼ 800 MeV/u) produce fragments with nearly the original beam momentum, forming a radioactive ion beam. A new beamline is being constructed which will provide resolution for ions approaching the mass 100 region, compared to the present mass 20 capability, by strongly increasing the dispersion and also increasing the beam size for easier tuning and more effective collimation. In addition, the angular acceptance has been more than doubled. Details of the design will be presented. 6 refs., 4 figs., 1 tab

  1. Annular beam with segmented phase gradients

    Directory of Open Access Journals (Sweden)

    Shubo Cheng

    2016-08-01

    Full Text Available An annular beam with a single uniform-intensity ring and multiple segments of phase gradients is proposed in this paper. Different from the conventional superposed vortices, such as the modulated optical vortices and the collinear superposition of multiple orbital angular momentum modes, the designed annular beam has a doughnut intensity distribution whose radius is independent of the phase distribution of the beam in the imaging plane. The phase distribution along the circumference of the doughnut beam can be segmented with different phase gradients. Similar to a vortex beam, the annular beam can also exert torques and rotate a trapped particle owing to the orbital angular momentum of the beam. As the beam possesses different phase gradients, the rotation velocity of the trapped particle can be varied along the circumference. The simulation and experimental results show that an annular beam with three segments of different phase gradients can rotate particles with controlled velocities. The beam has potential applications in optical trapping and optical information processing.

  2. Wheelchair incidents

    NARCIS (Netherlands)

    Drongelen AW van; Roszek B; Hilbers-Modderman ESM; Kallewaard M; Wassenaar C; LGM

    2002-01-01

    This RIVM study was performed to gain insight into wheelchair-related incidents with powered and manual wheelchairs reported to the USA FDA, the British MDA and the Dutch Center for Quality and Usability Research of Technical Aids (KBOH). The data in the databases do not indicate that incidents with

  3. AA, beam stopper with scintillator screen

    CERN Multimedia

    CERN PhotoLab

    1980-01-01

    An insertable steel-plate beam stopper was located after nearly a full turn downstream of the injection point. It was fitted with a scintillator screen, a thin plate of Cr-doped alumina, imprinted with a grid and reference points. The screen was illuminated through a window and observed with a highly sensitive TV camera plus image intensifier. This allowed observation of beam position and size of a proton test beam and of the beam from the target, which consisted not only of antiprotons but contained as well electrons, pions and muons of the same momentum.

  4. Cavity modes with optical orbital angular momentum in a metamaterial ring based on transformation optics.

    Science.gov (United States)

    Wu, H W; Wang, F; Dong, Y Q; Shu, F Z; Zhang, K; Peng, R W; Xiong, X; Wang, Mu

    2015-12-14

    In this work, we theoretically study the cavity modes with transverse orbital angular momentum in metamaterial ring based on transformation optics. The metamaterial ring is designed to transform the straight trajectory of light into the circulating one by enlarging the azimuthal angle, effectively presenting the modes with transverse orbital angular momentum. The simulation results confirm the theoretical predictions, which state that the transverse orbital angular momentum of the mode not only depends on the frequency of the incident light, but also depends on the transformation scale of the azimuthal angle. Because energy dissipation inevitably reduces the field amplitude of the modes, the confined electromagnetic energy and the quality factor of the modes inside the ring are also studied in order to evaluate the stability of those cavity modes. The results show that the metamaterial ring can effectively confine light with a high quality factor and maintain steady modes with the orbital angular momentum, even if the dimension of the ring is much smaller than the wavelength of the incident light. This technique for exploiting the modes with optical transverse orbital angular momentum may provides a unique platform for applications related to micromanipulation.

  5. Momentum sharing in imbalanced Fermi systems

    Energy Technology Data Exchange (ETDEWEB)

    Hen, O.; Sargsian, M.; Weinstein, L. B.; Piasetzky, E.; Hakobyan, H.; Higinbotham, D. W.; Braverman, M.; Brooks, W. K.; Gilad, S.; Adhikari, K. P.; Arrington, J.; Asryan, G.; Avakian, H.; Ball, J.; Baltzell, N. A.; Battaglieri, M.; Beck, A.; Beck, S. M. -T.; Bedlinskiy, I.; Bertozzi, W.; Biselli, A.; Burkert, V. D.; Cao, T.; Carman, D. S.; Celentano, A.; Chandavar, S.; Colaneri, L.; Cole, P. L.; Crede, V.; D' Angelo, A.; De Vita, R.; Deur, A.; Djalali, C.; Doughty, D.; Dugger, M.; Dupre, R.; Egiyan, H.; El Alaoui, A.; El Fassi, L.; Elouadrhiri, L.; Fedotov, G.; Fegan, S.; Forest, T.; Garillon, B.; Garcon, M.; Gevorgyan, N.; Ghandilyan, Y.; Gilfoyle, G. P.; Girod, F. X.; Goetz, J. T.; Gothe, R. W.; Griffioen, K. A.; Guidal, M.; Guo, L.; Hafidi, K.; Hanretty, C.; Hattawy, M.; Hicks, K.; Holtrop, M.; Hyde, C. E.; Ilieva, Y.; Ireland, D. G.; Ishkanov, B. I.; Isupov, E. L.; Jiang, H.; Jo, H. S.; Joo, K.; Keller, D.; Khandaker, M.; Kim, A.; Kim, W.; Klein, F. J.; Koirala, S.; Korover, I.; Kuhn, S. E.; Kubarovsky, V.; Lenisa, P.; Levine, W. I.; Livingston, K.; Lowry, M.; Lu, H. Y.; MacGregor, I. J. D.; Markov, N.; Mayer, M.; McKinnon, B.; Mineeva, T.; Mokeev, V.; Movsisyan, A.; Camacho, C. M.; Mustapha, B.; Nadel-Turonski, P.; Niccolai, S.; Niculescu, G.; Niculescu, I.; Osipenko, M.; Pappalardo, L. L.; Paremuzyan, R.; Park, K.; Pasyuk, E.; Phelps, W.; Pisano, S.; Pogorelko, O.; Price, J. W.; Procureur, S.; Prok, Y.; Protopopescu, D.; Puckett, A. J. R.; Rimal, D.; Ripani, M.; Ritchie, B. G.; Rizzo, A.; Rosner, G.; Roy, P.; Rossi, P.; Sabatie, F.; Schott, D.; Schumacher, R. A.; Sharabian, Y. G.; Smith, G. D.; Shneor, R.; Sokhan, D.; Stepanyan, S. S.; Stepanyan, S.; Stoler, P.; Strauch, S.; Sytnik, V.; Taiuti, M.; Tkachenko, S.; Ungaro, M.; Vlassov, A. V.; Voutier, E.; Walford, N. K.; Wei, X.; Wood, M. H.; Wood, S. A.; Zachariou, N.; Zana, L.; Zhao, Z. W.; Zheng, X.; Zonta, I.

    2014-10-16

    The atomic nucleus is composed of two different kinds of fermions: protons and neutrons. If the protons and neutrons did not interact, the Pauli exclusion principle would force the majority of fermions (usually neutrons) to have a higher average momentum. Our high-energy electron-scattering measurements using C-12, Al-27, Fe-56, and Pb-208 targets show that even in heavy, neutron-rich nuclei, short-range interactions between the fermions form correlated high-momentum neutron-proton pairs. Thus, in neutron-rich nuclei, protons have a greater probability than neutrons to have momentum greater than the Fermi momentum. This finding has implications ranging from nuclear few-body systems to neutron stars and may also be observable experimentally in two-spin-state, ultracold atomic gas systems.

  6. Optical communication beyond orbital angular momentum

    CSIR Research Space (South Africa)

    Trichili, A

    2016-06-01

    Full Text Available Mode division multiplexing (MDM) is mooted as a technology to address future bandwidth issues, and has been successfully demonstrated in free space using spatial modes with orbital angular momentum (OAM). To further increase the data transmission...

  7. Energy-momentum tensor in scalar QED

    International Nuclear Information System (INIS)

    Joglekar, S.D.; Misra, A.

    1988-01-01

    We consider the renormalization of the energy-momentum tensor in scalar quantum electrodynamics. We show the need for adding an improvement term to the conventional energy-momentum tensor. We consider two possible forms for the improvement term: (i) one in which the improvement coefficient is a finite function of bare parameters of the theory (so that the energy-momentum tensor can be obtained from an action that is a finite function of bare quantities); (ii) one in which the improvement coefficient is a finite quantity, i.e., a finite function of renormalized parameters. We establish a negative result; viz., neither form leads to a finite energy-momentum tensor to O(e 2 λ/sup n/). .AE

  8. Momentum and hamiltonian in complex action theory

    DEFF Research Database (Denmark)

    Nagao, Keiichi; Nielsen, Holger Frits Bech

    2012-01-01

    In the complex action theory (CAT) we explicitly examine how the momentum and Hamiltonian are defined from the Feynman path integral (FPI) point of view. In arXiv:1104.3381[quant-ph], introducing a philosophy to keep the analyticity in parameter variables of FPI and defining a modified set...... of complex conjugate, hermitian conjugates and bras, we have extended $| q >$ and $| p >$ to complex $q$ and $p$ so that we can deal with a complex coordinate $q$ and a complex momentum $p$. After reviewing them briefly, we describe in terms of the newly introduced devices the time development of a $\\xi......$-parametrized wave function, which is a solution to an eigenvalue problem of a momentum operator $\\hat{p}$, in FPI with a starting Lagrangian. Solving the eigenvalue problem, we derive the momentum and Hamiltonian. Oppositely, starting from the Hamiltonian we derive the Lagrangian in FPI, and we are led...

  9. Exclusive processes at high momentum transfer

    CERN Document Server

    Radyushkin, Anatoly; Stoker, Paul

    2002-01-01

    This book focuses on the physics of exclusive processes at high momentum transfer and their description in terms of generalized parton distributions, perturbative QCD, and relativistic quark models. It covers recent developments in the field, both theoretical and experimental.

  10. Amplitude damping channel for orbital angular momentum

    CSIR Research Space (South Africa)

    Dudley, Angela L

    2010-03-01

    Full Text Available Since the pioneering work on the entanglement of the orbital angular momentum (OAM) states of light, much attention has been devoted to the subject, with particular attention into the quantum aspects of information processing using OAM. Furthermore...

  11. A simple beam analyser

    International Nuclear Information System (INIS)

    Lemarchand, G.

    1977-01-01

    (ee'p) experiments allow to measure the missing energy distribution as well as the momentum distribution of the extracted proton in the nucleus versus the missing energy. Such experiments are presently conducted on SACLAY's A.L.S. 300 Linac. Electrons and protons are respectively analysed by two spectrometers and detected in their focal planes. Counting rates are usually low and include time coincidences and accidentals. Signal-to-noise ratio is dependent on the physics of the experiment and the resolution of the coincidence, therefore it is mandatory to get a beam current distribution as flat as possible. Using new technologies has allowed to monitor in real time the behavior of the beam pulse and determine when the duty cycle can be considered as being good with respect to a numerical basis

  12. Development of Fragmented Low-Z Ion Beams for the NA61 Experiment at the CERN SPS

    CERN Document Server

    Efthymiopoulos, I; Bohl, T; Breuker, H; Calviani, M; Manglunki, D; Mataguez, S; Maury, S; Valderanis, C; Cornelis, K; Spanggaard, J; Cettour-Cave, S; Gazdzicki, M; Seyboth, P; Guber, F; Ivashkin, A

    2011-01-01

    The NA61 experiment, aims to study the properties of the onset of deconfinement at low SPS energies and to find signatures of the critical point of strongly interacting matter. A broad range in T-μB phase diagram will be covered by performing an energy (13A-158AGeV/c) and system size (p+p, Be+Be, Ar+Ca, Xe+La) scan. In a first phase, fragmented ion beams of 7Be or 11C produced as secondaries with the same momentum per nucleon when the incident primary Pb-ion beam hits a thin Be target will be used. The H2 beam line that transports the beam to the experiment acts as a double spectrometer which combined with a new thin target (degrader) where fragments loose energy proportional to the square of their charge allows the separation of the wanted A/Z fragments. Thin scintillators and TOF measurement for the low energy points are used as particle identification devices. In this paper results from the first test of the fragmented ion beam done in 2010 will be presented showing that a pure Be beam can be obtained sa...

  13. Transverse beam shape measurements of intense proton beams using optical transition radiation

    Energy Technology Data Exchange (ETDEWEB)

    Scarpine, Victor E.; /Fermilab

    2012-03-01

    A number of particle physics experiments are being proposed as part of the Department of Energy HEP Intensity Frontier. Many of these experiments will utilize megawatt level proton beams onto targets to form secondary beams of muons, kaons and neutrinos. These experiments require transverse size measurements of the incident proton beam onto target for each beam spill. Because of the high power levels, most beam intercepting profiling techniques will not work at full beam intensity. The possibility of utilizing optical transition radiation (OTR) for high intensity proton beam profiling is discussed. In addition, previous measurements of OTR beam profiles from the NuMI beamline are presented.

  14. Do Momentum Strategies Work?: - Australian Evidence

    OpenAIRE

    Michael E. Drew; Madhu Veeraraghavan; Min Ye

    2004-01-01

    This paper investigates the profitability of momentum investment strategy and the predictive power of trading volume for equities listed in the Australian Stock Exchange. Recent research finds that momentum and trading volume appear to predict subsequent returns in U.S. market and past volume helps to reconcile intermediate-horizon “under reaction” and long-horizon “overreaction” effects. However, bulk of the evidence on this important relationship between past returns and future returns is l...

  15. The gluon propagator in momentum space

    Energy Technology Data Exchange (ETDEWEB)

    Bernard, C. [Washington Univ., St. Louis, MO (United States). Dept. of Physics; Parrinello, C. [New York Univ., NY (United States). Dept. of Physics]|[Brookhaven National Lab., Upton, NY (United States); Soni, A. [Brookhaven National Lab., Upton, NY (United States)

    1992-12-31

    We consider quenched QCD on a 16{sup 3}{times}40 lattice at {beta}=6.0. We give preliminary numerical results for the lattice gluon propagator evaluated both in coordinate and momentum space. Our findings are compared with earlier results in the literature at zero momentum. In addition, by considering nonzero momenta we attempt to extract the form of the propagator and compare it to continuum predictions formulated by Gribov and others.

  16. The gluon propagator in momentum space

    Energy Technology Data Exchange (ETDEWEB)

    Bernard, C. (Washington Univ., St. Louis, MO (United States). Dept. of Physics); Parrinello, C. (New York Univ., NY (United States). Dept. of Physics Brookhaven National Lab., Upton, NY (United States)); Soni, A. (Brookhaven National Lab., Upton, NY (United States))

    1992-01-01

    We consider quenched QCD on a 16[sup 3][times]40 lattice at [beta]=6.0. We give preliminary numerical results for the lattice gluon propagator evaluated both in coordinate and momentum space. Our findings are compared with earlier results in the literature at zero momentum. In addition, by considering nonzero momenta we attempt to extract the form of the propagator and compare it to continuum predictions formulated by Gribov and others.

  17. The gluon propagator in momentum space

    Energy Technology Data Exchange (ETDEWEB)

    Bernard, C. (Dept. of Physics, Washington Univ., St. Louis, MO (United States)); Parrinello, C. (Physics Dept., New York Univ., NY (United States) Physics Dept., Brookhaven National Lab., Upton, NY (United States)); Soni, A. (Physics Dept., Brookhaven National Lab., Upton, NY (United States))

    1993-03-01

    We consider quenched QCD on a 16[sup 3] x 40 lattice at [beta] = 6.0. We give preliminary numerical results for the lattice gluon propagator evaluated both in coordinate and momentum space. Our findings are compared with earlier results in the literature at zero momentum. In addition, by considering nonzero momenta we attempt to extract the form of the propagator and compare it to continuum predictions formulated by Gribov and others. (orig.)

  18. Transverse angular momentum in topological photonic crystals

    Science.gov (United States)

    Deng, Wei-Min; Chen, Xiao-Dong; Zhao, Fu-Li; Dong, Jian-Wen

    2018-01-01

    Engineering local angular momentum of structured light fields in real space enables applications in many fields, in particular, the realization of unidirectional robust transport in topological photonic crystals with a non-trivial Berry vortex in momentum space. Here, we show transverse angular momentum modes in silicon topological photonic crystals when considering transverse electric polarization. Excited by a chiral external source with either transverse spin angular momentum or transverse phase vortex, robust light flow propagating along opposite directions is observed in several kinds of sharp-turn interfaces between two topologically-distinct silicon photonic crystals. A transverse orbital angular momentum mode with alternating phase vortex exists at the boundary of two such photonic crystals. In addition, unidirectional transport is robust to the working frequency even when the ring size or location of the pseudo-spin source varies in a certain range, leading to the superiority of the broadband photonic device. These findings enable one to make use of transverse angular momentum, a kind of degree of freedom, to achieve unidirectional robust transport in the telecom region and other potential applications in integrated photonic circuits, such as on-chip robust delay lines.

  19. Rindler fluid with weak momentum relaxation

    Science.gov (United States)

    Khimphun, Sunly; Lee, Bum-Hoon; Park, Chanyong; Zhang, Yun-Long

    2018-01-01

    We realize the weak momentum relaxation in Rindler fluid, which lives on the time-like cutoff surface in an accelerating frame of flat spacetime. The translational invariance is broken by massless scalar fields with weak strength. Both of the Ward identity and the momentum relaxation rate of Rindler fluid are obtained, with higher order correction in terms of the strength of momentum relaxation. The Rindler fluid with momentum relaxation could also be approached through the near horizon limit of cutoff AdS fluid with momentum relaxation, which lives on a finite time-like cutoff surface in Anti-de Sitter(AdS) spacetime, and further could be connected with the holographic conformal fluid living on AdS boundary at infinity. Thus, in the holographic Wilson renormalization group flow of the fluid/gravity correspondence with momentum relaxation, the Rindler fluid can be considered as the Infrared Radiation(IR) fixed point, and the holographic conformal fluid plays the role of the ultraviolet(UV) fixed point.

  20. Coherent beam-beam effects

    International Nuclear Information System (INIS)

    Chao, A.W.

    1992-01-01

    There are two physical pictures that describe the beam-beam interaction in a storage ring collider: The weak-strong and the strong-strong pictures. Both pictures play a role in determining the beam-beam behavior. This review addresses only the strong-strong picture. The corresponding beam dynamical effects are referred to as the coherent beam-beam effects. Some basic knowledge of the weak-strong picture is assumed. To be specific, two beams of opposite charges are considered. (orig.)

  1. Magnetized and Flat Beam Experiment at FAST

    Energy Technology Data Exchange (ETDEWEB)

    Halavanau, A. [Fermilab; Hyun, J. [Sokendai, Tsukuba; Mihalcea, D. [NIU, DeKalb; Piot, P. [NICADD, DeKalb; Sen, T. [Fermilab; Thangaraj, C. [Fermilab

    2017-05-22

    A photocathode, immersed in solenoidal magnetic field, can produce canonical-angular-momentum (CAM) dominated or “magnetized” electron beams. Such beams have an application in electron cooling of hadron beams and can also be uncoupled to yield asymmetric-emittance (“flat”) beams. In the present paper we explore the possibilities of the flat beam generation at Fermilab’s Accelerator Science and Technology (FAST) facility. We present optimization of the beam flatness and four-dimensional transverse emittance and investigate the mapping and its limitations of the produced eigen-emittances to conventional emittances using a skew-quadrupole channel. Possible application of flat beams at the FAST facility are also discussed.

  2. Techniques to sort Bessel beams

    CSIR Research Space (South Africa)

    Dudley, Angela L

    2013-09-01

    Full Text Available properties such as their ability to propagate diffraction-free over a finite distance [12-21] and reconstruct after encountering an obstacle [22]. Exploiting these properties of Bessel beams will make them very useful in the field of long-range, broad.... Fig. 1. Case 1, column A: Annular rings (Fourier transform of Bessel beams) of the same radius but different azimuthal components (l = -5 and l = +5) are mapped to transverse momentum modes represented by the linear phase variations in column B. A...

  3. Getting ready for SPS beam

    CERN Multimedia

    CERN PhotoLab

    1977-01-01

    View from downstream of the WA7 experiment along beam H1B. In the foreground are scintillator hodoscopes and immediately behind them, is a threshold Cerenkov counter, standing on its edge. The WA7 control hut is located on the right, over the concrete shielding blocks. Still more right, the other branch of the H1 beam, E1A/H1A, runs towards the Omega Facility. WA7 by the CERN-Genoa-LAPP, Annecy-Niels Bohr Institute, Copenhagen-Oslo, University College, London Collaboration was meant to study two-body reactions at large transverse momentum.

  4. Non-Diffractive Tractor Beams

    DEFF Research Database (Denmark)

    Novitsky, Andrey; Gao, Dongliang; Gorlach, Alexey A.

    2017-01-01

    momentum to particles in the backward direction. The amplified forward scattering is achieved through the interaction of multipoles, conventionally electric and magnetic dipole moments. In this talk we give an overview of the tractor beams in optics, acoustics, classical and quantum mechanics. We...... demonstrate how to ease the conditions required in experiment for realization of the optical tractor beams using the cylindrical objects. We pay a particular attention to the case of the pulling optical force due to the interaction of magnetic dipole and quadrupole moments....

  5. Beam experiment at TARN

    International Nuclear Information System (INIS)

    Noda, A.; Chida, K.; Hattori, T.

    1984-01-01

    TARN is a storage ring of low energy ions (T sub(N) -- 10 MeV/u) constructed in 1979 to verify the feasibility of intensity multiplication proposed at NUMATRON project. The mean radius and maximum magnetic rigidity of the ring are 5.06 m and 11.8 kG.m, respectively. Magnet system based on a strong focusing FODO lattice is composed of 8 dipole and 16 quadrupole magnets. Additional 12 sextupole magnets are also installed for chromaticity control. Intensity increase by the multi-turn injection is 20 times with the dilution factor of 2.0 in horizontal transverse phase space. Injected beams are RF captured with the frequency around 8 MHz and moved inner side of the ring by RF deceleration as large as -- 5 % in Δp/p. Beam intensity increases linearly up to around 20 stackings with the capture efficiency of 80 % and 30 Hz repetition rate. Dilution factor of the longitudinal phase space is measured at 1.8. Thus about 300 times total intensity increase has been attained. The e-folding beam life time of 7 MeV proton is measured at 400 s for the vacuum pressure of 1 x 10 -10 Torr. Stochastic momentum cooling experiment of 7 MeV proton has been performed. A feed-back system based on the 'Notch-Filter' method has been adopted for its simplicity and characteristics suitable for lower beam intensity. Cooling time for the 7 MeV proton beam with the intensity of 10 8 is estimated at 19 s for optimum cooling rate with the system gain of 105 dB, while the system gain as large as 111 dB has been achieved without self-oscillation of the electronics system. From the beam experiment, the cooling time of 10 8 proton beam with fractional momentum spread of 1.4 x 10 -2 is measured at --20 sec with the system gain of 97 db. (author)

  6. Superresolution beams

    CSIR Research Space (South Africa)

    Ngcobo, S

    2011-11-01

    Full Text Available zones capable of introducing a phase shift of zero or p on the alternately out of phase rings of the TEMp0 beams into a unified phase and then focusing the rectified beam to generate a high resolution beam which has a Gaussian beam intensity distribution...

  7. Tsallis Statistical Interpretation of Transverse Momentum Spectra in High-Energy pA Collisions

    Directory of Open Access Journals (Sweden)

    Bao-Chun Li

    2015-01-01

    Full Text Available In Tsallis statistics, we investigate charged pion and proton production for pCu and pPb interactions at 3, 8, and 15 GeV/c. Two versions of Tsallis distribution are implemented in a multisource thermal model. A comparison with experimental data of the HARP-CDP group shows that they both can reproduce the transverse momentum spectra, but the improved form gives a better description. It is also found that the difference between q and q′ is small when the temperature T = T′ for the same incident momentum and angular interval, and the value of q is greater than q′ in most cases.

  8. Beam emittance reduction during operation of Indus-2

    Energy Technology Data Exchange (ETDEWEB)

    Fakhri, Ali Akbar, E-mail: fakhri@rrcat.gov.in; Kant, Pradeep; Ghodke, A. D.; Singh, Gurnam [Raja Ramanna Centre for Advanced Technology, Indore 452 013 (India)

    2015-11-15

    Indus-2 storage ring is a 2.5 GeV third generation synchrotron radiation source. This source was commissioned using a moderate optics. Beam injection was accomplished using an off momentum electron beam to avoid difficulties faced in storage of beam at 550 MeV. The injection procedure and relevant beam dynamical studies are discussed. The switch over from the moderate optics to low emittance optics is done at 2.5 GeV after storing the electron beam. The procedure evolved to reduce the beam emittance and its implementation during the operation is discussed.

  9. A test beam upgrade based on the BEPC-LINAC

    International Nuclear Information System (INIS)

    Li Jiacai; Wu Yuanming; Cui Xiangzong; Zhang Liangsheng; Zhou Baoqing; Liu Zhengquan; Zhang Shaoping; Sun Changchun; Zhang Zhuxiang; Zhang Caidi; Zheng Linsheng; Liu Shixing; Shen Ji; Yin Zejie; Zhang Yongming; Chen Ziyu

    2004-01-01

    A total of three beam lines, E1, E2 and E3 have based on the LINAC of BEPC. The E1 beam is to be used for intense slow-positron facility. The E2 is a primary positron or electron beam with an energy of 1.3-1.5 GeV. The E3 is a secondary electron or pion test beam with a momentum can be adjustable continuously. The position accuracy of a detected particle is 0.2-0.4 mm with an event rate of 3 - 4 Hz. This beam has been successfully used for some detectors beam test. (author)

  10. Compact and high-resolution optical orbital angular momentum sorter

    Directory of Open Access Journals (Sweden)

    Chenhao Wan

    2017-03-01

    Full Text Available A compact and high-resolution optical orbital angular momentum (OAM sorter is proposed and demonstrated. The sorter comprises a quadratic fan-out mapper and a dual-phase corrector positioned in the pupil plane and the Fourier plane, respectively. The optical system is greatly simplified compared to previous demonstrations of OAM sorting, and the performance in resolution and efficiency is maintained. A folded configuration is set up using a single reflective spatial light modulator (SLM to demonstrate the validity of the scheme. The two phase elements are implemented on the left and right halves of the SLM and connected by a right-angle prism. Experimental results demonstrate the high resolution of the compact OAM sorter, and the current limit in efficiency can be overcome by replacing with transmissive SLMs and removing the beam splitters. This novel scheme paves the way for the miniaturization and integration of high-resolution OAM sorters.

  11. Correction of unevenness in recycler beam profile

    Energy Technology Data Exchange (ETDEWEB)

    Crisp, J.; Hu, M.; Ng, K.Y.; /Fermilab

    2006-05-01

    A beam confined between two rf barriers in the Fermilab Recycler Ring exhibits very uneven longitudinal profile. This leads to the consequence that the momentum-mined antiproton bunches will have an intolerable variation in bunch intensity. The observed profile unevenness is the result of a tiny amount of rf imperfection and rf beam-loading. The profile unevenness can be flattened by feeding back the uneven rf fan-back gap voltage to the low-level rf.

  12. The effect of scattering on single photon transmission of optical angular momentum

    International Nuclear Information System (INIS)

    Andrews, D L

    2011-01-01

    Schemes for the communication and registration of optical angular momentum depend on the fidelity of transmission between optical system components. It is known that electron spin can be faithfully relayed between exciton states in quantum dots; it has also been shown by several theoretical and experimental studies that the use of beams conveying orbital angular momentum can significantly extend the density and efficiency of such information transfer. However, it remains unclear to what extent the operation of such a concept at the single photon level is practicable—especially where this involves optical propagation through a material system, in which forward scattering events can intervene. The possibility of transmitting and decoding angular momentum over nanoscale distances itself raises other important issues associated with near-field interrogation. This paper provides a framework to address these and related issues. A quantum electrodynamical representation is constructed and used to pursue the consequences of individual photons, from a Laguerre–Gaussian beam, undergoing single and multiple scattering events in the course of propagation. In this context, issues concerning orbital angular momentum conservation, and its possible compromise, are tackled by identifying the relevant components of the electromagnetic scattering and coupling tensors, using an irreducible Cartesian basis. The physical interpretation broadly supports the fidelity of quantum information transmission, but it also identifies potential limitations of principle

  13. The effect of scattering on single photon transmission of optical angular momentum

    Science.gov (United States)

    Andrews, D. L.

    2011-06-01

    Schemes for the communication and registration of optical angular momentum depend on the fidelity of transmission between optical system components. It is known that electron spin can be faithfully relayed between exciton states in quantum dots; it has also been shown by several theoretical and experimental studies that the use of beams conveying orbital angular momentum can significantly extend the density and efficiency of such information transfer. However, it remains unclear to what extent the operation of such a concept at the single photon level is practicable—especially where this involves optical propagation through a material system, in which forward scattering events can intervene. The possibility of transmitting and decoding angular momentum over nanoscale distances itself raises other important issues associated with near-field interrogation. This paper provides a framework to address these and related issues. A quantum electrodynamical representation is constructed and used to pursue the consequences of individual photons, from a Laguerre-Gaussian beam, undergoing single and multiple scattering events in the course of propagation. In this context, issues concerning orbital angular momentum conservation, and its possible compromise, are tackled by identifying the relevant components of the electromagnetic scattering and coupling tensors, using an irreducible Cartesian basis. The physical interpretation broadly supports the fidelity of quantum information transmission, but it also identifies potential limitations of principle.

