WorldWideScience

Sample records for incentives biofuels production

  1. 75 FR 42745 - Production Incentives for Cellulosic Biofuels: Notice of Program Intent

    Science.gov (United States)

    2010-07-22

    ... Cellulosic Biofuels: Notice of Program Intent AGENCY: Office of Energy Efficiency and Renewable Energy...). Through this notice, biofuels producers and other interested parties are invited to submit pre-auction..., ``Production Incentives for Cellulosic Biofuels; Reverse Auction Procedures and Standards,'' (74 FR 52867...

  2. Turbomachinery in Biofuel Production

    OpenAIRE

    Görling, Martin

    2011-01-01

    The aim for this study has been to evaluate the integration potential of turbo-machinery into the production processes of biofuels. The focus has been on bio-fuel produced via biomass gasification; mainly methanol and synthetic natural gas. The research has been divided into two parts; gas and steam turbine applications. Steam power generation has a given role within the fuel production process due to the large amounts of excess chemical reaction heat. However, large amounts of the steam prod...

  3. Comparison of fixed versus variable biofuels incentives

    International Nuclear Information System (INIS)

    Tyner, Wallace E.; Taheripour, Farzad; Perkis, David

    2010-01-01

    We evaluated several variants of a variable biofuel subsidy and compared them with the fixed subsidy and Renewable Fuel Standard using two different modeling approaches. First we used a partial equilibrium model encompassing crude oil, gasoline, ethanol, corn, and ethanol by-products. Second, we used a stochastic simulation model of a prototypical ethanol plant. From the partial equilibrium analysis, it appears the variable subsidy provides a safety net for ethanol producers when oil prices are low; yet, it does not put undue pressure on corn prices when oil prices are high. At high oil prices, the level of ethanol production is driven by market forces. From the plant level stochastic analysis, essentially the same conclusions are reached. As with the fixed subsidy, the variable subsidy can increase the net present value (NPV) sufficiently to encourage investment, but with lower risk for the producer, lower probability of a loss from the investment, and often lower expected cost to government. Finally, in the US, the ethanol industry is up against a blending limit called the blend wall. If the blending wall remains in place and no way around it is found, it does not matter much what other policy options are used.

  4. Can the Nigerian biofuel policy and incentives (2007) transform Nigeria into a biofuel economy?

    International Nuclear Information System (INIS)

    Ohimain, Elijah I.

    2013-01-01

    Nigeria's economy is largely dependent on petroleum, yet the country is suffering from fuel supply shortages. In response to the transportation fuel supply difficulties in Nigeria, the country released the Nigerian Biofuel Policy and Incentives in 2007 to create favorable investment climate for the entrance of Nigeria into the biofuel sector. The paper assessed the progress made thus far by Nigeria, 4 years after the Nigerian biofuel was released in an attempt to answer the question whether the policy is adequate to transform Nigeria into a biofuel economy. The study found that little progress has been made, which includes commencement of the construction of 20 bioethanol factories, installation of biofuel handling facilities at two depots (Mosimi and Atlas Cove), and selection of retail outlets for biofuel/conventional fuel mix. The site construction of the announced biofuel projects is now slow and other progress is marginal. We therefore conclude that the Nigerian biofuel policy is unlikely to transform Nigeria into a biofuel economy unless the Government revert and refocus on biofuel and include additional financial incentives such as grants and subsidy to complement the tax waivers (income, import duty, VAT), loans, and insurance cover contained in the policy. - Highlights: ► Nigeria's economy is dependent on petroleum, yet the country is suffering from fuel shortages. ► The Nigerian Biofuel Policy and Incentives was released in 2007. ► Little progress has been made since the policy was released 4 years ago. ► Hence, the policy is unlikely to transform Nigeria into a biofuel economy

  5. Cyanobacterial biofuel production.

    Science.gov (United States)

    Machado, Iara M P; Atsumi, Shota

    2012-11-30

    The development of new technologies for production of alternative fuel became necessary to circumvent finite petroleum resources, associate rising costs, and environmental concerns due to rising fossil fuel CO₂ emissions. Several alternatives have been proposed to develop a sustainable industrial society and reduce greenhouse emissions. The idea of biological conversion of CO₂ to fuel and chemicals is receiving increased attention. In particular, the direct conversion of CO₂ with solar energy to biofuel by photosynthetic microorganisms such as microalgae and cyanobacteria has several advantages compared to traditional biofuel production from plant biomass. Photosynthetic microorganisms have higher growth rates compared with plants, and the production systems can be based on non-arable land. The advancement of synthetic biology and genetic manipulation has permitted engineering of cyanobacteria to produce non-natural chemicals typically not produced by these organisms in nature. This review addresses recent publications that utilize different approaches involving engineering cyanobacteria for production of high value chemicals including biofuels. Published by Elsevier B.V.

  6. Microalgae: biofuel production

    Directory of Open Access Journals (Sweden)

    Babita Kumari

    2013-04-01

    Full Text Available In the present day, microalgae feedstocks are gaining interest in energy scenario due to their fast growth potential coupled with relatively high lipid, carbohydrate and nutrients contents. All of these properties render them an excellent source for biofuels such as biodiesel, bioethanol and biomethane; as well as a number of other valuable pharmaceutical and nutraceutical products. The present review is a critical appraisal of the commercialization potential of microalgae biofuels. The available literature on various aspects of microalgae for e.g. its cultivation, life cycle assessment, and conceptualization of an algal biorefinery, has been done. The evaluation of available information suggests the operational and maintenance cost along with maximization of oil-rich microalgae production is the key factor for successful commercialization of microalgae-based fuels.

  7. Biofuels versus food production: Does biofuels production increase food prices?

    International Nuclear Information System (INIS)

    Ajanovic, Amela

    2011-01-01

    Rapidly growing fossil energy consumption in the transport sector in the last two centuries caused problems such as increasing greenhouse gas emissions, growing energy dependency and supply insecurity. One approach to solve these problems could be to increase the use of biofuels. Preferred feedstocks for current 1st generation biofuels production are corn, wheat, sugarcane, soybean, rapeseed and sunflowers. The major problem is that these feedstocks are also used for food and feed production. The core objective of this paper is to investigate whether the recent increase of biofuels production had a significant impact on the development of agricultural commodity (feedstock) prices. The most important impact factors like biofuels production, land use, yields, feedstock and crude oil prices are analysed. The major conclusions of this analysis are: In recent years the share of bioenergy-based fuels has increased moderately, but continuously, and so did feedstock production, as well as yields. So far, no significant impact of biofuels production on feedstock prices can be observed. Hence, a co-existence of biofuel and food production seems possible especially for 2nd generation biofuels. However, sustainability criteria should be seriously considered. But even if all crops, forests and grasslands currently not used were used for biofuels production it would be impossible to substitute all fossil fuels used today in transport.

  8. Dynamics of Aviation Biofuel Investment, Incentives, and Market Growth: An Exploration Using the Biomass Scenario Model

    Energy Technology Data Exchange (ETDEWEB)

    Vimmerstedt, Laura; Newes, Emily

    2016-10-25

    The Federal Aviation Administration promotes the development of an aviation biofuel market, and has pursued a goal of 1 billion gallons of production annually by 2018. Although this goal is unlikely to be met, this analysis applies the Biomass Scenario Model to explore conditions affecting market growth, and identifies policy incentive and oil price conditions under which this level of production might occur, and by what year. Numerous combinations of conditions that are more favorable than current conditions can reach the goal before 2030.

  9. Alternative Crops and Biofuel Production

    Energy Technology Data Exchange (ETDEWEB)

    Kenkel, Philip [Oklahoma State Univ., Stillwater, OK (United States); Holcomb, Rodney B. [Oklahoma State Univ., Stillwater, OK (United States)

    2013-03-01

    In order for the biofuel industry to meet the RFS benchmarks for biofuels, new feedstock sources and production systems will have to be identified and evaluated. The Southern Plains has the potential to produce over a billion gallons of biofuels from regionally produced alternative crops, agricultural residues, and animal fats. While information on biofuel conversion processes is available, it is difficult for entrepreneurs, community planners and other interested individuals to determine the feasibility of biofuel processes or to match production alternatives with feed stock availability and community infrastructure. This project facilitates the development of biofuel production from these regionally available feed stocks. Project activities are concentrated in five major areas. The first component focused on demonstrating the supply of biofuel feedstocks. This involves modeling the yield and cost of production of dedicated energy crops at the county level. In 1991 the DOE selected switchgrass as a renewable source to produce transportation fuel after extensive evaluations of many plant species in multiple location (Caddel et al,. 2010). However, data on the yield and cost of production of switchgrass are limited. This deficiency in demonstrating the supply of biofuel feedstocks was addressed by modeling the potential supply and geographic variability of switchgrass yields based on relationship of available switchgrass yields to the yields of other forage crops. This model made it possible to create a database of projected switchgrass yields for five different soil types at the county level. A major advantage of this methodology is that the supply projections can be easily updated as improved varieties of switchgrass are developed and additional yield data becomes available. The modeling techniques are illustrated using the geographic area of Oklahoma. A summary of the regional supply is then provided.

  10. Biofuels development and adoption in Nigeria: Synthesis of drivers, incentives and enablers

    International Nuclear Information System (INIS)

    Abila, Nelson

    2012-01-01

    Biofuels development and adoption in Nigeria has progressed significantly since the inception of the country's biofuel program in 2007. The rapid growth of the biofuels subsector in Nigeria inspired this review which aims at identifying the key drivers, agents, enablers, incentives and objectives driving the development. From the upstream to the downstream sub-sectors, there is an increasing entry of players and participants (private and public investors). This paper aims to explore the underlining drivers, enablers and incentives promoting the investments and participations in biofuels development, adoption and utilization in Nigeria. The research sourced data from basically secondary sources and undertook desk review of available information. The drivers identified are classified into the endogenous and exogenous categories. From the review, the paper presents a multi-components conceptual framework that captures key elements of the biofuel development in Nigeria. - Highlights: ► Delineate factors (drivers) promoting biofuels. ► Identify agents and their roles in incentivizing the biofuel development. ► Delineate incentives from enablers of biofuel development and adoption. ► Categorize objective motives of actors within the sustainability triangle. ► Propose a framework as a foundation for further research, policy analysis and intervention.

  11. Land availability for biofuel production.

    Science.gov (United States)

    Cai, Ximing; Zhang, Xiao; Wang, Dingbao

    2011-01-01

    Marginal agricultural land is estimated for biofuel production in Africa, China, Europe, India, South America, and the continental United States, which have major agricultural production capacities. These countries/regions can have 320-702 million hectares of land available if only abandoned and degraded cropland and mixed crop and vegetation land, which are usually of low quality, are accounted. If grassland, savanna, and shrubland with marginal productivity are considered for planting low-input high-diversity (LIHD) mixtures of native perennials as energy crops, the total land availability can increase from 1107-1411 million hectares, depending on if the pasture land is discounted. Planting the second generation of biofuel feedstocks on abandoned and degraded cropland and LIHD perennials on grassland with marginal productivity may fulfill 26-55% of the current world liquid fuel consumption, without affecting the use of land with regular productivity for conventional crops and without affecting the current pasture land. Under the various land use scenarios, Africa may have more than one-third, and Africa and Brazil, together, may have more than half of the total land available for biofuel production. These estimations are based on physical conditions such as soil productivity, land slope, and climate.

  12. Progress in biofuel production from gasification

    OpenAIRE

    Sikarwar, Vineet Singh; Zhao, Ming; Fennell, Paul S.; Shah, Nilay; Anthony, Edward J.

    2017-01-01

    Biofuels from biomass gasification are reviewed here, and demonstrated to be an attractive option. Recent progress in gasification techniques and key generation pathways for biofuels production, process design and integration and socio-environmental impacts of biofuel generation are discussed, with the goal of investigating gasification-to-biofuels’ credentials as a sustainable and eco-friendly technology. The synthesis of important biofuels such as bio-methanol, bio-ethanol and higher alcoho...

  13. Toward nitrogen neutral biofuel production.

    Science.gov (United States)

    Huo, Yi-Xin; Wernick, David G; Liao, James C

    2012-06-01

    Environmental concerns and an increasing global energy demand have spurred scientific research and political action to deliver large-scale production of liquid biofuels. Current biofuel processes and developing approaches have focused on closing the carbon cycle by biological fixation of atmospheric carbon dioxide and conversion of biomass to fuels. To date, these processes have relied on fertilizer produced by the energy-intensive Haber-Bosch process, and have not addressed the global nitrogen cycle and its environmental implications. Recent developments to convert protein to fuel and ammonia may begin to address these problems. In this scheme, recycling ammonia to either plant or algal feedstocks reduces the demand for synthetic fertilizer supplementation. Further development of this technology will realize its advantages of high carbon fixation rates, inexpensive and simple feedstock processing, in addition to reduced fertilizer requirements. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Synthetic Biology Guides Biofuel Production

    Directory of Open Access Journals (Sweden)

    Michael R. Connor

    2010-01-01

    Full Text Available The advancement of microbial processes for the production of renewable liquid fuels has increased with concerns about the current fuel economy. The development of advanced biofuels in particular has risen to address some of the shortcomings of ethanol. These advanced fuels have chemical properties similar to petroleum-based liquid fuels, thus removing the need for engine modification or infrastructure redesign. While the productivity and titers of each of these processes remains to be improved, progress in synthetic biology has provided tools to guide the engineering of these processes through present and future challenges.

  15. Synthetic Biology Guides Biofuel Production

    Science.gov (United States)

    Connor, Michael R.; Atsumi, Shota

    2010-01-01

    The advancement of microbial processes for the production of renewable liquid fuels has increased with concerns about the current fuel economy. The development of advanced biofuels in particular has risen to address some of the shortcomings of ethanol. These advanced fuels have chemical properties similar to petroleum-based liquid fuels, thus removing the need for engine modification or infrastructure redesign. While the productivity and titers of each of these processes remains to be improved, progress in synthetic biology has provided tools to guide the engineering of these processes through present and future challenges. PMID:20827393

  16. Zeolite membranes for effective production of biofuels

    OpenAIRE

    Sjöberg, Erik

    2012-01-01

    To deal with the increasing demand of renewable fuels, more efficient processes for the production of biofuels are needed. Zeolite membranes have the potential to improve many existing processes that could be used for production of biofuels. Methanol is a potential biofuel that may be produced from synthesis gas in an equilibrium limited reaction. The production of methanol from synthesis gas could be improved by use of a membrane reactor, which could increase the conversion of synthesis gas ...

  17. Optimization of Biofuel Production From Transgenic Microalgae

    Science.gov (United States)

    2013-02-27

    AFRL-OSR-VA-TR-2013-0145 OPTIMIZATION OF BIOFUEL PRODUCTION FROM TRANSGENIC MICROALGAE Richard Sayre Donald Danforth...Technical 20080815 to 20120630 OPTIMIZATION OF BIOFUEL PRODUCTION FROM TRANSGENIC MICROALGAE FA9550-08-1-0451 Richard Sayre Donald Danforth Plant...BIOFUEL PRODUCTION FROM TRANSGENIC MICROALGAE Grant/Contract Number: FA9550-08-1-0451 Reporting Period: Final Report Abstract: We have compared the

  18. Metabolomics of Clostridial Biofuel Production

    Energy Technology Data Exchange (ETDEWEB)

    Rabinowitz, Joshua D [Princeton Univ., NJ (United States); Aristilde, Ludmilla [Cornell Univ., Ithaca, NY (United States); Amador-Noguez, Daniel [Univ. of Wisconsin, Madison, WI (United States)

    2015-09-08

    Members of the genus Clostridium collectively have the ideal set of the metabolic capabilities for fermentative biofuel production: cellulose degradation, hydrogen production, and solvent excretion. No single organism, however, can effectively convert cellulose into biofuels. Here we developed, using metabolomics and isotope tracers, basic science knowledge of Clostridial metabolism of utility for future efforts to engineer such an organism. In glucose fermentation carried out by the biofuel producer Clostridium acetobutylicum, we observed a remarkably ordered series of metabolite concentration changes as the fermentation progressed from acidogenesis to solventogenesis. In general, high-energy compounds decreased while low-energy species increased during solventogenesis. These changes in metabolite concentrations were accompanied by large changes in intracellular metabolic fluxes, with pyruvate directed towards acetyl-CoA and solvents instead of oxaloacetate and amino acids. Thus, the solventogenic transition involves global remodeling of metabolism to redirect resources from biomass production into solvent production. In contrast to C. acetobutylicum, which is an avid fermenter, C. cellulolyticum metabolizes glucose only slowly. We find that glycolytic intermediate concentrations are radically different from fast fermenting organisms. Associated thermodynamic and isotope tracer analysis revealed that the full glycolytic pathway in C. cellulolyticum is reversible. This arises from changes in cofactor utilization for phosphofructokinase and an alternative pathway from phosphoenolpyruvate to pyruvate. The net effect is to increase the high-energy phosphate bond yield of glycolysis by 150% (from 2 to 5) at the expense of lower net flux. Thus, C. cellulolyticum prioritizes glycolytic energy efficiency over speed. Degradation of cellulose results in other sugars in addition to glucose. Simultaneous feeding of stable isotope-labeled glucose and unlabeled pentose sugars

  19. Coupling of Algal Biofuel Production with Wastewater

    Directory of Open Access Journals (Sweden)

    Neha Chamoli Bhatt

    2014-01-01

    Full Text Available Microalgae have gained enormous consideration from scientific community worldwide emerging as a viable feedstock for a renewable energy source virtually being carbon neutral, high lipid content, and comparatively more advantageous to other sources of biofuels. Although microalgae are seen as a valuable source in majority part of the world for production of biofuels and bioproducts, still they are unable to accomplish sustainable large-scale algal biofuel production. Wastewater has organic and inorganic supplements required for algal growth. The coupling of microalgae with wastewater is an effective way of waste remediation and a cost-effective microalgal biofuel production. In this review article, we will primarily discuss the possibilities and current scenario regarding coupling of microalgal cultivation with biofuel production emphasizing recent progress in this area.

  20. Coupling of algal biofuel production with wastewater.

    Science.gov (United States)

    Bhatt, Neha Chamoli; Panwar, Amit; Bisht, Tara Singh; Tamta, Sushma

    2014-01-01

    Microalgae have gained enormous consideration from scientific community worldwide emerging as a viable feedstock for a renewable energy source virtually being carbon neutral, high lipid content, and comparatively more advantageous to other sources of biofuels. Although microalgae are seen as a valuable source in majority part of the world for production of biofuels and bioproducts, still they are unable to accomplish sustainable large-scale algal biofuel production. Wastewater has organic and inorganic supplements required for algal growth. The coupling of microalgae with wastewater is an effective way of waste remediation and a cost-effective microalgal biofuel production. In this review article, we will primarily discuss the possibilities and current scenario regarding coupling of microalgal cultivation with biofuel production emphasizing recent progress in this area.

  1. Coupling of Algal Biofuel Production with Wastewater

    Science.gov (United States)

    Panwar, Amit; Bisht, Tara Singh; Tamta, Sushma

    2014-01-01

    Microalgae have gained enormous consideration from scientific community worldwide emerging as a viable feedstock for a renewable energy source virtually being carbon neutral, high lipid content, and comparatively more advantageous to other sources of biofuels. Although microalgae are seen as a valuable source in majority part of the world for production of biofuels and bioproducts, still they are unable to accomplish sustainable large-scale algal biofuel production. Wastewater has organic and inorganic supplements required for algal growth. The coupling of microalgae with wastewater is an effective way of waste remediation and a cost-effective microalgal biofuel production. In this review article, we will primarily discuss the possibilities and current scenario regarding coupling of microalgal cultivation with biofuel production emphasizing recent progress in this area. PMID:24982930

  2. Biofuels

    International Nuclear Information System (INIS)

    Poitrat, E.

    2009-01-01

    Biofuels are fuels made from non-fossil vegetal or animal materials (biomass). They belong to the renewable energy sources as they do not contribute to worsen some global environmental impacts, like the greenhouse effect, providing that their production is performed in efficient energy conditions with low fossil fuel consumption. This article presents: 1 - the usable raw materials: biomass-derived resources, qualitative and quantitative aspects, biomass uses; 2 - biofuels production from biomass: alcohols and ethers, vegetable oils and their esters, synthetic liquid or gaseous biofuels, biogas; 3 - characteristics of liquid biofuels and comparison with gasoline and diesel fuel; 4 - biofuel uses: alcohols and their esters, biofuels with oxygenated compounds; vegetable oils and their derivatives in diesel engines, biogas, example of global environmental impact: the greenhouse effect. (J.S.)

  3. Modifying plants for biofuel and biomaterial production.

    Science.gov (United States)

    Furtado, Agnelo; Lupoi, Jason S; Hoang, Nam V; Healey, Adam; Singh, Seema; Simmons, Blake A; Henry, Robert J

    2014-12-01

    The productivity of plants as biofuel or biomaterial crops is established by both the yield of plant biomass per unit area of land and the efficiency of conversion of the biomass to biofuel. Higher yielding biofuel crops with increased conversion efficiencies allow production on a smaller land footprint minimizing competition with agriculture for food production and biodiversity conservation. Plants have traditionally been domesticated for food, fibre and feed applications. However, utilization for biofuels may require the breeding of novel phenotypes, or new species entirely. Genomics approaches support genetic selection strategies to deliver significant genetic improvement of plants as sources of biomass for biofuel manufacture. Genetic modification of plants provides a further range of options for improving the composition of biomass and for plant modifications to assist the fabrication of biofuels. The relative carbohydrate and lignin content influences the deconstruction of plant cell walls to biofuels. Key options for facilitating the deconstruction leading to higher monomeric sugar release from plants include increasing cellulose content, reducing cellulose crystallinity, and/or altering the amount or composition of noncellulosic polysaccharides or lignin. Modification of chemical linkages within and between these biomass components may improve the ease of deconstruction. Expression of enzymes in the plant may provide a cost-effective option for biochemical conversion to biofuel. © 2014 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  4. IEA Energy Technology Essentials: Biofuel Production

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-01-15

    The IEA Energy Technology Essentials series offers concise four-page updates on the different technologies for producing, transporting and using energy. Biofuel Production is the topic covered in this edition.

  5. Constructed wetlands as biofuel production systems

    Science.gov (United States)

    Liu, Dong; Wu, Xu; Chang, Jie; Gu, Baojing; Min, Yong; Ge, Ying; Shi, Yan; Xue, Hui; Peng, Changhui; Wu, Jianguo

    2012-03-01

    Clean biofuel production is an effective way to mitigate global climate change and energy crisis. Progress has been made in reducing greenhouse-gas (GHG) emissions and nitrogen fertilizer consumption through biofuel production. Here we advocate an alternative approach that efficiently produces cellulosic biofuel and greatly reduces GHG emissions using waste nitrogen through wastewater treatment with constructed wetlands in China. Our combined experimental and literature data demonstrate that the net life-cycle energy output of constructed wetlands is higher than that of corn, soybean, switchgrass, low-input high-diversity grassland and algae systems. Energy output from existing constructed wetlands is ~237% of the input for biofuel production and can be enhanced through optimizing the nitrogen supply, hydrologic flow patterns and plant species selection. Assuming that all waste nitrogen in China could be used by constructed wetlands, biofuel production can account for 6.7% of national gasoline consumption. We also find that constructed wetlands have a greater GHG reduction than the existing biofuel production systems in a full life-cycle analysis. This alternative approach is worth pursuing because of its great potential for straightforward operation, its economic competitiveness and many ecological benefits.

  6. Biofuels

    International Nuclear Information System (INIS)

    1994-01-01

    This paper presents general aspects of biofuels. It includes production, comparison with conventional fuel concerning full fuel cycle energy use, gas emissions. Moreover, economical aspects are also considered. (TEC). refs

  7. Biofuel production by recombinant microorganisms

    Energy Technology Data Exchange (ETDEWEB)

    Liao, James C.; Atsumi, Shota; Cann, Anthony F.

    2017-07-04

    Provided herein are metabolically-modified microorganisms useful for producing biofuels. More specifically, provided herein are methods of producing high alcohols including isobutanol, 1-butanol, 1-propanol, 2-methyl-1-butanol, 3-methyl-1-butanol and 2-phenylethanol from a suitable substrate.

  8. Bio-fuel production potential in Romania

    International Nuclear Information System (INIS)

    Laurentiu, F.; Silvian, F.; Dumitru, F.

    2006-01-01

    The paper is based on the ESTO Study: Techno- Economic Feasibility of Large-Scale Production of Bio-Fuels in EU-Candidate Countries. Bio-fuel production has not been taken into account significantly until now in Romania, being limited to small- scale productions of ethanol, used mostly for various industrial purposes. However the climatic conditions and the quality of the soil are very suitable in the country for development of the main crops (wheat, sugar-beet, sunflower and rape-seed) used in bio-ethanol and bio-diesel production. The paper intended to consider a pertinent discussion of the present situation in Romania's agriculture stressing on the following essential items in the estimation of bio-fuels production potential: availability of feed-stock for bio-fuel production; actual productions of bio-fuels; fuel consumption; cost assessment; SWOT approach; expected trends. Our analysis was based on specific agricultural data for the period 1996-2000. An important ethanol potential (due to wheat, sugar-beet and maize cultures), as well as bio-diesel one (due to sun-flower and rape-seed) were predicted for the period 2005-2010 which could be exploited with the support of an important financial and technological effort, mainly from EU countries

  9. Impacts of Climate Change on Biofuels Production

    Energy Technology Data Exchange (ETDEWEB)

    Melillo, Jerry M. [Marine Biological Laboratory, Woods Hole, MA (United States)

    2014-04-30

    The overall goal of this research project was to improve and use our biogeochemistry model, TEM, to simulate the effects of climate change and other environmental changes on the production of biofuel feedstocks. We used the improved version of TEM that is coupled with the economic model, EPPA, a part of MIT’s Earth System Model, to explore how alternative uses of land, including land for biofuels production, can help society meet proposed climate targets. During the course of this project, we have made refinements to TEM that include development of a more mechanistic plant module, with improved ecohydrology and consideration of plant-water relations, and a more detailed treatment of soil nitrogen dynamics, especially processes that add or remove nitrogen from ecosystems. We have documented our changes to TEM and used the model to explore the effects on production in land ecosystems, including changes in biofuels production.

  10. Applications of Cyanobacteria in Biofuel Production

    DEFF Research Database (Denmark)

    Möllers, K. Benedikt

    and to evolve from a wasteful petrochemical system into a sustainable bio-based society, biofuels and the introduction of bio-refineries play an essential role. Aquatic phototrophs are promising organisms to employ photosynthetic capacities as well as the derived carbohydrates for the production of biofuels...... and bio-based products. This thesis shows two examples of the applicability of cyanobacterial biomass as a renewable substrate for industrially relevant biofuel fermentations, i.e. ethanol fermentation by Saccharomyces cerevisiae and acetone-butanol-ethanol (ABE) fermentation by Clostridium acetobutylicum...... ATCC 824 (Paper 1 and paper 2). Furthermore, photo-pigments or the entire photosynthetic apparatus, i.e. the thylakoid membrane system of cyanobacteria were applied for the oxidative degradation of plant biomass by a novel light dependent electron transfer to a metalloenzyme (Paper 3). In particular...

  11. MAIN TRENDS OF BIOFUELS PRODUCTION IN UKRAINE

    Directory of Open Access Journals (Sweden)

    Myroslav PANCHUK

    2017-12-01

    Full Text Available The analysis of biological resources for biofuels production in Ukraine has been carried out, and it has been shown that usage of alternative energy sources has great potential for substantially improving energy supply of the state and solving environmental problems. The directions of development and new technologies of obtaining motor fuels from biomass are systematized. It has been established that usage of different types of biofuels and their mixtures for feeding internal combustion engines involves application of modified engines in terms of structure and algorithms and usage of traditional designs of cars without significant structural changes. Moreover, the impact of biofuels on the efficient operation of the engine requires further integrated research.

  12. SOLID BIOFUEL UTILIZATION IN VEGETABLE OIL PRODUCTION

    Directory of Open Access Journals (Sweden)

    Slusarenko V.

    2016-08-01

    Full Text Available The paper deals with questions of creating at JSC “Alimentarmash "in the last 20 years the technological equipment for the production of vegetable oils from oilseeds: from the press for the final spin to mini oilfactory, using as an energy source for heating the liquid coolant (Thermal oil "Arian" of solid biofuels - husk of sunflower seeds.

  13. Exploring new strategies for cellulosic biofuels production

    Science.gov (United States)

    Paul Langan; S. Gnankaran; Kirk D. Rector; Norma Pawley; David T. Fox; Dae Won Cho; Kenneth E. Hammel

    2011-01-01

    A research program has been initiated to formulate new strategies for efficient low-cost lignocellulosic biomass processing technologies for the production of biofuels. This article reviews results from initial research into lignocellulosic biomass structure, recalcitrance, and pretreatment. In addition to contributing towards a comprehensive understanding of...

  14. Production of biofuels and chemicals with ionic liquids

    CERN Document Server

    Fang, Zhen; Qi, Xinhua

    2013-01-01

    This book explores the application of ionic liquids to biomass for producing biofuels and chemicals. Covers pretreatment, fermentation, cellulose transformation, reaction kinetics and more, as well as subsequent production of biofuels and platform chemicals.

  15. Positive and negative impacts of agricultural production of liquid biofuels

    NARCIS (Netherlands)

    Reijnders, L.; Hester, R.E.; Harrison, R.M.

    2012-01-01

    Agricultural production of liquid biofuels can have positive effects. It can decrease dependence on fossil fuels and increase farmers’ incomes. Agricultural production of mixed perennial biofuel crops may increase pollinator and avian richness. Most types of agricultural crop-based liquid biofuel

  16. Analysis of Economic and Environmental Aspects of Microalgae Biorefinery for Biofuels Production: A Review.

    Science.gov (United States)

    Chia, Shir Reen; Chew, Kit Wayne; Show, Pau Loke; Yap, Yee Jiun; Ong, Hwai Chyuan; Ling, Tau Chuan; Chang, Jo-Shu

    2018-01-22

    Microalgae are considered promising feedstock for the production of biofuels and other bioactive compounds, yet there are still challenges on commercial applications of microalgae-based products. This review focuses on the economic analysis, environmental impact, and industrial potential of biofuels production from microalgae. The cost of biofuels production remains higher compared to conventional fuel sources. However, integration of biorefinery pathways with biofuels production for the recovery of value-added products (such as antioxidants, natural dyes, cosmetics, nutritional supplements, polyunsaturated fatty acids, and so forth) could substantially reduce the production costs. It also paves the way for sustainable energy resources by significantly reducing the emissions of CO 2 , NO x , SO x , and heavy metals. Large-scale biofuels production has yet to be successfully commercialized with many roadblocks ahead and heavy competition with conventional fuel feedstock as well as technological aspects. One of the prominent challenges is to develop a cost-effective method to achieve high-density microalgal cultivation on an industrial scale. The biofuels industry should be boosted by Government's support in the form of subsidies and incentives, for addressing the pressing climate change issues, achieving sustainability, and energy security. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Institutional analysis of biofuel production in Northern Ghana

    OpenAIRE

    Kwoyiga, Lydia

    2013-01-01

    The thesis studied the nature of institutional arrangement around biofuel production and how this arrangement has shaped the production outcome of biofuel companies and community development. The study was conducted in two communities of the Yendi Municipal Assembly of the Northern Region of Ghana. In this area, a biofuel company called Biofuel Africa Limited has acquired areas of land and cultivated Jatropha plantations. A total of 32 informants were interviewed to arrive at information ne...

  18. Developing symbiotic consortia for lignocellulosic biofuel production

    Energy Technology Data Exchange (ETDEWEB)

    Zuroff, Trevor R.; Curtis, Wayne R. [Pennsylvania State Univ., University Park, PA (United States). Dept. of Chemical Engineering

    2012-02-15

    The search for petroleum alternatives has motivated intense research into biological breakdown of lignocellulose to produce liquid fuels such as ethanol. Degradation of lignocellulose for biofuel production is a difficult process which is limited by, among other factors, the recalcitrance of lignocellulose and biological toxicity of the products. Consolidated bioprocessing has been suggested as an efficient and economical method of producing low value products from lignocellulose; however, it is not clear whether this would be accomplished more efficiently with a single organism or community of organisms. This review highlights examples of mixtures of microbes in the context of conceptual models for developing symbiotic consortia for biofuel production from lignocellulose. Engineering a symbiosis within consortia is a putative means of improving both process efficiency and stability relative to monoculture. Because microbes often interact and exist attached to surfaces, quorum sensing and biofilm formation are also discussed in terms of consortia development and stability. An engineered, symbiotic culture of multiple organisms may be a means of assembling a novel combination of metabolic capabilities that can efficiently produce biofuel from lignocellulose. (orig.)

  19. Plant biotechnology for lignocellulosic biofuel production.

    Science.gov (United States)

    Li, Quanzi; Song, Jian; Peng, Shaobing; Wang, Jack P; Qu, Guan-Zheng; Sederoff, Ronald R; Chiang, Vincent L

    2014-12-01

    Lignocelluloses from plant cell walls are attractive resources for sustainable biofuel production. However, conversion of lignocellulose to biofuel is more expensive than other current technologies, due to the costs of chemical pretreatment and enzyme hydrolysis for cell wall deconstruction. Recalcitrance of cell walls to deconstruction has been reduced in many plant species by modifying plant cell walls through biotechnology. These results have been achieved by reducing lignin content and altering its composition and structure. Reduction of recalcitrance has also been achieved by manipulating hemicellulose biosynthesis and by overexpression of bacterial enzymes in plants to disrupt linkages in the lignin-carbohydrate complexes. These modified plants often have improved saccharification yield and higher ethanol production. Cell wall-degrading (CWD) enzymes from bacteria and fungi have been expressed at high levels in plants to increase the efficiency of saccharification compared with exogenous addition of cellulolytic enzymes. In planta expression of heat-stable CWD enzymes from bacterial thermophiles has made autohydrolysis possible. Transgenic plants can be engineered to reduce recalcitrance without any yield penalty, indicating that successful cell wall modification can be achieved without impacting cell wall integrity or plant development. A more complete understanding of cell wall formation and structure should greatly improve lignocellulosic feedstocks and reduce the cost of biofuel production. © 2014 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  20. Production of biofuels obtained from microalgae

    OpenAIRE

    Luis Carlos Fernández-Linares; Jorge Montiel Montoya; Aarón Millán Oropeza; Jesús Agustín Badillo Corona

    2012-01-01

    A review of the situation of bio-fuels in the world, mainly of biodiesel is made. A comparison among the different raw materials for the synthesis of biodiesel is done and it is emphasized in the production of biodiesel from microalgae. The different fresh and salt water micro-algae in its lipid content and productivity are compared. A review of the process of biosynthesis of lipids in microalgae and how to improve the production of lipids in microalgae is shown. It is discussed the importanc...

  1. Integrated Biorefinery for Biofuels Production

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Gabriel [Society for Energy and Environmental Research (SEER), New York, NY (United States)

    2011-09-02

    This project has focused on very low grade fats, oil and greases found in municipal, commercial and industrial facilities around the country. These wastes are often disposed in landfills, wastewater treatment plants or farm fields or are blended illegally into animal feeds. Using any of these waste fatty materials that are unfit for human or animal nutrition as a clean alternative fuel makes good sense. This project defines the aforementioned wastes in terms of quality and prevalence in the US, then builds on specific promising pathways for utilizing these carbon neutral wastes. These pathways are discussed and researched at bench-scale, and in one instance, at pilot-scale. The three primary pathways are as follows: The production of Renewable Diesel Oil (RDO) as a stand-alone fuel or blended with standard distillate or residual hydrocarbons; The production of RDO as a platform for the further manufacture of Biodiesel utilizing acid esterification; The production of RDO as a platform for the manufacture of an ASTM Diesel Fuel using one or more catalysts to effect a decarboxylation of the carboxylics present in RDO This study shows that Biodiesel and ASTM Diesel produced at bench-scale (utilizing RDO made from grease trap waste as an input) could not meet industry specifications utilizing the technologies that were selected by the investigators. Details of these investigations are discussed in this report and will hopefully provide a starting point for other researchers interested in these pathways in future studies. Although results were inconclusive in finding ways to utilize RDO technology, in effect, as a pretreatment for commonly discussed technologies such as Biodiesel and ASTM Diesel, this study does shed light on the properties, performance and cost of utilizing waste greases directly as a retail liquid fuel (RDO). The utilization as a retail RDO as a boiler fuel, or for other such applications, is the most important finding of the study.

  2. Cyanobacteria as a platform for biofuel production

    Directory of Open Access Journals (Sweden)

    Nicole E Nozzi

    2013-09-01

    Full Text Available Cyanobacteria have great potential as a platform for biofuel production because of their fast growth, ability to fix carbon dioxide gas, and their genetic tractability. Furthermore they do not require fermentable sugars or arable land for growth and so competition with cropland would be greatly reduced. In this perspective we discuss the challenges and areas for improvement most pertinent for advancing cyanobacterial fuel production, including: improving genetic parts, carbon fixation, metabolic flux, nutrient requirements on a large scale, and photosynthetic efficiency using natural light.

  3. Biofuels Fuels Technology Pathway Options for Advanced Drop-in Biofuels Production

    Energy Technology Data Exchange (ETDEWEB)

    Kevin L Kenney

    2011-09-01

    Advanced drop-in hydrocarbon biofuels require biofuel alternatives for refinery products other than gasoline. Candidate biofuels must have performance characteristics equivalent to conventional petroleum-based fuels. The technology pathways for biofuel alternatives also must be plausible, sustainable (e.g., positive energy balance, environmentally benign, etc.), and demonstrate a reasonable pathway to economic viability and end-user affordability. Viable biofuels technology pathways must address feedstock production and environmental issues through to the fuel or chemical end products. Potential end products include compatible replacement fuel products (e.g., gasoline, diesel, and JP8 and JP5 jet fuel) and other petroleum products or chemicals typically produced from a barrel of crude. Considering the complexity and technology diversity of a complete biofuels supply chain, no single entity or technology provider is capable of addressing in depth all aspects of any given pathway; however, all the necessary expert entities exist. As such, we propose the assembly of a team capable of conducting an in-depth technology pathway options analysis (including sustainability indicators and complete LCA) to identify and define the domestic biofuel pathways for a Green Fleet. This team is not only capable of conducting in-depth analyses on technology pathways, but collectively they are able to trouble shoot and/or engineer solutions that would give industrial technology providers the highest potential for success. Such a team would provide the greatest possible down-side protection for high-risk advanced drop-in biofuels procurement(s).

  4. Production of biofuels obtained from microalgae

    Directory of Open Access Journals (Sweden)

    Luis Carlos Fernández-Linares

    2012-09-01

    Full Text Available A review of the situation of bio-fuels in the world, mainly of biodiesel is made. A comparison among the different raw materials for the synthesis of biodiesel is done and it is emphasized in the production of biodiesel from microalgae. The different fresh and salt water micro-algae in its lipid content and productivity are compared. A review of the process of biosynthesis of lipids in microalgae and how to improve the production of lipids in microalgae is shown. It is discussed the importance of the genetic manipulation to highly lipid-producing microalgae (example: Botryrococuus braunni, Nannochloropsis sp, Noechlorisoleobundans and Nitschia sp.. A study of the advantages and disadvantages of the different systems of cultivation of microalgae is also made. Finally, it is shown a perspective of biofuels from microalgae. Among the main challenges to overcome to produce biodiesel from microalgae are: the cost of production of biomass, which involves the optimization of media, selection and manipulation of strains and photobioreactors design. The processof separation of biomass, the extraction of oils and by-products, the optimization of the process of transesterification, purification and use of by-products must also be considered.

  5. Protein engineering for biofuel production: Recent development

    Directory of Open Access Journals (Sweden)

    Nisha Singh

    2016-09-01

    Full Text Available The unstable and unsure handiness of crude oil sources moreover the rising price of fuels have shifted international efforts to utilize renewable resources for the assembly of greener energy and a replacement which might additionally meet the high energy demand of the globe. Biofuels represent a sustainable, renewable, and also the solely predictable energy supply to fossil fuels. During the green production of Biofuels, several in vivo processes place confidence in the conversion of biomass to sugars by engineered enzymes, and the subsequent conversion of sugars to chemicals via designed proteins in microbial production hosts. Enzymes are indispensable within the effort to provide fuels in an ecologically friendly manner. They have the potential to catalyze reactions with high specificity and potency while not using dangerous chemicals. Nature provides an in depth assortment of enzymes, however usually these should be altered to perform desired functions in needed conditions. Presently available enzymes like cellulose are subject to tight induction and regulation systems and additionally suffer inhibition from numerous end products. Therefore, more impregnable and economical catalyst preparations ought to be developed for the enzymatic method to be more economical. Approaches like protein engineering, reconstitution of protein mixtures and bio prospecting for superior enzymes are gaining importance. Advances in enzyme engineering allow the planning and/or directed evolution of enzymes specifically tailored for such industrial applications. Recent years have seen the production of improved enzymes to help with the conversion of biomass into fuels. The assembly of the many of those fuels is feasible due to advances in protein engineering. This review discusses the distinctive challenges that protein engineering faces in the method of changing lignocellulose to biofuels and the way they're addressed by recent advances in this field.

  6. Biofuel Production: Considerations for USACE Civil Works Business Lines

    Science.gov (United States)

    2014-12-01

    ER D C/ CE RL T R- 14 -3 2 USACE Institute of Water Resources Global Change Sustainability Program Biofuel Production Considerations... Biofuel Production Considerations for USACE Civil Works Business Lines Natalie R. Myers and Dick L. Gebhart Construction Engineering Research...that include the production of 36 billion gallons of biofuels by 2022, with 21 billion gallons from non-corn sources. To meet the congressionally

  7. Growing duckweed for biofuel production: a review.

    Science.gov (United States)

    Cui, W; Cheng, J J

    2015-01-01

    Duckweed can be utilised to produce ethanol, butanol and biogas, which are promising alternative energy sources to minimise dependence on limited crude oil and natural gas. The advantages of this aquatic plant include high rate of nutrient (nitrogen and phosphorus) uptake, high biomass yield and great potential as an alternative feedstock for the production of fuel ethanol, butanol and biogas. The objective of this article is to review the published research on growing duckweed for the production of the biofuels, especially starch enrichment in duckweed plants. There are mainly two processes affecting the accumulation of starch in duckweed biomass: photosynthesis for starch generation and metabolism-related starch consumption. The cost of stimulating photosynthesis is relatively high based on current technologies. Considerable research efforts have been made to inhibit starch degradation. Future research need in this area includes duckweed selection, optimisation of duckweed biomass production, enhancement of starch accumulation in duckweeds and use of duckweeds for production of various biofuels. © 2014 German Botanical Society and The Royal Botanical Society of the Netherlands.

  8. Barriers and Incentives to Potential Adoption of Biofuels Crops by Smallholder Farmers in the Eastern Cape Province, South Africa

    OpenAIRE

    Cheteni, Priviledge; Mushunje, Abbyssinia; Taruvinga, Amon

    2014-01-01

    The main objective of this study was to identify barriers and incentives that influence the potential adoption of biofuel crops by smallholder farmers. The study utilized a semi-structured questionnaire to record responses from 129 smallholder farmers that were identified through a snowballing sampling technique. The respondents were from the Oliver Tambo and Chris Hani District Municipalities in the Eastern Cape Province, South Africa. A Heckman two-step model was applied to analyze the dat...

  9. Limitation of Biofuel Production in Europe from the Forest Market

    Science.gov (United States)

    Leduc, Sylvain; Wetterlund, Elisabeth; Dotzauer, Erik; Kindermann, Georg

    2013-04-01

    The European Union has set a 10% target for the share of biofuel in the transportation sector to be met by 2020. To reach this target, second generation biofuel is expected to replace 3 to 5% of the transport fossil fuel consumption. But the competition on the feedstock is an issue and makes the planning for the second generation biofuel plant a challenge. Moreover, no commercial second generation biofuel production plant is under operation, but if reaching commercial status, this type of production plants are expected to become very large. In order to minimize the tranportation costs and to takle the competetion for the feedstock against the existing woody based industries, the geographical location of biofuel production plants becomes an issue. This study investigates the potential of second generation biofuel economically feasible in Europe by 2020 in regards with the competition for the feedsstock with the existing woody biomass based industries (CHP, pulp and paper mills, sawmills...). To assess the biofuel potential in Europe, a techno-economic, geographically explicit model, BeWhere, is used. It determines the optimal locations of bio-energy production plants by minimizing the costs and CO2 emissions of the entire supply chain. The existing woody based industries have to first meet their wood demand, and if the amount of wood that remains is suficiant, new bio-energy production plants if any can be set up. Preliminary results show that CHP plants are preferably chosen over biofuel production plants. Strong biofuel policy support is needed in order to consequently increase the biofuel production in Europe. The carbon tax influences the emission reduction to a higher degree than the biofuel support. And the potential of second generation biofuel would at most reach 3% of the European transport fuel if the wood demand does not increase from 2010.

  10. Biofuel co-product uses for pavement geo-materials stabilization : final report, April 2010.

    Science.gov (United States)

    2010-04-01

    The production and use of biofuels has increased in the present context of sustainable development. Biofuel production from plant : biomass produces not only biofuel or ethanol but also co-products containing lignin, modified lignin, and lignin deriv...

  11. Reassessing Escherichia coli as a cell factory for biofuel production.

    Science.gov (United States)

    Wang, Chonglong; Pfleger, Brian F; Kim, Seon-Won

    2017-06-01

    Via metabolic engineering, industrial microorganisms have the potential to convert renewable substrates into a wide range of biofuels that can address energy security and environmental challenges associated with current fossil fuels. The user-friendly bacterium, Escherichia coli, remains one of the most frequently used hosts for demonstrating production of biofuel candidates including alcohol-, fatty acid- and terpenoid-based biofuels. In this review, we summarize the metabolic pathways for synthesis of these biofuels and assess enabling technologies that assist in regulating biofuel synthesis pathways and rapidly assembling novel E. coli strains. These advances maintain E. coli's position as a prominent host for developing cell factories for biofuel production. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Potentials for Sustainable Commercial Biofuels Production in Nigeria

    African Journals Online (AJOL)

    Biofuel production has since shifted from the sole practice of the West, EU and a few other developed countries to being accepted globally. Many more countries have continued to enact appropriate legislations or formulate policy instruments that serve as the regulatory framework for biofuels production within their ...

  13. A modelling approach to estimate the European biofuel production: from crops to biofuels

    Energy Technology Data Exchange (ETDEWEB)

    Clodic, Melissa [Institute National de la Recherche Agronomique (IFP/INRA), Paris (France). Instituto Frances do Petroleo

    2008-07-01

    Today, in the context of energy competition and climate change, biofuels are promoted as a renewable resource to diversify the energy supply. However, biofuel development remains controversial. Here, we will present a way to make an environmental and economic cost and benefit analysis of European biofuels, from the crops until the marketed products, by using a linear programming optimization modelling approach. To make this European biofuel production model, named AGRAF, possible, we decided to use different independent linear programming optimization models which represent the separate parts of the process: European agricultural production, production of transforming industries and refinery production. To model the agricultural and the refining sections, we have chosen to improve existing and experimented models by adding a biofuel production part. For the transforming industry, we will create a new partial equilibrium model which will represent stake holders such as Sofiproteol, Stereos, etc. Data will then be exchanged between the models to coordinate all the biofuel production steps. Here, we will also focus on spatialization in order to meet certain of our requirements, such as the exchange flux analysis or the determination of transport costs, usually important in an industrial optimization model. (author)

  14. Optimal Localization of Biofuel Production on a European Scale

    OpenAIRE

    Wetterlund, Elisabeth

    2010-01-01

    Second generation biofuels use non-food lignocellulosic feedstock, for example waste or forest residues, and have in general lower environmental impact than first generation biofuels. In order to reach the 2020 target of 10% renewable energy in transport it will likely be necessary to have a share of at least 3% second generation fuels in the EU fuel mix. However, second generation biofuel production plants will typically need to be very large which puts significant demand on the supply chain...

  15. The South's outlook for sustainable forest bioenergy and biofuels production

    Science.gov (United States)

    David Wear; Robert Abt; Janaki Alavalapati; Greg Comatas; Mike Countess; Will McDow

    2010-01-01

    The future of a wood-based biofuel/bioenergy sector could hold important implications for the use, structure and function of forested landscapes in the South. This paper examines a set of questions regarding the potential effects of biofuel developments both on markets for traditional timber products and on the provision of various non-timber ecosystem services. In...

  16. Physiological and genetic studies towards biofuel production in cyanobacteria

    NARCIS (Netherlands)

    Schuurmans, R.M.

    2017-01-01

    The main aim of this thesis was to contribute to the optimization of the cyanobacterial cell factory and to increase the production of cellulose as a biofuel (precursor) via a physiological and a transgenic approach. Chapter 1 provides an overview of the current state of cyanobacterial biofuel

  17. Socio-economic impact of biofuel feedstock production on local ...

    African Journals Online (AJOL)

    Greater tenure security strengthens income growth and asset status for the poor and ensures resilience of local livelihoods (FAO, 2006). The most direct and immediate impact of biofuels production on local communities in Ghana relates to land loss. There are conflicts between biofuel investors, traditional authorities and.

  18. Global nitrogen requirement for increased biofuel production

    NARCIS (Netherlands)

    Flapper, Joris

    2008-01-01

    Biofuels are thought to be one of the options to substitute fossil fuels and prevent global warming by the greenhouse gas (GHG) effect as they are seen as a renewable form of energy. However, biofuels are almost solely subjected to criticism from an energ

  19. Sustainable production of grain crops for biofuels

    Science.gov (United States)

    Grain crops of the Gramineae are grown for their edible, starchy seeds. Their grain is used directly for human food, livestock feed, and as raw material for many industries, including biofuels. Using grain crops for non-food uses affects the amount of food available to the world. Grain-based biofuel...

  20. Next generation of liquid biofuel production

    NARCIS (Netherlands)

    Batidzirai, B.

    2012-01-01

    More than 99% of all currently produced biofuels are classified as “first generation” (i.e. fuels produced primarily from cereals, grains, sugar crops and oil seeds) (IEA, 2008b). “Second generation” or “next generation” biofuels, on the other hand, are produced from lignocellulosic feedstocks such

  1. Microalgae for biofuels production and environmental applications ...

    African Journals Online (AJOL)

    Microalgae can provide several different types of renewable biofuels. These include methane produced by anaerobic digestion of the algal biomass; biodiesel derived from microalgal oil and photobiologically produced biohydrogen. This review presents the current classification of biofuels, with special focus on microalgae ...

  2. Downstream Processing of Synechocystis for Biofuel Production

    Science.gov (United States)

    Sheng, Jie

    Lipids and free fatty acids (FFA) from cyanobacterium Synechocystis can be used for biofuel (e.g. biodiesel or renewable diesel) production. In order to utilize and scale up this technique, downstream processes including culturing and harvest, cell disruption, and extraction were studied. Several solvents/solvent systems were screened for lipid extraction from Synechocystis. Chloroform + methanol-based Folch and Bligh & Dyer methods were proved to be "gold standard" for small-scale analysis due to their highest lipid recoveries that were confirmed by their penetration of the cell membranes, higher polarity, and stronger interaction with hydrogen bonds. Less toxic solvents, such as methanol and MTBE, or direct transesterification of biomass (without preextraction step) gave only slightly lower lipid-extraction yields and can be considered for large-scale application. Sustained exposure to high and low temperature extremes severely lowered the biomass and lipid productivity. Temperature stress also triggered changes of lipid quality such as the degree of unsaturation; thus, it affected the productivities and quality of Synechocystis-derived biofuel. Pulsed electric field (PEF) was evaluated for cell disruption prior to lipid extraction. A treatment intensity > 35 kWh/m3 caused significant damage to the plasma membrane, cell wall, and thylakoid membrane, and it even led to complete disruption of some cells into fragments. Treatment by PEF enhanced the potential for the low-toxicity solvent isopropanol to access lipid molecules during subsequent solvent extraction, leading to lower usage of isopropanol for the same extraction efficiency. Other cell-disruption methods also were tested. Distinct disruption effects to the cell envelope, plasma membrane, and thylakoid membranes were observed that were related to extraction efficiency. Microwave and ultrasound had significant enhancement of lipid extraction. Autoclaving, ultrasound, and French press caused significant

  3. Selection and optimization of microbial hosts for biofuels production.

    Science.gov (United States)

    Fischer, Curt R; Klein-Marcuschamer, Daniel; Stephanopoulos, Gregory

    2008-11-01

    Currently, the predominant microbially produced biofuel is starch- or sugar-derived ethanol. However, ethanol is not an ideal fuel molecule, and lignocellulosic feedstocks are considerably more abundant than both starch and sugar. Thus, many improvements in both the feedstock and the fuel have been proposed. In this paper, we examine the prospects for bioproduction of four second-generation biofuels (n-butanol, 2-butanol, terpenoids, or higher lipids) from four feedstocks (sugars and starches, lignocellulosics, syngas, and atmospheric carbon dioxide). The principal obstacle to commercial production of these fuels is that microbial catalysts of robust yields, productivities, and titers have yet to be developed. Suitable microbial hosts for biofuel production must tolerate process stresses such as end-product toxicity and tolerance to fermentation inhibitors in order to achieve high yields and titers. We tested seven fast-growing host organisms for tolerance to production stresses, and discuss several metabolic engineering strategies for the improvement of biofuels production.

  4. PRODUCTION OF BIOFUELS AND ITS IMPACT ON AGRICULTURE IN CROATIA

    Directory of Open Access Journals (Sweden)

    Tajana Krička

    2008-09-01

    Full Text Available There is a large potential for the production of energy crops on agricultural land. Global demand for food is expected to double within the coming 50 years, and demand for transportation fuels is expected to increase even more rapidly. There is a great need for renewable energy supplies for biofuel production that do not cause significant environmental harm and do not compete with food supply. In addition, biofuel by-products can be utilized as livestock feed with a substantial revenue source and significantly increases the profitability of the production process. Food-based biofuels can meet but a small portion of energy needs despite recent advances in crop yields and increased biofuel production efficiency. Therefore, biofuels that are non food-based are likely to be of far greater importance over the longer term. Reasonable values on the external effects are in most cases not enough to make agriculture-based biomass energy competitive so that considerable government subsidies are needed. Biofuels such as cellulosic ethanol that can be produced on agriculturally marginal lands with minimum fertilizer, pesticide, and fossil energy inputs, or produced with agricultural residues have potential to provide fuel supplies with greater environmental benefits that either petroleum or current food-based biofuels.

  5. Rapid saccharification for production of cellulosic biofuels.

    Science.gov (United States)

    Lee, Dae-Seok; Wi, Seung Gon; Lee, Soo Jung; Lee, Yoon-Gyo; Kim, Yeong-Suk; Bae, Hyeun-Jong

    2014-04-01

    The economical production of biofuels is hindered by the recalcitrance of lignocellulose to processing, causing high consumption of processing enzymes and impeding hydrolysis of pretreated lignocellulosic biomass. We determined the major rate-limiting factor in the hydrolysis of popping pre-treated rice straw (PPRS) by examining cellulase adsorption to lignin and cellulose, amorphogenesis of PPRS, and re-hydrolysis. Based on the results, equivalence between enzyme loading and the open structural area of cellulose was required to significantly increase productive adsorption of cellulase and to accelerate enzymatic saccharification of PPRS. Amorphogenesis of PPRS by phosphoric acid treatment to expand open structural area of the cellulose fibers resulted in twofold higher cellulase adsorption and increased the yield of the first re-hydrolysis step from 13% to 46%. The total yield from PPRS was increased to 84% after 3h. These results provide evidence that cellulose structure is one of major effects on the enzymatic hydrolysis. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Land and agronomic potential for biofuel production in Southern Africa

    CSIR Research Space (South Africa)

    Von Maltitz, Graham P

    2017-04-01

    Full Text Available The Southern African region, from a purely biophysical perspective, has huge potential for biofuel production, especially in Mozambique and Zambia. Although many of the soils are sandy and acidic, with careful management and correct fertilization...

  7. The Navy Biofuel Initiative Under the Defense Production Act

    Science.gov (United States)

    2012-06-22

    important land-use issues. Oil production from meat and poultry processing is inherently limited by the amount of available wastes.” RAND considered the...support of a sustainable commercial biofuels industry .” The objective of the MOU is the construction or retrofitting of multiple domestic commercial...use authority under the Defense Production Act of 1950 (DPA) to develop a domestic industrial capacity to supply biofuel. In its FY2013

  8. Land and agronomic potential for biofuel production in Southern Africa

    OpenAIRE

    von Maltitz, Graham; van der Merwe, Marna

    2017-01-01

    The Southern African region, from a purely biophysical perspective, has huge potential for biofuel production, especially in Mozambique and Zambia. Although many of the soils are sandy and acidic, with careful management and correct fertilization, they should be highly productive. We suggest that sugarcane is the crop most easily mobilized for biofuel. A number of other crops, such as sweet sorghum, cassava, and tropical sugar beet, have good potential but will need further agronomic and proc...

  9. Feasibilities of consolidated bioprocessing microbes: from pretreatment to biofuel production.

    Science.gov (United States)

    Parisutham, Vinuselvi; Kim, Tae Hyun; Lee, Sung Kuk

    2014-06-01

    Lignocelluloses are rich sugar treasures, which can be converted to useful commodities such as biofuel with the help of efficient combination of enzymes and microbes. Although several bioprocessing approaches have been proposed, biofuel production from lignocelluloses is limited because of economically infeasible technologies for pretreatment, saccharification and fermentation. Use of consolidated bioprocessing (CBP) microbes is the most promising method for the cost-effective production of biofuels. However, lignocelluloses are obtained from highly diverse environment and hence are heterogeneous in nature. Therefore, it is necessary to develop and integrate tailor-designed pretreatment processes and efficient microbes that can thrive on many different kinds of biomass. In this review, the progress towards the construction of consolidated bioprocessing microbes, which can efficiently convert heterogeneous lignocellulosic biomass to bioenergy, has been discussed; in addition, the potential and constraints of current bioprocessing technologies for cellulosic biofuel production have been discussed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Systems-Level Synthetic Biology for Advanced Biofuel Production

    Energy Technology Data Exchange (ETDEWEB)

    Ruffing, Anne [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Jensen, Travis J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Strickland, Lucas Marshall [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Meserole, Stephen [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Tallant, David [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-03-01

    Cyanobacteria have been shown to be capable of producing a variety of advanced biofuels; however, product yields remain well below those necessary for large scale production. New genetic tools and high throughput metabolic engineering techniques are needed to optimize cyanobacterial metabolisms for enhanced biofuel production. Towards this goal, this project advances the development of a multiple promoter replacement technique for systems-level optimization of gene expression in a model cyanobacterial host: Synechococcus sp. PCC 7002. To realize this multiple-target approach, key capabilities were developed, including a high throughput detection method for advanced biofuels, enhanced transformation efficiency, and genetic tools for Synechococcus sp. PCC 7002. Moreover, several additional obstacles were identified for realization of this multiple promoter replacement technique. The techniques and tools developed in this project will help to enable future efforts in the advancement of cyanobacterial biofuels.

  11. The Impact of Region, Nitrogen Use Efficiency, and Grower Incentives on Greenhouse Gas Mitigation in Canola (Brassica napus) Production

    Science.gov (United States)

    Hammac, W. A.; Pan, W.; Koenig, R. T.; McCracken, V.

    2012-12-01

    The Environmental Protection Agency (EPA) has mandated through the second renewable fuel standard (RFS2) that biodiesel meet a minimum threshold requirement (50% reduction) for greenhouse gas (GHG) emission reduction compared to fossil diesel. This designation is determined by life cycle assessment (LCA) and carries with it potential for monetary incentives for biodiesel feedstock growers (Biomass Crop Assistance Program) and biodiesel processors (Renewable Identification Numbers). A national LCA was carried out for canola (Brassica napus) biodiesel feedstock by the EPA and it did meet the minimum threshold requirement. However, EPA's national LCA does not provide insight into regional variation in GHG mitigation. The authors propose for full GHG reduction potential of biofuels to be realized, LCA results must have regional specificity and should inform incentives for growers and processors on a regional basis. The objectives of this work were to determine (1) variation in biofuel feedstock production related GHG emissions between three agroecological zones (AEZs) in eastern Washington State (2) the impact of nitrogen use efficiency (NUE) on GHG mitigation potential for each AEZ and (3) the impact of incentives on adoption of oilseed production. Results from objective (1) revealed there is wide variability in range for GHG estimates both across and within AEZs based on variation in farming practices and environment. It is expected that results for objective (2) will show further GHG mitigation potential due to minimizing N use and therefore fertilizer transport and soil related GHG emission while potentially increasing biodiesel production per hectare. Regional based incentives may allow more timely achievement of goals for bio-based fuels production. Additionally, incentives may further increase GHG offsetting by promoting nitrogen conserving best management practices implementation. This research highlights the need for regional assessment/incentive based

  12. A model of strategic product quality and process improvement incentives

    NARCIS (Netherlands)

    Veldman, Jasper; Gaalman, G.

    2013-01-01

    In many production firms it is common practice to financially reward managers for firm performance improvement. The use of financial incentives for improvement has been widely researched in several analytical and empirical studies. Literature has also addressed the strategic effect of incentives, in

  13. A model of strategic product quality and process improvement incentives

    NARCIS (Netherlands)

    Veldman, Jasper; Gaalman, Gerard

    In many production firms it is common practice to financially reward managers for firm performance improvement. The use of financial incentives for improvement has been widely researched in several analytical and empirical studies. Literature has also addressed the strategic effect of incentives, in

  14. The role of CAFE standards and alternative-fuel vehicle production credits in U.S. biofuels markets

    International Nuclear Information System (INIS)

    Whistance, Jarrett; Thompson, Wyatt

    2014-01-01

    This paper investigates the impact of CAFE standards and alternative-fuel vehicle production incentives on the biofuel market and mandate, in particular. The study develops a structural model of the domestic light-duty vehicle sector, as well as reduced-form versions of domestic gasoline, diesel, and biofuel markets. The results suggest that holding CAFE standards at the 2010 level could facilitate U.S. ethanol market expansion, making it easier to meet the mandate. Alternative-fuel vehicle production incentives appear to have small effects. However, there is uncertainty about the level of automaker response to those incentives, and analysis indicates the model is fairly sensitive to the assumed level of response. - Highlights: • CAFE standards are estimated to have a moderate impact on RFS compliance costs. • Flex-fuel vehicle production incentives are estimated to have much less impact. • Level of auto manufacturer response to production incentives is uncertain. • Analysis suggests results are fairly sensitive to level of manufacturer response

  15. Exergy-based efficiency and renewability assessment of biofuel production.

    Science.gov (United States)

    Dewulf, J; Van Langenhove, H; Van De Velde, B

    2005-05-15

    This study presents an efficiency and renewability analysis of the production of three biofuels: rapeseed methyl ester (RME), soybean methyl ester (SME) and corn-based ethanol (EtOH). The overall production chains have been taken into account: not only the agricultural crop production and the industrial conversion into biofuel, but also production of the supply of agricultural resources (pesticides, fertilizers, fuel, seeding material) and industrial resources (energy and chemicals) to transform the crops into biofuel. Simultaneously, byproducts of the agricultural and industrial processes have been taken into account when resources have to be allocated to the biofuels. The technical analysis via the second law of thermodynamics revealed that corn-based EtOH results in the highest production rate with an exergetic fuel content of 68.8 GJ ha(-1) yr(-1), whereas the RME and SME results were limited to 47.5 and 16.4 GJ ha(-1) yr(-1). The allocated nonrenewable resource input to deliver these biofuels is significant: 16.5, 15.4, and 5.6 MJ ha(-1) yr(-1). This means that these biofuels, generally considered as renewable resources, embed a nonrenewable fraction of one-quarter for EtOH and even one-third for RME and SME. This type of analysis provides scientifically sound quantitative information that is necessarywith respect to the sustainability analysis of so-called renewable energy.

  16. Microbial engineering for the production of advanced biofuels.

    Science.gov (United States)

    Peralta-Yahya, Pamela P; Zhang, Fuzhong; del Cardayre, Stephen B; Keasling, Jay D

    2012-08-16

    Advanced biofuels produced by microorganisms have similar properties to petroleum-based fuels, and can 'drop in' to the existing transportation infrastructure. However, producing these biofuels in yields high enough to be useful requires the engineering of the microorganism's metabolism. Such engineering is not based on just one specific feedstock or host organism. Data-driven and synthetic-biology approaches can be used to optimize both the host and pathways to maximize fuel production. Despite some success, challenges still need to be met to move advanced biofuels towards commercialization, and to compete with more conventional fuels.

  17. Metabolic engineering of biosynthetic pathway for production of renewable biofuels.

    Science.gov (United States)

    Singh, Vijai; Mani, Indra; Chaudhary, Dharmendra Kumar; Dhar, Pawan Kumar

    2014-02-01

    Metabolic engineering is an important area of research that involves editing genetic networks to overproduce a certain substance by the cells. Using a combination of genetic, metabolic, and modeling methods, useful substances have been synthesized in the past at industrial scale and in a cost-effective manner. Currently, metabolic engineering is being used to produce sufficient, economical, and eco-friendly biofuels. In the recent past, a number of efforts have been made towards engineering biosynthetic pathways for large scale and efficient production of biofuels from biomass. Given the adoption of metabolic engineering approaches by the biofuel industry, this paper reviews various approaches towards the production and enhancement of renewable biofuels such as ethanol, butanol, isopropanol, hydrogen, and biodiesel. We have also identified specific areas where more work needs to be done in the future.

  18. Environmental effect of constructed wetland as biofuel production system

    Science.gov (United States)

    Liu, Dong

    2017-04-01

    Being as a renewable energy, biofuel has attracted worldwide attention. Clean biofuel production is an effective way to mitigate global climate change and energy crisis. Biofuel may offer a promising alternative to fossil fuels, but serious concerns arise about the adverse greenhouse gas consequences from using nitrogen fertilizers. Waste-nitrogen recycling is an attractive idea. Here we advocate a win-win approach to biofuel production which takes advantage of excessive nitrogen in domestic wastewater treated via constructed wetland (CW) in China. This study will carry on environmental effect analysis of CW as a biomass generation system through field surveys and controllable simulated experiments. This study intends to evaluate net energy balance, net greenhouse effect potential and ecosystem service of CW as biomass generation system, and make comparation with traditional wastewater treatment plant and other biofuel production systems. This study can provide a innovation mode in order to solve the dilemma between energy crops competed crops on production land and excessive nitrogen fertilizer of our traditional energy plant production. Data both from our experimental CWs in China and other researches on comparable CWs worldwide showed that the biomass energy yield of CWs can reach 182.3 GJ ha-1 yr-1, which was two to eight times higher than current biofuel-production systems. Energy output from CW was ˜137% greater than energy input for biofuel production. If CWs are designed with specific goal of biofuel production, biofuel production can be greatly enhanced through the optimization of N supply, hydraulic structures, and species selection in CWs. Assuming that 2.0 Tg (1 Tg = 1012 g) waste nitrogen contained in domestic wastewater is treated by CWs, biofuel production can account for 1.2% of national gasoline consumption in China. The proportion would increase to 6.7% if extra nitrogen (9.5 Tg) from industrial wastewater and agricultural runoff was included

  19. Enzymatic deconstruction of xylan for biofuel production

    Science.gov (United States)

    DODD, DYLAN; CANN, ISAAC K. O.