  14. Manipulation of dielectric particles with nondiffracting parabolic beams.

    Science.gov (United States)

    Ortiz-Ambriz, Antonio; Gutiérrez-Vega, Julio C; Petrov, Dmitri

    2014-12-01

    The trapping and manipulation of microscopic particles embedded in the structure of nondiffracting parabolic beams is reported. The particles acquire orbital angular momentum and exhibit an open trajectory following the parabolic fringes of the beam. We observe an asymmetry in the terminal velocity of the particles caused by the counteracting gradient and scattering forces.

  15. Mass and momentum conservation for fluid simulation

    KAUST Repository

    Lentine, Michael

    2011-01-01

    Momentum conservation has long been used as a design principle for solid simulation (e.g. collisions between rigid bodies, mass-spring elastic and damping forces, etc.), yet it has not been widely used for fluid simulation. In fact, semi-Lagrangian advection does not conserve momentum, but is still regularly used as a bread and butter method for fluid simulation. In this paper, we propose a modification to the semi-Lagrangian method in order to make it fully conserve momentum. While methods of this type have been proposed earlier in the computational physics literature, they are not necessarily appropriate for coarse grids, large time steps or inviscid flows, all of which are common in graphics applications. In addition, we show that the commonly used vorticity confinement turbulence model can be modified to exactly conserve momentum as well. We provide a number of examples that illustrate the benefits of this new approach, both in conserving fluid momentum and passively advected scalars such as smoke density. In particular, we show that our new method is amenable to efficient smoke simulation with one time step per frame, whereas the traditional non-conservative semi-Lagrangian method experiences serious artifacts when run with these large time steps, especially when object interaction is considered. Copyright © 2011 by the Association for Computing Machinery, Inc.

  16. Momentum considerations on the New MEXICO experiment

    Science.gov (United States)

    Parra, E. A.; Boorsma, K.; Schepers, J. G.; Snel, H.

    2016-09-01

    The present paper regards axial and angular momentum considerations combining detailed loads from pressure sensors and the flow field mapped with particle image velocimetry (PIV) techniques. For this end, the study implements important results leaning on experimental data from wind tunnel measurements of the New MEXICO project. The measurements, taken on a fully instrumented rotor, were carried out in the German Dutch Wind tunnel Organisation (DNW) testing the MEXICO rotor in the open section. The work revisits the so-called momentum theory, showing that the integral thrust and torque measured on the rotor correspond with an extent of 0.7 and 2.4% respectively to the momentum balance of the global flow field using the general momentum equations. Likewise, the sectional forces combined with the local induced velocities are found to plausibly obey the annular streamtube theory, albeit some limitations in the axial momentum become more apparent at high inductions after a=0.3. Finally, azimuth induced velocities are measured and compared to predictions from models of Glauert and Burton et al., showing close-matching forecasts for blade spans above 25%.

  17. The amplituhedron from momentum twistor diagrams

    Energy Technology Data Exchange (ETDEWEB)

    Bai, Yuntao [Department of Physics, Princeton University,Princeton, NJ, 08544 (United States); He, Song [School of Natural Sciences, Institute for Advanced Study,Princeton, NJ, 08540 (United States); Perimeter Institute for Theoretical Physics,Waterloo, ON, N2L 2Y5 (Canada)

    2015-02-10

    We propose a new diagrammatic formulation of the all-loop scattering amplitudes/Wilson loops in planar N=4 SYM, dubbed the “momentum-twistor diagrams”. These are on-shell-diagrams obtained by gluing trivalent black and white vertices in momentum twistor space, which, in the reduced diagram case, are known to be related to diagrams in the original twistor space. The new diagrams are manifestly Yangian invariant, and they naturally represent factorization and forward-limit contributions in the all-loop BCFW recursion relations in momentum twistor space, in a fashion that is completely different from those in momentum space. We show how to construct and evaluate momentum-twistor diagrams, and how to use them to obtain tree-level amplitudes and loop-level integrands; in particular the latter involve isolated bubble-structures for loop variables arising from forward limits, or the entangled removal of particles. From each diagram, the generalized “boundary measurement” directly gives the C, D matrices, thus a cell in the amplituhedron associated with the amplitude, and we expect that our diagrammatic representations of the amplitude provide triangulations of the amplituhedron. To demonstrate the computational power of the formalism, we give explicit results for general two-loop integrands, and the cells of the amplituhedron for two-loop MHV amplitudes.

  18. Beam-beam and impedance

    CERN Document Server

    White, S.

    2014-07-17

    As two counter-rotating beams interact they can give rise to coherent dipole modes. Under the influence of impedance these coherent beam-beam modes can couple to higher order head-tail modes and lead to strong instabilities. A fully self-consistent approach including beam-beam and impedance was used to characterize this new coupled mode instability and study possible cures such as a transverse damper and high chromaticity.

  19. Tunable orbital angular momentum mode filter based on optical geometric transformation.

    Science.gov (United States)

    Huang, Hao; Ren, Yongxiong; Xie, Guodong; Yan, Yan; Yue, Yang; Ahmed, Nisar; Lavery, Martin P J; Padgett, Miles J; Dolinar, Sam; Tur, Moshe; Willner, Alan E

    2014-03-15

    We present a tunable mode filter for spatially multiplexed laser beams carrying orbital angular momentum (OAM). The filter comprises an optical geometric transformation-based OAM mode sorter and a spatial light modulator (SLM). The programmable SLM can selectively control the passing/blocking of each input OAM beam. We experimentally demonstrate tunable filtering of one or multiple OAM modes from four multiplexed input OAM modes with vortex charge of ℓ=-9, -4, +4, and +9. The measured output power suppression ratio of the propagated modes to the blocked modes exceeds 14.5 dB.

  20. Underwater optical communications using orbital angular momentum-based spatial division multiplexing

    Science.gov (United States)

    Willner, Alan E.; Zhao, Zhe; Ren, Yongxiong; Li, Long; Xie, Guodong; Song, Haoqian; Liu, Cong; Zhang, Runzhou; Bao, Changjing; Pang, Kai

    2018-02-01

    In this paper, we review high-capacity underwater optical communications using orbital angular momentum (OAM)-based spatial division multiplexing. We discuss methods to generate and detect blue-green optical data-carrying OAM beams as well as various underwater effects, including attenuation, scattering, current, and thermal gradients on OAM beams. Attention is also given to the system performance of high-capacity underwater optical communication links using OAM-based space division multiplexing. The paper closes with a discussion of a digital signal processing (DSP) algorithm to mitigate the inter-mode crosstalk caused by thermal gradients.

  1. Wigner functions for the pair angle and orbital angular momentum. Possible applications in quantum information theories

    Energy Technology Data Exchange (ETDEWEB)

    Kastrup, H.A. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany). Theory Group

    2017-10-17

    The framework of Wigner functions for the canonical pair angle and orbital angular momentum, derived and analyzed in 2 recent papers [H. A. Kastrup, Phys. Rev. A 94, 062113(2016) and Phys. Rev. A 95, 052111(2017)], is applied to elementary concepts of quantum information like qubits and 2-qubits, e.g., entangled EPR/Bell states etc. Properties of the associated Wigner functions are discussed and illustrated. The results may be useful for quantum information experiments with orbital angular momenta of light beams or electron beams.

  2. Evaporation studies of liquid oxide fuel at very high temperatures using laser beam heating

    International Nuclear Information System (INIS)

    Bober, M.; Breitung, W.; Karow, H.U.; Schretzmann, K.

    1976-11-01

    Evaporation experiments with oxide fuel are carried out based laser beam heating of the fuel specimen surface. The measuring quantities are the recoil momentum of the target, the evaporation area, the evaporation time and the mass and momentum of the supersonic vapor jet expanding into vacuum, and the thermal radiation density of the evaporating surface. From the mechanical measuring quantities we derive the vapor pressure of the target material and, in a first approach, also the evaporation temperature by applying a gas dynamic evaluation model. In a second approach, after having measured the spectral emissivity of liquid UO 2 at 633 nm, we determine the evaporation temperature at the liquid surface also from its thermal radiation. For the determination of the vapor pressure from the measured quantities a gas dynamic evaluation model has been developed. An application limit of the measuring technique is given by onset of plasma interaction of the vapor plume with the incident laser beam at temperatures above 4500 K. Experimental values for the saturated vapor pressure of UO 2 are presented, determined from three series of laser evaporation measurements obtained at temperatures around 3500 K, 3950 K, and 4200 K. The average vapor pressures found are 0.6 bar, 3 bar, and 7 bar, respectively. Laser vapor pressure measurements performed by other authors and theoretical extrapolations of the UO 2 vapor pressure curve known from literature show fairly good agreement within their confidence interval with the vapor pressure measurements reported here. (orig./HR) [de

  3. Momentum densities and Compton profiles of alkali-metal atoms

    Indian Academy of Sciences (India)

    Home; Journals; Pramana – Journal of Physics; Volume 60; Issue 3 ... Quantum defect theory; wave functions of alkali-metal atoms; momentum properties. ... to study the momentum properties of atoms from 3Li to 37Rb. The numerical results obtained for the momentum density, moments of momentum density and Compton ...

  4. Momentum and Stochastic Momentum for Stochastic Gradient, Newton, Proximal Point and Subspace Descent Methods

    KAUST Repository

    Loizou, Nicolas

    2017-12-27

    In this paper we study several classes of stochastic optimization algorithms enriched with heavy ball momentum. Among the methods studied are: stochastic gradient descent, stochastic Newton, stochastic proximal point and stochastic dual subspace ascent. This is the first time momentum variants of several of these methods are studied. We choose to perform our analysis in a setting in which all of the above methods are equivalent. We prove global nonassymptotic linear convergence rates for all methods and various measures of success, including primal function values, primal iterates (in L2 sense), and dual function values. We also show that the primal iterates converge at an accelerated linear rate in the L1 sense. This is the first time a linear rate is shown for the stochastic heavy ball method (i.e., stochastic gradient descent method with momentum). Under somewhat weaker conditions, we establish a sublinear convergence rate for Cesaro averages of primal iterates. Moreover, we propose a novel concept, which we call stochastic momentum, aimed at decreasing the cost of performing the momentum step. We prove linear convergence of several stochastic methods with stochastic momentum, and show that in some sparse data regimes and for sufficiently small momentum parameters, these methods enjoy better overall complexity than methods with deterministic momentum. Finally, we perform extensive numerical testing on artificial and real datasets, including data coming from average consensus problems.

  5. Incidents analysis

    International Nuclear Information System (INIS)

    Francois, P.

    1996-01-01

    We undertook a study programme at the end of 1991. To start with, we performed some exploratory studies aimed at learning some preliminary lessons on this type of analysis: Assessment of the interest of probabilistic incident analysis; possibility of using PSA scenarios; skills and resources required. At the same time, EPN created a working group whose assignment was to define a new approach for analysis of incidents on NPPs. This working group gave thought to both aspects of Operating Feedback that EPN wished to improve: Analysis of significant incidents; analysis of potential consequences. We took part in the work of this group, and for the second aspects, we proposed a method based on an adaptation of the event-tree method in order to establish a link between existing PSA models and actual incidents. Since PSA provides an exhaustive database of accident scenarios applicable to the two most common types of units in France, they are obviously of interest for this sort of analysis. With this method we performed some incident analyses, and at the same time explores some methods employed abroad, particularly ASP (Accident Sequence Precursor, a method used by the NRC). Early in 1994 EDF began a systematic analysis programme. The first, transient phase will set up methods and an organizational structure. 7 figs

  6. Asymmetric Bessel-Gauss beams.

    Science.gov (United States)

    Kotlyar, V V; Kovalev, A A; Skidanov, R V; Soifer, V A

    2014-09-01

    We propose a three-parameter family of asymmetric Bessel-Gauss (aBG) beams with integer and fractional orbital angular momentum (OAM). The aBG beams are described by the product of a Gaussian function by the nth-order Bessel function of the first kind of complex argument, having finite energy. The aBG beam's asymmetry degree depends on a real parameter c≥0: at c=0, the aBG beam is coincident with a conventional radially symmetric Bessel-Gauss (BG) beam; with increasing c, the aBG beam acquires a semicrescent shape, then becoming elongated along the y axis and shifting along the x axis for c≫1. In the initial plane, the intensity distribution of the aBG beams has a countable number of isolated optical nulls on the x axis, which result in optical vortices with unit topological charge and opposite signs on the different sides of the origin. As the aBG beam propagates, the vortex centers undergo a nonuniform rotation with the entire beam about the optical axis (c≫1), making a π/4 turn at the Rayleigh range and another π/4 turn after traveling the remaining distance. At different values of the c parameter, the optical nulls of the transverse intensity distribution change their position, thus changing the OAM that the beam carries. An isolated optical null on the optical axis generates an optical vortex with topological charge n. A vortex laser beam shaped as a rotating semicrescent has been generated using a spatial light modulator.

  7. Scale-dependence of transverse momentum correlations in Pb sbnd Au collisions at 158A GeV/c

    Science.gov (United States)

    Adamová, D.; Agakichiev, G.; Antończyk, D.; Appelshäuser, H.; Belaga, V.; Bielcikova, S.; Braun-Munzinger, P.; Busch, O.; Cherlin, A.; Damjanović, S.; Dietel, T.; Dietrich, L.; Drees, A.; Dubitzky, W.; Esumi, S. I.; Filimonov, K.; Fomenko, K.; Fraenkel, Z.; Garabatos, C.; Glässel, P.; Holeczek, J.; Kushpil, V.; Maas, A.; Marín, A.; Milošević, J.; Milov, A.; Miśkowiec, D.; Panebrattsev, Yu.; Petchenova, O.; Petráček, V.; Pfeiffer, A.; Płoskoń, M.; Radomski, S.; Rak, J.; Ravinovich, I.; Rehak, P.; Sako, H.; Schmitz, W.; Sedykh, S.; Shimansky, S.; Stachel, J.; Šumbera, M.; Tilsner, H.; Tserruya, I.; Tsiledakis, G.; Wessels, J. P.; Wienold, T.; Wurm, J. P.; Xie, W.; Yurevich, S.; Yurevich, V.; Ceres Collaboration

    2008-10-01

    We present results on transverse momentum correlations of charged particle pairs produced in Pb sbnd Au collisions at 158A GeV/c at the Super Proton Synchrotron. The transverse momentum correlations have been studied as a function of collision centrality, angular separation of the particle pairs, transverse momentum and charge sign. We demonstrate that the results are in agreement with previous findings in scale-independent analyses at the same beam energy. Employing the two-particle momentum correlator and the cumulative p variable x(p), we identify, using the scale-dependent approach presented in this paper, different sources contributing to the measured correlations, such as quantum and Coulomb correlations, elliptic flow and mini-jet fragmentation.

  8. Scale-dependence of transverse momentum correlations in PbAu collisions at 158A GeV/c

    Science.gov (United States)

    Ceres Collaboration; Adamová, D.; Agakichiev, G.; Antończyk, D.; Appelshäuser, H.; Belaga, V.; Bielcikova, S.; Braun-Munzinger, P.; Busch, O.; Cherlin, A.; Damjanović, S.; Dietel, T.; Dietrich, L.; Drees, A.; Dubitzky, W.; Esumi, S. I.; Filimonov, K.; Fomenko, K.; Fraenkel, Z.; Garabatos, C.; Glässel, P.; Holeczek, J.; Kushpil, V.; Maas, A.; Marín, A.; Milošević, J.; Milov, A.; Miśkowiec, D.; Panebrattsev, Yu.; Petchenova, O.; Petráček, V.; Pfeiffer, A.; Płoskoń, M.; Radomski, S.; Rak, J.; Ravinovich, I.; Rehak, P.; Sako, H.; Schmitz, W.; Sedykh, S.; Shimansky, S.; Stachel, J.; Šumbera, M.; Tilsner, H.; Tserruya, I.; Tsiledakis, G.; Wessels, J. P.; Wienold, T.; Wurm, J. P.; Xie, W.; Yurevich, S.; Yurevich, V.

    2008-10-01

    We present results on transverse momentum correlations of charged particle pairs produced in PbAu collisions at 158A GeV/c at the Super Proton Synchrotron. The transverse momentum correlations have been studied as a function of collision centrality, angular separation of the particle pairs, transverse momentum and charge sign. We demonstrate that the results are in agreement with previous findings in scale-independent analyses at the same beam energy. Employing the two-particle momentum correlator and the cumulative p variable x(p), we identify, using the scale-dependent approach presented in this paper, different sources contributing to the measured correlations, such as quantum and Coulomb correlations, elliptic flow and mini-jet fragmentation.

  9. Scale-dependence of transverse momentum correlations in Pb - Au collisions at 158A GeV/c

    CERN Document Server

    Adamová, D; Antonczyk, D; Appelshäuser, H; Belaga, V; Bielcikova, S; Braun-Munzinger, P; Busch, O; Cherlin, A; Damjanovic, S; Dietel, T; Dietrich, L; Drees, A; Dubitzky, W; Esumi, S I; Filimonov, K; Fomenko, K; Fraenkel, Zeev; Garabatos, C; Glässel, P; Holeczek, J; Kushpil, V; Maas, A; Marín, A; Milosevic, J; Milov, A; Miskowiec, D; Panebratsev, Yu A; Petchenova, O; Petracek, V; Pfeiffer, A; Ploskon, M; Radomski, S; Rak, acn J; Ravinovich, I; Rehak, P; Sako, H; Schmitz, W; Sedykh, S; Shimansky, S; Stachel, J; Sumbera, M; Tilsner, H; Tserruya, Itzhak; Tsiledakis, G; Wessels, J P; Wienold, T; Wurm, J P; Xie, W; Yurevich, S; Yurevich, V

    2008-01-01

    We present results on transverse momentum correlations of charged particle pairs produced in Pb-Au collisions at 158$A$ GeV/$c$ at the Super Proton Synchrotron. The transverse momentum correlations have been studied as a function of collision centrality, angular separation of the particle pairs, transverse momentum and charge sign. We demonstrate that the results are in agreement with previous findings in scale-independent analyses at the same beam energy. Employing the two-particle momentum correlator $$ and the cumulative $p_t$ variable $x(p_t)$, we identify, using the scale-dependent approach presented in this paper, different sources contributing to the measured correlations, such as quantum and Coulomb correlations, elliptic flow and mini-jet fragmentation.

  10. Forward production of charged pions with incident $\\pi^{\\pm}$ on nuclear targets measured at the CERN PS

    CERN Document Server

    Apollonio, M.; Bagulya, A.; Barr, G.; Blondel, A.; Bobisut, F.; Bogomilov, M.; Bonesini, M.; Booth, C.; Borghi, S.; Bunyatov, S.; Burguet-Castell, J.; Catanesi, M.G.; Cervera-Villanueva, A.; Chimenti, P.; Coney, L.; Di Capua, E.; Dore, U.; Dumarchez, J.; Edgecock, R.; Ellis, M.; Ferri, F.; Gastaldi, U.; Giani, S.; Giannini, G.; Gibin, D.; Gilardoni, S.; Gorbunov, P.; Gossling, C.; Gomez-Cadenas, J.J.; Grant, A.; Graulich, J.S.; Gregoire, G.; Grichine, V.; Grossheim, A.; Guglielmi, A.; Howlett, L.; Ivanchenko, A.; Ivanchenko, V.; Kayis-Topaksu, A.; Kirsanov, M.; Kolev, D.; Krasnoperov, A.; Martin-Albo, J.; Meurer, C.; Mezzetto, M.; Mills, G.B.; Morone, M.C.; Novella, P.; Orestano, D.; Palladino, V.; Panman, J.; Papadopoulos, I.; Pastore, F.; Piperov, Stefan; Polukhina, N.; Popov, B.; Prior, G.; Radicioni, E.; Schmitz, D.; Schroeter, R.; Skoro, G; Sorel, M.; Tcherniaev, E.; Temnikov, P.; Tereschenko, V.; Tonazzo, A.; Tortora, L.; Tsenov, R.; Tsukerman, I.; Vidal-Sitjes, G.; Wiebusch, C.; Zucchelli, P.

    2009-01-01

    Measurements of the double-differential $\\pi^{\\pm}$ production cross-section in the range of momentum 0.5 GeV/c < p < 8.0 GeV/c and angle 0.025 rad < theta < 0.25 rad in interactions of charged pions on beryllium, carbon, aluminium, copper, tin, tantalum and lead are presented. These data represent the first experimental campaign to systematically measure forward pion hadroproduction. The data were taken with the large acceptance HARP detector in the T9 beam line of Incident particles, impinging on a 5% nuclear interaction length target, were identified by an elaborate system of beam detectors. The tracking and identification of the produced particles was performed using the forward spectrometer of the HARP detector. Results are obtained for the double-differential cross-sections mainly at four incident pion beam momenta (3 GeV/c, 5 GeV/c, 8 GeV/c and 12 GeV/c). The measurements are compared with the GEANT4 and MARS Monte Carlo simulation. the CERN PS.

  11. Measurements of forward proton production with incident protons and charged pions on nuclear targets at the CERN Proton Synchroton

    CERN Document Server

    Apollonio, M.; Bagulya, A.; Barr, G.; Blondel, A.; Bobisut, F.; Bogomilov, M.; Bonesini, M.; Booth, C.; Borghi, S.; Bunyatov, S.; Burguet-Castell, J.; Catanesi, M.G.; Cervera-Villanueva, A.; Chimenti, P.; Coney, L.; Di Capua, E.; Dore, U.; Dumarchez, J.; Edgecock, R.; Ellis, M.; Ferri, F.; Gastaldi, U.; Giani, S.; Giannini, G.; Gibin, D.; Gilardoni, S.; Gorbunov, P.; Gossling, C.; Gomez-Cadenas, J.J.; Grant, A.; Graulich, J.S.; Gregoire, G.; Grichine, V.; Grossheim, A.; Guglielmi, A.; Howlett, L.; Ivanchenko, A.; Ivanchenko, V.; Kayis-Topaksu, A.; Kirsanov, M.; Kolev, D.; Krasnoperov, A.; Martin-Albo, J.; Meurer, C.; Mezzetto, M.; Mills, G.B.; Morone, M.C.; Novella, P.; Orestano, D.; Palladino, V.; Panman, J.; Papadopoulos, I.; Pastore, F.; Piperov, Stefan; Polukhina, N.; Popov, B.; Prior, G.; Radicioni, E.; Schmitz, D.; Schroeter, R.; Skoro, G; Sorel, M.; Tcherniaev, E.; Temnikov, P.; Tereschenko, V.; Tonazzo, A.; Tortora, L.; Tsenov, R.; Tsukerman, I.; Vidal-Sitjes, G.; Wiebusch, C.; Zucchelli, P.

    2010-01-01

    Measurements of the double-differential proton production cross-section in the range of momentum 0.5 GeV/c leq p le 8.0 GeV/c and angle 0.05 rad leq heta le 0.25 rad in collisions of charged pions and protons on beryllium, carbon, aluminium, copper,tin, tantalum and lead are presented. The data were taken with the large acceptance HARP detector in the T9 beam line of the CERN Proton Synchrotron. Incident particles were identified by an elaborate system of beam detectors and impinged on a target of 5% of a nuclear interaction length.The tracking and identification of the produced particles was performed using the forward spectrometer of the HARP experiment. Results are obtained for the double-differential cross-sections mainly at four incident beam momenta (3 GeV/c, 5 GeV/c, 8 GeV/c and 12 GeV/c). Measurements are compared with predictions of the GEANT4 and MARS Monte Carlo generators

  12. Borel resummation of transverse momentum distributions

    International Nuclear Information System (INIS)

    Bonvini, Marco; Forte, Stefano; Ridolfi, Giovanni

    2009-01-01

    We present a new prescription for the resummation of contributions due to soft gluon emission to the transverse momentum distribution of processes such as Drell-Yan production in hadronic collisions. We show that familiar difficulties in obtaining resummed results as a function of transverse momentum starting from impact-parameter space resummation are related to the divergence of the perturbative expansion of the momentum-space result. We construct a resummed expression by Borel resummation of this divergent series, removing the divergence in the Borel inversion through the inclusion of a suitable higher twist term. The ensuing resummation prescription is free of numerical instabilities, is stable upon the inclusion of subleading terms, and the original divergent perturbative series is asymptotic to it. We compare our results to those obtained using alternative prescriptions, and discuss the ambiguities related to the resummation procedure

  13. Borel resummation of transverse momentum distributions

    CERN Document Server

    Bonvini, Marco; Ridolfi, Giovanni

    2009-01-01

    We present a new prescription for the resummation of contributions due to soft gluon emission to the trasverse momentum distribution of processes such as Drell-Yan production in hadronic collisions. We show that familiar difficulties in obtaining resummed results as a function of transverse momentum starting from impact-parameter space resummation are related to the divergence of the perturbative expansion of the momentum-space result. We construct a resummed expression by Borel resummation of this divergent series, removing the divergence in the Borel inversion through the inclusion of a suitable higher twist term. The ensuing resummation prescription is free of numerical instabilities, is stable upon the inclusion of subleading terms, and the original divergent perturbative series is asymptotic to it. We compare our results to those obtained using alternative prescriptions, and discuss the ambiguities related to the resummation procedure.

  14. The price momentum of stock in distribution

    Science.gov (United States)

    Liu, Haijun; Wang, Longfei

    2018-02-01

    In this paper, a new momentum of stock in distribution is proposed and applied in real investment. Firstly, assuming that a stock behaves as a multi-particle system, its share-exchange distribution and cost distribution are introduced. Secondly, an estimation of the share-exchange distribution is given with daily transaction data by 3 σ rule from the normal distribution. Meanwhile, an iterative method is given to estimate the cost distribution. Based on the cost distribution, a new momentum is proposed for stock system. Thirdly, an empirical test is given to compare the new momentum with others by contrarian strategy. The result shows that the new one outperforms others in many places. Furthermore, entropy of stock is introduced according to its cost distribution.

  15. Superscaling and nucleon momentum distributions in nuclei

    International Nuclear Information System (INIS)

    Antonov, A.

    2005-01-01

    The scaling functions f(ψ ' ) and F(y) from the ψ ' - and y-scaling analyses of inclusive electron scattering from nuclei are constructed within the Coherent Density Fluctuation Model (CDFM) using its two equivalent formulations based on either the local density or the nucleon momentum distribution (NMD). The approach is a natural extension of the relativistic Fermi-gas model to finite realistic nuclear systems. The calculations show that the high-momentum components of NMD in the CDFM and their similarity for different nuclei lead to quantitative description of the super-scaling phenomenon and to a good agreement with the experimental data for y ' ' ' - and y-scaling are informative for NMDs at momenta not larger than 2.0-2.5 fm -1 . The work shows the role of both basic quantities, the momentum and density distributions, for the explanation of super-scaling in inclusive electron scattering from nuclei

  16. Study of the one-way speed of light anisotropy with particle beams

    Energy Technology Data Exchange (ETDEWEB)

    Wojtsekhowski, Bogdan B. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2017-04-01

    Concepts of high precision studies of the one-way speed of light anisotropy are discussed. The high energy particle beam allows measurement of a one-way speed of light anisotropy (SOLA) via analysis of the beam momentum variation with sidereal phase without the use of synchronized clocks. High precision beam position monitors could provide accurate monitoring of the beam orbit and determination of the particle beam momentum with relative accuracy on the level of 10^-10, which corresponds to a limit on SOLA of 10^-18 with existing storage rings. A few additional versions of the experiment are also presented.

  17. Multi-GeV electron-positron beam generation from laser-electron scattering.

    Science.gov (United States)

    Vranic, Marija; Klimo, Ondrej; Korn, Georg; Weber, Stefan

    2018-03-16

    The new generation of laser facilities is expected to deliver short (10 fs-100 fs) laser pulses with 10-100 PW of peak power. This opens an opportunity to study matter at extreme intensities in the laboratory and provides access to new physics. Here we propose to scatter GeV-class electron beams from laser-plasma accelerators with a multi-PW laser at normal incidence. In this configuration, one can both create and accelerate electron-positron pairs. The new particles are generated in the laser focus and gain relativistic momentum in the direction of laser propagation. Short focal length is an advantage, as it allows the particles to be ejected from the focal region with a net energy gain in vacuum. Electron-positron beams obtained in this setup have a low divergence, are quasi-neutral and spatially separated from the initial electron beam. The pairs attain multi-GeV energies which are not limited by the maximum energy of the initial electron beam. We present an analytical model for the expected energy cutoff, supported by 2D and 3D particle-in-cell simulations. The experimental implications, such as the sensitivity to temporal synchronisation and laser duration is assessed to provide guidance for the future experiments.

  18. The blade element momentum (BEM) method

    DEFF Research Database (Denmark)

    Branlard, Emmanuel Simon Pierre

    2017-01-01

    The current chapter presents the blade element momentum (BEM) method. The BEM method for a steady uniform inflow is presented in a first section. Some of the ad-hoc corrections that are usually added to the algorithm are discussed in a second section. An exception is made to the tip-loss correction...... which is introduced early in the algorithm formulation for practical reasons. The ad-hoc corrections presented are: the tip-loss correction, the high-thrust correction (momentum breakdown) and the correction for wake rotation. The formulation of an unsteady BEM code is given in a third section...

  19. Results on large transverse momentum phenomena

    CERN Document Server

    Büsser, F W; Blumenfeld, B; Camilleri, L L; Cool, R L; Di Lella, L; Gladding, G; Lederman, Leon Max; Litt, L; Placci, A; Pope, B G; Segler, S L; Smith, A M; Yoh, J K; Zavattini, E

    1973-01-01

    Preliminary results of an experiment on large transverse momentum phenomena performed at the CERN-ISR at centre-of-mass energies of 52.7 and 44.8 GeV are presented. The topics studied were the inclusive reaction p+p to pi /sup 0/+'anything', where the pi /sup 0/ was emitted around 90 degrees in the centre- of-mass system, ( pi /sup 0/ pi /sup 0/) correlations, and the charged multiplicity associated with large transverse momentum pi /sup 0/'s. In addition, results of a search for electrons and electron pairs are included. (4 refs).

  20. BEAM TRANSPORT LINES FOR THE BSNS.

    Energy Technology Data Exchange (ETDEWEB)

    WEI, J.

    2006-06-26

    This paper presents the design of two beam transport lines at the BSNS: one is the injection line from the Linac to the RCS and the other is the target line from the RCS to the target station. In the injection beam line, space charge effects, transverse halo collimation, momentum tail collimation and debunching are the main concerned topics. A new method of using triplet cells and stripping foils is used to collimate transverse halo. A long straight section is reserved for the future upgrading linac and debuncher. In the target beam line, large halo emittance, beam stability at the target due to kicker failures and beam jitters, shielding of back-scattering neutrons from the target are main concerned topics. Special bi-gap magnets will be used to reduce beam losses in the collimators in front of the target.

  1. Molecular beams

    International Nuclear Information System (INIS)

    Pendelbury, J.M.; Smith, K.F.

    1987-01-01

    Studies with directed collision-free beams of particles continue to play an important role in the development of modern physics and chemistry. The deflections suffered by such beams as they pass through electric and magnetic fields or laser radiation provide some of the most direct information about the individual constituents of the beam; the scattering observed when two beams intersect yields important data about the intermolecular forces responsible for the scattering. (author)

  2. Funnel cone for focusing intense ion beams on a target

    International Nuclear Information System (INIS)

    Bieniosek, F.M.; Henestroza, E.; Ni, P.

    2009-01-01

    We describe a funnel cone for concentrating an ion beam on a target. The cone utilizes the reflection characteristic of ion beams on solid walls to focus the incident beam andincrease beam intensity on target. The cone has been modeled with the TRIM code. A prototype has been tested and installed for use in the 350-keV K+ NDCX target chamber.

  3. Test-beam programs for devices to measure luminosity and energy ...

    Indian Academy of Sciences (India)

    addition, to tune the beams to highest luminosity within a bunch train a fast feedback system based on highly precise ... The average beam momentum will be determined by the deflection in a magnetic field. A magnet chicane consisting of four dipole magnets, as shown in figure 2a, will be used. The position of the beam is ...

  4. Photon beam position monitor

    Science.gov (United States)

    Kuzay, Tuncer M.; Shu, Deming

    1995-01-01

    A photon beam position monitor for use in the front end of a beamline of a high heat flux and high energy photon source such as a synchrotron radiation storage ring detects and measures the position and, when a pair of such monitors are used in tandem, the slope of a photon beam emanating from an insertion device such as a wiggler or an undulator inserted in the straight sections of the ring. The photon beam position monitor includes a plurality of spaced blades for precisely locating the photon beam, with each blade comprised of chemical vapor deposition (CVD) diamond with an outer metal coating of a photon sensitive metal such as tungsten, molybdenum, etc., which combination emits electrons when a high energy photon beam is incident upon the blade. Two such monitors are contemplated for use in the front end of the beamline, with the two monitors having vertically and horizontally offset detector blades to avoid blade "shadowing". Provision is made for aligning the detector blades with the photon beam and limiting detector blade temperature during operation.

  5. Driving corrugated donut rotors with Laguerre-Gauss beams.

    Science.gov (United States)

    Loke, Vincent L Y; Asavei, Theodor; Stilgoe, Alexander B; Nieminen, Timo A; Rubinsztein-Dunlop, Halina

    2014-08-11

    Tightly-focused laser beams that carry angular momentum have been used to trap and rotate microrotors. In particular, a Laguerre-Gauss mode laser beam can be used to transfer its orbital angular momentum to drive microrotors. We increase the torque efficiency by a factor of about 2 by designing the rotor such that its geometry is compatible with the driving beam, when driving the rotation with the optimum beam, rather than beams of higher or lower orbital angular momentum. Based on Floquet's theorem, the order of discrete rotational symmetry of the rotor can be made to couple with the azimuthal mode of the Laguerre-Gauss beam. We design corrugated donut rotors, that have a flat disc-like profile, with the help of the discrete dipole approximation and the T-matrix methods in parallel with experimental demonstrations of stable trapping and torque measurement. We produce and test such a rotor using two-photon photopolymerization. With a rotor that has 8-fold discrete rotational symmetry, an outer radius of 1.85 μm and a hollow core radius of 0.5 μm, we were able to transfer approximately 0.3 h̄ per photon of the orbital angular momentum from an LG04 beam.

  6. Comparison of large-angle production of charged pions with incident protons on cylindrical long and short targets

    CERN Document Server

    Apollonio, M.; Bagulya, A.; Barr, G.; Blondel, A.; Bobisut, F.; Bogomilov, M.; Bonesini, M.; Booth, C.; Borghi, S.; Bunyatov, S.; Burguet-Castell, J.; Catanesi, M.G.; Cervera-Villanueva, A.; Chimenti, P.; Coney, L.; Di Capua, E.; Dore, U.; Dumarchez, J.; Edgecock, R.; Ellis, M.; Ferri, F.; Gastaldi, U.; Giani, S.; Giannini, G.; Gibin, D.; Gilardoni, S.; Gorbunov, P.; Gossling, C.; Gomez-Cadenas, J.J.; Grant, A.; Graulich, J.S.; Gregoire, G.; Grichine, V.; Grossheim, A.; Guglielmi, A.; Howlett, L.; Ivanchenko, A.; Ivanchenko, V.; Kayis-Topaksu, A.; Kirsanov, M.; Kolev, D.; Krasnoperov, A.; Martin-Albo, J.; Meurer, C.; Mezzetto, M.; Mills, G.B.; Morone, M.C.; Novella, P.; Orestano, D.; Palladino, V.; Panman, J.; Papadopoulos, I.; Pastore, F.; Piperov, Stefan; Polukhina, N.; Popov, B.; Prior, G.; Radicioni, E.; Schmitz, D.; Schroeter, R.; Skoro, G; Sorel, M.; Tcherniaev, E.; Temnikov, P.; Tereschenko, V.; Tonazzo, A.; Tortora, L.; Tsenov, R.; Tsukerman, I.; Vidal-Sitjes, G.; Wiebusch, C.; Zucchelli, P.

    2009-01-01

    The HARP collaboration has presented measurements of the double-differential pi+/pi- production cross-section in the range of momentum 100 MeV/c <= p 800 MeV/c and angle 0.35 rad <= theta <= 2.15 rad with proton beams hitting thin nuclear targets. In many applications the extrapolation to long targets is necessary. In this paper the analysis of data taken with long (one interaction length) solid cylindrical targets made of carbon, tantalum and lead is presented. The data were taken with the large acceptance HARP detector in the T9 beam line of the CERN PS. The secondary pions were produced by beams of protons with momenta 5 GeV/c, 8 GeV/c and 12 GeV/c. The tracking and identification of the produced particles were performed using a small-radius cylindrical time projection chamber (TPC) placed inside a solenoidal magnet. Incident protons were identified by an elaborate system of beam detectors. Results are obtained for the double-differential yields per target nucleon d2 sigma / dp dtheta. The measure...

  7. Rotor theories by Professor Joukowsky: Momentum theories

    DEFF Research Database (Denmark)

    van Kuik, G. A. M.; Sørensen, Jens Nørkær; Okulov, V. L.

    2015-01-01

    This paper is the first of two papers on the history of rotor aerodynamics with special emphasis on the role of Joukowsky. The present one focuses on the development of the momentum theory while the second one surveys the development of vortex theory for rotors. Joukowsky has played a major role ...

  8. Angular and linear momentum of excited ferromagnets

    NARCIS (Netherlands)

    Yan, P.; Kamra, A.; Cao, Y.; Bauer, G.E.W.

    2013-01-01

    The angular momentum vector of a Heisenberg ferromagnet with isotropic exchange interaction is conserved, while under uniaxial crystalline anisotropy the projection of the total spin along the easy axis is a constant of motion. Using Noether's theorem, we prove that these conservation laws persist

  9. Orbital momentum and topological phase transformation

    Czech Academy of Sciences Publication Activity Database

    Středa, Pavel; Kučera, Jan

    2015-01-01

    Roč. 92, č. 23 (2015), "235152-1"-"235152-6" ISSN 1098-0121 R&D Projects: GA ČR GA15-13436S Institutional support: RVO:68378271 Keywords : orbital momentum * anomalous Hall effect * topological phase transformation Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.736, year: 2014

  10. Residual Momentum and Reversal Strategies Revisited

    NARCIS (Netherlands)

    J.J. Huij (Joop); S.D. Lansdorp (Simon)

    2017-01-01

    textabstractIn this note we revisit the 2011 and 2013 papers of Blitz, Huij, and Martens (BHM2011), and Blitz, Huij, Lansdorp, and Verbeek (BHLV2013) in which momentum and reversal strategies on residual returns are proposed. Our results indicate that the main findings of these studies, that

  11. Angular momentum transfer in incomplete fusion

    Indian Academy of Sciences (India)

    fusion reactions. The angular momentum of the intermediate nucleus formed in incomplete fusion was deduced from the isomeric cross-section ratio by considering the statistical de- excitation of the incompletely fused composite nucleus. The data show that incomplete fusion is associated with angular momenta slightly ...

  12. Angular momentum transfer in incomplete fusion

    Indian Academy of Sciences (India)

    The angular momentum of the intermediate nucleus formed in incomplete fusion was deduced from the isomeric cross-section ratio by considering the statistical de-excitation of the incompletely fused composite nucleus. The data show that incomplete fusion is associated with angular momenta slightly smaller than critical ...

  13. Temperature and angular momentum dependence of the ...

    Indian Academy of Sciences (India)

    Temperature and angular momentum dependence of the quadrupole deformation is studied in the middle of the sd-shell for 28Si and 27Si isotopes using the spherical shell model approach. The shell model calculations have been performed using the standard universal sd-shell (USD) interaction and the canonical ...

  14. Transverse spin and momentum correlations in quantum ...

    Indian Academy of Sciences (India)

    These transverse momentum-dependent parton distribution functions are of significance for the analysis of azimuthal asymmetries in semi-inclusive deep inelastic scattering, as well as for the overall physical understanding of the distribution of transversely polarized quarks in unpolarized hadrons. In this context we also ...

  15. Average Transverse Momentum Quantities Approaching the Lightfront

    NARCIS (Netherlands)

    Boer, Daniel

    In this contribution to Light Cone 2014, three average transverse momentum quantities are discussed: the Sivers shift, the dijet imbalance, and the p (T) broadening. The definitions of these quantities involve integrals over all transverse momenta that are overly sensitive to the region of large

  16. Transverse momentum distributions of identified particles produced ...

    Indian Academy of Sciences (India)

    ... sources which can be regarded as partons or quarks in the interacting system. The particle is contributed by each source with gluons which have transverse momentum distributions in an exponential form. The modelling results are compared and found to be in agreement with the experimental data at high energies.

  17. Transverse spin and momentum correlations in quantum ...

    Indian Academy of Sciences (India)

    (SSAs) in hard scattering processes when transverse momentum scales are on the order of quarks in hadrons, ... are of particular interest as they emerge from the colour gauge invariant definition of the quark-gluon-quark ..... For n ≥ 3, there are enough powers of l+ to eliminate this divergence. f(p2) is a covariant Gaussian ...

  18. Accelerated rotation with orbital angular momentum modes

    CSIR Research Space (South Africa)

    Schulze, C

    2015-04-01

    Full Text Available A 91, 043821 (2015) Accelerated rotation with orbital angular momentum modes Christian Schulze, Filippus S. Roux, Angela Dudley, Ronald Rop, Michael Duparr´e, and Andrew Forbes Abstract: We introduce a class of light field that angularly...

  19. The high momentum spectrometer drift chambers

    Science.gov (United States)

    Abbott, D.; Baker, O. K.; Beaufait, J.; Bennett, C.; Bryant, E.; Carlini, R.; Kross, B.; McCauley, A.; Naing, W.; Shin, T.; Vulcan, W.

    1992-12-01

    The High Momentum Spectrometer in Hall C will use planar drift chambers for charged particle track reconstruction. The chambers are constructed using well understood technology and a conventional gas mixture. Two (plus one spare) drift chambers will be constructed for this spectrometers. Each chamber will contain 6 planes of readout channels. This paper describes the chamber design and gas handling system used.

  20. Angular-momentum-bearing modes in fission

    International Nuclear Information System (INIS)

    Moretto, L.G.; Peaslee, G.F.; Wozniak, G.J.

    1989-03-01

    The angular-momentum-bearing degrees of freedom involved in the fission process are identified and their influence on experimental observables is discussed. The excitation of these modes is treated in the ''thermal'' limit, and the resulting distributions of observables are calculated. Experiments demonstrating the role of these modes are presented and discussed. 61 refs., 12 figs

  1. Experimental determination of high angular momentum states

    International Nuclear Information System (INIS)

    Barreto, J.L.V.

    1985-01-01

    The current knowledge of the atomic nucleus structure is summarized. A short abstract of the nuclear properties at high angular momentum and a more detailed description of the experimental methods used in the study of high angular momenta is made. (L.C.) [pt

  2. High Momentum Probes of Nuclear Matter

    Energy Technology Data Exchange (ETDEWEB)

    Fries, R.

    2009-07-24

    We discuss how the chemical composition of QCD jets is altered by final state interactions in surrounding nuclear matter. We describe this process through conversions of leading jet particles. We find that conversions lead to an enhancement of kaons at high transverse momentum in Au+Au collisions at RHIC, while their azimuthal asymmetry v{sub 2} is suppressed.

  3. Angular momentum and the electromagnetic top

    Indian Academy of Sciences (India)

    2016-07-06

    Jul 6, 2016 ... standard expression of the force on m, in order to con- serve the linear mechanical momentum of an isolated system. This problem of classical electrodynamics has particular relevance in quantum mechanics in the con- text of the nonlocality of Aharonov–Bohm [6] effects. Specifically, key to understanding ...

  4. Temperature and angular momentum dependence of the ...

    Indian Academy of Sciences (India)

    Abstract. Temperature and angular momentum dependence of the quadrupole deformation is studied in the middle of the sd-shell for 28Si and 27Si isotopes using the spherical shell model ... Department of Physics, University of Kashmir, Srinagar 190 006, India; Inter-University Accelerator Centre, New Delhi 110 067, India ...

  5. Anomalous momentum transport from drift waves

    International Nuclear Information System (INIS)

    Dominguez, R.R.; Staebler, G.M.

    1993-01-01

    A sheared slab magnetic field model B = B 0 [z + (x/L s )y], with inhomogeneous flows in the y and z directions, is used to perform a fully-kinetic stability analysis of the ion temperature gradient (ITG) and dissipative trapped electron (DTE) modes. The concomitant quasilinear stress components that couple to the local perpendicular (y-component) and parallel (z-component) momentum transport are also calculated and the anomalous perpendicular and parallel viscous stresses obtained. A breakdown of the ITG-induced perpendicular viscous stress is generally observed at moderate values of the sheared perpendicular flow. The ITG-induced parallel viscous stress is generally larger and strongly dependent on the sheared flows. The DTE-induced perpendicular viscous stress may sometimes be negative, tending to cancel the ITG contributions while the DTE-induced parallel viscous stress is generally small. The effect of the perpendicular stress component in the momentum balance equations is generally small while the parallel stress component can dominate the usual neoclassical viscous stress terms. The dominant contribution to parallel viscous stress by the ITG mode suggests that bulk plasma toroidal momentum confinement, like energy confinement, is governed by an anomalous ion loss mechanism. Furthermore, the large anomalous effect suggests that the neoclassical explanation of poloidal flows in tokamaks may be incorrect. The present results are in general agreement with existing experimental observations on momentum transport in tokamaks

  6. Cooled Beam Diagnostics on LEIR

    CERN Document Server

    Tranquille, G; Carli, C; Chanel, M; Prieto, V; Sautier, R; Tan, J

    2008-01-01

    Electron cooling is central in the preparation of dense bunches of lead beams for the LHC. Ion beam pulses from the LINAC3 are transformed into short highbrightness bunches using multi-turn injection, cooling and accumulation in the Low Energy Ion Ring, LEIR [1]. The cooling process must therefore be continuously monitored in order to guarantee that the lead ions have the required characteristics in terms of beam size and momentum spread. In LEIR a number of systems have been developed to perform these measurements. These include Schottky diagnostics, ionisation profile monitors and scrapers. Along with their associated acquisition and analysis software packages these instruments have proved to be invaluable for the optimisation of the electron cooler.

  7. Beam diagnostics

    International Nuclear Information System (INIS)

    Bogaty, J.; Clifft, B.E.; Zinkann, G.P.; Pardo, R.C.

    1995-01-01

    The ECR-PII injector beam line is operated at a fixed ion velocity. The platform high voltage is chosen so that all ions have a velocity of 0.0085c at the PII entrance. If a previous tune configuration for the linac is to be used, the beam arrival time must be matched to the previous tune as well. A nondestructive beam-phase pickup detector was developed and installed at the entrance to the PII linac. This device provides continuous phase and beam current information and allows quick optimization of the beam injected into PII. Bunches traverse a short tubular electrode thereby inducing displacement currents. These currents are brought outside the vacuum interface where a lumped inductance resonates electrode capacitance at one of the bunching harmonic frequencies. This configuration yields a basic sensitivity of a few hundred millivolts signal per microampere of beam current. Beam-induced radiofrequency signals are summed against an offset frequency generated by our master oscillator. The resulting kilohertz difference frequency conveys beam intensity and bunch phase information which is sent to separate processing channels. One channel utilizes a phase locked loop which stabilizes phase readings if beam is unstable. The other channel uses a linear full wave active rectifier circuit which converts kilohertz sine wave signal amplitude to a D.C. voltage representing beam current. A prototype set of electronics is now in use with the detector and we began to use the system in operation to set the arrival beam phase. A permanent version of the electronics system for the phase detector is now under construction. Additional nondestructive beam intensity and phase monitors at the open-quotes Boosterclose quotes and open-quotes ATLASclose quotes linac sections are planned as well as on some of the high-energy beam lines. Such a monitor will be particularly useful for FMA experiments where the primary beam hits one of the electric deflector plates

  8. Mass and transverse momentum dependence of dielectron production in p+d and p+p collisions at 4.9 GeV

    Energy Technology Data Exchange (ETDEWEB)

    Letessier-Selvo, A.; Yegneswaran, Amrit; Naudet, C.; Miller, D.; Manso, F.; Krebs, G.; Roche, G.; J. Igo, George; Matis, Howard; Z. Huang, Huan; Cailiu, J.; Carroll, Jim; Miller, Joyce; Heilbronn, L.; Schroeder, Lee; Madansky, Leon; Bougteb, M.; N. Kirk, Paul; Seidl, Peter; Porter, R.; Luttrell, Robert; Welsh, Robert; Beedoe, Shelton; Hallman, T.; Wilson, W.; Wang, Z.

    1993-01-01

    Dielectron production in p+d and p+p collisions at the beam kinetic energy of 4.9 GeV has been measured with the Dilepton Spectrometer. Features of thedielectron cross section have been studied with cuts on the mass and transverse momentum of the pairs. The spectra for several regions of phase space are presentedas a function of the pair mass and transverse momentum.

  9. Mass and transverse momentum dependence of dielectron production in [ital p]+[ital d] and [ital p]+[ital p] collisions at 4. 9 GeV

    Energy Technology Data Exchange (ETDEWEB)

    Huang, H.Z.; Beedoe, S.; Bougteb, M.; Cailiu, J.; Carroll, J.; Hallman, T.; Heilbronn, L.; Igo, G.; Kirk, P.; Krebs, G.; Letessier-Selvon, A.; Luttrell, B.; Manso, F.; Madansky, L.; Matis, H.S.; Miller, D.; Miller, J.; Naudet, C.; Porter, R.J.; Roche, G.; Schroeder, L.S.; Seidl, P.A.; Wang, Z.F.; Welsh, R.; Wilson, W.K.; Yegneswaran, A. (Lawrence Berkeley Laboratory, University of California, Berkeley, California 94720 (United States) University of California at Los Angeles, Los Angeles, California 90024 (United States) Universite Blaise Pascal/IN2P3, 63177 Aubiere Cedex (France) The Johns Hopkins University, Baltimore, Maryland 21218 (United States) Louisiana State University, Baton Rouge, Louisiana 70803 (United States) Northwestern University, Evanston, Illinois 60201 (United States) CEBAF, Newport News, Virginia 23606 (United States)); (DLS Collaboration)

    1994-01-01

    Dielectron production in [ital p]+[ital d] and [ital p]+[ital p] collisions at the beam kinetic energy of 4.9 GeV has been measured with the Dilepton Spectrometer. Features of the dielectron cross section have been studied with cuts on the mass and transverse momentum of the pairs. The spectra for several regions of phase space are presented as a function of the pair mass and transverse momentum.

  10. Contribution to the study of the reactions antipd→antipd π+π- and pd→pd π+π- in the √s=5GeV/c region. Impact parameter analysis of antip induced reactions in the 4-15 GeV /c incident momentum range

    International Nuclear Information System (INIS)

    Fischer, Pierre.

    1978-01-01

    The study of the anti pd→anti pd π + π - and pd→pd π + π - has been made using bubble chamber pictures taken with 4.72 GeV /c antiproton and 11.9 deuteron beams respectively. The found cross sections are 0.27+-0.07mb and 0.35+-0.10mb respectively. The usual features of the coherent interactions on deuteron are found: peripherism, d* effect, Δ resonance production. An impact parameter analysis, extended to about 30 antiproton induced reactions, allowed us to draw out some general features which can be associated to peripherism, multiplicity, and energy. This work was done using the Webber method [fr

  11. Optical torque on a magneto-dielectric Rayleigh absorptive sphere by a vector Bessel (vortex) beam

    Science.gov (United States)

    Li, Renxian; Yang, Ruiping; Ding, Chunying; Mitri, F. G.

    2017-04-01

    The optical torque exerted on an absorptive megneto-dielectric sphere by an axicon-generated vector Bessel (vortex) beam with selected polarizations is investigated in the framework of the dipole approximation. The total optical torque is expressed as the sum of orbital and spin torques. The axial orbital torque component is calculated from the z-component of the cross-product of the vector position r and the optical force exerted on the sphere F. Depending on the beam characteristics (such as the half-cone angle and polarization type) and the physical properties of the sphere, it is shown here that the axial orbital torque vanishes before reversing sign, indicating a counter-intuitive orbital motion in opposite handedness of the angular momentum carried by the incident waves. Moreover, analytical formulas for the spin torque, which is divided into spin torques induced by electric and magnetic dipoles, are derived. The corresponding components of both the optical spin and orbital torques are numerically calculated, and the effects of polarization, the order of the beam, and half-cone angle are discussed in detail. The left-handed (i.e., negative) optical torque is discussed, and the conditions for generating optical spin and orbital torque sign reversal are numerically investigated. The transverse optical spin torque has a vortex-like character, whose direction depends on the polarization, the half-cone angle, and the order of the beam. Numerical results also show that the vortex direction depends on the radial position of the particle in the transverse plane. This means that a sphere may rotate with different directions when it moves radially. Potential applications are in particle manipulation and rotation, single beam optical tweezers, and other emergent technologies using vector Bessel beams on a small magneto-dielectric (nano) particle.

  12. Atmospheric turbulence compensation in orbital angular momentum communications: Advances and perspectives

    Science.gov (United States)

    Li, Shuhui; Chen, Shi; Gao, Chunqing; Willner, Alan E.; Wang, Jian

    2018-02-01

    Orbital angular momentum (OAM)-carrying beams have recently generated considerable interest due to their potential use in communication systems to increase transmission capacity and spectral efficiency. For OAM-based free-space optical (FSO) links, a critical challenge is the atmospheric turbulence that will distort the helical wavefronts of OAM beams leading to the decrease of received power, introducing crosstalk between multiple channels, and impairing link performance. In this paper, we review recent advances in turbulence effects compensation techniques for OAM-based FSO communication links. First, basic concepts of atmospheric turbulence and theoretical model are introduced. Second, atmospheric turbulence effects on OAM beams are theoretically and experimentally investigated and discussed. Then, several typical turbulence compensation approaches, including both adaptive optics-based (optical domain) and signal processing-based (electrical domain) techniques, are presented. Finally, key challenges and perspectives of compensation of turbulence-distorted OAM links are discussed.

  13. Transport of momentum in full f gyrokinetics

    International Nuclear Information System (INIS)

    Parra, Felix I.; Catto, Peter J.

    2010-01-01

    Full f electrostatic gyrokinetic formulations employ two gyrokinetic equations, one for ions and the other for electrons, and quasineutrality to obtain the ion and electron distribution functions and the electrostatic potential. We demonstrate with several examples that the long wavelength radial electric field obtained with full f approaches is extremely sensitive to errors in the ion and electron density since small deviations in density give rise to large, nonphysical deviations in the conservation of toroidal angular momentum. For typical tokamak values, a relative error of 10 -7 in the ion or electron densities is enough to obtain the incorrect toroidal rotation. Based on the insights gained with the examples considered, three simple tests to check transport of toroidal angular momentum in full f simulations are proposed.

  14. Air Bag Momentum Force Including Aspiration

    Directory of Open Access Journals (Sweden)

    Guy Nusholtz

    1995-01-01

    Full Text Available A gas-jet momentum force drives the air bag into position during a crash. The magnitude of this force can change as a result of aspiration. To determine the potential magnitude of the effect on the momentum force and mass flow rate in an aspirated system, a series of experiments and simulations of those experiments was conducted. The simulation consists of a two-dimensional unsteady isentropic CFD model with special “infinite boundaries”. One of the difficulties in simulating the gas-jet behavior is determining the mass flow rate. To improve the reliability of the mass flow rate input to the simulation, a sampling procedure involving multiple tests was used, and an average of the tests was adopted.

  15. Measuring momentum for charged particle tomography

    Science.gov (United States)

    Morris, Christopher; Fraser, Andrew Mcleod; Schultz, Larry Joe; Borozdin, Konstantin N.; Klimenko, Alexei Vasilievich; Sossong, Michael James; Blanpied, Gary

    2010-11-23

    Methods, apparatus and systems for detecting charged particles and obtaining tomography of a volume by measuring charged particles including measuring the momentum of a charged particle passing through a charged particle detector. Sets of position sensitive detectors measure scattering of the charged particle. The position sensitive detectors having sufficient mass to cause the charged particle passing through the position sensitive detectors to scatter in the position sensitive detectors. A controller can be adapted and arranged to receive scattering measurements of the charged particle from the charged particle detector, determine at least one trajectory of the charged particle from the measured scattering; and determine at least one momentum measurement of the charged particle from the at least one trajectory. The charged particle can be a cosmic ray-produced charged particle, such as a cosmic ray-produced muon. The position sensitive detectors can be drift cells, such as gas-filled drift tubes.

  16. Electron in three-dimensional momentum space

    Science.gov (United States)

    Bacchetta, Alessandro; Mantovani, Luca; Pasquini, Barbara

    2016-01-01

    We study the electron as a system composed of an electron and a photon, using lowest-order perturbation theory. We derive the leading-twist transverse-momentum-dependent distribution functions for both the electron and photon in the dressed electron, thereby offering a three-dimensional description of the dressed electron in momentum space. To obtain the distribution functions, we apply both the formalism of the light-front wave function overlap representation and the diagrammatic approach. We perform the calculations both in light-cone gauge and Feynman gauge, and we present a detailed discussion of the role of the Wilson lines to obtain gauge-independent results. We provide numerical results and plots for many of the computed distributions.

  17. Linear momentum quantization in periodic structures II

    Science.gov (United States)

    Van Vliet, Carolyne M.

    2010-04-01

    Fraunhofer interference of a single particle by a periodic array of scatterers, usually treated with a wave picture, can be fully explained on the basis of linear momentum quantization, as pointed out in a previous study by Van Vliet (1967) [4]. This analysis is now extended to scattering (or passing through slits) involving a finite number N of equidistantly spaced entities comprising the interferometer. The usual intensity probability distribution for W(sinθ) is obtained, noting that total momentum is conserved (as in the Compton effect), while the interferometer is treated as a quantum object-rather than a classical measuring apparatus, as perceived in the Copenhagen interpretation. Various aspects of the ‘orthodox view’ are examined and renounced.