    2010-01-01

    The combustion of fossil-derived fuels has a significant impact on atmospheric carbon dioxide (CO2) levels and correspondingly is an important contributor to anthropogenic global climate change. Plants have evolved photosynthetic mechanisms in which solar energy is used to fix CO2 into carbohydrates. Thus, combustion of biofuels, derived from plant biomass, can be considered a potentially carbon neutral process. One of the major limitations for efficient conversion of plant biomass to biofuels is the recalcitrant nature of the plant cell wall, which is composed mostly of lignocellulosic materials (lignin, cellulose, and hemicellulose). The heteropolymer xylan represents the most abundant hemicellulosic polysaccharide and is composed primarily of xylose, arabinose, and glucuronic acid. Microbes have evolved a plethora of enzymatic strategies for hydrolyzing xylan into its constituent sugars for subsequent fermentation to biofuels. Therefore, microorganisms are considered an important source of biocatalysts in the emerging biofuel industry. To produce an optimized enzymatic cocktail for xylan deconstruction, it will be valuable to gain insight at the molecular level of the chemical linkages and the mechanisms by which these enzymes recognize their substrates and catalyze their reactions. Recent advances in genomics, proteomics, and structural biology have revolutionized our understanding of the microbial xylanolytic enzymes. This review focuses on current understanding of the molecular basis for substrate specificity and catalysis by enzymes involved in xylan deconstruction. PMID:20431716

  20. Microalgae as Sustainable Renewable Energy Feedstock for Biofuel Production

    Directory of Open Access Journals (Sweden)

    Srikanth Reddy Medipally

    2015-01-01

    Full Text Available The world energy crisis and increased greenhouse gas emissions have driven the search for alternative and environmentally friendly renewable energy sources. According to life cycle analysis, microalgae biofuel is identified as one of the major renewable energy sources for sustainable development, with potential to replace the fossil-based fuels. Microalgae biofuel was devoid of the major drawbacks associated with oil crops and lignocelluloses-based biofuels. Algae-based biofuels are technically and economically viable and cost competitive, require no additional lands, require minimal water use, and mitigate atmospheric CO2. However, commercial production of microalgae biodiesel is still not feasible due to the low biomass concentration and costly downstream processes. The viability of microalgae biodiesel production can be achieved by designing advanced photobioreactors, developing low cost technologies for biomass harvesting, drying, and oil extraction. Commercial production can also be accomplished by improving the genetic engineering strategies to control environmental stress conditions and by engineering metabolic pathways for high lipid production. In addition, new emerging technologies such as algal-bacterial interactions for enhancement of microalgae growth and lipid production are also explored. This review focuses mainly on the problems encountered in the commercial production of microalgae biofuels and the possible techniques to overcome these difficulties.

  1. Microalgae as sustainable renewable energy feedstock for biofuel production.

    Science.gov (United States)

    Medipally, Srikanth Reddy; Yusoff, Fatimah Md; Banerjee, Sanjoy; Shariff, M

    2015-01-01

    The world energy crisis and increased greenhouse gas emissions have driven the search for alternative and environmentally friendly renewable energy sources. According to life cycle analysis, microalgae biofuel is identified as one of the major renewable energy sources for sustainable development, with potential to replace the fossil-based fuels. Microalgae biofuel was devoid of the major drawbacks associated with oil crops and lignocelluloses-based biofuels. Algae-based biofuels are technically and economically viable and cost competitive, require no additional lands, require minimal water use, and mitigate atmospheric CO2. However, commercial production of microalgae biodiesel is still not feasible due to the low biomass concentration and costly downstream processes. The viability of microalgae biodiesel production can be achieved by designing advanced photobioreactors, developing low cost technologies for biomass harvesting, drying, and oil extraction. Commercial production can also be accomplished by improving the genetic engineering strategies to control environmental stress conditions and by engineering metabolic pathways for high lipid production. In addition, new emerging technologies such as algal-bacterial interactions for enhancement of microalgae growth and lipid production are also explored. This review focuses mainly on the problems encountered in the commercial production of microalgae biofuels and the possible techniques to overcome these difficulties.

  2. Microalgae as Sustainable Renewable Energy Feedstock for Biofuel Production

    Science.gov (United States)

    Yusoff, Fatimah Md.; Shariff, M.

    2015-01-01

    The world energy crisis and increased greenhouse gas emissions have driven the search for alternative and environmentally friendly renewable energy sources. According to life cycle analysis, microalgae biofuel is identified as one of the major renewable energy sources for sustainable development, with potential to replace the fossil-based fuels. Microalgae biofuel was devoid of the major drawbacks associated with oil crops and lignocelluloses-based biofuels. Algae-based biofuels are technically and economically viable and cost competitive, require no additional lands, require minimal water use, and mitigate atmospheric CO2. However, commercial production of microalgae biodiesel is still not feasible due to the low biomass concentration and costly downstream processes. The viability of microalgae biodiesel production can be achieved by designing advanced photobioreactors, developing low cost technologies for biomass harvesting, drying, and oil extraction. Commercial production can also be accomplished by improving the genetic engineering strategies to control environmental stress conditions and by engineering metabolic pathways for high lipid production. In addition, new emerging technologies such as algal-bacterial interactions for enhancement of microalgae growth and lipid production are also explored. This review focuses mainly on the problems encountered in the commercial production of microalgae biofuels and the possible techniques to overcome these difficulties. PMID:25874216

  3. TEHNOLOGY AND EQUIPMENT FOR BIOFUEL PRODUCTION FROM RAPESEED OIL

    Directory of Open Access Journals (Sweden)

    Slusarenko V.V.

    2010-12-01

    Full Text Available The paper gives a brief overview of technologies and equipment for the production of biofuel from rapeseed oil - biodiesel. It is presented the description of the processes both cyclical (periodic nature and processes of continuous production. It is justified the use of the type of the process in dependence of production volume.

  4. 10 CFR 452.6 - Incentive award terms and limitations.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Incentive award terms and limitations. 452.6 Section 452.6 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION PRODUCTION INCENTIVES FOR CELLULOSIC BIOFUELS § 452.6... auctions if the incentives sought will assist the addition of plant production capacity for the eligible...

  5. Biofuel production from microalgae as feedstock: current status and potential.

    Science.gov (United States)

    Han, Song-Fang; Jin, Wen-Biao; Tu, Ren-Jie; Wu, Wei-Min

    2015-06-01

    Algal biofuel has become an attractive alternative of petroleum-based fuels in the past decade. Microalgae have been proposed as a feedstock to produce biodiesel, since they are capable of mitigating CO2 emission and accumulating lipids with high productivity. This article is an overview of the updated status of biofuels, especially biodiesel production from microalgae including fundamental research, culture selection and engineering process development; it summarizes research on mathematical and life cycle modeling on algae growth and biomass production; and it updates global efforts of research and development and commercialization attempts. The major challenges are also discussed.

  6. The potential of C4 grasses for cellulosic biofuel production

    Directory of Open Access Journals (Sweden)

    Tim eWeijde

    2013-05-01

    Full Text Available With the advent of biorefinery technologies enabling plant biomass to be processed into biofuel, many researchers set out to study and improve candidate biomass crops. Many of these candidates are C4 grasses, characterized by a high productivity and resource use efficiency. In this review the potential of five C4 grasses as lignocellulose feedstock for biofuel production is discussed. These include three important field crops - maize, sugarcane and sorghum - and two undomesticated perennial energy grasses - miscanthus and switchgrass. Although all these grasses are high yielding, they produce different products. While miscanthus and switchgrass are exploited exclusively for lignocellulosic biomass, maize, sorghum and sugarcane are dual-purpose crops. It is unlikely that all the prerequisites for the sustainable and economic production of biomass for a global cellulosic biofuel industry will be fulfilled by a single crop. High and stable yields of lignocellulose are required in diverse environments worldwide, to sustain a year-round production of biofuel. A high resource use efficiency is indispensable to allow cultivation with minimal inputs of nutrients and water and the exploitation of marginal soils for biomass production. Finally, the lignocellulose composition of the feedstock should be optimized to allow its efficient conversion into biofuel and other by-products. Breeding for these objectives should encompass diverse crops, to meet the demands of local biorefineries and provide adaptability to different environments. Collectively, these C4 grasses are likely to play a central role in the supply of lignocellulose for the cellulosic ethanol industry. Moreover, as these species are evolutionary closely related, advances in each of these crops will expedite improvements in the other crops. This review aims to provide an overview of their potential, prospects and research needs as lignocellulose feedstocks for the commercial production of

  7. Biofuels Production through Biomass Pyrolysis —A Technological Review

    Directory of Open Access Journals (Sweden)

    Ashfaque Ahmed Chowdhury

    2012-11-01

    Full Text Available There has been an enormous amount of research in recent years in the area of thermo-chemical conversion of biomass into bio-fuels (bio-oil, bio-char and bio-gas through pyrolysis technology due to its several socio-economic advantages as well as the fact it is an efficient conversion method compared to other thermo-chemical conversion technologies. However, this technology is not yet fully developed with respect to its commercial applications. In this study, more than two hundred publications are reviewed, discussed and summarized, with the emphasis being placed on the current status of pyrolysis technology and its potential for commercial applications for bio-fuel production. Aspects of pyrolysis technology such as pyrolysis principles, biomass sources and characteristics, types of pyrolysis, pyrolysis reactor design, pyrolysis products and their characteristics and economics of bio-fuel production are presented. It is found from this study that conversion of biomass to bio-fuel has to overcome challenges such as understanding the trade-off between the size of the pyrolysis plant and feedstock, improvement of the reliability of pyrolysis reactors and processes to become viable for commercial applications. Further study is required to achieve a better understanding of the economics of biomass pyrolysis for bio-fuel production, as well as resolving issues related to the capabilities of this technology in practical application.

  8. Genes related to xylose fermentation and methods of using same for enhanced biofuel production

    Energy Technology Data Exchange (ETDEWEB)

    Wohlbach, Dana J.; Gasch, Audrey P.

    2015-09-29

    The present invention provides isolated gene sequences involved in xylose fermentation and related recombinant yeast which are useful in methods of enhanced biofuel production, particularly ethanol production. Methods of bioengineering recombinant yeast useful for biofuel production are also provided.

  9. Genes related to xylose fermentation and methods of using same for enhanced biofuel production

    Energy Technology Data Exchange (ETDEWEB)

    Wohlbach, Dana J.; Gasch, Audrey P.

    2016-11-29

    The present invention provides isolated gene sequences involved in xylose fermentation and related recombinant yeast which are useful in methods of enhanced biofuel production, particularly ethanol production. Methods of bioengineering recombinant yeast useful for biofuel production are also provided.

  10. Genes related to xylose fermentation and methods of using same for enhanced biofuel production

    Science.gov (United States)

    Wohlbach, Dana J.; Gasch, Audrey P.

    2014-08-05

    The present invention provides isolated gene sequences involved in xylose fermentation and related recombinant yeast which are useful in methods of enhanced biofuel production, particularly ethanol production. Methods of bioengineering recombinant yeast useful for biofuel production are also provided.

  11. The biofuels in France

    International Nuclear Information System (INIS)

    2006-04-01

    The biofuels are liquid renewable energies sources resulting from vegetal matters. Today are two channels of biofuels: the ethanol channel for gasoline and the vegetal oils channel for the diesel. In the first part, the document presents the different channels and the energy efficiency of the products. It shows in the second part the advantages for the environment (CO 2 accounting) and for the energy independence. It discusses then the future developments and the projects. The fourth part is devoted to the legislation, regulations, taxes and financial incentives. The last part presents the french petroleum industry actions and attitudes in the framework of the biofuels development. (A.L.B.)

  12. Enhancing microbial production of biofuels by expanding microbial metabolic pathways.

    Science.gov (United States)

    Yu, Ping; Chen, Xingge; Li, Peng

    2017-09-01

    Fatty acid, isoprenoid, and alcohol pathways have been successfully engineered to produce biofuels. By introducing three genes, atfA, adhE, and pdc, into Escherichia coli to expand fatty acid pathway, up to 1.28 g/L of fatty acid ethyl esters can be achieved. The isoprenoid pathway can be expanded to produce bisabolene with a high titer of 900 mg/L in Saccharomyces cerevisiae. Short- and long-chain alcohols can also be effectively biosynthesized by extending the carbon chain of ketoacids with an engineered "+1" alcohol pathway. Thus, it can be concluded that expanding microbial metabolic pathways has enormous potential for enhancing microbial production of biofuels for future industrial applications. However, some major challenges for microbial production of biofuels should be overcome to compete with traditional fossil fuels: lowering production costs, reducing the time required to construct genetic elements and to increase their predictability and reliability, and creating reusable parts with useful and predictable behavior. To address these challenges, several aspects should be further considered in future: mining and transformation of genetic elements related to metabolic pathways, assembling biofuel elements and coordinating their functions, enhancing the tolerance of host cells to biofuels, and creating modular subpathways that can be easily interconnected. © 2016 International Union of Biochemistry and Molecular Biology, Inc.

  13. The response of maize production in Kenya to economic incentives

    Directory of Open Access Journals (Sweden)

    Onono, P.A.,

    2013-06-01

    Full Text Available Agricultural development policy in Kenya has emphasised the use of incentives towards increased production and therefore self-sufficiency in maize which is a basic staple for most households. The channels used to provide incentives to maize farmers over the years include setting higher producer prices; subsidisation of inputs; provision of agricultural credit, research and extension services; construction and maintenance of roads, development of irrigation and water systems; legislative, institutional and macroeconomic reforms. Despite these efforts outputof maize has remained below domestic requirements in most years and the country continues to rely on imports to meet the deficits. Studies have assessed the responsiveness of maize to output price and reported inelastic responses and have recommended policies targeting non-price incentives to complement prices for the required increased production of maize. The studies, however, did not analyse the influence of the non-price incentives on the production of the crop. The findings of those studies are therefore deficient in explaining the relative importance of different non-price incentives and how they complement prices in influencing maize production in Kenya. This study investigated the response of maize production to both price and non-price incentives. The aim of this study was to ascertain the relative importance of non-price factors in influencing production of the crops as well as complementarity between price and non-price incentives. The findings show that maize production responds positively to its output price, development expenditures in agriculture, maize sales to marketing boards, growth in per capita GDP, liberalisation and governance reforms. However, maize production responds negatively to fertiliser price and unfavourable weather conditions. The response of maize output to its price is lower with rising inflation and grain market liberalisation.

  14. Bioeconomic Sustainability of Cellulosic Biofuel Production on Marginal Lands

    Science.gov (United States)

    Gutierrez, Andrew Paul; Ponti, Luigi

    2009-01-01

    The use of marginal land (ML) for lignocellulosic biofuel production is examined for system stability, resilience, and eco-social sustainability. A North American prairie grass system and its industrialization for maximum biomass production using biotechnology and agro-technical inputs is the focus of the analysis. Demographic models of ML biomass…

  15. Alternative spatial allocation of suitable land for biofuel production in China

    DEFF Research Database (Denmark)

    Zhang, Jianjun; Chen, Yang; Rao, Yongheng

    2017-01-01

    How to select locations for biofuel production is still a critical consideration for balance of crop and biofuel productions as well as of energy consumption and environmental conservation. Biofuels are widely produced all over the world, but this practice in China is still at the initial stage....... Based on China's current stage on food security and changing biofuel demands, this paper selected agro-environmental and socio-economic factors of biofuel production, and simulated and spatially allocated areas suited for biofuel production under the two scenarios of planning-oriented scenario (Po......S) and biofuel-oriented scenario (BoS) by the target year 2020. It also estimated biofuel production potentials and zones across China's provinces. The results show that land suited for biofuel production is primarily located in Northwestern, Northern, Northeastern, Central and Southwestern China...

  16. Recent developments on biofuels production from microalgae and macroalgae

    DEFF Research Database (Denmark)

    Kumar, Kanhaiya; Ghosh, Supratim; Angelidaki, Irini

    2016-01-01

    Biofuels from algae are considered as promising alternatives of conventional fossil fuels, as they can eliminate most of the environmental problems. The present study focuses on all the possible avenues of biofuels production through biochemical and thermochemical conversion methods in one place...... and infrastructure requirement. Hydrogen production by microalgae through biophotolysis seems interesting as it directly converts the solar energy into hydrogen. However, the process has not been scaled-up till today. Hydrothermal liquefaction (HTL) is more promising due to handling of wet biomass at moderate...... temperature and pressure and conversion of whole biomass into high quality oil. However, HTL process is energy intensive....

  17. Value Added Products from Renewable Biofuels

    Energy Technology Data Exchange (ETDEWEB)

    Blum, Paul [Univ. of Nebraska, Lincoln, NE (United States)

    2014-07-31

    Cellulosic ethanol is an emerging biofuel that will make strong contributions to American domestic energy needs. In the US midwest the standard method for pretreatment of biomass uses hot acid to deconstruct lignocellulose. While other methods work, they are not in common use. Therefore it is necessary to work within this context to achieve process improvements and reductions in biofuel cost. Technology underlying this process could supplement and even replace commodity enzymes with engineered microbes to convert biomass-derived lignocellulose feedstocks into biofuels and valueadded chemicals. The approach that was used here was based on consolidated bioprocessing. Thermoacidophilic microbes belonging to the Domain Archaea were evaluated and modfied to promote deconvolution and saccharification of lignocellulose. Biomass pretreatment (hot acid) was combined with fermentation using an extremely thermoacidophilic microbial platform. The identity and fate of released sugars was controlled using metabolic blocks combined with added biochemical traits where needed. LC/MS analysis supported through the newly established Nebraska Bioenergy Facility provided general support for bioenergy researchers at the University of Nebraska. The primary project strategy was to use microbes that naturally flourish in hot acid (thermoacidophiles) with conventional biomass pretreatment that uses hot acid. The specific objectives were: to screen thermoacidophilic taxa for the ability to deconvolute lignocellulose and depolymerize associated carbohydrates; evaluate and respond to formation of “inhibitors” that arose during incubation of lignocellulose under heated acidic conditions; identify and engineer “sugar flux channeling and catabolic blocks” that redirect metabolic pathways to maximize sugar concentrations; expand the hydrolytic capacity of extremely thermoacidophilic microbes through the addition of deconvolution traits; and establish the Nebraska Bioenergy Facility (NBF

  18. Sustainability of biofuels and renewable chemicals production from biomass.

    Science.gov (United States)

    Kircher, Manfred

    2015-12-01

    In the sectors of biofuel and renewable chemicals the big feedstock demand asks, first, to expand the spectrum of carbon sources beyond primary biomass, second, to establish circular processing chains and, third, to prioritize product sectors exclusively depending on carbon: chemicals and heavy-duty fuels. Large-volume production lines will reduce greenhouse gas (GHG) emission significantly but also low-volume chemicals are indispensable in building 'low-carbon' industries. The foreseeable feedstock change initiates innovation, securing societal wealth in the industrialized world and creating employment in regions producing biomass. When raising the investments in rerouting to sustainable biofuel and chemicals today competitiveness with fossil-based fuel and chemicals is a strong issue. Many countries adopted comprehensive bioeconomy strategies to tackle this challenge. These public actions are mostly biased to biofuel but should give well-balanced attention to renewable chemicals as well. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Metabolic engineering of microalgal based biofuel production: prospects and challenges

    Directory of Open Access Journals (Sweden)

    Chiranjib eBanerjee

    2016-03-01

    Full Text Available The current scenario in renewable energy is focused on development of alternate and sustainable energy sources, amongst which microalgae stands as one of the promising feedstock for biofuel production. It is well known that microalgae generate much larger amounts of biofuels in a shorter time than other sources based on plant seeds. However, the greatest challenge in a transition to algae-based biofuel production is the various other complications involved in microalgal cultivation, its harvesting, concentration, drying and lipid extraction. Several green microalgae accumulate lipids, especially triacylglycerols (TAGs, which are main precursors in the production of lipid. The various aspects on metabolic pathway analysis of an oleaginous microalgae i.e. Chlamydomonas reinhardtii have elucidated some novel metabolically important genes and this enhances the lipid production in this microalgae. Adding to it, various other aspects in metabolic engineering using OptFlux and effectual bioprocess design also gives an interactive snapshot of enhancing lipid production which ultimately improvises the oil yield. This article reviews the current status of microalgal based technologies for biofuel production, bioreactor process design, flux analysis and it also provides various strategies to increase lipids accumulation via metabolic engineering.

  20. Cyanobacteria and Microalgae: Thermoeconomic Considerations in Biofuel Production

    Directory of Open Access Journals (Sweden)

    Umberto Lucia

    2018-01-01

    Full Text Available In thermodynamics, the useful work in any process can be evaluated by using the exergy quantity. The analyses of irreversibility are fundamental in the engineering design and in the productive processes’ development in order to obtain the economic growth. Recently, the use has been improved also in the thermodynamic analysis of the socio-economic context. Consequently, the exergy lost is linked to the energy cost required to maintain the productive processes themselves. The fundamental role of the fluxes and the interaction between systems and their environment is highlighted. The equivalent wasted primary resource value for the work-hour is proposed as an indicator to support the economic considerations on the biofuel production by using biomass and bacteria. The equivalent wasted primary resource value for the work-hour is proposed as an indicator to support the economic considerations of the biofuel production by using biomass and bacteria. Moreover, the technological considerations can be developed by using the exergy inefficiency. Consequently, bacteria use can be compared with other means of biofuel production, taking into account both the technologies and the economic considerations. Cyanobacteria results as the better organism for biofuel production.

  1. Harnessing biofuels. A global Renaissance in energy production?

    Energy Technology Data Exchange (ETDEWEB)

    Jegannathan, Kenthorai Raman; Chan, Eng-Seng; Ravindra, Pogaku [Centre of Materials and Minerals, School of Engineering and Information Technology, Universiti Malaysia Sabah, 88999 Kota Kinabalu, Sabah (Malaysia)

    2009-10-15

    Biofuel, peoples' long awaiting alternative fuel, is yet to struggle a long way to reach in retail outlet all over the world as an economical and environmental friendly fuel. Biofuels include bioethanol, biodiesel, biogas, bio-synthetic gas (bio-syngas), bio-oil, bio-char, Fischer-Tropsch liquids, and biohydrogen. Among these bioethanol, biodiesel, biogas are predominant which can be produced either using chemical catalyst or biocatalyst from biomass. At present, the conventional process involves the chemical catalyst while a rigorous research is focused on using a biocatalyst. This review brings out the advantages and disadvantages of using different type of catalyst in biofuel production and emphasis on new technologies as an alternative to conventional technologies. (author)

  2. The potential of C4 grasses for cellulosic biofuel production

    NARCIS (Netherlands)

    Weijde, van der R.T.; Alvim Kamei, C.L.; Torres Salvador, A.F.; Vermerris, W.; Dolstra, O.; Visser, R.G.F.; Trindade, L.M.

    2013-01-01

    With the advent of biorefinery technologies enabling plant biomass to be processed into biofuel, many researchers set out to study and improve candidate biomass crops. Many of these candidates are C4 grasses, characterized by a high productivity and resource use efficiency. In this review the

  3. New nanomaterial and process for the production of biofuel from ...

    African Journals Online (AJOL)

    In this study, anatase form of titanium dioxide photocatalyst was used. The reaction was performed at room temperature which gives methane, methanol and ethanol. This study also reports an interesting finding that metal contaminated water hyacinth could be used for not only the production of biofuel but also hydrocarbons ...

  4. Inhibition of Snl6 expression for biofuel production

    Energy Technology Data Exchange (ETDEWEB)

    Bart, Rebecca; Chern, Mawsheng; Ronald, Pamela; Vega-Sanchez, Miguel

    2018-04-03

    The invention provides compositions and methods for inhibiting the expression of the gene Snl6 in plants. Plants with inhibited expression of Snl6 have use in biofuel production, e.g., by increasing the amount of soluble sugar that can be extracted from the plant.

  5. Microwave-assisted pyrolysis of biomass for liquid biofuels production

    DEFF Research Database (Denmark)

    Yin, Chungen

    2012-01-01

    Production of 2nd-generation biofuels from biomass residues and waste feedstock is gaining great concerns worldwide. Pyrolysis, a thermochemical conversion process involving rapid heating of feedstock under oxygen-absent condition to moderate temperature and rapid quenching of intermediate produc...

  6. Yeast synthetic biology toolbox and applications for biofuel production.

    Science.gov (United States)

    Tsai, Ching-Sung; Kwak, Suryang; Turner, Timothy L; Jin, Yong-Su

    2015-02-01

    Yeasts are efficient biofuel producers with numerous advantages outcompeting bacterial counterparts. While most synthetic biology tools have been developed and customized for bacteria especially for Escherichia coli, yeast synthetic biological tools have been exploited for improving yeast to produce fuels and chemicals from renewable biomass. Here we review the current status of synthetic biological tools and their applications for biofuel production, focusing on the model strain Saccharomyces cerevisiae We describe assembly techniques that have been developed for constructing genes, pathways, and genomes in yeast. Moreover, we discuss synthetic parts for allowing precise control of gene expression at both transcriptional and translational levels. Applications of these synthetic biological approaches have led to identification of effective gene targets that are responsible for desirable traits, such as cellulosic sugar utilization, advanced biofuel production, and enhanced tolerance against toxic products for biofuel production from renewable biomass. Although an array of synthetic biology tools and devices are available, we observed some gaps existing in tool development to achieve industrial utilization. Looking forward, future tool development should focus on industrial cultivation conditions utilizing industrial strains. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permission@oup.com.

  7. Lignin-containing Feedstock Hydrogenolysis for Biofuel Component Production

    Directory of Open Access Journals (Sweden)

    Elena Shimanskaya

    2018-01-01

    How to Cite: Shimanskaya, E.I., Stepacheva, A.A., Sulman, E.M., Rebrov, E.V., Matveeva, V.G. (2018. Lignin-containing Feedstock Hydrogenolysis for Biofuel Component Production. Bulletin of Chemical Reaction Engineering & Catalysis, 13 (1: 74-81 (doi:10.9767/bcrec.13.1.969.74-81

  8. Research and Development Potentials in Biofuel Production in Nigeria

    African Journals Online (AJOL)

    Research and Development Potentials in Biofuel Production in Nigeria. ... Although, Nigeria's natural resource wealth (including renewable energy potentials) has been well documented and acknowledged, the contribution of renewable energy sources to the total national energy supply and demand is currently very low or ...

  9. Laccase applications in biofuels production: current status and future prospects.

    Science.gov (United States)

    Kudanga, Tukayi; Le Roes-Hill, Marilize

    2014-08-01

    The desire to reduce dependence on the ever diminishing fossil fuel reserves coupled with the impetus towards green energy has seen increased research in biofuels as alternative sources of energy. Lignocellulose materials are one of the most promising feedstocks for advanced biofuels production. However, their utilisation is dependent on the efficient hydrolysis of polysaccharides, which in part is dependent on cost-effective and benign pretreatment of biomass to remove or modify lignin and release or expose sugars to hydrolytic enzymes. Laccase is one of the enzymes that are being investigated not only for potential use as pretreatment agents in biofuel production, mainly as a delignifying enzyme, but also as a biotechnological tool for removal of inhibitors (mainly phenolic) of subsequent enzymatic processes. The current review discusses the major advances in the application of laccase as a potential pretreatment strategy, the underlying principles as well as directions for future research in the search for better enzyme-based technologies for biofuel production. Future perspectives could include synergy between enzymes that may be required for optimal results and the adoption of the biorefinery concept in line with the move towards the global implementation of the bioeconomy strategy.

  10. Biofuels from microalgae - A review of technologies for production, processing, and extractions of biofuels and co-products

    Energy Technology Data Exchange (ETDEWEB)

    Brennan, Liam [Charles Parsons Energy Research Programme, Bioresources Research Centre, School of Agriculture, Food Science and Veterinary Medicine, University College Dublin, Belfield, Dublin 4 (Ireland); Owende, Philip [Charles Parsons Energy Research Programme, Bioresources Research Centre, School of Agriculture, Food Science and Veterinary Medicine, University College Dublin, Belfield, Dublin 4 (Ireland); School of Informatics and Engineering, Institute of Technology Blanchardstown, Blanchardstown Road North, Dublin 15 (Ireland)

    2010-02-15

    Sustainability is a key principle in natural resource management, and it involves operational efficiency, minimisation of environmental impact and socio-economic considerations; all of which are interdependent. It has become increasingly obvious that continued reliance on fossil fuel energy resources is unsustainable, owing to both depleting world reserves and the green house gas emissions associated with their use. Therefore, there are vigorous research initiatives aimed at developing alternative renewable and potentially carbon neutral solid, liquid and gaseous biofuels as alternative energy resources. However, alternate energy resources akin to first generation biofuels derived from terrestrial crops such as sugarcane, sugar beet, maize and rapeseed place an enormous strain on world food markets, contribute to water shortages and precipitate the destruction of the world's forests. Second generation biofuels derived from lignocellulosic agriculture and forest residues and from non-food crop feedstocks address some of the above problems; however there is concern over competing land use or required land use changes. Therefore, based on current knowledge and technology projections, third generation biofuels specifically derived from microalgae are considered to be a technically viable alternative energy resource that is devoid of the major drawbacks associated with first and second generation biofuels. Microalgae are photosynthetic microorganisms with simple growing requirements (light, sugars, CO{sub 2}, N, P, and K) that can produce lipids, proteins and carbohydrates in large amounts over short periods of time. These products can be processed into both biofuels and valuable co-products. This study reviewed the technologies underpinning microalgae-to-biofuels systems, focusing on the biomass production, harvesting, conversion technologies, and the extraction of useful co-products. It also reviewed the synergistic coupling of microalgae propagation with carbon

  11. Three generation production biotechnology of biomass into bio-fuel

    Science.gov (United States)

    Zheng, Chaocheng

    2017-08-01

    The great change of climate change, depletion of natural resources, and scarcity of fossil fuel in the whole world nowadays have witnessed a sense of urgency home and abroad among scales of researchers, development practitioners, and industrialists to search for completely brand new sustainable solutions in the area of biomass transforming into bio-fuels attributing to our duty-that is, it is our responsibility to take up this challenge to secure our energy in the near future with the help of sustainable approaches and technological advancements to produce greener fuel from nature organic sources or biomass which comes generally from organic natural matters such as trees, woods, manure, sewage sludge, grass cuttings, and timber waste with a source of huge green energy called bio-fuel. Biomass includes most of the biological materials, livings or dead bodies. This energy source is ripely used industrially, or domestically for rather many years, but the recent trend is on the production of green fuel with different advance processing systems in a greener. More sustainable method. Biomass is becoming a booming industry currently on account of its cheaper cost and abundant resources all around, making it fairly more effective for the sustainable use of the bio-energy. In the past few years, the world has witnessed a remarkable development in the bio-fuel production technology, and three generations of bio-fuel have already existed in our society. The combination of membrane technology with the existing process line can play a vital role for the production of green fuel in a sustainable manner. In this paper, the science and technology for sustainable bio-fuel production will be introduced in detail for a cleaner world.

  12. Microalgal cultivation with biogas slurry for biofuel production.

    Science.gov (United States)

    Zhu, Liandong; Yan, Cheng; Li, Zhaohua

    2016-11-01

    Microalgal growth requires a substantial amount of chemical fertilizers. An alternative to the utilization of fertilizer is to apply biogas slurry produced through anaerobic digestion to cultivate microalgae for the production of biofuels. Plenty of studies have suggested that anaerobic digestate containing high nutrient contents is a potentially feasible nutrient source to culture microalgae. However, current literature indicates a lack of review available regarding microalgal cultivation with biogas slurry for the production of biofuels. To help fill this gap, this review highlights the integration of digestate nutrient management with microalgal production. It first unveils the current status of microalgal production, providing basic background to the topic. Subsequently, microalgal cultivation technologies using biogas slurry are discussed in detail. A scale-up scheme for simultaneous biogas upgrade and digestate application through microalgal cultivation is then proposed. Afterwards, several uncertainties that might affect this practice are explored. Finally, concluding remarks are put forward. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Biofuel excision and the viability of ethanol production in the Green Triangle, Australia

    International Nuclear Information System (INIS)

    Rodriguez, Luis C.; May, Barrie; Herr, Alexander; Farine, Damien; O'Connell, Deborah

    2011-01-01

    The promotion and use of renewable energy sources are established priorities worldwide as a way to reduce emissions of Greenhouse Gases and promote energy security. Australia is committed to reach a target of 350 ML of biofuels per year by 2010, and incentives targeted to producers and consumers have been placed. These incentives include zero excise until 2011 for the ethanol produced in Australia and gradual increase of the taxation rates reaching the full excise of 0.125 AUD per litre by 2015. This paper analyses the viability of the second generation ethanol industry in the Green Triangle, one of the most promising Australian regions for biomass production, by comparing the energy adjusted pump prices of petrol and the produced ethanol under different taxation rates and forecasted oil prices. Major findings suggest that under the current conditions of zero fuel excise and oil prices around 80US$ per barrel ethanol production is viable using biomass with a plant gate cost of up to 74 AUD per ton. Moreover, the forecasted increase in oil prices have a higher impact on the price of petrol than the increased ethanol excise on the pump price of the biofuel. Thus, by 2016 feedstock with a plant gate cost of up to 190 AUD per ton might be used for ethanol production, representing a flow of 1.7 million tons of biomass per year potentially mitigating 1.2 million tons of CO 2 by replacing fossil fuels with ethanol. - Research highlights: →We assessed the potential for ethanol production in the Green Triangle. → Despite of increased ethanol taxation, higher oil prices promote ethanol production. → Currently, ethanol from biomass with a plant gate cost of up to 74 AUD/ton is viable. →Forecasted oil prices suggest biomass of 190 AUD/ton might be used by 2016.

  14. Nitrogen and Phosphorus Biomass-Kinetic Model for Chlorella vulgaris in a Biofuel Production Scheme

    Science.gov (United States)

    2010-03-01

    NITROGEN AND PHOSPHORUS BIOMASS-KINETIC MODEL FOR CHLORELLA VULGARIS IN A BIOFUEL PRODUCTION SCHEME THESIS William M. Rowley, Major...States Government. AFIT/GES/ENV/10-M04 NITROGEN AND PHOSPHORUS BIOMASS-KINETIC MODEL FOR CHLORELLA VULGARIS IN A BIOFUEL...MODEL FOR CHLORELLA VULGARIS IN A BIOFUEL PRODUCTION SCHEME William M. Rowley, BS Major, USMC Approved

  15. Continuous production of palm biofuel under supercritical ethyl acetate

    International Nuclear Information System (INIS)

    Komintarachat, Cholada; Sawangkeaw, Ruengwit; Ngamprasertsith, Somkiat

    2015-01-01

    Highlights: • Continuous synthesized biofuel from palm oil in supercritical ethyl acetate was examined. • Mass flow rate of palm oil and ethyl acetate mixture influent to biofuel production in continuous system. • Water addition to reacting mixture improves the production of fatty acid ethyl esters and triacetin. • The generated acetic acid from ETA hydrolysis can protect the products from thermal decomposition. - Abstract: The interesterification of palm oil in supercritical ethyl acetate (ETA) to produce fatty acid ethyl ester (FAEEs) or biofuel was conducted in a continuous tubular reactor. The density of the mixtures in the system was estimated using the Peng–Robinson equation of state process simulator, and the residence time was calculated. The effects of the reaction conditions, including the molar ratios of palm oil to ethyl acetate, the temperature, and the pressure, were investigated under various mass flow rates of the mixtures and optimized. The results showed that reaction temperatures above 653 K and long residence times affected the content of FAEEs and triacetin, a valuable by-product. The addition of water to the mixture in a 1:30:10 M ratio of palm oil to ethyl acetate to water at 653 K, 16 MPa, and a mixture mass flow rate of 1.5 g/min increased the total production of FAEEs and triacetin from 90.9 to 101.5 wt% in 42.4 min. The main finding of the present study is that triglyceride associated with ETA hydrolysis used to form acetic acid protected the products from decomposition at high temperatures and long residence times. The results will aid the selection of an efficient and economical process for alternative biofuel production from palm oil in supercritical ETA

  16. Methods and materials for deconstruction of biomass for biofuels production

    Science.gov (United States)

    Schoeniger, Joseph S; Hadi, Masood Zia

    2015-05-05

    The present invention relates to nucleic acids, peptides, vectors, cells, and plants useful in the production of biofuels. In certain embodiments, the invention relates to nucleic acid sequences and peptides from extremophile organisms, such as SSO1949 and Ce1A, that are useful for hydrolyzing plant cell wall materials. In further embodiments, the invention relates to modified versions of such sequences that have been optimized for production in one or both of monocot and dicot plants. In other embodiments, the invention provides for targeting peptide production or activity to a certain location within the cell or organism, such as the apoplast. In further embodiments, the invention relates to transformed cells or plants. In additional embodiments, the invention relates to methods of producing biofuel utilizing such nucleic acids, peptides, targeting sequences, vectors, cells, and/or plants.

  17. Molecular Breeding of Advanced Microorganisms for Biofuel Production

    Directory of Open Access Journals (Sweden)

    Hiroshi Sakuragi

    2011-01-01

    Full Text Available Large amounts of fossil fuels are consumed every day in spite of increasing environmental problems. To preserve the environment and construct a sustainable society, the use of biofuels derived from different kinds of biomass is being practiced worldwide. Although bioethanol has been largely produced, it commonly requires food crops such as corn and sugar cane as substrates. To develop a sustainable energy supply, cellulosic biomass should be used for bioethanol production instead of grain biomass. For this purpose, cell surface engineering technology is a very promising method. In biobutanol and biodiesel production, engineered host fermentation has attracted much attention; however, this method has many limitations such as low productivity and low solvent tolerance of microorganisms. Despite these problems, biofuels such as bioethanol, biobutanol, and biodiesel are potential energy sources that can help establish a sustainable society.

  18. Metabolic engineering for isoprenoid-based biofuel production.

    Science.gov (United States)

    Gupta, P; Phulara, S C

    2015-09-01

    Sustainable economic and industrial growth is the need of the hour and it requires renewable energy resources having better performance and compatibility with existing fuel infrastructure from biological routes. Isoprenoids (C ≥ 5) can be a potential alternative due to their diverse nature and physiochemical properties similar to that of petroleum based fuels. In the past decade, extensive research has been done to utilize metabolic engineering strategies in micro-organisms primarily, (i) to overcome the limitations associated with their natural and non-natural production and (ii) to develop commercially competent microbial strain for isoprenoid-based biofuel production. This review briefly describes the engineered isoprenoid biosynthetic pathways in well-characterized microbial systems for the production of several isoprenoid-based biofuels and fuel precursors. © 2015 The Society for Applied Microbiology.

  19. Production of biofuels from synthesis gas using microbial catalysts.

    Science.gov (United States)

    Tirado-Acevedo, Oscar; Chinn, Mari S; Grunden, Amy M

    2010-01-01

    World energy consumption is expected to increase 44% in the next 20 years. Today, the main sources of energy are oil, coal, and natural gas, all fossil fuels. These fuels are unsustainable and contribute to environmental pollution. Biofuels are a promising source of sustainable energy. Feedstocks for biofuels used today such as grain starch are expensive and compete with food markets. Lignocellulosic biomass is abundant and readily available from a variety of sources, for example, energy crops and agricultural/industrial waste. Conversion of these materials to biofuels by microorganisms through direct hydrolysis and fermentation can be challenging. Alternatively, biomass can be converted to synthesis gas through gasification and transformed to fuels using chemical catalysts. Chemical conversion of synthesis gas components can be expensive and highly susceptible to catalyst poisoning, limiting biofuel yields. However, there are microorganisms that can convert the CO, H(2), and CO(2) in synthesis gas to fuels such as ethanol, butanol, and hydrogen. Biomass gasification-biosynthesis processing systems have shown promise as some companies have already been exploiting capable organisms for commercial purposes. The discovery of novel organisms capable of higher product yield, as well as metabolic engineering of existing microbial catalysts, makes this technology a viable option for reducing our dependency on fossil fuels. Copyright 2010 Elsevier Inc. All rights reserved.

  20. Genetic Engineering of Algae for Enhanced Biofuel Production

    Science.gov (United States)

    Radakovits, Randor; Jinkerson, Robert E.; Darzins, Al; Posewitz, Matthew C.

    2010-01-01

    There are currently intensive global research efforts aimed at increasing and modifying the accumulation of lipids, alcohols, hydrocarbons, polysaccharides, and other energy storage compounds in photosynthetic organisms, yeast, and bacteria through genetic engineering. Many improvements have been realized, including increased lipid and carbohydrate production, improved H2 yields, and the diversion of central metabolic intermediates into fungible biofuels. Photosynthetic microorganisms are attracting considerable interest within these efforts due to their relatively high photosynthetic conversion efficiencies, diverse metabolic capabilities, superior growth rates, and ability to store or secrete energy-rich hydrocarbons. Relative to cyanobacteria, eukaryotic microalgae possess several unique metabolic attributes of relevance to biofuel production, including the accumulation of significant quantities of triacylglycerol; the synthesis of storage starch (amylopectin and amylose), which is similar to that found in higher plants; and the ability to efficiently couple photosynthetic electron transport to H2 production. Although the application of genetic engineering to improve energy production phenotypes in eukaryotic microalgae is in its infancy, significant advances in the development of genetic manipulation tools have recently been achieved with microalgal model systems and are being used to manipulate central carbon metabolism in these organisms. It is likely that many of these advances can be extended to industrially relevant organisms. This review is focused on potential avenues of genetic engineering that may be undertaken in order to improve microalgae as a biofuel platform for the production of biohydrogen, starch-derived alcohols, diesel fuel surrogates, and/or alkanes. PMID:20139239

  1. Optimal localisation of next generation Biofuel production in Sweden

    Energy Technology Data Exchange (ETDEWEB)

    Wetterlund, Elisabeth [Linkoeping Univ., Linkoeping (Sweden); Pettersson, Karin [Chalmers Univ. of Technology, Goeteborg (Sweden); Mossberg, Johanna [SP Technical Research Inst. of Sweden, Boraas (Sweden)] [and others

    2013-09-01

    With a high availability of lignocellulosic biomass and various types of cellulosic by-products, as well as a large number of industries, Sweden is a country of great interest for future large scale production of sustainable, next generation biofuels. This is most likely also a necessity as Sweden has the ambition to be independent of fossil fuels in the transport sector by the year 2030 and completely fossil free by 2050. In order to reach competitive biofuel production costs, plants with large production capacities are likely to be required. Feedstock intake capacities in the range of about 1-2 million tonnes per year, corresponding to a biomass feed of 300-600 MW, can be expected, which may lead to major logistical challenges. To enable expansion of biofuel production in such large plants, as well as provide for associated distribution requirements, it is clear that substantial infrastructure planning will be needed. The geographical location of the production plant facilities is therefore of crucial importance and must be strategic to minimise the transports of raw material as well as of final product. Competition for the available feedstock, from for example forest industries and CHP plants (combined heat and power) further complicates the localisation problem. Since the potential for an increased biomass utilisation is limited, high overall resource efficiency is of great importance. Integration of biofuel production processes in existing industries or in district heating systems may be beneficial from several aspects, such as opportunities for efficient heat integration, feedstock and equipment integration, as well as access to existing experience and know-how. This report describes the development of Be Where Sweden, a geographically explicit optimisation model for localisation of next generation biofuel production plants in Sweden. The main objective of developing such a model is to be able to assess production plant locations that are robust to varying

  2. setting sustainable standards for biofuel production

    African Journals Online (AJOL)

    OLAWUYI

    Table 1: Energy Production and Consumption in Nigeria, 2012. Energy source. Production. (in percentages). Consumption. (in percentages). Combustible renewable and waste. 84.9. 82. Oil products. 7.06. 13. Natural gas. 5.44. 4. Crude oil. 2.23. -. Hydroelectric. 0.36. 1. Other renewables. 0. 0. Nuclear. 0. 0. Coal and peat.

  3. Marine microalgae for production of biofuels and chemicals.

    Science.gov (United States)

    Maeda, Yoshiaki; Yoshino, Tomoko; Matsunaga, Tadashi; Matsumoto, Mitsufumi; Tanaka, Tsuyoshi

    2017-12-09

    Marine microalgae are recognized as promising feedstocks for biofuels and chemicals owing to their higher growth rates than those of terrestrial crop plants. We aimed to summarize the production of biofuels and chemicals by marine microalgae and to discuss their advantages and potential from the aspect of bioprocess. The present circumstances of the microalgae industry were briefly described and large-scale industrial plants for microalgae production, where some marine microalgae are cultivated, were introduced. The advantages of marine microalgae in terms of water and land usage were also discussed. Finally, novel genome editing tools that could further exploit the potential of marine microalgae were reviewed. The present study provided comprehensive information regarding current biotechnology using marine microalgae. Copyright © 2017. Published by Elsevier Ltd.

  4. Maintaining site productivity during biofuel harvest operations

    Science.gov (United States)

    Deborah Page-Dumoese; Mark Kimsey

    2012-01-01

    Demand for forest biomass for bioenergy production and other uses is expected to increase to four times the current level in the next one to five years. The search for alternative energy sources, including forest bioenergy, increases pressure on the productive capacity of our western forestlands. The questions are: Can forest soils in the western U.S. support more...

  5. Biorefineries for chemical and biofuel production

    DEFF Research Database (Denmark)

    Fjerbæk Søtoft, Lene

    protecting agents. This combined with optimization of crop production logistics is a more realistic approach for the near future than only looking at i.e. production of bioethanol from straw. The approach can then be transferred to other energy crops such as willow or algae. Algae do not compete...

  6. Metabolic engineering of yeast for lignocellulosic biofuel production.

    Science.gov (United States)

    Jin, Yong-Su; Cate, Jamie Hd

    2017-12-01

    Production of biofuels from lignocellulosic biomass remains an unsolved challenge in industrial biotechnology. Efforts to use yeast for conversion face the question of which host organism to use, counterbalancing the ease of genetic manipulation with the promise of robust industrial phenotypes. Saccharomyces cerevisiae remains the premier host for metabolic engineering of biofuel pathways, due to its many genetic, systems and synthetic biology tools. Numerous engineering strategies for expanding substrate ranges and diversifying products of S. cerevisiae have been developed. Other yeasts generally lack these tools, yet harbor superior phenotypes that could be exploited in the harsh processes required for lignocellulosic biofuel production. These include thermotolerance, resistance to toxic compounds generated during plant biomass deconstruction, and wider carbon consumption capabilities. Although promising, these yeasts have yet to be widely exploited. By contrast, oleaginous yeasts such as Yarrowia lipolytica capable of producing high titers of lipids are rapidly advancing in terms of the tools available for their metabolic manipulation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Fatty acid alkyl esters: perspectives for production of alternative biofuels.

    Science.gov (United States)

    Röttig, Annika; Wenning, Leonie; Bröker, Daniel; Steinbüchel, Alexander

    2010-02-01

    The global economy heads for a severe energy crisis: whereas the energy demand is going to rise, easily accessible sources of crude oil are expected to be depleted in only 10-20 years. Since a serious decline of oil supply and an associated collapse of the economy might be reality very soon, alternative energies and also biofuels that replace fossil fuels must be established. In addition, these alternatives should not further impair the environment and climate. About 90% of the biofuel market is currently captured by bioethanol and biodiesel. Biodiesel is composed of fatty acid alkyl esters (FAAE) and can be synthesized by chemical, enzymatic, or in vivo catalysis mainly from renewable resources. Biodiesel is already established as it is compatible with the existing fuel infrastructure, non-toxic, and has superior combustion characteristics than fossil diesel; and in 2008, the global production was 12.2 million tons. The biotechnological production of FAAE from low cost and abundant feedstocks like biomass will enable an appreciable substitution of petroleum diesel. To overcome high costs for immobilized enzymes, the in vivo synthesis of FAAE using bacteria represents a promising approach. This article points to the potential of different FAAE as alternative biofuels, e.g., by comparing their fuel properties. In addition to conventional production processes, this review presents natural and genetically engineered biological systems capable of in vivo FAAE synthesis.

  8. Productivity incentives in the electricity sector

    International Nuclear Information System (INIS)

    Brunekreeft, G.

    2000-01-01

    July 19, 1999, the Netherlands Electricity Regulatory Service ('Dienst uitvoering en toezicht elektriciteitswet Dte) issued the consultation document 'Price-cap regulation in the electric power sector'. The document is strongly based on a modern, UK inspired method of regulation. The methods, as proposed in the document, will have an impact on the final electricity tariffs, and thus of great importance for the consumers and the businesses involved. In this article the most striking element in the consultation document is discussed: how to determine the X (i.e. the expected growth of the productivity) in the price-cap regulation

  9. Biofuels and climate neutrality - system analysis of production and utilisation

    International Nuclear Information System (INIS)

    Holmgren, Kristina; Eriksson, Erik; Olsson, Olle; Olsson, Mats; Hillring, Bengt; Parikka, Matti

    2007-06-01

    The objectives of this study were to investigate to what extent biofuels can be said to be climate neutral. An assessment of greenhouse gas emissions from the production and utilisation chains of a number of solid biofuels were made based on data available in the literature. The data has been used for making radiative forcing calculations. The study also includes a comparison between imported and domestic solid biofuels. We conclude that none of the investigated biofuel chains are 'climate neutral', since all of them result in net emissions of greenhouse gases. However, all of the chains result in lower emissions than corresponding emissions from the use of fossil fuels. The emission estimates for the fuel chains varies depending on fuels and on how system boundaries have been set in the different studies. The following factors can contribute significantly to the total emissions of greenhouse gases of the production and utilisation chain of a biofuel: impact of production system on soil carbon storage, land use methods (especially use of drained peatlands), the use of fertilisers (both direct and indirect), combustion technology, refining of the fuel (i.e. pelletisation) and storage (especially of comminuted fuels). Other sources that also contribute to the emissions during a production and utilisation chain are; harvesting machines, transportation and waste handling. The climate impacts of the greenhouse gas emissions from one of the biofuels, i.e. forest residues, were compared to the impacts of fossil fuels by the concept of radiative forcing. In the radiative forcing calculations the CO 2 emissions from combustion of biofuels and the CO 2 emissions that would have occurred if the residues had been left in the forest to decompose were included, and their different dynamics taken into consideration. The decomposition results in CO 2 emissions during a long time period and in an amount equalling those that are emitted during combustion. Only a minor part is due to

  10. Increasing Feedstock Production for Biofuels: Economic Drivers, Environmental Implications, and the Role of Research

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2009-10-27

    The Biomass Research and Development Board (Board) commissioned an economic analysis of feedstocks to produce biofuels. The Board seeks to inform investments in research and development needed to expand biofuel production. This analysis focuses on feedstocks; other interagency teams have projects underway for other parts of the biofuel sector (e.g., logistics). The analysis encompasses feedstocks for both conventional and advanced biofuels from agriculture and forestry sources.

  11. Efficient production of automotive biofuels; Effektiv produktion av biodrivmedel

    Energy Technology Data Exchange (ETDEWEB)

    Gode, Jenny; Hagberg, Linus; Rydberg, Tomas; Raadberg, Henrik; Saernholm, Erik

    2008-07-01

    The report describes opportunities and consequences associated with biomass polygeneration plants, in particular the role that heat plants (HP) or combined heat and power plants (CHP) in district heating systems can play in the production of automotive biofuels. The aim of the report is to provide a knowledge base to stakeholders to help assess energy and environmental benefits associated with collaborative approaches in planning, constructing and operating energy plants. Several configurations are possible for an energy polygeneration plant, but this report focuses on configurations in which a plant for automotive biofuel production and a district heating system with HPs or CHPs have been integrated in some way in order to achieve added value. The modes of integration are several, e.g.: - Supply of process steam from the CHP to the fuel plant, by which the time of operation for the CHP can be extended; Supply of surplus heat from the fuel plant to the district heating system; Material exchange between the systems, by use of residue streams from the fuel plant as fuel in the HP/CHP; Surplus heat from the fuel plant used for drying of the solid fuel to the HP/CHP or for drying of raw material for pellets production; Co-location providing opportunities for shared infrastructure for raw material handling, service systems, utilities and/or logistics. The report principally addresses integration options of the first three types, but describes briefly also pellets production. The starting point for the analysis of integration options is the description of technologies of interest for the production of automotive biofuels. Commercially available technologies are of prime interest, but also a couple of technologies under development are included in this part of the study. In addition to outlining the process characteristics for these processes, surrounding conditions and system requirements are briefly outlined. The results are summarized in Table S1. Ethanol fermentation

  12. Integrated microbial processes for biofuels and high value-added products: the way to improve the cost effectiveness of biofuel production.

    Science.gov (United States)

    da Silva, Teresa Lopes; Gouveia, Luísa; Reis, Alberto

    2014-02-01

    The production of microbial biofuels is currently under investigation, as they are alternative sources to fossil fuels, which are diminishing and their use has a negative impact on the environment. However, so far, biofuels derived from microbes are not economically competitive. One way to overcome this bottleneck is the use of microorganisms to transform substrates into biofuels and high value-added products, and simultaneously taking advantage of the various microbial biomass components to produce other products of interest, as an integrated process. In this way, it is possible to maximize the economic value of the whole process, with the desired reduction of the waste streams produced. It is expected that this integrated system makes the biofuel production economically sustainable and competitive in the near future. This review describes the investigation on integrated microbial processes (based on bacteria, yeast, and microalgal cultivations) that have been experimentally developed, highlighting the importance of this approach as a way to optimize microbial biofuel production process.

  13. Biofuel production from Jerusalem artichoke tuber inulins

    Science.gov (United States)

    Jerusalem artichoke has high productivity of tubers that are rich in inulins, a fructan polymer. These inulins can be easily broken down into fructose and glucose for conversion into ethanol by fermentation. This review focuses on tuber and inulin yields, effect of cultivar and environment on tuber ...

  14. Liquid biofuel production from volatile fatty acids

    NARCIS (Netherlands)

    Steinbusch, K.J.J.

    2010-01-01

    The production of renewable fuels and chemicals reduces the dependency on fossil fuels and limits the increase of CO2 concentration in the atmosphere only if a sustainable feedstock and an energy efficient process are used. The thesis assesses the possibility to use municipal and industrial waste as

  15. Study of by-products of agro-food industries which could be used for bio-fuel production (animal fat, used food oils, and wine production by-products). Synthesis of the final report

    International Nuclear Information System (INIS)

    Gomy, Catherine; Thonier, Gregoire; Gagnepain, Bruno; Mhiri, Tarek

    2015-04-01

    As the Renewable Energy directive proposes the implementation of incentive arrangements for the production of bio-fuels from biomass, this report proposes a synthesis of a study which addressed three by-products of agro-food industry and of catering (collective, traditional, fast) which can help to reach objectives of energy production from biomass: used food oils, rendered animal fat of category 1 and 2, and vinification by-products (grape marc, lees, sludge). The objectives were to quantify, at the French national and regional levels, present resources and uses for these three by-products, non-valorised volumes and thus potentially available volumes for the production of liquid bio-fuels, to identify present actors and their interactions, and to study the potential of local production of liquid bio-fuels. The study comprised a comprehensive analysis of production and valorisation sectors for the three addressed types of by-products, and an identification of recent experiments implemented for the production of liquid bio-fuels. This synthesis states the lessons learned from the study of these three different sectors, and proposes recommendations for further developments

  16. Downgrading recent estimates of land available for biofuel production.

    Science.gov (United States)

    Fritz, Steffen; See, Linda; van der Velde, Marijn; Nalepa, Rachel A; Perger, Christoph; Schill, Christian; McCallum, Ian; Schepaschenko, Dmitry; Kraxner, Florian; Cai, Ximing; Zhang, Xiao; Ortner, Simone; Hazarika, Rubul; Cipriani, Anna; Di Bella, Carlos; Rabia, Ahmed H; Garcia, Alfredo; Vakolyuk, Mar'yana; Singha, Kuleswar; Beget, Maria E; Erasmi, Stefan; Albrecht, Franziska; Shaw, Brian; Obersteiner, Michael

    2013-02-05

    Recent estimates of additional land available for bioenergy production range from 320 to 1411 million ha. These estimates were generated from four scenarios regarding the types of land suitable for bioenergy production using coarse-resolution inputs of soil productivity, slope, climate, and land cover. In this paper, these maps of land availability were assessed using high-resolution satellite imagery. Samples from these maps were selected and crowdsourcing of Google Earth images was used to determine the type of land cover and the degree of human impact. Based on this sample, a set of rules was formulated to downward adjust the original estimates for each of the four scenarios that were previously used to generate the maps of land availability for bioenergy production. The adjusted land availability estimates range from 56 to 1035 million ha depending upon the scenario and the ruleset used when the sample is corrected for bias. Large forest areas not intended for biofuel production purposes were present in all scenarios. However, these numbers should not be considered as definitive estimates but should be used to highlight the uncertainty in attempting to quantify land availability for biofuel production when using coarse-resolution inputs with implications for further policy development.

  17. Biofuel production and implications for land use, food production and environment in India

    Energy Technology Data Exchange (ETDEWEB)

    Ravindranath, N.H.; Sita Lakshmi, C.; Manuvie, Ritumbra [Center for Sustainable Technologies, Indian Institute of Science, Bangalore 560012 (India); Balachandra, P., E-mail: patilb@mgmt.iisc.ernet.in [Center for Sustainable Technologies, Indian Institute of Science, Bangalore 560012 (India)

    2011-10-15

    There is a large interest in biofuels in India as a substitute to petroleum-based fuels, with a purpose of enhancing energy security and promoting rural development. India has announced an ambitious target of substituting 20% of fossil fuel consumption by biodiesel and bioethanol by 2017. India has announced a national biofuel policy and launched a large program to promote biofuel production, particularly on wastelands: its implications need to be studied intensively considering the fact that India is a large developing country with high population density and large rural population depending upon land for their livelihood. Another factor is that Indian economy is experiencing high growth rate, which may lead to enhanced demand for food, livestock products, timber, paper, etc., with implications for land use. Studies have shown that area under agriculture and forest has nearly stabilized over the past 2-3 decades. This paper presents an assessment of the implications of projected large-scale biofuel production on land available for food production, water, biodiversity, rural development and GHG emissions. The assessment will be largely focused on first generation biofuel crops, since the Indian program is currently dominated by these crops. Technological and policy options required for promoting sustainable biofuel production will be discussed.

  18. Biofuel production and implications for land use, food production and environment in India

    International Nuclear Information System (INIS)

    Ravindranath, N.H.; Sita Lakshmi, C.; Manuvie, Ritumbra; Balachandra, P.

    2011-01-01

    There is a large interest in biofuels in India as a substitute to petroleum-based fuels, with a purpose of enhancing energy security and promoting rural development. India has announced an ambitious target of substituting 20% of fossil fuel consumption by biodiesel and bioethanol by 2017. India has announced a national biofuel policy and launched a large program to promote biofuel production, particularly on wastelands: its implications need to be studied intensively considering the fact that India is a large developing country with high population density and large rural population depending upon land for their livelihood. Another factor is that Indian economy is experiencing high growth rate, which may lead to enhanced demand for food, livestock products, timber, paper, etc., with implications for land use. Studies have shown that area under agriculture and forest has nearly stabilized over the past 2-3 decades. This paper presents an assessment of the implications of projected large-scale biofuel production on land available for food production, water, biodiversity, rural development and GHG emissions. The assessment will be largely focused on first generation biofuel crops, since the Indian program is currently dominated by these crops. Technological and policy options required for promoting sustainable biofuel production will be discussed.

  19. Economical analysis of biofuel products and nuclear plant hydrogen

    International Nuclear Information System (INIS)

    Edwaren Liun

    2011-01-01

    The increasing in oil prices over the last six years is unprecedented that should be seen as a spur to increased efficiency. The surge in oil prices on the world market today is driven by strong demand factors in the depletion of world oil reserves. To replace the fuel oil from the bowels of the earth the various alternatives should be considered, including other crops or vegetable oil production of bio-fuels and hydrogen are produced by high temperature nuclear reactors. Biofuels in the form of ethanol made from corn or sugar cane and biodiesel made from palm oil or jatropha. With the latest world oil prices, future fuel vegetable oil and nuclear hydrogen-based energy technologies become popular in various parts of the world. Economics of biodiesel will be changed in accordance with world oil prices and subsidy regulations which apply to fuel products. On the other hand the role of nuclear energy in hydrogen production with the most potential in the techno-economics is a form of high temperature steam electrolysis, using heat and electricity from nuclear reactors. The production cost of biodiesel fuel on the basis of ADO type subsidy is 10.49 US$/MMBTU, while the production cost of hydrogen as an energy carrier of high temperature reactor is 15.30 US$/MMBTU. Thus, both types seem to have strong competitiveness. (author)

  20. MICROALGAE AS AN ALTERNATIVE TO BIOFUELS PRODUCTION. PART 1: BIOETHANOL

    Directory of Open Access Journals (Sweden)

    Maiara Priscilla de Souza

    2013-02-01

    Full Text Available The demand from the energy sector is one of the culminating factors to do researches that enable innovations in the biotechnology sector and to boost biofuel production. The variability of the existing feedstocks provides benefits to energy production, however, we must choose the ones that present plausible characteristics depending on the type of product that we want to obtained. In this context, it is noted that the microalgae have suitable characteristics to producing different types of fuels, depending on the type of treatment are subjected, the species being analyzed as well as the biochemical composition of the biomass. Bioethanol production from microalgae is a promising and growing energy alternative under a view that biomass of these microorganisms has an enormous biodiversity and contain high levels of carbohydrates, an indispensable factor for the bioconversion of microalgae in ethanol. Due to these factors, there is a constant search for more viable methods for pretreatment of biomass, hydrolysis and fermentation, having as one of the major aspects the approach of effectives methodologies in the ambit of quality and yield of ethanol. Therefore, we have to search to increase the interest in the developing of biofuels reconciling with the importance of using microalgae, analyzing whether these micro-organisms are capable of being used in bioethanol production.

  1. State of the art review of biofuels production from lignocellulose by thermophilic bacteria.

    Science.gov (United States)

    Jiang, Yujia; Xin, Fengxue; Lu, Jiasheng; Dong, Weiliang; Zhang, Wenming; Zhang, Min; Wu, Hao; Ma, Jiangfeng; Jiang, Min

    2017-12-01

    Biofuels, including ethanol and butanol, are mainly produced by mesophilic solventogenic yeasts and Clostridium species. However, these microorganisms cannot directly utilize lignocellulosic materials, which are abundant, renewable and non-compete with human demand. More recently, thermophilic bacteria show great potential for biofuels production, which could efficiently degrade lignocellulose through the cost effective consolidated bioprocessing. Especially, it could avoid contamination in the whole process owing to its relatively high fermentation temperature. However, wild types thermophiles generally produce low levels of biofuels, hindering their large scale production. This review comprehensively summarizes the state of the art development of biofuels production by reported thermophilic microorganisms, and also concludes strategies to improve biofuels production including the metabolic pathways construction, co-culturing systems and biofuels tolerance. In addition, strategies to further improve butanol production are proposed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Product quality optimization in an integrated biorefinery: Conversion of pistachio nutshell biomass to biofuels and activated biochars via pyrolysis

    International Nuclear Information System (INIS)

    Işıtan, Seçil; Ceylan, Selim; Topcu, Yıldıray; Hintz, Chloe; Tefft, Juliann; Chellappa, Thiago; Guo, Jicheng; Goldfarb, Jillian L.

    2016-01-01

    Highlights: • Pyrolysis temperature key variable in manipulating biofuel quality. • Pyrolysis temperature does not impact activated biochar surface area. • Activation temperature key variable to optimize surface area of pistachio biochar. • Statistical model accurately predicts surface area of biochar, especially above 600 m 2 /g. - Abstract: An economically viable transition to a renewable, sustainable energy future hinges on the ability to simultaneously produce multiple high value products from biomass precursors. Though there is considerable literature on the thermochemical conversion of biomass to biofuels and biochars, there are few holistic examinations that seek to understand trade-offs between biofuel quality and the associated pyrolysis conditions on activated carbons made from the resulting biochars. Using an Ordinary Least Squares regression analysis, this study probes the impact of pyrolysis and activation temperature on surface areas and pore volumes for 28 carbon dioxide-activated carbons. Activation temperature has the largest single impact of any other variable; increasing the temperature from 800 to 900 °C leads to an increase in surface area of more than 300 m 2 /g. Contrary to some prior results, pyrolysis temperature has minimal effect on the resulting surface area and pore volume, suggesting that optimizing the temperature at which biofuels are extracted will have little impact on carbon dioxide-activated carbons. Increasing pyrolysis temperature increases methane formation but decreases gaseous hydrocarbons. Bio-oil obtained at lower pyrolysis temperatures shows fewer oxygenated compounds, indicating a greater stability, but higher pyrolysis temperatures maximize production of key biorefinery intermediaries such as furans. By analyzing data in such a holistic manner, it may be possible to optimize the production of biofuels and activated carbons from biomass by minimizing the amount of raw materials and energy necessary to maximize

  3. A model for improving microbial biofuel production using a synthetic feedback loop

    Energy Technology Data Exchange (ETDEWEB)

    Dunlop, Mary; Keasling, Jay; Mukhopadhyay, Aindrila

    2011-07-14

    Cells use feedback to implement a diverse range of regulatory functions. Building synthetic feedback control systems may yield insight into the roles that feedback can play in regulation since it can be introduced independently of native regulation, and alternative control architectures can be compared. We propose a model for microbial biofuel production where a synthetic control system is used to increase cell viability and biofuel yields. Although microbes can be engineered to produce biofuels, the fuels are often toxic to cell growth, creating a negative feedback loop that limits biofuel production. These toxic effects may be mitigated by expressing efflux pumps that export biofuel from the cell. We developed a model for cell growth and biofuel production and used it to compare several genetic control strategies for their ability to improve biofuel yields. We show that controlling efflux pump expression directly with a biofuel-responsive promoter is a straight forward way of improving biofuel production. In addition, a feed forward loop controller is shown to be versatile at dealing with uncertainty in biofuel production rates.

  4. Biofuel production through nutrients optimized forestry; Braensleproduktion genom naaeringsoptimerat skogsbruk

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, M.; Sallnaes, O. [Swedish Univ. of Agricultural Sciences, Alnarp (Sweden). Southern Swedish Forest Research Centre; Bergh, J. [Swedish Univ. of Agricultural Sciences, Uppsala (Sweden). Dept. for Production Ecology; Boerjesson, P. [Lund Univ. (Sweden). Dept. of Technology and Society; Dahlin, B. [Swedish Univ. of Agricultural Sciences, Uppsala (Sweden). Dept. of Forest Management and Products

    2001-06-01

    The demand of bio-fuel is likely to increase rapidly in near future, since there is a political wish to replace both nuclear power and fossil fuel by other energy sources, and at the same time the environmental pressure on forest land is increasing. New and more intensified systems may be introduced in Sweden with a differentiation of the land use, where some areas are allowed to concentrate on production (plantations) and others with a more extensive treatment (recreation, bio-diversity, nature reserve). One effective way to increase the production of forest biomass on forest land is to fertilise Norway spruce (Picea Abies) stands, according to the principles of nutrient optimisation. Estimations of the production potential of Norway spruce suggest a significant production gain in stem volume production over a rotation period, if stands are supplied with macro- and micronutrients. In general, the average stem volume production would increase by 75% in southern and 200% in northern Sweden. Subsequently, the rotation period will shorten substantially by 20-30 years in southern and 40-60 years in northern Sweden. A comparison between the cost and gain of energy and carbon dioxide, shows that the gain is much larger than the cost in intensified systems with nutrient optimisation. The cost of energy and carbon dioxide is only 2-4% of the gain comparing only the production of stem wood and is of course even better if the whole biomass production is considered. Nutrient optimisation appear to be economically sound in present value calculations, where costs and incomes are discounted to a certain year. The economical gain is not large over a rotation, but the whole concept is effective in terms of energy, environment and costs. A spatial analysis envisage that the demand and supply of biofuel is not perfectly matched geographically in Sweden. The largest demand are from the metropolitan regions (Stockholm, Goeteborg and Malmoe), while northern Sweden has the greatest

  5. Cyanobacterial chassis engineering for enhancing production of biofuels and chemicals.

    Science.gov (United States)

    Gao, Xinyan; Sun, Tao; Pei, Guangsheng; Chen, Lei; Zhang, Weiwen

    2016-04-01

    To reduce dependence on fossil fuels and curb greenhouse effect, cyanobacteria have emerged as an important chassis candidate for producing biofuels and chemicals due to their capability to directly utilize sunlight and CO2 as the sole energy and carbon sources, respectively. Recent progresses in developing and applying various synthetic biology tools have led to the successful constructions of novel pathways of several dozen green fuels and chemicals utilizing cyanobacterial chassis. Meanwhile, it is increasingly recognized that in order to enhance productivity of the synthetic cyanobacterial systems, optimizing and engineering more robust and high-efficient cyanobacterial chassis should not be omitted. In recent years, numerous research studies have been conducted to enhance production of green fuels and chemicals through cyanobacterial chassis modifications involving photosynthesis, CO2 uptake and fixation, products exporting, tolerance, and cellular regulation. In this article, we critically reviewed recent progresses and universal strategies in cyanobacterial chassis engineering to make it more robust and effective for bio-chemicals production.