  18. Transverse Momentum Correlations in Hadronic Z decays

    CERN Document Server

    Buskulic, Damir; Décamp, D; Ghez, P; Goy, C; Lees, J P; Lucotte, A; Minard, M N; Nief, J Y; Odier, P; Pietrzyk, B; Casado, M P; Chmeissani, M; Crespo, J M; Delfino, M C; Efthymiopoulos, I; Fernández, E; Fernández-Bosman, M; Garrido, L; Juste, A; Martínez, M; Orteu, S; Padilla, C; Park, I C; Pascual, A; Perlas, J A; Riu, I; Sánchez, F; Teubert, F; Colaleo, A; Creanza, D; De Palma, M; Gelao, G; Girone, M; Iaselli, Giuseppe; Maggi, G; Maggi, M; Marinelli, N; Nuzzo, S; Ranieri, A; Raso, G; Ruggieri, F; Selvaggi, G; Silvestris, L; Tempesta, P; Tricomi, A; Zito, G; Huang, X; Lin, J; Ouyang, Q; Wang, T; Xie, Y; Xu, R; Xue, S; Zhang, J; Zhang, L; Zhao, W; Alemany, R; Bazarko, A O; Bonvicini, G; Bright-Thomas, P G; Cattaneo, M; Comas, P; Coyle, P; Drevermann, H; Forty, Roger W; Frank, M; Hagelberg, R; Harvey, J; Janot, P; Jost, B; Kneringer, E; Knobloch, J; Lehraus, Ivan; Lutters, G; Martin, E B; Mato, P; Minten, Adolf G; Miquel, R; Mir, L M; Moneta, L; Oest, T; Pacheco, A; Pusztaszeri, J F; Ranjard, F; Rensing, P E; Rizzo, G; Rolandi, Luigi; Schlatter, W D; Schmelling, M; Schmitt, M; Schneider, O; Tejessy, W; Tomalin, I R; Venturi, A; Wachsmuth, H W; Wagner, A; Ajaltouni, Ziad J; Barrès, A; Boyer, C; Falvard, A; Gay, P; Guicheney, C; Henrard, P; Jousset, J; Michel, B; Monteil, S; Montret, J C; Pallin, D; Perret, P; Podlyski, F; Proriol, J; Rosnet, P; Rossignol, J M; Fearnley, Tom; Hansen, J B; Hansen, J D; Hansen, J R; Hansen, P H; Nilsson, B S; Rensch, B; Wäänänen, A; Kyriakis, A; Markou, C; Simopoulou, Errietta; Siotis, I; Vayaki, Anna; Zachariadou, K; Blondel, A; Bonneaud, G R; Brient, J C; Bourdon, P; Rougé, A; Rumpf, M; Valassi, Andrea; Verderi, M; Videau, H L; Candlin, D J; Parsons, M I; Focardi, E; Parrini, G; Corden, M; Georgiopoulos, C H; Jaffe, D E; Antonelli, A; Bencivenni, G; Bologna, G; Bossi, F; Campana, P; Capon, G; Casper, David William; Chiarella, V; Felici, G; Laurelli, P; Mannocchi, G; Murtas, F; Murtas, G P; Passalacqua, L; Pepé-Altarelli, M; Curtis, L; Dorris, S J; Halley, A W; Knowles, I G; Lynch, J G; O'Shea, V; Raine, C; Reeves, P; Scarr, J M; Smith, K; Teixeira-Dias, P; Thompson, A S; Thomson, F; Thorn, S; Turnbull, R M; Becker, U; Geweniger, C; Graefe, G; Hanke, P; Hansper, G; Hepp, V; Kluge, E E; Putzer, A; Schmidt, M; Sommer, J; Tittel, K; Werner, S; Wunsch, M; Abbaneo, D; Beuselinck, R; Binnie, David M; Cameron, W; Dornan, Peter J; Moutoussi, A; Nash, J; Sedgbeer, J K; Stacey, A M; Williams, M D; Dissertori, G; Girtler, P; Kuhn, D; Rudolph, G; Betteridge, A P; Bowdery, C K; Colrain, P; Crawford, G; Finch, A J; Foster, F; Hughes, G; Sloan, Terence; Williams, M I; Galla, A; Giehl, I; Greene, A M; Hoffmann, C; Jakobs, K; Kleinknecht, K; Quast, G; Renk, B; Rohne, E; Sander, H G; Van Gemmeren, P; Zeitnitz, C; Aubert, Jean-Jacques; Bencheikh, A M; Benchouk, C; Bonissent, A; Bujosa, G; Calvet, D; Carr, J; Diaconu, C A; Etienne, F; Konstantinidis, N P; Payre, P; Rousseau, D; Talby, M; Sadouki, A; Thulasidas, M; Trabelsi, K; Aleppo, M; Ragusa, F; Bauer, C; Berlich, R; Blum, Walter; Büscher, V; Dietl, H; Dydak, Friedrich; Ganis, G; Gotzhein, C; Kroha, H; Lütjens, G; Lutz, Gerhard; Männer, W; Moser, H G; Richter, R H; Rosado-Schlosser, A; Schael, S; Settles, Ronald; Seywerd, H C J; Saint-Denis, R; Wiedenmann, W; Wolf, G; Boucrot, J; Callot, O; Choi, Y; Cordier, A; Davier, M; Duflot, L; Grivaz, J F; Heusse, P; Höcker, A; Jacholkowska, A; Jacquet, M; Kim, D W; Le Diberder, F R; Lefrançois, J; Lutz, A M; Nikolic, I A; Park, H J; Schune, M H; Simion, S; Veillet, J J; Videau, I; Zerwas, D; Azzurri, P; Bagliesi, G; Batignani, G; Bettarini, S; Bozzi, C; Calderini, G; Carpinelli, M; Ciocci, M A; Ciulli, V; Dell'Orso, R; Fantechi, R; Ferrante, I; Foà, L; Forti, F; Giassi, A; Giorgi, M A; Gregorio, A; Ligabue, F; Lusiani, A; Marrocchesi, P S; Messineo, A; Palla, Fabrizio; Sanguinetti, G; Sciabà, A; Spagnolo, P; Steinberger, Jack; Tenchini, Roberto; Tonelli, G; Vannini, C; Verdini, P G; Walsh, J; Blair, G A; Bryant, L M; Cerutti, F; Chambers, J T; Gao, Y; Green, M G; Medcalf, T; Perrodo, P; Strong, J A; Von Wimmersperg-Töller, J H; Botterill, David R; Clifft, R W; Edgecock, T R; Haywood, S; Maley, P; Norton, P R; Thompson, J C; Wright, A E; Bloch-Devaux, B; Colas, P; Emery, S; Kozanecki, Witold; Lançon, E; Lemaire, M C; Locci, E; Marx, B; Pérez, P; Rander, J; Renardy, J F; Roussarie, A; Schuller, J P; Schwindling, J; Trabelsi, A; Vallage, B; Black, S N; Dann, J H; Johnson, R P; Kim, H Y; Litke, A M; McNeil, M A; Taylor, G; Booth, C N; Boswell, R; Brew, C A J; Cartwright, S L; Combley, F; Köksal, A; Lehto, M H; Newton, W M; Reeve, J; Thompson, L F; Böhrer, A; Brandt, S; Cowan, G D; Grupen, Claus; Minguet-Rodríguez, J A; Rivera, F; Saraiva, P; Smolik, L; Stephan, F; Apollonio, M; Bosisio, L; Della Marina, R; Giannini, G; Gobbo, B; Musolino, G; Rothberg, J E; Wasserbaech, S R; Armstrong, S R; Elmer, P; Feng, Z; Ferguson, D P S; Gao, Y S; González, S; Grahl, J; Greening, T C; Hayes, O J; Hu, H; McNamara, P A; Nachtman, J M; Orejudos, W; Pan, Y B; Saadi, Y; Scott, I J; Walsh, A M; Wu Sau Lan; Wu, X; Yamartino, J M; Zheng, M; Zobernig, G

    1997-01-01

    Using data obtained with the ALEPH detector at the Z resonance, a measure based on transverse momentum is shown to exhibit a correlation between the two halves of a hadronic event which cannot be explained by energy-momentum conservation, flavour conservation, the imposition of an event axis or imperfect event reconstruction. Two possible explanations based on Monte Carlo models are examined: a) ARIADNE, with the correlation forming early in the parton shower and with the transition from partons to hadrons playing only a minor part; b) JETSET, with the correlation forming at the fragmentation stage. A correlation technique based on a jet cluster analysis is used to make a comparison of the models with the data. It is concluded that both non-perturbative and perturbative effects make important contributions to the observed correlation.

  19. Quantum scattering theory on the momentum lattice

    International Nuclear Information System (INIS)

    Rubtsova, O. A.; Pomerantsev, V. N.; Kukulin, V. I.

    2009-01-01

    A new approach based on the wave-packet continuum discretization method recently developed by the present authors for solving quantum-mechanical scattering problems for atomic and nuclear scattering processes and few-body physics is described. The formalism uses the complete continuum discretization scheme in terms of the momentum stationary wave-packet basis, which leads to formulation of the scattering problem on a lattice in the momentum space. The solution of the few-body scattering problem can be found in the approach from linear matrix equations with nonsingular matrix elements, averaged on energy over lattice cells. The developed approach is illustrated by the solution of numerous two- and three-body scattering problems with local and nonlocal potentials below and well above the three-body breakup threshold.

  20. Nonlinear evolution of the auroral electron beam

    Science.gov (United States)

    Maggs, James E.

    1989-01-01

    The nonlinear spatial evolution, from the source to the atmosphere, of the auroral electron beam and the beam-generated electrostatic whistler noise was studied, calculating changes in beam parameters from equations for the conservation of total particle and wave energy and momentum flux density. Wave power fluxes were calculated by numerically integrating the wave kinetic equations, and the levels of beam-generated noise were determined by using thermal levels of Cerenkov radiation as a source. It was found that beam parameters evolve on ionospheric scale lengths, and their positive slope feature in velocity space is maintained over altitudes measured in thousands of kilometers of altitude, even though they can generate wave energy density fluxes sufficient to modify the ionospheric density profile.

  1. Transport of parallel momentum by collisionless drift wave turbulence

    DEFF Research Database (Denmark)

    Diamond, P.H.; McDevitt, C.J.; Gurcan, O.E.

    2008-01-01

    This paper presents a novel, unified approach to the theory of turbulent transport of parallel momentum by collisionless drift waves. The physics of resonant and non‐resonant off‐diagonal contributions to the momentum flux is emphasized, and collisionless momentum exchange between waves...... and particles is accounted for. Two related momentum conservation theorems are derived. These relate the resonant particle momentum flux, the wave momentum flux and the refractive force. A perturbative calculation, in the spirit of Chapman‐Enskog theory, is used to obtain the wave momentum flux, which...... contributes significantly to the residual stress. A general equation for mean κ∥(〈κ∥〉) is derived and used to develop a generalized theory of symmetry breaking. The resonant particle momentum flux is calculated, and pinch and residual stress effects are identified. The implications of the theory for intrinsic...

  2. Transport of parallel momentum by collisionless drift wave turbulence

    DEFF Research Database (Denmark)

    Diamond, P.H.; McDevitt, C.J.; Gürcan, O.D.

    2008-01-01

    This paper presents a novel, unified approach to the theory of turbulent transport of parallel momentum by collisionless drift waves. The physics of resonant and nonresonant off-diagonal contributions to the momentum flux is emphasized, and collisionless momentum exchange between waves...... and particles is accounted for. Two related momentum conservation theorems are derived. These relate the resonant particle momentum flux, the wave momentum flux, and the refractive force. A perturbative calculation, in the spirit of Chapman-Enskog theory, is used to obtain the wave momentum flux, which...... contributes significantly to the residual stress. A general equation for mean k(parallel to) () is derived and used to develop a generalized theory of symmetry breaking. The resonant particle momentum flux is calculated, and pinch and residual stress effects are identified. The implications...

  3. Investigating fusion dynamics at high angular momentum via fission cross sections

    Science.gov (United States)

    Palshetkar, C. S.; Hinde, D. J.; Williams, E.; Ramachandran, K.; Dasgupta, M.; Cook, K. J.; Wakhle, A.; Jeung, D. Y.; Rafferty, D. C.; McNeil, S. D.; Carter, I. P.; Luong, D. H.

    2017-11-01

    A quantitative understanding of fusion dynamics at high angular momentum is attempted employing experimental fission cross sections as a probe and carrying out a simultaneous description of the fusion and fission cross sections at above barrier energies. For this, experimental fission fragment angular distributions for three systems: 16O+148Sm, 28Si+136Ba and 40Ca+124Sn, all forming the same compound nucleus 164Yb at similar excitation energies, have been measured at four beam energies above their respective capture barriers. A simultaneous description of the angle integrated fission cross sections and evaporation residue/fusion cross sections available in literature for the systems is carried out using coupled-channels and statistical model calculations. Fission cross sections, which are most sensitive to the changes in angular momentum, provide very stringent constraints for model calculations thus indicating the need of precision evaporation residue as well as fission cross sections in such studies. A large diffuseness (ao>0.65 fm) of the nuclear potential gives the best reproduction of the experimental data. In addition, different coupling schemes give very different angular momentum distributions, which, in turn, give very different fission cross section predictions. Both these observations hint at the explanation that depending on energy dissipation of the interacting nuclei occurring inside or outside the fusion pocket, very different fission cross sections can result due to heavily altered angular momentum and thus justifies the sensitivity of fission cross sections used as probes in the present work.

  4. High momentum transfer processes in QCD

    International Nuclear Information System (INIS)

    Efremov, A.V.; Radyushkin, A.V.

    1978-01-01

    A unified approach to the investigation of inclusive high momentum transfer processes in the QCD framework is proposed. A modified parton model (with parton distribution functions depending on an additional renormalization parameter) is shown to be valid in all orders of perturbation theory. The approach is also applicable for studying wide-angle elastic scattering processes of colourless bound states of quarks (the hadrons). The asymptotic behaviour of pion electromagnetic form factor is calculated as an example

  5. Detector magnets for charged particle momentum measurement

    CERN Document Server

    Arduini, Gianluigi

    1995-01-01

    Basic formulae related to the momentum measurement of charged particles by tracking devices in magnetic fields and typical detector magnet geometries are briefly revised. From these, guidelines are worked out for the determination of the basic specifications (yoke size, excitation current, conductor type and size, cooling) both for normal and superconducting magnets. The problem of magnetic shielding of components placed near big detector magnets is also considered.

  6. Elliptic flow coefficients from transverse momentum conservation

    Science.gov (United States)

    Bzdak, Adam; Ma, Guo-Liang

    2018-01-01

    We calculate the k -particle (k =2 ,4 ,6 ,8 ) azimuthal cumulants resulting from the conservation of transverse momentum. We find that c2{k } >0 and, depending on the transverse momenta, c2{k } can reach substantial values even for a relatively large number of particles. The impact of our results on the understanding of the onset of collectivity in small systems is emphasized.

  7. Transverse momentum distributions of identified particles produced ...

    Indian Academy of Sciences (India)

    Comparisons with experimental data. The pT spectra, in different presentation forms as used in [11,28–31], for identified parti- cles emitted in pp collisions at different centre-of-mass energies are shown in figures 1–4, where y, E, p, σ, and B denote the rapidity, energy, momentum, cross-section, and di- lepton branching ratio ...

  8. Muon momentum measurement in magnetized iron spectrometers

    International Nuclear Information System (INIS)

    Voss, R.; Zupancic, C.

    1984-01-01

    Measuring the momentum of high-energy muons with a magnetized iron spectrometer is a conventional technique employed by numerous experiments and may appear to be an old-fashioned subject. In the TeV regime, multiple scattering errors become small compared to measurement errors achieveable with large-surface particle detectors, and there are indications that new physical effects influencing the resolution properties of a muon spectrometer may become important. (orig./HSI)

  9. Orbital angular momentum light in microscopy.

    Science.gov (United States)

    Ritsch-Marte, Monika

    2017-02-28

    Light with a helical phase has had an impact on optical imaging, pushing the limits of resolution or sensitivity. Here, special emphasis will be given to classical light microscopy of phase samples and to Fourier filtering techniques with a helical phase profile, such as the spiral phase contrast technique in its many variants and areas of application.This article is part of the themed issue 'Optical orbital angular momentum'. © 2017 The Author(s).

  10. Elliptical beams.

    Science.gov (United States)

    Bandres, Miguel A; Gutiérrez-Vega, Julio C

    2008-12-08

    A very general beam solution of the paraxial wave equation in elliptic cylindrical coordinates is presented. We call such a field an elliptic beam (EB). The complex amplitude of the EB is described by either the generalized Ince functions or the Whittaker-Hill functions and is characterized by four parameters that are complex in the most general situation. The propagation through complex ABCD optical systems and the conditions for square integrability are studied in detail. Special cases of the EB are the standard, elegant, and generalized Ince-Gauss beams, Mathieu-Gauss beams, among others.

  11. On the angular momentum in star formation

    International Nuclear Information System (INIS)

    Horedt, G.P.

    1978-01-01

    The author discusses the rotation of interstellar clouds which are in a stage immediately before star formation. Cloud collisions seem to be the principal cause of the observed rotation of interstellar clouds. The rotational motion of the clouds is strongly influenced by turbulence. Theories dealing with the resolution of the angular momentum problem in star formation are classified into five major groups. The old idea that the angular momentum of an interstellar cloud passes during star formation into the angular momentum of double star systems and/or circumstellar clouds, is developed. It is suggested that a rotating gas cloud contracts into a ring-like structure which fragments into self-gravitating subcondensations. By collisions and gas accretion these subcondensations accrete into binary systems surrounded by circumstellar clouds. Using some rough approximations the authors find analytical expressions for the semi-major axis of the binary system and for the density of the circumstellar clouds as a function of the initial density and of the initial angular velocity of an interstellar cloud. The obtained values are well within the observational limits. (Auth.)

  12. Energy-Momentum Conservation Laws in Hamiltonian Field Theory

    OpenAIRE

    Sardanashvily, G.

    1994-01-01

    In the Lagrangian field theory, one gets different identities for different stress energy-momentum tensors, e.g., canonical energy-momentum tensors. Moreover, these identities are not conservation laws of the above-mentioned energy-momentum tensors in general. In the framework of the multimomentum Hamiltonian formalism, we have the fundamental identity whose restriction to a constraint space can be treated the energy-momentum conservation law. In standard field models, this appears the metric...

  13. Accounting analyses of momentum and contrarian strategies in emerging markets

    OpenAIRE

    Nnadi, Matthias Akandu; Tanna, S.

    2017-01-01

    We analyse the momentum and contrarian effects of stock markets in Brazil, Russia, India, China and South Africa (BRICS) using accounting data. The five markets show different characteristics with the Indian market having the strongest momentum effect. Stock markets in China and Brazil show significant short-term contrarian profit and intermediate to long-term momentum profit while South Africa shows short-term momentum effect and intermediate to long-term contrarian effect. The Russian stock...

  14. Fragmentation and momentum correlations in heavy-ion collisions

    Indian Academy of Sciences (India)

    Abstract. The role of momentum correlations in the production of light and medium mass frag- ments is studied by imposing momentum cut in the clusterization of the phase space. Our detailed investigation shows that momentum cut has a major role to play in the emission of fragments. A comparison with the experimental ...

  15. REIT Momentum and the Performance of Real Estate Mutual Funds

    NARCIS (Netherlands)

    J. Derwall (Jeroen); J.J. Huij (Joop); W.A. Marquering (Wessel)

    2009-01-01

    textabstractREITs exhibit a strong and prevalent momentum effect that is not captured by conventional factor models. This REIT momentum anomaly hampers proper judgments about the performance of actively managed REIT portfolios. In contrast, a REIT momentum factor adds incremental explanatory power

  16. Fragmentation and momentum correlations in heavy-ion collisions

    Indian Academy of Sciences (India)

    Home; Journals; Pramana – Journal of Physics; Volume 78; Issue 3 ... Quantum molecular dynamics; multifragmentation; momentum correlations. Abstract. The role of momentum correlations in the production of light and medium mass fragments is studied by imposing momentum cut in the clusterization of the phase space.

  17. Fragmentation and momentum correlations in heavy-ion collisions

    Indian Academy of Sciences (India)

    The role of momentum correlations in the production of light and medium mass fragments is studied by imposing momentum cut in the clusterization of the phase space. Our detailed investigation shows that momentum cut has a major role to play in the emission of fragments. A comparison with the experimental data is also ...

  18. One-dimensional plane wave simulation of laser beam propagation and breakdown in the atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Mayhall, D.J.; Yee, J.H. [Lawrence Livermore National Lab., CA (United States); Sieger, G.E.

    1994-12-31

    For several years, numerical simulation of intense microwave and laser beam propagation in the atmosphere has been conducted at Lawrence Livermore National Laboratory. For very short pulses of 20 ns or less, full-wave electron fluid computer codes have investigated atmospheric propagation, as well as propagation in low-pressure, air-filled waveguides. These one- and two-dimensional codes solved time-dependent equations for electron number, momentum, and energy conservation self-consistently with Maxwell`s curl equations. Because of machine limitations, these codes, which resolve variations within a wave cycle, have been impractical for pulses longer than several hundred cycles. A one-dimensional, time-harmonic, envelope electron fluid code has been developed for calculation of long-pulse, cascade ionization microwave and laser beam effects in the atmosphere. In this investigation, the authors consider envelope code calculations for incident pulses from 0.1--100 ns in the laser wavelength regime for propagation in the lower atmosphere. Both CO{sub 2} and neodymium glass laser wavelengths are addressed. Square pulse breakdown electric field thresholds are calculated and compared with analytic predictions from the literature. Gaussian envelope thresholds are also calculated. Propagated and tail-eroded electric field waveshapes and electric density and energy profiles for several incident amplitudes, waveshapes, and pulse lengths will be presented.

  19. Topological transformation of fractional optical vortex beams using computer generated holograms

    Science.gov (United States)

    Maji, Satyajit; Brundavanam, Maruthi M.

    2018-04-01

    Optical vortex beams with fractional topological charges (TCs) are generated by the diffraction of a Gaussian beam using computer generated holograms embedded with mixed screw-edge dislocations. When the input Gaussian beam has a finite wave-front curvature, the generated fractional vortex beams show distinct topological transformations in comparison to the integer charge optical vortices. The topological transformations at different fractional TCs are investigated through the birth and evolution of the points of phase singularity, the azimuthal momentum transformation, occurrence of critical points in the transverse momentum and the vorticity around the singular points. This study is helpful to achieve better control in optical micro-manipulation applications.

  20. Controlling orbital angular momentum of an optical vortex by varying its ellipticity

    Science.gov (United States)

    Kotlyar, Victor V.; Kovalev, Alexey A.

    2018-03-01

    An exact analytical expression is obtained for the orbital angular momentum (OAM) of a Gaussian optical vortex with a different degree of ellipticity. The OAM turned out to be proportional to the ratio of two Legendre polynomials of adjoining orders. It is shown that if an elliptical optical vortex is embedded into the center of the waist of a circularly symmetrical Gaussian beam, then the normalized OAM of such laser beam is fractional and it does not exceed the topological charge n. If, on the contrary, a circularly symmetrical optical vortex is embedded into the center of the waist of an elliptical Gaussian beam, then the OAM is equal to n. If the optical vortex and the Gaussian beam have the same (or matched) ellipticity degree, then the OAM of the laser beam is greater than n. Continuous varying of the OAM of a laser beam by varying its ellipticity degree can be used in optical trapping for accelerated motion of microscopic particles along an elliptical trajectory as well as in quantum informatics for detecting OAM-entangled photons.

  1. Beam Optics Measurements Through Turn by Turn Beam Position Data in the SLS

    CERN Document Server

    Zisopoulos, P; Streun, A; Ziemann, v

    2013-01-01

    Refined Fourier analysis of turn-by-turn (TBT) transverse position data measurements can be used for determining several beam properties of a ring, such as transverse tunes, optics functions, phases, chromatic properties and coupling. In particular, the Numerical Analysis of Fundamental Frequencies (NAFF) algorithm is used to analyse TBT data from the Swiss Light Source (SLS) storage ring in order to estimate on and off-momentum beam characteristics. Of particular interest is the potential of using the full position information within one turn in order to measure beam optics properties.

  2. Crystalline beams: Theory, experiments, and proposals

    Energy Technology Data Exchange (ETDEWEB)

    Ruggiero, A.G.

    1995-12-31

    Crystalline Beams are an ordered state of an ensemble of ions, circulating in a storage ring, with very small velocity fluctuations. They can be obtained from ordinary warm ion beams with the application of intense cooling techniques (stochastic, electron, laser). A phase transition occurs when sufficiently small velocity spreads are reached, freezing the particle-to-particle spacing in strings, Zigzags, and helices ... The properties and the feasibility of Crystalline Beams depend on the choice of the lattice of the Storage Ring. There are three issues closely related to the design of the Storage Ring; namely: the determination of Equilibrium Configurations, Confinement Conditions, and Stability Conditions. Of particular concern is the effect of the trajectory curvature and of the beam momentum spread, since they set the requirements on the amount of momentum cooling, on the focussing, and on the distribution of bending in the lattice of the storage ring. The practical demonstration of Crystalline Beams may create the basis for an advanced technology for particle accelerators, where the limitations due to Coulomb intrabeam scattering and space-charge forces would finally be brought under control, so that beams of ions, more dense than normal, can be achieved for a variety of new applications.

  3. Crystalline beams: Theory, experiments, and proposals

    International Nuclear Information System (INIS)

    Ruggiero, A.G.

    1995-01-01

    Crystalline Beams are an ordered state of an ensemble of ions, circulating in a storage ring, with very small velocity fluctuations. They can be obtained from ordinary warm ion beams with the application of intense cooling techniques (stochastic, electron, laser). A phase transition occurs when sufficiently small velocity spreads are reached, freezing the particle-to-particle spacing in strings, Zigzags, and helices ... The properties and the feasibility of Crystalline Beams depend on the choice of the lattice of the Storage Ring. There are three issues closely related to the design of the Storage Ring; namely: the determination of Equilibrium Configurations, Confinement Conditions, and Stability Conditions. Of particular concern is the effect of the trajectory curvature and of the beam momentum spread, since they set the requirements on the amount of momentum cooling, on the focussing, and on the distribution of bending in the lattice of the storage ring. The practical demonstration of Crystalline Beams may create the basis for an advanced technology for particle accelerators, where the limitations due to Coulomb intrabeam scattering and space-charge forces would finally be brought under control, so that beams of ions, more dense than normal, can be achieved for a variety of new applications

  4. Energy, momentum and angular momentum in the dyadosphere of a charged spacetime in teleparallel equivalent of general relativity

    Science.gov (United States)

    Gamal, G. L. Nashed

    2012-03-01

    We apply the energy momentum and angular momentum tensor to a tetrad field, with two unknown functions of radial coordinate, in the framework of a teleparallel equivalent of general relativity (TEGR). The definition of the gravitational energy is used to investigate the energy within the external event horizon of the dyadosphere region for the Reissner—Nordström black hole. We also calculate the spatial momentum and angular momentum.

  5. Dependence of two-neutron momentum densities on total pair momentum

    Energy Technology Data Exchange (ETDEWEB)

    Carlson, Joseph A [Los Alamos National Laboratory; Wiringa, R B [ANL; Schiavilla, R [JEFFERSON LAB; Pieper, Steven C [ANL

    2008-01-01

    Two-nucleon momentum distributions are calculated for the ground states of {sup 3}He and {sup 4}He as a function of the nucleons' relative and total momenta. We use variational Monte Carlo wave functions derived from a realistic Hamiltonian with two- and three-nucleon potentials. The momentum distribution of pp pairs is found to be much smaller than that of pn pairs for values of the relative momentum in the range (300--500) MeV/c and vanishing total momentum. Howeer, as the totalmomentum increases to 400 MeV/c, the ratio of pp to pn pairs in this relative momentum range grows and approaches the limit 1/2 for {sup 3}He and 1/4 for {sup 4}He, corresponding to the ratio of pp to pn pairs in these nuclei. This behavior should be easily observable in two-nucleon knock-out processes, such as A(e, e'pN).

  6. Superresolution beams

    CSIR Research Space (South Africa)

    Ngcobo, S

    2012-07-01

    Full Text Available positions of p zeros of intensity distributions on the Gaussian beam, resulting to a generation of TEMp0 beams where there are minimum losses. The LGBs are well-known family of exact orthogonal solutions of free-space paraxial wave equation in cylindrical...

  7. The effect of laser beam size in a zig-zag collimator on transverse ...

    Indian Academy of Sciences (India)

    The effect of size of a cooling laser beam in a zig-zag atomic beam collimator on transverse cooling of a krypton atomic beam is investigated. The simulation results show that discreteness in the interaction between the cooling laser beam and atomic beam, arising due to finite size and incidence angle of the cooling laser ...

  8. Beam diagnostics

    CERN Document Server

    Raich, U

    2008-01-01

    Most beam measurements are based on the electro-magnetic interaction of fields induced by the beam with their environment. Beam current transformers as well as beam position monitors are based on this principle. The signals induced in the sensors must be amplified and shaped before they are converted into numerical values. These values are further treated numerically in order to extract meaningful machine parameter measurements. The lecture introduces the architecture of an instrument and shows where in the treatment chain digital signal analysis can be introduced. Then the use of digital signal processing is presented using tune measurements, orbit and trajectory measurements as well as beam loss detection and longitudinal phase space tomography as examples. The hardware as well as the treatment algorithms and their implementation on Digital Signal Processors (DSPs) or in Field Programmable Gate Arrays (FPGAs) are presented.

  9. Energy-momentum tensor in the fermion-pairing model

    International Nuclear Information System (INIS)

    Kawati, S.; Miyata, H.

    1980-01-01

    The symmetric energy-momentum tensor for the self-interacting fermion theory (psi-barpsi) 2 is expressed in terms of the collective mode within the Hartree approximation. The divergent part of the energy-momentum tensor for the fermion theory induces an effective energy-momentum tensor for the collective mode, and this effective energy-momentum tensor automatically has the Callan-Coleman-Jackiw improved form. The renormalized energy-momentum tensor is structurally equivalent to the Callan-Coleman-Jackiw improved tensor for the Yukawa theory

  10. ANGULAR MOMENTUM AND GALAXY FORMATION REVISITED

    International Nuclear Information System (INIS)

    Romanowsky, Aaron J.; Fall, S. Michael

    2012-01-01

    Motivated by a new wave of kinematical tracers in the outer regions of early-type galaxies (ellipticals and lenticulars), we re-examine the role of angular momentum in galaxies of all types. We present new methods for quantifying the specific angular momentum j, focusing mainly on the more challenging case of early-type galaxies, in order to derive firm empirical relations between stellar j * and mass M * (thus extending earlier work by Fall). We carry out detailed analyses of eight galaxies with kinematical data extending as far out as 10 effective radii, and find that data at two effective radii are generally sufficient to estimate total j * reliably. Our results contravene suggestions that ellipticals could harbor large reservoirs of hidden j * in their outer regions owing to angular momentum transport in major mergers. We then carry out a comprehensive analysis of extended kinematic data from the literature for a sample of ∼100 nearby bright galaxies of all types, placing them on a diagram of j * versus M * . The ellipticals and spirals form two parallel j * -M * tracks, with log-slopes of ∼0.6, which for the spirals are closely related to the Tully-Fisher relation, but for the ellipticals derives from a remarkable conspiracy between masses, sizes, and rotation velocities. The ellipticals contain less angular momentum on average than spirals of equal mass, with the quantitative disparity depending on the adopted K-band stellar mass-to-light ratios of the galaxies: it is a factor of ∼3-4 if mass-to-light ratio variations are neglected for simplicity, and ∼7 if they are included. We decompose the spirals into disks and bulges and find that these subcomponents follow j * -M * trends similar to the overall ones for spirals and ellipticals. The lenticulars have an intermediate trend, and we propose that the morphological types of galaxies reflect disk and bulge subcomponents that follow separate, fundamental j * -M * scaling relations. This provides a

  11. ANGULAR MOMENTUM AND GALAXY FORMATION REVISITED

    Energy Technology Data Exchange (ETDEWEB)

    Romanowsky, Aaron J. [University of California Observatories, 1156 High Street, Santa Cruz, CA 95064 (United States); Fall, S. Michael [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States)

    2012-12-15

    Motivated by a new wave of kinematical tracers in the outer regions of early-type galaxies (ellipticals and lenticulars), we re-examine the role of angular momentum in galaxies of all types. We present new methods for quantifying the specific angular momentum j, focusing mainly on the more challenging case of early-type galaxies, in order to derive firm empirical relations between stellar j{sub *} and mass M{sub *} (thus extending earlier work by Fall). We carry out detailed analyses of eight galaxies with kinematical data extending as far out as 10 effective radii, and find that data at two effective radii are generally sufficient to estimate total j{sub *} reliably. Our results contravene suggestions that ellipticals could harbor large reservoirs of hidden j{sub *} in their outer regions owing to angular momentum transport in major mergers. We then carry out a comprehensive analysis of extended kinematic data from the literature for a sample of {approx}100 nearby bright galaxies of all types, placing them on a diagram of j{sub *} versus M{sub *}. The ellipticals and spirals form two parallel j{sub *}-M{sub *} tracks, with log-slopes of {approx}0.6, which for the spirals are closely related to the Tully-Fisher relation, but for the ellipticals derives from a remarkable conspiracy between masses, sizes, and rotation velocities. The ellipticals contain less angular momentum on average than spirals of equal mass, with the quantitative disparity depending on the adopted K-band stellar mass-to-light ratios of the galaxies: it is a factor of {approx}3-4 if mass-to-light ratio variations are neglected for simplicity, and {approx}7 if they are included. We decompose the spirals into disks and bulges and find that these subcomponents follow j{sub *}-M{sub *} trends similar to the overall ones for spirals and ellipticals. The lenticulars have an intermediate trend, and we propose that the morphological types of galaxies reflect disk and bulge subcomponents that follow

  12. Study of muon triggers and momentum reconstruction in a strong magnetic field for a muon detector at LHC

    CERN Document Server

    Della Negra, Michel; Eggert, Karsten; Hervé, A; Wittgenstein, F; Karimäki, V; Kinnunen, Ritva; Pimiä, M; Tuominiemi, Jorma; Dau, D; Ferrando, A; Torrente-Lujan, E; Bettini, A; Centro, Sandro; Martinelli, R; Meneguzzo, Anna Teresa; Zotto, P L; Bacci, Cesare; Ceradini, F; Ciapetti, G; Lacava, F; Nisati, A; Petrolo, E; Pontecorvo, L; Veneziano, Stefano; Zanello, L; Cardarelli, R; Di Ciaccio, Anna; Santonico, R; Cline, D; Lazic, S; Mohammadi, M; Park, J; Szoncsó, F; Walzel, G; Wulz, Claudia Elisabeth; CERN. Geneva. Detector Research and Development Committee

    1990-01-01

    We propose to construct a small fraction of a muon detector in a strong magnetic field, for possible use in an LHC experiment, and to test it in a beam containing hadrons and muons. Properties of muons from hadron decays and of hadron punch-through, i.e. angle, momentum and timing distributions of the outgoing particles, will be measured for various absorber thicknesses, including the effect of strong magnetization of the absorber. The efficiency of different muon triggers and the rejection against hadron punch-through and decay muons will be studied. Reconstruction of muons and their momentum measurement in magnetized iron will be investigated, including the effect of catastrophic energy losses of high momentum muons. The performance of resistive plate chambers (RPC) as fast trigger hodoscopes will be studied.

  13. Performance of the ATLAS global transverse-momentum triggers at $\\sqrt{s}$ = 8 TeV

    CERN Document Server

    The ATLAS collaboration

    2018-01-01

    The global transverse momentum triggers of the ATLAS experiment at the CERN Large Hadron Collider are designed to select collision events with non-interacting particles passing through the detector and events with a large amount of outgoing momentum transverse to the beam axis. These triggers use sums over the full calorimeter, and therefore can be very sensitive to the average number of interactions per bunch crossing. This note describes the methodology and the performance of the transverse-momentum trigger algorithms that were deployed during the 2012 ATLAS data taking campaign at 8 TeV center-of-mass energy. Improvements over what was done in 2011 resulted in better efficiency in 2012 despite a doubling of the per bunch crossing luminosity.

  14. On geodynamo integrations conserving momentum flux

    Science.gov (United States)

    Wu, C.; Roberts, P. H.

    2012-12-01

    The equations governing the geodynamo are most often integrated by representing the magnetic field and fluid velocity by toroidal and poloidal scalars (for example, MAG code [1]). This procedure does not automatically conserve the momentum flux. The results can, particularly for flows with large shear, introduce significant errors, unless the viscosity is artificially increased. We describe a method that evades this difficulty, by solving the momentum equation directly while properly conserving momentum. It finds pressure by FFT and cyclic reduction, and integrates the governing equations on overlapping grids so avoiding the pole problem. The number of operations per time step is proportional to N3 where N is proportional to the number of grid points in each direction. This contrasts with the order N4 operations of standard spectral transform methods. The method is easily parallelized. It can also be easily adapted to schemes such as the Weighted Essentially Non-Oscillatory (WENO) method [2], a flux based procedure based on upwinding that is numerically stable even for zero explicit viscosity. The method has been successfully used to investigate the generation of magnetic fields by flows confined to spheroidal containers and driven by precessional and librational forcing [3, 4]. For spherical systems it satisfies dynamo benchmarks [5]. [1] MAG, http://www.geodynamics.org/cig/software/mag [2] Liu, XD, Osher, S and Chan, T, Weighted Essentially Nonoscillatory Schemes, J. Computational Physics, 115, 200-212, 1994. [3] Wu, CC and Roberts, PH, On a dynamo driven by topographic precession, Geophysical & Astrophysical Fluid Dynamics, 103, 467-501, (DOI: 10.1080/03091920903311788), 2009. [4] Wu, CC and Roberts, PH, On a dynamo driven topographically by longitudinal libration, Geophysical & Astrophysical Fluid Dynamics, DOI:10.1080/03091929.2012.682990, 2012. [5] Christensen, U, et al., A numerical dynamo benchmark, Phys. Earth Planet Int., 128, 25-34, 2001.

  15. Parasitic momentum flux in the tokamak core

    Science.gov (United States)

    Stoltzfus-Dueck, T.

    2017-10-01

    Tokamak plasmas rotate spontaneously without applied torque. This intrinsic rotation is important for future low-torque devices such as ITER, since rotation stabilizes certain instabilities. In the mid-radius `gradient region,' which reaches from the sawtooth inversion radius out to the pedestal top, intrinsic rotation profiles may be either flat or hollow, and can transition suddenly between these two states, an unexplained phenomenon referred to as rotation reversal. Theoretical efforts to explain the mid-radius rotation shear have largely focused on quasilinear models, in which the phase relationships of some selected instability result in a nondiffusive momentum flux (``residual stress''). In contrast, the present work demonstrates the existence of a robust, fully nonlinear symmetry-breaking momentum flux that follows from the free-energy flow in phase space and does not depend on any assumed linear eigenmode structure. The physical origin is an often-neglected portion of the radial ExB drift, which is shown to drive a symmetry-breaking outward flux of co-current momentum whenever free energy is transferred from the electrostatic potential to ion parallel flows. The fully nonlinear derivation relies only on conservation properties and symmetry, thus retaining the important contribution of damped modes. The resulting rotation peaking is counter-current and scales as temperature over plasma current. As first demonstrated by Landau, this free-energy transfer (thus also the corresponding residual stress) becomes inactive when frequencies are much higher than the ion transit frequency, which allows sudden transitions between hollow and flat profiles. Simple estimates suggest that this mechanism may be consistent with experimental observations. This work was funded in part by the Max-Planck/Princeton Center for Plasma Physics and in part by the U.S. Dept. of Energy, Office of Science, Contract No. DE-AC02-09CH11466.

  16. Energy-momentum density of graphite by electron-momentum spectroscopy

    International Nuclear Information System (INIS)

    Vos, M.; Fang, Z.; Canney, S.; Kheifets, A.; McCarthy, I.E.; Weigold, E.

    1996-11-01

    The energy-resolved electron momentum density of graphite has been measured along a series of well-defined directions using electron momentum spectroscopy (EMS). This is the first measurement of this kind performed on a single-crystal target with a thoroughly controlled orientation which clearly demonstrates the different nature of the σ and π bands in graphite. Good agreement between the calculated density and the measured one is found, further establishing that fact that EMS yields more direct and complete information on the valence electronic structure that any other method. 12 refs., 2 figs

  17. Simulations of radiation pressure experiments narrow down the energy and momentum of light in matter

    International Nuclear Information System (INIS)

    Bethune-Waddell, Max; Chau, Kenneth J

    2015-01-01

    Consensus on a single electrodynamic theory has yet to be reached. Discord was seeded over a century ago when Abraham and Minkowski proposed different forms of electromagnetic momentum density and has since expanded in scope with the gradual introduction of other forms of momentum and force densities. Although degenerate sets of electrodynamic postulates can be fashioned to comply with global energy and momentum conservation, hope remains to isolate a single theory based on detailed comparison between force density predictions and radiation pressure experiments. This comparison is two-fold challenging because there are just a handful of quantitative radiation pressure measurements over the past century and the solutions developed from different postulates, which consist of approximate expressions and inferential deductions, are scattered throughout the literature. For these reasons, it is appropriate to conduct a consolidated and comprehensive re-analysis of past experiments under the assumption that the momentum and energy of light in matter are degenerate. We create a combined electrodynamic/fluid dynamic simulation testbed that uses five historically significant sets of electrodynamic postulates, including those by Abraham and Minkowski, to model radiation pressure under diverse configurations with minimal assumptions. This leads to new interpretations of landmark investigations of light momentum, including the Balazs thought experiment, the Jones–Richards and Jones–Leslie measurements of radiation pressure on submerged mirrors, observations of laser-deformed fluid surfaces, and experiments on optical trapping and tractor beaming of dielectric particles. We discuss the merits and demerits of each set of postulates when compared to available experimental evidence and fundamental conservation laws. Of the five sets of postulates, the Abraham and Einstein–Laub postulates provide the greatest consistency with observations and the most physically plausible

  18. The QCD vacuum at infinite momentum

    International Nuclear Information System (INIS)

    White, A.R.

    1988-01-01

    We outline how ''topological confinement'' can be seen by the analysis of Regge limit infra-red divergences. We suggest that it is a necessary bridge between conventional confinement and the parton model at infinite momentum. It is produced by adding a chiral doublet of color sextet quarks to conventional QCD. An immediate signature of the resultant electroweak symmetry breaking would be large cross-sections for W + W/sup /minus// and Z 0 Z 0 pairs at the CERN and Fermilab /bar p/p colliders. 24 refs

  19. Symmetry and bifurcations of momentum mappings

    International Nuclear Information System (INIS)

    Arms, J.M.; Marsden, J.E.; Moncrief, V.

    1981-01-01

    The zero set of a momentum mapping is shown to have a singularity at each point with symmetry. The zero set is diffeomorphic to the product of a manifold and the zero set of a homogeneous quadratic function. The proof uses the Kuranishi theory of deformations. Among the applications, it is shown that the set of all solutions of the Yang-Mills equations on a Lorentz manifold has a singularity at any solution with symmetry, in the sense of a pure gauge symmetry. Similarly, the set of solutions of Einstein's equations has a singularity at any solution that has spacelike Killing fields, provided the spacetime has a compact Cauchy surface. (orig.)

  20. Projection of angular momentum via linear algebra

    Science.gov (United States)

    Johnson, Calvin W.; O'Mara, Kevin D.

    2017-12-01

    Projection of many-body states with good angular momentum from an initial state is usually accomplished by a three-dimensional integral. We show how projection can instead be done by solving a straightforward system of linear equations. We demonstrate the method and give sample applications to 48Cr and 60Fe in the p f shell. This new projection scheme, which is competitive against the standard numerical quadrature, should also be applicable to other quantum numbers such as isospin and particle number.

  1. The angular momentum of isolated white dwarfs

    Directory of Open Access Journals (Sweden)

    Brassard P.

    2013-03-01

    Full Text Available This is a very brief report on an ongoing program aimed at mapping the internal rotation profiles of stars through asteroseismology. Three years ago, we developed and applied successfully a new technique to the pulsating GW Vir white dwarf PG 1159−035, and were able to infer that it rotates very slowly and rigidly over some 99% of its mass. We applied the same approach to the three other GW Vir pulsators with available rotational splitting data, and found similar results. We discuss the implications of these findings on the question of the angular momentum of white dwarfs resulting from single star evolution.

  2. External momentum expansion in NJL model

    International Nuclear Information System (INIS)

    Huang Mei; Zhao Weiqin; Zhuang Pengfei

    1999-01-01

    In the large N c expansion beyond mean-field approximation, the authors develop a general scheme of SU(2) NJL model including current quark mass explicitly. In the scheme, the constituent quark's propagator is expanded in pions external momentum k, and all the Feynman diagrams are naturally expanded to k 2 term in a unified way. The numerical results show that in the mean field approximation, the effect of current quark mass is invisible, however, the effect of current quark mass can be seen explicitly beyond mean-field approximation for reasonable choices of the parameters in NJL model

  3. Symmetry and bifurcations of momentum mappings

    Science.gov (United States)

    Arms, Judith M.; Marsden, Jerrold E.; Moncrief, Vincent

    1981-01-01

    The zero set of a momentum mapping is shown to have a singularity at each point with symmetry. The zero set is diffeomorphic to the product of a manifold and the zero set of a homogeneous quadratic function. The proof uses the Kuranishi theory of deformations. Among the applications, it is shown that the set of all solutions of the Yang-Mills equations on a Lorentz manifold has a singularity at any solution with symmetry, in the sense of a pure gauge symmetry. Similarly, the set of solutions of Einstein's equations has a singularity at any solution that has spacelike Killing fields, provided the spacetime has a compact Cauchy surface.

  4. MINET [momentum integral network] code documentation

    International Nuclear Information System (INIS)

    Van Tuyle, G.J.; Nepsee, T.C.; Guppy, J.G.

    1989-12-01

    The MINET computer code, developed for the transient analysis of fluid flow and heat transfer, is documented in this four-part reference. In Part 1, the MINET models, which are based on a momentum integral network method, are described. The various aspects of utilizing the MINET code are discussed in Part 2, The User's Manual. The third part is a code description, detailing the basic code structure and the various subroutines and functions that make up MINET. In Part 4, example input decks, as well as recent validation studies and applications of MINET are summarized. 32 refs., 36 figs., 47 tabs

  5. Splitting Functions at High Transverse Momentum

    CERN Document Server

    Moutafis, Rhea Penelope; CERN. Geneva. TH Department

    2017-01-01

    Among the production channels of the Higgs boson one contribution could become significant at high transverse momentum which is the radiation of a Higgs boson from another particle. This note focuses on the calculation of splitting functions and cross sections of such processes. The calculation is first carried out on the example $e\\rightarrow e\\gamma$ to illustrate the way splitting functions are calculated. Then the splitting function of $e\\rightarrow eh$ is calculated in similar fashion. This procedure can easily be generalized to processes such as $q\\rightarrow qh$ or $g\\rightarrow gh$.

  6. Classical understanding of electron vortex beams in a uniform magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Han, Yeong Deok [Department of Computer Science and Engineering, Woosuk University, Wanju, Cheonbuk, 565-701 (Korea, Republic of); Choi, Taeseung, E-mail: tschoi@swu.ac.kr [Division of Applied Food System, College of Natural Science, Seoul Women' s University, Seoul 139-774 (Korea, Republic of); School of Computational Sciences, Korea Institute for Advanced Study, Seoul 130-012 (Korea, Republic of)

    2017-04-25

    Recently, interesting observations on electron vortex beams have been made. We propose a classical model that shows vortex-like motion due to suitably-synchronized motion of each electron's cyclotron motion in a uniform magnetic field. It is shown that some basic features of electron vortex beams in a uniform magnetic field, such as azimuthal currents, the relation between energy and kinetic angular momentum, and the parallel-axis theorem are understandable by using this classical model. We also show that the time-dependence of kinetic angular momentum of electron vortex beams could be understood as an effect of a specific nonuniform distribution of classical electrons. - Highlights: • A classical model for electron vortex beams is proposed. • The basic features of azimuthal currents could be understood by using this model. • The kinetic angular momentum of electron vortex beams is intuitively understandable.

  7. Beam transport design for a recirculating-linac FEL driver

    International Nuclear Information System (INIS)

    Neuffer, D.; Douglas, D.; Li, Z.; Cornacchia, M.; Garren, A.

    1996-01-01

    The beam transport system for the CEBAF Industrial FEL includes a two-pass transport of the beam with acceleration from injector to wiggler, followed by energy recovery transport from wiggler to dump. From that context, the authors discuss the general problem of multi-pass energy-recovery beam transport for FELs. Tunable, nearly-isochronous, large-momentum-acceptance transport systems are required. The entire transport must preserve beam quality, particularly in the acceleration transport to the wiggler, and have low losses throughout the entire system. Various possible designs are presented, and results of dynamic analyses are discussed

  8. Superposition of helical beams by using a Michelson interferometer.

    Science.gov (United States)

    Gao, Chunqing; Qi, Xiaoqing; Liu, Yidong; Weber, Horst

    2010-01-04

    Orbital angular momentum (OAM) of a helical beam is of great interests in the high density optical communication due to its infinite number of eigen-states. In this paper, an experimental setup is realized to the information encoding and decoding on the OAM eigen-states. A hologram designed by the iterative method is used to generate the helical beams, and a Michelson interferometer with two Porro prisms is used for the superposition of two helical beams. The experimental results of the collinear superposition of helical beams and their OAM eigen-states detection are presented.

  9. Studies of diffractive scattering of photons at large momentum transfer and of the VFPS detector at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Hreus, Tomas

    2008-11-15

    In this thesis, two studies of the diffractive phenomena in the electron proton collisions with the H1 detector at HERA are presented. The rst is the study of the inclusive elastic diffractive events ep {yields} eXp in the regime of high photon virtuality (Q{sup 2}>few GeV{sup 2}), with the scattered proton detected by the Very Forward Proton Spectrometer (VFPS). The VFPS detector, designed to measure diffractive scattered protons with high acceptance, has been installed in 2004 to benefit from the HERA II luminosity increase. The selected event sample of an integrated luminosity of 130.2 pb{sup -1} was collected in years 2006-2007. Data sample distributions are compared to the prediction based on the diffractive parton distribution functions, as extracted from the H1 measurement of the diffractive structure function F{sup D(3)}{sub 2} at HERA I. After the study of the VFPS efficiency, the VFPS acceptance as a function of x{sub P} is estimated and studied in relation to the forward proton beam optics. The second study leads to the cross section measurement of the diffractive scattering of quasi-real photons off protons, {gamma}p {yields} {gamma}Y, with the large momentum transfer, vertical stroke t vertical stroke. The final state photon is separated from the proton dissociation system, Y, by a large rapidity gap and has a large transverse momentum, p{sub T} > 2 GeV. Large p{sub T} imply the presence of the hard scale t (vertical stroke t vertical stroke {approx_equal} p{sup 2}{sub T}) and allows predictions of the perturbative QCD to be applied. The measurement is based on an integrated luminosity 46.2 pb{sup -1} of data collected in the 1999-2000 running period. Cross sections {sigma}(W) as a function of the incident photon-proton centre of mass energy, W, and d{sigma}/d vertical stroke t vertical stroke are measured in the range Q{sup 2}<0.01 GeV{sup 2}, 175

  10. A high sensitivity momentum flux measuring instrument for plasma thruster exhausts and diffusive plasmas.

    Science.gov (United States)

    West, Michael D; Charles, Christine; Boswell, Rod W

    2009-05-01

    A high sensitivity momentum flux measuring instrument based on a compound pendulum has been developed for use with electric propulsion devices and radio frequency driven plasmas. A laser displacement system, which builds upon techniques used by the materials science community for surface stress measurements, is used to measure with high sensitivity the displacement of a target plate placed in a plasma thruster exhaust. The instrument has been installed inside a vacuum chamber and calibrated via two different methods and is able to measure forces in the range of 0.02-0.5 mN with a resolution of 15 microN. Measurements have been made of the force produced from the cold gas flow and with a discharge ignited using argon propellant. The plasma is generated using a Helicon Double Layer Thruster prototype. The instrument target is placed about 1 mean free path for ion-neutral charge exchange collisions downstream of the thruster exit. At this position, the plasma consists of a low density ion beam (10%) and a much larger downstream component (90%). The results are in good agreement with those determined from the plasma parameters measured with diagnostic probes. Measurements at various flow rates show that variations in ion beam velocity and plasma density and the resulting momentum flux can be measured with this instrument. The instrument target is a simple, low cost device, and since the laser displacement system used is located outside the vacuum chamber, the measurement technique is free from radio frequency interference and thermal effects. It could be used to measure the thrust in the exhaust of other electric propulsion devices and the momentum flux of ion beams formed by expanding plasmas or fusion experiments.

  11. Reactive Collisions in Crossed Molecular Beams

    Science.gov (United States)

    Herschbach, D. R.

    1962-02-01

    The distribution of velocity vectors of reaction products is discussed with emphasis on the restrictions imposed by the conservation laws. The recoil velocity that carries the products away from the center of mass shows how the energy of reaction is divided between internal excitation and translation. Similarly, the angular distributions, as viewed from the center of mass, reflect the partitioning of the total angular momentum between angular momenta of individual molecules and orbital angular momentum associated with their relative motion. Crossed-beam studies of several reactions of the type M + RI yields R + MI are described, where M = K, Rb, Cs, and R = CH{sub 3}, C{sub 3}H{sub 5}, etc. The results show that most of the energy of reaction goes into internal excitation of the products and that the angular distribution is quite anisotropic, with most of the MI recoiling backward (and R forward) with respect to the incoming K beam. (auth)

  12. Population momentum: Implications for wildlife management

    Science.gov (United States)

    Koons, D.N.; Rockwell, R.F.; Grand, J.B.

    2006-01-01

    Maintenance of sustainable wildlife populations is one of the primary purposes of wildlife management. Thus, it is important to monitor and manage population growth over time. Sensitivity analysis of the long-term (i.e., asymptotic) population growth rate to changes in the vital rates is commonly used in management to identify the vital rates that contribute most to population growth. Yet, dynamics associated with the long-term population growth rate only pertain to the special case when there is a stable age (or stage) distribution of individuals in the population. Frequently, this assumption is necessary because age structure is rarely estimated. However, management actions can greatly affect the age distribution of a population. For initially growing and declining populations, we instituted hypothetical management targeted at halting the growth or decline of the population, and measured the effects of a changing age structure on the population dynamics. When we changed vital rates, the age structure became unstable and population momentum caused populations to grow differently than that predicted by the long-term population growth rate. Interestingly, changes in fertility actually reversed the direction of short-term population growth, leading to long-term population sizes that were actually smaller or larger than that when fertility was changed. Population momentum can significantly affect population dynamics and will be an important factor in the use of population models for management.

  13. Orbital angular momentum of general astigmatic modes

    International Nuclear Information System (INIS)

    Visser, Jorrit; Nienhuis, Gerard

    2004-01-01

    We present an operator method to obtain complete sets of astigmatic Gaussian solutions of the paraxial wave equation. In case of general astigmatism, the astigmatic intensity and phase distribution of the fundamental mode differ in orientation. As a consequence, the fundamental mode has a nonzero orbital angular momentum, which is not due to phase singularities. Analogous to the operator method for the quantum harmonic oscillator, the corresponding astigmatic higher-order modes are obtained by repeated application of raising operators on the fundamental mode. The nature of the higher-order modes is characterized by a point on a sphere, in analogy with the representation of polarization on the Poincare sphere. The north and south poles represent astigmatic Laguerre-Gaussian modes, similar to circular polarization on the Poincare sphere, while astigmatic Hermite-Gaussian modes are associated with points on the equator, analogous to linear polarization. We discuss the propagation properties of the modes and their orbital angular momentum, which depends on the degree of astigmatism and on the location of the point on the sphere

  14. Thermodynamics of radiation pressure and photon momentum

    Science.gov (United States)

    Mansuripur, Masud; Han, Pin

    2017-08-01

    Theoretical analyses of radiation pressure and photon momentum in the past 150 years have focused almost exclusively on classical and/or quantum theories of electrodynamics. In these analyses, Maxwell's equations, the properties of polarizable and/or magnetizable material media, and the stress tensors of Maxwell, Abraham, Minkowski, Chu, and Einstein-Laub have typically played prominent roles [1-9]. Each stress tensor has subsequently been manipulated to yield its own expressions for the electromagnetic (EM) force, torque, energy, and linear as well as angular momentum densities of the EM field. This paper presents an alternative view of radiation pressure from the perspective of thermal physics, invoking the properties of blackbody radiation in conjunction with empty as well as gas-filled cavities that contain EM energy in thermal equilibrium with the container's walls. In this type of analysis, Planck's quantum hypothesis, the spectral distribution of the trapped radiation, the entropy of the photon gas, and Einstein's 𝐴𝐴 and 𝐵𝐵 coefficients play central roles.

  15. Operational momentum in multiplication and division?

    Science.gov (United States)

    Katz, Curren; Knops, André

    2014-01-01

    Biases are commonly seen in numerical cognition. The operational momentum (OM) effect shows that responses to addition and subtraction problems are biased in the whole-number direction of the operation. It is not known if this bias exists for other arithmetic operations. To determine whether OM exists in scalar operations, we measured response bias in adults performing symbolic (Arabic digits) and non-symbolic (dots) multiplication and division problems. After seeing two operands, with either a multiplication (×) or division (÷) sign, participants chose among five response choices. Both non-random performance profiles and the significant contribution of both operands in a multiple regression analysis predicting the chosen values, suggest that adults were able to use numerical information to approximate the outcomes in both notations, though they were more accurate on symbolic problems. Performance on non-symbolic problems was influenced by the size of the correct choice relative to alternatives. Reminiscent of the bias in addition and subtraction, we found a significant response bias for non-symbolic problems. Non-symbolic multiplication problems were overestimated and division problems were underestimated. These results indicate that operational momentum is present in non-symbolic multiplication and division. Given the influence of the size of the correct choice relative to alternatives, an interaction between heuristic bias and approximate calculation is possible.

  16. A magnetic lens electron spectrometer with simultaneous momentum and energy selection

    International Nuclear Information System (INIS)

    Julin, R.; Kantele, J.; Passoja, A.

    1975-01-01

    A preliminary version of a combined swept-current magnetic lens plus Si(Li) electron spectrometer with simultaneous momentum and energy selection is presented. Results from test runs indicate that the spectrometer will be featuring good energy resolution and line shape, moderate transmission, and low background. The spectrometer is intended for in-beam measurements of conversion electron lines up to several MeV in energy and for nanosecond lifetime determinations, as well as for off-line studies of continuous beta-ray spectra and conversion lines from shortlived activities. (Auth.)

  17. Fragmentation in Carbon Therapy Beams

    CERN Document Server

    Charara, Y M

    2010-01-01

    The state of the art Monte Carlo code HETC-HEDS was used to simulate spallation products, secondary neutron, and secondary proton production in A-150 Tissue Equivalent Plastic phantoms to investigate fragmentation of carbon therapy beams. For a 356 MeV/Nucleon carbon ion beam, production of charged particles heavier than protons was 0.24 spallation products per incident carbon ion with atomic numbers ranging from 1 through 5 (hydrogen to boron). In addition, there were 4.73 neutrons and 2.95 protons produced per incident carbon ion. Furthermore, as the incident energy increases, the neutron production rate increases at a rate of 20% per 10 MeV/nucleon. Secondary protons were created at a rate between 2.62-2.87 per carbon ion, while spallation products were created at a rate between 0.20-0.24 per carbon ion.