  6. Systems biology of yeast: enabling technology for development of cell factories for production of advanced biofuels.

    Science.gov (United States)

    de Jong, Bouke; Siewers, Verena; Nielsen, Jens

    2012-08-01

    Transportation fuels will gradually shift from oil based fuels towards alternative fuel resources like biofuels. Current bioethanol and biodiesel can, however, not cover the increasing demand for biofuels and there is therefore a need for advanced biofuels with superior fuel properties. Novel cell factories will provide a production platform for advanced biofuels. However, deep cellular understanding is required for improvement of current biofuel cell factories. Fast screening and analysis (-omics) methods and metabolome-wide mathematical models are promising techniques. An integrated systems approach of these techniques drives diversity and quantity of several new biofuel compounds. This review will cover the recent technological developments that support improvement of the advanced biofuels 1-butanol, biodiesels and jetfuels. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. The role of biochemical engineering in the production of biofuels from microalgae.

    Science.gov (United States)

    Costa, Jorge Alberto Vieira; de Morais, Michele Greque

    2011-01-01

    Environmental changes that have occurred due to the use of fossil fuels have driven the search for alternative sources that have a lower environmental impact. First-generation biofuels were derived from crops such as sugar cane, corn and soybean, which contribute to water scarcity and deforestation. Second-generation biofuels originated from lignocellulose agriculture and forest residues, however these needed large areas of land that could be used for food production. Based on technology projections, the third generation of biofuels will be derived from microalgae. Microalgae are considered to be an alternative energy source without the drawbacks of the first- and second-generation biofuels. Depending upon the growing conditions, microalgae can produce biocompounds that are easily converted into biofuels. The biofuels from microalgae are an alternative that can keep the development of human activity in harmony with the environment. This study aimed to present the main biofuels that can be derived from microalgae. Copyright © 2010 Elsevier Ltd. All rights reserved.

  8. A perspective: photosynthetic production of fatty acid-based biofuels in genetically engineered cyanobacteria.

    Science.gov (United States)

    Lu, Xuefeng

    2010-01-01

    Biofuels are expected to play a key role in the development of a sustainable, economical and environmentally safe source of energy. Microbes offer great potential for applications in technology based biofuel production. Three fundamental questions need to be addressed in order for the development of microbial synthesis of biofuels to be successful. Firstly, what energy resource platform could be used to make biofuels. Secondly, what type of biofuel is the ideal fuel molecule that should be targeted. Finally, what microbial system could be used to transform energy resources into the targeted biofuel molecules. In this perspective, the potential of using photosynthetic microbes (cyanobacteria in particular) in the solar energy driven conversion of carbon dioxide to fatty acid-based biofuels is explored. Copyright © 2010 Elsevier Inc. All rights reserved.

  9. Bio-fuel co-products in France: perspectives and consequences for cattle food

    International Nuclear Information System (INIS)

    2010-01-01

    The development of bio-fuels goes along with that of co-products which can be used to feed animals. After having recalled the political context which promotes the development of renewable energies, this document aims at giving an overview of the impact of bio-fuel co-products on agriculture economy. It discusses the production and price evolution for different crops

  10. Fields of dreams: Agriculture, economy and nature in Midwest United States biofuel production

    Science.gov (United States)

    Gillon, Sean Thomas

    This work explores the social and ecological dimensions of recent biofuel production increases in the United States (US), focusing on the case of Iowa. Biofuels are proposed to mitigate the greenhouse gas emissions that cause climate change, improve US energy security, and support rural economies. Little research has examined how increased US Midwestern biofuels production will change social and ecological outcomes at farm and regional levels or interact with broader governance processes at the nexus of agriculture, energy and environment. These broad questions guide my research: (1) How does biofuel production reconfigure agricultural practice and landscapes in Iowa? (2) What are the costs, benefits and risks of increased biofuels production as seen by farmers and rural residents, and how do these factors influence farmer decisions about agriculture and conservation practice? (3) How and with what effects are biofuels initiatives constituted as a form of environmental governance through scientific knowledge and practice and political economic dynamics? To address these questions, this research integrates both qualitative and quantitative methods, drawing on a political ecological approach complemented by agroecological analysis and theoretical insights from geographical analyses of nature-society relations. Quantitative analysis focuses on changing land use patterns in agriculture and conservation practice in Iowa. Qualitative methods include extensive interviews, participant observation, and policy and document analyses. Fieldwork focused on Northeastern Iowa to understand regional changes in agricultural and conservation practice, the renegotiated position of farmers in agriculture and biofuel production, and biofuel industry development. I find that biofuel production presents significant social and ecological challenges for rural places of production. Longstanding, unequal political economic relations in industrialized agriculture limit rural economic benefits

  11. Enhancing microalgal photosynthesis and productivity in wastewater treatment high rate algal ponds for biofuel production.

    Science.gov (United States)

    Sutherland, Donna L; Howard-Williams, Clive; Turnbull, Matthew H; Broady, Paul A; Craggs, Rupert J

    2015-05-01

    With microalgal biofuels currently receiving much attention, there has been renewed interest in the combined use of high rate algal ponds (HRAP) for wastewater treatment and biofuel production. This combined use of HRAPs is considered to be an economically feasible option for biofuel production, however, increased microalgal productivity and nutrient removal together with reduced capital costs are needed before it can be commercially viable. Despite HRAPs being an established technology, microalgal photosynthesis and productivity is still limited in these ponds and is well below the theoretical maximum. This paper critically evaluates the parameters that limit microalgal light absorption and photosynthesis in wastewater HRAPs and examines biological, chemical and physical options for improving light absorption and utilisation, with the view of enhancing biomass production and nutrient removal. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Biofuel Production Initiative at Claflin University Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Chowdhury, Kamal

    2011-07-20

    For US transportation fuel independence or reduced dependence on foreign oil, the Federal Government has mandated that the country produce 36 billion gallons (bg) of renewable transportation fuel per year for its transportation fuel supply by 2022. This can be achieved only if development of efficient technology for second generation biofuel from ligno-cellulosic sources is feasible. To be successful in this area, development of a widely available, renewable, cost-effective ligno-cellulosic biomass feedstock that can be easily and efficiently converted biochemically by bacteria or other fast-growing organisms is required. Moreover, if the biofuel type is butanol, then the existing infrastructure to deliver fuel to the customer can be used without additional costs and retrofits. The Claflin Biofuel Initiative project is focused on helping the US meet the above-mentioned targets. With support from this grant, Claflin University (CU) scientists have created over 50 new strains of microorganisms that are producing butanol from complex carbohydrates and cellulosic compounds. Laboratory analysis shows that a number of these strains are producing higher percentages of butanol than other methods currently in use. All of these recombinant bacterial strains are producing relatively high concentrations of acetone and numerous other byproducts as well. Therefore, we are carrying out intense mutations in the selected strains to reduce undesirable byproducts and increase the desired butanol production to further maximize the yield of butanol. We are testing the proof of concept of producing pre-industrial large scale biobutanol production by utilizing modifications of currently commercially available fermentation technology and instrumentation. We have already developed an initial process flow diagram (PFD) and selected a site for a biobutanol pilot scale facility in Orangeburg, SC. With the recent success in engineering new strains of various biofuel producing bacteria at CU

  13. Biofuel Database

    Science.gov (United States)

    Biofuel Database (Web, free access)   This database brings together structural, biological, and thermodynamic data for enzymes that are either in current use or are being considered for use in the production of biofuels.

  14. Incentive Policy Options for Product Remanufacturing: Subsidizing Donations or Resales?

    Science.gov (United States)

    Zhu, Xiaodong; Wang, Yue; Li, Bangyi

    2017-01-01

    Remanufactured products offer better environmental benefits, and governments encourage manufacturers to remanufacture through various subsidy policies. This practice has shown that, in addition to product sales, remanufactured product can also achieve its value through social donation. Based on the remanufactured product value realization approaches, governments provide two kinds of incentive policies, which are remanufactured product sales subsidies and remanufactured product donation subsidies. This paper constructs a two-stage Stackelberg game model including a government and a manufacturer under two different policies, which can be solved by backward induction. By comparing the optimal decision of the two policies, our results show that, compared with the remanufacturing sales subsidy, donation subsidy weakens the cannibalization of remanufactured products for new products and increases the quantity of new products. It reduces the sales quantity of remanufactured products, but increases their total quantity. Under certain conditions of low subsidy, the manufacturer adopting sales subsidy provides better economic and environmental benefits. Under certain conditions of high subsidy, the manufacturer adopting donation subsidy offers better economic and environmental benefits. When untreated product environmental impact is large enough, donation subsidy policy has a better social welfare. Otherwise, the choice of social welfare of these two different policies depends on the social impact of remanufactured product donated. PMID:29194411

  15. Techno-Economic Analysis of Biofuel Production from Macroalgae (Seaweed

    Directory of Open Access Journals (Sweden)

    Mohsen Soleymani

    2017-11-01

    Full Text Available A techno-economic evaluation of bioenergy production from macroalgae was carried out in this study. Six different scenarios were examined for the production of different energy products and by-products. Seaweed was produced either via the longline method or the grid method. Final products of these scenarios were either ethanol from fermentation, or electricity from anaerobic digestion (AD. By-products were digestate for AD, and animal feed, or electricity and digestate, for the fermentation pathway. Bioenergy breakeven selling prices were investigated according to the cost components and the feedstock supply chain, while suggestions for potential optimization of costs were provided. The lowest production level of dry seaweed to meet 0.93 ($/L for ethanol fuel and 0.07 $/kW-h for electricity was found to be 0.68 and 3.7 million tonnes (dry basis, respectively. At the moment, biofuel production from seaweed has been determined not to be economically feasible, but achieving economic production may be possible by lowering production costs and increasing the area under cultivation.

  16. Techno-Economic Analysis of Biofuel Production from Macroalgae (Seaweed).

    Science.gov (United States)

    Soleymani, Mohsen; Rosentrater, Kurt A

    2017-11-26

    A techno-economic evaluation of bioenergy production from macroalgae was carried out in this study. Six different scenarios were examined for the production of different energy products and by-products. Seaweed was produced either via the longline method or the grid method. Final products of these scenarios were either ethanol from fermentation, or electricity from anaerobic digestion (AD). By-products were digestate for AD, and animal feed, or electricity and digestate, for the fermentation pathway. Bioenergy breakeven selling prices were investigated according to the cost components and the feedstock supply chain, while suggestions for potential optimization of costs were provided. The lowest production level of dry seaweed to meet 0.93 ($/L) for ethanol fuel and 0.07 $/kW-h for electricity was found to be 0.68 and 3.7 million tonnes (dry basis), respectively. At the moment, biofuel production from seaweed has been determined not to be economically feasible, but achieving economic production may be possible by lowering production costs and increasing the area under cultivation.

  17. Techno-Economic Analysis of Biofuel Production from Macroalgae (Seaweed)

    Science.gov (United States)

    Soleymani, Mohsen

    2017-01-01

    A techno-economic evaluation of bioenergy production from macroalgae was carried out in this study. Six different scenarios were examined for the production of different energy products and by-products. Seaweed was produced either via the longline method or the grid method. Final products of these scenarios were either ethanol from fermentation, or electricity from anaerobic digestion (AD). By-products were digestate for AD, and animal feed, or electricity and digestate, for the fermentation pathway. Bioenergy breakeven selling prices were investigated according to the cost components and the feedstock supply chain, while suggestions for potential optimization of costs were provided. The lowest production level of dry seaweed to meet 0.93 ($/L) for ethanol fuel and 0.07 $/kW-h for electricity was found to be 0.68 and 3.7 million tonnes (dry basis), respectively. At the moment, biofuel production from seaweed has been determined not to be economically feasible, but achieving economic production may be possible by lowering production costs and increasing the area under cultivation. PMID:29186857

  18. Biofuels and Their Co-Products as Livestock Feed: Global Economic and Environmental Implications.

    Science.gov (United States)

    Popp, József; Harangi-Rákos, Mónika; Gabnai, Zoltán; Balogh, Péter; Antal, Gabriella; Bai, Attila

    2016-02-29

    This review studies biofuel expansion in terms of competition between conventional and advanced biofuels based on bioenergy potential. Production of advanced biofuels is generally more expensive than current biofuels because products are not yet cost competitive. What is overlooked in the discussion about biofuel is the contribution the industry makes to the global animal feed supply and land use for cultivation of feedstocks. The global ethanol industry produces 44 million metric tonnes of high-quality feed, however, the co-products of biodiesel production have a moderate impact on the feed market contributing to just 8-9 million tonnes of protein meal output a year. By economically displacing traditional feed ingredients co-products from biofuel production are an important and valuable component of the biofuels sector and the global feed market. The return of co-products to the feed market has agricultural land use (and GHG emissions) implications as well. The use of co-products generated from grains and oilseeds can reduce net land use by 11% to 40%. The proportion of global cropland used for biofuels is currently some 2% (30-35 million hectares). By adding co-products substituted for grains and oilseeds the land required for cultivation of feedstocks declines to 1.5% of the global crop area.

  19. Biofuels and biodiversity.

    Science.gov (United States)

    Wiens, John; Fargione, Joseph; Hill, Jason

    2011-06-01

    The recent increase in liquid biofuel production has stemmed from a desire to reduce dependence on foreign oil, mitigate rising energy prices, promote rural economic development, and reduce greenhouse gas emissions. The growth of this industry has important implications for biodiversity, the effects of which depend largely on which biofuel feedstocks are being grown and the spatial extent and landscape pattern of land requirements for growing these feedstocks. Current biofuel production occurs largely on croplands that have long been in agricultural production. The additional land area required for future biofuels production can be met in part by reclaiming reserve or abandoned croplands and by extending cropping into lands formerly deemed marginal for agriculture. In the United States, many such marginal lands have been enrolled in the Conservation Reserve Program (CRP), providing important habitat for grassland species. The demand for corn ethanOl has changed agricultural commodity economics dramatically, already contributing to loss of CRP lands as contracts expire and lands are returned to agricultural production. Nevertheless, there are ways in which biofuels can be developed to enhance their coexistence with biodiversity. Landscape heterogeneity can be improved by interspersion of land uses, which is easier around facilities with smaller or more varied feedstock demands. The development of biofuel feedstocks that yield high net energy returns with minimal carbon debts or that do not require additional land for production, such as residues and wastes, should be encouraged. Competing land uses, including both biofuel production and biodiversity protection, should be subjected to comprehensive cost-benefit analysis, so that incentives can be directed where they will do the most good.

  20. Burkholderia cepacia lipase is a promising biocatalyst for biofuel production.

    Science.gov (United States)

    Sasso, Francesco; Natalello, Antonino; Castoldi, Simone; Lotti, Marina; Santambrogio, Carlo; Grandori, Rita

    2016-07-01

    Lipases resistant to inhibition and denaturation by methanol are valuable tools for biotechnological applications, in particular for biofuel production. Microbial lipases have attracted a great deal of interest because of their stability at high concentrations of organic solvents. Burkholderia cepacia lipase (BCL) is tested here for robustness towards methanol in terms of conformational stability and catalytic activity in transesterification assays. This lipase turns out to be even more tolerant than the homologous and better characterized enzyme from Burkholderia glumae. BCL unfolding transition, as monitored by far-UV circular dichroism (CD) and intrinsic fluorescence, displays a Tm above 60°C in the presence of 50% methanol. The protein unfolds at low pH, and the organic solvent affects the nature of the denatured state under acidic conditions. The protein performs well in transesterification assays upon prolonged incubations at high methanol concentrations. BCL is highly tolerant to methanol and displays particularly high conformational stability under conditions employed for transesterification reactions. These features depict BCL as a promising enzyme for biofuel industry. Copyright © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Life cycle and landscape impacts of biofuel production

    Science.gov (United States)

    Hill, J.

    2012-12-01

    Achieving the biofuel volumes mandated in the Renewable Fuels Standard of the United States Energy Independence and Security Act of 2007 will require large amounts of biomass such as crop residues and dedicated bioenergy crops. Growing sufficient amounts of these feedstocks would greatly transform the agricultural landscape of the United States, and depending on where and how they are grown, may have vastly different implications for the sustainability of the biofuels industry. This presentation describes ongoing research into how biomass can best be produced on the landscape so as to benefit rural economies and provide ecosystem services such as greenhouse gas mitigation and improved air quality. The focus is on newly developed methods for integrating spatial and temporal information into life cycle assessment so as to both allow for more detailed impact assessment and to provide insight into how to improve efficiency along bioenergy production supply chains. Results will benefit stakeholders both by offering recommendations for guiding sustainable growth of the emerging bioeconomy and by advancing understanding of the inherent tradeoffs among alternate scenarios.

  2. Comparative genomics of xylose-fermenting fungi for enhanced biofuel production

    Science.gov (United States)

    Dana J. Wolbach; Alan Kuo; Trey K. Sato; Katlyn M. Potts; Asaf A. Salamov; Kurt M. LaButti; Hui Sun; Alicia Clum; Jasmyn L. Pangilinan; Erika A. Lindquist; Susan Lucas; Alla Lapidus; Mingjie Jin; Christa Gunawan; Venkatesh Balan; Bruce E. Dale; Thomas W. Jeffries; Robert Zinkel; Kerrie W. Barry; Igor V. Grigoriev; Audrey P. Gasch

    2011-01-01

    Cellulosic biomass is an abundant and underused substrate for biofuel production. The inability of many microbes to metabolize the pentose sugars abundant within hemicellulose creates specific challenges for microbial biofuel production from cellulosic material. Although engineered strains of Saccharomyces cerevisiae can use the pentose xylose, the fermentative...

  3. Climatic impacts of managed landscapes for sustainable biofuel feedstocks production.

    Science.gov (United States)

    Gelfand, I.; Kravchenko, A. N.; Hamilton, S. K.; Jackson, R. D.; Thelen, K.; Robertson, G. P.

    2016-12-01

    Sustainable production of biofuels cannot be achieved without multiple-use landscapes where food, feed, and fuel can be co-produced without environmental harm. Here we use field level measurements in seven biofuel feedstock production systems grown under similar climatic conditions, but on different soils in two Midwestern (USA) states to understand their relative climatic impacts. We studied annual corn stover, and 6 perennial ecosystems including three polycultures: successional vegetation, restored prairie and a 3-species grass mix; and 3 monocultures: poplar, switchgrass, and miscanthus. All studied ecosystems were grown in replicated plots on moderately fertile soils of SW Michigan and highly fertile soils of central Wisconsin. We measured components of greenhouse gas (GHG) balances over 6 years. On the fertile soil perennial monocultures had GHG emission reductions potentials of 53% relative to fossil fuels, while polycultures had 64% reduction; corn stover had an 84% emissions reduction. Net sequestration ranged from 0.6 MgCO2e ha-1yr-1 (successional vegetation) to 3.1 MgCO2e ha-1yr-1, (corn stover). Among feedstocks produced on less fertile soils, perennial monocultures had GHG emissions reduction of 80%, and polycultures had emission reduction of 54%; miscanthus and poplar exhibited the largest sequestration potentials of 5.9 and 3.9 MgCO2e ha-1yr-1 respectively, while polycultures sequestered less then 1.0 MgCO2e ha-1yr-1 on average and corn stover was intermediate with 1.4 MgCO2e ha-1yr-1. All studied systems averaged energy production of 30 GJ ha-1 yr-1, except miscanthus (71 GJ ha-1 yr-1) and successional vegetation (20 GJ ha-1 yr-1). Our results inform the design of multiple-use landscapes: more fertile soils could produce food and feed with residuals collected for bioethanol production and more marginal soils could be used for various poly- or mono-cultures of purpose grown biofuel feedstocks but with differential climate benefits.

  4. Advanced Biofuels and Beyond: Chemistry Solutions for Propulsion and Production.

    Science.gov (United States)

    Leitner, Walter; Klankermayer, Jürgen; Pischinger, Stefan; Pitsch, Heinz; Kohse-Höinghaus, Katharina

    2017-05-08

    Sustainably produced biofuels, especially when they are derived from lignocellulosic biomass, are being discussed intensively for future ground transportation. Traditionally, research activities focus on the synthesis process, while leaving their combustion properties to be evaluated by a different community. This Review adopts an integrative view of engine combustion and fuel synthesis, focusing on chemical aspects as the common denominator. It will be demonstrated that a fundamental understanding of the combustion process can be instrumental to derive design criteria for the molecular structure of fuel candidates, which can then be targets for the analysis of synthetic pathways and the development of catalytic production routes. With such an integrative approach to fuel design, it will be possible to improve systematically the entire system, spanning biomass feedstock, conversion process, fuel, engine, and pollutants with a view to improve the carbon footprint, increase efficiency, and reduce emissions. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Synthetic biology for microbial production of lipid-based biofuels.

    Science.gov (United States)

    d'Espaux, Leo; Mendez-Perez, Daniel; Li, Rachel; Keasling, Jay D

    2015-12-01

    The risks of maintaining current CO2 emission trends have led to interest in producing biofuels using engineered microbes. Microbial biofuels reduce emissions because CO2 produced by fuel combustion is offset by CO2 captured by growing biomass, which is later used as feedstock for biofuel fermentation. Hydrocarbons found in petroleum fuels share striking similarity with biological lipids. Here we review synthetic metabolic pathways based on fatty acid and isoprenoid metabolism to produce alkanes and other molecules suitable as biofuels. We further discuss engineering strategies to optimize engineered biosynthetic routes, as well as the potential of synthetic biology for sustainable manufacturing. Published by Elsevier Ltd.

  6. Synthetic biology for microbial production of lipid-based biofuels

    Energy Technology Data Exchange (ETDEWEB)

    d' Espaux, L; Mendez-Perez, D; Li, R; Keasling, JD

    2015-10-23

    The risks of maintaining current CO2 emission trends have led to interest in producing biofuels using engineered microbes. Microbial biofuels reduce emissions because CO2 produced by fuel combustion is offset by CO2 captured by growing biomass, which is later used as feedstock for biofuel fermentation. Hydrocarbons found in petroleum fuels share striking similarity with biological lipids. Here in this paper we review synthetic metabolic pathways based on fatty acid and isoprenoid metabolism to produce alkanes and other molecules suitable as biofuels. Lastly, we further discuss engineering strategies to optimize engineered biosynthetic routes, as well as the potential of synthetic biology for sustainable manufacturing.

  7. Development of an optimization model for the location of biofuel production plants

    OpenAIRE

    Leduc, Sylvain

    2009-01-01

    First generation biofuels have not achieved the expected greenhouse gas emission savings and the production may in some cases compete with food production. Issued from non arable land and certified wood, the production of the second generation biofuels are more adapted to tackle those issues. Very large production plants are however required to reach competitive production costs via economy of scale effects. This may cause large logistical issues as the biomass feedstock often is located on t...

  8. Analysis of the results of Federal incentives used to stimulate energy production

    Energy Technology Data Exchange (ETDEWEB)

    Cone, B.W.; Emery, J.C.; Fassbender, A.G.

    1980-06-01

    The research program analyzed the Federal incentives used to stimulate nuclear, hydro, coal, gas, oil, and electricity production in order to supply what was learned to the selection of an incentives strategy to induce new energy production from renewable resources. Following the introductory chapter, Chapter 2 examines the problem of estimating effects from a theoretical perspective. Methods of quantifying and identifying the many interactive effects of government actions are discussed. Chapter 3 presents a generic analysis of the result of Federal incentives. Chapters 4 through 9 deal with incentives to energy forms - nuclear, hydro, coal, oil, gas, and electricity. Chapter 10 summarizes the estimated results of the incentives, which are presented in terms of their quantity and price impacts. The incentive costs per million Btu of induced energy production is also discussed. Chapter 11 discusses the parity issue, that is an equivalence between Federal incentives to renewable resources and to traditional energy resources. Any analysis of incentives for solar needs will profit from an analysis of the costs of solar incentives per million Btu compared with those for traditional energy forms. Chapter 12 concludes the analysis, discussing the history of traditional energy incentives as a guide to solar-energy incentives. 216 references, 38 figures, 91 tables.

  9. BioFuelDB: a database and prediction server of enzymes involved in biofuels production

    Directory of Open Access Journals (Sweden)

    Nikhil Chaudhary

    2017-08-01

    Full Text Available Background In light of the rapid decrease in fossils fuel reserves and an increasing demand for energy, novel methods are required to explore alternative biofuel production processes to alleviate these pressures. A wide variety of molecules which can either be used as biofuels or as biofuel precursors are produced using microbial enzymes. However, the common challenges in the industrial implementation of enzyme catalysis for biofuel production are the unavailability of a comprehensive biofuel enzyme resource, low efficiency of known enzymes, and limited availability of enzymes which can function under extreme conditions in the industrial processes. Methods We have developed a comprehensive database of known enzymes with proven or potential applications in biofuel production through text mining of PubMed abstracts and other publicly available information. A total of 131 enzymes with a role in biofuel production were identified and classified into six enzyme classes and four broad application categories namely ‘Alcohol production’, ‘Biodiesel production’, ‘Fuel Cell’ and ‘Alternate biofuels’. A prediction tool ‘Benz’ was developed to identify and classify novel homologues of the known biofuel enzyme sequences from sequenced genomes and metagenomes. ‘Benz’ employs a hybrid approach incorporating HMMER 3.0 and RAPSearch2 programs to provide high accuracy and high speed for prediction. Results Using the Benz tool, 153,754 novel homologues of biofuel enzymes were identified from 23 diverse metagenomic sources. The comprehensive data of curated biofuel enzymes, their novel homologs identified from diverse metagenomes, and the hybrid prediction tool Benz are presented as a web server which can be used for the prediction of biofuel enzymes from genomic and metagenomic datasets. The database and the Benz tool is publicly available at http://metabiosys.iiserb.ac.in/biofueldb& http://metagenomics.iiserb.ac.in/biofueldb.

  10. Effects of US biofuel policies on US and world petroleum product markets with consequences for greenhouse gas emissions

    International Nuclear Information System (INIS)

    Thompson, Wyatt; Whistance, Jarrett; Meyer, Seth

    2011-01-01

    US biofuel policy includes greenhouse gas reduction targets. Regulators do not address the potential that biofuel policy can have indirect impacts on greenhouse gases through its impacts on petroleum product markets, and scientific research only partially addresses this question. We use economic models of US biofuel and agricultural markets and US and world petroleum and petroleum product markets to show that discontinuing biofuel tax credits and ethanol tariff lower biofuel use could lead to increased US petroleum product use, and a reduction in petroleum product use in other parts of the world. The net effect is lower greenhouse gas emissions. Under certain assumptions, we show that biofuel use mandate elimination can have positive or negative impacts on greenhouse gas emissions. The magnitude and the direction of effects depend on how US biofuel trade affects biofuel in other countries with different emissions, context that determines how important use mandates are in the first place, who pays mandate costs, and the price responsiveness of global petroleum supplies and uses. However, our results show that counter-intuitive effects are possible and discourage broad conclusions about the greenhouse gas impacts of removing these elements of US biofuel policy. - Highlights: → Biofuel policy has counter-intuitive greenhouse gas effects under certain conditions. → US biofuel policies affect global petroleum markets, with implications for GHGs. → US biofuel use mandate GHG effects depend on whether they are binding and who pays. → US biofuel GHGs are sensitive to policy, petroleum market responses, and biofuel trade.

  11. Incentives for development and application of environmentally friendly biotechnological products and processes; Anreize fuer die Entwicklung und Anwendung umweltfreundlicher biotechnischer Produkte und Verfahren

    Energy Technology Data Exchange (ETDEWEB)

    Rhein, Hans-Bernhard; Endler, Katharina [Umweltkanzlei Dr. Rhein, Sarstedt (Germany); Ulber, Roland; Muffler, Kai; Mueller, Felix [Technische Univ. Kaiserslautern (Germany)

    2011-01-15

    Studies assign a tremendous growth potential related to biotechnology. However, the predicted proportion of biotechnological manufactured products in the chemical industry for the year 2010 by 20 % will more likely remain by today's 5 %. The study deals with the question why biotechnological products are currently established at the market in the obvious slow way. Therefore, the current constraints and existing respectively new incentive instruments referring to the white (industrial) biotechnology are analyzed to focus on the promotion of the development and application of environmentally friendly biotechnology products and methods. In addition to a search concerning environmental relevance and further development of white biotechnology, the postulated constraints and incentives as well as new promotions are discussed with the help of expert interviews. On the basis of a preliminary study - after further discussion with experts - concrete proposals on improvements related to an ongoing establishment of biotechnology will be derived. Based on case studies (2nd generation biofuels, polyhydroxybutyrate as biopolymer and phytase as an animal feed additive), the practical effects and specific conditions to incentives, from the perspective of biotechnological processes and environmentally friendly products are investigated. Overall, about 40 activities were recommended, which could be assigned to areas of direct government incentives (tax policy/subsidies, subsidies, education and research policy, basic political conditions, government demand and information policy/consumer intelligence) as well as non-governmental incentives (knowledge transfer and cooperation, organisation-related policy, capital market financing). (orig.)

  12. System studies on Biofuel production via Integrated Biomass Gasification

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Jim; Lundgren, Joakim [Luleaa Univ. of Technology Bio4Energy, Luleaa (Sweden); Malek, Laura; Hulteberg, Christian [Lund Univ., Lund (Sweden); Pettersson, Karin [Chalmers Univ. of Technology, Goeteborg (Sweden); Wetterlund, Elisabeth [Linkoeping Univ. Linkoeping (Sweden)

    2013-09-01

    A large number of national and international techno-economic studies on industrially integrated gasifiers for production of biofuels have been published during the recent years. These studies comprise different types of gasifiers (fluidized bed, indirect and entrained flow) integrated in different industries for the production of various types of chemicals and transportation fuels (SNG, FT-products, methanol, DME etc.) The results are often used for techno-economic comparisons between different biorefinery concepts. One relatively common observation is that even if the applied technology and the produced biofuel are the same, the results of the techno-economic studies may differ significantly. The main objective of this project has been to perform a comprehensive review of publications regarding industrially integrated biomass gasifiers for motor fuel production. The purposes have been to identify and highlight the main reasons why similar studies differ considerably and to prepare a basis for fair techno-economic comparisons. Another objective has been to identify possible lack of industrial integration studies that may be of interest to carry out in a second phase of the project. Around 40 national and international reports and articles have been analysed and reviewed. The majority of the studies concern gasifiers installed in chemical pulp and paper mills where black liquor gasification is the dominating technology. District heating systems are also well represented. Only a few studies have been found with mechanical pulp and paper mills, steel industries and the oil refineries as case basis. Other industries have rarely, or not at all, been considered for industrial integration studies. Surprisingly, no studies regarding integration of biomass gasification neither in saw mills nor in wood pellet production industry have been found. In the published economic evaluations, it has been found that there is a large number of studies containing both integration and

  13. Economic and social implications of biofuel use and production in Canada

    International Nuclear Information System (INIS)

    Klein, K.

    2005-01-01

    The potential role of biofuels in meeting Canadian commitments to greenhouse gas emissions was discussed. The characteristics of various biofuels were presented, including ethanol, methanol, biodiesel and biogas. Benefits of biofuels included a reduction in air contaminants as well as lower greenhouse gas emissions. Federal and provincial programs are currently in place to encourage production and use of biofuels. The Federal Ethanol Expansion Plan was outlined with reference to its target to increase ethanol production from 238 m litres to 1400 m litres by 2010. The main instruments of the program include excision of the gasoline tax exemption, ethanol expansion and the fact that ethanol can operate a polyfuels vehicle fleet. Provincial policies on ethanol were outlined, driven by characteristics of provincial economies. Provincial tax exemptions for ethanol were provided and an overview of the global ethanol market was presented. A map of existing and projected ethanol projects in Canada was presented, along with a forecast of Canadian ethanol production capacity. A time-line of Nebraska's ethanol production from the years 1985 to 2004 was provided. Economic drivers for ethanol include additional markets for products of agricultural, marine and forestry industries; the enhancement and diversification of rural and regional economies; employment; and energy security. Challenges to growth in biofuel production include technological knowledge and a lack of public awareness concerning the benefits of biofuel. The production and use of biofuels may increase environmental amenities but decrease economic growth. Issues concerning the economics of biofuel research were reviewed. The demand for biofuels has grown slowly in Canada, but has been promoted or mandated federally and in several provinces. The costs of biofuel production were reviewed, with a chart presenting ethanol production costs by plant size. Barriers to trade include the complexity of provincial tax

  14. Potentials and limitations of bio-fuel production in Tanzania | Silayo ...

    African Journals Online (AJOL)

    Biofuels production and consumption are heating up debates and energizing activities in different policy forums in the world. It is believed that promoting widespread use of biofuels would provide greater energy security; counteract increasing fossil fuel prices, mitigate climate change effects through reduced greenhouse ...

  15. Biofuel, dairy production and beef in Brazil: competing claims on land use in Sao Paulo

    NARCIS (Netherlands)

    Monteiro Novo, A.L.; Jansen, K.; Slingerland, M.A.; Giller, K.E.

    2010-01-01

    This paper examines the competing claims on land use resulting from the expansion of biofuel production. Sugarcane for biofuel drives agrarian change in So Paulo state, which has become the major ethanol-producing region in Brazil. We analyse how the expansion of sugarcane-based ethanol in So Paulo

  16. The interaction between EU biofuel policy and first- and second-generation biodiesel production

    NARCIS (Netherlands)

    Boutesteijn, C.; Drabik, D.; Venus, T.J.

    2017-01-01

    We build a tractable partial equilibrium model to study the interactions between the EU biofuel policies (mandate and double-counting of second-generation biofuels) and first- and second-generation biodiesel production. We find that increasing the biodiesel mandate results in a higher share of

  17. Use of tamarisk as a potential feedstock for biofuel production.

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Amy Cha-Tien; Norman, Kirsten

    2011-01-01

    This study assesses the energy and water use of saltcedar (or tamarisk) as biomass for biofuel production in a hypothetical sub-region in New Mexico. The baseline scenario consists of a rural stretch of the Middle Rio Grande River with 25% coverage of mature saltcedar that is removed and converted to biofuels. A manufacturing system life cycle consisting of harvesting, transportation, pyrolysis, and purification is constructed for calculating energy and water balances. On a dry short ton woody biomass basis, the total energy input is approximately 8.21 mmBTU/st. There is potential for 18.82 mmBTU/st of energy output from the baseline system. Of the extractable energy, approximately 61.1% consists of bio-oil, 20.3% bio-char, and 18.6% biogas. Water consumptive use by removal of tamarisk will not impact the existing rate of evapotranspiration. However, approximately 195 gal of water is needed per short ton of woody biomass for the conversion of biomass to biocrude, three-quarters of which is cooling water that can be recovered and recycled. The impact of salt presence is briefly assessed. Not accounted for in the baseline are high concentrations of Calcium, Sodium, and Sulfur ions in saltcedar woody biomass that can potentially shift the relative quantities of bio-char and bio-oil. This can be alleviated by a pre-wash step prior to the conversion step. More study is needed to account for the impact of salt presence on the overall energy and water balance.

  18. Powerplant productivity improvement study: policy analysis and incentive assessment. Final report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-05-01

    Policy options that the Illinois Commerce Commission might adopt in order to promote improved power plant productivity for existing units in Illinois are identified and analyzed. These policy options would generally involve either removing existing disincentives and/or adding direct incentives through the regulatory process. The following activities are reported: in-depth review of existing theoretical and empirical literature in the areas of power plant reliability, regulatory utility efficiency and performance incentives, and impacts of various regulatory mechanisms such as the Fuel Adjustment Clauses on productivity; contacts with other state public utility commissions known to be investigating or implementing productivity improvement incentive mechanisms; documentation and analysis of incentive mechanisms adopted or under consideration in other states; analysis of current regulatory practice in Illinois as it relates to power plant productivity incentives and disincentives; identification of candidate incentive mechanisms for consideration by the Illinois Commerce Commission; and analysis and evaluation of these candidates. 72 references, 8 figures.

  19. Perspectives on engineering strategies for improving biofuel production from microalgae--a critical review.

    Science.gov (United States)

    Ho, Shih-Hsin; Ye, Xiaoting; Hasunuma, Tomohisa; Chang, Jo-Shu; Kondo, Akihiko

    2014-12-01

    Although the potential for biofuel production from microalgae via photosynthesis has been intensively investigated, information on the selection of a suitable operation strategy for microalgae-based biofuel production is lacking. Many published reports describe competitive strains and optimal culture conditions for use in biofuel production; however, the major impediment to further improvements is the absence of effective engineering strategies for microalgae cultivation and biofuel production. This comprehensive review discusses recent advances in understanding the effects of major environmental stresses and the characteristics of various engineering operation strategies on the production of biofuels (mainly biodiesel and bioethanol) using microalgae. The performances of microalgae-based biofuel-producing systems under various environmental stresses (i.e., irradiance, temperature, pH, nitrogen depletion, and salinity) and cultivation strategies (i.e., fed-batch, semi-continuous, continuous, two-stage, and salinity-gradient) are compared. The reasons for variations in performance and the underlying theories of the various production strategies are also critically discussed. The aim of this review is to provide useful information to facilitate development of innovative and feasible operation technologies for effectively increasing the commercial viability of microalgae-based biofuel production. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Development of biological platform for the autotrophic production of biofuels

    Science.gov (United States)

    Khan, Nymul

    The research described herein is aimed at developing an advanced biofuel platform that has the potential to surpass the natural rate of solar energy capture and CO2 fixation. The underlying concept is to use the electricity from a renewable source, such as wind or solar, to capture CO 2 via a biological agent, such as a microbe, into liquid fuels that can be used for the transportation sector. In addition to being renewable, the higher rate of energy capture by photovoltaic cells than natural photosynthesis is expected to facilitate higher rate of liquid fuel production than traditional biofuel processes. The envisioned platform is part of ARPA-E's (Advanced Research Projects Agency - Energy) Electrofuels initiative which aims at supplementing the country's petroleum based fuel production with renewable liquid fuels that can integrate easily with the existing refining and distribution infrastructure (http://arpae. energy.gov/ProgramsProjects/Electrofuels.aspx). The Electrofuels initiative aimed to develop liquid biofuels that avoid the issues encountered in the current generation of biofuels: (1) the reliance of biomass-derived technologies on the inefficient process of photosynthesis, (2) the relatively energy- and resource-intensive nature of agronomic processes, and (3) the occupation of large areas of arable land for feedstock production. The process proceeds by the capture of solar energy into electrical energy via photovoltaic cells, using the generated electricity to split water into molecular hydrogen (H2) and oxygen (O2), and feeding these gases, along with carbon dioxide (CO2) emitted from point sources such as a biomass or coal-fired power plant, to a microbial bioprocessing platform. The proposed microbial bioprocessing platform leverages a chemolithoautotrophic microorganism (Rhodobacter capsulatus or Ralstonia eutropha) naturally able to utilize these gases as growth substrates, and genetically modified to produce a triterpene hydrocarbon fuel

  1. Slab waveguide photobioreactors for microalgae based biofuel production.

    Science.gov (United States)

    Jung, Erica Eunjung; Kalontarov, Michael; Doud, Devin F R; Ooms, Matthew D; Angenent, Largus T; Sinton, David; Erickson, David

    2012-10-07

    Microalgae are a promising feedstock for sustainable biofuel production. At present, however, there are a number of challenges that limit the economic viability of the process. Two of the major challenges are the non-uniform distribution of light in photobioreactors and the inefficiencies associated with traditional biomass processing. To address the latter limitation, a number of studies have demonstrated organisms that directly secrete fuels without requiring organism harvesting. In this paper, we demonstrate a novel optofluidic photobioreactor that can help address the light distribution challenge while being compatible with these chemical secreting organisms. Our approach is based on light delivery to surface bound photosynthetic organisms through the evanescent field of an optically excited slab waveguide. In addition to characterizing organism growth-rates in the system, we also show here, for the first time, that the photon usage efficiency of evanescent field illumination is comparable to the direct illumination used in traditional photobioreactors. We also show that the stackable nature of the slab waveguide approach could yield a 12-fold improvement in the volumetric productivity.

  2. The Impact of US Biofuels Policy on Agricultural Production and Nitrogen Loads in Alabama

    Directory of Open Access Journals (Sweden)

    Ermanno Affuso

    2013-01-01

    Full Text Available The Energy Independence Security Act aims to increase the production of renewable fuels in order to improve the energy efficiency of the United States of America. This legislation set the biofuel production goal at 136.3 million m3 by 2022, with approximately 79 million m3 derived from advanced biofuels or renewable fuels other than corn ethanol. A bioeconomic model was used to assess the potential impact of the biofuel mandate in terms of nitrogen loss associated with corn production in northern Alabama considering the El Nino Southern Oscillation phases. From simulations conducted at the watershed level, the expansion in biofuel production would increase the production of corn by 122.89% with associated increase in nitrogen loss of 20%. Furthermore, nitrogen loss would be more severe in climatic transition towards La Nina.

  3. Metabolic engineering of microorganisms for biofuels production: from bugs to synthetic biology to fuels

    Energy Technology Data Exchange (ETDEWEB)

    Kuk Lee, Sung; Chou, Howard; Ham, Timothy S.; Soon Lee, Taek; Keasling, Jay D.

    2009-12-02

    The ability to generate microorganisms that can produce biofuels similar to petroleum-based transportation fuels would allow the use of existing engines and infrastructure and would save an enormous amount of capital required for replacing the current infrastructure to accommodate biofuels that have properties significantly different from petroleum-based fuels. Several groups have demonstrated the feasibility of manipulating microbes to produce molecules similar to petroleum-derived products, albeit at relatively low productivity (e.g. maximum butanol production is around 20 g/L). For cost-effective production of biofuels, the fuel-producing hosts and pathways must be engineered and optimized. Advances in metabolic engineering and synthetic biology will provide new tools for metabolic engineers to better understand how to rewire the cell in order to create the desired phenotypes for the production of economically viable biofuels.

  4. Protein engineering in designing tailored enzymes and microorganisms for biofuels production

    Science.gov (United States)

    Wen, Fei; Nair, Nikhil U; Zhao, Huimin

    2009-01-01

    Summary Lignocellulosic biofuels represent a sustainable, renewable, and the only foreseeable alternative energy source to transportation fossil fuels. However, the recalcitrant nature of lignocellulose poses technical hurdles to an economically viable biorefinery. Low enzymatic hydrolysis efficiency and low productivity, yield, and titer of biofuels are among the top cost contributors. Protein engineering has been used to improve the performances of lignocellulose-degrading enzymes, as well as proteins involved in biofuel synthesis pathways. Unlike its great success seen in other industrial applications, protein engineering has achieved only modest results in improving the lignocellulose-to-biofuels efficiency. This review will discuss the unique challenges that protein engineering faces in the process of converting lignocellulose to biofuels and how they are addressed by recent advances in this field. PMID:19660930

  5. Innovation in biological production and upgrading of methane and hydrogen for use as gaseous transport biofuel.

    Science.gov (United States)

    Xia, Ao; Cheng, Jun; Murphy, Jerry D

    2016-01-01

    Biofuels derived from biomass will play a major role in future renewable energy supplies in transport. Gaseous biofuels have superior energy balances, offer greater greenhouse gas emission reductions and produce lower pollutant emissions than liquid biofuels. Biogas derived through fermentation of wet organic substrates will play a major role in future transport systems. Biogas (which is composed of approximately 60% methane/hydrogen and 40% carbon dioxide) requires an upgrading process to reduce the carbon dioxide content to less than 3% before it is used as compressed gas in transport. This paper reviews recent developments in fermentative biogas production and upgrading as a transport fuel. Third generation gaseous biofuels may be generated using marine-based algae via two-stage fermentation, cogenerating hydrogen and methane. Alternative biological upgrading techniques, such as biological methanation and microalgal biogas upgrading, have the potential to simultaneously upgrade biogas, increase gaseous biofuel yield and reduce carbon dioxide emission. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. An Overview of Algae Biofuel Production and Potential Environmental Impact

    Science.gov (United States)

    Algae are among the most potentially significant sources of sustainable biofuels in the future of renewable energy. A feedstock with virtually unlimited applicability, algae can metabolize various waste streams (e.g., municipal wastewater, carbon dioxide from industrial flue gas)...

  7. Review and experimental study on pyrolysis and hydrothermal liquefaction of microalgae for biofuel production

    International Nuclear Information System (INIS)

    Chiaramonti, David; Prussi, Matteo; Buffi, Marco; Rizzo, Andrea Maria; Pari, Luigi

    2017-01-01

    Highlights: • A review of microalgae thermochemical conversion to bioliquids was carried out. • We focused on pyrolysis and hydrothermal liquefaction for biocrude/biofuels. • Original experimental research on microalgae pyrolysis was also carried out. • Starvation does not impact significant on the energy content of the biocrude. • This result is relevant for designing full scale microalgae production plants. - Abstract: Advanced Biofuels steadily developed during recent year, with several highly innovative processes and technologies explored at various scales: among these, lignocellulosic ethanol and CTO (Crude Tall Oil)-biofuel technologies already achieved early-commercial status, while hydrotreating of vegetable oils is today fully commercial, with almost 3.5 Mt/y installed capacity worldwide. In this context, microalgae grown in salt-water and arid areas represent a promising sustainable chain for advanced biofuel production but, at the same time, they also represent a considerable challenge. Processing microalgae in an economic way into a viable and sustainable liquid biofuel (a low-cost mass-product) is not trivial. So far, the most studied microalgae-based biofuel chain is composed by microorganism cultivation, lipid accumulation, oil extraction, co-product valorization, and algae oil conversion through conventional esterification into Fatty Acids Methyl Esters (FAME), i.e. Biodiesel, or Hydrotreated Esters and Fatty Acids (HEFA), the latter representing a very high quality drop-in biofuel (suitable either for road transport or for aviation). However, extracting the algae oil at low cost and industrial scale is not yet a mature process, and there is not yet industrial production of algae-biofuel from these two lipid-based chains. Another option can however be considered: processing the algae through dedicated thermochemical reactors into advanced biofuels, thus approaching the downstream processing of algae in a completely different way than

  8. Cost optimization of biofuel production – The impact of scale, integration, transport and supply chain configurations

    NARCIS (Netherlands)

    de Jong, S.A.; Hoefnagels, E.T.A.; Wetterlund, Elisabeth; Pettersson, Karin; Faaij, André; Junginger, H.M.

    2017-01-01

    This study uses a geographically-explicit cost optimization model to analyze the impact of and interrelation between four cost reduction strategies for biofuel production: economies of scale, intermodal transport, integration with existing industries, and distributed supply chain configurations

  9. Biofuel co-product uses for pavement geo-materials stabilization : tech transfer summary, April 2010.

    Science.gov (United States)

    2010-04-01

    Objectives : Evaluate the ability of biofuel co-product (BCP) to function as an effective soil stabilizing agent. : Investigate the effect of BCP on the engineering properties of soil-BCP mixtures for Iowa conditions.

  10. Engineering ionic liquid-tolerant cellulases for biofuels production.

    Science.gov (United States)

    Wolski, Paul W; Dana, Craig M; Clark, Douglas S; Blanch, Harvey W

    2016-04-01

    Dissolution of lignocellulosic biomass in certain ionic liquids (ILs) can provide an effective pretreatment prior to enzymatic saccharification of cellulose for biofuels production. Toward the goal of combining pretreatment and enzymatic hydrolysis, we evolved enzyme variants of Talaromyces emersonii Cel7A to be more active and stable than wild-type T. emersonii Cel7A or Trichoderma reesei Cel7A in aqueous-IL solutions (up to 43% (w/w) 1,3-dimethylimdazolium dimethylphosphate and 20% (w/w) 1-ethyl-3-methylimidazolium acetate). In general, greater enzyme stability in buffer at elevated temperature corresponded to greater stability in aqueous-ILs. Post-translational modification of the N-terminal glutamine residue to pyroglutamate via glutaminyl cyclase enhanced the stability of T. emersonii Cel7A and variants. Differential scanning calorimetry revealed an increase in melting temperature of 1.9-3.9°C for the variant 1M10 over the wild-type T. emersonii Cel7A in aqueous buffer and in an IL-aqueous mixture. We observed this increase both with and without glutaminyl cyclase treatment of the enzymes. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  11. Membranes with artificial free-volume for biofuel production

    Science.gov (United States)

    Petzetakis, Nikos; Doherty, Cara M.; Thornton, Aaron W.; Chen, X. Chelsea; Cotanda, Pepa; Hill, Anita J.; Balsara, Nitash P.

    2015-01-01

    Free-volume of polymers governs transport of penetrants through polymeric films. Control over free-volume is thus important for the development of better membranes for a wide variety of applications such as gas separations, pharmaceutical purifications and energy storage. To date, methodologies used to create materials with different amounts of free-volume are based primarily on chemical synthesis of new polymers. Here we report a simple methodology for generating free-volume based on the self-assembly of polyethylene-b-polydimethylsiloxane-b-polyethylene triblock copolymers. We have used this method to fabricate a series of membranes with identical compositions but with different amounts of free-volume. We use the term artificial free-volume to refer to the additional free-volume created by self-assembly. The effect of artificial free-volume on selective transport through the membranes was tested using butanol/water and ethanol/water mixtures due to their importance in biofuel production. We found that the introduction of artificial free-volume improves both alcohol permeability and selectivity. PMID:26104672

  12. Biofuel and other biomass based products from contaminated sites - Potentials and barriers from Swedish perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Andersson-Skoeld, Yvonne; Enell, Anja; Rihm, Thomas; Haglund, Kristina; Wik, Ola (Swedish Geotechnical Institute, Linkoeping (Sweden)); Blom, Sonja; Angelbratt, Alexandra (FB Engineering AB, Goeteborg (Sweden)); Bardos, Paul (r3 Environmental Technology Ltd, Reading (United Kingdom)); Track, Thomas (DECHEMA e. V., Frankfurt am Main (Germany)); Keuning, Sytze (Bioclear b.v., Groningen (Netherlands))

    2009-07-01

    In this report, results are presented based on interviews and literature surveys on the triggers and stoppers for non food crop on contaminated land in Sweden. The report also includes a first estimate of potential marginal land for biofuel production in Sweden. The report is a first step to explore the feasibility of a range of possible approaches to combine risk based land management (RBLM) with non-food crop land-uses and organic matter re-use as appropriate in a Swedish context. The focus of the report is on the treatment of contaminated land by phyto-remediation and on biofuel cultivation. In Sweden, like all other countries in Europe, areas of land have been degraded by past use. Such previously developed land includes areas affected by mining, fallout from industrial processes such as smelting, areas elevated with contaminated dredged sediments, former landfill sites and many other areas where the decline of industrial activity has left a legacy of degraded land and communities. The extent of contamination may not be sufficient to trigger remediation under current regulatory conditions, and there may be little economic incentive to regenerate the affected areas. An ideal solution would be a land management approach that is able to pay for itself. Biomass from coppice or other plantations has long been seen as a possible means of achieving this goal. Phyto remediation offers a low cost method for remediation of areas that are not candidates for conventional regeneration. The optimal conditions for phyto remediation are large land areas of low or mediate contamination. Phyto remediation is also suitable to prevent spreading of contaminants, for example in green areas such as in cities, as waste water buffer and small size remediation areas with diffuse spreading. Phyto remediation implies that plants, fungi or algae are used to remediate, control or increase the natural attenuation of contaminants. Depending on the contaminating species and the site conditions

  13. Sustainable Production of Second-Generation Biofuels. Potential and perspectives in major economies and developing countries

    Energy Technology Data Exchange (ETDEWEB)

    Eisentraut, A.

    2010-02-15

    The paper focuses on opportunities and risks presented by second-generation biofuels technologies in eight case study countries: Brazil, Cameroon, China, India, Mexico, South Africa, Tanzania and Thailand. The report begins by exploring the state of the art of second-generation technologies and their production, followed by projections of future demand and a discussion of drivers of that demand. The report then delves into various feedstock options and the global potential for bioenergy production. The final chapter offers a look at the potential for sustainable second-generation biofuel production in developing countries including considerations of economic, social and environmental impacts. Key findings of the report include that: second-generation biofuels produced from agricultural and forestry residues can play a crucial role in the transport sector without competing with food production; the potential for second-generation biofuels should be mobilized in emerging and developing countries where a large share of global residues is produced; less-developed countries will first need to invest in agricultural production and infrastructure in order to improve the framework conditions for the production of second-generation biofuels; financial barriers to production exist in many developing countries; and the suitability of second-generation biofuels against individual developing countries' needs should be evaluated.

  14. Sustainable Production of Second-Generation Biofuels. Potential and perspectives in major economies and developing countries

    International Nuclear Information System (INIS)

    Eisentraut, A.

    2010-02-01

    The paper focuses on opportunities and risks presented by second-generation biofuels technologies in eight case study countries: Brazil, Cameroon, China, India, Mexico, South Africa, Tanzania and Thailand. The report begins by exploring the state of the art of second-generation technologies and their production, followed by projections of future demand and a discussion of drivers of that demand. The report then delves into various feedstock options and the global potential for bioenergy production. The final chapter offers a look at the potential for sustainable second-generation biofuel production in developing countries including considerations of economic, social and environmental impacts. Key findings of the report include that: second-generation biofuels produced from agricultural and forestry residues can play a crucial role in the transport sector without competing with food production; the potential for second-generation biofuels should be mobilized in emerging and developing countries where a large share of global residues is produced; less-developed countries will first need to invest in agricultural production and infrastructure in order to improve the framework conditions for the production of second-generation biofuels; financial barriers to production exist in many developing countries; and the suitability of second-generation biofuels against individual developing countries' needs should be evaluated.

  15. Toward systems metabolic engineering of Aspergillus and Pichia species for the production of chemicals and biofuels

    DEFF Research Database (Denmark)

    Caspeta, Luis; Nielsen, Jens

    2013-01-01

    trends in systems biology of Aspergillus and Pichia species, highlighting the relevance of these developments for systems metabolic engineering of these organisms for the production of hydrolytic enzymes, biofuels and chemicals from biomass. Metabolic engineering is moving from traditional methods...... for the production of hydrolytic enzymes, biofuels and chemicals from biomass. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim....

  16. National Alliance for Advanced Biofuels and Bio-Products Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Olivares, Jose A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Baxter, Ivan [US Dept. of Agriculture (USDA)., Washington, DC (United States); Brown, Judith [Univ. of Arizona, Tucson, AZ (United States); Carleton, Michael [Matrix Genetics, Seattle, WA (United States); Cattolico, Rose Anne [Univ. of Washington, Seattle, WA (United States); Taraka, Dale [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Detter, John C. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Devarenne, Timothy P. [Texas Agrilife Research, College Station, TX (United States); Dutcher, Susan K. [Washington Univ., St. Louis, MO (United States); Fox, David T. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Goodenough, Ursula [Washington Univ., St. Louis, MO (United States); Jaworski, Jan [Donald Danforth Plant Science Center, St. Louis, MO (United States); Kramer, David [Michigan State Univ., East Lansing, MI (United States); Lipton, Mary S. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); McCormick, Margaret [Matrix Genetics, Seattle, WA (United States); Merchant, Sabeeha [Univ. of California, Los Angeles, CA (United States); Molnar, Istvan [Univ. of Arizona, Tucson, AZ (United States); Panisko, Ellen A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Pellegrini, Matteo [Univ. of California, Los Angeles, CA (United States); Polle, Juergen [City Univ. (CUNY), NY (United States). Brooklyn College; Sabarsky, Martin [Cellana, Inc., San Diego, CA (United States); Sayre, Richard T. [New Mexico Consortium, Los Alamos, NM (United States); Starkenburg,, Shawn [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Stormo, Gary [Washington Univ., St. Louis, MO (United States); Twary, Scott N. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Unkefer, Clifford J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Unkefer, Pat J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Yuan, Joshua S. [Texas Agrilife Research, College Station, TX (United States); Arnold, Bob [Univ. of Arizona, Tucson, AZ (United States); Bai, Xuemei [Cellana, Inc., San Diego, CA (United States); Boeing, Wiebke [New Mexico State Univ., Las Cruces, NM (United States); Brown, Lois [Texas Agrilife Research, College Station, TX (United States); Gujarathi, Ninad [Reliance Industries Limited, Mumbai (India); Huesemann, Michael [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lammers, Pete [New Mexico State Univ., Las Cruces, NM (United States); Laur, Paul [Eldorado Biofuels, Santa Fe, NM (United States); Khandan, Nirmala [New Mexico State Univ., Las Cruces, NM (United States); Parsons, Ronald [Solix BioSystems, Fort Collins, CO (United States); Samocha, Tzachi [Texas Agrilife Research, College Station, TX (United States); Thomasson, Alex [Texas Agrilife Research, College Station, TX (United States); Unc, Adrian [New Mexico State Univ., Las Cruces, NM (United States); Waller, Pete [Univ. of Arizona, Tucson, AZ (United States); Bonner, James [Clarkson Univ., Potsdam, NY (United States); Coons, Jim [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Fernando, Sandun [Texas Agrilife Research, College Station, TX (United States); Goodall, Brian [Valicor Renewables, Dexter, MI (United States); Kadam, Kiran [Valicor Renewables, Dexter, MI (United States); Lacey, Ronald [Texas Agrilife Research, College Station, TX (United States); Wei, Liu [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Marrone, Babs [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Nikolov, Zivko [Texas Agrilife Research, College Station, TX (United States); Trewyn, Brian [Colorado School of Mines, Golden, CO (United States); Albrecht, Karl [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Capareda, Sergio [Texas Agrilife Research, College Station, TX (United States); Cheny, Scott [Diversified Energy, Gilbert, AZ (United States); Deng, Shuguang [New Mexico State Univ., Las Cruces, NM (United States); Elliott, Douglas [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Cesar, Granda [Terrabon, LLC, Bryan, TX (United States); Hallen, Richard [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lupton, Steven [UOP Honeywell Co, LLC, Des Plaines, IL (United States); Lynch, Sharry [UOP Honeywell Co, LLC, Des Plaines, IL (United States); Marchese, Anthony [Colorado State Univ., Fort Collins, CO (United States); Nieweg, Jennifer [Albemarle Catilin, Ames, IA (United States); Ogden, Kimberly [Univ. of Arizona, Tucson, AZ (United States); Oyler, James [Genifuel, Salt Lake City, UT (United States); Reardon, Ken [Colorado State Univ., Fort Collins, CO (United States); Roberts, William [North Carolina State Univ., Raleigh, NC (United States); Sams, David [Albemarle Catilin, Ames, IA (United States); Schaub, Tanner [New Mexico State Univ., Las Cruces, NM (United States); Silks, Pete [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Archibeque, Shawn [Colorado State Univ., Fort Collins, CO (United States); Foster, James [Texas Agrilife Research, College Station, TX (United States); Gaitlan, Delbert [Texas Agrilife Research, College Station, TX (United States); Lawrence, Addison [Texas Agrilife Research, College Station, TX (United States); Lodge-Ivey, Shanna [New Mexico State Univ., Las Cruces, NM (United States); Wickersham, Tyron [Texas Agrilife Research, College Station, TX (United States); Blowers, Paul [Univ. of Arizona, Tucson, AZ (United States); Davis, Ryan [National Renewable Energy Lab. (NREL), Golden, CO (United States); Downes, C. Meghan [New Mexico State Univ., Las Cruces, NM (United States); Dunlop, Eric [Pan Pacific Technologies Pty. Ltd., Adelaide (Australia); Frank, Edward [Argonne National Lab. (ANL), Argonne, IL (United States); Handler, Robert [Michigan Technological Univ., Houghton, MI (United States); Newby, Deborah [Idaho National Lab. (INL), Idaho Falls, ID (United States); Pienkos, Philip [National Renewable Energy Lab. (NREL), Golden, CO (United States); Richardson, James [Texas Agrilife Research, College Station, TX (United States); Seider, Warren [Univ. of Pennsylvania, Philadelphia, PA (United States); Shonnard, David [Michigan Technological Univ., Houghton, MI (United States); Skaggs, Richard [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2014-09-30

    The main objective of NAABB was to combine science, technology, and engineering expertise from across the nation to break down critical technical barriers to commercialization of algae-based biofuels. The approach was to address technology development across the entire value chain of algal biofuels production, from selection of strains to cultivation, harvesting, extraction, fuel conversion, and agricultural coproduct production. Sustainable practices and financial feasibility assessments ununderscored the approach and drove the technology development.

  17. Analysis of Federal incentives used to stimulate energy production

    Energy Technology Data Exchange (ETDEWEB)

    1978-06-01

    Federal incentives for the development of solar energy are examined. A Federal incentive is any action that can be taken by the government to expand residential and commercial use of solar energy. The development of solar energy policy could be enhanced by identification, quantification, and analysis of Federal incentives that have been used to simulate the development of other forms of energy. The text of this report identifies, quantifies, and analyzes such incentives and relates them to current thought about solar energy. Four viewpoints used in this discussion come from 4 types of analysis: economic, political, organizational, and legal. The next chapter identifies actions (primarily domestic) that the Federal government has taken concerning energy. This analysis uses the typology of actions described in the previous chapter to identify actions, and the four viewpoints described there to determine whether an action concerns energy. Once identified, the actions are described and then quantified by an estimate of the 1976 cost of accomplishing them. Then incentives, investments, liabilities, regulations, and other factors are analyzed in detail for nuclear energy, hydroelectric power, coal, petroleum, and natural gas. Incentives of all energy sources are then discussed with respect to solar energy policy. (MCW)

  18. Chlamydomonas as a model for biofuels and bio-products production.

    Science.gov (United States)

    Scranton, Melissa A; Ostrand, Joseph T; Fields, Francis J; Mayfield, Stephen P

    2015-05-01

    Developing renewable energy sources is critical to maintaining the economic growth of the planet while protecting the environment. First generation biofuels focused on food crops like corn and sugarcane for ethanol production, and soybean and palm for biodiesel production. Second generation biofuels based on cellulosic ethanol produced from terrestrial plants, has received extensive funding and recently pilot facilities have been commissioned, but to date output of fuels from these sources has fallen well short of what is needed. Recent research and pilot demonstrations have highlighted the potential of algae as one of the most promising sources of sustainable liquid transportation fuels. Algae have also been established as unique biofactories for industrial, therapeutic, and nutraceutical co-products. Chlamydomonas reinhardtii's long established role in the field of basic research in green algae has paved the way for understanding algal metabolism and developing genetic engineering protocols. These tools are now being utilized in C. reinhardtii and in other algal species for the development of strains to maximize biofuels and bio-products yields from the lab to the field. © 2015 The Authors The Plant Journal © 2015 John Wiley & Sons Ltd.

  19. A comprehensive review of biomass resources and biofuel production in Nigeria: potential and prospects.

    Science.gov (United States)

    Sokan-Adeaga, Adewale Allen; Ana, Godson R E E

    2015-01-01

    The quest for biofuels in Nigeria, no doubt, represents a legitimate ambition. This is so because the focus on biofuel production has assumed a global dimension, and the benefits that may accrue from such effort may turn out to be enormous if the preconditions are adequately satisfied. As a member of the global community, it has become exigent for Nigeria to explore other potential means of bettering her already impoverished economy. Biomass is the major energy source in Nigeria, contributing about 78% of Nigeria's primary energy supply. In this paper, a comprehensive review of the potential of biomass resources and biofuel production in Nigeria is given. The study adopted a desk review of existing literatures on major energy crops produced in Nigeria. A brief description of the current biofuel developmental activities in the country is also given. A variety of biomass resources exist in the country in large quantities with opportunities for expansion. Biomass resources considered include agricultural crops, agricultural crop residues, forestry resources, municipal solid waste, and animal waste. However, the prospects of achieving this giant stride appear not to be feasible in Nigeria. Although the focus on biofuel production may be a worthwhile endeavor in view of Nigeria's development woes, the paper argues that because Nigeria is yet to adequately satisfy the preconditions for such program, the effort may be designed to fail after all. To avoid this, the government must address key areas of concern such as food insecurity, environmental crisis, and blatant corruption in all quarters. It is concluded that given the large availability of biomass resources in Nigeria, there is immense potential for biofuel production from these biomass resources. With the very high potential for biofuel production, the governments as well as private investors are therefore encouraged to take practical steps toward investing in agriculture for the production of energy crops and the

  20. Proceedings of the first Seattle workshop on incentives used to stimulate energy production

    Energy Technology Data Exchange (ETDEWEB)

    Cone, B.W. (ed.)

    1979-02-01

    The introductory paper of this workshop was an overview of report PNL-2410, an Analysis of Federal Incentives Used to Stimulate Energy Production; the next four papers critiqued the report. The next 28 presentations were from individuals or various workshop discussion groups on either incentives for solar energy development or for energy source development in general. A separate abstract was prepared for each.

  1. Optimizing root system architecture in biofuel crops for sustainable energy production and soil carbon sequestration.

    Science.gov (United States)

    To, Jennifer Pc; Zhu, Jinming; Benfey, Philip N; Elich, Tedd

    2010-09-08

    Root system architecture (RSA) describes the dynamic spatial configuration of different types and ages of roots in a plant, which allows adaptation to different environments. Modifications in RSA enhance agronomic traits in crops and have been implicated in soil organic carbon content. Together, these fundamental properties of RSA contribute to the net carbon balance and overall sustainability of biofuels. In this article, we will review recent data supporting carbon sequestration by biofuel crops, highlight current progress in studying RSA, and discuss future opportunities for optimizing RSA for biofuel production and soil carbon sequestration.

  2. Catalyst technology for biofuel production: Conversion of renewable lipids into biojet and biodiesel

    Directory of Open Access Journals (Sweden)

    Scharff Yves

    2013-09-01

    Full Text Available Renewable lipids based biofuels are an important tool to address issues raised by policies put in place in order to reduce the dependence of transportation sector on fossil fuels and to promote the development of non-food based, sustainable and eco-friendly fuels. This paper presents the main features of the heterogeneous catalysis technologies Axens has developed for the production of biofuels from renewable lipids: the first by transesterification to produce fatty acid methyl esters or biodiesel and the second by hydrotreating to produce isoparaffinic hydroprocessed ester and fatty acids, high blending rate drop-in diesel and jet biofuels.

  3. Commercialization potential aspects of microalgae for biofuel production: An overview

    Directory of Open Access Journals (Sweden)

    Tahani S. Gendy

    2013-06-01

    This article discusses the importance of algae-based biofuels together with the different opinions regarding its future. Advantages and disadvantages of these types of biofuels are presented. Algal growth drives around the world with special emphasis to Egypt are outlined. The article includes a brief description of the concept of algal biorefineries. It also declares the five key strategies to help producers to reduce costs and accelerate the commercialization of algal biodiesel. The internal strengths and weaknesses, and external opportunities, and threats are manifested through the SWOT analysis for micro-algae. Strategies for enhancing algae based-fuels are outlined. New process innovations and the role of genetic engineering in meeting these strategies are briefly discussed. To improve the economics of algal biofuels the concept of employing algae for wastewater treatment is presented.