  18. Molecular beams

    International Nuclear Information System (INIS)

    Ramsey, N.F.

    1985-01-01

    This book is a timeless and rather complete theoretical and experimental treatment of electric and magnetic resonance molecular-beam experiments for studying the radio frequency spectra of atoms and molecules. The theory of interactions of the nucleus with atomic and molecular fields is extensively presented. Measurements of atomic and nuclear magnetic moments, electric multipole moments, and atomic fine and hyperfine structure are detailed. Useful but somewhat outdated chapters on gas kinetics, molecular beam design, and experimental techniques are also included

  19. Critique of the angular momentum sum rules and a new angular momentum sum rule

    NARCIS (Netherlands)

    Bakker, B.L.G.; Leader, E.; Trueman, T. L.

    2004-01-01

    We present a study of the tensorial structure of the hadronic matrix elements of the angular momentum operators J. Well known results in the literature are shown to be incorrect, and we have taken pains to derive the correct expressions in three different ways, two involving explicit physical wave

  20. Inefficient Angular Momentum Transport in Accretion Disk Boundary Layers: Angular Momentum Belt in the Boundary Layer

    Science.gov (United States)

    Belyaev, Mikhail A.; Quataert, Eliot

    2018-04-01

    We present unstratified 3D MHD simulations of an accretion disk with a boundary layer (BL) that have a duration ˜1000 orbital periods at the inner radius of the accretion disk. We find the surprising result that angular momentum piles up in the boundary layer, which results in a rapidly rotating belt of accreted material at the surface of the star. The angular momentum stored in this belt increases monotonically in time, which implies that angular momentum transport mechanisms in the BL are inefficient and do not couple the accretion disk to the star. This is in spite of the fact that magnetic fields are advected into the BL from the disk and supersonic shear instabilities in the BL excite acoustic waves. In our simulations, these waves only carry a small fraction (˜10%) of the angular momentum required for steady state accretion. Using analytical theory and 2D viscous simulations in the R - ϕ plane, we derive an analytical criterion for belt formation to occur in the BL in terms of the ratio of the viscosity in the accretion disk to the viscosity in the BL. Our MHD simulations have a dimensionless viscosity (α) in the BL that is at least a factor of ˜100 smaller than that in the disk. We discuss the implications of these results for BL dynamics and emission.

  1. Measurement of Diffractive Scattering of Photons with Large Momentum Transfer at HERA

    CERN Document Server

    Aaron, F.D.; Andreev, V.; Antunovic, B.; Aplin, S.; Asmone, A.; Astvatsatourov, A.; Bacchetta, A.; Backovic, S.; Baghdasaryan, A.; Baranov, P.; Barrelet, E.; Bartel, W.; Beckingham, M.; Begzsuren, K.; Behnke, O.; Belousov, A.; Berger, N.; Bizot, J.C.; Boenig, M.-O.; Boudry, V.; Bozovic-Jelisavcic, I.; Bracinik, J.; Brandt, G.; Brinkmann, M.; Brisson, V.; Bruncko, D.; Bunyatyan, A.; Buschhorn, G.; Bystritskaya, L.; Campbell, A.J.; Cantun Avila, K.B.; Cassol-Brunner, F.; Cerny, K.; Cerny, V.; Chekelian, V.; Cholewa, A.; Contreras, J.G.; Coughlan, J.A.; Cozzika, G.; Cvach, J.; Dainton, J.B.; Daum, K.; Deak, M.; de Boer, Y.; Delcourt, B.; Del Degan, M.; Delvax, J.; De Roeck, A.; De Wolf, E.A.; Diaconu, C.; Dodonov, V.; Dossanov, A.; Dubak, A.; Eckerlin, G.; Efremenko, V.; Egli, S.; Eliseev, A.; Elsen, E.; Essenov, S.; Falkiewicz, A.; Faulkner, P.J.W.; Favart, L.; Fedotov, A.; Felst, R.; Feltesse, J.; Ferencei, J.; Finke, L.; Fleischer, M.; Fomenko, A.; Gabathuler, E.; Gayler, J.; Ghazaryan, Samvel; Glazov, A.; Glushkov, I.; Goerlich, L.; Goettlich, M.; Gogitidze, N.; Gouzevitch, M.; Grab, C.; Greenshaw, T.; Grell, B.R.; Grindhammer, G.; Habib, S.; Haidt, D.; Hansson, M.; Helebrant, C.; Henderson, R.C.W.; Henschel, H.; Herrera, G.; Hildebrandt, M.; Hiller, K.H.; Hoffmann, D.; Horisberger, R.; Hovhannisyan, A.; Hreus, T.; Jacquet, M.; Janssen, M.E.; Janssen, X.; Jemanov, V.; Jonsson, L.; Johnson, D.P.; Jung, Andreas Werner; Jung, H.; Kapichine, M.; Katzy, J.; Kenyon, I.R.; Kiesling, C.; Klein, M.; Kleinwort, C.; Klimkovich, T.; Kluge, T.; Knutsson, A.; Kogler, R.; Korbel, V.; Kostka, P.; Kraemer, M.; Krastev, K.; Kretzschmar, J.; Kropivnitskaya, A.; Kruger, K.; Kutak, K.; Landon, M.P.J.; Lange, W.; Lastovicka-Medin, G.; Laycock, P.; Lebedev, A.; Leibenguth, G.; Lendermann, V.; Levonian, S.; Li, G.; Lipka, K.; Liptaj, A.; List, B.; List, J.; Loktionova, N.; Lopez-Fernandez, R.; Lubimov, V.; Lucaci-Timoce, A.-I.; Lytkin, L.; Makankine, A.; Malinovski, E.; Marage, P.; Marti, Ll.; Martyn, H.-U.; Maxfield, S.J.; Mehta, A.; Meier, K.; Meyer, A.B.; Meyer, H.; Meyer, H.; Meyer, J.; Michels, V.; Mikocki, S.; Milcewicz-Mika, I.; Moreau, F.; Morozov, A.; Morris, J.V.; Mozer, Matthias Ulrich; Mudrinic, M.; Muller, K.; Murin, P.; Nankov, K.; Naroska, B.; Naumann, Th.; Newman, Paul R.; Niebuhr, C.; Nikiforov, A.; Nowak, G.; Nowak, K.; Nozicka, M.; Olivier, B.; Olsson, J.E.; Osman, S.; Ozerov, D.; Palichik, V.; Panagoulias, I.; Pandurovic, M.; Papadopoulou, Th.; Pascaud, C.; Patel, G.D.; Pejchal, O.; Peng, H.; Perez, E.; Petrukhin, A.; Picuric, I.; Piec, S.; Pitzl, D.; Placakyte, R.; Polifka, R.; Povh, B.; Preda, T.; Radescu, V.; Rahmat, A.J.; Raicevic, N.; Raspiareza, A.; Ravdandorj, T.; Reimer, P.; Rizvi, E.; Robmann, P.; Roland, B.; Roosen, R.; Rostovtsev, A.; Rotaru, M.; Ruiz Tabasco, J.E.; Rurikova, Z.; Rusakov, S.; Salek, D.; Salvaire, F.; Sankey, D.P.C.; Sauter, M.; Sauvan, E.; Schmidt, S.; Schmitt, S.; Schmitz, C.; Schoeffel, L.; Schoning, A.; Schultz-Coulon, H.-C.; Sefkow, F.; Shaw-West, R.N.; Sheviakov, I.; Shtarkov, L.N.; Shushkevich, S.; Sloan, T.; Smiljanic, Ivan; Smirnov, P.; Soloviev, Y.; Sopicki, P.; South, D.; Spaskov, V.; Specka, Arnd E.; Staykova, Z.; Steder, M.; Stella, B.; Straumann, U.; Sunar, D.; Sykora, T.; Tchoulakov, V.; Thompson, G.; Thompson, P.D.; Toll, T.; Tomasz, F.; Tran, T.H.; Traynor, D.; Trinh, T.N.; Truol, P.; Tsakov, I.; Tseepeldorj, B.; Tsurin, I.; Turnau, J.; Tzamariudaki, E.; Urban, K.; Valkarova, A.; Vallee, C.; Van Mechelen, P.; Vargas Trevino, A.; Vazdik, Y.; Vinokurova, S.; Volchinski, V.; Wegener, D.; Wessels, M.; Wissing, Ch.; Wunsch, E.; Yeganov, V.; Zacek, J.; Zalesak, J.; Zhang, Z.; Zhelezov, A.; Zhokin, A.; Zhu, Y.C.; Zimmermann, T.; Zohrabyan, H.; Zomer, F.

    2009-01-01

    The first measurement of diffractive scattering of quasi-real photons with large momentum transfer gamma p -> gamma Y, where Y is the proton dissociative system, is made using the H1 detector at HERA. The measurement is performed for initial photon virtualities Q^2 < 0.01 GeV^2. Cross sections are measured as a function of W, the incident photon-proton entre of mass energy, and t, the square of the four-momentum transferred at the proton vertex, in the range 175 < W < 247 GeV and 4<|t|<36 GeV^2. The W dependence is well described by a model based on perturbative QCD using a leading logarithmic approximation of the BFKL evolution. The measured |t| dependence is harder than that predicted by the model and those observed in exclusive vector meson production.

  2. Role of photonic angular momentum states in nonreciprocal diffraction from magneto-optical cylinder arrays

    Directory of Open Access Journals (Sweden)

    Tian-Jing Guo

    2014-07-01

    Full Text Available Optical eigenstates in a concentrically symmetric resonator are photonic angular momentum states (PAMSs with quantized optical orbital angular momentums (OAMs. Nonreciprocal optical phenomena can be obtained if we lift the degeneracy of PAMSs. In this article, we provide a comprehensive study of nonreciprocal optical diffraction of various orders from a magneto-optical cylinder array. We show that nonreciprocal diffraction can be obtained only for these nonzero orders. Role of PAMSs, the excitation of which is sensitive to the directions of incidence, applied magnetic field, and arrangement of the cylinders, are studied. Some interesting phenomena such as a dispersionless quasi-omnidirectional nonreciprocal diffraction and spikes associated with high-OAM PAMSs are present and discussed.

  3. Production of low mass dimuons at high transverse momentum: Study of rho,#betta#,phi resonances

    International Nuclear Information System (INIS)

    Badier, J.; Bourotte, J.; Mine, P.; Vanderhaghen, R.; Weisz, S.; Boucrot, J.; Callot, O.; Decamp, D.; Karyotakis, Y.; Lefrancois, J.; Crozon, M.; Delpierre, P.; Leray, T.; Maillard, J.; Tilquin, C.; Valentin, J.

    1983-01-01

    We use low mass dimuons (0.35 2 ) to analyse the production at high transverse momentum (Psub(T) >= 2 GeV/c) of the resonances p, #betta#, THETA. We have studied the variation of the cross section with the type of incident particle (π, K, p) at 150, 200, 280 GeV/c and the nuclear effects by comparison of platinum and hydrogen targets. There is no significant difference between the slopes of the transverse momentum distributions with those observed at lower Psub(T) (0< Psub(T) < 2 GeV/c), meanwhile xsub(F)-distributions show a leading effect in the production of THETA by kaons at these relatively high transverse momenta. (orig.)

  4. Measurement of diffractive scattering of photons with large momentum transfer at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Aaron, F.D. [National Institute for Physics and Nuclear Engineering (NIPNE), Bucharest (Romania)]|[Bucharest Univ. (Romania). Faculty of Physics; Alexa, C. [National Institute for Physics and Nuclear Engineering (NIPNE), Bucharest (Romania); Andreev, V. [Lebedev Physical Institute, Moscow (RU)] (and others)

    2008-09-15

    The first measurement of diffractive scattering of quasi-real photons with large momentum transfer {gamma}p {yields} {gamma}Y, where Y is the proton dissociative system, is made using the H1 detector at HERA. The measurement is performed for initial photon virtualities Q{sup 2} < 0.01 GeV{sup 2}. Cross sections are measured as a function of W, the incident photonproton centre of mass energy, and t, the square of the four-momentum transferred at the proton vertex, in the range 175 < W < 247 GeV and 4 < vertical stroke t vertical stroke < 36 GeV{sup 2}. The W dependence is well described by a model based on perturbative QCD using a leading logarithmic approximation of the BFKL evolution. The measured vertical stroke t vertical stroke dependence is harder than that predicted by the model and those observed in exclusive vector meson production. (orig.)

  5. Toward a general theory of momentum-like effects.

    Science.gov (United States)

    Hubbard, Timothy L

    2017-08-01

    The future actions, behaviors, and outcomes of objects, individuals, and processes can often be anticipated, and some of these anticipations have been hypothesized to result from momentum-like effects. Five types of momentum-like effects (representational momentum, operational momentum, attentional momentum, behavioral momentum, psychological momentum) are briefly described. Potential similarities involving properties of momentum-like effects (continuation, coherence, role of chance or guessing, role of sensory processing, imperviousness to practice or error feedback, shifts in memory for position, effects of changes in velocity, rapid occurrence, effects of retention interval, attachment to an object rather than an abstract frame of reference, nonrigid transformation) are described, and potential constraints on a future theory of momentum-like effects (dynamic representation, nature of extrapolation, sensitivity to environmental contingencies, bridging gaps between stimulus and response, increasing adaptiveness to the environment, serving as a heuristic for perception and action, insensitivity to stimulus format, importance of subjective consequences, role of knowledge and belief, automaticity of occurrence, properties of functional architecture) are discussed. The similarity and ubiquity of momentum-like effects suggests such effects might result from a single or small number of mechanisms that operate over different dimensions, modalities, and time-scales and provide a fundamental adaptation for perception and action. Copyright © 2017. Published by Elsevier B.V.

  6. Beam transport

    International Nuclear Information System (INIS)

    1988-01-01

    Considerable experience has now been gained with the various beam transport lines, and a number of minor changes have been made to improve the ease of operation. These include: replacement of certain little-used slits by profile monitors (harps or scanners); relocation of steering magnets, closer to diagnostic harps or profile scanners; installation of a scanner inside the isocentric neutron therapy system; and conversion of a 2-doublet quadrupole telescope (on the neutron therapy beamline) to a 2-triplet telescope. The beam-swinger project has been delayed by very late delivery of the magnet iron to the manufacturer, but is now progressing smoothly. The K=600 spectrometer magnets have now been delivered and are being assembled for field mapping. The x,y-table with its associated mapping equipment is complete, together with the driver software. One of the experimental areas has been dedicated to the production of collimated neutron beams and has been equipped with a bending magnet and beam dump, together with steel collimators fixed at 4 degrees intervals from 0 degrees to 16 degrees. Changes to the target cooling and shielding system for isotope production have led to a request for much smaller beam spot sizes on target, and preparations have been made for rearrangement of the isotope beamline to permit installation of quadrupole triplets on the three beamlines after the switching magnet. A practical system of quadrupoles for matching beam properties to the spectrometer has been designed. 6 figs

  7. On beam models and their paraxial approximation

    Science.gov (United States)

    Waters, W. J.; King, B.

    2018-01-01

    We derive focused laser pulse solutions to the electromagnetic wave equation in vacuum. After reproducing beam and pulse expressions for the well-known paraxial Gaussian and axicon cases, we apply the method to analyse a laser beam with Lorentzian transverse momentum distribution. Whilst a paraxial approach has some success close to the focal axis and within a Rayleigh range of the focal spot, we find that it incorrectly predicts the transverse fall-off typical of a Lorentzian. Our vector-potential approach is particularly relevant to calculation of quantum electrodynamical processes in weak laser pulse backgrounds.

  8. Pion contamination in the MICE muon beam

    CERN Document Server

    Bogomilov, M.; Vankova-Kirilova, G.; Bertoni, R.; Bonesini, M.; Chignoli, F.; Mazza, R.; Palladino, V.; de Bari, A.; Cecchet, G.; Capponi, M.; Iaciofano, A.; Orestano, D.; Pastore, F.; Tortora, L.; Kuno, Y.; Sakamoto, H.; Ishimoto, S.; Japan, Ibaraki; Filthaut, F.; Hansen, O.M.; Ramberger, S.; Vretenar, M.; Asfandiyarov, R.; Blondel, A.; Drielsma, F.; Karadzhov, Y.; Charnley, G.; Collomb, N.; Gallagher, A.; Grant, A.; Griffiths, S.; Hartnett, T.; Martlew, B.; Moss, A.; Muir, A.; Mullacrane, I.; Oates, A.; Owens, P.; Stokes, G.; Warburton, P.; White, C.; Adams, D.; Barclay, P.; Bayliss, V.; Bradshaw, T.W.; Courthold, M.; Francis, V.; Fry, L.; Hayler, T.; Hills, M.; Lintern, A.; Macwaters, C.; Nichols, A.; Preece, R.; Ricciardi, S.; Rogers, C.; Stanley, T.; Tarrant, J.; Watson, S.; Wilson, A.; Bayes, R.; Nugent, J.C.; Soler, F.J.P.; Cooke, P.; Gamet, R.; Alekou, A.; Apollonio, M.; Barber, G.; Colling, D.; Dobbs, A.; Dornan, P.; Hunt, C.; Lagrange, J-B.; Long, K.; Martyniak, J.; Middleton, S.; Pasternak, J.; Santos, E.; Savidge, T.; Uchida, M.A.; Blackmore, V.J.; Carlisle, T.; Cobb, J.H.; Lau, W.; Rayner, M.A.; Tunnell, C.D.; Booth, C.N.; Hodgson, P.; Langlands, J.; Nicholson, R.; Overton, E.; Robinson, M.; Smith, P.J.; Dick, A.; Ronald, K.; Speirs, D.; Whyte, C.G.; Young, A.; Boyd, S.; Franchini, P.; Greis, J.R.; Pidcott, C.; Taylor, I.; Gardener, R.; Kyberd, P.; Littlefield, M.; Nebrensky, J.J.; Bross, A.D.; Fitzpatrick, T.; Leonova, M.; Moretti, A.; Neuffer, D.; Popovic, M.; Rubinov, P.; Rucinski, R.; Roberts, T.J.; Bowring, D.; DeMello, A.; Gourlay, S.; Li, D.; Prestemon, S.; Virostek, S.; Zisman, M.; Drews, M.; Hanlet, P.; Kafka, G.; Kaplan, D.M.; Rajaram, D.; Snopok, P.; Torun, Y.; Winter, M.; Blot, S.; Kim, Y.K.; Bravar, U.; Onel, Y.; Cremaldi, L.M.; Hart, T.L.; Luo, T.; Sanders, D.A.; Summers, D.J.; Cline, D.; Yang, X.; Coney, L.; Hanson, G.G.; Heidt, C.

    2016-01-01

    The international Muon Ionization Cooling Experiment (MICE) will perform a systematic investigation of ionization cooling with muon beams of momentum between 140 and 240\\,MeV/c at the Rutherford Appleton Laboratory ISIS facility. The measurement of ionization cooling in MICE relies on the selection of a pure sample of muons that traverse the experiment. To make this selection, the MICE Muon Beam is designed to deliver a beam of muons with less than $\\sim$1\\% contamination. To make the final muon selection, MICE employs a particle-identification (PID) system upstream and downstream of the cooling cell. The PID system includes time-of-flight hodoscopes, threshold-Cherenkov counters and calorimetry. The upper limit for the pion contamination measured in this paper is $f_\\pi < 1.4\\%$ at 90\\% C.L., including systematic uncertainties. Therefore, the MICE Muon Beam is able to meet the stringent pion-contamination requirements of the study of ionization cooling.

  9. Electromagnetic radiation from beam-plasma instabilities

    Science.gov (United States)

    Pritchett, P. L.; Dawson, J. M.

    1983-01-01

    A computer simulation is developed for the generation of electromagnetic radiation in an electron beam-plasma interaction. The plasma is treated as a two-dimensional finite system, and effects of a continuous nonrelativistic beam input are accounted for. Three momentum and three field components are included in the simulation, and an external magnetic field is excluded. EM radiation generation is possible through interaction among Langmuir oscillations, ion-acoustic waves, and the electromagnetic wave, producing radiation perpendicular to the beam. The radiation is located near the plasma frequency, and polarized with the E component parallel to the beam. The scattering of Langmuir waves caused by ion-acoustic fluctuations generates the radiation. Comparison with laboratory data for the three-wave interactions shows good agreement in terms of the radiation levels produced, which are small relative to the plasma thermal energy.

  10. A pencil beam algorithm for helium ion beam therapy.

    Science.gov (United States)

    Fuchs, Hermann; Strobele, Julia; Schreiner, Thomas; Hirtl, Albert; Georg, Dietmar

    2012-11-01

    To develop a flexible pencil beam algorithm for helium ion beam therapy. Dose distributions were calculated using the newly developed pencil beam algorithm and validated using Monte Carlo (MC) methods. The algorithm was based on the established theory of fluence weighted elemental pencil beam (PB) kernels. Using a new real-time splitting approach, a minimization routine selects the optimal shape for each sub-beam. Dose depositions along the beam path were determined using a look-up table (LUT). Data for LUT generation were derived from MC simulations in water using GATE 6.1. For materials other than water, dose depositions were calculated by the algorithm using water-equivalent depth scaling. Lateral beam spreading caused by multiple scattering has been accounted for by implementing a non-local scattering formula developed by Gottschalk. A new nuclear correction was modelled using a Voigt function and implemented by a LUT approach. Validation simulations have been performed using a phantom filled with homogeneous materials or heterogeneous slabs of up to 3 cm. The beams were incident perpendicular to the phantoms surface with initial particle energies ranging from 50 to 250 MeV/A with a total number of 10(7) ions per beam. For comparison a special evaluation software was developed calculating the gamma indices for dose distributions. In homogeneous phantoms, maximum range deviations between PB and MC of less than 1.1% and differences in the width of the distal energy fall off of the Bragg-Peak from 80% to 20% of less than 0.1 mm were found. Heterogeneous phantoms using layered slabs satisfied a γ-index criterion of 2%/2mm of the local value except for some single voxels. For more complex phantoms using laterally arranged bone-air slabs, the γ-index criterion was exceeded in some areas giving a maximum γ-index of 1.75 and 4.9% of the voxels showed γ-index values larger than one. The calculation precision of the presented algorithm was considered to be sufficient

  11. Doppler-shifted neutral beam line shape and beam transmission

    Energy Technology Data Exchange (ETDEWEB)

    Kamperschroer, J.H.; Grisham, L.R.; Kokatnur, N.; Lagin, L.J.; Newman, R.A.; O`Connor, T.E.; Stevenson, T.N.; von Halle, A.

    1994-04-01

    Analysis of Doppler-shifted Balmer-{alpha} line emission from the TFTR neutral beam injection systems has revealed that the line shape is well approximated by the sum of two Gaussians, or, alternatively, by a Lorentzian. For the sum of two Gaussians, the broad portion of the distribution contains 40% of the beam power and has a divergence five times that of the narrow part. Assuming a narrow 1/e- divergence of 1.3{degrees} (based on fits to the beam shape on the calorimeter), the broad part has a divergence of 6.9{degrees}. The entire line shape is also well approximated by a Lorentzian with a half-maximum divergence of 0.9{degrees}. Up to now, fusion neutral beam modelers have assumed a single Gaussian velocity distribution, at the extraction plane, in each direction perpendicular to beam propagation. This predicts a beam transmission efficiency from the ion source to the calorimeter of 97%. Waterflow calorimetry data, however, yield a transmission efficiency of {approximately}75%, a value in rough agreement with predictions of the Gaussian or Lorentzian models presented here. The broad wing of the two Gaussian distribution also accurately predicts the loss in the neutralizer. An average angle of incidence for beam loss at the exit of the neutralizer is 2.2{degrees}, rather than the 4.95{degrees} subtended by the center of the ion source. This average angle of incidence, which is used in computing power densities on collimators, is shown to be a function of beam divergence.

  12. Doppler-shifted neutral beam line shape and beam transmission

    International Nuclear Information System (INIS)

    Kamperschroer, J.H.; Grisham, L.R.; Kokatnur, N.; Lagin, L.J.; Newman, R.A.; O'Connor, T.E.; Stevenson, T.N.; von Halle, A.

    1994-04-01

    Analysis of Doppler-shifted Balmer-α line emission from the TFTR neutral beam injection systems has revealed that the line shape is well approximated by the sum of two Gaussians, or, alternatively, by a Lorentzian. For the sum of two Gaussians, the broad portion of the distribution contains 40% of the beam power and has a divergence five times that of the narrow part. Assuming a narrow 1/e- divergence of 1.3 degrees (based on fits to the beam shape on the calorimeter), the broad part has a divergence of 6.9 degrees. The entire line shape is also well approximated by a Lorentzian with a half-maximum divergence of 0.9 degrees. Up to now, fusion neutral beam modelers have assumed a single Gaussian velocity distribution, at the extraction plane, in each direction perpendicular to beam propagation. This predicts a beam transmission efficiency from the ion source to the calorimeter of 97%. Waterflow calorimetry data, however, yield a transmission efficiency of ∼75%, a value in rough agreement with predictions of the Gaussian or Lorentzian models presented here. The broad wing of the two Gaussian distribution also accurately predicts the loss in the neutralizer. An average angle of incidence for beam loss at the exit of the neutralizer is 2.2 degrees, rather than the 4.95 degrees subtended by the center of the ion source. This average angle of incidence, which is used in computing power densities on collimators, is shown to be a function of beam divergence

  13. The quark beam function at two loops

    International Nuclear Information System (INIS)

    Gaunt, Jonathan R.; Stahlhofen, Maximilian; Tackmann, Frank J.

    2014-01-01

    In differential measurements at a hadron collider, collinear initial-state radiation is described by process-independent beam functions. They are the field-theoretic analog of initial-state parton showers. Depending on the measured observable they are differential in the virtuality and/or transverse momentum of the colliding partons in addition to their usual longitudinal momentum fractions. Perturbatively, the beam functions can be calculated by matching them onto standard quark and gluon parton distribution functions. We calculate the inclusive virtuality-dependent quark beam function at NNLO, which is relevant for any observables probing the virtuality of the incoming partons, including N-jettiness and beam thrust. For such observables, our results are an important ingredient in the resummation of large logarithms at N 3 LL order, and provide all contributions enhanced by collinear t-channel singularities at NNLO for quark-initiated processes in analytic form. We perform the calculation in both Feynman and axial gauge and use two different methods to evaluate the discontinuity in the two-loop Feynman diagrams, providing nontrivial checks of the calculation. As part of our results we reproduce the known two-loop QCD splitting functions and confirm at two loops that the virtuality-dependent beam and final-state jet functions have the same anomalous dimension.

  14. The quark beam function at two loops

    Science.gov (United States)

    Gaunt, Jonathan R.; Stahlhofen, Maximilian; Tackmann, Frank J.

    2014-04-01

    In differential measurements at a hadron collider, collinear initial-state radiation is described by process-independent beam functions. They are the field-theoretic analog of initial-state parton showers. Depending on the measured observable they are differential in the virtuality and/or transverse momentum of the colliding partons in addition to the usual longitudinal momentum fraction. Perturbatively, the beam functions can be calculated by matching them onto standard quark and gluon parton distribution functions. We calculate the inclusive virtuality-dependent quark beam function at NNLO, which is relevant for any observables probing the virtuality of the incoming partons, including N -jettiness and beam thrust. For such observables, our results are an important ingredient in the resummation of large logarithms at N3LL order, and provide all contributions enhanced by collinear t-channel singularities at NNLO for quark-initiated processes in analytic form. We perform the calculation in both Feynman and axial gauge and use two different methods to evaluate the discontinuity of the two-loop Feynman diagrams, providing nontrivial checks of the calculation. As part of our results we reproduce the known two-loop QCD splitting functions and confirm at two loops that the virtuality-dependent beam and final-state jet functions have the same anomalous dimension.

  15. The quark beam function at two loops

    Energy Technology Data Exchange (ETDEWEB)

    Gaunt, Jonathan R.; Stahlhofen, Maximilian; Tackmann, Frank J.

    2014-01-15

    In differential measurements at a hadron collider, collinear initial-state radiation is described by process-independent beam functions. They are the field-theoretic analog of initial-state parton showers. Depending on the measured observable they are differential in the virtuality and/or transverse momentum of the colliding partons in addition to their usual longitudinal momentum fractions. Perturbatively, the beam functions can be calculated by matching them onto standard quark and gluon parton distribution functions. We calculate the inclusive virtuality-dependent quark beam function at NNLO, which is relevant for any observables probing the virtuality of the incoming partons, including N-jettiness and beam thrust. For such observables, our results are an important ingredient in the resummation of large logarithms at N{sup 3}LL order, and provide all contributions enhanced by collinear t-channel singularities at NNLO for quark-initiated processes in analytic form. We perform the calculation in both Feynman and axial gauge and use two different methods to evaluate the discontinuity in the two-loop Feynman diagrams, providing nontrivial checks of the calculation. As part of our results we reproduce the known two-loop QCD splitting functions and confirm at two loops that the virtuality-dependent beam and final-state jet functions have the same anomalous dimension.

  16. The quark beam function at two loops

    Energy Technology Data Exchange (ETDEWEB)

    Gaunt, Jonathan R.; Stahlhofen, Maximilian; Tackmann, Frank J. [Theory Group, Deutsches Elektronen-Synchrotron (DESY),D-22607 Hamburg (Germany)

    2014-04-16

    In differential measurements at a hadron collider, collinear initial-state radiation is described by process-independent beam functions. They are the field-theoretic analog of initial-state parton showers. Depending on the measured observable they are differential in the virtuality and/or transverse momentum of the colliding partons in addition to the usual longitudinal momentum fraction. Perturbatively, the beam functions can be calculated by matching them onto standard quark and gluon parton distribution functions. We calculate the inclusive virtuality-dependent quark beam function at NNLO, which is relevant for any observables probing the virtuality of the incoming partons, including N-jettiness and beam thrust. For such observables, our results are an important ingredient in the resummation of large logarithms at N{sup 3}LL order, and provide all contributions enhanced by collinear t-channel singularities at NNLO for quark-initiated processes in analytic form. We perform the calculation in both Feynman and axial gauge and use two different methods to evaluate the discontinuity of the two-loop Feynman diagrams, providing nontrivial checks of the calculation. As part of our results we reproduce the known two-loop QCD splitting functions and confirm at two loops that the virtuality-dependent beam and final-state jet functions have the same anomalous dimension.

  17. Preequilibrium GDR excitation and entrance channel angular momentum effects

    International Nuclear Information System (INIS)

    Sandoli, M.; Campajola, L.; De Rosa, A.; D'Onofrio, A.; La Commara, M.; Ordine, A.; Pierroutsakou, D.; Roca, V.; Romano, M.; Romoli, M.; Terrasi, F.; Trotta, M.; Cardella, G.; Papa, M.; Pappalardo, G.; Rizzo, F.; Alamanos, N.; Auger, F.; Gillibert, A.

    1997-01-01

    The energy spectra of the γ-rays emitted in the 35 Cl+ 92 Mo reaction at incident energy E=260 MeV were measured in coincidence with the ejectiles produced in dissipative reaction events. The cumulative energy spectrum of the γ-rays coming from the decay of the ejectiles was calculated within the statistical model and its comparison to the experimental spectrum evidences an excess in the data for E γ =8 to 12 MeV. Such an excess, fitted with a Lorentz curve, is attributed to the preequilibrium GDR γ-decay of the intermediate dinuclear system. The centroid energy of the Lorentz curve corresponds to a dipole oscillation along the symmetry axis of the system and its width is found to be comparable to that of the ground state GDR low energy component of the deformed dinucleus. The small quantal dispersion Δl=(10.3±0.1)ℎ of the entrance channel angular momentum, determined by analysing the dissipative fragment angular distribution in the framework of the Strutinsky model, is suggested to limit the broadening of the preequilibrium GDR width. (orig.)

  18. Laguerre-Gauss beam generation in IR and UV by subwavelength surface-relief gratings

    DEFF Research Database (Denmark)

    Vertchenko, Larissa; Shkondin, Evgeniy; Malureanu, Radu

    2017-01-01

    layerdepositions and dry etch techniques. We exploit the phenomenon of formbirefringence to give rise to the spin-to-orbital angular momentum conversion.We demonstrate that these plates can generate beams with high quality for theUV and IR range, allowing them to interact with high power laser sources orinside......The angular momentum of light can be described by the states of spin angularmomentum, associated with polarization, and orbital angular momentum, relatedto the helical structure of the wave front. Laguerre-Gaussian beams carryorbital angular momentum and their generation can be done by using...... an opticaldevice known as q-plate. However, due to the usage of liquid crystals, thesecomponents may be restricted to operate in specific wavelengths and low powersources. Here we present the fabrication and characterization of q-plates madewithout liquid crystals, using processes of e-beam lithography, atomic...

  19. Winding light beams along elliptical helical trajectories

    Science.gov (United States)

    Wen, Yuanhui; Chen, Yujie; Zhang, Yanfeng; Chen, Hui; Yu, Siyuan

    2016-07-01

    Conventional caustic methods in real or Fourier space produced accelerating optical beams only with convex trajectories. We developed a superposition caustic method capable of winding light beams along nonconvex trajectories. We ascertain this method by constructing a one-dimensional (1D) accelerating beam moving along a sinusoidal trajectory, and subsequently extending to two-dimensional (2D) accelerating beams along arbitrarily elliptical helical trajectories. We experimentally implemented the method with a compact and robust integrated optics approach by fabricating micro-optical structures on quartz glass plates to perform the spatial phase and amplitude modulation to the incident light, generating beam trajectories highly consistent with prediction. The theoretical and implementation methods can in principle be extended to the construction of accelerating beams with a wide variety of nonconvex trajectories, thereby opening up a route of manipulating light beams for fundamental research and practical applications.

  20. Production of an {sup 15}O beam using a stable oxygen ion beam for in-beam PET imaging

    Energy Technology Data Exchange (ETDEWEB)

    Mohammadi, Akram, E-mail: mohammadi.akram@qst.go.jp; Yoshida, Eiji; Tashima, Hideaki; Nishikido, Fumihiko; Inaniwa, Taku; Kitagawa, Atsushi; Yamaya, Taiga

    2017-03-21

    In advanced ion therapy, the {sup 15}O ion beam is a promising candidate to treat hypoxic tumors and simultaneously monitor the delivered dose to a patient using PET imaging. This study aimed at production of an {sup 15}O beam by projectile fragmentation of a stable {sup 16}O beam in an optimal material, followed by in-beam PET imaging using a prototype OpenPET system, which was developed in the authors’ group. The study was carried out in three steps: selection of the optimal target based on the highest production rate of {sup 15}O fragments; experimental production of the beam using the optimal target in the Heavy Ion Medical Accelerator Chiba (HIMAC) secondary beam course; and realization of in-beam PET imaging for the produced beam. The optimal target evaluations were done using the Monte Carlo simulation code PHITS. The fluence and mean energy of the secondary particles were simulated and the optimal target was selected based on the production rate of {sup 15}O fragments. The highest production rate of {sup 15}O was observed for a liquid hydrogen target, 3.27% for a 53 cm thick target from the {sup 16}O beam of 430 MeV/u. Since liquid hydrogen is not practically applicable in the HIMAC secondary beam course a hydrogen-rich polyethylene material, which was the second optimal target from the simulation results, was selected as the experimental target. Three polyethylene targets with thicknesses of 5, 11 or 14 cm were used to produce the {sup 15}O beam without any degrader in the beam course. The highest production rate was measured as around 0.87% for the 11 cm thick polyethylene target from the {sup 16}O beam of 430 MeV/u when the angular acceptance and momentum acceptance were set at ±13 mrad and ±2.5%, respectively. The purity of the produced beam for the three targets were around 75%, insufficient for clinical application, but it was increased to 97% by inserting a wedge shape aluminum degrader with a thickness of 1.76 cm into the beam course and that is

  1. Production of an 15O beam using a stable oxygen ion beam for in-beam PET imaging

    Science.gov (United States)

    Mohammadi, Akram; Yoshida, Eiji; Tashima, Hideaki; Nishikido, Fumihiko; Inaniwa, Taku; Kitagawa, Atsushi; Yamaya, Taiga

    2017-03-01

    In advanced ion therapy, the 15O ion beam is a promising candidate to treat hypoxic tumors and simultaneously monitor the delivered dose to a patient using PET imaging. This study aimed at production of an 15O beam by projectile fragmentation of a stable 16O beam in an optimal material, followed by in-beam PET imaging using a prototype OpenPET system, which was developed in the authors' group. The study was carried out in three steps: selection of the optimal target based on the highest production rate of 15O fragments; experimental production of the beam using the optimal target in the Heavy Ion Medical Accelerator Chiba (HIMAC) secondary beam course; and realization of in-beam PET imaging for the produced beam. The optimal target evaluations were done using the Monte Carlo simulation code PHITS. The fluence and mean energy of the secondary particles were simulated and the optimal target was selected based on the production rate of 15O fragments. The highest production rate of 15O was observed for a liquid hydrogen target, 3.27% for a 53 cm thick target from the 16O beam of 430 MeV/u. Since liquid hydrogen is not practically applicable in the HIMAC secondary beam course a hydrogen-rich polyethylene material, which was the second optimal target from the simulation results, was selected as the experimental target. Three polyethylene targets with thicknesses of 5, 11 or 14 cm were used to produce the 15O beam without any degrader in the beam course. The highest production rate was measured as around 0.87% for the 11 cm thick polyethylene target from the 16O beam of 430 MeV/u when the angular acceptance and momentum acceptance were set at ±13 mrad and ±2.5%, respectively. The purity of the produced beam for the three targets were around 75%, insufficient for clinical application, but it was increased to 97% by inserting a wedge shape aluminum degrader with a thickness of 1.76 cm into the beam course and that is sufficiently high. In-beam PET imaging was also

  2. The Beam Spin Asymmetry and T-odd Effects

    Science.gov (United States)

    Banks, Daniel; Gamberg, Leonard

    2013-10-01

    The focus of this research is to model the internal structure of the nucleon based on its momentum and spin-polarization properties. We focus on the beam-spin asymmetry (BSA) in semi-inclusive deep inelastic scattering. When the produced pion's transverse momentum is on the order of quark intrinsic transverse momentum, TMD factorization suggest that the structure function for the BSA is a momentum convolution integral of transverse momentum dependent (TMD) parton distribution and fragmentation functions. Theoretically there are four possible structure functions. We focus on the naive time reversal odd (T-odd) contribution. Namely, the g⊥ TMD PDF which relates the transverse spin polarization and transverse momentum of quarks for the case of an unpolarized nucleon and longitudinally polarized electron beam. We model the BSA in the spectator model framework (L. Gamberg et al., Phys. Rev. D 77, 094016 (2008)) and calculate g⊥ and extend our earlier numerical work on the BSA for π+ to results for π-, π0, production. We present these new results for the BSA and compare them with the recent results from CLAS, Hall B collaboration at JLAB (M. Aghasyan, H. Avakian et al., Phys. Lett. B 704, 397 (2011)).

  3. Experimental study and theoretical modeling of bidimensional beam fanning: application to DPCM

    Science.gov (United States)

    Mailhan, C.; Goetz, M.; Fressengeas, N.; Kugel, G.

    2001-10-01

    Features like efficiency and stability of the double phase conjugate mirror (DPCM) in BaTiO 3 obviously depend on the beam fanning (BF) experienced by each incident beam. We propose here a new approach to DPCM optimization which consists in studying the BF phenomenon for each interacting beam. This allows one to choose the best angular configuration of the incident beams in DPCM. The investigation is experimental, by recording the fanning patterns, and also theoretical, by interpreting numerically these patterns on the basis of the coupling gain maximization in the two-wave mixing theory. We focus on the influence of the incident beam width and incidence angle.

  4. Response of a tokamak plasma to particle and momentum sources

    International Nuclear Information System (INIS)

    Stacey, W.M. Jr.; Sigmar, D.J.

    1978-12-01

    The response of an axisymmetric toroidal tokamak plasma to first-order particle and momentum sources is investigated. The momentum sources drive coupled poloidal and toroidal mass flows and electrostatic field evolution which relax to asymptotic values on a time scale that is characteristic of the dominant viscous or external drag mechanism. The asymptotic steady-state momentum balance provides the necessary condition to completely determine the particle fluxes and currents in the flux surfaces, and, hence, to determine transport fluxes across flux surfaces. Transport fluxes are driven across flux surfaces both by interspecies collisional momentum exchange, the usual case, and by momentum exchange between the plasma and external sources and/or drags. A generalized Ohm's law is obtained and used to determine the manner in which particle and momentum sources can drive parallel currents and can alter the evolution of the q-profile. The theory is formulated for arbitrary plasma cross sections, beta, and collision regimes

  5. Muon Beam Studies in the H4 beam line and the Gamma Irradiation Facility (GIF++)

    CERN Document Server

    Margraf, Rachel; CERN. Geneva. ATS Department

    2018-01-01

    In this note, we present detailed simulation results for the trajectory of a muon beam, traversing beam zones PPE-134 and PPE-154, produced by a 150 GeV positive hadron beam incident on collimators 9 & 10 in the H4 beam line when these collimators are placed off-beam axis to stop all hadrons and electrons. Using G4Beamline, a GEANT-4 based Monte-Carlo program, the trajectory of the muon beam has been studied for several field strengths of the GOLIATH magnet, as well as for different polarities. The position of the beam at the Gamma Irradiation Facility (GIF++), located downstream the PPE-144 area, is also presented. In addition, two configurations of the two XTDV’s present in the line (XTDV.022.520 and XTDV.022.610) have been studied, with the purpose to simulate the pion contamination of the beam both in PPE134 and GIF++.

  6. Particle reflection and TFTR neutral beam diagnostics

    International Nuclear Information System (INIS)

    Kamperschroer, J.H.; Grisham, L.R.; Kugel, H.W.; O'Connor, T.E.; Newman, R.A.; Stevenson, T.N.; von Halle, A.; Williams, M.D.

    1992-04-01

    Determination of two critical neutral beam parameters, power and divergence, are affected by the reflection of a fraction of the incident energy from the surface of the measuring calorimeter. On the TFTR Neutral Beam Test Stand, greater than 30% of the incident power directed at the target chamber calorimeter was unaccounted for. Most of this loss is believed due to reflection from the surface of the flat calorimeter, which was struck at a near grazing incidence (12 degrees). Beamline calorimeters, of a ''V''-shape design, while retaining the beam power, also suffer from reflection effects. Reflection, in this latter case, artificially peaks the power toward the apex of the ''V'', complicating the fitting technique, and increasing the power density on axis by 10 to 20%; an effect of import to future beamline designers. Agreement is found between measured and expected divergence values, even with 24% of the incident energy reflected

  7. Particle reflection and TFTR neutral beam diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Kamperschroer, J.H.; Grisham, L.R.; Kugel, H.W.; O`Connor, T.E.; Newman, R.A.; Stevenson, T.N.; von Halle, A.; Williams, M.D.

    1992-04-01

    Determination of two critical neutral beam parameters, power and divergence, are affected by the reflection of a fraction of the incident energy from the surface of the measuring calorimeter. On the TFTR Neutral Beam Test Stand, greater than 30% of the incident power directed at the target chamber calorimeter was unaccounted for. Most of this loss is believed due to reflection from the surface of the flat calorimeter, which was struck at a near grazing incidence (12{degrees}). Beamline calorimeters, of a ``V``-shape design, while retaining the beam power, also suffer from reflection effects. Reflection, in this latter case, artificially peaks the power toward the apex of the ``V``, complicating the fitting technique, and increasing the power density on axis by 10 to 20%; an effect of import to future beamline designers. Agreement is found between measured and expected divergence values, even with 24% of the incident energy reflected.

  8. Particle reflection and TFTR neutral beam diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Kamperschroer, J.H.; Grisham, L.R.; Kugel, H.W.; O' Connor, T.E.; Newman, R.A.; Stevenson, T.N.; von Halle, A.; Williams, M.D.

    1992-04-01

    Determination of two critical neutral beam parameters, power and divergence, are affected by the reflection of a fraction of the incident energy from the surface of the measuring calorimeter. On the TFTR Neutral Beam Test Stand, greater than 30% of the incident power directed at the target chamber calorimeter was unaccounted for. Most of this loss is believed due to reflection from the surface of the flat calorimeter, which was struck at a near grazing incidence (12{degrees}). Beamline calorimeters, of a V''-shape design, while retaining the beam power, also suffer from reflection effects. Reflection, in this latter case, artificially peaks the power toward the apex of the V'', complicating the fitting technique, and increasing the power density on axis by 10 to 20%; an effect of import to future beamline designers. Agreement is found between measured and expected divergence values, even with 24% of the incident energy reflected.

  9. Momentum Injection in Tokamak Plasmas and Transitions to Reduced Transport

    International Nuclear Information System (INIS)

    Parra, F. I.; Highcock, E. G.; Schekochihin, A. A.; Barnes, M.; Cowley, S. C.

    2011-01-01

    The effect of momentum injection on the temperature gradient in tokamak plasmas is studied. A plausible scenario for transitions to reduced transport regimes is proposed. The transition happens when there is sufficient momentum input so that the velocity shear can suppress or reduce the turbulence. However, it is possible to drive too much velocity shear and rekindle the turbulent transport. The optimal level of momentum injection is determined. The reduction in transport is maximized in the regions of low or zero magnetic shear.

  10. Transverse Momentum Distributions of Electron in Simulated QED Model

    Science.gov (United States)

    Kaur, Navdeep; Dahiya, Harleen

    2018-05-01

    In the present work, we have studied the transverse momentum distributions (TMDs) for the electron in simulated QED model. We have used the overlap representation of light-front wave functions where the spin-1/2 relativistic composite system consists of spin-1/2 fermion and spin-1 vector boson. The results have been obtained for T-even TMDs in transverse momentum plane for fixed value of longitudinal momentum fraction x.

  11. Anomalous transport and holographic momentum relaxation

    Science.gov (United States)

    Copetti, Christian; Fernández-Pendás, Jorge; Landsteiner, Karl; Megías, Eugenio

    2017-09-01

    The chiral magnetic and vortical effects denote the generation of dissipationless currents due to magnetic fields or rotation. They can be studied in holographic models with Chern-Simons couplings dual to anomalies in field theory. We study a holographic model with translation symmetry breaking based on linear massless scalar field backgrounds. We compute the electric DC conductivity and find that it can vanish for certain values of the translation symmetry breaking couplings. Then we compute the chiral magnetic and chiral vortical conductivities. They are completely independent of the holographic disorder couplings and take the usual values in terms of chemical potential and temperature. To arrive at this result we suggest a new definition of energy-momentum tensor in presence of the gravitational Chern-Simons coupling.

  12. Topological photonic orbital-angular-momentum switch

    Science.gov (United States)

    Luo, Xi-Wang; Zhang, Chuanwei; Guo, Guang-Can; Zhou, Zheng-Wei

    2018-04-01

    The large number of available orbital-angular-momentum (OAM) states of photons provides a unique resource for many important applications in quantum information and optical communications. However, conventional OAM switching devices usually rely on precise parameter control and are limited by slow switching rate and low efficiency. Here we propose a robust, fast, and efficient photonic OAM switch device based on a topological process, where photons are adiabatically pumped to a target OAM state on demand. Such topological OAM pumping can be realized through manipulating photons in a few degenerate main cavities and involves only a limited number of optical elements. A large change of OAM at ˜10q can be realized with only q degenerate main cavities and at most 5 q pumping cycles. The topological photonic OAM switch may become a powerful device for broad applications in many different fields and motivate a topological design of conventional optical devices.

  13. Fourier transform of momentum distribution in vanadium

    International Nuclear Information System (INIS)

    Singh, A.K.; Manuel, A.A.; Peter, M.; Singru, R.M.

    1985-01-01

    Experimental Compton profile and 2D-angular correlation of positron annihilation radiation data from vanadium are analyzed by the mean of their Fourier transform. They are compared with the functions calculated with the help of both the linear muffin-tin orbital and the Hubbard-Mijnarends band structure methods. The results show that the functions are influenced by the positron wave function, by the e + -e - many-body correlations and by the differences in the electron wave functions used for the band structure calculations. It is concluded that Fourier analysis is a sensitive approach to investigate the momentum distributions in transition metals and to understnad the effects of the positron. (Auth.)

  14. Chiral symmetries associated with angular momentum

    International Nuclear Information System (INIS)

    Bhattacharya, M; Kleinert, M

    2014-01-01

    In quantum mechanics courses, symmetries of a physical system are usually introduced as operators which commute with the Hamiltonian. In this paper we will consider chiral symmetries which anticommute with the Hamiltonian. Typically, introductory courses at the (under)graduate level do not discuss these simple, useful and beautiful symmetries at all. The first time a student encounters them is when the Dirac equation is discussed in a course on relativistic quantum mechanics, or when particle–hole symmetry is studied in the context of superconductivity. In this paper, we will show how chiral symmetries can be simply elucidated using the theory of angular momentum, which is taught in virtually all introductory quantum mechanics courses. (paper)

  15. Symmetry and bifurcations of momentum mappings

    Energy Technology Data Exchange (ETDEWEB)

    Arms, J.M.; Marsden, J.E.; Moncrief, V.

    1981-01-01

    The zero set of a momentum mapping is shown to have a singularity at each point with symmetry. The zero set is diffeomorphic to the product of a manifold and the zero set of a homogeneous quadratic function. The proof uses the Kuranishi theory of deformations. Among the applications, it is shown that the set of all solutions of the Yang-Mills equations on a Lorentz manifold has a singularity at any solution with symmetry, in the sense of a pure gauge symmetry. Similarly, the set of solutions of Einstein's equations has a singularity at any solution that has spacelike Killing fields, provided the spacetime has a compact Cauchy surface.

  16. Untangling Galaxy Components - The Angular Momentum Parameter

    Science.gov (United States)

    Tabor, Martha; Merrifield, Michael; Aragon-Salamanca, Alfonso

    2017-06-01

    We have developed a new technique to decompose Integral Field spectral data cubes into separate bulge and disk components, allowing us to study the kinematic and stellar population properties of the individual components and how they vary with position. We present here the application of this method to a sample of fast rotator early type galaxies from the MaNGA integral field survey, and demonstrate how it can be used to explore key properties of the individual components. By extracting ages, metallicities and the angular momentum parameter lambda of the bulges and disks, we show how this method can give us new insights into the underlying structure of the galaxies and discuss what this can tell us about their evolution history.

  17. Distributed control using linear momentum exchange devices

    Science.gov (United States)

    Sharkey, J. P.; Waites, Henry; Doane, G. B., III

    1987-01-01

    MSFC has successfully employed the use of the Vibrational Control of Space Structures (VCOSS) Linear Momentum Exchange Devices (LMEDs), which was an outgrowth of the Air Force Wright Aeronautical Laboratory (AFWAL) program, in a distributed control experiment. The control experiment was conducted in MSFC's Ground Facility for Large Space Structures Control Verification (GF/LSSCV). The GF/LSSCV's test article was well suited for this experiment in that the LMED could be judiciously placed on the ASTROMAST. The LMED placements were such that vibrational mode information could be extracted from the accelerometers on the LMED. The LMED accelerometer information was processed by the control algorithms so that the LMED masses could be accelerated to produce forces which would dampen the vibrational modes of interest. Experimental results are presented showing the LMED's capabilities.

  18. Quantum beams

    International Nuclear Information System (INIS)

    Uesaka, Mitsuru

    2003-01-01

    Present state and future prospect are described on quantum beams for medical use. Efforts for compactness of linac for advanced cancer therapy have brought about the production of machines like Accuray's CyberKnife and TOMOTHERAPY (Tomo Therapy Inc.) where the acceleration frequency of X-band (9-11 GHz) is used. For cervical vein angiography by the X-band linac, a compact hard X-ray source is developed which is based on the (reverse) Compton scattering through laser-electron collision. More intense beam and laser are necessary at present. A compact machine generating the particle beam of 10 MeV-1 GeV (laser-plasma accelerator) for cancer therapy is also developed using the recent compression technique (chirped-pulse amplification) to generate laser of >10 TW. Tokyo University is studying for the electron beam with energy of GeV order, for the laser-based synchrotron X-ray, and for imaging by the short pulse ion beam. Development of advanced compact accelerators is globally attempted. In Japan, a virtual laboratory by National Institute of Radiological Sciences (NIRS), a working group of universities and research facilities through the Ministry of Education, Culture, Sports, Science and Technology, started in 2001 for practical manufacturing of the above-mentioned machines for cancer therapy and for angiography. Virtual Factory (Inc.), a business venture, is to be stood in future. (N.I.)

  19. Dimensional Effects on the Momentum distribution of Bosonic Trimer States

    DEFF Research Database (Denmark)

    F. Bellotti, F.; Frederico, T.; T. Yamashita, M.

    2013-01-01

    The momentum distribution is a powerful probe of strongly-interacting systems that are expected to display universal behavior. This is contained in the contact parameters which relate few- and many-body properties. Here we consider a Bose gas in two dimensions and explicitly show that the two......-body contact parameter is universal and then demonstrate that the momentum distribution at next-to-leading order has a logarithmic dependence on momentum which is vastly different from the three-dimensional case. Based on this, we propose a scheme for measuring the effective dimensionality of a quantum many......-body system by exploiting the functional form of the momentum distribution....

  20. A unified momentum equation approach for computing thermal residual stresses during melting and solidification

    Science.gov (United States)

    Yeo, Haram; Ki, Hyungson

    2018-03-01

    In this article, we present a novel numerical method for computing thermal residual stresses from a viewpoint of fluid-structure interaction (FSI). In a thermal processing of a material, residual stresses are developed as the material undergoes melting and solidification, and liquid, solid, and a mixture of liquid and solid (or mushy state) coexist and interact with each other during the process. In order to accurately account for the stress development during phase changes, we derived a unified momentum equation from the momentum equations of incompressible fluids and elastoplastic solids. In this approach, the whole fluid-structure system is treated as a single continuum, and the interaction between fluid and solid phases across the mushy zone is naturally taken into account in a monolithic way. For thermal analysis, an enthalpy-based method was employed. As a numerical example, a two-dimensional laser heating problem was considered, where a carbon steel sheet was heated by a Gaussian laser beam. Momentum and energy equations were discretized on a uniform Cartesian grid in a finite volume framework, and temperature-dependent material properties were used. The austenite-martensite phase transformation of carbon steel was also considered. In this study, the effects of solid strains, fluid flow, mushy zone size, and laser heating time on residual stress formation were investigated.

  1. Beam test of Cherenkov counter prototype for ZDF setup

    International Nuclear Information System (INIS)

    Kacharava, A.K.; Macharashvili, G.G.; Nioradze, M.S.; Komarov, V.I.; Sopov, V.S.; Chernyshev, V.P.

    1995-01-01

    We describe a Cherenkov counter of total internal reflection for particle separation in the momentum range where all types of particles radiate Cherenkov light. The Cherenkov counter prototype with the lucite radiator was tested on the secondary beam of the ITEP (Moscow) accelerator. Dependence of the photomultiplier pulse height on the particle entrance angle was clearly observed. 4 refs., 4 figs

  2. Quasi-Local Energy-Momentum and Angular Momentum in General Relativity

    Directory of Open Access Journals (Sweden)

    Szabados László B.

    2009-06-01

    Full Text Available The present status of the quasi-local mass, energy-momentum and angular-momentum constructions in general relativity is reviewed. First, the general ideas, concepts, and strategies, as well as the necessary tools to construct and analyze the quasi-local quantities, are recalled. Then, the various specific constructions and their properties (both successes and deficiencies are discussed. Finally, some of the (actual and potential applications of the quasi-local concepts and specific constructions are briefly mentioned.This review is based on talks given at the Erwin Schrödinger Institute, Vienna in July 1997, at the Universität Tübingen in May 1998, and at the National Center for Theoretical Sciences in Hsinchu, Taiwan and at the National Central University, Chungli, Taiwan, in July 2000.

  3. Quasi-Local Energy-Momentum and Angular Momentum in GR: A Review Article

    Directory of Open Access Journals (Sweden)

    Szabados László B.

    2004-01-01

    Full Text Available The present status of the quasi-local mass-energy-momentum and angular momentum constructions in general relativity is reviewed. First the general ideas, concepts and strategies as well as the necessary tools to construct and analyze the quasi-local quantities are recalled. Then the various specific constructions and their properties (both successes and defects are discussed. Finally, some of the (actual and potential applications of the quasi-local concepts and specific constructions are briefly mentioned. This review is based on the talks given at the Erwin Schrödinger Institut, Vienna, in July 1997, at the Universität Tübingen, in May 1998 and at the National Center for Theoretical Sciences in Hsinchu and at the National Central University, Chungli, Taiwan, in July 2000.

  4. The Effects of Minimal Length, Maximal Momentum, and Minimal Momentum in Entropic Force

    Directory of Open Access Journals (Sweden)

    Zhong-Wen Feng

    2016-01-01

    Full Text Available The modified entropic force law is studied by using a new kind of generalized uncertainty principle which contains a minimal length, a minimal momentum, and a maximal momentum. Firstly, the quantum corrections to the thermodynamics of a black hole are investigated. Then, according to Verlinde’s theory, the generalized uncertainty principle (GUP corrected entropic force is obtained. The result shows that the GUP corrected entropic force is related not only to the properties of the black holes but also to the Planck length and the dimensionless constants α0 and β0. Moreover, based on the GUP corrected entropic force, we also derive the modified Einstein’s field equation (EFE and the modified Friedmann equation.

  5. BEAM-BEAM SIMULATIONS FOR DOUBLE-GAUSSIAN BEAMS.

    Energy Technology Data Exchange (ETDEWEB)

    MONTAG, C.; MALITSKY, N.; BEN-ZVI, I.; LITVINENKO, V.

    2005-05-16

    Electron cooling together with intra-beam scattering results in a transverse distribution that can best be described by a sum of two gaussians, one for the high-density core and one for the tails of the distribution. Simulation studies are being performed to understand the beam-beam interaction of these double-gaussian beams. Here we report the effect of low-frequency random tune modulations on diffusion in double-gaussian beams and compare the effects to those in beam-beam interactions with regular gaussian beams and identical tune shift parameters.

  6. BEAM-BEAM SIMULATIONS FOR DOUBLE-GAUSSIAN BEAMS

    International Nuclear Information System (INIS)

    MONTAG, C.; MALITSKY, N.; BEN-ZVI, I.; LITVINENKO, V.