  4. Biofuels; Biocarburants

    Energy Technology Data Exchange (ETDEWEB)

    Poitrat, E. [Agence de l' Environnement et de la Maitrise de l' Energie (ADEME), Dir. des Energies Renouvelables, des Reseaux et des Marches Energetiques, 75 - Paris (France)

    2009-07-15

    Biofuels are fuels made from non-fossil vegetal or animal materials (biomass). They belong to the renewable energy sources as they do not contribute to worsen some global environmental impacts, like the greenhouse effect, providing that their production is performed in efficient energy conditions with low fossil fuel consumption. This article presents: 1 - the usable raw materials: biomass-derived resources, qualitative and quantitative aspects, biomass uses; 2 - biofuels production from biomass: alcohols and ethers, vegetable oils and their esters, synthetic liquid or gaseous biofuels, biogas; 3 - characteristics of liquid biofuels and comparison with gasoline and diesel fuel; 4 - biofuel uses: alcohols and their esters, biofuels with oxygenated compounds; vegetable oils and their derivatives in diesel engines, biogas, example of global environmental impact: the greenhouse effect. (J.S.)

  5. Fatty acid-derived biofuels and chemicals production in Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Yongjin J. Zhou

    2014-09-01

    Full Text Available Volatile energy costs and environmental concerns have spurred interest in the development of alternative, renewable, sustainable and cost-effective energy resources. Advanced biofuels have potential to replace fossil fuels in supporting high-power demanding machinery such as aircrafts and trucks. Microbial biosynthesis is generally considered as an environmental friendly refinery process, and fatty acid biosynthesis is an attractive route to synthesize chemicals and especially drop-in biofuels due to the high degree of reduction of fatty acids. The robustness and excellent accessibility to molecular genetics make the yeast S. cerevisiae a suitable host for the production of biofuels, chemicals and pharmaceuticals, and recent advances in metabolic engineering as well as systems and synthetic biology allow us to engineer the yeast fatty acid metabolism and modification pathways for production of advanced biofuels and chemicals.

  6. World Biofuels Production Potential Understanding the Challenges to Meeting the U.S. Renewable Fuel Standard

    Energy Technology Data Exchange (ETDEWEB)

    Sastri, B.; Lee, A.

    2008-09-15

    This study by the U.S. Department of Energy (DOE) estimates the worldwide potential to produce biofuels including biofuels for export. It was undertaken to improve our understanding of the potential for imported biofuels to satisfy the requirements of Title II of the 2007 Energy Independence and Security Act (EISA) in the coming decades. Many other countries biofuels production and policies are expanding as rapidly as ours. Therefore, we modeled a detailed and up-to-date representation of the amount of biofuel feedstocks that are being and can be grown, current and future biofuels production capacity, and other factors relevant to the economic competitiveness of worldwide biofuels production, use, and trade. The Oak Ridge National Laboratory (ORNL) identified and prepared feedstock data for countries that were likely to be significant exporters of biofuels to the U.S. The National Renewable Energy Laboratory (NREL) calculated conversion costs by conducting material flow analyses and technology assessments on biofuels technologies. Brookhaven National Laboratory (BNL) integrated the country specific feedstock estimates and conversion costs into the global Energy Technology Perspectives (ETP) MARKAL (MARKet ALlocation) model. The model uses least-cost optimization to project the future state of the global energy system in five year increments. World biofuels production was assessed over the 2010 to 2030 timeframe using scenarios covering a range U.S. policies (tax credits, tariffs, and regulations), as well as oil prices, feedstock availability, and a global CO{sub 2} price. All scenarios include the full implementation of existing U.S. and selected other countries biofuels policies (Table 4). For the U.S., the most important policy is the EISA Title II Renewable Fuel Standard (RFS). It progressively increases the required volumes of renewable fuel used in motor vehicles (Appendix B). The RFS requires 36 billion (B) gallons (gal) per year of renewable fuels by 2022

  7. Noble metal catalysts in the production of biofuels

    Energy Technology Data Exchange (ETDEWEB)

    Gutierrez, A.

    2013-11-01

    The energy demand is increasing in the world together with the need to ensure energy security and the desire to decrease greenhouse gas emissions. While several renewable alternatives are available for the production of electricity, e.g. solar energy, wind power, and hydrogen, biomass is the only renewable source that can meet the demand for carbon-based liquid fuels and chemicals. The technology applied in the conversion of biomass depends on the type and complexity of the biomass, and the desired fuel. Hydrogen and hydrogen-rich mixtures (synthesis gas) are promising energy sources as they are more efficient and cleaner than existing fuels, especially when they are used in fuel cells. Hydrotreatment is a catalytic process that can be used in the conversion of biomass or biomass-derived liquids into fuels. In autothermal reforming (ATR), catalysts are used in the production of hydrogen-rich mixtures from conventional fuels or bio-fuels. The different nature of biomass and biomass-derived liquids and mineral oil makes the use of catalysts developed for the petroleum industry challenging. This requires the improvement of available catalysts and the development of new ones. To overcome the limitations of conventional hydrotreatment and ATR catalysts, zirconia-supported mono- and bimetallic rhodium, palladium, and platinum catalysts were developed and tested in the upgrading of model compounds for wood-based pyrolysis oil and in the production of hydrogen, using model compounds for gasoline and diesel. Catalysts were also tested in the ATR of ethanol. For comparative purposes commercial catalysts were tested and the results obtained with model compounds were compared with those obtained with real feedstocks (hydrotreatmet tests with wood-based pyrolysis oil and ATR tests with NExBTL renewable diesel). Noble metal catalysts were active and selective in the hydrotreatment of guaiacol used as the model compound for the lignin fraction of wood-based pyrolysis oil and wood

  8. Mechanical pretreatments of lignocellulosic biomass: towards facile and environmentally sound technologies for biofuels production

    OpenAIRE

    Barakat, Abdellatif; MAYER, Claire; Solhy, Abderrahim; Arancon, Rick A. D.; DE VRIES, Hugo; Luque, Rafael

    2014-01-01

    The transformation of lignocellulosic biomass into biofuels represents an interesting and sustainable alternative to fossil fuel for the near future. However, one still faces some major challenges for the technology to be fully realized including feedstock costs, novel pretreatment processes, production, transportation, and environmental impact of the full chain. The development of new technologies focused to increase the efficiency of cellulose conversion to biofuels determines successful im...

  9. Biogeochemical research priorities for sustainable biofuel and bioenergy feedstock production in the Americas

    Science.gov (United States)

    Hero T. Gollany; Brian D. Titus; D. Andrew Scott; Heidi Asbjornsen; Sigrid C. Resh; Rodney A. Chimner; Donald J. Kaczmarek; Luiz F.C. Leite; Ana C.C. Ferreira; Kenton A. Rod; Jorge Hilbert; Marcelo V. Galdos; Michelle E. Cisz

    2015-01-01

    Rapid expansion in biomass production for biofuels and bioenergy in the Americas is increasing demand on the ecosystem resources required to sustain soil and site productivity. We review the current state of knowledge and highlight gaps in research on biogeochemical processes and ecosystem sustainability related to biomass production. Biomass production systems...

  10. Process energy comparison for the production and harvesting of algal biomass as a biofuel feedstock.

    Science.gov (United States)

    Weschler, Matthew K; Barr, William J; Harper, Willie F; Landis, Amy E

    2014-02-01

    Harvesting and drying are often described as the most energy intensive stages of microalgal biofuel production. This study analyzes two cultivation and eleven harvest technologies for the production of microalgae biomass with and without the use of drying. These technologies were combined to form 122 different production scenarios. The results of this study present a calculation methodology and optimization of total energy demand for the production of algal biomass for biofuel production. The energetic interaction between unit processes and total process energy demand are compared for each scenario. Energy requirements are shown to be highly dependent on final mass concentration, with thermal drying being the largest energy consumer. Scenarios that omit thermal drying in favor of lipid extraction from wet biomass show the most promise for energy efficient biofuel production. Scenarios which used open ponds for cultivation, followed by settling and membrane filtration were the most energy efficient. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Biofuels, fossil energy ratio, and the future of energy production

    Science.gov (United States)

    Consiglio, David

    2017-05-01

    Two hundred years ago, much of humanity's energy came from burning wood. As energy needs outstripped supplies, we began to burn fossil fuels. This transition allowed our civilization to modernize rapidly, but it came with heavy costs including climate change. Today, scientists and engineers are taking another look at biofuels as a source of energy to fuel our ever-increasing consumption.

  12. Livelihood implications of biofuel crop production: Implications for governance

    DEFF Research Database (Denmark)

    Hunsberger, Carol; Bolwig, Simon; Corbera, Esteve

    2014-01-01

    livelihood and equity concerns. Third, we draw insights from literature on non-energy agricultural value chains to provide one set of ideas for improving livelihood outcomes. Our analysis demonstrates that biofuel policies treat livelihoods as a second-degree problem, specifying livelihoods...

  13. Nanobiotechnology for the production of biofuels from spent tea ...

    African Journals Online (AJOL)

    Bioenergy is the only alternative and cheap source of energy which can be made easily available to the world. The present experiment included three steps for the conversion of spent tea (Camellia sinensis) into biofuels. In the first step, spent tea was gasified using Co nano catalyst at 300°C and atmospheric pressure.

  14. Microbiology of synthesis gas fermentation for biofuel production

    NARCIS (Netherlands)

    Henstra, A.M.; Sipma, J.; Rinzema, A.; Stams, A.J.M.

    2007-01-01

    A significant portion of biomass sources like straw and wood is poorly degradable and cannot be converted to biofuels by microorganisms. The gasification of this waste material to produce synthesis gas (or syngas) could offer a solution to this problem, as microorganisms that convert CO and H2 (the

  15. Lifecycle Assessment of Biofuel Production from Wood Pyrolysis Technology

    Science.gov (United States)

    Manyele, S. V.

    2007-01-01

    Due to a stronger dependency on biomass for energy, there is a need for improved technologies in biomass-to-energy conversion in Tanzania. This paper presents a life cycle assessment (LCA) of pyrolysis technology used for conversion of wood and wood waste to liquid biofuel. In particular, a survey of environmental impacts of the process is…

  16. Biofuel and food security: insights from a system dynamics model. The case of Ghana

    OpenAIRE

    Ansah, Isaac

    2014-01-01

    Abstract Empirical evidence from research points to biofuel as a possible substitute to conventional fossil fuel-gasoline and diesel. Some countries USA and many in Europe are working towards mandates and legislations that impose on the market a share of biofuel in the national energy mix in the medium to long term. In response to policy preferences and attractive incentives, global biofuel production tripled between year 2000 and 2007 and again was projected to double by 2011 (Molony & ...

  17. Measuring and moderating the water resource impact of biofuel production and trade

    Science.gov (United States)

    Fingerman, Kevin Robert

    Energy systems and water resources are inextricably linked, especially in the case of bioenergy, which can require up to three orders of magnitude more water than other energy carriers. Water scarcity already affects about 1 in 5 people globally, and stands to be exacerbated in many locales by current biofuel expansion plans. This dissertation engages with several of the analytical and governance challenges raised by this connection between bioenergy expansion and global water resources. My examination begins with an overview of important concepts in water resource analysis, followed by a review of current literature on the water impacts of most major energy pathways. I then report on a case study of ethanol fuel in California. This work employed a coupled agro-climatic and life cycle assessment (LCA) model to estimate the water resource impacts of several bioenergy expansion scenarios at a county-level resolution. It shows that ethanol production in California regularly consumes more than 1000 gallons of water per gallon of fuel produced, and that 99% of life-cycle water consumption occurs in the feedstock cultivation phase. This analysis then delves into the complexity of life cycle impact assessment for water resources. Despite improvements in water accounting methods, impact assessment must contend with the fact that different water sources are not necessarily commensurable, and that impacts depend on the state of the resource base that is drawn upon. I adapt water footprinting and LCA techniques to the bioenergy context, describing comprehensive inventory approaches and developing a process for characterizing (weighting) consumption values to enable comparison across resource bases. This process draws on metrics of water stress, accounting for environmental flow requirements, climatic variability, and non-linearity of water stress effects. My assessment framework was developed in hopes that it would be useful in managing the risks and impacts it describes. The

  18. EFFECTS OF INITIAL MOISTURE CONTENT ON THE PRODUCTION AND QUALITY PROPERTIES OF SOLID BIOFUEL

    Directory of Open Access Journals (Sweden)

    Miloš Matúš

    2015-10-01

    Full Text Available The moisture content of densified biomass is a limit parameter influencing the quality of the solid biofuel. It influences its calorific value, density, mechanical strength and dimensional stability as well as the production process of this biofuel. The paper deals with the experimental research of the effect of moisture content of densified material on the final quality of biofuel in the form of logs. Experiments based on the single-axis densification of spruce sawdust were realized by hydraulic piston press, where the densified logs were produced under room temperature. The effect of moisture content on the quality properties of the logs, including density, change of moisture, expansion and physical changes, were studied. The results show the necessary moisture ranges for producing good-quality logs. The experiments were evaluated and the moisture content of the tested material was optimized to achieve the optimum value for the best quality of the solid biofuel.

  19. Panorama 2007: Potential biomass mobilization for bio-fuel production worldwide, in Europe and in France

    International Nuclear Information System (INIS)

    Lorne, D.

    2007-01-01

    One key factor in ensuring the success of bio-fuel technologies, which are expected to see high growth, is the availability of biomass resources. Although the targets set in Europe and France for the replacement of petroleum products in the transport sector by 2010 can be met by converting farm surpluses into biofuels, in order to proceed further, it will be necessary to mobilize a resource that is more abundant and potentially less costly: ligno-cellulosic materials, i.e. wood or straw. The future of biofuels depends on establishing the much-awaited 'second generation' bio-fuel pathways able to convert ligno-cellulosic materials to ethanol, bio-diesel and bio-kerosene. (author)

  20. REFUEL: an EU road map for biofuels

    Energy Technology Data Exchange (ETDEWEB)

    Londo, M.; Deurwarder, E.; Lensink, S. (and others)

    2007-05-15

    A successful mid-term development of biofuels calls for a robust road map. REFUEL assesses inter alia least-cost biofuel chain options, their benefits, outlines the technological, legislative and other developments that should take place, and evaluate different policy strategies for realisation. Some preliminary conclusions of the project are discussed here. There is a significant domestic land potential for energy crops in the EU, which could supply between one quarter and one third of gasoline and diesel demand by 2030 if converted into advanced biofuels. A biomass supply of 8 to 10 EJ of primary energy could be available at costs around or below 3 EURO/GJ. However, the introduction of advanced biofuel options may meet a considerable introductory cost barrier, which will not be overcome when EU policy is oriented to the introduction of biofuels at least cost. Therefore, conventional biodiesel and ethanol may dominate the market for decades to come, unless biofuels incentives are differentiated, e.g. on the basis of the differences in greenhouse gas performance among biofuels.The introduction of advanced biofuels may also be enhanced by creating stepping stones or searching introduction synergies. A stepping stone can be the short-term development of lignocellulosic biomass supply chains for power generation by co-firing; synergies can be found between advanced FT-diesel production and hydrogen production for the fuel cell. (au)

  1. Sustainability of algal biofuel production using integrated renewable energy park (IREP) and algal biorefinery approach

    International Nuclear Information System (INIS)

    Subhadra, Bobban G.

    2010-01-01

    Algal biomass can provide viable third generation feedstock for liquid transportation fuel. However, for a mature commercial industry to develop, sustainability as well as technological and economic issues pertinent to algal biofuel sector must be addressed first. This viewpoint focuses on three integrated approaches laid out to meet these challenges. Firstly, an integrated algal biorefinery for sequential biomass processing for multiple high-value products is delineated to bring in the financial sustainability to the algal biofuel production units. Secondly, an integrated renewable energy park (IREP) approach is proposed for amalgamating various renewable energy industries established in different locations. This would aid in synergistic and efficient electricity and liquid biofuel production with zero net carbon emissions while obviating numerous sustainability issues such as productive usage of agricultural land, water, and fossil fuel usage. A 'renewable energy corridor' rich in multiple energy sources needed for algal biofuel production for deploying IREPs in the United States is also illustrated. Finally, the integration of various industries with algal biofuel sector can bring a multitude of sustainable deliverables to society, such as renewable supply of cheap protein supplements, health products and aquafeed ingredients. The benefits, challenges, and policy needs of the IREP approach are also discussed.

  2. Biofuels and the Greater Mekong Subregion: Assessing the impact on prices, production and trade

    International Nuclear Information System (INIS)

    Yang, Jun; Huang, Jikun; Qiu, Huanguang; Rozelle, Scott; Sombilla, Mercy A.

    2009-01-01

    Similar to many other countries, all nations in the Greater Mekong Subregion (GMS) have planned or are planning to develop strong national biofuel programs. The overall goal of this paper is to better understand the impacts of global and regional biofuels on agriculture and the rest of the economy, with a specific focus on the GMS. Based on a modified multi-country, multi-sector computable general equilibrium model, this study reveals that global biofuel development will significantly increase agricultural prices and production and change trade in agricultural commodities in the GMS and the rest of world. While biofuel in the GMS will have little impacts on global prices, it will have significant effects on domestic agricultural production, land use, trade, and food security. The results also show that the extent of impacts from biofuel is highly dependent on international oil prices and the degree of substitution between biofuel and gasoline. The findings of this study have important policy implications for the GMS countries and the rest of world. (author)

  3. World Biofuels Study

    Energy Technology Data Exchange (ETDEWEB)

    Alfstad,T.

    2008-10-01

    This report forms part of a project entitled 'World Biofuels Study'. The objective is to study world biofuel markets and to examine the possible contribution that biofuel imports could make to help meet the Renewable Fuel Standard (RFS) of the Energy Independence and Security Act of 2007 (EISA). The study was sponsored by the Biomass Program of the Assistant Secretary for Energy Efficiency and Renewable Energy (EERE), U.S. Department of Energy. It is a collaborative effort among the Office of Policy and International Affairs (PI), Department of Energy and Oak Ridge National Laboratory (ORNL), National Renewable Energy Laboratory (NREL) and Brookhaven National Laboratory (BNL). The project consisted of three main components: (1) Assessment of the resource potential for biofuel feedstocks such as sugarcane, grains, soybean, palm oil and lignocellulosic crops and development of supply curves (ORNL). (2) Assessment of the cost and performance of biofuel production technologies (NREL). (3) Scenario-based analysis of world biofuel markets using the ETP global energy model with data developed in the first parts of the study (BNL). This report covers the modeling and analysis part of the project conducted by BNL in cooperation with PI. The Energy Technology Perspectives (ETP) energy system model was used as the analytical tool for this study. ETP is a 15 region global model designed using the MARKAL framework. MARKAL-based models are partial equilibrium models that incorporate a description of the physical energy system and provide a bottom-up approach to study the entire energy system. ETP was updated for this study with biomass resource data and biofuel production technology cost and performance data developed by ORNL and NREL under Tasks 1 and 2 of this project. Many countries around the world are embarking on ambitious biofuel policies through renewable fuel standards and economic incentives. As a result, the global biofuel demand is expected to grow very

  4. DETERMINANTS FOR LIQUID BIOFUELS PRODUCTION IN POLAND AFTER 2006 – MODEL APPROACH

    Directory of Open Access Journals (Sweden)

    Michał Borychowski

    2017-06-01

    Full Text Available Liquid biofuels from agricultural raw materials (mainly cereals and oilseeds are produced in Poland on an industrial scale since 2005. Poland, implementing guidelines for the energy policy of the European Union, is committed to ensure the share of liquid biofuels in the total fuel consumption in transport in at least 10% by 2020. The development of liquid biofuels market is therefore dependent on the one hand on institutional factors (legal and administrative regulations, and on the other hand, primarily on the situation of agricultural raw materials markets (supply-demand relationships and prices and macroeconomic factors, mainly crude oil prices. The aim of the paper is empirical identification of determinants for the production of liquid biofuels (bioethanol and biodiesel in Poland. For this purpose there were built two econometric models based on multiple regression, indicating exactly which factors contribute to the increase or decrease in the production of liquid biofuels. For the bioethanol production importance are mainly sales of bioethanol, the variables concerning the cereals market (prices, purchase and export and macroeconomic factors – interest rate, GDP growth rate (change and USD / PLN exchange rate. Important determinants for the biodiesel production include total sale of biodiesel, production of rapeseed oil, import of rapeseed and vegetable oils (rapeseed oil and palm oil and their prices, as well as crude oil prices, which represent the macroeconomic environment. 

  5. Bioenergy futures in Sweden – Modeling integration scenarios for biofuel production

    International Nuclear Information System (INIS)

    Börjesson Hagberg, Martin; Pettersson, Karin; Ahlgren, Erik O.

    2016-01-01

    Use of bioenergy can contribute to greenhouse gas emission reductions and increased energy security. However, even though biomass is a renewable resource, the potential is limited, and efficient use of available biomass resources will become increasingly important. This paper aims to explore system interactions related to future bioenergy utilization and cost-efficient bioenergy technology choices under stringent CO 2 constraints. In particular, the study investigates system effects linked to integration of advanced biofuel production with district heating and industry under different developments in the electricity sector and biomass supply system. The study is based on analysis with the MARKAL-Sweden model, which is a bottom-up, cost-optimization model covering the Swedish energy system. A time horizon to 2050 is applied. The results suggest that system integration of biofuel production has noteworthy effects on the overall system level, improves system cost-efficiency and influences parameters such as biomass price, marginal CO 2 emission reduction costs and cost-efficient biofuel choices in the transport sector. In the long run and under stringent CO 2 constraints, system integration of biofuel production has, however, low impact on total bioenergy use, which is largely decided by supply-related constraints, and on total transport biofuel use, which to large extent is driven by demand. - Highlights: • Long-term bioenergy scenarios for Sweden are modeled. • Efficient use of biomass resources will become increasingly important. • Integration of biofuel production with industry or heating improves efficiency. • Integration can reduce biomass prices and marginal CO 2 reduction costs. • Cost-efficient biofuel choices in the transport sector are affected.

  6. Onsite Army Biofuel Production: Opportunities, Thresholds and Considerations

    Science.gov (United States)

    2013-09-30

    has been directed towards the use of annual crop species, such as corn, wheat, oats, and soybeans , for producing biofuels (grain-based ethanol...of America. ERDC/CERL TN-13-2 36 Eghball, B., J. E. Gilley, L. A. Kramer, and T. B. Moorman. 2000. “Narrow Grass Hedge Effects on Phosphorus and...Stiff-Stemmed Grass Hedge Systems.” Soil Science Society of America Journal 68:1386-1393 Ravula, Poorna, John Cundiff, and Bobby Grisso. 2005

  7. Policies and life cycle analysis for the production of biofuels

    OpenAIRE

    Sánchez Martínez, Nadxieli Paulina

    2013-01-01

    Fossil fuels make up 80% of the primary energy consumed in the world, from which 58% alone is consumed by the transportation sector. They have a major contribution in greenhouse gas (GHG) emissions by their combustion and consumption which leads to many negative effects including climate change and global warming. In order to tackle these problems in the transportation sector, the biofuels industry has been growing in the previous years. This study analyzes the most relevant environmental imp...

  8. Catalytic oxidation of biorefinery lignin to value-added chemicals to support sustainable biofuel production.

    Science.gov (United States)

    Ma, Ruoshui; Xu, Yan; Zhang, Xiao

    2015-01-01

    Transforming plant biomass to biofuel is one of the few solutions that can truly sustain mankind's long-term needs for liquid transportation fuel with minimized environmental impact. However, despite decades of effort, commercial development of biomass-to-biofuel conversion processes is still not an economically viable proposition. Identifying value-added co-products along with the production of biofuel provides a key solution to overcoming this economic barrier. Lignin is the second most abundant component next to cellulose in almost all plant biomass; the emerging biomass refinery industry will inevitably generate an enormous amount of lignin. Development of selective biorefinery lignin-to-bioproducts conversion processes will play a pivotal role in significantly improving the economic feasibility and sustainability of biofuel production from renewable biomass. The urgency and importance of this endeavor has been increasingly recognized in the last few years. This paper reviews state-of-the-art oxidative lignin depolymerization chemistries employed in the papermaking process and oxidative catalysts that can be applied to biorefinery lignin to produce platform chemicals including phenolic compounds, dicarboxylic acids, and quinones in high selectivity and yield. The potential synergies of integrating new catalysts with commercial delignification chemistries are discussed. We hope the information will build on the existing body of knowledge to provide new insights towards developing practical and commercially viable lignin conversion technologies, enabling sustainable biofuel production from lignocellulosic biomass to be competitive with fossil fuel. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Impact of Various Biofuel Feedstock Production Scenarios on Water Quality in the Upper Mississippi River Basin

    Science.gov (United States)

    Wu, M.; Demissie, Y.; Yan, E.

    2010-12-01

    The impact of increased biofuel feedstock production on regional water quality was examined. This study focused on the Upper Mississippi River Basin, from which a majority of U.S. biofuel is currently produced. The production of biofuel from both conventional feedstock and cellulosic feedstock will potentially increase in the near future. Historically, this water basin generates the largest nitrogen loading to the waterway in the United States and is often cited as a main contributor to the anoxic zone in the Gulf of Mexico. To obtain a quantitative and spatial estimate of nutrient burdens at the river basin, a SWAT (Soil and Water Assessment Tool) model application was developed. The model was equipped with an updated nutrient cycle feature and modified model parameters to represent current crop and perennial grass yield as a result of advancements in breeding and biotechnology. Various biofuel feedstock production scenarios were developed to assess the potential environmental implications of increased biofuel production through corn, agriculture residue, and perennial cellulosic feedstock (such as Switchgrass). Major factors were analyzed, including land use changes, feedstock types, fertilizer inputs, soil property, and yield. This tool can be used to identify specific regional factors affecting water quality and examine options to meet the requirement for environmental sustainability, thereby mitigating undesirable environmental consequences while strengthening energy security.

  10. Stimulating learning-by-doing in advanced biofuels: effectiveness of alternative policies

    International Nuclear Information System (INIS)

    Chen Xiaoguang; Khanna, Madhu; Yeh, Sonia

    2012-01-01

    This letter examines the effectiveness of various biofuel and climate policies in reducing future processing costs of cellulosic biofuels due to learning-by-doing. These policies include a biofuel production mandate alone and supplementing the biofuel mandate with other policies, namely a national low carbon fuel standard, a cellulosic biofuel production tax credit or a carbon price policy. We find that the binding biofuel targets considered here can reduce the unit processing cost of cellulosic ethanol by about 30% to 70% between 2015 and 2035 depending on the assumptions about learning rates and initial costs of biofuel production. The cost in 2035 is more sensitive to the speed with which learning occurs and less sensitive to uncertainty in the initial production cost. With learning rates of 5–10%, cellulosic biofuels will still be at least 40% more expensive than liquid fossil fuels in 2035. The addition of supplementary low carbon/tax credit policies to the mandate that enhance incentives for cellulosic biofuels can achieve similar reductions in these costs several years earlier than the mandate alone; the extent of these incentives differs across policies and different kinds of cellulosic biofuels. (letter)

  11. Alternative Technologies for Biofuels Production in Kraft Pulp Mills—Potential and Prospects

    Directory of Open Access Journals (Sweden)

    Esa Vakkilainen

    2012-07-01

    Full Text Available The current global conditions provide the pulp mill new opportunities beyond the traditional production of cellulose. Due to stricter environmental regulations, volatility of oil price, energy policies and also the global competitiveness, the challenges for the pulp industry are many. They range from replacing fossil fuels with renewable energy sources to the export of biofuels, chemicals and biomaterials through the implementation of biorefineries. In spite of the enhanced maturity of various bio and thermo-chemical conversion processes, the economic viability becomes an impediment when considering the effective implementation on an industrial scale. In the case of kraft pulp mills, favorable conditions for biofuels production can be created due to the availability of wood residues and generation of black liquor. The objective of this article is to give an overview of the technologies related to the production of alternative biofuels in the kraft pulp mills and discuss their potential and prospects in the present and future scenario.

  12. Genetic modification of wood quality for second-generation biofuel production.

    Science.gov (United States)

    Lu, Shanfa; Li, Laigeng; Zhou, Gongke

    2010-01-01

    How the abundant tree biomass resources can be efficiently used for future biofuel production has attracted a great deal of interest and discussion in the past few years. Capable technologies are expected to be developed to realize the production of biofuel from wood biomass. A significant effort is put into the field of modifying wood properties of trees and simplifying the process of biomass-to-ethanol conversion, which includes mainly genetic engineering of lignin, cellulose and hemicellulose of woods. Current research in this field has achieved some promising results and opened up new opportunities to utilize wood biomass efficiently. This review will discuss the main developments in genetic modification of lignin, cellulose and hemicellulose biosynthesis in trees as well as other potential genetic technology of biofuel production from wood biomass.

  13. Biofuel Production by Fermentation of Water Plants and Agricultural Lignocellulosic by-Products

    Directory of Open Access Journals (Sweden)

    Anker Yaakov

    2016-01-01

    Full Text Available While at present most energy crops are depriving human feedstock, fermentation of agricultural residues and fast growing water plants possesses a good prospect to become a significant source for bio-fuel; as both substrates are widely available and do not require agricultural areas. Water hyacinth for instance can be cultivated in fresh, brackish or wastewater and owing to its rapid growth and availability. Since owing to its natural abundance it is considered to be an invasive plant in most continents, its utilization and use as a renewable energy source may also contribute for its dilution and control. Agricultural lignocellulosic surplus by-products are also a promising fermentable substrate for bioethanol production, as it decreases both disposal expenses and greenhouse gases emissions. This paper describes a scheme and methodology for transformation of any lignocellulosic biomass into biofuel by simple cost effective operation scheme, integrating an innovative process of mechanochemical activation pre-treatment followed by fermentation of the herbal digest and ethanol production through differential distillation. Under this approach several complex and costly staged of conventional ethanol production scheme may be replaced and by genetic engineering of custom fermenting microorganisms the fermentation process becomes a fully continuous industrial process.

  14. Second generation biofuels: Economics and policies

    Energy Technology Data Exchange (ETDEWEB)

    Carriquiry, Miguel A., E-mail: miguelc@iastate.edu [Center for Agricultural and Rural Development, Iowa State University (United States); Du Xiaodong, E-mail: xdu23@wisc.edu [Department of Agricultural and Applied Economics, University of Wisconsin-Madison (United States); Timilsina, Govinda R., E-mail: gtimilsina@worldbank.org [Development Research Group, The World Bank (United States)

    2011-07-15

    This study reviews economics of production of second generation biofuels from various feedstocks, including crop and wood/forestry residues, lignocellulosic energy crops, jatropha, and algae. The study indicates that while second generation biofuels could significantly contribute to the future energy supply mix, cost is a major barrier to its commercial production in the near to medium term. Depending upon type of biofuels, feedstock prices and conversion costs, the cost of cellulosic ethanol is found to be two to three times higher than the current price of gasoline on an energy equivalent basis. The median cost (across the studies reviewed) of biodiesel produced from microalgae, a prospective feedstock, is seven times higher than the current price of diesel, although much higher cost estimates have been reported. As compared with the case of first generation biofuels, in which feedstock can account for over two-thirds of the total costs, the share of feedstock in the total costs is relatively lower (30-50%) in the case of second generation biofuels. While significant cost reductions are needed for both types of second generation biofuels, the critical barriers are at different steps of the production process. For cellulosic ethanol, the biomass conversion costs needs to be reduced. On the other hand, feedstock cost is the main issue for biodiesel. At present, policy instruments, such as fiscal incentives and consumption mandates have in general not differentiated between the first and second generation biofuels except in the cases of the US and EU. The policy regime should be revised to account for the relative merits of different types of biofuels. - Highlights: > Second generation biofuels could significantly contribute to the future energy supply mix. > Cost is a major barrier to its the commercial production in the near to medium term. > The policy regime should be revised to account for the relative merits of different biofuels.

  15. Second generation biofuels: Economics and policies

    International Nuclear Information System (INIS)

    Carriquiry, Miguel A.; Du Xiaodong; Timilsina, Govinda R.

    2011-01-01

    This study reviews economics of production of second generation biofuels from various feedstocks, including crop and wood/forestry residues, lignocellulosic energy crops, jatropha, and algae. The study indicates that while second generation biofuels could significantly contribute to the future energy supply mix, cost is a major barrier to its commercial production in the near to medium term. Depending upon type of biofuels, feedstock prices and conversion costs, the cost of cellulosic ethanol is found to be two to three times higher than the current price of gasoline on an energy equivalent basis. The median cost (across the studies reviewed) of biodiesel produced from microalgae, a prospective feedstock, is seven times higher than the current price of diesel, although much higher cost estimates have been reported. As compared with the case of first generation biofuels, in which feedstock can account for over two-thirds of the total costs, the share of feedstock in the total costs is relatively lower (30-50%) in the case of second generation biofuels. While significant cost reductions are needed for both types of second generation biofuels, the critical barriers are at different steps of the production process. For cellulosic ethanol, the biomass conversion costs needs to be reduced. On the other hand, feedstock cost is the main issue for biodiesel. At present, policy instruments, such as fiscal incentives and consumption mandates have in general not differentiated between the first and second generation biofuels except in the cases of the US and EU. The policy regime should be revised to account for the relative merits of different types of biofuels. - Highlights: → Second generation biofuels could significantly contribute to the future energy supply mix. → Cost is a major barrier to its the commercial production in the near to medium term. → The policy regime should be revised to account for the relative merits of different biofuels.

  16. Biofuels production for smallholder producers in the Greater Mekong Sub-region

    International Nuclear Information System (INIS)

    Malik, Urooj S.; Ahmed, Mahfuz; Sombilla, Mercedita A.; Cueno, Sarah L.

    2009-01-01

    Looming concerns on rising food prices and food security has slowed down the impetus in biofuel production. The development of the sub-sector, however, remains an important agenda among developing countries like those of the Greater Mekong Sub-region (GMS) that have abundant labour and natural resources but have limited supply of fossil fuels which continues to serve as a constraint to economic growth. Five crops have been selected to be further developed and use for biofuel production in the GMS, namely sugarcane, cassava, oil palm, sweet sorghum and Jathropa curcas. The expanded use of sugarcane, cassava, and oil palm for biofuel production can cause problems in the food sector. The other two crops, sweet sorghum and J. curcas, are non-food crops but could still compete with the food crops in terms of resource use for production. In all cases, the GMS needs to formulate a sustainable strategy for the biofuel development that will not compete with the food sector but will rather help achieve energy security, promote rural development and protect the environment. Except for People's Republic of China (PRC) and Thailand that already have fairly developed biofuel sub-sector, the other GMS countries are either poised to start (Lao PDR and Cambodia) or ready to enhance existing initiatives on biofuel production (Myanmar and Vietnam), with support from their respective governments. Biofuel development in these countries has to be strongly integrated with smallholder producers in order to have an impact on improving livelihood. At this initial stage, the sub-sector does not need to compete on a price basis but should rather aim to put up small-scale biofuel processing plants in remote rural areas that can offer an alternative to high-priced diesel and kerosene for local electricity grids serving homes and small enterprises. The social and economic multiplier effects are expected to be high when farmers that produce the energy crops also produce the biofuels to generate

  17. Examining the potential for liquid biofuels production and usage in Ghana

    International Nuclear Information System (INIS)

    Afrane, George

    2012-01-01

    The perennial political and social upheavals in major oil-producing regions, the increasing energy demand from emerging economies, the global economic crisis and even environmental disasters, like the recent major oil spill in the Gulf of Mexico, all contribute to price fluctuations and escalations. Usually price instability affects the least-developed countries with the most fragile economies, like Ghana, the most. This paper gives a brief overview of the Ghanaian energy situation, describes the liquid biofuel production processes and examines the possibility of replacing some of the fossil fuels consumed annually, with locally produced renewable biofuels. Various scenarios for substituting different portions of petrol and diesel with biofuels derived from cassava and palm oil are examined. Based on 2009 crop production and fuel consumption data, replacement of 5% of both petrol and diesel with biofuels would require 1.96% and 17.3% of the cassava and palm oil produced in that year, respectively; while replacement of 10% of both fossil fuels would need 3.91% and 34.6% of the corresponding biofuels. Thus while petrol replacement could be initiated with little difficulty, regarding raw material availability, biodiesel would require enhanced palm oil production and/or oil supplement from other sources, including, potentially, jatropha. An implementation strategy is proposed.

  18. Biofuels and sustainability in Africa

    International Nuclear Information System (INIS)

    Amigun, Bamikole; Stafford, William; Musango, Josephine Kaviti

    2011-01-01

    The combined effects of climate change, the continued volatility of fuel prices, the recent food crisis and global economic turbulence have triggered a sense of urgency among policymakers, industries and development practitioners to find sustainable and viable solutions in the area of biofuels. This sense of urgency is reflected in the rapid expansion of global biofuels production and markets over the past few years. Biofuels development offers developing countries some prospect of self-reliant energy supplies at national and local levels, with potential economic, ecological, social, and security benefits. Forty-two African countries are net oil importers. This makes them particularly vulnerable to volatility in global fuel prices and dependent on foreign exchange to cover their domestic energy needs. The goal therefore is to reduce the high dependence on imported petroleum by developing domestic, renewable energy. But can this objective be achieved while leaving a minimal social and environmental footprint? A fundamental question is if biofuels can be produced with consideration of social, economic and environmental factors without setting unrealistic expectation for an evolving renewable energy industry that holds such great promise. The overall performance of different biofuels in reducing non-renewable energy use and greenhouse gas emissions varies when considering the entire lifecycle from production through to use. The net performance depends on the type of feedstock, the production process and the amount of non-renewable energy needed. This paper presents an overview of the development of biofuels in Africa, and highlights country-specific economic, environmental and social issues. It proposes a combination framework of policy incentives as a function of technology maturity, discusses practices, processes and technologies that can improve efficiency, lower energy and water demand, and further reduce the social and environmental footprint of biofuels

  19. Interactions of woody biofuel feedstock production systems with water resources: Considerations for sustainability

    Science.gov (United States)

    Carl C. Trettin; Devendra Amatya; Mark Coleman

    2008-01-01

    Water resources are important for the production of woody biofuel feedstocks. It is necessary to ensure that production systems do not adversely affect the quantity or quality of surface and ground water. The effects of woody biomass plantations on water resources are largely dependent on the prior land use and the management regime. Experience from both irrigated and...

  20. Interactions of woody biofuel feedstock production systems with water resources: considerations for sustainability

    Science.gov (United States)

    Carl C. Trettin; Devendra Amatya; Mark Coleman

    2008-01-01

    Water resources are important for the production of woody biofuel feedstocks. It is necessary to ensure that production systems do not adversely affect the quantity or quality of surface and ground water. The effects of woody biomass plantations on water resources are largely dependent on the prior land use and the management regime. Experience from both irrigated and...

  1. Biofuel Production in Ireland—An Approach to 2020 Targets with a Focus on Algal Biomass

    Directory of Open Access Journals (Sweden)

    Fionnuala Murphy

    2013-12-01

    Full Text Available Under the Biofuels Obligation Scheme in Ireland, the biofuels penetration rate target for 2013 was set at 6% by volume from a previous 4% from 2010. In 2012 the fuel blend reached 3%, with approximately 70 million L of biodiesel and 56 million L of ethanol blended with diesel and gasoline, respectively. Up to and including April 2013, the current blend rate in Ireland for biodiesel was 2.3% and for bioethanol was 3.7% which equates to approximately 37.5 million L of biofuel for the first four months of 2013. The target of 10% by 2020 remains, which equates to approximately 420 million L yr−1. Achieving the biofuels target would require 345 ktoe by 2020 (14,400 TJ. Utilizing the indigenous biofuels in Ireland such as tallow, used cooking oil and oil seed rape leaves a shortfall of approximately 12,000 TJ or 350 million L (achieving only 17% of the 10% target that must be either be imported or met by other renewables. Other solutions seem to suggest that microalgae (for biodiesel and macroalgae (for bioethanol could meet this shortfall for indigenous Irish production. This paper aims to review the characteristics of algae for biofuel production based on oil yields, cultivation, harvesting, processing and finally in terms of the European Union (EU biofuels sustainability criteria, where, up to 2017, a 35% greenhouse gas (GHG emissions reduction is required compared to fossil fuels. From 2017 onwards, a 50% GHG reduction is required for existing installations and from 2018, a 60% reduction for new installations is required.

  2. Biofuel Crops Expansion: Evaluating the Impact on the Agricultural Water Scarcity Costs and Hydropower Production with Hydro Economic Modeling

    Science.gov (United States)

    Marques, G.

    2015-12-01

    Biofuels such as ethanol from sugar cane remain an important element to help mitigate the impacts of fossil fuels on the atmosphere. However, meeting fuel demands with biofuels requires technological advancement for water productivity and scale of production. This may translate into increased water demands for biofuel crops and potential for conflicts with incumbent crops and other water uses including domestic, hydropower generation and environmental. It is therefore important to evaluate the effects of increased biofuel production on the verge of water scarcity costs and hydropower production. The present research applies a hydro-economic optimization model to compare different scenarios of irrigated biofuel and hydropower production, and estimates the potential tradeoffs. A case study from the Araguari watershed in Brazil is provided. These results should be useful to (i) identify improved water allocation among competing economic demands, (ii) support water management and operations decisions in watersheds where biofuels are expected to increase, and (iii) identify the impact of bio fuel production in the water availability and economic value. Under optimized conditions, adoption of sugar cane for biofuel production heavily relies on the opportunity costs of other crops and hydropower generation. Areas with a lower value crop groups seem more suitable to adopt sugar cane for biofuel when the price of ethanol is sufficiently high and the opportunity costs of hydropower productions are not conflicting. The approach also highlights the potential for insights in water management from studying regional versus larger scales bundled systems involving water use, food production and power generation.

  3. Performance assessment of biofuel production in an algae-based remediation system.

    Science.gov (United States)

    Wuang, Shy Chyi; Luo, Yanpei Darren; Wang, Simai; Chua, Pei Qiang Danny; Tee, Pok Siang

    2016-03-10

    The production of biofuel from microalgae has been an area of great interest as microalgae have higher productivities than land plants, and certain species have high lipid constituents which are the major feedstock for biodiesel production. One way to enhance the economic feasibility of algal-based biofuel is to couple it with waste remediation. This study investigated the technical feasibility of cultivating Chlorella sp. and Nannochloropsis sp. with fish water for biofuel production. The remediation potential of Chlorella sp. was found to be higher but the lipid yield is lower, when compared to Nannochloropsis sp. Lipid productivities were found to be similar for both types of algae at 1.1-1.3mgL(-1)h(-1). The fatty acid profiles of the obtained lipids were found suitable for biofuel production, and the calorific values were high at 30-32MJ/kg. The results provide insights into lipid production in Chlorella sp. and Nannochloropsis sp., when coupled with waste remediation. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Biofuels Production through Biomass Pyrolysis —A Technological Review

    OpenAIRE

    Ashfaque Ahmed Chowdhury; Nanjappa Ashwath; Mohammad G. Rasul; Mohammad I. Jahirul

    2012-01-01

    There has been an enormous amount of research in recent years in the area of thermo-chemical conversion of biomass into bio-fuels (bio-oil, bio-char and bio-gas) through pyrolysis technology due to its several socio-economic advantages as well as the fact it is an efficient conversion method compared to other thermo-chemical conversion technologies. However, this technology is not yet fully developed with respect to its commercial applications. In this study, more than two hundred publication...

  5. Fuelling the future: microbial engineering for the production of sustainable biofuels.

    Science.gov (United States)

    Liao, James C; Mi, Luo; Pontrelli, Sammy; Luo, Shanshan

    2016-04-01

    Global climate change linked to the accumulation of greenhouse gases has caused concerns regarding the use of fossil fuels as the major energy source. To mitigate climate change while keeping energy supply sustainable, one solution is to rely on the ability of microorganisms to use renewable resources for biofuel synthesis. In this Review, we discuss how microorganisms can be explored for the production of next-generation biofuels, based on the ability of bacteria and fungi to use lignocellulose; through direct CO2 conversion by microalgae; using lithoautotrophs driven by solar electricity; or through the capacity of microorganisms to use methane generated from landfill. Furthermore, we discuss how to direct these substrates to the biosynthetic pathways of various fuel compounds and how to optimize biofuel production by engineering fuel pathways and central metabolism.

  6. Microalgae to biofuels: life cycle impacts of methane production of anaerobically digested lipid extracted algae.

    Science.gov (United States)

    Quinn, Jason C; Hanif, Asma; Sharvelle, Sybil; Bradley, Thomas H

    2014-11-01

    This study presents experimental measurements of the biochemical methane production for whole and lipid extracted Nannochloropsis salina. Results show whole microalgae produced 430 cm(3)-CH4 g-volatile solids(-1) (g-VS) (σ=60), 3 times more methane than was produced by the LEA, 140 cm(3)-CH4 g-VS(-1) (σ=30). Results illustrate current anaerobic modeling efforts in microalgae to biofuel assessments are not reflecting the impact of lipid removal. On a systems level, the overestimation of methane production is shown to positively skew the environmental impact of the microalgae to biofuels process. Discussion focuses on a comparison results to those of previous anaerobic digestion studies and quantifies the corresponding change in greenhouse gas emissions of the microalgae to biofuels process based on results from this study. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Mathematical modeling of unicellular microalgae and cyanobacteria metabolism for biofuel production.

    Science.gov (United States)

    Baroukh, Caroline; Muñoz-Tamayo, Rafael; Bernard, Olivier; Steyer, Jean-Philippe

    2015-06-01

    The conversion of microalgae lipids and cyanobacteria carbohydrates into biofuels appears to be a promising source of renewable energy. This requires a thorough understanding of their carbon metabolism, supported by mathematical models, in order to optimize biofuel production. However, unlike heterotrophic microorganisms that utilize the same substrate as sources of energy and carbon, photoautotrophic microorganisms require light for energy and CO2 as carbon source. Furthermore, they are submitted to permanent fluctuating light environments due to outdoor cultivation or mixing inducing a flashing effect. Although, modeling these nonstandard organisms is a major challenge for which classical tools are often inadequate, this step remains a prerequisite towards efficient optimization of outdoor biofuel production at an industrial scale. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Microbial conversion of pyrolytic products to biofuels: a novel and sustainable approach toward second-generation biofuels.

    Science.gov (United States)

    Islam, Zia Ul; Zhisheng, Yu; Hassan, El Barbary; Dongdong, Chang; Hongxun, Zhang

    2015-12-01

    This review highlights the potential of the pyrolysis-based biofuels production, bio-ethanol in particular, and lipid in general as an alternative and sustainable solution for the rising environmental concerns and rapidly depleting natural fuel resources. Levoglucosan (1,6-anhydrous-β-D-glucopyranose) is the major anhydrosugar compound resulting from the degradation of cellulose during the fast pyrolysis process of biomass and thus the most attractive fermentation substrate in the bio-oil. The challenges for pyrolysis-based biorefineries are the inefficient detoxification strategies, and the lack of naturally available efficient and suitable fermentation organisms that could ferment the levoglucosan directly into bio-ethanol. In case of indirect fermentation, acid hydrolysis is used to convert levoglucosan into glucose and subsequently to ethanol and lipids via fermentation biocatalysts, however the presence of fermentation inhibitors poses a big hurdle to successful fermentation relative to pure glucose. Among the detoxification strategies studied so far, over-liming, extraction with solvents like (n-butanol, ethyl acetate), and activated carbon seem very promising, but still further research is required for the optimization of existing detoxification strategies as well as developing new ones. In order to make the pyrolysis-based biofuel production a more efficient as well as cost-effective process, direct fermentation of pyrolysis oil-associated fermentable sugars, especially levoglucosan is highlly desirable. This can be achieved either by expanding the search to identify naturally available direct levoglusoan utilizers or modify the existing fermentation biocatalysts (yeasts and bacteria) with direct levoglucosan pathway coupled with tolerance engineering could significantly improve the overall performance of these microorganisms.

  9. Metabolic and process engineering of Clostridium cellulovorans for biofuel production from cellulose.

    Science.gov (United States)

    Yang, Xiaorui; Xu, Mengmeng; Yang, Shang-Tian

    2015-11-01

    Production of cellulosic biofuels has drawn increasing attention. However, currently no microorganism can produce biofuels, particularly butanol, directly from cellulosic biomass efficiently. Here we engineered a cellulolytic bacterium, Clostridium cellulovorans, for n-butanol and ethanol production directly from cellulose by introducing an aldehyde/alcohol dehydrogenase (adhE2), which converts butyryl-CoA to n-butanol and acetyl-CoA to ethanol. The engineered strain was able to produce 1.42 g/L n-butanol and 1.60 g/L ethanol directly from cellulose. Moreover, the addition of methyl viologen as an artificial electron carrier shifted the metabolic flux from acid production to alcohol production, resulting in a high biofuel yield of 0.39 g/g from cellulose, comparable to ethanol yield from corn dextrose by yeast fermentation. This study is the first metabolic engineering of C. cellulovorans for n-butanol and ethanol production directly from cellulose with significant titers and yields, providing a promising consolidated bioprocessing (CBP) platform for biofuel production from cellulosic biomass. Copyright © 2015 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  10. Process modeling and supply chain design for advanced biofuel production based on bio-oil gasification

    Science.gov (United States)

    Li, Qi

    As a potential substitute for petroleum-based fuel, second generation biofuels are playing an increasingly important role due to their economic, environmental, and social benefits. With the rapid development of biofuel industry, there has been an increasing literature on the techno-economic analysis and supply chain design for biofuel production based on a variety of production pathways. A recently proposed production pathway of advanced biofuel is to convert biomass to bio-oil at widely distributed small-scale fast pyrolysis plants, then gasify the bio-oil to syngas and upgrade the syngas to transportation fuels in centralized biorefinery. This thesis aims to investigate two types of assessments on this bio-oil gasification pathway: techno-economic analysis based on process modeling and literature data; supply chain design with a focus on optimal decisions for number of facilities to build, facility capacities and logistic decisions considering uncertainties. A detailed process modeling with corn stover as feedstock and liquid fuels as the final products is presented. Techno-economic analysis of the bio-oil gasification pathway is also discussed to assess the economic feasibility. Some preliminary results show a capital investment of 438 million dollar and minimum fuel selling price (MSP) of $5.6 per gallon of gasoline equivalent. The sensitivity analysis finds that MSP is most sensitive to internal rate of return (IRR), biomass feedstock cost, and fixed capital cost. A two-stage stochastic programming is formulated to solve the supply chain design problem considering uncertainties in biomass availability, technology advancement, and biofuel price. The first-stage makes the capital investment decisions including the locations and capacities of the decentralized fast pyrolysis plants and the centralized biorefinery while the second-stage determines the biomass and biofuel flows. The numerical results and case study illustrate that considering uncertainties can be

  11. Trade-offs between Biofuels Energy Production, Land Use and Water Use in Florida

    Energy Technology Data Exchange (ETDEWEB)

    Fidler, Michal [Intelligentsia International Inc., LaBelle, FL (United States); Capece, John [Intelligentsia International Inc., LaBelle, FL (United States); Hanlon, Edward [Univ. of Florida, Immokalee, FL (United States); Alsharif, Kamal [Univ. of South Florida, Tampa, FL (United States)

    2014-02-11

    Objective of the presentation is to document land use and water use implications of biomass production to demonstrate the overall resources implications associated with bioethanol production for Florida’s transportation sector needs. Rationale for using biofuels (BF) is explained, so are advantages & challenges of BF production and use. Land use changes (LUC) in Florida are presented and consequences outlined. It is documented that Florida’s agricultural land is a very limited resource, with only 0.43 ac/person comparing to the global average of 1.71 ac/person. The direct relation of increased biofuels production causing increased water use is explained. Favorable climate, water resources, advanced research, traditional leading agricultural role, minor oil reserves, no refineries and increasing energy demands are the main reasons why Florida considers pursuing BF production in large scale. Eight various bioethanol crops produced in Florida were considered in this study (Miscanthus, Switchgrass, Sweet Sorghum, Corn, Elephantgrass, Sugarcane, Energycane, Eucalyptus). Biomass yield and bioethanol yield of these crops are documented. Bioethanol needs of Florida are estimated and related land requirements for the needed bioethanol production calculated. Projections for various bioethanol blends (E15 to E85) are then presented. Finally, water demand for biofuels production is quantified. It is concluded that land use requirement for production of all ethanol in E85 fuel blend in Florida is roughly the same as the total available ag land in Florida for the best yielding biofuels crops (energycane, eucalyptus). Water demand for production of all ethanol needed for E100 would increase current overall water consumption in Florida between 65% and 100% for the most common biofuels crops. Vehicular energy is only 33% of Floridians energy consumption, so even all Florida’s agricultural land was given up for biofuels, it would still produce only 33% of Florida’s total

  12. Tradeoffs and Synergies between biofuel production and large solar infrastructure in deserts.

    Science.gov (United States)

    Ravi, Sujith; Lobell, David B; Field, Christopher B

    2014-01-01

    Solar energy installations in deserts are on the rise, fueled by technological advances and policy changes. Deserts, with a combination of high solar radiation and availability of large areas unusable for crop production are ideal locations for large solar installations. However, for efficient power generation, solar infrastructures use large amounts of water for construction and operation. We investigated the water use and greenhouse gas (GHG) emissions associated with solar installations in North American deserts in comparison to agave-based biofuel production, another widely promoted potential energy source from arid systems. We determined the uncertainty in our analysis by a Monte Carlo approach that varied the most important parameters, as determined by sensitivity analysis. We considered the uncertainty in our estimates as a result of variations in the number of solar modules ha(-1), module efficiency, number of agave plants ha(-1), and overall sugar conversion efficiency for agave. Further, we considered the uncertainty in revenue and returns as a result of variations in the wholesale price of electricity and installation cost of solar photovoltaic (PV), wholesale price of agave ethanol, and cost of agave cultivation and ethanol processing. The life-cycle analyses show that energy outputs and GHG offsets from solar PV systems, mean energy output of 2405 GJ ha(-1) year(-1) (5 and 95% quantile values of 1940-2920) and mean GHG offsets of 464 Mg of CO2 equiv ha(-1) year(-1) (375-562), are much larger than agave, mean energy output from 206 (171-243) to 61 (50-71) GJ ha(-1) year(-1) and mean GHG offsets from 18 (14-22) to 4.6 (3.7-5.5) Mg of CO2 equiv ha(-1) year(-1), depending upon the yield scenario of agave. Importantly though, water inputs for cleaning solar panels and dust suppression are similar to amounts required for annual agave growth, suggesting the possibility of integrating the two systems to maximize the efficiency of land and water use to produce

  13. A thermophilic ionic liquid-tolerant cellulase cocktail for the production of cellulosic biofuels.

    Directory of Open Access Journals (Sweden)

    Joshua I Park

    Full Text Available Generation of biofuels from sugars in lignocellulosic biomass is a promising alternative to liquid fossil fuels, but efficient and inexpensive bioprocessing configurations must be developed to make this technology commercially viable. One of the major barriers to commercialization is the recalcitrance of plant cell wall polysaccharides to enzymatic hydrolysis. Biomass pretreatment with ionic liquids (ILs enables efficient saccharification of biomass, but residual ILs inhibit both saccharification and microbial fuel production, requiring extensive washing after IL pretreatment. Pretreatment itself can also produce biomass-derived inhibitory compounds that reduce microbial fuel production. Therefore, there are multiple points in the process from biomass to biofuel production that must be interrogated and optimized to maximize fuel production. Here, we report the development of an IL-tolerant cellulase cocktail by combining thermophilic bacterial glycoside hydrolases produced by a mixed consortia with recombinant glycoside hydrolases. This enzymatic cocktail saccharifies IL-pretreated biomass at higher temperatures and in the presence of much higher IL concentrations than commercial fungal cocktails. Sugars obtained from saccharification of IL-pretreated switchgrass using this cocktail can be converted into biodiesel (fatty acid ethyl-esters or FAEEs by a metabolically engineered strain of E. coli. During these studies, we found that this biodiesel-producing E. coli strain was sensitive to ILs and inhibitors released by saccharification. This cocktail will enable the development of novel biomass to biofuel bioprocessing configurations that may overcome some of the barriers to production of inexpensive cellulosic biofuels.

  14. Agricultural Worker Injury Comparative Risk Assessment Methodology: Assessing Corn and Biofuel Switchgrass Production Systems.

    Science.gov (United States)

    Schwab, Charles V; Mosher, Gretchen A; Ryan, Saxon J

    2017-07-31

    Keeping workers safe is a continuing challenge in agricultural production. Risk assessment methodologies have been used widely in other industries to better understand systems and enhance decision making, yet their use in production agriculture has been limited. This article describes the considerations and the approach taken to measure the difference in worker injury risks between two agricultural production systems. A model was developed specifically for the comparison of worker injury risk between corn and biofuel switchgrass production systems. The model is composed of injury and exposure values that were used in a Monte Carlo simulation. The output of this risk assessment shows that approximately 99% of the values from the Monte Carlo simulation rank corn production as a greater worker injury risk than biofuel switchgrass production. Furthermore, the greatest contributing factors for each production system were identified as harvest, and that finding aligns with current literature. Copyright© by the American Society of Agricultural Engineers.

  15. Policy incentives for switchgrass production using valuation of non-market ecosystem services

    International Nuclear Information System (INIS)

    Chamberlain, Jim F.; Miller, Shelie A.

    2012-01-01

    This study presents a linear profit model with combined economic and environmental factors for a switchgrass-for-biofuels agricultural system in the southeastern U.S. The objectives are to establish conversion-to-switchgrass thresholds for various market prices and identify policy incentives that would ensure economic profit while also maximizing environmental benefits (carbon sequestration, displacement of fossil fuels) and minimizing negative impacts (global warming potential, nitrate loss). Weighting factors are chosen to represent incentives and penalties by assigning value to the impacts. With no other incentives, switchgrass market prices of at least $51 and $58/dton would be needed in order to make a profitable switch from corn/Conservation Reserve Program (CRP) lands and cotton, respectively. At a mid-range offering of $50/dton, feasible carbon credit prices of $3/ $8/ $23 per metric tonne CO 2 e would incentivize conversion from corn, CRP, or cotton, respectively. Similarly, a water quality penalty of $0.20/ $3/ $2 per kilogram NO 3 –N leached would incentivize the same conversions with resultant watershed improvement. At a lower price of $30/dton switchgrass, incentives based on valuation of ecosystem services begin to exceed feasible ranges of these valuations. - Highlights: ► A linear effective profit model predicts conversion thresholds to switchgrass. ► Carbon and nitrogen fluxes can be valued and incorporated into producer choices. ► Farmgate prices alone of $51 and $58/dton switchgrass will entice conversion. ► Reasonable ecosystem service valuations will encourage adoption of switchgrass.

  16. Supply chain design under uncertainty for advanced biofuel production based on bio-oil gasification

    International Nuclear Information System (INIS)

    Li, Qi; Hu, Guiping

    2014-01-01

    An advanced biofuels supply chain is proposed to reduce biomass transportation costs and take advantage of the economics of scale for a gasification facility. In this supply chain, biomass is converted to bio-oil at widely distributed small-scale fast pyrolysis plants, and after bio-oil gasification, the syngas is upgraded to transportation fuels at a centralized biorefinery. A two-stage stochastic programming is formulated to maximize biofuel producers' annual profit considering uncertainties in the supply chain for this pathway. The first stage makes the capital investment decisions including the locations and capacities of the decentralized fast pyrolysis plants as well as the centralized biorefinery, while the second stage determines the biomass and biofuels flows. A case study based on Iowa in the U.S. illustrates that it is economically feasible to meet desired demand using corn stover as the biomass feedstock. The results show that the locations of fast pyrolysis plants are sensitive to uncertainties while the capacity levels are insensitive. The stochastic model outperforms the deterministic model in the stochastic environment, especially when there is insufficient biomass. Also, farmers' participation can have a significant impact on the profitability and robustness of this supply chain. - Highlights: • Decentralized supply chain design for advanced biofuel production is considered. • A two-stage stochastic programming is formulated to consider uncertainties. • Farmers' participation has a significant impact on the biofuel supply chain design

  17. Production of advanced biofuels: co-processing of upgraded pyrolysis oil in standard refinery units

    NARCIS (Netherlands)

    De Miguel Mercader, F.; de Miguel Mercader, F.; Groeneveld, M.J.; Hogendoorn, Kees; Kersten, Sascha R.A.; Way, N.W.J.; Schaverien, C.J.

    2010-01-01

    One of the possible process options for the production of advanced biofuels is the co-processing of upgraded pyrolysis oil in standard refineries. The applicability of hydrodeoxygenation (HDO) was studied as a pyrolysis oil upgrading step to allow FCC co-processing. Different HDO reaction end

  18. Impact of drought stress on growth and quality of miscanthus for biofuel production

    NARCIS (Netherlands)

    Weijde, van der Tim; Huxley, Laurie M.; Hawkins, Sarah; Eben Haeser Sembiring, Eben; Farrar, Kerrie; Dolstra, Oene; Visser, Richard G.F.; Trindade, Luisa M.

    2017-01-01

    Miscanthus has a high potential as a biomass feedstock for biofuel production. Drought tolerance is an important breeding goal in miscanthus as water deficit is a common abiotic stress and crop irrigation is in most cases uneconomical. Drought may not only severely reduce biomass yields, but also

  19. The economics of cyanobacteria-based biofuel production: challenges and opportunities

    NARCIS (Netherlands)

    Sharma, N.K.; Stal, L.J.; Sharma, N.K.; Rai, A.K.; Stal, L.J.

    2014-01-01

    In the current scenario, biofuels based on algae, including cyanobacteria, are expensive, complex to produce, and are only just entering the commercial phase in small quantities in pilot or demonstration plants. This chapter discusses the current scenario of using cyanobacteria for the production of

  20. Chapter 11: New Conversion Technologies for Liquid Biofuels Production in Africa

    NARCIS (Netherlands)

    Batidzirai, B.; Smeets, E.M.W.; Faaij, A.P.C.

    2012-01-01

    On the longer term, the production of second generation biofuels from lignocellulosic biomass is expected to become economically competitive with gasoline and diesel. A pre-requisite is that several technological hurdles will be overcome and that a large, stable supply of lignocellulosic biomass

  1. Stochastic production planning for a biofuel supply chain under demand and price uncertainties

    International Nuclear Information System (INIS)

    Awudu, Iddrisu; Zhang, Jun

    2013-01-01

    Highlights: ► The proposed stochastic model outperforms the deterministic model. ► The price of biofuel is modeled as Geometric Brownian Motion (GBM). ► The proposed model can be applied in any biofuel supply chain. -- Abstract: In this paper, we propose a stochastic production planning model for a biofuel supply chain under demand and price uncertainties. The supply chain consists of biomass suppliers, biofuel refinery plants and distribution centers. A stochastic linear programming model is proposed within a single-period planning framework to maximize the expected profit. Decisions such as the amount of raw materials purchased, the amount of raw materials consumed and the amount of products produced are considered. Demands of end products are uncertain with known probability distributions. The prices of end products follow Geometric Brownian Motion (GBM). Benders decomposition (BD) with Monte Carlo simulation technique is applied to solve the proposed model. To demonstrate the effectiveness of the proposed stochastic model and the decomposition algorithm, a representative supply chain for an ethanol plant in North Dakota is considered. To investigate the results of the proposed model, a simulation framework is developed to compare the performances of deterministic model and proposed stochastic model. The results from the simulation indicate the proposed model obtain higher expected profit than the deterministic model under different uncertainty settings. Sensitivity analyses are performed to gain management insight on how profit changes due to the uncertainties affect the model developed.

  2. The biofuels in France; Les biocarburants en France

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-04-15

    The biofuels are liquid renewable energies sources resulting from vegetal matters. Today are two channels of biofuels: the ethanol channel for gasoline and the vegetal oils channel for the diesel. In the first part, the document presents the different channels and the energy efficiency of the products. It shows in the second part the advantages for the environment (CO{sub 2} accounting) and for the energy independence. It discusses then the future developments and the projects. The fourth part is devoted to the legislation, regulations, taxes and financial incentives. The last part presents the french petroleum industry actions and attitudes in the framework of the biofuels development. (A.L.B.)

  3. Panorama 2011: New bio-fuel production technologies: overview of these expanding sectors and the challenges facing them

    International Nuclear Information System (INIS)

    Lorne, D.; Chabrelie, M.F.

    2011-01-01

    The numerous research programmes looking at new-generation biofuels that were initiated over the last ten years are now starting to bear fruit. Although no plants are producing and marketing biofuels yet, the large-scale, industrial feasibility of second-generation bio-fuel production at competitive cost may be demonstrated in the short-term. As far as third generation biofuels derived from algal biomass are concerned, there is a great deal of R and D interest in the sector, but the technology is still only in its infancy. (author)

  4. Cultivation and Characterization of Cynara Cardunculus for Solid Biofuels Production in the Mediterranean Region

    Directory of Open Access Journals (Sweden)

    Nicholas G. Danalatos

    2008-07-01

    Full Text Available Technical specifications of solid biofuels are continuously improved towards the development and promotion of their market. Efforts in the Greek market are limited, mainly due to the climate particularity of the region, which hinders the growth of suitable biofuels. Taking also into account the increased oil prices and the high inputs required to grow most annual crops in Greece, cardoon (Cynara cardunculus L. is now considered the most important and promising sources for solid biofuel production in Greece in the immediate future. The reason is that cardoon is a perennial crop of Mediterranean origin, well adapted to the xerothermic conditions of southern Europe, which can be utilized particularly for solid biofuel production. This is due to its minimum production cost, as this perennial weed may perform high biomass productivity on most soils with modest or without any inputs of irrigation and agrochemicals. Within this framework, the present research work is focused on the planning and analysis of different land use scenarios involving this specific energy crop and the combustion behaviour characterization for the solid products. Such land use scenarios are based on quantitative estimates of the crop’s production potential under specific soil-climatic conditions as well as the inputs required for its realization in comparison to existing conventional crops. Concerning its decomposition behaviour, devolatilisation and char combustion tests were performed in a non-isothermal thermogravimetric analyser (TA Q600. A kinetic analysis was applied and accrued results were compared with data already available for other lignocellulosic materials. The thermogravimetric analysis showed that the decomposition process of cardoon follows the degradation of other lignocellulosic fuels, meeting high burnout rates. This research work concludes that Cynara cardunculus, under certain circumstances, can be used as a solid biofuel of acceptable quality.

  5. Spatial optimization of cropping pattern for sustainable food and biofuel production with minimal downstream pollution.