    2005-01-01

    Electron cooling together with intra-beam scattering results in a transverse distribution that can best be described by a sum of two gaussians, one for the high-density core and one for the tails of the distribution. Simulation studies are being performed to understand the beam-beam interaction of these double-gaussian beams. Here we report the effect of loW--frequency random tune modulations on diffusion in double-gaussian beams and compare the effects to those in beam-beam interactions with regular gaussian beams and identical tune shift parameters

  7. Beam-Beam Simulations for Double-Gaussian Beams

    CERN Document Server

    Montag, Christoph; Litvinenko, Vladimir N; Malitsky, Nikolay

    2005-01-01

    Electron cooling together with intra-beam scattering results in a transverse distribution that can best be described by a sum of two Gaussians, one for the high-density core and one for the tails of the distribution. Simulation studies are being performed to understand the beam-beam interaction of these double-Gaussian beams. Here we report the effect of low-frequency random tune modulations on diffusion in double-Gaussian beams and compare the effects to those in beam-beam interactions with regular Gaussian beams and identical tuneshift parameters.

  8. Momentum and angular momentum of laser plasma produced by irradiation of the target located in a magnetic field in vacuum

    Science.gov (United States)

    Tischenko, V. N.; Zakharov, Yu. P.; Berezutsky, A. G.; Boyarintsev, E. L.; Melekhov, A. V.; Ponomarenko, A. G.; Posukh, V. G.; Shaikhislamov, I. F.; Miroshnichenko, I. B.

    2017-10-01

    In experiments, the momentum and angular momentum of the slow magnetosonic and torsional Alfven waves produced by irradiating train of laser pulses of the target in a magnetic field in a vacuum or in a rarefied plasma with a magnetic field were investigated. At "resonance" of plasma bunches with background, a single Alfven wave and a single slow magnetosonic wave are formed. These waves transfer a momentum in a narrow tube of the magnetic field, angular momentum variation of the current, and the electric field.

  9. Momentum and angular momentum in the H-space of asymptotically flat, Einstein-Maxwell space-time

    International Nuclear Information System (INIS)

    Hallidy, W.; Ludvigsen, M.

    1979-01-01

    New definitions are proposed for the momentum and angular momentum of Einstein-Maxwell fields that overcome the deficiencies of earlier definitions of these terms and are appropriate to the new H-space formulations of space-time. Definitions are made in terms of the Winicour-Tamburino linkages applied to the good cuts of Cj + . The transformations between good cuts then correspond to the translations and Lorentz transformations at points in H-space. For the special case of Robinson-Trautman type II space-times, it is shown that the definitions of momentum and angular momentum yield previously published results. (author)

  10. Measurement of transverse momentum dependent asymmetries with COMPASS experimental at CERN

    International Nuclear Information System (INIS)

    Venugopal, Girisan

    2007-01-01

    The COMPASS experiment, which started running at the European Council for Nuclear Research, CERN, in Geneva in 2001, is currently investigating in a wide ranging programme the spin structure of the nucleon through deep-inelastic scattering (DIS). The experiment uses a polarized muon beam and a polarized deuterium target, which together allow access to all terms of the polarized DIS cross-section. Two of the most important functions which COMPASS is designed to full are a precision measurement of the gluon polarization ΔG and the investigation of the transverse spin effects, specially extracting the transverse polarized quark distribution functions Δ T q. In Semi-Inclusive DIS of polarized leptons on a transversely polarized target, eight azimuthal modulations appear in the cross-section. Within the QCD parton model, four azimuthal asymmetries can be interpreted at leading order, two of them being the Collins and Sivers asymmetries. The other two leading twist asymmetries are related to different transverse momentum dependent quark distribution functions. There are four additional asymmetries which can be interpreted as twist-three contributions. This thesis describes the analysis with the data taken with transverse spin configuration during the COMPASS beam-time 2002-2004, resulting in the extraction of the eight Transverse Momentum Dependent (TMD) asymmetries. (orig.)

  11. Measurement of transverse momentum dependent asymmetries with COMPASS experimental at CERN

    Energy Technology Data Exchange (ETDEWEB)

    Venugopal, Girisan

    2007-07-01

    The COMPASS experiment, which started running at the European Council for Nuclear Research, CERN, in Geneva in 2001, is currently investigating in a wide ranging programme the spin structure of the nucleon through deep-inelastic scattering (DIS). The experiment uses a polarized muon beam and a polarized deuterium target, which together allow access to all terms of the polarized DIS cross-section. Two of the most important functions which COMPASS is designed to full are a precision measurement of the gluon polarization {delta}G and the investigation of the transverse spin effects, specially extracting the transverse polarized quark distribution functions {delta}{sub T}q. In Semi-Inclusive DIS of polarized leptons on a transversely polarized target, eight azimuthal modulations appear in the cross-section. Within the QCD parton model, four azimuthal asymmetries can be interpreted at leading order, two of them being the Collins and Sivers asymmetries. The other two leading twist asymmetries are related to different transverse momentum dependent quark distribution functions. There are four additional asymmetries which can be interpreted as twist-three contributions. This thesis describes the analysis with the data taken with transverse spin configuration during the COMPASS beam-time 2002-2004, resulting in the extraction of the eight Transverse Momentum Dependent (TMD) asymmetries. (orig.)

  12. Force, torque, linear momentum, and angular momentum in classical electr odynamics

    Science.gov (United States)

    Mansuripur, Masud

    2017-10-01

    The classical theory of electrodynamics is built upon Maxwell's equations and the concepts of electromagnetic (EM) field, force, energy, and momentum, which are intimately tied together by Poynting's theorem and by the Lorentz force law. Whereas Maxwell's equations relate the fields to their material sources, Poynting's theorem governs the flow of EM energy and its exchange between fields and material media, while the Lorentz law regulates the back-and-forth transfer of momentum between the media and the fields. An alternative force law, first proposed by Einstein and Laub, exists that is consistent with Maxwell's equations and complies with the conservation laws as well as with the requirements of special relativity. While the Lorentz law requires the introduction of hidden energy and hidden momentum in situations where an electric field acts on a magnetized medium, the Einstein-Laub (E-L) formulation of EM force and torque does not invoke hidden entities under such circumstances. Moreover, total force/torque exerted by EM fields on any given object turns out to be independent of whether the density of force/torque is evaluated using the law of Lorentz or that of Einstein and Laub. Hidden entities aside, the two formulations differ only in their predicted force and torque distributions inside matter. Such differences in distribution are occasionally measurable, and could serve as a guide in deciding which formulation, if either, corresponds to physical reality.

  13. Dependence of extinction cross-section on incident polarization state and particle orientation

    International Nuclear Information System (INIS)

    Yang Ping; Wendisch, Manfred; Bi Lei; Kattawar, George; Mishchenko, Michael; Hu, Yongxiang

    2011-01-01

    This note reports on the effects of the polarization state of an incident quasi-monochromatic parallel beam of radiation and the orientation of a hexagonal ice particle with respect to the incident direction on the extinction process. When the incident beam is aligned with the six-fold rotational symmetry axis, the extinction is independent of the polarization state of the incident light. For other orientations, the extinction cross-section for linearly polarized light can be either larger or smaller than its counterpart for an unpolarized incident beam. Therefore, the attenuation of a quasi-monochromatic radiation beam by an ice cloud depends on the polarization state of the beam if ice crystals within the cloud are not randomly oriented. Furthermore, a case study of the extinction of light by a quartz particle is also presented to illustrate the dependence of the extinction cross-section on the polarization state of the incident light.

  14. Study of two pronged antipd interactions at 5.55GeV/c incident momentum

    International Nuclear Information System (INIS)

    Voltolini, Christian.

    1976-01-01

    Many experimental problems connected with the two pronged topology, such as correction for various losses and resolution of ambiguous kinematical identifications were treated in detail. Cross sections are given and a detailed analysis of the reactions studied is made. Informations on the antipn→antipn scattering are extracted from the coherent antipd→antipd reaction using the Glauber model. They are in good agreement with the results obtained from the direct study of the elastic antipn diffusion made on a subsample of the reaction antipd→pantipn. The coherent antipd→antindπ - reaction was studied. The analysis of the low mass antinπ - enhancement observed around 1.3GeV/c 2 in the antindπ - final state is made in terms of the Regge pole exchange model accounting for the most important part of the observed 1.3GeV/c 2 bump [fr

  15. Correlation of beam loss to residual activation in the AGS

    International Nuclear Information System (INIS)

    Brown, K.A.

    1991-01-01

    Studies of beam loss and activation at the AGS have provided a better understanding of measurements of beam loss and how they may be used to predict activation. Studies have been done in which first order correlations have been made between measured beam losses on the distributed ionization chamber system in the AGS and the health physics recorded residual activation. These studies have provided important insight into the ionization chamber system, its limitations, and its usefulness in the prediction of activation based on monitored beam loss. In recent years the AGS has run high intensity protons primarily for rare kaon decay experiments. In this mode of running the AGS typically accelerates beam from an injection momentum of 0.644 GeV/c up to a slow extracted beam (SEB) momentum of 24.2 GeV/c. The beam intensities are on the order of 4.5 x 10 13 protons per AGS cycle at injection to as high as 1.9 x 10 13 protons per AGS cycle at extraction. Residual activation varies around the AGS ring from the order of 5 mR/hour to levels of the order at 5 R/hour. The highest levels occur around the AGS beam catcher and the extraction equipment

  16. Correlation of beam loss to residual activation in the AGS

    International Nuclear Information System (INIS)

    Brown, K.A.

    1991-01-01

    Studies of beam loss and activation at the AGS have provided a better understanding of measurements of beam loss and how they may be used to predict activation. Studies have been done in which first order correlations have been made between measured beam losses on the distributed ionization chamber system in the AGS and the health physics recorded residual activation. These studies have provided important insight into the ionization chamber system, its limitations, and its usefulness in the prediction of activation based on monitored beam loss. In recent years the AGS has run high intensity protons primarily for rare known decay experiments. In this mode of running the AGS typically accelerates beam from an injection momentum of 0.644 GeV/c up to a slow extracted beam (SEB) momentum of 24.2 GeV/c. The beam intensities are on the order of 4.5 x 10 13 protons per AGS cycle at injection to as high as 1.9 x 10 13 protons per AGS cycle at extraction. Residual activation varies around the AGS ring from the order of 5 mR/hour to levels of the order at 5 R/hour. The highest levels occur around the AGS beam catcher and the extraction equipment. 7 refs., 3 figs., 2 tabs

  17. Simultaneous wavelength and orbital angular momentum demultiplexing using tunable MEMS-based Fabry-Perot filter

    DEFF Research Database (Denmark)

    Lyubopytov, Vladimir; Porfirev, Alexey P.; Gurbatov, Stanislav O.

    2017-01-01

    In this paper, we experimentally demonstrate simultaneous wavelength and orbital angular momentum (OAM) multiplexing/demultiplexing of 10 Gbit/s data streams using a new on-chip micro-component-tunable MEMS-based Fabry-Perot filter integrated with a spiral phase plate. In the experiment, two......B at the harddecision forward-error correction (HD-FEC) bit-error-rate (BER) limit 3.8 × 10□3 when multiplexing a Gaussian beam and OAM beams of azimuthal orders 1, 2 and 3 respectively. In case of phase modulation, power penalties do not exceed 1.77, 0.54 and 0.79 dB respectively. At the 0.4 nm wavelength grid......, maximum power penalties at the HD-FEC BER threshold relative to the 0.8 nm wavelength spacing read 0.83, 0.84 and 1.15 dB when multiplexing a Gaussian beam and OAM beams of 1st, 2nd and 3rd orders respectively. The novelty and impact of the proposed filter design is in providing practical, integrable...

  18. Orbital Angular Momentum-based Space Division Multiplexing for High-capacity Underwater Optical Communications

    Science.gov (United States)

    Ren, Yongxiong; Li, Long; Wang, Zhe; Kamali, Seyedeh Mahsa; Arbabi, Ehsan; Arbabi, Amir; Zhao, Zhe; Xie, Guodong; Cao, Yinwen; Ahmed, Nisar; Yan, Yan; Liu, Cong; Willner, Asher J.; Ashrafi, Solyman; Tur, Moshe; Faraon, Andrei; Willner, Alan E.

    2016-09-01

    To increase system capacity of underwater optical communications, we employ the spatial domain to simultaneously transmit multiple orthogonal spatial beams, each carrying an independent data channel. In this paper, we show up to a 40-Gbit/s link by multiplexing and transmitting four green orbital angular momentum (OAM) beams through a single aperture. Moreover, we investigate the degrading effects of scattering/turbidity, water current, and thermal gradient-induced turbulence, and we find that thermal gradients cause the most distortions and turbidity causes the most loss. We show systems results using two different data generation techniques, one at 1064 nm for 10-Gbit/s/beam and one at 520 nm for 1-Gbit/s/beam; we use both techniques since present data-modulation technologies are faster for infrared (IR) than for green. For the 40-Gbit/s link, data is modulated in the IR, and OAM imprinting is performed in the green using a specially-designed metasurface phase mask. For the 4-Gbit/s link, a green laser diode is directly modulated. Finally, we show that inter-channel crosstalk induced by thermal gradients can be mitigated using multi-channel equalisation processing.

  19. Measurement of inclusive production of neutral pions at high transverse momentum

    International Nuclear Information System (INIS)

    Ogawa, A.

    1978-10-01

    These are the results of a measurement of inclusive production at high transverse momentum (P perpendicular to) of neutral pions (π 0 ) from protons by beams of proton (p), kaon (K), pion (π), and antiproton (antiproton) particles. The experiment used the Fermilab M2 beam line at momenta of 100, 200 and 300 GeV/c striking a liquid hydrogen target. The data include center of mass (cm) production angles of the π 0 between 2 0 and 115 0 for P perpendicular to greater than 1 GeV/c. A pair of differential Cherenkov counters distinguished the types of beam particles. The photon (γ) detector of a lead and scintillator sandwich measured both photons from the π 0 → 2γ decay and enabled a reconstruction of the π 0 kinematics. The measurements show several remarkable features distinguishing the production rates for these different beams, including a forward peak in the cm for πp collisions and much less π 0 production at high P perpendicular to in pp than in πp or Kp collisions. A simple parametrization accurately represents the data over most of its range, showing approximate scaling in the radial variable x/sub R/ = 2P/√s (in the cm). Several parton models are compared with the data. A heuristic picture in terms of the quark constituents of the interacting hadrons accounts for many features of the data in an intuitive way. 62 references

  20. Generalized optical angular momentum sorter and its application to high-dimensional quantum cryptography.

    Science.gov (United States)

    Larocque, Hugo; Gagnon-Bischoff, Jérémie; Mortimer, Dominic; Zhang, Yingwen; Bouchard, Frédéric; Upham, Jeremy; Grillo, Vincenzo; Boyd, Robert W; Karimi, Ebrahim

    2017-08-21

    The orbital angular momentum (OAM) carried by optical beams is a useful quantity for encoding information. This form of encoding has been incorporated into various works ranging from telecommunications to quantum cryptography, most of which require methods that can rapidly process the OAM content of a beam. Among current state-of-the-art schemes that can readily acquire this information are so-called OAM sorters, which consist of devices that spatially separate the OAM components of a beam. Such devices have found numerous applications in optical communications, a field that is in constant demand for additional degrees of freedom, such as polarization and wavelength, into which information can also be encoded. Here, we report the implementation of a device capable of sorting a beam based on its OAM and polarization content, which could be of use in works employing both of these degrees of freedom as information channels. After characterizing our fabricated device, we demonstrate how it can be used for quantum communications via a quantum key distribution protocol.

  1. Orbital Angular Momentum-based Space Division Multiplexing for High-capacity Underwater Optical Communications

    Science.gov (United States)

    Ren, Yongxiong; Li, Long; Wang, Zhe; Kamali, Seyedeh Mahsa; Arbabi, Ehsan; Arbabi, Amir; Zhao, Zhe; Xie, Guodong; Cao, Yinwen; Ahmed, Nisar; Yan, Yan; Liu, Cong; Willner, Asher J.; Ashrafi, Solyman; Tur, Moshe; Faraon, Andrei; Willner, Alan E.

    2016-01-01

    To increase system capacity of underwater optical communications, we employ the spatial domain to simultaneously transmit multiple orthogonal spatial beams, each carrying an independent data channel. In this paper, we show up to a 40-Gbit/s link by multiplexing and transmitting four green orbital angular momentum (OAM) beams through a single aperture. Moreover, we investigate the degrading effects of scattering/turbidity, water current, and thermal gradient-induced turbulence, and we find that thermal gradients cause the most distortions and turbidity causes the most loss. We show systems results using two different data generation techniques, one at 1064 nm for 10-Gbit/s/beam and one at 520 nm for 1-Gbit/s/beam; we use both techniques since present data-modulation technologies are faster for infrared (IR) than for green. For the 40-Gbit/s link, data is modulated in the IR, and OAM imprinting is performed in the green using a specially-designed metasurface phase mask. For the 4-Gbit/s link, a green laser diode is directly modulated. Finally, we show that inter-channel crosstalk induced by thermal gradients can be mitigated using multi-channel equalisation processing. PMID:27615808

  2. Interaction of a Laguerre-Gaussian beam with trapped Rydberg atoms

    Science.gov (United States)

    Mukherjee, Koushik; Majumder, Sonjoy; Mondal, Pradip Kumar; Deb, Bimalendu

    2018-01-01

    Previous studies show that within paraxial limit and electric dipole approximations, the orbital angular momentum (OAM) of a Laguerre-Gaussian (LG) beam rotates the whole atom about the beam axis but does not affect the internal electronic motion. The contribution of the Gaussian part of the LG beam profile to the angular momentum exchange is not usually taken into account. In this paper, we develop a theory which shows that not only the OAM of a LG beam, but also the geometry of the beam cross section, plays an important role in the electronic lowest-order transitions in the interaction of the beam with a trapped Rydberg atom, due to the large span of its electronic wavefunctions. In this interaction, the standard dipole selection rules do not hold and our results show that the otherwise forbidden transitions can become sufficiently probable.

  3. Toroidal and poloidal momentum transport studies in Tokamaks

    DEFF Research Database (Denmark)

    Tala, T.; Andrew, Y.; Giroud, C.

    2007-01-01

    The present status of understanding of toroidal and poloidal momentum transport in tokamaks is presented in this paper. Similar energy confinement and momentum confinement times, i.e. τE/τφ ≈ 1 have been reported on several tokamaks. It is more important though, to study the local transport both ...

  4. Toroidal and poloidal momentum transport studies in JET

    DEFF Research Database (Denmark)

    Tala, T.; Andrew, Y.; Crombe, K.

    2007-01-01

    This paper reports on the recent studies of toroidal and poloidal momentum transport in JET. The ratio of the global energy confinement time to the momentum confinement is found to be close to tau(E)/tau(phi) = 1 except for the low density or low collisionality discharges where the ratio is tau(E...

  5. Relating inclusive and exclusive meson photoproduction at large transverse momentum

    International Nuclear Information System (INIS)

    Scott, D.M.

    1975-01-01

    Inclusive and exclusive meson photoproduction at large transverse momentum are related by a local application of the correspondence principle of Bjorken and Kogut. The recent predictions for the inclusive process by Escobar are thus compared with wide angle exclusive data. The inclusive photoproduction of (rho 0 +ω) at large transverse momentum is discussed. (Auth.)

  6. Non-physical momentum sources in slab geometry gyrokinetics

    International Nuclear Information System (INIS)

    Parra, Felix I; Catto, Peter J

    2010-01-01

    We investigate momentum transport in the Hamiltonian electrostatic gyrokinetic formulation of Dubin et al (1983 Phys. Fluids 26 3524). We prove that the long wavelength electric field obtained from the gyrokinetic quasineutrality introduces a non-physical momentum source in the low flow ordering.

  7. Multiple-choice test of energy and momentum concepts

    OpenAIRE

    Singh, Chandralekha; Rosengrant, David

    2016-01-01

    We investigate student understanding of energy and momentum concepts at the level of introductory physics by designing and administering a 25-item multiple choice test and conducting individual interviews. We find that most students have difficulty in qualitatively interpreting basic principles related to energy and momentum and in applying them in physical situations.

  8. A new uncertainty relation for angular momentum and angle

    International Nuclear Information System (INIS)

    Kranold, H.U.

    1984-01-01

    An uncertainty relation of the form ΔL 2 ΔSo >=sup(h/2π)/sub(2) is derived for angular momentum and angle. The non-linear operator So measures angles and has a simple interpretation. Subject to very general conditions of rotational invariance the above relation is unique. Radial momentum is not quantized

  9. [Analysis of momentum and impurity confinment in TFTR (1990)

    International Nuclear Information System (INIS)

    1990-01-01

    Work during the present grant period has been concentrated in two areas and are discussed in this report: (1) a review of momentum confinement experiments in tokamaks, of momentum confinement theories and of previous comparisons of the two; and (2) analysis and documentation of the dedicated power-scan rotation experiment performed on TFTR in September 1988

  10. Fragmentation and momentum correlations in heavy-ion collisions

    Indian Academy of Sciences (India)

    The role of momentum correlations in the production of light and medium mass frag- ments is studied by imposing momentum cut ... Sakshi Gautam and Rajni Kant is very dilute. But, the fragments ... We describe the time evolution of a heavy-ion reaction within the framework of quantum molecular dynamics (QMD) model [2 ...

  11. Transverse momentum dependent quark densities from Lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Bernhard Musch,Philipp Hagler,John Negele,Andreas Schafer

    2011-10-01

    We study transverse momentum dependent parton distribution functions (TMDs) with non-local operators in lattice QCD, using MILC/LHPC lattices. We discuss the basic concepts of the method, including renormalization of the gauge link. Results obtained with a simplified operator geometry show visible dipole deformations of spin-dependent quark momentum densities.

  12. Semi-inclusive deep inelastic scattering at small transverse momentum

    NARCIS (Netherlands)

    Bacchetta, A.; Diehl, M.; Goeke, K.; Metz, A.; Mulders, P.J.G.; Schlegel, M.

    2007-01-01

    We study the cross section for one-particle inclusive deep inelastic scattering off the nucleon for low transverse momentum of the detected hadron. We decompose the cross section in terms of structure functions and calculate them at tree level in terms of transverse-momentum-dependent parton

  13. Joint transverse momentum and threshold resummation beyond NLL

    NARCIS (Netherlands)

    Lustermans, G.; Waalewijn, W.J.; Zeune, L.

    2016-01-01

    To describe the transverse momentum spectrum of heavy color-singlet production, the joint resummation of threshold and transverse momentum logarithms is investigated. We obtain factorization theorems for various kinematic regimes valid to all orders in the strong coupling, using Soft-Collinear

  14. Toroidal and poloidal momentum transport studies in tokamaks

    DEFF Research Database (Denmark)

    Tala, T.; Crombé, K.; Vries, P.C. de

    2007-01-01

    The present status of understanding of toroidal and poloidal momentum transport in tokamaks is presented in this paper. Similar energy confinement and momentum confinement times, i.e. τE/τφ ≈ 1 have been reported on several tokamaks. It is more important though, to study the local transport both ...

  15. Energy-momentum tensor in quantum field theory

    International Nuclear Information System (INIS)

    Fujikawa, Kazuo.

    1980-12-01

    The definition of the energy-momentum tensor as a source current coupled to the background gravitational field receives an important modification in quantum theory. In the path integral approach, the manifest covariance of the integral measure under general coordinate transformations dictates that field variables with weight 1/2 should be used as independent integration variables. An improved energy-momentum tensor is then generated by the variational derivative, and it gives rise to well-defined gravitational conformal (Weyl) anomalies. In the flat space-time limit, all the Ward-Takahashi identities associate with space-time transformations including the global dilatation become free from anomalies, reflecting the general covariance of the integral measure; the trace of this energy-momentum tensor is thus finite at the zero momentum transfer. The Jacobian for the local conformal transformation however becomes non-trivial, and it gives rise to an anomaly for the conformal identity. All the familiar anomalies are thus reduced to either chiral or conformal anomalies. The consistency of the dilatation and conformal identities at the vanishing momentum transfer determines the trace anomaly of this energy-momentum tensor in terms of the renormalization group β-function and other parameters. In contrast, the trace of the conventional energy-momentum tensor generally diverges even at the vanishing momentum transfer depending on the regularization scheme, and it is subtractively renormalized. We also explain how the apparently different renormalization properties of the chiral and trace anomalies arise. (author)

  16. Correlations between high momentum particles in proton-proton collisions at high energies

    International Nuclear Information System (INIS)

    Bobbink, G.J.

    1981-01-01

    This thesis describes an experiment performed at the CERN Intersecting Storage Rings. The experiment studies the reaction p+p→h 1 +h 2 +X at two centre-of-mass energies, √s=44.7 GeV and √s=62.3 GeV. Two of the outgoing particles (h 1 and h 2 ) are detected in opposite c.m.s. hemispheres at small polar angles with respect to the direction of two incident protons. The remaining particles produced (X) are not detected. The hadrons hsub(i) are identified mesons (π + , π - , K + , K - ) or baryons (p, Λ) with relatively large longitudinal psub(L) and small transverse momentum psub(T). The aim of the experiment is twofold. The first aim is to study whether the momentum distributions of the fast particles hsub(i) are correlated and thereby to constrain the possible interaction mechanisms responsible for the production of high psub(L), low psub(T) particles. The second aim is to establish to what extent the production of pions and kaons in inclusive proton-proton collisions (e.g. p+p→π+X, X=all other particles) resembles the production of pions and kaons in diffractive proton-proton collisions (e.g. p+p→p+π+X, in which the final-state proton has a momentum close to its maximum possible value). (Auth.)

  17. Time and momentum-resolved phonon decay

    Science.gov (United States)

    Reis, David

    2017-04-01

    The high brightness of x-ray free-electron lasers provides us a unique opportunity to measure lattice dynamics directly in the time domain and out of equilibrium. As a first step in this direction we demonstrate how ultrafast optical excitation creates temporal coherences in the mean-square phonon displacements spanning the Brillouin zone by a second-order squeezing process. This leads to broad-bandwidth high-resolution measurements of the phonon dispersion without the need for high-resolution monochromators or analyzers. We will also show how anharmonic phonon decay can be viewed as a parametric squeezing process, and present first momentum-resolved measurements of the downconversion of a coherent optical phonon into pairs of high-wavevector acoustic modes, information that cannot be obtained by spectroscopic measurements in the frequency domain. Supported by the Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division, under Contract DE-AC02-76SF00515.

  18. Implications of conformal invariance in momentum space

    Science.gov (United States)

    Bzowski, Adam; McFadden, Paul; Skenderis, Kostas

    2014-03-01

    We present a comprehensive analysis of the implications of conformal invariance for 3-point functions of the stress-energy tensor, conserved currents and scalar operators in general dimension and in momentum space. Our starting point is a novel and very effective decomposition of tensor correlators which reduces their computation to that of a number of scalar form factors. For example, the most general 3-point function of a conserved and traceless stress-energy tensor is determined by only five form factors. Dilatations and special conformal Ward identities then impose additional conditions on these form factors. The special conformal Ward identities become a set of first and second order differential equations, whose general solution is given in terms of integrals involving a product of three Bessel functions (`triple- K integrals'). All in all, the correlators are completely determined up to a number of constants, in agreement with well-known position space results. In odd dimensions 3-point functions are finite without renormalisation while in even dimensions non-trivial renormalisation in required. In this paper we restrict ourselves to odd dimensions. A comprehensive analysis of renormalisation will be discussed elsewhere. This paper contains two parts that can be read independently of each other. In the first part, we explain the method that leads to the solution for the correlators in terms of triple- K integrals while the second part contains a self-contained presentation of all results. Readers interested only in results may directly consult the second part of the paper.

  19. Accelerated rotation with orbital angular momentum modes

    CSIR Research Space (South Africa)

    Schulze, C

    2015-01-01

    Full Text Available ] and generalized recently in the context of radial self-acceleration [23]. Such beams have been experimentally investigated in great detail [24–32]. The intensity maxima of these fields gyrate around the optical axis, forming a solenoidal shape, which has been used...(z�)]2 . (13) III. EXPERIMENT In our experiment a linearly polarized, single wavelength (λ = 632.8 nm) helium-neon laser (Melles Griot) with a power of 10 mW was expanded and collimated by a telescope (fL1 = 15 mm and fL2 = 125 mm) to approximate a plane...

  20. One- and two-dimensional gap solitons and dynamics in the PT-symmetric lattice potential and spatially-periodic momentum modulation

    Science.gov (United States)

    Chen, Yong; Yan, Zhenya; Li, Xin

    2018-02-01

    The influence of spatially-periodic momentum modulation on beam dynamics in parity-time (PT) symmetric optical lattice is systematically investigated in the one- and two-dimensional nonlinear Schrödinger equations. In the linear regime, we demonstrate that the momentum modulation can alter the first and second PT thresholds of the classical lattice, periodically or regularly change the shapes of the band structure, rotate and split the diffraction patterns of beams leading to multiple refraction and emissions. In the Kerr-nonlinear regime for one-dimension (1D) case, a large family of fundamental solitons within the semi-infinite gap can be found to be stable, even beyond the second PT threshold; it is shown that the momentum modulation can shrink the existing range of fundamental solitons and not change their stability. For two-dimension (2D) case, most solitons with higher intensities are relatively unstable in their existing regions which are narrower than those in 1D case, but we also find stable fundamental solitons corroborated by linear stability analysis and direct beam propagation. More importantly, the momentum modulation can also utterly change the direction of the transverse power flow and control the energy exchange among gain or loss regions.