    Science.gov (United States)

    Femeena, P V; Sudheer, K P; Cibin, R; Chaubey, I

    2018-04-15

    Biofuel has emerged as a substantial source of energy in many countries. In order to avoid the 'food versus fuel competition', arising from grain-based ethanol production, the United States has passed regulations that require second generation or cellulosic biofeedstocks to be used for majority of the biofuel production by 2022. Agricultural residue, such as corn stover, is currently the largest source of cellulosic feedstock. However, increased harvesting of crops residue may lead to increased application of fertilizers in order to recover the soil nutrients lost from the residue removal. Alternatively, introduction of less-fertilizer intensive perennial grasses such as switchgrass (Panicum virgatum L.) and Miscanthus (Miscanthus x giganteus Greef et Deu.) can be a viable source for biofuel production. Even though these grasses are shown to reduce nutrient loads to a great extent, high production cost have constrained their wide adoptability to be used as a viable feedstock. Nonetheless, there is an opportunity to optimize feedstock production to meet bioenergy demand while improving water quality. This study presents a multi-objective simulation optimization framework using Soil and Water Assessment Tool (SWAT) and Multi Algorithm Genetically Adaptive Method (AMALGAM) to develop optimal cropping pattern with minimum nutrient delivery and minimum biomass production cost. Computational time required for optimization was significantly reduced by loose coupling SWAT with an external in-stream solute transport model. Optimization was constrained by food security and biofuel production targets that ensured not more than 10% reduction in grain yield and at least 100 million gallons of ethanol production. A case study was carried out in St. Joseph River Watershed that covers 280,000 ha area in the Midwest U.S. Results of the study indicated that introduction of corn stover removal and perennial grass production reduce nitrate and total phosphorus loads without

  6. Tax Equity and Fiscal Responsibility Act of 1982: an incentive to improve productivity in health care.

    Science.gov (United States)

    Gray, W M; Metwalli, A M

    1987-01-01

    The productivity incentives of TEFRA are compared, using a sample that includes ten patients, four on Medicare and the remainder being either private pay patients or patients covered by commercial insurance. The effect of a ten percent increase or decrease in productivity on Medicare reimbursement before and after TEFRA is examined.

  7. Lipid metabolism and potentials of biofuel and high added-value oil production in red algae.

    Science.gov (United States)

    Sato, Naoki; Moriyama, Takashi; Mori, Natsumi; Toyoshima, Masakazu

    2017-04-01

    Biomass production is currently explored in microalgae, macroalgae and land plants. Microalgal biofuel development has been performed mostly in green algae. In the Japanese tradition, macrophytic red algae such as Pyropia yezoensis and Gelidium crinale have been utilized as food and industrial materials. Researches on the utilization of unicellular red microalgae such as Cyanidioschyzon merolae and Porphyridium purpureum started only quite recently. Red algae have relatively large plastid genomes harboring more than 200 protein-coding genes that support the biosynthetic capacity of the plastid. Engineering the plastid genome is a unique potential of red microalgae. In addition, large-scale growth facilities of P. purpureum have been developed for industrial production of biofuels. C. merolae has been studied as a model alga for cell and molecular biological analyses with its completely determined genomes and transformation techniques. Its acidic and warm habitat makes it easy to grow this alga axenically in large scales. Its potential as a biofuel producer is recently documented under nitrogen-limited conditions. Metabolic pathways of the accumulation of starch and triacylglycerol and the enzymes involved therein are being elucidated. Engineering these regulatory mechanisms will open a possibility of exploiting the full capability of production of biofuel and high added-value oil. In the present review, we will describe the characteristics and potential of these algae as biotechnological seeds.

  8. Chaotropicity: a key factor in product tolerance of biofuel-producing microorganisms.

    Science.gov (United States)

    Cray, Jonathan A; Stevenson, Andrew; Ball, Philip; Bankar, Sandip B; Eleutherio, Elis C A; Ezeji, Thaddeus C; Singhal, Rekha S; Thevelein, Johan M; Timson, David J; Hallsworth, John E

    2015-06-01

    Fermentation products can chaotropically disorder macromolecular systems and induce oxidative stress, thus inhibiting biofuel production. Recently, the chaotropic activities of ethanol, butanol and vanillin have been quantified (5.93, 37.4, 174kJ kg(-1)m(-1) respectively). Use of low temperatures and/or stabilizing (kosmotropic) substances, and other approaches, can reduce, neutralize or circumvent product-chaotropicity. However, there may be limits to the alcohol concentrations that cells can tolerate; e.g. for ethanol tolerance in the most robust Saccharomyces cerevisiae strains, these are close to both the solubility limit (<25%, w/v ethanol) and the water-activity limit of the most xerotolerant strains (0.880). Nevertheless, knowledge-based strategies to mitigate or neutralize chaotropicity could lead to major improvements in rates of product formation and yields, and also therefore in the economics of biofuel production. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Evaluating Oilseed Biofuel Production Feasibility in California’s San Joaquin Valley Using Geophysical and Remote Sensing Techniques

    Directory of Open Access Journals (Sweden)

    Dennis L. Corwin

    2017-10-01

    Full Text Available Though more costly than petroleum-based fuels and a minor component of overall military fuel sources, biofuels are nonetheless strategically valuable to the military because of intentional reliance on multiple, reliable, secure fuel sources. Significant reduction in oilseed biofuel cost occurs when grown on marginally productive saline-sodic soils plentiful in California’s San Joaquin Valley (SJV. The objective is to evaluate the feasibility of oilseed production on marginal soils in the SJV to support a 115 ML yr−1 biofuel conversion facility. The feasibility evaluation involves: (1 development of an Ida Gold mustard oilseed yield model for marginal soils; (2 identification of marginally productive soils; (3 development of a spatial database of edaphic factors influencing oilseed yield and (4 performance of Monte Carlo simulations showing potential biofuel production on marginally productive SJV soils. The model indicates oilseed yield is related to boron, salinity, leaching fraction, and water content at field capacity. Monte Carlo simulations for the entire SJV fit a shifted gamma probability density function: Q = 68.986 + gamma (6.134,5.285, where Q is biofuel production in ML yr−1. The shifted gamma cumulative density function indicates a 0.15–0.17 probability of meeting the target biofuel-production level of 115 ML yr−1, making adequate biofuel production unlikely.

  10. Product innovation incentives by an incumbent firm : Dynamic analysis

    NARCIS (Netherlands)

    Dawid, H.; Keoula, M.Y.; Kopel, M.; Kort, Peter

    We employ a dynamic framework to study how product innovation activities of a firm are influenced by its investments in production capacity of an established product and vice versa. The firm initially has capacity to sell an established product. Additionally, it also has the option to undertake an

  11. Assessing the sustainability of biofuels: A logic-based model

    International Nuclear Information System (INIS)

    Gnansounou, Edgard

    2011-01-01

    Over the last decade, the production and consumption of biofuels increased rapidly worldwide, in an attempt to reduce GHG (greenhouse gas) emissions, diversify transportation fuels, promote renewable energy, and create or maintain employment, especially in rural areas and developing countries. Although policy instruments being currently implemented in industrialized regions focus on sustainable biofuels, the definition and assessment of sustainability remains a highly debated issue. Several countries have adopted compulsory targets or financial incentives for promoting biofuels, and only a few countries have accounted for sustainability certification schemes for those biofuels within their policy framework. In this paper, a logic-based model for assessing the sustainability of biofuels is presented. The model uses a hierarchical structure to link multiple factors from the more specific variables to the most general one, sustainability performance. The strengths and limitations of the model are discussed and the anticipated improvements are provided.

  12. Research incentive program for clinical surgical faculty associated with increases in research productivity.

    Science.gov (United States)

    Schroen, Anneke T; Thielen, Monika J; Turrentine, Florence E; Kron, Irving L; Slingluff, Craig L

    2012-11-01

    To develop a research productivity scoring program within an academic department of surgery that would help realign incentives to encourage and reward research. Although research is highly valued in the academic mission, financial incentives are generally aligned to reward clinical productivity. A formula assigning points for publications and extramural grants was created and used to award a research incentive payment proportional to the research productivity score, beginning July 2007. Publication points reflect journal impact factor, author role, and manuscript type. Grant points reflect total funding and percentage of effort. Publication data were gathered from Web of Science/PubMed/Medline and grants data from the departmental grants office. An annual award is presented to the person with the greatest improvement. The research productivity score data after July 2007 were compared with control data for the 2 preceding years. A 33-question survey to 28 clinical faculty was conducted after the first year to measure satisfaction and solicit constructive feedback. The mean annual point scores increased from the preresearch productivity score to the postresearch productivity score academic years (2180 vs 3389, respectively, P = .08), with a significant change in the grant component score (272 vs 801, P = .03). Since research productivity score implementation, the operative case volumes increased 4.3% from 2006 to 2011. With a response rate of 89%, the survey indicated that 76% of the faculty wished to devote more time to research and 52% believed 1 or more research-related behaviors would change because of the research productivity score program. An objective, transparent research incentive program, through both monetary incentives and recognition, can stimulate productivity and was well-received by faculty. Copyright © 2012 The American Association for Thoracic Surgery. Published by Mosby, Inc. All rights reserved.

  13. Advances in biofuel production from oil palm and palm oil processing wastes: A review

    Directory of Open Access Journals (Sweden)

    Jundika C. Kurnia

    2016-03-01

    Full Text Available Over the last decades, the palm oil industry has been growing rapidly due to increasing demands for food, cosmetic, and hygienic products. Aside from producing palm oil, the industry generates a huge quantity of residues (dry and wet which can be processed to produce biofuel. Driven by the necessity to find an alternative and renewable energy/fuel resources, numerous technologies have been developed and more are being developed to process oil-palm and palm-oil wastes into biofuel. To further develop these technologies, it is essential to understand the current stage of the industry and technology developments. The objective of this paper is to provide an overview of the palm oil industry, review technologies available to process oil palm and palm oil residues into biofuel, and to summarise the challenges that should be overcome for further development. The paper also discusses the research and development needs, technoeconomics, and life cycle analysis of biofuel production from oil-palm and palm-oil wastes.

  14. Biofuel production system with operation flexibility: Evaluation of economic and environmental performance under external disturbance

    Science.gov (United States)

    Kou, Nannan

    Biomass derived liquid hydrocarbon fuel (biofuel) has been accepted as an effective way to mitigate the reliance on petroleum and reduce the greenhouse gas emissions. An increasing demand for second generation biofuels, produced from ligno-cellulosic feedstock and compatible with current infrastructure and vehicle technologies, addresses two major challenges faced by the current US transportation sector: energy security and global warming. However, biofuel production is subject to internal disturbances (feedstock supply and commodity market) and external factors (energy market). The biofuel industry has also heavily relied on government subsidy during the early development stages. In this dissertation, I investigate how to improve the economic and environmental performance of biorefineries (and biofuel plant), as well as enhance its survivability under the external disturbances. Three types of disturbance are considered: (1) energy market fluctuation, (2) subsidy policy uncertainty, and (3) extreme weather conditions. All three factors are basically volatile, dynamic, and even unpredictable, which makes them difficult to model and have been largely ignored to date. Instead, biofuel industry and biofuel research are intensively focused on improving feedstock conversion efficiency and capital cost efficiency while assuming these advancements alone will successfully generate higher profit and thus foster the biofuel industry. The collapse of the largest corn ethanol biofuel company, Verasun Energy, in 2008 calls into question this efficiency-driven approach. A detailed analysis has revealed that although the corn ethanol plants operated by Verasun adopted the more efficient (i.e. higher ethanol yield per bushel of corn and lower capital cost) dry-mill technology, they could not maintain a fair profit margin under fluctuating market condition which made ethanol production unprofitable. This is because dry-mill plant converts a single type of biomass feedstock (corn

  15. Methodological Foundations of Clustering and Innovativeness for Establishing the Competitive Production of Biofuels

    Directory of Open Access Journals (Sweden)

    Klymchuk Oleksandr V.

    2016-05-01

    Full Text Available The article is aimed to study the worldwide trends in development of innovative processes and creation of cluster structures for elaborating methodological foundations for establishing the competitive production of biofuels. The article highlights the cluster approaches in conducting the global commercial activities that create effective mechanisms and tools to encourage innovation-investment regional development and can be characterized by their relevance for the Ukrainian economy. Emphasis is made on the matter that clustering is one of the key tools for structuring the energy market, integrated exploiting the potential of bioenergy industry sector, management of the economic policies of redistribution of value added, implementation of the growth of investment attractiveness of the biofuel industry in our country. It has been concluded that cluster development in the biofuel production will stimulate specialization and cooperation processes in the agro-industrial economy sector, bringing together related businesses in the direction of an effective interaction, thereby ensuring a high level of competitiveness of biofuels in both the national and the international markets.

  16. Characterization of residual biomass from the Arequipa region for the production of biofuels

    Directory of Open Access Journals (Sweden)

    María Laura Stronguiló Leturia

    2015-12-01

    Full Text Available The aim of this work is to select residual biomass from the Arequipa Region for the production of biofuels (biodiesel, bioethanol and biogas. In each case, the initial point is a matrix based on products with residual biomass available in the region, from the agricultural and livestock sectors, information that was obtained from the regional Management of Agriculture web site. Specific factors of the resudue that will be used as raw material for each biofuel production would be considered for the selection process. For the production of biodiesel it is necessary to start from the oil extracted from oilseeds. Regarding obtaining bioethanol, it requires that the residual biomass has high percent of cellulose. With regard to the generation of biogas, we will use animal droppings. Finally, the raw materials selected are: squash and avocado seeds for biodiesel, rice chaff and deseeded corncob for bioethanol and cow and sheep droppings for biogas

  17. The Role of Synthetic Biology in the Design of Microbial Cell Factories for Biofuel Production

    Science.gov (United States)

    Colin, Verónica Leticia; Rodríguez, Analía; Cristóbal, Héctor Antonio

    2011-01-01

    Insecurity in the supply of fossil fuels, volatile fuel prices, and major concerns regarding climate change have sparked renewed interest in the production of fuels from renewable resources. Because of this, the use of biodiesel has grown dramatically during the last few years and is expected to increase even further in the future. Biodiesel production through the use of microbial systems has marked a turning point in the field of biofuels since it is emerging as an attractive alternative to conventional technology. Recent progress in synthetic biology has accelerated the ability to analyze, construct, and/or redesign microbial metabolic pathways with unprecedented precision, in order to permit biofuel production that is amenable to industrial applications. The review presented here focuses specifically on the role of synthetic biology in the design of microbial cell factories for efficient production of biodiesel. PMID:22028591

  18. The Role of Synthetic Biology in the Design of Microbial Cell Factories for Biofuel Production

    Directory of Open Access Journals (Sweden)

    Verónica Leticia Colin

    2011-01-01

    Full Text Available Insecurity in the supply of fossil fuels, volatile fuel prices, and major concerns regarding climate change have sparked renewed interest in the production of fuels from renewable resources. Because of this, the use of biodiesel has grown dramatically during the last few years and is expected to increase even further in the future. Biodiesel production through the use of microbial systems has marked a turning point in the field of biofuels since it is emerging as an attractive alternative to conventional technology. Recent progress in synthetic biology has accelerated the ability to analyze, construct, and/or redesign microbial metabolic pathways with unprecedented precision, in order to permit biofuel production that is amenable to industrial applications. The review presented here focuses specifically on the role of synthetic biology in the design of microbial cell factories for efficient production of biodiesel.

  19. Spatio-Temporal Impacts of Biofuel Production and Climate Variability on Water Quantity and Quality in Upper Mississippi River Basin

    Directory of Open Access Journals (Sweden)

    Debjani Deb

    2015-06-01

    Full Text Available Impact of climate change on the water resources of the United States exposes the vulnerability of feedstock-specific mandated fuel targets to extreme weather conditions that could become more frequent and intensify in the future. Consequently, a sustainable biofuel policy should consider: (a how climate change would alter both water supply and demand; and (b in turn, how related changes in water availability will impact the production of biofuel crops; and (c the environmental implications of large scale biofuel productions. Understanding the role of biofuels in the water cycle is the key to understanding many of the environmental impacts of biofuels. Therefore, the focus of this study is to model the rarely explored interactions between land use, climate change, water resources and the environment in future biofuel production systems. Results from this study will help explore the impacts of the US biofuel policy and climate change on water and agricultural resources. We used the Soil and Water Assessment Tool (SWAT to analyze the water quantity and quality consequences of land use and land management related changes in cropping conditions (e.g., more use of marginal lands, greater residue harvest, increased yields, plus management practices due to biofuel crops to meet the Renewable Fuel Standard target on water quality and quantity.

  20. Chromatin landscaping in algae reveals novel regulation pathway for biofuels production

    Energy Technology Data Exchange (ETDEWEB)

    Ngan, Chew Yee; Wong, Chee-Hong; Choi, Cindy; Pratap, Abhishek; Han, James; Wei, Chia-Lin

    2013-02-19

    The diminishing reserve of fossil fuels calls for the development of biofuels. Biofuels are produced from renewable resources, including photosynthetic organisms, generating clean energy. Microalgae is one of the potential feedstock for biofuels production. It grows easily even in waste water, and poses no competition to agricultural crops for arable land. However, little is known about the algae lipid biosynthetic regulatory mechanisms. Most studies relied on the homology to other plant model organisms, in particular Arabidopsis or through low coverage expression analysis to identify key enzymes. This limits the discovery of new components in the biosynthetic pathways, particularly the genetic regulators and effort to maximize the production efficiency of algal biofuels. Here we report an unprecedented and de novo approach to dissect the algal lipid pathways through disclosing the temporal regulations of chromatin states during lipid biosynthesis. We have generated genome wide chromatin maps in chlamydomonas genome using ChIP-seq targeting 7 histone modifications and RNA polymerase II in a time-series manner throughout conditions activating lipid biosynthesis. To our surprise, the combinatory profiles of histone codes uncovered new regulatory mechanism in gene expression in algae. Coupled with matched RNA-seq data, chromatin changes revealed potential novel regulators and candidate genes involved in the activation of lipid accumulations. Genetic perturbation on these candidate regulators further demonstrated the potential to manipulate the regulatory cascade for lipid synthesis efficiency. Exploring epigenetic landscape in microalgae shown here provides powerful tools needed in improving biofuel production and new technology platform for renewable energy generation, global carbon management, and environmental survey.

  1. Isolation and Fatty Acid Profile of Selected Microalgae Strains from the Red Sea for Biofuel Production

    OpenAIRE

    Hugo Pereira; Luísa Barreira; Luísa Custódio; Salman Alrokayan; Fouzi Mouffouk; João Varela; Khalid M. Abu-Salah; Radhouan Ben-Hamadou

    2013-01-01

    The isolation of lipid-rich autochthonous strains of microalgae is a crucial stage for the development of a microalgae-based biofuel production plant, as these microalgae already have the necessary adaptations to withstand competition, predation and the temperatures observed at each production site. This is particularly important in extreme climates such as in Saudi Arabia. Resorting to fluorescence activated cell sorting (FACS) we screened for and isolated several microalgal strains from sam...

  2. Carbon Calculator for Land Use Change from Biofuels Production (CCLUB) Users’ Manual and Technical Documentation

    Energy Technology Data Exchange (ETDEWEB)

    Dunn, Jennifer B. [Argonne National Lab. (ANL), Argonne, IL (United States); Qin, Zhangcai [Argonne National Lab. (ANL), Argonne, IL (United States); Mueller, Steffen [Univ. of Illinois, Chicago, IL (United States); Kwon, Ho-young [International Food Policy Research Inst., Washington, DC (United States); Wander, Michelle M. [Univ. of Illinois, Urbana-Champaign, IL (United States); Wang, Michael [Argonne National Lab. (ANL), Argonne, IL (United States)

    2017-12-01

    The Carbon Calculator for Land Use Change from Biofuels Production (CCLUB) calculates carbon emissions from land use change (LUC) for four different ethanol production pathways including corn grain ethanol and cellulosic ethanol from corn stover, Miscanthus, and switchgrass, and a soy biodiesel pathway. This document discusses the version of CCLUB released September 30, 2017 which includes five ethanol LUC scenarios and four soy biodiesel LUC scenarios.

  3. Algal biofuels.

    Science.gov (United States)

    Razeghifard, Reza

    2013-11-01

    The world is facing energy crisis and environmental issues due to the depletion of fossil fuels and increasing CO2 concentration in the atmosphere. Growing microalgae can contribute to practical solutions for these global problems because they can harvest solar energy and capture CO2 by converting it into biofuel using photosynthesis. Microalgae are robust organisms capable of rapid growth under a variety of conditions including in open ponds or closed photobioreactors. Their reduced biomass compounds can be used as the feedstock for mass production of a variety of biofuels. As another advantage, their ability to accumulate or secrete biofuels can be controlled by changing their growth conditions or metabolic engineering. This review is aimed to highlight different forms of biofuels produced by microalgae and the approaches taken to improve their biofuel productivity. The costs for industrial-scale production of algal biofuels in open ponds or closed photobioreactors are analyzed. Different strategies for photoproduction of hydrogen by the hydrogenase enzyme of green algae are discussed. Algae are also good sources of biodiesel since some species can make large quantities of lipids as their biomass. The lipid contents for some of the best oil-producing strains of algae in optimized growth conditions are reviewed. The potential of microalgae for producing petroleum related chemicals or ready-make fuels such as bioethanol, triterpenic hydrocarbons, isobutyraldehyde, isobutanol, and isoprene from their biomass are also presented.

  4. Return of investment and profitability analysis of bio-fuels production using a modeling approach

    Directory of Open Access Journals (Sweden)

    Yangyang Deng

    2016-06-01

    Full Text Available The objectives of this study were to evaluate the return of investment and profitability of a bio-gasification facility using a modeling method. Based on preliminary market analysis, the results determined that the power facilities driven by biomass gasifiers could be profitable if they consider the most sensitive cost factors such as labor, project investment, and feedstock supply. The result showed that economic feasibility of bio-gasification facility can significantly affect by its production capacity and operating modes (one shift, two shifts, or three shifts. The cost analysis modeling approach developed in this study could be a good approach for economic analysis of bio-syngas and bio-fuel products. In addition, this study demonstrated a unique modeling approach to analyze return of investment and profitability of biofuels production.

  5. Sequencing of Multiple Clostridial Genomes Related to Biomass Conversion and Biofuel Production

    Energy Technology Data Exchange (ETDEWEB)

    Hemme, Christopher [University of Oklahoma; Mouttaki, Housna [University of Oklahoma; Lee, Yong-Jin [University of Oklahoma, Norman; Goodwin, Lynne A. [Los Alamos National Laboratory (LANL); Lucas, Susan [U.S. Department of Energy, Joint Genome Institute; Copeland, A [U.S. Department of Energy, Joint Genome Institute; Lapidus, Alla L. [U.S. Department of Energy, Joint Genome Institute; Glavina Del Rio, Tijana [U.S. Department of Energy, Joint Genome Institute; Tice, Hope [U.S. Department of Energy, Joint Genome Institute; Saunders, Elizabeth H [Los Alamos National Laboratory (LANL); Detter, J. Chris [U.S. Department of Energy, Joint Genome Institute; Han, Cliff [Los Alamos National Laboratory (LANL); Pitluck, Sam [U.S. Department of Energy, Joint Genome Institute; Land, Miriam L [ORNL; Hauser, Loren John [ORNL; Kyrpides, Nikos C [U.S. Department of Energy, Joint Genome Institute; Mikhailova, Natalia [U.S. Department of Energy, Joint Genome Institute; He, Zhili [University of Oklahoma; Wu, Liyou [University of Oklahoma, Norman; Van Nostrand, Joy [University of Oklahoma, Norman; Henrissat, Bernard [Universite d' Aix-Marseille I & II; HE, Qiang [ORNL; Lawson, Paul A. [University of Oklahoma, Norman; Tanner, Ralph S. [University of Oklahoma, Norman; Lynd, Lee R [Thayer School of Engineering at Dartmouth; Wiegel, Juergen [University of Georgia, Athens, GA; Fields, Dr. Matthew Wayne [Montana State University; Arkin, Adam [Lawrence Berkeley National Laboratory (LBNL); Schadt, Christopher Warren [ORNL; Stevenson, Bradley S. [University of Oklahoma, Norman; McInerney, Michael J. [University of Oklahoma, Norman; Yang, Yunfeng [ORNL; Dong, Hailiang [Miami University, Oxford, OH; Xing, Defeng [State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology; Ren, Nanqi [State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology; Wang, Aijie [State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology; Ding, Shi-You [National Energy Renewable Laboratory; Himmel, Michael E [National Renewable Energy Laboratory (NREL); Taghavi, Safiyh [Brookhaven National Laboratory (BNL)/U.S. Department of Energy; Van Der Lelie, Daniel [Brookhaven National Laboratory (BNL); Rubin, Edward M. [U.S. Department of Energy, Joint Genome Institute; Zhou, Jizhong [University of Oklahoma

    2010-01-01

    Modern methods to develop microbe-based biomass conversion processes require a system-level understanding of the microbes involved. Clostridium species have long been recognized as ideal candidates for processes involving biomass conversion and production of various biofuels and other industrial products. To expand the knowledge base for clostridial species relevant to current biofuel production efforts, we have sequenced the genomes of 20 species spanning multiple genera. The majority of species sequenced fall within the class III cellulosome-encoding Clostridium and the class V saccharolytic Thermoanaerobacteraceae. Species were chosen based on representation in the experimental literature as model organisms, ability to degrade cellulosic biomass either by free enzymes or by cellulosomes, ability to rapidly ferment hexose and pentose sugars to ethanol, and ability to ferment synthesis gas to ethanol. The sequenced strains significantly increase the number of noncommensal/nonpathogenic clostridial species and provide a key foundation for future studies of biomass conversion, cellulosome composition, and clostridial systems biology.

  6. Hybrid-renewable processes for biofuels production: concentrated solar pyrolysis of biomass residues

    Energy Technology Data Exchange (ETDEWEB)

    George, Anthe [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Geier, Manfred [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Dedrick, Daniel E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-10-01

    The viability of thermochemically-derived biofuels can be greatly enhanced by reducing the process parasitic energy loads. Integrating renewable power into biofuels production is one method by which these efficiency drains can be eliminated. There are a variety of such potentially viable "hybrid-renewable" approaches; one is to integrate concentrated solar power (CSP) to power biomass-to-liquid fuels (BTL) processes. Barriers to CSP integration into BTL processes are predominantly the lack of fundamental kinetic and mass transport data to enable appropriate systems analysis and reactor design. A novel design for the reactor has been created that can allow biomass particles to be suspended in a flow gas, and be irradiated with a simulated solar flux. Pyrolysis conditions were investigated and a comparison between solar and non-solar biomass pyrolysis was conducted in terms of product distributions and pyrolysis oil quality. A novel method was developed to analyse pyrolysis products, and investigate their stability.

  7. Microalgal carbohydrates: an overview of the factors influencing carbohydrates production, and of main bioconversion technologies for production of biofuels

    DEFF Research Database (Denmark)

    Markou, Giorgos; Angelidaki, Irini; Georgakakis, Dimitris

    2012-01-01

    Microalgal biomass seems to be a promising feedstock for biofuel generation. Microalgae have relative high photosynthetic efficiencies, high growth rates, and some species can thrive in brackish water or seawater and wastewater from the food- and agro-industrial sector. Today, the main interest...... of the majority of the microalgal species might be a constraint for their possible use in these technologies. Moreover, in the majority of biomass conversion technologies, carbohydrates are the main substrate for production of biofuels. Nevertheless, microalgae biomass composition could be manipulated by several...

  8. Integrating sustainable biofuel and silver nanomaterial production for in situ upgrading of cellulosic biomass pyrolysis

    International Nuclear Information System (INIS)

    Xue, Junjie; Dou, Guolan; Ziade, Elbara; Goldfarb, Jillian L.

    2017-01-01

    Graphical abstract: Integrated production of biotemplated nanomaterials and upgraded biofuels (solid lines indicate current processes, dashed lines indicated proposed pathway). - Highlights: • Novel integrated process to co-produce nanomaterials and biofuels via pyrolysis. • Impregnation of biomass with silver nitrate upgrades bio-oil during pyrolysis. • Co-synthesis enhances syngas produced with more hydrogen. • Biomass template impacts bio-fuels and morphology of resulting nanomaterials. - Abstract: Replacing fossil fuels with biomass-based alternatives is a potential carbon neutral, renewable and sustainable option for meeting the world’s growing energy demand. However, pyrolytic conversions of biomass-to-biofuels suffer marginal total energy gain, and technical limitations such as bio-oils’ high viscosity and oxygen contents that result in unstable, corrosive and low-value fuels. This work demonstrates a new integrated biorefinery process for the co-production of biofuels and silver nanomaterials. By impregnating pure cellulose and corn stalk with silver nitrate, followed by pyrolysis, the gas yield (especially hydrogen) increases substantially. The condensable bio-oil components of the impregnated samples are considerably higher in furfurals (including 5-hydroxymethylfurfural). Though the overall activation energy barrier, as determined via the Distributed Activation Energy Model, does not change significantly with the silver nitrate pre-treatment, the increase in gases devolatilized, and improved 5-hydroxymethylfurfural yield, suggest a catalytic effect, potentially increasing decarboxylation reactions. After using this metal impregnation to improve pyrolysis fuel yield, following pyrolysis, the silver-char composite materials are calcined to remove the biomass template to yield silver nanomaterials. While others have demonstrated the ability to biotemplate such nanosilver on cellulosic biomass, they consider only impregnation and oxidation of the

  9. Life cycle assessment of energy products: environmental impact assessment of biofuels

    Energy Technology Data Exchange (ETDEWEB)

    Zah, R.; Boeni, H.; Gauch, M.; Hischier, R.; Lehmann, M.; Waeger, P.

    2007-05-15

    This final report for the Swiss Federal Office of Energy (SFOE) deals with the results of a study that evaluated the environmental impact of the entire production chain of fuels made from biomass and used in Switzerland. Firstly, the study supplies an analysis of the possible environmental impacts of biofuels that can be used as a basis for political decisions. Secondly, an environmental life cycle assessment (LCA) of various biofuels is presented. In addition, the impacts of fuel use are compared with other uses for bioenergy such as the generation of electricity and heat. The methods used in the LCA are discussed, including the Swiss method of ecological scarcity (Environmental Impact Points, UBP 06), and the European Eco-indicator 99 method. The results of the study are discussed, including the finding that not all biofuels can reduce environmental impacts as compared to fossil fuels. The role to be played by biofuels produced in an environmentally-friendly way together with other forms of renewable energy in our future energy supply is discussed.

  10. Engineering of microorganisms for the production of biofuels and perspectives based on systems metabolic engineering approaches.

    Science.gov (United States)

    Jang, Yu-Sin; Park, Jong Myoung; Choi, Sol; Choi, Yong Jun; Seung, Do Young; Cho, Jung Hee; Lee, Sang Yup

    2012-01-01

    The increasing oil price and environmental concerns caused by the use of fossil fuel have renewed our interest in utilizing biomass as a sustainable resource for the production of biofuel. It is however essential to develop high performance microbes that are capable of producing biofuels with very high efficiency in order to compete with the fossil fuel. Recently, the strategies for developing microbial strains by systems metabolic engineering, which can be considered as metabolic engineering integrated with systems biology and synthetic biology, have been developed. Systems metabolic engineering allows successful development of microbes that are capable of producing several different biofuels including bioethanol, biobutanol, alkane, and biodiesel, and even hydrogen. In this review, the approaches employed to develop efficient biofuel producers by metabolic engineering and systems metabolic engineering approaches are reviewed with relevant example cases. It is expected that systems metabolic engineering will be employed as an essential strategy for the development of microbial strains for industrial applications. Copyright © 2011 Elsevier Inc. All rights reserved.

  11. What are the barriers and incentives for community-owned means of energy production and use?

    International Nuclear Information System (INIS)

    Walker, Gordon

    2008-01-01

    This paper on community-owned means of renewable energy production and use, reviews experience to date in the UK and the incentives for and barriers limiting current and future growth. A broad view is taken of what the meaning of 'community-owned production and use' might constitute, as there are different models of community ownership, different notions of community and different degrees of connection or disconnection between production and use

  12. Incentives for the Quality and Safety Traceability System of Agricultural Products

    OpenAIRE

    Bai, Shizhen; Li, Meng

    2014-01-01

    The quality and safety traceability system of agricultural products is an important measure to protect the quality and safety of agricultural products. Farmers and food enterprises are main operators of the traceability system. If they are effectively encouraged to practice traceability system, food safety can be guaranteed from the source. This paper studies the incentive problem of agricultural product traceability system from two aspects—vertical contract coordination and government exte...

  13. Biofuels barometer

    International Nuclear Information System (INIS)

    Anon.

    2011-01-01

    In 2010 bio-fuel continued to gnaw away at petrol and diesel consumption in the European Union (EU). However its pace backs the assertion that bio-fuel consumption growth in EU slackened off in 2010. In the transport sector, it increased by only 1.7 Mtoe compared to 2.7 Mtoe in 2009. The final total bio-fuel consumption figure for 2010 should hover at around 13.9 Mtoe that can be broken down into 10.7 Mtoe for bio-diesel, 2.9 Mtoe for bio-ethanol and 0.3 Mtoe for others. Germany leads the pack for the consumption of bio-fuels and for the production of bio-diesel followed by France and Spain

  14. 15 CFR 303.19 - Issuance and use of production incentive certificates.

    Science.gov (United States)

    2010-01-01

    ... 15 Commerce and Foreign Trade 2 2010-01-01 2010-01-01 false Issuance and use of production incentive certificates. 303.19 Section 303.19 Commerce and Foreign Trade Regulations Relating to Commerce and Foreign Trade (Continued) INTERNATIONAL TRADE ADMINISTRATION, DEPARTMENT OF COMMERCE MISCELLANEOUS...

  15. 15 CFR 303.12 - Issuance and use of production incentive certificates.

    Science.gov (United States)

    2010-01-01

    ... 15 Commerce and Foreign Trade 2 2010-01-01 2010-01-01 false Issuance and use of production incentive certificates. 303.12 Section 303.12 Commerce and Foreign Trade Regulations Relating to Commerce and Foreign Trade (Continued) INTERNATIONAL TRADE ADMINISTRATION, DEPARTMENT OF COMMERCE MISCELLANEOUS...

  16. Making biofuels sustainable

    International Nuclear Information System (INIS)

    Gallagher, Ed

    2008-01-01

    . Previous land use is also recorded. The indirect effects of biofuel production - such as land displacement - have recently been examined by a review commissioned by the U.K. Government and carried out by the Renewable Fuels Agency. It confirmed the concerns, and work is now under way to measure the indirect effects and incorporate them in reporting and analysis. It concluded that we need to be more cautious and discriminating in our use of biofuels and called for a slowing of targets until, in particular, the indirect efforts could be monitored and evaluated properly. But it also saw a way forward for a sustainable biofuels industry. If this is to happen, biofuels should use the right feedstocks, be grown on the right land and use the least energy intensive production processes. Thus, ethanol derived from sugar cane, grown on land not needed for food production, farmed with an efficient use of fertilisers and produced using bagasse (sugar cane waste) as a source of energy, would be a sustainable biofuel. However, ethanol derived from maize using highly intensive farming processes, grown on land needed for food, and using energy from coal-fired power stations, would be an unsustainable one. The Review recommended that biofuel production should be concentrated on idle agricultural land - areas that have been previously farmed but which would remain uncultivated if not used in this way - and on marginal areas which are unproductive when used for food crops or livestock. It also recommended increasing the use of wastes and residues for feedstocks and creating incentives for second generation biofuels using new technologies, such as cellulosic ethanol from woody plants or biodiesel from algae. The Review also concluded that, left to itself, the market was unlikely to develop in a sustainable way, and so recommended more research into both indirect and direct effects and introducing internationally agreed mandatory sustainability standards. These should be accompanied by full

  17. Wastewater treatment high rate algal ponds (WWT HRAP) for low-cost biofuel production.

    Science.gov (United States)

    Mehrabadi, Abbas; Craggs, Rupert; Farid, Mohammed M

    2015-05-01

    Growing energy demand and water consumption have increased concerns about energy security and efficient wastewater treatment and reuse. Wastewater treatment high rate algal ponds (WWT HRAPs) are a promising technology that could help solve these challenges concurrently where climate is favorable. WWT HRAPs have great potential for biofuel production as a by-product of WWT, since the costs of algal cultivation and harvest for biofuel production are covered by the wastewater treatment function. Generally, 800-1400 GJ/ha/year energy (average biomass energy content: 20 GJ/ton; HRAP biomass productivity: 40-70 tons/ha/year) can be produced in the form of harvestable biomass from WWT HRAP which can be used to provide community-level energy supply. In this paper the benefits of WWT HRAPs are compared with conventional mass algal culture systems. Moreover, parameters to effectively increase algal energy content and overall energy production from WWT HRAP are discussed including selection of appropriate algal biomass biofuel conversion pathways. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Uncertainties And Governance Structure In Incentives Provision For Product Quality

    NARCIS (Netherlands)

    W. Deng (Wendong); G.W.J. Hendrikse (George)

    2012-01-01

    textabstractThis paper compares the product quality provision of cooperatives and investor owned firms (IOFs) by highlighting the impacts of uncertainties in agricultural production and marketing, and farmers’ risk aversion. In a principal-agent model, we show that the linear contract can shift the

  19. Biofuel, dairy production and beef in Brazil: competing claims on land use in São Paulo state.

    Science.gov (United States)

    Novo, André Luiz Monteiro; Jansen, Kees; Slingerland, Maja; Giller, Ken

    2010-01-01

    This paper examines the competing claims on land use resulting from the expansion of biofuel production. Sugarcane for biofuel drives agrarian change in So Paulo state, which has become the major ethanol-producing region in Brazil. We analyse how the expansion of sugarcane-based ethanol in So Paulo state has impacted dairy and beef production. Historical changes in land use, production technologies, and product and land prices are described, as well as how these are linked to changing policies in Brazil. We argue that sugarcane/biofuel expansion should be understood in the context of the dynamics of other agricultural sectors and the long-term national political economy rather than as solely due to recent global demand for biofuel. This argument is based on a meticulous analysis of changes in three important sectors - sugarcane, dairy farming, and beef production - and the mutual interactions between these sectors.

  20. Genetic Resources for Advanced Biofuel Production Described with the Gene Ontology

    Directory of Open Access Journals (Sweden)

    Trudy eTorto-Alalibo

    2014-10-01

    Full Text Available Dramatic increases in research in the area of microbial biofuel production coupled with high-throughput data generation on bioenergy-related microbes has led to a deluge of information in the scientific literature and in databases. Consolidating this information and making it easily accessible requires a unified vocabulary. The Gene Ontology (GO fulfills that requirement, as it is a well-developed structured vocabulary that describes the activities and locations of gene products in a consistent manner across all kingdoms of life. The Microbial Energy Gene Ontology (MENGO: http://www.mengo.biochem.vt.edu project is extending the GO to include new terms to describe microbial processes of interest to bioenergy production. Our effort has added over 600 bioenergy related terms to the Gene Ontology. These terms will aid in the comprehensive annotation of gene products from diverse energy-related microbial genomes. An area of microbial energy research that has received a lot of attention is microbial production of advanced biofuels. These include alcohols such as butanol, isopropanol, isobutanol, and fuels derived from fatty acids, isoprenoids, and polyhydroxyalkanoates. These fuels are superior to first generation biofuels (ethanol and biodiesel esterified from vegetable oil or animal fat, can be generated from non-food feedstock sources, can be used as supplements or substitutes for gasoline, diesel and jet fuels, and can be stored and distributed using existing infrastructure. Here we review the roles of genes associated with synthesis of advanced biofuels, and at the same time introduce the use of the GO to describe the functions of these genes in a standardized way.

  1. Monster potential meets potential monster: pros and cons of deploying genetically modified microalgae for biofuels production.

    Science.gov (United States)

    Flynn, K J; Mitra, A; Greenwell, H C; Sui, J

    2013-02-06

    Biofuels production from microalgae attracts much attention but remains an unproven technology. We explore routes to enhance production through modifications to a range of generic microalgal physiological characteristics. Our analysis shows that biofuels production may be enhanced ca fivefold through genetic modification (GM) of factors affecting growth rate, respiration, photoacclimation, photosynthesis efficiency and the minimum cell quotas for nitrogen and phosphorous (N : C and P : C). However, simulations indicate that the ideal GM microalgae for commercial deployment could, on escape to the environment, become a harmful algal bloom species par excellence, with attendant risks to ecosystems and livelihoods. In large measure, this is because an organism able to produce carbohydrate and/or lipid at high rates, providing stock metabolites for biofuels production, will also be able to attain a stoichiometric composition that will be far from optimal as food for the support of zooplankton growth. This composition could suppress or even halt the grazing activity that would otherwise control the microalgal growth in nature. In consequence, we recommend that the genetic manipulation of microalgae, with inherent consequences on a scale comparable to geoengineering, should be considered under strict international regulation.

  2. Bioelectrochemical reduction of volatile fatty acids in anaerobic digestion effluent for the production of biofuels.

    Science.gov (United States)

    Kondaveeti, Sanath; Min, Booki

    2015-12-15

    This study proves for the first time the feasibility of biofuel production from anaerobic digestion effluent via bioelectrochemical cell operation at various applied cell voltages (1.0, 1.5 and 2.0 V). An increase in cell voltage from 1 to 2 V resulted in more reduction current generation (-0.48 to -0.78 mA) at a lowered cathode potential (-0.45 to -0.84 mV vs Ag/AgCl). Various alcohols were produced depending on applied cell voltages, and the main products were butanol, ethanol, and propanol. Hydrogen and methane production were also observed in the headspace of the cell. A large amount of lactic acid was unexpectedly formed at all conditions, which might be the primary cause of the limited biofuel production. The addition of neutral red (NR) to the system could increase the cathodic reduction current, and thus more biofuels were produced with an enhanced alcohol formation compared to without a mediator. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Importance of systems biology in engineering microbes for biofuel production

    Energy Technology Data Exchange (ETDEWEB)

    Mukhopadhyay, Aindrila; Redding, Alyssa M.; Rutherford, Becky J.; Keasling, Jay D.

    2009-12-02

    Microorganisms have been rich sources for natural products, some of which have found use as fuels, commodity chemicals, specialty chemicals, polymers, and drugs, to name a few. The recent interest in production of transportation fuels from renewable resources has catalyzed numerous research endeavors that focus on developing microbial systems for production of such natural products. Eliminating bottlenecks in microbial metabolic pathways and alleviating the stresses due to production of these chemicals are crucial in the generation of robust and efficient production hosts. The use of systems-level studies makes it possible to comprehensively understand the impact of pathway engineering within the context of the entire host metabolism, to diagnose stresses due to product synthesis, and provides the rationale to cost-effectively engineer optimal industrial microorganisms.

  4. Biofuel production from palm oil with supercritical alcohols: effects of the alcohol to oil molar ratios on the biofuel chemical composition and properties.

    Science.gov (United States)

    Sawangkeaw, Ruengwit; Teeravitud, Sunsanee; Bunyakiat, Kunchana; Ngamprasertsith, Somkiat

    2011-11-01

    Biofuel production from palm oil with supercritical methanol (SCM) and supercritical ethanol (SCE) at 400 °C and 15 MPa were evaluated. At the optimal alcohol to oil molar ratios of 12:1 and 18:1 for the SCM and SCE processes, respectively, the biofuel samples were synthesized in a 1.2-L reactor and the resulting biofuel was analyzed for the key properties including those for the diesel and biodiesel standard specifications. Biofuel samples derived from both the SCM and SCE processes could be used as an alternative fuel after slight improvement in their acid value and free glycerol content. The remarkable advantages of this novel process were: the additional fuel yield of approximately of 5% and 10% for SCM and SCE, respectively; the lower energy consumption for alcohol preheating, pumping and recovering than the biodiesel production with supercritical alcohols that use a high alcohol to oil molar ratio of 42:1. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Microbial advanced biofuels production: overcoming emulsification challenges for large-scale operation.

    Science.gov (United States)

    Heeres, Arjan S; Picone, Carolina S F; van der Wielen, Luuk A M; Cunha, Rosiane L; Cuellar, Maria C

    2014-04-01

    Isoprenoids and alkanes produced and secreted by microorganisms are emerging as an alternative biofuel for diesel and jet fuel replacements. In a similar way as for other bioprocesses comprising an organic liquid phase, the presence of microorganisms, medium composition, and process conditions may result in emulsion formation during fermentation, hindering product recovery. At the same time, a low-cost production process overcoming this challenge is required to make these advanced biofuels a feasible alternative. We review the main mechanisms and causes of emulsion formation during fermentation, because a better understanding on the microscale can give insights into how to improve large-scale processes and the process technology options that can address these challenges. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. On the future prospects and limits of biofuels in Brazil, the US and EU

    International Nuclear Information System (INIS)

    Ajanovic, Amela; Haas, Reinhard

    2014-01-01

    Highlights: • Market prospects of biofuels are investigated up to 2030 for Brazil, the US and EU. • 1st generation biofuels are cost-effective under current tax policies. • Their potentials are restricted especially due to limited crops areas. • R and D especially for second generation biofuels has to be intensified. - Abstract: In the early 2000s high expectations existed regarding the potential contribution of biofuels to the reduction of greenhouse gas emissions and substitution of fossil fuels in transport. In recent years sobering judgments prevailed. The major barriers for a further expansion of biofuels are their high costs (compared to fossil fuels), moderate ecological performances, limited feedstocks for biofuel production and their competition with food production. The objective of this paper is to investigate the market prospects of biofuels up to the year 2030. It focuses on the three currently most important regions for biofuels production and use: the US, EU and Brazil which in 2010 accounted together for almost three-quarters of global biofuel supply. Our method of approach is based on a dynamic economic framework considering the major cost components of biofuels and corresponding technological learning with respect to capital costs. Moreover, for the analysis of the competitiveness of biofuels with fossil fuels also taxes are considered. The most important result is that under existing tax policies biofuels are cost-effective today and also for the next decades in the regions investigated. However, their potentials are restricted especially due to limited crops areas, and their environmental performance is currently rather modest. The major final conclusions are: (i) To reveal the real future market value of biofuels, a CO 2 based tax system should be implemented for all types of fuels providing a neutral environmental incentive for competition between all types of fossil and renewable fuels; (ii) Moreover, the research and development for

  7. Space for innovation for sustainable community-based biofuel production and use: Lessons learned for policy from Nhambita community, Mozambique

    International Nuclear Information System (INIS)

    Schut, Marc; Paassen, Annemarie van; Leeuwis, Cees; Bos, Sandra; Leonardo, Wilson; Lerner, Anna

    2011-01-01

    This paper provides insights and recommendations for policy on the opportunities and constrains that influence the space for innovation for sustainable community-based biofuel production and use. Promoted by the Mozambican government, Nhambita community established jatropha trials in 2005. Initial results were promising, but crop failure and the absence of organized markets led to scepticism amongst farmers. We start from the idea that the promotion of community-based biofuel production and use requires taking interactions between social-cultural, biophysical, economic, political and legal subsystems across different scales and levels of analysis through time into account. Our analysis demonstrates that heterogeneous farming strategies and their synergies at community level should be carefully assessed. Furthermore, national and international political and legal developments, such as the development of biofuel sustainability criteria, influence the local space in which community-based biofuel developments take place. We conclude that ex-ante integrated assessment and creating an enabling environment can enhance space for sustainable community-based biofuel production and use. It may provide insights into the opportunities and constraints for different types of smallholders, and promote the development of adequate policy mechanisms to prevent biofuels from becoming a threat rather than an opportunity for smallholders. - Highlights: → This paper explores space for innovation for community-based biofuel production and use. → Heterogeneous farming strategies and their synergies at community level are key. → Farmers have little trust in jatropha due to crop failure and absence of markets. → (Inter)national biofuel policies influence space for local biofuel production and use. → Policies should focus on ex-ante integrated assessment and creating an enabling environment.

  8. Natural Resources and Local Development: The Argentinian Oilseed Complex and Biofuel Production

    Directory of Open Access Journals (Sweden)

    Eliana Scialabba

    2014-01-01

    Full Text Available Argentina is very rich in natural resources, particularly those linked to the oilseed production. Global demand and improved means of production, have resulted in a mature and developed production infrastructure geared toward export. This generates not just revenue, but also has other positive effects, such as the creation of jobs and sustainable development. In this context, biofuel production adds multidimensional value to the vegetable oil industry and generations many spin-off industries.

  9. Energy and economic potential of maize straw used for biofuels production

    Directory of Open Access Journals (Sweden)

    Zbytek Zbyszek

    2016-01-01

    Full Text Available The paper presents the energy and economic comparison of two technologies of maize straw utilization: solid biofuel production (briquettes and methane fermentation. The research experiments have shown that maize straw is the material which can be efficiently implemented in both technologies. Maize straw usage as briquettes can generate more energy (10.956 GJ Mg−1 than methane fermentation (9.74. In Europe, biogas is used in co-generation units for production of electric and heat energy. Due to higher price of electricity, economic profitability of maize straw usage for biogas production is over twice higher (182 USD than in case of briquettes production (96 USD.

  10. Transport sector in Ireland: Can 2020 National targets drive indigenous biofuel production to success?

    OpenAIRE

    Gusciute, Egle; Devlin, Ger; Murphy, Fionnuala; McDonnell, Kevin

    2014-01-01

    Ireland's transport sector consumes just slightly less than one third of all energy in Ireland and is heavily dependent on oil imports, especially diesel. The European Union has set targets that are to be met by 2020, in order to guarantee a sustainable future for Europe and assure security of energy supply. There is an increase of biofuel usage in the transport sector, to reduce greenhouse gas emissions and encourage indigenous production of renewable sources. Currently, Ireland has only two...

  11. Cost structures and life cycle impacts of algal biomass and biofuel production

    Science.gov (United States)

    Christiansen, Katrina Lea

    2011-12-01

    Development and extraction of energy sources, energy production and energy use have huge economic, environmental and geopolitical impacts. Increasing energy demands in tandem with reductions in fossil fuel production has led to significant investments in research into alternative forms of energy. One that is promising but yet not commercially established is the production of biofuel from algae. This research quantitatively assessed the potential of algae biofuel production by examining its cost and environmental impacts. First, two models developed by the RAND corporation were employed to assess Cost Growth defined as the ratio of actual costs to estimated costs, and Plant Performance defined as the ratio of actual production levels to design performance, of three algal biofuel production technologies. The three algal biofuel production technologies examined to open raceway ponds (ORPs), photobioreactors (PBRs), and a system that couples PBRs to ORPs (PBR-ORPs). Though these analyses lack precision due to uncertainty, the results highlight the risks associated with implementing algal biofuel systems, as all scenarios examined were predicted to have Cost Growth, ranging from 1.2 to 1.8, and Plant Performance was projected as less than 50% of design performance for all cases. Second, the Framework the Evaluation of Biomass Energy Feedstocks (FEBEF) was used to assess the cost and environmental impacts of biodiesel produced from three algal production technologies. When these results were compared with ethanol from corn and biodiesel from soybeans, biodiesel from algae produced from the different technologies were estimated to be more expensive, suffered from low energy gains, and did not result in lower greenhouse gas emissions. To identify likely routes to making algal biofuels more competitive, a third study was undertaken. In this case, FEBEF was employed to examine pinch-points (defined as the most costly, energy consuming, greenhouse gas producing processes), in

  12. Biofuels barometer

    International Nuclear Information System (INIS)

    Anon.

    2012-01-01

    The European Union governments no longer view the rapid increase in biofuel consumption as a priority. Between 2010 and 2011 biofuel consumption increased by only 3%, which translates into 13.6 million tonnes of oil equivalent (toe) used in 2011 compared to 13.2 million toe in 2010. In 2011 6 European countries had a biofuel consumption in transport that went further 1 million toe: Germany (2,956,746 toe), France (2,050,873 toe), Spain (1,672,710 toe), Italy (1,432,455 toe), United Kingdom (1,056,105 toe) and Poland (1,017,793 toe). The breakdown of the biofuel consumption for transport in the European Union in 2011 into types of biofuels is: bio-diesel (78%), bio-ethanol (21%), biogas (0.5%) and vegetable oil (0.5%). In 2011, 4 bio-diesel producers had a production capacity in Europe that passed beyond 900,000 tonnes: Diester Industrie International (France) with 3,000,000 tonnes, Neste Oil (Finland) with 1,180,000 tonnes, ADM bio-diesel (Germany) with 975,000 tonnes, and Infinita (Spain) with 900,000 tonnes. It seems that the European Union's attention has shifted to setting up sustainability systems to verify that the biofuel used in the various countries complies with the Renewable Energy Directive's sustainability criteria

  13. Biofuels sources, biofuel policy, biofuel economy and global biofuel projections

    International Nuclear Information System (INIS)

    Demirbas, Ayhan

    2008-01-01

    The term biofuel is referred to liquid, gas and solid fuels predominantly produced from biomass. Biofuels include energy security reasons, environmental concerns, foreign exchange savings, and socioeconomic issues related to the rural sector. Biofuels include bioethanol, biomethanol, vegetable oils, biodiesel, biogas, bio-synthetic gas (bio-syngas), bio-oil, bio-char, Fischer-Tropsch liquids, and biohydrogen. Most traditional biofuels, such as ethanol from corn, wheat, or sugar beets, and biodiesel from oil seeds, are produced from classic agricultural food crops that require high-quality agricultural land for growth. Bioethanol is a petrol additive/substitute. Biomethanol can be produced from biomass using bio-syngas obtained from steam reforming process of biomass. Biomethanol is considerably easier to recover than the bioethanol from biomass. Ethanol forms an azeotrope with water so it is expensive to purify the ethanol during recovery. Methanol recycles easier because it does not form an azeotrope. Biodiesel is an environmentally friendly alternative liquid fuel that can be used in any diesel engine without modification. There has been renewed interest in the use of vegetable oils for making biodiesel due to its less polluting and renewable nature as against the conventional petroleum diesel fuel. Due to its environmental merits, the share of biofuel in the automotive fuel market will grow fast in the next decade. There are several reasons for biofuels to be considered as relevant technologies by both developing and industrialized countries. Biofuels include energy security reasons, environmental concerns, foreign exchange savings, and socioeconomic issues related to the rural sector. The biofuel economy will grow rapidly during the 21st century. Its economy development is based on agricultural production and most people live in the rural areas. In the most biomass-intensive scenario, modernized biomass energy contributes by 2050 about one half of total energy

  14. Jatropha: A Promising Crop for Africa's Biofuel Production?

    NARCIS (Netherlands)

    Eijck, J.A.J. van; Smeets, E.M.W.; Faaij, A.P.C.

    2012-01-01

    Jatropha has often been proposed as a miracle crop for the production of oil, because of the high yields and low requirements in terms of land quality, climate and crop management. A large number of companies have started with jatropha production in Africa which is projected to increase rapidly.

  15. Flotation: A promising microalgae harvesting and dewatering technology for biofuels production.

    Science.gov (United States)

    Ndikubwimana, Theoneste; Chang, Jingyu; Xiao, Zongyuan; Shao, Wenyao; Zeng, Xianhai; Ng, I-Son; Lu, Yinghua

    2016-03-01

    Microalgal biomass as renewable energy source is believed to be of great potential for reliable and sustainable biofuels production. However, microalgal biomass production is pinned by harvesting and dewatering stage thus hindering the developing and growing microalgae biotechnology industries. Flotation technology applied in mineral industry could be potentially applied in microalgae harvesting and dewatering, however substantial knowledge on different flotation units is essential. This paper presents an overview on different flotation units as promising cost-effective technologies for microalgae harvesting thus bestowing for further research in development and commercialization of microalgae based biofuels. Dispersed air flotation was found to be less energy consuming. Moreover, Jameson cell flotation and dispersed ozone flotation are believed to be energy efficient microalgae flotation approaches. Microalgae harvesting and dewatering by flotation is still at embryonic stage, therefore extended studies with the focus on life cycle assessment, sustainability of the flotation unit, optimization of the operating parameters using different algal species is imperative. Though there are a number of challenges in microalgae harvesting and dewatering, with well designed and developed cultivation, harvesting/dewatering, extraction and conversion technologies, progressively, microalgae technology will be of great potential for biological carbon sequestration, biofuels and biochemicals production. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Microalgae cultivation using an aquaculture wastewater as growth medium for biomass and biofuel production.

    Science.gov (United States)

    Guo, Zhen; Liu, Yuan; Guo, Haiyan; Yan, Song; Mu, Jun

    2013-12-01

    Microalgae as a main feedstock has attracted much attention in recent years but is still not economically feasible due to high algal culture cost. The objective of this study was to develop a comprehensive eco-friendly technology for cultivating microalgae Platymonas subcordiformis using aquaculture wastewater as growth medium for biomass and biofuel production. Platymonas subcordiformis was grown in pretreated flounder aquaculture wastewaters taken from different stages. Each of wastewater contained different levels of nutrients. The biomass yield of microalgae and associated nitrogen and phosphorous removal were investigated. The results showed that algal cell density increased 8.9 times than the initial level. Platymonas subcordiformis removed nitrogen and phosphorus from wastewater with an average removal efficiency of 87%-95% for nitrogen and 98%-99% for phosphorus. It was feasible to couple the removal of nitrogen and phosphorus from wastewater to algal biomass and biofuel production. However, further studies are required to make this technologies economically viable for algae biofuel production. Copyright © 2013 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.

  17. The greenhouse gas intensity and potential biofuel production capacity of maize stover harvest in the US Midwest

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Curtis D. [Department of Geographical Sciences, University of Maryland, College Park MD 20742 USA; Zhang, Xuesong [Joint Global Change Research Institute, Pacific Northwest National Laboratory and University of Maryland, College Park MD 20740 USA; Reddy, Ashwan D. [Department of Geographical Sciences, University of Maryland, College Park MD 20742 USA; Robertson, G. Philip [Great Lakes Bioenergy Research Center, Michigan State University, East Lansing MI 48824 USA; W.K. Kellogg Biological Station, Michigan State University, Hickory Corners MI 49060 USA; Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing MI 48824 USA; Izaurralde, Roberto César [Department of Geographical Sciences, University of Maryland, College Park MD 20742 USA; Texas A& M AgriLife Research & Extension Center, Temple TX 76502 USA

    2017-08-11

    Agricultural residues are important sources of feedstock for a cellulosic biofuels industry that is being developed to reduce greenhouse gas emissions and improve energy independence. While the US Midwest has been recognized as key to providing maize stover for meeting near-term cellulosic biofuel production goals, there is uncertainty that such feedstocks can produce biofuels that meet federal cellulosic standards. Here, we conducted extensive site-level calibration of the Environmental Policy Integrated Climate (EPIC) terrestrial ecosystems model and applied the model at high spatial resolution across the US Midwest to improve estimates of the maximum production potential and greenhouse gas emissions expected from continuous maize residue-derived biofuels. A comparison of methodologies for calculating the soil carbon impacts of residue harvesting demonstrates the large impact of study duration, depth of soil considered, and inclusion of litter carbon in soil carbon change calculations on the estimated greenhouse gas intensity of maize stover-derived biofuels. Using the most representative methodology for assessing long-term residue harvesting impacts, we estimate that only 5.3 billion liters per year (bly) of ethanol, or 8.7% of the near-term US cellulosic biofuel demand, could be met under common no-till farming practices. However, appreciably more feedstock becomes available at modestly higher emissions levels, with potential for 89.0 bly of ethanol production meeting US advanced biofuel standards. Adjustments to management practices, such as adding cover crops to no-till management, will be required to produce sufficient quantities of residue meeting the greenhouse gas emission reduction standard for cellulosic biofuels. Considering the rapid increase in residue availability with modest relaxations in GHG reduction level, it is expected that management practices with modest benefits to soil carbon would allow considerable expansion of potential cellulosic

  18. Feedback, Goal Setting, and Incentives Effects on Organizational Productivity.

    Science.gov (United States)

    1987-06-01

    advocacy. I TAKE OF mm INTRODUCTION 1 f. REVIEW OF THE UTERATURE I A. Feedback 1 Research on Feedback Dimensions 2 Moderators of the Feedback-Performance...underestimates of the overall impact of the development and introduction of feedback from the productivity measurement system. The reliability and...ADlied Pschology , 53, 1-25. Greller, M.M. (1975). Feedback and reactions to the iob (Report #75-98). New York: New York University, Graduate School of

  19. Effects on carbon and nitrogen emissions due to swine manure removal for biofuel production.

    Science.gov (United States)

    Weaver, Kim H; Harper, Lowry A; Brown, Sarah M

    2012-01-01

    Methane (CH) and ammonia (NH) are emitted from swine-manure processing lagoons, contributing to global climate change and reducing air quality. Manure diverted to biofuel production is proposed as a means to reduce CH emissions. At a swine confined animal feeding operation in the U.S. Central Great Basin, animal manure was diverted from 12 farms to a biofuel facility and converted to methanol. Ammonia emissions were determined using the De Visscher Model from measured data of dissolved lagoon ammoniacal N concentrations, pH, temperature, and wind speed at the lagoon sites. Other lagoon gas emissions were measured with subsurface gas collection devices and gas chromatography analysis. During 2 yr of study, CO and CH emissions from the primary lagoons decreased 11 and 12%, respectfully, as a result of the biofuel process, compared with concurrently measured control lagoon emissions. Ammonia emissions increased 47% compared with control lagoons. The reduction of CH and increase in NH emissions agrees with a short-term study measured at this location by Lagrangian inverse dispersion analysis. The increase in NH emissions was primarily due to an increase in lagoon solution pH attributable to decreased methanogenesis. Also observed due to biofuel production was a 20% decrease in conversion of total ammoniacal N to N, a secondary process for the removal of N in anaerobic waste lagoons. The increase in NH emissions can be partially attributed to the decrease in N production by a proposed NH conversion to N mechanism. This mechanism predicts that a decrease in NH conversion to N increases ammoniacal N pH. Both effects increase NH emissions. It is unknown whether the decrease in NH conversion to N is a direct or physical result of the decrease in methanogenesis. Procedures and practices intended to reduce emissions of one pollutant can have an unintended consequence on the emissions of another pollutant. Copyright © by the American Society of Agronomy, Crop Science Society

  20. Hybridization and adaptive evolution of diverse Saccharomyces species for cellulosic biofuel production.

    Science.gov (United States)

    Peris, David; Moriarty, Ryan V; Alexander, William G; Baker, EmilyClare; Sylvester, Kayla; Sardi, Maria; Langdon, Quinn K; Libkind, Diego; Wang, Qi-Ming; Bai, Feng-Yan; Leducq, Jean-Baptiste; Charron, Guillaume; Landry, Christian R; Sampaio, José Paulo; Gonçalves, Paula; Hyma, Katie E; Fay, Justin C; Sato, Trey K; Hittinger, Chris Todd

    2017-01-01

    Lignocellulosic biomass is a common resource across the globe, and its fermentation offers a promising option for generating renewable liquid transportation fuels. The deconstruction of lignocellulosic biomass releases sugars that can be fermented by microbes, but these processes also produce fermentation inhibitors, such as aromatic acids and aldehydes. Several research projects have investigated lignocellulosic biomass fermentation by the baker's yeast Saccharomyces cerevisiae . Most projects have taken synthetic biological approaches or have explored naturally occurring diversity in S. cerevisiae to enhance stress tolerance, xylose consumption, or ethanol production. Despite these efforts, improved strains with new properties are needed. In other industrial processes, such as wine and beer fermentation, interspecies hybrids have combined important traits from multiple species, suggesting that interspecies hybridization may also offer potential for biofuel research. To investigate the efficacy of this approach for traits relevant to lignocellulosic biofuel production, we generated synthetic hybrids by crossing engineered xylose-fermenting strains of S. cerevisiae with wild strains from various Saccharomyces species. These interspecies hybrids retained important parental traits, such as xylose consumption and stress tolerance, while displaying intermediate kinetic parameters and, in some cases, heterosis (hybrid vigor). Next, we exposed them to adaptive evolution in ammonia fiber expansion-pretreated corn stover hydrolysate and recovered strains with improved fermentative traits. Genome sequencing showed that the genomes of these evolved synthetic hybrids underwent rearrangements, duplications, and deletions. To determine whether the genus Saccharomyces contains additional untapped potential, we screened a genetically diverse collection of more than 500 wild, non-engineered Saccharomyces isolates and uncovered a wide range of capabilities for traits relevant to

  1. Biofuels and biochemicals production from forest biomass in Western Canada

    International Nuclear Information System (INIS)

    Sarkar, Susanjib; Kumar, Amit; Sultana, Arifa

    2011-01-01

    Biomass can be used for the production of fuels, and chemicals with reduced life cycle (greenhouse gas) emissions. Currently, these fuels and chemicals are produced mainly from natural gas and other fossil fuels. In Western Canada, forest residue biomass is gasified for the production of syngas which is further synthesized to produce different fuels and chemicals. Two types of gasifiers: the atmospheric pressure gasifier (commercially known as SilvaGas) and the pressurized gasifier (commercially known as RENUGAS) are considered for syngas production. The production costs of methanol, (dimethyl ether), (Fischer-Tropsch) fuels, and ammonia are $0.29/kg, $0.47/kg, $0.97/kg, and $2.09/kg, respectively, for a SilvaGas-based gasification plant with a capacity of 2000 dry tonnes/day. The cost of producing methanol, DME, F-T fuels, and ammonia in a RENUGAS-based plant are $0.45/kg, $0.69/kg, $1.53/kg, and $2.72/kg, respectively, for a plant capacity of 2000 dry tonnes/day. The minimum cost of producing methanol, DME, F-T fuels, and ammonia are $0.28/kg, $0.44/kg, $0.94/kg, and $2.06/kg at plant capacities of 3000, 3500, 4000, and 3000 dry tonnes/day, respectively, using the SilvaGas-based gasification process. Biomass-based fuels and chemicals are expensive compared to fuels and chemicals derived from fossil fuels, and carbon credits can help them become competitive. -- Highlights: → Forest residue can be used for production of fuels and chemicals in Western Canada. → Methanol, dimethyl ether, Fischer-Tropsch fuel and ammonia are focus of this study. → This study estimates the production cost of these fuels and chemicals from biomass. → Economic optimum sizes of production plants are also estimated through modeling. → Costs of fuels and chemicals from biomass are higher than that from fossil fuels.

  2. Computer modelling of the influences of a subsystems’ interaction on energetic efficiency of biofuel production systems

    Directory of Open Access Journals (Sweden)

    Wasiak Andrzej

    2017-01-01

    Full Text Available Energetic efficiency of biofuel production systems, as well as that of other fuels production systems, can be evaluated on the basis of modified EROEI indicator. In earlier papers, a new definition of the EROEI indicator was introduced. This approach enables the determination of this indicator separately for individual subsystems of a chosen production system, and therefore enables the studies of the influence of every subsystem on the energetic efficiency of the system as a whole. The method has been applied to the analysis of interactions between agricultural, internal transport subsystems, as well as preliminary studies of the effect of industrial subsystem.

  3. Corrosion in systems for storage and transportation of petroleum products and biofuels identification, monitoring and solutions

    CERN Document Server

    Groysman, Alec

    2014-01-01

    This book treats corrosion as it occurs and affects processes in real-world situations, and thus points the way to practical solutions. Topics described include the conditions in which petroleum products are corrosive to metals; corrosion mechanisms of petroleum products; which parts of storage tanks containing crude oils and petroleum products undergo corrosion; dependence of corrosion in tanks on type of petroleum products; aggressiveness of petroleum products to polymeric material; how microorganisms take part in corrosion of tanks and pipes containing petroleum products; which corrosion monitoring methods are used in systems for storage and transportation of petroleum products; what corrosion control measures should be chosen; how to choose coatings for inner and outer surfaces of tanks containing petroleum products; and how different additives (oxygenates, aromatic solvents) to petroleum products and biofuels influence metallic and polymeric materials. The book is of interest to corrosion engineers, mat...

  4. Biofuel production from Jerusalem artichoke tuber inulins: a review

    Directory of Open Access Journals (Sweden)

    Samarthya Bhagia

    2017-06-01

    Full Text Available Jerusalem artichoke (JA has a high productivity of tubers that are rich in inulins, a fructan polymer. These inulins can be easily broken down into fructose and glucose for conversion into ethanol by fermentation. This review discusses tuber and inulin yields, effect of cultivar and environment on tuber productivity, and approaches to fermentation for ethanol production. Consolidated bioprocessing with Kluyveromyces marxianus has been the most popular approach for fermentation into ethanol. Apart from ethanol, fructose can be dehydrated into into 5-hydrolxymethylfurfural followed by catalytic conversion into hydrocarbons. Findings from several studies indicate that this plant from tubers alone can produce ethanol at yields that rival corn and sugarcane ethanol. JA has tremendous potential for use as a bioenergy feedstock.

  5. Biomass valorisation of Arundo donax L., Miscanthus × giganteus and Sida hermaphrodita for biofuel production

    Science.gov (United States)

    Krička, Tajana; Matin, Ana; Bilandžija, Nikola; Jurišić, Vanja; Antonović, Alan; Voća, Neven; Grubor, Mateja

    2017-10-01

    In the context of the growing demand for biomass, which is being encouraged by the EU directives on the promotion of the use of renewable energy, recent investigations have been increasingly focused on fast-growing energy crops. The aim of this study was to investigate the energy properties of three types of agricultural energy crops: Arundo donax L., Miscanthus × giganteus and Sida hermaphrodita. This investigation looked into the content of non-combustible and combustible matter, higher and lower heating values, lignocellulose content, and biomass macro-elements. The results indicate that the energy values of these crops are comparable, while their lignocellulose content shows significant variations. Thus, Arundo donax L. can best be utilised as solid biofuel due to its highest lignin content, while Miscanthus × giganteus and Sida hermaphrodita L. can be used for both liquid and solid biofuels production. As far as Arundo donax L. is concerned, a higher ash level should be taken into consideration.

  6. Broadband Microwave Study of Reaction Intermediates and Products Through the Pyrolysis of Oxygenated Biofuels

    Science.gov (United States)

    Abeysekera, Chamara; Hernandez-Castillo, Alicia O.; Fritz, Sean; Zwier, Timothy S.

    2017-06-01

    The rapidly growing list of potential plant-derived biofuels creates a challenge for the scientific community to provide a molecular-scale understanding of their combustion. Development of accurate combustion models rests on a foundation of experimental data on the kinetics and product branching ratios of their individual reaction steps. Therefore, new spectroscopic tools are necessary to selectively detect and characterize fuel components and reactive intermediates generated by pyrolysis and combustion. Substituted furans, including furanic ethers, are considered second-generation biofuel candidates. Following the work of the Ellison group, an 8-18 GHz microwave study was carried out on the unimolecular and bimolecular decomposition of the smallest furanic ether, 2-methoxy furan, and it`s pyrolysis intermediate, the 2-furanyloxy radical, formed in a high-temperature pyrolysis source coupled to a supersonic expansion. Details of the experimental setup and analysis of the spectrum of the radical will be discussed.

  7. Assessing microalgae biorefinery routes for the production of biofuels via hydrothermal liquefaction.

    Science.gov (United States)

    López Barreiro, Diego; Samorì, Chiara; Terranella, Giuseppe; Hornung, Ursel; Kruse, Andrea; Prins, Wolter

    2014-12-01

    The interest in third generation biofuels from microalgae has been rising during the past years. Meanwhile, it seems not economically feasible to grow algae just for biofuels. Co-products with a higher value should be produced by extracting a particular algae fraction to improve the economics of an algae biorefinery. The present study aims at analyzing the influence of two main microalgae components (lipids and proteins) on the composition and quantity of biocrude oil obtained via hydrothermal liquefaction of two strains (Nannochloropsis gaditana and Scenedesmus almeriensis). The algae were liquefied as raw biomass, after extracting lipids and after extracting proteins in microautoclave experiments at different temperatures (300-375°C) for 5 and 15min. The results indicate that extracting the proteins from the microalgae prior to HTL may be interesting to improve the economics of the process while at the same time reducing the nitrogen content of the biocrude oil. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Biofuels in West Africa: prospective analysis of substitution for petroleum products

    International Nuclear Information System (INIS)

    Tonato, A.

    1993-01-01

    Is it viable and realistic to believe that biofuels can relieve the energy bill for certain countries in West Africa, restimulate whole areas often cut off from the development process, and diversify the outlets of the agricultural sector, hard struck as it is by the price drop in raw materials. The answer here is drawn from a micro-economic analysis of Benin, Burkina Faso, the Ivory Coast, and Niger, concerning the competitiveness of the three main products considered: - ethanol, produced from cane sugar; - methanol, obtained from eucalyptus by cryogenic oxygen gasification process; methyl ester, from palm oil. The result of this study is a forecast, for the year 2010, of conditions under which methyl alcohols and ester might be substituted for refined gasoline and fuel oil, and a hierarchical classification of the various biofuels in West Africa. (author). 15 refs., 8 tabs

  9. The competitiveness of biofuels in heat and power production

    International Nuclear Information System (INIS)

    Kosunen, P.; Leino, P.

    1995-01-01

    The paper showed that natural gas is the most competitive fuel in all the energy production alternatives under review, ie both in separate heat production and electricity generation and in combined heat and power production. Even though the heavy fuel oil taxes have grown more rapidly than taxes on domestic fuels, oil continues to be cheaper than solid fuels in heating and steam plants. According to the feasibility calculations made, combined heat and power production is the least-cost production form of electricity, and the larger the plant unit, the lower the cost. Looking to the future, in respect of merely the development in fuel taxes the competitiveness of domestic fuels will improve markedly if the taxation structure remains unchanged. It seems that at smaller points of consumption, such as heating and steam plants and small-scale power plants, fuel chips would be the most competitive fuel. In larger units, such as heat and power production plants and condensing power plants, fuel peat, primarily milled peat, would be the most competitive. The competitiveness of fuel chips at larger plants will probably be limited by the supply of sufficient volumes from such an area where the delivery costs would not raise the price of fuel chips too high. Coal would remain competitive only if the real import price of coal rose clearly more slowly than the real prices of domestic fuels. It seems that heavy fuel oil will be used only as a start-up, support and back-up fuel. Evaluating the future competitiveness of natural gas is difficult, since the impact of new pipeline investments on the price of natural gas is not known

  10. Trends and sustainability criteria of the production and use of liquid biofuels

    International Nuclear Information System (INIS)

    Markevicius, A.; Katinas, V.; Perednis, E.; Tamasauskiene, M.

    2010-01-01

    Environmental impacts associated with the use of fossil fuels, rising prices, potential limitations in supply and concerns about regional and national security are driving the development and use of biomass for bioenergy, biofuels and bioproducts. However, the use of biomass does not automatically imply that its production, conversion and use are sustainable. Conflicts between various ecosystem services (economic production of food, fodder and fuels, biodiversity, social and cultural values, etc.) that are provided by fertile land are increasing as well. Hence, a developed thinking on how to balance between these services is desirable. There is a significant amount of information available on biofuels and their sustainability. In this paper, different initiatives and sustainability criteria for biofuels are presented and assessed. 35 criteria were found in emerging sustainability assessment frameworks. The majority of 12 criteria were focused on environmental issues, 4 were social and only 1 was economic. Energy balance and greenhouse gas balance were perceived as especially critical, social criteria ranked generally low. Although being perceived as important, food security ranked very low. (author)

  11. Application of orange peel waste in the production of solid biofuels and biosorbents.

    Science.gov (United States)

    Santos, Carolina Monteiro; Dweck, Jo; Viotto, Renata Silva; Rosa, André Henrique; de Morais, Leandro Cardoso

    2015-11-01

    This work aimed to study the potential use of pyrolyzed orange peels as solid biofuels and biosorption of heavy metals. The dry biomass and the biofuel showed moderate levels of carbon (44-62%), high levels of oxygen (30-47%), lower levels of hydrogen (3-6%), nitrogen (1-2.6%), sulfur (0.4-0.8%) and ash with a maximum of 7.8%. The activation energy was calculated using Kissinger method, involving a 3 step process: volatilization of water, biomass degradation and volatilization of the degradation products. The calorific value obtained was 19.3MJ/kg. The studies of metal biosorption based on the Langmuir model obtained the best possible data fits. The results obtained in this work indicated that the potential use of waste orange peel as a biosorbent and as a solid biofuel are feasible, this product could be used in industrial processes, favoring the world economy. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Spatial analysis of the potential crops for the production of biofuels in Argentina

    Energy Technology Data Exchange (ETDEWEB)

    Carballo, Stella; Marco, Noelia Flores; Anschau, Alicia [Centro de Investigaciones de Recursos Naturales (CIRN/INTA), Buenos Aires (Argentina). Inst. de Tecnologia Agropecuaria. Inst. de Clima y Agua], E-mail: scarballo@cnia.inta.gov.ar; Hilbert, Jorge [Instiuto de Ingenieria Rural (CIA/INTA), Buenos Aires (Argentina)], E-mail: hilbert@cnia.inta.gov.ar

    2008-07-01

    The increase in biofuels production has been rising in the last ten years at a high rate. Argentina as one of the main crop producers in the world has a great potential to contribute with high volumes of biofuels. At present time common crops are used for large scale production but new alternatives are under study in different regions of the country. The increase in pressure for expansion also raises concerns on the impact on ecology issues such as soil erosion and biodiversity. Looking at a national level INTA has been working on the construction of a GIS were different crops were placed. The purpose is to identify critical information, to raise a methodology to obtain accurate and up-to date thematic maps using satellite images, to feed a GIS and to integrate the different layers to estimate biomass potentials for energy supply in our country, assessing potential land availability for biofuel crops or plantations to be made with ecological, economic and social sustainability bases. (author)

  13. Artificial neural networks: an efficient tool for modelling and optimization of biofuel production (a mini review)

    International Nuclear Information System (INIS)

    Sewsynker-Sukai, Yeshona; Faloye, Funmilayo; Kana, Evariste Bosco Gueguim

    2016-01-01

    In view of the looming energy crisis as a result of depleting fossil fuel resources and environmental concerns from greenhouse gas emissions, the need for sustainable energy sources has secured global attention. Research is currently focused towards renewable sources of energy due to their availability and environmental friendliness. Biofuel production like other bioprocesses is controlled by several process parameters including pH, temperature and substrate concentration; however, the improvement of biofuel production requires a robust process model that accurately relates the effect of input variables to the process output. Artificial neural networks (ANNs) have emerged as a tool for modelling complex, non-linear processes. ANNs are applied in the prediction of various processes; they are useful for virtual experimentations and can potentially enhance bioprocess research and development. In this study, recent findings on the application of ANN for the modelling and optimization of biohydrogen, biogas, biodiesel, microbial fuel cell technology and bioethanol are reviewed. In addition, comparative studies on the modelling efficiency of ANN and other techniques such as the response surface methodology are briefly discussed. The review highlights the efficiency of ANNs as a modelling and optimization tool in biofuel process development

  14. Impact of biofuel in agglomeration process on production of pollutants

    Directory of Open Access Journals (Sweden)

    Lesko Jaroslav

    2017-01-01

    Full Text Available Production of agglomerate in the metallurgical company belongs among the largest sources of emissions damaging the environment. Effects of coke breeze substitution by charcoal, pine, and oak sawdust there were sintering performed in a laboratory agglomeration pan with substitution ratios of 14 % and 20 % by the emissions of CO2, CO, NOx and NO. Variations in the gas emissions might have been affected by physical and chemical properties of the input materials and the technological parameters of agglomeration. It is important and necessary to seek other methods and materials with which it would be possible to optimize the production of emissions and protect the environment.

  15. Irregular incentives

    International Nuclear Information System (INIS)

    Cicchetti, M.A.

    1993-01-01

    Public utility regulation lacks a formal proxy for the economic profits that can be earned in an effectively competitive market if a firm is efficient or innovative. After all, public utility regulation operated on cost-plus basis. If a utility is efficient or innovative and lowers its costs, its typical reward is to have its rates reduced. This is a perverse incentive to motivate a utility to produce at the most efficient level. In addition, since regulation operates on this cost-plus basis, a utility can increase its net income, all other things being equal, by overinvesting in (or open-quotes gold-platingclose quotes) its system, another perverse incentive. Recognizing these flaws of regulation, academicians, utility executives, regulators, and legislators have tried over the last several years to implement incentive regulation plans that correct such perverse incentives. However, under many of the earnings-sharing or price-regulation incentive plans, the rewards for efficient production are not tied directly to measures under a company's control. In fact, such plans could prove highly detrimental to ratepayers and competitors of the regulated company and its affiliates. An incentive regulation plan that ties an appropriate reward for efficient production to specific efficiency gains is a better proxy of an effectively competitive environment. What's more, it is superior to an incentive plan that rewards circumstances beyond the company's control or self-serving manipulation. This is particularly true if no earnings cap is associated with the reward for efficiency. Rewards for efficient production should be tied to specific actions. A suitable incentive plan does not preclude appropriately derived flexible prices for certain products or services where warranted

  16. Biofuel technologies. Recent developments

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Vijai Kumar [National Univ. of Ireland Galway (Ireland). Dept. of Biochemistry; MITS Univ., Rajasthan (India). Dept. of Science; Tuohy, Maria G. (eds.) [National Univ. of Ireland Galway (Ireland). Dept. of Biochemistry

    2013-02-01

    Written by experts. Richly illustrated. Of interest to both experienced researchers and beginners in the field. Biofuels are considered to be the main potential replacement for fossil fuels in the near future. In this book international experts present recent advances in biofuel research and related technologies. Topics include biomethane and biobutanol production, microbial fuel cells, feedstock production, biomass pre-treatment, enzyme hydrolysis, genetic manipulation of microbial cells and their application in the biofuels industry, bioreactor systems, and economical processing technologies for biofuel residues. The chapters provide concise information to help understand the technology-related implications of biofuels development. Moreover, recent updates on biofuel feedstocks, biofuel types, associated co- and byproducts and their applications are highlighted. The book addresses the needs of postgraduate researchers and scientists across diverse disciplines and industrial sectors in which biofuel technologies and related research and experimentation are pursued.

  17. Fuel production from biomass: generation of liquid biofuels

    Directory of Open Access Journals (Sweden)

    Carmen Ghergheleş

    2008-05-01

    Full Text Available Anaerobic fermentation processes mayalso be used to produce liquid fuels frombiological raw materials. An example is theethanol production from glucose, known asstandard yeast fermentation in the beer, wine andliquor industries. It has to take place in steps, suchthat the ethanol is removed (by distillation ordehydrator application whenever itsconcentration approaches a value (around 12%which would impede reproduction of the yeastculture.

  18. Processing of Brassica seeds for feedstock in biofuels production

    Science.gov (United States)

    Several Brassica species are currently being evaluated to develop regionalized production systems based on their suitability to the environment and with the prevailing practices of growing commodity food crops like wheat, corn, and soybeans. This integrated approach to farming will provide high qual...

  19. Fuel production from biomass: generation of liquid biofuels

    OpenAIRE

    Carmen Ghergheleş; V. Ghergheleş

    2008-01-01

    Anaerobic fermentation processes mayalso be used to produce liquid fuels frombiological raw materials. An example is theethanol production from glucose, known asstandard yeast fermentation in the beer, wine andliquor industries. It has to take place in steps, suchthat the ethanol is removed (by distillation ordehydrator application) whenever itsconcentration approaches a value (around 12%)which would impede reproduction of the yeastculture.

  20. Consequences of agro-biofuel production for greenhouse gas emissions

    DEFF Research Database (Denmark)

    Carter, Mette Sustmann; Johansen, Anders; Hauggard-Nielsen, Henrik

    2008-01-01

    The objective of the study was to examine the effect on N2O and CH4 emissions when residues from bio-energy production are recycling as organic fertilizer for a maize energy crop. The study showed that the N2O emission associated with the cultivation of the maize crop offset a considerable faction...

  1. Sustainable Process Design of Biofuels: Bioethanol Production from Cassava rhizome

    DEFF Research Database (Denmark)

    Mangnimit, S.; Malakul, P.; Gani, Rafiqul

    2013-01-01

    .. Also, simultaneously with sustainability analysis, the life cycle impact on environment associated with bioethanol production is performed. Finally, candidate alternative designs are generated and compared with the base case design in terms of LCA, economics, waste, energy usage and enviromental impact...

  2. Energy production study of crops with biofuel potential in Argentina

    Energy Technology Data Exchange (ETDEWEB)

    Donato, Lidia; Huerga, Ignacio; Hilbert, Jorge [Instituto Nacional de Tecnologia Agropecuaria (CIA/INTA), Buenos Aires (Argentina). Centro de Investigacion de Agroindustria. Inst. de Ingenieria Rural], Emails: ingdonato@cnia.inta.gov.ar, ihuerga@cnia.inta.gov.ar, hilbert@cnia.inta.gov.ar

    2008-07-01

    The present study is focus on the final energy balance of bioenergy production in Argentina using soybean, sunflower, rapeseed, corn and sorghum as feedstocks. The balance considers the difference between the energy contained per unit and the amount used for its generation in all the different steps from sowing to final destination. For direct energy consumption Costo Maq software was employed using local fuel consumption forecast for each field labor. Particular attention is paid to the energy consumption in the agricultural steps considering the distinctive no till system spread out in Argentina that has a very low energy input. Direct and indirect energy were considered in the different steps of bioethanol and biodiesel generation. Industrial conversion consumption was based on international literature data. Comparisons were made between tilled and no till practices and considering or not the energy contained in co products. Results indicate a balance ranging from 0.96 to 1.54 not considering the co products. If co products were introduced the balances ranged between 1.09 and 4.67. (author)

  3. Microalgae for the production of bulk chemicals and biofuels

    NARCIS (Netherlands)

    Wijffels, R.H.; Barbosa, M.J.; Eppink, M.H.M.

    2010-01-01

    The feasibility of microalgae production for biodiesel was discussed. Although algae are not yet produced at large scale for bulk applications, there are opportunities to develop this process in a sustainable way. It remains unlikely, however, that the process will be developed for biodiesel as the

  4. Soil carbon sequestration and land use change associated with biofuel production: Empirical evidence

    Energy Technology Data Exchange (ETDEWEB)

    Qin, Zhangcai; Dunn, Jennifer B.; Kwon, Hoyoung; Mueller, Steffen; Wander, Michelle M.

    2016-01-01

    Soil organic carbon (SOC) change can be a major impact of land use change (LUC) associated with biofuel feedstock production. By collecting and analyzing data from worldwide field observations with major LUCs from cropland, grassland and forest to lands producing biofuel crops (i.e., corn, switchgrass, Miscanthus, poplar and willow), we were able to estimate SOC response ratios and sequestration rates and evaluate the effects of soil depth and time scale on SOC change. Both the amount and rate of SOC change were highly dependent on the specific land transition. Irrespective of soil depth or time horizon, cropland conversions resulted in an overall SOC gain of 6-14% relative to initial SOC level, while conversion from grassland or forest to corn (without residue removal) or poplar caused significant carbon loss (9-35%). No significant SOC changes were observed in land converted from grasslands or forests to switchgrass, Miscanthus or willow. The SOC response ratios were similar in both 0-30 and 0-100 cm soil depths in most cases, suggesting SOC changes in deep soil and that use of top soil only for SOC accounting in biofuel life cycle analysis (LCA) might underestimate total SOC changes. Soil carbon sequestration rates varied greatly among studies and land transition types. Generally, the rates of SOC change tended to be the greatest during the 10 years following land conversion, and had declined to approach 0 within about 20 years for most LUCs. Observed trends in SOC change were generally consistent with previous reports. Soil depth and duration of study significantly influence SOC change rates and so should be considered in carbon emission accounting in biofuel LCA. High uncertainty remains for many perennial systems, field trials and modeling efforts are needed to determine the site- and system-specific rates and direction of change associated with their production.

  5. Unlocking the potential of established products: toward new incentives rewarding innovation in Europe.

    Science.gov (United States)

    Nayroles, Gabrielle; Frybourg, Sandrine; Gabriel, Sylvie; Kornfeld, Åsa; Antoñanzas-Villar, Fernando; Espín, Jaime; Jommi, Claudio; Martini, Nello; de Pouvourville, Gérard; Tolley, Keith; Wasem, Jürgen; Toumi, Mondher

    2017-01-01

    Background : Many established products (EPs - marketed for eight years or more) are widely used off-label despite little evidence on benefit-risk ratio. This exposes patients to risks related to safety and lack of efficacy, and healthcare providers to liability. Introducing new indications for EPs may represent a high societal value; however, manufacturers rarely invest in R&D for EPs. The objective of this research was to describe incentives and disincentives for developing new indications for EPs in Europe and to investigate consequences of current policies. Methods : Targeted literature search and expert panel meetings. Results : Within the current European-level and national-level regulatory framework there are limited incentives for development of new indications with EPs. Extension of indication normally does not allow the price to be increased or maintained, the market protection period to be extended, or exclusion from a reference price system. New indication frequently triggers re-evaluation, resulting in price erosion, regardless of the level of added value with the new indication. In consequence, manufacturers are more prone to undertake R&D efforts at early to mid-stage of product life cycle rather than with EPs, or to invest in new chemical entities, even in therapeutic areas with broad off-label use. This represents a potentially missed opportunity as developing new indications for EPs offers an alternative to off-label use or lengthy and expensive R&D for new therapies, opens new opportunities for potentially cost-effective treatment alternatives, as well as greater equity in patients' access to treatment options. Conclusion : There are potential benefits from the development of new indications for EPs that are currently not being realized due to a lack of regulatory and pricing incentives in Europe. Incentives for orphan or paediatric drugs have proven to be effective in promoting R&D. Similarly, incentives to promote R&D in EPs should be developed

  6. Outdoor Cultivation of Marine Diatoms for Year-Round Production of Biofuels.

    Science.gov (United States)

    Matsumoto, Mitsufumi; Nojima, Daisuke; Nonoyama, Tomomi; Ikeda, Kiichi; Maeda, Yoshiaki; Yoshino, Tomoko; Tanaka, Tsuyoshi

    2017-03-25

    Biofuel production using microalgae is believed to have the advantage of continuous year-round production over crop plants, which have strong seasonality. However, actual year-round production of microalgal lipids using outdoor mass cultivation has rarely been demonstrated. In our previous study, it was demonstrated that the oleaginous diatom, Fistulifera solaris , was culturable in outdoor bioreactors from spring to autumn, whereas biomass and lipid production in winter failed because F. solaris did not grow below 15 °C. Therefore, another candidate strain that is culturable in winter is required. In this study, a cold-tolerant diatom, Mayamaea sp. JPCC CTDA0820, was selected as a promising candidate for biofuel production in winter. Laboratory-scale characterization revealed that this diatom was culturable at temperatures as low as 10 °C. Subsequently, F. solaris (April-October) and Mayamaea sp. JPCC CTDA0820 (November-March) were cultured in outdoor open-pond bioreactors, wherein year-round production of diatom lipids was successfully demonstrated. The maximal values of areal productivities of biomass and lipids reached to 9.79 and 1.80 g/(m² day) for F. solaris , and 8.62 and 0.92 g/(m² day) for Mayamaea sp. JPCC CTDA0820, respectively. With the combined use of these two diatom species, stable year-round production of microalgal lipids became possible.

  7. Panorama 2007: Biofuels Worldwide

    International Nuclear Information System (INIS)

    Prieur-Vernat, A.; His, St.

    2007-01-01

    The biofuels market is booming: after more than 20 years of industrial development, global bio-fuel production is growing fast. Willingness to reduce their oil dependence and necessity to promote low-carbon energies are the two main drivers for states to support biofuels development. (author)

  8. Biofuels: which interest, which perspectives?

    International Nuclear Information System (INIS)

    2006-01-01

    This paper is a synthesis of several studies concerning the production and utilization of bio-fuels: energy balance and greenhouse effect of the various bio-fuel systems; economical analysis and profitability of bio-fuel production; is the valorization of bio-fuel residues and by-products in animal feeding a realistic hypothesis?; assessment of the cost for the community due to tax exemption for bio-fuels

  9. Development of the compaction machine for the production of new shapes of pressed biofuels

    Science.gov (United States)

    Šooš, Ľubomír; Matúš, Miloš; Beniak, Juraj; Križan, Peter

    2018-01-01

    Briquettes and especially pellets became the fuel of the 21st century. These are pressed biofuels made from the biomass which have the required heat, shape, size, density and mechanical properties. Today, these pressed biofuels are made in the form of a block, cylinder, n-angle octagonal, either without or with the holes. Several analyses confirm that neither a block, nor the cylinder is the optimal shape for the production of pressed biofuels, both in terms of the production, storage, automated transport in the combustion process and the optimum combustion process. For this reason, we began to analyse different shape, size, density and mechanical properties of briquettes and pellets. In the first part of this article, the biofuel is described from these points of view. The result of this analysis is the new optimized spheroid shape of the pressed biofuels. The goal of the second part of the article is the construction design of a new compacting machine for manufacturing of the optimized shape of the compacted piece. The task is demanding due to the fact that in comparison to the production of cylindrical or square-shaped compacted pieces, the manufacturing of ‘quasi-spherical’ compacted pieces is discontinuous. Furthermore, unlike the standard types of compaction presses which compact the material between the two cylinders, it is necessary to hold the compacted piece for certain time under high pressure and at the high temperature. In this way, the lignin contained in compacted raw material becomes plastic and no further binding material needs to be added. The kinematics of a new compactor was therefore divided into two stages- ‘the stage of compacting’ and ‘the stage of load bearing capacity. This article describes an innovative and patent protected principle of compactor construction. The prototype of a designed machine has already been produced in our department. The first test results of this machine production as described in the conclusion of the

  10. Genetic engineering, a hope for sustainable biofuel production: review

    Directory of Open Access Journals (Sweden)

    Sudip Paudel

    2014-06-01

    Full Text Available The use of recently developed genetic engineering tools in combination with organisms that have the potential to produce precursors for the production of biodiesel, promises a sustainable and environment friendly energy source. Enhanced lipid production in wild type and/or genetically engineered organisms can offer sufficient raw material for industrial transesterification of plant-based triglycerides. Bio-diesel, produced with the help of genetically modified organisms, might be one of the best alternatives to fossil fuels and to mitigate various environmental hazards. DOI: http://dx.doi.org/10.3126/ije.v3i2.10644 International Journal of the Environment Vol.3(2 2014: 311-323

  11. High flux zeolite membranes for efficient production of biofuels

    OpenAIRE

    Sandström, Linda

    2012-01-01

    The greenhouse effect and the limited fossil oil resources have increased the demand for renewable fuels. Zeolite membranes have potential applications in numerous separation processes, and could be useful in the development of efficient processes for renewable fuel production.Synthesis gas is a gas mixture containing mainly carbon monoxide, hydrogen and carbon dioxide. Synthesis gas produced from biomass usually contains more carbon dioxide than desired, and it also contains hydrogen sulphid...

  12. Noble Metal Catalysts in the Production of Biofuels

    OpenAIRE

    Gutiérrez, Andrea

    2013-01-01

    The energy demand is increasing in the world together with the need to ensure energy security and the desire to decrease greenhouse gas emissions. While several renewable alternatives are available for the production of electricity, e.g. solar energy, wind power, and hydrogen, biomass is the only renewable source that can meet the demand for carbon-based liquid fuels and chemicals. The technology applied in the conversion of biomass depends on the type and complexity of the biomass, and the d...

  13. CO{sub 2} capture and biofuels production with microalgae

    Energy Technology Data Exchange (ETDEWEB)

    Benemann, J.R. [Univ. of California, Berkeley, CA (United States)

    1995-11-01

    Microalgae cultivation in large open ponds is the only biological process capable of directly utilizing power plant flue gas CO{sub 2} for production of renewable fuels, such as biodiesel, thus mitigating the potential for global warming. Past and recent systems studies have concluded that in principle this concept could be economically feasible, but that this technology still requires both fundamental and applied long-term R&D.

  14. Private Incentives to Innovate: Interplay of New Products and Brand-Name Reputation

    OpenAIRE

    Leheyda, Nina

    2008-01-01

    This paper studies the introduction of new products (increase in product variety) in the automobile industry. The focus is on the two sources of market power that may allow the firms to get higher profits (and, thus, recoup investments): new products and brand-name reputation. The effects of new products on the private incentives to innovate are investigated on the basis of the dataset for the German car industry for 2003. The dataset is rather unique in the sense that it contains detailed in...

  15. A Wavelet-Based Optimization Method for Biofuel Production

    Directory of Open Access Journals (Sweden)

    Maurizio Carlini

    2018-02-01

    Full Text Available On a global scale many countries are still heavily dependent on crude oil to produce energy and fuel for transport, with a resulting increase of atmospheric pollution. A possible solution to obviate this problem is to find eco-sustainable energy sources. A potential choice could be the use of biodiesel as fuel. The work presented aims to characterise the transesterification reaction of waste peanut frying oil using colour analysis and wavelet analysis. The biodiesel production, with the complete absence of mucilages, was evaluated through a suitable set of energy wavelet coefficients and scalograms. The physical characteristics of the biodiesel are influenced by mucilages. In particular the viscosity, that is a fundamental parameter for the correct use of the biodiesel, might be compromised. The presence of contaminants in the samples can often be missed by visual analysis. The low and high frequency wavelet analysis, by investigating the energy change of wavelet coefficient, provided a valid characterisation of the quality of the samples, related to the absence of mucilages, which is consistent with the experimental results. The proposed method of this work represents a preliminary analysis, before the subsequent chemical physical analysis, that can be develop during the production phases of the biodiesel in order to optimise the process, avoiding the presence of impurities in suspension in the final product.

  16. Techno-Economic Analysis of Biofuels Production Based on Gasification

    Energy Technology Data Exchange (ETDEWEB)

    Swanson, R. M.; Platon, A.; Satrio, J. A.; Brown, R. C.; Hsu, D. D.

    2010-11-01

    This study compares capital and production costs of two biomass-to-liquid production plants based on gasification. The first biorefinery scenario is an oxygen-fed, low-temperature (870?C), non-slagging, fluidized bed gasifier. The second scenario is an oxygen-fed, high-temperature (1,300?C), slagging, entrained flow gasifier. Both are followed by catalytic Fischer-Tropsch synthesis and hydroprocessing to naphtha-range (gasoline blend stock) and distillate-range (diesel blend stock) liquid fractions. Process modeling software (Aspen Plus) is utilized to organize the mass and energy streams and cost estimation software is used to generate equipment costs. Economic analysis is performed to estimate the capital investment and operating costs. Results show that the total capital investment required for nth plant scenarios is $610 million and $500 million for high-temperature and low-temperature scenarios, respectively. Product value (PV) for the high-temperature and low-temperature scenarios is estimated to be $4.30 and $4.80 per gallon of gasoline equivalent (GGE), respectively, based on a feedstock cost of $75 per dry short ton. Sensitivity analysis is also performed on process and economic parameters. This analysis shows that total capital investment and feedstock cost are among the most influential parameters affecting the PV.

  17. Catalytic cracking of vegetable oil with metal oxides for biofuel production

    International Nuclear Information System (INIS)

    Yigezu, Zerihun Demrew; Muthukumar, Karuppan

    2014-01-01

    Highlights: • Biofuel was synthesized from vegetable oil by catalytic cracking. • Performance of six different metal catalysts was studied. • Influence of temperature and reaction time on the process was evaluated. • Methyl and ethyl esters are the major components of the biofuel synthesized. - Abstract: This study presents the utilization of metal oxides for the biofuel production from vegetable oil. The physical and chemical properties of the diesel-like products obtained, and the influence of reaction variables on the product distribution were investigated. Six different metal oxides (Co 3 O 4 , KOH, MoO 3 , NiO, V 2 O 5 , and ZnO) were employed as catalysts and the results indicated that the metal oxides are suitable for catalyzing the conversion of oil into organic liquid products (OLPs). The maximum conversion (87.6%) was obtained with V 2 O 5 at 320 °C in 40 min whereas a minimum conversion (55.1%) was obtained with MoO 3 at 390 °C in 30 min. The physical characteristics of the product obtained (density, specific gravity, higher heat value, flash point and kinematic viscosity), were in line with ASTM D6751 (B100) standards. The hydrocarbons majorly present in the product were found to be methyl and ethyl esters. Furthermore, OLPs obtained were distilled and separated into four components. The amount of light hydrocarbons, gasoline, kerosene and heavy oil like components obtained were 18.73%, 33.62%, 24.91% and 90.93%, respectively

  18. Consequences of agro-biofuel production for greenhouse gas emissions

    DEFF Research Database (Denmark)

    Carter, Mette Sustmann; Hauggaard-Nielsen, Henrik; Johansen, Anders

    2009-01-01

    Currently CO2 from fossil fuel combustion accounts for 57% of the global greenhouse gas emissions, whereas the strong greenhouse gases nitrous oxide (N2O) and methane (CH4) contribute with 8% and 14%, respectively (IPCC, 2007). Agricultural activity is the dominant source of N2O, which is mainly...... as fertilizer for a maize energy crop within an organic cropping system. Furthermore, we assessed sustainability in terms of greenhouse gasses for co-production of bio-ethanol and bio-gas from maize. This was compared to estimated greenhouse gas balances for rye and grass-clover as alternative raw materials....

  19. Hydrogen production from bio-fuels using precious metal catalysts

    Directory of Open Access Journals (Sweden)

    Pasel Joachim

    2017-01-01

    Full Text Available Fuel cell systems with integrated autothermal reforming unit require active and robust catalysts for H2 production. Thus, an experimental screening of catalysts for autothermal reforming of commercial biodiesel fuel was performed. Catalysts consisted of a monolithic cordierite substrate, an oxide support (γ-Al2O3 and Pt, Ru, Ni, PtRh and PtRu as active phase. Experiments were run by widely varying the O2/C and H2O/C molar ratios at different gas hourly space velocities. Fresh and aged catalysts were characterized by temperature programmed methods and thermogravimetry to find correlations with catalytic activity and stability.

  20. Hydrogen production from bio-fuels using precious metal catalysts

    Science.gov (United States)

    Pasel, Joachim; Wohlrab, Sebastian; Rotov, Mikhail; Löhken, Katrin; Peters, Ralf; Stolten, Detlef

    2017-11-01

    Fuel cell systems with integrated autothermal reforming unit require active and robust catalysts for H2 production. Thus, an experimental screening of catalysts for autothermal reforming of commercial biodiesel fuel was performed. Catalysts consisted of a monolithic cordierite substrate, an oxide support (γ-Al2O3) and Pt, Ru, Ni, PtRh and PtRu as active phase. Experiments were run by widely varying the O2/C and H2O/C molar ratios at different gas hourly space velocities. Fresh and aged catalysts were characterized by temperature programmed methods and thermogravimetry to find correlations with catalytic activity and stability.

  1. Evaluation of filamentous green algae as feedstocks for biofuel production.

    Science.gov (United States)

    Zhang, Wei; Zhao, Yonggang; Cui, Binjie; Wang, Hui; Liu, Tianzhong

    2016-11-01

    Compared with unicellular microalgae, filamentous algae have high resistance to grazer-predation and low-cost recovery in large-scale production. Green algae, as the most diverse group of algae, included numerous filamentous genera and species. In this study, records of filamentous genera and species in green algae were firstly censused and classified. Then, seven filamentous strains subordinated in different genera were cultivated in bubbled-column to investigate their growth rate and energy molecular (lipid and starch) capacity. Four strains including Stigeoclonium sp., Oedogonium nodulosum, Hormidium sp. and Zygnema extenue were screened out due to their robust growth. And they all could accumulate triacylglycerols and starch in their biomass, but with different capacity. After nitrogen starvation, Hormidium sp. and Oedogonium nodulosum respectively exhibited high capacity of lipid (45.38% in dry weight) and starch (46.19% in dry weight) accumulation, which could be of high potential as feedstocks for biodiesel and bioethanol production. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Projections of Biofuel Growth Patterns Reveal the Potential Importance of Nitrogen Fixation for Miscanthus Productivity

    Science.gov (United States)

    Davis, S. C.; Parton, W. J.; Dohleman, F. G.; Gottel, N. R.; Smith, C. M.; Kent, A. D.; Delucia, E. H.

    2008-12-01

    Demand for liquid biofuels is increasing because of the disparity between fuel demand and supply. Relative to grain crops, the more intensive harvest required for second generation liquid biofuel production leads to the removal of significantly more carbon and nitrogen from the soil. These elements are conventionally litter products of crops that are returned to the soil and can accumulate over time. This loss of organic matter represents a management challenge because the energy cost associated with fertilizers or external sources of organic matter reduce the net energy value of the biofuel crops. Plants that have exceptional strategies for exploiting nutrients may be the most viable options for sustainable biofuel yields because of low management and energy cost. Miscanthus x giganteus has high N retranslocation rates, maintains high photosynthetic rates over a large temperature range, exploits a longer-than-average growing season, and yields at least twice the biomass of other candidate biofuel grass crops (i.e. switchgrass). We employed the DAYCENT model to project potential productivity of Miscanthus, corn, switchgrass, and mixed prairie communities based on our current knowledge of these species. Ecosystem process descriptions that have been validated for many crop species did not accurately predict Miscanthus yields and lead to new hypotheses about unknown N cycling mechanisms for this species. We tested the hypothesis that Miscanthus hosts N-fixing bacteria in several ways. First, we used enrichment culture and molecular methods to detect N-fixing bacteria in Miscanthus. Then, we demonstrated the plant-growth promoting effect of diazotrophs isolated from Miscanthus rhizomes on a model grass. And finally, we applied 15N2 to the soil and rooting zone of field grown Miscanthus plants to determine if atmospheric N2 was incorporated into plant tissue, a process that requires N-fixation. These experiments are the first tests of N-fixation in Miscanthus x

  3. An integrated renewable energy park approach for algal biofuel production in United States

    International Nuclear Information System (INIS)

    Subhadra, Bobban; Edwards, Mark

    2010-01-01

    Algal biomass provides viable third generation feedstock for liquid transportation fuel that does not compete with food crops for cropland. However, fossil energy inputs and intensive water usage diminishes the positive aspects of algal energy production. An integrated renewable energy park (IREP) approach is proposed for aligning renewable energy industries in resource-specific regions in United States for synergistic electricity and liquid biofuel production from algal biomass with net zero carbon emissions. The benefits, challenges and policy needs of this approach are discussed.

  4. An integrated renewable energy park approach for algal biofuel production in United States

    Energy Technology Data Exchange (ETDEWEB)

    Subhadra, Bobban [Department of Internal Medicine, School of Medicine, University of New Mexico, Albuquerque, NM 87131 (United States); Edwards, Mark [Marketing and Sustainability, W.P. Carey School of Business, Arizona State University, Tempe, AZ 85282 (United States)

    2010-09-15

    Algal biomass provides viable third generation feedstock for liquid transportation fuel that does not compete with food crops for cropland. However, fossil energy inputs and intensive water usage diminishes the positive aspects of algal energy production. An integrated renewable energy park (IREP) approach is proposed for aligning renewable energy industries in resource-specific regions in United States for synergistic electricity and liquid biofuel production from algal biomass with net zero carbon emissions. The benefits, challenges and policy needs of this approach are discussed. (author)

  5. Dissecting and engineering metabolic and regulatory networks of thermophilic bacteria for biofuel production.

    Science.gov (United States)

    Lin, Lu; Xu, Jian

    2013-11-01

    Interest in thermophilic bacteria as live-cell catalysts in biofuel and biochemical industry has surged in recent years, due to their tolerance of high temperature and wide spectrum of carbon-sources that include cellulose. However their direct employment as microbial cellular factories in the highly demanding industrial conditions has been hindered by uncompetitive biofuel productivity, relatively low tolerance to solvent and osmic stresses, and limitation in genome engineering tools. In this work we review recent advances in dissecting and engineering the metabolic and regulatory networks of thermophilic bacteria for improving the traits of key interest in biofuel industry: cellulose degradation, pentose-hexose co-utilization, and tolerance of thermal, osmotic, and solvent stresses. Moreover, new technologies enabling more efficient genetic engineering of thermophiles were discussed, such as improved electroporation, ultrasound-mediated DNA delivery, as well as thermo-stable plasmids and functional selection systems. Expanded applications of such technological advancements in thermophilic microbes promise to substantiate a synthetic biology perspective, where functional parts, module, chassis, cells and consortia were modularly designed and rationally assembled for the many missions at industry and nature that demand the extraordinary talents of these extremophiles. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. Land Use Change under Biofuel Policies and a Tax on Meat and Dairy Products: Considering Complexity in Agricultural Production Chains Matters

    Directory of Open Access Journals (Sweden)

    Ruth Delzeit

    2018-02-01

    Full Text Available Growing demand for meat and dairy products (MDP, biofuels, and scarcity of agricultural land are drivers of global land use competition. Impacts of policies targeting demand for MDP or biofuels have only been analysed separately. We use the computable general equilibrium model DART-BIO to investigate combined effects, since MDP and biofuel production are closely related via feestock use and co-production of animal feed. We implement four scenarios: (a a baseline scenario; (b halving MDP consumption in industrialised countries by a tax; (c abolishing current biofuel policies; and (d no exogenous land use change. We find that a MDP tax and exogenous land use change have larger effects on land use and food markets than biofuel policies. International trade is affected in all scenarios. With respect to combined effects of a MDP tax and biofuel policies, we find decreasing biodiesel but increasing bioethanol production. In addition, the MDP tax decreases the impact of biofuel policies on agricultural markets and land use. Our results highlight the importance of a detailed representation of different vegetable oils used in biodiesel production and related by-products. Finally, since the MDP tax increases the use of fossil fuels, the net climate mitigation potentials of such a tax should be investigated further.

  7. Techno-economic analysis of biofuel production via bio-oil zeolite upgrading: An evaluation of two catalyst regeneration systems

    OpenAIRE

    Shemfe, Mobolaji; Gu, Sai; Fidalgo, B

    2017-01-01

    Biofuels have been identified as a mid-term greenhouse gas (GHG) emissions abatement solution for decarbonising the transport sector. This study examines the techno-economic analysis of biofuel production via biomass fast pyrolysis and subsequent bio-oil upgrading via zeolite cracking. The aim of this study is to compare the techno-economic feasibility of two conceptual catalyst regeneration configurations for the zeolite cracking process: (i) a two-stage regenerator operating sequentially in...

  8. Engineering cyanobacteria for direct biofuel production from CO2.

    Science.gov (United States)

    Savakis, Philipp; Hellingwerf, Klaas J

    2015-06-01

    For a sustainable future of our society it is essential to close the global carbon cycle. Oxidised forms of carbon, in particular CO2, can be used to synthesise energy-rich organic molecules. Engineered cyanobacteria have attracted attention as catalysts for the direct conversion of CO2 into reduced fuel compounds. Proof of principle for this approach has been provided for a vast range of commodity chemicals, mostly energy carriers, such as short chain and medium chain alcohols. More recently, research has focused on the photosynthetic production of compounds with higher added value, most notably terpenoids. Below we review the recent developments that have improved the state-of-the-art of this approach and speculate on future developments. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Microbial Production of Malic Acid from Biofuel-Related Coproducts and Biomass

    Directory of Open Access Journals (Sweden)

    Thomas P. West

    2017-04-01

    Full Text Available The dicarboxylic acid malic acid synthesized as part of the tricarboxylic acid cycle can be produced in excess by certain microorganisms. Although malic acid is produced industrially to a lesser extent than citric acid, malic acid has industrial applications in foods and pharmaceuticals as an acidulant among other uses. Only recently has the production of this organic acid from coproducts of industrial bioprocessing been investigated. It has been shown that malic acid can be synthesized by microbes from coproducts generated during biofuel production. More specifically, malic acid has been shown to be synthesized by species of the fungus Aspergillus on thin stillage, a coproduct from corn-based ethanol production, and on crude glycerol, a coproduct from biodiesel production. In addition, the fungus Ustilago trichophora has also been shown to produce malic acid from crude glycerol. With respect to bacteria, a strain of the thermophilic actinobacterium Thermobifida fusca has been shown to produce malic acid from cellulose and treated lignocellulosic biomass. An alternate method of producing malic acid is to use agricultural biomass converted to syngas or biooil as a substrate for fungal bioconversion. Production of poly(β-l-malic acid by strains of Aureobasidium pullulans from agricultural biomass has been reported where the polymalic acid is subsequently hydrolyzed to malic acid. This review examines applications of malic acid, metabolic pathways that synthesize malic acid and microbial malic acid production from biofuel-related coproducts, lignocellulosic biomass and poly(β-l-malic acid.

  10. The influence of CO2 mitigation incentives on profitability of eucalyptus production on clay settling areas in Florida

    International Nuclear Information System (INIS)

    Langholtz, Matthew; Carter, Douglas R.; Rockwood, Donald L.; Alavalapati, Janaki R.R.

    2009-01-01

    Fast growing, short-rotation tree crops provide unique opportunities to sequester carbon on phosphate-mined lands in central Florida and, if used as a biofuel, can reduce CO 2 emissions associated with electricity generation. Base case land expectation values (LEVs) of phosphate-mined land under Eucalyptus amplifolia (EA) forestry range from 762 to 6507 $ ha -1 assuming real discount rates of 10% and 4%, respectively. Assuming 5 $ Mg -1 C, these LEVs increase from 3% to 24% with incentives for in situ carbon sequestration benefits, or 21% to 73% given in situ carbon sequestration with additional incentives for reducing CO 2 emissions through the use of EA as an energy feedstock. Potential benefits from below-ground C sequestration and mine land reclamation are estimated to be worth an additional 5642-11,056 $ ha -1 . (author)

  11. Ultrasonic waste activated sludge disintegration for recovering multiple nutrients for biofuel production.

    Science.gov (United States)

    Xie, Guo-Jun; Liu, Bing-Feng; Wang, Qilin; Ding, Jie; Ren, Nan-Qi

    2016-04-15

    Waste activated sludge is a valuable resource containing multiple nutrients, but is currently treated and disposed of as an important source of pollution. In this work, waste activated sludge after ultrasound pretreatment was reused as multiple nutrients for biofuel production. The nutrients trapped in sludge floc were transferred into liquid medium by ultrasonic disintegration during first 30 min, while further increase of pretreatment time only resulted in slight increase of nutrients release. Hydrogen production by Ethanoligenens harbinense B49 from glucose significantly increased with the concentration of ultrasonic sludge, and reached maximum yield of 1.97 mol H2/mol glucose at sludge concentration of 7.75 g volatile suspended solids/l. Without addition of any other chemicals, waste molasses rich in carbohydrate was efficiently turned into hydrogen with yield of 189.34 ml H2/g total sugar by E. harbinense B49 using ultrasonic sludge as nutrients. The results also showed that hydrogen production using pretreated sludge as multiple nutrients was higher than those using standard nutrients. Acetic acid produced by E. harbinense B49 together with the residual nutrients in the liquid medium were further converted into hydrogen (271.36 ml H2/g total sugar) by Rhodopseudomonas faecalis RLD-53 through photo fermentation, while ethanol was the sole end product with yield of 220.26 mg/g total sugar. Thus, pretreated sludge was an efficient nutrients source for biofuel production, which could replace the standard nutrients. This research provided a novel strategy to achieve environmental friendly sludge disposal and simultaneous efficient biofuel recovery from organic waste. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Production of Biofuels from Selected Cellulosic Waste materials

    Directory of Open Access Journals (Sweden)

    Jathwa Abdul Kareem Ibrahim

    2017-08-01

    Full Text Available In this study four types of cellulose-rich municipal solid wastes (residuals of orange, banana peel, corn residues, and saw dust were used as raw materials. These cellulosic substrates usually have a lot of lignin content which prevents the process of saccharification by microorganisms. Thus pretreatment methods of enzymatic, acid or base with enzymatic treatment and dilute acid followed by autoclaving were necessary to dignify these wastes and to obtain higher reducing sugar yields and hence higher ethanol production. Dilute HCl acid of 1% followed by autoclaving at 121℃ for 30 min proved to give good result where significant amounts of reducing sugars were obtained at the end of the saccharification process. Orange peel proved to give the highest glucose concentration of an average of 6000 mg/l on day 4 of the saccharification process. Fermentation was carried out for the hydrolyzed samples using Saccharomyces cerevisiae yeast. The amount of ethanol produced after fermentation was found to be the highest for orange peel having a value of 1300 mg/l after 96h of incubation. As science is proceeding, engineered microorganisms could help to produce sustainable fuels from cellulose-rich municipal solid wastes in the future.

  13. Understanding and engineering enzymes for enhanced biofuel production.

    Energy Technology Data Exchange (ETDEWEB)

    Simmons, Blake Alexander; Volponi, Joanne V.; Sapra, Rajat; Faulon, Jean-Loup Michel; Buffleben, George M.; Roe, Diana C.

    2009-01-01

    Today, carbon-rich fossil fuels, primarily oil, coal and natural gas, provide 85% of the energy consumed in the United States. The release of greenhouse gases from these fuels has spurred research into alternative, non-fossil energy sources. Lignocellulosic biomass is renewable resource that is carbon-neutral, and can provide a raw material for alternative transportation fuels. Plant-derived biomass contains cellulose, which is difficult to convert to monomeric sugars for production of fuels. The development of cost-effective and energy-efficient processes to transform the cellulosic content of biomass into fuels is hampered by significant roadblocks, including the lack of specifically developed energy crops, the difficulty in separating biomass components, the high costs of enzymatic deconstruction of biomass, and the inhibitory effect of fuels and processing byproducts on organisms responsible for producing fuels from biomass monomers. One of the main impediments to more widespread utilization of this important resource is the recalcitrance of cellulosic biomass and techniques that can be utilized to deconstruct cellulosic biomass.

  14. Limits to biofuels

    Directory of Open Access Journals (Sweden)

    Johansson S.

    2013-06-01

    Full Text Available Biofuel production is dependent upon agriculture and forestry systems, and the expectations of future biofuel potential are high. A study of the global food production and biofuel production from edible crops implies that biofuel produced from edible parts of crops lead to a global deficit of food. This is rather well known, which is why there is a strong urge to develop biofuel systems that make use of residues or products from forest to eliminate competition with food production. However, biofuel from agro-residues still depend upon the crop production system, and there are many parameters to deal with in order to investigate the sustainability of biofuel production. There is a theoretical limit to how much biofuel can be achieved globally from agro-residues and this amounts to approximately one third of todays’ use of fossil fuels in the transport sector. In reality this theoretical potential may be eliminated by the energy use in the biomass-conversion technologies and production systems, depending on what type of assessment method is used. By surveying existing studies on biofuel conversion the theoretical limit of biofuels from 2010 years’ agricultural production was found to be either non-existent due to energy consumption in the conversion process, or up to 2–6000TWh (biogas from residues and waste and ethanol from woody biomass in the more optimistic cases.

  15. The Effects of Biofuel Feedstock Production on Farmers’ Livelihoods in Ghana: The Case of Jatropha curcas

    Directory of Open Access Journals (Sweden)

    Emmanuel Acheampong

    2014-07-01

    Full Text Available The widespread acquisition of land for large-scale/commercial production of biofuel crops in Ghana has raised concerns from civil society organizations, local communities and other parties, regarding the impact of these investments on local livelihoods. This paper assessed the effect of large-scale acquisition of land for production of Jatropha curcas on farmers’ livelihoods in Ghana. The study was conducted in 11 communities spanning the major agro-ecological zones and political divisions across Ghana. Methods of data collection included questionnaire survey, interviews and focus group discussions. Results show that several households have lost their land to Jatropha plantations leading, in some cases, to violent conflicts between biofuel investors, traditional authorities and the local communities. Most people reported that, contrary to the belief that Jatropha does well on marginal lands, the lands acquired by the Jatropha Companies were productive lands. Loss of rights over land has affected households’ food production and security, as many households have resorted to reducing the area they have under cultivation, leading to shortening fallow periods and declining crop yields. In addition, although the cultivation of Jatropha led to the creation of jobs in the communities where they were started, such jobs were merely transient. The paper contends that, even though the impact of Jatropha feedstock production on local livelihoods in Ghana is largely negative, the burgeoning industry could be developed in ways that could support local livelihoods.

  16. New Biofuel Alternatives: Integrating Waste Management and Single Cell Oil Production

    Directory of Open Access Journals (Sweden)

    Elia Judith Martínez

    2015-04-01

    Full Text Available Concerns about greenhouse gas emissions have increased research efforts into alternatives in bio-based processes. With regard to transport fuel, bioethanol and biodiesel are still the main biofuels used. It is expected that future production of these biofuels will be based on processes using either non-food competing biomasses, or characterised by low CO2 emissions. Many microorganisms, such as microalgae, yeast, bacteria and fungi, have the ability to accumulate oils under special culture conditions. Microbial oils might become one of the potential feed-stocks for biodiesel production in the near future. The use of these oils is currently under extensive research in order to reduce production costs associated with the fermentation process, which is a crucial factor to increase economic feasibility. An important way to reduce processing costs is the use of wastes as carbon sources. The aim of the present review is to describe the main aspects related to the use of different oleaginous microorganisms for lipid production and their performance when using bio-wastes. The possibilities for combining hydrogen (H2 and lipid production are also explored in an attempt for improving the economic feasibility of the process.

  17. Wastewater treatment by local microalgae strains for CO2 sequestration and biofuel production

    Science.gov (United States)

    Ansari, Abeera A.; Khoja, Asif Hussain; Nawar, Azra; Qayyum, Muneeb; Ali, Ehsan

    2017-11-01

    Currently, the scientific community is keenly working on environmental-friendly processes for the production of clean energy and sustainable development. The study was conducted to cultivate microalgae in raw institutional wastewater for water treatment, enriched production of biomass and CO2 sequestration. The strains which were used in this study are Scenedesmus sp. and Chlorella sp. which were isolated from Kallar Kahar Lake, Pakistan. Both strains were cultivated in synthetic growth medium (Bold's Basal Medium) to enhance biomass production. Afterward, microalgae cultures were inoculated in wastewater sample in mixotrophic mode under ambient conditions. The impurities in wastewater were successfully removed from the original sample by the 7th day of operation. COD 95%, nitrate 99.7% and phosphate 80.5% were removed by applying Scenedesmus sp. Meanwhile, Chlorella sp. reduced 84.86% COD, 98.2% nitrate and 70% phosphate, respectively. Interestingly, sulfates were removed from wastewater completely by both strains. Besides being useful in wastewater remediation, these microalgae strains were subsequently harvested for lipid extraction and potential biofuel production was determined. Therefore, the applied method is an environmentally safe, cost-effective and alternative technology for wastewater treatment. Furthermore, the achieved biomass through this process can be used for the production of biofuels.

  18. Impacts of biofuels production alternatives on water quantity and quality in the Iowa River Basin

    Science.gov (United States)

    Wu, Y.; Liu, S.

    2012-01-01

    Corn stover as well as perennial grasses like switchgrass (Panicum virgatum) and miscanthus are being considered as candidates for the second generation biofuel feedstocks. However, the challenges to biofuel development are its effects on the environment, especially water quality. This study evaluates the long-term impacts of biofuel production alternatives (e.g., elevated corn stover removal rates and the potential land cover change) on an ecosystem with a focus on biomass production, soil erosion, water quantity and quality, and soil nitrate nitrogen concentration at the watershed scale. The Soil and Water Assessment Tool (SWAT) was modified for setting land cover change scenarios and applied to the Iowa River Basin (a tributary of the Upper Mississippi River Basin). Results show that biomass production can be sustained with an increased stover removal rate as long as the crop demand for nutrients is met with appropriate fertilization. Although a drastic increase (4.7–70.6%) in sediment yield due to erosion and a slight decrease (1.2–3.2%) in water yield were estimated with the stover removal rate ranging between 40% and 100%, the nitrate nitrogen load declined about 6–10.1%. In comparison to growing corn, growing either switchgrass or miscanthus can reduce sediment erosion greatly. However, land cover changes from native grass to switchgrass or miscanthus would lead to a decrease in water yield and an increase in nitrate nitrogen load. In contrast to growing switchgrass, growing miscanthus is more productive in generating biomass, but its higher water demand may reduce water availability in the study area.

  19. Imported biofuels

    International Nuclear Information System (INIS)

    Sieurin, J.

    1992-01-01

    No import of biofuels to Sweden for energy production existed before 1991. That year, import of wood chips from Latvia and olive wastes (pits) from the Mediterranean region started, with volumes corresponding to 100 GWh each. This fuels were used in district heating plants, with converted coal boilers. The price was about 120 SEK/MWh (∼ 18 USD/MWh) at the plant. Small amounts of wood pellets were imported from Poland, Canada and Denmark, totalling less than 100 GWh. This fuel was used by small heating centrals and the import was caused by a shortage of swedish pellets. Potentially important export countries, if a large scale biofuel use starts in Sweden, are Russia, the Baltic states, USA, and Canada. Technical possibilities for converting coal-fired boilers to biofuel firing are discussed in a four page section of this paper. (2 refs., 2 tabs.)

  20. Biofuels from Microalgae: Review of Products, Processes and Potential, with Special Focus on Dunaliella sp.

    Energy Technology Data Exchange (ETDEWEB)

    Huesemann, Michael H.; Benemann, John R.

    2009-12-31

    There is currently great interest in using microalgae for the production of biofuels, mainly due to the fact that microalgae can produce biofuels at a much higher productivity than conventional plants and that they can be cultivated using water, in particular seawater, and land not competing for resources with conventional agriculture. However, at present such microalgae-based technologies are not yet developed and the economics of such processes are uncertain. We review power generation by direct combustion, production of hydrogen and other fuel gases and liquids by gasification and pyrolysis, methane generation by anaerobic digestion, ethanol fermentations, and hydrogen production by dark and light-driven metabolism. We in particular discuss the production of lipids, vegetable oils and hydrocarbons, which could be converted to biodiesel. Direct combustion for power generation has two major disadvantages in that the high N-content of algal biomass causes unacceptably high NOx emissions and losses of nitrogen fertilizer. Thus, the use of sun-dried microalgal biomass would not be cost-competitive with other solid fuels such as coal and wood. Thermochemical conversion processes such as gasification and pyrolysis have been successfully demonstrated in the laboratory but will be difficult to scale up commercially and suffers from similar, though sometimes not as stringent, limitations as combustion. Anaerobic digestion of microalgal cells yields only about 0.3 L methane per g volatile solids destroyed, about half of the maximum achievable, but yields can be increased by adding carbon rich substrates to circumvent ammonia toxicity caused by the N-rich algal biomass. Anaerobic digestion would be best suited for the treatment of algal biomass waste after value-added products have been separated. Algae can also be grown to accumulate starches or similar fermentable products, and ethanol or similar (e.g., butanol) fermentations could be applied to such biomass, but research

  1. The economic feasibility of sugar beet biofuel production in central North Dakota

    International Nuclear Information System (INIS)

    Maung, Thein A.; Gustafson, Cole R.

    2011-01-01

    This study examines the financial feasibility of producing ethanol biofuel from sugar beets in central North Dakota. Under the Energy Independence and Security Act (EISA) of 2007, biofuel from sugar beets uniquely qualifies as an 'advanced biofuel'. EISA mandates production of 21 billion gallons of advanced biofuels annually by 2022. A stochastic simulation financial model was calibrated with irrigated sugar beet data from central North Dakota to determine economic feasibility and risks of production for 0.038 hm 3 y -1 (or 10 MGY (Million Gallon per Year) and 0.076 hm 3 y -1 (or 20 MGY) ethanol plants. Study results indicate that feedstock costs, which include sugar beets and beet molasses, account for more than 70 percent of total production expenses. The estimated breakeven ethanol price for the 0.076 hm 3 y -1 plant is $400 m -3 ($1.52 per gallon) and $450 m -3 ($1.71 per gallon) for the 0.038 hm 3 y -1 plant. Breakeven prices for feedstocks are also estimated and show that the 0.076 hm 3 y -1 plant can tolerate greater ethanol and feedstock price risks than the 0.038 hm 3 y -1 plant. Our results also show that one of the most important factors that affect investment success is the price of ethanol. At an ethanol price of $484.21 m -3 ($1.84 per gallon), and assuming other factors remain unchanged, the estimated net present value (NPV) for the 0.076 hm 3 y -1 plant is $41.54 million. By comparison, the estimated NPV for the 0.038 hm 3 y -1 plant is only $8.30 million. Other factors such as changes in prices of co-products and utilities have a relatively minor effect on investment viability. -- Highlights: → Sugar beets and beet molasses costs account for more than 70 percent of total production expenses. → The estimated breakeven ethanol prices for the 0.076 hm 3 y -1 and 0.038 hm 3 y -1 ethanol plants are $400 m -3 and $450 m -3 respectively. → The price of ethanol will be one of the most important factors for determining the future feasibility of a

  2. Sustainability of soil fertility and the use of lignocellulosic crop harvest residues for the production of biofuels: a literature review.

    Science.gov (United States)

    Reijnders, L

    2013-01-01

    Use of lignocellulosic crop harvest residues for liquid or gaseous biofuel production may impact soil quality, long-term soil fertility and the major determinants of the latter, stocks of soil organic carbon and nutrients. When soil organic carbon stocks of mineral cropland soils are to be maintained, there is scope for the removal of lignocellulosic harvest residues in several systems with much reduced tillage or no tillage. The scope for such removal might be increased when suitably treated residues from the conversion of harvest residues into biofuel are returned to cropland soils. For mineral cropland soils under conventional tillage, the scope for the production of liquid biofuels from harvest residues is likely to be less than in the case of no-till systems. When fertility of cropland soils is to be sustainable, nutrients present in suitably treated biofuel production residues have to be returned to these soils. Apparently, the actual return of carbon and nutrients present in residues of biofuel production from crop harvest residues to arable soils currently predominantly concerns the application of digestates of anaerobic digestion. The effects thereof on soil fertility and quality need further clarification. Further clarification about the effects on soil fertility and quality of chars and of co-products of lignocellulosic ethanol production is also needed.

  3. Economic evaluation of technology for a new generation biofuel production using wastes.

    Science.gov (United States)

    Koutinas, Athanasios; Kanellaki, Maria; Bekatorou, Argyro; Kandylis, Panagiotis; Pissaridi, Katerina; Dima, Agapi; Boura, Konstantina; Lappa, Katerina; Tsafrakidou, Panagiota; Stergiou, Panagiota-Yiolanda; Foukis, Athanasios; Gkini, Olga A; Papamichael, Emmanuel M

    2016-01-01

    An economic evaluation of an integrated technology for industrial scale new generation biofuel production using whey, vinasse, and lignocellulosic biomass as raw materials is reported. Anaerobic packed-bed bioreactors were used for organic acids production using initially synthetic media and then wastes. Butyric, lactic and acetic acid were predominately produced from vinasse, whey, and cellulose, respectively. Mass balance was calculated for a 16,000L daily production capacity. Liquid-liquid extraction was applied for recovery of the organic acids using butanol-1 as an effective extraction solvent which serves also as the alcohol for the subsequent enzyme-catalyzed esterification. The investment needed for the installation of the factory was estimated to about 1.7million€ with depreciation excepted at about 3months. For cellulosics, the installation investment was estimated to be about 7-fold higher with depreciation at about 1.5years. The proposed technology is an alternative trend in biofuel production. Copyright © 2015. Published by Elsevier Ltd.

  4. Biofuel production from crude palm oil with supercritical alcohols: comparative LCA studies.

    Science.gov (United States)

    Sawangkeaw, Ruengwit; Teeravitud, Sunsanee; Piumsomboon, Pornpote; Ngamprasertsith, Somkiat

    2012-09-01

    A recent life cycle assessment (LCA) reported that biodiesel production in supercritical alcohols (SCA) produces a higher environmental load than the homogeneous catalytic process because an enormous amount of energy is required to recover excess alcohol. However, the excess alcohol could be dramatically reduced by increasing the operating temperature to 400°C; although the product would have to be considered as an alternative biofuel instead of biodiesel. A comparative LCA of the biodiesel production in two SCA at 300°C (C-SCA) and novel biofuel production in the same two SCA at 400°C (N-SCA) is presented. It was clear that the N-SCA process produces a dramatically reduced environmental load over that of the C-SCA process due to a lower amount of excess alcohol being used. The N-SCA process could be improved in terms of its environmental impact by changing from fossil fuel to biomass-based fuels for the steam generation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. The Role of Small-Scale Biofuel Production in Brazil: Lessons for Developing Countries

    Directory of Open Access Journals (Sweden)

    Arielle Muniz Kubota

    2017-07-01

    Full Text Available Small-scale biofuel initiatives to produce sugarcane ethanol are claimed to be a sustainable opportunity for ethanol supply, particularly for regions with price-restricted or no access to modern biofuels, such as communities located far from the large ethanol production centers in Brazil and family-farm communities in Sub-Saharan Africa, respectively. However, smallholders often struggle to achieve economic sustainability with ethanol microdistilleries. The aim of this paper is to provide an assessment of the challenges faced by small-scale bioenergy initiatives and discuss the conditions that would potentially make these initiatives economically feasible. Ethanol microdistilleries were assessed through a critical discussion of existent models and through an economic analysis of different sugarcane ethanol production models. The technical-economic analysis showed that the lack of competitiveness against large-scale ethanol distillery, largely due to both low crop productivity and process efficiency, makes it unlikely that small-scale distilleries can compete in the national/international ethanol market without governmental policies and subsidies. Nevertheless, small-scale projects intended for local supply and integrated food–fuel systems seem to be an interesting alternative that can potentially make ethanol production in small farms viable as well as increase food security and project sustainability particularly for local communities in developing countries.

  6. Isolation and Fatty Acid Profile of Selected Microalgae Strains from the Red Sea for Biofuel Production

    Directory of Open Access Journals (Sweden)

    Khalid M. Abu-Salah

    2013-05-01

    Full Text Available The isolation of lipid-rich autochthonous strains of microalgae is a crucial stage for the development of a microalgae-based biofuel production plant, as these microalgae already have the necessary adaptations to withstand competition, predation and the temperatures observed at each production site. This is particularly important in extreme climates such as in Saudi Arabia. Resorting to fluorescence activated cell sorting (FACS we screened for and isolated several microalgal strains from samples collected from the Red Sea. Relying on the fluorescence of BODIPY 505/515 (4,4-difluoro-1,3,5,7-tetramethyl-4-bora-3a,4a-diazasindacene and growth performance, four promising candidates were identified and the total lipid content and fatty acid profile was assessed for biofuels production. Selected isolates were classified as chlorophytes, belonging to three different genera: Picochlorum, Nannochloris and Desmochloris. The lipid contents were assessed microscopically by means of BODIPY 505/515-associated fluorescence to detect intracellular lipid bodies, which revealed several lipid drops in all selected strains. This result was confirmed by lipid gravimetric determination, which demonstrated that all strains under study presented inner cell lipid contents ranging from 20% to 25% of the biomass dry weight. Furthermore, the fatty acid methyl esters profile of all strains seems ideal for biodiesel production due to a low degree of polyunsaturated fatty acid methyl esters and high amount of palmitic and oleic acids.

  7. Oil production towards biofuel from autotrophic microalgae semicontinuous cultivations monitorized by flow cytometry.

    Science.gov (United States)

    da Silva, Teresa Lopes; Reis, Alberto; Medeiros, Roberto; Oliveira, Ana Cristina; Gouveia, Luisa

    2009-11-01

    Two microalgae species (Scenedesmus obliquus and Neochloris oleoabundans) were cultivated in closed sleeve photobioreactors in order to select the best oil producer for further large-scale open raceway pond cultivations, aiming at biofuel production. Scenedesmus obliquus reached a higher maximum biomass concentration (1.41 g l(-1)) with a lower lipid content (12.8% w/w), as compared to N. oleoabundans [maximum biomass concentration of 0.92 g l(-1) with 16.5% (w/w) lipid content]. Both microalgae showed adequate fatty acid composition and iodine values as substitutes for diesel fuel. Based on these results, N. oleoabundans was selected for further open raceway pond cultivations. Under these conditions, N. oleoabundans reached a maximum biomass concentration of 2.8 g l(-1) with 11% (w/w) of lipid content. A high correlation between the Nile Red fluorescence intensity measured by flow cytometry and total lipid content assayed by the traditional gravimetric lipid analysis was found for both microalgae, making this method a suitable and quick technique for the screening of microalgae strains for lipid production and optimization of biofuel production bioprocesses. Medium growth optimization for enhancement of microalgal oil production is now in progress.

  8. Characterization of a microalgal mutant for CO2 biofixation and biofuel production

    International Nuclear Information System (INIS)

    Qi, Feng; Pei, Haiyan; Hu, Wenrong; Mu, Ruimin; Zhang, Shuo

    2016-01-01

    Highlights: • Combination of the isolation using 96-well microplates and traditional UV mutagenesis for screening HCT mutant. • Microalgal mutant Chlorella vulgaris SDEC-3M was screened out by modified UV mutagenesis. • SDEC-3M showed high CO 2 tolerance, high CO 2 requiring and relevant genetic stability. • LCE and carbohydrate content of SDEC-3M were significantly elevated. • SDEC-3M offers a strong candidature as CO 2 biofixation and biofuel production. - Abstract: In the present work, a Chlorella vulgaris mutant, named as SDEC-3M, was screened out through the combination of the isolation using 96-well microplates and traditional UV mutagenesis. Compared with its parent (wild type), the growth of SDEC-3M preferred higher CO 2 (15% v/v) environment to ambient air (0.038% CO 2 (v/v)), indicating that the mutant qualified with good tolerance and growth potential under high level CO 2 (high CO 2 tolerance) but was defective in directly utilizing the low level CO 2 (high CO 2 requiring). The genetic stability under ambient air and high level CO 2 was confirmed by a continuous cultivation for five generations. Higher light conversion efficiency (14.52%) and richer total carbohydrate content (42.48%) demonstrated that both solar energy and CO 2 were more effectively productively fixed into carbohydrates for bioethanol production than the parent strain. The mutant would benefit CO 2 biofixation from industrial exhaust gas to mitigate of global warming and promote biofuel production to relieve energy shortage.

  9. Trace Gas Emissions From the Production and Use of Biofuels in the African Tropics

    Science.gov (United States)

    Bertschi, I.; Yokelson, R. J.; Ward, D. E.; Christian, T. J.; Hao, W. M.

    2001-12-01

    Biomass burning is an important source of many atmospheric trace gases and particles that play a significant role in regional-global, tropospheric and stratospheric chemical processes, and in the global climate. About 80% of biomass burning is thought to occur in the tropics in association with traditional land management practices and domestic biofuel use. More than 220 Tg (1 Tg = 1 x 1012 g) of fuel-wood and 11 Tg of charcoal are consumed annually for domestic heating and cooking in tropical Africa alone. Approximately 90% of the fuel-wood is consumed in open fires in rural areas. Previously, the emissions for fuel-wood fires and charcoal use and production in the tropics were known for only a limited number of chemical species. During SAFARI-2000 we conducted field experiments in remote Zambian villages and observed most of the major trace gases emitted from the production and use of biofuels using open-path Fourier transform infrared (OP-FTIR) spectroscopy, which provides an artifact-free overview of the trace gases present above several ppbv. Our OP-FTIR was deployed for several spot measurements over the course of an earthen kiln charcoal-making process and of several open wood and charcoal fires, all of which were built and tended by local inhabitants. We quantified the emissions of carbon dioxide (CO2), carbon monoxide (CO), methane (CH4), nitrogen oxides (NOx), ammonia (NH3), non-methane hydrocarbons (NMHC), and oxygenated volatile organic compounds (OVOC). Our results also show much higher emission factors for methanol (CH3OH), acetic acid (CH3COOH), and formaldehyde (CH2O) from domestic biofuel production and use than from savanna fires in southern Africa. Thus, these year-round OVOC emissions will play an important role in the photochemistry of the troposphere and in the acidity of aerosols and precipitation especially in tropical regions.

  10. First or second generation biofuel crops in Brandenburg, Germany? A model-based comparison of their production-ecological sustainability

    NARCIS (Netherlands)

    Vries, de S.C.; Ven, van de G.W.J.; Ittersum, van M.K.

    2014-01-01

    We assessed and compared the production-ecological sustainability of first and second generation biofuel production systems in the state of Brandenburg, Germany. Production ecological sustainability was defined by a limited set of sustainability indicators including net energy yield per hectare, GHG

  11. Projecting future grassland productivity to assess thesustainability of potential biofuel feedstock areas in theGreater Platte River Basin

    Science.gov (United States)

    Gu, Yingxin; Wylie, Bruce K.; Boyte, Stephen; Phuyal, Khem P.

    2014-01-01

    This study projects future (e.g., 2050 and 2099) grassland productivities in the Greater Platte River Basin (GPRB) using ecosystem performance (EP, a surrogate for measuring ecosystem productivity) models and future climate projections. The EP models developed from a previous study were based on the satellite vegetation index, site geophysical and biophysical features, and weather and climate drivers. The future climate data used in this study were derived from the National Center for Atmospheric Research Community Climate System Model 3.0 ‘SRES A1B’ (a ‘middle’ emissions path). The main objective of this study is to assess the future sustainability of the potential biofuel feedstock areas identified in a previous study. Results show that the potential biofuel feedstock areas (the more mesic eastern part of the GPRB) will remain productive (i.e., aboveground grassland biomass productivity >2750 kg ha−1 year−1) with a slight increasing trend in the future. The spatially averaged EPs for these areas are 3519, 3432, 3557, 3605, 3752, and 3583 kg ha−1 year−1 for current site potential (2000–2008 average), 2020, 2030, 2040, 2050, and 2099, respectively. Therefore, the identified potential biofuel feedstock areas will likely continue to be sustainable for future biofuel development. On the other hand, grasslands identified as having no biofuel potential in the drier western part of the GPRB would be expected to stay unproductive in the future (spatially averaged EPs are 1822, 1691, 1896, 2306, 1994, and 2169 kg ha−1 year−1 for site potential, 2020, 2030, 2040, 2050, and 2099). These areas should continue to be unsuitable for biofuel feedstock development in the future. These future grassland productivity estimation maps can help land managers to understand and adapt to the expected changes in future EP in the GPRB and to assess the future sustainability and feasibility of potential biofuel feedstock areas.

  12. Catalytic processes towards the production of biofuels in a palm oil and oil palm biomass-based biorefinery.

    Science.gov (United States)

    Chew, Thiam Leng; Bhatia, Subhash

    2008-11-01

    In Malaysia, there has been interest in the utilization of palm oil and oil palm biomass for the production of environmental friendly biofuels. A biorefinery based on palm oil and oil palm biomass for the production of biofuels has been proposed. The catalytic technology plays major role in the different processing stages in a biorefinery for the production of liquid as well as gaseous biofuels. There are number of challenges to find suitable catalytic technology to be used in a typical biorefinery. These challenges include (1) economic barriers, (2) catalysts that facilitate highly selective conversion of substrate to desired products and (3) the issues related to design, operation and control of catalytic reactor. Therefore, the catalytic technology is one of the critical factors that control the successful operation of biorefinery. There are number of catalytic processes in a biorefinery which convert the renewable feedstocks into the desired biofuels. These include biodiesel production from palm oil, catalytic cracking of palm oil for the production of biofuels, the production of hydrogen as well as syngas from biomass gasification, Fischer-Tropsch synthesis (FTS) for the conversion of syngas into liquid fuels and upgrading of liquid/gas fuels obtained from liquefaction/pyrolysis of biomass. The selection of catalysts for these processes is essential in determining the product distribution (olefins, paraffins and oxygenated products). The integration of catalytic technology with compatible separation processes is a key challenge for biorefinery operation from the economic point of view. This paper focuses on different types of catalysts and their role in the catalytic processes for the production of biofuels in a typical palm oil and oil palm biomass-based biorefinery.

  13. An Assessment of Thailand’s Biofuel Development

    Directory of Open Access Journals (Sweden)

    Pujan Shrestha

    2013-04-01

    Full Text Available The paper provides an assessment of first generation biofuel (ethanol and biodiesel development in Thailand in terms of feedstock used, production trends, planned targets and policies and discusses the biofuel sustainability issues—environmental, socio-economic and food security aspects. The policies, measures and incentives for the development of biofuel include targets, blending mandates and favorable tax schemes to encourage production and consumption of biofuels. Biofuel development improves energy security, rural income and reduces greenhouse gas (GHG emissions, but issues related to land and water use and food security are important considerations to be addressed for its large scale application. Second generation biofuels derived from agricultural residues perform favorably on environmental and social sustainability issues in comparison to first generation biofuel sources. The authors estimate that sustainably-derived agricultural crop residues alone could amount to 10.4 × 106 bone dry tonnes per year. This has the technical potential of producing 1.14–3.12 billion liters per year of ethanol to possibly displace between 25%–69% of Thailand’s 2011 gasoline consumption as transportation fuel. Alternatively, the same amount of residue could provide 0.8–2.1 billion liters per year of diesel (biomass to Fischer-Tropsch diesel to potentially offset 6%–15% of national diesel consumption in the transportation sector.

  14. Life Cycle Assessment of Biogas/Biofuel Production from Organic Waste

    OpenAIRE

    Seldal, Tiril Jeanette

    2014-01-01

    The focus on energy production is important today and will be of even bigger importance in the future. With an increase in the world s population and at the same time a more energy demanding one the energy issue is and will be one aspect that will involve all of us. The demand and environmental impacts will require that an increasing share of the energy will be renewable. Waste systems has therefore become of bigger interests in the resent years.This thesis has looked at biogas/biofuel produc...

  15. Biofuels from E. Coli: Engineering E. coli as an Electrofuels Chassis for Isooctane Production

    Energy Technology Data Exchange (ETDEWEB)

    None

    2010-07-16

    Electrofuels Project: Ginkgo Bioworks is bypassing photosynthesis and engineering E. coli to directly use carbon dioxide (CO2) to produce biofuels. E. coli doesn’t naturally metabolize CO2, but Ginkgo Bioworks is manipulating and incorporating the genes responsible for CO2 metabolism into the microorganism. By genetically modifying E. coli, Ginkgo Bioworks will enhance its rate of CO2 consumption and liquid fuel production. Ginkgo Bioworks is delivering CO2 to E. coli as formic acid, a simple industrial chemical that provides energy and CO2 to the bacterial system.

  16. Versatile microbial surface-display for environmental remediation and biofuels production

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Cindy H.; Mulchandani, Ashok; Chen, wilfred

    2008-02-14

    Surface display is a powerful technique that utilizes natural microbial functional components to express proteins or peptides on the cell exterior. Since the reporting of the first surface-display system in the mid-1980s, a variety of new systems have been reported for yeast, Gram-positive and Gram-negative bacteria. Non-conventional display methods are emerging, eliminating the generation of genetically modified microorganisms. Cells with surface display are used as biocatalysts, biosorbents and biostimulants. Microbial cell-surface display has proven to be extremely important for numerous applications ranging from combinatorial library screening and protein engineering to bioremediation and biofuels production.

  17. Microalgal carbohydrates. An overview of the factors influencing carbohydrates production, and of main bioconversion technologies for production of biofuels

    Energy Technology Data Exchange (ETDEWEB)

    Markou, Giorgos; Georgakakis, Dimitris [Agricultural Univ. of Athens (Greece). Dept. of Natural Resources Management and Agricultural Engineering; Angelidaki, Irini [Technical Univ. of Denmark, Lyngby (Denmark). Dept. of Environmental Engineering

    2012-11-15

    Microalgal biomass seems to be a promising feedstock for biofuel generation. Microalgae have relative high photosynthetic efficiencies, high growth rates, and some species can thrive in brackish water or seawater and wastewater from the food- and agro-industrial sector. Today, the main interest in research is the cultivation of microalgae for lipids production to generate biodiesel. However, there are several other biological or thermochemical conversion technologies, in which microalgal biomass could be used as substrate. However, the high protein content or the low carbohydrate content of the majority of the microalgal species might be a constraint for their possible use in these technologies. Moreover, in the majority of biomass conversion technologies, carbohydrates are the main substrate for production of biofuels. Nevertheless, microalgae biomass composition could be manipulated by several cultivation techniques, such as nutrient starvation or other stressed environmental conditions, which cause the microalgae to accumulate carbohydrates. This paper attempts to give a general overview of techniques that can be used for increasing the microalgal biomass carbohydrate content. In addition, biomass conversion technologies, related to the conversion of carbohydrates into biofuels are discussed. (orig.)

  18. Biofuels, poverty, and growth

    DEFF Research Database (Denmark)

    Arndt, Channing; Benfica, Rui; Tarp, Finn

    2010-01-01

    Mozambique's annual economic growth by 0.6 percentage points and reduces the incidence of poverty by about 6 percentage points over a 12-year phase-in period. Benefits depend on production technology. An outgrower approach to producing biofuels is more pro-poor, due to the greater use of unskilled labor......This paper assesses the implications of large-scale investments in biofuels for growth and income distribution. We find that biofuels investment enhances growth and poverty reduction despite some displacement of food crops by biofuels. Overall, the biofuel investment trajectory analyzed increases...

  19. Governmental tax breaks to biofuels production; Incentivos governamentais na producao do biodiesel

    Energy Technology Data Exchange (ETDEWEB)

    Munch, Marcelo Guimaraes; Costa, Fabio Carbalho [Petroleo Brasileiro S.A. (PETROBRAS), Rio de Janeiro, RJ (Brazil)

    2012-07-01

    Given the introduction of biodiesel as an energy source ecologically correct, it will seek to do an analysis on the taxation of biodiesel in Brazil. It should also be assessed to tax biodiesel from the viewpoint of the Principle of Neutrality and the character stimulating function of taxation. Although there is no legal incidence of the CIDE (Contribution in Economic Policy) on biodiesel, the laws relating to taxation of biodiesel refers to the IPI (Tax on Industrialized Products) and social contributions for PIS (Social Integration Program) and Cofins (Contribution to Social Security Financing), while taxes of competence of the Union. When we talk about state taxation, some states have maintained the policy of tax incentives biodiesel but we do not have a policy of tax incentives across the country. (author)

  20. Effects of Escherichia coli on mixotrophic growth of Chlorella minutissima and production of biofuel precursors.

    Directory of Open Access Journals (Sweden)

    Brendan T Higgins

    Full Text Available Chlorella minutissima was co-cultured with Escherichia coli in airlift reactors under mixotrophic conditions (glucose, glycerol, and acetate substrates to determine possible effects of bacterial contamination on algal biofuel production. It was hypothesized that E. coli would compete with C. minutissima for nutrients, displacing algal biomass. However, C. minutissima grew more rapidly and to higher densities in the presence of E. coli, suggesting a symbiotic relationship between the organisms. At an initial 1% substrate concentration, the co-culture produced 200-587% more algal biomass than the axenic C. minutissima cultures. Co-cultures grown on 1% substrate consumed 23-737% more of the available carbon substrate than the sum of substrate consumed by E. coli and C. minutissima alone. At 1% substrate, total lipid and starch productivity were elevated in co-cultures compared to axenic cultures indicating that bacterial contamination was not detrimental to the production of biofuel precursors in this specific case. Bio-fouling of the reactors observed in co-cultures and acid formation in all mixotrophic cultures, however, could present challenges for scale-up.

  1. From flavors and pharmaceuticals to advanced biofuels: production of isoprenoids in Saccharomyces cerevisiae.

    Science.gov (United States)

    Tippmann, Stefan; Chen, Yun; Siewers, Verena; Nielsen, Jens

    2013-12-01

    Isoprenoids denote the largest group of chemicals in the plant kingdom and are employed for a wide range of applications in the food and pharmaceutical industry. In recent years, isoprenoids have additionally been recognized as suitable replacements for petroleum-derived fuels and could thus promote the transition towards a more sustainable society. To realize the biofuel potential of isoprenoids, a very efficient production system is required. While complex chemical structures as well as the low abundance in nature demonstrate the shortcomings of chemical synthesis and plant extraction, isoprenoids can be produced by genetically engineered microorganisms from renewable carbon sources. In this article, we summarize the development of isoprenoid applications from flavors and pharmaceuticals to advanced biofuels and review the strategies to design microbial cell factories, focusing on Saccharomyces cerevisiae for the production of these compounds. While the high complexity of biosynthetic pathways and the toxicity of certain isoprenoids still denote challenges that need to be addressed, metabolic engineering has enabled large-scale production of several terpenoids and thus, the utilization of these compounds is likely to expand in the future. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Production of liquid biofuels (biodiesel and bioethanol) from brown marine macroalgae Padina tetrastromatica

    International Nuclear Information System (INIS)

    Ashokkumar, Veeramuthu; Salim, Mohd Razman; Salam, Zainal; Sivakumar, Pandian; Chong, Cheng Tung; Elumalai, Sanniyasi; Suresh, Veeraperumal; Ani, Farid Nasir

    2017-01-01

    Highlights: • Integrated concept of biofuels production from brown macroalgae P. tetrastromatica. • The activation energy was determined as Ea = 34.314 kJ mol −1 . • Brown marine alga produced 7.8% of biodiesel by acid and alkali transesterification. • The fuel properties of Padina biodiesel meet the ASTM specifications. • Spent biomass of Padina yields 16.1% of bioethanol after fermentation process. - Abstract: In this study, an integrated biomass conversion concept of producing liquid biofuels from brown marine macroalga Padina tetrastromatica was investigated. The algal biomass was collected from the Mandapam coastal region and processed under laboratory. Various parameters were studied to extract crude lipids from the biomass. A kinetic study was conducted for extracting the lipids from the biomass, which follows the first order kinetics and the lipid yield was 8.15 wt.%. The activation energy; Ea = 34.314 kJ mol −1 and their thermodynamic parameters were determined. Since the crude algal lipids contain high amount of free fatty acids, a sequential transesterification technique was examined and 7.8% of biodiesel (78 mg/g algal biomass) yield was obtained. The biodiesel was analyzed by 1 H and 13 C–NMR spectroscopy and the conversion yield was estimated. Further, the biodiesel fuel properties were investigated and found that all the features fit the required ASTM D6751 specification limits. The residual biomass after lipid extraction was further explored for bioethanol production through the anaerobic fermentation process. The ethanol yield obtained after saccharification and fermentation were estimated and 161 mg/g residue biomass was reported. The theoretical yield of conversion of hydrolysate to bioethanol was estimated and found to be 83.4%. Therefore, this study demonstrates that macroalga P. tetrastromatica biomass has great potential to produce liquid biofuels such as biodiesel and bioethanol.

  3. Maximizing biofuel production in a thermochemical biorefinery by adding electrolytic hydrogen and by integrating torrefaction with entrained flow gasification

    OpenAIRE

    Clausen, Lasse Røngaard

    2015-01-01

    In a "conventional" thermochemical biorefinery, carbon is emitted from the plant in the form of CO2 to make the synthesis gas from the gasifier suitable for fuel production. The alternative to this carbon removal is to add hydrogen to the plant. By adding hydrogen, it is possible to more than double the biofuel production per biomass input by converting almost all of the carbon in the biomass feed to carbon stored in the biofuel product. Water or steam electrolysis can supply the hydrogen to ...

  4. Bio-fuel co-products in France: perspectives and consequences for cattle food; Coproduits des biocarburants en France: perspectives et consequences en alimentation animale

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    The development of bio-fuels goes along with that of co-products which can be used to feed animals. After having recalled the political context which promotes the development of renewable energies, this document aims at giving an overview of the impact of bio-fuel co-products on agriculture economy. It discusses the production and price evolution for different crops

  5. Potential Avenues for Significant Biofuels Penetration in the U.S. Aviation Market

    Energy Technology Data Exchange (ETDEWEB)

    Newes, Emily [National Renewable Energy Lab. (NREL), Golden, CO (United States); Han, Jeongwoo [Argonne National Lab. (ANL), Argonne, IL (United States); Peterson, Steve [Lexidyne LLC, Colorado Springs, CO (United States)

    2017-04-01

    Industry associations have set goals to reduce greenhouse gas (GHG) emissions and increase fuel efficiency. One focal area for reducing GHG emissions is in the use of aviation biofuel. This study examines assumptions under which the United States could see large production in aviation biofuel. Our results suggest that a high penetration (6 billion gallons) of aviation biofuels by 2030 could be possible, but factors around policy design (in the absence of high oil prices) contribute to the timing and magnitude of aviation biofuels production: 1) Incentives targeted towards jet fuel production such as financial incentives (e.g., producer tax credit, carbon tax) can be sufficient; 2) Investment in pre-commercial cellulosic technologies is needed to reduce the cost of production through learning-by-doing; 3) Reduction of investment risk through loan guarantees may allow production to ramp up more quickly through accelerating industry learning. In cases with high levels of incentives and investment in aviation biofuels, there could be a 25 percent reduction in overall GHG emissions from the aviation sector.

  6. Unlocking the potential of established products: toward new incentives rewarding innovation in Europe

    Science.gov (United States)

    Nayroles, Gabrielle; Frybourg, Sandrine; Gabriel, Sylvie; Kornfeld, Åsa; Antoñanzas-Villar, Fernando; Espín, Jaime; Jommi, Claudio; Martini, Nello; de Pouvourville, Gérard; Tolley, Keith; Wasem, Jürgen; Toumi, Mondher

    2017-01-01

    ABSTRACT Background: Many established products (EPs – marketed for eight years or more) are widely used off-label despite little evidence on benefit–risk ratio. This exposes patients to risks related to safety and lack of efficacy, and healthcare providers to liability. Introducing new indications for EPs may represent a high societal value; however, manufacturers rarely invest in R&D for EPs. The objective of this research was to describe incentives and disincentives for developing new indications for EPs in Europe and to investigate consequences of current policies. Methods: Targeted literature search and expert panel meetings. Results: Within the current European-level and national-level regulatory framework there are limited incentives for development of new indications with EPs. Extension of indication normally does not allow the price to be increased or maintained, the market protection period to be extended, or exclusion from a reference price system. New indication frequently triggers re-evaluation, resulting in price erosion, regardless of the level of added value with the new indication. In consequence, manufacturers are more prone to undertake R&D efforts at early to mid-stage of product life cycle rather than with EPs, or to invest in new chemical entities, even in therapeutic areas with broad off-label use. This represents a potentially missed opportunity as developing new indications for EPs offers an alternative to off-label use or lengthy and expensive R&D for new therapies, opens new opportunities for potentially cost-effective treatment alternatives, as well as greater equity in patients’ access to treatment options. Conclusion: There are potential benefits from the development of new indications for EPs that are currently not being realized due to a lack of regulatory and pricing incentives in Europe. Incentives for orphan or paediatric drugs have proven to be effective in promoting R&D. Similarly, incentives to promote R&D in EPs should

  7. Raffinate waste as a nitrogen replacement to increase the sustainable use of marine microalgae for biofuel production

    Science.gov (United States)

    Swink, C.; Palenik, B.

    2016-02-01

    High lipid content and the ability to be grown on areal non-agricultural land make microalgae one of the few viable candidates for long-term sustainable biofuel production. However, many challenges arise when attempting to scale-up production of algae biofuels at a successful industrial level. A series of growth experiments and toxicity tests were conducted to test the adaptability of 10 different strains of microalgae to grow in cultures containing two types of "raffinate" waste product as a nitrogen replacement. The results of these tests revealed that all strains of microalgae could successfully grow in cultures containing raffinate produced by means of hydrothermal liquefaction, even in bag culture, but not in cultures containing raffinate produced by a lipid trap extraction method. The application of these results is a method of reducing the costs of producing biofuel from marine and freshwater microalgae by creating a more self-sustaining recycling of nutrients from high temperature liquefaction waste.

  8. Optimization of Biofuel and Biochar Production from the Slow Pyrolysis of Biomass

    Science.gov (United States)

    Fang, J.; Gao, B.; Nsf Reu in Water Resources

    2010-12-01

    Slow pyrolysis was performed on biomass samples (i.e., energy cane and air potato) to determine the most energy efficient conditions for producing biofuel and biochar. The potential of air potato as a source of fuel and char was also investigated. Dry biomass samples of 10, 15 and 20 g were heated in a reactor at a final temperatures of 300, 450, or 600 °C, and the minimum amount of time required to complete pyrolysis was recorded. Maximum biochar yield was obtained at 300°C for both energy cane and air potato at all masses, and maximum bio-oil yield was obtained at 450°C for all samples. Pyrolysis required the least amount of time at 450°C. Bio-oil yields for air potato were slightly lower than that of energy cane, while biochar yield was slightly higher. Since air potato showed similar product yields to energy cane, this indicates it has potential to be a good feedstock for biofuel and biochar productions.

  9. Combining micro-structures and micro-algae to increase lipid production for bio-fuel

    Science.gov (United States)

    Vyawahare, Saurabh; Zhu, Emilly; Mestler, Troy; Estévez-Torres, André.; Austin, Robert

    2011-03-01

    3rd generation bio-fuels like lipid producing micro-algae are a promising source of energy that could replace our dependence on petroleum. However, until there are improvements in algae oil yields, and a reduction in the energy needed for processing, algae bio-fuels are not economically competitive with petroleum. Here, we describe our work combining micro-fabricated devices with micro-algae Neochloris oleoabundans, a species first isolated on the sand dunes of Saudi Arabia. Inserting micro-algae of varying fitness into a landscape of micro-habitats allows us to evolve and select them based on a variety of conditions like specific gravity, starvation response and Nile Red fluorescence (which is a marker for lipid production). Hence, we can both estimate the production of lipids and generate conditions that allow the creation and isolation of algae which produce higher amounts of lipids, while discarding the rest. Finally, we can use micro-fabricated structures and flocculation to de-water these high lipid producing algae, reducing the need for expensive centrifugation and filtration.

  10. Comparative genomics of xylose-fermenting fungi for enhanced biofuel production

    Energy Technology Data Exchange (ETDEWEB)

    Wohlbach, Dana J.; Kuo, Alan; Sato, Trey K.; Potts, Katlyn M.; Salamov, Asaf A.; LaButti, Kurt M.; Sun, Hui; Clum, Alicia; Pangilinan, Jasmyn L.; Lindquist, Erika A.; Lucas, Susan; Lapidus, Alla; Jin, Mingjie; Gunawan, Christa; Balan, Venkatesh; Dale, Bruce E.; Jeffries, Thomas W.; Zinkel, Robert; Barry, Kerrie W.; Grigoriev, Igor V.; Gasch, Audrey P.

    2011-02-24

    Cellulosic biomass is an abundant and underused substrate for biofuel production. The inability of many microbes to metabolize the pentose sugars abundant within hemicellulose creates specific challenges for microbial biofuel production from cellulosic material. Although engineered strains of Saccharomyces cerevisiae can use the pentose xylose, the fermentative capacity pales in comparison with glucose, limiting the economic feasibility of industrial fermentations. To better understand xylose utilization for subsequent microbial engineering, we sequenced the genomes of two xylose-fermenting, beetle-associated fungi, Spathaspora passalidarum and Candida tenuis. To identify genes involved in xylose metabolism, we applied a comparative genomic approach across 14 Ascomycete genomes, mapping phenotypes and genotypes onto the fungal phylogeny, and measured genomic expression across five Hemiascomycete species with different xylose-consumption phenotypes. This approach implicated many genes and processes involved in xylose assimilation. Several of these genes significantly improved xylose utilization when engineered into S. cerevisiae, demonstrating the power of comparative methods in rapidly identifying genes for biomass conversion while reflecting on fungal ecology.

  11. BIOFUEL PRODUCTION FROM PALM OLEIN BY CATALYTIC CRACKING PROCESS USING ZSM-5 CATALYST

    Directory of Open Access Journals (Sweden)

    Rondang Tambun

    2017-06-01

    Full Text Available The depletion of fossil energy reserves raises the potential in the development of renewable fuels from vegetable oils. Indonesia is the largest palm oil producer in the world, where palm oil can be converted into biofuels such as biogasoline, kerosene and biodiesel. These biofuels are environmentally friendly and free of the content of nitrogen and sulfur through catalytic cracking process. In this research, palm olein is used as feedstock using catalytic cracking process. ZSM-5 is used as a catalyst, which has a surface area of 425 m2/g and Si/Al ratio of 50. Variables varied are the operating temperature of 375 oC - 450 °C and reaction time of 60 minutes - 150 minutes. The result shows that the highest yield of liquid product is 84.82%. This yield is obtained at a temperature of 400 °C and reaction time of 120 minutes. The yield of the liquid product in the operating conditions consisting of C6-C12 amounted to 19.47 %, C14-C16 amounted to 16.56 % and the C18-C28 amounted to 48.80 %.

  12. The effect of liquid biofuel production on Finnish CO2 balance

    International Nuclear Information System (INIS)

    Gust, S.

    1993-01-01

    Production of liquid biofuels utilizing wood from either forestry residues or in the future, from energy farms, and converted into methanol or pyrolysis oil have the potential to reduce Finland's net CO 2 emissions by 5-10 % from existing levels for wood volumes from 3.5-7.0 Mt/a. The reduction of national CO 2 emissions by ethanol produced from barley or rapeseed oil methyl esters from rapeseed will be limited to under 1.0 %. This is due to: Greater CO 2 emissions from biomass production of barley and rapeseed than from wood; greater CO 2 emissions from conversion of barley into ethanol and biomass volume limitations due to either lack of suitable land and/or domestic market limits of animal feed co-products

  13. Engineering yeast metabolism for production of terpenoids for use as perfume ingredients, pharmaceuticals and biofuels.

    Science.gov (United States)

    Zhang, Yueping; Nielsen, Jens; Liu, Zihe

    2017-12-01

    Terpenoids represent a large class of natural products with significant commercial applications. These chemicals are currently mainly obtained through extraction from plants and microbes or through chemical synthesis. However, these sources often face challenges of unsustainability and low productivity. In order to address these issues, Escherichia coli and yeast have been metabolic engineered to produce non-native terpenoids. With recent reports of engineering yeast metabolism to produce several terpenoids at high yields, it has become possible to establish commercial yeast production of terpenoids that find applications as perfume ingredients, pharmaceuticals and advanced biofuels. In this review, we describe the strategies to rewire the yeast pathway for terpenoid biosynthesis. Recent advances will be discussed together with challenges and perspectives of yeast as a cell factory to produce different terpenoids. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  14. Senescence and nitrogen use efficiency in perennial grasses for forage and biofuel production.

    Science.gov (United States)

    Yang, Jiading; Udvardi, Michael

    2018-02-12

    Organ senescence is an important developmental process in plants that enables recycling of nutrients, such as nitrogen, to maximize reproductive success. Nitrogen is the mineral nutrient required in greatest amount by plants, although soil-N limits plant productivity in many natural and agricultural systems, especially systems that receive little or no fertilizer-N. Use of industrial N-fertilizers in agriculture increased crop yields several fold over the past century, although at substantial cost to fossil energy reserves and the environment. Therefore, it is important to optimize nitrogen use efficiency (NUE) in agricultural systems. Organ senescence contributes to NUE in plants and manipulation of senescence in plant breeding programs is a promising approach to improve NUE in agriculture. Much of what we know about plant senescence comes from research on annual plants, which provide most of the food for humans. Relatively little work has been done on senescence in perennial plants, especially perennial grasses, which provide much of the forage for grazing animals and promise to supply much of the biomass required by the future biofuel industry. Here, we review briefly what is known about senescence from studies of annual plants, before presenting current knowledge about senescence in perennial grasses and its relationship to yield, quality, and NUE. While higher yield is a common target, desired N-content diverges between forage and biofuel crops. We discuss how senescence programs might be altered to produce high-yielding, stress-tolerant perennial grasses with high-N (protein) for forage or low-N for biofuels in systems optimized for NUE. © The Author(s) 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  15. Carbon Calculator for Land Use Change from Biofuels Production (CCLUB). Users' Manual and Technical Documentation

    Energy Technology Data Exchange (ETDEWEB)

    Dunn, Jennifer B. [Argonne National Lab. (ANL), Argonne, IL (United States); Qin, Zhangcai [Argonne National Lab. (ANL), Argonne, IL (United States); Mueller, Steffen [Univ. of Illinois at Chicago, Chicago, IL (United States); Kwon, Ho-young [International Food Policy Research Institute (IFPRI), Washington, DC (United States); Wander, Michelle M. [Univ. of Illinois, Urbana-Champaign, IL (United States); Wang, Michael [Argonne National Lab. (ANL), Argonne, IL (United States)

    2014-09-01

    The Carbon Calculator for Land Use Change from Biofuels Production (CCLUB) calculates carbon emissions from land use change (LUC) for four different ethanol production pathways including corn grain ethanol and cellulosic ethanol from corn stover, Miscanthus, and switchgrass. This document discusses the version of CCLUB released September 30, 2014 which includes corn and three cellulosic feedstocks: corn stover, Miscanthus, and switchgrass.

  16. Three routes forward for biofuels: Incremental, leapfrog, and transitional

    International Nuclear Information System (INIS)

    Morrison, Geoff M.; Witcover, Julie; Parker, Nathan C.; Fulton, Lew

    2016-01-01

    This paper examines three technology routes for lowering the carbon intensity of biofuels: (1) a leapfrog route that focuses on major technological breakthroughs in lignocellulosic pathways at new, stand-alone biorefineries; (2) an incremental route in which improvements are made to existing U.S. corn ethanol and soybean biodiesel biorefineries; and (3) a transitional route in which biotechnology firms gain experience growing, handling, or chemically converting lignocellulosic biomass in a lower-risk fashion than leapfrog biorefineries by leveraging existing capital stock. We find the incremental route is likely to involve the largest production volumes and greenhouse gas benefits until at least the mid-2020s, but transitional and leapfrog biofuels together have far greater long-term potential. We estimate that the Renewable Fuel Standard, California's Low Carbon Fuel Standard, and federal tax credits provided an incentive of roughly $1.5–2.5 per gallon of leapfrog biofuel between 2012 and 2015, but that regulatory elements in these policies mostly incentivize lower-risk incremental investments. Adjustments in policy may be necessary to bring a greater focus on transitional technologies that provide targeted learning and cost reduction opportunities for leapfrog biofuels. - Highlights: • Three technological pathways are compared that lower carbon intensity of biofuels. • Incremental changes lead to faster greenhouse gas reductions. • Leapfrog changes lead to greatest long-term potential. • Two main biofuel policies (RFS and LCFS) are largely incremental in nature. • Transitional biofuels offer medium-risk, medium reward pathway.

  17. THE IMPACT OF INCENTIVES ON PRODUCTIVITY OF FIRMS IN GHANA: A CASE STUDY OF GHANA AIRPORT COMPANY LIMITED

    Directory of Open Access Journals (Sweden)

    Godson Ahiabor

    2013-12-01

    Full Text Available The study investigates the impact of incentives on the productivity of firms in Ghana. The study had the following objectives: to establish the relationship between incentives and higher productivity among workers, to find out any relationship between motivational factors and work of staff, and to determine how incentives influence workers approach to work and their performance. To achieve these goals, a questionnaire was designed based on the objectives. The completed questionnaires were processed and analyzed using Simple Percentage and Frequency. The findings of this study revealed that there was a positive relationship between incentives and productivity, alongside monetary incentives, another key factor in motivating employees is to involve them in the process aimed at attaining organizational effectiveness because without their co-operation the organization cannot perform. The study concluded that non monetary factors like health, equipment use among other things counted more than monetary rewards. The study recommends the establishment of a unit to look at issues of incentives that will enhance productivity.

  18. Classification, mode of action and production strategy of xylanase and its application for biofuel production from water hyacinth.

    Science.gov (United States)

    Uday, Uma Shankar Prasad; Choudhury, Payel; Bandyopadhyay, Tarun Kanti; Bhunia, Biswanath

    2016-01-01

    Xylanases are classified under glycoside hydrolase families which represent one of the largest groups of commercial enzymes. Depolymerizing xylan molecules into monomeric pentose units involves the synergistic action of mainly two key enzymes which are endo-β-xylanase and β-xylosidase. Xylanases are different with respect to their mode of action, substrate specificities, biochemical properties, 3D structure and are widely produced by a spectrum of bacteria and fungi. Currently, large scale production of xylanase can be produced through the application of genetic engineering tool which allow fast identification of novel xylanase genes and their genetic variations makes it an ideal enzymes. Due to depletion of fossil fuel, there is urgent need to find out environment friendly and sustainable energy sources. Therefore, utilisation of cheap lignocellulosic materials along with proper optimisation of process is most important for cost efficient ethanol production. Among, various types of lignocellulosic substances, water hyacinth, a noxious aquatic weed, has been found in many tropical. Therefore, the technological development for biofuel production from water hyacinth is becoming commercially worthwhile. In this review, the classification and mode of action of xylanase including genetic regulation and strategy for robust xylanase production have been critically discussed from recent reports. In addition various strategies for cost effective biofuel production from water hyacinth including chimeric proteins design has also been critically evaluated. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. The impact of site preparation for biofuel and sawtimber production on soil compaction and long-term soil productivity

    Energy Technology Data Exchange (ETDEWEB)

    Leggett, Z.H.; Sucre, E.B. [Weyerhaeuser NR Co., Vanceboro, NC (United States)

    2010-07-01

    Research into renewable fuel sources has increased as a result of increasing global concerns over carbon dioxide (CO{sub 2}) emissions. This study assessed that potential effects of concurrent biofuel and high quality wood product production in forests along the lower coastal plain of North Carolina. The effects of intercropping and biomass management on site productivity and sustainability were investigated on loblolly pine plantations; loblolly pine and switchgrass; and loblolly pines with flat-planted pine trees planted between crop tree beds. Stands of switchgrass only were also investigated. The treatments were established on 0.81 hectare plots and replicated 4 times. The impacts of various non-traditional land management approaches on soil productivity and sustainability were assessed, as well as the site preparations needed to develop a dual crop system. The study showed no significant differences in soil compaction before and after the treatments were installed. Average soil resistance across all treatments at the soil surface was 201 kPa. Soil resistance increased to 1539 kPa and 1923 kPa at depths of 15 and 30 cm. The study indicated that dual crop systems and practices for biofuel and timber production are both economically feasible and environmentally sustainable.

  20. Toward the lowest energy consumption and emission in biofuel production: combination of ideal reactors and robust hosts.

    Science.gov (United States)

    Xu, Ke; Lv, Bo; Huo, Yi-Xin; Li, Chun

    2017-09-08

    Rising feedstock costs, low crude oil prices, and other macroeconomic factors have threatened biofuel fermentation industries. Energy-efficient reactors, which provide controllable and stable biological environment, are important for the large-scale production of renewable and sustainable biofuels, and their optimization focus on the reduction of energy consumption and waste gas emission. The bioreactors could either be aerobic or anaerobic, and photobioreactors were developed for the culture of algae or microalgae. Due to the cost of producing large-volume bioreactors, various modeling strategies were developed for bioreactor design. The achievement of ideal biofuel reactor relies on not only the breakthrough of reactor design, but also the creation of super microbial factories with highest productivity and metabolic pathway flux. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Sustainable production of a new generation biofuel by lipase-catalyzed esterification of fatty acids from liquid industrial waste biomass.

    Science.gov (United States)

    Foukis, Athanasios; Gkini, Olga A; Stergiou, Panagiota-Yiolanda; Sakkas, Vasilios A; Dima, Agapi; Boura, Konstantina; Koutinas, Athanasios; Papamichael, Emmanuel M

    2017-08-01

    In this work we suggest a methodology comprising the design and use of cost-effective, sustainable, and environmentally friendly process for biofuel production compatible with the market demands. A new generation biofuel is produced using fatty acids, which were generated from acidogenesis of industrial wastes of bioethanol distilleries, and esterified with selected alcohols by immobilized Candida antarctica Lipase-B. Suitable reactors with significant parameters and conditions were studied through experimental design, and novel esterification processes were suggested; among others, the continuous removal of the produced water was provided. Finally, economically sustainable biofuel production was achieved providing high ester yield (<97%) along with augmented concentration (3.35M) in the reaction mixtures at relatively short esterification times, whereas the immobilized lipase maintained over 90% of its initial esterifying ability after reused for ten cycles. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Effect of Media on Algae Growth for Bio-Fuel Production

    Directory of Open Access Journals (Sweden)

    Sriharsha KARAMPUDI

    2011-08-01

    Full Text Available Bio-fuels are commonly produced from oleaginous crops, such as rapeseed, soybean, sunflower and oil palm. However, microalgae can be an attractive alternative feedstock for future biofuels because some of the species contain very high amounts of oil, which can be used to extract and be processed into transportation fuels. Their growth rate is very high and faster, can be cultivated in non-agricultural land and waste water. In addition, production of microalgae is not seasonal and they can be harvested routinely as needed. Two strains of Scenedesmus dimorphus (fresh water microalgae were tested for their growth in proteose medium and Modified Bold 3N medium with different levels of nitrogen and glycerol and growth rates were measured using cell count, fresh and dry weight. The growth of S. dimorphus was better in proteose medium with half of the nitrogen source recommended by the UTEX than other media tested. ANOVA table showed significant differences between days, between media, and day � media interaction. When compared to dry weight of S. dimorphus in all media, the growth was better in proteose medium with 10 mL/L glycerol.

  3. Effect of Media on Algae Growth for Bio-Fuel Production

    Directory of Open Access Journals (Sweden)

    Sriharsha KARAMPUDI

    2011-08-01

    Full Text Available Bio-fuels are commonly produced from oleaginous crops, such as rapeseed, soybean, sunflower and oil palm. However, microalgae can be an attractive alternative feedstock for future biofuels because some of the species contain very high amounts of oil, which can be used to extract and be processed into transportation fuels. Their growth rate is very high and faster, can be cultivated in non-agricultural land and waste water. In addition, production of microalgae is not seasonal and they can be harvested routinely as needed. Two strains of Scenedesmus dimorphus (fresh water microalgae were tested for their growth in proteose medium and Modified Bold 3N medium with different levels of nitrogen and glycerol and growth rates were measured using cell count, fresh and dry weight. The growth of S. dimorphus was better in proteose medium with half of the nitrogen source recommended by the UTEX than other media tested. ANOVA table showed significant differences between days, between media, and day media interaction. When compared to dry weight of S. dimorphus in all media, the growth was better in proteose medium with 10 mL/L glycerol.

  4. The value of biodiversity in legume symbiotic nitrogen fixation and nodulation for biofuel and food production.

    Science.gov (United States)

    Gresshoff, Peter M; Hayashi, Satomi; Biswas, Bandana; Mirzaei, Saeid; Indrasumunar, Arief; Reid, Dugald; Samuel, Sharon; Tollenaere, Alina; van Hameren, Bethany; Hastwell, April; Scott, Paul; Ferguson, Brett J

    2015-01-01

    Much of modern agriculture is based on immense populations of genetically identical or near-identical varieties, called cultivars. However, advancement of knowledge, and thus experimental utility, is found through biodiversity, whether naturally-found or induced by the experimenter. Globally we are confronted by ever-growing food and energy challenges. Here we demonstrate how such biodiversity from the food legume crop soybean (Glycine max L. Merr) and the bioenergy legume tree Pongamia (Millettia) pinnata is a great value. Legume plants are diverse and are represented by over 18,000 species on this planet. Some, such as soybean, pea and medics are used as food and animal feed crops. Others serve as ornamental (e.g., wisteria), timber (e.g., acacia/wattle) or biofuel (e.g., Pongamia pinnata) resources. Most legumes develop root organs (nodules) after microsymbiont induction that serve as their habitat for biological nitrogen fixation. Through this, nitrogen fertiliser demand is reduced by the efficient symbiosis between soil Rhizobium-type bacteria and the appropriate legume partner. Mechanistic research into the genetics, biochemistry and physiology of legumes is thus strategically essential for future global agriculture. Here we demonstrate how molecular plant science analysis of the genetics of an established food crop (soybean) and an emerging biofuel P. pinnata feedstock contributes to their utility by sustainable production aided by symbiotic nitrogen fixation. Crown Copyright © 2014. Published by Elsevier GmbH. All rights reserved.

  5. Novel approaches to microalgal and cyanobacterial cultivation for bioenergy and biofuel production.

    Science.gov (United States)

    Heimann, Kirsten

    2016-04-01

    Growing demand for energy and food by the global population mandates finding water-efficient renewable resources. Microalgae/cyanobacteria have shown demonstrated capacity to contribute to global energy and food security. Yet, despite proven process technology and established net energy-effectiveness and cost-effectiveness through co-product generation, microalgal biofuels are not a reality. This review outlines novel biofilm cultivation strategies that are water-smart, the opportunity for direct energy conversion via anaerobic digestion of N2-fixing cyanobacterial biomass and integrative strategies for microalgal biodiesel and/or biocrude production via supercritical methanol-direct transesterification and hydrothermal liquefaction, respectively. Additionally, fermentation of cyanobacterial biofilms could supply bioethanol to feed wet transesterification to biodiesel conversion for on-site use in remote locations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Black liquor fractionation for biofuels production - a techno-economic assessment.

    Science.gov (United States)

    Mesfun, Sennai; Lundgren, Joakim; Grip, Carl-Erik; Toffolo, Andrea; Nilsson, Rasika Lasanthi Kudahettige; Rova, Ulrika

    2014-08-01

    The hemicelluloses fraction of black liquor is an underutilized resource in many chemical pulp mills. It is possible to extract and separate the lignin and hemicelluloses from the black liquor and use the hemicelluloses for biochemical conversion into biofuels and chemicals. Precipitation of the lignin from the black liquor would consequently decrease the thermal load on the recovery boiler, which is often referred to as a bottleneck for increased pulp production. The objective of this work is to techno-economically evaluate the production of sodium-free lignin as a solid fuel and butanol to be used as fossil gasoline replacement by fractionating black liquor. The hydrolysis and fermentation processes are modeled in Aspen Plus to analyze energy and material balances as well as to evaluate the plant economics. A mathematical model of an existing pulp and paper mill is used to analyze the effects on the energy performance of the mill subprocesses. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. A state of the art of metabolic networks of unicellular microalgae and cyanobacteria for biofuel production.

    Science.gov (United States)

    Baroukh, Caroline; Muñoz-Tamayo, Rafael; Steyer, Jean-Philippe; Bernard, Olivier

    2015-07-01

    The most promising and yet challenging application of microalgae and cyanobacteria is the production of renewable energy: biodiesel from microalgae triacylglycerols and bioethanol from cyanobacteria carbohydrates. A thorough understanding of microalgal and cyanobacterial metabolism is necessary to master and optimize biofuel production yields. To this end, systems biology and metabolic modeling have proven to be very efficient tools if supported by an accurate knowledge of the metabolic network. However, unlike heterotrophic microorganisms that utilize the same substrate for energy and as carbon source, microalgae and cyanobacteria require light for energy and inorganic carbon (CO2 or bicarbonate) as carbon source. This double specificity, together with the complex mechanisms of light capture, makes the representation of metabolic network nonstandard. Here, we review the existing metabolic networks of photoautotrophic microalgae and cyanobacteria. We highlight how these networks have been useful for gaining insight on photoautotrophic metabolism. Copyright © 2015 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  8. Environmental impact assessment of biofuel production on contaminated land - Swedish case studies

    Energy Technology Data Exchange (ETDEWEB)

    Andersson-Skoeld, Yvonne; Suer, Pascal (Swedish Geotechnical Institute, Linkoeping (Sweden)); Blom, Sonja (FB Engineering AB, Goeteborg (Sweden)); Bardos, Paul (r3 Environmental Technology Ltd, Reading (United Kingdom)); Track, Thomas; Polland, Marcel (DECHEMA e. V., Frankfurt am Main (Germany))

    2009-07-01

    This report studies the (possible) cultivation of short rotation wood (Salix Vinimalis) on two contaminated sites from an environmental perspective, through a life cycle analysis (LCA) and carbon footprint, with an outlook towards an overarching method for a qualitative or semi-quantitative analysis based on a life cycle framework. Two areas were selected as case studies: a small site where short rotation crop (Salix Vinimalis) cultivation is in progress and a large site where biofuel production is hypothetical. For the selection of suitable sites, the following aspects were considered: Site location and size, so that biofuel cultivation might be economically viable without a remediation bonus, Topography and soil conditions, so that machinery could be used for cultivation, Time, so that the site was not in urgent need of remediation due to environmental or human health risks, or acute exploitation requirements, Contamination degree, which should not be plant-toxic, Contamination depth, Assessment of optimum crop and its use. For doubtful areas, it is especially important to analyse what the most viable option for the contaminated site is, and what bio-product could be used. For a more comprehensive analysis, which also incorporates local economic and social aspects, the decision support matrix, inter alia, described in the main report of the project Rejuvenate, is recommended. The calculation of emissions for the LCA and the carbon footprint used a German software tool for LCA of soil remediation. The software includes equipment emission data published in 1995. The module 'landfarming' has been used in this study to calculate emissions from herbicide application, fertilisation, ploughing and deep-ploughing, Salix harvest, harrowing etc. Since production of herbicide and Salix Vinimalis shoots were not included in the software, they were not included in the study. The conclusions for the two sites were very similar, in spite of the large differences

  9. Fatty acid synthesis in Escherichia coli and its applications towards the production of fatty acid based biofuels

    Science.gov (United States)

    2014-01-01

    The idea of renewable and regenerative resources has inspired research for more than a hundred years. Ideally, the only spent energy will replenish itself, like plant material, sunlight, thermal energy or wind. Biodiesel or ethanol are examples, since their production relies mainly on plant material. However, it has become apparent that crop derived biofuels will not be sufficient to satisfy future energy demands. Thus, especially in the last decade a lot of research has focused on the production of next generation biofuels. A major subject of these investigations has been the microbial fatty acid biosynthesis with the aim to produce fatty acids or derivatives for substitution of diesel. As an industrially important organism and with the best studied microbial fatty acid biosynthesis, Escherichia coli has been chosen as producer in many of these studies and several reviews have been published in the fields of E. coli fatty acid biosynthesis or biofuels. However, most reviews discuss only one of these topics in detail, despite the fact, that a profound understanding of the involved enzymes and their regulation is necessary for efficient genetic engineering of the entire pathway. The first part of this review aims at summarizing the knowledge about fatty acid biosynthesis of E. coli and its regulation, and it provides the connection towards the production of fatty acids and related biofuels. The second part gives an overview about the achievements by genetic engineering of the fatty acid biosynthesis towards the production of next generation biofuels. Finally, the actual importance and potential of fatty acid-based biofuels will be discussed. PMID:24405789

  10. Development of optimal enzymatic and microbial conversion systems for biofuel production

    Science.gov (United States)

    Aramrueang, Natthiporn

    The increase in demand for fuels, along with the concerns over the depletion of fossil fuels and the environmental problems associated with the use of the petroleum-based fuels, has driven the exploitation of clean and renewable energy. Through a collaboration project with Mendota Bioenergy LLC to produce advanced biofuel from sugar beet and other locally grown crops in the Central Valley of California through demonstration and commercial-scale biorefineries, the present study focused on the investigation of selected potential biomass as biofuel feedstock and development of bioconversion systems for sustainable biofuel production. For an efficient biomass-to-biofuel conversion process, three important steps, which are central to this research, must be considered: feedstock characterization, enzymatic hydrolysis of the feedstock, and the bioconversion process. The first part of the research focused on the characterization of various lignocellulosic biomass as feedstocks and investigated their potential ethanol yields. Physical characteristics and chemical composition were analyzed for four sugar beet varieties, three melon varieties, tomato, Jose tall wheatgrass, wheat hay, and wheat straw. Melons and tomato are those products discarded by the growers or processors due to poor quality. The mass-based ethanol potential of each feedstock was determined based on the composition. The high sugar-containing feedstocks are sugar beet roots, melons, and tomato, containing 72%, 63%, and 42% average soluble sugars on a dry basis, respectively. Thus, for these crops, the soluble sugars are the main substrate for ethanol production. The potential ethanol yields, on average, for sugar beet roots, melons, and tomato are 591, 526, and 448 L ethanol/metric ton dry basis (d.b.), respectively. Lignocellulosic biomass, including Jose Tall wheatgrass and wheat straw, are composed primarily of cellulose (27-39% d.b.) and hemicellulose (26-30% d.b.). The ethanol yields from these

  11. Amino acid catabolism-directed biofuel production in Clostridium sticklandii: An insight into model-driven systems engineering

    Directory of Open Access Journals (Sweden)

    C Sangavai

    2017-12-01

    Full Text Available Model-driven systems engineering has been more fascinating process for the microbial production of biofuel and bio-refineries in chemical and pharmaceutical industries. Genome-scale modeling and simulations have been guided for metabolic engineering of Clostridium species for the production of organic solvents and organic acids. Among them, Clostridium sticklandii is one of the potential organisms to be exploited as a microbial cell factory for biofuel production. It is a hyper-ammonia producing bacterium and is able to catabolize amino acids as important carbon and energy sources via Stickland reactions and the development of the specific pathways. Current genomic and metabolic aspects of this bacterium are comprehensively reviewed herein, which provided information for learning about protein catabolism-directed biofuel production. It has a metabolic potential to drive energy and direct solventogenesis as well as acidogenesis from protein catabolism. It produces by-products such as ethanol, acetate, n-butanol, n-butyrate and hydrogen from amino acid catabolism. Model-driven systems engineering of this organism would improve the performance of the industrial sectors and enhance the industrial economy by using protein-based waste in environment-friendly ways. Keywords: Biofuel, Amino acid catabolism, Genome-scale model, Metabolic engineering, Systems biology, ABE fermentation, Clostridium sticklandii

  12. A systems biology approach to reconcile metabolic network models with application to Synechocystis sp. PCC 6803 for biofuel production.

    Science.gov (United States)

    Mohammadi, Reza; Fallah-Mehrabadi, Jalil; Bidkhori, Gholamreza; Zahiri, Javad; Javad Niroomand, Mohammad; Masoudi-Nejad, Ali

    2016-07-19

    Production of biofuels has been one of the promising efforts in biotechnology in the past few decades. The perspective of these efforts can be reduction of increasing demands for fossil fuels and consequently reducing environmental pollution. Nonetheless, most previous approaches did not succeed in obviating many big challenges in this way. In recent years systems biology with the help of microorganisms has been trying to overcome these challenges. Unicellular cyanobacteria are widespread phototrophic microorganisms that have capabilities such as consuming solar energy and atmospheric carbon dioxide for growth and thus can be a suitable chassis for the production of valuable organic materials such as biofuels. For the ultimate use of metabolic potential of cyanobacteria, it is necessary to understand the reactions that are taking place inside the metabolic network of these microorganisms. In this study, we developed a Java tool to reconstruct an integrated metabolic network of a cyanobacterium (Synechocystis sp. PCC 6803). We merged three existing reconstructed metabolic networks of this microorganism. Then, after modeling for biofuel production, the results from flux balance analysis (FBA) disclosed an increased yield in biofuel production for ethanol, isobutanol, 3-methyl-1-butanol, 2-methyl-1-butanol, and propanol. The numbers of blocked reactions were also decreased for 2-methyl-1-butanol production. In addition, coverage of the metabolic network in terms of the number of metabolites and reactions was increased in the new obtained model.

  13. Development of Agave as a dedicated biomass source: production of biofuels from whole plants.

    Science.gov (United States)

    Mielenz, Jonathan R; Rodriguez, Miguel; Thompson, Olivia A; Yang, Xiaohan; Yin, Hengfu

    2015-01-01

    Agave species can grow well in semi-arid marginal agricultural lands around the world. Selected Agave species are used largely for alcoholic beverage production in Mexico. There are expanding research efforts to use the plentiful residues (bagasse) for ethanol production as the beverage manufacturing process only uses the juice from the central core of mature plants. Here, we investigate the potential of over a dozen Agave species, including three from cold semi-arid regions of the United States, to produce biofuels using the whole plant. Ethanol was readily produced by Saccharomyces cerevisiae from hydrolysate of ten whole Agaves with the use of a proper blend of biomass degrading enzymes including inulinase that overcomes inhibition of most of the species tested. As an example, US grown Agave neomexicana produced 119 ± 11 mg ethanol/g biomass. Unlike yeast fermentations, Clostridium beijerinckii produced n-butanol plus acetone from all species tested. Butyric acid, a precursor of n-butanol, was also present due to incomplete conversion during the screening process. Since Agave contains high levels of free and polyfructose which are readily destroyed by acidic pretreatment, a two-step procedure was developed to depolymerize polyfructose while maintaining its fermentability. The hydrolysate from before and after dilute acid processing was used in C. beijerinckii fermentations with selected Agave species with A. neomexicana producing 144 ± 4 mg fermentation products/g biomass. Results showed Agave's potential to be a source of fermentable sugars beyond the existing beverage species to now include many species previously unfermentable by yeast, including cold-tolerant lines. This development should stimulate development of Agave as a dedicated feedstock for biofuels in semi-arid regions throughout the globe.

  14. Biomass, biogas and biofuels

    International Nuclear Information System (INIS)

    Colonna, P.

    2011-01-01

    This article reviews the different ways to produce biofuels. It appears that there are 3 generations of biofuels. The first generation was based on the use of the energetic reserves of the plants for instance sugar from beetroot or starch from cereals or oil from oleaginous plants. The second generation is based on a more complete use of the plant, the main constituents of the plant: cellulose and lignin are turned into energy. The third generation of biofuels relies on the use of energy plants and algae. The second generation of biofuels reduces drastically the competition between an alimentary use and a non-alimentary use of plants. In 2008 the production of biofuels reached 43 Mtep which represents only 2% of all the energy used in the transport sector. The international agency for energy expects that the production of biofuels would be multiplied by a factor 6 (even 10 if inciting measures are taken) by 2030. (A.C.)

  15. Integrated production of nano-fibrillated cellulose and cellulosic biofuel (ethanol) by enzymatic fractionation of wood fibers

    Science.gov (United States)

    Junyong Zhu; Ronald Sabo; Xiaolin Luo

    2011-01-01

    This study demonstrates the feasibility of integrating the production of nano-fibrillated cellulose (NFC), a potentially highly valuable biomaterial, with sugar/biofuel (ethanol) from wood fibers. Commercial cellulase enzymes were used to fractionate the less recalcitrant amorphous cellulose from a bleached Kraft eucalyptus pulp, resulting in a highly crystalline and...

  16. Sustainability of soil fertility and the use of lignocellulosic crop harvest residues for the production of biofuels: a literature review

    NARCIS (Netherlands)

    Reijnders, L.

    2013-01-01

    Use of lignocellulosic crop harvest residues for liquid or gaseous biofuel production may impact soil quality, long-term soil fertility and the major determinants of the latter, stocks of soil organic carbon and nutrients. When soil organic carbon stocks of mineral cropland soils are to be

  17. Towards acetone-uncoupled biofuels production in solventogenic Clostridium through reducing power conservation.

    Science.gov (United States)

    Liu, Dong; Yang, Zhengjiao; Wang, Ping; Niu, Huanqing; Zhuang, Wei; Chen, Yong; Wu, Jinglan; Zhu, Chenjie; Ying, Hanjie; Ouyang, Pingkai

    2018-03-15

    Microbial production of butanol by solventogenic Clostridium has long been complicated with the formation of acetone as an unwanted product, which causes poor product yields and creates a most important problem concerning substrate transformation. Intensive attempts concentrate on carbon conversion pathways to eliminate acetone, but have actually achieved little so far. Here, we believe microbial product distribution can largely depend on how the cell plays its energetic cofactors in central metabolism, and demonstrate that by introducing a synthetic 2,3-butanediol synthesis pathway in Clostridium acetobutylicum as an NADH-compensating module to readjust the reducing power at a systems level, the production of acetone can be selectively and efficiently eliminated (power rather than typically manipulated solventogenesis genes that dominates acetone formation. Further study revealed that the NADH-module triggered apparent regulation of pathways involved in electron transfer and reducing power conservation. The study also suggested the key to conservation of intracellular reducing power might essentially lie in the intermediate processes in central metabolism that are related to redox partners, butyrate or C 4 branches, and possibly NADH and NADPH specificity. This study represents the first effective redox-based configuration of C. acetobutylicum and provides valuable understandings for redox engineering of native Clostridium species towards advanced production of biofuels and alcohols. Copyright © 2018 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  18. Life cycle assessment and nutrient analysis of various processing pathways in algal biofuel production.

    Science.gov (United States)

    Mu, Dongyan; Ruan, Roger; Addy, Min; Mack, Sarah; Chen, Paul; Zhou, Yong

    2017-04-01

    This study focuses on analyzing nutrient distributions and environmental impacts of nutrient recycling, reusing, and discharging in algal biofuels production. The three biomass conversion pathways compared in this study were: hydrothermal liquefaction technology (HTL), hydrothermal hydrolysis pretreatment +HTL (HTP), and wet lipid extraction (WLE). Carbon, nitrogen, and phosphorous (C, N, P) flows were described in each pathway. A primary cost analysis was conducted to evaluate the economic performance. The LCA results show that the HTP reduced life cycle NO x emissions by 10% from HTL, but increased fossil fuel use, greenhouse gas emissions, and eutrophication potential by 14%, 5%, and 28% respectively. The cost of per gallon biodiesel produced in HTP was less than in HTL. To further reduce emissions, efforts should be focused on improving nutrient uptake rates in algae cultivation, increasing biomass carbon detention in hydrothermal hydrolysis, and/or enhancing biomass conversion rates in the biooil upgrading processes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Trash to treasure: production of biofuels and commodity chemicals via syngas fermenting microorganisms.

    Science.gov (United States)

    Latif, Haythem; Zeidan, Ahmad A; Nielsen, Alex T; Zengler, Karsten

    2014-06-01

    Fermentation of syngas is a means through which unutilized organic waste streams can be converted biologically into biofuels and commodity chemicals. Despite recent advances, several issues remain which limit implementation of industrial-scale syngas fermentation processes. At the cellular level, the energy conservation mechanism of syngas fermenting microorganisms has not yet been entirely elucidated. Furthermore, there was a lack of genetic tools to study and ultimately enhance their metabolic capabilities. Recently, substantial progress has been made in understanding the intricate energy conservation mechanisms of these microorganisms. Given the complex relationship between energy conservation and metabolism, strain design greatly benefits from systems-level approaches. Numerous genetic manipulation tools have also been developed, paving the way for the use of metabolic engineering and systems biology approaches. Rational strain designs can now be deployed resulting in desirable phenotypic traits for large-scale production. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Preliminary results on optimising hydrothermal treatment used in co-production of biofuels

    DEFF Research Database (Denmark)

    Thomsen, M.H.; Thomsen, A.B.; Jørgensen, H.

    illustrates that it is possible to extract more than 95% of the alkaline salts (at 200 C) leaving a solid cellulose rich biofuel for combustion or for further treatment in the ethanol process. In the experiments performed at 190 C, the best totalglucose yield after pre-treatment and following enzymatic......, a pilot plan reactor for hydrothermal treatment (and other pre-treatments including wet oxidation) with a capacity of 100 kg/hour was constructed and tested for pre-treatment of wheat straw to be used for ethanoland/or electricity production. Pre-treatment by hydrothermal treatment (or wet oxidation...... the pre-treatment and fermentation processeswill be concentrated and used for animal feed. Several trials were made with varying parameters of water level, chemical addition and flow in the reactor. All experiments were performed at 190 C, except for a single experiment performed at 200 C. Theresults...

  1. Use of Marine Microalgae for Biofuels Production: Reduction in Ash Content for Potential Improvements in Downstream Processing

    Science.gov (United States)

    Redalje, D.; Brown, S.

    2016-02-01

    Many species of microalgae have shown potential as feedstocks for production of algal biofuels. Freshwater species have been chosen because of they have demonstrated relatively greater neutral lipid biosynthesis in mass culture. Freshwater has become relatively scarce and there are competing uses making freshwater species less attractive for biofuels applications. Marine microalgae do not require freshwater and can be grown in mass culture on land that is less suitable for other uses. It is also more favorable to isolate local marine species for any mass culture endeavor due to possible accidental release to the environment. Two groups of marine microalgae, diatoms and chlorophytes, have shown great potential for biofuels production. Diatoms often have greater rates of synthesis of biofuel lipids. However, the silica content of diatom frustules can be problematic for downstream processing and lipid extraction. For these reasons, as part of a U.S. Department of Energy Algal Biofuels Consortium, we conducted a study that included pre-screening of 35 strains for biofuel suitability and further testing at a demonstration scale facility in Hawaii. Cultures were grown in f/2 medium with treatments of 100, 75, 50 and 25% of f/2 Si. Some species showed greater biomass with decreased Si. Some species demonstrated enhanced lipid content with lower Si. The best performing 18 species of diatoms and 6 species of chlorophytes were grown at reduced Si content in the medium (for diatoms) or reduced trace metals in the medium (for chlorophytes). Treatments were 100, 50, 25, 12.5 and 0% f/2 Si or f/20 trace metal mix. Five of the diatoms were from culture collections with the others isolated from coastal Hawaiian waters. All of the chlorophytes were isolated from Hawaiian waters. The results showed that ash content of the diatoms was generally <5-10% of DW for diatoms, but that there was no reduction in ash content with reduced trace metals for chlorophytes.

  2. Optimization of biofuel production from corn stover under supply uncertainty in Ontario

    Directory of Open Access Journals (Sweden)

    Jonathan Ranisau

    2017-12-01

    Full Text Available In this paper, a biofuel production supply chain optimization framework is developed that can supply the fuel demand for 10% of Ontario. Different biomass conversion technologies are considered, such as pyrolysis and gasification and subsequent hydro processing and the Fischer-Tropsch process. A supply chain network approach is used for the modeling, which enables the optimization of both the biorefinery locations and the associated transportation networks. Gasification of corn stover is examined to convert waste biomass into valuable fuel. Biomass-derived fuel has several advantages over traditional fuels including substantial greenhouse gas reduction, generating higher quality synthetic fuels, providing a use for biomass waste, and potential for use without much change to existing infrastructure. The objective of this work is to show the feasibility of the use of corn stover as a biomass feedstock to a hydrocarbon biofuel supply chain in Ontario using a mixed-integer linear programming model while accounting for the uncertainty in the availability of corn stover. In the case study, the exact number of biorefineries is left as a policy decision and the optimization is carried out over a range of the possible numbers of facilities. The results obtained from the case study suggests implementing gasification technology followed by Fischer-Tropsch at two different sites in Ontario. The optimal solution satisfied 10% of the yearly fuel demand of Ontario with two production plants (14.8 billion L of fuel and requires an investment of $42.9 billion, with a payback period of about 3 years.

  3. Biofuels Baseline 2008

    Energy Technology Data Exchange (ETDEWEB)

    Hamelinck, C.; Koper, M.; Berndes, G.; Englund, O.; Diaz-Chavez, R.; Kunen, E.; Walden, D.

    2011-10-15

    The European Union is promoting the use of biofuels and other renewable energy in transport. In April 2009, the Renewable Energy Directive (2009/28/EC) was adopted that set a 10% target for renewable energy in transport in 2020. The directive sets several requirements to the sustainability of biofuels marketed in the frame of the Directive. The Commission is required to report to the European Parliament on a regular basis on a range of sustainability impacts resulting from the use of biofuels in the EU. This report serves as a baseline of information for regular monitoring on the impacts of the Directive. Chapter 2 discusses the EU biofuels market, the production and consumption of biofuels and international trade. It is derived where the feedstock for EU consumed biofuels originally come from. Chapter 3 discusses the biofuel policy framework in the EU and major third countries of supply. It looks at various policy aspects that are relevant to comply with the EU sustainability requirements. Chapter 4 discusses the environmental and social sustainability aspects associated with EU biofuels and their feedstock. Chapter 5 discusses the macro-economic effects that indirectly result from increased EU biofuels consumption, on commodity prices and land use. Chapter 6 presents country factsheets for main third countries that supplied biofuels to the EU market in 2008.

  4. Biological potential of microalgae in China for biorefinery-based production of biofuels and high value compounds.

    Science.gov (United States)

    Li, Jingjing; Liu, Ying; Cheng, Jay J; Mos, Michal; Daroch, Maurycy

    2015-12-25

    Microalgae abundance and diversity in China shows promise for identifying suitable strains for developing algal biorefinery. Numerous strains of microalgae have already been assessed as feedstocks for bioethanol and biodiesel production, but commercial scale algal biofuel production is yet to be demonstrated, most likely due to huge energy costs associated with algae cultivation, harvesting and processing. Biorefining, integrated processes for the conversion of biomass into a variety of products, can improve the prospects of microalgal biofuels by combining them with the production of high value co-products. Numerous microalgal strains in China have been identified as producers of various high value by-products with wide application in the medicine, food, and cosmetics industries. This paper reviews microalgae resources in China and their potential in producing liquid biofuels (bioethanol and biodiesel) and high value products in an integrated biorefinery approach. Implementation of a 'high value product first' principle should make the integrated process of fuels and chemicals production economically feasible and will ensure that public and private interest in the development of microalgal biotechnology is maintained. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Production of biofuels and biochemicals by in vitro synthetic biosystems: Opportunities and challenges.

    Science.gov (United States)

    Zhang, Yi-Heng Percival

    2015-11-15

    The largest obstacle to the cost-competitive production of low-value and high-impact biofuels and biochemicals (called biocommodities) is high production costs catalyzed by microbes due to their inherent weaknesses, such as low product yield, slow reaction rate, high separation cost, intolerance to toxic products, and so on. This predominant whole-cell platform suffers from a mismatch between the primary goal of living microbes - cell proliferation and the desired biomanufacturing goal - desired products (not cell mass most times). In vitro synthetic biosystems consist of numerous enzymes as building bricks, enzyme complexes as building modules, and/or (biomimetic) coenzymes, which are assembled into synthetic enzymatic pathways for implementing complicated bioreactions. They emerge as an alternative solution for accomplishing a desired biotransformation without concerns of cell proliferation, complicated cellular regulation, and side-product formation. In addition to the most important advantage - high product yield, in vitro synthetic biosystems feature several other biomanufacturing advantages, such as fast reaction rate, easy product separation, open process control, broad reaction condition, tolerance to toxic substrates or products, and so on. In this perspective review, the general design rules of in vitro synthetic pathways are presented with eight supporting examples: hydrogen, n-butanol, isobutanol, electricity, starch, lactate,1,3-propanediol, and poly-3-hydroxylbutyrate. Also, a detailed economic analysis for enzymatic hydrogen production from carbohydrates is presented to illustrate some advantages of this system and the remaining challenges. Great market potentials will motivate worldwide efforts from multiple disciplines (i.e., chemistry, biology and engineering) to address the remaining obstacles pertaining to cost and stability of enzymes and coenzymes, standardized building parts and modules, biomimetic coenzymes, biosystem optimization, and scale

  6. Bio-fuels: European Communities fiscal initiatives

    International Nuclear Information System (INIS)

    Autrand, A.

    1992-01-01

    This paper first reviews the influence that European Communities fiscal policies have had in the past on the development of more environmentally compatible fuels such as unleaded gasoline. It then discusses which directions fiscal policy makers should take in order to create appropriate financial incentives encouraging the production and use of biomass derived fuels - methanol, ethanol and pure and transesterified vegetable oils. An assessment is made of the efficacy of a recent European Communities proposal which calls for the application of excise tax reductions on bio-fuels. Attention is given to the net effects due to reduced sulfur and carbon dioxide emissions characterizing bio-fuels and the increased use of fertilizers necessary to produce biomass fuels

  7. Biofuels barometer; Barometre biocarburants

    Energy Technology Data Exchange (ETDEWEB)

    Anon

    2008-05-15

    Biofuels represent 2,6% of the energy content of all the fuels used in road transport in Europe today. Nearly half of the target of 5,75% for 2010 set by the directive on biofuels has thus been reached in four years time. To achieve 5,75%, the european union is going to have to increase its production and doubtless call even more on imports, at a moment when biofuels are found at the core of complex ecological and economic issues. This analysis provided data and reflexions on the biofuels situation in the european union: consumption, bio-diesel, bio-ethanol, producers, environmental problems, directives. (A.L.B.)

  8. Advanced Therapy Medicinal Products for Rare Diseases: State of Play of Incentives Supporting Development in Europe

    Directory of Open Access Journals (Sweden)

    Andreas M. Farkas

    2017-05-01

    Full Text Available In 2008, the European Union introduced the Advanced Medicines Regulation aiming to improve regulation of advanced therapy medicinal products (ATMPs. We applied the ATMPs classification definitions in this Regulation to understand the link of this emerging group of medicinal products and the use of the Orphan Regulation. A total of 185 products that can be classified as ATMPs based on this Regulation have been submitted for orphan designation. Prior to its introduction in 2008, 4.5% of the products submitted for orphan designation met these criteria. This percentage went up to 15% after 2008. We analyzed several parameters associated with active ATMP ODDs focusing on sponsor type and EU-Member State origin, therapeutic area targeted, and ATMP classification [i.e., somatic cell therapy medicinal product, tissue-engineered product (TEP, or gene therapy medicinal product (GTMP] and the use of regulatory services linked to incentives such as the use of protocol assistance (PA and other Committees [Committee for Advanced Therapies (CAT and the Pediatric Committee]. The aim here was to gain insight on the use of different services. The UK submits the largest number of ATMPs for ODD representing ~30% of the total to date. Few submissions have been received from central and Eastern European Member States as well as some of the larger Member States such as Germany (3.6%. ATMPs ODDs were primarily GTMPs (48.7% and SCTMPs (43.3%. TEPs only represented 8% of all submissions for this medicinal class. This is different from non-ODDs ATMPs where GTMPs make only 20% of ATMPs. A total of 11.7% of ATMP ODDs had received formal CAT classification. A total of 29.8% of all orphan drug (OD ATMPs requested PA. A total of 71.8% did not have an agreed pediatric investigation plan (PIP. Four products (Glybera one PA; Zalmoxis two; Holoclar one; Strimvelis three have received a marketing authorization (MAA and a 10-year market exclusivity. Strimvelis also completed their

  9. Advanced Therapy Medicinal Products for Rare Diseases: State of Play of Incentives Supporting Development in Europe.

    Science.gov (United States)

    Farkas, Andreas M; Mariz, Segundo; Stoyanova-Beninska, Violeta; Celis, Patrick; Vamvakas, Spiros; Larsson, Kristina; Sepodes, Bruno

    2017-01-01

    In 2008, the European Union introduced the Advanced Medicines Regulation aiming to improve regulation of advanced therapy medicinal products (ATMPs). We applied the ATMPs classification definitions in this Regulation to understand the link of this emerging group of medicinal products and the use of the Orphan Regulation. A total of 185 products that can be classified as ATMPs based on this Regulation have been submitted for orphan designation. Prior to its introduction in 2008, 4.5% of the products submitted for orphan designation met these criteria. This percentage went up to 15% after 2008. We analyzed several parameters associated with active ATMP ODDs focusing on sponsor type and EU-Member State origin, therapeutic area targeted, and ATMP classification [i.e., somatic cell therapy medicinal product, tissue-engineered product (TEP), or gene therapy medicinal product (GTMP)] and the use of regulatory services linked to incentives such as the use of protocol assistance (PA) and other Committees [Committee for Advanced Therapies (CAT) and the Pediatric Committee]. The aim here was to gain insight on the use of different services. The UK submits the largest number of ATMPs for ODD representing ~30% of the total to date. Few submissions have been received from central and Eastern European Member States as well as some of the larger Member States such as Germany (3.6%). ATMPs ODDs were primarily GTMPs (48.7%) and SCTMPs (43.3%). TEPs only represented 8% of all submissions for this medicinal class. This is different from non-ODDs ATMPs where GTMPs make only 20% of ATMPs. A total of 11.7% of ATMP ODDs had received formal CAT classification. A total of 29.8% of all orphan drug (OD) ATMPs requested PA. A total of 71.8% did not have an agreed pediatric investigation plan (PIP). Four products (Glybera one PA; Zalmoxis two; Holoclar one; Strimvelis three) have received a marketing authorization (MAA) and a 10-year market exclusivity. Strimvelis also completed their PIP

  10. Final report on the potential of local biofuels development to the Environmental and Renewable Industries Committee

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-01-31

    There is significant interest in renewable and sustainable energy technologies, particularly biofuels, because of the growing crisis in the agricultural and forestry sectors, rising fuel prices, dwindling energy supply and growing awareness of the impact of traditional energy resources on the environment. Biofuels represent a possible opportunity to move towards a sustainable bio-economy in which agricultural and forestry products, co-products, and waste materials are utilized to produce energy. This report discussed the policy context for biofuels. The key local drivers for biofuel development in Prince Edward Island (PEI) were presented. These include rising energy prices; dependence on fossil fuels; climate change; and agricultural industry challenges. Biofuel policies and initiatives in a federal context, in central and western Canada, in New England, and in Atlantic Canada were also addressed. Prince Edward Island feedstocks such as forestry, agriculture, marine-based, and waste resources were examined. The report also identified the biofuel potential in PEI with reference to biocombustibles; pure plant oils; biodiesel; ethanol; and biogas. Last, the report outlined several biofuel projects, proposal, and initiatives and presented conclusions and recommendations. Several appendices were also included on resource materials; federal funding programs; Canadian renewable fuel standards and tax incentives; and the PEI biofuels evaluation framework. It was concluded that biomass feedstocks such as wood, cereals, straw, grasses, and crop residues offer significant potential for space and water heating applications and electricity generation. refs., tabs.

  11. %22Trojan Horse%22 strategy for deconstruction of biomass for biofuels production.

    Energy Technology Data Exchange (ETDEWEB)

    Simmons, Blake Alexander; Sinclair, Michael B.; Yu, Eizadora; Timlin, Jerilyn Ann; Hadi, Masood Z.; Tran-Gyamfi, Mary

    2011-02-01

    Production of renewable biofuels to displace fossil fuels currently consumed in the transportation sector is a pressing multiagency national priority (DOE/USDA/EERE). Currently, nearly all fuel ethanol is produced from corn-derived starch. Dedicated 'energy crops' and agricultural waste are preferred long-term solutions for renewable, cheap, and globally available biofuels as they avoid some of the market pressures and secondary greenhouse gas emission challenges currently facing corn ethanol. These sources of lignocellulosic biomass are converted to fermentable sugars using a variety of chemical and thermochemical pretreatments, which disrupt cellulose and lignin cross-links, allowing exogenously added recombinant microbial enzymes to more efficiently hydrolyze the cellulose for 'deconstruction' into glucose. This process is plagued with inefficiencies, primarily due to the recalcitrance of cellulosic biomass, mass transfer issues during deconstruction, and low activity of recombinant deconstruction enzymes. Costs are also high due to the requirement for enzymes and reagents, and energy-intensive cumbersome pretreatment steps. One potential solution to these problems is found in synthetic biology-engineered plants that self-produce a suite of cellulase enzymes. Deconstruction can then be integrated into a one-step process, thereby increasing efficiency (cellulose-cellulase mass-transfer rates) and reducing costs. The unique aspects of our approach are the rationally engineered enzymes which become Trojan horses during pretreatment conditions. During this study we rationally engineered Cazy enzymes and then integrated them into plant cells by multiple transformation techniques. The regenerated plants were assayed for first expression of these messages and then for the resulting proteins. The plants were then subjected to consolidated bioprocessing and characterized in detail. Our results and possible implications of this work on developing

  12. Soil nutrient budgets following projected corn stover harvest for biofuel production in the conterminous United States

    Science.gov (United States)

    Tan, Zhengxi; Liu, Shuguang

    2015-01-01

    Increasing demand for food and biofuel feedstocks may substantially affect soil nutrient budgets, especially in the United States where there is great potential for corn (Zea mays L) stover as a biofuel feedstock. This study was designed to evaluate impacts of projected stover harvest scenarios on budgets of soil nitrogen (N), phosphorus (P), and potassium (K) currently and in the future across the conterminous United States. The required and removed N, P, and K amounts under each scenario were estimated on the basis of both their average contents in grain and stover and from an empirical model. Our analyses indicate a small depletion of soil N (−4 ± 35 kg ha−1) and K (−6 ± 36 kg ha−1) and a moderate surplus of P (37 ± 21 kg ha−1) currently on the national average, but with a noticeable variation from state to state. After harvesting both grain and projected stover, the deficits of soil N, P, and K were estimated at 114–127, 26–27, and 36–53 kg ha−1 yr−1, respectively, in 2006–2010; 131–173, 29–32, and 41–96 kg ha−1 yr−1, respectively, in 2020; and 161–207, 35–39, and 51–111 kg ha−1 yr−1, respectively, in 2050. This study indicates that the harvestable stover amount derived from the minimum stover requirement for maintaining soil organic carbon level scenarios under current fertilization rates can be sustainable for soil nutrient supply and corn production at present, but the deficit of P and K at the national scale would become larger in the future.

  13. One-pot integrated biofuel production using low-cost biocompatible protic ionic liquids

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Jian; Konda, Murthy; Parthasarathi, Ramakrishnan; Dutta, Tanmoy; Valiev, Marat; Xu, Feng; Simmons, Blake A.; Singh, Seema

    2017-01-01

    The transformation of biomass into liquid fuels is of great importance. Previous work has demonstrated the capability of specific ionic liquids (ILs), such as 1-ethyl-3-methylimidazolium acetate ([C(2)C(1)Im][OAc]) and cholinium lysinate ([Ch][Lys]), to be effective biomass pretreatment solvents. Using these ILs for an integrated biomass-to-biofuel configuration is still challenging due to a significant water-wash related to the high toxicity of [C(2)C(1)Im][OAc] and pH adjustment prior to saccharification for the highly basic [Ch][Lys]. In this work, we demonstrate, for the first time, that a one-pot integrated biofuel production is enabled by a low cost (similar to$1 per kg) and biocompatible protic IL (PIL), ethanolamine acetate, without pH adjustments, water-wash and solid-liquid separations. After pretreatment, the whole slurry is directly used for simultaneous saccharification and fermentation (SSF) with commercial enzyme cocktails and wild type yeast strains, generating 70% of the theoretical ethanol yield (based on switchgrass). The structure-performance relationships of PILs in terms of lignin removal, net basicity, and pH value are systematically studied. A technoeconomic analysis (TEA) revealed that an integrated biorefinery concept based on this PIL process could potentially reduce the minimum ethanol selling price by more than 40% compared to scenarios that require pH adjustment prior to SSF. Improvement of the economic performance will be made by reducing the dilution and enzyme loading during SSF as identified by TEA. This study demonstrates the impact of a biocompatible IL in terms of process optimization and conversion efficiency, and opens up avenues for realizing an IL based efficiently integrated biomass conversion technology.

  14. Structure and dynamics of the microbial communities underlying the carboxylate platform for biofuel production

    Energy Technology Data Exchange (ETDEWEB)

    Hollister, Emily B.; Gentry, Terry J. [Texas A and M Univ., College Station, TX (United States). Dept. of Soil and Crop Sciences; Forrest, Andrea K.; Holtzapple, Mark T. [Texas A and M Univ., College Station, TX (United States). Dept. of Chemical Engineering; Wilkinson, Heather H.; Ebbole, Daniel J. [Texas A and M Univ., College Station, TX (United States). Dept. of Plant Pathology and Microbiology; Malfatti, Stephanie A.; Tringe, Susannah G. [DOE Joint Genome Institute, Walnut Creek, CA (United States)

    2010-09-15

    The carboxylate platform utilizes a mixed microbial community to convert lignocellulosic biomass into chemicals and fuels. While much of the platform is well understood, little is known about its microbiology. Mesophilic (40 C) and thermophilic (55 C) fermentations employing a sorghum feedstock and marine sediment inoculum were profiled using 16S rRNA tag-pyrosequencing over the course of a 30-day incubation. The contrasting fermentation temperatures converted similar amounts of biomass, but the mesophilic community was significantly more productive, and the two temperatures differed significantly with respect to propionic and butyric acid production. Pyrotag sequencing revealed the presence of dynamic communities that responded rapidly to temperature and changed substantially over time. Both temperatures were dominated by bacteria resembling Clostridia, but they shared few taxa in common. The species-rich mesophilic community harbored a variety of Bacteroidetes, Actinobacteria, and {gamma}-Proteobacteria, whereas the thermophilic community was composed mainly of Clostridia and Bacilli. Despite differences in composition and productivity, similar patterns of functional class dynamics were observed. Over time, organisms resembling known cellulose degraders decreased in abundance, while organisms resembling known xylose degraders increased. Improved understanding of the carboxylate platform's microbiology will help refine platform performance and contribute to our growing knowledge regarding biomass conversion and biofuel production processes. (orig.)

  15. Assessment of hydrothermal carbonization and coupling washing with torrefaction of bamboo sawdust for biofuels production.

    Science.gov (United States)

    Zhang, Shuping; Su, Yinhai; Xu, Dan; Zhu, Shuguang; Zhang, Houlei; Liu, Xinzhi

    2018-06-01

    Two kinds of biofuels were produced and compared from hydrothermal carbonization (HTC) and coupling washing with torrefaction (CWT) processes of bamboo sawdust in this study. The mass and energy yields, mass energy density, fuel properties, structural characterizations, combustion behavior and ash behavior during combustion process were investigated. Significant increases in the carbon contents resulted in the improvement of mass energy density and fuel properties of biofuels obtained. Both HTC and CWT improved the safety of the biofuels during the process of handling, storing and transportation. The ash-related issues of the biofuels were significantly mitigated and combustion behavior was remarkably improved after HTC and CWT processes of bamboo sawdust. In general, both HTC and CWT processes are suitable to produce biofuels with high fuel quality from bamboo sawdust. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Natural Gas and Cellulosic Biomass: A Clean Fuel Combination? Determining the Natural Gas Blending Wall in Biofuel Production.

    Science.gov (United States)

    M Wright, Mark; Seifkar, Navid; Green, William H; Román-Leshkov, Yuriy

    2015-07-07

    Natural gas has the potential to increase the biofuel production output by combining gas- and biomass-to-liquids (GBTL) processes followed by naphtha and diesel fuel synthesis via Fischer-Tropsch (FT). This study reflects on the use of commercial-ready configurations of GBTL technologies and the environmental impact of enhancing biofuels with natural gas. The autothermal and steam-methane reforming processes for natural gas conversion and the gasification of biomass for FT fuel synthesis are modeled to estimate system well-to-wheel emissions and compare them to limits established by U.S. renewable fuel mandates. We show that natural gas can enhance FT biofuel production by reducing the need for water-gas shift (WGS) of biomass-derived syngas to achieve appropriate H2/CO ratios. Specifically, fuel yields are increased from less than 60 gallons per ton to over 100 gallons per ton with increasing natural gas input. However, GBTL facilities would need to limit natural gas use to less than 19.1% on a LHV energy basis (7.83 wt %) to avoid exceeding the emissions limits established by the Renewable Fuels Standard (RFS2) for clean, advanced biofuels. This effectively constitutes a blending limit that constrains the use of natural gas for enhancing the biomass-to-liquids (BTL) process.

  17. Maximizing biofuel production in a thermochemical biorefinery by adding electrolytic hydrogen and by integrating torrefaction with entrained flow gasification

    DEFF Research Database (Denmark)

    Clausen, Lasse Røngaard

    2015-01-01

    double the biofuel production per biomass input by converting almost all of the carbon in the biomass feed to carbon stored in the biofuel product. Water or steam electrolysis can supply the hydrogen to the biorefinery and also the oxygen for the gasifier. This paper presents the design and thermodynamic...... analysis of two biorefineries integrating water electrolysis for the production of methanol. In both plants, torrefied woody biomass is supplied to an entrained flow gasifier, but in one of the plants, the torrefaction process occurs on-site, as it is integrated with the entrained flow gasification process......In a "conventional" thermochemical biorefinery, carbon is emitted from the plant in the form of CO2 to make the synthesis gas from the gasifier suitable for fuel production. The alternative to this carbon removal is to add hydrogen to the plant. By adding hydrogen, it is possible to more than...

  18. Hydrothermal treatment of oleaginous yeast for the recovery of free fatty acids for use in advanced biofuel production.

    Science.gov (United States)

    Espinosa-Gonzalez, Isabel; Parashar, Archana; Bressler, David C

    2014-10-10

    Microbial oils hold great potential as a suitable feedstock for the renewable production of biofuels. Specifically, the use of oleaginous yeasts offers several advantages related to cultivation and quality of lipid products. However, one of the major bottlenecks for large-scale production of yeast oils is found in the lipid extraction process. This work investigated the hydrothermal treatment of oleaginous yeast for hydrolysis and lipid extraction resulting in fatty acids used for biofuel production. The oleaginous yeast, Cryptococcus curvatus, was grown in 5 L bioreactors and the biomass slurry with 53±4% lipid content (dry weight basis) was treated at 280 °C for 1h with an initial pressure of 500 psi in batch stainless steel reactors. The hydrolysis product was separated and each of the resulting streams was further characterized. The hexane soluble fraction contained fatty acids from the hydrolysis of yeast triacylglycerides, and was low in nitrogen and minerals and could be directly integrated as feedstock into pyrolysis processing to produce biofuels. The proposed hydrothermal treatment addresses some current technological bottlenecks associated with traditional methodologies such as dewatering, oil extraction and co-product utilization. It also enhances the feasibility of using microbial biomass for production of renewable fuels and chemicals. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Biofuel production and climate mitigation potential from marginal lands in US North Central region

    Science.gov (United States)

    Gelfand, I.; Sahajpal, R.; Zhang, X.; Izaurralde, R. C.; Robertson, G. P.

    2010-12-01

    An ever-increasing demand for liquid fuels, amidst concerns of anthropogenic impacts on the environment and fossil fuels availability, has spurred a strong interest in the development of agriculturally-based renewable energy sources. However, increasing demand for food as well as direct and indirect effects on land use, have raised concerns about reliance on grain-based ethanol and shifted research towards the direction of cellulosic feedstocks. In order to understand the future possibility for using agricultural systems for bio-fuel production, we present here a full greenhouse gas (GHG) balance of six potential sources of cellulosic feedstocks production. From 1991 to 2008, we measured GHGs sinks and sources in cropped and nearby unmanaged ecosystems in SW Michigan. The measurements included soil fluxes of GHGs (N2O and CH4), soil organic carbon concentration change, agronomic practices data, and biomass yields. We analyzed two types of intensively managed annual cropping systems under corn-soybean-wheat rotation (conventional tillage and no till), two perennial systems (alfalfa and poplar plantation), and one successional system. The use of agricultural residues for biofuel feedstock from conventionally-tilled crops had the lowest climate stabilization potential (-9 ±13 gCO2e m-2 y-1). In contrast, biomass collected from a successional system fertilized with N at123 kg ha-1y-1 showed the highest climate stabilization potential (-749 ±30 gCO2e m-2 y-1). We used our results to parameterize the EPIC model, which, together with GIS analysis was used to scale up the biomass productivity of the best environmentally performing systems to the marginal lands of the 10-state U.S. North Central region. Assuming 80 km as the maximum distance for road haulage to the biorefinery from the field, we identified 32 potential biorefinery placements each capable of supplying sufficient feedstock to produce at least 133 × 106 L y-1. In total, ethanol production from marginal

  20. Field emissions of N2O during biomass production may affect the sustainability of agro-biofuels

    DEFF Research Database (Denmark)

    Carter, Mette Sustmann; Hauggaard-Nielsen, Henrik; Heiske, Stefan

    of biomass to biofuel. The scenarios are 1) bioethanol, 2) biogas and 3) co‐production of bioethanol and biogas. In scenarios 3, the biomass is first used for bioethanol fermentation and subsequently the residue from this process is utilized for biogas production. The net reduction in greenhouse gas...... and biogas or by biogas alone produced from either fresh grass‐clover or whole crop maize. Here the net reduction corresponded to about 8 tons CO2 ha‐1 yr‐1....

  1. Biofuels - the UFIP position

    International Nuclear Information System (INIS)

    2004-01-01

    Since 2003 a directive promote the biofuels use. The industry is then using them in ETBE (Ethyl Tertio Butyl Ether) fuels and in diesel oil of vegetal oils esters EMHV. Meanwhile some of them present technical difficulties and must free themselves from fiscal incentives which make them competitive. For these reasons, the UFIP (french union of petroleum industries) do not agree their obligatory incorporation. (A.L.B.)

  2. Selection of native Tunisian microalgae for simultaneous wastewater treatment and biofuel production.

    Science.gov (United States)

    Jebali, A; Acién, F G; Gómez, C; Fernández-Sevilla, J M; Mhiri, N; Karray, F; Dhouib, A; Molina-Grima, E; Sayadi, S

    2015-12-01

    This paper focuses on the selection of native microalgae strains suitable for wastewater treatment and biofuel production. Four Chlorophyceae strains were isolated from North-eastern Tunisia. Their performances were compared in continuous mode at a 0.3 1/day dilution rate. The biomass productivity and nutrient removal capacity of each microalgae strain were studied. The most efficient strain was identified as Scenedesmus sp. and experiments at different dilution rates from 0.2 to 0.8 1/day were carried out. Maximal biomass productivity of 0.9 g/L day was obtained at 0.6 1/day. The removal of chemical oxygen demand (COD), ammonium and phosphorus was in the range of 92-94%, 61-99% and 93-99%, respectively. Carbohydrates were the major biomass fraction followed by lipids and then proteins. The saponifiable fatty acid content was in the 4.9-13.2% dry biomass range, with more than 50% of total fatty acids being composed of saturated and monosaturated fatty acids. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Directed evolution of a cellodextrin transporter for improved biofuel production under anaerobic conditions in Saccharomyces cerevisiae.

    Science.gov (United States)

    Lian, Jiazhang; Li, Yanglin; HamediRad, Mohammad; Zhao, Huimin

    2014-08-01

    Introduction of a cellobiose utilization pathway consisting of a cellodextrin transporter and a β-glucosidase into Saccharomyces cerevisiae enables co-fermentation of cellobiose and xylose. Cellodextrin transporter 1 (CDT1) from Neurospora crassa has been established as an effective transporter for the engineered cellobiose utilization pathways. However, cellodextrin transporter 2 (CDT2) from the same species is a facilitator and has the potential to be more efficient than CDT1 under anaerobic conditions due to its energetic benefits. Currently, CDT2 has a very low activity and is considered rate-limiting in cellobiose fermentation. Here, we report the directed evolution of CDT2 with an increased cellobiose uptake activity, which results in improved cellobiose fermentation under anaerobic conditions. After three rounds of directed evolution, the cellobiose uptake activity of CDT2 was increased by 2.2-fold, which resulted from both increased specific activity and transporter expression level. Using high cell density fermentation under anaerobic conditions, the evolved mutant conferred 4.0- and 4.4-fold increase in the cellobiose consumption rate and ethanol productivity, respectively. In addition, although the cellobiose uptake activity was still lower than that of CDT1, the engineered CDT2 showed significantly improved cellobiose consumption and ethanol production under anaerobic conditions, representing the energetic benefits of a sugar facilitator for anaerobic cellobiose fermentation. This study demonstrated that anaerobic biofuel production could be significantly improved via directed evolution of a sugar transporter protein in yeast. © 2014 Wiley Periodicals, Inc.

  4. Heterologous Expression of Plant Cell Wall Degrading Enzymes for Effective Production of Cellulosic Biofuels

    Science.gov (United States)

    Jung, Sang-Kyu; Parisutham, Vinuselvi; Jeong, Seong Hun; Lee, Sung Kuk

    2012-01-01

    A major technical challenge in the cost-effective production of cellulosic biofuel is the need to lower the cost of plant cell wall degrading enzymes (PCDE), which is required for the production of sugars from biomass. Several competitive, low-cost technologies have been developed to produce PCDE in different host organisms such as Escherichia coli, Zymomonas mobilis, and plant. Selection of an ideal host organism is very important, because each host organism has its own unique features. Synthetic biology-aided tools enable heterologous expression of PCDE in recombinant E. coli or Z. mobilis and allow successful consolidated bioprocessing (CBP) in these microorganisms. In-planta expression provides an opportunity to simplify the process of enzyme production and plant biomass processing and leads to self-deconstruction of plant cell walls. Although the future of currently available technologies is difficult to predict, a complete and viable platform will most likely be available through the integration of the existing approaches with the development of breakthrough technologies. PMID:22911272

  5. A roadmap for biofuels...

    NARCIS (Netherlands)

    Faaij, A.P.C.|info:eu-repo/dai/nl/10685903X; Londo, H.M.

    2009-01-01

    Biofuels have been in the eye of the storm, in particular since 2008, when the food crisis was considered by many to be caused by the increased production of biofuels. Heavy criticism in public media made various governments, including the European Commission, reconsider their targets and ambitions

  6. Engineering the push and pull of lipid biosynthesis in oleaginous yeast Yarrowia lipolytica for biofuel production.

    Science.gov (United States)

    Tai, Mitchell; Stephanopoulos, Gregory

    2013-01-01

    Microbial oil production by heterotrophic organisms is a promising path for the cost-effective production of biofuels from renewable resources provided high conversion yields can be achieved. To this end, we have engineered the oleaginous yeast Yarrowia lipolytica. We first established an expression platform for high expression using an intron-containing translation elongation factor-1α (TEF) promoter and showed that this expression system is capable of increasing gene expression 17-fold over the intronless TEF promoter. We then used this platform for the overexpression of diacylglycerol acyltransferase (DGA1), the final step of the triglyceride (TAG) synthesis pathway, which yielded a 4-fold increase in lipid production over control, to a lipid content of 33.8% of dry cell weight (DCW). We also show that the overexpression of acetyl-CoA carboxylase (ACC1), the first committed step of fatty acid synthesis, increased lipid content 2-fold over control, or 17.9% lipid content. Next we combined the two genes in a tandem gene construct for the simultaneous coexpression of ACC1 and DGA1, which further increased lipid content to 41.4%, demonstrating synergistic effects of ACC1+DGA1 coexpression. The lipid production characteristics of the ACC1+DGA1 transformant were explored in a 2-L bioreactor fermentation, achieving 61.7% lipid content after 120h. The overall yield and productivity were 0.195g/g and 0.143g/L/h, respectively, while the maximum yield and productivity were 0.270g/g and 0.253g/L/h during the lipid accumulation phase of the fermentation. This work demonstrates the excellent capacity for lipid production by the oleaginous yeast Y. lipolytica and the effects of metabolic engineering of two important steps of the lipid synthesis pathway, which acts to divert flux towards the lipid synthesis and creates driving force for TAG synthesis. Copyright © 2012 Elsevier Inc. All rights reserved.

  7. The significance of nitrous oxide emission due to cropping of grain for biofuel production: a Swedish perspective

    Directory of Open Access Journals (Sweden)

    Å. Kasimir Klemedtsson

    2011-12-01

    Full Text Available The current regulations governing production of biofuels in the European Union require that they have to mitigate climate change, by producing >35% less greenhouse gases (GHG than fossil fuels. There is a risk that this may not be achievable, since land use for crop production inevitably emits the potent GHG nitrous oxide (N2O, due to nitrogen fertilisation and cycling in the environment. We analyse first-generation biofuel production on agricultural land and conclude that efficient agricultural crop production resulting in a good harvest and low N2O emission can fulfil the EU standard, and is possible under certain conditions for the Swedish agricultural and bioethanol production systems. However, in years having low crop yields, and where cropping is on organic soils, total GHG emissions per unit of fuel produced can be even higher than those released by burning of fossil fuels. In general, the N2O emission size in Sweden and elsewhere in northern Europe is such that there is a >50% chance that the 35% saving requirement will not be met. Thus ecosystem N2O emissions have to be convincingly assessed. Here we compare Swedish emission data with values estimated by means of statistical models and by a global, top-down, approach; the measurements and the predictions often show higher values that would fail to meet the EU standard and thus prevent biofuel production development.

  8. Washington State Biofuels Industry Development

    Energy Technology Data Exchange (ETDEWEB)

    Gustafson, Richard [Univ. of Washington, Seattle, WA (United States)

    2017-04-09

    The funding from this research grant enabled us to design, renovate, and equip laboratories to support University of Washington biofuels research program. The research that is being done with the equipment from this grant will facilitate the establishment of a biofuels industry in the Pacific Northwest and enable the University of Washington to launch a substantial biofuels and bio-based product research program.

  9. Oleaginous fungal lipid fermentation on combined acid- and alkali-pretreated corn stover hydrolysate for advanced biofuel production.

    Science.gov (United States)

    Ruan, Zhenhua; Zanotti, Michael; Archer, Steven; Liao, Wei; Liu, Yan

    2014-07-01

    A combined hydrolysis process, which first mixed dilute acid- and alkali-pretreated corn stover at a 1:1 (w/w) ratio, directly followed by enzymatic saccharification without pH adjustment, has been developed in this study in order to minimize the need of neutralization, detoxification, and washing during the process of lignocellulosic biofuel production. The oleaginous fungus Mortierella isabellina was selected and applied to the combined hydrolysate as well as a synthetic medium to compare fungal lipid accumulation and biodiesel production in both shake flask and 7.5L fermentor. Fungal cultivation on combined hydrolysate exhibited comparable cell mass and lipid yield with those from synthetic medium, indicating that the integration of combined hydrolysis with oleaginous fungal lipid fermentation has great potential to improve performance of advanced lignocellulosic biofuel production. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Mandates, buyouts and fuel-tax rebates: Some economic aspects of biofuel policies using the UK as an example

    International Nuclear Information System (INIS)

    Swinbank, Alan; Tranter, Richard; Jones, Philip

    2011-01-01

    Many governments mandate the blending of biofuels with fossil fuel supplies. The paper raises the possibility that some firms might choose not to respect such mandates, and cites the UK's experience, where a buyout of the obligation is possible. A simple economic framework is then used to explore some implications of mandate buyouts, including situations when buyouts and road-fuel-tax rebates are applied together. Finally, it discusses the design of buyout-mandate schemes that could release raw materials from biofuel production, following a future world food price shock. - Research Highlights: → Many governments mandate the blending of biofuels with fossil fuels. → Some allow firms to buyout the obligation. → Buyouts change the economic incentives firms face. → We use an economic framework to analyse buyouts of biofuel mandates. → Buyouts could alleviate the impact of biofuel mandates on rising food prices.

  11. Life cycle assessment of energy products: environmental impact assessment of biofuels; Oekobilanz von Energieprodukten: Oekologische Bewertung von Biotreibstoffen

    Energy Technology Data Exchange (ETDEWEB)

    Zah, R.; Boeni, H.; Gauch, M.; Hischier, R.; Lehmann, M.; Waeger, P.

    2007-05-15

    This final report for the Swiss Federal Office of Energy (SFOE) deals with the results of a study that evaluated the environmental impact of the entire production chain of fuels made from biomass and used in Switzerland. Firstly, the study supplies an analysis of the possible environmental impacts of biofuels that can be used as a basis for political decisions. Secondly, an environmental life cycle assessment (LCA) of various biofuels is presented. In addition, the impacts of fuel use are compared with other uses for bioenergy such as the generation of electricity and heat. The methods used in the LCA are discussed, including the Swiss method of ecological scarcity (Environmental Impact Points, UBP 06), and the European Eco-indicator 99 method. The results of the study are discussed, including the finding that not all biofuels can reduce environmental impacts as compared to fossil fuels. The role to be played by biofuels produced in an environmentally-friendly way together with other forms of renewable energy in our future energy supply is discussed.

  12. Effects of Environmental Factors and Nutrient Availability on the Biochemical Composition of Algae for Biofuels Production: A Review

    Directory of Open Access Journals (Sweden)

    Ganti S. Murthy

    2013-09-01

    Full Text Available Due to significant lipid and carbohydrate production as well as other useful properties such as high production of useful biomolecular substrates (e.g., lipids and the ability to grow using non-potable water sources, algae are being explored as a potential high-yield feedstock for biofuels production. In both natural and engineered systems, algae can be exposed to a variety of environmental conditions that affect growth rate and cellular composition. With respect to the latter, the amount of carbon fixed in lipids and carbohydrates (e.g., starch is highly influenced by environmental factors and nutrient availability. Understanding synergistic interactions between multiple environmental variables and nutritional factors is required to develop sustainable high productivity bioalgae systems, which are essential for commercial biofuel production. This article reviews the effects of environmental factors (i.e., temperature, light and pH and nutrient availability (e.g., carbon, nitrogen, phosphorus, potassium, and trace metals as well as cross-interactions on the biochemical composition of algae with a special focus on carbon fixation and partitioning of carbon from a biofuels perspective.

  13. Amino acid catabolism-directed biofuel production inClostridium sticklandii:An insight into model-driven systems engineering.

    Science.gov (United States)

    Sangavai, C; Chellapandi, P

    2017-12-01

    Model-driven systems engineering has been more fascinating process for the microbial production of biofuel and bio-refineries in chemical and pharmaceutical industries. Genome-scale modeling and simulations have been guided for metabolic engineering of Clostridium species for the production of organic solvents and organic acids. Among them, Clostridium sticklandii is one of the potential organisms to be exploited as a microbial cell factory for biofuel production. It is a hyper-ammonia producing bacterium and is able to catabolize amino acids as important carbon and energy sources via Stickland reactions and the development of the specific pathways. Current genomic and metabolic aspects of this bacterium are comprehensively reviewed herein, which provided information for learning about protein catabolism-directed biofuel production. It has a metabolic potential to drive energy and direct solventogenesis as well as acidogenesis from protein catabolism. It produces by-products such as ethanol, acetate, n -butanol, n -butyrate and hydrogen from amino acid catabolism. Model-driven systems engineering of this organism would improve the performance of the industrial sectors and enhance the industrial economy by using protein-based waste in environment-friendly ways.

  14. Generating a geospatial database of U.S. regional feedstock production for use in evaluating the environmental footprint of biofuels.

    Science.gov (United States)

    Holder, Christopher T; Cleland, Joshua C; LeDuc, Stephen D; Andereck, Zac; Hogan, Chris; Martin, Kristen M

    2016-04-01

    The potential environmental effects of increased U.S. biofuel production often vary depending upon the location and type of land used to produce biofuel feedstocks. However, complete, annual data are generally lacking regarding feedstock production by specific location. Corn is the dominant biofuel feedstock in the U.S., so here we present methods for estimating where bioethanol corn feedstock is grown annually and how much is used by U.S. ethanol biorefineries. We use geospatial software and publicly available data to map locations of biorefineries, estimate their corn feedstock requirements, and estimate the feedstock production locations and quantities. We combined these data and estimates into a Bioethanol Feedstock Geospatial Database (BFGD) for years 2005-2010. We evaluated the performance of the methods by assessing how well the feedstock geospatial model matched our estimates of locally-sourced feedstock demand. On average, the model met approximately 89 percent of the total estimated local feedstock demand across the studied years-within approximately 25-to-40 kilometers of the biorefinery in the majority of cases. We anticipate that these methods could be used for other years and feedstocks, and can be subsequently applied to estimate the environmental footprint of feedstock production. Methods used to develop the Bioethanol Feedstock Geospatial Database (BFGD) provide a means of estimating the amount and location of U.S. corn harvested for use as U.S. bioethanol feedstock. Such estimates of geospatial feedstock production may be used to evaluate environmental impacts of bioethanol production and to identify conservation priorities. The BFGD is available for 2005-2010, and the methods may be applied to additional years, locations, and potentially other biofuels and feedstocks.

  15. Waste-to-Energy Biofuel Production Potential for Selected Feedstocks in the Conterminous United States

    Energy Technology Data Exchange (ETDEWEB)

    Skaggs, Richard; Coleman, Andre; Seiple, Timothy E.; Milbrandt, Anelia

    2018-02-03

    Waste-to-Energy (WtE) technologies offer the promise of diverting organic wastes, including wastewater sludge, livestock waste, and food waste, for beneficial energy use while reducing the quantities of waste that are disposed or released to the environment. To ensure economic and environmental viability of WtE feedstocks, it is critical to gain an understanding of the spatial and temporal variability of waste production. Detailed information about waste characteristics, capture/diversion, transport requirements, available conversion technologies and overall energy conversion efficiency is also required. Building on the development of a comprehensive WtE feedstock database that includes municipal wastewater sludge; animal manure; food processing waste; and fats, oils, and grease for the conterminous United States, we conducted a detailed analysis of the wastes’ potential for biofuel production on a site-specific basis. Our analysis indicates that with conversion by hydrothermal liquefaction, these wastes have the potential to produce up to 22.3 GL/y (5.9 BG/y) of a bio-crude oil intermediate that can be upgraded and refined into a variety of liquid fuels, in particular renewable diesel and aviation kerosene. Conversion to aviation kerosene can potentially meet 23.9% of current U.S. demand.

  16. Radionuclide concentration in fuels and ash products from biofuel heating plants

    Energy Technology Data Exchange (ETDEWEB)

    Erlandsson, B. [Lund Univ. (Sweden). Dept. of Nuclear Physics; Hedvall, R. [Lund Univ. (Sweden). Dept. of Radiation Physics; Mattsson, S. [Lund Univ., Malmoe (Sweden). Dept. of Radiation Physics

    1995-12-01

    The activity concentration of the radionuclides K-40, Ac-228, Pa-234, Mn-54, Co-60, Zr-95, Ru-106, Ag-110m, Sb-125, Cs-134, Cs-137 and Ce-144 have been investigated in peat wood chips and ash products from 13 Swedish district heating plants during the winter seasons of 1986/1987, 1988/89, 1989/90 and 1990/91. There is a significant decrease in the activity concentration of Cs-137 in the fuel which is especially pronounced between the first two seasons, 86/87 and 88/89 after the Chernobyl accident. In spite of the varying deposition of Cs-137 over the country it has been possible to give a relation between the activity concentration in the peat and wood chips as a function of the deposition. The Swedish biofuel heating plants of which 35-40 are burning peat and 70-75 chips have been divided in three groups according to the activity concentration in the ash products. The mean Cs-137 concentration in ash and the total activity `produced` per year in Sweden have been calculated. The maximum concentration in air at ground level and the corresponding effective dose rate of inhaled Cs-137 as a function of the emission rates of flue gases from stacks with varying heights and during different weather conditions has been calculated. 16 refs, 18 tabs, 4 figs.

  17. Ionizing Radiation Conversion of Lignocellulosic Biomass from Sugarcane Bagasse to Production Ethanol Biofuel

    International Nuclear Information System (INIS)

    Duarte, C.L.; Mori, M.N.; Oikawa, H.; Finguerut, J.; Galvão, A.; Nagatomi, H.R.; Célia, M.

    2010-01-01

    Sugarcane bagasse has been considered as a substrate for single cell protein, animal feed, and renewable energy production. Sugarcane bagasse generally contain up to 45% glucose polymer cellulose, 40% hemicelluloses, and 20% lignin. Pure cellulose is readily depolymerised by radiation, but in biomass, the cellulose is intimately bonded with lignin, that protect it from radiation effects. The objective of this study is the evaluation of the electron beam irradiation as a pre-treatment to enzymatic hydrolysis of cellulose in order to facilitate its fermentation and improves the production of ethanol biofuel. Samples of sugarcane bagasse were obtained in sugar/ethanol Iracema Mill sited in Piracicaba, Brazil, and were irradiated using Radiation Dynamics Electron Beam Accelerator with 1.5 MeV energy and 37kW, in batch systems. The applied absorbed doses of the fist sampling, Bagasse A, were 20 kGy, 50 kGy, 100 kGy and 200 kGy. After the evaluation the preliminary obtained results, it was applied lower absorbed doses in the second assay: 5 kGy, 10 kGy, 20 kGy, 30 kGy, 50 kGy, 70 kGy, 100 kGy and 150 kGy. The electron beam processing took to changes in the sugarcane bagasse structure and composition, lignin and cellulose cleavage. The yield of enzymatic hydrolyzes of cellulose increase about 75 % with 30 kGy of absorbed dose. (author)

  18. Biomass logistics analysis for large scale biofuel production: case study of loblolly pine and switchgrass.

    Science.gov (United States)

    Lu, Xiaoming; Withers, Mitch R; Seifkar, Navid; Field, Randall P; Barrett, Steven R H; Herzog, Howard J

    2015-05-01

    The objective of this study was to assess the costs, energy consumption and greenhouse gas (GHG) emissions throughout the biomass supply chain for large scale biofuel production. Two types of energy crop were considered, switchgrass and loblolly pine, as representative of herbaceous and woody biomass. A biomass logistics model has been developed to estimate the feedstock supply system from biomass production through transportation. Biomass in the form of woodchip, bale and pellet was investigated with road, railway and waterway transportation options. Our analysis indicated that the farm or forest gate cost is lowest for loblolly pine whole tree woodchip at $39.7/dry tonne and highest for switchgrass round bale at $72.3/dry tonne. Switchgrass farm gate GHG emissions is approximately 146kgCO2e/dry tonne, about 4 times higher than loblolly pine. The optimum biomass transportation mode and delivered form are determined by the tradeoff between fixed and variable costs for feedstock shipment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Production of bio-fuel ethanol from distilled grain waste eluted from Chinese spirit making process.

    Science.gov (United States)

    Tan, Li; Sun, Zhaoyong; Zhang, Wenxue; Tang, Yueqin; Morimura, Shigeru; Kida, Kenji

    2014-10-01

    Distilled grain waste eluted from Chinese spirit making is rich in carbohydrates, and could potentially serve as feedstock for the production of bio-fuel ethanol. Our study evaluated two types of saccharification methods that convert distilled grain waste to monosaccharides: enzymatic saccharification and concentrated H2SO4 saccharification. Results showed that enzymatic saccharification performed unsatisfactorily because of inefficient removal of lignin during pretreatment. Concentrated H2SO4 saccharification led to a total sugar recovery efficiency of 79.0 %, and to considerably higher sugar concentrations than enzymatic saccharification. The process of ethanol production from distilled grain waste based on concentrated H2SO4 saccharification was then studied. The process mainly consisted of concentrated H2SO4 saccharification, solid-liquid separation, decoloration, sugar-acid separation, oligosaccharide hydrolysis, and continuous ethanol fermentation. An improved simulated moving bed system was employed to separate sugars from acid after concentrated H2SO4 saccharification, by which 95.8 % of glucose and 85.8 % of xylose went into the sugar-rich fraction, while 83.3 % of H2SO4 went into the acid-rich fraction. A flocculating yeast strain, Saccharomyces cerevisiae KF-7, was used for continuous ethanol fermentation, which produced an ethanol yield of 91.9-98.9 %, based on glucose concentration.

  20. Comparison of the incentives used to stimulate energy production in Japan, France, West Germany, and the United States

    Energy Technology Data Exchange (ETDEWEB)

    Cole, R.J.; Sommers, P.; Eschbach, C.; Sheppard, W.J.; Lenerz, D.E.; Huelshoff, M.; Marcus, A.A.

    1981-09-01

    This volume represents the culmination of a five-year research effort examining the incentives used to stimulate energy production in four countries, and the incentives used to stimulate energy consumption in one country. Following the theoretical approach developed for studying US energy incentives, the researchers in each country classified incentives into the following six categories: (1) Taxation, including exemption from or reduction of existing taxes; (2) Disbursements, in which the national government distributes money without requiring anything in return; (3) Requirements, including demands made by the government, backed by civil or criminal sanctions; (4) Traditional Services, including those almost always provided exclusively by a governmental entity; (5) Nontraditional Services, including those sometimes performed by non-governmental entities, as well as governmental entities (e.g., research and development); and (6) Market Activities, including government involvement in the market under conditions similar to those faced by non-governmental producers or consumers. A complete list of research reports prepared in the Federal Incentives series is provided in the Appendix.

  1. Incentive systems for food quality control with repeated deliveries: Salmonella control in pork production

    NARCIS (Netherlands)

    King, R.P.; Backus, G.B.C.; Gaag, van der M.A.

    2007-01-01

    This paper presents a dynamic principal-agent analysis of incentive systems for Salmonella control. The European Union will require Salmonella testing from 2008. On the basis of the producer's performance history in controlling Salmonella, the incentive systems analysed determine quality premiums to

  2. Characterization of microalga Nannochloropsis sp. mutants for improved production of biofuels

    International Nuclear Information System (INIS)

    Anandarajah, Kandiah; Mahendraperumal, Guruvaiah; Sommerfeld, Milton; Hu, Qiang

    2012-01-01

    Highlights: ► Growth/fatty acid content difference of Nannochloropsis sp and its’ wild type. ► Alga cultured with 1% CO 2 in two light conditions 140 and 300 μmol photons m −2 s −1 . ► Growth in biomass/chlorophyll/lipid content is higher in higher light conditions. ► Mutant LARB-202-3 had better growth and lipid content compared to other two mutants. ► The LARB-202-3 mutant is a candidate for feed stock for biofuels production. -- Abstract: To select microalgae with a high biomass, chlorophyll a, lipid, and fatty acid content of two mutants (LARB-202-2 and LARB-202-3) and their parent wild type of the unicellular green alga Nannochloropsis sp were cultured with air containing 1% CO 2 for a week in 1 L bubbled tubes with continuous illumination at 140 or 300 μmol photons m −2 s −1 . Overall biomass productivity of all three strains were higher under high light (HL, 300 μmol photons m −2 s −1 ) with LARB-202-3 achieving the highest volumetric productivity (0.9 g L −1 d −1 ) and parent wild type the lowest (0.72 g L −1 d −1 ) when cultured for 6 days with medium nitrogen level. Biomass productivity of all three strains were substantially low in response to low light (LL, 140 μmol photons m −2 s −1 ) growth conditions. However, LARB-202-3 showed the highest biomass productivity (0.74 g L −1 d −1 ) under LL conditions too. LARB-202-3 possessed high photosynthetic productivity as measured by chlorophyll a (Chl a) content under HL conditions throughout the growth period. The content of Chl a declined gradually in all three tested strains over time. Volumetric productivity of biomass was closely associated with the cellular content of Chl a. Total lipid productivity of LARB-202-2 and LARB-202-3 grown in low nitrogen media for 12 days were 273 and 297 mg L −1 d −1 , respectively, while that of wild type parent was 244 mg L −1 d −1 . Major medium chain fatty acids (e.g. C14:0 and C16:0) make up nearly 63% of total fatty

  3. Biofuels and sustainability.

    Science.gov (United States)

    Solomon, Barry D

    2010-01-01

    Interest in liquid biofuels production and use has increased worldwide as part of government policies to address the growing scarcity and riskiness of petroleum use, and, at least in theory, to help mitigate adverse global climate change. The existing biofuels markets are dominated by U.S. ethanol production based on cornstarch, Brazilian ethanol production based on sugarcane, and European biodiesel production based on rapeseed oil. Other promising efforts have included programs to shift toward the production and use of biofuels based on residues and waste materials from the agricultural and forestry sectors, and perennial grasses, such as switchgrass and miscanthus--so-called cellulosic ethanol. This article reviews these efforts and the recent literature in the context of ecological economics and sustainability science. Several common dimensions for sustainable biofuels are discussed: scale (resource assessment, land availability, and land use practices); efficiency (economic and energy); equity (geographic distribution of resources and the "food versus fuel" debate); socio-economic issues; and environmental effects and emissions. Recent proposals have been made for the development of sustainable biofuels criteria, culminating in standards released in Sweden in 2008 and a draft report from the international Roundtable on Sustainable Biofuels. These criteria hold promise for accelerating a shift away from unsustainable biofuels based on grain, such as corn, and toward possible sustainable feedstock and production practices that may be able to meet a variety of social, economic, and environmental sustainability criteria.

  4. Research and development for algae-based technologies in Korea: a review of algae biofuel production.

    Science.gov (United States)

    Hong, Ji Won; Jo, Seung-Woo; Yoon, Ho-Sung

    2015-03-01

    This review covers recent research and development (R&D) activities in the field of algae-based biofuels in Korea. As South Korea's energy policy paradigm has focused on the development of green energies, the government has funded several algae biofuel R&D consortia and pilot projects. Three major programs have been launched since 2009, and significant efforts are now being made to ensure a sustainable supply of algae-based biofuels. If these R&D projects are executed as planned for the next 10 years, they will enable us to overcome many technical barriers in algae biofuel technologies and help Korea to become one of the leading countries in green energy by 2020.

  5. SAFARI 2000 Gas Emissions from Biofuel Use and Production, September 2000

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: Domestic biomass fuels (biofuels) are estimated to be the second largest source of carbon emissions from global biomass burning. Wood and charcoal provide...

  6. SAFARI 2000 Gas Emissions from Biofuel Use and Production, September 2000

    Data.gov (United States)

    National Aeronautics and Space Administration — Domestic biomass fuels (biofuels) are estimated to be the second largest source of carbon emissions from global biomass burning. Wood and charcoal provide...

  7. Positive aspects issued from bio corrosion studies: from hydrogen production to biofuel cells

    International Nuclear Information System (INIS)

    Silva Munoz, L. de

    2007-12-01

    Microbially influenced corrosion or bio corrosion is a problem that generates heavy global economic losses (several billion euros per year). In spite of the progress made on the understanding of the underlying mechanisms, the complexity of the phenomenon has prevented finding definitive solutions to the problem and continues to inspire many research works. The participation in bio corrosion of catalytic mechanisms induced by weak acids was studied in this work. Another objective of the thesis has been to take advantage from catalytic phenomena found in bio corrosion research to apply them in other areas: energy production with biofuel cells or electrochemical hydrogen production in mild conditions. This work has shown that the presence of weak acids and amino acids inside bio-films could play a major role in steel bio corrosion accelerating the phenomenon through the catalysis of the water reduction reaction. The reversibility of this mechanism, discerned and proved here, could explain the corrosion increase when hydrogen is removed (bacterial consumption, agitation...). In addition, phosphates allow the production of hydrogen by electrolysis in mild pH conditions (pH 4.0 - 8.0) with an equal or better performance than those found in alkaline electrolysis. Finally, industrial materials like stainless steel and titanium could be used in the fabrication of enzymatic electrodes for biosensors or microsystems. The use of the glucose oxidase/glucose system in an aqueous fuel cell with a stainless steel cathode, allows the improvement of the cell performance thanks to the production of hydrogen peroxide that is easily reduced. Moreover, the use of materials with micro-structured surfaces like sandblasted steels deserve to be studied in detail to exploit the remarkable reactivity they present compared to smooth electrodes. (author)

  8. Positive aspects issued from bio-corrosion studies: from hydrogen production to biofuel cells

    International Nuclear Information System (INIS)

    De Silva Munoz, Leonardo

    2007-01-01

    Microbially influenced corrosion or bio-corrosion is a problem that generates heavy global economic losses (several billion euros per year). In spite of the progress made on the understanding of the underlying mechanisms, the complexity of the phenomenon has prevented finding definitive solutions to the problem and continues to inspire many research works. The participation in bio-corrosion of catalytic mechanisms induced by weak acids was studied in this work. Another objective of the thesis has been to take advantage from catalytic phenomena found in bio corrosion research to apply them in other areas: energy production with biofuel cells or electrochemical hydrogen production in mild conditions. This work has shown that the presence of weak acids and amino acids inside bio films could play a major role in steel bio-corrosion accelerating the phenomenon through the catalysis of the water reduction reaction. The reversibility of this mechanism, discerned and proved here, could explain the corrosion increase when hydrogen is removed (bacterial consumption, agitation...). In addition, phosphates allow the production of hydrogen by electrolysis in mild ph conditions (pH 4.0 - 8.0) with an equal or better performance than those found in alkaline electrolysis. Finally, industrial materials like stainless steel and titanium could be used in the fabrication of enzymatic electrodes for biosensors or microsystems. The use of the glucose oxidase / glucose system in an aqueous fuel cell with a stainless steel cathode, allows the improvement of the cell performance thanks to the production of hydrogen peroxide that is easily reduced. Moreover, the use of materials with micro-structured surfaces like sandblasted steels deserve to be studied in detail to exploit the remarkable reactivity they present compared to smooth electrodes. (author) [fr

  9. Engineering plastid fatty acid biosynthesis to improve food quality and biofuel production in higher plants.

    Science.gov (United States)

    Rogalski, Marcelo; Carrer, Helaine

    2011-06-01

    The ability to manipulate plant fatty acid biosynthesis by using new biotechnological approaches has allowed the production of transgenic plants with unusual fatty acid profile and increased oil content. This review focuses on the production of very long chain polyunsaturated fatty acids (VLCPUFAs) and the increase in oil content in plants using molecular biology tools. Evidences suggest that regular consumption of food rich in VLCPUFAs has multiple positive health benefits. Alternative sources of these nutritional fatty acids are found in cold-water fishes. However, fish stocks are in severe decline because of decades of overfishing, and also fish oils can be contaminated by the accumulation of toxic compounds. Recently, there is also an increase in oilseed use for the production of biofuels. This tendency is partly associated with the rapidly rising costs of petroleum, increased concern about the environmental impact of fossil oil and the attractive need to develop renewable sources of fuel. In contrast to this scenario, oil derived from crop plants is normally contaminant free and less environmentally aggressive. Genetic engineering of the plastid genome (plastome) offers a number of attractive advantages, including high-level foreign protein expression, marker-gene excision and transgene containment because of maternal inheritance of plastid genome in most crops. Here, we describe the possibility to improve fatty acid biosynthesis in plastids, production of new fatty acids and increase their content in plants by genetic engineering of plastid fatty acid biosynthesis via plastid transformation. © 2011 The Authors. Plant Biotechnology Journal © 2011 Society for Experimental Biology, Association of Applied Biologists and Blackwell Publishing Ltd.

  10. Economics and Uncertainty of Lignocellulosic Biofuel Production from Energy Cane and Sweet Sorghum in South Texas

    OpenAIRE

    Monge, Juan J.; Ribera, Luis A.; Jifon, John L.; Silva, Jorge A. da; Richardson, James W.

    2014-01-01

    Government support uncertainty, scarce yiel d information, and the inherent risk in bio- economic phenomena are some of the deterrents faced by investors in the nascent cellulosic biofuel industry. A financial probabilistic model was developed to contrast the economic feasibility of producing cellulosic biofuels from energy cane and sweet sorghum using three technologies: hydrolysis, pyrolysis, and gasification. Hydrolysis and pyrolysis proved feasible (showed possibilities of a positive net ...

  11. Maximizing biofuel production in a thermochemical biorefinery by adding electrolytic hydrogen and by integrating torrefaction with entrained flow gasification

    International Nuclear Information System (INIS)

    Clausen, Lasse R.

    2015-01-01

    In a “conventional” thermochemical biorefinery, carbon is emitted from the plant in the form of CO 2 to make the synthesis gas from the gasifier suitable for fuel production. The alternative to this carbon removal is to add hydrogen to the plant. By adding hydrogen, it is possible to more than double the biofuel production per biomass input by converting almost all of the carbon in the biomass feed to carbon stored in the biofuel product. Water or steam electrolysis can supply the hydrogen to the biorefinery and also the oxygen for the gasifier. This paper presents the design and thermodynamic analysis of two biorefineries integrating water electrolysis for the production of methanol. In both plants, torrefied woody biomass is supplied to an entrained flow gasifier, but in one of the plants, the torrefaction process occurs on-site, as it is integrated with the entrained flow gasification process. The analysis shows that the biorefinery with integrated torrefaction has a higher biomass to methanol energy ratio (136% vs. 101%) as well as higher total energy efficiency (62% vs. 56%). By comparing with two identical biorefineries without electrolysis, it is concluded that the biorefinery with integrated torrefaction benefits most from the integration of electrolysis. - Highlights: • Two thermochemical biorefineries are designed and analyzed by thermodynamic modeling. • Integration of water electrolysis in a thermochemical biorefinery is investigated. • Biomass to biofuel energy efficiencies of 101–136% are achieved. • Biomass + net electricity to biofuel energy efficiencies of 56–62% are achieved. • The pros and cons of integrated torrefaction and electrolysis are described

  12. Optimization of cellulase CelA2 with improved performance in high ionic strength for the production of biofuels

    OpenAIRE

    Lehmann, Christian

    2013-01-01

    Limited reserves of fossil fuels and environmental impact on CO2 emissions motivate the research and development of fuel alternatives produced from renewable bioresources. A key-step in biofuel production is the chemo-enzymatic depolymerization of cellulose in order to release fermentable sugars under mild conditions. However, physico-chemical pretreatments must be applied to increase the solubility of cellulose prior to enzyme degradation. The use of ionic liquids (IL) was reported to decrea...

  13. Current market of industrial bio-products and biofuels, and predictable evolutions by 2015/2030. Synthesis

    International Nuclear Information System (INIS)

    2007-04-01

    The main objectives of this study were to describe the current status of the energetic and industrial bio-product markets (biofuels, bio-lubricants, biomaterials, papers, cosmetics, and so on), to identify and analyze the evolution perspectives of these new markets on a long and medium term, to define scenarios of evolution for different sectors (agro-industry, energy, organic chemistry), to identify the most promising new markets, and to select the priority agro-industrial sectors

  14. Impact of Heavy Metal Contamination From Coal Flue Gas on Microalgae Biofuel and Biogas Production Through Multiple Conversation Pathways

    OpenAIRE

    Hess, Derek E.

    2016-01-01

    Large scale biofuel production from microalgae is expected to be integrated with point source CO2 sources, such as coal fired power plants. Flue gas (CO2) integration represents a required nutrient source for accelerated growth while concurrently providing an environmental service. Heavy metals inherent in coal will ultimately be introduced into the culture system. The introduced heavy metals have the potential to bind to microalgae cells, impact growth due to toxicity, and negatively impact ...

  15. “A Step Towards Environmental Waste Management And Sustainable Biofuel (Ethanol) Production From Waste Banana Peelings”

    OpenAIRE

    Nazim Ali; Pravin Ubhrani; Mohit Tagotra; Manohar Ahire

    2016-01-01

    Most nations, whether economically advanced or at different stages of development are facing two major challenges, energy crisis and proper waste disposal. In this paper a study has been done on environmental waste management and sustainable biofuel (ethanol) production from waste banana peelings. The peels of BASRAI variety of bananas are taken as they are rich in cellulose and are kept in hot oven at 338K and dried sample is taken and is dissolved in hot water for starch extract...

  16. Current and potential sustainable corn stover feedstock for biofuel production in the United States

    Science.gov (United States)

    Tan, Zhengxi; Liu, Shu-Guang; Tieszen, Larry L.; Bliss, Norman

    2012-01-01

    Increased demand for corn (Zea mays L.) stover as a feedstock for cellulosic ethanol raises concerns about agricultural sustainability. Excessive corn stover harvesting could have long-term impacts on soil quality. We estimated current and future stover production and evaluated the potential harvestable stover amount (HSA) that could be used for biofuel feedstock in the United States by defining the minimum stover requirement (MSR) associated with the current soil organic carbon (SOC) content, tillage practices, and crop rotation systems. Here we show that the magnitude of the current HSA is limited (31 Tg y−1, dry matter) due to the high MSR for maintaining the current SOC content levels of soils that have a high carbon content. An alternative definition of MSR for soils with a moderate level of SOC content could significantly elevate the annual HSA to 68.7 Tg, or even to 132.2 Tg if the amount of currently applied manure is counted to partially offset the MSR. In the future, a greater potential for stover feedstock could come from an increase in stover yield, areal harvest index, and/or the total planted area. These results suggest that further field experiments on MSR should be designed to identify differences in MSR magnitude between maintaining SOC content and preventing soil erosion, and to understand the role of current SOC content level in determining MSR from soils with a wide range of carbon contents and climatic conditions.

  17. A spent coffee grounds based biorefinery for the production of biofuels, biopolymers, antioxidants and biocomposites.

    Science.gov (United States)

    Karmee, Sanjib Kumar

    2018-02-01

    Spent coffee grounds are composed of lipid, carbohydrates, carbonaceous, and nitrogen containing compounds among others. Using n-hexane and n-hexane/isopropanol mixture highest oil yield was achived during soxhlet extraction of oil from spent coffee grounds. Alternatively, supercritical carbon dioxide can be employed as a green solvent for the extraction of oil. Using advanced chemical and biotechnological methods, spent coffee grounds are converted to various biofuels such as, biodiesel, renewable diesel, bioethanol, bioethers, bio-oil, biochar, and biogas. The in-situ transesterification of spent coffee grounds was carried out in a large scale (4 kg), which led to 80-83% biodiesel yield. In addition, a large number of value added and diversified products viz. polyhydroxyalkanoates, biosorbent, activated carbon, polyol, polyurethane foam, carotenoid, phenolic antioxidants, and green composite are obtained from spent coffee grounds. The principles of circular economy are applied to develop a sustanaible biorefinery based on valorisation of spent coffee grounds. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. The Selective Use of Hypochlorite to Prevent Pond Crashes for Algae-Biofuel Production.

    Science.gov (United States)

    2015-09-21

    Although algae-biofuels have many advantages including high areal productivity, algae can be preyed upon by amoebas, protozoans, ciliates, and rotifers, particularly in open pond systems. Thus, these higher organisms need to be controlled. In this study, Chlorella kessleri was used as the algal culture and Brachionus calyciflorus as the source of predation. The effect of sodium hypochlorite (bleach) was tested with the goal of totally inhibiting the rotifer while causing minor inhibition to the alga. The 24-hr LC50 for B. calyciflorus in spring water was 0.198 mg Cl/L while the 24-hr LC50 for C. kessleri was 0.321 mg Cl/L. However, chlorine dissipates rapidly as the algae serves as reductant. Results showed a chlorine dosage between 0.45 to 0.6 mg Cl/L and a dosing interval of two hours created the necessary chlorine concentrations to inhibit predation while letting the algae grow; thus giving algae farmers a tool to prevent pond crashes. Water Environ. Res., 87 (2015).

  19. Can algae-based technologies be an affordable green process for biofuel production and wastewater remediation?

    Science.gov (United States)

    Vo Hoang Nhat, P; Ngo, H H; Guo, W S; Chang, S W; Nguyen, D D; Nguyen, P D; Bui, X T; Zhang, X B; Guo, J B

    2018-05-01

    Algae is a well-known organism that its characteristic is prominent for biofuel production and wastewater remediation. This critical review aims to present the applicability of algae with in-depth discussion regarding three key aspects: (i) characterization of algae for its applications; (ii) the technical approaches and their strengths and drawbacks; and (iii) future perspectives of algae-based technologies. The process optimization and combinations with other chemical and biological processes have generated efficiency, in which bio-oil yield is up to 41.1%. Through life cycle assessment, algae bio-energy achieves high energy return than fossil fuel. Thus, the algae-based technologies can reasonably be considered as green approaches. Although selling price of algae bio-oil is still high (about $2 L -1 ) compared to fossil fuel's price of $1 L -1 , it is expected that the algae bio-oil's price will become acceptable in the next coming decades and potentially dominate 75% of the market. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Production of biofuel from waste cooking palm oil using nanocrystalline zeolite as catalyst: process optimization studies.

    Science.gov (United States)

    Taufiqurrahmi, Niken; Mohamed, Abdul Rahman; Bhatia, Subhash

    2011-11-01

    The catalytic cracking of waste cooking palm oil to biofuel was studied over different types of nano-crystalline zeolite catalysts in a fixed bed reactor. The effect of reaction temperature (400-500 °C), catalyst-to-oil ratio (6-14) and catalyst pore size of different nanocrystalline zeolites (0.54-0.80 nm) were studied over the conversion of waste cooking palm oil, yields of Organic Liquid Product (OLP) and gasoline fraction in the OLP following central composite design (CCD). The response surface methodology was used to determine the optimum value of the operating variables for maximum conversion as well as maximum yield of OLP and gasoline fraction, respectively. The optimum reaction temperature of 458 °C with oil/catalyst ratio=6 over the nanocrystalline zeolite Y with pore size of 0.67 nm gave 86.4 wt% oil conversion, 46.5 wt% OLP yield and 33.5 wt% gasoline fraction yield, respectively. The experimental results were in agreement with the simulated values within an experimental error of less than 5%. Copyright © 2011 Elsevier Ltd. All rights reserved.